

ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 95–8

The Lightweight Directory Access Protocol:
X.500 Lite

Timothy A. Howes

tim@umich.edu

This paper describes the Lightweight Directory Access Protocol (LDAP), which provides
low-overhead access to the X.500 directory. LDAP includes a subset of full X.500 func-
tionality. It runs directly over TCP and uses a simplified data representation for many
protocol elements. These simplifications make LDAP clients smaller, faster, and easier to
implement than full X.500 clients. Our freely available implementation of the protocol is
also described. It includes an LDAP server and a client library that makes writing LDAP
programs much easier.

July 27, 1995

IPR2017-01839
Ubisoft, et al. EX1010 Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IPR2017-01839
Ubisoft, et al. EX1010 Page 2

IPR2017-01839

Ubisoft, et al. EX1010 Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Center for Information Technology Integration 1

The Lightweight Directory

Access Protocol: X.500 Lite

Timothy A. Howes

July 27, 1995

1. Introduction

X.500, the OSI directory standard [1], defines
a comprehensive directory service, includ-
ing an information model, a namespace, a
functional model, and an authentication
framework. X.500 also defines the Directory
Access Protocol (DAP) used by clients to
access the directory. DAP is a full OSI proto-
col that contains extensive functionality,
much of which is not used by most applica-
tions.

DAP is significantly more complicated than
the more prevalent TCP/IP stack implemen-
tations and requires more code and comput-
ing horsepower to run. The size and
complexity of DAP make it difficult to run
on smaller machines such as the PC and
Macintosh where TCP/IP functionality often
comes bundled with the machine. When the
DAP stack implementations are used, they
typically require an involved customization
process, which has limited the acceptance of
X.500.

The Lightweight Directory Access Protocol
(LDAP) was designed to remove some of
the burden of X.500 access from directory
clients, making the directory available to a
wider variety of machines and applications.
Building on similar ideas in the DAS [7] and
DIXIE [4] protocols, LDAP runs directly
over TCP/IP or other reliable transport. As
we shall see, it simplifies many X.500 opera-
tions, leaving out little-used features and

emulating some operations with others.
LDAP uses simple string encodings for most
attributes. The result is a low-overhead
access method for the X.500 directory, suit-
able for use on virtually any platform.

Section 2 of this paper gives a quick intro-
duction to X.500. Section 3 gives an
overview of LDAP, describing the simplifi-
cations it makes to X.500. Section 4 summa-
rizes the key advantages of the LDAP
protocol. Section 5 briefly describes our
implementation of LDAP, including our
server and client library. Section 6 compares
the performance of DAP and LDAP. Finally,
Section 7 describes some work we are doing
that builds on LDAP.

2. Overview of X.500

X.500 is the OSI directory service. X.500
defines the following components:

•

An information model—determines the
form and character of information in the
directory.

•

A namespace—allows the information to
be referenced and organized.

•

A functional model—determines what
operations can be performed on the infor-
mation.

•

An authentication framework—allows
information in the directory to be secured.

IPR2017-01839
Ubisoft, et al. EX1010 Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Center for Information Technology Integration

2

Howes

•

A distributed operation model—deter-
mines how data is distributed and how
operations are carried out.

The information model is centered around

entries

, which are composed of

attributes

.
Each attribute has a

type

 and one or more

values

. The type determines the attribute’s

syntax

, which defines what kind of informa-
tion is allowed in the values.

Which attributes are required and allowed
in an entry are controlled by a special

objectClass

 attribute in every entry. The val-
ues of this attribute identify the type of
entry (e.g., person, organization, etc.). The
type of entry determines which attributes
are required, and which are optional. For
example, the object class

person

 requires the

surname

 and

commonName

 attributes, but

description

,

seeAlso

, and others are optional.

Entries are arranged in a tree structure and
divided among servers in a geographical
and organizational distribution. Entries are
named according to their position in this
hierarchy by a distinguished name (DN).
Each component of the DN is called a rela-
tive distinguished name (RDN).

Alias

entries, which point to other entries, are
allowed, circumventing the hierarchy. Fig-
ure 1 depicts the relationship between
entries, attributes, and values and shows
how entries are arranged into a tree.

Figure 1. X.500 information model.

 The X.500 model
is centered around entries composed of
attributes that have a type and one or more
values. Entries are organized in a tree struc-
ture. Alias entries can be used to build non-
hierarchical relationships.

Functionally, X.500 defines operations in
three areas: search and read, modify, and

alias
entry

object
entry

Attr Attr …

Type Value Value …

authenticate. In the first category, the

read

operation retrieves the attributes of an entry
whose name is known. The

list

 operation
enumerates the children of a given entry.
The

search

 operation selects entries from a
defined area of the tree based on some selec-
tion criteria known as a search filter. For
each matching entry, a requested set of attri-
butes (with or without values) is returned.
The searched entries can span a single entry,
an entry’s children, or an entire subtree.
Alias entries can be followed automatically
during a search, even if they cross server
boundaries.

In the second category, X.500 defines four
operations for modifying the directory. The

modify

 operation is used to change existing
entries. It allows attributes and values to be
added and deleted. The

add

 and

delete

 oper-
ations are used to insert and remove entries
from the directory. The

modify RDN

 opera-
tion is used to change the name of an entry.

The final category defines a

bind

 operation,
allowing a client to initiate a session and
prove its identity to the directory. Several
authentication methods are supported, from
simple clear-text password to public key-
based authentication. The

unbind

 operation
is used to terminate a directory session. An

abandon

 operation is also defined, allowing
an operation in progress to be canceled.

Each X.500 operation and result can be

signed

 to ensure its integrity. Signing is done
using the originating client’s or server’s
public key. The signed request or result is
carried end-to-end in the protocol, allowing
integrity to be checked at every step. This
guards against connection hijacking or mod-
ification by intermediate servers.

Service con-
trols

 can be specified that determine
information such as how an operation will
be carried out, whether aliases should be
dereferenced, the maximum number of
entries to return, and the maximum amount
of time to spend on an operation.

In X.500, the directory is distributed among
many servers (called DSAs for Directory

IPR2017-01839
Ubisoft, et al. EX1010 Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Center for Information Technology Integration 3

The Lightweight Directory Access Protocol: X.500 Lite

System Agent). No matter which server a
client connects to, it sees the same view of
the directory. If a server is unable to answer
a client’s request, it can either

chain

 the
request to another server, or

refer

 the client
to the server.

3. Overview of LDAP

LDAP assumes the same information model
and namespace as X.500. It is also client-
server based, with one important difference:
there are no referrals returned in LDAP. An
LDAP server must return only results or
errors to a client. If referrals are involved,
the LDAP server is responsible for chasing
them down. This model is depicted in Fig-
ure 2, though the intermediate server shown
is not required (i.e., an implementation
could choose to have its DSA speak “native”
LDAP).

Figure 2. Relationship between LDAP and X.500.

The LDAP client-server model includes an
LDAP server translating LDAP requests into
X.500 requests, chasing X.500 referrals, and
returning results to the client.

The LDAP functional model is a subset of
the X.500 model. LDAP supports the follow-
ing operations: search, add, delete, modify,
modify RDN, bind, unbind, and abandon.
The search operation is similar to its DAP
counterpart. A base object and scope are
specified, determining which portion of the
tree to search. A filter specifies the entries
within the scope to select. The LDAP search
filter offers the same functionality as the one
in DAP but is encoded in a simpler form.

LDAP
Client

LDAP
Server

X.500
DSA

X.500
DSA

re
qu

es
t

request

re
fer

ra
l

result

chain

The time and size limit service controls are
included directly in the search request.
(They are not included with the other opera-
tions.) The

searchAliases

 search control and

dereferenceAliases

 service control are com-
bined in a single

derefAliases

 parameter in
the LDAP search. The ASN.1 [11] definition
of the LDAP search request is shown in Fig-
ure 3.

SearchRequest ::= [APPLICATION 3] SEQUENCE {
baseObject LDAPDN,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliasesENUMERATED {

neverDerefAliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3)

},
sizeLimit INTEGER (0 .. MaxInt),
timeLimit INTEGER (0 .. MaxInt),
attrsOnly BOOLEAN,
filter Filter,
attributes SEQUENCE OF AttributeType

}
Filter ::= CHOICE {

and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
equalityMatch [3] AttributeValueAssertion,
substrings [4] SubstringFilter,
greaterOrEqual [5] AttributeValueAssertion,
lessOrEqual [6] AttributeValueAssertion,
present [7] AttributeType,
approxMatch [8] AttributeValueAssertion

}

Figure 3. ASN.1 for the LDAP search operation.

 The
LDAP search operation offers similar func-
tionality to DAP search. It combines search
parameters and service controls and simpli-
fies the filter encoding.

The

LDAPDN

 and

AttributeType

 components
of the search are encoded as simple charac-
ter strings using the formats defined in RFC
1779 [5] and RFC 1778 [2], respectively,
rather than the highly structured encoding
used by X.500. Similarly, the value in an

AttributeValueAssertion

 is encoded as a prim-
itive OCTETSTRING, not a more structured
ASN.1 type. The structure is reflected in the
syntax of the encoded string, not in the
encoding itself.

The results of an LDAP search are sent back
to the client one at a time, in separate

search-
Entry

 packets. This sequence of entries is ter-
minated by a final

searchResult

 packet that
contains the result of the search (e.g., suc-

IPR2017-01839
Ubisoft, et al. EX1010 Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

