definte bearing on the usefulness of any columan packing prepared. The performances of the seven supports mentioned previously were examined under the same operating conditions. The supports that can be used for lightly loaded packings are: glass beads, Gas Chrom-P, and Chromosorb W-Encos. The other four supports cannot be used for lightly loaded column packing simce their interaction with the artibistamines causes excessive peak tailing.
The hydrogen flame detector used in conjunction with the 0.010 -th, stainless capillary column would not tespond to componads with bolling points above 330°. This limitation prevented evaluation of this column for the analysis of these antihistamines.
The $100-\mathrm{ft} .0 .065-\mathrm{in}$, copper open tubular column was coated with XP-1150 and evaluated usiag the ebove group of anthistamines. The $\mathrm{St}^{\text {to }}$ ionization Cetector was used with a column flow of $36 \mathrm{ml} /$ minute. The retention tines obtained were comparable to the $6-\mathrm{ft}-\mathrm{XP}-1150$ packed column, but the peak base widths weee considerably wider. Because of this increase in base width, the 0.005 in. colurun was less efficient than the 6-ft packed columa.
A $250-\mathrm{ft} 0.005 \mathrm{in}$. column wound on a $11 / \mathrm{ein}$. diameter mandrel has been reported to be more efficient than a packed column (15). There are two possible reasons why efficency was less than previously reported: (c) the coltmu was shorter (100 (t), and (b) the winding configuration was markedly different The column was wound on a $1 / 4 \times$ 1/-in, bar which resulted in a definite flattening of the tube around the edge of the bar:

CONCLUSTONS

The antihistamines investigated, except for meclizine, can te separated, identified, and concentration estimated using the Carbowar 20M, PDEAS, and XP-1150 columas described. The PDEAS colurn is the most efficient of the three for the analysis of anthistamines,

The useftuess of the $0.010-\mathrm{in}$, capillary and the $0.065-\mathrm{in}$, open tubular columins cannot be properly exaluated until the mentioned limitations are removed.

REFERENCES

(1) Brochanme-Henssan, E_{4}, and Svenden, A By Tays

(2) Cisplicst, B. W., And Cmen, $35,266(10 a s)$

(4) I64 $\frac{1}{5}, 1378(105)$.
(5) Brochmatir Firnssen, E., sud Sverdsen, A. B, Tua Joument, 51, 038(1962).
 (2, $34,2845(1082)$.

व1082.
(8) Parke, K, D. Fomtan, C R, Bra Kork, P Te, Anol Chen, 3 , $751(1902)$.
(9) Ander, M, W, and Mannering, C. Iw, I. Chromatog.
$7,35(1052)$
(10) Parker K, D. Fontan, C. R., ard Krt, P L L, Anal
 $35_{1} 61(19603)$.
 (13) Aveill W 2 Progress in industrini Gas Chromitoe-
 Yort M, Y, $106, D 225$.
(1) Macponmi, A, Jry, axa Phatrw, R T, Tms Joun: NAT, S2, B18(1088).

Castor Oil as a Vehicle for Parenteral Administration of Steroid Hormones

By C. RIFFKIN, R. HUBER, and C. H. KEYSSER

Abstract

Steroid hormones may be adminigtered patenterally in high concentrations as of solutions. In this form they exhibit a prolonged action and reduce the number of injections required. To accommodate the demand for increasingly greater coacentrations of hormones in solntion, castor oil in combination with other suitable oilmiscible solvents, has leen found to fulitl a need. The derelopment of several formnlations together with the results of animal testing, as well as clinical crials in humans, attest to the acceptability of this oll for the purposes intended.

Fixed ous are inciuded in the "Uvited States Pharmacopeia XVI" as nonaqueous vehicles for Injection and are characterized an being of vegetable origin, essentially odorless, and without suggestion of rancidity. They must also comply with certain measurable physical lmits specified for the saponification, acid, and todire values.

[^0]After subcutaneous injection, Deanenly and Parkes (1) observed the persistence of olive oil and castor oll in animal tissue. Comparing other oils Brown, ef al. (2), reported that sesame and corn oils were superior to cottonseed and peanut ols because they were less irritating, less antigenic, more quickly released from tissue, and possessed superior physical properties.

More recently the use of steroid hormone medication has expanded considerably. Due to limited water solubility, hormones have been administered as aqueous suspensions or solutions in oll. It has been claimed that the latter provided the slow release preierred in cycical

	Lot No.	-n. 0.02 M MaOR Fquty to ture 100 m Exexple	Sapen. Volue	Todine Value
$\begin{gathered} \text { oll } \\ \text { Custor oll } \end{gathered}$	U.SP. specs	$35.0{ }^{\circ}$	170-185	83-88
	23946	14.0	183.3	84.8
	25589	4.6	179.8	87.0
	23468	7.9	182.7	84.5
	38742	9.2	180.4	84.2
Sesame Oil	U.S.P. spece	3.0	188-185	105-118
	235494	0.5	189.6	106.0
	25958	1.4	194.0	111.8
	38646	0.75	189.6	104.7
	29981	0.45	101.7	108.2
Cottonsed OII	U,S. , spees, $^{\text {d }}$	2.0	190-108	$109-116$
	49684	**	195.9	111.8
	44441		190.3	113.1
Com On	U.S.P. specs.	2.0	187-193	102-128
	52148	1.0	194.5	119.1
	36716	1.2	191.4	124.4
	33436	1.2	189.3	125.0
	33715	1.0	189.3	123.0
Peant Oil	U.S.P, specs,	2.0	185-185	84-100
	22160	1.2	192.0	94.4
	20998	1.4	191.7	93.2
	33628	0.8	108.1	87.8
	20147	1.2	190.4	98.9

 whel ts und to 75.0 m of 0.0 N WWIOE

Ramp IL-Soudnuty of Sranoros 2 U USP. Ous at 25°

sterota	$\frac{\text { Custer }}{\text { Sat }}$		$\begin{gathered} \text { Fenget } \\ \text { ofl } \end{gathered}$
17 Hydroxyprogeterane			
Testosterone	38.6	b, 4	8.1
Estradiol walerte	60.6	16.1	18.8
Progesterone	52.0	22.9	23.6

therapy (3) . Uning withdrawal bleeding in human females as the criterion, Master, of al. (4), compared the duration of action of an aqueous suspension of progesterone with an oil solution, and confirmed the superionty of the latter. The prolongation of activity was generally related to storage in the fatty depots of the body (5).
In 1052 Junkwann (6) determined that a testosterone ester dissolved in sesame of prolonged the androgenic effects in castrated rats. Davis and Wied (7) demonstrated that prolonged activity was also obtained in humans when oll solutions of a progesterone derivative were injected. There was still a limiting factor, howeve, in that oniy a relatively small amount of hormone could be dissolved in the traditional oils. To increase the solvent power of the ofl It was necessary to and compatible and noninitating cosolvents. Such additions consisted of benyl beazoat, benryl alcohot, ethyl lactate, ethyl oleate, etc. The U.SP. recognized the need for such "other vehicles," with the restrictions that they must be safe in the volume of injection adrinistered, and that they should
not interfere with the therapentic efficacy of the preparation or its testing.

Demand for increased hormone concentrations per dose, furthered the scarch for an acceptable of with greater solubitizing power per se. Bos chant (8) in 195 , observed that 17 -lydroxypro geterone caproate in a castor oflethyl lactate vehicle was well tolerated. In addition, private communications from clinicians in West Germany' reported good tolerance to Proluton-Depot containing a castar oll-benzyl benwoate vehicle. Since then other hormones have been used as solutions in ricinoleic acid esters, as well as in castor oil $(0-11)$. Accordingly, an investigation was undertaken into the suitability of cestor oil as a vehicle for parenteral ndministration of sterold hormones.

METHODS AND RESULTS

Representative samples of U.3.P, olls obtained from comurcial sources were tested in accordance with the cifficial method for free fatty acid content, saponification, and lodine values The results are listed in Table 1 along with the US.2. XVI speciticsLions for these olls.

Salubility of selected seroids in various oils was determined in the fotlowing manner. An excess of steroid was stirred for 4 hours at room temperature $\left(25^{\circ}\right)$ in the test oil, after which the undissolved sollds were removed by filtration, and the clear soluCon assayed for steroid content. Table II shows the results obtained.

An attempt was made to reduce the free fatty acids in cattor oll by treatruent with alumina and anhy-

[^1] Muscue*

$\begin{gathered} \text { Deve } \\ \text { iterer } \\ \text { nojection } \end{gathered}$	OH	$\begin{gathered} \text { m. } 0.02 \pi \\ \text { YaOL } \\ \text { Rqu. } \end{gathered}$	Eectixa ol in Muscle (esta)
14	Castor oll (aged)	50	$\frac{1}{3} \text { day }-50 \%$
$1-3$	Castor oll U.S.P.	13	$\begin{aligned} & 1 \text { day }-30 \% \\ & 3 \text { day }-10 \% \end{aligned}$
$1-3$	Serame dl US.P.	1.4	1 day -30% 3 days- -30%
$7-60$	All ails	***	$\begin{gathered} \text { Declining } 10 \\ 102 \% \end{gathered}$

- 1 rol tujected mto belk musele of rublit
drows sodium sulfate Three grams of dried, powdered, amorphous aluminurn oxide (Merck No, 1097) and 6 Gme of aninyirous nodium sultate, reagent grade, were suppended in 120 ml . of od and heated at 80° tuder a blanket of nitrogen for 1. . hotrs. Atter atlowing the oil to cool to room temperature, the solids were fitered of and the acids titrated in the usual manner. A significant reduction in free fatty acid was not obtained.

The absorption characteristics of oils with varying fatty acid content were examined and compared on a biological basis. Aged castor oll with a high free fatty acd content was compared to frech U.S.P. castor oil with a low acid content and U.S.P. sesame oil by tujecting 1 ml of oflinto the back muscles of rabbits, approximately 2 in from the fliae crest A rotational pattern of injection was used and che oil samples were stained to aid visibility in the tissues. The animals were sactifced and the muscles excised and examined grossly. The resuts were averaged and appear in Table IIL.
The test disclosed that ol migruted or was carried. to the fascia, and very small amounts remained for 60 dayn: Localized degeneration produced by the High acid value castor oil was essentially healed in 7 Cays, and the low acd value castor oil appeared to be no more inttating than sestme oil.?

In a specific test for iritation 0.25 ml of the above oll samples were alsoinjected into the vastur laieralis muscles of rabbits. After 2 dage the antmals were sarifoed and the injected muscles examined grossly for evidence of iritation. It was found that the castor oil containing a high level of free fatty add produced a lesion size measuring approximately 121 mun.: The lesion itself wes characterized mainily by degeneration of local tissue without necrosis. Castor oil with low free fatty acid and sesame on, on the other hand, prodiced no measurable lesion at the injection site.

Combinatioss of beazyl aloohol and benay benzoate with both castor oll and sesame oll were also injected into the vaitus lateralt muscles of rabbite and Table IV lists the lesion size produced.

Solutions which were formulated for clinical trials In humans were prepared by aissolving the steroid hormones in appropriate vehieles at 60° under nitrogen. The solutions were then fitered through a coarse sintered-glass filter with the aid of aitrogen pressure, fillad into flals, and sterilized by autoclavlag for 2 hours at 121° (i6 ${ }^{\circ}$, steam pressure). The products were then submitted for assay, safety, and

[^2]animal muscle imtation testing prior to release for clinical investigation.

DISCUSSION

Throughout the livestigation $1 t$ was desirable to have a reference oll to serve as a basis for comparisot. Since sesame oll is universally accepted as a paren teral oil vehicle, it was choser as the "standard" vegetable oil to be compared to castor dil, with and without otier cosolvents. The physical, chemical, and biologial properties of sesame ol are well doctmented and require no comments here.

Chemically, castor oil consists of the triglycerides of ricinolie acid, together with small quantities of glycerides of other acids. The quatitative composition is given by Eckey (18) as follows: ricinolele acid 87% olele acid 74%. linolele acid 3.1%, dihydroxyricholeic acid 0.6%, and miscellaneous acids 2.4%. Two gredes are commonly recognized th this country-U.S. No. 1 which is cold pressed oil, and U.S. No. 3 which is oll extracted from the pressed cake Only the former is used for medicinal purposes.
The high viscosity of castor oil compared to other vegetable oils is undoubtedly related to hydrogen bouding and it is probably the hydroxy groups which contribute to the greater polarity and superior solvent power of the oil As indicated in Table I, the saponification and iodine values of commercial enstor oll appear to be slighty lower than the U.S.P. XVI limits for dil nsed for infection. On the other havd, the content of Iree fatty acds even in fresh oil, varies considerably and exceeds the traditional limits for injectable oils. The significance of this is somemhat obscure, although "Remington's Practice of Pharmacy, 12th tdition," page 387, states "a low free fatty acid content is essential since tit indicates a fresh and pure product and not one that is likely to have become old and beavily contaninated with bacterial products".

Despite better solubility of steroids in castor oil, other cosolvents were necessary to dissolve the
Table IV-Local Ineration Producen my Rebsir Moscis $3 x$ Injzction or Vamous On Vrances:

Tentificatioa SसX-47-2	Composition	$\begin{aligned} & \text { Lexton se } \\ & \text { men } \end{aligned}$
	Sesame oil 98%	61
	Benglalcohol 2%	
SHY-47-4	Castor dil 98%.	$\begin{gathered} \text { Too small to } \\ \text { measture } \\ 506 \end{gathered}$
	Henyl alcohol 2%	
5HY-473	Sesame oll 95%	
SHY-47-5	Castor oll 95%.	106
	Henzil alcohol 5%	
SHY-142	Sesarne oil 65%	291.
	Benzyl benzate 35%	
SEX-145	Castor dill 65\%	184
	Berryl benzote 35%.	
SHY-470	Sesame oil 63\%	207
	Penypl beruzate 35%	
	Benzyl alohol 2%	
Stre4/7	Castor oil 63%	262
	Benyl benzuate 35%	
	Benzyl alcotol 2%	
SAY-148	Sesame oil 50%	291
	Denzl benzoate 50%	158
SHY-14-6	Castor oll 50\%	
	Bengyl benzoate 50\%	

[^3]increasingly higher concentrations required by therapettic teginens, Otten these materials concributed additional advantages. For example, the addition of benzyl alcohol or benzyl benzoate to castor oil resulted in a lower and more favormble viscosity, making it easier to inject. Also, benzyl alcolol was an effective preservative and local anesthetic:

The nature of the iritative response depended on the particular hormone, its concentration in the formulations, and /or the composition of the vehicle. Although rabbit muscles are more sensitive than guman muscles, they were selected primarily brcause local changes in the muscle were observed easily: It was not always possible, however, to correlate muscle inritation in animals to that of humans.

A numerical assigument to lesion size was used solely as a convenience for grading response. The numbers alone do not adequately describe the nature of the response, however. More completely it is characterized by the amount of hemorrhage and edem and the incidence, degree, and extent of local degeneration produced by the injection. A slight, reversible intitative tesponse may cover a large area and a severe irreverible one may be comparatively gmall. A decrease in the size of the degenerated area indicates a revercible condition. The presence of necrosis, which is the most damaging situation, means that the cellular structure was destroyed and repair must take place. The debris must be removed and the original cellular mass in the area replaced with fibrous connective tissue The extent of this fibrosis or formation of sear tissue gives an index of the amount of irreversble damage. Fortumately necrosis was not encomitered, indicating the lack of permanent muscle damage Since these changes take time, final assessment of the effects of en injection in the muscle frequently required observation for 7 days or longer.

It is unfortunate that pain cannot be measured by any known method of animal testing. The animal usually does not respond unless the painful stimulus is marked. Furthermore, the pain caused by injection into human muscle is not usually proportionate to the iritation produced either in animal muscle or in human muscle. Realizing that these limita tions are inherent in animal test methods, it re mained for final acceptablity to be determined in mat.
When it was discovered that IT-hydroxyprogesterone caproate possessed high progestational activity, potences of the order of $65 \mathrm{mg} . / \mathrm{ml}$, were used. By increasing the dose, additional prolongation of action was obtamed, and eventualy concentrations of the order of $250 \mathrm{mg} / \mathrm{mal}$ were required Such a solution in sesame oil produced acceptable animal muscle tolerance, but the pain and local reaction in inmans was so great as to prohibit the adoption of the formulation as a commercial product (see Table V, Lot Pr. 14255/15-10): Solutions were also prepared using castor oil as the rehicle, and Table V ists the formulations tested and the results obtained information obrained from the dinical trials $(14-21)$ attested to the acceptability and safety of the adoptad formulations.
Inherent in the development of an acceptable formulation of 17 -aydroxyprogesterone caproste was

[^4]Taple V-Bvaluatron of $250 \mathrm{mg} / \mathrm{ml}$ 17-Eydroxyproczsmenowe Caproatz Soluniows in Various Or Vritars

Venticte Composition	$\begin{aligned} & \text { Animel } \\ & \text { Muncle } \\ & \text { Leslon, } \\ & \text { size man, } \end{aligned}$	Let Number mad Testing
Sesame of 50%	1049	Pr.142-53/15.7-288
Bengyl benzoate		injections, 20.6\% reactions, rejected
Castor oil 58%	691	Pr.142-58/15-8-270
Benzyl benzoate 40\%		injections, 23.2% xeactions, rejected
Benzyl alcohol 2% Sesame oll 60%	697	Pr.142-53/15-10-
Bencyl bewzonte 35%		189 injections, 10.7% reactions,
Benzy alcollol 5%		rejected
Castar ail 54%	258	Pe142-53/15-11-
Benzyl benzeate 46%		508 injections, 4.2% reactions, accepted
Castor oll 52%	633	Pr. $14258 / 15-13-$
Benzy benzoate		924 injections,
Benzy alcohol 2%		1.3% reactions, gecepted

 und lefion fize determined t deg afte injection.
Table VL-Bvartayion on Estridiol Valigxatr a Various On Vemeiss

Campesition		Lo. Number Eut Remarte
$20 \mathrm{mg} / \mathrm{ml}$. in Cas tor oul 78% Benay benzonte 20%, Benzyl at cohol 2%	197	Es $31-53 / 15-\mathrm{B}-$ available
	306	DEK-98-2-Not tested clinically; dosage increased to $40 \mathrm{mg} / \mathrm{ml}$.
$30 \mathrm{mg} / \mathrm{ml}$. in Cas tor oil 80%. Denzyl benzoate 20%	194	Es. $31-53-\mathrm{V}-\mathrm{Not}$ tested clinically, tosage increase
$40 \mathrm{mg} / \mathrm{m}$. in Sesane oil 65%. Benzyl benzoate 30\%, Beruyl al. coliol 5%	808	SEX -94-4-To0 irritating not tested dinically
$40 \mathrm{mg} / \mathrm{ml}$, in Sesame oll 58% Benzyl benzoate 40% Benzyl al cohol 2%	496	Es $31-53-8-201$ in jections, 23% reactions, rejected
$40 \mathrm{mg} / \mathrm{ml}$ in Cas tor oil 68%. Benzyl benzoate 40\%. Renzyl al cohol 2%	250	Es.31-53-A-820 injections, 2.67\% reactions (all gilld), accepted

- Injection of 0.25 ml lito postus lateralis nupele of

the required development of a suitable asgy method. This was accomplished by Roberts and Florey (13) using paper-strip chromatograply,

Since estrogens are more potent than progestogems and require less por dose, an acceptable formulation of estradiol valerate was easier to prepare. Bestides use in estrogen therapy, estradiol valerate has foumd utlity in the treatnent of carcinoma, and for that purpose high dosages were required. Concentrations were increased from 10 to $40 \mathrm{mg} / \mathrm{ml}$ and
again formulations containing castor oil in the veWicle proved to be less infitating than similar preparations containing sesame oil. Physically and chemically both oll solutious were stable Based on acceptable preliminary data, formulations such as those isted in Table VI were prepared and tested. Acceptability in humans was confirmed by clinicians and described in the literature (22,28) and it case reports,

SUMMARY

1. The dereloprient and testury of parateral steroid hormone Iormulations has been described, using castor oll as a vehicle.
2. After ascertaining stabilicy and animal muscle infitation, seleted formulations were evaluated in humans. They exhibited a prolonged action, were effective and well tolerated.
3. Examples of commercially available producta are the estrogen, estradiol valerate ${ }^{6}$ at $20 \mathrm{mg} / \mathrm{mi}$. and $40 \mathrm{mg} / \mathrm{mmL}$, and the progestogen, 17 -hydroxyprogesterone caproatet at $250 \mathrm{mg} / \mathrm{ml}$.
iCase reports: estrudiol valerate, $20 \mathrm{mg} / \mathrm{ml}$, to castor oil 78\%, benzyl benyonte 20% beazy neotiol 2% - 90 infec trons in i6 patients fro nuili loctil reactions Estridiol yiternte $40 \mathrm{mp} / \mathrm{mL}$ in cstor oll 68%, benzyl benwoate 40% becri micohol 2%, 51 gatients. Number of injections not complety tabrited, one report is in prest
Mautketed as Delestragen by E. R. Squibt a Sons, New Yorit M Y.
YeMareted a Delalutin by E. R. Squibb \& Sons, Nem

REFERENCES

(102)

1) Dentiely, R, wad putke, A S, J. Phymot, 78, 165
(2)
, Hrown, W. E., Wuider, V. M., Schwart, P., J. Lab
(3) "Hostone Taeropy th Prettee" mud ed. Schentag:
A. Efich Blacchier Berin. 1954, 109 .

f. Cin. Entoczsno., $12,145(1052)$.

(O) Jummen, K, Arch. B. Dit Pothot Pharmakol, 215, $85(1022)$.
17 Davis M, E and Wiel, Q. L. J. Cit Endocruol

(106).
(9) Richte, $\mathbf{4}$, 8, pat 2, 222,318.
(10) Erth pret 817,342
2) Ercki, $\frac{1}{\mathrm{E}}$, प. S gat. 2,989,649.
(12) Ecker $\frac{5}{F}$, We retable Fats and ois, ACS

Monograph Stinhold Publing Co, Now Yort, N. Y,

(1002)
(14) short, C. In, Am Practioner Dis. Treamen, 11, $149(1960)$.
(15). Grenthtt, R B, and Dutta, S. N., Aris. Mud., 18 (4) 107(1061).

106 Kelle K . M., and Baker, W. E, New Engl. J. Med,

(18) Denfort, D, N, and Buckingham, I. C., Posferad.
Mcd. $32,355(0 \mathrm{cc}$ igen)
(10) Kitner R W, Clim, Obsid, Gyntent, 5, 1166(1962).

(22) Mactonald, X, and Yekra, M. Met Chn N. Amm 43) $771(1850)$.

Cis Eichue, 3 , Brown, M, and Soble M, J/ Intem Con Sw

Isolation of Marrubiia, a Sterol, and a Sesquiterpene from Marrubium vulgare

By HAROLD J. NICHOLAS*

A simple column chromatographic method for isolating the bicyclic diterpene marrubin from scetone and ethanol extracts of Marrubun wilgare L, is described. An unsarurated sterol of the stigmastanol series, present in esterified form, and a sesquiterpene $\left(\mathrm{C}_{8} \mathrm{H}_{42} \mathrm{O}_{2}\right)$ have been isolated from the extracts.

IN preparamon for radionctive tracer work on the biosynthesis of marrubin it was necessary to examine extracts of the plant for associated terpenoid substances. A convenient column chromatographic method was therefore devised for separating relatively pure marrubiin from crude acetone extracts. Two new terpenoid substances were detected in the extracts.

EXPERTMENTAL

Materials and Methode-_Cround M. wilgore L. was obtained Irom the Wunderlich-Diez Corp,

[^5] Cater, Katsas City.
Agcroted lor publication Novenber $0,1063$.
This investigition wo sapponted by a pront from the
 Retherdn, Md.
More utithor is indebted to Fund Jeriown and Sharoa Moriarity for thir tedinical stinturec.
Research St addrect Xastitute of Medical plucation sed Research, St Lonis, Mo, and Depurtment of Diochamistry: St Louis Ualvenity School of Medirine, St Louis, Mo.

Hashronct Heights N Is This materal was exhanstively extracted with hot acetone or hot ethanol. Either solntion on remowal of solvent by distilation (the last stages in vacue) yielded black, viscous material which was used lor further examination. Meltug points were determined on a Tisher-johnes melting point apparatus. Optical rotations (in CHCL) and $\mathrm{C}-\mathrm{H}$ analyses were determined by Drs. C. Weller and E, B. Strauss, Microanalydual Laboratory, Oxford, England. An infrared spectum of the unidentifed diterpene was determined on a Perkin. Biner spectrophotometer by the CB e disk method. An infrared spectrum of the sterol was determined in chlorotorm solntion in a 0.1 -mm. sealed celt, compensated with CHCls on a Beckrman MR-4 recording intrared spectrophotoweter, and by the KBr disk method. The

[^6]
[^0]: Received September 9 1003, from the Pharmacologe and Fharmacentical Rescarch \& Development Sections, Sguibb Thititute Igr Medict Research, New Brumsulch, iv,

 Accepred ior publicstion November 10, yiga.
 The authors are indebted to the Clicmical Contral Laborn pris or thelr assistane with the cheyst to Dr N, Coy and

 Phurmucology section for the animal ruasele irritation of tita
 ateff, lor the informetion concernieg the clinical trials.

[^1]: Tots, Humboldt VaiveritutCharite Fraumblimk, Werat

[^2]: Dtue to the apprteme increace wh ree gatty nclde with

 NaCR per 10 Gm, of rimple.

[^3]: vaslu loleall muscle of the rablit two gay luter hat mascle wat weited and cie feston size mentured in mon;.

[^4]: 3 Reactions in exeest of $b-9 \%$ wers considered uncerpt able

[^5]: Rectived Angust 15, 1903, Trom the Department of Ohstetrice sud Gynecology, Unversity of Kansas Medica

[^6]: gated was M, whlgre or white horehound, not Ballole birmila (black horehoend).
 We art Irdevted to the Departmeat of Pathology. University of canses, for thig determivation.
 Determined by Saiter Research Laboratoritg phila dephia, Pa.

