
IPR2017-01828
Ubisoft EX1002 Page 1

Supplemenis Inside
Macintosh, Volumes

| through V, with
information about

system software
version 7.0

=

Inside Macintosh, Volume VI
by Apple Computer,Inc.

IPR2017-01828

Ubisoft EX1002 Page 1

aS

IPR2017-01828
Ubisoft EX1002 Page 2

Icon Name

c

FHeDREseothninhw.*ear
Arabic

Canada

Cyrillic

Cyrillic transliterated

Denmark

Faeroe Islands

Germany

Hebrew

Japanese Katakana

Japanese Romaji |

Korean

ieeseor*TRun**
Netherlands, period decimal separator (previously (At)

Netherlands, comma decimal separator

Roman (U.S.)

Spain

Swiss French

1+} Swiss German

+ Swiss Italian |

aoHo¢ll
Turkey

Turkish, U.S. modified

United Kingdom (previously GE)li£&@ aye=ERSe
United States

Color Plate I. Examples of keyboard icons

IPR2017-01828

Ubisoft EX1002 Page 2

IPR2017-01828
Ubisoft EX1002 Page 3

 Color Plate II. A colorized window

Border Style

Color PlateIV. Design for black-and-white Color Plate V. Don’t mimic color effects
monitorsfirst in black-and-white designs

IPR2017-01828

Ubisoft EX1002 Page 3

IPR2017-01828
Ubisoft EX1002 Page 4

Color Plate VI. Use light colors Color Plate VII. Don’t use bright

for large areas colors for large areas

Color Plate IX. A consistent light source Color Plate X. Inconsistent light sources

(enlarged for detail) (enlarged for detail)
IPR2017-01828

Ubisoft EX1002 Page 4

IPR2017-01828
Ubisoft EX1002 Page 5

Color Plate XII. Consistently designed Color Plate XIII. Inconsistently designed
small icons (enlarged for detail) small icons (enlarged for detail)

Color Plate XIV. Icons with a black outline Color Plate XV. Icons without a black

(enlarged for detail) outline (enlarged for detail)

Color Plate XVI. Apple icon colors (as marked)

IPR2017-01828

Ubisoft EX1002 Page 5

IPR2017-01828
Ubisoft EX1002 Page 6

Before anti-aliasing Correctly anti-aliased

=
Color Plate XVII. Correct anti-aliasing (enlarged for detail)

Before anti-aliasing Incorrectly anti-aliased

IPR2017-01828

Ubisoft EX1002 Page 6

IPR2017-01828
Ubisoft EX1002 Page 7

 ol a Le
aL ald a Le a ah
nL] a LJ olb »wB& off
Document Stationery Query document Edition Extension

Color Plate XXI. Default system icon families

Control Panels Color Portable User Setup File Sharing
folder

Color Plate XXII. Examples of control panel icons

IPR2017-01828

Ubisoft EX1002 Page 7

IPR2017-01828
Ubisoft EX1002 Page 8

Color Plate XXIII. Copying with a pixel map as a mask

IPR2017-01828

Ubisoft EX1002 Page 8

IPR2017-01828
Ubisoft EX1002 Page 9

Color Plate XXIV. Colorizing

is || E}

sbis |]|[|||See
TT|TLiea
oe|TTTTTt
||||||| |_| i

Color Plate XXV. Default color tables

IPR2017-01828

Ubisoft EX1002 Page 9

IPR2017-01828
Ubisoft EX1002 Page 10

Inside Macintosh.

Volume VI

é
FT

Addison-Wesley Publishing Company, Inc.

Reading. Mussachusetts Menlo Park, Califormia Sew York
Ben Mills. Ontana=Wokinghac. Englund|Armsterdiam
Bonn Sydney=Singapore=Tokyo=Madrid
Paris Seoul Milan MeaicaCity Taiper San Juan

IPR2017-01828

Ubisoft EX1002 Page 10

IPR2017-01828
Ubisoft EX1002 Page 11

@ APPLE COMPUTER,INC.

This manual is copyrighted by Apple or by Apple’ssuppliers, with all rights reserved. Under
the copyright laws, this manual may.not be copied, in whole orin part, without the writtenconsent of Apple Computer, Inc. This exception does not allow copies to be madefor others,
whetheror not sold, but all of the material purchased may besold, given, or lent to another
person. Under the law, copying includestranslating into another language.
The Apple logois a registered trademark of Apple Computer,Inc. Use of the “keyboard”
‘Apple logo (Option-Shift-K) for commercial purposes.without the prior written consentofpple may constitute trademark infringement and unfair competition in violation of federala state laws.
© Apple Computer, Inc., 1991
20525 Mariani Avenue

Cupertino, CA 95014-6299
(408) 996-1010

ane the Apple logo, APDA, ApplieLink, AppleShare, AppleTalk, Apple IIGs,X, Etherlalk, HyperCard, HyperTaik, ImageWriter, LaserWriter, LocalTalk, Macintosh,
MPW,MultiFinder, SANE, and TokenTalk are registered trademarks
of Apple Computer, Inc.

Apple Desktoop Bus, Balloon Help, Finder, KanjiTalk, Moof, QuickDraw, ResEdit,TrueType, and Zhong-WenTalk are trademarks of Apple Computer,Inc.

Helvetica and Timesare registered trademarks of Linotype Company.

ITC ZaptDingbatsis a registered trademark of International Typeface Corporation.

MacPaintis a registered trademark of Claris Corporation.
NuBusis a trademark of Texas Instruments.

PostScript is a registered trademark, and Illustrator is a trademark, of Adobe Systems
Incorporated.

Sonyis a registered trademark of Sony Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Simultaneously published in the United States and Canada.

ISBN 0-201-57755-0 (book)
ISBN 0-201-57776-3 (boxed edition)
12345678 9-MU-9594939291

First printing April, 1991

IPR2017-01828

Ubisoft EX1002 Page 11

IPR2017-01828
Ubisoft EX1002 Page 12

Inside Macintosh

Volume VI

IPR2017-01828

Ubisoft EX1002 Page 12

IPR2017-01828
Ubisoft EX1002 Page 13

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE
DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
MANUAL, IFS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR
A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD “AS IS,”
AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT
OR INACCURACYIN THIS MANUAL,even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND

IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make any modification, extension, or addition to this
warranty.

Somestates do not allow the exclusion or limitation of implied warrantiesor liability for incidental or
consequential damages, so the above limitation or exclusion maynot apply to you. This warranty
gives you specific legal rights, and you mayalso have other rights which vary from state to state.

IPR2017-01828

Ubisoft EX1002 Page 13

IPR2017-01828
Ubisoft EX1002 Page 14

OQ
5=—
bo
io]—_wn

Contents

XX1X Figures, Tables, and Listings

Preface
P-3 About Jnside Macintosh

P-8 An Overview of the Chapters in Volume VI
6 A Road Map to Volume VI

1 Introduction to the System Software Version 7.0 Environment
About This Chapter
About the System Software Version 7.0 Environment

The Cooperative Multitasking Environment
Intcrapplication Communication

Sharing Data Among Applications
Sending Events Between Applications
Exchanging Message Blocks Between Programs

Remote Data Access
Enhanced UserInterface
Sound

TrueType Fonts
Graphics
File Management
Memory Management

Temporary Memory
24-Bit and 32-Bit Addressing

Process Management
Timing Services
Compatibility
Worldwide Development
Communication Over a Network
HardwareInterfaces

Overview of Chapters in This Volume

1IrodItDkfkpkpe oro

toalbodPmeeeeeteeee II NNMNNYNNNDYBRSHBeSeeeeee BWWSKDOCOBANAARDUWASPWONVNO~TAHWw
2 User Interface Guidelines
About This Chapter
UserInterface Design Principles
Worldwide Software Development

Cultural Values
Resources

Language Differences
Text Display and Text Editing
Default Alignmentof Interface Elements
Keyboards
Fonts

User Documentation

Terminology
The Version 7.0 Environment

User Feedback

Background Notification

VeVNnNwnbdty ABBRON=SOODAUAKDWSSeSee

IPR2017-01828

Ubisoft EX1002 Page 14

IPR2017-01828
Ubisoft EX1002 Page 15

Inside Macintosh, Volume VI

2-16
2-16
2-18
2-18
2-19
2-19
2-20
2-21
2-22
2-22
2-23
2-23
2-24
2-24
2-25
2-26
2-29
2-30
2-30
2-31
2-32
2-32
2-32
2-33
2-34
2-34
2-36
2-36
2-36
2-37

NDOODUAMDWDNRDO~~~ANDMoGWGoGaGaGdGdGaGdGdGd
vi

Color Design for Version 7.0
General Color Design Guidelines
The Icon Family
Black-and-White Icons
Small Icons
Color Icons
Consistent Use of Icons
Customized Icons

Windows
WindowPositions
The Zoom Box and Window Behavior

Dialog Boxes
Modal Dialog Box Behaviors
Movable Modal Dialog Boxes
Keyboard Navigation in Dialog Boxes
Button Labels

Dialog Box Layout
Dialog Box Messages
Standard File Dialog Boxes
Save Changes Dialog Box

Menus
File Menu
Edit Menu
Font Menu

Help Menu
Keyboard Equivalents
Pop-Up Menus

Standard Pop-Up Menus
Type-In Pop-Up Menus

More UserInterface Information

3 Compatibility Guidelines
About This Chapter
About Compatibility

Using Memory Wisely
Using Assembly Language
Accessing Hardware
Using Low-Memory Global Variables
Determining Whether a Trap Is Available

Running in System Software Version 7.0
Allowing Multiple Applications
Supporting Required Apple Events
Removing Font Size Restrictions
Operating With Virtual Memory
Enabling Menus During a Modal Dialog
Coexisting With the System Menus
Creating Movable Modal Dialog Boxes
Creating Pop-Up Menus
Manipulating Dialog Item Lists

Counting Itemsin a Dialog Item List
Appending Itemsto a Dialog Item List
Shortening a Dialog Item List

Centents

IPR2017-01828

Ubisoft EX1002 Page 15

IPR2017-01828
Ubisoft EX1002 Page 16

tobo?ttieeeIPoPFRbttt MmurnmBRRBHABADWWWWWNNNYNHNNNNY nbBROW~AIAAMMBRNYEPUDNDSOO~ATDANBWWDWWWWWWWWWWWWWWDWeGoOoWWOoWGnw
SboOBUYUNNNYNNMNSSHeEHPEFPARRARPARE BRWN-CYNRNEAWW

PHAHAALHAAHAALAAL NeKHODMHDONAPRAHW

Contents

io)=
4=]=
fo
i]ai?a3

Localizing Macintosh Programs
General Guidelines

Localizing With the Toolbox
Running Macintosh Programs Under A/UX

How the A/UX Toolbox Works

Using the A/UX Toolbox
A/UX Compatibility Guidelines

About the Gestalt Manager
Using the Gestalt Manager

Determining Features of the Operating Environment
Determining Whether Gestalt Is Available
Interpreting Gestalt Responses

Interpreting Responses to Environmental Selectors
Interpreting Responses to Informational Selectors

Adding Gestalt Selectors
Modifying Gestalt Selectors
Specifying Gestalt Selector Functions

Gestalt Manager Routines
Getting Information About the Operating Environment
Adding Selector Codes
Modifying Selector Codes

Summary of the Gestalt Manager
Summary of the Window Manager
Summary of the Control Manager
Summary of the Dialog Manager

4 The Edition Manager
About This Chapter
Aboutthe Edition Manager
Publishers, Subscribers, and Editions
Using the Edition Manager

Receiving Apple Events From the Edition Manager
Creating the Section Record and Alias Record
Saving a DocumentContaining Sections
Opening and Closing a Document Containing Sections
Reading and Writing a Section

Formats in an Edition

Opening an Edition
Format Marks

Reading and Writing Edition Data
Closing an Edition

Creating a Publisher
Creating the Edition Container
Opening an Edition Container to Write Data

Creating a Subscriber
Opening an Edition Container to Read Data
Choosing Which Edition Format to Read

Using Publisher and Subscnber Options
Publishing a New Edition While Saving or Manually
Subscribing to an Edition Automatically or Manually
Canceling Sections Within Documents
Locating a Publisher Through a Subscriber

Contents vii

IPR2017-01828

Ubisoft EX1002 Page 16

IPR2017-01828
Ubisoft EX1002 Page 17

Inside Macintosh, Volume VI

Renaming a Document Containing Sections
Displaying Publisher and Subscriber Borders

Text Borders

Spreadsheet Borders
Object-Oriented Graphics Borders
Bitmapped Graphics Borders
Duplicating Publishers and Subscribers

Modifying a Subscriber
Relocating an Edition
Customizing Dialog Boxes

Subscribing to Non-Edition Files
Getting the Current Edition Opencr
Setting an Edition Opener
Calling an Edition Opener Procedure
Opening and Closing Editions
Listing Files That Can Be Subscribed To
Reading From and Writing to Files
Calling a Format I/O Procedure

Edition Manager Routines
Initializing the Edition Manager
Creating and Registering a Section
Creating and Delcting an Edition Container
Setting and Locating a Format Mark
Reading in Edition Data
Writing out Edition Data
Closing an Edition After Reading or Writing
Displaying Dialog Boxes
Locating a Publisher and Edition From a Subscriber
Edition Container Formats

Reading and Writing Non-Edition Files
Summary of the Edition Manager

tatatataa&RRRRBEARSHEEEREREERA
BRARRRERRERREERRARRAS CODSIITIDDADANHDADADMMNN

ReOAan—'1Ii1L

SOADANNYMK—Soom“aanMnbfnwVwnvnneDoO@®~IWW
5 The Event Manager
About This Chapter
About the Event Manager
Introduction to Events

Low-Level Events

Operating-System Events
High-Level Events

Event Processing
The Event Loop
Event Masks

Switching Contexts
Specifying Memory Requirements and Scheduling Options

The Structure of a ‘SIZE’ Resource

Creating a 'SIZE' Resource
Using the Event Manager

Receiving Low-Level Events
Responding to Operating-System Events
Receiving High-Level Events
Identifying High-Level Event Senders and Receivers
Sending High-Level Events

11&WwW

rTTTTAAA mie)old

1Yo.4 DNeaeeeaeeeeDAAAAAAAA WNCOOMABWNHYNCODAAUN
Vil Contents

IPR2017-01828

Ubisoft EX1002 Page 17

IPR2017-01828
Ubisoft EX1002 Page 18

OnnnnnnnnanGra WWWWYNNNWw WNOOOWMATA
'111!t1DRRDARDRARRWWWWWWWONNNHH WTAERPOTNARDOTMBRKOOMADMANTBAAMWWOTARDNOHLARAUMNHWIIIf1IUIII11III1DDARDRHRRARDRDARADRADARRARARH YAIAIAARADANANAMARADRANDNDANDNDADDADRADDADAAN

Contents

io>—i_~
oC
=)>ws

Requesting Return Receipts
Responding to Events From Other Applications
Searching for a Specific High-Level Event

Event Manager Routines
Receiving Events
Sending Events
Receiving a Specific High-Level Event
Converting Process Serial Numbers and Port Names

Summary of the Event Manager

6 The Apple Event Manager
About This Chapter
About the Apple Event Manager
Introduction to Apple Events

Types of Apple Events
Components of Apple Events
Data Structures Within Apple Events
Responding to Apple Events
Requesting Services Through Apple Events

Using the Apple Event Manager
Accepting an Apple Event
Installing Entries Into the Apple Event Dispatch Tables
Handling the Required Apple Events

Required Apple Events
Handling the Open Application Event
Handling the Open Documents Event
Handling the Print Documents Event
Handling the Quit Application Event
Handling Apple Events Sent by the Edition Manager
Handling the Create Publisher Event

Getting Data out of an Apple Event
Getting Data out of a Parameter
Getting Data out of an Attribute
Getting Data out of a DescriptorList

Writing Apple Event Handlers
Replying to an Apple Event
Disposing of Apple Event Data Structures
Interacting With the User
Creating an Apple Event

Adding Parameters to an Apple Event
Specifying a Target Address

Sending an Apple Event
Dealing With Timeouts
Wriling an Idle Function
Writing a Reply Filter Function
Writing and Installing Coercion Handlers
The Application Died Event

Apple Event Manager Routines
Creating and Managing the Apple Event Dispatch Tables
Dispatching Apple Events
Getting Parameters and Attributes From Apple Events
Counting the Items in Descriptor Lists

Contents ix

IPR2017-01828

Ubisoft EX1002 Page 18

IPR2017-01828
Ubisoft EX1002 Page 19

Inside Macintosh, Volume VI

711FT
HWSDOMOMATNRWNHDOSSESLSERARESSSE

6-100
6-101
6-103
6-105

SNWONNHOOANNMBWNNOABRWNHANANORKAHHAWSSSSSSSSSSSSSSSSS

Getting Items From Descriptor Lists
Getting Data and Keyword-Specified Descriptor Records From AE Records
Requesting UserInteraction
Requesting More Time to Respond to Apple Events
Suspending and Resuming Apple Event Handling
Creating Apple Events
Creating and Duplicating Descriptor Records
Creating Descriptor Lists and AE Records
Adding Items to Descriptor Lists
Adding Data and Keyword-Specified Descriptor Records to AE Records
Adding Parameters and Attributes to Apple Events
Sending Apple Events
Getting the Sizes and Descriptor Types of Descriptor Records
Deleting Descriptor Records
Deallocating Memory for Descriptor Records
Coercing Descriptor Types
Creating and Managing the Coercion Handler Tables
Creating and Managing the Special Handler Tables

Summary of the Apple Event Manager

7 The Program-to-Program Communications Toolbox
About This Chapter
About the PPC Toolbox

Ports, Sessions, and Message Blocks
Setting Up Authenticated Sessions
Using the PPC Toolbox

PPC Toolbox Calling Conventions
Specifying Port Names and Location Names

Opening a Port
Browsing for Ports Using the Program Linking Dialog Box
Obtaining a List of Available Ports

Preparing for a Session
Initiating a PPC Session
Receiving Session Requests
Accepting or Rejecting Session Requests

Exchanging Data During a PPC Session
Reading Data From an Application
Sending Data to an Application

Ending a Session and Closing a Port
Invalidating Users

PPC Toolbox Routines

The PPC Toolbox Parameter Block and Completion Routine
Initializing the PPC Toolbox
Using the ProgramLinking Dialog Box
Obtaining a List of Ports
Opening and Closing a Port
Starting and Ending a Session
Receiving, Accepting, and Rejecting a Session
Reading and Writing Data
Locating a Default User and Invalidating a User

Summary of the PPC Toolbox

Contents

IPR2017-01828

Ubisoft EX1002 Page 19

IPR2017-01828
Ubisoft EX1002 Page 20

1tI1I1III96990GCGOGOGOGOGOGOGOGOGOGOGO0000000000006OO
dI11I

‘AmnbBRRRRRWWWWHD=RBReKeOK71otoT1 EBRDDHMSBBORONEHHKOSCOwMOOHIAMAY
DRNDADRMAMAMAHCO00THHOHHWWWOHMDWDEOM SMWOANHNNKEKCOONS

Contents

GSS
|pan
a
|=va

8 The Data Access Manager
AboutThis Chapter
Aboutthe Data Access Manager

The High-LevelInterface
Sending a Query Through the High-Level Interface
Retrieving Data Through the High-Level Interface

The Low-Level Interface

Sending a Query Through the Low-Level Interface
Retrieving Data Through the Low-LevelInterface

Comparison of the High-Level and Low-LevelInterfaces
Using the Data Access Manager

Executing Routines Asynchronously
General Guidelines for the User Interface

Keep the User in Control
Provide Feedback to the User

Using the High-Level Interface
Writing a Status Routine for High-Level Functions
Using the Low-Level Interface
Getting Information About Sessions in Progress
Processing Query Results

Getting Query Results
Converting Query Results to Text

Creating a Query Document
UserInterface Guidelines for Query Documents
Contents of a Query Document
Query Records and Query Resources

Query Records
Query Resources

Writing a Query Definition Function
Data Access Manager Routines

Asynchronous Execution of Routines
Initializing the Data Access Manager
High-LevelInterface

Handling Query Documents
Handling Query Results

Low-Level Interface

Controlling the Session
Sending and Executing Queries
Retrieving Results

Installing and Removing Result Handlers
Summary of the Data Access Manager

9 The Finder Interface
About This Chapter
Aboutthe Finder Interface
Finder-Related Resources

Creators, File Types, and the Signature Resource
Icon Resources
File Reference Resources
The Bundle Resource
The Size Resource

Contents xi

IPR2017-01828

Ubisoft EX1002 Page 20

IPR2017-01828
Ubisoft EX1002 Page 21

Inside Macintosh, Volume VI

athannbbpRbBREBRROwHHOHYVNYNNNYNYNHWW
Messages When the Finder Can’t Find Your Application
Version Resources

How and Whenthe Finder Launches Your Application
Finder-Related Changesto the UserInterface

Stationery Pads
Edition Icons
Customized Icons
Aliases

Resolving Alias Files
Desk Accessories .

Fonts, Sounds, and Other Movable Resources
Balloon Help for Icons

Finder Information in the Volume Catalog
The System Folder and Its Related Directories

Folder Organization
Finding Directories

The Desktop Database
History of the Desktop Database
Using the Desktop Database
Desktop Manager Routines

Locating and Opening the Desktop Database
Reading the Desktop Database
Adding to the Desktop Database
Deleting Entries From the Desktop Database
Manipulating the Desktop DatabaseItself

Summaryof the Finder Interface

90DD0DDHO11OOD1101D1010DD100 —O~WTRKHOONDMANDTODFSWNOCWDADHAHRWOS
10 Control Panels

10-3 About This Chapter
10-3. About Control Panels

10-4 Writing Control Panel Files
10-5 About the Monitors Control Panel

10-6 Designing an Extension for the Monitors Control Panel
10-7 The 'card’ Resource
10-8 The 'mntr' Resource
10-8 The Monitor Function

10-10 Messages to the Monitor Function
10-12 The 'RECT' Resource
10-12 The 'DITL' Resource
10-13 The ICON'and'cicn’ Resources
10-13 The ‘vers’ Resources
10-13 The 'STR#' Resource

10-13 The ‘gama’ Resources
10-14 The 'FREF’, 'BNDL’, Icon Family, and Signature Resources
10-14 The ‘INIT’ Resource

10-14 A Sample of an Extension to the Monitors Control Panel
10-28 Including Another Control Panel Definition in a Monitors Extension File
10-29 Summary of the Extension File for the Monitors Control Panel

xii Contents

IPR2017-01828

Ubisoft EX1002 Page 21

IPR2017-01828
Ubisoft EX1002 Page 22

iv=]
|=
oO
==
ee

Contents

11 The Help Manager
11-3. About This Chapter
11-4 About the Help Manager
11-5 Help Balloon Display

11-10 Default Help Balloons for Menus, Windows,and Icons
11-14 Using the Help Manager
11-14 Providing Text or Pictures for Help Balloons
11-15 Defining the Help Balloon Content
11-16 Using Clear, Concise Phrases
11-16 Using Active Constructions
11-17 Using Parallel Structure
11-17 Using Consistent Terminology
11-17 Defining the Help Balloon Position
11-17 Specifying the Format for Help Balloon Content
11-18 Specifying Options in Help Resources
11-21 Providing Help Balloons for Menus
11-33 Providing Help Balloonsfor Items in Dialog Boxes and Alert Boxes
11-41 Providing Help Balloons for Window Content
11-42 Help Balloonsin Static Windows
11-49 Help Balloons in Dynamic Windows
11-56 Overriding Help Balloons for Application Icons
11-58 Overriding Other Default Help Balloons
11-61 Adding Your Own Menu Items to the Help Menu
11-64 Writing Your Own Balloon Definition Function
11-65 Help Manager Routines
11-65 Determining Whether Help Is Enabled
11-66 Determining Whether a Help Balloon Is Showing
11-66 Displaying and Removing Help Balloons
11-67 Displaying a Help Balloon
11-69 Using Your Own MenuDefinition Procedure
11-71 Removing a Help Balloon
11-72 Using Your Own Tip Function
11-73 Adding Items to the Help Menu
11-74 Getting and Setting the Font Name and Size
11-75 Getting and Setting Information for Help Resources
11-78 Getting the Dimensionsof a Help Balloon
11-79 Getting the Content of a Help Balloon
11-83 Summary of the Help Manager

12 The Font Manager
12-3. About This Chapter
12-3. About the Font Manager
12-3 Font Terminology
12-6 Font Measurements

12-8 Font Scaling
12-10 How the Font Manager Renders TrueType Fonts
12-14 Using the Font Manager
12-15 Adding Font Sizes and Names to the Menu
12-16 Storing a Font Name in a Document
12-16 Using TrueType Fonts in Preference to Bitmapped Fonts
12-17 Preserving the Glyph’s Shape

Contents xii

IPR2017-01828

Ubisoft EX1002 Page 22

IPR2017-01828
Ubisoft EX1002 Page 23

Inside Macintosh, Volume VI

12-18 Font Manager Routines
12-18 Choosing TrueType Fonts Over Bitmapped Fonts
12-19 Scaling Fonts
12-21 Erasing the Font Manager’s Memory Caches
12-22 Summary of the Font Manager

13 The Resource Manager
13-3. About This Chapter
13-3 Resources

13-3 Resource Types
13-6 Resource IDs
13-7 Definition Procedures

13-7 Font Families and Scripts
13-10 Resources in the System File
13-10 System Icons
13-11 Document and Application Icons
13-12 Folder Icons

13-12 System Folder Icons
13-13 Desktop Icons
13-14 Standard File Package Icons
13-15 User Information Resources

13-15 Packages
13-16 Function Key Resources
13-16 Using the Resource Manager
13-16 Using Partial Resources
13-18 Creating and Opening Resource Files
13-18 Storing Fonts in a Resource Fork
13-18 Resource Manager Routines
13-19 Creating Resource Files
13-20 Opening Resource Files
13-21 Reading and Writing Partial Resources
13-24 Summary of the Resource Manager

14 Worldwide Software Overview
14-5 About This Chapter
14-6 About Worldwide Software

14-7 The Graphic Representation of Languages
14-7 Localized Versions of the Macintosh System Software
14-8 Multiple Script Systems and Multiple Languages on the Macintosh Computer
14-8 Identifying Scripts, Languages, and Regions

14-10 Aboutthe Script Management System
14-10 About the Script Manager
14-12 Local and Global Variables

14-12 Style Runs and Higher-Level Text Organization
14-12 Tokens
14-13 Date Conversion

14-13 Geographic Information
14-13 Number Conversion

14-13 Aboutthe International Utilities Package
14-14 Aboutthe International and Keyboard Resources
14-15 Aboutthe Macintosh Script Systems

xiv Contents

IPR2017-01828

Ubisoft EX1002 Page 23

IPR2017-01828
Ubisoft EX1002 Page 24

14-16
14-19
14-19
14-20
14-21
14-21
14-23
14-25
14-25
14-26
14-26
14-27
14-27
14-27
14-27
14-28
14-28
14-28
14-28
14-29
14-29
14-30
14-30
14-31
14-32
14-32
14-33
14-33
14-33
14-34
14-34
14-35
14-35
14-35
14-36
14-36
14-36
14-37
14-37
14-37
14-39
14-39
14-40
14-40
14-4]
14-43
14-43
14-44
14-45
14-45
14-45
14-46

Contents

The Script Management System and Related Worldwide Components
Worldwide Control Panels and Desk Accessory

Installing and Removing Script Systems, Keyboards, and Fonts
Using the Keyboard Menu

Selecting Keyboard Layouts
Distinguishing Scripts
Keyboards
Fonts

Localization

Sorting
Primary or Secondary Order
Expansion
Contraction

Ignorable Characters
Exceptional Words

Formats
Date and Time

Currency and Measurement
Calendars
Numbers

An Introduction to Scripts
Character Representation
Text Direction
Contextual Forms
Diacritical Marks

Uppercase and Lowercase Characters
Character Reordering
Word Demarcation

Alignmentand Justification of Text
Representing Scripts on the Macintosh

Character Set Encoding
Character Input
Composition Rules
Text Manipulation
Text Rendering

Using the Script Manager
Determining the Features of the Script Manager
Initializing the Script Manager
Creating Simple Script Systems
Calling the Script Manager

Overview of the Script Manager Routines
Checking and Modifying Global and Local Variables

Accepting Implicit Script Codes
Verbs for GetScript and SetScript
Verbs for GetEnvirons and SetEnvirons

Checking and Setting System Variables
Setting the Active Keyboard Script
Obtaining Script Information
Obtaining Character Information
Manipulating Text

Drawing and Editing Text
Formatting Text

Contents XV

-S
=ban
oe==+vd

IPR2017-01828

Ubisoft EX1002 Page 24

IPR2017-01828
Ubisoft EX1002 Page 25

Inside Macintosh, Volume VI

14-47
14-47
14-47
14-48
14-48
14-48
14-48
14-48
14-49
14-49
14-49
14-49
14-50
14-50
14-5]
14-55
14-58
14-59
14-60
14-61
14-62
14-64
14-65
14-68
14-71
14-72
14-72
14-73
14-73
14-74
14-74
14-75
14-75
14-76
14-77
14-78
14-79
14-80
14-81
14-82
14-85
14-86
14-87
14-90
14-91
14-92
14-95
14-96

14-98
14-98
14-99

14-100
14-100
14-101

xvi

Modifying Text
Substituting Text
Truncating Text

Lexically Interpreting Different Scripts
Date and Time Utilities

Converting Worldwide Dates and Times
Converting Long Dates
Modifying and Verifying Date and Time Records
Reading and Storing Locations

NumberUtilities

Converting to and From Canonical Number Formats
Working With Formatted Numbers

Script Manager Routines
Localizing Word Selection and Line Break Tables

Defining Word Boundaries and Line Breaks
Determining Word Selection: An Example
Optimized Word Break Tables

Truncating Text
Substituting Text

Substituting and Truncating Text
Converting Case and Stripping Diacritical Marks
Handling Justified Text

Providing for Spacing Between Multiple Style Runs
Justifying Text on the Roman Script System

Using the International Utilities Package Routines
Overview of the International Utilities Package Routines

Comparing Strings
Modifying the Standard String Comparison
Facilitating Interscript Sorting Order
Accessing the International Resources
Localizing Dates, Times, and Metric Information

International Utilities Package Routines
Script and Language Codes
Manipulating the 'itl2' and ‘itl4’ Resources
Specifying Resource Handles Explicitly
Determining Interscript Sorting Order

Using the International and Keyboard Resources
Enhancements to International Resources
The ‘itlc' Resource
The ‘itlm' Resource
The‘itlb' Resource
The ‘itlO' Resource
The ‘itll’ Resource
The ‘itl2' Resource

The 'itl2'’ Resource Header
The ‘itl4’ Resource

Keyboard Types and Modifier Bits
The 'KCHR' Resource

The 'kcs#', ‘kes4', and 'kcs8’ Resources
The 'KSWP' Resource
The ‘itlk’ Resource

Key Caps and the 'KCAP’ Resource
Dead-Key Feedback
The 'KCAP' Resource

Contents

IPR2017-01828

Ubisoft EX1002 Page 25

IPR2017-01828
Ubisoft EX1002 Page 26

14-102
14-102
14-102
14-103
14-104
14-104
14-104
14-105
14-107
14-107
14-107
14-108
14-109
14-109

14-109
14-110
14-110
14-111
14-133
14-138

15-3
15-3
15-4
15-6
15-8
15-9

15-11
15-11
15-13
15-14
15-14
15-14
15-15
15-16
15-17
15-17
15-17
15-18
15-19
15-19
15-19
15-19
15-20
15-20
15-21
15-21
15-22
15-23
15-23
15-24

Contents

Ci}
|=
ont
S=tT

Localizing to Other Languages and Regions
Using Resources
Text and Dialog Translation Tips
Adapting Text Operations
Using Fonts
Avoiding Special Character Codes as Delimiters
Using the Standard Roman Character Set
Adapting Keyboard Equivalents
Modifying the Representation of Dates, Times, and Numbers

Writing Software for Other Scripts
Working With Fonts
Working With Character Codes
Working With Text Direction
Synchronizing Keyboards and Fonts
Handling Numbers
Identifying Keywords and Tokens
Possible Printing Problems

Summary of the Script Manager
Summary ofthe International Utilities Package
Summary of the International Resources

15 Textkait
About This Chapter
About TextEdit
Mixed-Directional Text

Highlighting
Mouse-DownRegions
Dual Carets
Caret MovementAcross Direction Boundaries

Font and Keyboard Synchronization
Double-Byte Characters
Vertical Movementof the Carct

Arrow Key Actions for Selected Text
Caret Position at Line Ends
Word Selection and Line Breaks
Accurate Line Measurement

TextEdit and TrueType Fonts
Using TextEdit

Determining the Version of TextEdit
Customizing TextEdit’s Features

Measuring the Width of Components of a Linc
Defining Word Boundaries

Controlling Outline Highlighting, Text Buffering, and Inline Input
Setting Left Alignment for Right-to-Left Directional Scripts
Using WordRedraw for Line Calculations
Using the lineStarts Array to Determine Line Length
Using TextEdit’s Default Click Procedure

TextEdit Routines

Outline Highlighting, Text Buffering, and Inline Input
Outline Highlighting
Text Buffering
Inline Input

Contents xvil

IPR2017-01828

Ubisoft EX1002 Page 26

IPR2017-01828
Ubisoft EX1002 Page 27

Inside Macintosh, Volume VI

17-3
17-3
17-4
17-4
17-6

17-10
17-11
17-12
17-12
17-16
17-16
17-17
17-17
17-18

XVE

Customizing TextEdit
Replacing the End-of-Line Routine
Replacing the Measuring Routines
Replacing the Drawing Routine
Replacing the Hit Test Routine
Replacing the Word Breaking Routine

Backspacing to the Beginning of a Style
Determining the Position of an Ambiguous Offset
Toggling a Style
Determining Styles Across a Selection
Sctting Styles in TextEdit’s Scrap Record
Determining the Numberof Styles

TextEdit Data Structures

Summary of TextEdit

16 Graphics Overview
About This Chapter
About Macintosh Graphics
The Components of Macintosh Graphics

QuickDraw
TheInterface
The Video Card and Screen

The Major Data Structures
The RGB Color Record
Color Collections

The Pixel Map Record
Port Characteristics: The Color GrafPort Record

Device Characteristics: The Graphics Device Record
GraphicsInitialization
The Graphics Path

How Indexed Pixels Work
How Direct Pixcls Work

Determining the QuickDraw Version
What Else to Read

Summary of Graphics Data Types

17 Color QuickDraw
About This Chapter
About Color QuickDraw
Direct Pixels

Pixel Map Record Extensions
Direct Pixel Values

Writing Compatible Graphics Applications
Using Color QuickDraw

Manipulating Pixel Map Images
Copying With Masks
Colorizing
Transfer Modes

Dithering
Resizing Images

Luminance Mapping

Contents

IPR2017-01828

Ubisoft EX1002 Page 27

IPR2017-01828
Ubisoft EX1002 Page 28

lam

a]=>
oe
=a
v

Contents

17-18 Image Resolution
17-19 Displaying Variable-Resolution Pixel Maps and Pictures
17-19 Exporting Pixel Map Records |
17-19 Converting a Bitmap to a Region
17-20 Determining Whether Drawing Is Complete
17-20 Extensions to the Version 2 Picture Format
17-21 Font Name
17-21 Line Justification

17-21 Direct Pixel Images
17-24 Sample Extended Version 2 Picture
17-25 Color QuickDraw Routines
17-25 Creating an Extended Version 2 Picture
17-25 Creating Regions From Bitmaps
17-25 Copying Pixel Map Images
17-26 Determining Whether QuickDraw Has Finished Drawing
17-26 Reporting Data Structure Changes
17-27 Obtaining Intermediate Colors
17-28 Interpreting New QDError Result Codes
17-28 Using a Custom Color Search Function
17-29 Summary of Color QuickDraw

1 8 The Picture Utilities Package
18-3. About This Chapter
18-3 Aboutthe Picture Utilitics Package
18-3 Using the Picture Utilities Package
18-4 Getting Color Information
18-5 Collecting Information From Multiple Pixel Maps or Pictures
18-5 Storing Information: The Picture Information Record
18-9 Picture Utilities Package Routines
18-9 Collecting Information From a Single Image

18-10 Collecting Information From Multiple Images
18-12 Creating Custom Color-Sampling Methods
18-15 Summary of the Picture Utilities Package

19 The Color Picker Package
19-3 About This Chapter
19-3 About the Color Picker Package
19-4 Color Models
19-4 The RGB Model

19-6 The CMYK Model.
19-6 The HLS and HSV Models

19-8 Color Models in the Dialog Box
19-8 Using the Color Picker Package
19-8 Presenting the Color Picker Dialog Box
19-9 Using Conversion Facilities
19-9 Color Picker Package Routines

19-10 Displaying the Color Picker Dialog Box
19-10 Converting Between Color Models
19-11 Converting Between SmallFract and Fixed Values
19-12 Summary of the Color Picker Package

Contents XX

IPR2017-01828

Ubisoft EX1002 Page 28

IPR2017-01828
Ubisoft EX1002 Page 29

Inside Macintosh, Volume VI

XX

20 ThePalette Manager
About This Chapter
About the Palette Manager
Palettes

Color Usage Categories
Changing the Color Environment
Restoring the Color Environment
Using the Palette Manager

Working With Color Usage Categories
Courteous Colors
Tolerant Colors
Animated Colors

Displaying Animated Colors on Direct Devices
Explicit Colors
Inhibited Colors

Combined Usage Categories
Creating Palettes

Assigning Colors to a Palctte
Creating a Palette in a Resource File
Assigning a Default Palette to an Application

Linking a Color Table to a Palette
Associating One Palette With Many Ports

Palette Manager Routines
Initializing the Palette Manager
Initializing and Allocating Palettes
Interacting With the Window Manager
Drawing With Color Palettes
Animating Color Tables
Manipulating Palettes and Color Tables
Manipulating Palette Entries

Summary of the Palette Manager

21 The Graphics Devices Manager
About This Chapter
About the Graphics Devices Manager
Offscreen Graphics
Using the Graphics Devices Manager

Offscreen Graphics World Flags
Example of Offscreen Graphics Code

Advanced Features of the Graphics Devices Manager
The Graphics Device Record
The 'scrn’ Resource

Setting a Device’s Pixel Depth
Graphics Devices Manager Routines

High-Level Routines
Creating a Graphics World
Working With a Graphics World’s Pixel Map
Updating the Graphics World
Setting and Retrieving the Graphics World
Disposing of a Graphics World

Low-Level Routines

Supporting the Offscreen Graphics World

Contents

IPR2017-01828

Ubisoft EX1002 Page 29

IPR2017-01828
Ubisoft EX1002 Page 30

Contents

‘2i)
=}=
zgndiifat

Managing the Graphics Device Record
Summary of the Graphics Devices Manager

22 The Sound Manager
About This Chapter
About the Sound Manager
Introduction to Sound

Sound Synthesizers
The Square-Wave Synthesizer
The Wave-Table Synthesizer
The Sampled Sound Synthesizer

Sound Commands
Sound Channels

Multiple Channels of Sound
Sound Compression and Expansion
Continuous Play From Disk
Sound Recording

Sound Storage Formats
Sound Resources

The Format | ‘snd ' Resource
The Format 2 'snd ' Resource

Sound Files

Chunk Organization and Data Types
The Form Chunk
The Format Version Chunk
The Common Chunk
The Sound Data Chunk

Reading and Writing Sound Files
Using the Sound Manager

Playing ‘snd ' Resources
Allocating Sound Channels
Initializing Sound Channels
Releasing Sound Channels
Determining Features of Synthesizers
Playing Frequencies
Playing Sampled Sounds
Installing Voices Into Channels
Manipulating a Sound That Is Playing
Flushing Sound Channels
Pausing and Restarting Sound Channels
Synchronizing Sound Channels
Managing the CPU Load
Producing an Alert Sound
Compressing and Expanding Sounds
Playing Sampled Sounds From Files

Playing an ‘snd ' Resource From Disk
Playing a File From Disk
Playing Selections

Recording Sounds Through the Sound Input Dialog Box
Recording Sounds Directly From a Device

Defining a Sound Input Completion Routine
Defining an Interrupt Routine

Getting and Setting Sound Input Device Information

Contents XXI

IPR2017-01828

Ubisoft EX1002 Page 30

IPR2017-01828
Ubisoft EX1002 Page 31

Inside Macintosh, Volume VI

Obtaining Information About Sound Features
Obtaining Information About Available Sound Features
Obtaining Version Information
Obtaining Information About a Single Sound Channel
Obtaining Information About All Sound Channels

Using Double Buffers
Setting Up Double Buffers
Writing a Doubleback Procedure

Specifying Callback Routines
Sound Manager Routines

Playing Sound Resources
Allocating and Releasing Sound Channels
Linking Synthesizers to Sound Channels
Sending Commands to a Sound Channel
Obtaining Information
Playing From Disk
Managing Double Buffers
Compressing and Expanding Audio Data
Recording Sounds
Manipulating Sound Input Devices

Opening and Closing Sound Input Devices
Recording Sounds Directly From Sound Input Devices
Manipulating Device Settings

Constructing Sound Resource and File Headers
Registering Sound Input Devices
Converting Between Milliseconds and Bytes

Summary of the Sound Manager

23 The Time Manager
About This Chapter
Aboutthe Time Manager

Time ManagerVersions
The Original Time Manager
The Revised Time Manager
The Extended Time Manager

Other Time-Related Facilities
The TickCount Function

The Delay Function
‘The Vertical Retrace Manager

Using the Time Manager
Installing and Activating Task Records
Using Application Global Variables in Tasks
Performing Periodic Tasks
Computing Elapsed Time

Time Manager Routines
Summary of the Time Manager

24 The Notification Manager
About This Chapter
About the Notification Manager
Using the Notification Manager

Creating a Notification Request

Contents

IPR2017-01828

Ubisoft EX1002 Page 31

IPR2017-01828
Ubisoft EX1002 Page 32

24-8
24-9

24-10
24-10
24-12

25-3
25-3
25-4
25-4
25-5
25-9
25-9

25-10
25-10
25-10
25-11
25-11
25-12
25-12
25-15
25-17
25-20
25-25
25-26
25-28
25-29
25-29
25-30
25-31
25-3]
25-34
25-34
25-34
25-35
25-37
25-37
25-40
25-42
25-43
25-44
25-45
25-47
25-48
25-50
25-52
25-54

Contents

Defining a Response Procedure
Installing a Notification Request
Removing a Notification Request

Notification Manager Routines
Summary of the Notification Manager

25 The File Manager
About This Chapter
About the File Manager
identifying Files, Directories, and Volumes

File System Specifications
The Evolution of File Specification Strategies

Limitations on MFS Disks

A Simpler Safe-Save Strategy
New Special-Purpose Features

A Quick, Thorough Catalog Search
File IDs
Shared Environments

Remote Mounting
Privilege Information in Foreign File Systems

Using the File Manager
Using FSSpec Records
Updating Files
Searching a Volume
Tracking Files With File IDs
Mounting Volumes Programmatically
Manipulating Privilege Information in Foreign File Systems

High-Level File Manager Routines
Routines That Use FSSpec Records

Making FSSpec Records
Exchanging the Data in Two Files
Functions Modified to Accept FSSpec Records

Opening a Data Fork
Managing HFS

Functions New With HFS

MFSFunctions Modified to Accommodate Directory IDs
Low-Level File Manager Routines

Reading Volume Information
Searching a Catalog
Creating FSSpec Records
Swapping Data Between TwoFiles
Creating and Using File IDs

Functions for Manipulating File IDs
Functions Changed to Accommodate File [Ds

Mounting Volumes
Accessing Privilege Information in Foreign File Systems
Opening Data Forks

Summary of the File Manager

Contents XX

O2
s=
ec
=|iw

IPR2017-01828

Ubisoft EX1002 Page 32

IPR2017-01828
Ubisoft EX1002 Page 33

Inside Macintosh, Volume VI

26-3
26-3
26-4
26-5
26-9

26-10
26-11
26-20
26-20
26-20
26-22
26-25

IAIAAAS 0COKMOOMIDNBWWSNNMNMNNNNNNY
>)

2
a

27-11
27-11
27-12
27-12
27-12
27-12

27-15
27-20
27-21

28-3
28-4
28-6
28-7
28-9
28-9

28-10
28-11
28-12
28-12
28-13
28-14
28-15
28-16
28-16
28-16

Xxiv

26 The Standard File Package
About This Chapter
About the Standard File Package
Using the Standard File Package

Presenting the Default Interface
Customizing Your Interface

Customized Dialog Boxes
Callback Routines

Compatibility With Earlicr Procedures
Standard File Package Routines

Saving Files
Opening Files

Summaryof the Standard File Package

27 The Alias Manager
About This Chapter
About the Alias Manager
About Alias Records

Search Strategies for Resolving Alias Records
Fast Search
Exhaustive Search

Using the Alias Manager
Creating Alias Records
Resolving Alias Records

ResolveAlias
MatchAlias

Maintaining Alias Records
Getting Information About Alias Records
Customizing Alias Records

Alias Manager Routines
Creating and Updating Alias Records
Resolving and Reading Alias Records
Filtering Possible Targets

Summary of the Alias Manager

28 Memory Management
About This Chapter
About Memory Management

Dividing Memory Among Multiple Applications
Extending an Application’s Available Memory
Extending the Operating System’s Available Memory
Controlling the System Memory Settings

About the Memory Manager
Using Master Pointers
Using Window and Control Definition Functions
Manipulating 24-Bit and 32-Bit Memory Addresses

Using the Memory Manager
Setting and Restoring the A5 Register
Manipulating A5 Without MPW

Memory Manager Routines
Setting and Restoring the AS World
Manipulating Memory Addresses

Contents

IPR2017-01828

Ubisoft EX1002 Page 33

IPR2017-01828
Ubisoft EX1002 Page 34

28-17
28-18
28-19
28-20
28-21
28-21
28-21
28-23
28-23
28-24
28-25
28-25
28-25
28-26
28-26
28-26
28-26
28-28
28-29
28-30
28-30
28-31
28-31
28-32
28-33
28-33
28-33
28-36
28-36
28-37
28-37
28-37
28-37
28-38
28-38
28-39
28-40
28-41

29-3
29-4

29-5
29-6
29-7

29-8
29-8
29-8

29-12
29-15
29-16
29-16

Contents syuaju07)
About Virtual Memory
Using Virtual Memory

Holding and Releasing Memory
Locking and Unlocking Memory
Obtaining Information About Virtual Memory

Information About the System Memory Configuration
Information About Page Mapping

Deferring User Interrupt Handling
Debugger Support Under Virtual Memory

Bus Error Vectors

Special Nonmaskable Interrupt Needs
Supervisor Mode
The Debugging State
Keyboard Input
Page States

Virtual Memory Routines
Holding and Releasing Pages
Locking and Unlocking Pages
Obtaining Page-Mapping Information
Deferring User Interrupt Handling
Determining Which Debugger Functions Are Present
Determining Whether Paging Is Safe
Locking and Unlocking Memory With Caching Enabled
Entering and Exiting the Debugging State
Obtaining Keyboard Input
Determining Page State

About Temporary Memory
Using Temporary Memory

Allocating Temporary Memory
Locking Temporary Memory
Unlocking Temporary Memory
Releasing Temporary Memory
Determining Features of Temporary Memory

Temporary Memory Routines
Requesting Temporary Memory
Locking and Unlocking Temporary Memory
Freeing Temporary Memory

Summary of Memory Management

2 9 Process Management
About This Chapter
About Process Management

How the Process Manager Creates Processes
How the Process Manager Schedules Processes
How Your Application Specifies Scheduling Options

Using the Process Manager
Opening or Printing Files Based on Finder Information
Getting Information About Other Processes
Launching Other Applications

Specifying Launch Options
Controlling Launched Applications

Launching Desk Accessories

Contents XXV

IPR2017-01828

Ubisoft EX1002 Page 34

IPR2017-01828
Ubisoft EX1002 Page 35

Inside Macintosh, Volume VI

Process Manager Routines
Getting Process Information
Launching Applications and Desk Accessories

Summary of Process Manager Routines

30 The Slot Manager
About This Chapter
About the Slot Manager
Card Initialization

Using the Slot Manager
Enabling and Disabling NuBus Cards
Enabling and Disabling SResource Data Structures
Searching for Disabled SResource Data Structures
Restoring Deleted SResource Data Structures

Slot Manager Routines
The Slot Manager Parameter Block
Determining the Version of the Slot Manager
Getting Information About SResource Data Structures
Enabling, Disabling, or Restoring SResource Data Structures

Summary of the Slot Manager

31 The Power Manager
About This Chapter
About the Power Manager
The Idle State

The Sleep State
The Sleep Queue

Sleep Requests
Sleep Demands
Wakeup Demands
Sleep-Request Revocations

Using the Power Manager
Determining Whether the Power ManagerIs Present
Enabling or Disabling the Idle State
Setting, Disabling, and Reading the Wakeup Timer
Placing a Routine in the Sleep Queue
Responding When the Sleep Queue Calls Your Routine
Switching Serial Power On and Off

Power Manager Routines
Controlling the Idle State
Controlling and Reading the Wakeup Timer
Controlling the Sleep Queue
Controlling Serial Power
Reading the Status of the Internal Modem
Readingthe Status of the Battery and of the Battery Charger

Summary of the Power Manager

32 The AppleTalk Manager
About This Chapter
About the AppleTalk Manager

Changes to the AppleTalk Manager

Contents

IPR2017-01828

Ubisoft EX1002 Page 35

IPR2017-01828
Ubisoft EX1002 Page 36

32-5
32-8

32-11
32-11
32-11
32-12
32-12
32-16
32-17
32-17
32-18
32-20
32-21
32-24
32-25
32-27
32-29
32-29
32-30
32-31
32-32
32-34
32-37
32-38
32-38
32-40
32-43
32-52
32-56
32-58
32-58
32-69
32-73
32-78
32-79
32-79
32-79
32-81
32-83
32-85
32-85
32-86
32-88
32-90
32-91
32-95
32-97

A-l

B-1

Contents

o)
==]os
c
=—_
wo

AppleTalk Protocols
AppleTalk Device Drivers, AppleTalk Connection Files, and the LAP Manager

Using the AppleTalk Manager
Determining Whether AppleTalk Phase 2 Drivers Are Present
Deciding Which AppleTalk Protocol to Use

The .MPP Driver

Getting Information About the .MPP Driver
A New NBPWildcard Character

The LAP Manager
The AppleTalk Transition Queue

Adding and Removing AppleTalk Transition Queue Entries
Sending Messages to the AppleTalk Transition Queue
How the AppleTalk Manager Calls Your AppleTalk Transition Queue Entry
Defining Your Own AppleTalk Transition

The LAP Manager 802.2 Protocol
Attaching and Detaching 802.2 Protocol Handlers

The .ATP Driver

Canceling All Calls to the ATPGetRequest Function
Setting the Timeout Value for the ATP Release Timer

The .XPP Driver

Using the .XPP Driver to Obtain Information About Zones
Obtaining Zone Information

AppleTalk Data Stream Protocol (ADSP)
Using ADSP

The ADSP Connection Control Block
The .DSP Parameter Block

Opening and Maintaining an ADSP Connection
Creating and Using a Connection Listener
Writing a User Routine for Connection Events

.DSP Driver Routines

Establishing and Terminating an ADSP Connection
Establishing and Terminating an ADSP Connection Listener
Maintaining an ADSP Connection

The .ENET Driver

Providing Your Own Ethernet Driver
Changing the Ethernet Hardware Address
Opening the LENET Driver
Using a Write-Data Structure to Transmit Ethernet Data
Using the Default Ethernet Protocol Handler to Read Data
Using Your OwnEthernet Protocol Handler to Read Data

How the .ENET Driver Calls Your Protocol Handler
How YourProtocol Handler Calls theENET Driver

-ENET Driver Routines

Attaching and Detaching an Ethernet Protocol Handler
Writing and Reading Ethernct Packets
Adding and Removing Ethernet Multicast Addresses

Summary of the AppleTalk Manager

A Result Codes

B Routines and Their Memory Behavior

Contents XXVIL

IPR2017-01828

Ubisoft EX1002 Page 36

IPR2017-01828
Ubisoft EX1002 Page 37

fuside Macintosh, Volume Vi

C-! Cc System Traps

p-| D Global Variables

E-1 E The Standard Roman Character Set

GL-| Glossary

IN-1 Index

AAVITE Contents

IPR2017-01828

Ubisoft EX1002 Page 37

IPR2017-01828
Ubisoft EX1002 Page 38

Figures, Tables, and Listings

Color Plates

Colorplates are immediately preceding the title page.
ColorPlate I.
Color PlateII.
Color Plate II.
Color Plate IV.
Color Plate V.
Color Plate VI.
Color Plate VII.
Color Plate VII.
Color Plate IX.
Color Plate X.
Color Plate XI.
Color Plate XII.
Color Plate XIII.
Color Plate XIV.
Color Plate XV.
Color Plate XVI.
Color Plate XVII.
Color Plate XVIII.
Color Plate XIX.
Color Plate XX.
Color Plate XXI.
Color Plate XXII.
Color Plate XXIII.
Color Plate XXIV.
Color Plate XXV.

Preface

Figure P-1.

Examples of keyboard icons
A colorized window

A colorized movable modal dialog box
Design for black-and-white monitors first
Don’t mimic color effects in black-and-white designs
Uselight colors for large areas
Don’t use bright colors for large areas
Usebright colors for details
A consistent light source
Inconsistent light sources
An icon family
Consistently designed small icons
Inconsistently designed small icons
Icons with a black outline
Icons without a black outline

Apple icon colors
Correctanti-aliasing
Incorrect anti-aliasing
Consistent use of icon elements
Inconsistent use of icon elements

Default system icon families
Examples of control panel icons
Copying with a pixel map as a mask
Colorizing
Default color tables

A road map to Volume VI

1 Introduction to the System Software Version 7.0 Environment
Figure 1-1.
Figure 1-2.= io ~TN

Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

—=—
i

pheeee CAN~IBW©060pepp ' Figure 1-10.
Figure I-11.

Features of the system software version 7.0 environment
The managers constituting the interapplication
communications architecture

Using interapplication communication
Applications using interapplication communication
A publisher, an edition, and a subscriber
Sharing dynamic data with other applications
Sending events to other applications
Requesting data from a remote database
Comparison of TrueType and bitmapped fonts
Using multiple scripts in a single document
Overview of chapters in Volume VI

XXIX

3=
72
==
fe
se
=ws
=c
F
Ka
itewnRS

=is}A

IPR2017-01828

Ubisoft EX1002 Page 38

IPR2017-01828
Ubisoft EX1002 Page 39

Inside Macintosh, Volume VI

2 User Interface Guidelines
2-7 Figure 2-1. Dual carets in mixed-directionaltext
2-7 Figure 2-2. Multidirectional text correctly highlighted
2-9 Figure 2-3. Reversing the alignmentofdialog box items
2-9 Figure 2-4. The Keyboard menu

2-12 Figure 2-5. The boundariesofa font
2-15 Figure 2-6. A progress indicator
2-15 Figure 2-7. The Application menu with a notification symbol
2-18 Figure 2-8. Anicon family
2-19 Figure 2-9. A well-designed icon andits selected version
2-19 Figure 2-10. A poorly designed icon andits selected version
2-21 Figure 2-11. Default system icons in black and white
2-22 Figure 2-12. Examples ofcontrol panel icons
2-24 Figure 2-13. A movable modaldialog box
2-25 Figure 2-14. A Finder movable modal dialog box
2-26 Figure 2-15. A selected scrolling list
2-27 Figure 2-16. A dialog box with OK and Cancel buttons
2-27 Figure 2-17. A dialog box with OKinstead of a Cancel button
2-28 Figure 2-18. A progress indicator that uses a Stop button
2-28 Figure 2-19. A confirmation alert box
2-29 Figure 2-20. The recommendedspacing of buttons andtext in a dialog box
2-30 Figure 2-21. A well-written dialog box message
2-31 Figure 2-22. The new standard file dialog box for openingfiles
2-32 Figure 2-23. The save changes dialog box
2-33 Figure 2-24. A sample Edit menu
2-33 Figure 2-25. A sample hierarchical menu with Edition Manager commands
2-34 Figure 2-26. A sample pull-down Size menu and fontsize dialog box
2-34 Figure 2-27. The Help menu
2-36 Figure 2-28. The appearance of a version 7.0 pop-up menu
2-36 Figure 2-29. An open version 7.0 pop-up menu
2-37 Figure 2-30. A type-in pop-up menu
2-37 Figure 2-31. A type-in pop-up menuwith user’s choice added

2-10 Table 2-1. Examples of keyboard icons
2-11 Table 2-2. Pattern substitutions for colors in keyboard icons
2-13 Table 2-3. Translation chart for user documentation

2-35 Table 2-4. Apple reserved keyboard equivalents for all systems
2-35 Table 2-5. Additional reserved keyboard equivalents for worldwide systems
2-35 Table 2-6. Other common keyboard equivalents

3 Compatibility Guidelines
3-12 Figure 3-1. The size menu for a bitmapped font
3-12 Figure 3-2. The size menufor an outline font
3 Figure 3-3. A pop-up menuin its inactive and active states
3 Figure 3-4. A pop-up control thatis right-aligned
3 Figure 3-5. An initial dialog box andalist of items to append
3 Figure 3-6. The dialog box after items are overlaid
3 Figure 3-7. The dialog box after items are appendedto the right
3 Figure 3-8. The dialog box after items are appendedto the bottom
3 Figure 3-9, The dialog box after items are appendedrelative to Item 2
3 Figure 3-10. Interactions amongan application, the A/UX Toolbox, and

ROMcode

Figures, Tables, and Listings

IPR2017-01828

Ubisoft EX1002 Page 39

IPR2017-01828
Ubisoft EX1002 Page 40

1100AL
3-26

1

BROEROV&WwWwyWo BAWWW

111'''LhHHHHS SAANAATMOTOADAM
ooMaAnAaAbBRARAREBKRERBDBOHWWHHSEK Me=OoOnm~WAM

un uoBHHREHLPHHH-BHHHRRHLHEHSE&hEPhHHRHHSE
wwwWMN— COORBDOGOD

Table 3-1.

Figures, Tables, and Listings

Status of User Interface Toolbox and Macintosh Operating System
libraries in the A/UX Toolbox

Determining whethera trap is available
Determining whether Gestalt is available
Using Gestalt to determine the Time Managerversion
Interpreting a bit field response
Installing a selector function into the system heap
Defining a new Gestalt function

eta
Nie}
=
<
&
=s
my=
ae
2
0
=oe
wr
ar
=
Awe

4 The Edition Manager
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.

Figure 4-16.

Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22,
Figure 4-23.
Figure 4-24.
Figure 4-25,
Figure 4-26.

Listing 4-1.

Listing 4-2.
Listing 4-3.
Listing 4-4.
Listing 4-5.
Listing 4-6.
Listing 4-7.
Listing 4-8.
Listing 4-9.

The default edition icon

A publisher, an edition, and a subscriber
The publisher dialog box
The subscriber dialog box
A documentand its corresponding editions
Publisher and subscriber borders

Edition Manager commandsin the Edit menu
Edition Manager commands underthe Publishing menu command
A document with a publisher and subscriber andits resource fork
The new publisheralert box
A sample publisher dialog box
A sample subscriber dialog box
The publisher options dialog box with update modeset to On Save
The publisher options dialog box with update modeset to Manually
The subscriber options dialog box with update mode
set to Automatically
The subscriber options dialog box with update mode
set to Manually
Edit menu with Show/Hide Borders menu command
Publisher borders
Subscriber borders

A publisher with contents removed
A publisher border within a spreadsheet document
A publisher border with resize handles
A publisher and subscriber with clipped graphics
Creating multiple publishers alert box
Saving multiple publishers alert box
Subscribing directly to a ‘PICT’file

Accepting Section Read events and verifying if a
section is registered
Saving a documentcontaining sections
Opening a document containing sections
Creating a publisher
Writing data to an edition
Creating a subscriber
Readingin edition data
Responding to action codes
Using your own edition opencr function

Figures, Tables, and Listings XxxiI

IPR2017-01828

Ubisoft EX1002 Page 40

IPR2017-01828
Ubisoft EX1002 Page 41

Inside Macintosh, Volume VI

5 The Event Manager
5-6 Figure 5-1.
5-7 Figure 5-2.
5-9 Figure 5-3.

1 Listing 5-1.
1 Listing 5-2.
4 Listing 5-3.
7 Listing 5-4.
3 Listing 5-5.
5 Listing 5-6.
7 Listing 5-7.

Events in a single application environment
Events in a multi-application environment
Events in system software version 7.0

A simple event loop
Processing events
A template for a 'SIZE' resource
The Rez input for a sample 'SIZE' resource
Posting a high-level event by application signature
Using the PPCBrowser function to post a high-level event
Accepting a high-level event

6 The Apple Event Manager
5 Figure 6-1.

-8 Figure 6-2.
Q Figure 6-3.
1 Figure 6-4.

12 Figure 6-5.
-13 Figure 6-6.

15 Figure 6-7.
6-16 Figure 6-8.

6-20 Figure 6-9.

6-69 ‘Table 6-1.

6-26 Listing 6-1.
6-27 Listing 6-2.

6-28 Listing 6-3.

6-30 Listing 6-4.

6-33 Listing 6-5.
6-34 Listing 6-6.
6-35 Listing 6-7.
6-36 Listing 6-8.
6-39 Listing 6-9.
6-46 Listing 6-10.
6-47 Listing 6-11.
6-49 Listing 6-12.
6-50 Listing 6-13.
6-54 Listing 6-14.
6-58 Listing 6-15.
6-58 Listing 6-16.
6-61 Listing 6-17.
6-66 Listing 6-18.

An Open Documents event
Major components of an Open Documents event
A descriptor record with cvent class data
A keyword-specified descriptor record for the event class attribute
of an Open Documents event
A descriptorlist for a list of aliases
Data structures within an Open Documents event
Accepting and processing an Open Documents event
The Apple Event Managercalling the handler for an
Open Documents event
Responding to an Open Documents event

Coercion handling provided by the Apple Event Manager

A DoEvent procedure
A DoHighLevelEvent procedure for handling Apple events and
other high-level events
Inserting entries for required Apple events into an application’s
Apple eventdispatch table
Inserting entrics for Apple events sent by the Edition Managerinto
an application’s Apple event dispatch table
A handler for the Open Application event
A handlerfor the Open Documents event
A handler for the Print Documents event

A handler for the Quit Application event
A handler for the Create Publisher event

Extracting items from a descriptorlist
A function that checks for a keyMissedKeywordAttrattribute
Adding the keyErrorString parameterto the reply Apple event
Adding parameters to the reply Apple event
Using the AEInteractWithUser function
Creating a target address
Specifying a target address in an Apple event
Sending an Apple event
Anidle function

XXXL Figures, Tables, and Listings

IPR2017-01828

Ubisoft EX1002 Page 41

IPR2017-01828
Ubisoft EX1002 Page 42

VoomroblbbetkSSSISIS] Ltoretoeteortoa
WWNNN===S=— coNWnBOOOHN1OOHIAN~~SS)ISS

ertottottottbt OANANRKO~7OWWWHWWNYRNNNNNN-—=
RANBRWWHRoOWWWWwwe

 ~~~]~~sawsSSSSSSSISSS
KRAVEQO9000OO WW~]OWOO~~)

7 The Program-to-Program Communications Toolbox
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.
Figure 7-16.
Figure 7-17.
Figure 7-18.

Listing 7-1.
Listing 7-2.
Listing 7-3.
Listing 7-4.
Listing 7-5.
Listing 7-6.
Listing 7-7.
Listing 7-8.
Listing 7-9.
Listing 7-10.
Listing 7-11.
Listing 7-12.
Listing 7-13.
Listing 7-14.
Listing 7-15.

Listing 7-16.
Listing 7-17.

Listing 7-18.
Listing 7-19.
Listing 7-20.

8 The Data
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.

Figures, Tables, and Listings

A PPC Toolbox session between two applications
The Sharing Setup icon
The Sharing Setup control panel
The session termination alert box

The users and groups dialog box
Theuser termination alert box

The guest dialog box
The PPC Toolbox authentication process
Database and spreadsheet applications using the PPC Toolbox
Two Macintosh applications and their corresponding ports
The PPC Toolbox anda dictionary service application
The program linking dialog box
The program linking dialog box without a zonelist
The user identity dialog box
The incorrect password dialog box
The invalid user name dialog box
Transmitting message blocks
The PPC Toolbox parameter blocks

=Vic]
<
es
¥
a2
ea&
P

e
ssss
we
=a=)

Nit7
 

Initializing the PPC Toolbox using the PPCInit function
Opening a PPC port
Usinga port filter function
Browsing through dictionary service ports
Using the IPCListPorts functian to obtain a list of ports
Using the StartSecureSession function to establish a session
Initiating a session using the PPCStart function
Using the PPCInform function to enable a port to receive sessions
Completion routine for a PPCInform function
Accepting a session request using the PPCAccept function
Completion routine for a PPCAccept function
Rejecting a session request using the PPCReject function
Completion routine for a PPCReject function
Using the PPCRead function to read data during a session
Polling the ioResult field to determine if a PPCRead function
has completed
Using the PPCWrite function to write data during a scssion
Polling the ioResult field to determine if a PPCWrite function
has completed
Ending a PPC session using the PPCEnd function
Closing a PPC port using the PPCClose function
Using the DeleteUscrIdentity function to invalidate a user identity

Access Manager
A connection with a database

Using high-level Data Access Managerroutines
Using low-level Data Access Managerroutines
A flowchart of a session using the high-level interface
A flowchart of a session using the low-level interface
A query documentdialog box
Function of a query document

XXXLFigures, Tables, and Listings

IPR2017-01828

Ubisoft EX1002 Page 42



IPR2017-01828 
Ubisoft EX1002 Page 43

 
Inside Macintosh, Volume VI

8-35

8-15
8-23
8-29
8-30
8-41
8-48

WwWNNmMNDHNyeeeeeOunkWhNRKOWCOOYO.100OOO00‘9©WOwowowowonvo
10-5
10-6

10-1

10-15
10-22

11-4

11-6
11-6
11-7
11-8

11-12
11-13
11-13
11-22
11-32
11-40
11-41

XXXIV

Table 8-1. Data types defined by the Data Access Manager

Using the high-level interface
A samplestatus routine
Sending a query fragment
Using the low-level interface
A result handler

A query definition function

9 The Finder Interface
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.

Figure 9-8.
Figure 9-9,

Figure 9-10.
Figure 9-11.
Figure 9-12.

Listing 9-1.
Listing 9-2.
Listing 9-3.
Listing 9-4.
Listing 9-5,

1 0 Control
Figure 10-1.
Figure 10-2.
Figure 10-3.

Listing 10-1.
Listing 10-2.

Default large black-and-white icons
Anapplication icon and its mask
The ResEdit view of an icon and its mask

Examples of document icons
Linking 'ICN#' and 'FREF' resources in a 'BNDL' resource
The default application-unavailable alert box
The application-unavailable alert box specifying an
application’s name
The application-unavailable alert box with a customized message
The application-unavailable alert box for 'TEXT' and
‘PICT’ documents
The version data in the information window

Default and customized help balloons for application icons
The System Folder and related folders

ICN#' resources for an application and its documents
Usingfile reference resources
Using a bundle resource
Using the ResolveAliasFile function to open a file
Creating a help balloon resource for an application icon

Panels

The Monitors control panel
An Options dialog box for a Monitors control panel
An Options dialog box with superuser controls

Sample of an extension to the Monitors control panel
Resourcesfor a file that extends the Monitors control panel

11 The Help Manager
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 11-10.
Figure 11-11.
Figure 11-12.

The Help menu for the Finder
A help balloon drawn with the standard balloon definition function
The tip and hot rectangle for a help balloon
Standard balloon positions and their variation codes
Alternate positions of a help balloon
Default help balloons for the window frame
Default help balloons for the Apple and Help menus
Default help balloons for application and documenticons
Help balloonsfor different states of the Cut command
Help balloons for a changing menu item
A help balloon in a modal dialog box
Static and dynamic windows

Figures, Tables, and Listings

IPR2017-01828

Ubisoft EX1002 Page 43



IPR2017-01828 
Ubisoft EX1002 Page 44

11-46
11-47
11-58
11-61

11-23
11-27
11-29
11-31
11-38
11-46
11-48

11-55
11-58
11-60
11-62

12-5
12-6
12-7
12-8
12-9
12-9
12-9

12-10
12-11
12-12
12-12
12-13
12-14
12-15
12-17

12-16

13-4
13-6

13-17

14-9
14-16
14-17
14-18
14-19
14-21
14-22
14-24

Figure 11-13.
Figure 11-14.
Figure 11-15.
Figure 11-16.

Listing 11-1.
Listing 11-2
Listing 11-3
Listing 11-4.
Listing 11-5
Listing 11-6
Listing 11-7

Listing 11-8.
Listing 11-9.
Listing 11-10.
Listing 11-11.

12 The Font Manager
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5,
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 12-14.
Figure 12-15.

Listing 12-1.

13 The Resource Manager
Table 13-1.
Table 13-2.

Listing 13-1.

14 Worldwide Software Overview
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5,
Figure 14-6,
Figure 14-7.
Figure 14-8.

Figures, Tables, and Listings

A tool palette with a help balloon
A help balloon for a dialog box withatitle
Default and customized help balloons for an application icon
The Help menu with two appended menu items

A partial menu help resource
The missing items component in a menu help resource
Corresponding ‘hmnu’ and 'STR#' resources
Using HMCompareltem for a changing menu item
A dialog item list and its help resource
Corresponding ‘hwin' and ‘hret' resources for a tool palette
Specifying help for titled and untitled windowswith an
‘hwin' resource

Using HMShowBalloonto display help balloons
Creating a help balloon resource for an application icon
Overriding default help balloons
A sample menu help resource for items in the Help menu

al
wea=

mdD
¥
reeeg
aes
Le]fts
eS
ea-

=FN
EI

ymwt

The standard Romancharacter set
Terms for font measurements

The ascentline and maximum y-valuc
A comparison of scaled TrueType and bitmapped fonts
A glyph stretched horizontally
A glyphstretched vertically
A glyph condensed horizontally
The effect of an off-curve point on two Bézier curves
Anoutline with points on and off the curve
A curve with consecutive off-curve points
An outline glyph
An unmodified outline glyph at a small pointsize
Aninstructed outline glyph
A sample Size menu andfont size dialog box
The difference between a scaled glyph and a preserved glyph

Checking a font family ID against the font name

Resource types available for your application’s use
Resource types reserved for the Operating System’s use

Using partial resource calls

Thescript, language, and region hierarchy
Types of script systems
The components of the Macintosh Script Management System
Worldwide control panels and desk accessory
Default icons for keyboards, fonts, and scripts
The Keyboard menu
Distinguishing scripts with resource ID rangesfor script codes 0-32
Keyboard translation

Figures, Tables, and Listings XXXV

 
IPR2017-01828

Ubisoft EX1002 Page 44



IPR2017-01828 
Ubisoft EX1002 Page 45

 

 

Inside Macintosh, Volume VI

14-29
14-30
14-31
14-31
14-3]

14-32
14-32
14-33

14-36
14-38
14-38
14-52
14-53
14-54
14-54
14-57
14-69
14-70
14-93
14-96
14-99
14-99

14-100
14-101

14-108

14-41
14-42
14-44
14-55

14-56
14-56

14-58
14-66
14-80
14-84
14-95
14-95
14-97
14-98
14-98

14-59
14-61
14-66
14-83

14-88
14-101
14-105

XXXVI

Figure 14-9.
Figure 14-10.
Figure 14-11.
Figure 14-12.
Figure 14-13.
Figure 14-14.
Figure 14-15.
Figure 14-16.
Figure 14-17.
Figure 14-18.
Figure 14-19.
Figure 14-20.
Figure 14-21.
Figure 14-22.
Figure 14-23.
Figure 14-24.
Figure 14-25.
Figure 14-26.
Figure 14-27.
Figure 14-28.
Figure 14-29.
Figure 14-30.
Figure 14-31.
Figure 14-32.

Figure 14-33.

Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.

Table 14-7.
Table 14-8.
Table 14-9.
Table 14-10.
Table 14-11.
Table 14-12.
Table 14-13.
Table 14-14.
Table 14-15.

Listing 14-1.
Listing 14-2,
Listing 14-3.
Listing 14-4.
Listing 14-5.
Listing 14-6.
Listing 14-7.

Scripts
Alphabetic, syllabic, and ideographic representations of characters
Threc text directions

Contextual forms in cursive English
Stand-alone and contextual forms in Arabic

A ligature in Romantext
Ligatures in Arabic text
Character reordering in Devanagari script (for the word hindi)
Backing-store and display order
Calling the Script Manager routines implemented by a script system
Calling the Script Managerroutines
Forward operation of the state machine for word sclection
NFindWord headerandclass tables
NFindWordstate table
Format of NFindWord action code
Roman wordselection state transitions
Justification in Romantext

The effects of the Romanjustification routines
The ‘itl2' resource header
Inside the 'KCHR'resource
Formatof entries in the 'KSWF' resource
The‘itlk’ resource entries

Key Caps display of dead keys with Option key pressed
Key Capsdisplay of complcter keys after circumflex dead key
has been pressed
Extracting blocks of Romantext

GetScript and SetScript verbs
Verbs for GetEnvirons and SetEnvirons

Verbs for the KeyScript procedure
U.S. word selection algorithm
Occurrence of word breaks in various character sequences
Significance of the state numbers in the Roman wordselection
algorithm
U.S. word sclect transition table for forward processing
Proportions of slop value to be distributed
The international and keyboard resources
Script, language, and region codes
The keyboard types
The keyboard modifier bits
Changes in handling 'KCHR’ (0) key combinations
Changes in 'KCHR'dead-key completers
Keyboard color icon types and standard icon equivalents

Obtaining optimized word break tables
Substituting and truncating text
Distributing slop value among style runs
Multiscript mapping andsorting
Intcrnational date and time information

Physical layout of keyboards
Making keyboard equivalents work with multiple scripts

Figures, Tables, and Listings

 i

IPR2017-01828

Ubisoft EX1002 Page 45

jammerMem—mnramey



IPR2017-01828 
Ubisoft EX1002 Page 46

15-5
15-5
15-5
15-6
15-7
15-7
15-8
15-9
15-9

15-10
15-11
15-12
15-15
15-16
15-16
15-32
15-33
15-33
15-33
15-38

15-20

15-34

15-35

16-4
16-7

16-15
16-17
16-18

17-6
17-6
17-7
17-7
17-8
17-8
17-9
17-9

17-10
17-13
17-14

17-15

17-18
17-18
17-20
17-24

Figures, Tables, and Listings

15 Textkait
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.
Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.
Figure 15-18.
Figure 15-19.
Figure 15-20.

Table 15-1.

Listing 15-1.

Listing 15-2.

A right-to-left primary line direction
The display order
The backing-store order
Different levels of runsin a line of text

Discontinuoushighlighting display
Highlighting mixed-directional text
Mouse-downregion specifics
Dualcarets in mixed-directionaltext

Pasting styled text
Dual carets at a direction boundary
Caret movementacross a direction boundary
Font and keyboard script synchronization
Thecaret position at line end
Word breaksfor word selection

A line break with multiple scripts installed
A characteroffset at a line break

Aninitial selection before TESetStyle is called
The result of calling TESetStyle to toggle with a bold style
Theresult of calling TESetStyle to toggle with an italic style
The TextEdit data structures

Constants for the just parameter of TESetJust

Marking the Style menu items so they correspondto the
current selection

Determining the font, face, size, and color of the current selection

16 Graphics Overview
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.

Macintosh graphics chapters
QuickDraw and the graphics managers
Initializing Macintosh graphics
The indexed pixel path
The direct pixel path

17 Color QuickDraw
Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 17-4.
Figure 17-5.
Figure 17-6.
Figure 17-7.
Figure 17-8.
Figure 17-9.
Figure 17-10.
Figure 17-11.
Figure 17-12,

Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4:

A 32-bit direct pixel
A 16-bit direct pixel
Converting a 16-bit direct pixel to a 32-bit direct pixel
Converting a 48-bit RGB color to a 32-bit direct pixel
Converting a 48-bit RGB color to a 16-bit direct pixel
Converting a 48-bit RGB color to an 8-bit indexed pixel
Converting a 32-bit pixel to a 48-bit RGB color
Converting a 16-bit pixel to a 48-bit RGB color
Converting an 8-bit indexed pixel to a 48-bit RGB color
Copying pixel maps with CopyBits
Copying pixel maps with CopyMask
Copying pixel maps with CopyDeepMask

The default color tables for gray-scale devices
The default color tables for color devices

The new version 2 picture opcodes
Version 2 picture example

Figures, Tables, and Listings=xxxvii

Loup
=ve
¢=is]
a

=za
3=
&
¥i
nd_—ihe
a4=1s

bi)iF73

 

IPR2017-01828

Ubisoft EX1002 Page 46



IPR2017-01828 
Ubisoft EX1002 Page 47

Inside Macintosh, Volume VI

20-9

20-14
20-15

21-7

22-7
22-7
22-8
22-9

22-16
22-17
22-19
22-19
22-27
22-32
22-33

22-14
22-25
22-43
22-45
22-65
22-83
22-99

22-21
22-21
22-22
22-22
22-23
22-24

22-35
22-36
22-37
22-41
22-41
22-42
22-49

Xxxvili

1 9 The Color Picker Package
Figure 19-1].
Figure 19-2.
Figure 19-3.
Figure 19-4,
Figure 19-5.

The Color Picker dialog box
The RGBcolor cube

Getting to pink
Cyan, magenta, and yellow on the color cube
The HLS/HSVcolor cone

20 The Palette Manager
Figure 20-1.

Listing 20-1.
Listing 20-2.

A courteouspalette

A palette (‘pltt') resource
A multi-use palette

21 The Graphics Devices Manager
Listing 21-1. Sample offscreen graphics world

22 The Sound Manager
Figure 22-1.
Figure 22-2.
Figure 22-3.
Figure 22-4.
Figure 22-5.
Figure 22-6.
Figure 22-7.
Figure 22-8.
Figure 22-9.
Figure 22-10.
Figure 22-11.

Table 22-1.
Table 22-2.
Table 22-3.
Table 22-4.
Table 22-5.
Table 22-6.
Table 22-7.

Listing 22-1.
Listing 22-2
Listing 22-3.
Listing 22-4.
Listing 22-5
Listing 22-6
Listing 22-7.
Listing 22-8.
Listing 22-9.
Listing 22-10.
Listing 22-11.
Listing 22-12.
Listing 22-13.

The position of the Sound Manager
Bypassing the command queue
Mixing multiple channels of sampled sound
A graph of a wavetable
The Soundcontrol panel
The sound recording dialog box
The structure of ‘snd ' resources
The location of the data offset bit

The general structure of a chunk
Interleaving stereo sample points
A sample AIFF-Cfile

Audio compression and expansion options
AIFF and AIFF-C capabilities
MIDI values

Sample rates
Sound input device information selectors
Sound commands

The sound header format used by SetupSndHeader

A format | 'snd' resource
A restructured format 1 'snd ' resource

A format | 'snd ' resource containing sampled sound data
A resource specification
Resource specification for the Simple Beep
A format 2 'snd ' resource

Playing an ‘snd ' resource with SndPlay
Using low-level Sound Managerroutines
Creating a sound channel
Using the availableCmd command
Using the versionCmd command
Using the freqDurationCmd command
An ‘snd ' resource containing compressed sound data

Figures, Tables, and Listings

SET| RENNIE mow same mono

IPR2017-01828

Ubisoft EX1002 Page 47



IPR2017-01828 
Ubisoft EX1002 Page 48

22-51
22-56
22-57
22-58

22-61
22-64
22-64
22-71
22-72
22-74
22-77
22-78
22-79

23-6

23-7

23-11
23-13

23-13
23-14
23-15

24-4
24-5

24-8

25-6
25-8

25-2

25-16
25-18
25-18
25-21
25-21

25-14
25-15
25-19
25-24

Listing 22-14.
Listing 22-15.
Listing 22-16.
Listing 22-17.
Listing 22-18.
Listing 22-19.
Listing 22-20.
Listing 22-21.
Listing 22-22.
Listing 22-23.
Listing 22-24.
Listing 22-25.
Listing 22-26.

Figures, Tables, and Listings

Halving the frequency of a sampled sound
Compressing audio data
Playing an 'snd ' resource from disk
Recording through the sound input dialog box
Recording directly from a sound input device
Determining the nameof a sound input device
Determining some sound input device settings
Determining whether a sound channelis paused
Determining the numberof allocated sound channels
Setting up double buffers
Defining a doubleback procedure
Issuing a callback command
Defining a callback procedure

23 The Time Manager
Figure 23-1.

Figure 23-2.

Listing 23-1.
Listing 23-2.

Listing 23-3.
Listing 23-4.
Listing 23-5

Original and revised Time Managers(drifting, unpredictable
frequency)
The extended Time Manager(drift-free, fixed frequency)

Installing and activating a Time Manager task
Passing the address of the application’s AS world to a
Time Managertask
Defining a Time Managertask that can manipulate global variables
Defining a periodic Time Managertask
Computing elapsed time

24 The Notification Manager
Figure 24-1.
Figure 24-2.

Listing 24-1.

A notification in the Application menu
A sample alert box

Setting up a notification record

25 TheFile Manager
Figure 25-1.
Figure 25-2.
Figure 25-3.

Table 25-1.
Table 25-2.
Table 25-3.
Table 25-4.
Table 25-5.

Listing 25-1.
Listing 25
Listing 25
Listing 25-4,

2,
3

Identifying a file in MFS
Identifying a file in HFS
The effect of ioSearchBits on interpretation of ioSearchInfol
and ioSearchInfo2

How FSMakeFSSpecinterpretsfile specifications
The effect of FSpExchangeFiles on a catalog entry
The effect of FSpExchangeFiles on a file control block
Fields in ioSearchInfol and ioSearchInfo2 usedfora file

Fields in ioSearchInfol and ioSearchInfo2 used for a directory

Testing for PBCatSearch
Opening a documentusing the FSSpec record
Updating a file with FSpExchangeFiles
Searching a volume with PBCatSearch

Figures, Tables, and Listings=xxxix

|az
Mii
=a}4
A ,
el&=o=
Cc
a
ro—iSa
eaeeari=—

TSir

 

IPR2017-01828

Ubisoft EX1002 Page 48



IPR2017-01828 
Ubisoft EX1002 Page 49

Inside Macintosh, Volume VI

26-6
26-7
26-7
26-7

26-8
26-10
26-10
26-11
26-11

27-5

28-4
28-5
28-7
28-8
28-9

28-11

28-14
28-15
28-22
28-38

29-11
29-14

xl

26 The Standard File Package
Figure 26-1.
Figure 26-2.
Figure 26-3.
Figure 26-4.

Listing 26-1.
Listing 26-2.
Listing 26-3.
Listing 26-4.
Listing 26-5.

The default Open dialog box
The default Save dialog box
The New Folder dialog box
The nameconflict dialog box

Opening a document
The definition of the default Open dialog box
The definition of the default Save dialog box
Theitem list for the default Open dialog box
Theitem list for the default Save dialog box

27 The Alias Manager
Figure 27-1. Resolving a relative path

28 Memory Management
Figure 28-1.
Figure 28-2.
Figure 28-3.
Figure 28-4,
Figure 28-5.
Figure 28-6.

Listing 28-1.
Listing 28-2.
Listing 28-3.
Listing 28-4.

2 9 Process
Listing 29-1.
Listing 29-2,

The memory organization in a single-application environment
The organization of the application partition
The memory organization in a multiple application environment
Using temporary memory
The Memory control panel
A master pointer structure in the 24-bit Memory Manager

Passing AS to a notification response procedure
Setting up and restoring A5
Translating logical to physical addresses
Determining whether temporary memory routines are available

Management
Searching for a specific process
Launching an application

30 The Slot Manager
Table 30-1.
Table 30-2.

Listing 30-1.
Listing 30-2.

Slot Managersearch routines
Howthe Slot Manager determines the base address used by
an sResourcedata structure

Disabling and enabling sResource data structures
Searching for sResource data structures

31 The Power Manager
Figure 31-1.
Figure 31-2.
Figure 31-3.

Table 31-1.

Listing 31-1.
Listing 31-2.

Relationship of an application to the Power Manager
Howthe sleep queue handles a sleep request
Howthe sleep queue handles a sleep demand

Response of networkservices to sleep requests and demands

Adding an entry to the sleep queue
A sleep queue routine

Figures, Tables, and Listings

IPR2017-01828

Ubisoft EX1002 Page 49



IPR2017-01828 
Ubisoft EX1002 Page 50

32-6
32-9

32-10
32-26
32-82

32-27
32-33
32-34
32-48
32-54
32-57
32-80
32-82
32-84

Figures, Tables, and Listings

32 The AppleTalk Manager
Figure 32-1.
Figure 32-2.
Figure 32-3.
Figure 32-4.
Figure 32-5.

Listing 32-
Listing 3
Listing 3
Listing 3

Listing 3
Listing 3

Listing 3

I
2-2
2-3
2-4.

Listing 32-5.
2-6
2-7
2-8
2-9

AppleTalk protocols
AppleTalk device drivers
AppleTalk application interfaces
AppleTalk Ethernet packet formats
An Ethernet write-data structure

Calling a LAP Manager L802.2 routine from assembly language
Using the GetZoneList function
Using the GetMyZone function
Using ADSPto establish and use a connection
Using ADSPto establish and use a connection listener
An ADSPuserroutine

Finding an EtherTalk card and opening the .ENET driver
Sending a data packet over Ethernet
Using the default Ethernet protocol handler to read data

A Result Codes
Table A-1. Result codes

B Routines and Their Memory Behavior
Table B-1.
Table B-2.

Table B-3.

Routines that may move or purge memory
Routines that do not move or purge memory but maynotbe called
at interrupt time
Routines that may be called at interrupt time

Cc System Traps
Table C-1.
Table C-2.
Table C-3.
Table C-4.

System traps by trap name
System traps by trap word
System traps that take selectors
Routines selected from system traps

D Global Variables
Table D-1. Global variables

E The Standard Roman Character Set
Table E-1.
Table E-2.

The standard Roman characterset

Unencoded PostScript characters

Figures, Tables, and Listings xh

IPR2017-01828

=i=}
=eloO
SF
la]~
—soO

vd
iwss
2)
on
3

Or)wn

 

Ubisoft EX1002 Page 50



IPR2017-01828 
Ubisoft EX1002 Page 51

Inside Macintosh, Volume Vi

adit Figures, Tables, and Listings

IPR2017-01828

Ubisoft EX1002 Page 51



IPR2017-01828 
Ubisoft EX1002 Page 52

PREFACE

About Inside Macintosh

The Development Environment
The System Software Environment
The Formatof a Typical Chapter
The Conventions Used in This Volume
Other Documentation

An Overview of the Chapters in Volume VI
Introduction to the System Software Version 7.0 Environment
UserInterface Guidelines

Compatibility Guidelines
The Edition Manager
The Event Manager
The Apple Event Manager
The Program-to-Program Communications Toolbox

10 The Data Access Manager
10 The FinderInterface
10 Control Panels

10 The Help Manager
11 The Font Manager

 OOOOCOMOAUNDMNNWD
11 The Resource Manager
11 Worldwide Software Overview
12 TextEdit

12 Graphics Overview
12 Color QuickDraw
12 The Picture Utilities Package
13 The Color Picker Package
13 The Palette Manager
13 The Graphics Devices Manager
13 The Sound Manager
13 The Time Manager
14 The Notification Manager
14 The File Manager
14 The Standard File Package
14 The Alias Manager
15 Memory Management
15 Process Management
15 The Slot Manager
15 The Power Manager
15 The AppleTalk Manager
16 A Road Map to Volume VI

P-1

IPR2017-01828

Ubisoft EX1002 Page 52



IPR2017-01828 
Ubisoft EX1002 Page 53

faside Macintosh, Valume Vi

P.2

IPR2017-01828

Ubisoft EX1002 Page 53



IPR2017-01828 
Ubisoft EX1002 Page 54

Preface

 

ABOUT INSIDE MACINTOSH 

Inside Macintoshis a six-volumeset of booksthat describes how to write an application for
the Apple® Macintosh® family of computers. Inside Macintosh is the definitive guide and
reference for anyone writing software for the Macintosh computer. Thefirst two volumes
describe the routines in the Macintosh User Interface Toolbox and the Macintosh Operating
System. The third volume is a summary of the Pascal interfaces for all routines describedin
VolumesI andII. The fourth and fifth volumes describe features and routines introduced

with the Macintosh Plus, Macintosh SE, and Macintosh Il computers. Volume VI describes
the managers and features available in system software version 7.0.

 
VolumeI containsthe original user interface guidelines for Macintosh applications and an
introduction to memory management and assembly language.It also describes QuickDraw™,
the Resource Manager, the Event Manager, the Font Manager, the Window Manager, the
Menu Manager, the Dialog Manager, TextEdit, and other routines relating to the user interface
that you can use in your application.

VolumeII describes the Macintosh Operating System, including the routines that perform
file VO, device VO, memory management, and interrupt handling.It covers the File Manager,
the Device Manager, the Printing Manager, the AppleTalk® Manager, and various drivers
andutilities.

VolumeTII describes the Finder™ interface, provides an overview of the hardware of the
Macintosh 128K and Macintosh 512K computers, and contains summaries of the Pascal
interfaces for all routines described in VolumesI andII.

VolumeIV describes routines introduced with the Macintosh Plus and Macintosh 512K

enhanced computers. It introduces the Hierarchical File System, the SCSI Manager,the
Time Manager, and the List Manager. The volumealso describes changes to various
managers and drivers and presents an overview of the Macintosh Plus hardware.

Volume V describes routines introduced with the Macintosh SE and Macintosh II computers.
It describes Color QuickDraw,the Palette Manager, the Script Manager, the Sound Manager,
the Slot Manager, the Apple Desktop Bus™, and changes made to various managers to support
color. The volumealso includes additionaluser interface guidelines and compatibility guide-
lines. It explains how to add color to menus, windows, and dialog boxes. It also discusses
hierarchical, scrolling, and pop-up menus.

This volume, VolumeVI, describes the system software version 7.0 environment, new
managers available with version 7.0, new routines and data structures, new user interface
guidelines, and how to take advantage of the version 7.0 environment.

Inside Macintosh, VolumeVI,is also available in an on-line edition. The on-line edition
provides a navigational modelthat lets you browse through information and it provides a
search capability to quickly locate routines, data structures, and othertext.

The Inside Macintosh X-Refprovides a comprehensive, integrated index for Volumes I
through VI of Inside Macintosh, as well as Programmer's Introduction to the Macintosh
Family; Technical Introductionto the Macintosh Family; Designing Cards and Driversfor
the Macintosh Family, second edition; and Guide to the Macintosh Family Hardware, second
edition. All these books are available from Addison-Wesley.

About Inside Macintosh P-3

IPR2017-01828

Ubisoft EX1002 Page 54



IPR2017-01828 
Ubisoft EX1002 Page 55

Inside Macintosh, Volume VI

The Development Environment

The User Interface Toolbox and Macintosh Operating System routines are available using
Pascal, C, or assembly-language interfaces. How you access these routines depends on the
development environment you are using. This volume showsall routines in their Pascal
interface using the Macintosh Programmer’s Workshop (MPW®). All sample codelistings
are shown in MPW Pascal, with a few examples shownin assembly language.

The MPW development environmentincludes these books: Macintosh Programmer’s
Workshop Development Environment, Volume 1; Macintosh Programmer’s Workshop
Development Environment, Volume 2; MPW Pascal: Macintosh Programmer’s Workshop
Pascal; MPW C: Macintosh Programmer's Workshop C; and MPW Assembler: Macintosh
Programmer's Workshop Assembler. These booksare available from APDA® (Apple
Programmers and Developers Association).

The codelistings and other code in this volume were developed using MPW 3.0. They show
methodsof using various routines andillustrate techniques for accomplishing particular tasks.
All cede listings have been compiled and, in many cases, tested. However, Apple does not
intend that you use these code samples in your application.

If you are programming in assembly language, pay attention to the assembly-language notes
and trap macro notes. These notes provide information about saving and restoring registers,
details of what each register must contain on entry to Operating System routines, what the
routinesreturn in the registers, and other information you mightfind helpful.

If you are programmingin Pascal or C only, you can skip over the assembly-language
information.

This volume occasionally uses SurfWriter, WipeOut, store data, display data, send and
receive, make memo, and spell quick as names of sample programsforillustrative purposes;
these are not actual products of Apple Computer, Inc.

APDAoffers worldwide access to a broad range of programming products, resources, and
information for anyone developing on Apple platforms. You'll find the most current versions
of Apple and third-party developmenttools, debuggers, compilers, languages, and technical
references for all Apple platforms. To establish an APDA account, obtain additional ordering
information, or find out aboutsite licensing and developertraining programs, contact

APDA

Apple Computer,Inc.
20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
408-562-3910 (elsewhere in the world)

Fax: 408-562-3971
Telex: 171-576

If you provide commercial products and services, call 408-974-4897 for information on the
developer support programsavailable from Apple.

P-4 About Inside Macintosh

IPR2017-01828

Ubisoft EX1002 Page 55



IPR2017-01828 
Ubisoft EX1002 Page 56

Preface

For information on registering signatures,file types, Apple events, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer,Inc.
20525 Mariani Ave., M/S 75-3T
Cupertino, CA 95014-6299

The System Software Environment

—oJ
nt
ceperlryo
lor)ta) 

Inside Macintosh Volume VIfocuses on system software version 7.0; however, many of
the chapters in this volume contain informationthat is also relevant to system software
version 6.0 and later. See the Compatibility Guidelines chapter for information on
developing applications that can run in both system software version 6.0 and system
software version 7.0.

If the Gestalt function is available, you should use it instead of the SysEnvirons and Environs
routines. You can use the Gestalt function to determine whetherall the features your applica-
tion requires are present on a particular Macintosh computer. You should notrely on the
ROMversion,since later system software versions can override routines in ROM.See the
Compatibility Guidelines chapter for details on how to use the Gestalt function.

The Format of a Typical Chapter

Almostall chapters in Volume VI have a standard structure. For example, the Edition
Managerchapter contains these sections:

= “About This Chapter” This section describes the information you can find in the chapter
and includes references to related chapters.

= “About the Edition Manager’ This section provides an overview ofthe features provided
by the Edition Manager.

a Additional sections describe concepts related to the Edition Manager.

a “Using the Edition Manager”This section describes the tasks you can accomplish using
the routines provided by the Edition Manager. It describes how to use the most common
routines, gives related user interface information, provides code samples, and supplies
additional information.

a “Edition Manager Routines” This section lists Edition Managerroutines in
version 7.0, with routine declarations and descriptions of every parameterfor
each routine.

= “Summary of the Edition Manager” This section provides the Edition Manager’s Pascal
interface for version 7.0 constants, data structures, routines, and result codes, as well as
relevant assembly-language information.

About Inside Macintosh P-5

IPR2017-01828

Ubisoft EX1002 Page 56



IPR2017-01828 
Ubisoft EX1002 Page 57

Inside Macintosh, Volume VI

The Conventions Used in This Volume

This volume uses elements such as assembly-languagenotes, trap macro notes, note boxes,
and warning boxesto set off important information. Trap macro notes and assembly-
language notes are useful only if you are programming in assembly language.

All routines (with a few exceptions) have both a Pascal and assembly-language form. The
summary at the end of each chapterfirst lists the constants, data structures, and routines
provided with the MPW Pascalinterface files, and then lists equivalent assembly-language
information for data structures and routines for use with the MPW Assemblerinterfacefiles.
The constants for the MPW Assemblerinterface files are the same as their Pascal equivalents,
so the constant namesare shown only in the Pascal section of the summary. (The constants,
data structure names, and routine names in the MPWCinterface files are also the same as
their Pascal equivalents.)

Whenappropriate, the declaration for a procedure or function includes relevant assembly-
language information in the form of a trap macro note that immediately follows the declaration.
The trap macro that correspondsto a Pascal interface routine begins with an underscore
character (_) followed by the Pascal routine name. Trap macro notes appearin this form:

Trap macro For register-based routines, this showsthe trap macro
nameand describes the parameters that must be in the
registers on entry to the routine and describes the values
returned in the registers.

For stack-based routines, this shows the nameofthe trap
macroif it is different from the Pascal interface name.

Assembly-language notes appear in this form:

Assembly-language note: This gives information of intcrest only if you
are programming in assembly language.

If you are programming in Pascal or C only, you can skip over the information in trap macro
notes and assembly-languagenotes.

Important informationis often called out in a note box:

Note: Text set off in this way presents reminders or notes related to the topic.

Information that you need to pay special attention to is shown in a warning box:

& Warning: Warningslike this alert you to situations in which you could damage
software or lose data.

Wordsthat appear in boldface are key terms or concepts and are defined in the Glossary

P-6 About Inside Macintosh

IPR2017-01828

Ubisoft EX1002 Page 57



IPR2017-01828 
Ubisoft EX1002 Page 58

Preface

All code listings use the Courier font (this is Courier) to indicate code from a sample
program that can be compiled. The summarylistings and set-off code in text also use Courier
for the actual data structure names, field names, constant names, and routine namesthat
match the names used in the MPW Pascal interfacefiles.

Many Toolbox and Operating System routines accept a pointer to a parameter block as
a parameter. For these routines, the routine description includesa list of the fields in the
parameter block that are used by the routine.

A typical parameter block description lookslike this:  
Parameter block

[in/out] [offset] [field name] [size] [description]

> 0 input long This is an input parameter

e 4 ouput! word This is an output parameter

eo 6 inAndOut long This is an input/output parameter

=> 10 reqCount long Requested numberoffiles to send
> 14 buffer long Pointer to data buffer

e 18 accCount long Actual numberof files sent

The arrow in the first column indicates whetherthe field is an input parameter, output
parameter, or both. You must supply values forall input parameters and input/output
parameters. The routine returns values in output parameters and input/output parameters.

The second columnindicates the offset and is useful only if you are programmingin
assembly language or debugging your code. Theoffset value is the offset in bytes from
the beginning of the parameter block for each field within thestructure.

The third column showsthe field name as defined in the MPW Pascalinterfaces, and the
fourth column showsthe size of that field. The size is given in bytesor indicated as word or
long (for long word). Longindicatesa field that occupies 4 bytes; word indicates a field
that occupies 2 bytes. Thesize is provided for your information and is more useful if you
are programming in assembly language. The final column provides a short description
of the field.

Other Documentation

Forspecific hardware information about the Macintosh family, see Guide to the Macintosh
Family Hardware, second edition, and Designing Cards and Drivers for the Macintosh
Family, secondedition; for additional software information, see previous volumesof Inside
Macintosh. Also see Macintosh Worldwide Development: Guide to System Software for a
complete description of all components of the worldwide system software. See Human
Interface Guidelines: The Apple Desktop Interface for a complete description of the Apple
humaninterface.

About Inside Macintosh P-7

IPR2017-01828

Ubisoft EX1002 Page 58



IPR2017-01828 
Ubisoft EX1002 Page 59

 
 

Inside Macintosh, Volume VI

AN OVERVIEW OF THE CHAPTERS IN VOLUMEVI

The following sections describe the content of each chapter in this volume andtell where to
find additional information in previous volumes. Figure P-1 (at the end ofthe Preface) lists
the chapters in Volume VI and shows which other volumes cover those topics.

Introduction to the System Software Version 7.0 Environment

The first chapter in this volume provides an overview of the features of system software
version 7.0. It describes the operating environment for applications that run in version 7.0.

User Interface Guidelines

The UserInterface Guidelines chapter in Volume VI reviewsthe user interface design prin-
ciples and gives new guidelines for system software version 7.0. The chapter discusses
windows, dialog boxes and movable modal dialog boxes, additions to the standard menus,
terminology, and user feedback. It also gives guidelines for developing worldwide software
and for designing color icons and windows.

‘The FinderInterface chapterin this volume providesrelated information on the user interface
presented by the Finder. Individual chapters address specific issues related to the user
interface features provided by a particular manager.

The UserInterface Guidelines chapter in VolumeI describes the various components of a
Macintosh application and discusses the use of menus, windows,dialog boxes,scroll bars
and other controls.

The UserInterface Guidelines chapter in Volume IV discusses use of the arrow keys,
reserved keyboard equivalents, window zooming, and the standard close box.

The User Interface Guidelines chapter in Volume V briefly discusses the use of color in your
application. The chapter describes features of the standard and extended keyboards, and
discusses using sound, hierarchical menus, and scrolling menus in your application.

For more information on the Apple humaninterface, see the Human Interface Guidelines:
The Apple Desktop Interface.

Compatibility Guidelines

The Compatibility Guidelines chapter describes issues relating to compatibility for various
managers in system software version 7.0. It also includes details on pop-up menus, movable
modaldialog boxes, new routines for manipulating dialog items in a dialog box, and
discusses menu access when an application displays a modal dialog box.

The chapter also shows you how to call Gestalt, the new function for determining various
attributes, versions, and features of the system software.

P-8 An Overviewofthe Chapters in Volume VI

TTR!

IPR2017-01828

Ubisoft EX1002 Page 59



IPR2017-01828 
Ubisoft EX1002 Page 60

Preface

The chapter gives guidelines you should follow to help ensure that your application is com-
patible across the Macintosh family of computers. It also provides information on how
to make your application compatible with A/UX® (Apple’s version of the UNIX® operating
system) and presents a brief overview of how to write software that can be easily localized
for use in other regions.

The Edition Manager

The Edition Manager chapter describes how you canlet users publish and subscribe data
among many documents. The Edition Manageris part of the interapplication communications
(TAC)architecture in version 7.0. See the Edition Managerchapter for sample code that
showshow to add publish and subscribe capabilities to your application.

 
The Event Manager

The Event Manager chapter in Volume VI includes information onall events, including
suspend and resume events. The chapter incorporates information from Programmer’s Guide
to MultiFinder and replaces the information found there. The Event Managerchapter in this
volumealso describes how to send andreceive high-level events.

For specific information on keyboard events, the modifier flags field of the event record,
reading the keyboard and keypad, and responding to mouse events or disk-inserted events,
see the Toolbox Event Managerchapter in VolumeI.

You also may want to read about the Operating System Event Manager, described in
VolumeIT. The Operating System Event Managerhandles low-level, hardware-related
events. The Operating System Event Manager chapter also describes how your application
can post its own events in the event queue. You usually use the Event Managerto send
and retrieve events. For information on the PPostEvent function, see the Operating System
Event Managerchapter in VolumeIV.

For information on standard keyboards, an addition to the modifier flags field in the event
record, and the KeyTrans function, see the Toolbox Event Managerchapter in Volume V.

The Apple Event Manager

The Apple Event Manager chapter describes Apple events and how yourapplication can
receive and process the required set of Apple events.It also describes how to create and
send Apple events.

The Program-to-Program Communications Toolbox

The Program-to-Program Communications (PPC) Toolbox chapter describes how your appli-
cation can exchange message blocks with other applications. The PPC Toolbox provides
low-level control of communication and is generally more suitable for code that is not event-
based or desk accessories or applications that are closely integrated.

An Overview of the Chapters in Volume VI P-9

IPR2017-01828

Ubisoft EX1002 Page 60



IPR2017-01828 
Ubisoft EX1002 Page 61

 

Inside Macintosh, Volume VI aey
The Data Access Manager

The Data Access Manager chapter describes how your application can communicate with a
database application or other data source running on a remote computer. The chapter
describes how your application can use high-level or low-level routines to initiate communi-
cation with a remote data server, send commandsor data to the server, and, after the server
executes the commands,retrieve any requested data from the server.

The Finder Interface

The Finder Interface chapter in this volume describes how to create bundles,file references,
and icons, including small icons and color icons. Code listings show how to set up the
resources the Finder needsto start up your application and display your application’s icons
on the desktop.

The chapter also describes changes to the Finder interface—for example, the new aliases and
stationery documents. It shows how to find special folders, such as the Preferences folder
and Temporary Items folder. In addition, the chapter describes how fonts and soundsare
visible on the desktop and how theuser installs fonts and sounds by movingtheir icons to the
System Foldericon.

The Finder Interface chapter describes the Desktop Manager, a new managerthat lets your
application add or remove information from the desktop database.

The Finder Interface chapter in this volume replaces the Finder Interface chapters in
VolumesIII and IV.

Control Panels

The Control Panels chapter in this volume describes the new behavior of control panels in
system software version 7.0. If you develop video cards, you can also use the information
in the chapterto create an Options dialog box for the Monitors control panel.

The Control Panel chapter in Volume V describes how to write a control panel. Read the
information in the Control Panels chapter in this volume for additional information on writing
a control panel in system software version 7.0. Control panels written for earlier versions of
system software are compatible with version 7.0.

The Help Manager

The Help Managerchapter discusses how you can provide help balloons that supply your
users with information that describes the actions, behaviors, or properties of elements of
your application. The chapter explains how to create help balloons for menus, windows,
icons, controls, and other elements of the user interface of your application.

P-10 An Overview of the Chapters in Volume VI

IPR2017-01828

Ubisoft EX1002 Page 61



IPR2017-01828 
Ubisoft EX1002 Page 62

Preface

The Font Manager

The Font Managerchapter in Volume VI describes how your application can take advantage
of TrueType™fonts.

The Font Manager chapter in VolumeI describes how the Font Manager works with
QuickDraw to draw characters. It discusses font numbers, characterstyles, font size,
scaling factors, the ascentline, the base line, the descentline, and leading. The chapter
also describes the format of a bitmapped font.

The Font Managerchapter in Volume IV discusses bitmapped fonts (of resource type "FONT'
or ‘NFNT') and font families (of resource type FOND’).It describes a few data structures,
like the font family record.

 
The Font Managerchapter in VolumeV includes information on fractional character widths,
the font search algorithm (how the Font Managerlooksfor a particular font), and how to
specify colors for a font.

The Resource Manager

The Resource Managerchapter in VolumeVIlists the standard resource types in version 7.0.
The chapter also describes routines that you can use to read or write part of a resource.

The Resource Managerchapter in Volume I describes how you can store menus,fonts,
icons, and otherdata as resources.It gives definitions and descriptions of resourcefiles,
resource forks, and data forks. It describes how to create and open resource files, how to
read resources from a resourcefile, and how to add, remove, update, and write resources
to a resourcefile.

The Resource Managerchapter in Volume IV describes a few routines that search only the
current resourcefile (these routines have the numeral 1 in their routine name). It also
describes two advanced functions, RsrcMapEntry and OpenRFPerm.

The Resource Managerchapter in Volume V describes the RGetResource function andlists
resource types, ROM resources, and resources in the System file.

Worldwide Software Overview

The Worldwide Software Overview chapter provides an introductionto scripts and script
systems.It can help you design yourapplicationso that it is compatible with Macintosh
computers throughout the world.

See the Worldwide Software Overview chapter for an introduction to worldwide issues, and
see the User Interface Guidelines chapter for guidelines about developing your application for
use around the world. See the InternationalUtilities Package chapter in VolumeI for
information on displaying numbers, currency, time, and datesin the correct format for
various countries around the world. Macintosh Worldwide Development: Guide to System
Software (available from APDA)replaces the Script Manager chapter in Volume V and
provides a more complete description of all components of the worldwide system software.

An Overview of the Chapters in Volume VI P-11

IPR2017-01828

Ubisoft EX1002 Page 62



IPR2017-01828 
Ubisoft EX1002 Page 63

Inside Macintosh, Volume VI

TextEdit

The TextEdit chapter in this volume describes how TextEdit provides support for working
with different script systems. It describes how you can use TextEdit to let the user edit and
display text in multiple scripts and styles when a non-Romanscript system is in use. TextEdit
automatically handles text that uses more than onescript, style, or direction.

The TextEdit chapter in VolumeI introduces TextEdit and explains how your application
can use TextEdit routines for basic text formatting and editing.

The TextEdit chapter in Volume IV describes how TextEdit supports automatic scrolling
of text.

The TextEdit chapter in Volume V explains how TextEditlets you vary text attributes such as
size, style, and font. It also describes the style record that stores the style information.

Graphics Overview

The Graphics Overview chapter provides an introduction to graphics on the Macintosh
computer. The system software providesarich set of routines that support quick drawing
of objects such as circles, rectangles, and text. The Graphics Overview chapter introduces
many of the concepts and data structures explained in greater detail in the chapters on Color
QuickDraw,the Picture Utilities Package, the Color Picker Package, the Palette Manager,
and the Graphics Devices Manager.

Color QuickDraw

The Color QuickDraw chapter in Volume VI describes how version 7.0 supports both
indexed and direct specification ofcolor. It also describes changes to the pixel map record
and the PICT2 file format, and it describes a routine that lets you convert a bitmap record into
a region. The information in the Color QuickDraw chapter in this volume supplements the
QuickDraw chapter in VolumeI and the Color QuickDraw chapter in Volume V.

The QuickDraw chapter in Volume | introduces the basic concepts of QuickDraw, including
descriptions of the mathematical foundation of QuickDraw and the graphics environmentthat
QuickDraw provides.It also describes QuickDraw routines.

The Color QuickDraw chapter in Volume V describes how Color QuickDraw provides
support for drawing objects using a large numberofdifferent colors.

The Picture Utilities Package

The Picture Utilities Package chapter describes routines you can use to examinethe contents
of pictures and pixel maps.

P-12 An Overviewofthe Chapters in Volume VI

IPR2017-01828

Ubisoft EX1002 Page 63



IPR2017-01828 
Ubisoft EX1002 Page 64

The Palette Manager

Preface

The Color Picker Package

The Color Picker Package chapter in this volume describes how to present users with a
standard userinterface for selecting a color. This chapter replaces the Color Picker Package
chapter in Volume V.

The Palette Manager chapter in this volume describes palettes, the default color tables, and
how to create and use a palette to control the color environment. This chapter replaces the
Palette Manager chapter in Volume V.

 
The Graphics Devices Manager

The Graphics Devices Manager chapter describes how you can prepare offscreen graphics
and move them quickly into view.It also provides useful information if you are developing
a graphics-intensive application. This chapter replaces the Graphics Devices chapter in
Volume V.

The Sound Manager

The Sound Managerchapter in this volume completely replaces any previous information in
Inside Macintosh regarding the Sound Manager. The Sound Manager chapter in Volume V1
is the complete reference and guide for the use of sound.It provides an introduction to sound
and describes sound synthesizers, sound channels, sound commands, sound resources, and
soundfiles.

The chapter also describes how your application can use the Sound Managerto create and
play sounds, mix and synchronize multiple channels of sound, expand and compress sound
data, and play sounds continuously from disk.

See the Sound Managerchapter in this volume if you want to use any kind of sound in your
application, even if you only want to use the SysBeep procedure.

The Time Manager

The Time Managerchapterin this volume describes the original Time Manager,the revised
Time Manager(available in system software version 6.0.3 andlater), and the extended Time
Manager(available in system software version 7.0). It completely replaces the Time Manager
chapter in Volume IV.

The chapter describes how to schedule a routine for later execution, how to schedule a routine
to execute at periodic intervals, and how to compute elapsed time. It also describes other
time-related services, such as those provided by the TickCount and Delay functions, and the
Vertical Retrace Manager.

An Overviewof the Chapters in Volume VI P-13

IPR2017-01828

Ubisoft EX1002 Page 64



IPR2017-01828 
Ubisoft EX1002 Page 65

 

 

Inside Macintosh, Volume VI

The Notification Manager

The Notification Manager chapter describes how to notify users of significant occurrences
relating to your application when your application is running in the background. Device
drivers, VBL tasks, Time Managertasks, completion routines, startup code, desk acces-
sories, and applications can use the Notification Manager.

The Notification Managerchapterin this volumereplaces the information in Appendix D of
the Programmer’s Guide to Multif’inder.

The File Manager

The File Manager chapter in this volume describes howto create a file specification to identify
a file, folder, or volume.It also describes how you can use the File Managerto search for
and quickly findfiles.

The File Manager chapter in Volume IV describesthe file system, including the Macintosh
File System (MBS)and Hierarchical File System (HFS). The chapter provides descriptions
of File Managerdata structures and routines.

The chapter on File Manager Extensions in a Shared Environment in Volume V presents
routines that allow your application to more casily execute in a shared environment.

The Standard File Package

The Standard File Package chapter in this volume describes the StandardGetFile and
StandardPutFile procedures available in version 7.0. You can use these two procedures
to present the standard user interface when a user opensor savesafile. The chapter also
describes the two new procedures CustomGetFile and CustomPutFile, which let your
application exercise more control over the user interface when opening and savingfiles.

The Standard File Package chapter in VolumeI describes the original procedures that
present the standard user interface for opening and saving files in earlier system software.
The Standard File Package chapter in Volume IV describes modifications to the original
procedures for use with the Hierarchical File System.

The Alias Manager

The Alias Manager chapter describes how to create and resolve alias records—a new data
structure that describes a file, folder, or volume.

You can use alias records instead of conventional file specifications to store file or directory
information. If you create an alias record, your application can use the Alias Managerto
locate the file or directory when needed—evenif the user has renamedit, copiedit, restored
it from backup, or moved it. The chapter describes the routines you can use to manage the
information in alias records.

P-14 An Overview of the Chapters in Volume VI

IPR2017-01828

Ubisoft EX1002 Page 65



IPR2017-01828 
Ubisoft EX1002 Page 66

RrPaRAROT==RS

Preface

Memory Management

The Memory Managementchapter in Volume VI describes 32-bit addressing, virtual memory,
and routines that let your application use available temporary memory. The chapter replaces the
discussion of temporary memory in Chapter 3 of the Programmer’s Guide to MultiFinder.

The Memory Managerchapter in Volume Idescribes the system heap zone and application
heap zonc, how to allocate memory blocks, and how to avoid memory fragmentation. It also
discusses dereferencing a handle,lists general-purpose data types, shows the organization of
memory, and gives an overview ofthe stack and the heap. The routine descriptions discuss
howto set the heap zonesize, create handles and pointers, allocate relocatable and
nonrelocatable blocks, and how to free memory in the heap.

dDEPId
The Memory Manager chapter in Volume IV describes improvements to Memory Manager
routines that are largely transparent to your application. It also describes routines that let your
application set or clear flags that the Memory Managerassociates with each relocatable block.

Process Management

The Process Management chapter describes how the Process Managerschedules applica-
tions for execution and managesaccessto shared resources. It describes routines that let
your application get information about any orall running applications. The chapter replaces
the discussion of launching applications found in the Programmer’s Guide to MultiFinder.

The Slot Manager

The Slot Manager chapter in this volume describes how version 7.0 supports 32-bit
addressing of NuBus™ cards. The Slot Manager chapter in Volume V gives an overview
of the firmware of a slot card, explains the slot parameter block, and describes Slot
Managerroutines.

The Power Manager

The Power Manager chapter describes a manager used only with the Macintosh Portable in
system software version 6.0.4 and later. This information is useful only if you are writing a
device driver or application that might be affected when powerfor the various subsystems of
the Macintosh Portable is shut off.

The AppleTalk Manager

The AppleTalk Managerchapter in this volume describes how version 7.0 supports various
link access protocols (for example, the LocalTalk® Link Access Protocol and the EtherTalk®
Link Access Protocol) that can be used for AppleTalk communication. It describes the
AppleTalk Data Stream Protocol (ADSP), a new protocol your application can use to
exchange information between two equal entities.

An Overview of the Chapters in Volume VI P-15

IPR2017-01828

Ubisoft EX1002 Page 66



IPR2017-01828 
Ubisoft EX1002 Page 67

—
Inside Macintosh, Volume VI

The chapter explains how you can request that your program receive notification each time
another routine opens or closes the .MPP driver or wheneveranotherroutine is about to
close the .MPP driver.

The chapter also discusses how the LAP Managerlets your application control communica-
tion over non-LocalTalk networks, such as Ethernet. In addition,it provides information
you can use to write your own protocol handler for Ethernet or 802.3.

The AppleTalk Manager chapters in VolumesIL, IV, and V provide additional information on
the device drivers and protocols associated with AppleTalk. ,

A ROAD MAP TO VOLUMEVI

Figure P-1 shows each chapterin this volume. If you need to read related chapters in earlier
volumes of Inside Macintosh for additional information, those other volumes are also shown.
For each chapter, the volumes are shownin the order in which you should read them;the
volumes shownare the only ones you need to read for information on thattopic.

P-16 A Road Map to Volume VI

IPR2017-01828

Ubisoft EX1002 Page 67



IPR2017-01828 
Ubisoft EX1002 Page 68

Treo ameatal

Preface

 
Intreductron to the System Software

Yersion 7.0 Enyviranment

User Interface Guidelines

Gompalibility Guidelines

Edition Manager

Event Manager

Apple Event Manager

Program-to-P rogram
Communications Toolbox

Data Ancess Manager

Finder Interface

Contral Panels

Help Manager

Font Manager

Resource Manager

Worldwide Software Overview

TextEdit

Graphics Overview

aMeeeae

'

—_sre

ag
rae
[vies] 

¥Yolume VI Chapter

Color GuickGraw

Picture Utililias Package

Color Picker Package

Palette Manager

Graphics Devices Manager

Sound Manager

Time Manager

Notification Manager

File Manager

Standard File Package

Alias Manager

Memory Management

Process Management

Slol Manager

Power Manager

AppleTalk, Manager

Figure P-f. A road map ky Volume VI

A Road Map te Volume ¥i

LEM eats)ah

1F|wlrs
=

=

    

Pi?

IPR2017-01828

Ubisoft EX1002 Page 68



IPR2017-01828 
Ubisoft EX1002 Page 69

inside Macintesh, Velume Vi

P-18

IPR2017-01828

Ubisoft EX1002 Page 69

aeeery



IPR2017-01828 
Ubisoft EX1002 Page 70

INTRODUCTION TO THE SYSTEM

SOFTWARE VERSION 7.0 ENVIRONMENT

About This Chapter
Aboutthe System Software Version 7.0 Environment

The Cooperative Multitasking Environment
Interapplication Communication

Sharing Data Among Applications
Sending Events Between Applications
Exchanging Message Blocks Between Programs

Remote Data Access
Enhanced UserInterface
Sound

TrueType Fonts
Graphics
File Management
Memory Management

Temporary Memory
24-Bit and 32-Bit Addressing

Process Management
Timing Services
Compatibility
Worldwide Development
Communication Over a Network
HardwareInterfaces

Overview of Chapters in This Volume

IPR2017-01828

Ubisoft EX1002 Page 70

f-l

—
_-ai
ondfom’i)
a—=]
ft-_
siS)
rd) 



IPR2017-01828 
Ubisoft EX1002 Page 71

inside Macintosh, Volume Vi

IPR2017-01828

Ubisoft EX1002 Page 71



IPR2017-01828 
Ubisoft EX1002 Page 72

Introduction to the System Software Version 7.0 Environment

ABOUT THIS CHAPTER

This chapter describes the operating environmentfor applications that run in system software
version 7.0. It also provides general information aboutthe features available to you when you
design an application to run in the system software version 7.0 environment.

Read this chapter for an overview of how your application can use the Macintosh®
User Interface Toolbox and Macintosh Operating System routines in system software
version 7.0 to

= share data with other applications using the Edition Manager

m= communicate with other applications using the Event Manager, Apple® Event Manager,
or the Program-to-Program Communications (PPC) Toolbox

m access data from other sources, including remote databases, using the Data Access
Manager

a
—ii)=
ioesio
a
=Gaajon==
i) 

m play sounds using the Sound Manager

= kcep track of specific files using the Alias Manager

m perform quick searches for specific files using the File Manager

m provide on-line assistance for users with the Help Manager

a draw TrueType™ fonts using the Font Manager

use direct devices for graphics applications using Color QuickDraw™

function in worldwide markets using the Script Manager, International Utilities
Package, and TextEdit

This chapter discusses the features and managers new to version 7.0. In addition, see
the Preface, where “A Road Map to Volume VI” shows each managerdiscussed in this
volumeandillustrates a pathway through related information in previous volumes of
Inside Macintosh.

Although Volume VI focuses on system software version 7.0, many of its chapters contain
information that is also relevant to system software version 6.0 andlater. See the
Compatibility Guidelines chapter in this volumefor information on developing applications
that can run in both system software version 6.0 and system software version 7.0.

About This Chapter 1-3

IPR2017-01828

Ubisoft EX1002 Page 72



IPR2017-01828 
Ubisoft EX1002 Page 73

Inside Macintosh, Volume VI

ABOUT THE SYSTEM SOFTWARE

VERSION 7.0 ENVIRONMENT 

System software version 7.0 extends the environment of the Macintosh computer by
providing cven greater support for cooperation between applications. The userinterface
continues to build on solid design principles and provides additional benefits; for example,
in version 7.0 users can more directly manipulate icons on the desktop and users can
customize the Apple menu. The Finder™, the Macintosh Operating System, and the User
Interface Toolbox provide and maintain this environment.

The Finder is the system application that lets users organize and manage applications, docu-
ments, folders, and disks on the desktop. Users can choose commands from the Finder menu
bar or use the mouse to perform various tasks. Because the Finder presents the standard
interface that the user becomes familiar with, you need to make sure that your application
performs in an expected mannerin the Finder environment.

Macintosh users also expect certain standard behavior from Macintosh applications; for
example, all applications should provide File and Edit menus. Macintosh applicationsthat
follow the user interface guidelines provide consistency and let users determine what action
to take to perform a particular task.

In earlier Macintosh computers a user ran one application at a time. Today’s Macintosh
model recognizes that a user often wants to run many applications at once. System software
version 7.0 provides this cooperative environment.

In system software versions 5.0 and 6.0, the MultiFinder® option provided a cooperative
multitasking environment. In system software version 7.0, the features of MultiFinder are
integrated into the Macintosh Operating System.

The Macintosh Operating System lets the user have several applications open at the same time
andlets the user switch between them. The Operating System also gives the user constant
access to the Finder. This lets a user move among open documents and applications without
having to save or quit the previous documentor application. This environment also allows
applications to run in the background. For example, the Finder can copyfiles while the user
is working on anothertask in the foreground.

The cooperative environment of the Macintosh allows multiple applications to share the CPU
and other resources. You need to understand how this environmentcan affect your application.
The next section, “The Cooperative Multitasking Environment,” explainsthis in moredetail.

An important aspect of system software version 7.0 is interapplication communication
(IAC), a new collection of features that help applications work together.

Copy andpaste is a simple way in which Macintosh applications work together by sharing
data. In system software version 7.0, applications can provide automated copy and paste
features (that is, your application can automatically update the data that the user pastes into a
document whenthe original source of information changes). Applications can extend this
concept by using high-level events to request that other applications performaparticular task
or retum requested information. Applications and drivers that require close integration with
each other can also extend this concept by reading and writing low-level message blocks.

1-4 About the System Software Version 7.0 Environment

 

IPR2017-01828

Ubisoft EX1002 Page 73



IPR2017-01828 
Ubisoft EX1002 Page 74

Introduction to the System Software Version 7.0 Environment

Apple Computer, Inc. has defined a protocol for high-level events called the Apple Event
Interprocess Messaging Protocol. High-level events that adhere to this protocolare called
Apple events. You can help ensure effective communication with other applications by using
this protocol.

Macintosh applications in system software version 7.0 can respond to incoming high-level
events from other applications as well as events generated by the user, and they can also send
high-level events to other applications. Better cooperation and communication between
applications help users to get the most out of any one application or to use the best features
from many applications—in effect, combining the features of many applications to achieve
the desired result.

Byincluding the features provided by LAC in your application, you give the users of your
application even greater power, ease of use, and flexibility in accomplishingtheir tasks.

Figure 1-1 highlights the general areas for which system software version 7.0 provides
routines. The next sections describe these topics in greater detail.

—
_
=—
an=
=5)
LaCea
=Satim]  

 
 
 
 

 

Playing sound continuously from disk
Sound™>| Compressing & expanding sound data

Sharing dynamic data Recording sound
Communicating between
applications

   
 

 

 
 
  

= Interapplication — -
communication Supporting direct devices

(IAC) Graphics mm Examining pictureinformation

 
 

  a Sharing files across a network - .
| Accessing remote databases Networking  

 
  
 

 
  

  
TrueTypem»| Drawingfontsin

fonts any size
 
 

 
 
  

File
management

Keeping track of
specific files Color windows & icons

. _ User =| Balloon Help
Worldwide interface Movable modaldialog boxes 

 

  
 

 aa Localizing applications
meee Supporting multiple scripts
a Formatting dates & numbers

mete Sorting strings

 

 

 
 
 

  

 

 Cooperative mp) Cooperating with other
multitasking applications

environment Performing tasks in the
background

 
  
  
 

  
 

 
= MemoryVirtual memory Management

24-bit & 32-bit addressing |
Temporary memory

  
Cc)
Version 7.0

environment

Figure 1-1. Features of the system software version 7.0 environment

About the System Software Version 7.0 Environment 1-5

IPR2017-01828

Ubisoft EX1002 Page 74



Inside Macintosh, Volume VI 

The Cooperative Multitasking Environment 

The cooperative multitasking environment is a standard part of system software version 7.0. 
The Macintosh Operating System and the Finder work together to provide this environment. 
MultiFinder is now transparent to the user; the user always has the capability to run more than 
one application at a time. Because the user may choose to run other applications in addition to 
your application, your application needs to be capable of existing in a shared environment. 

The Operating System schedules the processing of all applications and desk accessories. 
When a user opens a document or application, the Operating System loads the application 
code into memory and schedules the application to run. The application runs at the next 
available opportunity. The next available opportunity usually means when the current process 
or application gives up the CPU. In most cases, the application runs immediately (or appears 
to the user to run immediately). 

Once an application is executing, the CPU is available only to that application. The applica
tion can only be interrupted by hardware interrupts, and these are transparent to the 
application. However, to allow the user to interact with your application and others, you 
must periodically relinquish the CPU using the WaitNextEvent or EventA vail function. 
Using these event routines in your application lets the user interact with your application 
and also with other applications. 

Although the user can have a number of open documents and applications, only one 
application is the active application. The active application is the application currently 
interacting with the user; its icon appears in the right side of the menu bar. The active 
application displays its menu bar and is responsible for highlighting the controls of its 
frontmost window. 

When your application is the active application and the user switches to another application 
(by clicking in the window of a document belonging to another application, for example), the 
Operating System sends your application a suspend event. When your application receives a 
suspend event, it should prepare to suspend processing, allowing the user to switch to the 
other application. For example, in response to a suspend event, your application should 
remove the highlighting from the controls of its frontmost window and take any other 
necessary actions. The suspension actually occurs the next time your application calls 
WaitNextEvent or EventAvail. 

Your application also needs to be able to resume processing when the user chooses to work 
with your application again. Your application receives a resume event when the user switches 
back to your application. In response to a resume event, your application should update the 
contents of its windows and highlight the controls of its frontmost window. 

The Operating System preserves the environment of your application when it is suspended 
and restores that environment before sending it a resume event. Your application does 
not need to preserve or restore the operating environment in response to suspend or 
resume events. 

When you perform user testing of your application, you might want to observe people using 
other applications as well as your application, to make sure that your application works well 
in a cooperative environment. 

See the Compatibility Guidelines and the Event Manager chapters in this volume for specific 
information on how your application can handle suspend and resume events and how your 
application can take advantage of the cooperative multitasking environment. 

1-6 About the System Software Version 7.0 Environment 

IPR2017-01828 
Ubisoft EX1002 Page 75



IPR2017-01828 
Ubisoft EX1002 Page 76

Introductionto the System Software Version 7.0 Environment

Interapplication Communication

The interapplication communications architecture provides support for

m= automated copy and paste between applications

m sending and receiving events between applications

m reading and writing blocks of data between applications

The Edition Manager, Apple Event Manager, Event Manager, and PPC Toolbox provide
these features, and Figure 1-2 showstheir relationships.

Macintosh OS & Toolbox tT

>) Edition Manager
L Apple Event Manager

—
—om=="
=oa¢
o77
carae
=S
=) 

\[EventManager|

LC PPC Toolbox :
 

Figure 1-2. The managers constituting the interapplication communications architecture

The IAC architecture is built on communication and cooperation between applications. Apple
has defined important standards to help ensure that communication between applicationsis
effective. Using the Clipboard, applications can share static data by allowing the user to copy
and paste data between documents. Using the Edition Manager, applications can support
dynamic data sharing and allow users to perform automatic copy and paste between docu-
ments. Applications that support dynamic data sharing allow users to copy data from one
documentto another and receive automatic updating of the information whenthe data in the
original document changes. The verbs publish and subscribe describe this form of dynamic
data sharing.

You canlet users publish and subscribe among many documents by using the Edition
Managerand implementing the Create Publisher and Subscribe To menu commands. This
is a form of high-level communication between applications; actually, the communication
is indirect, as the Edition Manager providesthe interface that allows applications to share
dynamic data.

Your application can publish and subscribe with applications and documents on a local disk
or across a network. In general, anything that you allow the user to copy or paste you should
also allow the user to publish or subscribe to. See “Sharing Data Among Applications” later
in this chapter for more information on using the publish and subscribe features in your
application.

About the System Software Version 7.0 Environment 1-7

IPR2017-01828

Ubisoft EX1002 Page 76



IPR2017-01828 
Ubisoft EX1002 Page 77

 

Inside Macintosh, Volume VI

Using the Apple Event Manager, applications can send Apple events to each other to request
services or information. These types of events are often the result of a user request, or they
can be specific events that your application sends to another application. Apple events provide
a Standard way in which your application can communicate with manyother applications.
Other high-level events are for applications that choose to use a protocol other than the Apple
Event Interprocess Messaging Protocol (AEIMP). Applications can use the Event Managerto
send high-level events that follow their own protocol.

The Program-to-Program Communications (PPC) Toolboxis a set of low-levelroutines that
allow applications to communicate on the local computer or over a network. Using the PPC
Toolbox, applications can exchange blocks of data with each other by reading and writing
low-level message blocks. The PPC Toolbox provides a method of communication between
applications that is more useful for applications that are closely integrated, specifically
designed to work together, or dependent on each other for information. The PPC Toolbox
is typically more useful for code that is not event-based.

Your application can use the PPCBrowserfunction to allow the user to choose another appli-
cation to which to send high-level events or low-level message blocks. The PPCBrowser
function provides a standard user interface for choosing an application to communicate with,
muchlike the Standard File Package provides a standard user interface for openinga file.

All these forms of interapplication communication are based on the premise that applications
cooperate with each other. Both the application sending the high-level event or low-level
message block and the application receiving it must agree on the protocol of communication.

Figure 1-3 showsthat your application can use the Edition Managerto publish and subscribe
data. Your application can use the Apple Event Managerto send and process Apple events
and the Event Managerto send and receive high-level events. Your application can usc the
PPC Toolbox to read and write low-level message blocks. Your application can use any of
these methods to communicate with other applications located on the same computeror across
a network.

As Figure 1-3 shows, managersin the IAC architecture can use the services of other
managers. For example, the Apple Event Manager uses the communication services
of the Event Manager. The Event Managerin turn uses the PPC Toolbox on behalf
of applications.

Figure 1-4 shows how two different applications can use the Edition Managerto publish and
subscribe, and how they can use the routines provided by the Apple Event Manager, the
Event Manager, or the PPC Toolbox to communicate with each other.

The next sections describe the three parts of the IAC architecture: the Edition Manager, the
Apple Event Manager and Event Manager, and the PPC Toolbox.

1-8 About the System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 77



IPR2017-01828 
Ubisoft EX1002 Page 78

Intradvenon to the Aystent Suffeare Version 7.0 Baviranmnent

Edilign

Apple Event Manager

\
Event Manager

PPC Toalbox |

Figure 1-3. Using interappheation communication

Aople High-level Low-level
evenis events message

blockszw
 =

—
I=
niz===
5“4=at
=_ 

 
   

} ’ Apple U ' High-9F :Goat 1 dnote§ leved | Low-level
~ ' events. 4 message

ae | blocks
‘ Edition Manager| i i

_ Apple Event Manager |

___ Event Manager :

[ i i | 4Wl EE BE
PPC Toolbox

Figure 1-4. Applications using inierapplication communication

About the System Safiware Version 7.0 Exvironaent ig

IPR2017-01828

Ubisoft EX1002 Page 78



IPR2017-01828 
Ubisoft EX1002 Page 79

Inside Macintosh, Volume VI

Sharing Data Among Applications

The Edition Managerlets applications share dynamic data at the user’s request. (The Clipboard
lets applications share static data.) You build publish and subscribe capabilities into your
application in much the same waythat you build copy and paste into your application.

Using the Edition Manager, you can let a user publish data by selecting a portion oftext,
graphics, or other data within a document and choosing Create Publisher from the Edit
menu. Whenthe user performsthis action, your application saves the selected information
in a separate file. The information that is stored in a separate file is referred to as an edition.
You can also let a user subscribe to data in an edition by choosing Subscribe To from the
Edit menu; whenthe user choosesan edition, your application includes the information
from the edition in the current document. The information in an edition can be shared by
many documents.

A publisheris a portion of a documentthat is made available to other documents through an
edition. A subscriber is a portion of a documentthat receives the information from an edition.

Figure 1-5 shows a documentcontaining a publisher, a file containing an edition, and a
document containing a subscriber. The bottom fish in the Fishes of the World documentis a
publisher. The information fromthis publisher is made available to other documents through
the Illustration edition. The Aquarium poster document contains a subscriberthat getsits
information from the Illustration edition. Note that whena userselects a publisher or
subscriber within a document, your application should display a border surrounding the
publisher or subscriber.

In general, when a user modifies the contents of a publisher and saves the document, your
application should writc the new data to the edition. The Edition Managerthen informsall
open applications with documents that subscribe to the edition that the edition contains
updated information. These applications can then automatically update the subscribers in

 Dy
Illustration EXPERIENCE

Fishesof the The Aquarium
World

 
The gdh akidh adh|Tre sidh akidh The adh aedhadh‘evays dkyxt IN hohe|evxs dkyx! IN jhohe}ovxgs akixl INy
ashoyt Hxegihe 2x0} ashdjh nxcgine zrxe|asnqyh hxegyhe zeThanksto jv creckfThanks tc |¥h anxcjk|Thanks to jvh znx
xoichz zhge Hil zxc|xejchz zh xoehs aigs Hfzihe ze zkicke 2 ayhe Z6 zkickrezl zhie qe zhyckirzlxhayhdyhk djfuw dj xhayhajhk dyfuwe xhajhdhk dyfG ahyex ckas G aryex zijars G alex2k ais

  
Aquarium poster

Figure 1-5. A publisher, an edition, and a subscriber

1-10 About the System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 79



IPR2017-01828 
Ubisoft EX1002 Page 80

Introduction to the System Software Version 7.0 Environment

the documents. For example, in Figure 1-5, if the user changes the colorof the fish in the
Fishes of the World document and then saves the document, the change can be automatically
made in the Illustration edition and the Aquarium poster document.

Figure 1-6 shows how a user might create a poster by using information from other docu-
ments. For example, the user could subscribe to separate editions containing an illustration
created by a graphics designer, text created by a writer, and a headline created by an editor.

 hoe

EXPERIENCE

The Aquarium

  
 
 
 

 

EXPERIENCE
The Aquarium  
 
 Title text

—_

amJ*=qfon
4=
=c-
ai]
=

 
“ne gdh akydh adh|The sjdh akjdh Thesch akjoh wyati
cvs dkpd IN che|cvxis dkwl (Nihchc|cvs dkyxl INashdjh hxcgjhe zyxc|ashdih hxcghe zjxc|ashdjh hxegihe zxcThanks to jvh znxgk|Thanks to jvh znxcik|Thanks to wh znx
xeohz zhge Hil 2xc|xojehz zh xoehz zhge Hitayhe 20 rkjckjz ZI ane ZC zKjeky? 7b aahe79° 7kycxj7 21ahaphejhikrjtuw dj xxhayhdjhk dyiuw xhayhdihkditG ahicxzhjais G ahycx zyais G ahiexzkjais

 
   Text for poster

 
Aquarium poster

Figure 1-6. Sharing dynamic data with other applications

Your application should save the new information in the edition whenever the user edits the
publisher and saves the document that contains the publisher—unless the user has indicated
that the information should be saved in the edition on request only. Saving new information
in an edition replaces the previous contents of the edition.

Whenthe information in an edition changes, the Edition Manager informs your application.
Your application should then update any subscribers with the new information from the
edition (unless the user has indicated that updates should be incorporated on request only).

For example, a user might open a word-processing document called My Stocks that accesses
information from an edition called Stock Report. The Stock Report edition might be updated
twice a day by an on-line database. As the information in the edition changes, the My Stocks
documentcan receive automatic updates with the latest information.

You can implement publish and subscribe capabilities in your application by using the
routines provided by the Edition Manager and supporting the required set of Apple events.
See the Edition Managerchapter for sample code that shows how to add these features to
your application.

About the System Software Version 7.0 Environment 1-11

IPR2017-01828

Ubisoft EX1002 Page 80



IPR2017-01828 
Ubisoft EX1002 Page 81

  

Inside Macintosh, Volume VI

Sending Events Between Applications

The Macintosh Operating System provides routines that allow your application to send and
receive events using the Apple Event Manager and Event Manager. The Event Manager
provides a general method for communication between applications. The Apple Event
Managerprovides a standard method of communication between applications using the
Apple Event Interprocess Messaging Protocol. (The PPC Toolbox can be used to read
and write low-level message blocks and is more useful for applications that are closely
integrated or perform coordinated tasks.)

Using the Apple Event Manageror Event Manager, applications can send events to other
applications to request services or information. You can send these events between applica-
tions on the same computer or between applications located on different computers on a
network. The Apple Event Manageruscs the services of the Event Manager to send and
receive Apple events. The Event Manager uses the communication services of the PPC
Toolbox on behalf of your application to send and receive events.

For high-level events and Apple events, the applications involved must agree on what
they can ask each other and on the action that should be taken in cachsituation. Both the
application sending the event and the application receiving the event must agree on the
protocol of communication.

Yourapplication should support at least the required set of Apple events sent by the Operating
System. If you plan to implement publish and subscribe capabilities, your application should
also support the Apple events sent by the Edition Manager. You can also implement other
common Apple events or design your own customized Apple events. In addition, sets of
Apple events exist for many specific categories of applications (for example, word processors
or spreadsheets).

If your application acts on an Apple event, it should perform the standard action requested by
that event. This helps ensure that other applications (and eventually users) can send an cvent
to a particular type of application and expect the other application to understand and act on the
event in a standard way.

In most cases, you should use Apple events to communicate with other applications.
However,if necessary, you can implement your own protocol for high-level events.
Figure 1-7 shows how two applications might use high-level events. For example, a
uscr might need to update the telephone numbcrs of cveryonc in the marketing department.
To accomplish this, the user might use a word-processing application to send a high-
level event with the new telephone numbers across a networkto a directory application
running on a Macintosh computer at the company’s headquarters. When the telephone
directory application receives the high-level event, it updates its directory with the new
telephone numbcrs.

See the Event Manager chapterin this volume for information on how to send and receive
high-level events. See the Apple Event Manager chapter for information on the Apple Event
Interprocess Messaging Protocol.

I-12 About the System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 81



IPR2017-01828 
Ubisoft EX1002 Page 82

Introduction to the System Software Version 7.0 Environment

 

numbers|089-855-1910089-555-0087
089-555-4563099-655-2169086-655-0190

019-555-1082|086-555-1082 {IHone-555-3800 Ih089-555-0298

Update phone| ,
B numbers formarketing

 
 
 
 

 

 
 

High- Directory
level

events

High-
level

events

  Phone numbers
019-555-0987
019-555-4563
019-555-2169
019-555-0190
019-555-1092 as
 

 

Event Manager
 

Toolbox

—
vt
=—
bow]aS
faa
=rta=ot7==]

    
 

 
 

 
     

Figure 1-7. Sending events to other applications

Exchanging Message Blocks Between Programs

Using the Event Manager or Apple Event Managerto send events should meet the needs of
most applications for program-to-program communication. However, for low-level control or
to get services not provided by the Event Manager or Apple Event Manager, you can use the
PPC Toolbox. The PPC Toolbox lets you send larger amounts of data to other applications
located on the same computer or across a network. The PPC Toolbox can also be used by
pieces of code that are not event-driven. The PPC Toolboxis usually called by the Operating
System; device drivers, desk accessories, or other code modules canalso useit.

Using the PPC Toolbox to send data between programs requires that both your program and
the program you’re communicating with are openat the same time. To initiate communica-
tion, one program opensa port and requests a session with another program. The target
program must also open a port and accept the request. Oncea session is established, the two
programs can read and write low-level message blocks.

See the Program-to-Program Communications Toolbox chapter in this volume for informa-
tion on reading and writing low-level message blocks between programs,

About the System Software Version 7.0 Environment I-13

IPR2017-01828

Ubisoft EX1002 Page 82



IPR2017-01828 
Ubisoft EX1002 Page 83

Inside Macintosh, Volume VI

Remote Data Access

Using the Data Access Manager, your application can communicate with databases or other
data sources running on a Macintosh computer or on a remote host computer. For example,
your application can use high-level routines to open a documentcontaining commandsto be
sent to a remote data server; initiate communication with the remote data server; send the
commandsto the server; and (after the server executes the commands)retrieve the requested
data from the server. You can also use the Data Access Managerto send data to a remote
database or other data source.

182ALLLLSRasa
genoa If your application knows how to create commandsfor a remote data server, then your appli-

cation can use low-level routines to send these commandsand data directly to the data server.

Figure 1-8 shows how a user in San Francisco might use a spreadsheet application to request
data from a company database in New York. The spreadsheet application can use the Data
Access Managerto request the data from the database. The database application in New York
sends back the requested data, and the spreadsheet application can use this data to generate a
graph of the information.

San caren

Graph monthly sales
eB data for:

@New York OS.F. ODailas

Sa &

New York

 
[12]47]e9]7e|s6]"""

.S3]8]40) "|   ...balespey 
 

Monthly Sales,
NewYork 

Figure 1-8. Requesting data from a remote database

See the Data Access Manager chapter for information on sending andretrieving information
from a remote database or other data source.

I-14 About the System Software Version 7.0 Environment

herenennnensnsenninnemanasnerteaspaninisvSSAsshSSSSSseAA
IPR2017-01828

Ubisoft EX1002 Page 83



IPR2017-01828 
Ubisoft EX1002 Page 84

Introduction to the System Software Version 7.0 Environment

Enhanced User Interface

Theuserinterface for system software version 7.0 contains noticeable improvements, such as
support for movable modal dialog boxes, and several new features. The Apple menu can now
contain applications, documents,folders, or other Finder objects. You can supply small icons
that the Finder displays in the Apple menu for your application and documents created by
your application. Names of open applications nowappearin the Application menu, a new
menuto the right of all other menus. The Finder displays the small icon for your application
in the right side of the menu bar whenever your application is active.

The structure of the System Folder has changed, including the addition of newfoldersthat
reside inside the System Folder. You can now store preference files in the Preferences folder
and temporary files in the Temporary Items folder.

The Control Panels folder, which is inside the System Folder, replaces the Control Panel desk
accessory. Control panels nowappear as individual documents in the Control Panels folder.
The user can open the Control Panels folder from the Finder or the Apple menu.In addition,if
you develop video cards, you can create an Options dialog box that is used with the Monitors
control panel.

_
-—
==
=esio
a
ié==.

Soa 
In version 7.0, fonts, desk accessories, keyboards, international resource collections, and
sounds are represented as icons on the desktop. The userinstalls fonts and sounds by
dragging their icons to the System Folder icon. The user can store desk accessories in the
Apple MenuItems folder within the System Folder or anywhere in the volume. You can
now distribute fonts and desk accessories as movable resource files with separate icons.

The Finder nowlets you create one or more icons for a single documentor other desktop
object; oneof the icons represents the real object, and the others are aliases that point to
the object. Aliases can give convenient access to documentsthat are nested within many
folders or that reside onafile server.

The Finder can display help balloons with descriptive text when the user movesthe cursorto
certain elements of the Finder user interface while help is activated. In addition,if you use
standard windowsin your application, the Help Manager automatically displays help balloons
for standard elements of the window,like the title bar and close box. You can use the features
of the Help Managerto display help balloons for other elementsof the user interface of your
application. For example, you can create help balloons for menus, dialog boxes, and controls
used by your application.

See the Control Panels, Finder Interface, Help Manager, and UserInterface Guidelines
chapters in this volume for information on these user interface features.

Aboutthe System Software Version 7.0 Environment 1-15

  

IPR2017-01828

Ubisoft EX1002 Page 84



IPR2017-01828 
Ubisoft EX1002 Page 85

Inside Macintosh, Volume VI

Sound

Your application can create and play sounds, mix and synchronize multiple channels of sound,
expand and compress sound data, record sound, and play sounds continuously from disk
using the Sound Manager.

The Sound Managerprovides a rich set of routines for producing sounds, from playing a single
soundto playingaset of digitally recorded sounds. You can also compress sounddata for
efficient storage of sound data on disk, and expand compressed sound datain real time.

See the Sound Managerchapter in this volume for complete information on using sound in
your application.

TrueType Fonts

System software version 7.0 provides support for TrueType fonts. The Font Manageruses
equations (instead of bitmaps) to define the appearance of glyphs in TrueType fonts. After
using the equation to define a specific glyph in a particular font, the Font Managertranslates
the outline to a bitmap for display on the screen.

The advantage of TrueTypefonts is that a single TrueType font can be used to generate
glyphs at any size. The TrueTypefont includesinstructions that fine-tune the image ofthe
fontat different sizes. TrueType fonts are also resolution independent; the same TrueType
font can generate glyphs on a 72 dpi device or a 300 dpi device.

Your application can immediately take advantage of TrueTypefonts if they are supported by
the user’s system software. However, the Font Managerstill supports bitmapped fonts, and
gives preference to bitmapped fonts over TrueTypefonts if both are available for a specific
typeface at a particular size.

To offer full support for TrueType fonts, your application can provide a menu command
(such as Size or Other) to let the user choose any size of a TrueType font. Your application
can also request that the Font Manager always choose TrueType fonts over bitmapped fonts.

Figure 1-9 shows an example of on-screen glyphs generated using a TrueType font and a
bitmapped font. The left side of the figure shows glyphs in a TrueTypefontthat is rendered
at 12, 16, 19, 24, 31, 37, and 45 points. The rightside of the figure shows glyphs in a
bitmapped font scaled at the samesizes.

See the Font Manager chapter for an introduction to TrueType fonts and for information on
using TrueType fonts in your application.

Graphics

The Macintosh UserInterface Toolbox provides a rich set of routines that support graphics.
Using the Toolbox routines, your application can provide fast and high-quality graphics and
visual display to the user.

1-16 About the System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 85



IPR2017-01828 
Ubisoft EX1002 Page 86

Introduction to the System Software Version 7.0 Environment

TrueType font scaled on screen Bitmapped font scaled on screen
from 12 points to 45 points from 12 points to 45 points

ry
_
=]—
Ey
°
a
<oOa.
=)
=

 
Figure 1-9. Comparison of TrueType and bitmapped fonts

You can use the routines provided by QuickDrawto draw text, straight lines. ovals,
rectangles, or any variety of shapes. QuickDrawlets you define multiple drawing environ-
ments (ports)—each with its own coordinate system, location on the screen, and other
characteristics. QuickDraw also performs automatic clipping of drawing environments—
preventing another application from drawing in the drawing environment used by your
application. QuickDraw managesall drawing to the screen and providesa flexible set of
routines your application can use to perform most graphics operations.

Color QuickDraw provides support for gray-scale and color devices. In addition, users can
connect multiple monitors of different sizes, depths, and color capabilities. Color QuickDraw
automatically draws to the appropriate screen and takes advantage of the special
characteristics of that device.

Color QuickDraw in version 7.0 supports both indexed and direct devices. Indexed devices
typically have a color look-up table with 256 entries, meaning that up to 256 different colors
can be displayed at once on the screen. The user’s video card and monitor determine the
numberof bits per pixel and the numberof colors that can be displayed on the screen. For
indexed devices, Color QuickDraw supports 1, 2, 4, or 8 bits of information perpixel.

Direct devices do not use a color look-up table; instead, the video card contains enough RAM
to directly store color information for each pixel. This allows direct devices to display up to
16 million colors. For direct devices, Color QuickDraw supports 32 bits of information per
pixel (although only 24 are actually used). Sce the Graphics Overview chapter in this volume
for a comparisonof indexed anddirect devices.

About the System Software Version 7.0 Environment 1-17

i 
 

IPR2017-01828

Ubisoft EX1002 Page 86



IPR2017-01828 
Ubisoft EX1002 Page 87

Inside Macintosh, Volume VI

Using the Palette Manager, you can create palettes for your application. A palette is a
convenient way to group collections of colors. You can also use palettes if your application
makes special uscs of color—for example, if your application needs color table animation.
See the Palette Manager chapter in this volume for information on the default color tables
supplied with version 7.0 and for information on howto set up and maintain palettes.

You can use the Color Picker Package to offer users a standard dialog box for choosing a
color. The user can choose any color from the entire range the available device can display.
See the Color Picker Package chapter in this volume for information on howto display the
Color Picker dialog box and for a description of the various color models used by the Color
Picker Package.

You can examine the contents of pictures and pixel maps using the Picture Utilitics Package.
See the Picture Utilities Package chapter in this volume for more information.

You can use offscreen graphics to prepare imagesin a graphics environment you create and
then move the images quickly into view. The Graphics Devices Managerlets your application
get information about particular graphics devices and provides routines your application can
use if it needs cxacting control of the graphics environment.

For an introduction to graphics on the Macintosh computer, see the Graphics Overview
chapterin this volume. If you’re developing a graphics-intensive application, sce the Color
QuickDraw,Palette Manager, and Graphics Devices Managerchapters in this volume for
information on routines that provide advanced graphics features.

System software version 7.0 also provides support for color icons. See the Finder Interface
chapterin this volume for information on how you cancreate color icons for your application
and the documentsit creates.

File Management

Your application can casily locate the files it needs by using alias records. Analias recordis a
data structure that identifies a file, folder, or volume. Whenever your application needs to
store the location of a file or directory that it might need later, you can record the location and
other identifying informationin an alias record. The next time your application needsthefile
or directory, you canusethealias recordto locate it, even if the uscr has renamedit, copied
it, restored it from backup, or movedit. You canalsousealias records to identify objects on
other volumes, including AppleShare® volumes. The Alias Managerprovidesroutines for
managing the information in alias records.

Notethat the Finder creates alias objects that are visible to the user, while your application
usually creates alias records whenit needs to store identifying information about a file or
directory that it uses internally.

You can also quickly scarch a disk for particular files using File Manager routines. You can
search for one or morefiles that match certain criteria that your application specifies. For
example, your application can search forall files that have a modification date later than
June 15, 1991, and the File Managerreturnsto yourapplicationa list ofall files that match
this specification.

In version 7.0, individuals can share files with other users. A user can makeall files within
one or more of the folders on a local disk available over a network. This increases the chance
that documents created by your application are used in a shared environment.

1-18 About the System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 87

 



IPR2017-01828 
Ubisoft EX1002 Page 88

Memory Management

Introduction to the System Software Version 7.0 Environment

The File Manager provides a new standard format for identifying files. You can usc this
standard format in File Managerroutines, and other managers also acceptfiles specified
in the new format.

The user interface for opening and saving a file is enhanced in version 7.0. The Standard File
Package provides two new proccdures, StandardGetFile and StandardPutFilc, that your
application can use to display the standard user interface for choosing a file. To customize the
user interface for choosing a file, you can use the new CustomGetFile and CustomPutFile
procedures.

See the File Managerchapter in this volume for information on identifying and locating files
on a volume, see the Standard File Package chapter for information on letting the user choose
a file, and see the Alias Manager chapter for information on using alias records.

The Macintosh Operating System managesthe loading of applications, desk accessorics, and
other code into and out of memory. Applications must share the amount of memory available.
Without virtual memory,if an application needs a greater amount of memory thanis currently
free for application use in the user’s system, the user must free up some memory. With
virtual memory, the Operating System can store elsewhere the contents of memory in use
by other applications in order to make room forthe active application.

i
a=iaa
=J
=a
faoOa7
°
ion] 

Virtual memory extends the available memory beyondthe limits of physical RAM byusing
part of the available secondary storage (such as a hard disk) to hold portions of programs and
data not currently in use. When an application needs portions of memory stored on disk, the
Operating System brings those portions back into physical memory by swapping them with
other unused portions of memory.

The operation of virtual memory is mostly transparent to your application. The usersets
options in the Memory control panel to control various features of virtual memory. ‘The
user chooses whether virtual memory is turned on and, if so, how much virtual memory
is available. The main benefit of virtual memory is that it allows users to run more applica-
tions at once and work with larger amounts of data.

See the Memory Managementchapterin this volume for further information on using
virtual memory.

Temporary Memory

Your application can allocate temporary memory if it needs additional memory for short-term
purposes. Your application is not always guaranteed the desired amount of memory,so it
should work correctly even if it does not get the requested memory, For example, you might
allocate a small buffer in your application heap to copy data, and request additional temporary
memory. If the temporary memory is available, your application can use it to copy large
amounts of data more quickly. If the temporary memoryis not available, your application
should still be able to perform the copy, although it might take a little longer. As soon as your
application finishes using the temporary memory, you should release it so that the memory
can be made available to other applications.

See the Memory Managementchapter for further information on using temporary memory.

About the System Software Version 7.0 Environment 1-19

IPR2017-01828

Ubisoft EX1002 Page 88



IPR2017-01828 
Ubisoft EX1002 Page 89

"yn

 

Inside Macintosh, Volume VI

24-Bit and 32-Bit Addressing

For Macintosh computers that support 32-bit addressing, the Memory Managerin version 7.0
uses all 32 bits of a memory address when the 32-bit addressing setting in the Memory
control panel is on. Earlier versions of system software use 24-bit addressing, in which only
the first 24 bits of a memory addressare significant, and the upper 8 bits are ignored. For
compatibility, all machines that support 32-bit addressing also support 24-bit addressing.

Macintosh computers that support 32-bit addressing can run with either 32-bit addressing or
24-bit addressing, but not both at the same time. The user chooses 32-bit addressing or 24-bit
addressing by changing thesetting in the Memory control panel andrestarting the computer.

Applications that use the upper 8 bits of a memory address do not work correctly in 32-bit
addressing mode. Applications thatstrip the upper 8 bits of a memory addressor rely on the
structure of the Memory Managerheapalso do not workcorrectly in 32-bit addressing mode.
Therefore, your application should not directly manipulate the bits in a memory address.If
your application can operate correctly in 32-bit addressing mode, you can indicate this to the
Operating System by setting a flag in your application’s ‘SIZE’ resource. See the Event
Manager chapter for a discussion of the 'SIZE' resource.

If you use your own customized window definition functions or customized control
definition functions, see the Memory Managementchapter for guidelines on avoiding
memory address violations. The Memory Managementchapteralso provides further
guidelines on how to write an application that works with 32-bit addressing.

Process Management

System software version 7.0 provides support for process management. Your application can
get information about any currently running process, including your own. For example, for a
specified process, you canfind the application’s name, type and signature; the numberof
bytes in the processpartition, the numberof free bytes in the application heap, the application
that launched the process, and other information. Your application can also launch other
applications and desk accessories.

When a user opens a desk accessory in version 7.0, the Operating System launches the desk
accessory in its own partition. When a desk accessory is open, the Finder puts the name of
the desk accessory in the list of open applications in the Application menu, andalso gives the
active desk accessory its own About commandin the Apple menuthat includes the name of
the desk accessory. This makes the user interface for desk accessories more consistent with
the userinterface of small applications.

You can achieve greater control over other applications using the Process Managerroutines.
You can bring an application to the front, get information aboutother applications, and launch
other applications without terminating your ownapplication. Your application can also
receivenotification if any application that it has launchedterminates.

System software version 7.0 provides greater support for launching applications and docu-
ments atstartup. All desktop objects in the Startup Items folder are automatically opened at
startup. All background applications in the Extensions folder are launched early in the startup
sequence before the Finder is started. Backgroundapplications generally performaspecific
task andare invisible to the user. The Startup Items folder and Extensionsfolder are located
inside the System Folder.

1-20 Aboutthe System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 89



IPR2017-01828 
Ubisoft EX1002 Page 90

Introductionto the System Software Version 7.0 Environment

See the Process Managementchapterin this volume for information on launching other
applications and getting information on currently running processes.

Timing Services

You can schedule routines to execute at a later time using the Time Manager. The Time
Manager provides a hardware-independent method of performing time-related tasks.

You can schedule routines to run periodically or after a specified delay. Time delays can be
specified in milliseconds or microseconds in version 7.0. You can achieve a maximum
resolution of 20 microseconds. This gives you greater accuracy in coordinating sound,
multimedia, and other events that require precise timing.

See the Time Managerchapterin this volume for information on how to schedule a routine
for later execution and how to compute elapsed time.

bo
|wal

=]a
~
co}
=a
=oO-_-=r
S
5 

Compatibility

You can determine whatfeatures are available on a Macintosh computerusing the Gestalt
function. The Gestalt function provides information about various attributes, versions, and
features of particular software and hardware available on the currently running system.

The Compatibility Guidelines chapter in this volume discusses guidelines you should follow
to ensure that your application is compatible with previous versions of Macintosh system
software as well as with new releases of Macintosh system software.

These guidelines can help you develop your application so that it is compatible across the
Macintosh family of computers. The guidelines also provide information on how to make
your application compatible with A/UX® and how to design your application so that it can
be easily localized for use in other regions.

Worldwide Development

Asyou develop applications for worldwide markets, you need to consider differences in
scripts, languages, and regions. The Macintosh system software presents one of the most
flexible architectures for developing applications that can support more than oncscript.

A script, such as Roman, Kanji, or Arabic, is a writing system for a human language such as
English, Japanese or Arabic. Scripts have different characteristics; for example, they can
differ in the direction in which their characters and lines run and in the numberof characters

in their character sets. The way in which you needto input, display, render, and edit text may
change depending on the script in use.

A script system is a collection of software facilities that provides for basic differences between
writing systems. Script systems include charactersets, fonts, keyboards, and routines fortext
collation and word breaks. Examples of script systems are Roman, Japanese, Arabic, Hebrew,
Thai, Devanagari, and Korean. A script system can also be localized for a particular language,
region, or country. For example, the Romanscript system has been localized for French,
British, Italian, and U.S. users (among others). The system software of all Macintosh

Aboutthe System Software Version 7.0 Environment 1-21

IPR2017-01828

Ubisoft EX1002 Page 90



IPR2017-01828 
Ubisoft EX1002 Page 91

Inside Macintosh, Volume VI

computers includes the Romanscript system. If another script system is required,it is also
customized for the particular language or region. You can use the Script Management System
to help you display text in the correct format for variousscripts.

Worldwide system software consists of the Macintosh Script Management System (thatis,
the Script Manager and one or more Macintosh script systems) and related components
(including the International Utilities Package, the international resources, and keyboard
resources).

Measurement systems often differ from country to country, as do currency, sorting order,
word boundaries, and the formatting ofdates and times. The International Utilities Package
handles formats for the presentation of numbers, currency, time, and dates in countries
around the world. The international resources and several of the keyboard resources also
contain region-specific or language-specific information, such as date and time formats.

TextEdit also provides support for working with different script systems. You can use
TextEdit to let the user edit and display text in multiple scripts and styles when a non-Roman
script system is in use. TextEdit automatically handles text with more than onescript, style,
and direction. For example, TextEdit supports mixing English text (a left-to-right directional
script) with Arabic text (a right-to-left directional script) in the sameline.

You should use resourcesto store text for menus, dialog boxes, and other parts of the user
interface of your application. Thislets a translator localize your application for a particular
language, region, or country without requiring modification of your code.In addition, by
using routines provided by the Macintosh Script Management System, you can write your
application so that it works independently of the particular script in use.

Figure 1-10 shows a documentcreated by an application that uses the Macintosh Script
Management System to support more than onescript system.
 

The Macintosh (4*s4S%) provides several
writing systems (344242 TUS aks), 

Figure 1-10. Using multiple scripts in a single document

See the Worldwide Software Overview chapter for an introduction to designing your applica-
tion for worldwide markets, and see the User Interface Guidelines chapter for guidelines
related to developing your application for use around the world. See the TextEdit chapter for
information on using TextEdit when a non-Romanscript system is in use. Macintosh
Worldwide Development: Guide to System Software (available from APDA®)provides a
complete description of all components of the worldwide system software, including routines
in the Script Manager.

1-22. About the System Software Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 91



IPR2017-01828 
Ubisoft EX1002 Page 92

Introduction to the System Software Version 7.0 Environment

Communication Over a Network

The Macintosh Operating System provides manyroutines to support applications communi-
cating and sharing data across a network. You can send events between applications located
on different computers using the Event Manager or Apple Event Manager, and read and write
low-level message blocks using the PPC Toolbox. You can send andretrieve information
from a remote database or other data sources using the Data Access Manager. You can share
data andfiles between applications on different computers usingfile sharing, the Edition
Manager, and the Alias Manager.

In addition, you can use the network and communication services provided by the AppleTalk®
Manager or Communications Toolbox. The AppleTalk Managerprovides routines your
application can use to send and receive information over an AppleTalk network.

The AppleTalk Managerin version 7.0 supports various link access protocols (for example,
the LocalTalk® Link Access Protocol and the EtherTalk® Link Access Protocol) that can be
used for AppleTalk communication. Your application can also use a new protocol, the
AppleTalk Data Stream Protocol (ADSP), to exchange information between two equal
entities. Either end of an ADSP connection can send data at any time. You can use ADSP
to establish two-way communication between computers—for example, for use in office
conferencing. See the AppleTalk Manager chapter for information on the device drivers and
protocols associated with AppleTalk.

—
a
=oe
=
i)
a.
=o==s2=- 

The Communications Toolbox provides your application with a standard interface for various
communication services (such as data connections,file transfer, and terminal emulation)that
are often used with a modem,other serial connections, or over an AppleTalk network. See
Macintosh Communications Toolbox Reference Guide (available from APDA)for additional
information on the routines provided by the Communications Toolbox.

Hardware Interfaces

The Macintosh family of computers supports many different types of hardware, including
mouse devices, keyboards, display devices, hard disks, floppy disks, CD-ROM discs, and
other devices. These devices are supported through various hardware interfaces, including
SCSI (Small Computer System Interface), ADB (Apple Desktop Bus™), and SCC (Serial
Communications Chip), In addition, a numberofdifferent devices can be supported through
the expansion interfaces (the NuBus™ and processor-direct slots).

You can design expansion cards and drivers for the NuBus and processor-direct slots. For
specific hardware information for the Macintosh family, see the Guide to the Macintosh
Family Hardware, second edition. For information on writing a driver for the Macintosh
family, see Designing Cards und Drivers for the Macintosh Family, second edition, and for
system software information, see Inside Macintosh, Volumes I-VI.

VolumeVI (this volume) contains information on the new Power Managerand additional
information on the Slot Manager. The Power Manageris a new managerused with the
Macintosh Portable. The Slot Managerin version 7.0 supports 32-bit addressing of NuBus
cards. See the Power Managerchapter and Slot Manager chapter in this volume for specific
information on these managers.

About the System Software Version 7.0 Environment 1-23

IPR2017-01828

Ubisoft EX1002 Page 92



IPR2017-01828 
Ubisoft EX1002 Page 93

fuside Macintosh, Volume Vi

OVERVIEW OF CHAPTERS IN THIS VOLUME 

The User Interface Guidelines chapter and Compatibility Guidelines chapter provide
important infonmation about designing your application to take advantage of the
Macintosh user interface and to ensure compatibility across the Macintosh faniily
of computers.

The rest of the chapters in this volume show howto use the newfeatures of version 7.0
in your application. Each chapler gives detailed descriptions of each manager, including
roulines, parameters. and data structures.

Figure 1-1] shows where you can find a detailed description of howto use each feature
of the system saltware vecsion 7.0 environment.

fod Overview of Chapters in This Volume

IPR2017-01828

Ubisoft EX1002 Page 93



IPR2017-01828 
Ubisoft EX1002 Page 94

fritroduction to the Svstem Sofncare Versien 7.0 Environnicnt

  
 

 Introduction
~ Ih

Version 7.0 i ! Gompatibitity |}
Environment} Guidelines

Chapter td jy Chapter 3 yy
Fela

_ User Finder Control {ueane | Interface Panels. |widelines | Chapter9 || Chapter 10 ;.Chapter 24 2 4H
Help 1 Font L Resource

 
 

 

  
 eeldste

 

 
 

 
 

 

 Manager Manager ||| Manager Worldwide |] TextEdit
Chapter 11 14|Chapter 12 |]|Chapter £3 ;, Software i|| Chapter 15Uf : shaper14/1 A* ’ wo Chapter 14s .. eeih  

  
 

 
 
  

 
 

 

 

Devices, Networking
& Communications 

 

 
  

  
 

 
 

 
 
 

 
-
a
eI=
a=i
=
°a==I
=

 

 
 

 

 
     

  
  

  

  
 

 
  

  
 

   
   

Graphics Falene Data || Sound |
Overview Manager Access | | Manager |

Chapter 16 |; Chapler 20 | Shaperff Chapter 22gh a ; é japler 4) eet
Picure |] Calor iL) Graphics Slot Power /L1 AppleTalk
Utilities | pant Devices Manager Manager Managerono aonage Manager}, , Chapter 30 |,|Chaptera1 1° Chapler 32 |,Chapter 194 Chapter2) | 4 oF2 el.|Z iy ¥ 

oR Teslo
Management

File | Standard i Altas
Manager File Manager

Chapter 25 /)|Package of) Chapter 27
Chapter 26

 
 
 

Interapplication
Communications (AC)

, ThcainE__,
| Manager Event,Chapter4|Manager Apple Event
| <4 ChaplerS Manager |i zd Chapter 6 |

fF Pregram-to-
NM Program

Communications
Tooliox

Chapter 7

 

is

 
Process |

 

 
  

 
  

   

Management
Chapter 29

 Time |

Manager Manager |

Chapter 23 14 a|
 

Figure [-IL. Gyerview of chapters in YVolutne VT

Overview of Chapters in This Volare i-25

IPR2017-01828

Ubisoft EX1002 Page 94



IPR2017-01828 
Ubisoft EX1002 Page 95

 

faside Macintosh, Volume VI

IPR2017-01828

Ubisoft EX1002 Page 95



IPR2017-01828 
Ubisoft EX1002 Page 96

 
CORMANNAN&WW

About This Chapter
UserInterface Design Principles
Worldwide Software Development

Cultural Values
Resources

Language Differences
Text Display and Text Editing
Default Alignmentof Interface Elements
Keyboards
Fonts

User Documentation

Terminology
The Version 7.0 Environment

User Feedback

Background Notification
Color Design for Version 7.0

General Color Design Guidelines
The Icon Family
Black-and-White Icons
Small Icons
Color Icons
Consistent Use of Icons
Customized Icons

Windows
WindowPositions
The Zoom Box and Window Behavior

Dialog Boxes
Modal Dialog Box Behaviors
Movable Modal Dialog Boxes
Keyboard Navigation in Dialog Boxes
Button Labels

Dialog Box Layout
Dialog Box Messages
Standard File Dialog Boxes
Save Changes Dialog Box

Menus
File Menu
Edit Menu
Font Menu

Help Menu
Keyboard Equivalents
Pop-Up Menus

Standard Pop-Up Menus
Type-In Pop-Up Menus

MoreUserInterface Information

USER INTERFACE GUIDELINES

td

la)ve
°
“i
S=
oa}
tye6 

2-1

IPR2017-01828

Ubisoft EX1002 Page 96



IPR2017-01828 
Ubisoft EX1002 Page 97

frstde Maciatast, Vetane Vi

Ia
1

lw

IPR2017-01828

Ubisoft EX1002 Page 97



IPR2017-01828 
Ubisoft EX1002 Page 98

User Interface Guidelines

ABOUT THIS CHAPTER

This chapter provides recommendations about how to adapt your application’s interface to the
Apple®Desktop Interface provided with system software version 7.0. It describes new user
interface guidelines and clarifies existing guidelines. It also introduces several user interface
topics that you need to consider when you design or redesign an application. Throughout the
chapterare references to places where you can find more information about technical
implementation issues.

Yourapplication should maintainthe spirit of the Apple Desktop Interface and remain consis-
tent with the guidelines presented earlier in Inside Macintosh, Human Interface Notes, and
Human Interface Guidelines: The Apple Desktop Interface—whichpresent a complete
description of the Apple Desktop Interface.

USER INTERFACE DESIGN PRINCIPLES

This section describes the fundamental principles of the Apple Desktop Interface. It’s a brief
reminderof the basic premiscs that you should consider when you design your application
for the Macintosh® computer.

wd

cowna]
fc}
oval
=]nal
oO

=p<)o
oO

= Metaphors from the real world. Concrete, simple metaphors provide people with
a set of expectations to apply to computer environments. Whenever appropriate, audio
and visual effects can support the metaphors.

= Direct manipulation. Each user action has a perceptible response and the Operating
System provides feedback to verify the effect of the action. For example, icons move
whenusers drag them. In the Macintosh interface, people don’t haveto trustthat
abstract commandsentered in a text-based interface do what they promise. This means
that when users choose the Bold command,a word changes immediately to boldface—
in comparison to other operating systems in which users type in commands and wait to
see the results when the documentis printed.

s See-and-point (not remember-and-type). Users rely on recognition, not recall,
so entilies are visible when possible. People don’t have to remember anything the
computer already knows, such as which commandsare available.

ws Consistency. Effective applications are internally consistent and consistent with
other applications.

sw WYSIWYG(what you see is what you get). There is no significant difference
between what users see on the screen and what eventually is printed.

« User control. Users, not the computeror the application, initiate and controlall actions.

m Feedback anddialog. Users get feedback aboutall interactions with the computer,
and it is immediate feedback when possible. This communication should bebrief,
direct, and expressed in the users’ vocabulary rather than the programmer’s.

User Interface Design Principles 2-3

 
IPR2017-01828

Ubisoft EX1002 Page 98



IPR2017-01828 
Ubisoft EX1002 Page 99

inside Macintosh, Volume VI

= Forgiveness. As users explore the interface, their actions should generally be revers-
ible so that people explore and learn by doing. Users should be able to identify in
advance any actionsthat aren’t reversible.

w Perceived stability. Users feel comfortable in a computer environmentthat remains
understandable and familiar rather than one that changes randomly.

a Aesthetic integrity. Visually confusing or unattractive displays detract from the
effectiveness of human-computerinteractions. Therefore different things, like folders
and documents, should look different on the screen. Also, users should be able to
control the superficial appearance of their computer workplaces to display their own
style and individuality. Messes are only acceptable if users make them. Applications
aren’t allowedthis freedom.

For further explanation of these design principles, see Human Interface Guidelines: The
Apple Desktop Interface.

 

WORLDWIDE SOFTWARE DEVELOPMENT

Macintosh worldwide system software is designed to address the complex problems you’ll
encounter when you design your applications to be compatible with regional, linguistic, and
script differences around the globe. Worldwide system software consists of the Macintosh
Script Management System (which is one or more script systems and the Script Manager)
and related componentsthat include the International Utilities Package, the international
resources, and keyboard resources.

The Macintosh computerhas always presented one of the most flexible architectures for
developing worldwide software. Because of the enhanced support for script systems in
version 7.0, it’s easier for users to add one or more non-Romanscript systemsto their
Macintosh computers. With version 7.0, software can be localized with greater ease. Now
it’s even more advantageousfor you to create applications that can be used worldwide.

It’s mucheasier to design software with worldwide support from the beginning of your
development process. This may mean that you create your application so that it is easy to
localize, or that you adaptit for use in a specific area. Localizing software involves trans-
lating an application’s menus, dialog boxes, alert boxes, and content areas into a language
or regional dialect.

You can also make yourapplication Script Manager—compatible. The Script Manager
routines and the International Utilities Package handle text issues for all script systems.
If your application is not text-oriented but does simple text processing, using TextEdit
provides adequate support.

If your application does moderate text processing, such as that accomplished by a simple
word processor, you probably want to incorporate Script Managercapabilities. If it does
intensive text processing, such as page layout, you can build in support beyondthe Script
Managerroutines to handle text for a specific script system.

The following sections outline the majorissues you need to consider when you develop soft-
ware for local or worldwide use. For a complete description of the issues and a discussion of
technical implementation, see the TextEdit and Worldwide Software Overview chapterslater in

2-4 Worldwide Software Development

 
IPR2017-01828

Ubisoft EX1002 Page 99



IPR2017-01828 
Ubisoft EX1002 Page 100

User Interface Guidelines

this volume. These chapters discuss the routines that assist you in developing your application
for worldwide use. See Macintosh Worldwide Development: Guide to System Software for a
complete discussion of developing worldwide software. This book is available from APDA®.

Cultural Values

 
Whenever you design a user interface, consider that differences cxist in the use of color,
graphics, calendars, text, and the representation of time in various regions around the world.
It’s important that you be able to localize your user interface elements with ease. As an
example, consider how different cultures assign different meanings to colors. The color
white represents purity in one culture and death in another. Therefore you may wantto
localize elements of the user interface, such as the colors of text or graphics, in versions of
your application designed for different regions.

Graphics have the potential to enhance your application, but they can also be offensive. In
addition to colors, many cultures assign varying values and characteristics to living creatures,
plants, and inanimate objects. In the United States the owl is a symbol of wisdom and knowl-
edge, whereas in Central America the owl represents witchcraft and black magic. Some
cultures forbid the depiction of uncovered bodies and body parts, while other cultures
enhance marketing materials with pictures of scantily clad people. It’s a good idea to avoid
the use of seasons, holidays, or calendar events in software that you expect to distribute
worldwide. Also avoid using graphics that represent holidays or seasons, such as Christmas
trees, pumpkins, or snow—orbe sure that the symbols can be localized. You can influence
your audience in simple but profound waysby carefully selecting elements of your applica-
tion’s interface. Make sure that visible interface elements can be localized for other regions
around the world.

 
PRLACYLCIEEid

Different calendars are used to mark time around the world. The United States and most of

Europe observe time according to the Gregorian calendar. The traditional Arabic calendar,
the Jewish calendar, and the Chinese calendar are lunar rather than solar. Often time is marked
one way for business and government purposes while religious events are dated according to
a different calendar. Therefore your application should be flexible in handling dates, and you
may want to provide the user with a way to change the representation of time. Usc the
International Utilities Package to handle numbers, dates, and sorting.

Resources

It’s essential to store region-dependent information in resources so that text the user sees can
be translated (during localization) without modifying your application’s code. When you
create resources, consider text size, location, and direction. Rememberthat text size varies in
different languages. Also, depending onthe script system, the direction of text may change.
Most Middle Eastern languages read from right to left instead of left to right, the direction of
Romanscript. Text location within a window should be easy to change.

Use the Macintosh Script Management Systemto handle these situations. See the Worldwide
Software Overview, Compatibility Guidelines, and Resource Manager chapters in this
volume for more information on using resources to store data the user sees. Also consult
Macintosh Worldwide Development: Guide to System Software for more information.

Worldwide Software Development 2-5

IPR2017-01828

Ubisoft EX1002 Page 100



IPR2017-01828 
Ubisoft EX1002 Page 101

Inside Macintosh, Volume VI

Language Differences

Languages differ in grammar, structure, meaning, and nuance. Translating languagesis a
delicate task and often can cause confusion, so be wary of using colloquial phrases or
nonstandard usage and syntax. Choose your words carefully for command names in menus
and for messages in dialog boxes, alert boxes, and help balloons. Whentranslated, text can
becomeup to 50 percent larger than U.S. English text, so you can’t rely on string length.
Text needs room to grow up, down, and sideways.

Potential grammar problems may arise with error messages and the so-called user program-
ming structure of languages like HyperTalk®. The word order of messages may be completely
different in translation, thus rendering a message nonsense whentranslated. Simple concate-
nation of strings generally doesn’t work when an application is translated. For example, word
order in German usually places the verb at the end of a sentence. Suppose a German devel-
oper built an application that concatenated two strings to create an error message. When
localized for the United States, the application might produce a sentencelike “The file with
the long name move.” Instead of concatenating strings, use the ReplaceText function, which
correctly assists with the syntactic ordering of elements. See the Worldwide Software
Overviewchapter for information on technical implementation.

Text Display and Text Editing

System software version 7.0 allows users to display different scripts at thc same time. A
script is a writing system for a human language. Scripts maydiffer in the direction in which
their characters and lines run, the size of the character set used to represent the script, and
context dependence. Whenevera user installs a non-Romanscript system, at least two scripts
are available, the Romanscriptthat is present on all Macintosh computers and the non-Roman
script. If you use the TextEdit and Dialog Managerroutines, you can correctly handle most
text in different scripts. For moderate text processing, the routines provided by the Script
Managercan assist you in implementing these guidelines. The TextEdit and Worldwide
Software Overviewchapters in this volume discussall of these issues thoroughly.

No matter what level of worldwide support you provide,it’s important to avoid two common
assumptions. Characters aren’t necessarily | byte; they can be 2 bytes. You also shouldn’t
assumethattext is alwaysleft-aligned and read from left to right.

Rememberthat the meaning of a character code depends on the font, and character codes may
be | or 2 bytes long. The cursor should move between characters, not bytes, and the Delete
key should erase characters, not bytes. Inserted characters should appear between other
characters, not between bytes of a 2-byte character. Also be aware of the impact of 2-byte
characters on data transmission.

Use the language-specific routines in the Macintosh Script Management Systemfor breaking
and wrapping words and for string comparison andsorting. Consider word boundaries and
their impact on word wrapping, selection, search, and cut and paste.

Somescripts include multiple sets of numerals. For example, international business in Japan
and the Middle East requires the use of Western digits as well as the digits from a Japanese
script or an Arabic script. Applications that handle numbers should acceptall the numerals in
each set as valid. Use the International Utilities Package to handle numbers,

2-6 Worldwide Software Development

IPR2017-01828

Ubisoft EX1002 Page 101



IPR2017-01828 
Ubisoft EX1002 Page 102

Cer dnerace Guidelines

You need lo provide metic and English measurements, Use numeric routings for imternaenal
nutnber formatting and interpreted.

Your application should appropriately position the curser when the user clicks im test. The
cursor orecaret. should appear where the nex character will appear wheo typed. If this is
ambiguous because of muldditectional text, uxe dual carets, as shown in Figure 2-1. Fora
detailed discussion of using dual carets. sec the TextEdit chapter in this volume.

Roman keyboard icon

| # file Edit Foat Styie Format_
Style éTent E———SSS 

Avant Garde (Ba! Mew Yurk  Guniseag Palatino Times 
Secondary caret Primary caret

Figure 2-1, Toual carets mi omisxcd-directional text

Highlighting should apply to a contiguous sel of characters in memory, evco thoughthe
elyphs may not appear contiguous oa the screen. Ta other words. you should highlight
characters in phonetic onder (he order in which the user speaks, reads, or writes) rather
than the arder in which characters appear on screen. However, the arrow keys should move
the curser in the alireetion that the arrawpoints, egardless of text direction. This guideline
applies across script boundaries when the user displays multiple scripts. In Figure 2-2 the
multidirectional text appears correctly highlighted for editing: the words are highlightedin the
order that the user reads, Crem right te lefL. The translation of the mixed-direstional Hebrew
and English sentence is in the windowlabeled “unidirectional highlighting.” The corre-
sponding English words. flawtige Prom lefe ta ngiit. are highlighted tor editing,
 

== multidirectional bighlighting

pple Computes Rh se cried 
—————=_sunidirectional highlightin
    
   | Tam conayerten) of &ciple Conic ut -1 i Einae

GRETA pert -n: srotne slate ut gitar

 
Figure 2-2. Multidirectional text correctly highlighted

Note: If your application uses TextEdit routines. most worldwide tear issucs are
handled for you. I your application needs more sophisticated Lext bundling. you
should also consult ihe Worldwide Soliware Overview chapter in this volume.

Warldiwide Softieare Gevelupment 3-7

IPR2017-01828

Ubisoft EX1002 Page 102

i]
aa
aecar

2fan]

_&aia
 



IPR2017-01828 
Ubisoft EX1002 Page 103

Inside Macintosh, Volume VI

Applications that work with tokens (abstractions that have multiple representations) or use
characters that vary from script system to script system should work correctly in all scripts.
For example, a token that represents the concept of“less than or equal to” might have two
representations on a U.S. system, the 2-byte sequence <= or the |-byte character <. If you
use the IntlTokenize function to handle these details, your application doesn’t have to be
aware of the character codes.

Default Alignment of Interface Elements

When dialog boxesare localized for use with worldwide versions of system software, the text
in the dialog box may becomelongeror shorter. Also, the alignmentof controls in the dialog
box may vary with localization. Arabic and Hebrew are written right to left, so the alignment
of items in an Arabic or a Hebrew dialog box is generally rightto left, just as dialog box items
in English or Russian are gencrally left to right. The low-memory global variable TESysJust
controls the alignmentof interface elements.

When TESysJust is -1, the Control Managerreverses the alignment of check boxes and radio
buttons, the Menu Managerreverses the alignment of menu items to be ordered and aligned
on the right, and TextEdit aligns text by default on the right. Create your application so that it
supports both left alignment and right alignment of controls and adjust the alignmentas
appropriate. Provide a wayfor the user to change the default line direction oftext. Use the
SetSysJust procedure to set the value of the global variable TESysJust.

Whenthe alignmentof itemsis reversed,it’s important that the elements appear symmetrical.
Therefore when you create dialog box items, try to make sure thattheir display rectangles are
the samesize. Figure 2-3 showsa typical dialog box and the same dialog box with thealign-
mentofits elements reversed. You can see whyit’s important to create display rectangles of
the samesize.

 
Keyboards

Asstated previously, in version 7.0 users can install multiple script systems. If the Operating
System or an application determinesthat all conditions are met, it enables the script system,
makingit available to users. A script system can contain more than one keyboard layoutthat
maps Character codes to keys on a physical keyboard, and it can support more than one
attached physical keyboard. All keyboards do not have the same set or numberof keys and
users may have more than one keyboard attached to their computer. Sec the Worldwide
Software Overview chapter in this volume for information on installing and enabling script
systems and keyboard resources.

 
Version 7.0 adds a new Keyboard menu when more than onescript systemis present or a
localizable resource flag is set. This menu simplifies the user’s access to scripts and key-
boards. The icon for the Keyboard menu appears between the icons for the Help menu and
the Application menu. A keyboard icon appears next to each keyboard name,and the icon
of the active keyboard appcars in the menu bar. As Figure 2-4 shows, the Keyboard menu
displaysa list of installed keyboard layouts for each enabled script system.

2-8 Worldwide Software Development

IPR2017-01828

Ubisoft EX1002 Page 103



IPR2017-01828 
Ubisoft EX1002 Page 104

Cher inteniace Cubdetines

Ci Check H4 Out © €ntremely Lang Radio Buiton

LJ Check |t In Long Radio Bulion   
Check [t Over (18. Shorg

 

| Cancel| ' UK

Lheck It QutL] , Fairemety long Aadio Button >

Check It Inj Long Radia Fulton >

Check It Quer 7] 1.8. Short <)

Icancel| | OK

 
  

Figure 2-3, Reversing the alignment of dialog box mens

The Keybourd menu groups the keybourd layouts by script system. which are separated by
dotted or gray lines. In Figure 2-4. there are bvo Roman keybourd luvouts (Spanish and
United States: a single Hebrew keyhourd layout: and iwe Japanese keyboard layouts, Only
one keybourd Layout and one pirysical keyboard are active ata time: the actrve condition is
indicated by a checkmark in the menu,

Keyboard icon for active
| keyboard script

  
& vraihEe -BR Avl + Jb
 

About Keyboards...

Keyboard layout far
active script (Hebrew}

Gea Espanol
> us

Figure 2-4. The Keyboard menu

Worldwide Suftware Develapment 2-9

 
 

IPR2017-01828

Ubisoft EX1002 Page 104



IPR2017-01828 
Ubisoft EX1002 Page 105

 

Inside Macintosh, Volume VI

Users can change keyboard layouts by using this menu orby using a keyboard equivalent,
Command-Spacebar, to cycle through the keyboard layouts. Don’t use the keyboard
equivalents Command-—Space bar and Command—modifier key-Space bar in your application,
since they are reserved for use by the Script Manager. See “Keyboard Equivalents” later in
this chapter for a complete listing of reserved keyboard equivalents.

Table 2-1 shows some new black-and-white versions of keyboard icons for localized ver- |
sions of Macintosh system software. They are shown in color on Color Plate I, "Examples
of Keyboard Icons,” at the beginning of this volume. A keyboard icon represents a localized
keyboard layout. If you develop key-boards or keyboard resources, you must provide
customized iconslike these. You create a 16-by-16 pixel icon in 1-bit, 4-bit, and 8-bit color. ;

If you use the samecolors for the 4-bit and the 8-bit color icons, you only need to provide |one 4-bit icon. This scheme takes up less space in the Systemfile.

To represent your keyboard layout for version 7.0, replace the black-and-white symbol you
previously used to represent a localized keyboard layout with an icon similar to those shown
in Table 2-1 and Color Plate I.

If you are designing a new keyboard icon, use a solid symbolto represent a keyboard layout
for a regionthat is larger or smaller than a country or province. For example, a diamond
represents the Roman Script System, which is used in the United States, Central America,
and most of Europe. Use the flag of a country or province if the keyboard layout is only used
in that area. For example, the Union Jack represents the keyboard layoutlocalized for use in

Table 2-1. Examples of keyboard icons

Icon Name

Arabic

Canada

Cyrillic

Cyrillic translitcrated

Denmark

Faeroe Islands

Germany

Hebrew

Japanese Romaji

Japanese Katakana

Korean

poce*faat+*ae
Netherlands, period decimal
separator (previously Wt.)

2-10 Worldwide Software Development

— oO°=

oidoH}
4
Ea Els

i

Name

Netherlands, comma
decimal separator

Roman (U.S.)

Spain

Swiss French

Swiss German

SwissItalian

Turkey

Turkish U.S. modified

United Kingdom
(previously 6
United States

IPR2017-01828

Ubisoft EX1002 Page 105



IPR2017-01828 
Ubisoft EX1002 Page 106

User Interface Guidelines

the United Kingdom.Besure to use the colors that appear on the nation’s flag. You can also
add a visual indicatorto the flag to show some modification. Use a superscript diamondto
indicate a QWERTYtransliteration, which is a mapping of sounds from a language to
the Roman keyboard layout. Use a subscript commaor period to indicate which decimal
separator is used. See Table 2-1 for examples of icons with these symbols.

Whenyou design the black-and-white version of a flag icon, use black and a 50 percent
gray pattern. These choices provide the best contrast and legibility. To avoid confusion
betweenflags of similar design, use the pattern substitutions for colors shown in Table 2-2.
See Table 2-1 to see flags that use the correct pattern substitutions.

Table 2-2. Pattern substitutions for colors in keyboard icons

 
Pattern Color

Black or blue

Red

25 percent gray Light blue

ee Diagonalstripes Green
CJ White White or yellow

Whenthe user changes the keyboard layout, you should synchronize the font to that keyboard
layout. You can use the FontScript functionto periodically poll the Operating System to find
out if the user has changed the keyboard layout. Choosing a font should set the keyboard
layout to the script of that font. For example, if a user chooses a Japanese font such as
Osaka, your application should change the keyboard script to Japanese. Whena userclicks in
text, your application should set the keyboard layout to correspond to the font ofthat text.
For a well-designed application, the keyboard icon in the menu bar should alwaysindicate
the status of the font script. The TextEdit chapter in this volume provides an example of auto-
matically synchronizing the font and the keyboard layout.

See the Worldwide Software Overviewchapter in this volume for more information on the
Keyboard menu.

Fonts

When you write software that supports non-Romanscripts, don’t make assumptions about
font sizes; let the user choose them. For example, system or application fonts may be preset
to 12 or 18 points and a font with a resource ID of 0 is not always set to Chicago. Pay atten-
tion to the use of system and application fonts when the user cannot choosethe font. If you
must assign fontsizes, use the Script Managerto find appropriate fonts and sizes. Use the
proper font namesas defined by worldwide system software. Wheneverpossible, display
font names in the properscript and font in your Font menu.

Worldwide Software Development 2-11

IPR2017-01828

Ubisoft EX1002 Page 106



IPR2017-01828 
Ubisoft EX1002 Page 107

Inside Macintosh, Volume VI

Diacritical marks may extend beyond the ascent line. Some fonts, such as Japanese fonts,
contain glyphs that extend to the boundaries of the enclosing rectangle of the font, or to both
minimum-y and maximum-y lines. You should leave room for space betweenlines oftext
and betweenthe top and bottom lines of any enclosing rectangle. See the Font Manager
chapter in this volume for more information. Figure 2-5 shows someglyphs that demonstrate
the boundaries you needto allowfor lines of text.

Maximum y-value ----~-------- 22302-nnnnnennnnnnn

O
Ascent line -------------3--------------#9------------------------ 

 
 

Baseline
 

Descentline -------------------------,gm- M- ------“F--------------

Minimum y-value --+--- oro cr trenerrReww ne nnnnnnn nn nee nee

Figure 2-5. The boundaries of a font

USER DOCUMENTATION

Documentation for users is an essential part of the user interface that you provide. It should
be as well considered and developed as your application’s user interface. Consider the
audience that you address with your productandtailor the documentation to its needs. It’s
often uscful to provide alternate types of documentation for the differing types of users who
make up your audience. Beginners have different needs than expert users.

People have distinct learning styles. Some users learn by seeing, some learn by doing, some
learn by hearing, and some learn through a combination ofthesestyles. It’s best to provide for
the broadest possible range of learning styles. For example, including a written tutorial, a
written reference manual, an on-line tutorial with visual and auditory feedback, and an on-line
help system should meetthe needs of nearly everyone who wants to learn to use your product.
As an example of an on-line help system, you can look at Balloon Help™ in the Finder™ in
version 7.0. For information on including your help system in the Help menu or implementing
Balloon Help for you application, see the Help Manager chapter in this volume.

Develop task-oriented documentation that teaches users how to accomplish the tasks that you
designed your application to perform. Avoid system-oriented documentation that describes
everything that your application can do rather than teaching practical skills.

2-12 User Documentation

IPR2017-01828

Ubisoft EX1002 Page 107

 



IPR2017-01828 
Ubisoft EX1002 Page 108

User Interface Guidelines

It’s important to use standard terminology and nontechnical language in user documentation.
Don’t pass on technical jargon to users and expect them to understand or like it. When you
must use technical terms, be sure to define themat first occurrence, and include a glossary if
your documenthas many specialized terms. Be consistent in your use of terminology. Make
sure that messages and terms that users sce on the screen match what appears in the
documentation.

Apple Computer, Inc., publishes the Apple Publications Style Guide, which codifies the way
in which Apple documentation uses language. It’s a guide to writing about the Apple Desktop
Interface. You can obtain this publication through APDA.

It’s very important to translate all user documentation, including tutorials, on-line help, and
books, when you localize your software product. Making your documentation available ina
user’s native language greatly enhances the usability and marketability of your product.

TERMINOLOGY

Use regular language in your applications as well as your documentation. Don’t use technical
jargon or computer science terminology. The majority of users aren’t programmers.It’s
especially important not to use programming terms in menus, dialog boxes, or user books.

In particular, don’t use file type namesto refer to Finder documentsthat users see. Call
documents by the terms that appear in the Kind columnin Finder windows. Use the terms in
Table 2-3 in place of the four-letter type names.

i)

Ccwo
c3
=J=
co5

=a
oo
 

Table 2-3. Translation chart for user documentation

Previously Suggested
used term terminology Examples

edev control panel Mousecontrol panel

RDEV Chooserextension LaserWriter® Chooser extension,
| AppleShare® Chooser extension

INIT system extension File Sharing Extension
(not startup document)

adev network extension EtherTalk® network extension

I ddev database extension Data Access Language (DAL)
database extension

DA desk accessory Calculator desk accessory

FKEY function key 3€-Shift-3 screen-dumputility

standardfile dialog box directory dialog box SFGetFile dialog box

MultiFinder® icon active-application icon TeachText application icon

Terminology 2-13

 
|

IPR2017-01828

Ubisoft EX1002 Page 108



IPR2017-01828 
Ubisoft EX1002 Page 109

 
Inside Macintosh, Volume VI

In version 7.0 a cooperative multitasking operating environmentis always available to users.
Therefore it’s no longer appropriate to use the term MultiFinder to distinguish this environ-
ment from the Finder environment. When you update or revise written material that relates to
version 7.0, replace the term MultiFinder with the term Finder.

THE VERSION 7.0 ENVIRONMENT

This section briefly describes the general user interface recommendationsthat affect your
application when it runs in the version 7.0 environment. The changes lo system software
and the operating environmentare described in the Introduction to the System Software
Version 7.0 Environment chapter and in the Compatibility Guidelines chapter in
this volume.

In previous versions of system software, a coopcrative multitasking environment wasavail-
able to users with MultiFinder. Users could turn on MultiFinderso that they could open
multiple applications at onc time; however, most people didn’t use MultiFinder regularly.
In version 7.0 the cooperative multitasking environmentis standard. Nowall users can open
as many applications and desk accessories as their computer’s memory can support. The
Macintosh computer manages applications in much the same waythat cach application
handles its own windows.

Asin previous versions of system software, only one application can be active at a time. The
frontmost application, the one interacting with the user, is the active application. Its small icon
represents the Application menu in the menu bar and appcars nextto the application’s name in
the Application menu. Your application should update the controls in the frontmost window
wheneverthe user switches to your application. If you previously didn’t update your applica-
tion to be compatible with MultiFinder, you now need to modify your application’s event loop
to accommodate a cooperative environment. For more information on the operating environ-
ment in version 7.0, see the Compatibility Guidelines chapter.

User Feedback

Whenyour application is the active application, you necd to provide fecdback to the user to
| indicate what’s happening. A user learns to predict how long certain operations last. In the

version 7.0 environment, multitasking, virtual memory, and network connectivity cause task
length to become more variable. A user won’t always be ableto predict the length of time per
task. Therefore tt becomes more essential to display feedback about whatis taking place.If
you don’t, the user may think that the Operating System stopped running and may attemptto
correct a perceived error condition, perhaps by manually restarting the machine. At least use
the spmning beachball or animated watch cursorto indicate an operation in process. If you
can approximately determine the amountof time a task will last, it’s even better to use a
progress indicator so that a user knowsthat the Operating System is still running and that an
operation is occurring. Figure 2-6 shows an example of a progress indicator.

 
2-14 The Version 7.0 Environment

IPR2017-01828

Ubisoft EX1002 Page 109



IPR2017-01828 
Ubisoft EX1002 Page 110

UserInterface Guidelines

 

Inserting the file “Really long document”
into “Wombat data”...

Stop | 
Figure 2-6. A progress indicator

Background Notification

When your application runs in the background, you may need to get the user’s attention to
respondto a task completion or a request for input. The Notification Manager provides
several ways for your application to alert the user. When a backgroundtask is running and
you needto notify the user, use the Notification Managerto alternate an icon in the menu bar
with the icon for the Application menu or Apple menu as appropriate. In general, you should
display an icon that corresponds to your application or system extension, so that the user gets
a visual clue about which application is requesting attention. In addition, you should display a
diamond-shaped mark next to your application’s name in the Application menu. You can also
play a sound. Figure 2-7 shows an example of a notification symbol.

 

  
DB

Hide My App
Hide Others
Sap RE

 adVpOU]AIS)Z
  

 
 

 () Finder
+ (cp Sample
7 My App

Notification symbol
Active application symbol  

Figure 2-7. The Application menu with a notification symbol

Nothing more should happen until the user chooses to activate your application, at which time
you can display a modal dialog box. Your dialog box or message must inform the user about
what needsattention, why attention is needcd, and what to do. For example, a dialog box
might say “Transmission of the file My PhoneList to 415-555-1212 could not be completed
because the phoneline went dead,” and it might present the user with two buttons, Try Again
and Cancel.

A background application should not take control from the user by placing an alert box on
the screen whenthe user hasn’t activated the application. If an immediate response is crucial
and the user doesn’t respond to the notification request, your application needs to handle the
situation gracefully.

TTTALENTOATANTEAicineanWANNADLLernerIERPRTPRE
See the Notification Manager chapter in this volume for information about implementing
these techniques.

The Version 7.0 Environment 2-15

  
IPR2017-01828

Ubisoft EX1002 Page 110



IPR2017-01828 
Ubisoft EX1002 Page 111

 
 

Inside Macintosh, Volume VI

COLOR DESIGN FOR VERSION 7.0

The appearance of system software version 7.0 is enhanced by using the color capabilities of
the Macintosh. The use of color makesthe interface more visually pleasing. The color also
distinguishes the active window from other windowsand enhances usercontrols on the
window frame. It’s important to recognizethat color in the interface is applied to help users
focus their attention on their work and not to draw attention to the interface itself. This section

describes the use ofcolor in the Macintosh interface and provides recommendations about
how you can add color to your icons and applications. Color Plate H, “A Colorized Window,”
shown at the beginning of this volume, demonstrates the new appearance of colorized
windowsin version 7.0.

Note: The figures that demonstrate the guidelines in this section appear on the color
plates found at the beginning of this volume. The printed colors may vary slightly
from the colors that you see on your screen.

The windowsand dialog boxes in version 7.0 are designed for aesthetic consistency across all
monitors from black-and-white displays to 8-bit color displays. For display on color monitors
color and shades of gray have been addedto the frames of windowsandto user controls. The
window background remains white on all systems and the windowcontents remain black and
white. For an example see Color Plate III, “A Colorized Movable Modal Dialog Box,” which
showsa colored frame, but black radio buttons and text. This updated design takes advantage
of the color capabilities of the Macintosh but maintains the consistency of the Macintosh
interface. On colorscreens, the racing stripes in the title bar and thescroll bars are gray. The
user controls, close box, size box, zoom box, and scroll box are colored to make them more
apparent. The borders of inactive windowsare gray and recede into the backgroundso that the
active window’s black frame emphasizesits position in front of the other windows.

>

For version 7.0 the standard window definition functions have been changed to display color
windowsand dialog boxes. Some control definition functions have been updated to display
in color the window’s scroll bars, scroll arrows, scroll box, close box, size box, and zoom
box. If you use the standard windowdefinition functions and standard control definition
functions, your application’s windows will match the appearance of version 7.0 system
windows. If you create your own windows, be compatible with version 7.0 by using the
standard windowcolortable and the guidelines described in this section. Be aware that users
can changethe colors of windowsand dialog boxes by using the Colors control panel. If you
use the default window colortable, you can be sure that the colors you use are consistent
with any color that the user has access to with the Colors control panel. You can use the
Paictte Manager to associate a color paletic with a windowdefinition. See the Palette Manager
chapterin this volume for more information.

General Color Design Guidelines

Always design for black and white first and then colorize that design. This method ensuresthat
your design looks good onall Macintosh computers. One example of whythis is importantis
the text selection mechanism. On a color monitor you might be tempted to change the color
of text to indicate its sclection; however, this technique wouldn’t translate to a black-and-white
monitor. In addition, a significant percentage of the population (up to 10 percent of the male

2-16 Color Design for Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 111



IPR2017-01828 
Ubisoft EX1002 Page 112

UserInterface Guidelines

population) has color deficiencies and wouldn’t recognize the use of color to indicate selec-
tion. Therefore, you should neveruse color as the only means of communicating important
information. Color should always be used redundantly. Color Plate TV, “Design for Black-
and-White Monitors First,” shows the correct process of designing for black-and-white
monitors and then adding color to those designs. It demonstrates the consistency of the
appearance of the icons and howthe aesthetic integrity is maintained across the designs.

Keep black-and-white designs two-dimensional. It’s important to maintain the visual consis-
tency of the Macintosh interface across applications and computer systems. Don’t cause
unnecessary visual clutter by trying to mimic color effects, such as shadows, in black-and-
white designs. Color Plate V, “Don’t Mimic Color Effects in Black-and-White Designs,”
showsicons that were designedin color first and then adapted to a black-and-white design.It
demonstrates the difficulty of trying to mimic color effects. This color plate shows how using
only black pixels and white pixels limits your ability to re-create the appearance of color
icons.

Note: This guideline doesn’t apply to keyboard icons discussed earlier in the
“Worldwide Software Development”section. In that section, specific patterns
represent colors for black-and-white versions of the keyboard icons.

Maintain a close visual relationship between a black-and-white design and its colorized version.
Users should be able to easily recognize standard interface elements and icons across all moni-
tor types. Users can have several monitors connected to a computer and several computers on
which they use your applications. Your application should look consistent when a user changes
the bit-depth of a monitor or when the user moves your icon or window from a color monitor
to a monochrome monitor.

i)

crz
asdLowy
ol
=]mul
oO

=af+]lo}
fon)

Use as few colors as possible in your designs. The fewer colors you use, the less flashing
occurs when the screen’s color table updates during screen redrawing. Using fewer colors
also results in less visual clutter on the screen. If you use a graphics application to do design
work, makesure that the colors you use are available in the default color tables. For more
information about color palettes and color tables, see the Palette Manager chapterlater in
this volume.

Use light or subtle colors for large arcas. Also use subtle colors to avoid visual clutter on the
screen. To extend the range oflight or subtle colors available, you can create colors that are
lighter than those in the default color tables by using a 50 percent pattern of the color and
white. Color Plate VI, “Usc Light Colors for Large Areas,” shows someicons that appropri-
ately use colors. Color Plate VII, “Don’t Use Bright Colors for Large Areas,” shows how
too many bright colors can be visually distracting.

Use bright colors sparingly and only in small areas. Bright colors attract the eye and can
distract the user from the information that you’re trying to convey. Bright colors can be
effective in the contents of a window,such as in a chart. However, if bright colors appear all
overthe screen, it becomesdifficult for the user to focus attention. You can use bright colors
for small details. An example ofthis technique is the version 7.0 hardware icons (such as the
hard disk icon) that use red and green pixels to represent the Apple logo. For an example of
this guideline, see Color Plate VIII, “Use Bright Colors for Details.”

For display on color screens in version 7.0 usc true gray wherever you previously used a
50 percent gray pattern. Use true gray in menusfor the dotted separator lines between groups
of items and for dimmed menuitems.

Color Design for Version 7.0 2-17

 
IPR2017-01828

Ubisoft EX1002 Page 112



IPR2017-01828 
Ubisoft EX1002 Page 113

 
Inside Macintosh, Volume VI

Use a consistent light source. On the Macintosh screen the light source always comes from
the upper-left corner of the screen. Therefore windowsand other elements have drop
shadowson the lower-right side. Use the light source consistently, so that shading is consis-
tent throughoutthe interface. Color Plate IX, ‘A Consistent Light Source,” at the beginning
of this volume, shows threc desktop objects that have drop shadowsconsistent with a light
source at the upper-left corner of the screen. Color Plate X,“Inconsistent Light Sources,”
showsthree desktop objects that have different light sources and inconsistent drop shadows.

The Icon Family

In previous versions of system software, you provided a black-and-white 32-by-32 pixel
icon for your application that was automatically reduced to 16-by-16 pixels when necessary.
In system software version 7.0, you can provide multiple versions of an icon in black and
white and in color. You can provide a family of icons that includes a 32-by-32 pixel and a
16-by-16 pixel icon, in 1-bit color (black and white), 4-bit color, and 8-bit color. The
32-by-32 pixel icons appear on the desktop and, if the user chooses by Icon from the View
menu, these icons also appear in Finder windows. The 16-by-16 pixel icons appear in the
menuas the Application menu’s title when your application is active. They also appear next
to your application’s name in the Application menu and in Finder windows when the user
chooses by Small Icon from the View menu. The user can also set the icon size to 16-by-
16 pixels or 32-by-32 pixels in other views. For localized keyboards and keyboard layouts,
you provide a 16-by-16 pixel icon only, in 1-bit, 4-bit, and 8-bit color. Figure 2-8, shown on
this page in black and white, and Color Plate XI, “An Icon Family,” show a family of icons
for version 7.0,

 
Figure 2-8. An icon family

See the Finder Interface chapter in this volumefor information about which icons you need to
provide and howto create a bundle resource for your application.

The monitor displays the highest-quality icon that its screen allows. Thatis, if you provide an
8-bit color icon, a 4-bit color icon, and a black-and-white icon, the user sees the 8-bit color
icon on the monitor that supports 8-bit color. [f you provide an 8-bit icon but not a 4-bit icon,
the black-and-white iconis displayed on the 4-bit monitor. If you provide a 4-bit icon but not
an 8-bit icon, then the 4-bit icon is displayed on both 4-bit and 8-bit monitors. If you don’t
provide a color icon, then the Finder displays the black-and-white version of the 32-by-32 pixel
icon on all types of monitors.

Black-and-White Icons

Asstated previously, you should begin by designing a black-and-white icon. In general,
you should use an outline of one black pixel to create the icon border. Use a minimal

2-18 Color Design for Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 113



IPR2017-01828 
Ubisoft EX1002 Page 114

User Interface Guidelines

numberof black pixcls in the icon so thal the icon’s appearance is noticeably different when
selected. Figure 2-9 shows an example of a well-designed icon that changessignificantly
during selection.

im
Figure 2-9, A well-designed icon and its selected version

If you use too muchblack or 50 percent gray in your icon, the icon doesn’t appearsignifi-
cantly different when the pixels are reversed for selection. Figure 2-10 shows an example
of an icon with too much black and 50 percentgray.

 
Figure 2-10. A poorly designed icon andits selected version

Small Icons

i)

ai1
fa)lend
—
=cal
[so]==
pooOLae}

In version 7.0 you can provide a 16-by-16 pixel icon that you scale to size rather than relying
on the Operating System to algorithmically reduce your 32-by-32 pixel icon. If you do not
provide a small icon, the Finder reduces the larger icon based on an algorithmic formula that
makes the icon look rough andcreates less pleasing visual results.

You should provide a small version of your 32-by-32 pixel icon that you scale. Preserve
as many graphical elements of the icon as possible. In essence you provide the same icon
in a smaller scale. You can fine-tune the small icon by adding and removing pixels. Don’t
eliminate significant elements, or the smaller version of the icon may look different from the
larger version. See Color Plate XII, “Consistently Designed Small Icons,” which shows
icons that a designer carcfully scaled and tuned to preserve key elements of the icons’
designs. Also see Color Plate XII, “Inconsistently Designed Small Icons,” to see small
icons that don’t match their corresponding 32-by-32 pixel versions. If you have difficulty
distinguishing the consistencyor inconsistency, it’s a good idea to consult with a graphic
designer to design or review your icons.

 
Color Icons

Version 7.0 ships with full-color icons that appear on color monitors. Your application can
also provide color icons.

Don’t design a color icon that’s substantially different from your black-and-white icon. When
you add color to an icon, it’s best to leave the one-pixel black ouUine andfill the icon in with
color. Coloring or graying the icon’s outline makes the icon appearless distinct on the desk-
top. Rememberthat the user can change the background color of the desktop as well asits

Color Design for Version 7.0 2-19

IPR2017-01828

Ubisoft EX1002 Page 114



IPR2017-01828 
Ubisoft EX1002 Page 115

 Inside Macintosh, Volume VI

pattern, so your icon may not be displayed against the background on which you designedit.
If you use ResEdit™2.1 to create your icons, it provides a way to look at your icon against
different backgrounds to see whether your designis effective in various environments such
as black-and-white displays or color displays of different bit depths. Color Plate XIV, “Icons
With a Black Outline,” and Color Plate XV, “Icons Without a Black Outline,” demonstrate
the importance ofthe black outline of an icon.

Color Plate XVI, “Apple Icon Colors,” identifies the 34 colors used for icon design in
version 7.0 in a palette with the standard 256 colors. If you use ResEdit 2.1 to design and
create your icons, the Finder icon family editor provides easy access to these colors. Choose
Apple Icon Colors from the Color menu. This commandsets the palette in the editor (which
is similar to the palette in most graphics applications) to contain the 34 colors used for Finder
icons. Sec ResEdit Reference for information on using ResEdit 2.1.

If the default color table colors aren’t available, the system software gracefully degrades to
black and white, starting with comparable 8-bit colors, then using 4-bit colors if possible,
and finally displaying the elementin black and white if no other choice exists. The system
software won’t substitute colors that aren’t visually close to colors that you assigned. If you
choose colors other than the 34 marked in Color Plate XVI, use them for detail and not for
essential parts of your windowsor icons. The selection mechanism for color icons lowers
the brightness of colors to indicate selection. This meansthat the colors appear darker when
selected. On a color monitor, a black-and-white icon turns gray whenselected. On a mono-
chrome monitor, a black-and-white icon uses reverse video to show selection. In order for
selected items to appeardistinct from unselected ones, use light colors for large areas.

One technique for enhancing the appearance of your icons is to smooth angular or curved
lines by coloring pixels on jagged edges. Designers refer to this technique as anti-aliasing.
Change the pixel color where you can see a visual break in the outline of a black-and-white
icon. Color Plate XVII, “Correct Anti-Aliasing,” shows an icon in its normalstate and then
with anti-aliasing that changesthe pixels on the outline of the icon. Color Plate XVILL,
“Incorrect Anui-Aliasing,” showsa different icon in its normal state and then with anti-
aliasing that replaces internal pixels to improve the appearance of the icon. You can find these
figures on the colorplates at the beginning of this volume.

The Finder uses only one mask for each size in the icon family, so makesure thatall your
icons have the same outline shape. Don’t add pixels or shadowsto the outline shape of
color icons. The Finder uses the icon mask for alignment and transformation effects, so
make sure that the mask andall your icons are appropriate for each other.

Consistent Use of Icons

Useiconsconsistently throughout your designs. For example, if you reuse icon elements when
you modify the generic documenticon to represent your own application’s files, make sure that
they match. For example, the Macintosh computerinside the System Folder icon is the same
as the Macintosh that appears as the Finder icon and as part of the Installer icon. The file server

2-20 Color Design for Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 115



IPR2017-01828 
Ubisoft EX1002 Page 116

User Interface Guidelines

icon contains the same gray document icon and the same purple folder icon that appear on
the desktop. Color Plate XIX, “Consistent Use of [con Elements,” and Color Plate XX,
“Inconsistent Use of Icon Elements,”at the beginning of this volume, demonstrate this guide-
line. Don’t invent new icons to represent knownentities such as folders and documents.

Customized Icons

You can provide the following customized icons if you support the associated features. You can
customize these icons to represent your application, just as you can customize documenticons.

s Documenticon. This icon represents a documentcreated with your application. You
can customizethis icon so thatit relates to your application icon by adding graphicstoit.
Besure to maintain the outline of the document. See the Finder Interface chapterin this
volumefor more information about displaying customized icons.

a Stationeryicon. This icon represents a stationery pad that the user creates from a
document. You can customize the stalionery icon for each document icon by adding
graphic elements to the stationery document page. See the Finder Interface chapter in
this volume for more information aboutstationery.

ms Query documenticon. This icon represents a file that contains information that the
Data Access Manageruses to transmit a query to a database. You can customize this 4
icon by adding graphics to the document page. Be sure to maintain the outline of the
icon and the volume symbolthat represents the database. See the Data Access Manager
chapter in this volume for more information on using the Data Access Manager.

a Edition icon. This icon represents an edition file that is created when a user chooses
Create Publisher from the Edit menu. You can customizethis icon by putting a different
graphicinside the rectangle. Maintain the horizontal oricntation and the double-dotted
line of the iconthat identify it as an edition icon. See the Edition Manager chapter in
this volume for more information on implementing the Edition Manager.

a Extension icon, This icon represents a system extension. You can customize
this icon by adding a graphic to the puzzle picce. You can display the puzzle piece in
a horizontal or vertical orientation with the protruding part facing anydirection. See
the Finder Interface chapterin this volume for more information on displaying
customized icons.

If you support these features but don’t provide customized icons, the Finder displays default
icons for these objects, depicted here in Figure 2-11 and in Color Plate XXI, “Default System
Icon Families,”at the beginning of this volume. Sce the Finder Interface chapter in this volume
for information on how to use the bundle resource to associate these icons with your application.

OU a Ld
Document Stationery Query Edition Extension

document

 

Figure 2-11. Default system icons in black and white

Color Design for Version 7.0 2-21

IPR2017-01828

Ubisoft EX1002 Page 116



IPR2017-01828 
Ubisoft EX1002 Page 117

 
Inside Macintosh, Volume VI

If you develop control panels, you must provide an icon family for each control panel. The
control panel icon is a square panel with an indicator on it to identify it. The indicator also
appears on the Control Panels folder. You can add a graphic to the square to customize the
icon. You can display the icon in either a horizontal or vertical orientation. Figure 2-12 shows
some cxamples of control panc! icons in both orientations. The examples are shownin color
in Color Plate XXII, “Examples of Control Panel Icons,” at the beginning of this volume.

ie eg Fae
Control Panels Color Portable User Setup File Sharing

folder Monitor

Figure 2-12. Examples of contro] panel icons

WINDOWS

This section provides information about window placementand behavior. It also presents
general guidelines about windows and related dialog boxes and alert boxes.

Window Positions

To determine where to place a window, consider what kind of window yourapplication is
opening, what other windowsare open and where, and the relationship between the content
of a windowand other windowsor dialog boxes. Respect the user’s control of the window
and maintain the user’s preferred size, state, and location for the window.

Whenyourapplication opens a new document window,centerit on the desktop. Open each
additional windowbelowand to the right ofits predecessor. Before closing a window, check
to see if the user has changedits size, state, or position. Save window positions, then reopen
windowsinthe size, state, and location in which the userleft them.

Before reopening a window,check to make sure that the size and state are reasonable for the
user’s current monitor or monitors, which may not be the same as the monitor on whichthe
documentwaslast open. For example, if a user is working on a word-processing document
on a full-page display and then takes the document home and uses another computerto finish
working, the second computer may have a 13-inch monitor. Then your application should
open the document in a window sized appropriately for the smaller monitor and not
necessarily in the savedsize.

Tf the user hasn’t changed a window’s position, place windowsin a position appropriate to
the monitor type. If a user opens, moves, and closes a document window without making
any changes, save the newwindowposition but don’t modify the date stamp.

Whenyou open several windows on multiple screens, place the windows on the screen where
the user is working. If a user drags a window from a Macintosh II monitorto a portrait

2-22 Windows

IPR2017-01828

Ubisoft EX1002 Page 117



IPR2017-01828 
Ubisoft EX1002 Page 118

User Interface Guidelines

display monitor, open subsequent windowsonthe portrait display monitor. The default
position of a windowmust always be contained on a single screen.

Opendialog boxes and alert boxes on the screen wherethe user is working. For example, ifa
user has two monitors with a text document on the second monitor, open a find-and-replace
dialog box on the scrcen where therelated text document appears, not necessarily on the
monitor where the menubaris.

The Zoom Box and Window Behavior

A click in the zoom box toggles a window betwcen twostates, the user state and the standard
statc. Theuserstate, as its name implies, is set by the user. In Human Interface Guidelines:
The Apple Desktop Interface, a window’ s standard state definition is described as generally
the full screen, or close to it, with the size and location that are best suited to working on
the document.

But Macintosh monitors now comein all shapes, sizes, and configurations, so applications
should never simply assumethat the standard state should be as large as the screen. Frequently
the monitoris larger, sometimes muchlarger, than the most useful size for a window. Screen
real estate is valuable, so use screen-sized windows only when they makesense.

For example, a document for a word processor has a well-defined most-useful width (the
width of a page) and a variable most-useful height (depending on the numberof pages).
Therefore the width of the standard state should be the width of a page or the width of the
screen, whicheveris smaller, and the height of the standard state should be the height of
the documentorthe height of the screen, whichever is smaller.

wd

ioRDCo
a}
‘_
5=
oO

="$e}oOoO

Whena userclicks the zoom box to change a windowfrom theuserstate to the standard
state, first determine the appropriate size of the standard state. If this size would fit com-
pletely on the screen without moving the upper-left corner of the window,keep this corner
anchored. Otherwise, move the windowto an appropriate default location.

Zooming behavior in multiscreen environments should not violate any of the guidelines
described in this chapter, but it does introduce a single additional rule. The standard statc
should be on the monitor containing the largest portion of the window,not necessarily on
the monitor with the menu bar. This means the standard state for a single windowmaybe
ondifferent monitors at different timesif the user moves the window around. In any casc,
the standard state for any window must always be fully contained onasingle screen.

 
 

DIALOG BOXES 

This section presents revised guidelines for design and layout ofeffective dialog boxes.
The guidelinesrely on the principles of feedback and dialog, forgiveness, and consistency
as described in Human Interface Guidelines: The Apple Desktop Interface. These guide-
lines supersede previous guidelines about dialog boxes publishedin prior versions of
Inside Macintosh.

Dialog Boxes 2-23

IPR2017-01828

Ubisoft EX1002 Page 118



IPR2017-01828 
Ubisoft EX1002 Page 119

Inside Macintosh, Volume VI

Modal Dialog Box Behaviors

In version 7.0 the Dialog Managerhas been updated to provide additional support for feedback
mechanisms and menu baraccess. When you display a modal dialog box, the Dialog Manager
disables the Application menu, the About Balloon Help command in the Help menu, and the
About Keyboards command in the Keyboard menu.It then checks to see if you are handling
menus during a modal dialog box. These conditions are explained in detail in the Compatibility
Guidelines chapter in this volume.

If the Dialog Manager determines that you are not handling your own menus,it disables the
rest of the menu bar except for the Help menu. The Dialog Manager then determines whether
the dialog box contains an active editable text box and if you have the standard keyboard
equivalents for the Cut, Copy, and Paste commands.If both of these conditions are met, then
the Dialog Managerenables the Edit menu and those commandsin the Edit menu.

If the Dialog Managerdetects that you are handling menusin yourapplication,it only disables
the Application menu. You must provide access to the Help and Edit menus. To support the
Cut, Copy, and Paste commands you need to convert the Clipboard before and after you
display a modal dialog box. You can also provide menu bar access in your application by
cnabling menus and commandsin those menus that make sense in the context of the current
task. See the Compatibility Guidelines chapter in this volume for information on enabling
menus when youdisplay a modal dialog box.

Movable Modal Dialog Boxes

Version 7.0 introduces a new windowclass, the movable modal dialog box. The user some-
times needs to see documentcontents that a modal dialog box obscures. To allow the user to
move a dialog box in this casc, you can use a movable modal dialog box rather than a modal
dialog box. The movable modal dialog box has a title bar as part of its standard window so
that the user can movethe dialog box by draggingthe title bar.

The design of the movable modal dialog box combines the standard modal window with a
title bar with racing stripes, but no close box or zoom box. This design gives the user visual
feedback that the dialog box is modal, and must be responded to before completing any other
action in the active application, but the user can moveit. Figure 2-13 shows a movable modal
dialog box with attribute options that affect an area a user would want to see, such as the text
that a border would surround.

 

Line Style

  
 

Figure 2-13. A movable modal dialog box

2-24 Dialog Boxes

IPR2017-01828

Ubisoft EX1002 Page 119



IPR2017-01828 
Ubisoft EX1002 Page 120

User Interface Guidelines

To create a movable modal dialog box, use the window definition ID of the movable modal
dialog box in the standard resource type 'WDEF'’. As with all movable windows, be sure to
save the position of the movable modal dialog box window for the next time it’s used. See
“Creating Movable Modal Dialog Boxes”in the Compatibility Guidelines chapterin this
volume for details on creating movable modal dialog boxes.

Movable modal dialog boxes should respond like modal dialog boxes in most ways. When
you display a movable modal dialog box, however, there are some additional behaviors you
need to support. You must makecertain that the dialog box is modal within your application.
Thatis, the user should not be able to switch to another of your application’s windows while
the dialog box is active. Allow your application to nun in the background when you display a
movable modal dialog box. For example, system software version 7.0 uses movable modal
dialog boxes to show that an application is busy with a time-consuming operation, yet a user
can still switch the application to the background. Figure 2-14 shows a movable modal dialog
box displayed by the Finder whenit is copying files.
 

Copy

Items remaining to be copied:

Writing: Picture 1 
 

Figure 2-14. A Finder movable modal dialog box

You need to provide access to the menu bar when you display a movable modal dialog box.
Provide access to the Help menu, the Edit menu, the Keyboard menu when appropriate, and
any context-appropriate commands. Also enable the Application menu so the user can switch
to another application.

It’s important to consider whether you can use a modcless dialog box instead of a movable
modal dialog box—to preserve the user’s ability to perform any task in any order. See the
Compatibility Guidelines chapter in this volumefor information on implementing movable
modal dialog boxes.

Keyboard Navigation in Dialog Boxes

In previous versions of system software you could select an item in the scrolling list in the
standard file dialog box for opening files by using the keyboard. The ability to select an item
from a set of items by typing the beginning character or characters of its nameis called type
selection. The user can also use the arrow keys to move the selection by one item in the
direction of the arrow. Type selection has been extended to work in otherlists, such as the
list of files in a Finder window andthelist of available devices in the Chooser.

Somedialog boxes have several elements, such as text boxes and scrolling lists, that can
accept input from the keyboard. It’s necessary to visually indicate which element is currently
accepting input from the keyboardin orderto let users know which of the possible elements
is active. Each elementhas its own distinct indicator. As in the past, a text box displays a
blinking insertion point or sclected text range to indicate that it is accepting keyboard input.

Dialog Boxes 2-25

IPR2017-01828

Ubisoft EX1002 Page 120



IPR2017-01828 
Ubisoft EX1002 Page 121

 

Inside Macintosh, Volume VI

Whena scrollinglist is the active element in a dialog box, its visual indicator is a rectangular
border of two black pixels, which is separated from the list by one pixel of white space.
Figure 2-15 shows the AppleTalk® Zoneslist in the Chooser as an activescrolling list arca.
 

 
 
 
 

 
  

SaaSChooser

ae
AppleShare AppleTalk Imagewr

   

 [Z| @:
= SBImage'wiriter Laser Writer 

AppleTalk Zones   
Bear Boulevard

BSE) er] oo
Elephant Avenue
Penguin Place
Stork Street

Tiger Alley
Wornbat Way
Zebra Zone

 
  

  
 
 

 
  

     
® Active
©) Inactive

 
AppleTalk

Figure 2-15. A selected scrolling list

Whena useractivates a scrolling list, using the following QuickDraw™ routines outlines the
scrolling list in the standard way:

PenSize(2,2);
InsetRect (sezxollRect, 3,-3);
FrameRect (scrollRecz};

Since all typing goes to the active window,there should be only one active area and only one
indicator at anytime. If a dialog box has only one elementthat can accept keyboard input (and
that elementis a scrollinglist), it’s not necessary to outline a scrolling list. In the standard file
dialog box the user can use type selection to identify the desiredfile in the list offiles, but,
since there’s no other list or text box, the sclected list doesn’t have a border.

In a dialog box the user can movethe active area to any interface elementthat accepts keyboard
input, such as a text box, by clicking the desired elementor by pressing the Tab key to cycle
through the available elements.

Button Labels

Wheneverpossible, label a button with a verb that describes the action that it performs. Use
book-title capitalization for button labels. In general, this means that you capitalize one-word
lilles and, in multiple-word titles, capitalize words of four or moreletters. Usually you don’t
capitalize wordslike in, an, or and. The specific rules for this type of capitalization appearin
detail in the Apple Publications Style Guide.

Provide a Cancel button whenever you can, and always map Command-period and the
Esc (Escape) key to the Cancel button. Map the Return key and the Enter key to the default
button, which is usually the button with the safest result or the most likely response. Don’t

2-26 Dialog Boxes

IPR2017-01828

Ubisoft EX1002 Page 121



IPR2017-01828 
Ubisoft EX1002 Page 122

User Interface Guidelines

display a default border around any button if you use the Return key in editable text boxes.
Having two behaviors for one key confuses uscrs and makesthe interface less predictable.

In all dialog boxes, any buttons that are activated by key sequences must invert to give visual
feedback that indicates which item has been chosen. A goodrule of thumbis to invert the
button for 8 ticks of the clock, which is long enoughto be visible, but short enoughthat it’s not
annoying. All alert boxes and modal dialog boxes that use the ModalDialog procedure exhibit
this behavior. If you implement your own dialog boxes or alert boxes, be sure to include this
behavior. Sce the Compatibility Guidelines chapter in this volume for more information on the
ModalDialog procedure.

A usertypically reads the text in a dialog box until it becomes familiar and then relies on
visual cues, such as button namesor positions, to respond. Names such as Save, Quit, or
Erase Disk allow users to identify and click the correct button quickly. These words are often
more clear and precise than words like OK, Yes, and No.If the action can’t be condensed
into a word or two, OK and Cancel or Yes and No may serve the purpose. If you use these
generic words, be sure to phrase the wording in the dialog box so that the action the button
initiates is clear. Figure 2-16 shows a dialog box with appropriate OK and Cancel buttons.
 

Cat Detector™ options

Pinpoint a purr at: Cat licence price (£):

© 40 yards

® 60 yards GH (fh
© 80 yards

Cancel OK 
 

Figure 2-16. A dialog box with OK and Cancel buttons

Use Cancel for the button that closes the alert or dialog box and returns the computerto the state
it was in before the alert or dialog box appeared. Cancel means “dismiss this operation, with no
side effects.” It does not mean “I’ve read this dialog box” or “stop what you’re doing regardless.”

Whenit is impossible to return to the state that existed before an operation began, don’t use the
word Cancel. You can use OK or Stop, which are useful in different situations. Use OK for
the nameof a button that closes the alert or dialog box and accepts any changes made while the
dialog box was displayed. Figure 2-17 showsa dialog box that illustrates this guideline.
 

Custom Formats
 

That Format raThis Format
Yet Another Format      
 

Figure 2-17. A dialog box with OK instead of a Cancel button

Dialog Boxes 2-27

 
IPR2017-01828

Ubisoft EX1002 Page 122



IPR2017-01828 
Ubisoft EX1002 Page 123

 

Inside Macintosh, Volume VI

This dialog box uses OK because clicking the button maintains any changes that were made
subsequentto the display of the dialog box. If the button were named Cancel,clicking it
should remove any formats created, removed, or changed since the dialog box appeared, and
it should return the computer to the state it was in before the dialog box appeared.

Use Stop for a button that halts an operation midstream while accepting the possible side i
cffects. Stop may Icave the results of a partially complete task intact, whereas Cancel always °
returms the computerto its previousstate. It’s appropriate to change the button namein the
middle of the operation from Cancel to Stop if you can determine whenit’s no longer possible i
to cancel. Figure 2-18 shows a dialog box that illustrates this guideline.

 

Inserting the file “Really long document”
into “Wombat data”...

=}(Sto) 
Figure 2-18. A progress indicator that uses a Stop button

The dialog box in Figure 2-18 uses Stop because clicking the button maintains the text that is
already inserted while preventing completion of the insert operation.

In an alert box that requires confirmation, use a word that describes the result of accepting the
message in the dialog box. For example, if a dialog box says “Revert to the last saved version
of this document,” label the button Revert rather than OK. Figure 2-19 showsa dialog box
with appropriately labeled buttons.

Revert to the last saved version

of “The Big Red Book”?

Revert 
Figure 2-19. A confirmation alert box

If there is a most likely action, use a default button. This button usually completes the action
that the user initiated to bring up the dialog box. The default button is outlined with an
additional border of three black pixels, separated by a border of one white pixel, and its
action is performed whenthe userclicks the button or presses the Returnor Enter key.

Don’t use a default button if the mostlikely action is dangerous—for example,if it causes a
loss of user data. Whenthere is no default button, pressing Return or Enter has no effect; the
user must explicitly click a button. This guideline protects users from accidentally damaging
their work by pressing Return or Enter out of habit. You can consider using a safe default
button, such as Cancel.

 
A modal dialog box usually cuts the user off from the task. That is, he or she can’t see
the area of the documentthat changes when choices are madein the dialog box until
dismissing the dialog box. Once the area becomesvisible by dismissing the dialog box, the

me2-28 Dialog Boxes

IPR2017-01828

Ubisoft EX1002 Page 123



IPR2017-01828 
Ubisoft EX1002 Page 124

User Interface Guidelines

user sees whether the changesare the desired ones. If the changes aren’t appropriate, then
the user has to repeat the entire operation. To provide better feedback to the user, you need to
provide a way for the user to see what the changes will be. Therefore, any selection made in a
modal dialog box should immediately update the document contents, or you should provide a
sample area in the dialog box that reflects the changes that the user’s choices will make.In
the case of immediate document updating, the OK button means “‘accept this change” and the
Cancel button means“undoall changes donebythis dialog box.”

Some applications use an Apply button to approximate this behavior. This method confuses
the meaning of OK and Cancel and is not recommended.If you must implement modaldialog
boxes with an Apply button, you need to include a Cancel button and a Revert button in the
dialog box. Otherwise the Cancel button becomes confusing to the user. Whenthere is an
Applybutton, the Cancel button undoesthe results of the Apply operation and dismisses the
dialog box. The OK button dismisses the dialog box. The Revert button returns the document
to the state it was in before the dialog box was displayed. The user must always be able to
undo any actions caused by the dialog box.  Dialog Box Layout

In most simple dialog boxes, such as alert boxes, you should place buttons in functional and
consistent locations, both within your application and across all applications that you develop.
Place the action button in the lower-right corner with the Cancel button to its left. Figure 2-20
showsthe recommendedlocation for buttons and text. The default button can be any button;
its assignment is secondary to the consistent placementofbuttons. This rule keeps the action
button and the Cancel button consistently placed. Otherwise, the buttons would keep changing
location depending on the default choice for the dialog box.

PRR)Clemed
 
 
 

use wording that makes sense to the
typicaluser,

AY

Foo ee anees is where the text goes. Be sure td

 

3 white pixels ‘A
3 white pixelsWeil hp—

Figure 2-20. The recommended spacing of buttons and text in a dialog box

Use a consistent amountof white space between the borderof the dialog box andits elements.
This creates a balanced appearancein the dialog box. Otherwise the uscr might perceive a
lopsidedness or other visual imbalance in your dialog box.

The Western reader’s eye tends to move from the upper-left arca of the dialog box to the
lower-right area. Put the initial impression that you want to conveyin the upper-left area
(like the alert icon that appears in alert boxes), and place the buttons that a user clicks in the
lower-right area. Following this guideline makesit easier for users to identify what’s
important in a dialog box.

Dialog Boxes 2-29

IPR2017-01828

Ubisoft EX1002 Page 124



IPR2017-01828 
Ubisoft EX1002 Page 125

 
Inside Macintosh, Volume VI

Whendialog boxes are localized for worldwide versions of system software, the text in the
dialog box may becomelongeror shorter. The alignmentofthe items in the dialog box may
vary with localization. Arabic and Hebrew are written right to left, so alignment of the items
in an Arabic or Hebrew dialog box should beright to left. The Control Manager, Menu
Manager, and TextEdit routines handle the alignmentof dialog box components. For more
information, see the chapters that describe those managers in this volume and previous
volumes. Besure to create dialog items ofthe samesize, so that they align properly when a
user has a script that reads from rightto left. This guideline is discussed earlier in the
“Worldwide Software Development” section of this chapter.

Dialog Box Messages

Write messages in dialog boxes and alert boxes that makesenseto the user. Use simple,
nontechnical language and don’t provide system-oriented information that the user can’t
respond to. Whenpossible, give the user information that helps explain howto correct the
problem. Figure 2-21 shows an example of a well-written dialog box messagethat replaces
the message users used to see, “The application is busy or missing.”
 

The application that created the document
“Pragress” could not be found. Do you
want to open the document using the
application “TeachText”?

Cancel 
 

Figure 2-21. A well-written dialog box message

Use the name of the documentor application in a dialog box whenthetext refers to it. For
example, a dialog box that appears when a user chooses Shut Downafter working on the
company’s annual report using the TeachText application should say “Save changesto the
TeachText document “Annual Report” before quitting?” rather than simply “Save changes
before quitting?” This kind of labeling helps users who are working with several documents
or applications at once to make decisions about cach oneindividually.

Standard File Dialog Boxes

The version 7.0 standard file dialog boxes present some new information to the user. They
showa file’s position in relation to the disk it’s stored on. Instead of showing therootlevel
of a hard disk as the highest level of the directory structure, the desktop now appears as the
top level of the Hierarchical File System. The Drive button has been replaced with the Desktop
button. A user can viewandselect disk drives from the standard file dialog box and can see
other desktop entities such as the Trash folder. The dialog box that appears when the user
chooses Save As includes a New Folder button that allowsthe userto create a folder in which

to store the document. The pop-up menuin this dialog box nowincludes the downward-
pointing triangle for additional visual feedback.

2-30 Dialog Boxes

IPR2017-01828

Ubisoft EX1002 Page 125



IPR2017-01828 
Ubisoft EX1002 Page 126

User Interface Guidelines

{f you interact with the file system directly and use a dialog box similar to the standard file
dialog boxes, you should replicate the organization and appearanceofthe standard file dialog
boxes. Figure 2-22 shows an example of the new standard file dialog box for openingfiles.
For more information, see the Standard File Package chapterin this volume.
 

ge Desktop 7 Loma Prieta
<—Loma Prieta [ -

= Pinky
Independence
= 2il
Ci User interface Guidelines _—_——______—.

Co Surflriter Cancel |

WT teas 3 
   
 

Figure 2-22. The new standard file dialog box for opening files

Save Changes Dialog Box

This section describes the new standard dialog box for saving all changes to a document
before a user quits an application. The design presented in Volume IV of Inside Macintosh
created somesituations in which users, especially inexperienced users, could experience a
loss of data. The new design addresses those concerns and standardizes the appearance of the
dialog box so that users can quickly identify potentially dangerous actions.

Place the standard warning icon in the upper-left corner of the dialog box. This icon indicates
to users that they need to carefully consider the dialog box message before clicking the default
button or the Return key. The warning icon should always be in the same, predictable location
so that users easily recognize il as a warning and respect its meaning.

Previously the buttons in the save changes dialog box were labeled Yes, No, and Cancel. The
save changes dialog box changes the namesofthe buttons to correlate to the action users
perform bypressing the button. The buttons should now read Save, Don’t Save, and Cancel.
Using these verbs reinforces the identity of each possible action to the user so that the experi-
ence is more intuitive. In other words, the Don’t Save label provides much more context for
the user than the word No does.

The new design provides a safeguard for the user by standardizing the location of buttons in
a safe configuration. In order to prevent accidental clicks of the wrong button, you should
always keep safe buttons apart from buttons that could cause data loss. Place the Save button
in the lower-right corner with the Cancel button to its left. Place the Don’t Save button on
the left and left-aligned with the message text. This way, the user must explicitly move the
pointer and click the button that could cause irretrievable loss of data. Figure 2-23 shows an
example of a standard save changes dialog box.

Dialog Boxes 2-31

IPR2017-01828

Ubisoft EX1002 Page 126



IPR2017-01828 
Ubisoft EX1002 Page 127

 

Inside Macintosh, Volume VI

 

    Save changes to the TeachText
A document “Special Memo" before

quitting?

 

 

    
 

A button that Buttons that are “safe”
causesdata loss for data

Figure 2-23. The save changes dialog box

Include the name of your application and the name of the document in the dialog box message,
as shown in Figure 2-23, When a user shuts down the computer, several save changes dialog
boxes may appearif there are several open documents on the desktop. This addition of infor-
mation to the standard message helps the user by identifying to which application and
document the messagerefers.

MENUS

This section describes changes to applications’ menu style and contents in system software
version 7.0. Applications can include several standard menu items that relate to newfeatures
of system software version 7.0. This section also presents the reserved list of keyboard
equivalents for menu commands.

File Menu

Applications that support high-level database access, as described in the Data Access Manager
chapterlater in this volume, need to include the Open Query commandin the File menu. This
command opens a query documentthal establishes communication with a target database.

Edit Menu

If your application implements the capabilities of the Edition Manager, include its commands
in the Edit menu, separated from the standard commandsby a gray line. The commandsare

a Create Publisher...

a Subscribe To...

a Publisher/Subscriber Options... (context-sensitive toggle command)

= Show/Hide Borders (optional context-sensilive toggle command)

a Stop All Editions (optional command)

2-32 Menus

IPR2017-01828

Ubisoft EX1002 Page 127



IPR2017-01828 
Ubisoft EX1002 Page 128

 

User Interface Guidelines

Figure 2-24 shows a sample Edit menuthat includes the required commands.

Undo ee

Cut aH

Copy #C
Paste au
Select All #Aa

Create Publisher...
Subscribe To...

Publisher Options...

Show Clipboard

 
Figure 2-24. A sample Edit menu

If you find that you needall of the available space in the Edit menu for your application’s
commands, another way to accommodate the Edition Manager commandsis by implementing
a hierarchical menu. Include a Publishing commandin the Edit menuasthetitle of the sub-
menu. Usethe standard indicator for a hierarchical menu, as shown in Figure 2-25, which
also shows the submenu with the Ediiion Manager commands. Because hierarchical menus
increase the complexity of your application,it’s best to only use this approach when you have
no other alternative.

N

awn
oOc
—_
=]3
oO

=fet]iv)oO

 
 

 
lindo

 
 

Cut

Copy BC
Paste ul
Select All

 
  

   
 

Create Publisher...
Subscribe To...
Publisher Options...

  Publishing +

Show Clipboard

Figure 2-25, A sample hierarchical menu with Edition Manager commands

    

Theuserinterface issues, as well as the technical implementation informationrelated to
the Edition Managercapabilities, are described in the Edition Managerchapterlaterin
this volume.

Font Menu

System software version 7.0 includes TrueType™fonts. If you decide to incorporate basic
support for TrueType fonts into your application, remove the 127-point size limit for bitmapped
fonts. Provide support for all font sizes in your application. Continue to outline font sizes in the
menu for those sizes that appear in the user’s System file. Use plain type for font sizes that
aren’t in the System file. If a TrueType font is present, outline all sizes of that font that you
display in the menu. Provide a wayfor users to choose whatever font size they desire. When
the user choosesa font size, place a checkmark next to the active fontsize.

Menus 2-33

 
IPR2017-01828

Ubisoft EX1002 Page 128



IPR2017-01828 
Ubisoft EX1002 Page 129

 
Inside Macintosh, Volume VI

One method that you can use lo support TrueTypefonts is to add an Other command to the end
of the Size menu (or the end of the Font menu,if that’s where your application allows users to
choosefont sizes). When the user chooses Other, display a dialog box that allows the user
to choose any available font size. You can include a text box in which users can type the font
size they want. If the user enters a font size that’s not currently on the menu, addit to thelist
of choices. If the user is adding a TrueType fontsize, outline the size when you add it to the
menu.If the user is working with a bitmapped font, show the new size in plain type. Provide
a real-time display area to update the font size as the user changesit. Figure 2-26 displays a
sample pull-down Size menu and font size dialog box. See the Font Managerchapterin this
volume for more information on TrucType fonts.

Font Size: gl

The quick
brown fox

Larger
Smaller [Cancel|

  
Figure 2-26. A sampie pull-down Size menuand font size dialog box

Help Menu

System software version 7.0 includes on-line help for system software. The user can access
Apple’s Balloon Help from the Help menu. If you provide help information for your appli-
cation, move the help commandsthat you provide to the Help menu. It’s a goad idea to
include the name of your application next to your help commandso that the user can casily
distinguish the type of help to choose. For example, you might include a commandcalled
TeachText Help in the Help menu. Figure 2-27 shows the Help menu.

About Balloon Help...

Show Balloons

Figure 2-27. The Help menu

 

You can also use the Help Manager to implement Balloon Help for your application. See the
Help Manager chapter for more information and implementation details.

Keyboard Equivalents

In the past, several keyboard equivalents were reserved by Apple for common commands,
Table 2-4 and Table 2-5 showthe standard Macintosh keyboard equivalents.

2-34 Menus

IPR2017-01828

Ubisoft EX1002 Page 129



IPR2017-01828 
Ubisoft EX1002 Page 130

User Interface Guidelines

Table 2-4. Apple reserved keyboard equivalentsfor all systems

Menu Keys Command Menu Keys Command

File 38-N New Edit 36-2 Undo

File #-O Open... Edit a6 -X Cut
File ae-W Close Edit #€-C Copy
File #-S Save Edit #-V Paste

File #6-P Print... Edit aE-A Select All

File 3-Q Quit

Table 2-5 shows several keyboard equivalents that are reserved for use with worldwide
versions of system software, localized keyboards, and keyboard layouts. These keyboard
equivalents have actions that don’t correspond directly to menu commands,so there is no
menu column with command namesin Table 2-5.

Table 2-5.©Additional reserved keyboard equivalents for worldwide systems

Keys Action a
5

46—Space bar Rotate through enabled script systems =
#—Option—Space bar Rotate through keyboard layouts within a script ES
#—modifier key-Space bar Apple reserved es

8
See the section on keyboard equivalents in the Worldwide Software Overview chapterin this
volume for more discussion of handling keyboard equivalents in other script systems.

These key combinations are reserved across all applications. Even if your application doesn’t
support one of these menu commands,it shouldn’t use these keyboard equivalents for
another function. This guideline is for the user’s benefit. Reserving these key combinations
provides guaranteed, predictable behavior acrossall applications.

Creating a situation where Command-O means open 99 percentof the time and ostracize
| percent of the time would do twothings. First, users wouldn’t consider using Command-O
for the latter function becauseit is used by all other applications to mean open. Second,
changing the meaning of Command-O in yourapplication would weaken the user’s percep-
tion ofthe consistencyof the interface.

Someapplications use other common keyboard equivalents, as shown in Table 2-6.

These keyboard equivalents are secondary to the standard keyboard cquivalents listed in
Table 2-4 and Table 2-5. If your product doesn’t support one of these functions, then use
these equivalents as you wish.

Table 2-6.©Other common keyboard equivalents

Menu Keys Command Menu Keys Command

File 36 -F Find Style 3€-B Bold
File 4-G Find Again Style 36 -[ Italic
Style 38-T Plain Text Style #-U Underline

Menus 2-35

 
 

IPR2017-01828

Ubisoft EX1002 Page 130



IPR2017-01828 
Ubisoft EX1002 Page 131

Srereremanmnmaaas

Inside Macintosh, Volume VI

You shouldn’t assign keyboard equivalents for infrequently used menu commands. Doing so
only burdens your users and constrains your application. Only add keyboard equivalents for
the commands your users employ most frequently.

Pop-Up Menus

In previous versions of system software, pop-up menusdid not look sufficiently different
from other Macintosh interface elements. The 1-pixel drop shadow that differentiated pop-up
menusfromeditable text boxes wasn’t a strong visual cue that indicated a menuexisted. This
section presents the new standard appearance for pop-up menusthat includes additional
graphical feedback.It also describes how the new appearance enables someuses that were
previously impossible.

Standard Pop-Up Menus

The new standard pop-up menu adds a downward-pointing triangle identicalto the triangle
used to indicate that a menuis too long to fit on the screen and mustscroll. All pop-up menus
should addthis triangle. Figure 2-28 shows a simple pop-up menuin the newstyle.

Figure 2-28. The appearance of a version 7.0 pop-up menu

Whenthe user presses the mouse button while the pointer is over the pop-up menuorits label
text, the triangle disappears. When the mouse buttonis released, the triangle reappears.
Figure 2-29 shows this behavior.

Baud:|1200 + | 
Figure 2-29. An open version 7.0 pop-up menu

See the Compatibility Guidelines chapter in this volumefor information on implementing the
standard pop-up menu in your application.

Type-In Pop-Up Menus

Sometimesit is useful to display a list of choices butstill allow the user to type in a choice
that the application didn’t know in advance. Keep in mindthat users should be able to see
and point; they should never have to rememberand type. The type-in option should be an
additional choice when appropriate, not a requirement. If the user types in an item that is
already in the menu, place a checkmark next to the menu item. The menu alwayshighlights
the item that corresponds to the value in the text box. Your application also needs to highlight
the value in the text box. This behavior prevents a quick click in the menu from accidentally

2-36 Menus

IPR2017-01828

Ubisoft EX1002 Page 131

 



IPR2017-01828 
Ubisoft EX1002 Page 132

User Interface Guidelines

wiping out the previous value. It also reinforces the idea that choosing a different value in
the menu changesthe value in the text box. You don’t nced to invert the menu’s labelin
this situation. The newstandard pop-up menu lendsitself readily to this use, as shown in
Figure 2-30.

Size: [2Ix Size:

 
Figure 2-30. A type-in pop-up menu

If the value typed into the text box docs not match anyof the items in the pop-up menu,
the menu should add the type-in value as the first item and separate it fromthe rest of the
standard values by a gray line, as shown in Figure 2-31. This appearance makesa clean
distinction between commonitemsthat arc always available and the typed-in value, which
is only temporary.

Size:3Ie! Size: cal

 
Figure 2-31. A type-in pop-up menu with user’s choice added

See the Compatibility Guidclincs chapter in this volume for more information about using the
new standard pop-up menuin your application.

MORE USER INTERFACE INFORMATION

This chapter has presented the basic ideas you need to consider for supporting the new
interface features of version 7.0. You'll find more interface information about using the
newmanagers in the chapters that describe them. You can also get additional information
fromthe following sources:

= Human Interface Guidelines: The Apple Desktop Interface. Reading, Mass.: Addison-
Wesley, 1987.

mw Apple Publications Style Guide. Apple Computer, Inc., 1990.

uw ResEdit Reference. Reading, Mass.: Addison-Wesley, 1991.

More User Interface Information 2-37

IPR2017-01828

Ubisoft EX1002 Page 132



IPR2017-01828 
Ubisoft EX1002 Page 133

 
frside Macintosh, Votime Vi

a Apole Pireer. This isa techimeal journal that presents surigus articles and a monthly
column on human interiice desten,

a The AppleLink Developer Techical Services bulletin board. This bulletin board
maintains 2 Eluman Interface Discussion folder that presents iad frterface Mates
and provides answers Tor questions submitted by developers.

2-38 Ware Cer haterface inferno

IPR2017-01828

Ubisoft EX1002 Page 133



IPR2017-01828 
Ubisoft EX1002 Page 134

About This Chapter
About Compatibility

Using Memory Wisely
Using Assembly Language
Accessing Hardware
Using Low-Memory Global Variables
Determining Whether a Trap Is Available

Running in System Software Version 7.0
Allowing Multiple Applications
Supporting Required Apple Events
Removing Font Size Restrictions
Operating With Virtual Memory
Enabling Menus During a Modal Dialog
Coexisting With the System Menus
Creating Movable Modal Dialog Boxes
Creating Pop-Up Menus
Manipulating Dialog Item I ists

Counting Items in a Dialog Item List
Appending Items to a Dialog Item List
Shortening a Dialog Item List

Localizing Macintosh Programs
General Guidelines

Localizing With the Toolbox
Running Macintosh Programs Under A/UX

Howthe A/UX Toolbox Works

Using the A/UX Toolbox
A/UX Compatibility Guidelines

About the Gestalt Manager
Using the Gestall Manager

Determining Features of the Operating Environment
Determining Whether Gestalt Is Available
Interpreting Gestalt Responses

Interpreting Responses to Environmental Selectors
Interpreting Responses to Informational Selectors

Adding Gestalt Selectors
Modifying Gestalt Selectors
Specifying Gestalt Selector Functions

Gestalt Manager Routines
Getting Information About the Operating Environment
Adding Selector Codes
Modifying Selector Codes

Summary of the Gestalt Manager
Summary of the Window Manager
Summary of the Control Manager
Summary of the Dialog Manager

COMPATIBILITY GUIDELINES

 
tw

oe)
I5
=Fe
=a
Ss
=
este

7
=ao
=
=}oORn

3-1

IPR2017-01828

Ubisoft EX1002 Page 134



IPR2017-01828 
Ubisoft EX1002 Page 135

faside Mactitash, Vituime Vi

IPR2017-01828

Ubisoft EX1002 Page 135



IPR2017-01828 
Ubisoft EX1002 Page 136

Compatibility Guidelines

ABOUT THIS CHAPTER

This chapter describes how you can write applications that have the greatest chance of operat-
ing on any Macintosh® computer, regardless of its hardware componentsor available system
software, managers, and device drivers. It also addresses how youcan take advantage of
features that are new to system software version 7.0 in ways thatarc least likely to cause
problems for users who are not running version 7.0. In a word, this chapter provides as much
advice as possible to help you achieve maximum compatibility for your applications onall
Macintosh computers, including those running version 7.0.

Systemsoftware version 7.0 provides the most important test of software compatibility since
the introduction of the Macintosh IH, and you must understand how you may needto revise
your current applications so that they operate correctly with this new system software.
Fortunately, if you have followed the guidelines given in previous volumes of Inside
Macintosh, your applications stand a very good chance of working correctly in version 7.0
without any modification whatsoever. However, version 7.0 introduces many new features
and capabilities that you may wish to use in your applications. This chapter provides a
numberof additional guidelines to help you take advantage of those features while retaining
compatibility with previous system software.

This chapter discusses several aspects of writing software that is compatible with all
Macintosh computers: i

m= what can cause compatibility problems and how in general to avoid those problems

= how to update your application to take maximum advantage of new features of system
software version 7.0

a how to write software that can be easily modified for use in other regions

a how to write applications that execute under A/UX®, Apple Computer, Inc.’s version of
the UNIX® operating system

>)
I=

co}
i)>
=A
=.
=oo
|

Q<=a
=*fee]
fd
|own

w how to determine what software and hardware features are available on a particular
machine

The discussion of revising applications to take advantage of the new capabilities of system
software version 7.0 also includes details about several new fcatures of the Dialog and Menu
Managers, including

 
w the new pop-up menucontrol definition

a the system menus

= movable modal dialog boxes

m new Dialog Managerroutines to count and manipulate items in dialog boxes

About This Chapter 3-3

IPR2017-01828

Ubisoft EX1002 Page 136



IPR2017-01828 
Ubisoft EX1002 Page 137

 

 

Inside Macintosh, Volume VI

This chapter also describes the Gestalt Manager, a sct of three new Operating System func-
tions that provide applications with a simple and efficient method for determining what
software and hardwarefeatures are available on a given machine. You needto use the Gestalt
Managerif your application takes advantage of particular hardware components (such as a
floating-point unit) or software modules (such as Color QuickDraw™)thatare not available
on all Macintosh computers. Your software can also use the Gestalt Managerto inform the
Operating System (and hence other applications) that it is present in the current environment.

The Gestalt Manageris available in system software versions 6.0.4 and later. Your develop-
ment system may supply code that allows you to call Gestalt, on earlier system software
versions; check the documentation provided with your developmentsystem to see if this is
possible. Of course, because you cannot use Gestalt to determine if the Gestalt Manager
itself is present, you must do that in some other way; one such methodisillustrated in
“Determining Whether Gestalt Is Available” later in this chapter.

You need to read this chapter if you are interested in writing applications that execute on as
many Macintosh computers as possible or under alternate operating systems such as A/UX.
In particular, if you wish to enhance an existing product so that it supports new features of
system software version 7.0 but also executes correctly in carlier versions of system soft-
ware, or if you wish to write a new product that executes only in version 7.0, you should
look at “Running in System Software Version 7.0”later in this chapter. Read the sections on
the Gestalt Managerlater in this chapter if you need to take advantage of specific software or
hardware features that may not be presenton all versions of the Macintosh,or if you wish to
inform other applications of the presence of your application in the operating environment.

Tf you want your applications to run in system software versions earlier than 6.0.4 (where the
Gestalt function is not available), you should be familiar with the Environs procedure,
discussed in the Operating System Utilities chapters of Volumes II and IV, and the
SysEnvirons function, discussed in the Compatibility Guidelines chapter of Volume V. Both
Environs and SysEnvirons perform the kind of function that Gestalt performs—they allow you
to determine whatfeatures are available on a specific machine. For reasons outlined later,
however, you should not use either of these routines if the Gestalt functionis available.

Unfortunately, no single chapter can provideall the information you need to achieve the
greatest possible compatibility for your applications. Most of the subsequent chaptersin this
volume(and indeed all previous volumes of Inside Macintosh) contain numcrous warnings
and guidelines that you should heed if you wish to increase the likelihood that your applica-
tions will execute correctly on all members of the Macintosh family and underalternate
operating systems such as A/UX. The Memory Management chapter in this volume, for
example, contains a fuller account of 32-bit clean programmingthan is given here and is
essential reading for all developers.

The Worldwide Software Overview chapter in this volume gives complete details on the
Script Manager, which can help you write applications that are compatible worldwide.
Similarly, the guidelines given in this chapter on writing A/UX-compatible Macintosh
programs summarize and complement, but do not replace, the discussion in the separate
publication A/UX Toolbox: Macintosh ROM Interface. So the complete story on Macintosh
software compatibility does not end with this chapter, but it does begin here.

3-4 About This Chapter

IPR2017-01828

Ubisoft EX1002 Page 137



IPR2017-01828 
Ubisoft EX1002 Page 138

Compatibility Guidelines

ABOUT COMPATIBILITY

Compatibility is the ability of a program to execute properly in different operating environ-
ments. Compatibility is important if you want to write software that runs, with little or no
modification, on all members of the Macintosh family and in all system software versions.
If you want to take advantage of particular software or hardware features that may not be
present on all Macintosh computers, you need to know how to determine when those features
are available.

To appreciate why compatibility is a real concern, imagine that from all the Macintosh com-
puters currently in operation in the world, you were to choose two at random. You would
quite likely find a numberof differences in the hardware and software configurations of those
two machines. You might find different CPUs, different memory management units (MMUs),
different amounts of RAM,different shapes and sizes of monitors, and so forth. You are
also likely to find different versions of system software, different ROM versions, different
AppleTalk® drivers, different versions of managers, differentprinter interfaces, and so forth.
Ideally, you want your product to run on both of those machines, regardless of the many
significant differences between them.If you succeed in writing your application so that it does
operate on both of those machines, you have succeeded in writing compatible software.

Fortunately, it is possible to write software that is compatible across the entire Macintosh line
of computers. This section provides a numberof guidelines that you should follow if you
want your applications to run on the greatest number of Macintosh computers. Some of these
guidclines are quite general and applyto all programs; someapply only if you are
programming in assembly language.

Onc key to achieving compatibility is not to depend on things that may change. Inside
Macintosh contains numerous warnings about which informationis likely to change. As
the Operating System and UserInterface Toolbox evolve to accommodate the needs of
developers and users, many of thcir elements will vary. Whenever possible, Apple strives
to add features without altering existing interfaces. In general, you can assume that Operating
System and Toolbox routines are less likely to change than data structures. Therefore, you
should never directly manipulate data structures that are internal to a manageror system
software routine, even if their structure is documented. Instead, you should manipulate those
structures only indirectly, by calling Operating System and Toolbox routines that achieve the
desired effect. In particular, you should neveralter any portion of a data structure marked as
unusedor reserved.

a)

o
SoI
z
i]
=A
=A
=
eyel

opi=]=
is
&
=oR

Anotherkey to writing compatible code is to code defensively. Do not assumethat users
performactions in a particular order, and do not assumethat function and procedure calls
always succeed. You should alwaystest the return values ofroutines forerrors, asillustrated
in most of the code samples presented in this volume.

About Compatibility 3-5

 
IPR2017-01828

Ubisoft EX1002 Page 138



IPR2017-01828 
Ubisoft EX1002 Page 139

 

Inside Macintosh, Volume VI

Using Memory Wisely

A major cause of compatibility problems, especially in connection with applications running
in the A/UX operating systcm, is misuse of the Memory Manager. Here are some important
points to keep in mind:

= Do notset or clear bits in master pointers directly. Use Memory Managertraps (for
example, HLock) instead.

w Always check the handle or pointer returned by a routine to make certain thatit is not
NIL. A NIL handle mayindicate that a memory allocation failed or that a requested
resource could not be found.

m Always check that a handle marked as purgeable has not been purged before using that
handle. You can check for a purged handle like this:

 IP myZHandle* <> NIL THEN {nandle not purged}

= Do not create your own handles; instead, use the Memory Managerfunction
NewHandle.

m Never make assumptions about the contents of Memory Managerdatastructures.

If you have followedall these guidelines,it is likely that your application is 32-bit clean; that
is, it operates correctly in an environment where all 32 bits of handles and pointers arc uscd
to store memory addresses. When running with 32-bit addressing in system software
version 7.0 and A/UX,your applications must be 32-bit clean or they may not operate
correctly. See the Memory Managementchapterin this volume for more information about
these issues.

Using Assembly Language

In general, your software should not include 68000 instructions that require the processor
to be in supervisor mode;these include instructions that modify the contents of the Status
Register (SR). Do not modify the SR as a means of changing the Condition Code Register
(CCR)half of the SR; instead, use an instruction that addresses the CCR directly. Do not use
the User Stack Pointer or turn interrupts on and off.

If you wish to handle your own exceptions (thereby relying on the position of data in
the exception’s local stack frame), be aware that exception stack frames vary within the
68000 family.

In particular, don’t use the TRAPinstruction. Also, the Macintosh SE and Macintosh Tl
hardware does not support the TASinstruction, which uses a special read-modify-write
memorycycle.

Some Macintosh computers use memory protection and may prevent code from writing to
addresses within code segments. Also, the 68020 and 68030 cache codeasit is encountered.
Youshould allocate data blocks on the stack or in heap blocks separate from the code, and
your code should not modifyitself.

3-6 About Compatibility

IPR2017-01828

Ubisoft EX1002 Page 139



IPR2017-01828 
Ubisoft EX1002 Page 140

Compatibility Guidelines

Accessing Hardware

You should never address hardware directly: whenever possible, use the routines provided
by the various device drivers and managers to send data to the available hardware. The
addresses of memory-mapped hardware (like the VIA1, VIA2, SCC, and so forth) are
always subject to change,as is the hardwareitself. More important, direct access to such
hardwareis not possible in every operating environment. In multi-user systems like A/UX,
for instance, the operating system manipulates all hardware; applications simply cannot write
directly to hardware addresses.

You should alse avoid writing directly to the screen. Use QuickDraw routines whenever
possible to drawon the screen. If you absolutely must write directly to the screen, do not
assumethat the screen is a fixed size orthatit is in a fixed location. The location, size, and bit
depth of the screen differ in various machines. On machines without Color QuickDraw, you
can use the QuickDrawglobal variables screenBits.bounds to determine the size of the main
screen, screenBits.bascAddrto determine the start of the main screen, and screenBits.rowBytes
to determine the offset between rows. On machines with Color QuickDraw, the devicelist
(described in the Graphics Devices chapterin this volume)tells the location, size, and bit depth
of each screen; sereenBits contains the location and size of the main device; and the global
variable GrayRgn contains a region describing the shape andsize of the desktop.

Using Low-Memory Global Variables

Don’t rely on low-memoryglobal variables. Many of these variables have been previously
documented in Inside Macintosh, but manyhave not. In particular, you must avoid undocu-
mented low-memory global variables because they are most likely to change. But you should
try to avoid even well-knownglobal variables because they maynot be available in all envi-
ronments or in the future. In general, you can avoid using low-memoryglobal variables by
using available routines that return the same information. (For example, the TickCount
function returns the same valuethat is contained in the low-memoryglobal variable Ticks.)

tw

Qi]
|a)es
an
es
=tet

7)=
=.
cm
=fa")nn

Determining Whether a Trap Is Available

One important way that the Operating System and Toolbox have changed through successive
versions of the ROM and systemsoftware is by the addition of numerous newtraps. For
cxample, the Time Managerreleased with system software version 7.0 includes a new trap,
InsXTime, that provides certain improvements over the cxisting trap, InsTime. By using
InsXTimeinstead of InsTime, your application can ensure that the periodic actions it requests
execute at a fixed frequencythat does not drift over time. Before using a trap that is not
available on all machines, however, you need to determine whetherit is available; if you call
InsXTime on a machinethat does not implementit, your programwill crash.

 
There are several ways your application can check the availability of a particular trap. First,
you can call the Gestalt function that is discussed later in this chapterto see if the appropriate
version of the corresponding driver or manageris available. For example, the trap InsXTime
is included in the extended Time Managerbutnot in carlier versions of the Time Manager. So
you could use Gestalt to determine which version of the Time Manageris available in the
current operating environment. If Gestalt reports that the extended Time Manageris present,
you cansafely call InsXTime to queue your request.

About Compatibility 3-7

IPR2017-01828

Ubisoft EX1002 Page 140



IPR2017-01828 
Ubisoft EX1002 Page 141

 
Inside Macintosh, Volume VI

There are several cases, however, in which you cannot use Gestalt to determine whether
a specific trap is implemented. You cannot, for instance, use Gestalt to determine whether the
Gestalt trap itself is available. In addition, the trap whose existence you wish to test might not
be included in any manageror, if itis, there might not be a Gestalt selector code for that
manager. The WaitNextEventtrap is a good example ofthis: there is no way, using Gestalt,
to determine whether WaitNextEventis available.

A second way to determinethe availability of a particular Operating System or Toolboxtrap is
bytesting directly for the existence of the trap, using the technique illustrated in Listing 3-1.
You should usc this method to test whether Gestalt is available before calling Gestalt. You
should also useit to test for the existence of traps not included in managers or drivers about
which Gestalt can report. This listing illustrates how to test the availability of WaitNextEvent.

Listing 3-1. Determining whethera trap is available

FUNCT: ON Numloolboxtraps: Inzueger;
BECIN

IF NGetTrapAddress(_InitGraf, ToolTrap) =
NGetTrapAddress (SAA6E, ToolTrap) THEN

JumToolboxTraps :- $200

 

   
hic na tH  umToolboxTraps := $400; 

FUNCTION GetTraotType (theTrao: Integer) : Trap"ype;
CONST

TrapMask = $080C;
BEGIN

IF BAND (tneTrap,TrapMask) >» 0 THEN
GetTrapType : ToolTrap

FLSE

Getilraplype := OStlrap;

 
 
  
 

END;

 FUNCTION TrapAvallable (LheTrap: Inleger) : Boolean;
VAR

ttype: TrapType;
BEGIN

tType :-— GetTrapType(ztheTrap);
IF zTyse = Too_Trap THEN
BEGIN

the™rap := BAND(theTrap, SO7FF);
IF theTrap >= NumToolboxTraps THEN

theTrap := _Unimplemented;

  
 

 
=ND;
TrapAvailable := NGetTrapAddress(tneTrap, tType) <

NGet TrapAddress (_Unimplemented, ToolTrap);
END; 

FUNCTION WNEAvailable: Boolean;

 

  
 

CONS'T

_Wa_tNexlEven. = SA860; flrap number of WaitNextEvent }
BEGIN

WNEAvailable := TrapAvailable(_WaitNextEvent) ;
END;

3-8 About Compatibility

IPR2017-01828

Ubisoft EX1002 Page 141



IPR2017-01828 
Ubisoft EX1002 Page 142

Compatibility Guidelines

The NumToolboxTraps function relies on the fact that the InitGraf trap (trap number $A86E)
is always implemented. If the trap dispatch table is large enough (that is, has more than $200
entries), then $AA6Ealwayspoints to either Unimplemented or somethingelse, but never to
InitGraf. As a result, you can check the size of the trap dispatch table by checking to see if the
address of trap $A86E is the same as $AAGE.

After receiving the information aboutthesize of the dispatchtable, the TrapAvailable function
first checks to see if the trap to be tested has a trap numbergreater than the total number of
traps available on the machine.Ifso, it sets the theTrap variable to Unimplemented before
testing it against the Unimplementedtrap.

Note: The technique presented in Listing 3-1 for determining whether a particular
trap is available differs from techniques formerly supported by Apple. The previous
method determinedthe size of the trap dispatch table by checking the machine type.
This type of check should not be used for any purposes other than simply displaying
the information, as explained in “Using the Gestalt Manager” later in this chapter.

RUNNING IN SYSTEM SOFTWARE VERSION 7.0

The guidelines given in the previous sections apply to all Macintosh applications, regardless
of the version of system software available. If you heed those guidelines, you are likely to
produce applications that run reasonably well in all environments, including system software
version 7.0. Those guidelines define a minimal level of conformance necessary for your
applications to run in version 7.0. Applications that conform to the programminginterfaces
documented in Inside Macintosh and violate none ofthe guidelines presentedearlier in this
chapter are called 7.0-compatible because they run in version 7.0 without problems.

An application can be 7.0-compatible, however, without taking advantage of the many new
features available in system software version 7.0 and without exhibiting an awarenessthat
other applications may be present and may wish to use processor time that would otherwise
go unused. Among applications that do take advantage of new features, there are at least two
levels of involvement with version 7.0.

7)

io)=
EISo
=r
=F
=io}

i?)
=s=er]
=a
5Ler]wn

An application is 7.0-friendly if it takes advantage of someof the special features of
version 7.0 when executing in that environment, butis still able to perform all its principal
functions when executing in version 6.0. An application is 7.0-dependentif it requires the
existence of features that are available only in version 7.0; it might not even run in version
6.0. Even if 7.0-dependent applications do exccute in version 6.0, they are virtually
guaranteed to offer far fewer features there than in version7.0.

The situation is similar to deciding whether your applications should use Color QuickDraw.
If you revise existing black-and-white drawing programsto incorporate color, your applica-
tions operate either with or without Color QuickDraw.If you introduce newapplications that
require Color QuickDraw, they simply won’t run on machines that don’t support color.

Running in System Software Version 7.0 3-9

 
IPR2017-01828

Ubisoft EX1002 Page 142



Inside Macintosh, Volume VI 

The rest of this section gives guidelines on what you can do to existing applications to make 
them 7.0-friendly and not simply 7.0-compatible. The following pages describe in overview 
how to 

• be aware that the user may have launched multiple applications 

• support the required set of required Apple® events 

• remove font size restrictions to support outline fonts 

• make sure that your application operates correctly with virtual memory 

Each of these items is discussed more completely elsewhere in this volume. For example, to 
learn what you need to do to support outline fonts in your application, see the Font Manager 
chapter. For information about cooperating with other open applications, see the Event 
Manager chapter and the Process Management chapter. 

This section also discusses features of system software version 7.0 that simplify the creation 
and manipulation of several new or existing user-interface elements. These new capabilities 
allow you to 

• get user menu selections while a modal dialog box is displayed 

• coexist with system menus 

• create movable modal dialog boxes 

• create pop-up menus 

• count and manipulate items in dialog boxes 

Most of these features are not available on system software versions earlier than 7 .0. The 
routines that allow you to count the number of items in a dialog item list and add or remove 
items from a dialog box have previously been available as part of the Communications 
Toolbox. You can determine whether those routines are available by using the Gestalt func
tion to test for the Dialog Manager extensions. You can use the gestaltPopupAttr selector 
with Gestalt to determine if the new pop-up control definition function is available. 

Note: The four Dialog Manager procedures CouldDialog, CouldAlert, FreeDialog, 
and FreeAlert are no longer supported. 

Allowing Multiple Applications 

System software version 7.0 continues the development of the Macintosh Operating System 
into a multitasking environment in which multiple applications can be active and must share 
the available system resources. The facilities provided with earlier versions of system 
software by the optional MultiFinder® package are now an integral part of system software 
version 7.0. This means that your application must display a certain awareness that other 
applications might be open at the same time and competing with it for processing time, 
memory, control of communications ports, and so forth. 

Although most operating systems regulate the sharing of available resources by having the 
system parcel them out, the Macintosh Operating System relies on the willingness of fore-

3-10 Running in System Software Version 7.0 

IPR2017-01828 
Ubisoft EX1002 Page 143



Compatibility Guidelines 

ground and background applications to share those resources among themselves. For example, 
you can indicate your application's memory requirements by specifying a minimum memory 
partition size (below which that application does not execute) and a preferred partition size (at 
which the application executes best). The Operating System itself has very little control over 
the partition size allotted to your application, other than by limiting that size to the available 
memory. Similarly, the Operating System has very little control over which applications 
receive processing time because the user ultimately decides when to bring a background appli
cation into the foreground. If your application holds onto the microprocessor for too long 
while being switched into the background, other applications may appear sluggish and 
unresponsive. 

The lesson to be learned from all this is that in system software version 7 .0 your application 
must be a good neighbor. You cannot expect the Operating System to force responsible 
behavior on your application; rather, you must ensure that your application can happily 
coexist with other open applications by following these guidelines: 

• Include a 'SIZE' resource (with resource ID -1) that specifies reasonable minimum and 
preferred memory partition sizes; if you occasionally need larger amounts of memory, 
use the temporary memory routines described in the Memory Management chapter in 
this volume. 

• Use the WaitNextEvent function instead of the GetNextEvent function in your main 
event loop to obtain events from the Toolbox Event Manager; this allows other 
applications to use processor time your application doesn't need and allows your 
application to perform operations while it is in the background. 

• Modify your main event loop to process suspend and resume events; this reduces the 
time it takes to switch your application into the foreground or background. 

For a more complete discussion of using WaitNextEvent and processing suspend and resume 
events, see the Event Manager chapter in this volume. That chapter also includes a description 
of the multitasking environment that is standard in system software version 7 .0. 

Supporting Required Apple Events 

Possibly the most significant new feature in system software version 7.0 is interapplication 
communication (IAC), which will play an increasingly important role in future versions of 
the Macintosh Operating System. One central part of IAC is the addition of high-level events 
to those events that the Event Manager receives and conveys to applications. High-level 
events allow applications to communicate with one another by putting events in each other's 
event queues. 

Apple Computer, Inc. has defined a protocol for high-level events called the Apple Event 
Interprocess Messaging Protocol. High-level events that adhere to this protocol are called 
Apple events. Some Apple events must be supported by an application that supports any 
Apple events; these are known as required Apple events. With a minimal amount of work, 
you can modify your main event loop so it supports the required Apple events. In doing so, 
you increase the level of compatibility of your application and ease the transition to the day 
when applications will expect other applications to support Apple events. 

For information on how to support the required Apple events, see the Apple Event Manager 
chapter in this volume. 

Running in System Software Version 7.0 3-11 

IPR2017-01828 
Ubisoft EX1002 Page 144

Compatibility Guidelines

ground and background applications tu share those resources among themselves. Por example,
you ¢an indicate your application's memory requirements by specilying a minimum memory
partition size (below which that applicution does net execute) and a preferred partition size (al
which the application executes best). The Operating Systemitself has very litde control over
the partition size allotted to your upplication. other than by limiting that sivc to the available
Themory. Similarly, the Operating System has very litle central aver which applications
receive processing lime because the user ultimately decides when to bring a background appli-
cation inte the foreground. 1 your application holds ante the microprocessor for loo long
while being switched inte the backe round, alher applications may appear sluggish and
UNnreSspansive.

The lesson to be leamed from all this is that in syslem software version 7.0 your application
must be a good neighbor. You canaat expect the Operating System to force respotisible
behiavigd on your application: rather. you Must ensure that your application can happily
cocaist With other opto appheations by fallawing these guidelines:

m Include a SCAR’ resource (with resource (0 -1) (hat specifies reasonable minimutn and
prefered memorypartition sives; if you Occasionally need larger amounts of memory,
use Lhe lemporury memory coulines described in the Memory Management chipter in
this volume.

a Use the WaitWextLvent function instead of the GetNextEvent finclion in your main
event loop tu obtain events fram ihe Toolbox Event Manager, this allows other
applications to use processor time your application doesn't need and allows your
application ta perform operations whilg ib is in (he background.  a Modify your rmiin event loop to process suspend and resume events: this reduces the
time it lakes to swith your application into the foreground or background. LOTa9

For a mare complete discussion of using WaitNexlEvent and processing suspend and resume
events, see the Fvcot Manager chapter in this volume. That chapter also includes a description
of the multitasking environment that is standard in system software version 70.  SALTPPAOpAW]
Supporting Required Apple Events 

Possibly the most significant newfeature insystem software version 7 Qs interapplication
communication (AC), which will play an increasingly important role in future versions af
the Macintosh Operating System. One central pan ef TAC ts the addition of high-level events
to those events that the Event Maaager receives and conveys to applications. High-level
events allowapplications to communicate with one another by pulting events in each other's
evcnl queues.

Apple Computer, Inc, has defined a protocol fer high-level events called the Apple Fvent
Interprocess Messaging Protocol High-level events that adhere to this protecel are called
Apple events. Some Apple events must be supparied by an appheation that supports any
Apple events: hese ure known as required Apple events. With a minimal amount of work,
YOU can modify your main event loop se iu supports the required Apple events. [n doing sa,
YOU increase the level of compatibility of your application atid case the Lransition to the day
when applications willexpect other applications to suppor Apple events.

For information on how to support the required Apple events. see the Apple Event Manager
chapter in this volume,

Running in System Software Versient 70 aff

IPR2017-01828

Ubisoft EX1002 Page 144



IPR2017-01828 
Ubisoft EX1002 Page 145

 
Inside Macintosh, Volume VI

Removing Font Size Restrictions

System software version 7.0 introduces outline fonts, known as TrueType™fonts. An
outline font can be printed or displayed at any pointsize without the jagged appearance of
some bitmapped fonts. A 7.0-friendly application should allow its users to take advantage of
this improvement. Minimally, this means that users should be able to ask for any point size
up to 32,768. Many applications now let users specify font sizes up to 127 points, but you
should removeeventhis limitation when running in version 7.0. In addition, your application
should allow users to increase or decrease the font size by 1 point.

Youcan use the IsOutline routine, documented in the Font Managerchapterin this volume,to
see if a particular font is an outline font. If itis, you might wish to indicate that fact in your
font size menu. For example, suppose that your Size menufor a particular bitmapped font
lookslike the one in Figure 3-1.

 
Figure 3-1. The size menu for a bitmapped font

To provide a visual indication that the selected font is an outline fontthat looks good at any
size, you might change the menuto look like the one in Figure 3-2. One waytodothis is
by outlining all listed sizes, as well as the Other item.

© Point
10

v2
14
18
aa

ORMEoo.
 

Figure 3-2. The size menu for an outline font

The User Interface Guidelines chapter in this volume contains additional suggestions on
incorporating outline fonts into your application.

3-12 Running in System Software Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 145



IPR2017-01828 
Ubisoft EX1002 Page 146

Compatibility Guidelines

Operating With Virtual Memory

System software version 7.0 supports virtual memory, a memory management schemethat
extends the logical address space of the machine by using part of the available secondary
storage (usually, a hard disk) to store parts of memory that are not currently in use. When
virtual memory is present, the perceived amount of RAM can extend up to 14 megabytes on
systems with 24-bit ROMsand upto 4 gigabytes on systems with 32-bit clean ROMs.
Because the Operating System has more addressable memory, your applications can ask for
and receive larger blocks of memory than they would if virtual memory were notavailable.

Virtual memoryis available only on machines equipped with a memory managementunit
(MMU). Currently, these machines include 68030-based machines (where the MMUis built
into the CPU) as well as 68020-based machines that contain the 68851 Paged Memory
Management Unit. You can use the Gestalt function to determine whether virtual memory is
installed. Ifit is, you may need to exercise caution to ensure that the normally invisible
operation of virtual memory does not adversely affect the execution of your application.
Applications that might need to be concerned with virtual memory include those that have
critical timing requirements, execute code at interrupt time, or perform debugging operations.

Note: The vast majority of applications do not need to know whethervirtual
memoryis installed.  Onctype of application that might need to know if virtual memory is operating is a multi-

media application that manages very large images or incorporates many soundsinto its
presentations. Imagine that such an application wants to display a large numberofintricate
color imagesin rapid succession, and that some of those imagesare as large as a megabyte
each.If virtual memoryis operating, it is very likely that parts of those imagesare on disk
whenthey needto be displayed. This means that in the middle of drawing a picture, the
system has to stop long enough to read those parts of the picture off the disk. The result is
that a noticeable delay may occur, which may be unacceptable.

In a caselike this, you can use routines that lock the appropriate data into RAM sothat
displaying the image requires no disk access. These routines are fully documentedin the
Memory Managementchapterlater in this volume. Other software that may need to know
about those routines includes drivers, interrupt code, and debugging applications.  SSEULESOULULees
Enabling Menus During a Modal Dialog

The Dialog Managerin system software version 7.0 has been modified to makeit easier for
your application to allow access to the menu bar during a modal dialog. Sometimesit is
useful (or even necessary) for usérs to be able to make menuselections while your
application is displaying a modal dialog box. For example, a user might want to turn on
Balloon Help during a modal dialog. Similarly, if the modal dialog box contains several
editable text fields, the user might find it simpler to copy text from onetextfield and paste
it into another.

Running in System Software Version 7.0 3-13

IPR2017-01828

Ubisoft EX1002 Page 146



IPR2017-01828 
Ubisoft EX1002 Page 147

 

 
Inside Macintosh, Volume VI

In previous system software versions, user access to menus in the menu bar wasprohibited
during a modaldialog unless your application specifically allowed it. Moreover, keyboard
equivalents of the standard Edit menu commandsdid not operate correctly in a modal dialog
box unless your application provideda filter procedure to replace the standardfilter procedure.

In system software version 7.0, the user can access selected menusin the menubar during a
modal dialog. When your application displays a modal dialog window (of type dBoxProc),
these actions occur:

1. All menu items in the Help menuare disabled, exceptthe Show Balloons(or Hide
Balloons) command, which is enabled.

2. All menu items in the Application menu are disabled.

3. If the Keyboard menu appears in the menu bar(thatis, if there is more than one script
system installed in the system or if the smfShowlIcon bitis set in the Script Manager
flags long word), thal menu is enabled, but the About Keyboards commandis disabled.

In addition,if your application then calls the ModalDialog procedure, several other
actions occur:

4, All your application’s menusare disabled.

5. If the modal dialog box contains a visible and active editable text field and if the menu
bar contains a menu having commands with the standard keyboard equivalents
Command-X, Command-C, and Command-V,then those three commandsare enabled.
The user can then use either the menu commandsortheir keyboard equivalentsto cut,
copy, and paste text. (The menu item having keyboard equivalent Command-X must be
one of the first five menu items.)

Whenthe user dismisses the dialog box, all menus are restored to the state they were in prior
to the appearance of the dialog box.

There are some cases in which actions 4 and 5 do not occur when you call ModalDialog.
The enabling and disabling described in steps 4 and 5 does not occurif any of these
conditions happen:

a Your application docs not have an Apple menu.

a Your application has an Apple menu,but the menuis disabled when the dialog box
is displayed.

= Your application has an Apple menu,butthe first item in that menu is disabled when
the dialog box is displayed.

Note: If your application already handles access to the menu bar during a modal
dialog and you do not want the automatic menu enabling and disabling provided by
system software version 7.0 to occur, you should ensure that one or more of those
conditions is true when you display a modal dialog box.

3-14 Running in System Software Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 147



IPR2017-01828 
Ubisoft EX1002 Page 148

 

Compatibility Guidelines

Coexisting With the System Menus

In system software version 7.0, the menu bar may contain as many as four system menus,
which are menus that provide access to system features such as application switching,
Balloon Help, and keyboard scripts. The four system menus are the Apple menu, the
Application menu, the Help menu, and the Keyboard menu.All four of these menus have
icons astitles. The Apple menuicon is located in its usual location at the left side of the
menubar, but the three other menu icons are positionedat the right side of the menu bar.

The system menuicons are drawn automatically in the menu barof any application that
supports an Apple menu andthat uses the default system menubar definition procedure
(that is, resource of type 'MBDF' having ID 0). The Application menuiconis always
drawn. The Help menu icon is drawnif spaceis available, and the Keyboard menuicon
is drawnif space is available and if more than onescript system is available in the system.

Both the Help menu icon and the Keyboard menu icon disappear from the menu bar if your
applicationinstalls a menu whosetitle hasa right side that extendsinto the space occupied
by oneorboth ofthose icons. This allows your application to reclaim any space in the
menu bar that would have been occupied by oneor both of those two menuicons,if
necessary. However, the Application menu iconis always displayed in the menubar.If
yourapplication installs a menu whosetitle is long enough to overlap space occupied by
the Application menuicon, the overlapping portion of thattitle is placed behind the
Application menuicon.

 
 

The system menusareinstalled into your application’s menulist, so you should not make
any assumptions aboutthelast item (or items) in your menulist. Your application receives
notice of mouse-downevents in the menu bar, even when those events concern system
menus. You canstill call MenuSelect in response to a mouse-downevent in the menu bar,
however, because MenuSelectreturns either0 in the high word when the Apple, Application,
or Keyboard menuis selected, or the HelpMgrID constant when the Help menuisselected.

 
tinea
rs SOateeSCLLCreating Movable Modal Dialog Boxes

The Window Managerin system software version 7.0 allows you to create a new type of
window,called a movable modal dialog box, by specifying the following constant as the
window definition ID when youcall NewWindow:

CONST movableDBoxProc = 5; ‘movable modal dialog box}

The UserInterface Guidelines chapterin this volume contains illustrations of movable modal
dialog boxes and recommendationsfor their use. Note carefully that it is your application’ s
responsibility to ensure that any movable modal dialog boxes you create display the behavior
describedthere. In particular, you must providethe code that prevents the user from bringing
another window in yourapplication forward while a movable modal dialog box is displayed.

Note: The term movable modal dialog boxis likely to cause confusion because
windows you create with the movableDBoxProc window definition ID cannot, in
general, be manipulated like other (nonmovable) modal dialog boxes. Kor example,
you shouldnotcall the ModalDialog procedure when the frontmost windowis a
movable modal dialog box.

Running in System Software Version 7.0 3-15

IPR2017-01828

Ubisoft EX1002 Page 148



IPR2017-01828 
Ubisoft EX1002 Page 149

Inside Macintosh, Volume VI

Creating Pop-Up Menus

The Control Manager in system software version 7.0 makes it much casier for you to create
pop-up menus. Pop-up menus provide the user with a simple way to select from amonga list
of choices without having to move up to the menu bar. Theyare particularly useful in a dialog
box that requires the user to specify a numberof settings or values. Figure 3-3 shows a pop-
up menu in both its inactive and active states.

Inactive state Active state.

Baud Rate:| 400 v|
7

Pop-up title Pop-up box

 

   
Gr eeCae

Figure 3-3. A pop-up menuin its inactive and active states

Prior to system software version 7.0 (or on earlier systems running without the
Communications Toolboxinstalled), the easiest way to create pop-up menus wasto create the
pop-uptitle as a staticText item in a dialog item list and the pop-up box as a user item, Your
application then needed to draw a box around that user item, draw the drop shadow,and
insert text into the box. Then you could call the PopUpMenuSelect function to draw the pop-
up menu and track the cursor within the menu, making sure to invert the pop-up title while
the menuis active (to duplicate the behavior of menutitles in the menu bar).

The Control Manager in system software version 7.0 allows you to create a pop-up menuas
a new type of control by using the following constant when you call NewControl:

 CONST popupMenuCDEFProc = 1008; “pop up menu}

If you specify popupMenuCDEFProc(plus any appropriate variation code) as the procID
parameter in NewControl (or specify it as the procID of a control that you open with
GetNewControl), the Control Manager creates a pop-up menu control, which includes
the pop-uptitle and the pop-up box with a one-pixel drop shadow. The appearanceof the
pop-up title and the values in the menu are controlled by other parameters passed to
NewControl (or stored in a resource), as describedlater in this chapter.

In system software version 7.0, the control definition function specified by the constant
popupMenuCDEFProc also draws the downward-pointing triangle in the pop-up menu. Note
that the triangle is not drawn automatically in earlier system software versions.

To creale a pop-up menu,call NewControl and specify popupMenuCDEFProc (plus any
appropriate variation code) as the procID parameter.

3-16 Running in System Software Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 149



IPR2017-01828 
Ubisoft EX1002 Page 150

 

Compatibility Guidelines

FUNCTION NewContro_ (theWindow: WindowPtr; boundsRect: Rect;
title: Str255; visible: Boolean; value: Integer;
min: Integer; max: Integer; procID: Integer;
refCon: LongInt) : ControlHandle;

The value, min, and max parameters behave differently with pop-up menus than with other
controls created with NewControl. You can specify constants listed below to control the
appearance andlocation oftext in the control. If NewControl returns successfully (thatis, if
the returned ControlHandle is not NIL), the control minimum and maximum values contain
information about the new pop-up menu,as describedlaterin this section. In addition,
NewControl may modify the boundsRect parameterto reflect the actual width of the pop-up
menu box that is created.

Whenyou call NewControl, the value parameter specifies the mannerin which thetitle of the
pop-up menuis to be aligned and drawn. The value parameter should be some combination
of the following constants:  CONST popupTitleLeftJust = $0000; {left alignment}

popupTitleCenterJust = $0001; {center alignment}
popupTitleRightcust = SCOFF; {right alignment}
popupTitleBold = $0100; {bold text}
popupTitlelItalic = $0200; {italic text}
popupTitleUnderline = $0400; {underlined text}
popupTitleOutline = $0800; {outlined text}
popupTitleShadow = $1000; {shadow text}
popupTitlecondense = $2000; {condensed text}
popupTitleExtend = $4000; {extended text}
popupTitleNoStyle = $8000; {unstyled text}

 
Figure 3-4 illustrates the appearance of the pop-up control if you pass the popupTitleRightJust
constant. Note that the position of the pop-up box and the pop-uptitle are reversed from their
default (left-aligned) positions.

saulpepins)Ayyiqnedwoy¢
  aiace

 
Figure 3-4. A pop-up control that is right-aligned

You can also pass a sum of constants in the value parameter to draw the pop-up title with
more than one of these characteristics. If NewControl completes successfully, the value
parameter contains the current minimum value of the menu. Your application can then use
the value of the control to determine the currently selected item.

Running in System Software Version 7.0 3-17

IPR2017-01828

Ubisoft EX1002 Page 150



IPR2017-01828 
Ubisoft EX1002 Page 151

 
Inside Macintosh, Volume VI

The min parameter specifies the resource ID of the menu in the pop-up control when the
control is being created. After the control has been created, the pop-up menu control
definition sets the minimum value of the control to I.

The max parameter specifics the width of the pop-up title area when the controlis being
created. After the control has been created, the pop-up menu controldefinitionsets the
maximum value of the control to the numberof items in the pop-up menu.

The procID parameter should contain the value popupMenuCDEFProcplus any desired
variation code. Currently recognized variation codes are defined by constants:

CONST popupFixedWidth = $0001; fuse tixed: width ccrtrol}
popupUseAddResMenu = $0004; {use resource for menu}
popupUsewFont — $0008; {use window font}

; Constant Description3
Hi

i popupFixedWidth Uses a constant control width. If your application specifies this
:y value, the pop-up menu control definition function does not

resize the control horizontally to fit long menu items. The width
of the pop-up boxis set to the width of the control, minus the
width of the pop-up title your application specifies when it
creates the control. If the contents of the pop-up box do notfit
into the space provided, the text is truncated to fit and ellipses
(...) are appendedto its end. If you do not specify this variation
code, the contents of the pop-up box are guaranteedto fit
because the pop-up menucontrol definition function resizes
the control horizontally (up to the size of the control’s bounding
rectangle).

,_sneaaeiles

popupUseAddResMenu Gets menu items from a resource. If your application specifies
this value, the pop-up menu contro] definition function
interprets the refCon parameter passed to NewControlas a
value of type ResType that specifies the resource type to load
into the menu (using the AddResMenu procedure).

popupUseWFont Uses the font of the specified window. If your application
specifies this value, the pop-up menu control definition
function draws the pop-up menutitle using the font and size
of the grafPort that owns the control. In addition, the pop-up
menu, whenactive, is to use the font and size of that grafPort
instead of the standard systemfont.

The refCon parameteris a long integer thatis available for your application’s use. However,
if you specify popupUseAddResMenuasa variation code, the valuc in the refCon parameter
is typecast to the type ResType and is used by AddResMenuto add itemsto the pop-up
menu. For example,if the value in the refCon parameter is LongInt(FONT"), the pop-up
menu control definition function appendsa list of the fonts installed in the system to the menu

3-18 Running in System Software Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 151



IPR2017-01828 
Ubisoft EX1002 Page 152

Compatibility Guidelines

associated with the pop-up menu control. After the control has been created, your application
can use the control handle’s refCon field for whateveruse it requires. You can determine
which menuitem is currently selected by calling GetCtlValue.

Wheneverthe pop-up control is redrawn, the control definition function calls the CaleMenuSizce
procedure. This procedure recalculates the size of the menu associated with the control (to
allow for the addition or deletion of items in the menu). The control definition function may
also update the width of the pop-up menu control to the sum of the width of the pop-upttle,
the width ofthe longest item in the menu, the width of the downward arrow,and a small
amount of white space. As previously described, your application can override this behavior
by using the variation code popupFixedWidth.

You can obtain the menu handle and the menu ID of the menu associated with the pop-up
control by dereferencing the contr]Datafield of the control record. The contrlDatafield is a
handle to a block of private information. For pop-up menu controls, this ficld is a handle to
a popupPrivateData structure:

 TYPE popupPrivateData =
RECORD

mHandle: MenuHandle; {handle to menu}
miD: Integer; {menu ID}
mPrivate: ARRAY(C..0] OF SignecByte {reserved}

END; 

The mHandlefield contains a handle to the menu. The mlIDfield is the ID of the menu. The
mPrivate field is reserved.

Manipulating Dialog Item Lists

The Dialog Managerin system software version 7.0 includes several new routinesthat
makeit easier for you to manipulate dialog item lists. You can count the numberof items
in a dialog list by using the CountDITL function. You can add itemsto an item list by using
the AppendDITL procedure and removeitems from the end of an item list by calling the
ShortenDITL procedure.

oy)

eo
3a]
=
=A
cs=on

ast

oO==-
=
<
=iga

 
These Dialog Managerextensions are available in system software version 7.0 and also on
any earlier system that has the Communications Toolbox installed. Before calling these
routines, you should makesurethat they are available by calling the Gestalt function with
the gestaltDITLExtAttr selector.

Counting Items in a Dialog Item List

You can call the CountDITL function to count the items in a dialog item list.

FUNCTION CountbDiTh (theDiaiog: Dialogbtr) : integer;

CountDITL returns the numberof items in the dialog item list associated with the dialog box
pointed to by the parameter theDialog.

Running in System Software Version 7.0 3-19

IPR2017-01828

Ubisoft EX1002 Page 152



IPR2017-01828 
Ubisoft EX1002 Page 153

 

 

Inside Macintosh, Volume VI

Appending Items to a Dialog Item List

Youcan call the AppendDITLprocedure to append itemsto the end of a dialog item list.
 

PROCEDURE AppendDITL (theDialog: DialogPcr; theDITL: Handle; metkod:
DITLMethod}) ;

  
 

The parameter theDialog specifies the dialog box to whose item list you want to append
items. The parameter theDITLis a handle to the item list you want to appendto that dialog
box’s existing item list. The method parameter specifies the manner in which you want the
new item list to be appended. The available methods are defined by constants of type
DITLMethod:

TYPE DITLMethod = Integer;

CONST overltayDITL = 0; Coverlay existing items}
apperdDITLRight = 1; ‘append at right}
apperdDITLBottom = 2; ‘append at bottom}

Considerthe initial dialog box andlist of items to be appendedthatare illustrated in
Figure 3-5.

(0,0) —— (0,0) ——

   
Initial dialog box Items to be appended

Figure 3-5. An initial dialog box and a list of items to append

If the method parameter is overlayDITL,the items to be appended are superimposed on any
existing items in the dialog box. Figure 3-6 showsthe result of overlaying new dialog items.

 

(0,0) ——

Item 3 ftem 1    
Figure 3-6. The dialog box after items are overlaid

3-20 Running in System Software Version 7.0

IPR2017-01828

Ubisoft EX1002 Page 153



IPR2017-01828 
Ubisoft EX1002 Page 154

Compatibility Guidelines

The positions of the new items are determined by the coordinate system of the initial
dialog box.

If the method parameter is appendDITLRight, the new items are appendedto the rightof the
dialog box, asillustrated in Figure 3-7.

(0,0) ——

  
 

Figure 3-7. The dialog box after items are appendedto the right

Thepositions of the new items are offset by the upper-right coordinate of the port rectangle
of theDialog. AppendDITL automatically expands the dialog box to accommodate the new
dialog items. If you know that your application will need to restore a dialog box to the size
it was before you called AppendDITL,you should save the original size before calling
AppendDITL.

If the method parameter is appendDITLBottom,the new items are appended to the bottom of
the dialog box,as illustrated in Figure 3-8.

(0,0) ——

we

O2
ea
===4
=
=7>

as}

Q
=afa)
=
Eepwn 

Figure 3-8. The dialog box after items are appended to the bottom

Thepositions of the new items are offset by the lower-left coordinate of the original dialog
box. AppendDITL automatically expandsthe dialog box to accommodate the new dialog
items. If you know that your application will need to restore a dialog box to the size it was
before you called AppendDITL, you should save the original size before calling AppendDITL.

Running in System Software Version 7.0 3-2]

 
 

IPR2017-01828

Ubisoft EX1002 Page 154



IPR2017-01828 
Ubisoft EX1002 Page 155

 

Deee

ANEENttSOASSSAISIirraSSGi132A
Inside Macintosh, Volume VI

You can appenda list of dialog itemsrelative to existing items in the dialog box by passing a
negative numberin the method parameter. The absolute value of this numberis interpreted as
the item in the dialog box relative to which the new itemsareto be positioned. For example,
if the method parameter is —2, the items to be appendedareoffset from the upper-left corner
of item number 2,asillustrated in Figure 3-9.

(0,0) ——
 

 
Figure 3-9. The dialog box after items are appendedrelative to Item 2

Because Item 3 was appendedrelativeto the top-left corner of Item 2, it appears on top
of Item2.

Because AppendDITL modifies the contents of the parameter theDITL, your application must
get rid of the dialog item list after calling AppendDITL.Hereis a typicalcalling sequence:

myNewItems := GetResource('DITL', myID);
AppendDITI.(myDialog, myNewltems, apogendDITLBottom);
ReleaseResource (myNewltems) ;

Shortening a Dialog Item List

You can call the ShortenDITL procedure to remove items from the end ofa dialogitemlist.
 

  
PROCEDURE ShortenDITL (theDialog: DialogPtr; numberItems: Integer);

The parameter theDialog specifies the dialog box from whoseitem list you want to remove
items. The numberltems parameter specifies how many items to remove from the end of
the item list. Note that ShortenDITL does not automatically resize the dialog box.

 

LOCALIZING MACINTOSH PROGRAMS 

Localizationis the process of adapting an application to a specific language, culture, and
region. By planning ahead and makinglocalization relatively painless, you'll ensure that your
productis ready for international marketsin the future. This section provides a brief overview
of what you needto do to makeit easy to localize your application. For the complete account
of writing software that is compatible with Macintosh computers throughout the world, you
should read the TextEdit chapter and the Worldwide Software Overview later in this volume.
You should also consult the “Worldwide Software Development”section in the User
Interface Guidelines chapter of this volume.

3-22 Localizing Macintosh Programs

IPR2017-01828

Ubisoft EX1002 Page 155



IPR2017-01828 
Ubisoft EX1002 Page 156

Compatibility Guidelines

General Guidelines

The key to easy localizationis to store region-dependent information used by your application
as resources (rather than within the application’s code). Text seen by the user can then be
translated without modifying the code. In addition, storing such information in resources
means that your application can be adapted for a different area of the world simply by substi-
tuting the appropriate resources. Makesure thatat least the following kinds of information are
stored in resources:

w all text, including special characters and delimiters

m= menus and keyboard equivalents for menu commands(ifavailable)

m character, word, phrasc, and text translation tables

m address formats, including zip codes and telephone numbers

Whenyou create resources for your applications, rememberthe following key points:

a text needs room to grow (up, down, and sideways)

c translated text is often 50 percent larger than the U.S. English text

o diacritical marks, widely used outside the United States, may extend up to the
ascentline

 

L. some system fonts contain characters that extend to both the ascent and descentlines

= potential grammatical problems may arise from error messages, “natural” programming
language structures, and so forth

m text location within a window should be easy to change

7)

a
|S
a]
a]aey
==.
mrsCanal

ke

a
=afae]a=
Si

Localizing With the Toolbox

In addition to these general guidelines, you need to be aware of a host of other localization
issues, such as differences in script systems and measurement systems. The User Interface
Toolbox in system software version 7.0 contains updated versions of several packages and
managers that you can useto facilitate localization of your applications—TextEdit, the
International Utilities Package, and the Script Manager.

 
Perhaps the most importantlocalization tool is the Script Manager, which contains routines
that allow your application to function correctly with non-Romanscripts (writing systems).
The Script Managerfurnishes a standard interface that allows installation of different script
systems, maintains global data structures, supports switching keyboards between different
scripts, and provides a centra] dispatcher that gives your application access to script systems.
It also contains utilities for text processing and parsing, whichare useful for applications that
doalot of text manipulation. The Script Manager provides easy ways to translate your appli-
cation into another writing system and to coordinate with the International] Utilities Package.

The International Utilities Package provides routines for dealing with sorting, currency,
measurement systems, and date and time formatting. These tend to vary in some degree from

Localizing Macintosh Programs 3-23

 

IPR2017-01828

Ubisoft EX1002 Page 156



IPR2017-01828 
Ubisoft EX1002 Page 157

 
 

Inside Macintosh, Volume VI

script to script, language to language, and region to region, and your application should take
advantage of the Macintosh Operating System’s ability to presentthis information in the
correct format based on the current script. It is important that you use the routines in this
package rather than the Operating System Utility routines such as UprString (documentedin
VolumeIL); the Operating System Utility routines do not handle diacritical marks and
(because they are used by the File Manager) cannotbe localized for different countries.

TextEdit provides routines that handle basic text formatting and editing capabilities. such as
inserting new text or scrolling text within a window. The versions of TextEdit included in
system software versions 6.0.4 and later contain new features that allow them to work with
different scripts. For example, TextEdit takes advantage ofthe Script Manager’s handling
of double-byte characters to display scripts (such as Kanji) with improved accuracy and
consistency.

For more information about the enhanced versions of TextEdit, see the TextEdit chapterin
this volume. For complete information on both the International Utilities Package and the
Script Managcr, see the Worldwide Software Overview chapter.

RUNNING MACINTOSH PROGRAMS UNDER A/UX

A/UX is Apple’s version of the UNIX operating system, which provides a multitasking
and multi-user environment in which users can run applications. One of the most distinctive
features of A/UX in comparison with other implementations of the UNIX operating system
is its ability to run conforming Macintosh applications. Within limits described later in this
section, applications developed for the Macintosh Operating System using the standard
Macintosh User Interface Toolbox routines will execute under A/UX.

The ability to run Macintosh applications under A/UX is provided by enhancements to the
A/UX kernel and by a library of functions known as the A/UX Toolbox. The A/UX
Toolboxis a library of routines that enables a program running under A/UXto call
Macintosh Toolbox routines and native Macintosh Operating System routines. The A/UX
Toolbox provides a bridge between the Macintosh and A/UX environments,giving you
two kinds of code compatibility:

m You can execute Macintosh binary code (applications compiled in the Macintosh
environment) under A/UX, within the current limitations of the A/UX Toolbox.

a You can write common source codecthat can be separately built (that is, compiled and
linked) into executable code for both environments.

The A/UX Toolbox operates transparently to the user and to applications. This meansthat
(subject once again to qualifications detailed later) your applications developed for the
Macintosh Operating System should execute under the A/UX operating system.

This section briefly explains how the A/UX Toolbox works and then provides details on
writing Macintosh applications that execute under the A/UX operating system. A/UX
provides such a high level of compatibility with Macintosh applications that your existing
application may very well run under A/UX with no changes whatsoever. In general,if
your application conformsto the interfaces documented in Inside Macintosh, is MultiFinder-
aware, does not rely on low-memory global variables, and heeds the various guidelines
presented in “About Compatibility” earlier in this chapter, it should operate under A/UX.

3-24 Running Macintosh Programs Under A/UX

IPR2017-01828

Ubisoft EX1002 Page 157



IPR2017-01828 
Ubisoft EX1002 Page 158

Compatibility Guidelines

How the A/UX Toolbox Works

The primary function of the A/UX Toolboxis to make available to programs running under
A/UX the standard Macintosh support code described in Inside Macintosh. Mostofthe
support code consists of routines built into the Macintosh ROM.

The ROMroutinesfall into two categories, User Interface Toolbox routines and Macintosh
Operating System routines. The A/UX Toolboxuses one of two strategies for supporting a
call to a Macintosh ROMroutine, depending on whetherthecall is to the User Interface
Toolbox or to the native Macintosh Operating System.

When an A/UX Toolbox application calls one of the Macintosh User Interface Toolbox
routines, the A/UX Toolbox intercepts the call and, if necessary, translates the parameters
into a form usable by the ROM.After the A/UX Toolbox performsthe translation,it
invokes the ROM codethat would be uscd in the native Macintosh environment.

When an A/UX Toolboxapplication calls one of the Macintosh Operating System routines,
the A/UX Toolbox diverts the call to a substitute routine in its own library. The AYUX
Toolbox Operating Systemroutines call the standard A/UX libraries to perform the A/UX
equivalents of the Macintosh Operating System functions. The Macintosh Operating System
ROMcodeis never used under A/UX. Note that someof the built-in User Interface Toolbox

routines generate calls to the Macintosh Operating System routines; these calls are also
intercepted by the A/UX Toolbox and diverted to routines in its own library.

Figure 3-10 illustrates how the two elements of the A/UX Toolboxlibrary interact with the
application and the ROM code. linemes

Application running
under A/UX

Q

i]->co.
==
=>
a

<=
aio==
=]o2J

 

 

 
 

‘ Macintosh|A/UX Toolbox
Standard Macintosh : User ROMinterfaceA/UX S| oSsubset | Interface|routines
libraries ‘Toolbox

Macintosh ROM li lI
“ Macintosh

Macintosh User
Os | Interface

Toolbox

Figure 3-10. Intcractions among an application, the A/UX Toolbox, and ROM code

Running Macintosh Programs Under A/UX 3-25

 
 

IPR2017-01828

Ubisoft EX1002 Page 158



IPR2017-01828 
Ubisoft EX1002 Page 159

 
Inside Macintosh, Volume VI

Using the A/UX Toolbox

The primary limitation on Macintosh applications running under A/UXis that the A/UX
Toolbox does not currently support all managers and drivers. Table 3-1 summarizesthe status
of various ROM libraries in A/UX Release 2.0. Note that “Full” support for a manager or
driver means that the version of that managerreleased with system software 6.0.5 is available.
In particular, there is currently no support under A/UX for any of the new features introduced
in system software version 7.0.

Table 3-1. Status of User Interface Toolbox and Macintosh Operating Systemlibraries in
the A/UX Toolbox

ROMlibrary

Alias Manager
Apple Desktop Bus™
AppleTalk Manager
Binary-Decimal Conversion Package
Color Manager
Color Picker Package
Color QuickDraw
Control Manager
Data Access Manager
Deferred Task Manager
Desk Manager
Device Manager
Dialog Manager
Disk Driver

Disk Initialization Package
- Edition Manager
Event Manager, Opcrating System
Event Manager, Toolbox
File Manager
Floating-Point Arithmetic and

Transcendental Functions Packages
Font Manager
Gestalt Manager
Help Manager
International Utilities Package
List Manager
Memory Manager
Menu Manager
Notification Manager
Package Manager
Palette Manager
Power Manager
PPC Toolbox

Printing Manager
QuickDraw
Resource Manager
Scrap Manager
Script Manager
SCSI Manager

Implementation

None
None
Full
Full
Full
Full
Full
Full
None
None
Full
Full
Full
Full
Full
None
Partial
Full*
Full

Full*
Full
Full
None
Full
Full
Full
Full
Full
Full
Full
None
None
Full
Full
Full
Full
Full
None

3-26 Running Macintosh Programs Under A/UX

IPR2017-01828

Ubisoft EX1002 Page 159



IPR2017-01828 
Ubisoft EX1002 Page 160

Compatibility Guidelines

Table 3-1. Status of User Interface Toolbox and Macintosh Operating System librariesin
the A/UX Toolbox (Continued)

ROM library Implementation

Segment Loader Partial
Serial Driver Full

Shutdown Manager Full*
Slot Manager Full
Sound Manager Full
Standard File Package Pull
Startup Manager Full
System Error Handler Full*
TextEdit Full

Time Manager Full*
Utilities, Operating System Partial
Utilities, Toolbox Full
Vertical Retrace Manager Partial
Window Manager Full

Note: When A/UX implements a particular manageror driver, the version of that
manageror driver may not be the sameas the version available in the Macintosh
Operating System. This meansthat, whenever possible, you should use Gestalt to
check for the existence of the particular features your application needs. In managers
or drivers marked with an asterisk (*), all routines are implemented under A/UX,
but the behavior is not identical to that in the Macintosh Operating System. See the
publication A/UX Toolbox: Maciniosh ROM Interface for complete details on the
implementation of these managers anddrivers.

A/UX Compatibility Guidelines

The A/UX Toolbox has been designed to allow as many Macintosh applications as possible
to execute under the A/UX operating system. Because of profound differences betweenthe
two environments, however, it is possible that some applications may not execute correctly
under A/UX.By following these guidelines, you can help ensure that your Macintosh
applications run under A/UX.

oe

Q

:ae]3]==.
a
==Loa

Om

7)=
Eyic
=r
i=}ca")a 

= Makecertain that your application is MultiFinder-friendly. MultiFinder is a standard part
of A/UX,justas it is in system software version 7.0 (where the Finder™and the
Process Managerprovide the cooperative multitasking environment). Your application
should include a ‘SIZE’ resource and call the WaitNextEvent function in its main event

loop. Note that the version of MultiFinder included with A/UX Release 2.0 is
functionally equivalent to the version of MultiFinder released with sysicm software
version 6.0.5, but it has been customized for use under A/UX.

m Always usc the available managers and drivers to manipulate hardware devices.In the
Macintosh Operating System, individual processes and the variouslibraries can have
much more control over the system than under A/UX, where the kernel managesall
interaction between processes and the underlying hardware. In particular, do not attempt
to read data fromor write data to any of the memory-mapped hardware available on a
Macintosh computer.

Running Macintosh Programs Under A/UX 3-27

IPR2017-01828

Ubisoft EX1002 Page 160



IPR2017-01828 
Ubisoft EX1002 Page 161

 
 

Inside Macintosh, Volume VI

a Avoid relying on the low-memory global variables. Not all of them are available
under A/UX.

m Makecertain that your applicationis 32-bit clean (thatis, it operates in an environ-
ment whereall 32 bits of a handle or pointer are significant in determining memory
addresses).

a Use the Gestalt Manager to determine which versions of managers and drivers are
present in the current operating environmentbefore relying on features that are not
commonto all released versions. Generally, the versions of managers available under
A/UX Release 2.0 are the same as those versions included in Macintosh system
software version 6.0.5.

Finally, your application should conform to the programminginterfaces described in Inside
Macintosh and should follow the basic compatibility guidelines presented in “About
Compatibility” earlier in this chapter. For further details on running Macintosh applications
under A/UX,see A/UX Toolbox: Macintosh ROM Interface.

 

ABOUT THE GESTALT MANAGER 

The Macintosh family of computers includes many models of computers, andit is likely to
grow in the future. Macintosh software runs on a numberofdifferent processors, some of
which are accompanied by floating-point coprocessors or memory managementunits. In
addition, the installed versions of the system software, drivers, and QuickDraw routines may
vary from machine to machine. To ensure that your applications are maximally compatible
with existing and future versions of the Macintosh, you should keep references to specific
software and hardware features to a minimum.

In general, applications should communicate with the system software and hardware through
the available managers and device drivers. If, however, it is necessary or useful for your
applicationsto take advantage of software or hardware components that may notbe present
on all Macintosh computers, then you need some method of determining whether those
components are available. The Gestalt Managerserves this need by allowing you to get
information about the operating environmentin a simple and efficient manner.

System software version 7.0 introduces several new managers and makessignificant changes
to many existing managers. To take advantage of new version 7.0 features, and to run on as
many machinesas possible, it is more important than ever before that your application deter-
mine the software and hardware componentsavailablein a particular operating environment.
To help you develop software for the entire line of Macintosh computers, system software
version 7.0 includes the Gestalt Manager. This manager includes the Gestalt function, which
is a replacementfor both the Environs procedure and the SysEnvirons function. The Gestalt
function gives your application the ability to determine information about a large numberof
machine-dependentfeatures. You can use the Gestalt functionto find the following sorts of
information about the hardware configuration and operating environmentof the machine your
application is executing on:

a the type of machine

a the version of the System file currently running

3-28 About the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 161



IPR2017-01828 
Ubisoft EX1002 Page 162

Compatibility Guidelines

mw the type of CPU

m the type of keyboard attached to the machine

a the type of floating-point processing unit (FPU), if any

m the type of MMU,if any

m the size of available RAM

m the amountof available virtual memory

m the versions of various drivers and managers

a the features of various drivers and managers

m the version of QuickDraw currently present

m whether the A/UX operating system is running or not

How yourapplication usesthe resulting information depends on what yourapplication needs
to accomplish. For example, in a case wherecritical hardware features are not available, your
application mightdisplay an alert box to notify the user that the required hardware is missing
and then terminate. Orif your application has determined that Color QuickDrawis available,
it could execute alternate code to take advantage of the expanded capabilities of that software.

Associated with the Gestalt function arc two other functions—onethat allows an application
to register new features with Gestalt and another that allows an application to change the
function used by Gestalt to retrieve a particular piece of information. These two functions
makeit easy for your application to announceits presence to other applications, in case they
wish to alter their actions in view of the presence of your application. For example, a macro
utility that intercepts sequences of keyboard presses andtranslates them into othcr sequences
canregisteritself with Gestalt at system initialization time; afterward, other applications can
call Gestalt to determineif that utility is present. In this way, Gestalt can act as a central
clearinghousefor informationon the available hardware and software features of the
operating environment, including any third-party applicationsthat register themselves with
Gestalt. Gestalt therefore provides a further means of cooperation and awareness among
applications executing in the version 7.0 environment.

Althoughthe Gestalt function can provide your application with most of the basic information
it needs about particular software or hardware features, you maystill need to call other routines
to determine morespecific features. For example, if you need to determine the resolution of
the main Macintosh sereen, you can use the Toolbox Utility procedure ScreenRes. (See the
Toolbox Utilities chapter of Inside Macintosh, VolumeI, for a description ofthis procedure.)

The Gestalt function replaces both the Environs procedure and the current implementation
of the SysEnvirons function as the standard means of determining specific aspects of the
operating environment. The Gestalt function is simpler to usc and provides more information
than either of those routines. Applications that use SysEnvironsstill execute correctly in
system software version 7.0 (the SysEnvirons functioncalls the Gestalt function).

About the Gestalt Manager 3-29

duo)¢
i)
an
s
=<
QOi

=a
em
5for)wa

 

IPR2017-01828

Ubisoft EX1002 Page 162



IPR2017-01828 
Ubisoft EX1002 Page 163

 

Inside Macintosh, Volume VI

Use of the Environs procedure is no longer recommended because it encourages you to think
in terms of ROM versions, not in term of features that may be available. The Gestalt Manager
can also provide information such as ROMversion andsize, but you should not write appli-
cationsthatinfer the presence of particular software or hardware features on the basis of that
information. When you necd to know whethera particular feature is present, you should
request information aboutit directly, using the appropriate Gestalt selector.

Although youcanstill call the SysEnvirons function, the Gestalt Manager is simpler and
moreefficient, and is the recommended wayto get information about the operating environ-
ment. SysEnvirons returns a system environmentrecord containing nine different picccs of
information. Gestalt returns only the information requested by use of a specific selector code
parameter. In most cases, your application really needs only a part of what is contained in the
system environmentrecord. With Gestalt, your application can request only the information
it needs.

  USING THE GESTALT MANAGER

The Gestalt Manager includes three functions—Gestalt, NewGestall, and ReplaceGestalt.
You can usc the Gestalt function to obtain information about software or hardware compo-
nents available on the current machine. You can use NewGestalt to register new software
modules(such as drivers and patches) with the Opcrating System. Use ReplaceGestalt to
replace the function associated with a particular selector code by some other function.

Note: Most applications do not need to use either NewGestalt or ReplaceGestalt.

Determining Features of the Operating Environment

When yourapplication needs information about a specific software or hardware feature that
can be provided by the Gestalt function, your application can pass Gestalt a selector code
(or selector) as one of the parameters. The selector code is simply an indication of what
information your application currently needs. Therc are two types of selector codes—
predefined sclector codes that are always recognized by Gestalt, and application-defined
selector codes that applications may register with Gestalt by calling the NewGestalt function.

If Gestalt can determine the requested information,it returns that information in its second
parameter, known as the response parameter. If Gestalt cannot obtain the desired informa-
tion, it returns a result code indicating the cause of the error; in that case, the value of the
response parameter is undefined. You should always check the result code returned by
Gestalt to make sure that the response parameter contains meaningful information.

Note: When passed one of the predefined selector codes, Gestalt does not move
or purge memory andtherefore may be called at any time, even at interrupt time.
However, selector functions associated with application-dcfined selector codes may
moveor purge memory, and applications can alter Gestalt’s predefined selector
functions. As a result, it is safest to assume that Gestalt might always move or purge
memory. The NewGestalt function may move memory and should notbe called at
interrupttime. '

3-30 Using the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 163



IPR2017-01828 
Ubisoft EX1002 Page 164

Compatibility Guidelines

There are two types of predefined selector codes: codes that return information that your
application can usc to guide its actions (known as environmental selectors), and codes
that provide information only and should never be used as an indication of some feature’s
existence (known as informational selectors).

It is particularly important that you understand the difference between environmental and
informational selectors. The response returned by Gestalt whenit is passed an informational
selector is for your (or the user’s) edification only and should never be used by your application
as a meansof determining whether somespecific software or hardware feature is available.
For example, you can use Gestalt to test for the version of the ROM installed on a particular
machine, but you should neveruse this information to guide any of your application’s actions.
Routines you expect to be in ROM mayactually be in RAM; hence, you cannot determine that
someroutine usually found in ROM is not present simply by looking at the ROM version. Also,
routines contained in ROM mayhave been patched by the system at startup time, in which case
the system might not have the features that you think it has on the basis of the reported ROM
version. Similar remarks apply to other informational selectors such as ROM size, machine
type, and System file version.

You can use the following environmental selectors to determine information aboutthe
operating environment.

      

CONS'T

gestaltAdéressingModeAtzr = ‘addr'; {addressing mode attribuLles}
gestaltAliasMgrAttr = 'alis'; {Alias Mgr attributes} aa
cestaltAppleEventsAttr = 'evnt'; {App_e events attributes} 2
gestaltAppleTalkVersion = 'atlk'; {AppleTalk version} =
gesLalLAUXVersion = 'a/ux'; {A/UX version if present} cy
gestaltConnMgrAttr = 'conn'; {Connection Mgr attributes} =
gestaltCRMAttr = term '; {Comn Resource Mgr atirs} =
gesta_LCTBVersion = 'ctbv'; {Comm Toolbox version:> a
gestaitDBAccessMgrAttr = 'dbhac'; {Data Access Mgr attrs} =a
gestaitDITLExtAttr = 'Gicti't; ‘Dialog Mgr extensions} 7
gestaltEasyAccessAttr = 'easy'; {hasy Access attributes} =
gestaltEditionMgrAttr = ‘edin'; ‘Edition Ygr attributes} &
gestaltExtToolboxTable = 'xttt'; {Ext Toolbox trap table base}
gestaltFindFolderattr = ‘fold'; {FindFolder attributes}
gestaltFontMgrAttr > 'font'; {Fent Mgr attributes}
gestaltFPUType = '‘fpu '; {FPU type}
geslaltFSAttr = 'fs '; {file-system attributes}
gestaltFXfrMgrActr — 'fxfr'; {File Transfer Mgr attrs}
gestaltHardwareAttr = 'hdwr'; {hardware attributes}
gestaltHelpMgrAtts = 'help'; {Help Mgr attributes}
gesctalukeyboardType = 'kbd '; {keyboarc type}
gestaltLogicalPageSize = 'pgsz'; {logical pace size}
gestalctLogicalRAMSize = 'lrem'; {logical RAM size?
gestalzLowMemorySize = 'lmem'; {low-memory area size}
gestaltMiscAttr = 'misc'; ({riscellaneous attributes}
gestaltMMUlyve = 'mmu '; {MMU type}
gestaltNotificationMgrAtty = 'nmgr'; {Notification Mgr attrs}
gestallLNuBusConnectors = 'sltec'; {NuBus connector bitmap}
gestaltOSAttr - 'os '; {0/S attributes}
gestaltosSTable = 'ostt'; {0/S trap Lable base}

Using the Gestalt Manager 3-3]

IPR2017-01828

Ubisoft EX1002 Page 164



IPR2017-01828 
Ubisoft EX1002 Page 165

Inside Macintosh, Volume VI

 

  
  

gestaltParityAttr = 'prty'; {parity attributes}
gestaltPhysicalRAMSize = ‘tram '; {physical RAM size}
gestall PopupAt ur = 'pop!'; {pop-up CDEF attributes}
gestaltPowerMgrAttr = 'powr'; {Power Mgr attributes}
gestaltPPCToolboxAttr - 'ppe '; {PPC Toolbox attributes}
gestalt ProcessorType = 'proc'; {pxrcecessor type}
gestaltQuickcrawVersion = ‘qd '; {QuickDraw versicn}
gestaltResourceMgrAttr = 'rsre'; {Resource Mgr attributes}
gestaltScriptCount = 'scr#'; {# of active script systems}

gestaltSecriptMgrVersion = 'scri'; {Script Mgr version}
gestalzSerialAttr = 'ser '; {serial harcware attributes}
gestalUSoundAttr = 'snd '; {sound attributes}
gestaltStandardFileAttr = 'stdf'; {Standard File attributes}
gestalztStdNBPAttr - ‘nlup'; {StandardNBP attributes}
gesLali_TermMarAtLr = 'Lerm'; {Terminal Mer attributes}
gestalitlextkditVersion = 'te '; {TextFdit versior}
gestalztTimeMerVersion - 'tmgr'; {Tine Mgr versior}
gestaltToolboxtTable = 'tott'; {Toolbox trap table base}
gestaltVersion = 'vers'; {Gestalt version}
gestaltVMAttr = 'ym '; {virtual memory attributes}

 
The following informational selectors are provided for informational purposes only. You can
display the information returned when using these selectors, but you should neverusethis
information as an indication of what software features or hardware may be available.

CONST cestaltMacninelIcon = 'micn'; {machine ICON/cicn res ID}
cestaltMacnineType = ‘mach'; {machine type}
cestaltROMSize = 'rom '; {ROM size}
cestaitROMVersion = 'romv'; {ROM version}
cestaitSystemVersion ‘aysv'; (System Lile version}

“Interpreting Gestalt Responses”later in this chapter explains the exact meaning of each of
these selectors and of the values returned by Gestalt in each case.

Determining Whether Gestalt Is Available

 
Because the Gestalt Managercurrently exists only in system software versions 6.0.4 andlater
(and in ROM on the Macintosh Ici, the Macintosh Portable, and later machines), you should
makecertain that it is actually available before attemptingto call it. You can do this by using
the TrapAvailable function defined previously in “Determining Whether a Trap Is Available.”
Listing 3-2 uses that function to determine whether the Gestalt Manageris available.

Listing 3-2. Determining whether Gestalt is available

 
FUNCTION GestaltAvailable: Boolean;
CONST

_Gestalt = SALAD;
BEGIN

GestaltAvailable := TrapAvailable(_Gestait);
RNID;

3-32 Using the Gestalt Manager

 
IPR2017-01828

Ubisoft EX1002 Page 165



IPR2017-01828 
Ubisoft EX1002 Page 166

Compatibility Guidelines

Note: If you are using the MPW®development system version 3.2 orlater, then
you do not need to perform this check because that version provides glue routines that
allow youto call Gestalt even if it is not in ROM orin the System file. However,if
you are programming in assembly language, this glue is not provided (and youstill
necd to check that Gestalt is available before calling it).

If you need to know at several different places in your application whether Gestalt is
available, it may be more efficient to define a global Boolean variable that you can test
before calling Gestalt. Listing 3-3 illustrates how to do this. Once again, this code
uses the TrapAvailable function defined earlier.

Listing 3-3. Using Gestalt to determine the Time Manager version
VAR

gHasGestalt: Boolean; ‘true if Gestalz is implemented}

gHasGestalt := TrapAvailable(_Gestalt);

IF gHasGestalt THEN BEGIN
ny=rr := Gestalt (gestaltTimeMgrVersion, myFeature) ;
IF myErr <> noErr THEN

DoError (myErr);

 
 

   
END; 

This sample code returns (in the myFeature parameter) the version of the Time Manager
available on the current machine. Before using that information, however, you should test
the result code to makesure that Gestalt was able to determine the requested information.

a

eS2)
E=FScanal=

cs
=te
opre iw

Interpreting Gestalt Responses ETLRYATLL
When yourapplication calls Gestalt to get information about the operating environment, the
meaningof the value that Gestalt returns in the response parameter dependson the selector code
with whichit was called. For example, if you call Gestalt using the gestaltTimeMgrVersion
selector, it returns a version code in the low-order byte of the response parameter. In this case,
a returmed valueof3 indicates that the extended Time Manageris available.

 
In almostall cases, the last few characters in the selector’s symbolic name formasuffix that
indicates what type of value you can expect Gestalt to return in the response parameter. For
example,if the final characters in a Gestalt selector are Size, then Gestalt returns a size in the
response parameter. The following list shows the meaningfulsuffixes.

Suffix Meaning

Attr The returned value is a range of 32 bits, the meaning of which must be
determined by comparison with a list of constants. Note that bit 0 is the
least significant bit of the long word.

Using the Gestalt Manager 3-33

IPR2017-01828

Ubisoft EX1002 Page 166



IPR2017-01828 
Ubisoft EX1002 Page 167

 
Inside Macintosh, Volume VI

Suffix Meaning

Count The returned value is a numberindicating how manyofthe indicated type
of item cxist.

Size The returned valueis a size. Sizes reported by Gestalt are usually in bytes.

Table The returned valueis the base address of a table.

Type The returned value is an index describing,a particular type of feature.

Version The returned value is a version number. Implied decimal points may
scparatc digits of the returned value. For example, a value of $0605
returned in responseto the gestaltSystemVersion selector indicates that
system software version 6.0.5 is present.

Selectors that have the suffix Attr deserve special attention; they causc Gestalt to return a bit
field that your application mustinterpret in order to determine whether a desired feature is
present. For example, the gestaltOSAttr selector requests information about a number of
Operating System features. To determine whethera particular Opcrating System feature is
available, you need to read the appropriate bit in the response parameter, as Listing 3-4
illustrates.

Listing 3-4. Interpreting a bit ficld response
VAR

myBit: Integer;
myFeature: LongInt;
myErr: Integer;

  I= ghasGesta_t THEN BEGIN
myErr := Cestalt(gestaltOSAttr, myFeature);
IF myErr <> nokrr THEN

DoError (myErr)

    
 

 
 

ELS= BEGIN

ryBit := gestaltTerpMemSupport;
IF BitTst (@myreature, 31l-myBit) = TRUE ‘THEN

WriLebn('temporary memory support available’)
=S=LS&

WriteLn('temporary memory support not available');
END;

END; 

This code uses the Toolboxutility function BitTst to determine whetherthe appropriate bit in
Gestalt’s responscis scl to 1. Notice that because bit numbering with BitTstis the opposite of
the usual MC680x0 numbering scheme used by Gestalt, the bit to be tested must be subtracted
from 31. Also, the first parameter to BitTst is a pointer to a byte; hence the use of the @
operator. Your development system may have other ways of testing the appropriate bit. For
example, if you are using MPW,you could write the test like this:

TF Bist (myFeature, myBit) = TRUE THEN 

3-34 Using the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 167



IPR2017-01828 
Ubisoft EX1002 Page 168

Compatibility Guidelines

Interpreting Responses to Environmental Selectors

Gestalt returns one of the following responses when passed a predefined environmental
selector.

Selector Meaning

gestaltAddressingModeAttr Returns information aboutthe current addressing mode.

CONST gestalL32BitAddressirg
gestalt32BitSysZone
gestalt32BitCapable

:

ootA NrPsa
The gestalt32BitAddressing attribute indicates that the machine
started up with 32-bit addressing. The gestal(32BitSysZone
attribute indicatesthat the system heap has 32-bit clean block
headers (regardless of the type of addressing the machine
started up in). Sec the Memory Managementchapter for more
information about 32-bit addressing.

gestaltAliasMgrAttr Returns information about the Alias Manager.

CONST gestaltAliasMgrPresent = 0;

gestaltAppleEventsAttr Returns information about Apple events.
 CONST gestaltAppleEventsPresent = 0;

gestaltAppleTalkVersion Returns the version numberof the AppleTalk driver currently
installed. In particular, it returns the version numberofthe
.MPPdriver. The version numberis placed into the low-
order byte ofthe result, so you should ignore the three
high-orderbytesof the result. If an AppleTalk driver is
not currently open, the response parameteris 0. The driver
does not open until the user requests a network service (for
example, by running the Chooser).

ve

o)
g=

o~]2a=A
a—
dcon

Sas

2=
QaoO
=
5f@"]7)

gestaltAUXVersion Returns the version of A/UXifit is currently executing.
Theresult is placed into the lower word of the response
parameter. If A/UX is not executing, Gestalt returns

 
gestaltUnknownErr.

gestaltConnMgrAttr Returns information about the Connection Manager.

CONST gestaltConnMgzPresent = 0;
gestaltCornnMerCMSearchFix = 1;

The gestaltConnMgrCMSearchFix bit flag indicates whether a
fix is present that allows the CMAddSearch routine to work
over the mAttn channel.

wNaUsing the Gestalt Manager 3-

IPR2017-01828

Ubisoft EX1002 Page 168



IPR2017-01828 
Ubisoft EX1002 Page 169

Inside Macintosh, Volume VI

Selector Meaning

gestalt(C(RMAttr Returns information about the Communications Resource
Manager.

CONST gestaltCRMPresent = 0;

gestaltCTBVersion Returnsthe version numberof the Communications Toolbox.

gestaltDBAccessMgrAttr Returns information about the Data Access Manager.

CONST geszaltDBAccessMgrPresent = Q;

gestaltDITLExtAttr Returns information about the Dialog Manager.

CONST gestaltDITLExt Present = 0; 

If this flag bit is TRUE, then the Dialog Manager extensionsare
available. See “Manipulating Dialog Item Lists”earlier in this
chapter for details about the Dialog Manager extensions
included in system software version 7.0.

gestaltEasyAccessAttr Returns information about the status of Easy Access.

CONST gestaltEasyAccessoOle = 0;
gestaltEasyAccessoOn = 1;
gestaltEasyAccessSticky = 2;
gestaltEasyAccess Locked = 3;

gestaltEditionMgrAttr Returns information about the Edition Manager.

CONST gestaltEditionMgrPresent = 0;

 
gestaltExtToolboxTable Returns the base address of the extended Toolbox trap table.

gestaltFindFolderAttr Returns information about the FindFolder function.

CONST gestaltFindFolderPresent = 0;

gestaltFontMgrAttr Returns information about the Font Manager.

CONST gestaltOutlineFornts = 0;

gestaltFPUType Returns a value that indicates the type of floating-point
coprocessor currently installed, if any.

CONST gestaltNoFPU = 0;
gestalt68881 = 1;
gestalt68882 = 2;

gestaltFSAttr Returns information aboutthe file system.

CONST gestaltFullkxtFSDispatching = 0;
gestaltHasFSSpecCalls - 1;

Thebit gestaltFullExtFSDispatch indicates that all the routines
selected through the _HFSDispatch macro are avialable to
external file systems.

3-36 Using the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 169



IPR2017-01828 
Ubisoft EX1002 Page 170

Selector

gestaltFXfrMegrAttr

gestaltHardwareAttr

gestaltHelpMgrAttr

gestaltkeyboardType

gestaltLogicalPageSize

gestaltLogicalRAMSize

gestal(LowMemorySize

Compatibility Guidelines

Meaning

Returns information about the File Transfer Manager.

CONST gesLlalLFXfrMgrPresent = 0;

Returns information about the hardware configuration of
the machine.

CONST gestalftHasVIAl = 0;
gestaltHasVIA2 = 1;
gestaltHasASc = 3;
gestaltHasscc = 4;
gestaltHasSCSI - 7;

Returns information about the Help Manager.

CONST gestaltHelpMgrPresent = 0;

Returns a value that indicates the type of keyboard thatis
currently attached to the system.

 

CONST gestaltMacKkbd = 1;
gestaltMacAndPad = 23
gestaltMacPluskbd = 3;
gestaltExtADBKbd = 4; by

gestaltStdADBKhd = 5; on
gestalt PrtblADBKhd = 6; =
gestalt PrtblISokbd = 7; =
gestaltStdISOADBKbd = 8; =.

gestaltExtISOADBKbd== 9; 2
gestaltADBKbdII = 10; Bos

gestaltADBISOKbdII = 11; o

If the Apple Desktop Busis in use, there may be multiple =
keyboards or other ADB devices attached to the machine. Fwn
Gestalt returns the type of the keyboard on which the last
keystroke occurred.

Returns the logical page size. This value is an unknown on
68000-based machines because such machines do not have

logical pages. On those machines, Gestalt returns an error.

 
Returns the amount of logical memory available. This value
fs the sameas that returned by gestaltPhysicalRAMSize
when virtual memory is not installed. On some machines,
however, this value might be less than the value returned by
gestaltPhysicalRAMSize because some RAM maybe used
by the video display and the Operating System.

Returnsthe size (in bytes) of the low-memoryarea. The low-
memoryarea is used for vectors, global variables, and
dispatch tables.

Using the Gestalt Manager 3-37

IPR2017-01828

Ubisoft EX1002 Page 170



IPR2017-01828 
Ubisoft EX1002 Page 171

 
 

Inside Macintosh, Volume VI

Selector

gestaltMiscAttr

gestalIMMUType

gestaltNotificationMgrAttr

gestaltNuBusConnectors

gestaltOSAttr

gestaltOSTable

gestaltParityAttr

Meaning

Returns information about miscellaneous pieces of the
Operating System or hardware configuration.

CONST gestaltScrollingThrottle = 0;
gestalt SquareMenuBar = 2;

Returns a value that indicates the type of MMUcurrently
installed, if any.

CONST gestaltNoMMU
gestaltAMU
gestalt68851
gestalt68030MMU =

,

no4| WN© ’
:

Returns information about the Notification Manager.

CONST gestaltNotificationPresent = 0;

Returns information about the NuBus™slot connector loca-

tions. The value returned is a bitmap. For example, the value
returned on a Macintosh II would have bits 9 throughEset,
indicating that 6 NuBusslots are present (having locations
9 through E).

Returns general information about the Operating System,
such as whether temporary memory handles are real handles.
The low-order bits of the response parameter are interpreted
as bit flags. A flag is set to 1 to indicate that the correspond-
ing feature is available. Currently, the following bits are
significant:

CONST gestaltSysZoneGrowable
gestaltLaunchCanReturn
gestaltLaunchFullFileSpec
gestaltLaunchControl =
gestaltTempMemSupport =
gestaltRealTempMemory =
gestaltTempMemTracked =
gestaltIPCcSupport =
gestaltSysDebuggerSupport

 DBDrwAnDUOPWN©
i

See the Memory Managementchapterin this volumefor a full
explanation of the temporary memory features, and see the
Process Managementchapterfor a full explanation of the
launch control features.

Returns the base address of the Operating System trap table.

Returns information about the parity-checkingabilities of
the machine.

CONST gestaltHasParityCapability = 0;
gestaltParityEnabled = 1;

Note that parity is not considered to be enabled unless al/
installed memory is parity RAM.

1
3-38 Using the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 1771



IPR2017-01828 
Ubisoft EX1002 Page 172

Selector

gestaltPhysicalRAMSize

gestaltPopupAttr

gestaltPowerMgrAttr

gestaltPPCToolboxAttr

gestaltProcessorType

gestaltQuickdrawVersion

Compatibility Guidelines

Meaning

Returns the numberof bytes of physical RAM currently
installed.

Returns information about the pop-up control definition.

CONST gestaltPopupPresert = 0;

If the gestaitPopupPresentbit 1s set, the version 7.0 pop-up
control definition procedure is present. See “Creating Pop-Up
Menus”earlier in this chapter for details about creating pop-
up menus.

Returns information about the Power Manager,if present.

CONST gestaltPMgrFxists = 0;
gestaltPMgrcPUIdle = 1;
gestaltPMgrscc = 2;
gestaltPMgrSound = 3;

Returns information about the capabilities of the PPC
Toolbox.

CONST cgestaltPPCToolboxPresent = 0;

Returns a value that indicates the type of processorthatis
currently running.

CONST gestaits6g000 = 1;
gestalt6801C = 2;
gestalt6so20 = 3;
gestalt68030 = 4;

Returnsa 2-byte value indicating the version of QuickDraw
currently present. The high-order byte of that number repre-
sents the major revision number, and the low-order byte
represents the minor revision number. For example, the
Macintosh IIci contains QuickDraw version 2.0! in ROM;
on that machine, Gestalt returns the value $0201.

CONST gesta_tOriginalQD = $CQo;
gestaltOriginalQb. = $001;
gestalt8BitQD = $100;

as gesta.t32BitoD = $200;
gestalt32BitQb11 = $210;
gestalt32BitgQp12 = $220;
gestalt 32BitQD13 = $230;

Values having a major revision numberof | or 2 indicate that
Color QuickDrawis available, in either the 8-bit or 32-bit
version. These results do not, however, indicate whether a
color monitor is attached to the system. You need to use high-
level QuickDrawroutines to obtain that information.

Using the Gestalt Manager 3-39

eS

Oofa
3a=}

PsSOCLeMUL 
IPR2017-01828

Ubisoft EX1002 Page 172



IPR2017-01828 
Ubisoft EX1002 Page 173

Inside Macintosh, Volume VI

Selector Meaning

gestaltResourceMegrAttr Returns information about the capabilities of the Resource
Manager.

CONST gestaltPartialRsres = 0;

gestaltScriptCount Returns the numberof script systems currently active.

gestaltScriptMerVersion Returns the version numberof the Script Manager.

gestaltSerialAttr Returns information about the serial hardware of the machine
(such as whetheror not the GPIaline is connected and can be
used for external clocking).

CONST gestaltGPlaToDCDa = 0;
gestaltGPlaToRTxCa = 1;
gestaltGPlaToDCDb = 2;

gestaltSoundAttr Returns information about the sound capabilities of the
machine.

CONST gestaltStereoCapability =
gestaltStereoMixing =
gestaltSoundIOMgrPresent =
gestaltBuiltInSoundcInput =
gestaltHasSoundInpuldevice =

’
r
,robWROo ,

If the bit gestaltStereoCapability is TRUE,the available
hardware can play stereo sounds. Thebit gestaltStereoMixing
indicates that the sound hardware of the machine mixes both

left and right channels of stereo sound into a single audio signal
for the internal spcaker. The gestaltSoundIOMgrPresentbit
indicates that the newsound input routines are available, and
the gestaltBuiltInSoundInputbit indicates that a built-in sound
input device is available. The gestaltHasSoundInputDevicebit
indicates that some sound input deviceis available.

gestaltStandardFileAtir Returns information about the Standard File Package.

CONST gestaltStandardFile58 = 0Q;

If this flag bit is set to 1, you can call the four new
procedures StandardPutFile, StandardGetFile,
CustomPutFile, and CustomGetFile. (The name of
the constant reflects the enabling of selectors 5—8 on
the trap macro that handles the Standard File Package.)

gestaltStdNBPAttr Returns information about the call StandardNBP (Name-
Binding Protocol).

CONST gestaltStdNBPPresent = 0;

gestaltTermMgrAttr Returns information about the Terminal Manager.

CONST gestaltTermMgrPresent = 0;
 

3-40 Using the Gestalt Manager

 
IPR2017-01828

Ubisoft EX1002 Page 173



IPR2017-01828 
Ubisoft EX1002 Page 174

Compatibility Guidelines

Selector Meaning

gestaltTextEditVersion Returns a value that indicates which version of TextEdit is
present.

CONST gestaltTE1l =
gestaltTE2 =
gestaltTE3 =
gestaltTE4
gestaltT=5 =

,
,
: ; WmpeWMPR '

See the TextEdit chapter in this volume for further infor-
mation on the capabilities of the enhanced versions of
TextEdit.

gestaltTimeMegrVersion Returns a value that indicates the version of the Time
Managerthat is present.

 
CONST gestaltStandardTimeMgr = 1;

gestaltRevisedTimeMgr = 2;
gestalt=xtendedTimeMgr = 3;

See the Time Manager chapter in this volume for a complete
explanation ofthe capabilities of each of these three versions.

gestaltToolboxTable Returns the base address of the Toolbox trap table.

gestaltVersion Returns the version of Gestalt. The currentversionis 1,
correspondingto a returned value of $0001.

gestaltVMAttr Returns information about virtual memory.

CONST gestaltVMPresent = 0;

Interpreting Responses to Informational Selectors

Gestalt returns the following responses when passed a predefined informational selector.

A Warning: Neverinfer the existence of certain hardware or software features
from the responses that Gestalt returns to your application when you passit
these selectors. a

Selector Meaning

gestaltMachinelcon Returns an icon family resource ID for the current type of
Macintosh.

gestaltMachineType—Returns oneof the following values, indicating the type of
machine on which the application is currently running.

CONST gestaltClassic = 1; {Macintosh 128K}
gestaltMacxkL = 2; {Macintosh XL}
gestaltMac5S12KE = 3; {Macintosh 512KE}
gestaltMacPlus = 4; {Macintosh Plus}

  

Using the Gestalt Manager 3-4]

IPR2017-01828

Ubisoft EX1002 Page 174



IPR2017-01828 
Ubisoft EX1002 Page 175

Inside Macintosh, Volume VI

Selector Meaning

gestaltMachineType (continued)
 

 

 

 

gestaltMacSE = 5; {Macintosh SE}
gestaltMacIlI = 6; {Macintosh IT}
gestaltMacIIx = 7; {Macintosh IIx}-
gestaltMacIIcx = 8; {Macintosh IIcx}
gestLaltMacSE030 = 9; {Macintosh SE/20}
gestaltPortable = 1c; {Macintosh Portable}
gestaltMacIIci = 1s {Macintosh IIci}
geslLallMacII£x = 13; {Macintosh IIfx}
gestaltMacClassic = 17; {Macintosh Classic}
gestaltMacIIsi = 18; {Macintosh IIsi}
geslallLMacLc = 19; {Macintosh LC?

 
To obtain a string containing the machine’s name, you can pass the
returned value to GetIndString as an index into the resource of
type 'STR#' in the System file having resource ID defined by the
constant kMachineNameStID.

CONST kMachineNameStrID -— -16395;

gestaltROMSize Returns the size of the installed ROM. The valueis returned in
a word.

gestaltROMVersion—Returns the version numberofthe installed ROM.

gestaltSystemVersion Returns the version numberof the currently active System file.
This numberis represented as two byte-long numbers. For
example, if your application is running in version 6.0.4, then
Gestalt returns the value $0604. You should ignore the high-order
word of the returned value.

Adding Gestalt Selectors

You can add a new selector code to those already understood by Gestalt by calling the
NewGestalt function. The NewGestalt function requires two parameters. Thefirst parameter
is the new selector to be registered. The second parameteris the address of a selector
function. Gestalt executes the selector function when it needs to determine whatvalue to

pass back whenit is called after the new selector code.

The selector code is a four-character sequence of type OSType. For example, Carl's Object-
Oriented Linker mightregister itself using the selector code 'COOL’.If you have registered
a creator string with Apple, you are strongly encouragedto use that sequence as your
selector code.

Note: Apple reserves for its own use all four-character sequencesconsisting solely
of lowercase letters and nonalphabetic ASCII characters.

The selector function whose address you specify when registering a new Gestalt selector
code can be any function that resides in the system heap and whose calling syntax conforms

3-42 Using the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 175



IPR2017-01828 
Ubisoft EX1002 Page 176

Compatibility Guidelines

to that defined in “Specifying Gestalt Selector Functions”later in this chapter. Listing 3-5
illustrates how toinstall a simple function into the system heap and passits address to
NewGestalt.

Listing 3-5. Installing a selector function into the system heap

PROGRAM NewGestaltSample;
 

 

USES

Memtypes, OSIntf, ToolIntf, {standard includes}
PasLibInt£, {for standard I/O, etc.}
GestaltEqu, {for Gestalt}
Traps; {for trap numbers}

CONST

mySelector = 'COOL': {Gestalt function selector}
gstFuncRsrctType = 'GDEF'; {Gestalt function resource type}
gstFuncRsrcID = 128; {Gestalt function resource ID}

VAR

gestaltErr: OSErr; ferror returned by Gestalt}
gstFuncHandle: Handle; {handle to Gestalt function}
oldGestaltFune: ProcPtr; {pointer to old function}

BEGIN 

EN.

{first make sure that Gestalt is available}

IF NOT TrapAvailable(_Gestalt) THEN
BEGIN

WriteLn('Gestalt is not implemented.');
TEexit (1)

END;

{load Gestalt function resource into system heap}
gstFuncHandle := GetResource(gstFuncRsrcType, gstFuncRsrcID);
IF gstFuncHandle = NIL THEN

BEGIN

WriteLn('Could not load Gestalt function resource.');
TFRexit (1)

END;
 

{detach it from the resource map so it stays around}
DetachResource (gstFuncHand1]e) ;
{add the new selector; first assume that it doesn't already exist}

 
 

gestaltErr := NewGestalt (mySelector, ProcPtr(gstFuncHandle”) );
IF gestaltErr <> noErr THEN

BEGIN 

WriteLn('Could not add as a new selector.');

{try to replace existing selector}
gestaltErr := ReplaceGestalt (mySelector,

ProcPtr(gstFuncHandle*), oldGestaltFunc);
IF gestaltErr <> noFrr THEN
BEGIN

WriteLn('Could not replace selector either.');
TFexit(1);

END;
END;

WriteLn('Selector installed.');

DisposHandle(gstFuncHandle) ;
D.

 
Using the Gestalt Manager 3-43

 

 
i
o

ra}4

zcylang
=
4
on

oa
landPiac
Sa
c
=°t.

IPR2017-01828

Ubisoft EX1002 Page 176



IPR2017-01828 
Ubisoft EX1002 Page 177

 
Inside Macintosh, Volume VI

You can ensure that the new Gestalt selector functionis installed into the system heap by
defining it as a resource (in this case, of type 'GDEF') whoseresourceattributes are
resSysHeap and resLocked (in other words, lock the resource into the system heap). The
following linking instructions illustrate one way to accomplishthis:

 Link GestaltFunc.p.o -rn -ra =resSysHeap,resLocked -rt GDEF=128
-o NewGestaltSample

If you are not using MPW,you canset the resourceattributes by using ResEdit.

Listing 3-6 showsthe actual function definition, contained in the file GestaltFunc.p.

Listing 3-6. Defining a ncw Gestalt function

UNIT Gestaltfunc;
 
 
 

 

  
   

 

TNTERFACE
USES

GestaltEqu; {for Gestalt}
CONST

myResult = $87654321; {Gestalt function response}
FUNCTION gestalzCool (gestaltSei1ector: OSType;

VAR gestaltResponse: LongiInt) : OSErr;

IMPLEMENTATION

FUNCTION gestaltCool;
BEGIN

gestaltResponse := myResult; {return response}
gestaltCool := nokrr; {return no error}

END; 
END.

Because the new selector function resides in the system heap, Gestalt recognizes and
respondsto the new selector until the machinesrestarts, even if your application terminates
before that time. As a result, you might want your selector function to determine whether
your applicationis still running before returning a value to Gestalt. If your application has
terminated, the selector function should return an error.

Note thatif you try to register a selector that has already been registered with Gestalt, an
error results.

Modifying Gestalt Selectors

You can use the ReplaceGestalt function to modify the function that Gestalt executes when
passeda particular selector code. As with the function whose address is passed to NewGestalt,
the new function must reside in the system heap and have a calling syntax that conforms to
that defined in the following section, “Specifying Gestalt Selector Functions.” Listing 3-5
illustrates how to replace a Gestalt selector function.

3-44 Using the Gestalt Manager

IPR2017-01828

Ubisoft EX1002 Page 177



IPR2017-01828 
Ubisoft EX1002 Page 178

Compatibility Guidelines

To allow the new function to call the function previously associated with the selector in
question, the ReplaceGestalt function returns the address of the previous function.

If you attempt to redefine a selectorthat is not yet defined, an error is returned;in that case,
the address of the previous function is undefined. Accordingly, you should alwaystest the
result code of ReplaceGestalt before calling Gestalt with the selector in question.

Note: If you modify the function associated with a predefined Gestalt selector, do
not use any bits in the response parameter that are not documentedin this chapter.
Apple reservesall undocumentedbits in the response parameter returned by prede-
fined Gestalt selectors.

Specifying Gestalt Selector Functions

Whenyoucall the NewGestalt and ReplaccGestalt functions, you nced to supply the address
of a selector function that is called when someapplication passes the specified new or
replacementselector to Gestalt. This selector function should have the following syntax and
must reside in the system heap.

FUNCTION mySelectorFunction (selector: OSType; VAR response: LongtInt)
OSErr; 

Whenyoupass the new or replacementselector to Gestalt, Gestalt calls the specified selector
function to determine the information that Gestalt should pass back to the calling software.
Your function should place the result into the long integer pointed to by the response
parameter and should return the result code that Gestalt will return. This function should be
as simple as possible and cannot use global variables in the A5 world unless AS is set up
explicitly and then restored upon exit. (See the Memory Managementchapterin this volume
for an explanation of setting up and restoring the AS world.)

Yourselector function can, if necessary, call Gestalt and pass it other selector codes. Note
that the response variable parameteris the address into which your function should place the
information requested. You cannot depend on that address containing useful information
when yourselector functionis called.

oe)
-~Cl

=e}
eca==
a——==
a
~oP
=]—
aio&=
|coie71 

GESTALT MANAGER ROUTINES

This section describes the three functions in the Gestalt Manager—Gestalt, NewGestalt, and
ReplaceGestalt. They allow you, respectively, to determine what hardware and software
features are present in the operating environment, to add new selectors to those understood
by the Gestalt function, and to replace the functions associated with knownselectors.

Gestalt Manager Routines 3-45

IPR2017-01828

Ubisoft EX1002 Page 178



IPR2017-01828 
Ubisoft EX1002 Page 179

 
 

Inside Macintosh, Volume VI

Getting Information About the Operating Environment

Use the Gestalt function to obtain information about the operating environment. The infor-
mation you needis indicated by the selector parameter, which Gestalt must already recognize.

 FUNCTION Gestalt (selector: OSType; VAR response: LongInt) : OSErr;.

Trap macro _Gestalt -
On entry DO: selector code
Onexit AO: response

DO: result code

Uponsuccessful completion of the function, the response parameter contains the information |
requested. Note that Gestalt returns the response from all function selectors in a long integer,
occupying 4 bytes. In some cases, not all 4 bytes are needed to hold the returned information,
in which case Gestalt places the information in the low-order bytes of the response parameter.

Note: Although the response parameteris declared as a variable parameter, you
cannotuse it to pass information to Gestalt or to a Gestalt selector function. Gestalt
interprets the response parameter as an address into whichit is to place the result
returned by the selector function specified by the selector parameter. Gestalt ignores
any information already located at that address.

Result codes
noErr 0 No error

gestaltUnknownErr -5550 Could not obtain the response
gestaltUndefSelectorErr -5551 Undefined selector

Adding Selector Codes

Use the NewGestalt function to add selector codes to those already recognized by Gestalt.

FUNCTION NewGestalt (selector: OSType; selectorFunction: ProcPtr)
OSErr;

Trap macro _NewGestalt
Onentry AO: address of new selector function

DO: selector code
On exit DO:result code

3-46 Gestalt Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 179



IPR2017-01828 
Ubisoft EX1002 Page 180

Compatibility Guidelines

NewGestalt takes as parameters the selector to be registered and the function that Gestalt calls
whenit receives this selector. The interface for the selectorFunction function is defined in

“Specifying Gestalt Selector Functions” earlier in this chapter.

Result codes
noErr 0 No error

memFullErr —108 Ran out of memory
gestaltDupSelectorErr=—5552 Selector already exists
gestaltLocationErr —5553 Function not in system heap

Modifying Selector Codes

The ReplaceGestalt function allows an application to replace the function that is currently
associated with a selector.

FUNCTION ReplaceGestall (selector: OSType; se_ectorFunclion: ProcPlr;
 VAR oldGestaltFunction: ProcPtr) : OSErr;

Trap macro _ReplaceGestalt ae
Onentry AO: address of newselector function

DO: selector code
Onexit AO: address of old selector function

DO: result code

The interface for the selectorFunction function is defined in “Specifying Gestalt Selector
Functions”earlier in this chapter. The new function must reside in the system heap and may
want to call the function previously associated with the namedselector. It may do so by using
the address returned in the parameter oldGestaltFunction. If ReplaceGestalt returns an error
of any type, then the value of oldGestaltFunction is undefined.

Q
2=
4A=
=
Zz.===

om

o
=5for}im=
=}&wn

Result codes

 
noErr 0 Noerror

gestaltUndefSelectorErr -—5551 Undefined selector
gestaltLocationErr -5553 Function not in system heap

Gestalt Manager Routines 3-47

IPR2017-01828

Ubisoft EX1002 Page 180



IPR2017-01828 
Ubisoft EX1002 Page 181

 
 

Inside Macintosh, Volume VI

 

SUMMARY OF THE GESTALT MANAGER

Constants

CONST fenvironmental selector codes?

3-48

gestaltAddressingModeAttr
gestaltAliasMgrAttr
gestaltAppleEvertsAttr
gestaltApoleTalkVersion
gestaltAUXVersion
gestallLConnMgrAttr
gestaltCRMAttr
gestaltCTBVersion
gestaltDBAccessMgrAttr
gestaltDITLExtAttr
gestaltEasyAccessAttr
gestaltEditionMgrAttr
gestaltExtToolboxTable
gestaltFindrolderAttr
gestaltFontMgrAttr
gestalt F>-UType
gestaltFSAttr
gesLaltPXErMgrAttr
gestaltHardwareAttr
gestaltHelpMgrAttr
gestaltKeyboardType
gestaltLogicalPageSize
gestaltLogicalRAMSi ze
gestaltLowMenorySize
gestaltMiscAttr
gestaltMMUType
gestaltNotificationMgrAttr
gestaltNuBusConnecLlors
gestaltOSAttr
gestalLOSTable

gestaltParityAttr
gestaltPhysicalRAMSize
gestalt PopupAttr
gestalt PowerMgrAttr
gestallLPPCToolboxAttr

gestaltProcessorType
gestaltQuicxdrawVersion
gestaltkKesourceMgrAttr
gestaltScriptCount
gesLalLlScriplMgrVersion
gestaltSeria_Attr
gestaltSoundAttr
gestaltStandardFileAttr
gestaltStaNBPAttr

 

 raeaoeoteet  
mrct    

Summary of the Gestalt Manager

n
u

‘addr’;
‘alis';
‘evnt';
‘atlk';

,
1
,
i

‘a/ux';
'conn';
‘crm ';

‘ctbv';
‘dbac';
'ditl';

‘easy';
‘edtn';
'xtctt';
‘fold’;
‘font';

'Epu
'f£s 1
'fxfr';
‘hdwr';

‘help';
"kbd ';

‘pgsz!
‘_ram';
‘lmem' ;
'misc';
‘mum ';

'rmgr';
'sllc';
‘os '
‘ostt';

‘prty!
‘ram ';

‘
,
;
‘
;

‘
‘
,
;
’

7
:
,
,

,
’
,
7
;
,

,

:

‘pop! ';
"powr';
‘ope ¢
‘proc';
'qd '
'rsre';

‘scrt#t';
‘seri';
'ser ';
‘snd ';
‘stdf';

‘nlup';

i

:

r
‘
‘
:
,
r
i

{addressing mode attributes}

{Alias Mgr attributes}
{Apple events attributes?
{AppleTalk version}
{A/UX version if present}
{Connection Mgr attributes}
{Comm Resource Mgr attrsi
{Comm Toolbox version}
{Data Access Mgr attrs}

Dialog Mgr extensions}
Easy Access attributes}
Edition Mgr attributes}
Ext Toolbox trap table base}
FindFolder attributes}

Font Mgr attributes}
FPU type!

file-system attributes}
{File Transfer Mgr attrs}
{hardware attributes}
{Help Mgr attributes}
{keyboard type}

{logical page size}
{logical RAM size}

{low-memory area size}
{miscellaneous attributes}
{MMU type}

{Notification Mgr attrs}
{NuBus connector bitmap}
{O/S attributes}

{O/S trap table base}
{parity altribules}
{physical RAM size}
{pooup CDEF altlributles}
{Power Mgr attributes}
{PPC Toolbox attributes}
{processor type}
{QuickDraw version}
{Resource Mgr attributes}

{# OF active script systems}
{Script Mgr version}
{serial hardware attribuLles}
{sound attributes}
{Standard File attributes}
{StandardNBP attributes}

SAAAAHR  

IPR2017-01828

Ubisoft EX1002 Page 181



IPR2017-01828 
Ubisoft EX1002 Page 182

 
gestaltTermMgrAttr = 'term';
gestaltTextEditVersion = 'te ';
gestaltTimeMgrversion ‘tmgr';
gestaltToolboxTable — ‘tbhtt';
cestaltVersion = 'vers';
gesLalLVMAtcr = 'vm ';

{informational selector codes}
gestaltMachinelcon = 'micn';
gesta_iMachineType = 'mach';
gestaltROMSize — 'rom ';
gestaltROMVersion = 'romv';
gesLa_tSystemVersion = 'sysv';

Compatibility Guidelines

{Terminal Mgr attributes}
{TextEdit version}

{Time Mgr version}
{Toolbox trap table base}
{Gesta_t version}

{virtual memory attributes}

 

{machine ICON/cicn res ID}

{machine type}
{ROM size}
{ROM version}

{System file version}

{gescaltAddressingModeAttr response values}
gestalt32BitAddressing = 0; {TRUE if booted in 32-bit mode}
geslalt32BitSysZone = 1; {32-bit compatible system zone}
gestalt32BitCapable = 2; {machine is 32-bit capable}

{gestaltAliasMgrAtcr response values}
gestaltAliasMgrPresent = 0; {TRUF

 
{gestaltAppleFventsAttr response values}
gestalctAppleEventsPresent C; {TRUE 

{gestaltConnMgrAttr response values}
gestalcConnMgrPresent C; {TRUE
gestaltConnMgrCMSearchrix 1; {TRUE

 
{gesta_tCRMAttr response values}
gestaltCRMPresent = 0;

{gestaltDBAccessMgrAttr response values}
gestaltDBAccessMgrPresent = 0; {TRUE 

  

 

{gestaltDITLExtAttr response values}

gestaltDITLExtPresent = 0; {TRUE

{gesctaltEasyAccessAttr response va_ues}
gesLaltEasyAccessOff = 0; {Easy
gesta_tEasyAccessOn 1; {Easy
gestaltEasyAccessSticky = 2; {Easy
geslLaltEasyAccessLocked = 3; {hasy

 {gestaltEditionMgrAttr response va_ues}

 
if Alias Mor

{TRUE if Comm Resource Mgr present}

is present}

if Apple events present}

if Connection Mgr present}
if CMAddSearch fix presencv}

ioe)

i)=itJ
-
=Caae
a=—=r-
3

ip=~<—S=
isa==j=}
aA

if Datla Access Mgr present}

 
1£ Dialog Mgr extensions present}

Access present but off}
Access on}

Access sticky}
Access locked}

 
 if  
 

gestaltEditionMgrPresent 0; {TRUE

Summary of the Gestalt Manager

Edition Mgr present}

3-49

IPR2017-01828

Ubisoft EX1002 Page 182



IPR2017-01828 
Ubisoft EX1002 Page 183

inside Macintosh, Volume Vi

 Pard?edladeoromrorcrn |

SERNClo aeit bina: baste poecent}

“BLES
thm pat
SMutore
 

THemsi

fatresh di DEALS 'witb week 
perballdu. LExi Fileneatelimp oo uy
Mee Li ilar a eked dig ii

Boh presen]  resent +

 

rhedwariyp or ber   
Le L}  qestei Ti lhas - il;

wean cla thes var

fopeiivea Lite] yot POMS Esa Merl tea
  

elD Sibel aida: baste 7 le LPGi died. May purest

fewpence Values
- |; tet bili amie:
ay Pear. reais   

  
ares

7 Coded Adie hey “dt
- 03 VP adchal el Sb Kay i

TA eyfu}
 

 
 
 

 

- fe Plusbl gee

lib keylwianic -
LEW Sct aR

- vt tborbasle1L 
 

 

oi

CooMeeione wa lve}
= oe {ac

- 1; [ae loa Seibeng Omnis oti |  
3-30 Shanna ofthe Gest Manaeer

IPR2017-01828

Ubisoft EX1002 Page 183



IPR2017-01828 
Ubisoft EX1002 Page 184

Compatibility Guidelines

gestalt68851 = 2; {Motorola 68851 PMMU}
gestalt6é8030MMU - 3; {Motorola 68030 built-in MMU}

{gestaltNotificationMgrAttr response values}
gestaltNotificationPresent = 0; {Notification Mgr present}

{gestaltOSAttr response values}
gestaltSysZoneGrowable = 0; fsystem heap can grow}
gestaltLaunchCanReturn {can return from launch}
gestaltLaunchFullFileSpec = {LaunchApplication is available}
gestaltLaunchControl = {Process Manager is available}
gestaltTempMemSupport = {temp memory support present }
gestaltRealTempMemory = {temp memory handles are real}
gestaltTempMemTracked = {temp memory handles tracked}
gestaltIPCSupport = {IPC support is present}
gestaltSysDebuggerSupport = {system debugger support}

ul

ornawPWNE 
{gestaltParityAttr response values}
gestaltHasParityCapability = 0; {machine can check parity}
gestaltParityEnabled - 1; {parity RAM is installed}

{gestaltPopupAttr response values}
gestaltPopupPresent = 0; {pop-up CDEF is present} Hallieaes
{gestalt PowerMgrAttr response values}

 gestaltPMgrExists = O; {Power Manager is present}

gestaltPMgrCPUTdle = 1; {CPU can idle} .
gestalt PMgrScc = 2; {can stop SCC clock}
gestalt PMgrSound = 3; {can turn off sound power}

ECary=
=.===an
omo==]
fontis
eo
==i
&i?a

 
{gestalt PPCToolboxAttr response values}
gestaltPPCToolboxPresent = 0; {TRUE if PPC Toolbox present}

{gestaltProcessorType response values}
gestalt68000 = 1; {68000 processor}
gestalt68010 = 2; {68010 processor}
gestalt68020 = 3; {68020 processor}
gestalt6s030 = 4; 4 {68030 processor}

{gestaltQuickdrawVersion response values}
gestaltOriginalQD = $000; {original QuickDraw}
gestaltOriginalQD1 = $001; {original QuickDraw in System 7.0}
gestalt8BitQD = $100; {8-bit Color QuickDraw}
gestalt32BitOD = $200; {32-Bit Color QuickDraw}
gestalt32BitQD11 = $210; {32-Bit Color QuickDraw vers. 1.1}
gestalt32BitQD12 = $220; {32-Bit Color QuickDraw vers. 1.2}
gestalt32BitQoD13 = $230; {32-Bit Color QuickDraw vers. 1.3}

Summary of the Gestalt Manager 3-51

 
IPR2017-01828

Ubisoft EX1002 Page 184



IPR2017-01828 
Ubisoft EX1002 Page 185

 
Inside Macintosh, Volume VI

abetseml

 

{gestaltResourceMgrAttr response values}
gestaltPartialRsrcs = 0; {partial resource

{gestaltSerialAttr response values}

 
gestaltGPlaToDCcDa = 0; {GPI connected to
gestaltGPIaToR!xCa = 1; {GPT connected to
gestaltGPIlaToDCDb = 2; {GPI connected to

{gestaltSoundAttr response values} .

gestaltStereoCapability
gestalt StereoMixing =
gestaltSoundIOMgr Present =
gestaltBuiltInSoundInput =
gestaltHasSoundInputDevice =

oswe
{gestaltStandardFileAttr response values}

functions exist}

DCD on port A}
RIxC on port A}
DCD on port B}

0; {stereo capability present}
; {stereo mixing on internal speaker}
; {sound input routines available}
; {built-in input device available}
; {sound input device available}

gestaltStandardFile58’ = 0; {new Std File routines available} 
{gestaltStdNBPAttr response values}
gestaltStdNBPPresent = 0; {TRU GJ

{gestaltTermMgrAttr response values}
gestaltTernMgrPresent = 0; {TRU

 
  tT 

 {gestaltTextEditVersion response values}

 
gestaltTE1 = 1; {in MaclIci ROM}
gestaltTE2 = 2; {with 6.0.4 scripts on Mac IIci}
gestaltTh3 = 3; {with 6.0.4 scripts on other machines}
gestaltTE4 = 4; {in 6.0.5 and 7.0}
gestaltlE5S = 5; {TextWidthHook available in TextEdit}

{gestaltTimeMgrVersion response values}  

if StandardNBP present}

if Terminal Mgr present}

gestaltStandardTimeMgr = 1; {standard Time Manager}
gestaltRevisedTimeMgr = 2; {revised Time Manager}
gestaltExtendedTimeMgr = 3; {extended Time Manager}

{gestaltVMAttr response values}
gestaltVMPresent - 0; {virtual memory present}

{gestaltMachineType response values}
gestaltClassic = 1; {Macintosh 128K}
gestaltMacxL = 2 {Macintosh XL}
gestaltMac512K! 3
gestaltMacPlus = 4; {Macintosh Plus}

5
6
7

 J
|

 
gestaltMacSE = 5; {Macinlosh SE}
gestaltMacII — 6; {Macintosh IT}
gestallMacIIx =; {Macintosh IIx}

 
Summary of the Gestalt Manager

: {Macintosh 512K enhanced}

IPR2017-01828

Ubisoft EX1002 Page 185



IPR2017-01828 
Ubisoft EX1002 Page 186

Compatibility Guidelines

 " alrmaci lem
gestalebacs i
geotelt ost able - lv;
sastald ? Mas Tie - li:

altMacliix = li;

 

 

 
 
 
 
 

altMackist - 1&8: 
dont alt iacl’ - LU; tRasbmbosd bad

aARaCh ieneSk in leit?! SCSVURS esauThat
 

 

Pete

.

Routines

FUMIO Geta b teeedacyrpeo UCTS Foes MGMITE.

FLAG DO Meediesb i] 6 fecdborior: OGSbyne; ollecbor recut dor. Oa ere!

MLMLone paar Ll icaetse ee bi
 My 

Application-Defined Routines 

 “TAR partigarcmer: lootegii:la

==.
=.=
—-
omany
=|—I
=po
J
otEsPUNCTIGM cySelestes Sunmen lon jeelecror: Th

Crs ee 

Result Codes

nobrr Q No emoar

pestaltUnkaownEr —§550 Could net obtain the response
pestaltUnderSelectorEnm 5551 Undefined selector
gestaltDupSelegturErr -5552  Sulector already exists
vestaltLocationErr -5553 Function not in system heap

Sunuiary of tre Gestalt Manager 3-53

 
IPR2017-01828

Ubisoft EX1002 Page 186



IPR2017-01828 
Ubisoft EX1002 Page 187

fratide Macintosh, Volume Vi ws
 

SUMMARY OF THE WINDOW MANAGER 

Constants

COWMAT Owordow uetiniidon ope
itaOboe Bie: Sy Sree do meniush uid. iad fea?

 

SUMMARY OF THE CONTROL MANAGER

Constants

 

rei Tans: hearted
ePoucsugt -

 

voert oaliemmont: i

  
  

 
 

etaEL - Pewtibaet ag OAc imorib |

nieTb peiCart
Vil ceto] a
Titialpas.st -

VeUindos Dine =

sry. al bifrmment >
PLaeld teers

eT ee a

  

Ste . vrneed tans4d
Tonk lime boxe;
ef Praciow Leal: - SOMYRUiee. tend

- PeHLamMdbeak
- sutieve leak Leah:

Moke. Watdalag cade
VoL tp caer.

Sage Taare Sekt

 “INBOWIGL

 a BoM  Suse wiredkee Dark t

TVET rer te elati 
 Le

moeuadles0hot Rearmed tars framdibe bo marc}
wilt: creTL 

InFrPivenG? ARRAY [el la] tie Stomeday ye  frenerveads
LM;

33d Serene offre Conical Manager

IPR2017-01828

Ubisoft EX1002 Page 187



IPR2017-01828 
Ubisoft EX1002 Page 188

Campatibstity Cruidetires

 

SUMMARY OF THE DIALOG MANAGER

Constants

 

Routines

MaDak Sosa OTE eliI JU oeps Uta aapta Tr

TRQVIININE Append, Sle “poy L .1T apes &
Tews wae

PROP ISTRG Goesbombe o.. Clistlbs ler ue

 

Suaanary afte Diakees Manager

 

rorrarbeerTTormrss Dnt semen ty

ar]
mel
ae=
|1
a)=aintpa

=.Paa=
a
=..
i]
=eLr
=
|Toa

23a

 
 

IPR2017-01828

Ubisoft EX1002 Page 188



IPR2017-01828 
Ubisoft EX1002 Page 189

 

faside Muecintosh, Yoluwme Vi

 
3-58

IPR2017-01828

Ubisoft EX1002 Page 189



IPR2017-01828 
Ubisoft EX1002 Page 190

4 THE EDITION MANAGER

3. About This Chapter
3. About the Edition Manager
4 Publishers, Subscribers, and Editions

11 Using the Edition Manager
12 Receiving Apple Events From the Edition Manager

 

14 Creating the Section Record and Alias Record
17 Saving a Document Containing Sections
19 Opening and Closing a Document Containing Sections
21 Reading and Writing a Section
22 Formats in an Edition

23 Opening an Edition
24 Format Marks

24 Reading and Writing Edition Data
25 Closing an Edition
25 Creating a Publisher
28 Creating the Edition Container
30 Opening an Edition Container to Write Data
3] Creating a Subscriber
35 Opening an Edition Container to Read Data
35 Choosing Which Edition Format to Read
37 Using Publisher and Subscriber Options
40 Publishing a New Edition While Saving or Manually
41 Subscribing to an Edition Automatically or Manually
41 Canceling Sections Within Documents
42 Locating a Publisher Through a Subscriber
43 Renaming a Document Containing Sections
43 Displaying Publisher and Subscriber Borders
47 Text Borders

48 Spreadsheet Borders a
49 Object-Oriented Graphics Borders Ss;
50 Bitmapped Graphics Borders =
50 Duplicating Publishers and Subscribers 5
52 Modifying a Subscriber Ke
52 Relocating an Edition 4
52 Customizing Dialog Boxes &
54 Subscribing to Non-Edition Files 5
55 Getting the Current Edition Opener
56 Setting an Edition Opener
56 Calling an Edition Opener Procedure
59 Opening and Closing Editions
59 Listing Files That Can Be Subscribed To
59 Reading From and Writing to Files
60 Calling a Format I/O Procedure
61 Edition Manager Routines
62 Initializing the Edition Manager
62 Creating and Registering a Section
65 Creating and Deleting an Edition Container
67 Setting and Locating a Format Mark
67 Reading in Edition Data

IPR2017-01828

Ubisoft EX1002 Page 190



IPR2017-01828 
Ubisoft EX1002 Page 191

oeee

TF

frstde Macintosh, Velune Vi

oo)
70
71
76

78
#8
al

Writing out Badition [hati
Closing an Edition After Reading or Writing
Displaying Dialog Boxes
Locating a Publisher and Edition Prom a Subsenber
Edition Container Formats

Reading and Writing Non-Edition Files
Summary Of the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 191



IPR2017-01828 
Ubisoft EX1002 Page 192

The Edition Manager

ABOUT THIS CHAPTER

This chapter describes how you can use the Edition Managerto allow yourusers to share and
automatically update data from numerous documents and applications.

The Edition Manageris available only in system software version 7.0. It can be used by
manydifferent applications located onasingle disk or throughout a network of Macintosh®
computers. Totest for the existence of the Edition Manager, use the Gestalt function,
described in the Compatibility Guidelines chapter of this volume.

Read the information in this chapter if you want your application’s documents to share and
automatically update data, or if you want to share and automatically update data with docu-
ments created by other applications that support the Edition Manager.

For example, a user might want to capture sales figures and totals from within a spreadsheet
and then include this information in a word-processing documentthat summarizessales for
a given month. The Edition Managerestablishes a connection between these two documents.
Whena user modifies the spreadsheet, the information in the word-processing document
can be aulomatically updated to contain the latest changes. To accomplish this, both the
spreadsheet application and the word-processing application must support the features of
the Edition Manager.

To use this chapter, you should be familiar with sending and receiving high-level events,
described in the Events Manager chapter of this volume. Your application must also support
Apple® events to receive Apple events from the Edition Manager. See the Apple Event
Managerchapterin this volume for detailed information.

ABOUT THE EDITION MANAGER

The Edition Manager provides you with the ability to

= capture data within a documentand integrate it into another document

a modify information in a document and automatically update any document that shares
its data

= share information between applications on the same computeror across a network of
Macintosh computers

Building the capabilities of the Edition Managerinto your program is similar to building cut-
and-paste features into your program. Text, graphics, spreadsheet cells, database reports—
any data that you can select, you can make accessible to other applications that support the
Edition Manager.

About the Edition Manager 4-3

=Qa=n==
==
aa
x=nd
=

i5sist=
 

IPR2017-01828

Ubisoft EX1002 Page 192



IPR2017-01828 
Ubisoft EX1002 Page 193

Inside Macintosh, Volume VI

This chapterfirst defines the main elements of the Edition Managerand then discusses how to
save, open, read, and write a documentthat shares data. In addition, this chapter describes
how to

m makedata accessible to other applications

m integrate data into numerous documents

m set update options

= implement borders

= modify shared data

m customize dialog boxes

This chapter also describes an advanced feature that allows applicationsto share data directly
fromafile.

 

PUBLISHERS, SUBSCRIBERS, AND EDITIONS 

A section is a portion of a documentthat shares its contents with other documents. The
Edition Manager supports two types of sections: publishers and subscribers. A publisheris
a section within a documentthat makes its data available to other documentsor applications.
A subscriberis a section within a documentthat obtains its data from other documents or
applications.

Your application whites a copy of the data in each publisher to a separatefile called an
edition container. The actual data that is written to the edition containeris referred to

as the edition. Your application obtains the data for each subscriber by reading data
from the edition container. Note that throughoutthis chapter, the term edition refers to
the edition container andthe data it contains.

You publish data when you want to makeit available to other documents andapplications.
Whendata is published,it is stored in an edition container. You subscribe to data that a
publisher makesavailable by reading an edition from its container.

Note: Section and edition container are programmatic terms. You should not use
them in your application or your documentation. Use publishers, subscribers, and
editions. You should also refrain from using other terms such as publication or
subscription to describe the dynamic sharing of information provided by the Edition
Manager. Use the terms publish and subscribe to describe the Edition Manager
features.

Bach edition has an icon that is visible from the Finder. Figure 4-1 showsthe default
edition icon.

 
nee.2
2z

FE
PA
wees

Oo:zronerbee,p!

sample

Figure 4-1. The default edition icon

4-4 Publishers, Subscribers, and Editions

IPR2017-01828

Ubisoft EX1002 Page 193

 



IPR2017-01828 
Ubisoft EX1002 Page 194

The Edition Manager

The namethat the user specifies for the edition is located beneath the edition icon. To create
customized edition icons, see the Finder Interface chapterin this volumefor detailed
information. Figure 4-2 illustrates a document containing a single publisher, its correspond-
ing edition, and a subscriberto the edition in another document.

November$1304 67$3878 78$9356 87$5890 78

Publisher{ en
$3890 88
$1324 67
$2313 78$4312 67$3590 00

December$5877 67$2837 34
$3695 a0$5465 98
Ahi
February$1938 99

$6596 45
$4567 67
$2345 34
$2425 8035465 98
 

Totals
$2349 75$3094 67$5463 90
$7489 14
  TO Nick

FROM Lara Palmer
 
 

Here are the sales figures that you requested
 
  
 
 

  
 

January February Totals$1312.46 $1938 90 $9251 45231356 $2457 60 $3425 6 Subscriber
  

 

  
‘These figures reflect the increases over a twomonth penod which were affected bythe ine*casc cost of
‘operating expenses for that periodAdjussmentsto these hgures wil! be evaluatedshortly

  
  

 

Figure 4-2. A publisher, an edition, and a subscriber

Note that the publisher and subscriber bordersillustrated in Figure 4-2 may appearslightly
different from the borders you see on screen. Figure 4-6 shows a screen-captured image of
the publisher and subscriber borders that appear on screen.

Data always flowsin one direction, from publisher to edition to subscriber. Documentsthat
contain publishers and subscribers do not have to be open at the same time to share data.
Wheneverthe user saves a documentthat contains a publisher, the edition changestoreflect
the current data from the publisher. All subscribers update their contents from the edition.
Any numberof subscribers can subscribe to a single edition.

To create a publisher within a document, a user selects an area of the document to share and
chooses Create Publisher from the Edit menu(illustrated later in this chapter). Figure 4-3
showsthe dialog box that your application should display when the user chooses Create
Publisher.

 
Preview & Editions w c Loma Prieta

 

2 [Besates date aa £3 $dies report$

wo Desktop

re

ica
2.=
2i]
=]
2ns
=
5
©
oIéi

cb .

. Name of new edition:

[Srandpieno=Cidpiano (Cruvtisn_)

 
 

Figure 4-3. The publisher dialog box

Publishers, Subscribers, and Editions 4-5

IPR2017-01828

Ubisoft EX1002 Page 194

 



IPR2017-01828 
Ubisoft EX1002 Page 195

 

 

Inside Macintosh, Volume VI

Your application provides a thumbnail sketch of the edition data that the Edition Manager
displays in the preview area of the publisher dialog box. Your preview ofthe edition in this
dialog box should provide a visual cue about the type of information that the user has selected
to publish.

A preview area also appcars in the subscriber dialog box (sce Figure 4-4). Your preview for
an edition in this dialog box should provide a visual cue about the type of information the
edition contains. For example, it should allow users to distinguish between text information
and spreadsheetarrays.

The publisher dialog box uses the extended interface of the standard file dialog boxthat
accompanics system software version 7.0. The user navigates through the contents of the
disk using the mouse or keyboard.

A user can modify a publisher within a documentjust like any other portion of a document.
As a default, each time a user saves a document containing a publisher, your application
should automatically write the publisher’s data to the edition. You also need to provide the
user with the choice of sending new publisher data to an edition manually (that is, only at the
user’s specific request). You can provide these options by using the publisher options dialog
box described later in “Using Publisher and Subscriber Options.”

For example, one user may choose to automatically update an edition each time a documentis
saved. This update modeis useful for a user who creates a publisher within a spreadsheet
application that records stock information. Each time the user updates the stock information
and saves the spreadsheet, a new edition automatically becomesavailable to subscribers.

Another user may choose to update an edition only upon request. This update mode might be
useful for a user whocreates a publisher within a word-processing application for a quarterly
sales report. The user incrementally updates the sales report throughout the entire quarter, but
does not wantthis information to be available to subscribers until the end of the quarter. Only
at the end of each quarter does the user specifically request to update the edition and makeit
available to any subscribers.

To create a subscriber within a document, the user places the insertion point and chooses
Subscribe To from the Edit menu. Figure 4-4 showsthe dialog box that your application
should display when the user chooses Subscribe To.

Preview . i Editions w c Loma Prieta

) Grand piano :© sales datai?
an © sales report Desktop

geet

Cancel

 
 
 

Figure 4-4. The subscriber dialog box

4-6 Publishers, Subscribers, and Editions

IPR2017-01828

Ubisoft EX1002 Page 195

 



IPR2017-01828 
Ubisoft EX1002 Page 196

The Edition Manager

The subscriber dialog box also uses the extended interface of the standardfile dialog box
introduced with system software version 7.0. Initially, the dialog box should highlight the
name of the last edition published or subscribed to. This allows a user to create a publisher
and immediately subscribe to its edition.

A subscriber receivesits data from a single edition. By default, your application should
automatically update a document containing a subscriber whenever a new edition is available.
You also need to provide the user with the choice of receiving the latest edition manually (that
is, only when the user specifically requests it). You can provide these options by using the
subscriber options dialog box described later in “Using Publisher and Subscriber Options.”

For cxample, one user may choose to automatically receive new editions as they become
available. This update mode is useful for a user who subscribes to information from an
edition that consists of daily sales figures. This user automatically acquires each version
of the sales information as it becomes available.

Another user may chooseto receive a new edition only upon request. This update mode is
useful for a user who creates a subscriber to an edition that consists of graphics data (such
as a company logo). The user may require only periodic versions of the logo and not need
frequent updates. In this case, your application should only update the subscriber with a
new edition when the user specifically requestsit.

A user can select, cut, copy, or paste an entire subscriber. Although the contents of the sub-
scriber as a whole can be modified, a user cannot edit portions of a subscriber. For example,
a user can underline oritalicize the entire subscriber text, but cannot delete a sentence or rotate
a single graphical object. This restriction protects the user from losing changes to a subscriber
when a new edition arrives. Rememberthat, as a default, new editions should automatically
update a subscriber. Any changes that a user madeto the subscriber text would have to be
reapplied when the new edition arrives. See “Modifying a Subscriber” later in this chapter for
further information.

A single document can contain any number or combination of publishers and subscribers.
Figure 4-5 shows an example of a documentthat contains two publishers and one subscriber
(and their corresponding editions). Rememberthat data always flows in one direction, from
publisher to edition to subscriber. The “Concert flyer” document contains a publisher that is
subscribed to by the “Benefit concert” document. The “Concert flyer” documentalso
subscribes to a portion of the “Pianos & palm trees” document.In addition, the “Concert
flyer’ document as a whole is subscribed to by the “Sample flyer’ document.

iS

=a
=
a=
Kdlaa
a
5
eyi
[a3
 

You should distinguish each selected publisher and subscriber within a documentwith a
border. Display a publisher border as 3 pixels wide with 50 percent gray lines, and display
a subscriber border as 3 pixels wide with 75 percent gray lines. A rectangle of one white
pixel should separate the data from the borderitself. Borders should be drawn outside the

Publishers, Subscribers, and Editions 4-7

IPR2017-01828

Ubisoft EX1002 Page 196



IPR2017-01828 
Ubisoft EX1002 Page 197

Inside Macintosh. Volume VI

Subscriber

 
 

 

 gees eeae
samy MT ta Iho Dp Aa
Bauman an proceedsAU prrkeaa! fu Wit thaguee 9
aba aadaye

 

thle

perk Publisher

 

 
Concen eseneaane
flyer . Fe

Flyer Subsenber

Sample flyer

Figure 4-5. A document and its corresponding editions

contents of publishers and sufseribers so that data is aot obscured, See Figure 4-6 for an
lustration of the borders as they appear on screen. See “Displaying Publisher and Subseriber
Boarders” [ater in this chapter for detailed information an howto implement borders for
specific applications,

Figure 4-6 shows a document containing a publisher and a document containing a subscriber.
with borders displayed for each,

Borers for publishers and subscribers should behave like the borders af ‘PICT graphics
within a word-processing document, Your appheatian should display a border whenever the

4-4 Publishers, Subscribers, and Padlitons

IPR2017-01828

Ubisoft EX1002 Page 197



IPR2017-01828 
Ubisoft EX1002 Page 198

The Edition Manager

Publisher border 

a 
  
 
  

 

 
Subscriber border

Apple SCS| cable terminators are hardware
devices that attach to a SCSI cable, There
must be no more than two terminators in a
SCSI chain, 

Figure 4-6. Publisher and subscriber borders

user cheks within the content arce of a publisher or a subscriber. Your applicalian should
hide the border whenever the user clicks outside [he content areca. See “Displaying Publisher
and Subscriber Borders” later in this chapter for detailed information on hew to implement
borders for specific applications.

You also need to support the standard Edition Manager menu commands in the Edit menu.
These menu items include

a Create Publisher,.,

_
i
=
a
|
alPa
En

Fd
ery=or
 

m Subscribe ‘To...

ws Publisher/Subscriber Options...

a Show/Hide Borders (optional)

Stop All Editions (optional)

Publishers, Subscribers, and Bdittons 4-9

IPR2017-01828

Ubisoft EX1002 Page 198



IPR2017-01828 
Ubisoft EX1002 Page 199

 
Inside Macintosh, Volume VI

Use a dotted line to separate the Edition Manager menu commandsfrom the standard
Edit menu commandsCut, Copy, and Paste. Figure 4-7 showsthe standard Edition
Manager menu commands.

 
 
 
 

Undo B2

  
  

 
 

  
  

Cut 38H

Copy eC
Paste 3U
Clear
Select All 3A
  

 Create Publisher...
Subscribe To...
Subscriber Options...

Show Clipboard

Figure 4-7. Edition Manager commandsin the Edit menu

The Publisher Options menu commandshould toggle with Subscriber Options when a user
selects cither a publisher or a subscriber within a document. In addition, you may support a
Show Borders menu commandthat toggles with Hide Borders to display or hide all publishers
and subscriber borders within documents. You may also support a Stop All Editions menu
command to provide a method for temporarily suspending all update activity in a document.
Whenthe user chooses this command, you should place a checkmark next to it. You should
also stop all publishers from sending data to editions and all subscribers from recciving new
editions. When the user chooses this command again, remove the checkmark and update any
subscribers that are sct up to reccive new editions automatically.

If you find that you need all of the available space in the Edit menu for your application’s
commands, you maycreate a hierarchical menu for the Edition Manager menu commands.If
you choose to implementthis structure, you should allow users to access the Edition Manager
menu commandsthrough a Publishing menu commandin the Edit menu. Because this menu
structure is not as accessible to users, you should implementit only if you have no other
alternative.

Figure 4-8 showsthe Edition Manager menu commandsin a hierarchical menustructure.

 
 

 
Undo

 

  
 

Cut

Copy 3C
Paste #U
Select All

  
 

RAUL) ia «(Create Publisher...
Subscribe To...

Show Clipboard| Publisher Options...

Figure 4-8. Edition Manager commands under the Publishing menu command

  
 

 

4-10 Publishers, Subscribers, and Editions

IPR2017-01828

Ubisoft EX1002 Page 199



IPR2017-01828 
Ubisoft EX1002 Page 200

The Edition Manager

For each publisher or subscriber within an open document, you must have a section record and
an alias record. The section record contains a time stamp that records the version of the data
that resides in the section. The section record also identifies the section as either a publisher or
subscriber, and it establishes a unique identity for each publisher or subscriber. The section
record does not contain the data within the section. The alias record is a reference to the edition

container from the documentthat contains the corresponding publisher or subscriber section.

There are special options associated with publishers and subscribers within documents. Your
application can use the publisher and subscriber options dialog boxes provided by the Edition
Manager to make these choices available to the user. For example, a user can select Open
Publisher within the subscriber options dialog box to access the document containing the
publisher. Your application can also allow a user to cancel subscribers or publishers within
documents, specify when to update an edition from a publisher, or specify when to update a
subscriber with a new edition. These options are describedlater in this chapter.

USING THE EDITION MANAGER

This section describes how your application can

a receive Apple events from the Edition Manager

= set up a section record and alias record for open documents containing sections

mw save a documentthat contains sections

m open a documentthat contains sections

w read and write sections

= create a publisher within a document,create its edition container, and write data to it

m create a subscriber within a documentandread its data from an edition

To begin, you must determine whether the Edition Manageris available on your system
by using the Gestalt function. The Gestalt selector is gestaltEditionMgrAttr (‘edtn’). If the
response parameterreturns 1 in the bit defined by the gestaltEditionMgrPresent constant
(bit 0), the Edition Manageris present.

Aa

ng
===ia
iS
=}
2lon)
we)5=]
Eo

aeeba
 

If the Edition Manageris present, load it into memory using the InitEditionPack function.
This function determines whether your machine has enough spacein the system heap for
the Edition Managerto opcrate.

err := InitEditionPack;

If the InitEditionPack function returns noErr, you have enough spacc to load the package.If
you do not have enoughspace,the application can either terminate itself or continue with the
Edition Manager functionality disabled.

Using the Edition Manager 4-1]

IPR2017-01828

Ubisoft EX1002 Page 200



IPR2017-01828 
Ubisoft EX1002 Page 201

Inside Macintosh, Volume VI

Receiving Apple Events From the Edition Manager

Applications that use the Edition Manager must support Apple events. This requires that your
application support the required Open Documents event and Apple events sent by the Edition
Manager. See the Apple Event Manager chapter in this volume for information on Apple events.

Apple events sent by the Edition Managerarrive as high-level events. The EventRecord data
type defines the event record.

TYPE EventRecord =
 

 
RECORD

what: Integer; {kHighLevelEvent}
message: Longint; {'sect'}
when: LongiInt;
where: Point; {'read', ‘writ', ‘'enel', }

{ ‘'serl'}

modifiers: Integer
END;

The Edition Manager can send the following Apple events:

m= Section Read events(‘sect’ 'read')

a Section Write events (‘sect’ 'writ’)

w Section Cancel events (‘sect’ 'cncl’)

mw Section Scroll events (‘sect' 'serl')

Each time your application creates a publisher or a subscriber, the Edition Managerregisters
its section, When an edition is updated, the Edition Managerscansitslist to locate registered
subscribers. For each registered subscriber that is set up to receive updated editions auto-
matically, your application receives a Section Read event.

If the Edition Manager discovers that an edition file is missing while registering a publisher,it
creates a new edition file and sends the publisher a Section Write event.

When you receive a Section Cancel event, you need to cancel the specified section. Note that
the current Edition Manager does not send you Section Cancel events, but you do need to
provide a handler for future expansion.

If the user selects a subscriber within a document and then selects Open Publisher in the
subscriber options dialog box, the publishing application receives the Open Documents event
and opens the documentcontaining the publisher. The publishing application also receives a
Section Scroll event. Scroll to the location of the publisher, display this section on the user’s
screen, and turn on its border.

See “Opening and Closing a Document Containing Sections” Jater in this chapter for detailed
information on registering and unregistering a section and writing data to an edition. See
“Using Publisher and Subscriber Options”later in this chapter for information on publisher
and subscriber options.

4-12 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 201



IPR2017-01828 
Ubisoft EX1002 Page 202

 
The Edition Manager

After receiving an Apple event sent by the Edition Manager, use the Apple Event Managerto
extract the section handle. In addition, you must also call the IsRegisteredSection function
to determine whetherthe section is registered. It is possible (due to a race condition) to receive
an eventfor a section that you recently disposed of or unregistered. One way to ensure that an
event correspondsto a valid sectionis to call the IsRegisteredSection function after you receive
an event. The Apple Event Managerchapter in this volume provides detailed information on
Apple Event Managerroutines.

err := IsRegisteredSection (sectionH);

Listing 4-1 illustrates how to use the Apple Event Manager and install an event handlerto
handle Section Read events. You can write similar code for Section Write events, Section
Scroll events, and Section Cancel events.

Listing 4-1. Accepting Section Read events and verifying if a section is registered

{The following goes in your initialization code. }
MyErr := AEInstallEventHandler(sectionEventMsgClass {'sect'},

sectionReadMsgID {'read'},
@MyHandleSectionReadEvent, 0, FALSE);

 

  

{This is the routine the Apple Event Manager calls when a Section Read }
{ event arrives. }

 FUNCTION MyHandleSectionReadEvent (theAppleEvent, reply: AppleEvent; 
 

  
 

 
 

 
  

 
   

 

refCon: LongInt) : OSErr;
VAR

getErr: OSErr};
sectionH: SectionHandle;

BEGIN

{Get section handle out of Apple event message buffer.} 7
getkrr := GetSectionHandleFromEvent (theAppleEvent, sectionH); =i

IF getErr = noErr THEN =
BEGIN iz

{Do nothing if section is not registered. } i
IF IsRegisteredSection(sectionH) = noErr 3

THEN MyHandleSectionReadEvent := DoSectionRead(sectionH) ; %
END ELSE a
BEGIN

MyHandleSectionReadEvent := getErr;
END;

END; {MyHandleSectionReadEvent}
 

 

{The following routine should read in subscriber data and update its }
{ display. }
FUNCTION DoSectionRead (subscriber: SectionHandle) : OSErr;
BEGIN 

{Your code here. }
END; {DoSectionRead}

(Continued)

Using the Edition Manager 4-13

IPR2017-01828

Ubisoft EX1002 Page 202



IPR2017-01828 
Ubisoft EX1002 Page 203

Inside Macintosh, Volume VI

Listing 4-1, Accepting Section Read events and verifying if a section
is registered (Continued)

{This is part of your Apple event-handling code.}
FUNCTION GetSectionHand_eFromEvent (zheAppleEvent: AppleEvent; VAR

sectionH: SectionHandle) : OSErr;

 
 

VAR

ignoreType: Nesc'l'ype;
ignoreSize: Size;

BEGIN

{Parse section handle out of message buffer.}
Get Sect ionHandleFromEvent

 

 := AEGetParamPtr( theAppleEvent, fevent to parse}
keyDirectObject, {Look for direct object.}
typeSectionH, {Want a SectionHandle type. }
ignoreType, {Ignore type it could get.}
@sectionH, {Put SectionHandle here.}

SizeOf(sectionH), {size of storage for }
£ SectionHandle}

ignoreSizec); {Ignore storage it used.}
END; {GetSectionHandle?FromEvent} 

Creating the Section Record and Alias Record

Yourapplication is responsible for creating a section record and an alias record for each
publisher and subscriber section within an open document.

The section record identifies each section as a publisher or subscriber and provides identifi-
cation for each section. The section record does not contain the data within the section; it
describes the attributes of the section. Your application must provide its own method for
associating the data within a section with its section record. Your application is also respon-
sible for saving the data in the section.

Thealias field of the section record contains a handleto its alias record. The alias record is

a reference to the edition container from the document which contains the publisher or sub-
scriber section. You should be familiar with the Alias Manager’s conventions for creating
alias records and identifying files, folders, and volumesto locate files that have been moved,
copied, or restored from backup.

When a user saves a document, your application should store all section records and alias
tecords in the resource fork. Corresponding section records and alias records should have
the same resource ID. This allows compatibility for future changes.

Figure 4-9 shows a document containing a publisher and subscriber, and the corresponding
section records and alias records.

The SectionRecord data type defines the section record. A section record contains information
to identify the data contained within a section as a publisher or a subscriber,a time stamp to
record the last modification of the section, and unique identification for each section.

4-14 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 203

 



IPR2017-01828 
Ubisoft EX1002 Page 204

 
Section record

version:
kind:
mode:
mdDate:
sectioniD.
relGon:
alias:

subPart:
nexiSectrorn
cantrolBlock:
refitum:

 
Section record

version:
kind:
mode:
mdDale:
seclianiD:
refGon:
alias:

subPart:
nexISection:
contrel Brock:

j retNurn:

 

The Edition Manager

Resource fork

Alias record- a
SCS! info

 
Terrunater

Figure 4-9, A document wilh a publisher and subscriber and is resource fork

 
 

40 lioked list)
Mae

Usetg the Edition Manager

 

L
fr
a
=

=
a=
by=

=iz
f 

Vis

ctete|

4-3

IPR2017-01828

Ubisoft EX1002 Page 204



IPR2017-01828 
Ubisoft EX1002 Page 205

Inside Macintosh, Volume VI

Field descriptions

version Indicates the version of the section record, currently $01.

kind Defines the section type as either publisher or subscriber with the stPublisher or
stSubscriber constant.

mode Indicates if editions are updated automatically or manually.

mdDate Indicates which version (modification date) of the section’s contents is con-
tained within the publisher or subscriber. The mdDateis set to 0 when you
create a new subscribersection, andis set to the current time when youcreate a
new publisher. Be sure to update this field cach time publisher data is modified.
The section’s modification date is comparedto the edition’s modification date to
determine whether the section and the edition contain the same data. Thesection

modification date is displayed in the publisher and subscriber options dialog
boxes. See “Closing an Edition”later in this chapter for detailed information.

sectionID Provides a unique numberfor each section within a document. A simple way to
implementthis is to create a counter for each documentthat is saved to disk
with the document. The counter should start at 1. The section ID is currently
used as a tie breaker in the GoToPublisher function when there are multiple
publishers to the same edition in a single document. The section ID should not
be 0 or -1. See “Duplicating Publishers and Subscribers” later in this chapter
for information on multiple publishers.

refCon Available for application-specific use.

alias Contains a handle to the alias record for a particular section within a document.

Wheneverthe user creates a publisher or subscriber, call the NewSection function to create
the section record andthealias record.

err := NewSection (container, sectionDocument, kind, sectionID,
initialMode, section);

The NewSection function creates a new section record (either publisher or subscriber),
indicates whether editions are updated automatically or manually, sets the modification date,
and creates an alias record from the documentcontaining the section to the edition container.

The sectionDocument parameter can be NIL if your current document has never been saved.
Usc the AssociateSection function to update the alias record of a registered section when the
user names or renames a document by choosing Save As from the File menu.If you are
creating a subscriber with the initialMode parameter set to receive new editions automatically,
your application receives a Section Read event each time a new edition becomesavailable for
this subscriber.

If an erroris encountered, the sectionH parameter is set to NIL. If not, sectionH contains the
handle to the allocated section record.

4-16 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 205



IPR2017-01828 
Ubisoft EX1002 Page 206

The Edition Manager

Set the initialMode parameter to the update mode for each subscriber and publisher created.
You can specify the update mode using these constants:

CONST sumAutomatic = 0; {subscriber receives new }

{ editions automatically}
sumManual = 1; {subscriber receives new }

{ editions manually}
{publisher sends new }
{ editions on save}

pumManual - 1; {publisher does not send }
{ rew ecGitions until user }
{ request}

{l oOpumOnSave

See “Using Publisher and Subscriber Options”later in this chapter for detailed information on
update modesfor publishers and subscribers.

Saving a Document Containing Sections

Whensaving a documentthat contains sections, you should write out each section record
as aresource oftype 'sect' and write out each alias record as a resource of type ‘alis’ with
the same ID asthe section record. Sec the Resource Manager chapters in VolumeI andthis
volume for detailed information on resources.

If a user closes a documentthat contains newly created publishers without attempting to save
its contents, you should display an alert box similar to the one shown in Figure 4-10.
 

This document contains new Publishers. You

must save this document to keep them.

Save changes to the TeachText document
“untitled” before closing? rm

=co

===
3
F
ana
t
5
Fd
aoO

lend
 

Figure 4-10. The new publisher alert box

If you keep the section records and alias records for each publisher and subscriber as
resources, you can use the ChangedResource or WriteResource function. If you detach
the section records andalias records from cach section, you need to clone the handles and
use the AddResource function. See the Resource Manager chapter in Volume V for detailed
information on the ChangedResource, WriteResource, and AddResource functions.

Use the PBExchangeFiles function to ensure that each time you save a documentthat contains
sections, the file ID remains the same. Savinga file typically involves creating a new file
(with a temporary name), writing datatoit, closing it, and then deleting the originalfile that
you are replacing. You rename the temporary file with the original filename, which leads to a
new file ID. The PBExchangeFiles function swaps the contents of the twofiles (even if they

Using the Edition Manager 4-17

IPR2017-01828

Ubisoft EX1002 Page 206



IPR2017-01828 
Ubisoft EX1002 Page 207

 
Inside Macintosh, Volume VI

are open) by getting both catalog entries and swapping theallocation pointers.If the files are
open,the file control block (FCB) is updated so that the reference numbersstill access the
same contents (under a new name). See the File Manager chapter in this volumefor detailed
information on the PBExchangeFiles function.

Listing 4-2 illustrates how to save a file that contains sections. As described earlier, you
should write out the eligible section records and alias records as resources to allow for
future compatibility. There are several different techniques for saving or adding resources;
this listing illustrates one technique. The section handlesarestill valid after using the
AddResource function becausethis listing illustrates just saving, not closing, the file.

Before you write out sections, you need to see if any publisher sections share the same
control block. Publishers that share the same control block share the sameedition.

If a user creates an identical copy ofa file by choosing Save As from the File menu and
does not make any changesto this new file, you simply use the AssociateSection function
to indicate to the Edition Manager which documenta section is located in.

Listing 4-2. Saving a document containing sections

PROCEDURE SaveDocument (thisDocument: MyDocumentInfoPtr;
numberOfSections: Integer);

 

aSectionu: SectionHandle;

copiedSectionH: Handle;
copiedAliasH: Handle;
resID: Integer;

thisone: Integer;

BEGIN

{Write contents of publishers that need to be written during save. }
{ The GetSectionAliasPair function returns a handle and }
{ resID to a secLion. The CheckForDataChanged function }
{ returns 'I'RUE if the data in tne section has changed. }
FOR thisone := 1 TO numberOfSections DO
BECIN

aSectionH := GetSectionAliasPair(thisDocument, thisore, resI2);
IF (aSectionH**.kind = stPuplishker) &

(aSecLionH®*.mode = pumOnSave) &
(CheckForDataChanged(aSectionH))

THEN DoWriteEdition(aSectionH, thisDocument);
END; {for}

 

{Set the curResFile to be tne resource fork of thisDocument. }
lUiseReskile(thisDocument*.resForkRefNum);

{Write all section and alias records to the document. }
FOR thisone := 1 ‘lO numberOfSections DO
BEGIN

{Given an incex, get the next seclion handle and resID }
{ from your internal list of sections for this file.}
aSectionH :. GetSectionAliasPair(thisDocument, thisone, resiD);

 

4-18 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 207



IPR2017-01828 
Ubisoft EX1002 Page 208

The Edition Manager

{Check for duplication of control block values.}
CheckForDupes (thisDocument, numberOfSections) ;

{Save section record to disk.}
copiedSectionH := Handle(aSectionH);
HandToHand (copiedSection#H) ;
AddResource(copiedSectionH, rSectionType, resID, '');

{Save alias record to disk. }

copiedAliasH := Handle(aSectionH**.alias) ;
HandToHand (copiedAliasH) ;
AddResource(copiedSectionH, rAliasType, resID, '');

END; {for}

{Write rest of document to disk.}
END; {SaveDocument }

Opening and Closing a Document Containing Sections

Whenopening a documentthat contains sections, your application should use the GetResource
function to get the section record andthealias record for each publisher and subscriber. Set the
alias field of the section record to be the handle to the alias. See the Resource Managerchapter
in VolumeI for detailed information on the GetResource function.

You also need to register each section using the RegisterSection function. The RegisterSection
function informs the Edition Managerthata section exists.

err := RegisterSection (sectionDocument, sectionH, aliasWasUpdated) ;

The RegisterSection function adds the section record to the Edition Manager’s list of regis-
tered sections. This function assumesthatthe alias field of each section recordis a handle
to the alias record. The alias record is a reference to the edition container from the section’s
document. If the RegisterSection function successfully locates the edition container for a
particular section, the section is registered through a shared control block. The control block
is a private field in the section record.

rm
=tlonas=a
=a=
=]
rd=
==—

aita5
 

If the RegisterSection function cannotfind the edition container for a particular subscriber,
RegisterSection returns the containerNotFoundWrn result code. If the RegisterSection
function cannotfind the edition containerfor a particular publisher, RegisterSection creates
an empty edition container for the publisher in the last place the edition was located. The
Edition Managersends your application a Section Write event for that section.

Whena user attempts to open a documentthat contains multiple publishers to the same
edition, you should warn the user by displaying an alert box (see “Duplicating Publishers
and Subscribers”later in this chapter).

Whena user opens a documentthat contains a subscriber (with an update modeset to
automatic), receives a new edition, and then closes the document without making any
changes to the file, you should update the documentand simply allow the user to close
it. You do not need to promptthe user to save changesto thefile.

Using the Edition Manager 4-19

IPR2017-01828

Ubisoft EX1002 Page 208



IPR2017-01828 
Ubisoft EX1002 Page 209

Inside Macintosh, Volume VI

Whenclosing a documentthat contains sections, you must unregister each section (using
the UnRegisterSection function) and dispose of each corresponding section record and
alias record.

err := UnRegisterSection (sectionH);

The UnRegisterSection function removesthe section record from thelist of registered
sections and unlinks itself from the shared control block.

Listing 4-3 illustrates how to open an existing file that contains sections. As described earlier,
you should retrieve the section and alias resources, connect the pair through thealias field
of the section record, and register the section with the Edition Manager. There are many
different techniquesfor retrieving resources; this listing shows one technique.If an alias was
out of date and was updated by the Alias Managerduringthe resolve, the Edition Manager
sets the aliasWasUpdated parameter of the RegisterSection function to TRUE. This means
that you should save the document. Additionally, your application must maintain its own list
of registered sections for each open documentthat containssections.

Listing 4-3. Opening a documentcontaining sections

PROCEDURE OpenExistingDocument (thisDocument: MyDocumentInfoPtr) ;

VAR

sectionH: SectionHandle;
aliasH: AliasHandle;

aliasWasUpdated: Boolean;
registerErr: OSErr;
resiD: Integer;

thisone: Integer;

numberOfSections: Integer;
aName: Str255;

BEGIN

{Set the curResFile to be the resource fork of thisDocument. }
UseResFile(thisDocument*.resForkRefNum);

{Find out the number of section resources. }

numberOfSections :- CountlResources (rSectionType) ;

{In determining the number of section/alias resource pairs to }
get, this code only loops for as many sections it finds. }
Tt is unusual to have more section resources than alias }
resources. Your code may want to check this and handle it }
appropriately. You now have a count of the number of section/alias }
resource pairs to get. Loop to get them, connect them, and register }
the section. }

AAAS

4-20 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 209



IPR2017-01828 
Ubisoft EX1002 Page 210

The Edition Manager

il
FOR thisone
BEGIN

sectionH := SectionHandle (Get 1lIndResource(rSectiontType,
thisone));

{If sectionH is NIL, something could be wrong with the file. }
{ Be sure to check for this.}

1 TO numberOfSections DO
 

{Get the resource ID of the section and use this to get the }
{ alias with the same resource ID. }

GetResInfo(Handle(sectionH), resID, rSectionType, aName);
DetachResource (Handle (sectionH) ) ;

{Detaching is not necessary, but it is convenient.}

aliasH := AliasHandle(Get1lResource(rAliasType, resID));
{If aliasH is NIL, then there could be something wrong }
{ with the file. Be sure to check for this.}

DetachResource (Handle (aliasH) );

{Detaching is not necessary, but it is convenient.}

{Connect section and alias together. }
sectionH’”*.alias := aliasH;

{Register the section. }
registerErr := RegisterSection(thisDocument®.fileSpec,

sectionH, aliasWasUpdated);

{The RegisterSection function may return an error if a section }
{ is not registered. This is not a fatal error. Continue looping }
{ to register remaining sections. }

{Add this section/alias pair to your internal bookkeeping. }
{ The AddSectionAliasPair is a routine to accomplish this.}
MyAddSectionAliasPair(thisDocument, sectionH, resID);

{If the alias has changed, make note of this. It is }
{ important to know this when you save. AliasHasChanged is a }
{ routine that will do this.}

IF aliasWasUpdated THEN AliasHasChanged(sectionH) ;
END; {for}

END; {OpenExistingDocument}

+
cyco
a==

i)
apat
ey
}=4

ais)a3 
 

  
Reading and Writing a Section

Yourapplication writes publisher data to an edition. New publisher data replaces the previous
contents of the edition, making the previousedition information irretrievable. Your applica-
tion reads data from an edition for each subscriber within a document.

Using the Edition Manager 4-21

IPR2017-01828

Ubisoft EX1002 Page 210



IPR2017-01828 
Ubisoft EX1002 Page 211

Inside Macintosh, Volume VI

The following sections describe how to

ws use different formats to write to or read from an edition

m open an edition to initiate writing or reading

m set a format mark

= write to or read from an edition

= close an edition after successfully writing or reading data

Formats in an Edition

You can write data to an edition in several different formats. These formats are the same as

Clipboard formats. Clipboard formats are indicated by a four-charactertag.

Typically, when a user copies data, you identify the Clipboard formats and then write the data
to scrap. With the Edition Manager, when a user decides to publish data, you identify the
Clipboard formats and then write the data to an edition. You can write multiple formats of the
same data.

For an edition, you should write your preferred formatsfirst. In general, to write data to an
edition, your application should use either 'TEXT' format or 'PICT’ format. This allows
your application to share data with most other applications. To subscribe to an edition, your
application should be able to read both 'TEXT’ and 'PICT' files. In addition, your applica-
tion can write any other private formats that you want to support.

Clipboard formats are described in the Scrap Manager chapter in VolumeI.

A few special formats are defined as constants.

CONST kPublisherDocAliasFormat = 'alis'; {alias record from the }

{ edition to publisher}
kPreviewFormat 'prvw'; {'PICT' thumbnail sketch}

holkFormatListFormat 'fmts'> {lists all available }
{ formats}

The kPublisherDocAliasFormat(‘alis') format is written by the Edition Manager.It is an alias
record from the edition to the publisher's document. Appended to the end of thealias is the
section ID of the publisher, which the Edition Managerusesto distinguish between multiple
publishers to a single edition. You should discourage users from making multiple copies of
the same publisher. See “Duplicating Publishers and Subscribers”later in this chapter for
detailed information.

The kPreviewFormat(‘prvw’) format should be written by any application that publishes
large amounts of data that may be slow to draw a preview. This format holds a preview of
the edition data that is displayed in the preview area of the subscriber dialog box. This format

4-22 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 211



IPR2017-01828 
Ubisoft EX1002 Page 212

The Edition Manager

is actually a ‘PICT’file that is generated by the publishing application and displays well in a
rectangle of 120 by 120 pixels. You can also use this 'PICT" file to display subscriber data
within a document(to save spacc).

To draw a preview in the 'prvw’'format, the Edition Managercalls DrawPicture with a 120
by 120 rectangle. To draw a preview in the PICT’ format, the Edition Manager examines the
picture’s bounding rectangle and calls DrawPicture with a rectangle that scales the picture
proportionally and centers it in a 120 by 120 area.

The kFormatListFormat(‘fmts') formatis a virtual format that is read but never written. It is
a list of all the formats and their lengths. Applications can use this format in place of the
EditionHasFormat function (described in “Choosing Which Edition Format to Read”later in
this chapter), which provides a procedural interface to determine which formats are available.

If your application can read two or morc of the available formats,usc 'fmts' to determine the
priority of these formats for a particular edition. The order of 'fmts' reflects the order in
which the formats were written.

The FormatsAvailable data type defines a record for the 'fmts' format.

TYPE FormatsAvailable = ARRAY[0..9] OF 
 

 

RECORD

tneType: FormatType; {format type for an edition}
theLength: Longint {length of edition formaz }

{ type}
END;

For example, an edition container may have a format type 'TEXT'of length 100, and
a format type ‘styl’ of length 32. A subscriber to this edition can open it and then read
the format type 'fmts' to list all available formats. In this example, it returns 16 bytes:
'TEXT’ $00000064 'styl' $00000020.

Opening an Edition

For a publisher, use the OpenNewEdition function to initiate the writing of data to an edition.

 
err := OpenNewEdition (publisherSectionH, fdCreator,

publisherSecztionDocument, refNum) ;

a
-it
a

=i)
s
cEas
5
i]4
aIic}3
 

The publisherSectionH parameteris the publisher section that you are writing to the edition.
The fdCreator paramcteris the Finder™ creator type of the new edition icon.

The publishcrSectionDocument parameter is the documentthat contains the publisher. This
parameteris used to create an alias from the edition to the publisher’s document. If you pass
NIL for publisherSectionDocument, an alias is not made in the edition file. The refNum
parameter returns the reference numberfor the edition.

For a subscriber, use the OpenEdition function toinitiate the reading of data from an edition.

err := OperEdition (subscriberSectionH, refNum);

Using the Edition Manager 4-23

IPR2017-01828

Ubisoft EX1002 Page 212



IPR2017-01828 
Ubisoft EX1002 Page 213

Inside Macintosh, Volume VI

The subscriberSectionH parameter is a handle to the section record for a given section. The
refNum parameter returns the reference numberfor the edition.

The user may rename or movethe edition in the Finder. Before writing to or reading data
from an edition, the Edition Managerverifies the nameof the edition. This processis
referred to as synching or synchronization. Synching ensures that the Edition Manager’s
existing edition names correspondto the Finder’s existing edition names by updating the
control block.

Format Marks

Each formathas its own mark. The mark indicates the next position of a read or write opera-
tion. Initially, a mark automatically defaults to 0. After reading or writing data, the format
mark is set past the last position written to or read from. The mark is similar to the File
Manager’s current read or write position marker for a data fork. Any time that an edition is
open(after calling the OpenEdition or the OpenNewEdition function), any of the marks for
each format can be queried orset.

To set the current mark for a section format to a new location, use the SetEditionFormatMark
function.

err := SetEditionFormatMark (whichEdition, whickFormat,
setMarkTo);

 

To find where a current mark is for a formatin an edition file, use the GetEditionFormatMark
function.

 err := GetEditionFormatMark (whichEdition, whichFormat,
currentMark) ;

Reading and Writing Edition Data

With the Edition Manager, you can read or write data a few bytes at a time instead of putting
data into one block as the Scrap Manager does. This modelis similar to the data fork of a
Macintoshfile. You can read sequentially by setting the mark to 0 and repeatedly calling read,
or you can jumpto a specific offset by setting the mark there. The Edition Manageralso adds
the capability to stream multiple formats by keeping a separate mark for each format. This
allows you to write a few bytes of one format and then write a few bytes of another format,
and so forth.

Once you have openedthe edition containerfor a particular publisher, you can begin writing
data to the edition. Use the WriteEdition function to write publisher data to an edition.

  err := WriteEdition (whichEdition, whichFormat, buffPtr, buffien);

The WritcEdition function writes the specified format (beginning at the current mark for that
format type) from the buffer pointed to by the buffPtr parameter up to buffLen bytes.

After you open the edition container for a subscriber and determine which formatsto read,
use the ReadEdition function to read edition data.

4-24 Using the Edition Manager

oY

IPR2017-01828

Ubisoft EX1002 Page 213



IPR2017-01828 
Ubisoft EX1002 Page 214

The Edition Manager

err := ReadEdition (whichEdizion, whichFormat, buffPtr, buffLen);  

The ReadEdition function reads the data with the specified format (whichFormat) from the
edition into the buffer. The ReadEdition function begins reading at the current mark for that
format and continuesto read up to buffLen bytes. The actual numberof bytes read is returned
in the buffLen parameter. Once the buffLen parameter returns a value smaller than the value
you have specified, there is no additional data to read, and the ReadEdition function returns a
noErr result code.

Closing an Edition

Whenyou are done writing to or reading data from an edition,call the CloseEdition function.

 err := CloseEdition (whichEdition, successful);

Each time a user edits a publisher within a document, you must update the modification date
in the section record (evenif the data is not yet written). When the update modeisset to
Manually, the user can compare the modification dates for a publisher andits edition in the
publisher options dialog box. One modification date indicates when the publisher last wrote
data to the edition, and the other modification date indicates when the publisher section was
last edited.

If the successful parameter for a publisher is TRUE,the CloseEdition function makes the
newly written data available to subscribers and sets the modification date in the mdDatefield
of the edition to correspond to the modification date of the publisher’s section record.If the
two dates differ, the Edition Manager sends a Section Read eventto all current subscribers.

If the successful parameter for a subscriber is TRUE,the CloseEdition function sets the
modification date of the subscriber's section record to correspond to the modification date of
the edition.

If you cannot successfully read from or write data to an edition, set the successful parameter
to FALSE.Fora publisher, data is not written to the edition, but it should still be saved with
the documentthat contains the section. When the documentis next saved, data can then be
written to the edition. See “Closing an Edition After Reading or Writing” later in this chapter
for additional information on the CloseEdition function.

a

cylin=r=ad
=)
=
aas
&
=}
y

oSis
a
 

Creating a Publisher

You need to support a Create Publisher menu commandin the Edit menu. Whena uscrselects
a portion of a document and chooses Create Publisher from this menu, you should display the
publisher dialog box on the user’s screen. The Create Publisher menu command should
remain dimmed until the user selects a portion of a document.

Use the NewPublisherDialog function to display the publisher dialog box on the user’s
screen, This functionis similar to the CustomPutFile procedure described in the Standard
File Package chapter in this volume.

err := NewPublisherDialog (reply);

Using the Edition Manager 4-25

IPR2017-01828

Ubisoft EX1002 Page 214



IPR2017-01828 
Ubisoft EX1002 Page 215

 

Inside Macintosh, Volume VI

The dialog box contains space for a preview (a thumbnail sketch) of the edition and a
space for the user to type in the nameofthe edition in which to write the publisher data.
Figure 4-11 illustrates a sample publisher dialog box.
 

Preview = Editions + => Loma Prieta

© sales data Eapet
RG sales rppest =

Desktop

Name of new edition:

Simple graphig

  
 

 
Figure 4-11. A sample publisher dialog box

The NewPublisherDialog function displays the preview (provided by your application), a text
box with the default name of the edition (provided by your application), and handlesall user
input until the user clicks Publish or Cancel.

You pass a new publisher reply record as a parameter to the NewPublisherDialog function.

TYPE NewPublisherReply = 
 

 

 

RECORD

cance_ed: 300lean; {user canceled dialog box}
replacing: Boolean; {user chose existing }

{ filename for an edition}
usePart: Boolean; {always FALSE in version 7.0}
preview: Handle; jhandle to ‘tprvw', ‘PICT’, }

{ 'TEXT', or 'snd' data}
previewFormat: FormatType; {type of preview}
container: =ditionContainerSpec {edition chosen}

END;

Youfill in the usePart, preview, previewFormat, and container fields of the new publisher
reply record.

Alwaysset the usePart field to FALSE. The preview field contains cither NIL or the data to
display in the preview. The previewFormatfield should contain 'PICT', 'TEXT’, or 'prvw'.

Set the container field to be the default name and folder for the edition. The default name

should reflect the data contained in the publisher. For example, if a user publishes a bar chart
of sales information entitled “sales data,” then the default name for the edition could also

be “sales data.” Otherwise, you should use the document name followed by a hyphen(-) |
and a numberto establish uniqueness. For example, your default name could be “January |
Totals - 3.”

i

If the document has not been saved, the default name should be “untitled edition <n~>’’ where
nis a numberto establish uniqueness. The default folder should be the sameasthe edition for
the last publisher created in the same document.If this is the first publisher in the document,
the default folder should be the same folder that the documentis in.

4-26 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 215



IPR2017-01828 
Ubisoft EX1002 Page 216

The Edition Manager

The canceled field of the new publisher reply record indicates whether the user canceled from
the dialog box. The replacing field indicates that the user chose to replace an existing edition
file. If replacing returns FALSE,call the CreateEditionContainerFile function to create an
edition file.

The containerfield is of data type EditionContainerSpec.

 TYPE EGitionContainerSpec =
 

  
RECORD

theFile: FSSpec; {file containing edition }
{ data}

theFileScript: ScriptCode; {script code of filename}
thePart: LongInt ; {which part of file, }

{ always kPartsNotUsed}
thePartNane: Str3l; {not used in version 7.0}
theParlScript: ScriptCode {not used in version 7.0}

END; 

Thefield theFile is of type FSSpec. See the File Manager chapterin this volume for further
information on file system specification records.

Youidentify the edition using a volume reference number, directory ID, and filename. When
specifying an edition, follow the standard conventions described in the File Manager chapter
of this volume.

Afterfilling in the fields of the new publisher reply record, pass it as a parameterto the
NewPublisherDialog function, which displays the publisher dialog box.

err := NewPublisherDialog (reply);

After displaying the publisher dialog box, use the CreateEditionContainerFile function to create
the edition container, and then use NewSection function to create the section record and the
alias record. See “Creating the Section Record and Alias Record”earlier in this chapter for
detailed information.

In response to the user selecting the Create Publisher menu item,this codeillustrates how
your application might set up the preview for the edition, set the default namefor the edition
container, and call an application-defined function (DoNewPublisher function) to display the
publisher dialog box on the user’s screen. An application might call the DoNewPublisher
function as a result of the user making a menu selection to create a publisheror in response to
handling the Create Publisher event. See the Apple Event Manager chapter in this volume for
an example handler that handles the Create Publisher event.

+

=
2
Ex
==)
io]
edne
is
=
=

Bo)©ba
 

 

VAR

thisDocument : MyDocument InfoPtr;
promptForDialog: Boolean;
preview: Handle;
previewFormat: FormatType;
defaultlocation: EGitionContainerSpec;

BEGIN

{Get a preview to show the user. The MyGetPreviewForSelection }
{ function returns a handle to the preview. }

 
preview := MyGetPreviewForSelection(thisDocument) ;
previewFormat := 'TEXT'; 

Using the Edition Manager 4-27

IPR2017-01828

Ubisoft EX1002 Page 216



IPR2017-01828 
Ubisoft EX1002 Page 217

 
Inside Macintosh, Volume VI

 
defaultLocation := MyGetDefaultEditionSpec (thisDocument);
promptForDialog := TRUE;
myErr := DoNewPublisher(thisDocument, promptForDialog, preview,

previewFormat, defaultLocation);
END;

Creating the Edition Container

Use the CreateEditionContainerFile function to create an edition container to hold the

publisher data.

 err := CreateEditionContainerFile (editionFile, fdCreator,

editionFileNameScript);

This function creates an edition container. The edition container is empty (that is, it does not
contain any formats) at this time.

To create a customized icon for the edition container, put the creator signature of your appli-
cation with the icon in your application’s bundle. See the Finder Interface chapterin this
volumefor additional information. Depending on the contents of the edition, the file type will
be ‘edtp' (for graphics), 'edtt’ (for text), or ‘edts' (for sound).

After creating the edition container, use the NewSection function to create the section record
and alias record for the section.

Listing 4-4illustrates how to create a publisher. The DoNewPublisher function shown in the
listing is a function provided by an application. Note that an application mightcall the
DoNewPublisher function as a result of the user making a menuselection to create a publisher
or in response to handling the Create Publisher event. See the Apple Event Managerchapterin
this volumefor an example handler that handles the Create Publisher event.

The parameters to the DoNewPublisher function include a pointer to information about the
document, a Boolean value that indicates if the function should display the new publisher
dialog box, the preview for the edition, the preview format, and an edition container.

The function displays the publisher dialog box if requested, letting the user accept or
change the nameof the edition and the location where the edition should reside. Use the
CreateEditionContainerFile function to create the edition with the given name and location.
Use the NewSection function to create a new section for the publisher.

After the section is created, you must write out the edition data. Be sure to add the newly
created section to yourlist of sections for this document. There are several different
techniques for creating publishers and unique IDs;this listing displays one technique.

Listing 4-4. Creating a publisher

FUNCTION DoNewPublisher(thisDocument: MyDocumentInfoPtr;
promptForDialog: Boolean; preview: Handle;
previewFormat: FormatType;
editionSpec: EditionContainerSpec) : OSErr; 

VAR

getLastErr, dialogErr: OSI
createErr, sectionErr: OSI 

4-28 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 217



IPR2017-01828 
Ubisoft EX1002 Page 218

The Edition Manager

 
 

resID: Integer;
chisSectionH: SectionHandle;
reply: NewPublisherReply;

BEGIN

{Set up info for new publisher reply record}
reply.replacing := FALSE;
reply.usePart := FALSE;
reply.preview :- preview;
reply.previewFormat := previewFormat;
reply.container := editionSpec;

IF promptForDialog THEN
 BEGIN {user interaction is allowed}

{Display dialog box and let user select. }
dialogErr := NewPublisherDialog(reply);
{Dispose of preview data handle. }
DisposHandle(reply.preview);
{There's usually no error returned here, but if there is, }

then it makes no sense to continue with this operation.>
IF dialogErr <> noErr THEN MyErrHandler(dialogErr) ;
{Do nothing if user canceled. }
IF reply.canceled THEN

   

  
 

 

BEGIN

DoNewPublisher := userCanceledErr;
EXIT (DoNewPublisher);

END;
END;
{If user wants to replace an existing file, don't create one.}
IF NOT reply.replacing THEN
BEGIN

createErr :=

CreateEditionContainerfile(reply.container.theFile,
kAppSignature,
reply.container.theFileScript) ;

{If the create failed, then this operation can't be completed}
IF createErr <> noErr THEN

  
  

 
 

 BEGIN
DoNewPublisher := errAEPermissionDenied;
EXIT (DoNewPublisher)} ;

END;
END;

{Advance counter to make a new urique sectionID for this }
{ document. Iz is not required that you equate section IDs with }
{ resources.}
thisDocument*.nextSectionID := thisDocument*.rextSectionID + 1;

=

ing
i="===
5
=)
Ka—
2
i]
©
Jco=
  

{Create a publisher section.}
sectionErr := NewSection(reply.container,

thisDocument®.fileSpecPtr,
stPublisher, thisDocument*®.nextSectionID,
pumOrnSave, thisSection4H);

IF (sectionErr <> noErr) & (sectionErr <> multiplePublisherwrn) &
(sectionErr <> notThePublisherwrn) THEN
{If a new section could not be created, don't continue with this }
{ operation. }
MyErrHandler (sectionErr) ;

 

  
 

  

resID := thisDocument*®.nextSectionID;
(Continued)

Using the Edition Manager 4-29

IPR2017-01828

Ubisoft EX1002 Page 218



IPR2017-01828 
Ubisoft EX1002 Page 219

inside Macintosh, Volume VI

Listing 4-4. Creating a publisher (Continued)

{Add this section/alias pair to my internal bookkeeping. }
{ The AddSectionAliasPair is a routine to accomolish this.}
AddSectionAliasPair(thisDocument, thisSectionH, resID);

{Write out first edition.}
DoWriteEdition(thisSectionH, thisDocument) ; 

{Remember that the section and alias records need to be }
{ saved as resources when the user saves the document. }

{Set the function result appropriately}
DoNewPublisher := MyGetLastError;

 
END; {DoNewPublisher} 

Opening an Edition Container to Write Data

Several routines are required to write (publish) data from a publisher to an edition container.
Before writing data to an edition, you must use the OpenNewEdition function. This function
should be used only for a publisher within a document. Use this function to initiate the
writing of data to an edition.

err := OperNewEdition (publisherSectionH, fdCreator,
publisherSectionDocumert, refNum);

 

A user may try to save a documentcontaining a publisherthat is unable to write its data to an
edition—because another publisher (that shares the same edition) is writing, another subscriber
(that shares the same edition) is reading, or a publisher located on another computeris regis-
tered to the section. In such a case, you may decide to refrain from writing to the edition so
that the user does not have to wait. You should also refrain from displaying an error to the
user. The contents of the publisher are saved to disk with the document. The next time that the
user saves, you can write the publisher data to the edition. You should discourage users from
making multiple copies of the same publisher and pasting them in the sameor other documents
by displaying an alert box (see “Duplicating Publishers and Subscribers”later in this chapter).

If a user clicks Send Edition Now within the publisher options dialog box (to write publisher
data to an edition manually), and the publisheris unable to write its data to its edition (for any
of the reasons outlined above), you should display an error message.

After you are finished writing data to an edition, use the CloseEdition function to close
the edition.

Listing 4-5 illustrates how to write data to an edition. As described earlier, you must open the
edition, write each format using the WriteEdition function, and close the edition using the
CloseEdition function. This listing shows how to write text only. If the edition is written
successfully, subscribers receive Section Read events.

Listing 4-5, Writing data to an edition 
   
 

   
PROCEDURE DoWriteEdition(thePublisher: SectionHandle);

VAR

eRefNum: EditionRefNum;
operErr: OSErr;

4-30 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 219



IPR2017-01828 
Ubisoft EX1002 Page 220

The Edition Manager

   

 
wWriteErr: OSErr;
closeFrr: OSErr;
tLhisDocument: MyDocurmentInfoPtr;
textHandle: Handle;

BEGIN 

{Find out which document this section belongs to.
{ The FPindDocument function accomplishes this. }
thisDocument := FindDocunent (thePublisher) ;

{Open edition for writing.}
openErr := OpenNewidition(thePublisher, kAppSignature,

thisDocument’*.fileSpecPtr, eRefNum);

 
 

   IF openErr <> noErr THEN
{I£ the open failed, then you can't write, }
{ so don't continue with tnis operation. }
MyErrilandler (operErr) ;

 

 

{Get the text data to write. The Get'i'extinSection }
{ function accomplishes this.}
textHandle := GetTextInSection(thePublisher, thisDocument) ;

 
{Write out text data.}
HLock (textdandle);
writeErr := WriteFdition(eRefNum, 'TEXT', textHancle’,

GetdandlcSize(textHandle));

   

HUnLock (textHandle) ;
IF writeErr <> noErr THEN

EGIN

{There were oroblems writing; simply close the edition. }
{ When successful = FALS®, the edition data <> section data.
{ Note: this isn't fatal or bad; it just means that tne }
{ data wasn't written and no Section Kead events will be }
{ generated. }

   
a

1

    
  

closeErr := CloseEdition(eRefNum, FALSE);
SND ELSE

BEGIN

{The write was successful; now close the edition. }
{ When successful = ''RUE, the edition data — section data. } 

{ This edition is now available to any subscibers. }
{ Section Read events will be sent to current subscribers. }
closeErr := CloseEdition(eRelNum, TRUE);

END;
END; {DoWriteEdition}

   
 

=
—ev
a=+ai)
=Coa
a—=
oY
=]=Y

33i
=  
 

Creating a Subscriber

You need to create a Subscribe To menu commandin the Edit menu. When a user chooses

Subscribe To from this menu, your application should display the subscriber dialog box on
the user’s screen.

Use the NewSubscriberDialog function to display the subscriber dialog box on the user’s
screen. This function is similar to the CustomGetFile procedure described in the Standard
File Package chapter in this volume.

To create a subscriber, you must get information from the user, such as the name ofthe
edition being subscribed to. The dialog box displaysa listing ofall available editions and

Using the Edition Manager 4-31

IPR2017-01828

Ubisoft EX1002 Page 220



IPR2017-01828 
Ubisoft EX1002 Page 221

Inside Macintosh, Volume VI

allows the user to see a preview (thumbnail sketch) of the edition selected. Figure 4-12
shows a sample subscriber dialog box. i
 

Preview a Editions + = Loma Prieta

£3 Simple graphic
© sales data

£3 sales report

 
 

 
Figure 4-12. A sample subscriber dialog box

The subscriber dialog box allows the user to choose an edition to subscribe to. The
NewSubscriberDialog function handles all user interaction until a user clicks Subscribe
or Cancel. Whena userselects an edition container, the Edition Manager accesses the
preview for the edition container(if it is available) and displaysit.

 
You pass a new subscriber reply record as a parameter to the NewSubscriberDialog function.

TYPE NewSuoscriberkerly =

RECORD |
canceled: Boolean; {user canceled dialog box} |
formatsMask: SignedByte; {formats required} |
corntaine: FeitionCorntainerSpec {edition selected}

END;

The canceled field returns a Boolean value of TRUEif the user clicked Cancel. To indicate

which edition format types (text, graphics, or sound) your application can read, you set the
formatsMaskfield to onc or more of these constants:

CONST kPICT£ormatMask = 1; {Can subscrive to 'PICT', }
<‘UEX'T£formatMask = 2; { 'TEXT', and }
xsndFormatMask ~ 4a; { 'snd '.}

To support a combination of formats, add the constants together. For example, a formatsMask
of 3 displays both graphics and text edition format types in the subscriber dialog box.

The containerfield is of data type EditionContainerSpec. You must initialize the container
field with the default edition volume reference number, directory ID, filename, and part. To
do so, use the GetLastEditionContainerUsed function to obtain the nameofthe last edition
displayed in the dialog box.

err := GetlhastEditionContainerUsed (conlainer);

This function returns the last edition container for which a new subscriber was created

using the NewSection function.If there is no last edition, or if the edition was deleted,

4-32 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 221



IPR2017-01828 
Ubisoft EX1002 Page 222

The Edition Manager

GetLastEditionContainerUsedstill returns the correct volume reference number and

directory ID to use, but leaves the filename blank and returns the fnfErrresult code.

The containerficld is of data type EditionContainerSpec.

TYPE EditiorContainerSpec =

  
RECORD

theFile: FSSpec; {file containing ecition }
f{ data}

theFileScripz: ScriptCode; {seript code of filename}
thePart: Long=int; {waich part of file, }

{ always kPartsNozJsed}
thePartName: Str3l; {not used in version 7.0}

thePartScript: ScriptCode {not used in version 7.0}
END;

Thefield theFile is of type FSSpec. See the File Managerchapter in this volume for further
information on file system specification records.

Afterfilling in the fields of the new subscriber reply record, pass it as a parameterto the
NewSubscriberDialog function, which displays the subscriber dialog box.

err := NewSubscriberDialog (revly);

After displaying the subscriber dialog box, call the NewSection function to create the section
record andthe alias record. See “Creating the Section Record and Alias Record”earlier in this
chapter for detailed information.

If the subscriberis set up to receive new editions automatically (not manually), the Edition
Managersends your application a Section Read event. Whenever your application receives a
Section Read event, it should read the contents of the edition into the subscriber.

Listing 4-6 illustrates how to create a subscriber. As described earlier, you must set up and
display the subscriber dialog box to allow the user to subscribe to all available editions. After
your application creates a subscriber, your application reccives a Section Read eventto read in
the data being subscribed to. Be sure to add the newly created section to yourlist of sections
for this file. There are many different techniques for creating subscribers and unique IDs; this
listing displays onc technique.

rs

=2=laa
5
=
z—
oo
i}
i

vr)I
a
 

Listing 4-6. Creating a subscriber
 

PROCEDURE DoNewSubscriber (thisDocument: MyDocumentInfoPt =);  

 
VAR

getLast=2rr: OSErr;

dialogmrr: OSErr;
section=rr: OSErr;
resID: Integer;
thisSectionH: SectionHandle;

reoly: NewSucoscriberReply;

(Continued)

Using the Edition Manager 4-33

IPR2017-01828

Ubisoft EX1002 Page 222



IPR2017-01828 
Ubisoft EX1002 Page 223

 

Inside Macintosh, Volume VI

Listing 4-6. Creating a subscriber (Continued)
 BEGIN

{Put default ecition name into reply record. }
getLastErr := GotLastEGitionContainerUsed(reply.container) ;

 

 {Can subscribe to pictures or text.}
reply.formatsMask := kPICT£ormatsMask + kTEXTformatsMask; 

{Display dialog box and let user select.}
dialogfrr := NewSubscriberDialog(reply);
{There's usually no error returned here, but if there is, }
{ then it makes no sense to continue with this operation. }
{ Pass control to MyErrHandler. }

IF dialogErr <> noErr THEN MyErrHandler(dialogErr);

        

{Do nothing if user canceled. }
IF reply.canceled THEN EXIT (DoNewSubscriber);

{Advance counter to make a new unique sectionID for this }
{ document. It is not necessary to equate section IDs with }
{ resources. }

thisDocument*.nextSectionID := thisDocument*.nextSectionZD + 1;

{Create a subscriber section. }

sectionErr := NewSection(reply.container,
thisNocument*.fileSpecPtr,
stSubscriber,
thisDocument*.nextSectionID,
sumAutomatic, thisSectionH) ;

IF sectionErr <> noErr THEN

{Same reasoning as above. If a new section could not be }
{ created, don't continue with this operation. Pass }
{ control to MyErrHandler.}
MyErrHand_er (sectionErr);

 

 
    

resID := thisDocument*®.nextSectionl);

{Add this section/alias pair to your internal bookkeeping. }
{ AddSectionAliasPair is a routine to accomplish this. }
AadSectionAliasPair(thisDocument, thisSectionH, resID);

{Remember that you will receive a Section Read event to read

{ in the edition that you lust subscribed to because the initial }
{ mode is set Eo sumAutomatic.?>

{Remember that the section and alias records need to be saved }
{ as resources when the user saves the docunent.>

 END; {DoNewSubscriber}

4-34 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 223

 



IPR2017-01828 
Ubisoft EX1002 Page 224

The Edition Manager

Opening an Edition Container to Read Data

Before reading data froman edition, you must use the OpenEdition function. Your applica-
tion should only use this function for a subscriber. Use this function to initiate the reading of
data from an edition.

 err := OpenEdition (subscriberSectionH, refNum);

Asa precaution, you shouldretain the old data until the user can no longer undo. This allows
you to undo changesif the user requestsit.

Your application can supply a procedure such as DoReadEdition to read in data from the
edition to a subscriber. When your application opens a documentcontaining a subscriber
that is set up to receive new editions automatically, the Edition Manager sends you a Section
Read eventif the edition has been updated. The Section Read event supplies the handle to
the section that requires updating. Listing 4-7 provides an example of reading data from
an edition.

Choosing Which Edition Format to Read

After your application opens the edition containcr for a subscriber, it can look in the edition
for formats that it understands. To accomplish this, use the EditionHasFormat function.

  err :— EditionHasFormat (whichEdition, whichFormat, formatSize);

The EditionHasFormat function returns the noTypcEnrr result codeif a requested format
is not available.If the requested format is available, this function returns the noErr result
code, and the formatSize parameter contains the size of the data in the specified format or
kFormatLengthUnknown(—1), which significs that the size is unknown.

After your application opensthe edition container and determines which formats it wants to
read, call the ReadEdition function to read in the edition data. See “Reading and Writing
Edition Data”earlier in this chapter for detailed information.

After you have completed writing the edition data into the subscriber scction,call the
CloseEdition function to close the edition. See “Closing an Edition”earlier in this chapter
for detailed information.

a

ic]a

=i)
3
2Rs
5
=
a

AI
a
 

Listing 4-7 illustrates how to read data from an edition. As described earlier, you must open
the edition, determine which formats to read, use the ReadEdition function to read in data,
and then use the CloseEdition function to closc the cdition. This listing shows how to read
only text,

Using the Edition Manager 4-35

  

IPR2017-01828

Ubisoft EX1002 Page 224



IPR2017-01828 
Ubisoft EX1002 Page 225

Inside Macintosh, Volume VI

Listing 4-7. Reading in edition data

PROCEDURE DoReadEdition(theSubscriber: SectionHandle) ;  

 

  

VAR

ecRefNum: EditionRefNum;
openErr: OSErr;
readErr: OSErr;
closeHrr: OSErr;
thisDocument: MyDocumentiInfoPtr;
textFandle: Handle;
formatLen: Size;

BEGIN

{Find out which document cthis section belongs to. }
{ The FindDocument function accomplishes czhkis.}
thisDocument := FindDocumert (theSubscriber) ;

£Open the edition for reading. }
openErr := OpenEdition(theSubscriber, eRefNum) >
Lf openErr <> noErr THEN
{If the oven failed, then most likely you can't reac, }
£ so don't continue with this operation. }

MyErrHandler (openErr) ;

  
  

  

aol Look for 'TEXT' format.}
IF EditionHasFormat(eRefNum, 'TEXT', fozrmatLen) = noBrr THEN
BEGIN

{Get the nandle of location to read to. }

{ The GetTextinSection funczion accompliskes this.}

 
   

   

textHandle :- GetTextInSection(theSubscriber, thisDocument) ;
Se.HandleSize(textHandle, lormatLen});
HLock(textHandle) ;
readErr := ReadEdition(eRefNum, 'TEXT', texitHancle’,

formatLen);
HUrLock (textHancle) ;

 
   I> readErr = noErr THEN

BEGIN

{The read was successful; now close the edition. }
{ When successful = TRUE, the section data = edition data. }
closeErr := Close*dition(eRefNum, TRUE);
EXIT (DoReadEdition);

END:
END;

'TERT' format wasn't ftound or read error; just close }
the edition. FALSE tells the Hdition Manager that your application }
did not get the latest edition. }

closeErr := CloseEdition(eRefNum, FASE);

  
  

   
{
{
{   

END; {DoReadEdition}  

4-36 Using the Edition Manager

 
IPR2017-01828

Ubisoft EX1002 Page 225



IPR2017-01828 
Ubisoft EX1002 Page 226

The Edition Manager

Using Publisher and Subscriber Options

There are special options associated with publishers and subscribers within documents. Your
application can use the publisher and subscriber options dialog boxes provided by the Edition
Managerto make these choices available to the user. You should make these dialog boxes
available to the user by creating a menu commandin the Edit menu that toggles between
Publisher Options (when the user has selected a publisher within a document) and Subscriber
Options (when a user has selected a subscriber within a document).

Whena user chooses these menu commands, you need to display the corresponding publisher
or subscriber options dialog box. Use the SectionOptionsDialog function to display the appro-
priate dialog box on the user’s screen.

err := SeclionOpzionsDialog (reply);

Each dialog box contains information regarding the section and its edition. Figure 4-13
showsthe publisher options dialog box with the update modeset to On Save.
  

Publisher to: i Simple graphic w

» Send Editions:

®ons . Cancel Publisherave

© Manually Send Edition Now
+ Latest Edition Tuesday, October 17, 1989 5 04:00 PM 
 

Figure 4-13. The publisher options dialog box with update mode set to On Save

Figure 4-14 showsthe publisher options dialog box with the update modeset to Manually.
 

Publisher to: £3 Simple graphic 7

- Send Editions:

Qons , Cancel Publisherave

 

@® Manually Send Edition Now
Latest Edttion Monday, June 18, 1990 4 21 39 PM
Last Change Monday, June 18, 19904 21 39 PM Cancel
 
 

Figure 4-14. The publisher options dialog box with update mode set to Manually

Asa shortcut for the user, you should display the publisher options dialog box when the user
double-clicks on a publisher section within a document.

Using the Edition Manager 4-37

IPR2017-01828

Ubisoft EX1002 Page 226



IPR2017-01828 
Ubisoft EX1002 Page 227

 
Inside Macintosh, Volume VI

Figure 4-15 shows the subscriber options dialog box with the update modeset to
Automatically.
 

Subscriber to:|& Simple graphic w

* Get Editions: . , Cancel Subscriber
@ Automatically
© Manually Get Edition Now Open Publisher

Latest Edition Tuesday, October 17, 19695 04 00 PM : 
 

Figure 4-15. The subscriber options dialog box with update modeset to Automatically

Figure 4-16 showsthe subscriber options dialog box with the update mode set to Manually.

Subscriber to:|£3 Simple graphic ¥

» Get Editi : .
Get Editions . Cancel Subscriber

© Automatically

 

@ Manually Get Edition Now Open Publisher
Latest Edition Monday , June 19, 1990 4 17 33 PM

Last Received Monday, June 18, 19904 17 33 PM[Cancer}[oK|i: cancer) (Cor) !
 

Figure 4-16. The subscriber options dialog box with update mode set to Manually

As a shortcut for the user, you should display the subscriber options dialog box when the
user double-clicks on a subscriber section within a document.

You pass a section optionsreply record as a parameter to the SectionOptionsDialog function.

TYPK SectionOptionsReply =
RECORD

canceled: Boolean; {user canceled dialog box}
changed: Booiean; {changed section record}
sectionH: SectionHandle; {handle to the specified }

{ section record}
acLlion: ResType {action codes}

END;

Set the sectionH parameter to the handle to the section record for the section the user selected.

Uponreturn of the SectionOptionsDialog function, the canceled and changedfields are set. If
the canceled parameteris set to TRUE,the user canceled the dialog box. Otherwise,this
parameter is FALSE.If the changed parameter is TRUE,the section record is changed. For
example, the user may have changed the update mode.

 
4-38 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 227



IPR2017-01828 
Ubisoft EX1002 Page 228

The Edition Manager

The action parameter contains the code for one of five user actions. All action codes dismiss
the publisher and subscriber options dialog boxes when complete.

w action codeis 'read' for user selection of the Get Edition Now button

m action code is 'writ' for user selection of the Send Edition Now button

m action code is 'goto' for user selection of the Open Publisher button

m action codeis ‘cncl' for user selection of the Cancel Publisher or Cancel Subscriber button

m actioncodcis'  '($20202020) for user selection of the OK button

Listing 4-8 shows an example of how your application can respondto the action codes
received from the section options reply record. There are several different techniques that
your application can use to accomplish this—this listing shows one technique.

Listing 4-8. Responding to action codes 

PROCEDURE DoOptionsVialog(theSection: SectionHandle) ;  
 

VAR

reply: SectionOptionReply;
theEditionInfo: EaGitioniInfoRecord;
action:  
sodErr:

geilrr:
gpiErr:

   
BEGIN

reply.sectionH := theSection;
sodErr := SectionOptionsDialog(reply);

 

 

{Determine what the user did and handle appropriately. }
IF reply.canceled THEN

{The user changed his/her mind; simply returr.}
EXIT (DoOptionsDialog);

 

 

=

ica
=bane))
|
zx
)
=2
aroO= IF reoly.cnanged THEN

{The section record nas cnanged; maxe note of this. }
{ SectionHasCharged is a routine to accomplish this. }
SectionHasChanged (theSection) ;
{If you customize, you may want to do some post-processing now. }

 
 

action := reply.action; {Get the action code. }

IF (action = 'read') THEN
BEGIN {User selected Get Edition Now button. } 

 DoReadEditior (theSection) ;

EXIT (DoOptionsDialog);
ND;

   tl
(Continued)

Using the Edition Manager 4-39

IPR2017-01828

Ubisoft EX1002 Page 228



IPR2017-01828 
Ubisoft EX1002 Page 229

 
 

Inside Macintosh, Volume VI

Listing 4-8. Responding to action codes (Continued)
H F (action = '‘writ') CHEN

EGIN {User selected Send Edition Now button.}
DoWriteZdition(theSection);
EXIT (DoOptLionsDialog);

w  

  
 

   

 
 

  
   
 

 
 

 

  

END;

F (action = ‘goto') THEN
BEGIN {User selected Open Publisher button. }

ceiErr := GetEditionInfo(theSection, theEditionInfo) ;
{There's usually no erzor returned here, but if }

' there is, then don't continue with th’s operation. }
“F ceiErr <> noErr THEN MyErrilandlez(geiErr);

gpsErr := GotoPublisherSection(theFditionInfo.conzainer);
{Same comment as above. Pass control to MyEzrHandler }
{ if there's an error.}

=F ¢psErr <> noErr THEN MykrrHandlex(gpsFrr);
EXIT (DoCptionsDialog) ;

END;

IF (action - ‘'cnecl') THEN
BEGIN {User selected Cancel Publisher or Cancel Subscriber button. }

{Call the UnRegisterSection function and dispose of the }
{ section record and the alias record.}
EXIT (DoOptionsDialog) ;

END;

END; {DoOptionsDialog}

 

The following sections describe the features of the publisher and subscriber options
dialog boxes.

Publishing a New Edition While Saving or Manually

By default, your application should write publisher data to an edition each timethe user
saves the documentand the contents of the publisher differ from the latest edition. In the
publisher options dialog box, the user can choose to write new data to an edition each time
the documentis saved (by clicking On Save) or only when the userspecifically requestsit
(by clicking Manually).

Whenthe update modeis set to manual, a user must click the Send Edition Now button
within the publisher options dialog box to write publisher data to an edition. When a user
clicks Send Edition Now,the section options reply record containsthe action code ‘writ’.
Write out the new edition beginning with the OpenNewEdition function. Writing to an edition
manually is useful when a user tends to save a document numeroustimes while revisingit.

4-40 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 229



IPR2017-01828 
Ubisoft EX1002 Page 230

The Edition Manager

Eachtimethe user saves the document, check the update mode of the publisher section. If the
publisher section sendsits data to an edition on save, check to see whether the publisher data
has changedsince it was last written out to the edition. If so, write out the new edition.

In addition, you may also support a Stop All Editions menu commandto provide a method
for temporarily suspendingall update activity. See “Publishers, Subscribers, and Editions”
earlicr in this chapter for additional information.

Subscribing to an Edition Automatically or Manually

By default, your application should subscribe to an edition each time new edition data becomes
available. In the subscriber options dialog box, the user can choose to read new data from an
edition as the datais available (by clicking Automatically) or only whenthe user specifically
requests it (by clicking Manually).

Whenthe update modeis set to manual, the user must click the Get Edition Now button
within the subscriber options dialog box to receive new editions. Whena userclicks this
button, the section options reply record contains the action code ‘read’. Read in the new
edition beginning with the OpenEdition function. See “Opening an Edition Containerto
Read Data”earlier in this chapter for detailed information.

Whenthe update modeis set to automatic, your application receives a Section Read cvent
each time a new edition becomesavailable. In response, you should read the new edition
data beginning with the OpenNewEditionfunction.

Yourapplication does not receive Section Read events for subscribers that receive new
editions manually.

You mayalso support a Stop All Editions menu commandto provide a method for
temporarily suspending all update activity. See “Publishers, Subscribers, and Editions”
earlier in this chapter for additional information.

Canceling Sections Within Documents

The option of canceling publishers and subscribers is available to the user through the Cancel
Publisher and Cancel Subscriber buttons in the corresponding options dialog boxes. When
the user wants to cancel the publisher or cancel the subscriber within a document, the action
code of the section options reply recordis 'cncl'. See “Relocating an Edition”later in this
chapter for additional information on canceling a section.

 
a

=
i"=
=a5)
S
2om
s
S©
veloat

When a user cancels a section (either a publisher or subscriber) and then saves the document,
or when a user closes an untitled document (which contains newly created sections) without
saving, you must unregister each corresponding section record and alias record using the
UnRegisterSection function. In addition, you should also delete the section record and alias
record using the DisposHandle procedure. See the Memory Managerchapter in VolumeI for
additional information on the DisposHandle procedure.

Using the Edition Manager 4-4]

IPR2017-01828

Ubisoft EX1002 Page 230



IPR2017-01828 
Ubisoft EX1002 Page 231

 

Inside Macintosh, Volume VI

Whena user cancels a publisher section and then saves the document, or whena usercloses
an untitled document (which contains newly created publishers) without saving, you must
also delete any corresponding edition containers (in addition to deleting section records and
alias records).

Do notdelete an edition containerfile, section record, or alias record until the user saves the
document—the user may decide to undo changes before saving the document.

To locate the appropriate edition container to be deleted (before you use the UnRegisterSection
function), use the GetEditionInfo function.

 err := GetEoitioninfo (sectionH, ediLionInfo);

The editionInfo parameter is a record of data type EditionInfoRecord.
 

TYPE EditionInfoRecord = 
 

  

 
 

RECORD

erDate: TimeStamo; {date cdilion container }
{ was created}

mdDate: TimeStamo; {date of Last charge}
foeCreator: OSType; {file creator}
faType: OSType; {file type}
conzéiner: EdilionContainerSpec {the edition}

END;

The GetEditionInfo function returns the edition containeras part of the edition information.

The crDate field contains the creation date of the edition. The mdDate field contains the modi-
fication date of the edition.

The fdType and the fdCreatorfields are the type and creatorofthe edition file. The container
field includes a volume reference number, directory ID,filename, script, and part number for
the edition.

To removethe edition container, use the DeleteEditionContainerFile function.

 err := DeteteEGitionContainerFile (editionFile);

Locating a Publisher Through a Subscriber

Theuser can locate a publisher from a subscriber within a documentbyclicking the Open
Publisher button in the subscriber options dialog box. As a shortcut, Apple suggests that you
also allow the user to locate a publisher when the userselects a subscriber within a document
and presses Option—double-click.

4-42 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 231

 



IPR2017-01828 
Ubisoft EX1002 Page 232

The Edition Manager

Whenthe action code of the SectionOptionsReply recordis ‘goto’, use the
GoToPublisherSection function.

err := GoToPublisherSection (container);

The GoToPublisherSection function locates the correct documentby resolving thealias in the
edition, and it launches the document’s application if necessary (the Edition Manager sends an
Open Documents event). The Edition Manager then sends the publishing application a Section
Scroll event. If the document containing the requested publisheris located on the same com-
puter as its subscriber, the document opens andscrolls to the location of the publisher. If the
document containing the requested publisher is located on a shared volume(using file sharing),
the document opensandscrolls to the location of the publisher only if the user has privileges
to open the documentfrom the Finder.

You need to provide the GoToPublisherSection function with the edition container. To
accomplish this, use the GetEditionInfo function. See the previous section, “Canceling
Sections Within Documents,” for information on the GetEditionInfo function.

Renaming a Document Containing Sections

If a user renames a documentthat contains sections by choosing Save As from the File menu,
or if a user pastes a portion of a documentthat contains a section into another document, use
the AssociateSection function.

Use the AssociateSection function to update the alias record of a registered section.

ery := AssociateSection (section, newSectionDocument) ;

The AssociateSection function internally calls the UpdateAlias function. It is also possible to
update the alias record using the Alias Manager(see the Alias Managerchapterin this volume
for additional information),

Displaying Publisher and Subscriber Borders

Each publisher and subscriber within a document should have a border that appears when a
user selects the contents of these sections. You should display a publisher border as 3 pixels
wide with 50 percent gray lines and a subscriber border as 3 pixels wide with 75 percent gray
lines. Separate the contents of the section from the borderitself with one pixel of white space.
To create your borders, you should use patterns—not colors. Depending on the user’s
monitor type, colors may not be distinguishable.

oS

=Q
ey
Bs
5
raes
%
5a

Ho)
g
 

Using the Edition Manager 4-43

  

IPR2017-01828

Ubisoft EX1002 Page 232



IPR2017-01828 
Ubisoft EX1002 Page 233

Inside Macintosh, Volume VI

In general, borders for publishers and subscribers should behavelike the borders of PICT’
graphics within a word-processing document. A border should appear whentheuserclicks
within the content area of a publisheror a subscriber and disappear when the user clicks
outside the content area of a section. You can also makeall publisher and subscriber borders
appearor disappear by implementing an optional Show/Hide Borders menu command.
Figure 4-17 displays the Edition Manager Show/Hide Borders menu commandin the
Edit menu.

 
  

  
  
  
  

  

  
Undo 2

Cut seu

Copy eC
Paste U
Select A aA

Create Publisher...
SubscribeTo...

Subscriber Options...
Show Borders

 
Show Clipboard

Figure 4-17. Edit menu with Show/Hide Borders menu command

Depending on yourapplication, you may choose to include resize handles or similar compo-
nents in your borders. See “Object-Oriented Graphics Borders”later in this chapter for an
example of resize handles.

Whenevera uscr selects a portion of a publisher or inserts a cursor into the publisher, you
should display the border as 50 percent gray. A user can copy the contents of a publisher or
subscriber without copyingthe section itself by selecting the data, copying, and then pasting
the data in a new location. A user can cut and paste a selection that contains an entire publisher
or subscriber, but you should discourage users from making multiple copies of a publisher.
See “Duplicating Publishers and Subscribers” later in this chapter for detailed information.

Whenthe user modifies a publisher, your application should grow or shrink its borderto
accommodate the new dimensionofthe section.

You should display only one publisher border within a documentat a time.If a cursoris
inserted within a publisherthat is contained within a larger publisher, you should display
only the smaller, internal publisher border.If it is absolutely necessary to display all section
borders within a documentat the same time, you can create a Show/Hide Borders menuitem.

You do not need to provide support for publishers contained within other publishers. If
you do not, you should dim the Create Publisher menu command(to indicate thatit is not
selectable) when a user attempts to create a publisher within an cxisting publisher.

4-44 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 233



IPR2017-01828 
Ubisoft EX1002 Page 234

The Edition Manager

Figure 4-18 shows the recommended border behavior for publishers when bordersare
shown, when a userselects the contents of a section, and when a user selects data within
a documentthat includes a publisher section.

[Devices connected to the SCSI portoonn the back
eof the main unit must have the proper number =
fof terminators for the devices to work correctly}
fand to prevent damage to the SCSI chip inside =
your computer,

ceeee
oo V2 my ere, havfe the proper nuraber
ia alTOELeau dey i tin ae ee

 
a

isfom=
7S
=]
2—
a
==
Iioa]

 
Figure 4-18. Publisher borders

Figure 4-19 shows the recommended border behavior for subscribers when borders are
shown, when a userselects the contents of a section, and when a user selects data within
a documentthat includes a subscriber section.

Using the Edition Manager 4-45

IPR2017-01828

Ubisoft EX1002 Page 234



IPR2017-01828 
Ubisoft EX1002 Page 235

Inside Macintosh, Volume VI

borders displayed

Apple SCSI cable terminators 5
are hardware devices that attach §
to a SCSI cable. There must be no f

more than two terminators ina=§
SCSI chain.

contents highlighted

Apple SCS! cable terminators
are hardware devices that attach §
to a SCSI cable. There must be no
more than two terminators ina=&§
SCSI chain.

are dewices that attach :
Naeaa

 
Figure 4-19. Subscriber borders

If a usertries to select only a portion of a subscriber, you should highlight the entire contents
of the subscriber. A user cannot edit the data contained within a subscriber. Sec “Modifying a
Subscriber”later in this chapter for detailed information.

If a user cancels a section using the publisher or subscriber options dialog box, your applica-
tion should leave the contents of the section within the document, but you should be sure to
removethe borders from this data, as it is no longer considered a section.

Generally, the appearance and function of publisher and subscriber borders should be the
sameacross different applications. See the following sections entitled “Text Borders,”
“Spreadsheet Borders,” “Object-Oriented Graphics Borders,” and “Bitmapped Graphics
Borders”for descriptions of specialized features for publisher and subscriber borders in word
processing, spreadsheet, or graphics applications.

4-46 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 235



IPR2017-01828 
Ubisoft EX1002 Page 236

The Edition Manager

Text Borders

In word-processing documents, a publisher may contain other publishers. However, one
publisher should not overlap another publisher. You should display only one publisher
border at a time.If an insertion point is placed within a publisher thal is encompassed by
anotherlarger publisher, you should display only the smaller internal publisher border.

In exceptionalcases, it may be necessary to display more than one publisher or subscriber
borderat a time. For example, a publisher may consist of a paragraph that includes a marker
for a footnote. The data contained within the footnote should also be considered part of the
publisher. Whena user selects the paragraph, you should simultancously display a border
around the footnote.

The border of a publisher that contains text should be located between characters within the
text. The insertion point, when placed on such a boundary, should gravitate toward the
publisher. That is, a click in front (to the left) of a publisher border should place the cursor
inside the publisher, so that subsequent typing goes inside the publisher. Clicking at the end
(to the right) of a publisher border should also place the cursor inside the publisher.

Whenevertwo separate borders are adjacent to one another (side by side), the boundary click
should go in between them. This is also true for a border that is next to other nontextual
aspects of a document, such as PICT" graphics or page breaks.

Whena user removes information froma publisher that contains text data, the border should
become smaller to accommodate the new text. When a user adds information to the publisher,
the border should grow to show the enlarged area of the publisher. The insertion point should
remain within the publisher.

If a user highlights the entire contents of a publisher and then chooses Cut from the Edit
menu, you should not delete the publisher border within the document. The user may intend
to delete the existing publisher data and replace it with new data, or the user may wantto
movethe entire publisher and its data to a new location. Figure 4-20 showsthis state.

The first quarter summary of our regional sales shows the
effectiveness of aur new training program. It is clear that

we need torapture the remaining sales potential.

>

cta=~—=<jii=}
a=vy=
=
cy

Bio©lan)
 

Figure 4-20. A publisher with contents removed

You should leave the cursor inside the small publisher border for further typing. If the user
inserts the cursor in a new location (instead of typing data inside the existing border), you
necd to remove the empty publisher border from the document to allow the uscr to move the
publisher. This effectively deletes the publisher from the document. If the user pastes the
publisherthat is currently held in the Clipboard, you should recreate its border. If the user
cuts or copics other data from the document before pasting the publisher from the Clipboard,
the publisher should be removed from the Clipboard.

Using the Edition Manager 4-47

IPR2017-01828

Ubisoft EX1002 Page 236



IPR2017-01828 
Ubisoft EX1002 Page 237

Inside Macintosh, Volume VI

Spreadsheet Borders

Borders around spreadsheetdata or other data in arrays should look and behave very much
like text borders. Figure 4-21 shows a typical border within a spreadsheet document.

 
Figure 4-21. A publisher border within a spreadsheet document

Note that the border goes below the column headers (A, B, C, D) andto the right of the row
labels (1, 2, 3, 4)—it should not overlap these cell boundaries. The border at the bottom and
the border on the right side can be placed within the adjacentcells (outside of the cells that
constitute the publisher).

In contrast to word-processing applications, borders in spreadsheet documents (or other
documents with array data) can overlap. Thatis, a user can select a row of cells to be a
publisher and an overlapping columnofthose cells to be another publisher. You should
never display more than one publisher border at a time. When a user selects a spreadsheet
cell that is part of more than one publisher, you should display only the border of the
publisher that was last edited. (This can be accomplished by comparing the modification
dates of the publishers.)

If it is absolutely necessary to display all section borders within a documentat the same
time, you can create a Show/Hide Borders commandin the Edit menu to toggle all borders
on and off.

When data is added to or deleted from a publisher that consists of a spreadsheetcell or other
array, its border should grow or shrink to accommodate the addition or deletion of data. A
publisher should behave like a named range in a spreadsheet. For example,if a user cuts a
row within a publisher that consists of a named range in a spreadsheet, you should shrink the
publisher data and its border correspondingly.

Whena user cuts a publisher and its entire contents within a spreadshect document,the entire
section should be held in the Clipboard. Do not leave an empty publisher border in a spread-
sheet (as recommendedfor text borders). If a user attempts to paste a copy of an existing
publisher, you should warn the user by displaying an alert box (see “Duplicating Publishers
and Subscribers” later in this chapter).

4-48 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 237

 



IPR2017-01828 
Ubisoft EX1002 Page 238

 

The Edition Manager

Object-Oriented Graphics Borders

In an object-oriented drawing application, the publisher border shouldfit just around the
selected objects.

You can provide resize handles that appear with all drawing objectsto allow theuserto resize
the border of a publisher. Figure 4-22 showsa publisher border with resize handles.

Sample Graphics

 
Figure 4-22. A publisher border with resize handles

A user can create freeform graphics within drawing applications that cause publisher borders
to seemingly float over the area the user publishes. The borderacts like a clipping rectangle—
anything within the border becomesthe publisher. Figure 4-23 shows a publisher that
contains clipped graphics and its subscriber in another application.

A user can create publishers and subscribers that overlap each other. Thus, borders may
overlap and it may no longer be possible to turn on a particular border whenthe userclicks
within a publisher. Drawing applications should provide a menu command, Show Borders,
that toggles to Hide Borders. This command should allow users to turn all publisher and
subscriber borders on oroff.

.

na
2=
bar=SS-—

Kaoa==eI
2

wgfor)ler}
 

Using the Edition Manager 4-49

IPR2017-01828

Ubisoft EX1002 Page 238



IPR2017-01828 
Ubisoft EX1002 Page 239

Inside Macintosh, Volume VI

Graphics Subscriber =] 
Figure 4-23. A publisher and subscriber with clipped graphics

Bitmapped Graphics Borders

Creating a border around bitmappedgraphicsin applicationsis similar to doing so in object-
oriented drawing applications. The border appears around the selected area. The user can
create overlapping publishers and subscribers in bitmapped graphics applications. You need
to provide a Show/Hide Borders commandto allow users to turn all borders on andoff.

Duplicating Publishers and Subscribers

Whenevera user clicks a publisher or subscriber border, you should change the contents of
the section to a selected state. You should discourage users from making multiple copies of a
publisher and pasting them in the same or other documents, because the contents of the
edition would be difficult or impossible to predict. Multiple copies of the same publisher also
contain the same control block value. See “Creating and Registering a Section” later in this
chapter for detailed information on control blocks.

4-50 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 239



IPR2017-01828 
Ubisoft EX1002 Page 240

The Edition Manager

Whena user attempts to create a copy of a publisher that already exists, you should display
an alert box such as the one shownin Figure 4-24.

There is another Publisher open to the
Edition “January Sales.”

If there is more than one Publisher to an
Edition, the Edition’s contents aren’t
predictable. 

Figure 4-24. Creating multiple publishers alert box

Whena user attempts to save a documentthat contains multiple copies of the same publisher,
display an alert box such as the one shownin Figure 4-25.

“Year end report” contains two
Publishers to the Edition “January Sales.”

If there is more than one Publisher to an
Edition, the Edition’s contents aren’t
predictabte. 
 

Figure 4-25, Saving multiple publishers alert box

If a user decides to ignore your alert box, your application should still save the document, but
you should continue to display this error message every time the user saves this document.

A user can modify the contents of any duplicate publisher, but the contents of the edition will
be whichever publisher wasthe last to write.

Whena user chooses to copy and paste or duplicate a section, use the HandToHandfunction
(described in the Operating System Utilities chapter in VolumeII) to duplicate the section
record and alias record. Put the alias field of the cloned section record with the handle to the

cloned alias record and generate a unique section identification numberfor it. When exporting
your Clipboard to the scrap, you should also place the section data, section record, and alias
record in the scrap.

-

x
=—a
=
==}
mad—a=
=
=
aodeolar)
 

Use the RegisterSection function (described earlier in “Opening and Closing a Document
Containing Sections”) to register the cloned section’s section record.

A user can select the contents of a publisher without selecting the border and copy just the
data to a new location.In this case, the user has simply copied data (and not the publisher).
Do not create a border for this data in the new location.

Using the Edition Manager 4-5]

IPR2017-01828

Ubisoft EX1002 Page 240



IPR2017-01828 
Ubisoft EX1002 Page 241

 

 

Inside Macintosh, Volume VI

Modifying a Subscriber

Whentheuserselects data or clicks in the data area of a subscriber, you should highlight the
entire contents of the subscriber using reverse video. You can allow users to globally adom
subscribers. For example, a user might select a subscriber within a document and change
all text from plain to bold. However, you should discourage uscrs from modifying the
individual elements contained within a subscriber—for example, by editing a sentence or
rotating an individual graphical object.

Rememberthat each time a new edition arrives for a subscriber, any modifications that the
user has introduced are overwritten. Global adornmentof a subscriber is much easier for

your application to regenerate.

If you do allowauserto edit a subscriber section, provide an enable/disable editing option
within the subscriber options dialog box using the SectionOptionsExpDialog function,
describedlater in “Customizing Dialog Boxes.” When you allow a userto edit a subscriber,
you should change the subscriber from a selected state to editable data.

In addition to global adomment, your application may also need to support partial selection
of subscribers to enable spell checking and search operations.

Becausea user can modify a publisher just like any other portion of a document,its sub-
scriber may changein size as well as content. For example, a user may modify a publisher
by adding two additional columnsto a spreadsheet.

Relocating an Edition

In the Finder, users cannot move an edition across volumes. Torelocate an edition, the user
mustfirst select its publisher and cancel the section (remember to remove the border). The user
needs to republish and then select a new volumelocation for the edition. As a convenience for
the user, you should retain the selectionof all the publisher data after the user cancels the
section to makeit easy to republish the section.

Customizing Dialog Boxes

The expandable dialog box functions allow you to add items to the bottom of the dialog boxes,
apply alternate mapping of events to item hits, apply alternate meaningsto the itemhits, and
choose the location of the dialog boxes. See the Dialog Manager chapter in VolumeI and the
Standard File Package chapters in Volumes I and VJ for additional information.

The expandable versions of these dialog boxes require five additional parameters. Use the
NewPublisherExpDialog function to expand the publisher dialog box.

err := NewPublisherExoDialog (reply, where, expansionDI''LreslD,
dlgHook, filterProc, yourDataPtr);

4-52 Using the Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 241

“en



IPR2017-01828 
Ubisoft EX1002 Page 242

 

The Edition Manager

Use the NewSubscriberExpDialog function to expand the subscriber dialog box.

 err := NewSubscriberExpDialog (reply, where, expansionD?TLresID,
dlgHook, filterProc, yourDataPtr);

Use the SectionOptionsExpDialog function to expand the publisher options and the
subscriber options dialog boxes.

 err := SectionOptionsExpDialog (reply, where, expansionDITLres=D,
dlgEook, filterProc, yourDataPtr) ;

The reply parameter is a pointer to a NewPublisherReply, NewSubscriberReply, or
SectionOptionsReply record, respectively.

You can automatically center the dialog box by passing (-1, —1) in the where parameter.

The expansionDITLresID parameter should be 0 or a valid dialog item list (DITL’) resource
ID. This integeris the ID of a dialog item list whose items are appendedto the end ofthe
standard dialog item list. The dialog items keeptheir relative positions, but they are moved as
a groupto the bottom ofthe dialog box. See the Dialog Managerchapter in VolumeI for
additional information on dialog item lists.

ThefilterProc parameter should be a valid, expandable modalfilter procedure pointer or NIL.
This procedure is called by the ModalDialog function. The filterProc function cnables you to
map real events (such aS a mouse-down event) to an item hit (such as clicking the Cancel
button). For instance, you may want to map a keyboard equivalent to an item hit. See the
Dialog Managerchapter in Volume I for information on the ModalDialog function.

The dlgHook parameter should be a valid, expandable dialog hook procedure pointer or NIL.
This procedure is called after each call to the ModalDialogfilter function. The dlgHook param-
cter takes the appropriate action, such as filling in a check box. The itemOffset parameter to
the procedure is the numberofitemsin the dialog item list before the expansion dialog items.
You need to subtract the item offset from the item hit to get the relative item numberin the
expansion dialog item list. The return value from the dlgHook parameteris the absolute
item number.

Whenthe Edition Managerdisplays subsidiary dialog boxes in front of another dialog box on
the user’s screen, your dlgHook andfilterProc parameters should check the refConfield in
the WindowRecord data type (from the window field in the DialogRecord) to determine which
window is currently in the foreground. The main dialog box for the NewPublisherExpDialog
and the NewSubscriberExpDialog functions contains the following constant:

aa
=
a===4S==}

a=
5a
=
aroO
a
 

CONST sfMainDialogRefCon = 'stdi'; {new publisher and }
{ new subscriber}

Using the Edition Manager 4-53

IPR2017-01828

Ubisoft EX1002 Page 242



IPR2017-01828 
Ubisoft EX1002 Page 243

Inside Macintosh, Volume VI

The main dialog box for the SectionOptionsExpDialog function contains the following constant:

CONST emOptionsDialogRefCon = ‘optn'; <options dialog}

See “Summary of the Edition Manager” later in this chapter for additional constants.

The yourDataPtr parameter is reserved for youruse.It is passed back to your hook and
modal filter procedure. This parameter does not have to be of type Ptr—it can be any 32-bit
quantity that you want. In Pascal, you can pass in register A6 for yourDataPtr, and make
dlgHook andfilterProc local functions without the last parameter. The stack frame is set up
properly for these functions to access their parent local variables. See the Standard File
Package chapter in this volumefor detailed information.

For the NewPublisherExpDialog and NewSubscriberExpDialog functions,all the pseudo-
items for the Standard File Package—such as sfHookFirstCalli(—1), sfHookNullEvent(100),
sfHookRebuildList(101), and sfHookLastCall(-2)—<anbe used, as well as
emHookRedrawPreview(150).

For the SectionOptionsExpDialog function, the only valid pseudo-items are sfHookFirstCall(-1),
sfHookNullEvent(100), sfHookLastCall(—2), emHookRedrawPreview(150),
emHookCancelSection(160), emHookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(164). See the Standard File Package chapter in this volume for
information on pseudo-items.

SUBSCRIBING TO NON-EDITION FILES

Using the Edition Manager, a subscriber can read data directly from another document, such
as an entire 'PICT'file, instead of subscribing to an edition. This feature is for advanced
applications that can set up bottleneck procedures for reading. Figure 4-26 shows a document
that is subscribing directly to a 'PICT'file.

For each application, the Edition Manager keeps a pointer to a bottleneck function. The
Edition Managernever opensor closes an edition container directly. Instead, the Edition
Managercalls the current edition opener. The InitEditionPack function (described later
in “Initializing the Edition Manager”) sets up the current system openerfunction.

To override the standard opener function, create an opener function that contains the
following parameters.

 FUNCTION MyOpener (selector: EditionOpenerVerb;
VAR PB: EditionOpenerParamBlock) : OSErr;  

4-54 Subscribing to Non-Edition Files |

IPR2017-01828

Ubisoft EX1002 Page 243



IPR2017-01828 
Ubisoft EX1002 Page 244

The Edition Manager

ee

Music
1

the | Subscriber
!

|
/
 
Fianos & palm trees 

Figure 4-26. Subsenibing directly to a "PICT" file

Your opener needs to knowwhich formats the file contains and howthe duta is supposed to
be read ar written,

The opener can allocate a handle or pointer to conluin information suchas file reference
numbers, This value is passed as joRelNuin to the 14O procedures.

The eoOpen and coOpenNewedition opener verbs (described later in “Calling an Edition
Opener Procedure”) return 2 poinier toa function to de the actual reading and writing,

The following s¢etions describe

m how to gel (he current edition opener procedure

howlo set Your awn edition opener procedure

ew howto call an edition opener procedure

m the editiua opener parameters

=

=

ai 
Getting the Current Edition Opener

When you want to gel the current edition opener procedure. use the GetEditionOpenerProc
funetion.

error Tie bell bearish Dbesg: terpenes hy

The opener parameter returns the pointer to the current edition opener procedure. A dilterent
current apcner is kept lor each application. One upplication’s opener is never called by
another application.

Sufseribiag te Mon-Felitieoa Frey 4-35

IPR2017-01828

Ubisoft EX1002 Page 244



IPR2017-01828 
Ubisoft EX1002 Page 245

Inside Macintosh, Volume VI

Setting an Edition Opener

You can provide your own edition opener procedure. To do so, use the SetEditionOpenerProc
function.

 err := SetEditionOpenerProc (@MyOpener) ;

The @MyOpener parameteris a pointer to the edition opener procedure that you are pro-
viding. If you set the current opener to be a routine in your own code,be sure to call the
GetEditionOpenerProc function first so that you can save the’ previous opener. If your opener
is passed a selector that it does not understand, use the previous opener provided by the Edition
Managerto handleit. See the next section fora list of selectors.

Cailing an Edition Opener Procedure

You use the CallEditionOpenerProc function to call an edition opener procedure. Since
the Edition Manageris a package that may move,a real pointer cannot be safely returned
for the standard opener and I/O procedures. The system openerandthe I/O routines are
returned as a value that is not a valid address to a procedure. The CallEditionOpenerProc
and CallFormatlOProc functions check for these values and call the system procedures.

You should never assumethat a value for a system procedureis a fixed constant.

 err := CallEditiorOpenerProc (selector, PB, routine);

Set the selector parameter to one of the edition opener verbs. The edition opener verbs include

w eoCanSubscribe

m coOpen

m eoClose

a coOpenNew

a coCloseNew

The PB parameter of the CallEditionOpenerProc function is an edition opener param-
eter block.

 TYPE EditionOpenerParamBlock =
RECORD

info: EditioniInfoRecord; {edition container to }
{ be subscribed to}

sectionH: SectionHandle; {publisner or }
{ subscriber }
{ requesting open}

document: FSSpecPtr; {document passed}
fdCreator: OsType; {Finder creator type}
i1oRefNum: Longint; {reference number}

4-56 Subscribing to Non-Edition Files

IPR2017-01828

Ubisoft EX1002 Page 245



IPR2017-01828 
Ubisoft EX1002 Page 246

The Edition Manager

ioProc: FormatlOProcPtr; {routine to read }
{ formats}

success: Boolear; {reading or writing }
{ was successful}

formatsMask: SignedByte {formats required to }
{ subscribe}

END; 

The routine parameter of the CallEditionOpenerProc function is a pointer to an edition opener
procedure.

The following list shows whichfields of the edition opener parameter block are used by the
edition openerverbs.

 

Opener
verb Field Description Called by

eoCanSubscribe = info Edition container to subscribe to. NewSubscriberDialog
aad formatsMask—Formats required to subscribe. function for a
- Return value A noErr code indicatesthat an edition subscriber

container can be subscribed to. A

noTypeErr code indicates that an edition
container cannot be subscribedto.

coOpen = info Edition container to open for reading. OpenEdition and
=> sectionH Subscriber section requesting GetStandardFormats

open or NIL. functions for a
— ioRcf{Num Reference numberfor use by YO subscriber

routine. Not the same as EditionRefNum.
<< ioProc I/O routine to call to read formats.

— Return value A noErr code or appropriate crror code.

eoClose > info Edition container to be closed for CloseEdition and -_

reading. GetStandardFormats Sy
=> sectionH Subscriber section requesting close functions for a as

or NIL. subscriber S
> ioRefNum Value returned by eoOpen. ka
=> ioProc Value returned by coOpen. =
2 success Success value passed to the a

CloseEdition function. 7%

Return value A noErr code or appropriate error code.

eoOpenNew 2 info Edition container to open for writing. OpenNewEdition
> sectionH Publisher section requesting function for a

open or NIL. publisher
> document Documentpointer passed into the

OpenNewEdition function.
=> fdCreator The fdCreator passed into the

OpenNewEdition function.
co ioRefNum Reference numberfor use by I/O

routine. Not the same as
EditionRefNum.

co ioProc I/O routine to call to write formats.

- Return value A noErr code or appropriate error code.

Subscribing to Non-Edition Files 4-57

IPR2017-01828

Ubisoft EX1002 Page 246



IPR2017-01828 
Ubisoft EX1002 Page 247

inside Macintosh, Volume ¥f

Opener
verb Field Description Called by

coCloxe tow > trates Edited container to be elased afer ClossEdition hineidion

Wrllne, for u publisher
» section Publisher sectian reqyuesting clase

or NIL.

— iWRetNan Vallue returned by G0 Jpen New,
-} 1oPTew Wallue relurned by coOpen ow,
= SLICES Success value passed io the

CloseEdition Fanetion.

‘ Return value A nuEr code or uppropriate errr code,

The sample code in Listing 4-9 demonstrates howto install your own cdition opener function.

Listing 4-9. Using your own edition opener function

qWioiy melCuene:: Sulibiondwenestrarte; lgletel vavriabiot

SON TMD oly cae recrit aymerers j {Iouteol yeu: obictisn omener syi4
slmnd feisr feb Che saywemes ve poink be cous isin. |

SIRSTTATres. SEY ORec-mess |
Baa lh

Pesp bivgite er cipet eet  
 

To udapeernebras
red llyste: (hor hit portpemer i yar!

 

ENG; fatleler otiUpeernes 3

qinis oper: allio the G.igitmal flitvor cprenmer if lt we qwineees |
Lost aoc bag werk 2b thvey tbok utbderbebagret. }

TURSTICIN Beycaiit teamGsacman time lere Rei bt lontyenoy ves bs
fdltianitpesceriagambloack: oo: ffir: 

fr Mythos bho bea

PyEdip i orssuencfbs :

re Myiedtbiaatilooe psoas

Wao Gd dearSe:
PA, g@ri. gira boyeae 

4-548 Subscribing ta Nou-Edtiian Files

IPR2017-01828

Ubisoft EX1002 Page 247

 

 



IPR2017-01828 
Ubisoft EX1002 Page 248

The Edition Manager

{This funcliorn returns noErr if il can subscribe te tne request }

{ file. It is called by che Edition Manager to build the list of }
{ files in NewSubscriberDialog. Notice that it calls the original }
{ opener for files it does not understard.}

  

FUNCTION MyCanSubscribe (VAR PB: EditiorOpenerParamBlock) : OSErr;
BEGIN

{Check file type to see if it is a file you can emulate as an }
{ edition.}

IF PB.info.fdType - {for example}'PICT'

  

  

  
THEN MyCanSubscribe := noErr
{Otherwise, let the saved off edition opener decide.}
ELSE MyCanSubscribe := CallEdilicnOpenerFroc (eoCanSubsceribe,
 

PB, gOriginalOpener) ;
END; {MyCanSubscribe} 

Opening and Closing Editions

Each time the Edition Manager opensor closes an edition container, it calls the current edition
opener procedure and passesit an opener verb and a parameter block.

Your opener must be careful when closing documents since a document may already have
been opened by another application. Be sure to use the Open/Deny modes wheneverpossible.
Do not close a documentif it was already open when your application openedit.

Listing Files That Can Be Subscribed To

The NewSubscriberDialog function calls the eoCanSubscribe opener verb to buildthelist of
files that can be subscribed to. The preview in the subscriber dialog box is generated by
calling the GetStandardFormats function (described in “Edition Container Formats”later in
this chapter), which calls the format I/O verbs eoOpen, ioHasFormat, ioRead, and then
eoClose. See “Calling a Format 1/O Procedure”later in this chapter for detailed information
on format I/O verbs.

Reading From and Writing to Files

The I/O procedure is a routine that actually reads and writes the data. It too has an interface of
a selector and a parameter block.

To override the standard reading and writing functions, create an I/O function. Note that you
also need to provide your own openerfunction to call your I/O function. Sce “Calling an
Edition Opener Procedure”earlier in this chapter.

FUNCTION MyIO (selector: FormatIOVerb; VAR PB: FormatIOParamBlock)
OSErr; 

Subscribing to Non-Edition Files 4-59

IPR2017-01828

Ubisoft EX1002 Page 248



IPR2017-01828 
Ubisoft EX1002 Page 249

Inside Macintosh, Vatune Vi

Calling a Format VO Procedure

‘To indicate to dhe Lidition Manager which format [O procedure to use, use tae
CallFormatOProc function.

org gs Cal lPurma, tires tee beerieer, STi, ortutineis

Sct the selector parameter to one of the format /O verbs. The format /O verbs include

a 1HasFormuat

a 1ReadFonnat

em iWNewFormiai

me loOWriteFormat

The PG parantcter of the CallPormatlOProe function contains a format LAO parameter block,

  
preter: we a
forcdit isa. y

Viele. elias.
fog Poy lnh at 

 Lita

tdaly Blasts
 
wo ghetead{lenny

 

 

The routine parameter of the CallFormitTOPrec finetion is a pointer ta a fermat YO procedure,

The following list shows which fields of FormatlOParamBlock are used bythe format
VO verbs.

Opener
verb Parameter

WHiisPorciat 4 igRetNum

=> format
co formatted

e bulllen

é Retumn value

wRewd Portia > ivRetNuumn

a3 font
? format] ndex

> offset

4-60 Subscribing to Noa-Baition Piles

Description

GQ referenec nuinber cluded

by opener,
Cheek fer this fornia.

An optional enumeration af ihe
supplied format.
lf found. return the lengih size or -1
if size is unknown.

A oeErr or noTypeEcr code,

1 reference number cetumied by
beeen
Get this format.

Value nelurnied by mHasFormat.
Read formu beginning fron thes offset.

Called by

BaitlonbiasPormat,
Geistandand Forts,
and Bealbchoion
fanciers

ReadlFdition and
Ceiiundard Formats
funetiaans

IPR2017-01828

Ubisoft EX1002 Page 249



IPR2017-01828 
Ubisoft EX1002 Page 250

The Edition Manager

Opener
verb Parameter Description Called by

> buffPtr Put data beginning here.
2 buffLen Specify buffer length to read, and return

actual amountreceived.

- Return value A noErr code, or appropriate error code.

ioNewFormat > ioRefNum 1/O reference numberreturned by SetEditionFormatMark
opener. and WriteEdition

> format Create this format. functions

< formatindex An optional enumeration of the
supplied format.

e Return value A noErrcode, or appropriate error code.

ioWriteFormat > ioRetNum I/O reference numberreturned by WriteEdilion function
opener.

> format Getthis format.

> formatIndex Value retumed by ioNewFormat.
> offset Write format beginning fromthis offset.
> buffPtr Get data beginninghere.
& buftLen Specify buffer length to write.
< Return value A noErr code or appropriate error code.

The marks for each format are kept by the Edition Manager. The format I/O procedure only
needsto be able to read or write, beginning at any offset. If you knowthat your application
always reads an entire format sequentially, you can ignore the offset.

 

EDITION MANAGER ROUTINES 

This section describes the routines for

m initializing the Edition Manager

m creating and registering a section

m creating and deleting an edition container

= setting and locating a format mark

m reading in edition data

= writing out edition data

= closing an edition after reading or writing

w displaying dialog boxes

= locating a publisher and edition from a subscriber

m reading edition container formats

m reading and writing non-edition files

Edition Manager Routines 4-6]

IPR2017-01828

Ubisoft EX1002 Page 250



IPR2017-01828 
Ubisoft EX1002 Page 251

Inside Macintosh, Volume VI

Result codes appear at the end of each function where applicable. In addition to the specific
result codes listed, you may receive errors generated by the Alias Manager, File Manager,
and Memory Manager.

Initializing the Edition Manager

Youuse the InitEditionPack functionto initialize the Edition Manager. Note that you should
only call this function once. Before calling this function, be sure to determine whether the
Edition Manageris available on your system by using the Gestalt function. The Gestalt
selector is gestaltEditionMgrAttr (‘edtn’).

FUNCTION InitEditionPack : OSErr; 

The InitEditionPack function returns an error if the package could not be loadedinto the
system heap and properly initialized. In addition, you may also receive resource errors.

Result codes
noErr 0 Noerror

memFullE:r —108 Could not load package

Creating and Registering a Section

You use the NewSection function to create a new section (either publisher or subscriber) and
alias record (which is a reference to the edition container from the document containing the
publisher or subscriber section). The NewSection function allocates two handles in the
current zone: one handle for the section record and another handle forthe alias record. Note

that you are responsible for unregistering handles created by the Edition Manager.

 FUNCTION NewSection (container: EditionContainerSpec; sectionDocumert:
FSSpecPtr; kind: SectionType; sectionID:
LongIint; initialMode: UndateMode; VAR sectionH:
SectionHandle) : OSErr; 

The container parameter specifies the edition you want to publish or subscribe to. The
sectionDocument parameter contains the volume reference number, directory ID, and
filename of the documentthat contains a section. The sectionDocument parameter can
be NIL if your current documenthas never been saved.If so, when the userfinally
saves the document, rememberto call the AssociateSection function on each section
to updateits alias record.

The kind parameter designates the type of section (publisher or subscriber) being created.

A section ID is a unique numberfor a section within a document. The sectionID parameter
initializes the sectionID field within the new section record. Do not use 0 or —1 for an ID

number; these numbers are reserved. If your application copies a section, you need to specify
a unique numberfor the copied section.

4-62 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 251



IPR2017-01828 
Ubisoft EX1002 Page 252

The Edition Manager

The initialMode parameter contains the update modefor the section. For publishersthis is
either the pumOnSave or pumManual constant, and for subscribers it is either sumAutomatic
or sumManual. A subscriber created with sumAutomatic mode automatically receives a
Section Read event. To prevent this initial Section Read event, you should set the initialMode
parameter to sumManual and then, when NewSection returns, set the modefield of the
section record to sumAutomatic.

If the NewSection function fails, the sectionH parameteris set to NIL.If the function is
successful, sectionH contains the handle to the allocated section record.

Your application receives the multiplePublisherWrn result code if there is another registered
publisher to the same edition. Your application receives the notThePublisherWrn result code
if another publisher (to the same edition) was the last section to write to the edition. The
multiplePublisherWrn result code takes priority over the notThePublisherWrn result code.

In addition, you may also reccive memoryandfile opening errors.

Result codes
noErr 0 No error

editionMerInitErr —450 Managernotinitialized
badSectionErr 451 Nota valid section type
badSubPartErr 454 Bad edition container spec
multiplePublisherWrn  -—460 Already is a publisher
notThePublisherWrn —463 Not the publisher

The NewSection function registers a section similar to the way that the RegisterSection
function informs the Edition Managerabout a section (except that the NewSection function
does not resolve an alias to find the edition container).

FUNCTION RegisterSection (sectionDocument: FSSpec; sectionH:
SectionHandle; VAR aliasWasUpdated: Boolean)
OSErY; 

The sectionDocument parameter contains the volume reference number, directory ID, and
filename of the documentthat contains a section. The sectionH parameteris a handle to the
section record for a given section.

The aliasWasUpdated parameter returns TRUEif the alias for the edition container subscribed
to was out of date and was updated. This may occur if the edition file was moved to a new
location or was renamed.

The RegisterSection function adds the section record to the Edition Manager’s list of
registered scctions and trics to allocate a control block. After calling the RegisterSection
function, the controlBlock field of the section record is either NIL or a valid control block.

For a subscriber, the control block is NIL if the RegisterSection function could not locate
the edition container being subscribed to. The RegisterSection function then returns either
the containerNotFoundWrn orthe userCanceledErr result code. For a publisher,if the
RegisterScction function could not locate its corresponding edition container, the Edition

Edition Manager Routines 4-63

IPR2017-01828

Ubisoft EX1002 Page 252



IPR2017-01828 
Ubisoft EX1002 Page 253

 

Inside Macintosh, Volume VI

Managercreates an edition container in the last place the edition was located and creates a
control block forit. If the RegisterSection function could not locate a publisher’s corre-
sponding edition containeror its volume, the control block is NIL. You should never
re-register a section that is already registered.

Note that you can compare control blocks for individual sections. If two sections contain the
same control block value, these sections publish or subscribe to the same edition (unless the
control block is NIL). The Edition Manager keeps track of how manysections are referencing
a control block to know whenit can be deallocated. The control block maintains a count of

how manysectionsare referencing it. Each time you use the UnRegisterSection function, the
control block subtracts one from the numberof sections. When the numberof sections

reaches0, the control block is deallocated.

Your application receives the multiplePublisherWm result codeif there is another registered
publisher to the same edition. Your application receives the notThePublisherWm result code
if another publisher(to the same edition) was the last section to write to the edition. The
multiplePublisherW1m result code takes priority over the notThePublisherWm result code.

In addition, you may also receive memory andfile opening errors.

Result codes
noErr 0 No etror

userCanceledErr -128 User chose Cancel from a mountserver dialog box
editionMegrInitErr —450 Managernotinitialized
badSectionErr 451 Notvalid section type
multiplePublisherWim —460 Already is a publisher
containerNotFoundWm —61 Alias was not resolved

notThePublisherWm —463 Notthe publisher

Whena section needs to be disposed of because the document containing the section is closing,
or the user has canceled the section, you need to call the UnRegisterSection function before
disposing of the section.

FUNCTION UnRegisterSection (sectionH: SectionuYandle) : OSErr; 

The sectionH parameteris a handle to the section record for a given section.

The UnRegisterSection function removes the section from the Edition Manager’s list of
registered sections. You can then dispose of the section record and alias record with standard
Memory and Resource Managercalls. Once unregistered, a section does not receive any
events and cannot read or write any data. Depending on your Clipboard strategy, you may
want to unregister sections that have been cut into the Clipboard.

Result codes
noErr 0 No error

{BsyErr 47 Section doing I/O
editionMgrInitErr —450 Managernotinitialized
notRegisteredSectionErr —452 Notregistered

4-64 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 253



IPR2017-01828 
Ubisoft EX1002 Page 254

The Edition Manager

Using the IsRegisteredSection function, your application must verify that each event received
is for a registered section. This is necessary because your application may havejust called
UnRegisterSection while the event was already being held in the event queue.

FUNCTION IsRegisteredSection (seclionH: SecLionHandle) : OSErr;

The sectionH parameteris a handle to the section record for a given section. The
IsRegisteredSection function does not return a Boolean—a noErr result code indicates
that a sectionis registered.

Result codes
noErr 0 No error

notRegisteredSectionErr —452 Notregistered

If a user saves a documentthat contains sections under another name (using Save As) or
pastes a portion of a documentthat contains a section into another document, use the
AssociateSection function to update the section’s alias record.

FUNCTION AssociateSection (section: SectionHanadle; newSectionDocument:
FSSoecPtr) : OSErr; 

The sectionH parameteris a handle to the section record for a given section. The
newSectionDocument parameter contains the volume reference number, directory ID,
and filename of the new document. The AssociateSection function calls UpdateAlias
on the section’s alias record.

In addition, you may also receive update alias errors.

Result code
noErr 0 No error

Creating and Deleting an Edition Container

P=

icso===A
S
=}
oa—
=
>
=
r2
ic}Eachtime a user creates a new publisher section within a document to an edition that does

not already exist, you use the CreateEditionContainerFile functionto create anempty
edition container.

 
FUNCTION CreateEditionContainerFile (editionFile: FSSvec;

fdCreator: OSType;
edilionFilcNameScript: ScriptCode)
OS=rr;

 

The editionFile parameter contains the volume reference number, directory ID, and filename
for the edition container being created. The fdCreator parameter contains the creator type for
the edition.

Edition Manager Routines 4-65

IPR2017-01828

Ubisoft EX1002 Page 254



IPR2017-01828 
Ubisoft EX1002 Page 255

Inside Macintosh, Volume VI

The editionFileNameScript parameteris the script of the filename.It is returned in the
theFileScriptfield of the edition container specification record. (The new publisherreply
record includes a container field for an edition container specification record.)

The CreateEditionContainerFile function creates an empty edition containerfile (it does not
contain any formats). This function creates a file type 'edtu’. As soon as you write data to the
edition, the type is updated (to 'edtp' for graphics, ‘edtt' for text, or 'edts' for sound). If both
text and pict are written, the type that was written first determinesthefile type. If your appli-
cation has a bundle, you should designate an icon for the appropriate cdition types thal you
can write.

In addition, you mayalso receive file creating errors.

Result codes
noErr 0 Noerror

editionMgrInitErr -450 Managernotinitialized

If a user cancels a publisher section within a documentor closes a document containing a
newly created publisher without saving, you need to removethe edition container.

To locate the appropriate edition container to be deleted, use the GetEditionInfo function.
You use the UnRegisterScction function (only after using the GetEditionInfo function) to
unregister the section record and alias record of the publisher being canceled. See “Locating
a Publisher and Edition From a Subscriber”later in this chapter for detailed information on
the GetEditionInfo function. See “Creating and Registering a Section”earlier in this chapter
for detailed information on the UnRegisterSection function.

To removethe edition container, use the DeleteEditionContaincrFile function.

 FUNCTION DeieteEditionContainerFile (editionFile: FSSoec) : OSkrr;

If the user cancels a publisher, do not call the DeleteEditionContainerFile function until
the user saves the document. This allows the user to undo changes andrevert to the last
saved version of the document.

The DeleteEditionContainerFile function only deletes the edition container if there is no
registered publisher. You need to unregister a publisher before you can delete its corre-
sponding edition container.

The editionFile parameter contains the volume reference number, directory ID, and filename
for the edition container being deleted.

You should use the DeleteEditionContainerFile function even if there are subscribers to the
edition. When a subscriber section tries to read in data, it receives an error.

In addition, you mayalso receive file deleting errors.

Result codes
noErr 0 No error

editionMerInitErr 450 Managernotinitialized

4-66 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 255



IPR2017-01828 
Ubisoft EX1002 Page 256

The Edition Manager

Setting and Locating a Format Mark

Use the SetEditionFormatMark function to set the current mark for a section format. The mark

indicates the next position of a read or write operation. Initially, a mark defaults to 0. After
reading or writing data, the format mark is set past the last position written to or read from.

FUNCTION SetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
FormatType; selMarkTo: LongInt) : OSErr;   

The whichEdition parameteris the reference numberfor the edition. The whichFormat param-
eter indicates the format type for the edition, and the setMarkTo parameteris the offset for the
next read or write for this format.

Result codes
noErr 0 Noerror
rf{NumErr —51 Bad edition reference number

noTypeErr —102 Unknown format (subscriber only)
editionMgrInitErr —450 Managernotinitialized

Use the GetEditionFormatMark function to locate the current markerfor a particular format.

FUNCTION GetEditionFormatMark (whichkdition: EditionRefNum; whichFormat:
FormatType; VAR currentMarx: LongInt)
OSErr;

 

 
 

The whichEdition parameteris the reference numberfor the edition. The whichFormat param-
eter indicates the format type for the edition, and the currentMark parameteris the mark for
the format.

If the edition does not support the format specified in the whichFormat parameter, you receive
a noTypeErr result code.

Result codes
noErr 0 No error
rfNumErr 51 Bad edition reference number

noTypeErr -102 Unknown format
editionMerInitErr  -—450 Managernotinitialized

Reading in Edition Data

Toinitiate the reading of data from an edition (for a subscriber), use the OpenEdition function.

FUNCTION OpenEdition (subscriberSectionH: SectionHandle; VAR retNum:
EditionRefNum) : OSErr;

 
  

The subscriberSectionH parameteris a handle to the section record for a given section. The
refNum parameter returns the reference numberforthe edition.

Edition Manager Routines 4-67

IPR2017-01828

Ubisoft EX1002 Page 256



IPR2017-01828 
Ubisoft EX1002 Page 257

Inside Macintosh, Volume VI

Multiple subscribers can each call the OpenEdition function simultaneously (each call returns
a different reference number) and read data from a single edition. If a publisher (located on a
different machine) is writing to an edition when you use the OpenEdition function, you
receive an {[LckedErr result code.

In addition, you may also receive memory,file opening, andfile readingerrors.

Result codes
noErr 0 Noerror

flLckedErr 45 Publisher writing to an edition
permErr —54 Not a subscriber
editionMgrInitErr 450 Managernotinitialized

Use the EditionHasFormat function to learn in which formats the edition data is available.

SUNCTION FditionHesFormal (whichEdition: EditionRefNum; whichFormat:
FormatType; VAR formatSize: Size) : OSEzr;

 

The whichEdition parameteris the reference numberfor the edition, The whichFormat param-
eter indicates the format type that you are requesting. For the whichFormat parameter, you
should decide which formats to read in the same way that you do when using paste from the
Scrap Manager. You can also geta list of all the available formats and their respective lengths
by reading the kFormatListFormat (‘fmts’) format. The formatSize parameter specifies the
formatlength.

If the requested formatis available, this function returns noErr, and the formatSize parameter
returns the size of the data in the specified format or kFormatLengthUnknown(-1), which
signifies that the size is unknown. Youshould therefore continue to read the format until
there is no more data.

Be aware that the EditionHasFormat function may return kFormatLengthUnknownfor the
length of the format.

Result codes
noErr 0 No error
rfNumErr 51 Bad edition reference number

noTypeErr -102 Formatnot available
editionMegrInitErr 450 Managernotinitialized

Use the ReadEdition function to read data from an edition. This function reads from the

current mark for the specified format.

 FUNCTION ReadEdition (whicnEdition: EditionRefNum; whicnFormat:
FormatType; butfPtr: UNIV Ptr; VAR bufflen: Size)
OSErr;

 

 
 

The whichEdition parameteris the reference numberfor the edition. The whichFormat
parameter indicatcs the format type that you want to read.

4-68 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 257



IPR2017-01828 
Ubisoft EX1002 Page 258

The Edition Manager

The buffPtr parameter is a pointer to the buffer into which you wantto read the data. The
buffLen parameter is the numberofbytes that you wantto read into the buffer. The buffLen
parameteris also a return value that returns the total number of bytes read into the buffer. If
the buffLen parameter returns a value smaller than the value you have specified, there is no
additional data to read, and the ReadEdition function returns a noErr result code. If you use
the ReadEdition function after all data is read in, the ReadEdition function returns an eofErr
result code.

You can read data from an edition while a publisher on the same machineis writing data
to the same edition. The data that you are reading is the old edition (not the data that the
publisheris writing). If the publisher finishes writing data before you are through reading
the old edition data, the ReadEdition function returns an abortErr result code. If the
ReadEdition function returns an abortErr result code, you should stop trying to read data
and use the CloseEdition function with the successful parameter set to FALSE.

In addition, you mayalso receivefile reading errors.

Result codes
noErr 0 Noerror
abortErr -27 Publisher has written a new edition

eofErr —39 No more data of that format
rf{NumEtr —5] Bad edition reference number

noTypcErr -102 Formatnot available
editionMegrInitErr 450 Managernotinitialized

Writing out Edition Data

To initiate the writing of data from a publisherto its edition container, use the OpenNewEdition
function.

FUNCTLON OpenNewkdition (publisherSectionH: SectiocnHandle; fdCreator:
OSType; publisherSectionDocument: FSSpecPtr; VAR
refNum: EditionRefNum) : OSErr;  

The publisherSectionH parameter is the publisher section that is writing to the edition. The
fdCreator parameter is the Finder creator type of the new edition icon.

5

a
i

=
oja

cdRs
I
3
BD

oeea
 

The publisherSectionDocument parameter is the documentthat contains the publisher. This
parameteris used to create an alias from the edition to the publisher’s document. If you pass
NIL for publisherSectionDocument, an alias is not made in the editionfile.

The refNum parameter returns the reference numberfor the edition. This parameteris
necessary for subsequentcalls to WriteEdition, SetEditionFormatMark, and CloseEdition to
specify which publisheris writing its data to an edition. If the edition cannot be opened for
writing because there is another publisher writing to it, or because the file system does not
allow writing, an error is returned and refNum is set to NIL.

The OpenNewEdition function returns an flLckdErr result code if there is a subscriber on
another machine reading data from the same edition. The OpenNewEdition function returns a
permErr result codeif there is a registered publisher to that edition on another machine.

Edition Manager Routines 4-69

IPR2017-01828

Ubisoft EX1002 Page 258



IPR2017-01828 
Ubisoft EX1002 Page 259

Inside Macintosh, Volume VI

The Edition Managerallows two registered publishers that are located on the same machine to
write to the same edition. Note that multiple publishers cannot write to the same edition
simultaneously——only one publisher can write to an edition at a given time.

In addition, you may also receivefile creating, file opening,file reading, resolve alias, and
memoryerrors.

Result codes
noErr 0 No error

flLckdErr —45 Edition in use by another section
permErr —54 Registered publisher on another machine
wrPermErr -61 Not a publisher
editionMerInitErr —450 Managernotinitialized

Use the WriteEdition function to write data to an edition. This function begins writing at the
current mark for the specified format.

 FUNCTION WriteEdition (whichEdition: EditionRefNum; whichFormat:
FormatType; buffPtr: UNTV Ptr; bulfLer: Size) : OSErr;

  
 

The whichEdition parameter is the reference numberfor the edition. The whichFormat
parameterindicates the format type that you want to write.

The buffPtr parameteris a pointer to the buffer that you are writing into the edition. The
buffLen parameteris the numberof bytes that you want to write. If the data cannotbe entirely
written to the edition, the WriteEdition function returns an error.

{n addition, you mayalso receive file writing and memoryerrors.

Result codes
noErr 0 Noerror
rfNumErr —51 Bad edition reference number

editionMerInitErr -450 Managernotinitialized

Closing an Edition After Reading or Writing

After finishing reading from or writing to an edition, use the CloseEdition function to close
the edition.

   FUNCTION CloseEdition (whichEdition: EditionRefNum; successful: Boolean)
: OSErr; 

The whichEdition parameter is the reference numberfor the edition. The successful parameter
mdicates whether your application was successful in reading or writing datato theedition.

When a subscriber successfully finishes reading data from the edition, the CloseEdition
function takes the modification date of the edition file that you have read and putsit in the
mdDate field of the subscriber’s section record. This indicates that the data containedin the
edition and the subscriber section within the documentare the same.

4-70 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 259



IPR2017-01828 
Ubisoft EX1002 Page 260

The Edition Manager

Whena subscriber is unsuccessful in reading data from an edition (becausethere is not
enough memory, or you didn’t find a format that you can read), set the successful parameter
to FALSE. The CloseEdition function then closes the edition, but does not set the mdDate
field. This implies that the subscriber is not updated with the latest edition.

Whena publisher successfully finishes writing data to an edition, the CloseEdition function
makesthe data that the publisher has written to the edition available to any subscribers and
sets the corresponding edition file’s modification date (ioFIMdDat) to the mdDatefield ofthe
publisher’s section record. The Edition Manager then sends a Section Read eventto all
current subscribers set to automatic update mode. At this point,thefile type of the editionfile
is sct based on the first known formatthat the publisher wrote.

Whena publisher is unsuccessful in writing data to an edition, the CloseEdition function
discards what the publisher has written to the edition. The data contained in the edition prior
to writing remains unchanged, and Section Read events are not sent to subscribers.

In addition, you may also reccivefile closing errors.

Result codes
noErr 0 No error
rfNumErr —51 Bad edition reference number

editionMgrInitErr —450 Managernotinitialized

Displaying Dialog Boxes

Use the GetLastEditionContainerUsed function to get the default edition to display. This
function allows a user to easily subscribe to the data recently published.

 
FUNCTION GetLastEditionContainerUsed (VAR container:

EditionContainerSpec) : OSErr;

If the GetLastEditionContainer function locates the last edition for which a section was created, :
the container parameter contains its volume reference number, directory ID, filename, and part, :
and returns a noErr result code. (The last edition created is associated with the last time that
your application or another application located on the same machine used the NewSection
function.) If the last edition used is missing, the GetLastEditionContainerUsed function returns
an fnfErr result code, but still returns the correct volume reference number and directory ID
that you should use for the NewSubscriberDialog function.

Pass the information from the GetLastEditionContainerUsed function to the

NewSubscriberDialog function.

Result codes
noErr 0 No error
tnfErr 43 Edition container not found

editionMerInitErr 450 Managcrnotinitialized

Edition Manager Routines 4-71

IPR2017-01828

Ubisoft EX1002 Page 260



IPR2017-01828 
Ubisoft EX1002 Page 261

Inside Macintosh, Volume VI

The Edition Manager supports three dialog boxes: publisher, subscriber, and options dialog
boxes. Your application can display simple dialog boxes that appear centered on the user’s
screen, or you can customize your dialog boxes.

Unlike the Standard File routines, the NewPublisherDialog and the NewSubscriberDialog
functions allow you to specify the initial volume reference numberand directory ID so
that there can be one default location for editions forall applications.

Use the NewSubscriberDialog function to display the subscriber dialog box on the
user’s screen.

FUNCTION NewSubscriberDialog (VAR reply: NewSubscriberReply) : OSErr; 

The reply parameter contains the new subscriber reply record.

 TYPE NewSubscriberReply =
 

 
RECORD

canceled: Boolean; fuser canceled }
{ dialog box}

FormatsMask: SignedByte; {formats required}
container: EditionContainerSpec {edition selected}

END;

The NewSubscriberDialog function (which is based on the CustomGetFile procedure
described in the Standard File Package chapter in this volume) switches to the volumerefer-
ence numberanddirectory ID andselects the filenameof the edition container that you
passed in. Use the GetLastEditionContainerUsed function to set the edition container to the
last edition that was either published or subscribed to. This allows the user to publish and
then easily subscribe.

The formatsMaskfield indicates which edition format type (text, graphics, and sound) to
display within the subscriber dialog box. You can set the formatsMaskfield to the following
constants: kKTEXTformatMask (1), kPICTformatMask (2), or ksndFormatMask (4). To
support a combination of formats, add the constants together. For example, a formatsMask
of 3 displays both graphics and text edition format types in the subscriber dialog box.

Note that if an edition does not contain either ‘PICT’, 'TEXT’, or 'snd ' data, it will not be
seen by the NewSubscriberDialog function (unless you install an openerthat adds it using
eoCanSubscribe).

If the NewSubscriberDialog function returns with the canceled field set to TRUE,the user
canceled the dialog box. Otherwise,this field is FALSE andthe containerfield holds the
edition container for the new subscriber.

Result codes
noErr 0 No error

editionMegrInitErr 450 Package notinitialized
badSubPartErr 454 Bad edition container spec

4-72 Edition ManagerRoutines

 
IPR2017-01828

Ubisoft EX1002 Page 261



IPR2017-01828 
Ubisoft EX1002 Page 262

The Edition Manager

Use the NewPublisherDialog function to display the publisher dialog box on the user’s screen.

 FUNCTION NewPublisherDialog (VAR reply: NewPublisherReply) : OSErr;

The reply parameter contains a new publisher reply record.

TYPE NewPublisherReply = 
 

  
RECORD

canceled: Boolean; fuser canceled dialog box}
replacing: Boolean; fuser chose existing }

{ filename for an edition}

usePart: Boolean; ‘always false in version 7.0}
preview: Handle; <handle to 'prvw', 'PICT', }

{ ‘TEXT', or ‘snd! data}

previewFormat: Format Type; {type of preview}
container: EdiztionContainerSpec {edition chosen}

END; 

The NewPublisherDialog function (which is based on the CustomPutFile procedure described
in the Standard File Package chapter) switches to the volume reference numberand directory
ID andsets the text edit field to the filename of the edition container that you passedin. Set the
fileNamefield ofthe file system specification record to be the default nameofthe editionfile.
(The new publisher reply record includes a containerfield for an edition container specification
record, and the edition container specification record includesafield [theFile] for a file system
specification record.) See “Creating a Publisher”earlier in this chapter for information on the
default file specification.

The usePart field must be set to FALSEbefore calling the NewPublisherDialog function.

Set the preview field to be a handle to 'prvw', ‘PICT’, 'TEXT’,or 'snd ' data. Set the
previewFormatfield to indicate which type of data the handle references.

Upon return of the NewPublisherDialog function, the canceled and replacing fields are set. If
the canceled field is set to TRUE,the user canceled the dialog box. If the replacing field is
TRUE,the user chose an existing filename from thelist of available editions and confirmed
this replacement. If the replacing field is TRUE,do notcall the CreateEditionContainerFile
function, which creates a new edition container. The container field contains the volume
reference number, directory ID, and filenamefor the edition that the user selected.

You should deallocate the handle referenced by the preview field to free up memory.

Result codes
noErr 0 Noerror

editionMgrInitErr ~450 Package notinitialized
badSubPartErr 454 Badedition container spec

Edition Manager Routines 4-73

 

 
BeritaAVMEOELIOGBg 

IPR2017-01828

Ubisoft EX1002 Page 262



IPR2017-01828 
Ubisoft EX1002 Page 263

 
Inside Macintosh, Volume VI  
Use the SectionOptionsDialog function to display the publisher options and subscriber
options dialog boxes on the user’s screen.

FUNCTION SectionOptiorsDialog (VAR rep_y: SectionOptionsReply) : OSErz; 

The reply parameter contains a section options reply record.

 TYPE SectionOpLionsRep_y =
 RECORD

canceled: Boolean; {user canceled dialog box}
chenged: Boolean; {changed the section record}
sectionH: SectionHandle; {handle to the specified }

{ section record}
action: ResTyve {aclLion codes}

END;

Set the sectionH parameter to the handle to the section record for the section the user selected.

Upon return of the SectionOptionsDialog function, the canecled and changedfields are set. If
the canceled parameteris set to TRUE,the user canceled the dialog box. Otherwise,this
parameter is FALSE.If the changed parameter is TRUE,the user changedthe section record.
For example, the update mode may have changed.

Theaction field contains the code for one offive user actions.

m action codeis ‘read’ for user selection of the Get Edition Nowbutton

m action code is 'writ' for user selection of the Send Edition Now button

a action code is ‘goto’ for user selection of the Open Publisher button

a action codeis ‘cncl' for user selection of the Cancel Publisher or Cancel Subscriber
button

w actioncodeis' ' ($20202020) for user selection of the OK button

Note that you may receive memoryerrors.

The NewSubscriberExpDialog, NewPublisherExpDialog, and SectionOptionsExpDialog
functions are the same as the simple dialog functions but have five additional parameters.
These additional parameters allow you to add items to the bottom of the dialog boxes,
apply alternate mapping of events to item hits, apply alternate meanings to the item hits,
and choose the location of the dialog boxes.

 FUNCTION NewSubscriberExpDialog (VAR rep_y: NewSubscriberReply; where:
Point; expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr: UNIV
Por) : OSErr; '

   
4-74 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 263



IPR2017-01828 
Ubisoft EX1002 Page 264

The Edition Manager

FUNCTION NewPublisherExpDialog (VAR reply: NewPublisherReply; where:
Point; expansionDITLresID: Integer;
Gi gHook: FxpN1gHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr: UNIV
Ptr) : OSErr;

 

 
 FUNCTION SectionOptiornsExpDialog (VAR reply: SectionOptionsReply; where:

Point; expansionDITLresID: Integer;
dlgHook: ExpDlgHookProcPtr;
filterProc: ExpModalFilterProc?.r;
yourDataPtr: UNIV Ptr) : OSErr;

   

The reply parameter contains a pointer from the new subscriber reply, new publisherreply,
or the section options reply records.

You can automatically center the dialog box by passing (—1, —1) in the where parameter.

The expansionDITLresID parameter should be 0 or a valid dialog item list (DITL’) resource
ID.Thisintegeris the ID of a dialog item list whose items are appendedto the end of the
standard dialog item list. The dialog items keeptheir relative positions, but they are moved as
a group to the bottom of the dialog box. See the Dialog Manager chapter in VolumeI for
additional information on dialog item lists.

ThefiltcrProc parameter should be a valid expandable modalfilter procedure pointer or NIL.
This procedureis called by the ModalDialog procedure. This function allows you to mapreal
events (such as a mouse-downevent) to an item hit (such as clicking a Cancel button). For
instance, you may want to map a keyboard equivalent to an item hit.

The dlgHook parameter should be a valid expandable dialog hook procedure pointer or NIL,
This procedureis called after each call to the ModalDialog procedure. The dialog hook
procedure takes the appropriate action, suchasfilling in a check box. The itemOffset
parameterto the procedure is the numberof itemsin the dialog item list before your
expansion dialog items. You need to subtract the item offset from the item hit to get the
relative item numberin the expansion dialog item list. The return value from the dialog hook
procedureis the absolute item number.

The yourDataPtr parameteris reserved for youruse. It is passed back to your hook and
modal-dialog filter function. This parameter does not have to be of type Ptr—it can be any
32-bit quantity that you want. In Pascal, you can pass in register A6 for yourDataPtr, and
make dialog hook andfilter procedure local functions without the last parameter. The stack
frameis set up properly for these functions to access their parent local variables. Scc the
Standard File Package chapter in this volumefor detailed information.

 
ay

isa
fat
=
iS
2aRs
=
=
&

ie)ea

For the NewPublisherExpDialog and NewSubscriberExpDialog functions,all the pscudo-
items for the Standard File Package such as hookFirstCall(—1), hookNullEvent(100),
hookRebuildList(101), and hookLastCall(—2) can be used, as well as
hookRedrawPreview(150).

Edition ManagerRoutines 4-75

 

IPR2017-01828

Ubisoft EX1002 Page 264



IPR2017-01828 
Ubisoft EX1002 Page 265

 

 

Inside Macintosh, Volume VI

For the SectionOptionsExpDialog function, the only valid pseudo-items are hookFirstCall(-1),
hookNullEvent(100), hookLastCall(—2), emHookRedrawPreview(150),
emHookCancelSection(1 60), emHookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(1 64).

If you have an expandable dialog hook function, it must contain the following parameters.

 FUNCTION MyExpDlgudook ({itemOffset: Integer; itemHit: Integer; theDialog:
DialogPtr; yourDataPtr: Ptr) : Integer;

If you have an expandable modal-dialogfilter function, it must contain the following
parameters.

FUNCTION MyExpModalFilter (theDialog: DialLogPtr; VAR theEvent:
EventRecord; itemOffset: Integer; VAR itemHit:
Integer; yourDataPtr: Ptr) : Boolean;

 

Locating a Publisher and Edition From a Subscriber

The GetEditionInfo function returns information about a section’s edition such asits location,
last modification date, creator, and type.

FUNCTION GetEditionTnfo (SectionH: SectionHandle; VAR editionInfo:
EditioniInfoRecord) : OSErr;  

The sectionH parameteris a handle to the section record for a given section. The editionInfo
parameter contains an edition information record. The GetEditionInfo function returns the
public information contained in the section’s control block.

The Edition Manager synchronizes to ensurethat the existing edition name correspondsto the
Finder’s existing edition name.If the control block field of the section record is NIL, or the
edition cannotbe located, the GetEditionInfo function returns an fnfErr result code.

 
TYPE EditionInloRecord = 
 

  

 
 

 

RECORD

crDate: TimeStamp; {date edition container }
{ was created}

mdDate: TimeStamp; {date of last change}
fdCreator: oSType; {file creator}
CdType: OSType; {file type}
container: EditionContainerSpec {the edition}

END; 

The crDatefield contains the creation date of the edition. The mdDate field contains the
modification date of the edition.

4-76 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 265



IPR2017-01828 
Ubisoft EX1002 Page 266

The Edition Manager

The fdCreator and fdType fields are the creator and type of the edition file. The container
field includes a volume reference number, directory ID,filename, script, and part number
for the edition.

Result codes
noErr 0 Noerror

fnfErr —43 Notregistered or file moved
editionMgrInitErr -450 Managernotinitialized

Whenthe user wants to locate the publisher for a particular subscriber (by choosing Open
Publisher in the subscriber options dialog box), the action code 'goto' is returned to you.

Use the GetEditionInfo function to find the edition container. You should next use the

GoToPublisherSection function to open the document containing the publisher.

Use the GoToPublisherSection function to resolve the alias in the edition to find the document

containing its publisher. In general, this function internally uses the GetStandardFormats
function to getthe alias to the publisher documentand then resolvesthe alias. It next sends the
Finder an Apple event to open the document (which launchesits application if necessary) and,
after the publisheris registered, sends a Section Scroll event to the publisher.

As an optimization, if there is a registered publisher, the GoToPublisherSection function
simply sends a Section Scroll event to the publisher.

If the edition does not contain an alias and there are no registered publishers, then the
GoToPublisherSection function sends an Open Documents event to open the edition to
the creating application.

If the edition container is not an edition file (such as when you are using bottlenecks to
subscribe to non-edition files), the GoToPublisherSection function sends the Finder an
Apple eventto open thatfile.

 FUNCTION GoToPublisherSection (container: EditionContainerSpec) : OSErr;

The container parameter includes the edition volume reference number, directory ID, and
filename. You obtain the edition container by calling the GetEditionInfo function.

&

coy====
iS
=
2=
=
=)
4

Petocbe
 

In addition, you mayalso receive resolve alias errors.

Result codes
noErr . 0 Noerror
editionMerInitErr —450 Managernotinitialized
badSubPartErr 454 Invalid edition container

Edition Manager Routines 4-77

IPR2017-01828

Ubisoft EX1002 Page 266



IPR2017-01828 
Ubisoft EX1002 Page 267

 
Inside Macintosh, Volume VI

Edition Container Formats

The Edition Managercalls the GetStandardFormats function to get the alias used in the
GoToPublisherSection function and to get the preview shownin the subscriber dialog
box. You probably do not needto call this function directly.

FUNCTION GetStandardFormats (container: EditionConteéinerSpec; VAR
previewrormalL: FormalType; preview,
publisherAlias, formats: Handle)
: OSErr;

 

The container parameter is a pointer to the edition volumereference number, directory ID,
filename, and part.

You should pass in valid handles for the formats that you want and NIL for the formats that
you don’t want. The handles are resizedto the size of the data.

The preview parametertries to find one of four formats: 'prvw’, ‘PICT’, ‘TEXT’, or ‘snd '.
The publisherAlias parameter reads the format kPublisherDocAliasFormat(‘alis'), and the
formats parameter reads the virtual format kFormatListFormat(‘fmts'). The first format that
was written returns in the preview handle and the previewFormat parameteris set to its type,
If one of the requested formats cannot be found, GetStandardFormatsreturns a noTypeErr
result code.

Result codes
noErr 0 No error

noTypeErr —102 Edition container not found
editionMgrInitErr —450 Managernotinitialized

Reading and Writing Non-Edition Files

The Edition Managernever opensorcloses an edition container directly—itcalls the current
edition opener. See “Subscribing to Non-Edition Files”earlier in this chapter for additional
information.

To override the standard opener function, you should create an opener function that contains
the following parameters.

 FUNCTION MyOpener (selector: EditionOpenerVerb; VAR PB:
EditionOpenerParamBlock) : OSErr;

Whenthis function is called by the Edition Manager, the selector parameter is set to one of the
edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew, eoCanSubscribe). The
PB parameter contains an edition opener parameter block record.

Use the GetEditionOpenerProc function to locate the current edition opener procedure.

FUNCTTON GetEditionOpenerProc (VAR opener: EditionOpenerProcPtr) : OSErr; 

The opener procedure returns the pointer to the current edition opener procedure.

4-78 Edition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 267



IPR2017-01828 
Ubisoft EX1002 Page 268

The Edition Manager

Use the SetEditionOpenProc function to provide your own edition opener procedure.

FUNCTION SetEditionOpenerProc (opener: EditionOpenerProcPtr) : OSErr;

The opener parameteris a pointer to the edition opener procedure that you are providing.

Use the CallEditionOpenerProc function to call an edition opener procedure pointer.

 
FUNCTION Cal] FditionOpenerProc (selector: EditionOpenerVerb; VAR PB:

EditionOpenerParamBlock; routine:
EditionOpenerProcPtr) : OSErr;

Whenthis function is called by the Edition Manager, the selector parameteris set to one of the
edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew, eoCanSubscribe). The
PB parameter contains an edition opener parameter block record.

TYPE EditionOpenerParamBlock = 

 
RECORD

info: EditionInfoRecord; {edition container to }
be subscribed to}

sectionH: SectionHandle; {publisher or }
{ subscriber }

requesting open}
document : FSSpecPtr; {document passed}
fdCreator: OSType; {Finder creator type}
ioRefNum: LongInt; reference number}
1oProc: Format 10ProcPtr; {routine to read }

{ formats}

success: Boolean; reading or writing }
{ was successful}

format sMask: SignedByte {formats required to }
subscribe}

END;

The routine parameter is a pointer to an edition opener procedure.

en

™raloe
mw
=S
i=}
iaLeiS==}Fe=

weot
=To override the standard reading and writing functions, you should create an IO function that

contains the following parameters.

 
FUNCTION MyIO (selector: FormatIOVerb; VAR PB: FormatIOParamBlock)

OSErr;

Set the selector parameter to one of the format I/O verbs (ioHasFormat, ioReadFormat,
ioNewFormat, ioWriteFormat). The PB parameter contains a format I/O parameter
block record.

Edition Manager Routines 4-79

IPR2017-01828

Ubisoft EX1002 Page 268



IPR2017-01828 
Ubisoft EX1002 Page 269

Inside Mactatash, Valume Vi

Use the CallFormathOProc function to call a fonnat [0 pracedure.

PUBIITILGN Cablbormet1GProc tselechar; ParmalTivvaro; VAak vay: 

Poi valTOaALammiack; rewline: Parra torrocpeirs
CSRS Tr 5
 

Set the selector parameter to one of the format 10 verbs (ioHasFormat, iaReadPormat,
ioNewFormat, ioWriteFornat). The PU parameter contains a format LAO paramcier
block record.

TYPE Forralilorararmiilock -

 

  
 

Pteeoe

joke tT Name Lonabols: Srele@reanmce tombe:

ferrmerh z Feeeinet. Ty pat; Seaition ftritat byrne}
fatal Laden: Leg iris: {Opener - Lie Gmanrarabien |

foo: Eormals}

ofllmel; Laetitia farcvaeh inle bormuits
wmelitr: Flr; { HoabPls here
was PE Tere: Leoricy lak { hoot Guta)

END;

The routine parameter 1s a pointer to a format 1A procedure.

4-80 dition Manager Routines

IPR2017-01828

Ubisoft EX1002 Page 269



IPR2017-01828 
Ubisoft EX1002 Page 270

The Edition Manager

 

SUMMARY OF THE EDITION MANAGER

Constants

CONST {resource types}
rSectionType = 'sect';

{section types}
stSubscriber = $01;
stPublisher = SOA;

{update modes}
sumAutomatic - 0;

sumManualL = 1;

pumOnSave = 0;

pumManual = 1;

{edition container subpart number}
kPartsNotUsed = 0;
kPartNumberUnknown = -1;

{preview size}
kPreviewWidth = 120;

kPreviewHeight = 120;

{special formats} kPublisherDocAliasFormat = ‘alis';

kPreviewFormat = 'prvw';
kFormatListFormat = 'frts';

{bits for formatMask}

 

  
 

 

kPICTformatMask = 1;
kTEXT formatMask = 2;
ksndFormatMask = 4;

{Finder types for edition files}
kPICTEditiorFileType = ‘'edtp';
kTEXTEditionFileType = tedtt';
ksndEditionFileType = 'edts';
kUnknownEditionFileType = ‘edtu';

 

 

{resource type for a section}

{subscriber section type}
{publisher section type}

{subscriber receives new }

{ editions automatically}
{subscriber receives new }
{ editions manually}
{publisher sends new }
{ editions on save}
{publisher does not send }
{ new editions until user }
{ request}

{edition is the whole file}
{not used in version 7.0}

{preview width}
{preview height}

{alias record from the }

{ edition to publisher}
{'PICT' thumbnail sketch}
{list of all available }
{ formats and their sizes}

sy

ico]
is==2
)
5
ra—
a
3ea
re
4
 

{graphics format}
{text format}
fsound format}

{contains 'PICT', }
{ 'TEXT', and }

{ 'snd ' file types}
{unknown file type}

Summary of the Edition Manager 4-81]

IPR2017-01828

Ubisoft EX1002 Page 270



IPR2017-01828 
Ubisoft EX1002 Page 271

Inside Macintosh, Volume VI

{miscellaneous}
kFormatLengthUnknown

sectionEventMsgClass

 sectionReadMsgID
sectionWrileMsgID
sectionScrollMsgID
sectionCancelMsgID

   
emHookRedrawPreview

emHookCancelSection
emHookGoToPublisher
emHookGet EditionNow
emHookSendEdit ionNow

emHookManua 1lUpdat eMode
emHookAut oUpdat eMode

 

|
|

Data Types

TYPE TimeStamp
EditionRefNum

UpdateMode

 

 

SecLionType
FormatType

Sectionllandle
SectionPtr
SectionRecord =
RECORD

version:
 

{refCon field when displaying

= -l;

= 'secl';

= 'read';
‘writ';
'scrl';
‘cnel';

Ui

sfMainDialogRefCcon = 'stdf';

sfNewFolderDialogRefCcon = ‘nfdr';
sfReplaceDialogRefCcon = 'rplc';
sfStatWarnDialogRefCon = 'stat';
sfErrorDialogRefCon = ‘err ';
emOptionsDialogRefCon = 'optn';
emCancelSectionDialogRefCon = 'encl';
emGotoPubErrDialogRefCon = 'gerr';

{pseudo-item hits for dialogHooks}
= 150;

= 160;
= 161;
= 162;
= 162;
= 163;
= 164;

= LongInt;
= Handle;
= Integer;

= SignedByte;
 = PACKED ARRAY [

{length of format unknown}

{message IDs for Apple events sent by the Edition Manager}
{Apple events sent by the }r
{ Edition Manager}
{Section Read events}
{Section Write events}
{Section Scroll events}
{Section Cancel events}

stacked dialog boxes}
{new publisher and }r
{ new subscriber}
{new folder}

{replace dialog}
{warning dialog}
{error dialog}

{options dialog}
{cancel section}
{locate publisher}

{for NewPublisher or }

{ NewSubscriber dialogs}
{for SectionOptions
{for SectionOplions
{for SectionOptions
{for SectionOptions
{for SecLionOptions
{for SectionOptions

{seconds since 1904}
 

dialog}
dialog}
dialog}
dialog}
dialog}
dialog}

{for use in Edition 1/0}
{sumAutomatic, }

sumManual, }t

{ pumOnSave, pumManual}
{stSubscriber or stPublisher}
1 ..4] OF CHAR;

{similar to ResType used }
{ by the Scrap Manager}

= *SectionPtr;
= “SectionRecord;

SignedByte; {always 1 in version 7.0}

4-82 Summaryofthe Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 271



IPR2017-01828 
Ubisoft EX1002 Page 272

shat,

The Edition Manager

 
kind: SectionType; {publisher or subscriber}
mode: UpdateMode; {automatic or manual}
mdDate: TimeStamp; {last change to section}
sectionID: LongInt.; {application-specific, }

{ unique per document}
refCon: LongInt; {application-specific}
alias AliasHandle; {handle to alias record} 
{The following fields are private and are set up by the }
{ RegisterSection function. }

|

| subPart: LongiInt; {private}
i nextSection: SectionHandle; {private}

j controlBlock: Handle; {private}
5 refNum: EditionRefNum {private}

END;

EditionContainerSpecPtr =*EditionContainerSpec;
EditionContainerSpec = 

 

  
 

i
! RECORD

theFile: FSSpec; {file containing edition }
{ data}

theFileScript: ScriptCode; {script code of filename}
thePart: LongIint; {which part of file, }

{ always kPartsNotUsed}
thePartName: Str31; {not used in version 7.0}

thePartScript: ScriptCode {not used in version 7.0}
END;

FormatsAvailable = ARRAY[0..0] OF
RECORD +

theType: FormatType; {format type for an edition} =
theLength: LongInt {length of edition format } =

{ type} a
END; ed

EditionInfoRecord = &
RECORD a

crDate: TimeStamp; {date edition container }

; { was created}
mdDate: TimeStamp; {date of last change}
fdCreator: OSType; {file creator}
fdType: OSType; {file type}
container: EditionContainerSpec

{the edition}
END; 

Summary of the Edition Manager 4-83

IPR2017-01828

Ubisoft EX1002 Page 272



IPR2017-01828 
Ubisoft EX1002 Page 273

Inside Macintosh, Volume VI

NewPublisherReply =
RECORD

canceled:

replacing:

 

usePart:

preview:

previewFormat:
container:

END;

NewSubscriberReply =
RECORD

canceled:
formatsMask:
container:

  

END;

aectionOptionsReply =
ECORD

canceled:

changeca:
sectionH:

  wv

action:

END;

EditionOpenerVerb

 1 RECORD

info:

 

sectionH:

document:
CdCreator:
ioRefNum:
ioProc:

success:

formatsMask:

END; 

4-84

   
Boolean; {user canceled dialog box}
Boolean; {user chose existing }

{ filename for an edition}
Boolean; {always FALSE in version 7.0}
Handle; thandle to 'prvw', 'PIcT', }

{ 'TEXT', or 'snd' data}
FormatType; {type of preview}
EditionContainerSpec

{edition chosen}

Boolean; {user canceled dialog box}
SignedByte; {formats required}
EditionContainerSpec

{edition selected}

 

Boolean; {user canceled dialog box}
Boolean; {changed the section record}

SectionHandle; {handle to the specified }
{ section record}

ResType {action codes}

= (eoOpen, eoClose, eocOpenXew, eoCloseNew
eoCanSubscribe) ;

EditionOpenerParamBlock =

 EditionInfoRecorad;
{edition container to }
{ be subscribed to}

SectionHandle;
{publisher or subscriber}
{ requesting open}

FSSpecPtr; {decument passed}

OSType; {Finder creator type}
LongInt; {reference number}
FormatlOProcPtir;
 

{routine to read formazs}
{reading or writing was }
{ successful}

{formats required to }
{ subscribe}

Boolean;

SignedByze

Summaryofthe Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 273



IPR2017-01828 
Ubisoft EX1002 Page 274

 

The Edition Manager

FormatloVerb = (ioHasFormat, ioReadFormat, ioNewFormat,
ioWriteFormat);

Format lOParamBlock =
RECORD

ioRefNum: Longint; {reference number}
format: FormatType; fedition format type}
formatiIndex: Longint; {opener-specific enumeration }

{ of formats}

offset: LongInt; {offset into format}
puffPtr: Ptr; {data starts here}
ouffLen: Longint {length of data}

=ND;

Routines

Initializing the Edition Manager

FUNCTION InitEditionPack OSErr;

Creating and Registering a Section

FUNCTION NewSection

FUNCTION RegisterSection

FUNCTION UnrRegisterSection

FUNCTION IsRegisteredSection  
FUNCTION AssociateSection

(contain
section

 er: EditionContainerSpec;
Document: FSSpecPtr; kind:

 

 

SectionType; sectionID: LongInt;
initiaiMode: UpdateMode; VAR sectionH:
SectionHandle) : OSErr;

(sectionDocument: FSSpec; sectionH:
SectionHandle; VAR aliasWasUpdated:
Boolean) : OSErr;

(sectionH: SectionHandle) : OSErr;

(sectionH: SectionHandle) : OSErr;

(sectionH: Sectionliandle;
newSect

OSErr; 

  
lonDocument: FSSpecPtr)

Creating and Deleting an Edition Container

 FUNCTION CreateEditionContainerFile

  
FUNCTION DeleteEditionContainerFile

(editionFile: FSSpec; fdCreator: OSType;
ea

 editionFileNameScript: ScriptCode)
OSErr;

(editionFile: FSSpec) : OSErr;

Summary of the Edition Manager 4-85

IPR2017-01828

Ubisoft EX1002 Page 274



IPR2017-01828 
Ubisoft EX1002 Page 275

 
Inside Macintosh, Volume VI

Setting and Locating a Format Mark

FUNCTION SetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
FormatType; setMarkTo: LongInt) : OSErr;

FUNCTION GetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
FormatType; VAR currentMark: LongInt)
OSErr;

Reading in Edition Data

FUNCTION OpenEdition (subscriberSectionH: SectionHandle; VAR refNum:
EditionRefNum) : OSErr;

FUNCTION EditionHasFormat (whichEdition: EditionRefNum; whichFormat:
FormatType; VAR formatSize: Size) : OSErr; 

FUNCTION ReadEdition (whichEdition: EditionRefNum; whichFormat:
FormatType; buffPtr: UNIV Ptr; VAR buffLen:
Size) : OSErr;

 

Writing out Edition Data

FUNCTION OpenNewEdition (publisherSectionH: SectionHandle; fdCreator:
OSType; publisherSectionDocument: FSSpecPtr;
VAR refNum: EditionRefNum) : OSErr;

FUNCTION WriteEdition (whichEdition: EditionRefNum; whichFormat:
FormatType; buffPtr: UNIV Ptr; buffLen: Size)

OSErr;

Closing an Edition After Reading or Writing

 FUNCTION CloseEdition (whichEdition: EditionRefNum; successful:
Boolean) : OSErr;

Displaying Dialog Boxes

FUNCTION GetLastEditionContainerUsed (VAR container: EditionContainerSpec)
OSErr;

FUNCTION NewSubscriberDialog (VAR reply: NewSubscriberReply)
OSErr;

FUNCTION NewPublisherDialog (VAR reply: NewPublisherReply)
OSErr;

4-86 Summary ofthe Edition Manager

IPR2017-01828

Ubisoft EX1002 Page 275



IPR2017-01828 
Ubisoft EX1002 Page 276

FUNCTION SectionOptionsDialog

 
FUNCTION NewSubscriberExpDialog

FUNCTION NewPublisherExpDialog 

FUNCTION SectionOptionsExpDialog

The Edition Manager

(VAR reply:
OSErr;

Sect ionOptionsReply)

(VAR reply: NewSubscriberReply;
where: Point; expansionDITLresID:
Integer; dlgHook:
ExpDlgHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr:
UNIV Ptr) Os

 
  Err;

(VAR reply: NewPublisherReply;
where: Point; expansionDITLresID:
Integer; dlgHook:
ExpDilgHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr:
UNIV Ptr) OSErr;  

(VAR reply: SectionOptionsReply;
where: Point; expansionDITLresID:
Integer; dlgHook:
ExpDlgHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr:
UNIV Ptr) OSErr;

Locating a Publisher and Edition From a Subscriber

 

   

 

 

  
 

 

FUNCTION GetEditionInfo (sectionH: SectionHandle; VAR editionInfo:
Edit ionInfoRecord) OSErr;

FUNCTION GoToPublisherSection (container: EditionContainerSpec) OSErr;

o . . co
Edition Container Formats .

FUNCTION GetStandardFormats (container: EditionContainerSpec; VAR =
previewFormat: FormatType; preview, =

publisherAlias, formats: Handle) OSErr; =

Reading and Writing Non-Edition files ie
FUNCTION GetEditionOpenerProc (VAR opener: EditionOpenerProcPtr) OSErr;

FUNCTION SetEditionOpenerProc (opener: EditionOpenerProcPtr) OSErr;

FUNCTION CallEditionOpenerProc (selector: EditionOpenerVerb; VAR PB:
EditionOpenerParamBlock; routine:
EditionOpenerProcPtr) OSErr;

FUNCTION CallFormatTOProc

 

 (selector: FormatliOVerb; VAR PB:
FormatIOParamBlock; routine:
Format IlOProcPtr) OSErr; 

Summaryofthe Edition Manager 4-87

IPR2017-01828

Ubisoft EX1002 Page 276



Inside Macintosh, Volume VI 

Application-Defined Routines 

FUNCTION MyExpDlgHook (itemOffset: Integer; itemHit: Integer; 
theDialog: DialogPtr; yourDataPtr: Ptr) 
Integer; 

FUNCTION MyExpModalFilter (theDialog: DialogPtr; VAR theEvent: 

FUNCTION MyOpener 

FUNCTION MyIO 

Result Codes 

no Err 
abortErr 
eofErr 
fnfErr 
flLckedErr 
fBsyErr 
rfNumErr 
permErr 
wrPermErr 
noTypeErr 
memFullErr 
userCanceledErr 
editionMgrlnitErr 
badSectionErr 
notRegisteredSectionErr 
badSubPartErr 
multiplePublisherWm 
containerNotFoundWm 
notThePublisherWm 

0 
-27 
-39 
--43 
--45 
--47 
-51 
-54 
-61 

-102 
-108 
-128 
--450 
--451 
--452 
--454 
--460 
--461 
--463 

EventRecord; itemOffset: Integer; VAR 
itemHit: Integer; yourDataPtr: Ptr) : 
Boolean; 

(selector: EditionOpenerVerb; VAR PB: 
EditionOpenerParamBlock) : OSErr; 

(selector: FormatIOVerb; VAR PB: 
FormatIOParamBlock) : OSErr; 

No error 
Publisher has written a new edition 
No additional data in the format 
Edition container not found 
Publisher writing to an edition 
Section doing 1/0 
Bad edition reference number 
Not a subscriber 
Not a publisher 
Format not available 
Could not load package 
User chose Cancel from dialog box 
Manager not initialized or could not load package 
Not a valid section type 
Not registered 
Bad edition container spec or invalid edition container 
Already is a publisher 
Alias was not resolved 
Not the publisher 

4-88 Summary of the Edition Manager 

IPR2017-01828 
Ubisoft EX1002 Page 277



5 THE EVENT MANAGER 

3 About This Chapter 
4 About the Event Manager 
5 Introduction to Events 
5 Low-Level Events 
6 Operating-System Events 
8 High-Level Events 

10 Event Processing 
10 The Event Loop 
12 Event Masks 
12 Switching Contexts 
13 Specifying Memory Requirements and Scheduling Options 
14 The Structure of a 'SIZE' Resource 
17 Creating a 'SIZE' Resource 
18 Using the Event Manager 
18 Receiving Low-Level Events 
19 Responding to Operating-System Events 
21 Receiving High-Level Events 
22 Identifying High-Level Event Senders and Receivers 
23 Sending High-Level Events 
26 Requesting Return Receipts 
27 Responding to Events From Other Applications 
28 Searching for a Specific High-Level Event 
29 Event Manager Routines 
29 Receiving Events 
30 Sending Events 
31 Receiving a Specific High-Level Event 
32 Converting Process Serial Numbers and Port Names 
33 Summary of the Event Manager 

5-1 

IPR2017-01828 
Ubisoft EX1002 Page 278

 

THE EVENT MANAGER

About This Chapter
Aboul the Event Manager
Intraduction wo Events

Low-Level Events

Operaling-System Events
High-Level Events

Event Processing
The Event Loop
Event Masks

Switching Contexts
Specifying Memory Requirements and Scheduling Options

The Structure of a SIZL' Resource

Creating a ‘SIZE’ Resource
Lsing the Exent Manager

Receiving Low-Level Events
Responding lo Operating-System Events
Receiving High-Level Events
idemifying High-Level Event Senders and Receivers
Sending Migh-Level Events
Requesting Return Receipts
Responding to Events From Other Applications
Searching for a Specific High-Level Event

Event Miunager Routines
Receiving Events
Sending Events
Receiving a Specific High-Level Event
Converting Process Serial Numbers and Port Names

Summary of the Event Manager

IPR2017-01828

Ubisoft EX1002 Page 278



Inside Macintosh, Volume VI 

5-2 

IPR2017-01828 
Ubisoft EX1002 Page 279



The Event Manager 

ABOUT THIS CHAPTER 

This chapter describes how your application can use the Toolbox Event Manager to send events 
to other applications and to receive events from other applications. The Toolbox Event Manager 
in system software version 7 .0 provides routines for sending and receiving a new type of event, 
a high-level event. In addition, Apple Computer, Inc. has defined a protocol for high-level 
events called the Apple® Event Interprocess Messaging Protocol. High-level events that adhere 
to this protocol are called Apple events. Your application can also define other types of high
level events and send them to applications, either locally or across a network. 

This chapter also describes the operation of the multitasking environment formerly known as 
MultiFinder®, which is now an integral part of the Macintosh® Operating System in system 
software version 7.0. In this environment, numerous applications can be open simultaneously, 
cooperatively sharing the available system resources. The Macintosh Operating System coordi
nates the execution of multiple applications by sending another type of event, an operating
system event, to applications whenever their execution status changes or whenever processor 
time is available for background processing. Your application takes advantage of this multi
tasking capability primarily by receiving operating-system events that guide its execution. 

The Event Manager routines that let your application communicate with other applications 
depend on the services of the Program-to-Program Communications (PPC) Toolbox and are 
available in system software version 7 .0. Before using any of the routines that handle high
level events, you should first use the Gestalt function to determine that the PPC Toolbox is 
present. You can also use Gestalt to determine which multitasking features of the Operating 
System are present. See the Compatibility Guidelines chapter in this volume for a full account 
of using Gestalt. 

The ability to have multiple applications open at once is available when running system soft
ware version 7.0 or when running MultiFinder in system software versions 5.0 and 6.0. Any 
significant differences between the multitasking environment of version 7 .0 and that provided 
by MultiFinder in earlier system versions are noted at the appropriate locations in this chapter. 
In system software earlier than version 7.0, there is no recommended way to determine 
whether MultiFinder is running or whether other applications are open if it is running. When 
running in system software version 7.0, applications that need to know what other applications 
are open (for example, to send high-level events to them) can get that information by calling 
one of three functions: the PPCBrowser function or the IPCListPorts function (both docu
mented in the Program-to-Program Communications Toolbox chapter in this volume) or the 
GetNextProcess function (documented in the Process Management chapter in this volume). 

The information in this chapter supplements the information in the Toolbox Event Manager 
chapter of Inside Macintosh, Vokime I and Volume V. (In this chapter, the term Event 
Manager refers to the Toolbox Event Manager, not the Operating System Event Manager.) 
In addition, the sections on cooperative multitasking supersede the information in the 
Programmer's Guide to MultiFinder. 

To use this chapter, you should be familiar with the way in which the Macintosh Operating 
System manages processes. See "About Process Management" in the Process Management 
chapter in this volume for a detailed description of how the Operating System schedules 
processes, performs context switches, and launches applications. If you want to communi
cate with applications across a network, then you should be familiar with the discussion of 
authentication in the Program-to-Program Communications Toolbox chapter in this volume. 

About This Chapter 5-3 

IPR2017-01828 
Ubisoft EX1002 Page 280

The Ever Manager

 

ABOUT THIS CHAPTER

This chapter descnbes bony your application can us the Toolbox Event Manager lo send events
to other applications and to receive events from other applications. The loolbox Event Manager
in system sottware version 7.0 provides routines for sending and receiving a new (ype ot event,
a high-level event. [n addition, Apple Computer, Inc. has detined a protocol tor high-level
events called the Apple® Event Interprocess Messaging Protocol. High-level events that adhere
to this protacel are culled Apple events. Your application can also define other types of high-
level events and send them toapplications. either locally or across a network,

This chapter also describes the operation of the multilasking environment formerly known as
MultiFinder®, which is nowan integral part of the Macintosh® Operating System in system
software version 7.0. In this environment, numerous applications can be open simultaneously,
cooperatively sharing the available system resources. The Macintosh Operating System coordi-
nates the execution of multiple applications by sending another type of event, an operaing-
system event to applications whenever their cxeculion shilus chates or wherever processor
time is available tor background processing. Your application lakes advantage ofthis mulu-
tasking cupability primarily by receiving operating-system events thal guide its exccution.

The Event Manager routings that let your application communicate with other applicanons
depend on the services of the Program-io-Program Communications (PPC) Toolbox and are
available in system sollware version 7.0. Before using any of the routines that handle high-
level events, you shoukl first use the Gestalt function i determine that the PPC Toolbos is
present. You can also use Gestalt to determine which multitasking features of the Operating
System are present. Sec the Compatibility Guidelines chapter in this yelume for a full account
of using Gestalt.

The ability to have multiple applications open at once is available when running systemsofi-
ware version 7.0 or when running MultiFinder in system sottware versions 5.0.and 6.0. Any
signifeant differences between the multitasking environment of version 7.0 and that provided
by MultiFinder in earlier system versions are noted at the appropriate locations in this chapter,
In systemsoftware earlier (han version 7.0, there is no recommended way to determine
whether MuliiFinder is running or whether other applications are open if it is cunning. When
running in system software version 7.0, applications that need to know what other applications
are open (for example. to send high-level events 10 thems can eet that information by calling
one of three functions: the PPCBrewser function or the IPCListPorts function (both docu-

mented in the Program-to-Program Communications Toolbox chapter in this volume) or the
GetNextProcess function (documented in the Process Management chapter in this volume}.

 The infonnation in this chapler supplements the information imthe Toolbox Evert Manager
chapter of faside Macintosh, Wokume | and Wolume ¥V. (Jn this chapter, the term yeni
Manager reters to the Toolbox Event Manager. nol ihe Operating Sysiem Event Manager.)
In addition, the sections on Caoperalive mullitasking supersede the information in the
Programmers Cruide fo Muithhinder.

To wse this chapter. you shouldhe fatniliar with the way in which the Macintosh Operating
System manages processes. Sec “About Process Management” in the Process Management
chapter in this volume fora detailed description of howthe Operating System schedules
processes, performs context switches. and launches applications. W you want ly connmuni-
cate wilh applications across a nctwork, then you should be familiar with the discussion of
authentication in the Program-to-Progeam Communications Toolbox chapter in this volume.

About This Chapter 5-3

IPR2017-01828

Ubisoft EX1002 Page 280



Inside Macintosh, Volume VI 

ABOUT THE EVENT MANAGER 

Most Macintosh programs are event-driven: they decide what to do from moment to moment 
by asking the Event Manager for events and responding to them one by one in whatever way 
is appropriate. The Event Manager is your application's primary link to the user, to other 
applications that are running at the same time as your application, to the various managers that 
are controlling operations in the Macintosh, and to the Operating System itself. Events sent to 
your application from these various sources can communicate important information to it and 
help ensure its smooth operation. " 

You can use the Event Manager to 

• receive key presses and mouse clicks as input for your application 

• receive indication that your application's windows need to be activated or updated 

• allow other applications to use the available system resources when no events are 
pending for your application 

• send events to other applications 

• receive events from other applications 

• respond to events received from other applications 

• search for a specific event from another application 

This chapter provides a brief introduction to events and then discusses a number of particular 
topics that are related to high-level events and the multitasking environment that is standard in 
system software version 7 .0. It explains 

• how to structure your main event loop to receive and process events 

• how to create a 'SIZE' resource to specify your application's memory requirements and 
scheduling options 

• how to receive and process high-level events 

• how to send high-level events to other applications 

This chapter also provides some information about Apple events, Apple's new protocol 
governing a class of high-level events. Additional information about Apple events, including 
descriptions of how to process the required Apple events, is provided in the Apple Event 
Manager chapter in this volume. 

5-4 About the Event Manager 

IPR2017-01828 
Ubisoft EX1002 Page 281



The Event Manager 

INTRODUCTION TO EVENTS 

Events are of various types, distinguished according to their origin and meaning. On the most 
basic level, events are created every time a user presses a key on the keyboard, presses the 
mouse button, releases the mouse button, or inserts a disk. 

Still other events can arise from changes in the processing status of an application. For 
example, if a user brings an application to the foreground, the Operating System sends a 
resume event to that application. Some of the work of reactivating the application is done 
automatically, both by the Operating System and by the Window Manager; the resume 
event is an indication for your application to take care of any further processing needed 
as a result of the application being reactivated. 

In system software version 7.0, the Event Manager recognizes a new type of event-the 
high-level event-that allows communication and information transfer between cooperating 
applications. For example, a spreadsheet application may want to obtain some information 
from a database application. The spreadsheet can send a high-level event to the database 
requesting the information; the database can then reply with the requested information by 
sending another high-level event back to the spreadsheet. 

Low-Level Events 

Events that report actions by the user (such as pressing the mouse button, typing on the 
keyboard, or inserting a disk) and events that report that the Event Manager has no other 
events to report (null events) are called low-level events because they report very low-level 
hardware and software occurrences. Figure 5-1 depicts the relationships among the 
Operating System Event Manager, the Toolbox Event Manager, the Window Manager, 
and a single application. 

The Operating System Event Manager detects and reports very low-level events such as 
changes in the attached hardware. Hardware-related events are mouse clicks, key presses, 
disk insertions, and so forth. 

Other low-level events can arise from changes in windows on the screen. For example, if 
a user has several documents open while running an application, the user can switch from 
one document to another by clicking in the appropriate window. Before your application is 
sent such an event, the Window Manager does some work for you, such as highlighting 
the newly activated window and unhighlighting the deactivated window. As illustrated in 
Figure 5-1, activate and update events are not placed into the event queue but are sent directly 
to the Toolbox Event Manager."" 

Applications can generate events themselves and send them (using the PostEvent function) to 
the Operating System Event Manager for processing. These types of events are application
specific. In an environment where only one application can execute at a time, application
defined events allow your application to send events to itself. You should be careful not to 
post events that are not normally placed in the event queue (such as activate events). 

Note: In system software version 7 .0, the work done by application-defined events 
must be accomplished using Apple events or other high-level events. 

Introduction to Events 5-5 

IPR2017-01828 
Ubisoft EX1002 Page 282

fhe vent Manager

INTRODUCTION TO EVENTS 

Events are of various types. distiaguished according ta their origin and meaning. On the most
basic level events are created ¢very time a user presses a key on the keyboard. presses the
mouse bution, releases the mouse butlon, or inserts a disk,

Sull wher events can arise fram changes in the processing status of an application, For
example. if a user brings an application to the foreground, the Operating System sends o
Tesume event to thal appheation. Same of lhe work of reactivating the application is done
autamatically, both by the Operating System and by the Window Manager: the resume
evert is an indication for your appheation to like care of any further processing nccded
asa cesullof the application hemg rewch vated.

In system software version 7.0, the Event Mamager recognizes a mew Lype of event—the
high-level event—thal allows communication: and information transfer between cooperating
applications, For example. a spreadshect application may want to obtain some information
from a datubase application. The spreadsheet can send a high-level event lo the database
requesting the infoonation; the database ean then coply with the requested information by
sending another high-level event back to the spreadsheet,

Low-Level Events

Events thal repon actions by the user (such as pressing the mouse button, Lyping on the
keyboard, or inserting a disk} und events that repon that the Event Manager has no other
events ta report (null events} ace called fow-fevel events because they report very low-level
hardware and software occurrences. Figure 4-1 depicts the cclauionships among the
Operaling System Event Manager, te Toolbox Event Manager, the Window Manager,
and a single application.

The Operating System Event Manager detects and reports very low-level events such as
changes inthe athwhed hardware, Hardware-relited events are mouse clicks, key presses,
disk imserions, and so forth.

Other low-level events can artse from changes in windows on the screen. For example. if
auser has several documents open while running an application. the user can switch from
one document to another by clicking inthe appropriate window, Uctore your application is
scent such an event. the Window Manager docs some work for you, such as highlighting
the newly activated window and unhighlighting the deactivated window, As illusirated in
Figure 5-1, activate and update events arc not placed into ihe event queue but are sent directly
to the ‘Toolbox Event Manager.”

Applicalions can generate events themselves and send them (using the PostEvent function) to
the Operating System Event Manager for processing. These bypes of events arc application-
specific. In an environment where only one application can exccule al a lime, application-
delined events allow your application lo send events to ilself, You should be caretul not 10
post events that are not normally placed in the event queue (such us activale events}.

 
Note: In system software version 7.0, the work done by application-delined events
must be accomplished using Apple events or other high-level events.

Putreaduction ta Evests 5-5

IPR2017-01828

Ubisoft EX1002 Page 282



Inside Macintosh, Volume VI 

Key up 
Key down 
Auto key 
Mouse up 
Mouse down 

) 

Activate 

[ 
Window j Update 
Manager 

1 > ._ _____ _ 

OS Event 
Managsr 

Event20 
Event19 

Event 1 

Toolbox Event 
Manager -

Event 
queue 

n Event stream 

Application-defined .A. 
.______.~v:i 

Figure 5-1. Events in a single application environment 

Operating-System Events 

The cooperative multitasking environment introduces a new type of event to allow the Operating 
System to communicate information to an application about changes in the operating status of 
that application. For example, when your application is switched into the background, the 
Operating System sends it a suspend event. Then, when your application is switched back into 
the foreground, it receives a resume event. These types of events are known as operating
system events. 

Figure 5-2 illustrates how the Event Manager helps provide this cooperative multitasking envi
ronment. The main new source of events is the Macintosh Operating System itself, which sends 
suspend, resume, and mouse-moved events to applications through the Toolbox Event Manager. 
(In system software versions earlier than 7.0, these events are sent by MultiFinder.) In addition 
to the event queue created by the Operating System Event Manager, the Toolbox Event Manager 
maintains a separate event queue for each open application. The events in the Operating System 
Event Manager queue are always sent to the foreground application, but other events (for 
example, update events from the Window Manager) can be sent to background applications. 

5-6 Introduction to Events 

IPR2017-01828 
Ubisoft EX1002 Page 283

 

fnside Mactntosh, Valine Vi

Key up
Key down
Auto key
Mouse up
Mouse down  
 
 

 
 

  
 

insert

 

OS Event

Manager

 
Event20| pane) Event

queue

Event 1 a

\)
Activate .. i

Window eee Toolbox Event
Manager . Manager

J Event stream

SO
Figure 5-1. Events in a single application environment

 

 

 
Apptication-detined

 
Operating-System Events

The cooperative multitasking onviroameni intraduces a newtype of event to allow the Operating
System ta communicate information to un application about changes in the operuing status of
that application. For cxample. when your application is switched inte the background. the
Operating System sends ita suspend event. Then, when your application is switched back into
the foreground, it receives a resume cvent. These types of events are Known us aperaiiiy-
AVATERT every,

 
Figure 5-2 illustrates hawthe Event Manager helps provide this cooperative muttilusking cavi-
ronment. The main new souree af events is the Macintosh Operating Systemitself, which sends
suspend. resume. and mouse-moved events lo applications through the Toolbox Event Manager.
(In system safbware versions carlier than 7.0. these evenis are scot by MultiPinder.} In addition
to the event queue created by the Operating System Event Manager, the Toolbox Event Manager
Maintains & separate event queue for cach open application. The events in the Operating System
Event Manager queue ure always sent to the foreground application, but other events (lor
cxample, update events from the Window Manager) can be sent to background applications,

5-6 Pitrodwciien to Events

IPR2017-01828

Ubisoft EX1002 Page 283



Key up 
Key down 
Auto key 
Mouse up 
Mouse down 

Window 
Manager 

Application
defined 

Activate 
Update 

> 
tf> 

Event 5 
Event 4 

Event 1 

The Event Manager 

OS Event 
Manager 

D 
Event20 
Event 19 Event 

queue 

Event 1 

D Mouse moved 
Suspend 

Toolbox Event Resume 

< Multi Finder Manager 

n 

~ Event stream 
~ 

Event25 Event 10 
Event24 Event 9 

Event1 Event 1 

Figure 5-2. Events in a multi-application environment 

Because your application might'need to execute differently depending on whether it is 
running in the foreground or in the background, you can inspect the low bit of the message 
field of an operating-system event to determine whether the event is a suspend or a resume 
event. For example, if you need to notify the user of some special occurrence while your 
application is executing in the background, you cannot simply put up an alert box. Instead, 
you should use the Notification Manager to queue a notification request that will be presented 
to the user at the appropriate moment. 

When your application receives a suspend event, it does not actually become inactive until it 
makes its next request to receive events from the Event Manager. At the time that it receives 
the suspend event, your application can inspect the convertClipboard flag in the message field 

Introduction to Events 5-7 

IPR2017-01828 
Ubisoft EX1002 Page 284

fhe Event Manager

Key up
Key dawn
Aulo key
Mouse up

 
 
 

 

 
 OS Event

Manager

_ Event 20
_— Event19_Even

: queue

_ Event 1

J Mouse moved
Actvata — —“ | Suspend

; Updale Resume ———

Window | Toolbox Event _Manager —> Manager —, MultiFinder
mn

Y/ Event slreama

 

 
 

 

 

 

 

 

 
 

| Event 4 Evenl 25 "Event 10
Event4 ‘| Evert24 Events |

i Event | | Event 1 | Event 1 |
 

Appicatio n- J Il J
yj &

Figure 5-2. Events in a muli-applicalion environment

Because your application mightaced to execute differenily depending on whether it is
running in the foreeround of in the background. you can inspect the lowbit of the message
Neld of an operating-sysicm event to determine wheiher the event is a suspend or a resume
event. For example, if you need lo notify the user of some special oecurrence while your
application is executing in the backround, you cannot senply put up an alert box. Instead,
yeu should use the Notification Manager lo queue a notification request that will be presented
to the user it (he appropriate moment,

Wheo your application receives a suspend event, docs not actually become inactive until it
Mmatkes Its ne XE TOYues! to receive events from the Event Manager. Atthe time that it receives
the suspend event, your application can inspect the convertClipboard flag in the message field

fratrodactiont ta Evens 3-7

IPR2017-01828

Ubisoft EX1002 Page 284



Inside Macintosh, Volume VI 

of the event record to see whether it should convert any local scrap into the global scrap. 
Your application should also hide any floating windows, selections, and so on. Then you 
should call WaitNextEvent to relinquish the processor and allow the Operating System to 
schedule other processes for execution. It is important to minimize the processing you do in 
response to a suspend event because otherwise the machine may appear sluggish. 

When control returns to your application, the first event it receives is a resume event. Your 
application may now convert the global scrap back to its private scrap, if necessary. As part 
of the resume or suspend event, the Operating System informs your application if the 
Clipboard has changed by setting bit 1 of the message field of the event record. 

"' 
There are two other kinds of operating-system events, mouse-moved events and 
application-died events. A mouse-moved event is sent to an application to indicate 
that the user has moved the mouse outside of the region specified to the WaitN extEvent 
routine. The application-died event is sent whenever an application launched by your 
application terminates or crashes. 

Note: Some early versions of MultiFinder do not send application-died events, and 
your application should not depend on receiving them. These events are provided 
primarily for use by debuggers. In system software version 7.0, application-died 
events are now sent as Apple events. 

High-Level Events 

In system software version 7.0, the Event Manager introduces a new type of event, the high
level event, along with a number of new Event Manager routines that let applications commu
nicate with each other by exchanging high-level events. A high-level event is an event that 
your application can send to another application to send it some information, to receive from 
it some information, or to have it perform some action. For example, your application can 
send an event to anoth~r application instructing that application to perform a specific action, 
such as adding a row to a spreadsheet or changing the font size of a paragraph. Your appli
cation can also send an event to another application requesting information from that 
application-for example, requesting a dictionary application to return the definition of a 
particular word. When you send a high-level event to another application, you can also 
include additional information or commands in an optional data buffer. For example, your 
application can use a high-level event to send a list of new words and definitions to a 
dictionary application. 

Figure 5-3 shows the general event-handling mechanism in system software version 7.0. 
Three different applications are communicating with one another by sending and receiving 
high-level events. High-level events are placed in a separate event queue maintained by the 
Operating System. The Operating System maintains a high-level event queue for each 
application that has announced itself as capable of receiving high-level events. The high-level 
event queues are limited in size only by available memory. 

Note: Because high-level events are not stored in the Operating System event queue, 
you cannot flush high-level events by calling the FlushEvents procedure. 

5-8 Introduction to Events 

IPR2017-01828 
Ubisoft EX1002 Page 285



Disk 7~~ 
Key up 'ill! :;;:/ ===u 
Key down ~-----~ 

insert 

Auto key O/S Event 
Mouse up Manager 
Mouse down 

D 
Event Event 20 

queue Event 19 

Event 1 
Window 

D Manager 

Activate~ 
Update Toolbox Event 

Manager 

tf? 
n 

Event stream 
{j 

Events Event25 
Event4 Event24 

Event 1 Event 1 

PPG 
Toolbox 

D 

Mouse moved 
Suspend 

The Event Manager 

High
level 
event 
queue 

Resume ~---~ 
/' Process 
"'-----' Manager 

Event 10 
Event 9 

Event 1 

Figure 5-3. Events in system software version 7 .0 

For effective communication between applications, your application must define the set of 
high-level events it responds to and let other applications know the events it accepts. By 
implementing the capabilities to send events to and receive events from other applications, 
you allow other applications to interact with your application and provide enhanced 
capabilities to your users. 

Introduction to Events 5-9 

IPR2017-01828 
Ubisoft EX1002 Page 286

The Event Manager

 

 OS Event

Manager

PPC
Toolbox

High-[bene|F[teor-3| Fea

Evert Event 20 Ceres] [terre | [ear] level
queue Event 19 i : eventfeat j ever: I [rar] queueoe

Mouse down

 

 

Event i
Window

Manager ||
 

 
 
 
 

Mouse moved

Suspend

 
| Activate Toolbox Event Resume
| Update oornox Even Process
: Manager — Manager
| | 

=

| Event1sireamA5 = 25 - Event 14 ~
|_Event 4 | Event a4 _ Event 4
| Event 1 [Event 1 : ;erent 1

TT

oO ©

 
 
 

 
Figure 5-3. Eygats in system solbware version 7.0

For etfective communication belween applications. your application must define the set of
high-level events it responds to and let ther applicavions knowthe events ibaccepis. By
implementing the capabilities to send events to and receive cvents from other applications,
you allow other applications bo interact with your application and provide enhanced
capabilities wo your users.

fatroduction fa Lrents 5-Y

IPR2017-01828

Ubisoft EX1002 Page 286



Inside Macintosh, Volume VI 

Generally, there is no restriction on the type of processing that one application can request 
from another by sending it a high-level event. For a high-level event sent by one application 
to be understood by another application, however, the sender and receiver must agree on a 
protocol, that is, on the way the event is to be interpreted. Apple events are high-level events 
whose structure and interpretation are determined by the Apple Event Interprocess Messaging 
Protocol. 

To make your application 7.0-friendly, you should support the required Apple events, as 
described in the Apple Event Manager chapter in this volume. In addition, you may want 
your application to support other common Apple events. For example, the Edition Manager 
uses Apple events to communicate information about document sections among the various 
applications that may publish sections or subscribe to them. The Edition Manager sends the 
appropriate Apple events to applications that want to maintain up-to-date subscriber sections 
within their documents. If a user alters a section of a document that has previously been 
published and updates the edition, the Edition Manager might post an Apple event to the 
application indicating that a new edition is available. The application receiving the Apple 
event can then update the subscriber or ignore the information, as the user dictates. For 
complete information on responding to Apple events sent by the Edition Manager, see the 
Edition Manager chapter in this volume. 

To ensure compatibility and smooth interaction with other Macintosh applications, you 
should use the Apple event protocol for high-level events whenever possible. You should 
define new protocols only if your application must communicate with applications on other 
computers that use different protocols or if your application has other special needs. For 
complete information about Apple events and on implementing the required set of Apple 
events, see the Apple Event Manager chapter in this volume. 

Note: All Macintosh system software that sends or receives high-level events uses 
the Apple events protocol. 

EVENT PROCESSING 

In system software version 7.0, the cooperative multitasking capabilities previously available 
through MultiFinder are an integral part of the Operating System. As a result, applications 
running under version 7.0 must process events and reserve memory in ways that contribute 
to the smooth operation of all applications that are open. In practice, this means that you 
should retrieve events from the Event Manager by using the WaitNextEvent function and that 
you should include a 'SIZE' resource that specifies a reasonable memory partition size. This 
section shows how to retrieve events from the Event Manager, how to mask out unwanted 
events, and how to specify memory and scheduling options for your application. 

The Event Loop 

In applications that are event-driven (that is, which decide what to do at any time by receiving 
and responding to events), you can obtain information about events that are pending by 
calling Event Manager routines. Since you call these routines repeatedly, the section of code 
in which you request events from the Event Manager usually takes the form of a loop; this 
section of code is the event loop. 

5-10 Event Processing 

IPR2017-01828 
Ubisoft EX1002 Page 287



The Event Manager 

A simple event loop might look something like the one given in Listing 5-1. It consists of an 
endless loop that retrieves an event and decides whether it is a null event. If the event is not a 
null event, the event loop calls DoEvent, an application-defined procedure, to process the 
event. Otherwise, the procedure calls an application-defined idling procedure, Doldle. 

PROCEDURE EventLoop; 
VAR 

Listing 5-1. A simple event loop 

cursorRgn: RgnHandle; 
gotEvent: Boolean; 
event: EventRecord; 

BEGIN 
cursorRgn := NewRgn; {pass an empty region the first time thru} 
REPEAT 

gotEvent := WaitNextEvent(everyEvent, event, GetSleep, cursorRgn); 
AdjustCursor(event.where, cursorRgn); 
IF gotEvent THEN 

DoEvent(event) 
ELSE 

Doidle; 
UNTIL FALSE; {loop forever} 

END; 

The DoEvent procedure must determine what kind of event the call to WaitNextEvent retrieved 
and act accordingly. Notice that the parameter passed to DoEvent is the event record received 
by WaitNextEvent. Essentially, the procedure is just a large conditional statement that branches 
according to the value of the what field of the event record. Listing 5-2 defines a simple 
DoEvent procedure. 

Listing 5-2. Processing events 

PROCEDURE DoEvent(event: EventRecord); 
BEGIN 

CASE event.what OF 
mouseDown: 

DoMouseDown(event); 
mouseUp: 

DoMouseUp(event); 
keyDown, autoKey: 

DoKeyDown(event); 
activateEvt: 

DoActivate(event); 
updateEvt: 

Do Update (event) ; 
osEvt: 

DoOSEvent(event); 
kHighLevelEvent: 

DoHighLevelEvent(event); 
END; 

END; { DoEvent} 

Event Processing 5-11 

IPR2017-01828 
Ubisoft EX1002 Page 288

The Event Manager

A simple event loop might look something like the one given in Listing 3-1. It consists of an
endless loop that retrieves an evert and decides whether itis a null event, Ufthe event is nota
null event, the event loap calls DoEvent, an application-defined procedure.to process the
evert. Otherwise, the procedure calls an application-defined idling procedure, Doldle.

Listing 5-1, A simple event loup

SRUCRDORE Prrcort.accapt ¢ 

  

 
 

 

Yak

TYUbsoLRyn  EgQaharcdle;
ao wert 3 bedded:
meterit, feo Besos ci;

HhG ON

waursarRagn ro Bashar [pbsa et oty LeGLEN) The cagsh Tise varcu}
BE PAL

WoL beerl oro Wall Rent vent t nh, Gtlo eeb, wibaoilagid 5
AG abrasion ft nh owhere, ot :

Le!

whT HI Plestg Tages:
WH,

The DoEvent procedure must determine what kind of event the call io WailNextEvent retrieved
and act accordingly. Notice that the parameter passed to DoEvent is the event record received
by WuitNextEvent, Essentially. the procedure is just a large conditional statement that brinches
according to the value of the what field of the event record. Listing 5-2 detines a simple
Dokvent procedure.

Listing 5-2, Processing events

SVEDLEE Lokvenl devant: oyenbiencoi dy-—\+

 

 
©MeeeEs

Laticofevby
2cTown, alites? 

Dorey Dowiutevent oj
a Lowa he

om7"-_
pd
at
-aa
pdoea
BS
rE== 

LEAL:
eT 0 TeaTawattit. +

Event Processing S-ff

IPR2017-01828

Ubisoft EX1002 Page 288



Inside Macintosh, Volume VI 

The main addition to your application's event loop in system software version 7 .0 is the 
recognition of high-level events (using the constant kHighLevelEvent) and the appropriate 
processing of those events. The procedure defined in Listing 5-2 calls DoHighLevelEvent, 
an application-defined routine, to interpret the high-level event further. 

Event Masks 

Several of the Event Manager routines can be restricted to operate on a specific event type or 
group of types. You do this by disabling (or "masking out"l the events you are not interested 
in receiving. To specify which event types an Event Manager routine governs, supply a 
parameter known as an event mask. Masks for each individual event type are available as 
predefined constants: 

CONST everyEvent -1; {every event} 
mDownMask 2. , {mouse-down} 
mUpMask 4. , {mouse-up} 
keyDownMask 8; {key-down} 
keyUpMask 16; {key-up} 
autoKeyMask 32; {auto-key} 
updateMask 64; {update} 
diskMask 128; {disk-inserted} 
activMask 256; {activate} 
highLevelEventMask 1024; {high-level} 
osMask -32768; {operating-system} 

You can form any particular mask you need by adding or subtracting mask constants. 
For example, to request the next available event that is not a mouse-up event, you 
can use the code 

myErr := WaitNextEvent(everyEvent-mUpMask, myEvent, mySleep, myMRgnHnd); 

Note that masking out types of events does not remove those events from the Operating 
System event queue. If a type of event is masked out, it is simply ignored by the Toolbox 
Event Manager when it reads the event queue. Note also that you cannot mask out null 
events. Even if every other kind of event is disabled, the Event Manager reports a null event. 

In system software version 7.0, you can mask out high-level events by subtracting the 
constant highLevelEventMask from your event mask. (This constant has the same value 
as the defunct constant networkMask.) 

Switching Contexts 

Applications running in the background receive processing time when the front application 
makes an event call (that is, calls WaitNextEvent, GetNextEvent, or EventAvail) and there 
are no events pending for that front application. An application running in the background 
should relinquish the CPU regularly to ensure a timely return to the foreground application 
when necessary. 

5-12 Event Processing 

IPR2017-01828 
Ubisoft EX1002 Page 289

 

eae

a

frxide Macintosh, Volume VF

The main adilitinn do your application's event loop in system software version 7.0 is the
reevenition of high-level events (using the constant KHighLevelR vent} and the appropriate
processing of those events. The procedure defined im Listing 3-2 calls DoHighLevel vent,
an applicadion-defined routing. to interpret the high-level event farther,

Event Masks

Several al the Eveot Managerroutines can be restricted to operate on a specific event type or
croup of types. You de this by disebling tor “masking owt yp the events you are not mleresteal
inrecelving. To specify which cvent lypes an Fvent Slanager routine governs. supply a
parameter known as an event mask. Masks foreach individual event type are available as
predylingel constinats:

  
hiv Mak tg ey Jered.

You can tarm ay purticulir ntusk you need by adding or sublracting mask constants,
bor example. to request the next ivaiable event (hol is ola mouse-up erent, you
can use the cole

Note thar masking out types af events does ma remove those events from the Operting
Syslem event queuc. If a iepe of event is masked oul. itis sanply ignored by the Toolbox
Feveot Mianawer when il reads the ever qucue. Note also that you cannot mask out null
events. Even idevery other kind of event is disabled. the Event Manager reports a null event,

In system software version 7.0L vou can musk oul high-level events by subtractthe
constant hishLevelEvertMask from your event mask. (This constanl hats the same value
as the defunet constant networkMask, 1

Switching Contexts

Applicauons minniog in the background receive processing time when the front application
mikes an event call ¢thitt ws. calls Want NeatByenl Get NeastByvenk or ByenlAyvail und there
are no events pending for that front application. An application running in the backereund
should relinquish the CPU regulaely to ensure a tanely renimto thy foreground applicutian
WHE TeCesry.

3-f2 Event Processing

IPR2017-01828

Ubisoft EX1002 Page 289



The Event Manager 

In system software version 7.0 (or under MultiFinder in earlier versions), the available 
processing time is distributed among multiple applications through a procedure known as 
context switching (or just switching). When a context switch occurs, the Process Manager 
allocates processing time to a process that is different from the one that had been receiving 
processing time. Two types of context switching may occur: major and minor. All switching 
occurs at a well-defined time, namely, when an application calls WaitNextEvent. 

A major switch is a complete context switch: an application's windows are moved from the 
background to the foreground, or vice versa. In a major switch, two applications are 
involved, the one being switched to the foreground and the one being switched to the 
background. The AS worlds of both applications are switched, as well as the relevant low
memory environment. If those applications receive suspend and resume events, they are so 
notified at the time that a major switch occurs. 

Major switching does not occur when a modal dialog box is the frontmost window, although 
minor switching (discussed next) can still occur. To determine whether major switching can 
occur, the Operating System checks (among other things) to see if the window definition 
procedure of the frontmost window is dBoxProc because the type dBoxProc is specifically 
reserved for modal dialog boxes. (Major switching can still occur when a movable modal 
dialog box is the frontmost window.) 

A minor switch occurs when an application is switched out to give time to background 
processes. A minor switch always involves two applications, a background application and 
the application yielding time to it (which may be some other background application). In a 
minor switch, the AS worlds of those two applications are switched, as are the low-memory 
environments. However, the layers of windows are not switched, and neither application 
receives either suspend or resume events. 

Note: Your application can also get switched out if it calls a Toolbox routine that 
makes an event call. For example, your application may get switched out when calling 
ModalDialog. 

Specifying Memory Requirements and Scheduling Options 

Every application executing under system software version 7.0, as well as every application 
executing under MultiFinder, should contain a 'SIZE' resource. One of the principal func
tions of the 'SIZE' resource is to inform the Operating System about the memory size 
requirements for the application (hence the name 'SIZE') so that the Operating System can 
set up an appropriately sized partition for the application. The 'SIZE' resource is also used 
to indicate certain schedulin~ options to the Operating System, such as whether the applica
tion can run in the background, whether it can accept suspend and resume events, and so 
forth. The 'SIZE' resource in system software version 7 .0 contains additional information 
indicating whether the application is 32-bit clean, whether the application wishes to receive 
notification of the termination of any applications it has launched, and whether the application 
wishes to receive high-level events. 

This section explains the structure of a 'SIZE' resource and the meaning of each of its fields. 
It also shows how to specify the Rez input for a 'SIZE' resource. You are responsible for 
creating the information in this resource. 

Event Processing 5-13 

IPR2017-01828 
Ubisoft EX1002 Page 290

The Bren Manager

In system soltware version 7.0 for under MultiFinder in cartier versions). the available
processing time is distributed among multiple applicniions (hroueh a procedure known as
cote? switching Cor Just saitching). When a context switch occurs. the Process Manager
illovales processing Lime toa process that is diferent from the one that bad been receiving
processing tutte, Two types OF conleat switching may acer: major and minor, All switching
occurs dba well-defined time, namely, when at application calls WaitNexthvent.

A dior savitci isa complete contest swatch: an application's windows are moved from the
hackground to the foreground. or vice versa. Lina major switch, two applications ar
involved, the ane being switched to the foreground and the one being switched to the
hackenound. The AS worlds of both applications are switched, ws well as ihe relevant low-
memory environment, If these applications receive suspend and resume events, they are 80
notifiedat the time that a major swileh occurs,

Major switching does notoccur when a modal dialog hex is the drontmost window, although
miner switching Wiscussed next can sill gecur, To determing whether major switching can
occur. the Operating System checks (among other things) lo see if lhe window definitian
precedure of the frontmost windowis UBoxProc because the ype dBox Prac is specifically
reserved tor mudlal divlog boxes. (Major switching can sull aceur when a movable modal
dialog box is the frontmost window. }

Andaseitef occurs when ae application is switched Gul ta give lime to backeround
processes. A mmunor swilch always involves byo appliculions, a background appheation and
the application yielding dime to it twhich may be seme other background application) Ina
ming: switch, the AS worlds oFthose hve applications are switched. as are the low-memary
covironments, However. the layers of windows are not switched, and neilber application
receives vilher suspend or resume evens.

Nete: Your application can also get switched out Wf itealls a Toolbox routine chat
makes anevent call. Por cxaimple. your application may gel switched out whencalling
Maal Dialog.

Specifying Memory Requirements and Scheduling Gptions 

Every application executing under system satiware version 7.0. a8 well as every application
exceuling under MultiFinder, should contain a “STZF resource. One of the principal fune-
ions of the ‘SIZE’ resource is to inform the Operating System about the memory size
requirements forthe application thence the name SIZE} se that the Operating System can
ScLup an appropriately sized partition forthe applicadion. Vhe SIZE resource is also used
to indicate certain scheduling options lo the Operating System. such as whether the applica-
Hon can run in the background. whether it can accept suspend and resume cvents. and so
forth. The ‘SIZE’ resource in system soliware version 7-0 contains additional infarmation
indicating whether the application is 32-bit clean. whether the applicatian wishes to receive
notuicauien of the cermindion of any applications it has launched. and whether the application
wishes to receive high-level events.

2
=
-
e
=Et
~pa
Pea==
it
odeI
 

This section explains the stracure af a STZL' resource and the meaning of cach ofits fields,
Tt alsa shows how to specily dhe Rey input Fora STAR’ resource. You are responsible lor
creating lhe information tn this resouree.

brea Bracessary Sf

IPR2017-01828

Ubisoft EX1002 Page 290



Inside Macintosh, Volume VI 

The Structure of a 'SIZE' Resource 

A 'SIZE' resource consists of a 16-bit flags field, followed by two 32-bit size fields. The 
flags field specifies operating characteristics of the application, and the size fields indicate the 
minimum and preferred partition sizes for the application. The minimum partition size 
is the actual limit below which your application will not run. The preferred partition size 
is the memory size at which your application can run most effectively and which the Operating 
System attempts to secure upon launch of the application. If that amount of memory is 
unavailable, the application is placed into the largest contiguous block available, provided that 
it is larger than the specified minimum size. 

Note: If the amount of available memory is between the minimum and the preferred 
sizes, the Finder™ displays a dialog box asking if the user wants to run the applica
tion using the amount of memory available. If your application does not have a 
'SIZE' resource, it is assigned a default partition size of 512 KB. 

When you define a 'SIZE' resource, you should give it a resource ID of -1. A user can 
modify the preferred size in the Finder's information window for your application. If the user 
does alter the partition size, the Operating System creates a new 'SIZE' resource having 
resource ID 0. At application launch time, the Launch function looks for a 'SIZE' resource 
with ID O; if this resource is not found, it uses your original 'SIZE' resource with ID -1. 
This new 'SIZE' resource is also created when the user modifies any of the other settings in 
the resource. 

Listing 5-3 shows the structure of the 'SIZE' resource. 

Listing 5-3. A template for a 'SIZE' resource 

type 'SIZE' 
boolean reserved; /*reserved*/ 
boolean ignoreSuspendResumeEvents, /*ignores suspend-resume events*/ 

acceptSuspendResumeEvents; /*accepts suspend-resume events*/ 
boolean reserved; /*reserved*/ 
boolean cannotBackground, /*does no background processing*/ 

canBackground; /*can use background null events*/ 
boolean needsActivateOnFGSwitch, /*needs activate event*/ 

doesActivateOnFGSwitch; 
boolean backgroundAndForeground, 

onlyBackground; 
boolean dontGetFrontClicks, 

getFrontClicks; 
boolean ignoreAppDiedEvents, 

acceptAppDiedEvents; 
boolean not32BitCompatible, 

is32BitCompatible; 
boolean notHighLevelEventAware, 

isHighLevelEventAware; 
boolean onlyLocalHLEvents, 

localAndRemoteHLEvents; 

5-I4 Event Processing 

/*needs no activate event*/ 
/*app has a user interface*/ 
/*app has no user interface*/ 
/*no mouse events on resume*/ 
/*get mouse events on resume*/ 
/*applications use this*/ 
/*app launchers use this*/ 
/*works with 24-bit addr*/ 
/*works with 24- or 32-bit addr*/ 
/*can't use high-level events*/ 
/*can use high-level events*/ 
/*only local high-level events*/ 
/*also remote high-level events*/ 

IPR2017-01828 
Ubisoft EX1002 Page 291



} ; 

boolean notStationeryAware, 
isStationeryAware; 

boolean dontUseTextEditServices, 
useTextEditServices; 

boolean reserved; 
boolean reserved; 
boolean reserved; 

unsigned longint; 
unsigned longint; 

The Event Manager 

/*can't use stationery documents*/ 
/*can use stationery documents*/ 
/*can't use inline services*/ 
/*can use inline services*/ 
/*reserved*/ 
/*reserved*/ 
/*reserved*/ 
/*memory sizes are in bytes*/ 
/*preferred memory size*/ 
/*minimum memory size*/ 

The nonreserved bits in the flags field have the following meanings. 

Flag descriptions 

acceptSuspendResumeEvents When set, indicates that your application can process suspend 
and resume events (which the Operating System sends to 
your application before sending it into the back-ground or 
when bringing it into the foreground). In this way, your 
application knows when to process the global scrap. 

canBackground When set, indicates that your application wants to receive 
null event processing time while in the background. If your 
application has nothing to do in the background, you 
should not set this flag. 

doesActivateOnFGSwitch When set, indicates that your application takes responsibility 
for activating and deactivating any windows in response to a 
suspend or resume event. If the acceptSuspendResumeEvents 
flag is set, if the doesActivateOnFGSwitch flag is not set, 
and if the application is suspended, then the application 
receives an activate event. However, if you set the 
doesActivateOnFGSwitch flag, then your application won't 
receive activate events, and you must take care of activation 
and deactivation when it receives the corresponding suspend 
or resume event. This means that if the application's window 
is frontmost, the suspend event should be treated as though a 
deactivate event were received as well (assuming that both the 
doesActivateOnFGSwitch and acceptSuspendResumeEvents 
flags are set). For example, scroll bars should be deactivated, 

... blinking insertion points should be hidden, and selected text 
should be deselected if your application moves to the back
ground. If you do not set this flag, then a window must be 
created to force the activate and deactivate events to occur. 

only Background When set, indicates that your application runs only in the 
background. Usually this is because it does not have a user 
interface and cannot run in the foreground. 

Event Processing 5-15 

IPR2017-01828 
Ubisoft EX1002 Page 292

The Freat Manueer

Tha Dell

sade

read bean
aed an   
ketal ar

Ababa ler 3
 

beth oomerdc syTn

The nonreserved bits in the flags field have the following meanings.

Flag descriptions

acecplsuspendResumeEvents When set. indicates (hat your application can process suspend
and resume events (which the Operating System sends to
your application before sending it into the back-ground ar
when bringing it into the foreground). In this way. your
appheation knows when to process the global scrap.

canBvkeround When set. indicates that your application wants 10 reece
null event processing Hine while in the background, I your
application has nothing todo in the baekeround. you
should not set this fas.

docsActivateOnPOSwiteh When sel. indicates thal your application tikes responsibil ity
tor activaling and deacdivatuig any windows In mespomise tod
suspend or resume event. If the acceptsuspendResumcEvents
flag is set. if the doesActivaieOnFOSwitch tag is not set,
wad if the application is suspended, then the application
receives af activate event. However. if you set the
does ActivateOn GSwitch Mag. then your application wan't
receive activate events, and you must take cure of actryation
and deactivation when it receives the corresponding suspend
or resume event, This means thatit the apphcatian’s window
is Fontinest, the suspend event should be treated as though a
deactivate event were received as well (assurming that both the
does ActivateOnFGS witch and acceptSuspendResumeLvents
Hiss are scl. Por example, scroll bars should be deactivated,

“bfinking insenion points should be hidden. and selected text
should be deselected if your application moves to the bayk-
around. Hoyou do not sed this Mag. then a windowtrust be
created to farce the activate and deactivate events toe occur,

onlyBackground When sel, indicates thal your apphecation nuns only in the
background. Usually this is because at does not have a user
interface and cannet run in the fereereund.  

Avent Processing 3-f3

IPR2017-01828

Ubisoft EX1002 Page 292

 
 

 



Inside Macintosh, Volume VI 

getFrontClicks 

acceptAppDiedEvents 

is32BitCompatible 

isHighLevelEventAware 

localAndRemoteHLEvents 

isStationery Aware 

useTextEditServices 

When set, indicates that your application is to receive the 
mouse-down and mouse-up events that are used to bring 
your application into the foreground when the user clicks in 
your application's frontmost window. Typically, the user 
simply wants to bring your application into the foreground, 
so it is usually not desirable to receive the mouse events 
(which would probably move the insertion point or start 
drawing immediately, depending on the application). The 
Finder is one application, however, that has the 
getFrontClicks flag set. 

When set, indicates that your application is to be notified 
that an application launched by this application has termi
nated or crashed. See the Process Management chapter in 
this volume for more information about launching applica
tions and receiving Application Died events. 

When set, indicates that your application can be run with 
the 32-bit Memory Manager. You should not set this flag 
unless you have thoroughly tested your application on a 
32-bit system (such as a Macintosh Ilci running system 
software version 7 .0 in 32-bit mode, or under A/UX®). 

When set, indicates that your application can send and 
receive high-level events. If this flag is not set, the Event 
Manager does not give your application high-level events 
when you call WaitNextEvent. There is no way to mask out 
types of high-level events; if this flag is set, you will receive 
all types of high-level events sent to your application. 

When set, indicates that your application is to be visible to 
applications running on other computers on a network (in 
addition to applications running on the local machine). If 
this flag is not set, your application does not receive high
level events across a network. 

When set, indicates that your application can recognize 
stationery documents. If this flag is not set and the user 
opens a stationery document, the Finder duplicates the 
document and prompts the user for a name for the 
duplicate document. 

When set, indicates that your application can use the inline 
text services provided by TextEdit. See the TextEdit chapter 
in this volume for information about the inline input 
capabilities of TextEdit. 

Note: If you set the acceptSuspendResumeEvents flag, you should also set the 
doesActivateOnFGSwitch flag. 

The modifiers field in the event record now contains additional information about a mouse
down event. In system software version 7.0, the activeFlag modifier flag in the modifiers 
field of a mouse-down event record is set to indicate that the mouse-down event caused a 
foreground switch. Your application can use this flag to determine whether to process the 

5-16 Event Processing 

IPR2017-01828 
Ubisoft EX1002 Page 293



The Event Manager 

mouse-down event (probably depending on whether the clicked item was visible before the 
foreground switch). This modifier is set for all mouse-down events that cause a foreground 
switch, regardless of whether your application's getFrontClicks flag is set or whether the 
mouse click was in your application's front window. In system software versions prior to 
7 .0, this flag is never set for mouse-down events, and your application cannot tell if the 
mouse click caused a foreground switch. As a result, your application should always process 
a mouse-down event if its getFrontClicks flag is set. 

Listing 5-4 shows the input for a sample 'SIZE' resource. 

Listing 5-4. The Rez input for a sample 'SIZE' resource 

resource 'SIZE' (-1) { 
reserved, 
acceptSuspendResumeEvents, 
reserved, 

} ; 

canBackground, 
doesActivateOnFGSwitch, 
backgroundAndForeground, 
dontGetFrontClicks, 
ignoreAppDiedEvents, 
is32BitCompatible, 
isHighLevelEventAware, 
localAndRemoteHLEvents, 
isStationeryAware, 
dontUseTextEditServices, 
reserved, 
reserved, 
reserved, 
kPrefSize * 1024, 
kMinSize * 1024 

/*reserved*/ 
/*accepts suspend-resume events*/ 
/*reserved*/ 
/*can use background null events*/ 
/*needs no activate event*/ 
/*app has a user interface*/ 
/*no mouse events on resume*/ 
/*applications use this*/ 
/*works with 24- or 32-bit addr*/ 
/*can use high-level events*/ 
/*also remote high-level events*/ 
/*can use stationery documents*/ 
/*can't use inline input services*/ 
/*reserved*/ 
/*reserved*/ 
/*reserved*/ 
/*preferred memory size*/ 
/*minimum memory size*/ 

This resource specification indicates, among other things, that the application is 32-bit clean, 
can handle stationery documents, and accepts both local and network high-level events. You 
are responsible for defining the constants kPrefSize and kMinSize; for example, if you set 
kPrefSize to 50, the preferred partition size will be 50 KB. 

Creating a 1SIZE 1 Resource 

When creating a 'SIZE' resourc~ you first need to determine the various operating charac
teristics of your application. For example, if your application has nothing useful to do when 
it is in the background, then you should not set the canBackground flag. Similarly, if you 
have not tested your application in an environment that uses all 32 bits of a handle or pointer 
for memory addresses, then you should not set the is32BitCompatible flag. 

Next, you need to determine what your application's memory requirements are likely to be. 
There is no simple formula for determining the appropriate partition size requirements for all 
applications because so many factors affect memory requirements. An application's memory 
requirements depend on the static heap size, the dynamic heap, the A5 world, and the stack. 
The static heap size includes objects that are always present during the execution of the 
application-for example, code segments, Toolbox data structures for window records, and 

Event Processing 5-17 

IPR2017-01828 
Ubisoft EX1002 Page 294



Inside Macintosh, Volume VI 

so on. Dynamic heap requirements come from various objects created on a per-document basis 
(which may vary in size proportionally with the document itself) and objects that are required 
for specific commands or functions. The size of the AS world depends on the amount of global 
data and the number of intersegment jumps the application contains. Finally, the stack contains 
variables, return addresses, and temporary information. The application stack size varies 
among computers, so you should base your values for the stack size according to the stack size 
required on a Macintosh Plus (8 KB). The Process Manager automatically adjusts your 
requested amount of memory to compensate for the different stack sizes on different machines. 
For example, if you request 512 KB, more stack space (approximately 16 KB) will be 
allocated on machines with larger default stack sizes. 

Unfortunately, it is simply impossible to forecast all of these conditions with any great degree 
of reliability. You should be able to determine reasonably accurate estimates for the stack 
size, static heap size, A5 world, and jump table. In addition, you can use tools such as 
MacsBug's heap-exploring commands to help you empirically determine your application's 
dynamic memory requirements. 

USING THE EVENT MANAGER 

You can use the Toolbox Event Manager to receive information about hardware-related 
events, about changes in the appearance of your application's windows, or about changes 
in the operating status of your application. You can also use the Event Manager to communi
cate directly with other applications. This communication can include sending events to other 
applications, receiving events from other applications, and searching for specific events from 
other applications. 

The events that your application can send to and receive from other applications are called 
high-level events. Your application can both send and receive high-level events, but it 
generally only receives low-level events and should not send them. Your application receives 
both low-level and high-level events in the same way, which is by asking the Event Manager 
for the next available event. If the event your application receives is a high-level event, your 
application might need to use another Event Manager routine to retrieve an optional data 
buffer accompanying that event. 

Receiving Low-Level Events 

Applications receive events one at a time by asking the Event Manager for the next available 
event. You use Event Manager routines to receive (or in the case of EventA vail, simply to 
look at) the next available event that is pending for your application. The Event Manager 
returns to your application an event record, which includes the relevant information about 
that event. 

Your application can use the WaitNextEvent, GetNextEvent, and EventAvail functions to 
retrieve events from the Event Manager. GetNextEvent returns the next available event of 
a specified type. Further, if the event returned is in the event queue, GetNextEvent removes 
it from the queue. EventAvail is just like GetNextEvent, except that if the event reported 
is in the event queue, it is left there. EventA vail thus allows your application to look at the 
next event in the event queue without actually processing the event. 

5-18 Using the Event Manager 

IPR2017-01828 
Ubisoft EX1002 Page 295



The Event Manager 

You should use the WaitNextEvent function to retrieve an event from the Event Manager. 
WaitNextEvent requires four parameters: an event mask, an event record, a sleep value, 
and a mouse region. If WaitNextEvent returns successfully, the event record contains 
information about the retrieved event. The sleep parameter specifies the amount of time (in 
ticks) that your application agrees to relinquish the processor if no events are pending for 
it. When that time expires or when an event becomes available for your application, the 
Process Manager schedules your application for execution. In general, you should specify 
a value greater than 0 in the sleep parameter so that other applications can receive processing 
time if they need it. Your application should not sleep more than 15 ticks if you use TextEdit 
because the fastest cursor blink occurs every 15 ticks. 

The mouseRgn parameter to WaitNextEvent specifies a screen region that lets you determine 
the conditions when your application is to receive notice of mouse-moved events. Your 
application receives mouse-moved events only when the mouse is outside of the specified 
region and your application is the foreground process. You can use the mouseRgn parameter 
as a convenient way to change the shape of the cursor-for example, when the mouse moves 
from the content area of a window to the scroll bar. 

Note: If your application calls WaitNextEvent, it should not call the SystemTask 
procedure. 

For low-level events, the event record filled in by WaitNextEvent has the following structure: 

TYPE EventRecord 
RECORD 

what: 
message: 
when: 
where: 
modifiers: 

END; 

Integer; 
Longint; 
Longint; 
Point; 
Integer 

{event code} 
{event message} 
{ticks since startup} 
{mouse location} 
{modifier flags} 

For high-level events, however, several of the fields of the event record have different 
meanings. See "Receiving High-Level Events" later in this chapter. 

Responding to Operating-System Events 

Operating-system events are of type osEvt and are assigned the event code previously 
assigned to app4Evts (type 4 application events). 

CONST osEvt = 15; 

If your application does not handle suspend and resume events (as indicated by a flag in its 
'SIZE' resource), then the Operating System has to trick your application into performing 
scrap coercion to ensure that the contents of the Clipboard can be transferred from one 
application to another. This process adds to the time it takes to move the foreground 
application to the background and vice versa and thereby makes the user interface look 
cumbersome. 

Using the Event Manager 5-19 

IPR2017-01828 
Ubisoft EX1002 Page 296

The Event Manager

You should use the WaitNextEvent function ta retneve an even! from the Event Manager.
WaitNextEvent requires four parameters: an event mask, an cyent record, a slecp value,
and a mouse region. If WaitNextEvent returns successfully. the event record contains
information about the retrieved event. The sleep parameter specihes the amountot me (in
ticks) that your application agrees to relinquish the processorif no events are pending for
it. When that time expires or when an event becomes available for your application, the
Process Munager schedules your application for execution. In general, you should specily
a value greater than (in the slecp parameter so that other applications can receive processing
lime if they need it. Your applicatton should not sleep more than 15 ticks if you use TextEdit
hecause the fastest cursor blink occurs cvery 15 ticks.

The mouseRgn parameter to WaitNextEvent specifics a screen region that lets you determine
the conditions when your appheation is te receive notee of Mouse-moved events. Your
application reecives mousc-moved events only when the mouse is outside of the specified
Tegion and your application is the foreground process, You can use the mouseRgen parameter
as a convenicnt way lo change (he shape of the curser—ior example. when the mouse moves
fromthe content area of a window(a the scroll bar.

Note: If your application calls WaitNextEvent, it should not call the SystemTask
procedure,

For low-level events, the event record Alled in by WauNextEvent has the following structure:

TNSP Zvercberwisivsd -

 
    

BIORL

Willy: Powarak  cieader:

TU EERE peyenh Westside]

ay PL IUAR auie slartepy
Woo: iveooean lone

mondicieeru: Lrbats 2 daendbites f° aay
PSL

For high-level events. however, several of the fields of the event record have different
tneanings. See “Receiving High-Level Events” later in this chapter.

Responding to Operating-System Events

Operating-system events arc of type osEst and are assigned the event code previously
assigned to appdevts (ype 4 application events).2  
Tf your application does not handle suspend and resume events (as indicated by a flag in its
‘SIZE’ resource), then the Operating System has to trick your application inte performing
scrap coercion to ensure that the contents of the Clipboard can be transferred from one
application to another. This process adds to the time it lakes 10 move the foreground
application to the background and vice versa and thereby makes the user interface look
cumbersome.

Userg the Event Manager 5-79

IPR2017-01828

Ubisoft EX1002 Page 296



Inside Macintosh, Volume VI 

Your application should respond to a suspend event by moving its private scrap into the 
Clipboard and then returning to the main event loop. Also, your application can do anything 
else necessary to get ready for a major switch. When your application receives a resume event 
and if the Clipboard has been altered, your application should copy the contents of the 
Clipboard, convert them back to its private scrap, and do anything else required for a fore
ground switch. After processing the scrap in this way, your application resumes executing. 

Note: When switched into the background, an application should hide its 
Clipboard window. The contents of the Clipboard are not valid unless the 
application is frontmost. 

In an osEvt event record, the message field contains information indicating whether the event 
is a mouse-moved, suspend, or resume event and whether Clipboard conversion is required 
when the application resumes execution. The message field has the following structure: 

Bit 

0 

Meaning 

0 if a suspend event 
1 if a resume event 

1 0 if Clipboard conversion not required 
1 if Clipboard conversion required 

2-23 Reserved 

24-31 suspendResumeMessage if a suspend or resume event 
mouseMovedMessage if a mouse-moved event 

Note that you need to examine the low byte of the message field to determine what kind of 
operating-system event you have received. The messages passed in bits 24-31 are defined 
by constants: 

CONST suspendResumeMessage 
mouseMovedMessage 

$01; 
$FA; 

{suspend or resume event} 
{mouse-moved event} 

If the event is a suspend or resume event, you need to examine the first bit of the high byte to 
figure out whether that event is a suspend or resume event. Bits 0 and 1 are meaningful only 
if bits 24-31 indicate that the event is a suspend or resume event. You can use the constants 
resumeFlag and convertClipboardFlag to determine whether the event is a resume event, and 
whether Clipboard conversion is required: 

CONST resumeFlag 
convertClipboardFlag 

5-20 Using the Event Manager 

1 · ' 
2; 

{resume event} 
{Clipboard conversion required} 

IPR2017-01828 
Ubisoft EX1002 Page 297

 

inside Macintosh, Volume Vi

Your application should respond to a suspend event by moving its private scrap inte the
Clipboard and then retuming to the main event loop. Also, your application can do anything
cle necessary to gel ready fora major swiich. When your application reecives a resume event
and if the Clipboard has been altered. your application should copy the contents of the
Clipboard, conver them back to its povale scrup, and do anything else required for a fore-
ground switch. After processing the scrap in this way, your application resumes executing.

Note: When switched inte the background, an application should hide its
Clipbourd window. The coments ofthe Clipboard are not valid unless the
application is [ronumost. *

In an osBvt event record, the message eld contains mfonnation indicating whether the event
is 4 mouse-moved, suspend, or resume event and whether Clipboard conversion is required
when the application resumes execution. The message eld has the following structure:

Bit Meaning

i) 0 if a suspend event
| if a resume ever

] Q if Clipboard conversion not required
(if Clipboard conversion required

2-23 Reserved

24-31 suspendResumekicssace ia suspend or resume cvent
mouse hfovedMessage if a mouse-moved event

Note that you need to examine the low byte of the message field lo determine what kind af
Operaling-system event you have received. The messages passed in bits 24-31 are defined
by constants:

 

Tithe event is a suspend or resume event you need 10 caumune the first bit of the high byte ta
fleure out whether that event is a suspend or resume event. Bils O and 1 are meaningful only
if bits 24—3 1 indicate thut the eveal is a suspend ar resame event. You can use the comstunts
resumeFlag and convertClipboardFlag to delerniine whether the event is a resume even, and
whether Clipboard conversion ls required:

mie eyenc :
  Yopemuiree |e

Toner) loppsarsah bd ‘tr “Ll inkeasG ceunyosnion cews.i sod:

3-20 Using the Event Manager

_iatBehe

oo

IPR2017-01828

Ubisoft EX1002 Page 297



The Event Manager 

Receiving High-Level Events 

In system software version 7.0, your application can receive a high-level event when it 
retrieves an event from the Event Manager. As always, your application determines what kind 
of event it has received by looking at the what field of the event record returned by the Event 
Manager. The event code for high-level events is defined by a constant name. 

CONST kHighLevelEvent = 23; 

For high-level events, two fields of the event record have special meanings. The message 
field and the where field of the event record together define the specific type of high-level 
event and are interpreted as type OSType, not Longint or Point. The message field contains 
the event class of this high-level event. For example, Apple events sent by the Edition 
Manager have the event class 'sect'. You can define your own class of events that are specific 
to your application. If you have registered your application signature, then you can use your 
signature to define the class of events that belong to your application. Note, however, that 
Apple reserves all lowercase letters and nonalphabetic characters for the classes of events 
defined by Apple. 

For high-level events, the where field in the event record contains a second message 
specifier, called the event ID. The event ID defines the particular type of event (or message) 
within the class of events defined by the event class. For example, the Section Read Apple 
event sent by the Edition Manager has event class 'sect' and event ID 'read'. The Open 
Documents Apple event sent by the Finder has event class 'aevt' and event ID 'odoc'. You 
can define your own set of event IDs, corresponding to your own event class. For example, 
if the message field contains 'biff and the where field contains 'cmdl ', then the high-level 
event indicates the type of event defined by 'cmdl' within the class of events defined by the 
application with the signature 'biff. 

Unlike low-level events and operating-system events, high-level events may not be completely 
determined by the event record returned to your application when it calls WaitNextEvent. For 
example, you might still need to know which other application sent you the high-level event 
or what additional data that application wants to send you. This further information about the 
high-level event is available to your application by calling the AcceptHighLevelEvent function. 
The additional information associated with a high-level event includes 

• the identity of the sender of the event 

• a unique number that identifies this particular event 

• the address and length of a'tlata buffer that can contain optional data 

To obtain this additional information, your application must call AcceptHighLevelEvent 
before calling WaitNextEvent again. By convention, calling AcceptHighLevelEvent 
indicates that your application intends to process the high-level event. 

Note: Because the where field of an event record for a high-level event is used to 
select a specific kind of event (within the class determined by the message field), 
high-level event records do not contain the mouse position at the time of the event. 
Moreover, it is dangerous to interpret the where field before interpreting the what 
field because different event classes can contain overlapping sets of event IDs. 

Using the Event Manager 5-21 

IPR2017-01828 
Ubisoft EX1002 Page 298

The Event Manager

Receiving High-Level Events

In x¥stem software version 7.0. your appheution can receive a high-level event whenit
retrieves an event fram the Event Manager. As always, ¥veur application determines what kind
al event il has received by looking al the what fekl ofthe event record returned by the Event
Manager, The event code tor high-level events ts defined by a constunt nume.

For tigt-level events, two fields of ie event record have special meanings, The message
field and the where field of the event record tagether define the specific bype of high-level
event and are interpreted as type OSType. not Longlint or Point. The message Meld contains
the event class at this high-level event. Por example. Apple events sent by the Edition
Manager have the event class ‘sect’. You can define your own class of events that ure specific
to your application. If you have registered your application signature, then you can use your
signature to deline the class of evetis that belong to your application, Note. however, thal
Apple reserves all lowercase letters and nonalphabetic characters for the classes of events
defined hy Apple.

For high-level events, che where Field in the event record contains a second message
specifier. culled the event ID. The event 1D defines the particular type of event (or message}
within the cliss of events defined by the event class, For example, the Section Read Apple
everit sent by the Edition Manager has event class ‘seer and event ID ‘read’. The Open
Documents Apple event sent by the Pinder has event class uevt’ and event 1D ‘odoc’. You
can define your own set of event IDs, comesponding te yourown event class. Por example,
ifthe message field contains haif and the where feld contains ‘cmd dl) then the high-level
event indicates the type of event defined by ‘cmd’ within the class of events defined by the
application with the signature ‘bil,

Unlike low-level events and operating-system events, high-level events may not be completely
determined by the event record retumed to your application whenit calls WaitNextEvent. For
example, you might still nced to knew which other application sent you the high-level event
or what additional data that application wants to send vou. This further information about the
high-level event is available to your application by calling the AcceptHighlevelEvent functien.
The additignal information associated with a high-level event includes

m the identity of the sender of the event

m@ aunque number that identifies this particular event

@ the address and length of atiata bulfer that can contain opliomad data

a
=
=i
74
apa
=
=
=
Taa|To obtain this additianal information, your application must call AccepthighLevclEvent

before calling WaitNextEvent again. By convention, calling AcceptHigh]cvelEvent
indicates that your application intends to process the high-level event.

 
Note: Because the where field of an event record fora high-level event is used to
select aspecific kind of event (within the class determined by the message field),
high-level event records do mat contain the mouse position at the time of the event.
Moreover, it is dangerous to interpret the where field before interpreting the whal
field because different event classes can contain overlapping sets of event IDs.

Using the Event Afanager 5-2}

IPR2017-01828

Ubisoft EX1002 Page 298



Inside Macintosh, Volume VI 

The section "Responding to Events From Other Applications" later in this chapter describes 
how to use the AcceptHighLevelEvent function. 

Identifying High-Level Event Senders and Receivers 

When you receive a high-level event, part of the information returned by AcceptHighLevelEvent 
is the sender of the event. You can use that information to respond selectively to requests made 
by other applications or to know which application to send any replies to. The information about 
the sender is provided in the form of a target ID record, defined as follows: 

TYPE TargetID = 
RECORD 

sessionID: 
name: 
location: 
recvrName: 

END; 

Longint; 
PPCPortRec; 
LocationNameRec; 
PPCPortRec 

{session reference number} 
{sender's port name} 
{sender's port location} 
{reserved} 

The sessionID field corresponds to the session reference number created by the PPC 
Toolbox. This is a 32-bit number that uniquely identifies a PPC Toolbox session (or 
connection) with another application. The name and location fields contain the sender's 
port name and port location (and have no meaning when posting an event). If the 
sending application is on the same machine as the receiving application, you can 
determine the sending application's process serial number by calling the 
GetProcessSerialN umberFromPortN ame function. 

When you post a high-level event, you can specify its recipient in one of four ways: 

• by port name and port location (specified in a target ID record) 

• by a session ID 

• by the application's creator signature 

• by a process serial number 

Note that to specify the recipient of a high-level event sent to an application across a network, 
you can use only its target ID or its session ID. You can use any of the four ways when 
sending high-level events to applications on the local machine. 

When you are replying to a high-level event, it is easy to identify the recipient because you 
can use the target ID record that you receive from AcceptHighLevelEvent, the session ID 
contained in that target ID record, or the process serial number (if the receiving process 
is local). Note that replying by session ID is always the fastest way to respond to a high
level event. 

When you are not replying to a previous event, you need to determine the identity of the 
target application yourself. You can use one of several methods to do this. If the target 
application is on the local machine, you can search for that application's creator signature 
or its process serial number by calling the GetProcessinformation function. See "Getting 
Information About Other Processes" in the Process Management chapter of this volume 

5-22 Using the Event Manager 

IPR2017-01828 
Ubisoft EX1002 Page 299



The Event Manager 

for a detailed explanation of GetProcessinformation and for examples of using it to generate 
a list of process serial numbers of all open processes on the local machine. 

If the application to which you want to send a high-level event is located on a remote machine, 
you need to identify it either by its session ID or by its target ID. You can call the PPCBrowser 
function to let the user browse for a specific port. You can call the IPCListPorts function to 
obtain a list of all ports registered with the target PPC Toolbox. See the Program-to-Program 
Communications Toolbox chapter in this volume for an explanation of both of these functions. 

Sending High-Level Events 

You use the PostHighLevelEvent routine to send a high-level event to another application. 
When doing so, you need to provide six pieces of information: 

• an event record with the event class and event ID assigned appropriately 

• the identity of the recipient of the event 

• a unique number that identifies this particular event 

• a data buff er that can contain optional data 

• the length of the data buff er 

• options determining how the event is posted 

Note: To send an Apple event, use the Apple Event Manager function AESend. The 
Apple Event Manager uses the Event Manager to post Apple events. For information 
on posting Apple events, see the Apple Event Manager chapter in this volume. 

As indicated in the previous section, you can identify the recipient of the high-level event in 
one of four ways. Listing 5-5 illustrates how to send a high-level event to an application on 
the local machine. In this example, an application is sending an event to an application whose 
signature is 'boff. 

Listing 5-5. Posting a high-level event by application signature 

PROCEDURE PostTest; 
VAR 

myEvent: 
myRecvID: 
myOpts: 
myErr: 

BEGIN 

EventRecord; 
OSType; 
Longint; 
OSErr; 

{an event record} 
{receiver ID} 
{posting options} 

myEvent.what := kHighLevelEvent; 
myEvent.message := Longint( 'boff'); 
myEvent.where := Point(Longint('cmdl')); 
myOpts := receiverIDisSignature + nReturnReceipt; 
myRecvID := 'boff'; 
myErr := PostHighLevelEvent(myEvent, @myRecvID, 0, NIL, 0, myOpts); 
IF myErr <> noErr THEN 

DoError(myErr); 
END; 

Using the Event Manager 5-23 

IPR2017-01828 
Ubisoft EX1002 Page 300

The Event Manaper

fora detailed explanation of GetProcessinformation and for examples of using it to generate
a ist of process serial numbers of all open processes on the local machine,

Ifthe application lo which you want to send a high-level event is localed on a remete machine.
you need to identify it ether by its sessing ID or by its target ID, You can call the PPCBRrowser
funcuian to let the user browse fora specific port. You can call the IPCListPorns function to
obtain alist of all ports registered with the target PPC Toolbox, See the Program-to-Program
Communications Toolbox chapter inthis volume for an explanation of both ofthese functions.

Sending High-Level Events

You use the PostHighLevelLvent routine to send a high-level event te another applicatian.
When doing so, you need to provide six pieces of information:

@ anevent record with the event class and event ID assigned appropriately

a the identity of the recipient of the event

a aunique number that identities this padicular event

m adata butler that can contain optional data

m the length of the data buffer

= options determining howthe event is posted

Note: To send an Apple event. use the Apple Event Manager function ALSend. The
Apple Event Manager uses the Event Manager to post Apple evens. For information
on posting Apple events. sec the Apple Eyent Manager chapter in this volume.

As indicated in the previous section. you can identify the recipient of the high-level event in
ont af four ways. Listing 5-5 illustrates how lo send a high-level evcnt lo an application on
the local machine. In this cxample. an application is sending an event to an application whose
signature is ‘holf.

Listing §-5. Posting a high-level event by applicauan signalure

 
“ALalaee

ceat  
Popvmb oma Do otal ta 

Using the Event Manager 4-33

IPR2017-01828

Ubisoft EX1002 Page 300



Inside Macintosh, Volume VI 

In this example, there is no additional data to transmit, so the sending application provides NIL 
as the pointer to the data buffer and sets the buffer length to 0. Note that the receiver is speci
fied by its creator signature and that the sender requests a return receipt. The myOpts parameter 
specifies posting options, which are of two types: delivery options and options associated with 
the receiverID parameter. You can specify one or more delivery options to indicate if you want 
the other application to receive the event at the next opportunity and to indicate if you want 
acknowledgment that the other application received the event. You use the options associated 
with the receiverID parameter to indicate how you are specifying the recipient of the event. To 
set the various posting options, use constants. 

CONST nAttnMsg $00000001; {give this message priority} 
priorityMask $000000FF; 
nReturnReceipt $00000200; {return receipt requested} 
systemOptionsMask $00000FOO; 
receiverIDisTargetID $00005000; {ID lS target ID} 

receiverIDisSessionID $00006000; {ID lS PPC session ID} 
receiverIDisSignature $00007000; {ID lS creator signature} 
receiverIDisPSN $00008000; {ID lS process serial num} 
receiverIDMask $0000FOOO; 

When you specify the receiving application in the receiverID parameter, you can use these 
constants to specify the receiver of the event by session ID, process serial number, signature, 
or target ID. Any of these specifications allows you to send an event to another application on 
the local machine. To send events to an application on a remote machine, you can specify the 
recipient only by the session ID or target ID. 

When you specify the receiver of the event by target ID, use the constant receiverIDisTargetID 
in the postingOptions parameter and specify a pointer to a target ID record for the receiverID 
parameter. 

TYPE TargetID = 
RECORD 

sessionID: 
name: 
location: 
recvrName: 

END; 

Longint; 
PPCPortRec; 
LocationNameRec; 
PPCPortRec {unused for posting} 

When you pass a target ID record, you need to specify only the name and location fields. You 
can use the IPCListPorts function to list all of the existing port names along with information 
on whether the port will accept authenticated service on the machine specified by the port 
location name. For information on how to use the IPCListPorts function, see the PPC 
Toolbox chapter in this volume. 

You can also use the PPCBrowser function to fill in a target ID record. Listing 5-6 illustrates 
how to use the PPCBrowser function to post a high-level event. In this example, the sending 
application wants to locate a dictionary application and have the dictionary return the 
definition of a word to it. 

5-24 Using the Event Manager 

IPR2017-01828 
Ubisoft EX1002 Page 301



The Event Manager 

Listing 5-6. Using the PPCBrowser function to post a high-level event 

FUNCTION PostWithPPCBrowser (aTextPtr: Ptr; textlength: Longint ) : OSErr; 
VAR 

myHLEvent: EventRecord; 
myErr: OSErr; 
myNumTries: Integer; 
myPortinfo: PortinfoRec; 
myTarget: TargetID; 

BEGIN 
{use PPCBrowser to get the target} 
myErr := PPCBrowser('Select an Application', 'Application', FALSE, 

myTarget.location, myPortinfo, NIL, ''); 
IF myErr = NoErr THEN 
BEGIN 

{copy portname into myTarget.name} 
myTarget.name := myPortinfo.name; 

myHLEvent.what := kHighLevelEvent; 
myHLEvent.message := Longint('Dict'); 
myHLEvent.where := Point(Longint('Defn')); 

{if a connection is broken, then sessClosedErr is returned to } 
{ PostHighLevelEvent; to reestablish the connection, just post } 
{ the event one more time} 
myNumTries := O; 
REPEAT 

myErr := PostHighLevelEvent(myHLEvent, @myTarget, 0, aTextPtr, 
textlength, receiverIDisTargetID) ; 

myNumTries := myNumTries + 1; 
UNTIL (myErr <> sessClosedErr) OR (myNumTries > 1); 

END; 

PostWithPPCBrowser .- myErr; 
END; 

{return any error} 

This example puts up a dialog box asking the user to select a dictionary. When one is selected, 
this code posts a high-level event to that dictionary application asking for the definition of the 
selected text. Note that the sending application and the receiving application must both agree 
that definition queries are to be of event class 'Diet' and event ID 'Defn'. It is necessary to 
define a private protocol only in cases where no suitable Apple event exists. 

"' Note: You should avoid passing handles to the receiving application in an attempt to 
share a block of data. It is better to put the relevant data into a buffer (as illustrated in 
Listing 5-6) and pass the address of the buffer. If you absolutely must share data by 
passing a handle, make sure that the block of data is located in the system heap. 

If a high-level event is posted successfully, PostHighLevelEvent returns the result code 
noErr, which indicates only that the event was successfully passed to the PPC Toolbox. 
Your application needs to call another Event Manager routine (EventA vail, GetNextEvent, 
or WaitNextEvent) to give the other application an opportunity to receive the event. 

Using the Event Manager 5-25 

------------- -- -- - ------

IPR2017-01828 
Ubisoft EX1002 Page 302

The Event Marager

Listing §-6. Using the PPCBrowser funciion to post a high-level event

FookiwirhDreSrowsor (Tee Tro: Flag kemeldorabtlis iermarlgk : oo: USEr+; 

 
 

POMP Gy Print Raocmriis

wren ot TEL ITE.

LMO FRI 2vOwse? Toa omer The Taraers
sy 200 Brognie: tf oeloce  Atv isaricn', TA' SE,

Santa, H°L, [7 G; A haLGer. 1c  
 

 
 

= oinolery

TY POT UIs 11 O trybse7. Mest ‘
My Taree ime: ore myers lite otis:

 Tn ovevuriey3 co f
Sor amrest bor, Tish pease | 

meELe : SastiiiahLleyv2 lever: foyo.Eyent 2rylarder, 3, a@ieeters,
Tee TC etagt cy veerver bose Parger iti;

 GP fuypbeerTriesn « lt:

MeLLEP) OG sever poo omylyr: {reba ciny SrLory 

This example puts up a cdialog box asking the user to select a dictionary, When one ts selected,
this code posts a high-level eventio thal dictionary application asking for the definition ofthe
selected text. Note that the sending application and the receiving application must both agree
that definition queries are to be of event class ‘Dict’ and event [D 'Deln’. [tis necessary to
define a private protocol anly in cases where no suitable Apple event exists.

Note: You should avoid passing handles to the receiving application in an altempt to
share a block of data. It is better to put the relevant data into a buffer (as illustrated in
Listing 5-6) and pass the address of the buffer. H you absolutely must share data hy
passing a handle, make sure thatthe block of data is located in the system heap.

Ifa high-level event is posted successfolly, PestHighLevelEvent retums the result cede
noEr, which indicates only that the event was successfully passed to the PPC ‘Toolbox.
Your application needs to call another Event Manager mutne (EventAvail, GetNesiBvent,
or WaitNexrEvent) to give the other application an opporiunilyto receive the event.

Using the Event Manegzer 5-25

ba
ari
=ce
==
od=
c
I
S
ieEe=
 

IPR2017-01828

Ubisoft EX1002 Page 302



Inside Macintosh, Volume VI 

The event you send may require the other application to return some information to your 
application by sending a high-level event back to your application. You can scan for the 
response by using GetSpecificHighLevelEvent. If your application must wait for this event, 
you might want to display a watch cursor or take other action as appropriate to your applica
tion. You also might want to implement a timeout mechanism in case your application never 
receives a response to the event. 

Requesting Return Receipts 

When you post a high-level event, you can request a return receipt by including the constant 
nRetumReceipt as one of the posting options. This requests that the Event Manager send 
your application a high-level event that tells you whether the other application accepted your 
event. Note that this does not necessarily mean that the other application performed any action 
you might have requested from it. 

A return receipt is a high-level event having an event class and an event ID indicated by the 
two constants: 

CONST HighLevelEventMsgClass 
rtrnReceiptMsgID 

'jaym'; 
'rtrn'; 

Return receipts are posted by the Event Manager on the machine of the receiving application 
(and not by the receiving application itself). No data buffer is associated with a return receipt. 
However, the posting Event Manager sets the modifiers field of the high-level event record to 
one of the following values: 

CONST msgWasNotAccepted 
msgWasFullyAccepted 
msgWasPartiallyAccepted 

0; 
1; 
2; 

The constant msgWasNotAccepted indicates that your event was not accepted by the 
receiving application. This means that the receiving application was notified of the arrival 
of your event (through WaitNextEvent) but did not call AcceptHighLevelEvent to accept 
the event. The constant msgWasFullyAccepted indicates that the receiving application 
did call AcceptHighLevelEvent and retrieved all the data in the optional data buffer. 
The constant msgWasPartiallyAccepted indicates that the receiving application called 
AcceptHighLevelEvent, but that the application's data buffer was too small to hold the 
data sent with your application and that the receiving application called WaitNextEvent 
before retrieving the rest of the buffer. 

Note that a return receipt does not indicate the identity of the receiving application. To deter
mine on whose behalf the Event Manager has sent you a particular return receipt, you need to 
call AcceptHighLevelEvent. When AcceptHighLevelEvent returns successfully, the sender 
parameter contains a target ID record with the fields filled in for the receiving application. 
With return receipts, the msgLen parameter is 0, the msgBuff parameter is NIL, and the 
msgRefCon field contains the unique number of the refCon parameter of the original high
level event sender (that is, your application). 

5-26 Using the Event Manager 

IPR2017-01828 
Ubisoft EX1002 Page 303

faside Mactitosh, Votwne Vi

The event you send may require the alher application Lo telumsome infgmuation bo your
application by sending a high-level event back to your applicution. You can scan for the
response by using GelSpecificHighLevellevent. [your application must wait for this event.
you might want to display a watch cursorar take other acuion as appropriate to your appliga-
tion, You also might want to implementa imeout Mechanism in case your application never
receives a response to the event,

Requesting Return Receipts ~

When vou post a high-level cvent. you can requesh a cetumn receipt by including the constant
nRetumReceipt as one of the posting options. Uhis requests that the Event Manager send
your appliquuion a high-level event that tells you whether the other application accepted your
event. Note chat this does net necessarily mean that the other application performed any agtion
you might have requested romi,

Arenrn receipt isd high-level event having an event class and an event ID indivated by the
TWO CONSULATES:

  Movi ld re

Retum receipts are posied by the Event Manager onthe machine of the receiving application
(and not hy the recenying application iself}), Ne data buller is ussocialed with a return receipt.
However, the posting Event Manager sets the modifiers field of the high-level event record to
ame of the following values:

 

‘The constunt mseWasNotAccepted indicates that your event was nol accepled by the
recenving uppliculion. This means (hat the receiving application was nolified af the arrival
af your event (through WaithextEveat) bur did nol call AceeptHighLevelEveot to accept
the event. The constant mse WasPullyAccepted indicates that the receiving application
did call AcceptHighLevelEvent and retrieved all the dula in the oplional dita butter.
The constant mseWasPaniallyAccepted indicates that the receiving application called
AcceptHichLeveli vent, but that the application's data buifer was loo small to hold the
data sent with your application und thal the receiving application called WailNextEyvent
before retrigving the rest of the buffer.

Note that a relum reccipl does not indieate the identity of the recenving application. To deter-
mine on whose behalf the Event Manager has sent you a pacticular rectum reecipt, you need ta
call AcceptHighl_evelEvent. When AcceptHightevelEyent cetuims successfully, the sender
parameter contains a target LO record with the fields filed in for the receiving application.
With return receipts. the mseL.cn parameter is 0. the msgBetf parameter is NIL. and the
mscRefConfield contains the urtique wuosber of the re(Con parameter of the original bigh-
level event sender (thal is. your application}.

5-26 Usive the Event Manager

IPR2017-01828

Ubisoft EX1002 Page 303



The Event Manager 

Responding to Events From Other Applications 

You can identify high-level events by the value in the what field of the event record. The 
message and where fields further classify the type of high-level event. Your application can 
choose to recognize as many events as are appropriate. Some high-level events may be fully 
specified by their event record only, while others may include additional information in an 
optional buffer. To get that additional information or to find the sender of the event, use the 
AcceptHighLevelEvent function. 

Note: To respond to an Apple event, use the Apple Event Manager, as described in 
the Apple Event Manager chapter in this volume. 

Listing 5-7 illustrates how to call AcceptHighLevelEvent. In general, you cannot know in 
advance how big the optional data buffer is, so you can allocate a zero-length buffer and then 
resize it if the call to AcceptHighLevelEvent returns the error bufferlsSmall. 

VAR 
myTarg: 
myRefCon: 
myBuff: 
myLen: 
myErr: 

Listing 5-7. Accepting a high-level event 

TargetID; 
Longint; 
Ptr; 
Longint; 
OSErr; 

{target ID record} 

BEGIN 
myLen : = 0; 
myBuff := NIL; 

{start with a 0-byte buffer} 

myErr := AcceptHighLevelEvent(myTarg, myRefCon, myBuff, myLen); 

IF myErr = bufferisSmall THEN 
BEGIN 

myBuff := NewPtr(myLen); {get new pointer} 
myErr .- AcceptHighLevelEvent(myTarg, myRefCon, myBuff, myLen); 

END; 

IF myErr <> noErr THEN DoError(myErr); 
END; 

The ID of the sender of the evoot is returned in the first parameter, which is a target ID record. 
You can inspect the fields of that record to determine which application sent the event. That 
record also contains the session reference number that identifies this communication as well 
as the port name and port location of the sender. If the high-level event requires that you 
return information, you can use the value returned in the sender parameter to send an event 
back to the requesting application. 

The buffer parameter points to any additional data associated with the event. Any data in the 
additional buffer is defined by the particular high-level event. On input, the length parameter 
contains the size of the buffer. If no error occurs, on output the length parameter contains the 

Using the Event Manager 5-27 

IPR2017-01828 
Ubisoft EX1002 Page 304

the Event Manaver

Responding to Events From Other Applications 

You van identify high-level events by the value in ihe what field of the event meord, The
message and where fields futher classify dhe tyne of high-level event. Your application cun
choose [0 recognize a8 IMINY events as arc appropriate. Same high-level events maybe fully
specified by their event record only, while olhers may include additional information in an
oplional butfer. To get that additional information or to find the sender of the event. use the
AcceptHighLevelevent function,

Note: To respond to att Apple event, use the Apple Event Manager, as described in
the Apple Event Munager chapter in this volume,

Listing 5-7 illustrates howto call AcceprHighLevelEvent, In general, you cannot knowin
advance howbiz the optional data buffer is, se you can allocate a zero-length buffer and then

t resize Hf the call to AccepthighLevel Event returns the error bulterlsSmaill.

Listing 5-7. Accepting a high-level event
imWin

 
ye Tans ds hee 1 pesto!
ry aelO nin:
myTeis 5:
my LOT
mebos

SEY

ayyhema oy Fs es
cy uD oie like

ry Bull, aryl; 
The ID af the sender at the event is returned in the first parameter, which is a target 1 mecord.
You can inspect the fields of that reeord te determine which application sent the event. That
record alsa contains the sessioa reference number that tdentifies this communication as well

as the port name and port location of the sender. If ihe high-level event requires that you
retum mformatian, you can use (he value returned in the sender parameter to send an even
hack to the requesting application,

The buffer parameter potots to any additional data associated with the event. Any data in the
additianal buffer is defined by the panicular high-level event. On input, the length parameter
contains the size of the buffer. [f ne error occurs. on output the length parameter contains the

Using the Event Manager 5-27

IPR2017-01828

Ubisoft EX1002 Page 304



Inside Macintosh, Volume VI 

size of the message accepted. If the error bufferlsSmall occurs, the length parameter contains 
the size of the message yet to be received. The reference constant parameter is a unique 
number your application can use to identify communication associated with this event. 

Searching for a Specific High-Level Event 

Sometimes you do not want to accept the next available high-level event pending for your 
application. Instead, you might want to select one such event from among all the high-level 
events in your application's high-level event queue. For example, you might want to look 
for a return receipt for a high-level event you previously posted before processing other high
level events. 

You can select a specific high-level event by calling the GetSpecificHighLevelEvent function. 
One of the parameters you pass to this function is a filter function that you provide. Your filter 
function should examine an event in your application's high-level event queue and determine 
if that message is the kind of event you wish to receive. If it is, your filter function returns 
TRUE. This indicates that your filter function does not want to inspect any more events. If 
the filter function finds an event of the desired type, it should call AcceptHighLevelEvent to 
retrieve it. When your function returns TRUE, the GetSpecificHighLevelEvent function itself 
returns TRUE. 

If your filter function returns FALSE for an event in the high-level event queue, 
then GetSpecificHighLevelEvent looks at the next event in the high-level event queue 
and executes your filter function. If the filter function returns FALSE for all the high-level 
events in the queue, then GetSpecificHighLevelEvent itself returns FALSE to your 
application. 

Here's how you declare the filter function whose address you pass to 
GetSpecificflighLevelEvent: 

FUNCTION aFilter (yourDataPtr: Ptr; msgBuff: HighLevelEventMsgPtr; 
sender: TargetID) : Boolean; 

The yourDataPtr parameter indicates the criteria your function should use to search for a 
specific event. The msgBuff parameter contains a pointer to a high-level event message 
record that has this structure: 

TYPE HighLevelEventMsg = 
RECORD 

HighLevelEventMsgHeaderLength: 
version: 
reservedl: 
theMsgEvent: 
userRefCon: 
postingOptions: 
msgLength: 

END; 

5-28 Using the Event Manager 

Integer; 
Integer; 
Longint; 
EventRecord; 
Longint; 
Longint; 
Long Int 

IPR2017-01828 
Ubisoft EX1002 Page 305



The Event Manager 

When you call GetSpecificHighLevelEvent and it executes your filter function for a high-level 
event waiting in the high-level event queue, the fields of HighLevelEventMsg are filled in by 
the Event Manager. You can then compare the fields of this record to the information you 
pass in the yourDataPtr parameter to determine if that event suits your needs. For example, 
the yourDataPtr parameter might contain the signature of a return receipt. You can test its 
value against the event class contained in the theMsgEvent field of the high-level event 
message record. 

EVENT MANAGER ROUTINES 

In system software version 7.0, the Event Manager includes routines for receiving events, 
sending high-level events, receiving high-level events, and searching for specific high
level events. 

Receiving Events 

You can use the WaitNextEvent function to receive events one at a time from the Event 
Manager. 

FUNCTION WaitNextEvent (eventMask: Integer; VAR theEvent: EventRecord; 
sleep: Longint; mouseRgn: RgnHandle) : Boolean; 

The WaitNextEvent function returns in the theEvent parameter the next available event of a 
specified type or types and, if the event is in the event queue, removes it from the queue. If no 
events are pending for your application, WaitNextEvent waits for a specified amount of time 
for an event. (During this time, processing time may be allocated to background processes.) If 
an event occurs, it is returned as the value of the parameter theEvent. If no event occurs (and 
the queue is empty), WaitNextEvent returns a null event in theEvent. WaitNextEvent returns 
FALSE if the event being returned is a null event; otherwise, WaitNextEvent returns TRUE. 

The eventMask parameter specifies which kinds of events are to be returned; this parameter is 
interpreted as a sum of event mask constants (listed earlier in "Event Masks"). If no event of 
any of the designated types is available, WaitNextEvent returns a null event. 

The sleep parameter specifies the number of ticks (sixtieths of a second) that your application 
agrees to relinquish the processor if no events are pending for it. 

The mouseRgn parameter specifies a region inside of which mouse movement does not 
cause mouse-moved events. In other words, your application receives mouse-moved events 
only when the cursor is outside of the specified region. The region is specified in global 
coordinates. If you pass an empty region or a NIL region handle, mouse-moved events are 
not generated. Note that your application should recalculate the mouseRgn parameter when it 
receives a mouse-moved event or it will continue to receive mouse-moved events as long as 
the cursor position is outside the original mouseRgn. 

Event Manager Routines 5-29 

IPR2017-01828 
Ubisoft EX1002 Page 306

The Eveat Manager

When you call GetSpecificHiphLevelEvent and ilexecutes your filter function for a high-level
event walling in the high-level event queus. the fields of HighlevelEveniMsg are tilled in by
the Event Manager. You can then compare the fields of this record to the mtormation you
pass inthe yourDataPtr parameter to determing if that event suils your needs. For example,
the yourDalaPtr parameter might contain the signature of a retum receipt. You can lest its
walue ilguinst the event cliss comtuimed in the theMseByent held of the high-level event
message record.

 

EVENT MANAGER ROUTINES

In system software version 7.0), the Event Manager includes routines flor receiving events,
semuling high-level events, receiving bigh-kevel events, and searching for specific high-
level evens.

Receiving Events

You can use the WalthextEvene funcuiolo receive events one dt a ume trom the Event

Manager.

 rsa 2a 

  flesh i Cnet bp seek

The WaitNexthvent function reliums i the theRvent parameter the nex) availible event of a
specified bype or types and, ifthe event is in the event queue. removes it fromthe queue. If ne
EVCHIS ire pending for your application. Wailexicvent walls for a specitied amount of ume
tor anevent. (During this time. processing lime may be allocated tu hackgnound processes.) It
an Cyent occurs, Ibis relumed as the value of lhe parameter theEvent. If ne event occurs cand
the queuc is cmpry). WuilrNextEvent returns a nullevent in hhelvent, WallNextRyent reums
FALSE if the event being returnedis a null event: olherwise, WaitNextEyent retums TRUE.

The eventMask parameter specifies which Kinds of events are lo be retumed: this parameter is
Interpreted as a sume at event mask constants (lished earlier in “Event Masks”). If no event of
any ol the designed types is available, WaithextEveni returns a null even.

The sleep parumeter specifies the aumber of licks (sisticdhs of a second) that your appheation
agrees to relinquish the processor if no events are pending for it.

The mouseRen parameter specines a recion inside of which mouse movement docs not
Cause Mmouse-moved events. In other words. your application receives mouse-moved events
ooly when the cursor is outside of the specified region. The region is specihed in global
coordinates. Tf yuu puss un etnply region or a NIL region hand)c, mouse-moved events are
Hol veneraled. Note tial your application should recalculate the mouseRen parameter when tl
receives uy nlouse-moved event or i will Continue to receree mouse-moved eveats as long us
the cursar posilign is outside (he orginal mouseRgn,

Event Manager Routines 5-29

IPR2017-01828

Ubisoft EX1002 Page 306

 



Inside Macintosh, Volume VI 

Some high-level events may be fully specified by their event record only, while others may 
include additional information in an optional buffer. To get any additional information and 
to find the sender of the event, use the AcceptHighLevelEvent function. 

FUNCTION AcceptHighLevelEvent (VAR sender: TargetID; VAR msgRefcon: 
Longint; msgBuff: Ptr; VAR msgLen: 
Longint) : OSErr; 

The sender of the event is specified in the sender parameter, which is a target ID record. The 
sender parameter contains the session reference number that fdentifies this communication 
and the port name and port location of the sender. 

The msgRefcon parameter is a unique number that is used to identify this event. If you send a 
response to this event, you should specify the same value of msgRefcon so that the sender of 
the event can associate the reply with the original request. 

The msgBuff parameter points to any additional data associated with the event. The msgLen 
parameter contains the size of the buffer. Your application is responsible for allocating the 
memory for the additional data pointed to by the msgBuff parameter. If the msgBuff parameter 
points to an area in memory that is not large enough to hold all the data associated with the 
event, AcceptHighLevelEvent returns the result code bufferlsSmall. If AcceptHighLevelEvent 
returns the result code bufferlsSmall, the msgLen parameter contains the number of bytes 
remaining. You can call AcceptHighLevelEvent again to receive the rest of the data. 

Result codes 
no Err 
buff eris Small 
noOutstandingHLE 

Sending Events 

0 
-607 
-608 

No error 
Buff er is too small 
No outstanding high-level event 

You can use the PostHighLevelEvent routine to send a high-level event to another application. 

FUNCTION PostHighLevelEvent (theEvent: EventRecord; receiverID: Ptr {UNIV 
Longint}; msgRefcon: Longint; msgBuff: Ptr; 
msgLen: Longint; postingOptions: Longint) : 
OSErr; 

You specify the event to send in the parameter theEvent and include any additional data for 
the event by providing a pointer to a data buffer in the msgBuff parameter. The msgLen 
parameter specifies the size of the data buffer. The receiverID parameter specifies the recipient 
of the event. The msgRefcon parameter specifies a unique number associated with this event. 
Your application can set this field to any value it chooses. 

You can specify the receiver of the event by session ID, process serial number, signature, or 
port name and port location. You can use any of these specifications to send an event to 
another application on the local machine. You can use only the session ID or port name and 
port location to send an event to an application on a remote machine. 

5-30 Event Manager Routines 

IPR2017-01828 
Ubisoft EX1002 Page 307



r 
I 
i 
i 

The Event Manager 

You use the postingOptions parameter to specify delivery options and options associated with 
the receiverID parameter. You can specify one or more delivery options to indicate whether 
you want the other application to receive the event at the next opportunity and to indicate 
whether you want acknowledgment that the event was received by the other application. You 
use the options associated with the receiverID parameter to indicate how you are specifying 
the recipient of the event. 

If the application to which you are sending a high-level event terminates, you will receive 
sessionClosedErr when you next call PostHighLevelEvent. If you do not care about any state 
information about that session, you can just resend your event. Otherwise, you must restart 
another session and resend your event. 

If your application is running in the background and posts a high-level event that requires 
the network authentication dialog box to be displayed, your application will receive a 
noUserlnteractionAllowed result code. This prevents a background application from 
displaying a modal dialog. Instead, you can use the Notification Manager to inform the 
user that your application needs attention. When the user brings your application to the 
foreground, you can repost the event. If the reposting is successful, your application can 
return to the background and continue to post high-level events without further user 
interaction. Note that the error noUserlnteractionAllowed is returned only on the first 
posting of a high-level event to a remote target. 

Result codes 
no Err 
connectioninvalid 
no U serlnteractionAllowed 
sessionClosedErr 

0 
-609 
-610 
-917 

No error 
Connection is invalid 
Cannot interact directly with user 
Session closed 

Receiving a Specific High-Level Event 

You can use the GetSpecificHighLevelEvent function to select and optionally retrieve a 
specific high-level event from the high-level event queue. 

FUNCTION GetSpecificHighLevelEvent (aFilter: GetSpecificFilterProcPtr; 
yourDataPtr: UNIV Ptr; VAR err: 
OSErr) : Boolean; 

You specify your filter function in the aFilter parameter. GetSpecificHighLevelEvent calls your 
filter function once for each event in the high-level event queue until your filter function returns 
TRUE or the end of the queue iS'reached. You use the yourDataPtr parameter to specify the 
criteria your filter function should use to select a specific event. For example, you can specify 
the yourDataPtr parameter as a msgRefcon value to search for a particular event or as a pointer 
to a target ID record to search for a specific sender of an event. Or you can search for a specific 
class ofevent. 

Result codes 
no Err 
noOutstandingHLE 

0 
-608 

No error 
No outstanding high-level event 

Event Manager Routines 5-31 

IPR2017-01828 
Ubisoft EX1002 Page 308



Inside Macintosh, Volume VI 

Here's how you declare the filter function aFilter: 

FUNCTION aFilter (yourDataPtr: Ptr; msgBuff: HighLevelEventMsgPtr; 
sender: TargetID) : Boolean; 

The yourDataPtr parameter indicates the criteria your filter function should use to search 
for a specific event. The msgBuff parameter contains a pointer to a record of type 
HighLevelEventMsg, which provides information about the event: the event record for 
the high-level event, the posting options of the event, and so forth. The sender parameter 
contains the target ID of the application that sent the event. .. 
Your filter function can compare the contents of the yourDataPtr parameter with the contents 
of the msgBuff or senderID parameters. If your filter function finds a match, it should return 
TRUE. If your filter function does not find a match, it should return FALSE. Your filter 
procedure can call AcceptHighLevelEvent, if necessary. 

Converting Process Serial Numbers and Port Names 

The Event Manager provides two utility functions to convert between process serial numbers 
and port names. Both functions are intended to map serial numbers to port names (or vice 
versa) for applications open on the local machine. They do not return useful results for 
applications open on remote machines. 

Use GetProcessSerialNumberFromPortName to get the serial number of the process 
registered at a specific port. 

FUNCTION GetProcessSerialNumberFromPortName (portName: PPCPortRec; VAR 
PSN: ProcessSerialNumber) 
OSErr; 

The portName parameter specifies the port name registered to a process whose serial number 
you want. The process serial number is returned in the PSN parameter. You can use the 
returned process serial number to send a high-level event to that process. Do not interpret the 
value of the serial number. 

Result codes 
no Err 
noPortErr 

0 
-903 

No error 
Invalid port name 

Use GetPortNameFromProcessSerialNumber to get the port name registered to a process 
having a specific process serial number. 

FUNCTION GetPortNameFromProcessSerialNumber (VAR portName: PPCPortRec; 
PSN: ProcessSerialNumber) 
OSErr; 

The PSN parameter specifies the process serial number that you want to map to a port name. 
The port name is returned in the portN ame parameter. 

Result codes 
noErr 
procNotFound 

0 
-600 

5-32 Event Manager Routines 

No error 
No eligible process with specified process serial 
number 

IPR2017-01828 
Ubisoft EX1002 Page 309



The Event Manager 

SUMMARY OF THE EVENT MANAGER 

Constants 

CONST {event masks} 
every Event 
mDownMask 
mUpMask 
keyDownMask 
keyUpMask 
autoKeyMask 
updateMask 
diskMask 
activMask 
highLevelEventMask 
osMask 

-1; 
2; 
4; 
8; 
16; 
32; 
64; 
128; 
256; 
1024; 

-32768; 

{flags for suspend and resume events} 

{every event} 
{mouse-down} 
{mouse-up} 
{key-down} 
{key-up} 
{auto-key} 
{update} 
{disk-inserted} 
{activate} 
{high-level} 
{operating-system} 

{resume event} resumeFlag 
convertClipboardFlag 

1; 

= 2; {Clipboard conversion required} 

{message codes for operating-system 
suspendResumeMessage $01; 
mouseMovedMessage = $FA; 

events} 
{suspend or resume event} 
{mouse-moved event} 

{event codes for operating-system and high-level events} 
osEvt 15; 
kHighLevelEvent = 23; 

{high-level event posting options} 
nAttnMsg $00000001; {give this message priority} 
priorityMask $000000FF; 
nReturnReceipt $00000200; {return receipt requested} 
systemOptionsMask $00000FOO; 
receiverIDisTargetID $00005000; {ID 

receiverIDisSessionID $00006000; {ID 

receiverIDisSignature $00007000; {ID 

receiverIDisPSN $00008000; {ID 

receiverIDMask $0000FOOO; 

{class and ID values for return receipt} 
HighLevelEventMsgClass 
rtrnReceiptMsgID 

'jaym'; 
= 'rtrn'; 

{modifiers values in return receipt} 
msgWasNotAccepted O; 
msgWasFullyAccepted 
msgWasPartiallyAccepted 

1 · ' 
2. 

' 

is target ID} 

lS PPC session ID} 

is creator signature} 
is process serial num} 

Summary of the Event Manager 5-33 

IPR2017-01828 
Ubisoft EX1002 Page 310

The Event Manager

SUMMARY OF THE EVENT MANAGER 

Constants

MRoeraa Thre
wepdeal mond

 
 
 
 

DlperaDoesi Parcob lt = TC¢
LL nope bith Misc cPg

Prime filers VoYORGE Laisa j
Tae au out

Us ny raed — 1G
rings ab bbe | yeed :

Suaniry ofthe Event Manager 5-33

IPR2017-01828

Ubisoft EX1002 Page 310



,--

Inside Macintosh, Volume VI 

Data Types 

TYPE TargetID = 
RECORD 

sessionID: 
name: 
location: 
recvrName: 

END; 

TargetIDPtr 

HighLevelEventMsg = 

Longint; 
PPCPortRec; 
LocationNameRec; 
PPCPortRec 

"Target ID; 

{session reference number} 
{sender's port name} 
{sender's port location} 
{reserved} 

RECORD 
HighLevelEventMsgHeaderLength: 
version: 

Integer; 
Integer; 
Longint; 
EventRecord; 
Longint; 
Longint; 
Long Int 

reservedl: 
theMsgEvent: 
userRefCon: 
postingOptions: 
msgLength: 

END; 

HighLevelEventMsgPtr "HighLevelEventMsg; 

GetSpecificFilterProcPtr 

Routines 

Receiving Events 

FUNCTION WaitNextEvent 

FUNCTION AcceptHighLevelEvent 

Sending Events 

FUNCTION PostHighLevelEvent 

ProcPtr; 

(eventMask: Integer; VAR theEvent: 
EventRecord; sleep: Longint; mouseRgn: 
RgnHandle) : Boolean; 

(VAR sender: TargetID; VAR msgRefcon: 
Longint; msgBuff: Ptr; VAR msgLen: 
Longint) : OSErr; 

(theEvent: EventRecord; receiverID: Ptr 
{UNIV Longint}; msgRefcon: Longint; 
msgBuff: Ptr; msgLen: Longint; 
postingOptions: Longint) : OSErr; 

5-34 Summary of the Event Manager 

IPR2017-01828 
Ubisoft EX1002 Page 311



The Event Manager 

Receiving a Specific High-Level Event 

FUNCTION GetSpecificHighLevelEvent (aFilter: GetSpecificFilterProcPtr; 
yourDataPtr: UNIV Ptr; VAR err: OSErr) 
: Boolean; 

Converting Process Serial Numbers and Port Names 

FUNCTION GetProcessSerialNumberFromPortName (portName: PPCPortRec; VAR PSN: 
ProcessSerialNumber) : OS Err; 

FUNCTION GetPortNameFromProcessSerialNumber (VAR portName: PPCPortRec; PSN: 
ProcessSerialNumber) : OS Err; 

Application-Defined Routines 

{filter function for GetSpecificHighLevelEvent} 

FUNCTION aFilter 

Result Codes 

no Err 
procNotFound 
bufferlsSmall 
noOutstandingHLE 
connectionlnvalid 
noU serlnteractionAllowed 

0 
-600 
-607 
-608 
-609 
-610 

(yourDataPtr: Ptr; msgBuff: 
HighLevelEventMsgPtr; sender: 
TargetID) : Boolean; 

No error 
No eligible process with specified process serial number 
Buff er is too small 
No outstanding high-level event 
Connection is invalid 
Cannot interact directly with user 

Summary of the Event Manager 5-35 

IPR2017-01828 
Ubisoft EX1002 Page 312

The Event Manager

Receiving a Specific High-Level Event

POMC PLUM Ger cpeniiscHighoewe. Even carilnoys vevipeciiickilver rectir;
wed katabtos ERE Pres Sak ors: OMEbr

5 oBoaaleeiy

Converting Process Serial Numbers and Port Names

 BUMS IUN Sel: pceSer de | Ruriters Seem ce thar e piiiime: Trt; FAs 

 Doscoga Ser lal Sar bers

 FOREST IVE Gaon Ton t Nellines gatepong’ oc Dovumbsect JU8e ior tMames 2 PVbot Rec: Det:
Vl Hhrampoaniw paeriSilitlae: )o2 OSDer;

Application-Defined Routines

féilbe: Pumchion dur ik ipeaoilickighktiaevcdiwaen: :

FONE TOM aie bill ee

 

Result Codes

naErr No error

proce NotPound -600 Noeligible process with specified process senal number
bufferlsS:mall 97 Buffer is too smali

noQutslandingHLE —60}8 No outstanding high-level event
connection invalid 604 Connechon ts invalid

noUsedntenctionAllowed -610 Cannot interagt directly with user

Srammary of the Beent Manager 5-45

IPR2017-01828

Ubisoft EX1002 Page 312

 



Inside Macintosh, Volume VJ 

5-36 

IPR2017-01828 
Ubisoft EX1002 Page 313



IPR2017-01828 
Ubisoft EX1002 Page 314

THE APPLE EVENT MANAGER

About This Chapter
Aboutthe Apple Event Manager
Introduction to Apple Events

Types of Apple Events
Components of Apple Events
Data Structures Within Apple Events
Responding to Apple Events
Requesting Services Through Apple Events

Using the Apple Event Manager
Accepting an Apple Event
Installing Entries Into the Apple Event Dispatch Tables
Handling the Required Apple Events

Required Apple Events
Handling the Open Application Event
Handling the Open Documents Event
Handling the Print Documents Event
Handling the Quit Application Event
Handling Apple Events Sent by the Edition Manager
Handling the Create Publisher Event

Getting Data out of an Apple Event
Getting Data out of a Parameter
Getting Data out of an Attribute
Getting Data out of a Descriptor List

Writing Apple Event Handlers
Replying to an Apple Event
Disposing of Apple Event Data Structures
Interacting With the User
Creating an Apple Event

Adding Parameters to an Apple Event
Specifying a Target Address

Sending an Apple Event
Dealing With Timeouts
Writing an Idle Function
Writing a Reply Filter Function
Writing and Installing Coercion Handlers
The Application Died Event

Apple Event Manager Routines
Creating and Managing the Apple Event Dispatch Tables
Dispatching Apple Events
Getting Parameters and Attributes From Apple Events
Counting the Items in Descriptor Lists
Getting Items From Descriptor Lists
Getting Data and Keyword-Specified Descriptor Records From AE Records
Requesting User Interaction
Requesting More Time to Respond to Apple Events
Suspending and Resuming Apple Event Handling
Creating Apple Events
Creating and Duplicating Descriptor Records
Creating Descriptor Lists and AE Records

i.

>pali—|
°
yi-
&
=a
2~—
&a
=weica

 
IPR2017-01828

Ubisoft EX1002 Page 314



IPR2017-01828 
Ubisoft EX1002 Page 315

 

faside Macintosh, Velurtie Vi

sy
Oo
al

g3
06
98
og

100)

itt
103
105

Adding tems to Deseriptor Lists
Adding Data and Keyword-Specified Descriptor Records to AE Records
Adding Parameters und Atinbutes to Apple byents
Sending Apple Events
Gelting the Sives and Deseriplor Types of Deseriptor Recurds
Deleting Deseriptur Records
Beallogating Memory for Deseripter Records
Cocrcing Desenptar Types
Creating and Managing the Coercion Handler Tables
Creating and Managing the Special Handler Tables

Sumidary ol the Apple Event Miunager

IPR2017-01828

Ubisoft EX1002 Page 315

 



IPR2017-01828 
Ubisoft EX1002 Page 316

 
The Apple Event Manager

ABOUT THIS CHAPTER

This chapter describes Apple® events and howyour application can use the Apple Event
Managerto receive and process the required set of Apple events sent by the Finder™. This
chapter also describes how to use the Apple Event Manager to send Apple events to other
applications and howto process Apple cvents received from other applications.

As explained in the Event Managerchapter in this volume, the Event Managerin system
software version 7.0 introduces high-level events, along with a number of new Event
Managerroutinesthat let applications communicate with each other by sending high-level
events. Using Event Managerroutines, your application can create and process its own
high-level events.

However, effective interapplication communication requires that applications agree on a stan-
dard set of conventions—a common vocabulary. To provide such a standard, Apple Computer,
Inc., has defined a protocol called the Apple Event Interprocess Messaging Protocol
(AEIMP). High-level events that adhere to this protocol are called Apple events. You can
help ensure effective communication with other applications byusing this protocol.

System software uses Apple events to communicate information to your application; you
should support the required set of Apple events sent by the Finderto yourapplication.In
addition, you can support Apple events that are common to many applications. Using the
routines of the Apple Event Manager, you can use Apple events to communicate with other
applications in a standard way. Using Apple events to ensure better cooperation between
your application and other applications helps users to get the most out of any one application
orto use the best features from many applications—in effect, combining the features of
many applications to achieve the desired result.

By following the standards specified by AEIMP, you canalso define your own Apple events.
You can chooseto publish these so that other applications can use them, or you may choose
to kecp them unpublished for exclusive use by your own applications.

The Apple Event Manageris available only in system software version 7.0. ‘To determine
whether the Apple Event Manageris available, use the Gestalt function described in the
Compatibility Guidelines chapterof this volume.

The interapplication communications architecture of system software version 7.0 consists
of three main components: the Apple Event Manager, the Event Manager, and the Program-
to-Program Communications (PPC) Toolbox. See the Introduction to the System Software
Version 7.0 Environment chapter in this volume for an overviewofthe relationships among
these components. If you intend to use high-level events that do not rely on AEIMP, read
the Event Manager chapter of this volume. ‘This chapter describes the information you need
to know to support Apple events in your application. To allow your application to send
Apple events to applications on remote computers, you may wish to use the PPCBrowser
function, which is described in the Program-to-Program Communications Toolbox chapter
of this volume.

While the Apple events used by the Edition Managerare discussedin this chapter, you must
refer to the Edition Manager chapterof this volumefor a full discussion of how to implement
the Edition Manager’s publish and subscribe features.

For descriptionsofall publicly available Apple events, see the Apple Event Registry,
available from Macintosh® Developer Technical Support.

a

as
zc
ica<
S
i

ks=
Ss
=
=]aa}
 

About This Chapter 6-3

 

IPR2017-01828

Ubisoft EX1002 Page 316



IPR2017-01828 
Ubisoft EX1002 Page 317

 

Inside Macintosh, Volume VI

ABOUT THE APPLE EVENT MANAGER

Apple events provide your application with a standard mechanism for communicating with
other applications. You can use Apple events and the Apple Event Managerto

m respondto the required Apple events (Open Application, Open Documents, Print
Documents, and Quit Application) that are sent by the Finder

m respond to the Apple events sent by the Edition Managerand allow users to share
data among documents created by multiple applications

m provide services to other applications

m request services fromother applications

By supporting the required Apple events, your application can take advantage ofthe more
reliable launch and termination mechanismsbuilt into system software version 7.0. You can
also take advantage of the services provided by the Edition Manager by respondingto the
Apple cvents sent by the Edition Manager. These and additional core Apple events can be used
by nearly all applications to communicate with system software or with other applications.

You can also support functional-area Apple events related to your application in orderto
provide services to other applicationsor to request services from other applications. Finally,
if your application defines Apple eventsforall the actions that a user can perform, you can
record user actions by generating the corresponding Apple event for each action, saving a
copy of the Apple event, and then sending the Apple cvent to your own application for
handling. Apple events that are recorded in this way canlater be played back to automate
tasks previously performed by the user.

To support Apple eveuts in your application, you must

m decide which Apple events (in addition to the required ones) to support

m set bits in the ‘SIZE’ resource to indicate that your application supports
high-level events

m create an Apple event dispatch table

m include code to handle high-level events in your main event loop

m handle the Apple events your application receives and wishes to support

m create the Apple events you wish your application to generate

This chapter begins with an introduction to Apple events and then describes

m the required Apple events that your application must support to be 7.0-friendly

m how to use the Apple Event Managerto send and process Apple events

6-4 About the Apple Event Manager

IPR2017-01828

Ubisoft EX1002 Page 317

 

 
Preeagreeon



IPR2017-01828 
Ubisoft EX1002 Page 318

The Apple Event Manager

INTRODUCTION TO APPLE EVENTS

Applications typically use Apple events to request services from and provide services to
other applications. For example, the Open Documents event, sent by the Finder, requests
that your application open specified documents. When yourapplication supports this Apple
event, it should respond by opening those documents in the mannerthat your application
normally opens documents.

A transaction involving Apple events is initiated by a client application, which scnds an
Apple event to request a service (for example, printing a list of files, spell-checking a list of
words, or performing a numerical calculation). The application providing the serviceis called
a server application. These applications can reside on the same focal computer or on
remote computers connected to a network.

Figure 6-1 shows a common Apple event, the Open Documents event. You sec that the
Finder application is the client; it requests that the SurfWriter application open the documents
named Dec.Invoice and Nov. Invoice. The SurfWriter application respondsto the Finder’s
request by opening windowscontaining the specified documents.

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

Client Server

application application Bill toMy ComaanySav Francisco, Ca

 
 Dec Invoice

 
 

   
 

Design $200Art $500
$200
$900   

Figure 6-1. An Open Documents event

The Finderis also the source application of the Open Documents event. A source application
is one that sends an Apple event to another application orto itself. In Figure 6-1, the SurfWriter
application is the target application of the event. The target application is the one addressed
to receive the Apple event. The terms client application and source application are not always
synonymous, nor are the terms server application and target application. Typically, an Apple
event client sends an Apple event requesting a service from an Apple eventserver; in this case,
the serveris the target application of the Apple event. The Apple event server may send back a
different Apple event as a response—in whichcase, the client becomes the target of the
responding Apple event.

nN

>s
s
oy
ic]Io
=]-

42
=}bo)

raaoos
 

Introduction to Apple Events 6-5

IPR2017-01828

Ubisoft EX1002 Page 318



IPR2017-01828 
Ubisoft EX1002 Page 319

 

 
Inside Macintosh, Volume VI

Types of Apple Events

Apple events fall into one of several broad categories.

m Required Apple events consist of four core Apple events that the Finder sends
to applications. These events are called Open Documents, Open Application, Print
Documents, and Quit Application. Theyare a subset of the core Apple events and are
described in detail later in this chapter.

= Core Apple events are used by nearly all applications to communicate. The suite of
core Apple events is described in the Apple Event Registry; Apple recommendsthatall
applications support the core Apple events.

= Functional-area Apple events are supported by applications with related features.
Apple events related to text manipulation for word-processing applications and Apple
events related to graphics manipulation for drawing applications are examples of
functional-area Apple events. Functional-area Apple events are defined by Apple in
consultation with intcrested developers and are published in the Apple Event Registry.
Apple recommendsthat all developers support functional-area Apple events appropriate
for their types of applications.

» Custom Apple events are defined by a developer for use by the developer’s own
applications. You should register all of your custom Apple events with Macintosh
Developer Technical Support. You can choose to publish your Apple events in the
Apple Event Registry so that other applications can share them, or you may choose to
keep them unpublished for exclusive use by your own applications.

Components of Apple Events

An Apple event consists of attributes (which identify the Apple event and denoteits task) and,
often, parameters (which contain data to be used by the target application). An application uses
the Apple Event Managerto create an Apple event. Using arguments you pass to the
AECreateAppleEvent function and to other Apple Event Managerroutines, the Apple Event
Managerconstructs the necessary data structures containing attributes and parameters and
converts these structures into an Apple event. Applications must use the Apple Event
Manager’s AESendfunction to transmit the Apple event. After receiving an Apple event,
applications must use Apple Event Managerroutines to extract the attributes and parameters of
the event.

Attributes are a fundamental component of Apple events. Apple event attributes arc
records that identify the event class, event ID, target application, and other characteristics
of an Apple event. Taken together, the attributes of an Apple event denotethe task to be
performed on any data specified in the Apple event’s parameters. You do not have any
direct way to access the data stored in these records. You must use Apple Event Manager
routines to extract or specify the attributes.

An Apple event parameteris a record containing data that the target application uses.
Unlike Apple cvent attributes (which contain information that can be used by both the Apple
Event Managerandthe target application), Apple event parameters contain data used only by
the target application. Kor example. an attribute like the event ID is used by the Apple Event

6-6 Introduction to Apple Events

IPR2017-01828

Ubisoft EX1002 Page 319

 



IPR2017-01828 
Ubisoft EX1002 Page 320

 

The Apple Event Manager

Managerto call a handler fromthe server application’s dispatch table, and the server appli-
cation must have a handler to process the event identified by that attribute. By comparison,
the list of documents contained in a parameter to an Open Documents event is used only by
the serverapplication. As with attributes, you do not have anydirect way to access the data
structure of a parameter. You have to use Apple Event Managerfunctions to extract data
from or put data into parameters.

Note that Apple event parameters are different from the parameters of Apple Event Manager
functions. Apple event parameters are records private to the Apple Event Manager; function
parameters are arguments you pass to the function or that the function returns to you. You
typically specify the Apple event parameters (as well as theattributes) in parameters to Apple
Event Manager functions. For example, the AEGetParamPtr function uses a buffer to return
the data contained in an Apple event parameter. You specify which Apple event parameterin
one of the parameters of the AEGetParamPtr function.

Apple events are identified by their event class and event ID attributes. The eventclassis
the attribute that identifies a group of related Apple events. The event class appears in the
messagefield of the event record for an Apple event. For example, the four required Apple
events (in fact, all core Apple cvents) have the value ‘aevt’ in the messagefields oftheir event
records. The value ‘aevt' can also be represented by the kCoreEventClass constant. Several
event classes are shownhere.

Event class Value Description

kCoreEventClass ‘aevt! A core Apple event
kAEFinderEvents "FNDR' An eventthat the Finder accepts
kSectionEventMsgClass ‘sect’ An eventsent by the Edition Manager

The event IDis the attribute that identifies the particular Apple event withinits event class. In
conjunction with the eventclass, the event ID uniquelyidentifies the Apple event and commu-
nicates what action the Apple event should perform. (The event IDs appear in the wherefield
of the event record for an Apple event.) For example, the event ID of an Qpen Documents event
has the value 'odoc’ (which can also be represented by the kAEOpenDocuments constant). The
kCoreEventClass constant in combination with the kAEOpenDocuments constant identifies the
Open Documents event to the Apple Event Manager.

Shownhereare the event IDs for the four required Apple events.

Event ID Value Description

kAEOpenApplication ‘oapp’ Open your application
kAEOpenDocuments ‘odoc’ Open documents
kAEPrintDocuments "‘pdoc' Print documents
kAEQuitApplication ‘quit’ Quit your application

Thetarget application’s address is another required attribute. As previously described, the
target application is the one addressed to receive the Apple event. Your application can send
an Apple eventto itself or to another application (on the same computeror on a remote
computer connected to the network).

as

z=]=
o
=~es}==]we

nd=
=}
=]
fon]afe
er

 
Introduction to Apple Events 6-7

IPR2017-01828

Ubisoft EX1002 Page 320



IPR2017-01828 
Ubisoft EX1002 Page 321

 
 

Inside Macintosh, Volume VI

As with attributes, there are various types of Apple event parameters. A direct parameter
contains the data to be acted upon by the server application. For example, a list of documents
is contained in the direct parameterof the Print Documents event. Direct parameters are
usually required parameters—parameters that the server application needsin order to
carry oul the task denoted by the Apple event. Some Apple events also take additional
parameters, which the server application uses in addition to the data specified in the
direct parameter. For example, an Apple event for arithmetic operations may include
additional parameters that specify operands in an equation. Additional parameters may be
required or optional.

 

An optional parameter is a supplemental parameter that also can be used to specify data
to the server application. Optional parameters need not be included in an Apple event; default
values for optional parameters are part of the event definition. The server application that
handles the event must supply default values if the optional parameters are omitted.

Figure 6-2 showsin greater detail the components of the Open Documents event that was
introduced in Figure 6-1.

Server

application

Open Document event
Eventclassattribute:
kCoreEventClass

Event ID attribute:

kAEOpenDocument

Target addressattribute:
application with the
signature ‘WAVE'

 

 
 

 

 
  
 

Client

application My Company
San Francisco, Ca

  apt esign 7

Gi Au ° $o00: : : Film $200. TOTAL $900

Direct parameter: SurfWriter
list offiles

(Dec.Invoice
Nov. Invoice) 

Figure 6-2. Major components of an Open Documents event

To process the information contained in the Open Documents event, the SurfWriter applica-
tion uses the AEProcessAppleEvent function. The AEProcessAppleEvent function provides
an easy way for your application to identify the event class and event ID of the Apple event
and to direct the Apple Event Managerto call the code in your program that handles the
Apple event.

Data Structures Within Apple Events

Applications must use Apple Event Managerfunctions to create and send an Apple event. The
Apple Event Managerconstructs its own internal data structures to contain the information in
an Apple event. To gain accessto this data, the target application also must use Apple Event
Managerfunctions. Neither the sender nor the receiver of an Apple event can directly manip-
ulate the data inside an Apple event; each must rely on Apple Event Manager functions to do
so. This section describes the data structures that the Apple Event Manageruses to create and
to process Apple events.

6-8 Introduction to Apple Events

IPR2017-01828

Ubisoft EX1002 Page 321



IPR2017-01828 
Ubisoft EX1002 Page 322

The Apple Event Manager

Descriptor records are the fundamental structures from which Apple events are constructed.
A descriptor record is a data structure of type AEDesc;it consists of a handle to data and a
descriptor type that identifies the type of the data referred to by the handle.

TYPR ARDesa =

RECORD {descriplor record}
descriptorvType: DescType; {type of data being passec}
dazaHandle: Handle fharndle to data »seirg passed}

=ND;
 

The data referred to by the dataHandle field in the descriptor record is private to the Apple Event
Manager. Youcan supply or extract this data only by using Apple Event Managerroutines.

The descriptor type is a structure of type DescType, whichin turn is of data type ResType—
that is, a four-character string. Constants are usually used in place of these four-character
strings whenreferring to descriptor types. Descriptor types represent various data types. Here
is a list of descriptor type constants, their values, and the types of data they represent.

 
 

Descriptor type Value Description

typeBoolean ‘bool’ Boolean value
typeChar ‘TEXT’ Unterminated string
typeSMInt ‘shor’ 16-bit integer
typcInteger ‘long’ 32-bit integer
typeSMFloat ‘sing' SANE®single
typeFloat ‘doub' SANEdouble
typeLongInteger ‘long’ 32-bit integer
typeShortInteger ‘shor’ 16-bit integer
typeLongFloat ‘'doub' SANEdouble
typeShortFloat ‘sing’ SANE single
typeExtended ‘exte’ SANEextended
typeComp ‘comp' SANE comp
typeMagnitude ‘magn’ Unsigned 32-bit integer
typeAEList ‘list’ List of descriptor records
typeAERecord ‘reco’ List of keyword-specified descriptor records

| typeAppleEvent ‘aevt' Apple event record
typeTrue ‘true’ TRUEBoolean value
typeFalse ‘fals' FALSE Boolean value
typeAlias ‘alis' Alias record

| typeEnumerated ‘enum’ Enumerated data
typeType ‘type’ Four-character code for event class or event ID
typeAppParameters ‘appa’ Process Manager launch parameters

| typePropcrty ‘prop’ Apple event property a
typeFSS ‘fss ' File system specification 7
typeKeyword ‘keyw' Apple event keyword s
typeSectionH ‘sect’ Handle to a section record >
typeWildCard RR eT Matches any type ©
typeApplSignature ‘sign’ Application signature I
typeSessionID ‘ssid’ Session [D ca
typeTargetID ‘targ’ Target ID record So
typeProcessSerialNumber ‘psn ' Process serial number E
typeNull ‘null’ NULLor nonexistent data s

| Introduction to Apple Events 6-9

NN oo ecennnemmmaaminnaiinntecs,

IPR2017-01828

Ubisoft EX1002 Page 322



IPR2017-01828 
Ubisoft EX1002 Page 323

 

 

Inside Macintosh, Volume VI

Figure 6-3 illustrates a descriptor record with a descriptor type of typeType, which specifies that
the data in the descriptor record must consist of a four-character code. The data in this particular
descriptor record is specified by the constant kCoreEventClass, whose valueis ‘aevt’.

typeType

Event class

(kCoreEventClass)

Data type AEDesc

Descriptor type:

pee|  
Figure 6-3. A descriptor record with event class data

A descriptorrecord that contains the address ofthe target or source of an Apple eventis called
an address descriptor record.

 
[TYPE AFAcdressDesc = AEDesc; {adéeress descriptor record}

As you will see later, the address can be specified as an application signature, a processserial
number, a session ID,a target ID record,or a data type that you define.

Data forattributes and parameters is contained in descriptor records. Theattributes and
parameters themselves are identificd by keywords. The AEKeyword data type is defined
as a four-character code.

 
 4 Ks id oe EKeyword = PACKED ARRAY[1..4] OF Char;

{keyword for a descriptor }
{ record}

 

Constants are typically used for keywords. Shownhereis a list of these keyword constants,
their four-character codes, andthe attributes and parameters they represent.

Attribute keyword Value Description

keyAddressAttr ‘addr' Address of target application
keyEventClassAttr ‘evel’ Event class of Apple event
keyEventIDAttr ‘evid' Event ID of Apple event
keyEventSourceAttr ‘esre’ Source of the Apple event
keyInteractLevelAttr ‘inte’ Settings for allowing the Apple Event Manager

to bring a server application to the foreground
First required parameter remaining in an

'

keyMisscdKeywordAttr ‘miss
Apple event

keyOptionalKeywordAttr ‘optk' List of optional parameters for the Apple event
keyRetumIDAttr rtid’ Return ID for reply Apple event
keyTimeoutAttr ‘amo’ Length of timein ticksthatthe client will

wait for a reply or a result from the server
keyTransactionIDAttr ‘tran’ Transaction ID identifying a series of

Apple events

6-10 Introduction to Apple Events

IPR2017-01828

Ubisoft EX1002 Page 323



IPR2017-01828 
Ubisoft EX1002 Page 324

 

 

The Apple Event Manager |

Parameter keyword Value Description

keyDirectObject ‘_—' Direct parameter
keyErrorNumber ‘errn’ Error number parameter
keyErrorString ‘errs’ Error string parameter
keyProcessSerialNumber 'psn ' Process serial number parameter

A data structure of type AEKeyDesc consists of a keyword and a descriptor record, This data
structure, called a keyword-specified descriptor record, is used by the Apple Event
Managerto fully identify and describe an attribute or a parameter of an Apple event.

 
TYPE ABKeyJesc = {keyword-specified descriptor recoré}

RECORD

desckey: AEKeyword; {keyword}
deseConlenl: AEDesc {descriptor record}

END; 

Figure 6-4 illustrates a keyword-specified descriptor record [or the event class attribute of an
Open Documents event. The keyEventClassAttr keyword identifies its descriptor record as
containing event class data. The data is of the typeT'ype descriptor type, and the data identifies
the event class as kCoreEventClass.

 
Data type AEKeyDesc

keyEventClassAttr

Event class

(kCoreEventClass)

 

 
 

Descriptor record:

Descriptor type: 
Figure 6-4. A keyword-specified descriptor record for the event class attribute of

an Open Documentsevent

When extracting data from an Apple event, you use Apple Event Managerfunctions to return
data in a buffer specified by a pointer, or to return descriptor records containing the data, or
to return lists of descriptor records (called descriptor lists) containing the data. As previously
noted, the descriptor record (of data type AEDesc)is the fundamentalstructure in Apple events,
and it contains a handle to data. A descriptorlist is a data structure of type AEDescList
defined by the data type AEDesc—thatis, a descriptorlist is a descriptor record that contains a
list of other descriptor records.

flist of deser_plor records}

 
 TYPE ABDeschList = AEDesc;   

An example of a descriptorlist that you will be using is the direct parameter for the Open
Documents event. As illustrated in Figure 6-5, this descriptorlist is a list of descriptor
recordsthat contain alias records to filenames. (The Alias Managerchapterof this volume
describes alias records in detail.)

a

Pai]
cs
oO
isea4od
=a
i_=
=
=]
pI

Riotco*

 
!ntroduction to Apple Events 6-11

IPR2017-01828

Ubisoft EX1002 Page 324



IPR2017-01828 
Ubisoft EX1002 Page 325

 
 

Inside Macintosh, Volume VI

Data type AEDescList

Descriptor type: typeAEList

“s._ List of descriptor records: a

Descriptor type:|typeAlias

Data: Alias record for filename
(Nov. Invoice)

Descriptor type:|typeAlias

Data: Alias record for filename
(Dec. Invoice)

Figure 6-5. A descriptor list for a list of aliases

   
 
 
 

 

 

 
  

Closely related to a descriptorlist is a structure of data type AERecord; in fact, it is defined by
the data type AEDescList.

  TYPE AERecord ~ AEDescList; {list of keyword-svecified }
{ descriptor records}

While a descriptorlist is a descriptor record that containsa list of other descriptor records,
an AE record of data type AERecord containsalist of keyword-specified descriptor records
describing parameters. A descriptorlist of data type AERecord contains noattributes, only
parameters.

There is one final data structure to consider: the Apple event record. An Apple event
recordis a structure of data type AppleEvent defined as an AE record. It is used for
describing a full-fledged Apple event.

TYPR AoplePvent = ABRecord;: {list of attrinutes anc parameters >
{ necessary for an Apple event}

 

An Apple eventrecord is basically a descriptor record (of descriptor type typeAppleEvent) with
a handleto a list of keyword-specified descriptor records. These descriptor records describe
the attributes and parameters for an Apple event. When you use the AECreateAppleEvent
function, the Apple Event Managercreates an Apple event record containing the attributes for
an Apple event’s event class, event ID, target address, return ID, and transaction ID. You then
use Apple Event Managerfunctions such as AEPutParamDesc to add parameters to the Apple
event. Figure 6-6 shows an example of an Apple cevent—astructure containingalist of
keyword-specified descriptor records that nametheattributes and parameters of an Open
Documents event.

6-12 Introduction to Apple Events

 
IPR2017-01828

Ubisoft EX1002 Page 325



IPR2017-01828 
Ubisoft EX1002 Page 326

The Apple Event Manager

Data type AppleEvent

typeAppleEvent

Data: Lisl of attributes and parameters

Event class attribute

Keyword: keyEventClassAttr

Descriptor record, Descriptor type: typeType
 

Data: Evenl class
(kiloreEventClass}

Event (0 attribute

Descriptor recerd: Descriptor type: lypelType
; Event ID

Targel application attribute

keyAddressAtir

Descriptor record. Descriptor type: typeApolaignature
Data: Target application's

address {WAVE}

 
7 Girectparameter 1

Keyword: keyDlrectObject

 
 

 

Data: List of descriptor
records:

Descriptor record. Descriptor type: typeAEList

 Descriptor type:|typeAlias

Alias record bor filename

{Nov. Invoice}  

 Data: Alias record for filename

(Dec. Invoice}

a| 

Figure 6-6. Data strictures within an Open Documeats event

=
-_==eal=anit
a)=.
“Led
—|ne
ol—_a=
=
a
3Ll"

 
darroduction to Apie Eveity f- fF

IPR2017-01828

Ubisoft EX1002 Page 326



IPR2017-01828 
Ubisoft EX1002 Page 327

Inside Macintosh, Volume VI

The internal structure of an Apple event record is nearly identical to an AE record. They differ
in the content referred to by the data handles that they contain: the formerhasa list of attributes
and, possibly, parameters referred by its handle; the latter contains only parameters. However,
you can pass an Apple event record to any Apple Event Manager function that expects an AE
record. Since both are structures of data type AEDescList, which is derived from the data type
AEDesc, you can pass Apple event records, AE records, descriptor lists, and descriptor
records to any Apple Event Managerfunctions that expect records of data type AEDesc.

The data in Apple event records, AE records, and descriptor lists—all of which are descriptor
records—isprivate to the Apple Event Manager. The Apple Event Manager maintains these
different data structures becauseit stores different kinds of informationin their handles.

Although all the information you need is available by calling the appropriate Apple Event
Managerfunctions, the Apple Event Manager needs a waytotell these different descriptor
records apart. It does this by looking at their data types.

Responding to Apple Events

A client application uses the Apple Event Managerto create and send an Apple event requesting
a service. A server application responds by using the Apple Event Managerto processthe
Apple event, to extract data from theattributes and parameters of the Apple event, and to return
a result to the client application. The server providesits own routines for performing the action
requested by the client’s Apple event.

Asits first step in supporting Apple events, your application mustbe able to respond to the
required Apple events sent by the Finder. If you plan to implement publish and subscribe
capabilities, your application must respond to the Apple events sent by the Edition Manager.
You canalso respond to Apple events sent by your own application or byother applica-
tions. This section provides a quick overviewof the steps your application takes in responding
to Apple events.

To respond to Apple events, your application must

m test for high-level events in its event loop

m use the AEProcessAppleEvent function to process Apple events

m provide handler routines for the Apple events it supports

m use Apple Event Managerfunctionsto extract the parameters and attributes from
Apple events

m use the AEInteractWithUser function—if yourapplication requires input from the user
when yourapplication is responding to an Apple event—to bring yourapplication to the
foregroundto interact with the user

m return a result for the client

Note that in order for your application to respond to Apple events sent from remote computers,
the user of your application must allow network users to link to your application. The user
does this by selecting your application from the Finder and choosing Sharing from the File
menuand then clicking the Allow Remote Program Linking check box. If the user has notyet
started program linking, the Sharing commandoffers to display the Sharing Setup control
panel so that the user can start program linking. The user must also authorize remote users for

6-14 Introduction to Apple F-vents

IPR2017-01828

Ubisoft EX1002 Page 327

 
 



IPR2017-01828 
Ubisoft EX1002 Page 328

 
The Apple Event Manager

program linking by using the Users and Groups control panel. Program linking and setting up
authenticated sessions are described in the Program-to-Program Communications Toolbox
chapter in this volume.

An Apple event (like all high-level events) is identified by a message class of kHighLevelEvent
in the whatfield of the event record. You test the whatfield of the event record to determine

whether an eventis a high-level cvent. If the what field contains the kHighLevelEvent constant
and your application defines any high-level events other than Apple events, test the message
field of the event record to determine whetherthe high-level event is something other than an
Apple event. If the high-level event is not one that you’ve defined for your application, assume
that it is an Apple event. (Note that you are encouraged to use Apple events instead of defining
your own high-level events whenever possible.)

After determining that an event is an Apple event, use the AEProcessAppleEvent function to
let the Apple Event Manageridentify the event. Figure 6-7 shows how the SurfWriter
application accepts and begins to process an Apple event sent by the Finder.

Apple event

Open Documents
Dec.Invoice
Nov. Invoice

Client
 

Server

application application

 
Finder

SurfWriter   
 

 Event loop
CASE event.what OF

kHighLevelEvent:
DoHighLevelEvent

 

 

  
 

(event)  
 
 
DoHighLevelEvent(event)

CASE event.message OF
myHighLevelEventt: ...
myHighLevelEvent2:...

OTHERWISE

AEProcessAppleEvent(

 

 

  
  event) Apple Event Manager

Figure 6-7. Accepting and processing an Open Documents event

The AEProcessAppleEvent function begins processing the Apple event. The
AEProcessAppleEvent function identifies the Apple event by examining the datain the
eventclass and eventID attributes. The AEProcessAppleEvent function in turn uses that
data to call the Apple event handler that your application providesfor that event. An Apple
event handleris a function that extracts the pertinent data from the Apple event,
performsthe action requested by the Apple event, and returns a result. For example,if the
event has an event class of kCoreEventClass and an event ID of kAEOpenDocuments,the
AEProcessAppleEvent function calls your application’s routine for handling the Open
Documents event.

a

>
ic)
s=
c
eooac
==
raae
7
i}
SS

Twi)
=

 
Introduction to Apple Events 6-15

IPR2017-01828

Ubisoft EX1002 Page 328

 
 



IPR2017-01828 
Ubisoft EX1002 Page 329

 

Inside Macintosh, Volmime VI

You instal! Apple event handlers by using the AB Install ventHandier function, This fancoon
creates un Apple event dispatch table that the Apple Event Manager uses ta map Apple
events lo handlers in your application. Afler being called by the AEProcessAppleR vent
function to press an Apple event. the Apple Event Manager roads the Applic event dispatch
table and. if your appheation has installed a handler for that Apple event. calls your handler bo
finish responding to the event. Figure 6-8 shows how the flaw of control passes [rom your
applicatianto the Apple Eycot Manager and back to your apple ation,

Serer

application

Su rVyriter   
 

 

Apple Event Manager

Apple event dispatch table
Event | _ Handler
Open Documents| @ MyHandieODec|+—
Print Decuments @ MyHandlePDoc

 

AEProcessAppleEvenl(event

ee Ld!
ab_— —H

 

 
} Call fyHandleODoac

 

  MyHandleODoc{anAppleEvent
+ extract list of dacuments

from direct parameter
» open each document ina

)

Wind OW
* return function resull and,

if appropnate, error string

Figure 6-8. The Apple Event Manager calling the hander for an Open Bocuments event

Your Apple event handlers must seneralby perfonu the following tasks:

a extract ihe paramelers and attributes for the Apple event

@ check that all the requited parameters have been extracted

m sel user nmeraction level preferences if necessary and. if your appheation needs to interact
With the aser. use the AFInteractWithliser functien to bring it to the toregreaund

m pertonm the action requested by the Anple event

w dispose of any copies of descriptor records that have been created

m oretumatresult for the client

6-16 hitroduction ta Apple Events

IPR2017-01828

Ubisoft EX1002 Page 329



IPR2017-01828 
Ubisoft EX1002 Page 330

The Apple Event Manager

You must use Apple Event Managerfunctions to extract the data from Apple events. You can
also use Apple Event Managerfunctionsto get data out of descriptor records, descriptorlists,
and AE records. Mostof these routines are available in two forms: one that uses a buffer to

return a copyof the desired data, and one that returns a copy of the descriptor record contain-
ing the data. The following list shows the main functions you can useto accessthe data ofan
Apple event.

Function Description

AEGetParamPtr Uses a buffer to return the data contained in a parameter; used,
for example, to extract the result code from the keyErrorNumber
parameter of a reply Apple event.

AEGctParamDesc Returns the descriptor record or descriptor list for a parameter;
used, for example, to extract the descriptorlist for a list of alias
records specified in the direct parameter of the Open Documents
event.

AEGetAttributePtr Uses a buffer to return the data contained in an attribute; used, for
example, to determine the source of an Apple event byextracting
the data from the keyEventSourceAttr attribute.

AEGetAttributeDesc Returns the descriptor record for a parameter; used, for example,
to make a copyof a descriptor record containing the address of
an application.

AECountltems Returns the number of descriptor records in a descriptorlist;
used, for example, to determine the numberof alias records for
documents specified in the direct parameter of the Open
Documents cvent.

AEGetNthPtr Uses a buffer to return the data for a descriptor recordthat is
contained in a descriptorlist; used, for example, to extract a
document’s alias record from the descriptor list specified in the
direct parameter of the Open Documents event.

AEGetNthDesc Returns a descriptor record froma descriptorlist; used, for
example, to get the descriptor record containing an alias record
from the list specified in the direct parameter of the Open
Documents event.

You can specify the descriptor type of the resulting data for these functions; if this is different
from the descriptor type of the attribute or parameter, the Apple Event Managerattempts to
coerce it to the specified type. In the direct parameter of the Open Documents event, for
example, each descriptor record in the descriptor list is an alias record; each alias record
specifies a document to be opened. As explained in the File Manager chapter of this volume,
all your application usually needsis the file system specification (FSSpec) record of the
document. When you extract the descriptor from the descriptorlist, you can request that the
Apple Event Managerreturn the data to your application asa file systemspecification record
instead of as an alias record.

rN

a|
csfer}
eIoafe)
eo}as

ca=
5
vo}
Ee

Te
z
 

Introduction to Apple Events 6-17

 

IPR2017-01828

Ubisoft EX1002 Page 330



IPR2017-01828 
Ubisoft EX1002 Page 331

 

 
Inside Macintosh, Volume VI

After extracting all known parameters, your handler should check that it retrieved all the
required parameters by checking whether the keyMissedKceywordAttr attribute exists.If
the attribute exists, then your handlerhasnot retrieved all the required parameters, andit
should return an error.

In somecases, the server may need to interact with the user when it handles an Apple event.
For example, your handler for the Print Documents event may nced to display a print options
dialog box and get settings from the user before printing. Your handler should always use the
AEInteractWithUser function before displaying a dialog box or alert box or otherwise inter-
acting with the user. By specifying one of these flags to the AESetinteractionAllowed function,
youcan set your application’s user interaction level preferences.

Flag Description

kAEInteractWithSelf Userinteraction with your server application in response to an
Apple event may be allowed only whenthe client application is
your own application—thatis, only when yourapplicationis
sending the Apple eventtoitself,

kAEInteractWithLocal Userinteraction with your server application im response to an
Apple event may be allowed only if the client application is on
the same computer as your application; this is the default if the
AEScunteractionAllowed functionis not used.

kAEInteractWithAll Userinteraction with your server application in response to
an Apple event may be allowed for any client application on
any computer.

Fora server application to allow user interaction in response to the client’s Apple event,
two conditions must be met. First, the client application must request that your server appli-
cation allow user interaction. Second, your server application must allow user interaction
in responseto the Apple event sent from that client application as described in the previous
list. If these conditions are met and your application needs to interact with the user, the
AEInteractWithUser function brings your application to the foreground ifit isn’t already in
the foreground. Your application can then display its dialog box or alert box or otherwise
interact with the user. AEInteractWithUserbrings your server application to the front either
directly or after the user respondsto a notification request.

When your application acts on an Apple event, it should perform the standard action requested
by that event. For example, if the Apple event is the Open Documents event, your application
should open the specified documents in titled windowsjust as if the user had selected each
decument from the Finder and then chosen Open from the File menu. You should strive to
create routines that can be called in response to both user events and Apple events. To dothis,
you need to isolate code for interacting with the user from the code that performs the requested
action—such as opening a document. You then call the code that performs the requested action
from your Apple event handler.

When youextract a descriptor record by using the AEGetParamDesc, AEGetAttributeDesc,
AEGctNthDesc, or AEGetKeyDesc function, the Apple Event Managercreates a copy ofthe
descriptor record for you to use. When your handler is finished using a copy of a descriptor
record, you should dispose of it—and thereby deallocate the memoryit uses—bycalling the
AEDisposeDesc function.

6-18 Introduction to Apple Events

IPR2017-01828

Ubisoft EX1002 Page 331

 



IPR2017-01828 
Ubisoft EX1002 Page 332

The Apple Event Manager

The required Apple events ask your application to perform tasks—open yourapplication,
open or print documents, or quit your application. Other Apple events may ask your
application to return data. For example, if your application is a spelling checker, the client
probably expects data in the formof a list of misspelled words to be returned from your
application. If a reply is requested, the Apple Event Managerpreparcs a reply Apple cvent
for the client by passing a default reply Apple event to your handler. The default reply
Apple event has no parameters whenit is passed to your handler. Your handler can add any
parameters to the reply Apple event. If your application is a spelling checker, for examplc,
you can returnalist of misspelled words in a parameter.

Your handler routine should always set its function result either to noErr if it successfully
handles the Apple event or to a nonzero result code if an error occurs. If an error occurs, the
Apple Event Manager adds a keyErrorNumberparameterto the reply Apple event; this
parameter contains the result code that your handler returns. The client should check whether
the keyErrorNumber parameter exists to determine whether your handler performed the
requested action. In addition to returning a result code, your handler can also return an error
string in the keyErrorString parameter of the reply Apple event. The client can usethis string
in an error message to the uscr.

If the source requested a reply, the Apple Event Managerreturns the reply Apple eventto the
source. The reply Apple event is identified by the event class kCoreEventClass and by the event
ID kAEAnswer. Whenyou havefinished using the reply Apple event, you should dispose of
it—and thereby deallocate the memory it uses—bycalling the AEDisposeDesc function.

Whenyourhandlerreturns a result code to the Apple Event Manager, you have finished your
responseto the client’s Apple event. Figure 6-9 showsthe entire process of responding to an
Apple event. The next section describes how to send an Apple event.

Requesting Services Through Apple Events

Your application can use Apple events to request services from other applications. By using
Finder events, for example, your application can simulate the behavior of the Finder by
requesting that the Finder perform such operations as launching an application on your
behalf. By using functional-area Apple cvents, your application can request services from
applications related to your own—forexample, asking a spelling checker application to check
the text in a document created by your application. All publicly available Apple events are
defined and published in the Apple Event Registry. Consult the Apple Event Registry for the
format and function of Apple events that your application may wish to send.

The previous section describes how a server application respondsto a client application’s
request for services. This section briefly describes the steps your application must take to act
as a client application and request such services. To request a service through an Apple event,
your application must

m create an Apple event by calling the AECreateAppleEvent function

mw use Apple Event Managerfunctions to add parameters and anyother necessary attributes
to the Apple event

= call the AESend function to send the Apple cvent

= dispose of any copies of descriptor records that you have created  
a

Po=I
=]a
cc
isaf)
s=
oa_—
&4=
5

TToe=
m process the reply Apple event (optional)

Introduction to Apple Events 6-19

IPR2017-01828

Ubisoft EX1002 Page 332



IPR2017-01828 
Ubisoft EX1002 Page 333

foside Afacotosl, VartaVi

Apple event

Dec. Invoice
Nov. Invowe 

Client Sever

application application

Surrier

Event loop |
CASE eventwhat OF

kHighLevele vent:
DoHighLevel—vent(event)

DoHighLevelEventtevenl}

CASE event.message OF

myHighLeyelevent): ...|appteEvent .myHighLevelEvent2: _.. Apple Event Manager
OTHERWISE --A,

 
AEPracessAppleEvent(event) Apple event dispatch table ——

j Event _ Handler |
Open Documents, @MyHandleODoc

j Pont Documents|@MyHandlePGec
 

 
  Call MyHandleODoc

 
MyHandieODoctanaé ppleE vent}

«extract list of documents

from direct parameter
s open each dacument ina

window

, * return function resulland, _
' if apprapriate, error string— Return reply Apple event!

é

Apple event

 
 

  
  
 
  

 
neers funclion resull

Figure 6-9. Responding 10 an Qpen Doywnents event

6-20) fitreductioan to Apple vents

IPR2017-01828

Ubisoft EX1002 Page 333



IPR2017-01828 
Ubisoft EX1002 Page 334

 
The Apple Event Manager

Use the AECreateAppleEvent function to create an Apple event record. Using the arguments
you pass to the AECreateAppleEventfunction, the Apple Event Managerconstructsthe data
structures describing the eventclass, the event ID, and the target addressattributes of an Apple
event. The event class and event ID, of course, identify the particular event you wish to send.
The target address identifies the application to which you wish to send the Apple event.

To act as a server application for your application, the target must support high-level events
and must be open. The server can be your own application, another application running on
the user’s computer, or an application running on another user’s computer connected to the
network. Your application should offer somefacility to launch a server applicationifit is not
already running.It is recommendedthat you use the Open Selection event (identified by the
event class KAEFinderEvents and the event ID kAEOpenSelcction) to request that the Finder
launch applications; however, the Process Manageralso provides a means for your applica-
tion to launch other applications. See the Apple Event Registry for information on Finder
events, and see the Process Management chapter in this volume for information on using the
Process Manager.

Your application should also offer a facility to allow the user to choose among the various
applications available as servers. The PPCBrowser function allowsusers to select target appli-
cations on the user’s computeras well as those available on computers connected to the
network. The PPCBrowser function presents a standard user interface for choosing a target
application, much as the Standard File Package provides a standard user interface for opening
and saving files. See the Program-to-Program Communications Toolbox chapterof this volume
for details on using the PPCBrowserfunction.

If the server application is on a remote computer on a network, the user of that computer must
allow programlinking to the server application. The user of the server application doesthis
by selecting the application from the Finder and choosing Sharing from the File menu and
then clicking the Allow Remote Program Linking check box. If the user has not yet started
programlinking, the Sharing command offers to display the Sharing Setup control panel so
that the user can start program linking. The user must also authorize remote users for pro-
gram linking by using the Users and Groups control panel. Program linking and setting up
authenticated ses-sions are described in the Program-to-Program Communications Toolbox
chapter in this volume.

There are two otherattributes you specify in the AECreateAppleEventfunction: the reply ID and
the transaction ID. Forthe reply ID attribute, you'll usually specify the kAutoGenerateReturnID
constant to the AECreateAppleEvent function. This constant ensures that the Apple Event
Managergenerates a unique return ID for the reply Apple event returned from the server. For
the transaction ID attribute, you'll usually specify the kAnyTransactionID constant, which
indicates that this Apple event is not one of a series of interdependent Apple events.

‘The Apple event record created with the AECreateAppleEvent function serves as a template for
the Apple event you wantto send. To add the remaining attribules and parameters necessary

them into a parameter, and adds the parameterto or replaces it in
an Apple event record; used, for example, to place numbers into
the parameters of an Apple event requesting that the server
perform a calculation.

for your Apple event, you must use these additional Apple Event Managerfunctions. a
=

Function Description =
AEPutParamPtr Takes a keyword, descriptor type, and pointer to data, converts ei

Ed2
i=}
[oy

Uo)ie)3

 
Introduction to Apple Events 6-21

IPR2017-01828

Ubisoft EX1002 Page 334



IPR2017-01828 
Ubisoft EX1002 Page 335

Inside Macintosh, Volume VI

Function Description

AEPutParamDesc Takes a keyword and a descriptor record, converts them into a
parameter, and adds the parameterto or replaces it in an Apple
event record; used, for example, to place a descriptorlist
containing alias recordsinto the direct parameter of an Apple
event that requests a server to manipulate files.

AEPutAttributePtr Takes a keyword, descriptor type, and pointer to data, converts
theminto an attribute, and addsthe attribute to or replacesit in an
Apple event record; used, for example, to change the event ID of
an Apple event record that is waiting to be sent.

AEPutAttributeDesc Takes a keyword and a descriptor record, converts them into an
attribute, and addstheattribute to or replaces it in an Apple event
record; used, for example, to replace the descriptor record used
for the target addressattribute in an Apple event record waiting to
be sent.

Descriptor records and descriptorlists are the basic components from which an Apple event
record ts constructed; these are passed to the AEPutParamDesc and AEPutAttributcDesc
functions. Use the following functions to create descriptor records and descriptorlists.

Function Description

AECreateDesc Takes a descriptor type and a pointer to data and converts them
into a descriptor record; used, for example, to create a descriptor
record that is used as an attribute or a parameter in an Apple
event record.

AEPutPtr Takes a descriptor type and a pointerto data, converts them into a
descriptor record, and adds the record to a descriptor list; used,
for example, to place into a descriptor list a numberthat is used
as the parameter of an Apple event requesting a calculation.

AEPutDesc Addsadescriptor record to a descriptorlist; used, for example,to
add into the descriptor list an alias record that is used as the direct
parameter of an Apple event requesting file manipulation.

After you add all the attributes and parameters required for the Apple event, use the AESend
function to send the Apple event. The Apple Event Manager uses the Event Managerto
transmit the Apple event to the server application.

The AESend function requires that you specify whether and how yourapplication should
wail for a reply from the server. Whenthe server receives your Apple event, the Apple Event
Managerprepares a reply Apple event for yourapplication by passing a default reply Apple
event to the server. The Apple Event Managerreturns any nonzero result code fromthe
server’s handler in the keyErrorNumber parameter of the reply Apple event. If your applica-
tion wants to return an errorstring, add it to the reply Apple event in the keyErrorString
parameter. ‘The server can also use this reply Apple event to return any data you requested—
for example, the results of a numerical calculation or a list of misspelled words.

6-22 Introduction to Apple Events

IPR2017-01828

Ubisoft EX1002 Page 335



IPR2017-01828 
Ubisoft EX1002 Page 336

The Apple Event Manager

You specify howyour application should wait for a reply by using one ofthese flags in the
sendMode parameter of the AESend function.

Flag Description

kAENoReply Your application does not want a reply Apple event; the server
processes your Apple event as soon asit has the opportunity.

kAEQucueReply Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
pracess and respond to your Apple cvent.

kAEWaitReply Your application wants a reply Apple eventandis willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event.

If you specify the kAEWaitReply flag, you may provide an idle function. This function should
process any events that occur while your application is waiting for a reply. You supply a
pointer to your idle function as a parameter to the AESend function. So that your application
can process other Apple events while it is waiting for a reply, you can also specify an optional
filter function to the AESend function thatfillers Apple events.

If your Apple event may require the user to interact with the server application (for example,
to specify printor file options), you can communicate your user-interaction preferences
to the server by specifying one of the following flags in the sendModeparameterofthe
AESend function.

Flag Description

kAENeverInteract The server application should never interact with the userin
response to this Apple event. If this flag is set, AEInteractWithUser
does notbring the server application to the foreground(this is the
default when an Apple event is sent to a remote application).

kAECanInteract The server application can interact with the user in response to
this Apple event—by convention,if the user needs to supply
information to the server. If this flag is set and the server allows
interaction, AEInteractWithUser brings the server application to
the foreground(this is the default when an Apple eventis sent to
a local application).

kAEFAIwayslInteract The server application can interact with the user in response to
this Apple event—by convention, even if no informationis
needed fromthe user. If this flag is set and the server allows
interaction, AEInteractWithUser brings the server application to
the foreground. The Apple Event Manager does notdistinguish
betweenthis flag and the kAECanInteract flag-—distinguishing
between them is the responsibility of the server application.  

a

i=
|is
a
Ssot
g55
raa
=
S
ES
te
z

Introduction to Apple Events 6-23

IPR2017-01828

Ubisoft EX1002 Page 336



IPR2017-01828 
Ubisoft EX1002 Page 337

 
eee

Inside Macintosh, Volume VI

Flag Description

kAECanSwitchLayer If both the client and server allowinteraction and this flagis set,
AEInteractWithUserbrings the server directly to the foreground
if adherence to the principle of user control allows. If the action
would be contrary to this principle, AEInteractWithUser uses
the Notification Managerto request that the user bring the server
application to the foreground. If both the client and server allow
interaction andthis flag is not set, AEInteractWithUser always
uses the Notification Managerto request that the user bring the
server application to the foreground.

The server can set its own interaction preferences. The interaction of your clicnt’s preferences
and the server’s is explained in “Interacting With the User”later in this chapter.

After you send an Apple event, your application is responsible for disposing of the Apple
event record—andthereby deallocating the memory it uses—bycalling the AEDisposeDesc
function. If you create one descriptor record and addit to another, the Apple Event Manager
creates a copy of the newly created one and adds that copy to the existing onc. For example,
you might use the AECreateDesc function to create a descriptor record that you wishto add to
an Apple cvent. When you use the AEPutParamDesc function,it creates a copy of your
newlycreated descriptor record and adds that copy as a parameter to an existing Apple event.

Yourapplication should dispose ofall the descriptor recordsthat are created in order to add
parameters and attributes to an Apple event. You normally dispose of your Apple event and
its reply after you receive a result from the AESend function. You should dispose of these
even if AESend returns anerror result. If your application requests a reply Apple event, your
application must also dispose ofthe reply Apple event when finished processing It.

Your application can request a reply Apple event. If you specify the kAEWaitReplyflag, the
reply Apple eventis returned in a parameter you pass to the AESend function.If you specify
the kAEQueueReply flag to the AESendfunction, the reply Apple eventis returned in the
event queuc.In this casc, the replyis identified by the event class kCoreEventClass and the
event ID kAEAnswer; your application processes reply events that it receives in its event
queuein the same mannerthat server applications process Apple events, as described earlier
in “Responding to Apple Events.”

Your application should check for the keyErrorNumber parameterof the reply Apple eventto
ensure that the server performed the requested action. Any error messages that the server
returns for you to display to youruser will appear in the keyErrorString parameter.

When your handleris finished using a copy ofa descriptor record used in the reply Apple
event, you should dispose of them both—andthereby deallocate the memory they use—by
calling the AEDisposeDesc function.

The next section, “Using the Apple Event Manager,”describes in greater detail the routines
necessary for sending and responding to Apple events.

6-24 Introduction to Apple Events

IPR2017-01828

Ubisoft EX1002 Page 337



IPR2017-01828 
Ubisoft EX1002 Page 338

The Apple Event Manager

USING THE APPLE EVENT MANAGER

The following sections explain in more detail howto use the Apple Event Managerto receive,
accept, and send Apple events. Thefirst two sections describe how to accept and process
Apple events and howtoinstall entries into the Apple event dispatch table. The following
section fully explains howyourapplication should handle the required Apple events, andit
provides code that shows sample handlers for the required Apple events.

Additional sections describe how to

= handle events that support publish and subscribe features

m get data out of an Apple event

m write handlers that perform the action requested by an Apple event

m reply to an Apple event

w dispose of Apple event data structures

m interact with the user when processing an Apple event

m create an Apple event

w send an Apple event

m write an idle function

m writc areply filter function

m write and install coercion handlers

m use the Application Died eventto ascertain the termination of an application that has been
launched by your application

The Apple Event Manageris available only in system software version 7.0. Usc the Gestalt
function with the gestaltAppleEventsAttr selector to determine whether the Apple Event
Managcris available. In the response parameter, the bit defined by the constant
gestaltAppleEventsPresentis set if the Apple Event Manageris available.

CONS' gestaltAppleEverntsAttr - 'eyvnt'; “Gestalt selector}
gestaltAppleEvertsPresent = 0; “if Lkis bit is set, then }

i Apple Evert Mgr's available}

 
 

 
a

>
i)
5lac]
=PsoO
S=

Ka—
&
=
S

neoO
a

Using the Apple Event Manager 6-25

IPR2017-01828

Ubisoft EX1002 Page 338



IPR2017-01828 
Ubisoft EX1002 Page 339

 

  
Inside Macintosh, Volume VI

Accepting an Apple Event

To accept Apple events (or any other high-level events), you must set the appropriate flags
in your application’s ‘SIZE’ resource and include codeto handle high-level events in your
application’s main event loop.

Twoflags in the 'SIZE' resource determine whether an application receives high-level events:

a The isHighLevelEventAware flag must be set for your application to receive any high-
level events.

m The localAndRemoteHLEvents flag must be set for your application to receive high-
level events sent from another computer on the network.

Note that in order for your application to respond to Apple events sent from remote computers,
the uscr of your application must also allow network users to link to your application. The user
does this by selecting your application from the Finder and choosing Sharing from the File
menuand then clicking the Allow Remote Program Linking check box.If the user has not yet
started program linking, the Sharing commandoffers to display the Sharing Setup control
panelso that the user can start program linking. The user must also authorize remote users for
program linking by using the Users and Groupscontrol panel. Program linking and setting up
authenticated sessions are described in the Program-to-Program Communications Toolbox
chapter in this volume.

For a complete description of the 'SIZE' resource, see the Event Manager chapterin this
volume.

Apple events (and other high-level events) are identified by a message class of kHighLevelEvent
in the whatfield of the event record. You can test the whatfield of the event record to determine

whetherthe event is a high-level event.

Listing 6-1 is an example of a procedure called from an application’s main event loopthat
handles events, including high-level events. The procedure determines the type of event
received and then calls another routine to take the appropriate action.

Listing 6-1. A DoEvent procedure

 PROCEDURE DozZvent (evenl: EvenlRecord) ;

BEGIN

CASE evenz.what OF {determine Lhe type of event}
nouseDown :

DoMouseDown (event);

 
{handle other xinds of evenzs}

{handle high-level events, including Apple events}
kHighLevelEvent:

DoHighLevelEvent (event); 
=ND;

END; 

6-26 Using the Apple Event Manager

IPR2017-01828

Ubisoft EX1002 Page 339



IPR2017-01828 
Ubisoft EX1002 Page 340

The Apple Event Manager

Listing 6-2 is an example of a DoHighLevelEvent procedure that handles Apple events and also
handles the high-level eventidentified by the event class mySpecialHLEventClass and the event
ID mySpecialHLEventID. Note that, in most cases, you should use Apple events to communi-
cate with other applications.

Listing 6-2. A DoHighLevelEvent procedure for handling Apple events and
other high-level events

 PROCEDURE DoHighLevelEvenzt (event: EvertRecord) ; 

VAR  
myErr: OSErr;

BEGIN

ls (event.ressage = Long int (mySpecialHLEventClass)}) AND
(LongInzt(event.where) - LongInt (mySpecialllLEventID)) THEN

BEGIN

{it's a high-level event that doesn't use AEIMP}
myErr :- IHandleMySpecialliLEvent (event);
IF myErr <> noErr THEN

DoError (myErr) ; {perform the necessary error handling}

 

  
 

END

ELSE {othertwlse, assume that che evert *s an Apple event}
BEGIN

myErr := AEProcessAppleEvenz (event);
IPF myErr <> noErr TEEN

Error (myErr);

 
  
 

 
 

 

 a Oo

 END;
=ND;

If your application accepts high-level events that do not follow the Apple Event Interprocess
Messaging Protocol (AEIMP), you must dispatch these high-level events before calling
AEProcessAppleEvent. To dispatch a high-level event that does not follow AEIMP,for each
event you should check the event class, the event ID, or both to see if the eventis one that
your application can handle.

After receiving a high-level event (and, if appropriate, checking whetherit is a type of high-
level event other than an Apple event), your application typically calls the AEProcessAppleEvent
function. The AEProcessAppleEvent function determines the type of Apple event received, gets
the event buffer that contains the parameters and attributes of the Apple event, and calls the
corresponding Apple event handler routine in your application.

You should provide a handler routine for each Apple event that your application supports.
Your handler routine for a particular Apple event 1s responsible for performing the action
requested by the Apple event, and your handler can optionally return data in the reply
Apple event.

After your handler finishes processing the Apple event and adds any parametersto the default
reply, it should return a result code to AEProcessAppleEvent. If the client application is wailing
for a reply, the Apple Event Managerreturns the reply Apple eventto the client.

a

.s
oJe
icsaolo
S=

Rry
=}i
7ao
3
 

Using the Apple Event Manager 6-27

IPR2017-01828

Ubisoft EX1002 Page 340



IPR2017-01828 
Ubisoft EX1002 Page 341

 

 

 

Inside Macintosh, Volume VI  
Installing Entries Into the Apple Event Dispatch Tables

When your application receives an Apple event, use the AEProcessAppleEvent function to
retrieve the data buffer of the event and to route the Apple event to the appropriate Apple
event handler in your application. Your application supplies an Apple event dispatch table to
provide a mapping between the Apple events your application supports and the Apple event
handlers provided by your application.

To install entries into your application’s Apple event dispatch table, use the
AEInstallEventHandler function. You usually install entries for all of the Apple events
that your application accepts into your application’s Apple event dispatch table.

For each Apple event your application supports, you should install entries in your Apple
event dispatch table that specify

m the event class of the Apple event

m the event ID of the Apple event

m the address of the Apple cvent handler for the Apple event

m areference constant

You provide this information to the AEInstallEventHandler function. In addition, you indicate
to the AEInstallEventHandler function whether the entry should be added to your application’s
Apple event dispatch table or the system Apple event dispatch table.

The system Apple event dispatch table is a table in the system heap that contains
handlers that are available to all applications and processes running on the same computer.
The handlers in your application’s Apple event dispatch table are available only to your applica-
tion. If AEProcessAppleEvent cannotfind a handler for the Apple event in your application’s
Apple event dispatch table, it looks in the system Apple event dispatch table for a handler.If it
doesn’t find a handlerthere either, it returns the errAEEventNotHandled result code.

Listing 6-3 illustrates how to add entries for the required Apple cvents to your application’s
Apple event dispatch table.

Listing 6-3. Inserting entries for required Apple events into an application’s
Apple event dispatch table

 myErr :- AEInstallEventilandler (kCoreEventClass, kA=OpenApp_ication,
@MyHandlLeOAPP, 0, FALSE);

Tr myErr <> rnokrr THEN DoError(mytrr) ;
myBrr := ABRInstallEventHandler (kCoreEventClass, kAEOpenDocuments,

@MyHandleoDoc, 0, FALSE);
TF myErr <> rosarr THEN Dokrror(myhrr);
myErr := AEInsctallEvenzHandler (kCoreEventC_ass, kAEPrintDocurents,

@MyHanolePDOC, UO, FALSE);
IF myhrr <> nokrr THEN Dokrror (myhrr);
myErr :— ABInstal_lEventHandler (kCoreEventC_ass, kAEQuitApplication,

@MyEandleOQULT, 0, FALSE);
lFomykrr <> nokrr THEN Dokrror(mykrr);

 
 

 
     

 

6-28 Using the Apple Event Manager

IPR2017-01828

Ubisoft EX1002 Page 341



IPR2017-01828 
Ubisoft EX1002 Page 342

 

The Apple Event Manager

The codein Listing 6-3 creates an entry for all required Apple events in the Apple event
dispatch table. The first entry creates an entry for the Open Application event. The entry
indicates the event class and event ID of the Open Application event and the address of the
handlerfor that event and specifies 0 as the reference constant. This entry is installed into
the application’s Apple event dispatch table.

The reference constant 1s passed to your handler by the Apple Event Managereach time your
handler is called. Your application can use this reference constant for any purpose. [f your
application docsn’t use the reference constant, usc 0 as the value.

The last parameter to the AEInstallEventHandler function is a Boolean value that determines
whetherthe entry is added to the system Apple event dispatch table or lo your application’s
Apple event dispatch table. To add the entry to your application’s dispatch table, use FALSE
as the value of this parameter. If you specify TRUE,the entry is added to the system’s Apple
event dispatch table.

If you add a handler to the system Apple event dispatch table, the handler that you specify
mustreside in the system heap. If there was already an entry in the system Apple event
dispatch table for the same event class and event ID,it is replaced. Therefore, if there is an
entry in the system Apple event dispatch table for the same eventclass and event ID, you
should chain it to your system handler as explained in “Creating and Managing the Apple
Event Dispatch Tables”later in this chapter.

Note: When an application calls a system Apple event handler, the A5 registeris
set up for the calling application. Forthis reason, if you provide a system Apple
event handler, it should never use A5 global variables or anything that depends on a
particular context; otherwise, the application that calls the system handler may crash.

Forany entry in your Apple event dispatch table, you can specify a wildcard value for the
event class, event ID, or both. You specify a wildcard by supplying the typeWildCard
constant wheninstalling an entry into the Apple event dispatch table. A wildcard valuc
matchesall possible values.

For example, if you specify an entry with the typeWildCard event class and the
kAEOpenDocuments event ID, the Apple Event Manager dispatches Apple events of
any event class and an event ID of kAEOpenDocumentsto the handler for that entry.

If you specify an entry with the kCoreEventClass event class and the typeWildCard event ID,
the Apple Event Managerdispatches Apple events of the kCoreEventClass event class and
any event LD to the handler forthat entry.

If you specify an entry with the typeWildCard event class and the typeWildCard eventID, the
Apple Event Managerdispatchesall Apple events of any event class and any event ID to the
handler for that entry.

If the AEProcessAppleEvent function cannot find a handler for an Apple event in either the
application’s Apple event dispatchtable or the system Apple event dispatch table, it returns
the result code errAEEventNotHandled to the Apple event server. If the client 1s waiting for a
reply, AESendalso returns this result code as its function result.

a

>im]
2J

cpl~
4i=

Kod—
cy
=
=
ICte}

 
Using the Apple Event Manager 6-29

IPR2017-01828

Ubisoft EX1002 Page 342



IPR2017-01828 
Ubisoft EX1002 Page 343

 

Inside Macintosh, Volume VI

If your application supports the Edition Manager, you should also add entries to your appli-
cation’s Apple event dispatch table for the Apple events that your application receives from
the Edition Manager. Listing 6-4 shows howto addentries for these Apple events to your
application’s Apple event dispatch table.

Listing 6-4. Inserting entries for Apple events sent by the Edition Managerinto an
application’s Apple event dispatchtable

 
myErr := AEInstallEvenzHandler (sectionEverlLMsgClass, secctionReadMsg =D,

@MyHand_eSectionReadEvent, 0, FAISE);
IF myErr <> roz#rs THEN DoError (myErr);     

 
  

  

  

myhrr AEinstallkeventHandler (sectionEverlMsgClass,
sectionWriteMsgiD,
@MyHandleSectionwWriteEvent, 0, FALSE);

If myErr <> noFrr ‘'HRN Dokrror (myErr) ;

myErr :- AEInstallEvenzHandler (sectionEverntMsgClass,
sectionScrollMsgIL,
@MyHandieSeclLionScroliEvent, 0, FALSE);

IF myErr <>» molr: THEN DoError (myErr) ;  

See “Handling Apple Events Sent by the Edition Manager” later in this chapter for the
parameters associated with these events. See the Edition Manager chapterin this volume
for information on howyour application should respond to the Apple events sent by the
Edition Manager.

Handling the Required Apple Events

This section describes the required Apple events—the Apple events your application must
support to be 7.0-friendly—and the descriptor types for all parameters of the required
Apple events. It also describes howto write the handlers for these events, andit provides
sample code.

To support the required Apple cvents, you must set the necessary flags in the 'SIZE' resource
of your application, install entries into your application’s Apple event dispatch table, add
codcto the event loop of your application to recognize high-level events, and call the
AEProcessAppleEvent function, as described in the preceding two sections. You must also
write handlers to handle each Apple event; this section describes howto write these handlers. |

Required Apple Events

Whena user opens orprints a file from the Finder, the Finder sets up the information your
application can use to determine which files to open orprint. In version 7.0, if your applica-
tion supports high-level events, the Finder communicates this information to your application
through the required Apple events.

The Finder sends one ofthe required Apple events to your application to request thatit open
or printa list of documents, informit that the Finder has just opened your application, or
inform it that the Finder is about to terminate yourapplication.

6-30 Using the Apple Event Manager

 
IPR2017-01828

Ubisoft EX1002 Page 343



IPR2017-01828 
Ubisoft EX1002 Page 344

 

The Apple Event Manager

These are the required Apple events.

Apple event Requested action

Open Application Perform tasks associated with opening your application

Open Documents Open the specified documents

Print Documents Print the specified documents

Quit Application Perform tasks—suchas releasing memory, requesting the userto
save documents, and so on—associated with quitting; the Finder
sendsthis event to an application immediately after sending it a
Print Documents eventor if the user chooses Restart or Shut Down

from the Finder’s Special menu

The Finderuses the required Apple events as part of the new mechanismsin system software
version 7.0 for launching and terminating applications. This new method of communicating
Finder information to your application replaces the mechanismsused in earlier versions of
system software.

Applications that do not support high-level events canstill use the CountAppFiles, GetAppFiles,
and ClrAppFiles procedures (or the GetAppParmsprocedure) to get the Finder information. See
the Segment Loader chapter of Volume II for information on these routines. To make your
application 7.0-friendly and compatible with earlier versions of system software, it must support
both the old and new mechanisms.

Use the Gestalt function to determine whether the Apple Event Manageris present.If it is and
the isHighLevelEventAwareflag is set in your application’s 'SIZE' resource, your applica-
tion receives the Finder information through the required Apple events.

If your application accepts high-level events, the Finder sends it an Open Application, Open
Documents, or Print Documents event immediately after launching your application. Upon
receiving anyof these events, your application should performthe action requested by
the event.

Note: This section describes the required Apple eventsas they are sent by the
Finder. Whensent by other applications or processes, these same Apple events—
which are amongthe core Apple events described in the Apple Event Registry—can
include optional parameters notlisted here. To be 7.0-fricndly, your application only
needs to handle the required parameters that are described in this section.

 
Open Application—perform tasks associated with opening an application ~
Eventclass kCoreEventClass 3
Event ID kAEOpenApplication z
Parameters None -
Requested action Perform any tasks—suchas opening an untitled document window— :

that you would normally perform when a uscr opens your application, ¢

Using the Apple Event Manager 6-31

IPR2017-01828

Ubisoft EX1002 Page 344



IPR2017-01828 
Ubisoft EX1002 Page 345

Inside Macintosh, Volume VI

Open Documents—openthe specified documents

Eventclass kCoreEventClass

Event ID kAEOpenDocuments

Required parameter
Keyword: keyDirectObject
Descriptor type: typeAEList
Data: A list of alias records for the documents to be opened

Requested action Open the documents specified in the keyDirectObject parameter.

Print Documents—print the specified documents

Eventclass kCoreEventClass

Event ID kAEPrintDocuments

Required parameter
Keyword: keyDirectObject
Descriptor type: typeAEList
Data: A list of alias records for the documents to be printed

Requested action Print the documents specified in the keyDirectObject parameter without
opening windowsfor the documents.

Quit Application—perform tasks associated with quitting

Eventclass kCoreEventClass

Event ID kAEQuitApplication

Parameters None

Requested action Perform any tasks that your application would normally perform when
the user chooses Quit. Such tasks typically include asking the userif
he or she wants to save documents that have been changed. The
Finder sendsthis event to an application immediately after sending it a
Print Documents eventor if the user chooses Restart or Shut Down

from the Finder’s Special menu.

Your application needs to recognize only two descriptor types to handle the required Apple
events: descriptorlists and alias records. The Open Documents event and Print Documents
event use descriptor lists to store a list of documents to open. Each documentis specified as
an alias record in the descriptorlist.

Youcanretrieve the data that specifies the documentto openas analias record, or you can
request that the Apple Event Managercoercethe alias record to a file system specification
(FSSpec) record. The file system specification record provides a standard method of
identifying files in version 7.0. See the File Manager chapterin this volume for a complete
description of howto specify files using file system specification records,

6-32 Using the Apple Event Manager

IPR2017-01828

Ubisoft EX1002 Page 345



IPR2017-01828 
Ubisoft EX1002 Page 346

 
The Apple Event Manager

Handling the Open Application Event

Whenthe user opens your application, the Finder uses the Process Manager to launch your
application. On startup, your application typically performs any neededinitialization, and then
begins to process events. If your application supports high-level events, your application
receives the Open Application event.

To handle the Open Application event, your application should do just what the user expects
it to do when yourapplication is opened. For example, your application might open a new
untitled window in response to an Open Application event.

Listing 6-5 showsa handler that processes the Open Application event. The Open Application
event does not have any required parameters. This handlerfirst calls an application-defined
function called MyGotRequiredParams. This function checksto see if the Apple event con-
tains any required parameters. By definition, the Open Application event should not contain
any required parameters so, if the Apple event does contain any, the handler returns an error.
Otherwise the handler opens a new document window.

Listing 6-5. A handler for the Open Application event
  FUKCILON MyHandleCApp (theAppleEvent,reply: AppleEvent;

 
 

  
 
 

  

handlerRefcon: LongInt) : OS=rr;
VAR

myBer: OSprr;
BEGIN

myErr := MyGotReqguiredPurams (LheApolcEvent) ;
Ip myErr <> noErr THEN

MylNand_eCApo :- myErr
E LS E
BEGIN

DoNew;

MyHandleOApp := nozre;
2N\D;PAD:LAD; 

The MyGotRequiredParams function checks that all required parameters have been extracted
from the Apple event. See Listing 6-11 in “Writing Apple Event Handlers”later in this chapter
for a description of the MyGotRequiredParams function.

Handling the Open Documents Event

To handle the Open Documents event, your application should open the documents specified
in the Apple event. The Open Documents event contains a list of documents to open in its
direct parameter. Your application extracts this information and then opens the specified
documents.

Listing 6-6 shows a handler for the Open Documents event. The handler illustrates how to
open the documents referred to in the direct parameter.

Using the Apple Event Manager 6-33

 

IPR2017-01828

Ubisoft EX1002 Page 346

a

PSss
2®

ss»o
=-

rdSs
5
2_

Telo)a
 



IPR2017-01828 
Ubisoft EX1002 Page 347

 
Inside Macintosh, Volume VI

Listing 6-6. A handler for the Open Documents event
 FUNCTION MyHandleODec (theApploEvent,rep_yv: AppleEvent; 

 

   
hand_erRefcor: LongIrt) : OSErr;

VAR

myFSS: =SSvec;
dochist: AEDescList;
MyErr: OSErr;
index, itemsInList: LongInt;
actualSize: Size;
keywd: AEKcyword;
relLurnedType: DescType;

3SEGIN

{get the direct pvarameter--a descriptor list--and our it into doclisz}
myErs : A=GetPararDesc(theAppleEvent, xeyDirectOkject, typeAELisz,

docList);
IF mybre <> nokrr VHEN Vokrror(mylirr);
{check for missirg recuired parameters}

    
 

 
 

 myhrr := MyGotRequiredParams (LheAppleEvent);
IF myErs <> noErr THEN {an ersor occurred}

BEGIN {de the necessary error handing}
MydandleoDoc :- myErr;
Exit (MyHandleODoec});

END;

fcount tne number of descriptor records in the ist}
mytrzr := A#Countltems (docList, itemsInTist);
<now get each descriptor record from the list, coerce the returned }
. dala Lo an FSSpee record, arid open the associated tile} 

FOR index := 1 TO itemsInList DO
BEGIN

myErr :- AEGetNthPtr(docList, index, typeFSS, keywd,
returnecType, @myFSS, Sizeof(myFSS),
actualSize);  

      

IF myErr <> noErr ‘THEN Dokrror (mykirr} >;
myhrr := MyOpentile(@myFSSs} ;
IF myErr <> notre THEN DoError (:nyErr) ;

END:
inyErr := AEDisposeDdesc(dochist);
MyHandleODoc := noErr;

END;

The handlerin Listing 6-6 first uses the AEGetParamDesc function to getthe direct parameter
(specified by the keyDirectObject keyword) out of the Apple event. The handler requests
that AEGetParamDesc return a descriptor list in the docList variable. The handler then
checks to makesure thatit has retrieved all of the required parameters by calling the
MyGotRequiredParamsfunction (see Listing 6-11 for a description of this routine).

Oncethe handler has retrieved the descriptor list from the Apple event, it uses AECountItems
to count the numberof descriptors in the list. Using the returned numberas an index, the
handler can get the data of each descriptor record in the list. This handler requests that the
AEGetNthPtr function coerce the data in the descriptor record to a file system specification
record, The handler can then usethe file system specification record as a parameterto its
own routine for openingfiles.

For more information on the AEGetParamDesc function, see “Getting Data out of a Parameter”
later in this chapter. Also see “Getting Data out of a Descriptor List” for further information on
the AEGetNthPtr and AECountItems functions.

6-34 Using the Apple Event Manager

IPR2017-01828

Ubisoft EX1002 Page 347



IPR2017-01828 
Ubisoft EX1002 Page 348

 
The Apple Event Manager

After extracting the file system specification record that describes the documentto open, your
application can use this record to openthefile. For example, in Listing 6-6, the code passes
the file system specification record to its routine for opening files, the MyOpenFile function.

The MyOpenf‘ile function is designed so that it can be called both in response to the Open
Documents event and to events generated by the user. For example, when the user chooses
Openfrom the File menu, the code that handles the mouse-downevent uses the StandardGetFile
procedure to let the user choosea file; it then calls MyOpenFile, passing the file system speci-
fication record returned by StandardGetFile. Byisolating codec that performs a requested action
from code that interacts with the user, you caneasily adapt your application to handle Apple
events that request the same action.

Note that your handler should use the AEDisposeDesc function to dispose of the descriptor
list when your handler no longer requires the data in it. Your handler should also return a
result code.

Handling the Print Documents Event

To handle the Print Documents event, your application should print the documents specified
in the Apple event. The Print Documents event contains a list of documentsto printin its
direct parameter. Your application extracts this information and then prints the specified
documents. Yourapplication should not open any windowsfor the documents. Also note
that your application should remain open after processing the Print Documents event; the
Finder sends your application a Quit Application event immediatelyafter sending it a Print
Documents event.

Listing 6-7 shows a handler for the Print Documents cvent. This handleris similar to the
handler for the Open Documents event. The code illustrates how to print the documents
referred to in the direct parameter.

Listing 6-7. A handler for the Print Documents event
  FUNCT_ON MyHardiePDoc (theAppleEvent,reply: AppleEvert;

 

 
  

hkandlerRefcon: Longint) : OS=rr;
VAR

myFSS: FSSpec;
dochist: A=DescbList;
myhrr: OShrYT;
inéex, LlLemsinlis.: LongInt;
aclLuaulSize: Size;
keywd: AzKeyword;
returnectType: DescType;

BEGIN

{get the direct parameter--a descriptor list--and put it into docList}
myErr := AEGetParambesc(theApplezvent, keyDirectOblect, ctypeA=ZList,

dociist);
IF myErr <> noErr THEN DoError (myFRrr};
feheck Lor missing required parameters:
myErr := MyGotRequiredParaums (LheAopleEvent );
IF myErr <> roErr THEN fan error occurred}

BEGIN

{do the necessary error hancling>
MyHandlePDoc := my=rr;
=xit (MyHand_ebDoc}) ;

FND; (Continued)

Using the Apple Event Manager 6-35

a

>|=J=
oe
iyao
34
Kaa
5
=}
yaea]
"

 
IPR2017-01828

Ubisoft EX1002 Page 348



IPR2017-01828 
Ubisoft EX1002 Page 349

 

fastde Mecriutesd, Velie Vi  
Listing 6-7. A handler for the Print Documents event mContinucds

 

 

Handling the Quit Application Event

To handle the Quit Application event, your application should take ay actions that are
nevessiry Before ih is terminated (such as suing doy open documents). Listing 6-8 shows
anample af a handler for the Quit Application event.

‘The Finder sends your uppligaiion a Quit Applieion event iminedively after a Print Docunents
event. The Pinder alsa sends your application a Quit Application event ifthe user chooses
Restart or Shut Down fram the Finders Special menu.

Listing 6-8. A huadler tor the Quul Applicution event

SED OT bitte fr bae ete rota orp ett pbacedy ft Arr Dieser
t zl. Us! Loe l :

I od: '
1, -

' 2 I md

ay I I: !
eit

7 - 1

ne ! sot. |. 1

role

 

The bandler in Listing 6-8 calls another function supplied by the application. the
MyPrepare PoTecninte tunctien. This tungtion saves the documents for any open windows
and returts a Boolead value that indicates whether the Quit request was canceled by the user.

fr36 Using the Ape Eeveat Maitiyer

IPR2017-01828

Ubisoft EX1002 Page 349



IPR2017-01828 
Ubisoft EX1002 Page 350

The Apple Event Manager

This is another example ofisolating code for interacting with the user from the code that
performs the requested action. Structuring your application in this way allows your applica-
tion to use the same routine when responding to a user event (such as choosing the Quit
command from the File menu) or to the corresponding Apple event. (For a description of the
MyGotRequiredParamsfunction, see “Writing Apple Event Handlers”later in this chapter.)

Note that your handler mustnot call the ExitToShell procedure. In Listing 6-8, the application
calls the ExitToShell procedure only if the handler returns noErr as its function result.

Handling Apple Events Sent by the Edition Manager

If your application provides publish and subscribe capabilities, it should handle the Apple
events sent by the Edition Managerin addition to the required Apple events. Your application
should also handle the Create Publisher event. The Create Publisher event is described in the
next section.

The Edition Managersends your application Apple events to communicate information about
the publishers and subscribers in your application’s documents. Specifically, the Edition
Manageruses Apple events to notify your application

m whenthe informationin an edition is updated

m when your application needs to write the data from a publisher to an edition

m whenyour application should locate a particular publisher and scroll the documentto
that location

The Apple events sent by the Edition Managerto your application are the Section Read event.
Section Write event, and Section Scroll event.

Section Read—read information into the specified section

Eventclass SectionEventMsgClass

Event ID SectionReadMsgID

Required parameter
Keyword: keyDirectObject
Descriptor type: typeSectionH
Data: A handle to the section record of the subscriber whose edition

contains updated information

Requested action Update the subscriber with the new information fromthe edition.

Section Write—write the specified section to an edition

Eventclass SectionEventMsgClass

Event ID SectionWriteMsgID

Required parameter
Keyword: keyDirectObject
Descriptor type: typeSectionH
Data: A handleto the section record of the publisher

nN

i
a=)
s=
a)

&>
gase

Za4
2
=
(7

geoO3Requested action Write the publisher’s datato its edition.

Using the Apple Event Manager 6-37

 
IPR2017-01828

Ubisoft EX1002 Page 350



IPR2017-01828 
Ubisoft EX1002 Page 351

Inside Macintosh, Volume VI

Section Scroll—scroll the document to the specified section

Eventclass SectionEventMsgClass

Event ID SectionScrollMsgID

Required parameter
Keyword: keyDirectObject
Descriptor type: typeSectionH
Data: A handle to the section record of the publisherto scroll to

Requested action Scroll the document to the publisher identified by the specified
section record.

Sec the Edition Manager chapter in this volumefor details on how your application should
respond to these events.

Handling the Create Publisher Event

If your application supports publish and subscribe capabilitics, it should also handle the
Create Publisher event.

Create Publisher—create a publisher

Eventclass kAEMiscStdSuite

Event ID kAECreatePublisher

Required parameter None

Optional parameter
Keyword: keyDirectObject
Descriptor type: typeObjectSpecifier
Data: The part of the documentto publish. If this parameter is omitted,

publish the current selection.

Optional parameter
Keyword: keyAEEditionFileLoc
Descriptor type: typeAlias
Data: Analias record that containsthe location ofthe edition container to

create. If this parameter is omitted, use the default edition container.

Requested action Create a publisher for the specified data using the specified location
for the edition container. If the data isn’t specified, publish the
currentselection. If the location of the edition isn’t specified, use
the default location.

When your application receives the Create Publisher event, it should create a publisher by
writing the publisher’s data to an edition. The data of the publisher, and the location and
nameof the edition, are defined by the Apple event.If the Create Publisher event includes a
keyDirectObject parameter, then your application should publish the data contained in the
parameter. If the keyDirectObject parameter is missing, then your application should publish
the current selection. If the document doesn’t have a current selection, your handler for the
event should return a nonzero result code.

6-38 Using the Apple Event Manager

IPR2017-01828

Ubisoft EX1002 Page 351

 



IPR2017-01828 
Ubisoft EX1002 Page 352



IPR2017-01828 
Ubisoft EX1002 Page 353



IPR2017-01828 
Ubisoft EX1002 Page 354



IPR2017-01828 
Ubisoft EX1002 Page 355



IPR2017-01828 
Ubisoft EX1002 Page 356



IPR2017-01828 
Ubisoft EX1002 Page 357



IPR2017-01828 
Ubisoft EX1002 Page 358



IPR2017-01828 
Ubisoft EX1002 Page 359



IPR2017-01828 
Ubisoft EX1002 Page 360



IPR2017-01828 
Ubisoft EX1002 Page 361



IPR2017-01828 
Ubisoft EX1002 Page 362



IPR2017-01828 
Ubisoft EX1002 Page 363



IPR2017-01828 
Ubisoft EX1002 Page 364



IPR2017-01828 
Ubisoft EX1002 Page 365



IPR2017-01828 
Ubisoft EX1002 Page 366



IPR2017-01828 
Ubisoft EX1002 Page 367



IPR2017-01828 
Ubisoft EX1002 Page 368



IPR2017-01828 
Ubisoft EX1002 Page 369



IPR2017-01828 
Ubisoft EX1002 Page 370



IPR2017-01828 
Ubisoft EX1002 Page 371



IPR2017-01828 
Ubisoft EX1002 Page 372



IPR2017-01828 
Ubisoft EX1002 Page 373



IPR2017-01828 
Ubisoft EX1002 Page 374



IPR2017-01828 
Ubisoft EX1002 Page 375



IPR2017-01828 
Ubisoft EX1002 Page 376



IPR2017-01828 
Ubisoft EX1002 Page 377



IPR2017-01828 
Ubisoft EX1002 Page 378



IPR2017-01828 
Ubisoft EX1002 Page 379



IPR2017-01828 
Ubisoft EX1002 Page 380



IPR2017-01828 
Ubisoft EX1002 Page 381



IPR2017-01828 
Ubisoft EX1002 Page 382



IPR2017-01828 
Ubisoft EX1002 Page 383



IPR2017-01828 
Ubisoft EX1002 Page 384



IPR2017-01828 
Ubisoft EX1002 Page 385



IPR2017-01828 
Ubisoft EX1002 Page 386



IPR2017-01828 
Ubisoft EX1002 Page 387



IPR2017-01828 
Ubisoft EX1002 Page 388



IPR2017-01828 
Ubisoft EX1002 Page 389



IPR2017-01828 
Ubisoft EX1002 Page 390



IPR2017-01828 
Ubisoft EX1002 Page 391



IPR2017-01828 
Ubisoft EX1002 Page 392



IPR2017-01828 
Ubisoft EX1002 Page 393



IPR2017-01828 
Ubisoft EX1002 Page 394



IPR2017-01828 
Ubisoft EX1002 Page 395



IPR2017-01828 
Ubisoft EX1002 Page 396



IPR2017-01828 
Ubisoft EX1002 Page 397



IPR2017-01828 
Ubisoft EX1002 Page 398



IPR2017-01828 
Ubisoft EX1002 Page 399



IPR2017-01828 
Ubisoft EX1002 Page 400



IPR2017-01828 
Ubisoft EX1002 Page 401



IPR2017-01828 
Ubisoft EX1002 Page 402



IPR2017-01828 
Ubisoft EX1002 Page 403



IPR2017-01828 
Ubisoft EX1002 Page 404



IPR2017-01828 
Ubisoft EX1002 Page 405



IPR2017-01828 
Ubisoft EX1002 Page 406



IPR2017-01828 
Ubisoft EX1002 Page 407



IPR2017-01828 
Ubisoft EX1002 Page 408



IPR2017-01828 
Ubisoft EX1002 Page 409



IPR2017-01828 
Ubisoft EX1002 Page 410



IPR2017-01828 
Ubisoft EX1002 Page 411



IPR2017-01828 
Ubisoft EX1002 Page 412



IPR2017-01828 
Ubisoft EX1002 Page 413



IPR2017-01828 
Ubisoft EX1002 Page 414



IPR2017-01828 
Ubisoft EX1002 Page 415



IPR2017-01828 
Ubisoft EX1002 Page 416



IPR2017-01828 
Ubisoft EX1002 Page 417



IPR2017-01828 
Ubisoft EX1002 Page 418



IPR2017-01828 
Ubisoft EX1002 Page 419



IPR2017-01828 
Ubisoft EX1002 Page 420



IPR2017-01828 
Ubisoft EX1002 Page 421



IPR2017-01828 
Ubisoft EX1002 Page 422



IPR2017-01828 
Ubisoft EX1002 Page 423



IPR2017-01828 
Ubisoft EX1002 Page 424



IPR2017-01828 
Ubisoft EX1002 Page 425



IPR2017-01828 
Ubisoft EX1002 Page 426



IPR2017-01828 
Ubisoft EX1002 Page 427



IPR2017-01828 
Ubisoft EX1002 Page 428



IPR2017-01828 
Ubisoft EX1002 Page 429



IPR2017-01828 
Ubisoft EX1002 Page 430



IPR2017-01828 
Ubisoft EX1002 Page 431



IPR2017-01828 
Ubisoft EX1002 Page 432



IPR2017-01828 
Ubisoft EX1002 Page 433



IPR2017-01828 
Ubisoft EX1002 Page 434



IPR2017-01828 
Ubisoft EX1002 Page 435



IPR2017-01828 
Ubisoft EX1002 Page 436



IPR2017-01828 
Ubisoft EX1002 Page 437



IPR2017-01828 
Ubisoft EX1002 Page 438



IPR2017-01828 
Ubisoft EX1002 Page 439



IPR2017-01828 
Ubisoft EX1002 Page 440



IPR2017-01828 
Ubisoft EX1002 Page 441



IPR2017-01828 
Ubisoft EX1002 Page 442



IPR2017-01828 
Ubisoft EX1002 Page 443



IPR2017-01828 
Ubisoft EX1002 Page 444



IPR2017-01828 
Ubisoft EX1002 Page 445



IPR2017-01828 
Ubisoft EX1002 Page 446



IPR2017-01828 
Ubisoft EX1002 Page 447



IPR2017-01828 
Ubisoft EX1002 Page 448



IPR2017-01828 
Ubisoft EX1002 Page 449



IPR2017-01828 
Ubisoft EX1002 Page 450



IPR2017-01828 
Ubisoft EX1002 Page 451



IPR2017-01828 
Ubisoft EX1002 Page 452



IPR2017-01828 
Ubisoft EX1002 Page 453



IPR2017-01828 
Ubisoft EX1002 Page 454



IPR2017-01828 
Ubisoft EX1002 Page 455



IPR2017-01828 
Ubisoft EX1002 Page 456



IPR2017-01828 
Ubisoft EX1002 Page 457



IPR2017-01828 
Ubisoft EX1002 Page 458



IPR2017-01828 
Ubisoft EX1002 Page 459



IPR2017-01828 
Ubisoft EX1002 Page 460



IPR2017-01828 
Ubisoft EX1002 Page 461



IPR2017-01828 
Ubisoft EX1002 Page 462



IPR2017-01828 
Ubisoft EX1002 Page 463



IPR2017-01828 
Ubisoft EX1002 Page 464



IPR2017-01828 
Ubisoft EX1002 Page 465



IPR2017-01828 
Ubisoft EX1002 Page 466



IPR2017-01828 
Ubisoft EX1002 Page 467



IPR2017-01828 
Ubisoft EX1002 Page 468



IPR2017-01828 
Ubisoft EX1002 Page 469



IPR2017-01828 
Ubisoft EX1002 Page 470



IPR2017-01828 
Ubisoft EX1002 Page 471



IPR2017-01828 
Ubisoft EX1002 Page 472



IPR2017-01828 
Ubisoft EX1002 Page 473



IPR2017-01828 
Ubisoft EX1002 Page 474



IPR2017-01828 
Ubisoft EX1002 Page 475



IPR2017-01828 
Ubisoft EX1002 Page 476



IPR2017-01828 
Ubisoft EX1002 Page 477



IPR2017-01828 
Ubisoft EX1002 Page 478



IPR2017-01828 
Ubisoft EX1002 Page 479



IPR2017-01828 
Ubisoft EX1002 Page 480



IPR2017-01828 
Ubisoft EX1002 Page 481



IPR2017-01828 
Ubisoft EX1002 Page 482



IPR2017-01828 
Ubisoft EX1002 Page 483



IPR2017-01828 
Ubisoft EX1002 Page 484



IPR2017-01828 
Ubisoft EX1002 Page 485



IPR2017-01828 
Ubisoft EX1002 Page 486



IPR2017-01828 
Ubisoft EX1002 Page 487



IPR2017-01828 
Ubisoft EX1002 Page 488



IPR2017-01828 
Ubisoft EX1002 Page 489



IPR2017-01828 
Ubisoft EX1002 Page 490



IPR2017-01828 
Ubisoft EX1002 Page 491



IPR2017-01828 
Ubisoft EX1002 Page 492



IPR2017-01828 
Ubisoft EX1002 Page 493



IPR2017-01828 
Ubisoft EX1002 Page 494



IPR2017-01828 
Ubisoft EX1002 Page 495



IPR2017-01828 
Ubisoft EX1002 Page 496



IPR2017-01828 
Ubisoft EX1002 Page 497



IPR2017-01828 
Ubisoft EX1002 Page 498



IPR2017-01828 
Ubisoft EX1002 Page 499



IPR2017-01828 
Ubisoft EX1002 Page 500



IPR2017-01828 
Ubisoft EX1002 Page 501



IPR2017-01828 
Ubisoft EX1002 Page 502



IPR2017-01828 
Ubisoft EX1002 Page 503



IPR2017-01828 
Ubisoft EX1002 Page 504



IPR2017-01828 
Ubisoft EX1002 Page 505



IPR2017-01828 
Ubisoft EX1002 Page 506



IPR2017-01828 
Ubisoft EX1002 Page 507



IPR2017-01828 
Ubisoft EX1002 Page 508



IPR2017-01828 
Ubisoft EX1002 Page 509



IPR2017-01828 
Ubisoft EX1002 Page 510



IPR2017-01828 
Ubisoft EX1002 Page 511



IPR2017-01828 
Ubisoft EX1002 Page 512



IPR2017-01828 
Ubisoft EX1002 Page 513



IPR2017-01828 
Ubisoft EX1002 Page 514



IPR2017-01828 
Ubisoft EX1002 Page 515



IPR2017-01828 
Ubisoft EX1002 Page 516



IPR2017-01828 
Ubisoft EX1002 Page 517



IPR2017-01828 
Ubisoft EX1002 Page 518



IPR2017-01828 
Ubisoft EX1002 Page 519



IPR2017-01828 
Ubisoft EX1002 Page 520



IPR2017-01828 
Ubisoft EX1002 Page 521



IPR2017-01828 
Ubisoft EX1002 Page 522



IPR2017-01828 
Ubisoft EX1002 Page 523



IPR2017-01828 
Ubisoft EX1002 Page 524



IPR2017-01828 
Ubisoft EX1002 Page 525



IPR2017-01828 
Ubisoft EX1002 Page 526



IPR2017-01828 
Ubisoft EX1002 Page 527



IPR2017-01828 
Ubisoft EX1002 Page 528



IPR2017-01828 
Ubisoft EX1002 Page 529



IPR2017-01828 
Ubisoft EX1002 Page 530



IPR2017-01828 
Ubisoft EX1002 Page 531



IPR2017-01828 
Ubisoft EX1002 Page 532



IPR2017-01828 
Ubisoft EX1002 Page 533



IPR2017-01828 
Ubisoft EX1002 Page 534



IPR2017-01828 
Ubisoft EX1002 Page 535



IPR2017-01828 
Ubisoft EX1002 Page 536



IPR2017-01828 
Ubisoft EX1002 Page 537



IPR2017-01828 
Ubisoft EX1002 Page 538



IPR2017-01828 
Ubisoft EX1002 Page 539



IPR2017-01828 
Ubisoft EX1002 Page 540



IPR2017-01828 
Ubisoft EX1002 Page 541



IPR2017-01828 
Ubisoft EX1002 Page 542



IPR2017-01828 
Ubisoft EX1002 Page 543



IPR2017-01828 
Ubisoft EX1002 Page 544



IPR2017-01828 
Ubisoft EX1002 Page 545



IPR2017-01828 
Ubisoft EX1002 Page 546



IPR2017-01828 
Ubisoft EX1002 Page 547



IPR2017-01828 
Ubisoft EX1002 Page 548



IPR2017-01828 
Ubisoft EX1002 Page 549



IPR2017-01828 
Ubisoft EX1002 Page 550



IPR2017-01828 
Ubisoft EX1002 Page 551



IPR2017-01828 
Ubisoft EX1002 Page 552



IPR2017-01828 
Ubisoft EX1002 Page 553



IPR2017-01828 
Ubisoft EX1002 Page 554



IPR2017-01828 
Ubisoft EX1002 Page 555



IPR2017-01828 
Ubisoft EX1002 Page 556



IPR2017-01828 
Ubisoft EX1002 Page 557



IPR2017-01828 
Ubisoft EX1002 Page 558



IPR2017-01828 
Ubisoft EX1002 Page 559



IPR2017-01828 
Ubisoft EX1002 Page 560



IPR2017-01828 
Ubisoft EX1002 Page 561



IPR2017-01828 
Ubisoft EX1002 Page 562



IPR2017-01828 
Ubisoft EX1002 Page 563



IPR2017-01828 
Ubisoft EX1002 Page 564



IPR2017-01828 
Ubisoft EX1002 Page 565



IPR2017-01828 
Ubisoft EX1002 Page 566



IPR2017-01828 
Ubisoft EX1002 Page 567



IPR2017-01828 
Ubisoft EX1002 Page 568



IPR2017-01828 
Ubisoft EX1002 Page 569



IPR2017-01828 
Ubisoft EX1002 Page 570



IPR2017-01828 
Ubisoft EX1002 Page 571



IPR2017-01828 
Ubisoft EX1002 Page 572



IPR2017-01828 
Ubisoft EX1002 Page 573



IPR2017-01828 
Ubisoft EX1002 Page 574



IPR2017-01828 
Ubisoft EX1002 Page 575



IPR2017-01828 
Ubisoft EX1002 Page 576



IPR2017-01828 
Ubisoft EX1002 Page 577



IPR2017-01828 
Ubisoft EX1002 Page 578



IPR2017-01828 
Ubisoft EX1002 Page 579



IPR2017-01828 
Ubisoft EX1002 Page 580



IPR2017-01828 
Ubisoft EX1002 Page 581



IPR2017-01828 
Ubisoft EX1002 Page 582



IPR2017-01828 
Ubisoft EX1002 Page 583



IPR2017-01828 
Ubisoft EX1002 Page 584



IPR2017-01828 
Ubisoft EX1002 Page 585



IPR2017-01828 
Ubisoft EX1002 Page 586



IPR2017-01828 
Ubisoft EX1002 Page 587



IPR2017-01828 
Ubisoft EX1002 Page 588



IPR2017-01828 
Ubisoft EX1002 Page 589



IPR2017-01828 
Ubisoft EX1002 Page 590



IPR2017-01828 
Ubisoft EX1002 Page 591



IPR2017-01828 
Ubisoft EX1002 Page 592



IPR2017-01828 
Ubisoft EX1002 Page 593



IPR2017-01828 
Ubisoft EX1002 Page 594



IPR2017-01828 
Ubisoft EX1002 Page 595



IPR2017-01828 
Ubisoft EX1002 Page 596



IPR2017-01828 
Ubisoft EX1002 Page 597



IPR2017-01828 
Ubisoft EX1002 Page 598



IPR2017-01828 
Ubisoft EX1002 Page 599



IPR2017-01828 
Ubisoft EX1002 Page 600



IPR2017-01828 
Ubisoft EX1002 Page 601



IPR2017-01828 
Ubisoft EX1002 Page 602



IPR2017-01828 
Ubisoft EX1002 Page 603



IPR2017-01828 
Ubisoft EX1002 Page 604



IPR2017-01828 
Ubisoft EX1002 Page 605



IPR2017-01828 
Ubisoft EX1002 Page 606



IPR2017-01828 
Ubisoft EX1002 Page 607



IPR2017-01828 
Ubisoft EX1002 Page 608



IPR2017-01828 
Ubisoft EX1002 Page 609



IPR2017-01828 
Ubisoft EX1002 Page 610



IPR2017-01828 
Ubisoft EX1002 Page 611



IPR2017-01828 
Ubisoft EX1002 Page 612



IPR2017-01828 
Ubisoft EX1002 Page 613



IPR2017-01828 
Ubisoft EX1002 Page 614



IPR2017-01828 
Ubisoft EX1002 Page 615



IPR2017-01828 
Ubisoft EX1002 Page 616



IPR2017-01828 
Ubisoft EX1002 Page 617



IPR2017-01828 
Ubisoft EX1002 Page 618



IPR2017-01828 
Ubisoft EX1002 Page 619



IPR2017-01828 
Ubisoft EX1002 Page 620



IPR2017-01828 
Ubisoft EX1002 Page 621



IPR2017-01828 
Ubisoft EX1002 Page 622



IPR2017-01828 
Ubisoft EX1002 Page 623



IPR2017-01828 
Ubisoft EX1002 Page 624



IPR2017-01828 
Ubisoft EX1002 Page 625



IPR2017-01828 
Ubisoft EX1002 Page 626



IPR2017-01828 
Ubisoft EX1002 Page 627



IPR2017-01828 
Ubisoft EX1002 Page 628



IPR2017-01828 
Ubisoft EX1002 Page 629



IPR2017-01828 
Ubisoft EX1002 Page 630



IPR2017-01828 
Ubisoft EX1002 Page 631



IPR2017-01828 
Ubisoft EX1002 Page 632



IPR2017-01828 
Ubisoft EX1002 Page 633



IPR2017-01828 
Ubisoft EX1002 Page 634



IPR2017-01828 
Ubisoft EX1002 Page 635



IPR2017-01828 
Ubisoft EX1002 Page 636



IPR2017-01828 
Ubisoft EX1002 Page 637



IPR2017-01828 
Ubisoft EX1002 Page 638



IPR2017-01828 
Ubisoft EX1002 Page 639



IPR2017-01828 
Ubisoft EX1002 Page 640



IPR2017-01828 
Ubisoft EX1002 Page 641



IPR2017-01828 
Ubisoft EX1002 Page 642



IPR2017-01828 
Ubisoft EX1002 Page 643



IPR2017-01828 
Ubisoft EX1002 Page 644



IPR2017-01828 
Ubisoft EX1002 Page 645



IPR2017-01828 
Ubisoft EX1002 Page 646



IPR2017-01828 
Ubisoft EX1002 Page 647



IPR2017-01828 
Ubisoft EX1002 Page 648



IPR2017-01828 
Ubisoft EX1002 Page 649



IPR2017-01828 
Ubisoft EX1002 Page 650



IPR2017-01828 
Ubisoft EX1002 Page 651



IPR2017-01828 
Ubisoft EX1002 Page 652



IPR2017-01828 
Ubisoft EX1002 Page 653



IPR2017-01828 
Ubisoft EX1002 Page 654



IPR2017-01828 
Ubisoft EX1002 Page 655



IPR2017-01828 
Ubisoft EX1002 Page 656



IPR2017-01828 
Ubisoft EX1002 Page 657



IPR2017-01828 
Ubisoft EX1002 Page 658



IPR2017-01828 
Ubisoft EX1002 Page 659



IPR2017-01828 
Ubisoft EX1002 Page 660



IPR2017-01828 
Ubisoft EX1002 Page 661



IPR2017-01828 
Ubisoft EX1002 Page 662



IPR2017-01828 
Ubisoft EX1002 Page 663



IPR2017-01828 
Ubisoft EX1002 Page 664



IPR2017-01828 
Ubisoft EX1002 Page 665



IPR2017-01828 
Ubisoft EX1002 Page 666



IPR2017-01828 
Ubisoft EX1002 Page 667



IPR2017-01828 
Ubisoft EX1002 Page 668



IPR2017-01828 
Ubisoft EX1002 Page 669



IPR2017-01828 
Ubisoft EX1002 Page 670



IPR2017-01828 
Ubisoft EX1002 Page 671



IPR2017-01828 
Ubisoft EX1002 Page 672



IPR2017-01828 
Ubisoft EX1002 Page 673



IPR2017-01828 
Ubisoft EX1002 Page 674



IPR2017-01828 
Ubisoft EX1002 Page 675



IPR2017-01828 
Ubisoft EX1002 Page 676



IPR2017-01828 
Ubisoft EX1002 Page 677



IPR2017-01828 
Ubisoft EX1002 Page 678



IPR2017-01828 
Ubisoft EX1002 Page 679



IPR2017-01828 
Ubisoft EX1002 Page 680



IPR2017-01828 
Ubisoft EX1002 Page 681



IPR2017-01828 
Ubisoft EX1002 Page 682



IPR2017-01828 
Ubisoft EX1002 Page 683



IPR2017-01828 
Ubisoft EX1002 Page 684



IPR2017-01828 
Ubisoft EX1002 Page 685



IPR2017-01828 
Ubisoft EX1002 Page 686



IPR2017-01828 
Ubisoft EX1002 Page 687



IPR2017-01828 
Ubisoft EX1002 Page 688



IPR2017-01828 
Ubisoft EX1002 Page 689



IPR2017-01828 
Ubisoft EX1002 Page 690



IPR2017-01828 
Ubisoft EX1002 Page 691



IPR2017-01828 
Ubisoft EX1002 Page 692



IPR2017-01828 
Ubisoft EX1002 Page 693



IPR2017-01828 
Ubisoft EX1002 Page 694



IPR2017-01828 
Ubisoft EX1002 Page 695



IPR2017-01828 
Ubisoft EX1002 Page 696



IPR2017-01828 
Ubisoft EX1002 Page 697



IPR2017-01828 
Ubisoft EX1002 Page 698



IPR2017-01828 
Ubisoft EX1002 Page 699



IPR2017-01828 
Ubisoft EX1002 Page 700



IPR2017-01828 
Ubisoft EX1002 Page 701



IPR2017-01828 
Ubisoft EX1002 Page 702



IPR2017-01828 
Ubisoft EX1002 Page 703



IPR2017-01828 
Ubisoft EX1002 Page 704



IPR2017-01828 
Ubisoft EX1002 Page 705



IPR2017-01828 
Ubisoft EX1002 Page 706



IPR2017-01828 
Ubisoft EX1002 Page 707



IPR2017-01828 
Ubisoft EX1002 Page 708



IPR2017-01828 
Ubisoft EX1002 Page 709



IPR2017-01828 
Ubisoft EX1002 Page 710



IPR2017-01828 
Ubisoft EX1002 Page 711



IPR2017-01828 
Ubisoft EX1002 Page 712



IPR2017-01828 
Ubisoft EX1002 Page 713



IPR2017-01828 
Ubisoft EX1002 Page 714



IPR2017-01828 
Ubisoft EX1002 Page 715



IPR2017-01828 
Ubisoft EX1002 Page 716



IPR2017-01828 
Ubisoft EX1002 Page 717



IPR2017-01828 
Ubisoft EX1002 Page 718



IPR2017-01828 
Ubisoft EX1002 Page 719



IPR2017-01828 
Ubisoft EX1002 Page 720



IPR2017-01828 
Ubisoft EX1002 Page 721



IPR2017-01828 
Ubisoft EX1002 Page 722



IPR2017-01828 
Ubisoft EX1002 Page 723



IPR2017-01828 
Ubisoft EX1002 Page 724



IPR2017-01828 
Ubisoft EX1002 Page 725



IPR2017-01828 
Ubisoft EX1002 Page 726



IPR2017-01828 
Ubisoft EX1002 Page 727



IPR2017-01828 
Ubisoft EX1002 Page 728



IPR2017-01828 
Ubisoft EX1002 Page 729



IPR2017-01828 
Ubisoft EX1002 Page 730



IPR2017-01828 
Ubisoft EX1002 Page 731



IPR2017-01828 
Ubisoft EX1002 Page 732



IPR2017-01828 
Ubisoft EX1002 Page 733



IPR2017-01828 
Ubisoft EX1002 Page 734



IPR2017-01828 
Ubisoft EX1002 Page 735



IPR2017-01828 
Ubisoft EX1002 Page 736



IPR2017-01828 
Ubisoft EX1002 Page 737



IPR2017-01828 
Ubisoft EX1002 Page 738



IPR2017-01828 
Ubisoft EX1002 Page 739



IPR2017-01828 
Ubisoft EX1002 Page 740



IPR2017-01828 
Ubisoft EX1002 Page 741



IPR2017-01828 
Ubisoft EX1002 Page 742



IPR2017-01828 
Ubisoft EX1002 Page 743



IPR2017-01828 
Ubisoft EX1002 Page 744



IPR2017-01828 
Ubisoft EX1002 Page 745



IPR2017-01828 
Ubisoft EX1002 Page 746



IPR2017-01828 
Ubisoft EX1002 Page 747



IPR2017-01828 
Ubisoft EX1002 Page 748



IPR2017-01828 
Ubisoft EX1002 Page 749



IPR2017-01828 
Ubisoft EX1002 Page 750



IPR2017-01828 
Ubisoft EX1002 Page 751



IPR2017-01828 
Ubisoft EX1002 Page 752



IPR2017-01828 
Ubisoft EX1002 Page 753



IPR2017-01828 
Ubisoft EX1002 Page 754



IPR2017-01828 
Ubisoft EX1002 Page 755



IPR2017-01828 
Ubisoft EX1002 Page 756



IPR2017-01828 
Ubisoft EX1002 Page 757



IPR2017-01828 
Ubisoft EX1002 Page 758



IPR2017-01828 
Ubisoft EX1002 Page 759



IPR2017-01828 
Ubisoft EX1002 Page 760



IPR2017-01828 
Ubisoft EX1002 Page 761



IPR2017-01828 
Ubisoft EX1002 Page 762



IPR2017-01828 
Ubisoft EX1002 Page 763



IPR2017-01828 
Ubisoft EX1002 Page 764



IPR2017-01828 
Ubisoft EX1002 Page 765



IPR2017-01828 
Ubisoft EX1002 Page 766



IPR2017-01828 
Ubisoft EX1002 Page 767



IPR2017-01828 
Ubisoft EX1002 Page 768



IPR2017-01828 
Ubisoft EX1002 Page 769



IPR2017-01828 
Ubisoft EX1002 Page 770



IPR2017-01828 
Ubisoft EX1002 Page 771



IPR2017-01828 
Ubisoft EX1002 Page 772



IPR2017-01828 
Ubisoft EX1002 Page 773



IPR2017-01828 
Ubisoft EX1002 Page 774



IPR2017-01828 
Ubisoft EX1002 Page 775



IPR2017-01828 
Ubisoft EX1002 Page 776



IPR2017-01828 
Ubisoft EX1002 Page 777



IPR2017-01828 
Ubisoft EX1002 Page 778



IPR2017-01828 
Ubisoft EX1002 Page 779



IPR2017-01828 
Ubisoft EX1002 Page 780



IPR2017-01828 
Ubisoft EX1002 Page 781



IPR2017-01828 
Ubisoft EX1002 Page 782



IPR2017-01828 
Ubisoft EX1002 Page 783



IPR2017-01828 
Ubisoft EX1002 Page 784



IPR2017-01828 
Ubisoft EX1002 Page 785



IPR2017-01828 
Ubisoft EX1002 Page 786



IPR2017-01828 
Ubisoft EX1002 Page 787



IPR2017-01828 
Ubisoft EX1002 Page 788



IPR2017-01828 
Ubisoft EX1002 Page 789



IPR2017-01828 
Ubisoft EX1002 Page 790



IPR2017-01828 
Ubisoft EX1002 Page 791



IPR2017-01828 
Ubisoft EX1002 Page 792



IPR2017-01828 
Ubisoft EX1002 Page 793



IPR2017-01828 
Ubisoft EX1002 Page 794



IPR2017-01828 
Ubisoft EX1002 Page 795



IPR2017-01828 
Ubisoft EX1002 Page 796



IPR2017-01828 
Ubisoft EX1002 Page 797



IPR2017-01828 
Ubisoft EX1002 Page 798



IPR2017-01828 
Ubisoft EX1002 Page 799



IPR2017-01828 
Ubisoft EX1002 Page 800



IPR2017-01828 
Ubisoft EX1002 Page 801



IPR2017-01828 
Ubisoft EX1002 Page 802



IPR2017-01828 
Ubisoft EX1002 Page 803



IPR2017-01828 
Ubisoft EX1002 Page 804



IPR2017-01828 
Ubisoft EX1002 Page 805



IPR2017-01828 
Ubisoft EX1002 Page 806



IPR2017-01828 
Ubisoft EX1002 Page 807



IPR2017-01828 
Ubisoft EX1002 Page 808



IPR2017-01828 
Ubisoft EX1002 Page 809



IPR2017-01828 
Ubisoft EX1002 Page 810



IPR2017-01828 
Ubisoft EX1002 Page 811



IPR2017-01828 
Ubisoft EX1002 Page 812



IPR2017-01828 
Ubisoft EX1002 Page 813



IPR2017-01828 
Ubisoft EX1002 Page 814



IPR2017-01828 
Ubisoft EX1002 Page 815



IPR2017-01828 
Ubisoft EX1002 Page 816



IPR2017-01828 
Ubisoft EX1002 Page 817



IPR2017-01828 
Ubisoft EX1002 Page 818



IPR2017-01828 
Ubisoft EX1002 Page 819



IPR2017-01828 
Ubisoft EX1002 Page 820



IPR2017-01828 
Ubisoft EX1002 Page 821



IPR2017-01828 
Ubisoft EX1002 Page 822



IPR2017-01828 
Ubisoft EX1002 Page 823



IPR2017-01828 
Ubisoft EX1002 Page 824



IPR2017-01828 
Ubisoft EX1002 Page 825



IPR2017-01828 
Ubisoft EX1002 Page 826



IPR2017-01828 
Ubisoft EX1002 Page 827



IPR2017-01828 
Ubisoft EX1002 Page 828



IPR2017-01828 
Ubisoft EX1002 Page 829



IPR2017-01828 
Ubisoft EX1002 Page 830



IPR2017-01828 
Ubisoft EX1002 Page 831



IPR2017-01828 
Ubisoft EX1002 Page 832



IPR2017-01828 
Ubisoft EX1002 Page 833



IPR2017-01828 
Ubisoft EX1002 Page 834



IPR2017-01828 
Ubisoft EX1002 Page 835



IPR2017-01828 
Ubisoft EX1002 Page 836



IPR2017-01828 
Ubisoft EX1002 Page 837



IPR2017-01828 
Ubisoft EX1002 Page 838



IPR2017-01828 
Ubisoft EX1002 Page 839



IPR2017-01828 
Ubisoft EX1002 Page 840



IPR2017-01828 
Ubisoft EX1002 Page 841



IPR2017-01828 
Ubisoft EX1002 Page 842



IPR2017-01828 
Ubisoft EX1002 Page 843



IPR2017-01828 
Ubisoft EX1002 Page 844



IPR2017-01828 
Ubisoft EX1002 Page 845



IPR2017-01828 
Ubisoft EX1002 Page 846



IPR2017-01828 
Ubisoft EX1002 Page 847



IPR2017-01828 
Ubisoft EX1002 Page 848



IPR2017-01828 
Ubisoft EX1002 Page 849



IPR2017-01828 
Ubisoft EX1002 Page 850



IPR2017-01828 
Ubisoft EX1002 Page 851



IPR2017-01828 
Ubisoft EX1002 Page 852



IPR2017-01828 
Ubisoft EX1002 Page 853



IPR2017-01828 
Ubisoft EX1002 Page 854



IPR2017-01828 
Ubisoft EX1002 Page 855



IPR2017-01828 
Ubisoft EX1002 Page 856



IPR2017-01828 
Ubisoft EX1002 Page 857



IPR2017-01828 
Ubisoft EX1002 Page 858



IPR2017-01828 
Ubisoft EX1002 Page 859



IPR2017-01828 
Ubisoft EX1002 Page 860



IPR2017-01828 
Ubisoft EX1002 Page 861



IPR2017-01828 
Ubisoft EX1002 Page 862



IPR2017-01828 
Ubisoft EX1002 Page 863



IPR2017-01828 
Ubisoft EX1002 Page 864



IPR2017-01828 
Ubisoft EX1002 Page 865



IPR2017-01828 
Ubisoft EX1002 Page 866



IPR2017-01828 
Ubisoft EX1002 Page 867



IPR2017-01828 
Ubisoft EX1002 Page 868



IPR2017-01828 
Ubisoft EX1002 Page 869



IPR2017-01828 
Ubisoft EX1002 Page 870



IPR2017-01828 
Ubisoft EX1002 Page 871



IPR2017-01828 
Ubisoft EX1002 Page 872



IPR2017-01828 
Ubisoft EX1002 Page 873



IPR2017-01828 
Ubisoft EX1002 Page 874



IPR2017-01828 
Ubisoft EX1002 Page 875



IPR2017-01828 
Ubisoft EX1002 Page 876



IPR2017-01828 
Ubisoft EX1002 Page 877



IPR2017-01828 
Ubisoft EX1002 Page 878



IPR2017-01828 
Ubisoft EX1002 Page 879



IPR2017-01828 
Ubisoft EX1002 Page 880



IPR2017-01828 
Ubisoft EX1002 Page 881



IPR2017-01828 
Ubisoft EX1002 Page 882



IPR2017-01828 
Ubisoft EX1002 Page 883



IPR2017-01828 
Ubisoft EX1002 Page 884



IPR2017-01828 
Ubisoft EX1002 Page 885



IPR2017-01828 
Ubisoft EX1002 Page 886



IPR2017-01828 
Ubisoft EX1002 Page 887



IPR2017-01828 
Ubisoft EX1002 Page 888



IPR2017-01828 
Ubisoft EX1002 Page 889



IPR2017-01828 
Ubisoft EX1002 Page 890



IPR2017-01828 
Ubisoft EX1002 Page 891



IPR2017-01828 
Ubisoft EX1002 Page 892



IPR2017-01828 
Ubisoft EX1002 Page 893



IPR2017-01828 
Ubisoft EX1002 Page 894



IPR2017-01828 
Ubisoft EX1002 Page 895



IPR2017-01828 
Ubisoft EX1002 Page 896



IPR2017-01828 
Ubisoft EX1002 Page 897



IPR2017-01828 
Ubisoft EX1002 Page 898



IPR2017-01828 
Ubisoft EX1002 Page 899



IPR2017-01828 
Ubisoft EX1002 Page 900



IPR2017-01828 
Ubisoft EX1002 Page 901



IPR2017-01828 
Ubisoft EX1002 Page 902



IPR2017-01828 
Ubisoft EX1002 Page 903



IPR2017-01828 
Ubisoft EX1002 Page 904



IPR2017-01828 
Ubisoft EX1002 Page 905



IPR2017-01828 
Ubisoft EX1002 Page 906



IPR2017-01828 
Ubisoft EX1002 Page 907



IPR2017-01828 
Ubisoft EX1002 Page 908



IPR2017-01828 
Ubisoft EX1002 Page 909



IPR2017-01828 
Ubisoft EX1002 Page 910



IPR2017-01828 
Ubisoft EX1002 Page 911



IPR2017-01828 
Ubisoft EX1002 Page 912



IPR2017-01828 
Ubisoft EX1002 Page 913



IPR2017-01828 
Ubisoft EX1002 Page 914



IPR2017-01828 
Ubisoft EX1002 Page 915



IPR2017-01828 
Ubisoft EX1002 Page 916



IPR2017-01828 
Ubisoft EX1002 Page 917



IPR2017-01828 
Ubisoft EX1002 Page 918



IPR2017-01828 
Ubisoft EX1002 Page 919



IPR2017-01828 
Ubisoft EX1002 Page 920



IPR2017-01828 
Ubisoft EX1002 Page 921



IPR2017-01828 
Ubisoft EX1002 Page 922



IPR2017-01828 
Ubisoft EX1002 Page 923



IPR2017-01828 
Ubisoft EX1002 Page 924



IPR2017-01828 
Ubisoft EX1002 Page 925



IPR2017-01828 
Ubisoft EX1002 Page 926



IPR2017-01828 
Ubisoft EX1002 Page 927



IPR2017-01828 
Ubisoft EX1002 Page 928



IPR2017-01828 
Ubisoft EX1002 Page 929



IPR2017-01828 
Ubisoft EX1002 Page 930



IPR2017-01828 
Ubisoft EX1002 Page 931



IPR2017-01828 
Ubisoft EX1002 Page 932



IPR2017-01828 
Ubisoft EX1002 Page 933



IPR2017-01828 
Ubisoft EX1002 Page 934



IPR2017-01828 
Ubisoft EX1002 Page 935



IPR2017-01828 
Ubisoft EX1002 Page 936



IPR2017-01828 
Ubisoft EX1002 Page 937



IPR2017-01828 
Ubisoft EX1002 Page 938



IPR2017-01828 
Ubisoft EX1002 Page 939



IPR2017-01828 
Ubisoft EX1002 Page 940



IPR2017-01828 
Ubisoft EX1002 Page 941



IPR2017-01828 
Ubisoft EX1002 Page 942



IPR2017-01828 
Ubisoft EX1002 Page 943



IPR2017-01828 
Ubisoft EX1002 Page 944



IPR2017-01828 
Ubisoft EX1002 Page 945



IPR2017-01828 
Ubisoft EX1002 Page 946



IPR2017-01828 
Ubisoft EX1002 Page 947



IPR2017-01828 
Ubisoft EX1002 Page 948



IPR2017-01828 
Ubisoft EX1002 Page 949



IPR2017-01828 
Ubisoft EX1002 Page 950



IPR2017-01828 
Ubisoft EX1002 Page 951



IPR2017-01828 
Ubisoft EX1002 Page 952



IPR2017-01828 
Ubisoft EX1002 Page 953



IPR2017-01828 
Ubisoft EX1002 Page 954



IPR2017-01828 
Ubisoft EX1002 Page 955



IPR2017-01828 
Ubisoft EX1002 Page 956



IPR2017-01828 
Ubisoft EX1002 Page 957



IPR2017-01828 
Ubisoft EX1002 Page 958



IPR2017-01828 
Ubisoft EX1002 Page 959



IPR2017-01828 
Ubisoft EX1002 Page 960



IPR2017-01828 
Ubisoft EX1002 Page 961



IPR2017-01828 
Ubisoft EX1002 Page 962



IPR2017-01828 
Ubisoft EX1002 Page 963



IPR2017-01828 
Ubisoft EX1002 Page 964



IPR2017-01828 
Ubisoft EX1002 Page 965



IPR2017-01828 
Ubisoft EX1002 Page 966



IPR2017-01828 
Ubisoft EX1002 Page 967



IPR2017-01828 
Ubisoft EX1002 Page 968



IPR2017-01828 
Ubisoft EX1002 Page 969



IPR2017-01828 
Ubisoft EX1002 Page 970



IPR2017-01828 
Ubisoft EX1002 Page 971



IPR2017-01828 
Ubisoft EX1002 Page 972



IPR2017-01828 
Ubisoft EX1002 Page 973



IPR2017-01828 
Ubisoft EX1002 Page 974



IPR2017-01828 
Ubisoft EX1002 Page 975



IPR2017-01828 
Ubisoft EX1002 Page 976



IPR2017-01828 
Ubisoft EX1002 Page 977



IPR2017-01828 
Ubisoft EX1002 Page 978



IPR2017-01828 
Ubisoft EX1002 Page 979



IPR2017-01828 
Ubisoft EX1002 Page 980



IPR2017-01828 
Ubisoft EX1002 Page 981



IPR2017-01828 
Ubisoft EX1002 Page 982



IPR2017-01828 
Ubisoft EX1002 Page 983



IPR2017-01828 
Ubisoft EX1002 Page 984



IPR2017-01828 
Ubisoft EX1002 Page 985



IPR2017-01828 
Ubisoft EX1002 Page 986



IPR2017-01828 
Ubisoft EX1002 Page 987



IPR2017-01828 
Ubisoft EX1002 Page 988



IPR2017-01828 
Ubisoft EX1002 Page 989



IPR2017-01828 
Ubisoft EX1002 Page 990



IPR2017-01828 
Ubisoft EX1002 Page 991



IPR2017-01828 
Ubisoft EX1002 Page 992



IPR2017-01828 
Ubisoft EX1002 Page 993



IPR2017-01828 
Ubisoft EX1002 Page 994



IPR2017-01828 
Ubisoft EX1002 Page 995



IPR2017-01828 
Ubisoft EX1002 Page 996



IPR2017-01828 
Ubisoft EX1002 Page 997



IPR2017-01828 
Ubisoft EX1002 Page 998



IPR2017-01828 
Ubisoft EX1002 Page 999



IPR2017-01828 
Ubisoft EX1002 Page 1000



IPR2017-01828 
Ubisoft EX1002 Page 1001



IPR2017-01828 
Ubisoft EX1002 Page 1002



IPR2017-01828 
Ubisoft EX1002 Page 1003



IPR2017-01828 
Ubisoft EX1002 Page 1004



IPR2017-01828 
Ubisoft EX1002 Page 1005



IPR2017-01828 
Ubisoft EX1002 Page 1006



IPR2017-01828 
Ubisoft EX1002 Page 1007



IPR2017-01828 
Ubisoft EX1002 Page 1008



IPR2017-01828 
Ubisoft EX1002 Page 1009



IPR2017-01828 
Ubisoft EX1002 Page 1010



IPR2017-01828 
Ubisoft EX1002 Page 1011



IPR2017-01828 
Ubisoft EX1002 Page 1012



IPR2017-01828 
Ubisoft EX1002 Page 1013



IPR2017-01828 
Ubisoft EX1002 Page 1014



IPR2017-01828 
Ubisoft EX1002 Page 1015



IPR2017-01828 
Ubisoft EX1002 Page 1016



IPR2017-01828 
Ubisoft EX1002 Page 1017



IPR2017-01828 
Ubisoft EX1002 Page 1018



IPR2017-01828 
Ubisoft EX1002 Page 1019



IPR2017-01828 
Ubisoft EX1002 Page 1020



IPR2017-01828 
Ubisoft EX1002 Page 1021



IPR2017-01828 
Ubisoft EX1002 Page 1022



IPR2017-01828 
Ubisoft EX1002 Page 1023



IPR2017-01828 
Ubisoft EX1002 Page 1024



IPR2017-01828 
Ubisoft EX1002 Page 1025



IPR2017-01828 
Ubisoft EX1002 Page 1026



IPR2017-01828 
Ubisoft EX1002 Page 1027



IPR2017-01828 
Ubisoft EX1002 Page 1028



IPR2017-01828 
Ubisoft EX1002 Page 1029



IPR2017-01828 
Ubisoft EX1002 Page 1030



IPR2017-01828 
Ubisoft EX1002 Page 1031



IPR2017-01828 
Ubisoft EX1002 Page 1032



IPR2017-01828 
Ubisoft EX1002 Page 1033



IPR2017-01828 
Ubisoft EX1002 Page 1034



IPR2017-01828 
Ubisoft EX1002 Page 1035



IPR2017-01828 
Ubisoft EX1002 Page 1036



IPR2017-01828 
Ubisoft EX1002 Page 1037



IPR2017-01828 
Ubisoft EX1002 Page 1038



IPR2017-01828 
Ubisoft EX1002 Page 1039



IPR2017-01828 
Ubisoft EX1002 Page 1040



IPR2017-01828 
Ubisoft EX1002 Page 1041



IPR2017-01828 
Ubisoft EX1002 Page 1042



IPR2017-01828 
Ubisoft EX1002 Page 1043



IPR2017-01828 
Ubisoft EX1002 Page 1044



IPR2017-01828 
Ubisoft EX1002 Page 1045



IPR2017-01828 
Ubisoft EX1002 Page 1046



IPR2017-01828 
Ubisoft EX1002 Page 1047



IPR2017-01828 
Ubisoft EX1002 Page 1048



IPR2017-01828 
Ubisoft EX1002 Page 1049



IPR2017-01828 
Ubisoft EX1002 Page 1050



IPR2017-01828 
Ubisoft EX1002 Page 1051



IPR2017-01828 
Ubisoft EX1002 Page 1052



IPR2017-01828 
Ubisoft EX1002 Page 1053



IPR2017-01828 
Ubisoft EX1002 Page 1054



IPR2017-01828 
Ubisoft EX1002 Page 1055



IPR2017-01828 
Ubisoft EX1002 Page 1056



IPR2017-01828 
Ubisoft EX1002 Page 1057



IPR2017-01828 
Ubisoft EX1002 Page 1058



IPR2017-01828 
Ubisoft EX1002 Page 1059



IPR2017-01828 
Ubisoft EX1002 Page 1060



IPR2017-01828 
Ubisoft EX1002 Page 1061



IPR2017-01828 
Ubisoft EX1002 Page 1062



IPR2017-01828 
Ubisoft EX1002 Page 1063



IPR2017-01828 
Ubisoft EX1002 Page 1064



IPR2017-01828 
Ubisoft EX1002 Page 1065



IPR2017-01828 
Ubisoft EX1002 Page 1066



IPR2017-01828 
Ubisoft EX1002 Page 1067



IPR2017-01828 
Ubisoft EX1002 Page 1068



IPR2017-01828 
Ubisoft EX1002 Page 1069



IPR2017-01828 
Ubisoft EX1002 Page 1070



IPR2017-01828 
Ubisoft EX1002 Page 1071



IPR2017-01828 
Ubisoft EX1002 Page 1072



IPR2017-01828 
Ubisoft EX1002 Page 1073



IPR2017-01828 
Ubisoft EX1002 Page 1074



IPR2017-01828 
Ubisoft EX1002 Page 1075



IPR2017-01828 
Ubisoft EX1002 Page 1076



IPR2017-01828 
Ubisoft EX1002 Page 1077



IPR2017-01828 
Ubisoft EX1002 Page 1078



IPR2017-01828 
Ubisoft EX1002 Page 1079



IPR2017-01828 
Ubisoft EX1002 Page 1080



IPR2017-01828 
Ubisoft EX1002 Page 1081



IPR2017-01828 
Ubisoft EX1002 Page 1082



IPR2017-01828 
Ubisoft EX1002 Page 1083



IPR2017-01828 
Ubisoft EX1002 Page 1084



IPR2017-01828 
Ubisoft EX1002 Page 1085



IPR2017-01828 
Ubisoft EX1002 Page 1086



IPR2017-01828 
Ubisoft EX1002 Page 1087



IPR2017-01828 
Ubisoft EX1002 Page 1088



IPR2017-01828 
Ubisoft EX1002 Page 1089



IPR2017-01828 
Ubisoft EX1002 Page 1090



IPR2017-01828 
Ubisoft EX1002 Page 1091



IPR2017-01828 
Ubisoft EX1002 Page 1092



IPR2017-01828 
Ubisoft EX1002 Page 1093



IPR2017-01828 
Ubisoft EX1002 Page 1094



IPR2017-01828 
Ubisoft EX1002 Page 1095



IPR2017-01828 
Ubisoft EX1002 Page 1096



IPR2017-01828 
Ubisoft EX1002 Page 1097



IPR2017-01828 
Ubisoft EX1002 Page 1098



IPR2017-01828 
Ubisoft EX1002 Page 1099



IPR2017-01828 
Ubisoft EX1002 Page 1100



IPR2017-01828 
Ubisoft EX1002 Page 1101



IPR2017-01828 
Ubisoft EX1002 Page 1102



IPR2017-01828 
Ubisoft EX1002 Page 1103



IPR2017-01828 
Ubisoft EX1002 Page 1104



IPR2017-01828 
Ubisoft EX1002 Page 1105



IPR2017-01828 
Ubisoft EX1002 Page 1106



IPR2017-01828 
Ubisoft EX1002 Page 1107



IPR2017-01828 
Ubisoft EX1002 Page 1108



IPR2017-01828 
Ubisoft EX1002 Page 1109



IPR2017-01828 
Ubisoft EX1002 Page 1110



IPR2017-01828 
Ubisoft EX1002 Page 1111



IPR2017-01828 
Ubisoft EX1002 Page 1112



IPR2017-01828 
Ubisoft EX1002 Page 1113



IPR2017-01828 
Ubisoft EX1002 Page 1114



IPR2017-01828 
Ubisoft EX1002 Page 1115



IPR2017-01828 
Ubisoft EX1002 Page 1116



IPR2017-01828 
Ubisoft EX1002 Page 1117



IPR2017-01828 
Ubisoft EX1002 Page 1118



IPR2017-01828 
Ubisoft EX1002 Page 1119



IPR2017-01828 
Ubisoft EX1002 Page 1120



IPR2017-01828 
Ubisoft EX1002 Page 1121



IPR2017-01828 
Ubisoft EX1002 Page 1122



IPR2017-01828 
Ubisoft EX1002 Page 1123



IPR2017-01828 
Ubisoft EX1002 Page 1124



IPR2017-01828 
Ubisoft EX1002 Page 1125



IPR2017-01828 
Ubisoft EX1002 Page 1126



IPR2017-01828 
Ubisoft EX1002 Page 1127



IPR2017-01828 
Ubisoft EX1002 Page 1128



IPR2017-01828 
Ubisoft EX1002 Page 1129



IPR2017-01828 
Ubisoft EX1002 Page 1130



IPR2017-01828 
Ubisoft EX1002 Page 1131



IPR2017-01828 
Ubisoft EX1002 Page 1132



IPR2017-01828 
Ubisoft EX1002 Page 1133



IPR2017-01828 
Ubisoft EX1002 Page 1134



IPR2017-01828 
Ubisoft EX1002 Page 1135



IPR2017-01828 
Ubisoft EX1002 Page 1136



IPR2017-01828 
Ubisoft EX1002 Page 1137



IPR2017-01828 
Ubisoft EX1002 Page 1138



IPR2017-01828 
Ubisoft EX1002 Page 1139



IPR2017-01828 
Ubisoft EX1002 Page 1140



IPR2017-01828 
Ubisoft EX1002 Page 1141



IPR2017-01828 
Ubisoft EX1002 Page 1142



IPR2017-01828 
Ubisoft EX1002 Page 1143



IPR2017-01828 
Ubisoft EX1002 Page 1144



IPR2017-01828 
Ubisoft EX1002 Page 1145



IPR2017-01828 
Ubisoft EX1002 Page 1146



IPR2017-01828 
Ubisoft EX1002 Page 1147



IPR2017-01828 
Ubisoft EX1002 Page 1148



IPR2017-01828 
Ubisoft EX1002 Page 1149



IPR2017-01828 
Ubisoft EX1002 Page 1150



IPR2017-01828 
Ubisoft EX1002 Page 1151



IPR2017-01828 
Ubisoft EX1002 Page 1152



IPR2017-01828 
Ubisoft EX1002 Page 1153



IPR2017-01828 
Ubisoft EX1002 Page 1154



IPR2017-01828 
Ubisoft EX1002 Page 1155



IPR2017-01828 
Ubisoft EX1002 Page 1156



IPR2017-01828 
Ubisoft EX1002 Page 1157



IPR2017-01828 
Ubisoft EX1002 Page 1158



IPR2017-01828 
Ubisoft EX1002 Page 1159



IPR2017-01828 
Ubisoft EX1002 Page 1160



IPR2017-01828 
Ubisoft EX1002 Page 1161



IPR2017-01828 
Ubisoft EX1002 Page 1162



IPR2017-01828 
Ubisoft EX1002 Page 1163



IPR2017-01828 
Ubisoft EX1002 Page 1164



IPR2017-01828 
Ubisoft EX1002 Page 1165



IPR2017-01828 
Ubisoft EX1002 Page 1166



IPR2017-01828 
Ubisoft EX1002 Page 1167



IPR2017-01828 
Ubisoft EX1002 Page 1168



IPR2017-01828 
Ubisoft EX1002 Page 1169



IPR2017-01828 
Ubisoft EX1002 Page 1170



IPR2017-01828 
Ubisoft EX1002 Page 1171



IPR2017-01828 
Ubisoft EX1002 Page 1172



IPR2017-01828 
Ubisoft EX1002 Page 1173



IPR2017-01828 
Ubisoft EX1002 Page 1174



IPR2017-01828 
Ubisoft EX1002 Page 1175



IPR2017-01828 
Ubisoft EX1002 Page 1176



IPR2017-01828 
Ubisoft EX1002 Page 1177



IPR2017-01828 
Ubisoft EX1002 Page 1178



IPR2017-01828 
Ubisoft EX1002 Page 1179



IPR2017-01828 
Ubisoft EX1002 Page 1180



IPR2017-01828 
Ubisoft EX1002 Page 1181



IPR2017-01828 
Ubisoft EX1002 Page 1182



IPR2017-01828 
Ubisoft EX1002 Page 1183



IPR2017-01828 
Ubisoft EX1002 Page 1184



IPR2017-01828 
Ubisoft EX1002 Page 1185



IPR2017-01828 
Ubisoft EX1002 Page 1186



IPR2017-01828 
Ubisoft EX1002 Page 1187



IPR2017-01828 
Ubisoft EX1002 Page 1188



IPR2017-01828 
Ubisoft EX1002 Page 1189



IPR2017-01828 
Ubisoft EX1002 Page 1190



IPR2017-01828 
Ubisoft EX1002 Page 1191



IPR2017-01828 
Ubisoft EX1002 Page 1192



IPR2017-01828 
Ubisoft EX1002 Page 1193



IPR2017-01828 
Ubisoft EX1002 Page 1194



IPR2017-01828 
Ubisoft EX1002 Page 1195



IPR2017-01828 
Ubisoft EX1002 Page 1196



IPR2017-01828 
Ubisoft EX1002 Page 1197



IPR2017-01828 
Ubisoft EX1002 Page 1198



IPR2017-01828 
Ubisoft EX1002 Page 1199



IPR2017-01828 
Ubisoft EX1002 Page 1200



IPR2017-01828 
Ubisoft EX1002 Page 1201



IPR2017-01828 
Ubisoft EX1002 Page 1202



IPR2017-01828 
Ubisoft EX1002 Page 1203



IPR2017-01828 
Ubisoft EX1002 Page 1204



IPR2017-01828 
Ubisoft EX1002 Page 1205



IPR2017-01828 
Ubisoft EX1002 Page 1206



IPR2017-01828 
Ubisoft EX1002 Page 1207



IPR2017-01828 
Ubisoft EX1002 Page 1208



IPR2017-01828 
Ubisoft EX1002 Page 1209



IPR2017-01828 
Ubisoft EX1002 Page 1210



IPR2017-01828 
Ubisoft EX1002 Page 1211



IPR2017-01828 
Ubisoft EX1002 Page 1212



IPR2017-01828 
Ubisoft EX1002 Page 1213



IPR2017-01828 
Ubisoft EX1002 Page 1214



IPR2017-01828 
Ubisoft EX1002 Page 1215



IPR2017-01828 
Ubisoft EX1002 Page 1216



IPR2017-01828 
Ubisoft EX1002 Page 1217



IPR2017-01828 
Ubisoft EX1002 Page 1218



IPR2017-01828 
Ubisoft EX1002 Page 1219



IPR2017-01828 
Ubisoft EX1002 Page 1220



IPR2017-01828 
Ubisoft EX1002 Page 1221



IPR2017-01828 
Ubisoft EX1002 Page 1222



IPR2017-01828 
Ubisoft EX1002 Page 1223



IPR2017-01828 
Ubisoft EX1002 Page 1224



IPR2017-01828 
Ubisoft EX1002 Page 1225



IPR2017-01828 
Ubisoft EX1002 Page 1226



IPR2017-01828 
Ubisoft EX1002 Page 1227



IPR2017-01828 
Ubisoft EX1002 Page 1228



IPR2017-01828 
Ubisoft EX1002 Page 1229



IPR2017-01828 
Ubisoft EX1002 Page 1230



IPR2017-01828 
Ubisoft EX1002 Page 1231



IPR2017-01828 
Ubisoft EX1002 Page 1232



IPR2017-01828 
Ubisoft EX1002 Page 1233



IPR2017-01828 
Ubisoft EX1002 Page 1234



IPR2017-01828 
Ubisoft EX1002 Page 1235



IPR2017-01828 
Ubisoft EX1002 Page 1236



IPR2017-01828 
Ubisoft EX1002 Page 1237



IPR2017-01828 
Ubisoft EX1002 Page 1238



IPR2017-01828 
Ubisoft EX1002 Page 1239



IPR2017-01828 
Ubisoft EX1002 Page 1240



IPR2017-01828 
Ubisoft EX1002 Page 1241



IPR2017-01828 
Ubisoft EX1002 Page 1242



IPR2017-01828 
Ubisoft EX1002 Page 1243



IPR2017-01828 
Ubisoft EX1002 Page 1244



IPR2017-01828 
Ubisoft EX1002 Page 1245



IPR2017-01828 
Ubisoft EX1002 Page 1246



IPR2017-01828 
Ubisoft EX1002 Page 1247



IPR2017-01828 
Ubisoft EX1002 Page 1248



IPR2017-01828 
Ubisoft EX1002 Page 1249



IPR2017-01828 
Ubisoft EX1002 Page 1250



IPR2017-01828 
Ubisoft EX1002 Page 1251



IPR2017-01828 
Ubisoft EX1002 Page 1252



IPR2017-01828 
Ubisoft EX1002 Page 1253



IPR2017-01828 
Ubisoft EX1002 Page 1254



IPR2017-01828 
Ubisoft EX1002 Page 1255



IPR2017-01828 
Ubisoft EX1002 Page 1256



IPR2017-01828 
Ubisoft EX1002 Page 1257



IPR2017-01828 
Ubisoft EX1002 Page 1258



IPR2017-01828 
Ubisoft EX1002 Page 1259



IPR2017-01828 
Ubisoft EX1002 Page 1260



IPR2017-01828 
Ubisoft EX1002 Page 1261



IPR2017-01828 
Ubisoft EX1002 Page 1262



IPR2017-01828 
Ubisoft EX1002 Page 1263



IPR2017-01828 
Ubisoft EX1002 Page 1264



IPR2017-01828 
Ubisoft EX1002 Page 1265



IPR2017-01828 
Ubisoft EX1002 Page 1266



IPR2017-01828 
Ubisoft EX1002 Page 1267



IPR2017-01828 
Ubisoft EX1002 Page 1268



IPR2017-01828 
Ubisoft EX1002 Page 1269



IPR2017-01828 
Ubisoft EX1002 Page 1270



IPR2017-01828 
Ubisoft EX1002 Page 1271



IPR2017-01828 
Ubisoft EX1002 Page 1272



IPR2017-01828 
Ubisoft EX1002 Page 1273



IPR2017-01828 
Ubisoft EX1002 Page 1274



IPR2017-01828 
Ubisoft EX1002 Page 1275



IPR2017-01828 
Ubisoft EX1002 Page 1276



IPR2017-01828 
Ubisoft EX1002 Page 1277



IPR2017-01828 
Ubisoft EX1002 Page 1278



IPR2017-01828 
Ubisoft EX1002 Page 1279



IPR2017-01828 
Ubisoft EX1002 Page 1280



IPR2017-01828 
Ubisoft EX1002 Page 1281



IPR2017-01828 
Ubisoft EX1002 Page 1282



IPR2017-01828 
Ubisoft EX1002 Page 1283



IPR2017-01828 
Ubisoft EX1002 Page 1284



IPR2017-01828 
Ubisoft EX1002 Page 1285



IPR2017-01828 
Ubisoft EX1002 Page 1286



IPR2017-01828 
Ubisoft EX1002 Page 1287



IPR2017-01828 
Ubisoft EX1002 Page 1288



IPR2017-01828 
Ubisoft EX1002 Page 1289



IPR2017-01828 
Ubisoft EX1002 Page 1290



IPR2017-01828 
Ubisoft EX1002 Page 1291



IPR2017-01828 
Ubisoft EX1002 Page 1292



IPR2017-01828 
Ubisoft EX1002 Page 1293



IPR2017-01828 
Ubisoft EX1002 Page 1294



IPR2017-01828 
Ubisoft EX1002 Page 1295



IPR2017-01828 
Ubisoft EX1002 Page 1296



IPR2017-01828 
Ubisoft EX1002 Page 1297



IPR2017-01828 
Ubisoft EX1002 Page 1298



IPR2017-01828 
Ubisoft EX1002 Page 1299



IPR2017-01828 
Ubisoft EX1002 Page 1300



IPR2017-01828 
Ubisoft EX1002 Page 1301



IPR2017-01828 
Ubisoft EX1002 Page 1302



IPR2017-01828 
Ubisoft EX1002 Page 1303



IPR2017-01828 
Ubisoft EX1002 Page 1304



IPR2017-01828 
Ubisoft EX1002 Page 1305



IPR2017-01828 
Ubisoft EX1002 Page 1306



IPR2017-01828 
Ubisoft EX1002 Page 1307



IPR2017-01828 
Ubisoft EX1002 Page 1308



IPR2017-01828 
Ubisoft EX1002 Page 1309



IPR2017-01828 
Ubisoft EX1002 Page 1310



IPR2017-01828 
Ubisoft EX1002 Page 1311



IPR2017-01828 
Ubisoft EX1002 Page 1312



IPR2017-01828 
Ubisoft EX1002 Page 1313



IPR2017-01828 
Ubisoft EX1002 Page 1314



IPR2017-01828 
Ubisoft EX1002 Page 1315



IPR2017-01828 
Ubisoft EX1002 Page 1316



IPR2017-01828 
Ubisoft EX1002 Page 1317



IPR2017-01828 
Ubisoft EX1002 Page 1318



IPR2017-01828 
Ubisoft EX1002 Page 1319



IPR2017-01828 
Ubisoft EX1002 Page 1320



IPR2017-01828 
Ubisoft EX1002 Page 1321



IPR2017-01828 
Ubisoft EX1002 Page 1322



IPR2017-01828 
Ubisoft EX1002 Page 1323



IPR2017-01828 
Ubisoft EX1002 Page 1324



IPR2017-01828 
Ubisoft EX1002 Page 1325



IPR2017-01828 
Ubisoft EX1002 Page 1326



IPR2017-01828 
Ubisoft EX1002 Page 1327



IPR2017-01828 
Ubisoft EX1002 Page 1328



IPR2017-01828 
Ubisoft EX1002 Page 1329



IPR2017-01828 
Ubisoft EX1002 Page 1330



IPR2017-01828 
Ubisoft EX1002 Page 1331



IPR2017-01828 
Ubisoft EX1002 Page 1332



IPR2017-01828 
Ubisoft EX1002 Page 1333



IPR2017-01828 
Ubisoft EX1002 Page 1334



IPR2017-01828 
Ubisoft EX1002 Page 1335



IPR2017-01828 
Ubisoft EX1002 Page 1336



IPR2017-01828 
Ubisoft EX1002 Page 1337



IPR2017-01828 
Ubisoft EX1002 Page 1338



IPR2017-01828 
Ubisoft EX1002 Page 1339



IPR2017-01828 
Ubisoft EX1002 Page 1340



IPR2017-01828 
Ubisoft EX1002 Page 1341



IPR2017-01828 
Ubisoft EX1002 Page 1342



IPR2017-01828 
Ubisoft EX1002 Page 1343



IPR2017-01828 
Ubisoft EX1002 Page 1344



IPR2017-01828 
Ubisoft EX1002 Page 1345



IPR2017-01828 
Ubisoft EX1002 Page 1346



IPR2017-01828 
Ubisoft EX1002 Page 1347



IPR2017-01828 
Ubisoft EX1002 Page 1348



IPR2017-01828 
Ubisoft EX1002 Page 1349



IPR2017-01828 
Ubisoft EX1002 Page 1350



IPR2017-01828 
Ubisoft EX1002 Page 1351



IPR2017-01828 
Ubisoft EX1002 Page 1352



IPR2017-01828 
Ubisoft EX1002 Page 1353



IPR2017-01828 
Ubisoft EX1002 Page 1354



IPR2017-01828 
Ubisoft EX1002 Page 1355



IPR2017-01828 
Ubisoft EX1002 Page 1356



IPR2017-01828 
Ubisoft EX1002 Page 1357



IPR2017-01828 
Ubisoft EX1002 Page 1358



IPR2017-01828 
Ubisoft EX1002 Page 1359



IPR2017-01828 
Ubisoft EX1002 Page 1360



IPR2017-01828 
Ubisoft EX1002 Page 1361



IPR2017-01828 
Ubisoft EX1002 Page 1362



IPR2017-01828 
Ubisoft EX1002 Page 1363



IPR2017-01828 
Ubisoft EX1002 Page 1364



IPR2017-01828 
Ubisoft EX1002 Page 1365



IPR2017-01828 
Ubisoft EX1002 Page 1366



IPR2017-01828 
Ubisoft EX1002 Page 1367



IPR2017-01828 
Ubisoft EX1002 Page 1368



IPR2017-01828 
Ubisoft EX1002 Page 1369



IPR2017-01828 
Ubisoft EX1002 Page 1370



IPR2017-01828 
Ubisoft EX1002 Page 1371



IPR2017-01828 
Ubisoft EX1002 Page 1372



IPR2017-01828 
Ubisoft EX1002 Page 1373



IPR2017-01828 
Ubisoft EX1002 Page 1374



IPR2017-01828 
Ubisoft EX1002 Page 1375



IPR2017-01828 
Ubisoft EX1002 Page 1376



IPR2017-01828 
Ubisoft EX1002 Page 1377



IPR2017-01828 
Ubisoft EX1002 Page 1378



IPR2017-01828 
Ubisoft EX1002 Page 1379



IPR2017-01828 
Ubisoft EX1002 Page 1380



IPR2017-01828 
Ubisoft EX1002 Page 1381



IPR2017-01828 
Ubisoft EX1002 Page 1382



IPR2017-01828 
Ubisoft EX1002 Page 1383



IPR2017-01828 
Ubisoft EX1002 Page 1384



IPR2017-01828 
Ubisoft EX1002 Page 1385



IPR2017-01828 
Ubisoft EX1002 Page 1386



IPR2017-01828 
Ubisoft EX1002 Page 1387



IPR2017-01828 
Ubisoft EX1002 Page 1388



IPR2017-01828 
Ubisoft EX1002 Page 1389



IPR2017-01828 
Ubisoft EX1002 Page 1390



IPR2017-01828 
Ubisoft EX1002 Page 1391



IPR2017-01828 
Ubisoft EX1002 Page 1392



IPR2017-01828 
Ubisoft EX1002 Page 1393



IPR2017-01828 
Ubisoft EX1002 Page 1394



IPR2017-01828 
Ubisoft EX1002 Page 1395



IPR2017-01828 
Ubisoft EX1002 Page 1396



IPR2017-01828 
Ubisoft EX1002 Page 1397



IPR2017-01828 
Ubisoft EX1002 Page 1398



IPR2017-01828 
Ubisoft EX1002 Page 1399



IPR2017-01828 
Ubisoft EX1002 Page 1400



IPR2017-01828 
Ubisoft EX1002 Page 1401



IPR2017-01828 
Ubisoft EX1002 Page 1402



IPR2017-01828 
Ubisoft EX1002 Page 1403



IPR2017-01828 
Ubisoft EX1002 Page 1404



IPR2017-01828 
Ubisoft EX1002 Page 1405



IPR2017-01828 
Ubisoft EX1002 Page 1406



IPR2017-01828 
Ubisoft EX1002 Page 1407



IPR2017-01828 
Ubisoft EX1002 Page 1408



IPR2017-01828 
Ubisoft EX1002 Page 1409



IPR2017-01828 
Ubisoft EX1002 Page 1410



IPR2017-01828 
Ubisoft EX1002 Page 1411



IPR2017-01828 
Ubisoft EX1002 Page 1412



IPR2017-01828 
Ubisoft EX1002 Page 1413



IPR2017-01828 
Ubisoft EX1002 Page 1414



IPR2017-01828 
Ubisoft EX1002 Page 1415



IPR2017-01828 
Ubisoft EX1002 Page 1416



IPR2017-01828 
Ubisoft EX1002 Page 1417



IPR2017-01828 
Ubisoft EX1002 Page 1418



IPR2017-01828 
Ubisoft EX1002 Page 1419



IPR2017-01828 
Ubisoft EX1002 Page 1420



IPR2017-01828 
Ubisoft EX1002 Page 1421



IPR2017-01828 
Ubisoft EX1002 Page 1422



IPR2017-01828 
Ubisoft EX1002 Page 1423



IPR2017-01828 
Ubisoft EX1002 Page 1424



IPR2017-01828 
Ubisoft EX1002 Page 1425



IPR2017-01828 
Ubisoft EX1002 Page 1426



IPR2017-01828 
Ubisoft EX1002 Page 1427



IPR2017-01828 
Ubisoft EX1002 Page 1428



IPR2017-01828 
Ubisoft EX1002 Page 1429



IPR2017-01828 
Ubisoft EX1002 Page 1430



IPR2017-01828 
Ubisoft EX1002 Page 1431



IPR2017-01828 
Ubisoft EX1002 Page 1432



IPR2017-01828 
Ubisoft EX1002 Page 1433



IPR2017-01828 
Ubisoft EX1002 Page 1434



IPR2017-01828 
Ubisoft EX1002 Page 1435



IPR2017-01828 
Ubisoft EX1002 Page 1436



IPR2017-01828 
Ubisoft EX1002 Page 1437



IPR2017-01828 
Ubisoft EX1002 Page 1438



IPR2017-01828 
Ubisoft EX1002 Page 1439



IPR2017-01828 
Ubisoft EX1002 Page 1440



IPR2017-01828 
Ubisoft EX1002 Page 1441



IPR2017-01828 
Ubisoft EX1002 Page 1442



IPR2017-01828 
Ubisoft EX1002 Page 1443



IPR2017-01828 
Ubisoft EX1002 Page 1444



IPR2017-01828 
Ubisoft EX1002 Page 1445



IPR2017-01828 
Ubisoft EX1002 Page 1446



IPR2017-01828 
Ubisoft EX1002 Page 1447



IPR2017-01828 
Ubisoft EX1002 Page 1448



IPR2017-01828 
Ubisoft EX1002 Page 1449



IPR2017-01828 
Ubisoft EX1002 Page 1450



IPR2017-01828 
Ubisoft EX1002 Page 1451



IPR2017-01828 
Ubisoft EX1002 Page 1452



IPR2017-01828 
Ubisoft EX1002 Page 1453



IPR2017-01828 
Ubisoft EX1002 Page 1454



IPR2017-01828 
Ubisoft EX1002 Page 1455



IPR2017-01828 
Ubisoft EX1002 Page 1456



IPR2017-01828 
Ubisoft EX1002 Page 1457



IPR2017-01828 
Ubisoft EX1002 Page 1458



IPR2017-01828 
Ubisoft EX1002 Page 1459



IPR2017-01828 
Ubisoft EX1002 Page 1460



IPR2017-01828 
Ubisoft EX1002 Page 1461



IPR2017-01828 
Ubisoft EX1002 Page 1462



IPR2017-01828 
Ubisoft EX1002 Page 1463



IPR2017-01828 
Ubisoft EX1002 Page 1464



IPR2017-01828 
Ubisoft EX1002 Page 1465



IPR2017-01828 
Ubisoft EX1002 Page 1466



IPR2017-01828 
Ubisoft EX1002 Page 1467



IPR2017-01828 
Ubisoft EX1002 Page 1468



IPR2017-01828 
Ubisoft EX1002 Page 1469



IPR2017-01828 
Ubisoft EX1002 Page 1470



IPR2017-01828 
Ubisoft EX1002 Page 1471



IPR2017-01828 
Ubisoft EX1002 Page 1472



IPR2017-01828 
Ubisoft EX1002 Page 1473



IPR2017-01828 
Ubisoft EX1002 Page 1474



IPR2017-01828 
Ubisoft EX1002 Page 1475



IPR2017-01828 
Ubisoft EX1002 Page 1476



IPR2017-01828 
Ubisoft EX1002 Page 1477



IPR2017-01828 
Ubisoft EX1002 Page 1478



IPR2017-01828 
Ubisoft EX1002 Page 1479



IPR2017-01828 
Ubisoft EX1002 Page 1480



IPR2017-01828 
Ubisoft EX1002 Page 1481



IPR2017-01828 
Ubisoft EX1002 Page 1482



IPR2017-01828 
Ubisoft EX1002 Page 1483



IPR2017-01828 
Ubisoft EX1002 Page 1484



IPR2017-01828 
Ubisoft EX1002 Page 1485



IPR2017-01828 
Ubisoft EX1002 Page 1486



IPR2017-01828 
Ubisoft EX1002 Page 1487



IPR2017-01828 
Ubisoft EX1002 Page 1488



IPR2017-01828 
Ubisoft EX1002 Page 1489



IPR2017-01828 
Ubisoft EX1002 Page 1490



IPR2017-01828 
Ubisoft EX1002 Page 1491



IPR2017-01828 
Ubisoft EX1002 Page 1492



IPR2017-01828 
Ubisoft EX1002 Page 1493



IPR2017-01828 
Ubisoft EX1002 Page 1494



IPR2017-01828 
Ubisoft EX1002 Page 1495



IPR2017-01828 
Ubisoft EX1002 Page 1496



IPR2017-01828 
Ubisoft EX1002 Page 1497



IPR2017-01828 
Ubisoft EX1002 Page 1498



IPR2017-01828 
Ubisoft EX1002 Page 1499



IPR2017-01828 
Ubisoft EX1002 Page 1500



IPR2017-01828 
Ubisoft EX1002 Page 1501



IPR2017-01828 
Ubisoft EX1002 Page 1502



IPR2017-01828 
Ubisoft EX1002 Page 1503



IPR2017-01828 
Ubisoft EX1002 Page 1504



IPR2017-01828 
Ubisoft EX1002 Page 1505



IPR2017-01828 
Ubisoft EX1002 Page 1506



IPR2017-01828 
Ubisoft EX1002 Page 1507



IPR2017-01828 
Ubisoft EX1002 Page 1508



IPR2017-01828 
Ubisoft EX1002 Page 1509



IPR2017-01828 
Ubisoft EX1002 Page 1510



IPR2017-01828 
Ubisoft EX1002 Page 1511



IPR2017-01828 
Ubisoft EX1002 Page 1512



IPR2017-01828 
Ubisoft EX1002 Page 1513



IPR2017-01828 
Ubisoft EX1002 Page 1514



IPR2017-01828 
Ubisoft EX1002 Page 1515



IPR2017-01828 
Ubisoft EX1002 Page 1516



IPR2017-01828 
Ubisoft EX1002 Page 1517



IPR2017-01828 
Ubisoft EX1002 Page 1518



IPR2017-01828 
Ubisoft EX1002 Page 1519



IPR2017-01828 
Ubisoft EX1002 Page 1520



IPR2017-01828 
Ubisoft EX1002 Page 1521



IPR2017-01828 
Ubisoft EX1002 Page 1522



IPR2017-01828 
Ubisoft EX1002 Page 1523



IPR2017-01828 
Ubisoft EX1002 Page 1524



IPR2017-01828 
Ubisoft EX1002 Page 1525



IPR2017-01828 
Ubisoft EX1002 Page 1526



IPR2017-01828 
Ubisoft EX1002 Page 1527



IPR2017-01828 
Ubisoft EX1002 Page 1528



IPR2017-01828 
Ubisoft EX1002 Page 1529



IPR2017-01828 
Ubisoft EX1002 Page 1530



IPR2017-01828 
Ubisoft EX1002 Page 1531



IPR2017-01828 
Ubisoft EX1002 Page 1532



IPR2017-01828 
Ubisoft EX1002 Page 1533



IPR2017-01828 
Ubisoft EX1002 Page 1534



IPR2017-01828 
Ubisoft EX1002 Page 1535



IPR2017-01828 
Ubisoft EX1002 Page 1536



IPR2017-01828 
Ubisoft EX1002 Page 1537



IPR2017-01828 
Ubisoft EX1002 Page 1538



IPR2017-01828 
Ubisoft EX1002 Page 1539



IPR2017-01828 
Ubisoft EX1002 Page 1540



IPR2017-01828 
Ubisoft EX1002 Page 1541



IPR2017-01828 
Ubisoft EX1002 Page 1542



IPR2017-01828 
Ubisoft EX1002 Page 1543



IPR2017-01828 
Ubisoft EX1002 Page 1544



IPR2017-01828 
Ubisoft EX1002 Page 1545



IPR2017-01828 
Ubisoft EX1002 Page 1546



IPR2017-01828 
Ubisoft EX1002 Page 1547



IPR2017-01828 
Ubisoft EX1002 Page 1548



IPR2017-01828 
Ubisoft EX1002 Page 1549



IPR2017-01828 
Ubisoft EX1002 Page 1550



IPR2017-01828 
Ubisoft EX1002 Page 1551



IPR2017-01828 
Ubisoft EX1002 Page 1552



IPR2017-01828 
Ubisoft EX1002 Page 1553



IPR2017-01828 
Ubisoft EX1002 Page 1554



IPR2017-01828 
Ubisoft EX1002 Page 1555



IPR2017-01828 
Ubisoft EX1002 Page 1556



IPR2017-01828 
Ubisoft EX1002 Page 1557



IPR2017-01828 
Ubisoft EX1002 Page 1558



IPR2017-01828 
Ubisoft EX1002 Page 1559



IPR2017-01828 
Ubisoft EX1002 Page 1560



IPR2017-01828 
Ubisoft EX1002 Page 1561



IPR2017-01828 
Ubisoft EX1002 Page 1562



IPR2017-01828 
Ubisoft EX1002 Page 1563



IPR2017-01828 
Ubisoft EX1002 Page 1564



IPR2017-01828 
Ubisoft EX1002 Page 1565



IPR2017-01828 
Ubisoft EX1002 Page 1566



IPR2017-01828 
Ubisoft EX1002 Page 1567



IPR2017-01828 
Ubisoft EX1002 Page 1568



IPR2017-01828 
Ubisoft EX1002 Page 1569



IPR2017-01828 
Ubisoft EX1002 Page 1570



IPR2017-01828 
Ubisoft EX1002 Page 1571



IPR2017-01828 
Ubisoft EX1002 Page 1572



IPR2017-01828 
Ubisoft EX1002 Page 1573



IPR2017-01828 
Ubisoft EX1002 Page 1574



IPR2017-01828 
Ubisoft EX1002 Page 1575



IPR2017-01828 
Ubisoft EX1002 Page 1576



IPR2017-01828 
Ubisoft EX1002 Page 1577



IPR2017-01828 
Ubisoft EX1002 Page 1578



IPR2017-01828 
Ubisoft EX1002 Page 1579



IPR2017-01828 
Ubisoft EX1002 Page 1580



IPR2017-01828 
Ubisoft EX1002 Page 1581



IPR2017-01828 
Ubisoft EX1002 Page 1582



IPR2017-01828 
Ubisoft EX1002 Page 1583



IPR2017-01828 
Ubisoft EX1002 Page 1584



IPR2017-01828 
Ubisoft EX1002 Page 1585



IPR2017-01828 
Ubisoft EX1002 Page 1586



IPR2017-01828 
Ubisoft EX1002 Page 1587



IPR2017-01828 
Ubisoft EX1002 Page 1588



IPR2017-01828 
Ubisoft EX1002 Page 1589



IPR2017-01828 
Ubisoft EX1002 Page 1590



IPR2017-01828 
Ubisoft EX1002 Page 1591



IPR2017-01828 
Ubisoft EX1002 Page 1592



IPR2017-01828 
Ubisoft EX1002 Page 1593



IPR2017-01828 
Ubisoft EX1002 Page 1594



IPR2017-01828 
Ubisoft EX1002 Page 1595



IPR2017-01828 
Ubisoft EX1002 Page 1596



IPR2017-01828 
Ubisoft EX1002 Page 1597



IPR2017-01828 
Ubisoft EX1002 Page 1598



IPR2017-01828 
Ubisoft EX1002 Page 1599



IPR2017-01828 
Ubisoft EX1002 Page 1600



IPR2017-01828 
Ubisoft EX1002 Page 1601



IPR2017-01828 
Ubisoft EX1002 Page 1602



IPR2017-01828 
Ubisoft EX1002 Page 1603



IPR2017-01828 
Ubisoft EX1002 Page 1604



IPR2017-01828 
Ubisoft EX1002 Page 1605



IPR2017-01828 
Ubisoft EX1002 Page 1606



IPR2017-01828 
Ubisoft EX1002 Page 1607



IPR2017-01828 
Ubisoft EX1002 Page 1608



IPR2017-01828 
Ubisoft EX1002 Page 1609



IPR2017-01828 
Ubisoft EX1002 Page 1610



IPR2017-01828 
Ubisoft EX1002 Page 1611



IPR2017-01828 
Ubisoft EX1002 Page 1612



IPR2017-01828 
Ubisoft EX1002 Page 1613



IPR2017-01828 
Ubisoft EX1002 Page 1614



IPR2017-01828 
Ubisoft EX1002 Page 1615



IPR2017-01828 
Ubisoft EX1002 Page 1616



IPR2017-01828 
Ubisoft EX1002 Page 1617



IPR2017-01828 
Ubisoft EX1002 Page 1618



IPR2017-01828 
Ubisoft EX1002 Page 1619



IPR2017-01828 
Ubisoft EX1002 Page 1620



IPR2017-01828 
Ubisoft EX1002 Page 1621



IPR2017-01828 
Ubisoft EX1002 Page 1622



IPR2017-01828 
Ubisoft EX1002 Page 1623



IPR2017-01828 
Ubisoft EX1002 Page 1624



IPR2017-01828 
Ubisoft EX1002 Page 1625



IPR2017-01828 
Ubisoft EX1002 Page 1626



IPR2017-01828 
Ubisoft EX1002 Page 1627



IPR2017-01828 
Ubisoft EX1002 Page 1628



IPR2017-01828 
Ubisoft EX1002 Page 1629



IPR2017-01828 
Ubisoft EX1002 Page 1630



IPR2017-01828 
Ubisoft EX1002 Page 1631



IPR2017-01828 
Ubisoft EX1002 Page 1632



IPR2017-01828 
Ubisoft EX1002 Page 1633



IPR2017-01828 
Ubisoft EX1002 Page 1634



IPR2017-01828 
Ubisoft EX1002 Page 1635



IPR2017-01828 
Ubisoft EX1002 Page 1636



IPR2017-01828 
Ubisoft EX1002 Page 1637



IPR2017-01828 
Ubisoft EX1002 Page 1638



IPR2017-01828 
Ubisoft EX1002 Page 1639



IPR2017-01828 
Ubisoft EX1002 Page 1640



IPR2017-01828 
Ubisoft EX1002 Page 1641



IPR2017-01828 
Ubisoft EX1002 Page 1642



IPR2017-01828 
Ubisoft EX1002 Page 1643



IPR2017-01828 
Ubisoft EX1002 Page 1644



IPR2017-01828 
Ubisoft EX1002 Page 1645



IPR2017-01828 
Ubisoft EX1002 Page 1646



IPR2017-01828 
Ubisoft EX1002 Page 1647



IPR2017-01828 
Ubisoft EX1002 Page 1648



IPR2017-01828 
Ubisoft EX1002 Page 1649



IPR2017-01828 
Ubisoft EX1002 Page 1650



IPR2017-01828 
Ubisoft EX1002 Page 1651



IPR2017-01828 
Ubisoft EX1002 Page 1652



IPR2017-01828 
Ubisoft EX1002 Page 1653



IPR2017-01828 
Ubisoft EX1002 Page 1654



IPR2017-01828 
Ubisoft EX1002 Page 1655



IPR2017-01828 
Ubisoft EX1002 Page 1656



IPR2017-01828 
Ubisoft EX1002 Page 1657



IPR2017-01828 
Ubisoft EX1002 Page 1658



IPR2017-01828 
Ubisoft EX1002 Page 1659



IPR2017-01828 
Ubisoft EX1002 Page 1660



IPR2017-01828 
Ubisoft EX1002 Page 1661



IPR2017-01828 
Ubisoft EX1002 Page 1662



IPR2017-01828 
Ubisoft EX1002 Page 1663



IPR2017-01828 
Ubisoft EX1002 Page 1664



IPR2017-01828 
Ubisoft EX1002 Page 1665



IPR2017-01828 
Ubisoft EX1002 Page 1666



IPR2017-01828 
Ubisoft EX1002 Page 1667



IPR2017-01828 
Ubisoft EX1002 Page 1668



IPR2017-01828 
Ubisoft EX1002 Page 1669



IPR2017-01828 
Ubisoft EX1002 Page 1670



IPR2017-01828 
Ubisoft EX1002 Page 1671



IPR2017-01828 
Ubisoft EX1002 Page 1672



IPR2017-01828 
Ubisoft EX1002 Page 1673



IPR2017-01828 
Ubisoft EX1002 Page 1674



IPR2017-01828 
Ubisoft EX1002 Page 1675



IPR2017-01828 
Ubisoft EX1002 Page 1676



IPR2017-01828 
Ubisoft EX1002 Page 1677



IPR2017-01828 
Ubisoft EX1002 Page 1678



IPR2017-01828 
Ubisoft EX1002 Page 1679



IPR2017-01828 
Ubisoft EX1002 Page 1680



IPR2017-01828 
Ubisoft EX1002 Page 1681



IPR2017-01828 
Ubisoft EX1002 Page 1682



IPR2017-01828 
Ubisoft EX1002 Page 1683



IPR2017-01828 
Ubisoft EX1002 Page 1684



IPR2017-01828 
Ubisoft EX1002 Page 1685



IPR2017-01828 
Ubisoft EX1002 Page 1686



IPR2017-01828 
Ubisoft EX1002 Page 1687



IPR2017-01828 
Ubisoft EX1002 Page 1688



IPR2017-01828 
Ubisoft EX1002 Page 1689



IPR2017-01828 
Ubisoft EX1002 Page 1690



IPR2017-01828 
Ubisoft EX1002 Page 1691



IPR2017-01828 
Ubisoft EX1002 Page 1692



IPR2017-01828 
Ubisoft EX1002 Page 1693



IPR2017-01828 
Ubisoft EX1002 Page 1694



IPR2017-01828 
Ubisoft EX1002 Page 1695



IPR2017-01828 
Ubisoft EX1002 Page 1696



IPR2017-01828 
Ubisoft EX1002 Page 1697



IPR2017-01828 
Ubisoft EX1002 Page 1698



IPR2017-01828 
Ubisoft EX1002 Page 1699



IPR2017-01828 
Ubisoft EX1002 Page 1700



IPR2017-01828 
Ubisoft EX1002 Page 1701



IPR2017-01828 
Ubisoft EX1002 Page 1702



IPR2017-01828 
Ubisoft EX1002 Page 1703



IPR2017-01828 
Ubisoft EX1002 Page 1704



IPR2017-01828 
Ubisoft EX1002 Page 1705



IPR2017-01828 
Ubisoft EX1002 Page 1706



IPR2017-01828 
Ubisoft EX1002 Page 1707



IPR2017-01828 
Ubisoft EX1002 Page 1708



IPR2017-01828 
Ubisoft EX1002 Page 1709



IPR2017-01828 
Ubisoft EX1002 Page 1710



IPR2017-01828 
Ubisoft EX1002 Page 1711



IPR2017-01828 
Ubisoft EX1002 Page 1712



IPR2017-01828 
Ubisoft EX1002 Page 1713



IPR2017-01828 
Ubisoft EX1002 Page 1714



IPR2017-01828 
Ubisoft EX1002 Page 1715



IPR2017-01828 
Ubisoft EX1002 Page 1716



IPR2017-01828 
Ubisoft EX1002 Page 1717



IPR2017-01828 
Ubisoft EX1002 Page 1718



IPR2017-01828 
Ubisoft EX1002 Page 1719



IPR2017-01828 
Ubisoft EX1002 Page 1720



IPR2017-01828 
Ubisoft EX1002 Page 1721



IPR2017-01828 
Ubisoft EX1002 Page 1722



IPR2017-01828 
Ubisoft EX1002 Page 1723



IPR2017-01828 
Ubisoft EX1002 Page 1724



IPR2017-01828 
Ubisoft EX1002 Page 1725



IPR2017-01828 
Ubisoft EX1002 Page 1726



IPR2017-01828 
Ubisoft EX1002 Page 1727



IPR2017-01828 
Ubisoft EX1002 Page 1728



IPR2017-01828 
Ubisoft EX1002 Page 1729



IPR2017-01828 
Ubisoft EX1002 Page 1730



IPR2017-01828 
Ubisoft EX1002 Page 1731



IPR2017-01828 
Ubisoft EX1002 Page 1732



IPR2017-01828 
Ubisoft EX1002 Page 1733



IPR2017-01828 
Ubisoft EX1002 Page 1734



IPR2017-01828 
Ubisoft EX1002 Page 1735



IPR2017-01828 
Ubisoft EX1002 Page 1736



IPR2017-01828 
Ubisoft EX1002 Page 1737



IPR2017-01828 
Ubisoft EX1002 Page 1738



IPR2017-01828 
Ubisoft EX1002 Page 1739



IPR2017-01828 
Ubisoft EX1002 Page 1740



IPR2017-01828 
Ubisoft EX1002 Page 1741



IPR2017-01828 
Ubisoft EX1002 Page 1742



IPR2017-01828 
Ubisoft EX1002 Page 1743



IPR2017-01828 
Ubisoft EX1002 Page 1744



IPR2017-01828 
Ubisoft EX1002 Page 1745



IPR2017-01828 
Ubisoft EX1002 Page 1746



IPR2017-01828 
Ubisoft EX1002 Page 1747



IPR2017-01828 
Ubisoft EX1002 Page 1748



IPR2017-01828 
Ubisoft EX1002 Page 1749



IPR2017-01828 
Ubisoft EX1002 Page 1750



IPR2017-01828 
Ubisoft EX1002 Page 1751



IPR2017-01828 
Ubisoft EX1002 Page 1752



IPR2017-01828 
Ubisoft EX1002 Page 1753



IPR2017-01828 
Ubisoft EX1002 Page 1754



IPR2017-01828 
Ubisoft EX1002 Page 1755



IPR2017-01828 
Ubisoft EX1002 Page 1756



IPR2017-01828 
Ubisoft EX1002 Page 1757



IPR2017-01828 
Ubisoft EX1002 Page 1758



IPR2017-01828 
Ubisoft EX1002 Page 1759



IPR2017-01828 
Ubisoft EX1002 Page 1760



IPR2017-01828 
Ubisoft EX1002 Page 1761



IPR2017-01828 
Ubisoft EX1002 Page 1762



IPR2017-01828 
Ubisoft EX1002 Page 1763



IPR2017-01828 
Ubisoft EX1002 Page 1764



IPR2017-01828 
Ubisoft EX1002 Page 1765



IPR2017-01828 
Ubisoft EX1002 Page 1766



IPR2017-01828 
Ubisoft EX1002 Page 1767


