

LIS008324283B2

(12) United States Patent

Oomura et al.

(10) Patent No.: US 8,324,283 B2 (45) Date of Patent: Dec. 4, 2012

(54) SOLID PHARMACEUTICAL COMPOSITIONS COMPRISING A SIP RECEPTOR AGONIST AND A SUGAR ALCOHOL

(75)	Inventors:	Tomoyuki Oomura, Oita (JP);
		Madhusudhan Pudipeddi, Edison, NJ
		(US); Colleen Ruegger, Morris Plains,
		NJ (US); Alan E Royce, Saylorsburg, PA
		(US); Masaki Sasaki, Oita (JP);
		Tokuhiro Tamura, Fukuoka (JP)

(73) Assignees: Novartis AG, Basel (CH); Mitsubishi Pharma Corporation, Osaka (JP)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 722 days.

(21) Appl. No.: 12/189,323

(22) Filed: Aug. 11, 2008

(65) **Prior Publication Data**

US 2008/0311188 A1 Dec. 18, 2008

Related U.S. Application Data

- (62) Division of application No. 10/552,005, filed as application No. PCT/EP2004/003656 on Apr. 6, 2004, now abandoned.
- (60) Provisional application No. 60/461,215, filed on Apr. 8, 2003.

(51)	Int. Cl.	
	A01N 33/02	(2006.01)
	A61K 31/135	(2006.01)

- See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,110,322	A	8/1978	Greven et al 260/112.5 R
5,112,616	A	5/1992	McCarty
6,277,888	B1 *	8/2001	Sakai et al 514/653
6,476,004	B1	11/2002	Sakai et al.
7,151,093	B2	12/2006	Kishikawa et al 514/114
2002/0155512	A1	10/2002	Liao et al.

FOREIGN PATENT DOCUMENTS

EP	0142078	5/1985
EP	0 812 588	12/1997
EP	0 627 406	10/1998
EP	0 990 440	4/2000
EP	1 002 792	5/2000
EP	1 050 301	11/2000
EP	1 195 165	4/2002

EP	1 300 405	4/2003
EP	1424078 A1	6/2004
EP	1 201 236	9/2006
JР	4-202131	7/1992
JР	11276191	10/1999
JР	2002 2412 72	8/2002
WO	98/03162	1/1998
WO	02/18395	3/2002
WO	WO 02/085290	10/2002
WO	WO 03/061567	7/2003
WO	WO 03/062392	7/2003

OTHER PUBLICATIONS

Kiuchi et al., "Synthesis and immunosuppressive activity of 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanois", Journal of Med. Chem., 2000, vol. 43, pp. 2946-2961.

Mandala et al., "Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists", Science, 2002, vol. 296, pp. 346-340

Remington's pharmaceutical sciences (Ed. Alfonso R. Gennaro, 1990, 18^{th} edn.).

Parteck M200 MSDS (accessed Jul. 1, 2010 from http://setonresourcecenter.com/msdshazcom/htdocs/MSDS/E/EMD/Docs/wcd00028/wcd02803.pdf#search+"granular").

Turk (Micronization of Pharmaceutical substances by the rapid expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. Journal of Supercritical Fluids, vol. 22, pp. 75-84, 2002).

Honig et al., "FTY stimulates multidrug transporter and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes", The Journal of Clinical Investigations, 2003, vol. 111, No. 5, p. 627-637.

Yoshiki, Yanagawa et al., "FTY720, a Novel Immunosuppressant, Induces Sequestration of Circulating Mature Lymphocytes by Acceleration of Lymphocyte Homing in Rats. II. FTY720 Prolongs Skin Allograft Survival by Decreasing T Cell Infiltration into Grafts But Not Cytokine Production in Vivo", The Journal of Immunology, vol. 160, pp. 5493-5499, (1998).

Masayuki, Fujino et al., "Amelioration of Experimental Autoimmune Encephalomyelitis in Lewis Rats by FTY720 Treatment", The Journal of Pharmacology and Experimental Therapeutics, vol. 305, No. 1, pp. 70-77, (2003).

Volker, Brinkmann et al., "The Immune Modulator FTY720 Targets Sphingosine 1-Phosphate Receptors", The Journal of Biological Chemistry, vol. 277, No. 24, pp. 21453-21457, (2002).

English translation of Chemical Engineer, 2000, 2, No. 77, Application and Manufacture of Mannitol.

Remington's Pharmaceutical Sciences, "Solid Oral Forms", vol. 2, chapter 92, 19 Ed. 1998.

* cited by examiner

Primary Examiner — Benjamin Packard (74) Attorney, Agent, or Firm — Karen DeBenedictis

(57) ABSTRACT

A solid pharmaceutical composition suitable for oral administration, comprising:

- (a) a S1P receptor agonist; and
- (b) a sugar alcohol.

32 Claims, No Drawings

1

SOLID PHARMACEUTICAL COMPOSITIONS **COMPRISING A SIP RECEPTOR AGONIST** AND A SUGAR ALCOHOL

This is a divisional of application Ser. No. 10/552,005 filed on Nov. 14, 2005, which is National Stage of International Application No. PCT/EP2004/003656 filed on Apr. 6, 2004, which claims benefit of provisional Application 60/461,215 filed on Apr. 8, 2003, the entire disclosures of which are hereby incorporated by reference.

The present invention relates to pharmaceutical compositions comprising a sphingosine-1 phosphate receptor agonist. Sphingosine-1 phosphate (hereinafter "S1P") is a natural serum lipid. Presently there are 8 known S1P receptors, 15 namely S1P1 to S1P8. S1P receptor agonists have accelerating lymphocyte homing properties.

S1P receptor agonists are immunomodulating compounds which elicit a lymphopenia resulting from a re-distribution, preferably reversible, of lymphocytes from circulation to sec- 20 ondary lymphatic tissue, evoking a generalized immunosuppression. Naive cells are sequestered, CD4 and CD8 T-cells and B-cells from the blood are stimulated to migrate into lymph nodes (LN) and Peyer's patches (PP), and thus infiltration of cells into transplanted organs is inhibited.

The various known S1P receptor agonists show structural similarities, which result in related problems in providing a suitable formulation. In particular, there is a need for an S1P receptor agonist containing formulation which is welladapted for oral administration in a solid form, e.g. as a tablet 30 or capsule.

Accordingly, the present invention provides a solid pharmaceutical composition suitable for oral administration, comprising a S1P receptor agonist and a sugar alcohol.

It has surprisingly been found that solid compositions comprising a sugar alcohol provide formulations which are particularly well suited to the oral administration of S1P receptor agonists. The compositions provide a convenient means of systemic administration of S1P receptor agonists, do not suffer from the disadvantages of liquid formulations for injection or oral use, and have good physicochemical and storage properties. In particular, the compositions of the present invention may show a high level of uniformity in the distribution of the S1P receptor agonist throughout the composition, as well as high stability. The compositions of the invention may be manufactured on high speed automated equipment, and thus do not require hand encapsulation.

S1P receptor agonists are typically sphingosine analogues, such as 2-substituted 2-amino-propane-1,3-diol or 2-aminopropanol derivatives. Examples of appropriate S1P receptor agonists are, for example:

Compounds as disclosed in EP627406A1, e.g. a compound of formula I

$$\begin{array}{c|c} & & & I\\ & & & \\ \text{CH}_2\text{OR}_3 & & & \\ & & & \\ \text{CH}_2\text{OR}_2 & & & \\ & & & \\ \text{R}_1 & & & \\ \end{array}$$

wherein R_1 is a straight- or branched (C_{12-22})carbon chain which may have in the chain a bond or a hetero atom selected from a double bond, a triple bond, O, S, NR₆, 65 X is H or unsubstituted or substituted straight chain alkyl

2

which may have as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxyimino, hydroxy or carboxy; or

R₁ is

- a phenylalkyl wherein alkyl is a straight- or branched (C₆₋₂₀)carbon chain; or
- a phenylalkyl wherein alkyl is a straight- or branched (C₁₋₃₀)carbon chain wherein said phenylalkyl is substituted by
- a straight- or branched (C₆₋₂₀)carbon chain optionally substituted by halogen,
- a straight- or branched (C_{6-20})alkoxy chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkenyloxy,

phenylalkoxy, halophenylalkoxy, phenylalkoxyalkyl, phenoxyalkoxy or phenoxyalkyl,

cycloalkylalkyl substituted by C₆₋₂₀alkyl,

heteroarylalkyl substituted by C₆₋₂₀alkyl,

heterocyclic C₆₋₂₀alkyl or

heterocyclic alkyl substituted by C₂₋₂₀alkyl, and wherein

the alkyl moiety may have

- in the carbon chain, a bond or a heteroatom selected from a double bond, a triple bond, O, S, sulfinyl, sulfonyl, or NR_6 , wherein R_6 is as defined above, and
- as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxy or carboxy, and

each of R₂, R₃, R₄ and R₅, independently, is H, C₁₋₄ alkyl or

or a pharmaceutically acceptable salt thereof;

Compounds as disclosed in EP 1002792A1, e.g. a compound of formula II

$$\begin{array}{c} CH_2OR'_3 \\ \downarrow \\ CH_2OR'_2 \end{array} \qquad \begin{array}{c} O \\ \downarrow \\ CH_2OR'_2 \end{array}$$

wherein m is 1 to 9 and each of R'2, R'3, R'4 and R'5, independently, is H, alkyl or acyl,

or a pharmaceutically acceptable salt thereof;

Compounds as disclosed in EP0778263 A1, e.g. a compound of formula III

$$\begin{array}{c} \operatorname{NR}''_1 R''_2 \\ \operatorname{V} - \operatorname{C} - \operatorname{Z}_2 \\ \operatorname{CH}_2)_{m'} \operatorname{OR}''_3 \end{array} \qquad X$$

- 60 wherein W is H; C_{1-6} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl; unsubstituted or by OH substituted phenyl; R"4O(CH2)n; or C_{1-6} alkyl substituted by 1 to 3 substituents selected from the group consisting of halogen, C₃₋₈cycloalkyl, phenyl and phenyl substituted by OH;

55

atoms, e.g. substituted by 1 to 3 substitutents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyloxy, amino, C_{1-6} alkylamino, acylamino, oxo, halo C_{1-6} alkyl, halogen, unsubstituted phenyl and phenyl substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-4} alkylamino, acylamino, halo C_{1-6} alkyl and halogen; Y is H, C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl or halogen, Z_2 is a single bond or a straight chain alkylene having a number or carbon atoms of q, each of p and q, independently, is an integer of 1 to 20, with the proviso of $6\!\leq\! p+q\!\leq\! 23$, m' is 1, 2 or 3, n is 2 or 3,

each of R" $_{\!1},$ R" $_{\!2},$ R" $_{\!3}$ and R" $_{\!4},$ independently, is H, C $_{\!1-4}$ alkyl or acyl,

or a pharmaceutically acceptable salt thereof,

Compounds as disclosed in WO02/18395, e.g. a compound of formula IVa or IVb

$$(R_{2a})_2N - C - CH_2 - X_a - P = O \text{ or } CH_2$$

$$(R_{2a})_2N - C - CH_2 - X_a - P = O \text{ or } CH_2$$

$$CH_2 - R_{1b}$$

$$CH_2 - R_{1b}$$

$$(CH_2)_7CH_3$$

$$(R_{2a})_{2}N \xrightarrow{CH_{2}R_{3b}} R_{1a}$$

$$(R_{2a})_{2}N \xrightarrow{C} CH_{2} - X_{a} \xrightarrow{P} = 0$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$A5$$

wherein X_a is O, S, NR_{1s} or a group — $(CH_2)_{na}$ —, which group is unsubstituted or substituted by 1 to 4 halogen; n_a is 1 or 2, R_{1s} is H or (C_{1-4}) alkyl, which alkyl is unsubstituted or substituted by halogen; R_{1a} is H, OH, (C_{1-4}) alkyl or $O(C_{1-4})$ alkyl wherein alkyl is unsubstituted or substituted by 1 to 3 halogen; R_{1b} is H, OH or (C_{1-4}) alkyl, wherein alkyl is unsubstituted or substituted by halogen; each R_{2a} is independently selected from H or (C_{1-4}) alkyl, which alkyl is unsubstituted by halogen; R_{3a} is H, OH, halogen or $O(C_{1-4})$ alkyl wherein alkyl is unsubstituted or substituted or substituted by halogen; and R_{3b} is H, OH, halogen, (C_{1-4}) alkyl wherein alkyl is unsubstituted or substituted by hydroxy, or $O(C_{1-4})$ alkyl wherein alkyl is unsubstituted or substituted by halogen; Y_a is — CH_2 —, —C(O)—, —CH(OH)—, —C—OOH—, O or S, and R_{4a} is

4

Compounds as disclosed in WO 02/076995, e.g. a compound of formula V

$$\begin{array}{c|c} & V \\ & R_{1c} \\ & R_{c} \end{array}$$

$$\begin{array}{c|c} R_{1c} & CH_{2})m_{c} - X_{c}R_{2c} \\ & R_{c} \end{array}$$

wherein

 m_c is 1, 2 or 3;

X_c is O or a direct bond;

⁵ R_{1c} is H; CO₁₋₆ alkyl optionally substituted by OH, acyl, halogen, C₃₋₁₀cycloalkyl, phenyl or hydroxy-phenylene; C₂₋₆alkenyl; C₂₋₆alkynyl; or phenyl optionally substituted by OH;

$$R_{2c}$$
 is

25

$$- \mathbb{I} \overset{OR_{5c}}{\underset{O}{\bigcirc}}$$

wherein R_{5c} is H or C_{1-4} alkyl optionally substituted by 1, 2 or 3 halogen atoms, and R_{6c} is H or C_{1-4} alkyl optionally substituted by halogen;

each of R_{3c} and R_{4c} , independently, is H, C_{1-4} alkyl optionally substituted by halogen, or acyl, and

 R_{c} is C_{13-20} alkyl which may optionally have in the chain an oxygen atom and which may optionally be substituted by nitro, halogen, amino, hydroxy or carboxy; or a residue of formula (a)

$$\begin{array}{c|c} R_{7c} & \text{(a)} \\ \hline \\ ---(\mathrm{CH_2})_{2.4} - \hline \\ \end{array}$$

wherein R_{7c} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and r is substituted C_{1-20} alkanoyl, phenyl C_{1-14} alkyl wherein the C_{1-14} alkyl is optionally substituted by halogen or OH, cycloalkyl C_{1-14} alkoxy or phenyl C_{1-14} alkoxy wherein the cycloalkyl or phenyl ring is optionally substituted by halogen, C_{1-4} alkyl and/or CO_{1-4} alkoxy, phenyl C_{1-14} alkoxy- C_{1-14} alkyl, phenoxy C_{1-14} alkoxy or phenoxy C_{1-14} alkyl,

 R_c being also a residue of formula (a) wherein R_{8c} is $C_{1\text{-}14}$ alkoxy when R_{1c} is $C_{1\text{-}4}$ alkyl, $C_{2\text{-}6}$ alkenyl or $C_{2\text{-}6}$ alkynyl,

or a compound of formula VI

$$R_{4x}R_{3x}N \xrightarrow{R_{1x}} CH_2 OR_{2x}$$

n, is 2, 3 or 4

R_{1x} is H; C₁₋₆alkyl optionally substituted by OH, acyl, halogen, cycloalkyl, phenyl or hydroxy-phenylene; C₂₋₆alkenyl; C_{2-6} alkynyl; or phenyl optionally substituted by OH; 5 R_{2x} is H, C_{1-4} alkyl or acyl

each of R_{3x} and R_{4x} , independently is H, C_{1-4} alkyl optionally substituted by halogen or acyl,

 R_{5x} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and

 R_{6x} is C_{1-20} alkanoyl substituted by cycloalkyl; cylo- 10 alkylC₁₋₁₄alkoxy wherein the cycloalkyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy; phenylC₁₋₁₄alkoxy wherein the phenyl ring is optionally substituted by halogen, C_{1-14} alkyl and/or C_{1-4} alkoxy,

 R_{6x} being also C_{4-14} alkoxy when R_{1x} is C_{2-4} alkyl substituted 15 by OH, or pentyloxy or hexyloxy when R_{1x} is C_{4-14} -alkyl, provided that R_{6x} is other than phenyl-butylenoxy when either R_{5x} is H or R_{1x} is methyl,

or a pharmaceutically acceptable salt thereof;

Compounds as disclosed in WO02/06268A1, e.g. a com- 20 pound of formula VII

$$\begin{array}{c|c}
& \text{NR}_{1d}\text{R}_{2d} & \begin{array}{c}
& \text{R}_{6d} & \text{R}_{7d} \\
& \begin{array}{c}
& \\
\end{array} & \begin{array}{c}
& \text{VII} \\
\end{array} & \begin{array}{c}
& \text{25} \\
\end{array} \\
& \begin{array}{c}
& \text{R}_{3d}\text{O} & \\
\end{array} & \begin{array}{c}
& \text{NR}_{1d}\text{R}_{2d} & \\
\end{array} & \begin{array}{c}
&$$

wherein each of R_{1d} and R_{2d} , independently, is H or an aminoprotecting group;

R_{3d} is hydrogen, a hydroxy-protecting group or a residue of formula

$$-\Pr_{O} < OR_{9d}$$

$$OR_{8d}$$

 R_{4d} is lower alkyl;

 n_d is an integer of 1 to 6;

X_d is ethylene, vinylene, ethynylene, a group having a formula -D-CH₂— (wherein D is carbonyl, —CH(OH)—, O, S or N), aryl or aryl substituted by up to three substitutents selected from group a as defined hereinafter;

 Y_d is single bond, C_{1-10} alkylene, C_{1-10} alkylene which is substituted by up to three substitutents selected from groups a and b, C_{1-10} alkylene having O or S in the middle or end of the 50 carbon chain, or $C_{1\mbox{-}10}$ alkylene having O or S in the middle or end of the carbon chain which is substituted by up to three substituents selected from groups a and b;

R_{5d} is hydrogen, cycloalkyl, aryl, heterocycle, cycloalkyl substituted by up to three substituents selected from groups a 55 and b, aryl substituted by up to three substituents selected from groups a and b, or heterocycle substituted by up to three substituents selected from groups a and b;

each of R_{6d} and R_{7d} , independently, is H or a substituent selected from group a;

each of R_{8d} and R_{9d} , independently, is H or C_{1-4} alkyl optionally substituted by halogen;

<group a> is halogen, lower alkyl, halogeno lower alkyl, lower alkoxy, lower alkylthio, carboxyl, lower alkoxycarbonyl, hydroxy, lower aliphatic acyl, amino, mono-lower alky- 65 PO(C1-3alkyl)OH and 1H-tetrazol-5-yl; each of R1g and

6

<group b> is cycloalkyl, aryl, heterocycle, each being optionally substituted by up to three substituents selected from group a;

with the proviso that when R_{5d} is hydrogen, Y_d is a group exclusive of single bond and linear C₁₋₁₀ alkylene, or a pharmacologically acceptable salt or ester thereof;

Compounds disclosed JP-14316985 as in (JP2002316985), e.g. a compound of formula VII:

$$\begin{array}{c} \text{VIII} \\ \text{R}_{4e} & \text{R}_{5e} \\ \text{R}_{7e} & \text{R}_{7e} \end{array}$$

wherein R_{1e} , R_{2e} , R_{3e} , R_{4e} , R_{5e} , R_{6e} , R_{7e} , n_e , X_e and Y_e are as disclosed in JP-14316985;

or a pharmacologically acceptable salt or ester thereof;

Compounds as disclosed in WO 03/29184 and WO 03/29206, e.g. compounds of formula IX

$$\begin{array}{c} R_{1f} \\ \\ R_{2f} \end{array} \begin{array}{c} R_{3f} \\ \\ (CH_2)_{nf} \end{array} \begin{array}{c} CH_2OR_{4f} \\ \\ CH_2OR_{5f} \end{array}$$

wherein X_f is O or S, and R_{1p} , R_{2p} , R_{3f} and n_f are as disclosed in WO 03/29184 and 03/29205,

each of R_{4f} and R_{5f} independently is H or a residue of formula

$$P$$
 OR_{9f}
 OR_{9f}

wherein each of R_{8f} and R_{9f} independently, is H or C_{1-4} alkyl optionally substituted by halogen; e.g. 2-amino-2-[4-(3-benzyloxyphenoxy)-2-chlorophenyl]propyl-1,3-propane-diol or 2-amino-2-[4-(benzyloxyphenylthio)-2-chlorophenyl]propyl-1,3-propane-diol, or a pharmacological salt thereof.

Compounds as disclosed in WO03062252A1, e.g. a compound of formula X

$$A^{(CH_2)_{ng}} \xrightarrow{R_{1g}} (R_{4g})_{0.4} \times R_g - M$$

60

40

Ar is phenyl or naphthyl; each of mg and ng independently is 0 or 1; A is selected from COOH, PO3H2, PO2H, SO3H,

optionally substituted by halogen or OH; each R4g independently is halogen, or optionally halogen substituted C1-4alkyl or C1-3alkoxy; and each of R9 and M has one of the significances as indicated for B and C, respectively, in WO03/062252A1;

Compounds as disclosed in WO 03/062248A2, e.g. a compound of formula XI

$$A = \prod_{\substack{h \\ R_{2h}}} \prod_{\substack{h \\ R_{2h}}} \prod_{\substack{h \\ R_{h} - M}} \prod_{\substack{k \\ R_{h} - M}} \prod_{\substack{h \\ R_{h} - M}} \prod_{\substack{h \\ R_{h} - M}} \prod_{\substack{k \\ R_{h} - M}} \prod_{\substack{h \\ R_{h} - M}} \prod_{\substack{h \\ R_{h} - M}} \prod_{\substack{k \\ R_{h} - M}} \prod_{\substack{h \\ R_{h} - M}} \prod_{\substack{k \\$$

wherein Ar is phenyl or naphthyl; n is 2, 3 or 4; A is COOH, 1H-tetrazol-5-yl, PO3H2, PO2H2, —SO3H or PO(R5h)OH wherein R5h is selected from C1-4alkyl, hydroxyC1-4alkyl, phenyl, —CO—C1-3alkoxy and —CH(OH)-phenyl wherein said phenyl or phenyl moiety is optionally substituted; each of R1h and R2h independently is H, halogen, OH, COOH, or optionally halogeno substituted C1-6alkyl or phenyl; R3h is H or C1-4alkyl optionally substituted by halogen and/OH; each R4h independently is halogeno, OH, COOH, C1-4alkyl, S(O)0, 1 or 2C1-3alkyl, C1-3alkoxy, C3-6cycloalkoxy, aryl or aralkoxy, wherein the alkyl portions may optionally be substituted by 1-3 halogens; and each of Rg and M has one of the significances as indicated for B and C, respectively, in 30 WO03/062248A2.

According to a further embodiment of the invention, a S1P receptor agonist for use in a combination of the invention may also be a selective S1P1 receptor, e.g. a compound which possesses a selectivity for the S1P1 receptor over the S1P3 $^{\,35}$ receptor of at least 20 fold, e.g. 100, 500, 1000 or 2000 fold, as measured by the ratio of EC50 for the S1P1 receptor to the EC50 for the S1P3 receptor as evaluated in a 35S-GTPγS binding assay, said compound having an EC50 for binding to the S1P1 receptor of 100 nM or less as evaluated by the 35S-GTPγS binding assay. Representative S1P1 receptor agonists are e.g. the compounds listed in WO 03/061567, the contents of which being incorporated herein by reference, for instance a compound of formula

$$\begin{array}{c} XII \\ \\ CF_3 \\ \\ CH_3 \\ \end{array} \\ \begin{array}{c} OH \\ OH \\ OH \\ OH \\ \end{array}$$

8

Acyl may be a residue R_v —CO— wherein R_v is C_{1-4} alkyl, C₃₋₆cycloalkyl, phenyl or phenyl-C₁₋₄alkyl. Unless otherwise stated, alkyl, alkoxy, alkenyl or alkynyl may be straight or branched.

When in the compounds of formula I the carbon chain as R₁ is substituted, it is preferably substituted by halogen, nitro, amino, hydroxy or carboxy. When the carbon chain is interrupted by an optionally substituted phenylene, the carbon chain is preferably unsubstituted. When the phenylene moiety is substituted, it is preferably substituted by halogen, nitro, amino, methoxy, hydroxy or carboxy.

Preferred compounds of formula I are those wherein R_1 is C_{13-20} alkyl, optionally substituted by nitro, halogen, amino, hydroxy or carboxy, and, more preferably those wherein R_1 is 15 phenylalkyl substituted by C₆₋₁₄-alkyl chain optionally substituted by halogen and the alkyl moiety is a C_{1-6} alkyl optionally substituted by hydroxy. More preferably, R₁ is phenyl-C₁₋₆alkyl substituted on the phenyl by a straight or branched, preferably straight, C₆₋₁₄alkyl chain. The C₆₋₁₄alkyl chain may be in ortho, meta or para, preferably in para.

Preferably each of R₂ to R₅ is H.

A preferred compound of formula I is 2-amino-2-tetradecyl-1,3-propanediol. A particularly preferred S1P receptor agonist of formula I is FTY720, i.e. 2-amino-2-[2-(4-octylphenyl) ethyl|propane-1,3-diol in free form or in a pharmaceutically acceptable salt form (referred to hereinafter as Compound A), e.g. the hydrochloride, as shown:

A preferred compound of formula II is the one wherein each of R'₂ to R'₆ is H and m is 4, i.e. 2-amino-2-{2-[(1-oxo-5-phenylpentyl)phenyl]ethyl}propane-1,3-diol, in free form or in pharmaceutically acceptable salt form (referred to hereinafter as Compound B), e.g the hydrochloride.

A preferred compound of formula III is the one wherein W is CH₃, each of R"₁ to R"₃ is H, Z₂ is ethylene, X is heptyloxy and Y is H, i.e. 2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol, in free form or in pharmaceutically acceptable salt form (referred to hereinafter as Compound C), e.g. the hydrochloride. The R-enantiomer is particularly preferred.

A preferred compound of formula IVa is the FTY720phosphate (R_{2a} is H, R_{3a} is OH, X_a is O, R_{1a} and R_{1b} are OH). A preferred compound of formula IVb is the Compound C-phosphate (R_{2a} is H, R_{3b} is OH, X_a is O, R_{1a} and R_{1b} are OH, Y_a is O and R_{4a} is heptyl). A preferred compound of formula V is Compound B-phosphate.

A preferred compound of formula V is phosphoric acid mono-[(R)-2-amino-2-methyl-4-(4-pentyloxy-phenyl)-bu-

A preferred compound of formula VIII is (2)-R-2-amino-4-[3-(4-cyclohexyloxybutyl)benzo[b]thien-6-yl]-2-methylbutan-1-ol.

When the compounds of formulae I to XIII have one or 60 more asymmetric centers in the molecule, the various optical isomers, as well as racemates, diastereoisomers and mixtures thereof are embraced.

Examples of pharmaceutically acceptable salts of the compounds of formulae I to XIII include salts with inorganic In each case where citations of patent applications are 65 acids, such as hydrochloride, hydrobromide and sulfate, salts

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

