
IPR2017-01828
Ubisoft EX1002 Page 1

6.

SW1m Inside Macintosh, Volume VI
Macinmsh, Warm"

Hbmugb 1; mm by Apple Computer, Inc.
MWabout

93:10:17.0

uWflflI? *5
mm In
MI...” in:
mm:I
Want .1 ‘_

|PR2017-01828

Ubisoft EX1002 Page 1

ans-a.

IPR2017-01828
Ubisoft EX1002 Page 2

Icon Name

Japanese Katakana

Japanese Romaji .

Korean

L Arabic

H-I Canada

* Cyrillic

f Cyrillic transliterated

:= Denmark

E Faeroe Islands

- Germany

* Hebrew

a

I

I

Netherlands, period decimal separator (previously (’19)

Netherlands, comma decimal separator

Roman (U.S.)

Spain

afloflfiolmitmitflmfiar
Swiss French

HE Swiss German

+ Swiss Italian .l

flflflIOJI
Turkey

Turkish, U.S. modified

United Kingdom (previously @)lllfl¥flfl 1“:.31um”
United States

Color Plate 1. Examples of keyboard icons

|PR2017-01828

Ubisoft EX1002 Page 2

IPR2017-01828
Ubisoft EX1002 Page 3

 Color Plate II. A colorized window

Border St In

Color Plate IV. Design for black-and-white Color Plate V. Don’t mimic color effects

monitors first in black-and-white designs

|PR2017-01828

Ubisoft EX1002 Page 3

IPR2017-01828
Ubisoft EX1002 Page 4

Color Plate VI. Use light colors Color Plate VII. Don’t use bright

for large areas colors for large areas

Color Plate IX. A consistent light source Color Plate X. Inconsistent light sources

(enlarged for detail) (enlarged for detail)
|PR2017-01828

Ubisoft EX1002 Page 4

IPR2017-01828
Ubisoft EX1002 Page 5

Color Plate XI. An icon family

Color Plate XII. Consistently designed Color Plate XIII. Inconsistently designed

small icons (enlarged for detail) small icons (enlarged for detail)

Color Plate XIV. Icons with a black outline Color Plate XV. Icons without a black

(enlarged for detail) outline (enlarged for detail)

Color Plate XVI. Apple icon colors (as marked)

|PR2017-O1828

Ubisoft EX1002 Page 5

IPR2017-01828
Ubisoft EX1002 Page 6

Before anti-aliasing Correctly anti-aliased

'—
Color Plate XVII. Correct anti—aliasing (enlarged for detail)

Before anti-aliasing Incorrectly anti-aliases!

|PR2017-01828

Ubisoft EX1002 Page 6

IPR2017-01828
Ubisoft EX1002 Page 7

 D. IE;

D. [1. ICE

DD [JD [3% fl“ DE]
Document Stationery Query document Edition Extension

Color Plate XXI. Default system icon families

II. I“ I;

;: I.II. I. I“
fillyI. IIIII II II

Control Panels Color Portable User Setup File Sharing
folder

Color Plate XXII. Examples of control panel icons

|PR2017-01828

Ubisoft EX1002 Page 7

IPR2017-01828
Ubisoft EX1002 Page 8

Color Plate XXIII. Copying with a pixel map as a mask

|PR2017-01828

Ubisoft EX1002 Page 8

IPR2017-01828
Ubisoft EX1002 Page 9

Color Plate XXIV. Colorizing

”"9 IIIII I

”EIIIIIIII-IIIIIII
Ill-llllmgllllll

III-lllll!l!llll
llillu' mm a. f

.1"-

.. Ll , _ ,- T

Color Plate XXV. Default color tables

|PR2017-01828

Ubisoft EX1002 Page 9

IPR2017-01828
Ubisoft EX1002 Page 10

Inside Macintosh”

Volume VI

A
I"?

Addison-Wesley Publishing Cnmpany. Inc.

Reading Malssuchuactts Menm Park. CuJil'c-mia New York
Dun Mills.On1nriu Wokinghanl. England Atllslcrdum
Bonn Sydncy Singapore Tokyo Madrid
Piififi Scuul Milan Mexico City 'I'alipci San .qun

|PR2017-01828

Ubisoft EX1002 Page 10

IPR2017-01828
Ubisoft EX1002 Page 11

‘ APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple’s sup liers, with all rights reserved. Under

the copyri ht laws, this manual may not be copied, in w ole or in part, without the writtenconsent 0 Apple Computer, Inc. T is exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased may be sold, given, or lent to another
person. Under the law, copying includes translating into another language.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard”
Apple logo (Option—Shift—K) for commercial pu oses without the prior written consent of

Apple ma constitute trademark infringement an unfair competition in violation of federalan state aws.

© Ap 1e Computer, Inc., 1991
2052 Mariani Avenue

Cupertino, CA 95014—6299
(408) 996-1010

A ple, the Apple logo, APDA, AppleLink, AppleShare, AppleTalk, Apple IIGS,
X, Ether’l‘alk, HyperCard, HyperTalk, ImageWriter, LaserWriter, LocalTalk, Macintosh,

MPW, MultiFinder, SANE, and TokenTalk are registered trademarks
of Apple Computer, Inc.

Apple Deskto Bus, Balloon Help, Finder, KanjiTalk, Moof, QuickDraw, ResEdit,
TrueType, an Zhong—Wen Talk are trademarks of Apple Computer, Inc.

Helvetica and Times are registered trademarks of Linotype Company.

ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.

MacPaint is a registered trademark of Claris Corporation.

NuBus is a trademark of Texas Instruments.

PostScript is a registered trademark, and Illustrator is a trademark, of Adobe Systems
Incorporated.

Sony is a registered trademark of Sony Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Simultaneously published in the United States and Canada.

ISBN 0-201—57755-0 (book)
ISBN 0-201-57776-3 (boxed edition)
1 2 3 4 5 6 7 8 9—MU—9594939291

First printing April, 1991

|PR2017-01828

Ubisoft EX1002 Page 11

IPR2017-01828
Ubisoft EX1002 Page 12

Inside Macintosh

Volume VI

|PR2017-01828

Ubisoft EX1002 Page 12

IPR2017-01828
Ubisoft EX1002 Page 13

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, ARE LIMITED IN DURATION TO NINETY {90) DAYS FROM THE
DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR
A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD “AS IS,”
AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND

IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty
gives you specific legal rights, and you may also have other rights which vary from state to state.

|PR2017-01828

Ubisoft EX1002 Page 13

IPR2017-01828
Ubisoft EX1002 Page 14

Contents

xxix

“'IU'U @009.)

HHHH lII

I
hwwfl—t—OOOOOOONOOUI-P-WNONON-Pwp—n—an—A—p—Ip—Ap—np—Ij—tj—j—lp—Ap—p—Ap—nj—j—lj— INNNNNNNbb—Ap—t—H—H—H—H—H—IHr—tr—t

NNNNPNNNN
III MLAwN—&®mommhmw[\JNNNNN b—tr—tb—lb—tb—tb—l

Figures, Tables, and Listings

Preface
About Inside Macintosh

An Overview of the Chapters in Volume VI
A Road Map to Volume VI

0
E‘—i..
('D
=.—in

1 Introduction to the System Software Version 7.0 Environment
About This Chapter
About the System Software Version 7.0 Environment

The Cooperative Multitasking Environment
Interapplication Communication

Sharing Data Among Applications
Sending Events Between Applications
Exchanging Message Blocks Between Programs

Remote Data Access
Enhanced User Interface
Sound

TrueType Fonts
Graphics
File Management
Memory Management

Temporary Memory
24-Bit and 32-Bit Addressing

Process Management
Timing Services
Compatibility
Worldwide Development
Communication Over a Network
Hardware Interfaces

Overview of Chapters in This Volume

2 User Interface Guidelines

About This Chapter
User Interface Design Principles
Worldwide Software Development

Cultural Values
Resources ~

Language Differences
Text Display and Text Editing
Default Alignment of Interface Elements
Keyboards
Fonts

User Documentation

Terminology
The Version 7.0 Environment

User Feedback

Background Notification

|PR2017-01828

Ubisoft EX1002 Page 14

IPR2017-01828
Ubisoft EX1002 Page 15

Inside Macintosh, Volume VI

IIIIlI

NNNNNNNNNNNNNNPN[\JNNNNNNNNNNNNN DOWQJLALQJLALQLAJLAWLQLANNNNN[\JNNNNNr—ti—II—Ar—Ii—‘r—I\IONOO‘x-h-PMNNNfloooomhfiwwNNHO©©mmO©
""wwawwwww NOKOOGUIMWUJNI—IOONQNCNGUIWUJWUJWWLIAJLIJWWUJWW NM—‘I—‘I—lI—‘F—‘I—ll—‘I—‘I—lr—l

vi

Color Design for Version 7.0
General Color Design Guidelines
The Icon Family
Black-and-White Icons
Small Icons
Color Icons
Consistent Use of Icons
Customized Icons

Windows
Window Positions
The Zoom Box and Window Behavior

Dialog Boxes
Modal Dialog Box Behaviors
Movable Modal Dialog Boxes
Keyboard Navigation in Dialog Boxes
Button Labels

Dialog Box Layout
Dialog Box Messages
Standard File Dialog Boxes
Save Changes Dialog Box

Menus
File Menu
Edit Menu
Font Menu

Help Menu
Keyboard Equivalents
Pop-Up Menus

Standard Pop-Up Menus
Type—In Pop-Up Menus

More User Interface Information

3 Compatibility Guidelines
About This Chapter
About Compatibility

Using Memory Wisely
Using Assembly Language
Accessing Hardware
Using Low—Memory Global Variables
Determining Whether a Trap Is Available

Running in System Software Version 7.0
Allowing Multiple Applications
Supporting Required Apple Events
Removing Font Size Restrictions
Operating With Virtual Memory
Enabling Menus During a Modal Dialog
Coexisting With the System Menus
Creating Movable Modal Dialog Boxes
Creating Pop-Up Menus
Manipulating Dialog Item Lists

Counting Items in a Dialog Item List
Appending Items to a Dialog Item List
Shortening a Dialog Item List

Contents

|PR2017-01828

Ubisoft EX1002 Page 15

IPR2017-01828
Ubisoft EX1002 Page 16

IlIIIIIIIIIIIIIIIII mum/1Abbhhhbhhwmwmmwwwwwwww(J14;AOOQOONUIUIANb—IUIL’JNOOOOQOUI-bmwk)U)WMMWMMWWMWWUJLDWWWWWWWWWWM
IIIIIIIAhA

III

A#AA&AA#A wwmmNNNNNNNNHHHHHA-PUJN—‘Ofl-PNl—‘kaw
IIIIIIIIIII

##A-PL»A-b-b-b-b-b-b-b-b-b-b-b-b N_F—O\]LIIUl'—OOOLI1LI‘I

Contents

0A
:—-a-r
fl:
3I»(I:

Localizing Macintosh Programs
General Guidelines

Localizing With the Toolbox
Running Macintosh Programs Under A/UX

How the AMX Toolbox Works

Using the A/UX Toolbox
A/UX Compatibility Guidelines

About the Gestalt Manager
Using the Gestalt Manager

Determining Features of the Operating Environment
Determining Whether Gestalt Is Available
Interpreting Gestalt Responses

Interpreting Responses to Environmental Selectors
Interpreting Responses to Informational Selectors

Adding Gestalt Selectors
Modifying Gestalt Selectors
Specifying Gestalt Selector Functions

Gestalt Manager Routines
Getting Information About the Operating Environment
Adding Selector Codes
Modifying Selector Codes

Summary of the Gestalt Manager
Summary of the Window Manager
Summary of the Control Manager
Summary of the Dialog Manager

4 The Edition Manager
About This Chapter
About the Edition Manager
Publishers, Subscribers, and Editions

Using the Edition Manager
Receiving Apple Events From the Edition Manager
Creating the Section Record and Alias Record
Saving a Document Containing Sections
Opening and Closing a Document Containing Sections
Reading and Writing a Section

Formats in an Edition

Opening an Edition
Format Marks

Reading and Writing Edition Data
Closing an Edition

Creating a Publisher
Creating the Edition Container
Opening an Edition Container to Write Data

Creating a Subscriber
Opening an Edition Container to Read Data
Choosing Which Edition Format to Read

Using Publisher and Subscriber Options
Publishing a New Edition While Saving or Manually
Subscribing to an Edition Automatically or Manually
Canceling Sections Within Documents
Locating a Publisher Through a Subscriber

Contents vii

|PR2017-01828

Ubisoft EX1002 Page 16

IPR2017-01828
Ubisoft EX1002 Page 17

Inside Macintosh, Volume VI

mmmmmmhmphhpp O\O\J\IUINNr-‘O\O\D\OOGUl-bNNNCOOOOQLIJUJAhAAhb§hh#bh&A

thhhhhhghpphhhph 00\l\l\]\l\]O\O‘O\O\O\O\O\O\UILIIJi£II
t—‘OOOOON—

II50-)

""'MLALIIMLAM ’—‘III

I NNN._.,_.,_.,_i_H_H_,_.—.LIIUI’JILIIMUIQIIIUILAKIIUILIIUI WNt—COOOOfl-bUJNNOOOOOUIM
l}iii

Renaming a Document Containing Sections
Displaying Publisher and Subscriber Borders

Text Borders

Spreadsheet Borders
Object-Oriented Graphics Borders
Bitmapped Graphics Borders
Duplicating Publishers and Subscribers

Modifying a Subscriber
Relocating an Edition
Customizing Dialog Boxes

Subscribing to Non-Edition Files
Getting the Current Edition Opener
Setting an Edition Opener
Calling an Edition Opener Procedure
Opening and Closing Editions
Listing Files That Can Be Subscribed To
Reading From and Writing to Files
Calling a Format I/O Procedure

Edition Manager Routines
Initializing the Edition Manager
Creating and Registering a Section

Creating and Deleting an Edition Container
Setting and Locating 21 Format Mark
Reading in Edition Data
Writing out Edition Data
Closing an Edition After Reading or Writing
Displaying Dialog Boxes
Locating a Publisher and Edition From a Subscriber
Edition Container Formats

Reading and Writing Non-Edition Files
Summary of the Edition Manager

5 The Event Manager
About This Chapter
About the Event Manager
Introduction to Events

Low—Level Events

Operating-System Events
High—Level Events

Event Processing
The Event Loop
Event Masks

Switching Contexts
Specifying Memory Requirements and Scheduling Options

The Structure of a 'SIZE’ Resource

Creating a ‘SIZE' Resource
Using the Event Manager

Receiving Low—Level Events
Responding to Operating-System Events
Receiving High-Level Events
Identifying High—Level Event Senders and Receivers
Sending High-Level Events

Contents

|PR2017-01828

Ubisoft EX1002 Page 17

IPR2017-01828
Ubisoft EX1002 Page 18

WWWWNNNNN WNHOOOOOQO‘xLIILIIUILIILIIUIUIUIUI
000000

##4k-bwmmmwmmeNN—HHUI-RH>—‘O\l0-I>UJ\D\IUI-I>>-OOO\IM4>NOOONOMWMOOOO0MKDAOO00UIJ>WII|IIIlIIIIIIIII99999o00©00©00a00o qqqqqqoooommmmmmee00000000000000000

Contents

6‘}3.—v-Jn
H:
:1u->In

Requesting Return Receipts
Responding to Events From Other Applications
Searching for a Specific Hi gh-Level Event

Event Manager Routines
Receiving Events
Sending Events
Receiving a Specific Hi gh-Level Event
Converting Process Serial Numbers and Port Names

Summary of the Event Manager

6 The Apple Event Manager
About This Chapter
About the Apple Event Manager
Introduction to Apple Events

Types of Apple Events
Components of Apple Events
Data Structures Within Apple Events
Responding to Apple Events
Requesting Services Through Apple Events

Using the Apple Event Manager
Accepting an Apple Event
Installing Entries Into the Apple Event Dispatch Tables
Handling the Required Apple Events

Required Apple Events
Handling the Open Application Event
Handling the Open Documents Event
Handling the Print Documents Event
Handling the Quit Application Event
Handling Apple Events Sent by the Edition Manager
Handling the Create Publisher Event

Getting Data out of an Apple Event
Getting Data out of a Parameter
Getting Data out of an Attribute
Getting Data out of a Descriptor List

Writing Apple Event Handlers
Replying to an Apple Event
Disposing of Apple Event Data Structures
Interacting With the User
Creating an Apple Event

Adding Parameters to an Apple Event
Specifying a Target Address

Sending an Apple Event
Dealing With Timeouts
Writing an Idle Function
Writing a Reply Filter Function
Writing and Installing Coercion Handlers
The Application Died Event

Apple Event Manager Routines
Creating and Managing the Apple Event Dispatch Tables
Dispatching Apple Events
Getting Parameters and Attributes From Apple Events
Counting the Items in Descriptor Lists

Contents ix

|PR2017-01828

Ubisoft EX1002 Page 18

IPR2017-01828
Ubisoft EX1002 Page 19

Inside Macintosh, Volume VI

Getting Items From Descriptor Lists
Getting Data and Keyword-Specified Descriptor Records From AE Records
Requesting User Interaction
Requesting More Time to Respond to Apple Events
Suspending and Resuming Apple Event Handling
Creating Apple Events
Creating and Duplicating Descriptor Records
Creating Descriptor Lists and AE Records
Adding Items to Descriptor Lists
Adding Data and Keyword-Specified Descriptor Records to AE Records
Adding Parameters and Attributes to Apple Events
Sending Apple Events
Getting the Sizes and Descriptor Types of Descriptor Records
Deleting Descriptor Records

6-99 Deallocating Memory for Descriptor Records
6-100 Coercing Descriptor Types
6-101 Creating and Managing the Coercion Handler Tables
6- 103 Creating and Managing the Special Handler Tables
6- 105 Summary of the Apple Event Manager

wocommkmmmmmq mwwoomthwwomO\O\O\O\O\O\CIJ\O\O\O\O\O\O\O\
b00

7 The Program-to-Program Communications Toolbox
About This Chapter
About the PPC Toolbox

Ports, Sessions, and Message Blocks
Setting Up Authenticated Sessions
Using the PPC Toolbox

PPC Toolbox Calling Conventions
Specifying Port Names and Location Names

Opening a Port
Browsing for Ports Using the Program Linking Dialog Box
Obtaining a List of Available Ports

Preparing for a Session
Initiating a PPC Session
Receiving Session Requests
Accepting or Rejecting Session Requests

Exchanging Data During a PPC Session
Reading Data From an Application
Sending Data to an Application

Ending a Session and Closing a Port
Invalidating Users

PPC Toolbox Routines

The PPC Toolbox Parameter Block and Completion Routine
Initializing the PPC Toolbox
Using the Program Linking Dialog Box
Obtaining a List of Ports
Opening and Closing a Port
Starting and Ending a Session
Receiving, Accepting, and Rejecting a Session
Reading and Writing Data
Locating a Default User and Invalidating a User

Summary of the PPC Toolbox

|lllllllll\]\]\]\]\]
III

IlI|I|IIImumthbwwwwbwwwwwNNNN——- \]G\U~>\OUINHOOQGMbWNNOOO-bWNOOON-k[\J\DO\-I>-I>UJ\]\]\I\I\I\I\I\I\]\]\I\ll\]\l\]\l\l\l\l\l\]\l\l\]\l
x Contents

|PR2017-01828

Ubisoft EX1002 Page 19

IPR2017-01828
Ubisoft EX1002 Page 20

lllllll \loU‘l-bw'OOOOOOOOOOOOOOOCOO

##Jk-b-b-h-PWWWWN—t—r—t—t—r—n—wwwmmmmwmmmmmm IIlIIIIIII|lIIIII|I||IlI ##NNflw-§-§WO\\DNt—>—W—IOO\D\O\DOO
OOOOOOOOOOOOOOOOOOOOOOOODOOCOOOOOC \ILIIWOQGJ>NN'—OO\IC\

'\O\O\O\O\O
\O\O\D tor—s

OO-bVDOUILAUJ

Contents

’7C
:5._
O
I:,_.v

8 The Data Access Manager
About This Chapter
About the Data Access Manager

The High-Level Interface
Sending a Query Through the High-Level Interface
Retrieving Data Through the High—Level Interface

The Low—Level Interface

Sending a Query Through the Low-Level Interface
Retrieving Data Through the Low—Level Interface

Comparison of the High-Level and Low-Level Interfaces
Using the Data Access Manager

Executing Routines Asynchronously
General Guidelines for the User Interface

Keep the User in Control
Provide Feedback to the User

Using the High—Level Interface
Writing a Status Routine for High-Level Functions
Using the Low—Level Interface
Getting Information About Sessions in Progress
Processing Query Results

Getting Query Results
Converting Query Results to Text

Creating a Query Document
User Interface Guidelines for Query Documents
Contents of a Query Document
Query Records and Query Resources

Query Records
Query Resources

Writing a Query Definition Function
Data Access Manager Routines

Asynchronous Execution of Routines
Initializing the Data Access Manager
High—Level Interface

Handling Query Documents
Handling Query Results

Low—Level Interface

Controlling the Session
Sending and Executing Queries
Retrieving Results

Installing and Removing Result Handlers
Summary of the Data Access Manager

9 The Finder Interface

About This Chapter
About the Finder Interface
Finder-Related Resources

Creators, File Types, and the Signature Resource
Icon Resources
File Reference Resources
The Bundle Resource
The Size Resource

Contents xi

|PR2017-01828

Ubisoft EX1002 Page 20

IPR2017-01828
Ubisoft EX1002 Page 21

Inside Macintosh, Volume VI

06600000000\O\IO\O\O\C\D\O\C\D\O\C\O\D\O\O @mmmmgpggppgwmwwwwwmwwww[\JNv—-oo\]4>-\OOOC\U14>NO\OO\J>LMN\O\COO\IO\O\4>LAO

xii

Messages When the Finder Can’t Find Your Application
Version Resources

How and When the Finder Launches Your Application
Finder—Related Changes to the User Interface

Stationery Pads
Edition Icons
Customized Icons
Aliases

Resolving Alias Files
Desk Accessories

Fonts, Sounds, and Other Movable Resources

Balloon Help for Icons
Finder Information in the Volume Catalog
The System Folder and Its Related Directories

Folder Organization
Finding Directories

The Desktop Database
History of the Desktop Database
Using the Desktop Database
Desktop Manager Routines

Locating and Opening the Desktop Database
Reading the Desktop Database
Adding to the Desktop Database
Deleting Entries From the Desktop Database
Manipulating the Desktop Database Itself

Summary of the Finder Interface

1 0 Control Panels

About This Chapter
About Control Panels

Writing Control Panel Files
About the Monitors Control Panel

Designing an Extension for the Monitors Control Panel
The 'card' Resource
The 'mntr' Resource

The Monitor Function

Messages to the Monitor Function
The 'RECT‘ Resource
The 'DITL‘ Resource
The 'ICON' and 'cicn' Resources
The 'Vers' Resources
The 'STR#' Resource

The 'gama' Resources
The FREE, ‘BNDL', Icon Family, and Signature Resources
The 'INIT' Resource

A Sample of an Extension to the Monitors Control Panel
Including Another Control Panel Definition in a Monitors Extension File
Summary of the Extension File for the Monitors Control Panel

Contents

|PR2017-01828

Ubisoft EX1002 Page 21

IPR2017-01828
Ubisoft EX1002 Page 22

11—3
11-4
11—5

11—10
11-14
11—14
11-15
11-16
11-16
11-17
11-17
11—17
11—17
11—18
11—21
11—33
ll-4l
11—42
11-49
11-56
11-58
11—61
11—64
11—65
11—65
11-66
11—66
11—67
11-69
11-71
11—72
11-73
11-74
11-75
11—78
11-79
11—83

12-3
12-3
12-3
12-6
12—8

12-10
12-14
12—15
12—16
12-16
12-17

Contents
r‘:C
=H
('D
=_.
I]:

1 1 The Help Manager
About This Chapter
About the Help Manager

Help Balloon Display
Default Help Balloons for Menus, Windows, and Icons

Using the Help Manager
Providing Text or Pictures for Help Balloons

Defining the Help Balloon Content
Using Clear, Concise Phrases
Using Active Constructions
Using Parallel Structure
Using Consistent Terminology
Defining the Help Balloon Position

Specifying the Format for Help Balloon Content
Specifying Options in Help Resources
Providing Help Balloons for Menus
Providing Help Balloons for Items in Dialog Boxes and Alert Boxes
Providing Help Balloons for Window Content

Help Balloons in Static Windows
Help Balloons in Dynamic Windows

Overriding Help Balloons for Application Icons
Oveniding Other Default Help Balloons
Adding Your Own Menu Items to the Help Menu
Writing Your Own Balloon Definition Function

Help Manager Routines
Determining Whether Help Is Enabled
Determining Whether a Help Balloon Is Showing
Displaying and Removing Help Balloons

Displaying a Help Balloon
Using Your Own Menu Definition Procedure
Removing a Help Balloon
Using Your Own Tip Function

Adding Items to the Help Menu
Getting and Setting the Font Name and Size
Getting and Setting Information for Help Resources
Getting the Dimensions of a Help Balloon
Getting the Content of a Help Balloon

Summary of the Help Manager

1 2 The Font Manager
About This Chapter
About the Font Manager

Font Terminology
Font Measurements

Font Scaling
How the Font Manager Renders TrueType Fonts

Using the Font Manager
Adding Font Sizes and Names to the Menu
Storing a Font Name in a Document
Using TrueType Fonts in Preference to Bitmapped Fonts
Preserving the Glyph’s Shape

Contents xiii

|PR2017-01828

Ubisoft EX1002 Page 22

IPR2017-01828
Ubisoft EX1002 Page 23

Inside Macintosh, Volume V]

12-18 Font Manager Routines
12-18 Choosing TrueType Fonts Over Bitmapped Fonts
12-19 Scaling Fonts
12-21 Erasing the Font Manager’s Memory Caches
12—22 Summary of the Font Manager

1 3 The Resource Manager
3 About This Chapter
3 Resources

3 Resource Types
—6 Resource IDs
7 Definition Procedures

7 Font Families and Scripts
13-10 Resources in the System File
13—10 System Icons
13-11 Document and Application Icons
13-12 Folder Icons

1 3— 12 System Folder Icons
13-13 Desktop Icons
13- 14 Standard File Package Icons
1 3- 15 User Information Resources

13-15 Packages
13— 1 6 Function Key Resources
13-16 Using the Resource Manager
13—16 Using Partial Resources
13-18 Creating and Opening Resource Files
13—18 Storing Fonts in a Resource Fork
13- 18 Resource Manager Routines
13-19 Creating Resource Files
13—20 Opening Resource Files
13-21 Reading and Writing Partial Resources
13-24 Summary of the Resource Manager

1 4 Worldwide Software Overview

14-5 About This Chapter
14-6 About Worldwide Software

14-7 The Graphic Representation of Languages
14—7 Localized Versions of the Macintosh System Software

14-8 Multiple Script Systems and Multiple Languages on the Macintosh Computer
14-8 Identifying Scripts, Languages, and Regions

14- 10 About the Script Management System
14— 10 About the Script Manager
14-12 Local and Global Variables

14-12 Style Runs and Higher-Level Text Organization
14— 1 2 Tokens
14-13 Date Conversion

14- 1 3 Geographic Information
14—13 Number Conversion

14-13 About the International Utilities Package
14—14 About the International and Keyboard Resources
14-15 About the Macintosh Script Systems

xiv Contents

|PR2017-01828

Ubisoft EX1002 Page 23

IPR2017-01828
Ubisoft EX1002 Page 24

14-16
14-19
14—19
14-20
14—21
14-21
14—23
14-25
14-25
14—26
14-26
14—27
14—27
14-27
14—27
14—28
14—28
14-28
14-28
14-29
14—29
14-30
14-30
14-31
14-32
14-32
14-33
14—33
14—33
14-34
14—34
14-35
14—35
14—35
14—36
14—36
14-36
14-37
14-37
14-37
14—39
14-39
14-40
14-40
[4-41
14-43
14-43
14-44
14-45
14-45
14-45
14—46

Contents

”I3
:5F.
C_a.->m

The Script Management System and Related Worldwide Components
Worldwide Control Panels and Desk Accessory

Installing and Removing Script Systems, Keyboards, and Fonts
Using the Keyboard Menu

Selecting Keyboard Layouts
Distinguishing Scripts
Keyboards
Fonts

Localization

Sorting
Primary or Secondary Order
Expansion
Contraction

Ignorable Characters
Exceptional Words

Formats
Date and Time

Currency and Measurement
Calendars
Numbers

An Introduction to Scripts
Character Representation
Text Direction
Contextual Forms
Diacritical Marks

Uppercase and Lowercase Characters
Character Reordering
Word Demarcation

Alignment and Justification of Text
Representing Scripts on the Macintosh

Character Set Encoding
Character Input
Composition Rules
Text Manipulation
Text Rendering

Using the Script Manager
Determining the Features of the Script Manager
Initializing the Script Manager
Creating Simple Script Systems
Calling the Script Manager

Overview of the Script Manager Routines
Checking and Modifying Global and Local Variables

Accepting Implicit Script Codes
Verbs for GetScript and SetScript
Verbs for GetEnvirons and SetEnvirons

Checking and Setting System Variables
Setting the Active Keyboard Script
Obtaining Script Information
Obtaining Character Information
Manipulating Text

Drawing and Editing Text
Formatting Text

Contents J: v

|PR2017-01828

Ubisoft EX1002 Page 24

IPR2017-01828
Ubisoft EX1002 Page 25

Inside Macintosh, Volume VI

1447
14-47
14-47
14-48
14-48
14-48
14-48
14-48
14-49
14-49
14-49
14-49
14-50
14-50
14-51
14-55
14-58
14-59
14—60
l4-61
14-62
14-64
14-65
14—68
14-71
14-72
14-72
14-73
14-73
14-74
14-74
14-75
14-75
14-76
14-77
14-78
14-79
14-80
14-81
14-82
14-85
14—86
14-87
14-90
14-91
14-92
14-95
14-96

14-98
14-98
14-99

14-100
14-100
14-101

xvi

Modifying Text
Substituting Text
Truncating Text

Lexieally Interpreting Different Scripts
Date and Time Utilities

Converting Worldwide Dates and Times
Converting Long Dates
Modifying and Verifying Date and Time Records
Reading and Storing Locations

Number Utilities

Converting to and From Canonical Number Formats
Working With Formatted Numbers

Script Manager Routines
Localizing Word Selection and Line Break Tables

Defining Word Boundaries and Line Breaks
Determining Word Selection: An Example
Optimized Word Break Tables

Truncating Text
Substituting Text

Substituting and Truncating Text
Converting Case and Stripping Diacritical Marks
Handling Justified Text

Providing for Spacing Between Multiple Style Runs
Justifying Text on the Roman Script System

Using the International Utilities Package Routines
Overview of the International Utilities Package Routines

Comparing Strings
Modifying the Standard String Comparison
Facilitating Interscript Sorting Order
Accessing the International Resources
Localizing Dates, Times, and Metric Information

International Utilities Package Routines
Script and Language Codes
Manipulating the 'it12' and 'itl4' Resources
Specifying Resource Handles Explicitly
Determining Interscript Sorting Order

Using the International and Keyboard Resources
Enhancements to International Resources
The ‘itlc' Resource
The ‘itlm‘ Resource
The ‘itlb‘ Resource
The 'ith' Resource
The 'itll' Resource
The ‘it12' Resource

The 'it12' Resource Header
The 'itl4' Resource

Keyboard Types and Modifier Bits
The 'KCHR’ Resource

The ’kcs#', 'kcs4', and 'kcs8' Resources
The 'KSWP‘ Resource
The 'itlk' Resource

Key Caps and the 'KCAP’ Resource
Dead—Key Feedback
The 'KCAP‘ Resource

Contents

|PR2017-01828

Ubisoft EX1002 Page 25

IPR2017-01828
Ubisoft EX1002 Page 26

’5c
:1._.
(I:
:_.ff. Contents

14—102 Localizing to Other Languages and Regions
14-102 Using Resources
14-102 Text and Dialog Translation Tips
14-103 Adapting Text Operations
14-104 Using Fonts
14-104 Avoiding Special Character Codes as Delimiters
14—104 Using the Standard Roman Character Set
14-105 Adapting Keyboard Equivalents
14—107 Modifying the Representation of Dates, Times, and Numbers
14—107 Writing Software for Other Scripts
1 4-107 Working With Fonts
14-108 Working With Character Codes
14— 109 Working With Text Direction
14-109 Synchronizing Keyboards and Fonts
14- 109 Handling Numbers
14—1 10 Identifying Keywords and Tokens
14-1 10 Possible Printing Problems
14-1 11 Summary of the Script Manager
14—133 Summary of the International Utilities Package
14-138 Summary of the International Resources

1 5 TextEdit
15-3 About This Chapter
15—3 About TextEdit
l 5 -4 Mixed—Directional Text

15-6 Highlighting
15-8 Mouse—Down Regions
15-9 Dual Carets

15—1 1 Carct Movement Across Direction Boundaries

15—11 Font and Keyboard Synchronization
15-13 Double-Byte Characters
15-14 Vertical Movement of the Carct

15-14 Arrow Key Actions for Selected Text
15-14 Caret Position at Line Ends
15-15 Word Selection and Line Breaks
15 — l 6 Accurate Line Measurement

15-17 TextEdit and TrueType Fonts
15—17 Using TextEdit
15—17 Detemiining the Version of TextEdit
15—1 8 Customizing TextEdit’s Features
15—19 Measuring the Width of Components of a Line
15— l 9 Defining Word Boundaries
15-19 Controlling Outline Highlighting, Text Buffering, and lnline Input
15-19 Setting Left Alignment for Right-to-Left Directional Scripts
15—20 Using WordRedraw for Line Calculations
15-20 Using the lineStarts Array to Determine Line Length
15-21 Using TextEdit’s Default Click Procedure
15—21 TextEdit Routines

15-22 Outline Highlighting, Text Buffering, and Inline Input
15-23 Outline Highlighting
15-23 Text Buffering
15-24 lnline Input

Contents xvii

|PR2017-01828

Ubisoft EX1002 Page 26

IPR2017-01828
Ubisoft EX1002 Page 27

Inside Macintosh, Volume V]

15—25 Customizing TextEdit
15-26 Replacing the End-of-Line Routine
15—26 Replacing the Measuring Routines
15-28 Replacing the Drawing Routine
15-29 Replacing the Hit Test Routine
15-29 Replacing the Word Breaking Routine
15-31 Backspacing to the Beginning of a Style
15-31 Determining the Position of an Ambiguous Offset
15-32 Toggling a Style
15—34 Determining Styles Across a Selection
15-36 Setting Styles in TextEdit’s Scrap Record
15—36 Determining the Number of Styles
15-37 TextEdit Data Structures

15-40 Summary of TextEdit

1 6 Graphics Overview
16 3 About This Chapter
16 3 About Macintosh Graphics
16-6 The Components of Macintosh Graphics
16 6 QuickDraW
16 6 The Interface
16-8 The Video Card and Screen

16-9 The Major Data Structures
16—9 The RGB Color Record

16-1 Color Collections

16—11 The Pixel Map Record
16-12 Port Characteristics: The Color GrafPort Record

16— 13 Device Characteristics: The Graphics Device Record
16- 15 Graphics Initialization
16-16 The Graphics Path
16-16 How Indexed Pixels Work
16—18 How Direct Pixels Work

16—18 Determining the QuickDraw Version
16-19 What Else to Read

16—20 Summary of Graphics Data Types

1 7 Color QuickDraw
17-3 About This Chapter
17—3 About Color QuickDraW
17-4 Direct Pixels

17-4 Pixel Map Record Extensions
17-6 Direct Pixel Values

17-10 Writing Compatible Graphics Applications
17-11 Using Color QuickDraw

17—12 Manipulating Pixel Map Images
17-12 Copying With Masks
17-16 Colorizing
17-16 Transfer Modes

17-17 Dithering
17—17 Resizing Images
1 7-18 Luminance Mapping

xvi ii Contents

|PR2017-01828

Ubisoft EX1002 Page 27

IPR2017-01828
Ubisoft EX1002 Page 28

17—18
17—19
17—19
17-19
17-20
17—20
17-21
17-21
17-21
17-24
17—25
17—25
17—25
17-25
17-26
17—26
17—27
17—28
17-28
17—29

18-3
18-3
18—3
18-4
18-5
18-5
18-9
18—9

18-10
18-12
18-15

19-3
19-3
19-4
19—4
19-6
19—6
19-8
19-8
19-8
19-9
19-9

19-10
19—10
19—11
19—12

Contents
A

I:n
C
=_.
'1

Image Resolution
Displaying Variable-Resolution Pixel Maps and Pictures
Exporting Pixel Map Records \

Converting a Bitmap to a Region
Determining Whether Drawing Is Complete

Extensions to the Version 2 Picture Format
Font Name
Line Justification

Direct Pixel Images
Sample Extended Version 2 Picture

Color QuickDraw Routines

Creating an Extended Version 2 Picture
Creating Regions From Bitmaps
Copying Pixel Map Images
Determining Whether QuickDraw Has Finished Drawing
Reporting Data Structure Changes
Obtaining Intermediate Colors
Interpreting New QDError Result Codes
Using a Custom Color Search Function

Summary of Color QuickDraw

1 8 The Picture Utilities Package
About This Chapter
About the Picture Utilities Package
Using the Picture Utilities Package

Getting Color Information
Collecting Information From Multiple Pixel Maps or Pictures
Storing Information: The Picture Information Record

Picture Utilities Package Routines
Collecting Information From a Single Image
Collecting Information From Multiple Images
Creating Custom Color—Sampling Methods

Summary of the Picture Utilities Package

1 9 The Color Picker Package
About This Chapter
About the Color Picker Package
Color Models

The RGB Model

The CMYK Model
The HLS and HSV Models

Color Models in the Dialog Box
Using the Color Picker Package

Presenting the Color Picker Dialog Box
Using Conversion Facilities

Color Picker Package Routines
Displaying the Color Picker Dialog Box
Converting Between Color Models
Converting Between SmallFract and Fixed Values

Summary of the Color Picker Package

Contents xix

|PR2017-01828

Ubisoft EX1002 Page 28

IPR2017-01828
Ubisoft EX1002 Page 29

Inside Macintosh, Volume VI

20-3
20—3
20-4
20-5
20-6
20—7
20-8
20—8
20—9

20-10
20— 10
20-1 1
20- 12
20- 12
20— 13
20- I 4
20- 14
20- 14
20-16
20- 17
20—1 8
20-1 8
20-18
20—19
20- 19
20-21
20—23
20-23
20-24
20—26

21-3
21-3
21-4
21-5
21—5
21—6
21-7
21—7

21-10
21-12
21—12
21-12
21—12
21—14
21-16
21-18
21—19
21—19
21-20

xx

20 The Palette Manager
About This Chapter
About the Palette Manager
Palettes

Color Usage Categories
Changing the Color Environment
Restoring the Color Environment
Using the Palette Manager

Working With Color Usage Categories
Courteous Colors
Tolerant Colors
Animated Colors

Displaying Animated Colors on Direct Devices
Explicit Colors
Inhibited Colors

Combined Usage Categories
Creating Palettes

Assigning Colors to a Palette
Creating a Palette in a Resource File
Assigning a Default Palette to an Application

Linking a Color Table to a Palette
Associating One Palette With Many Ports

Palette Manager Routines
Initializing the Palette Manager
Initializing and Allocating Palettes
Interacting With the Window Manager
Drawing With Color Palettes
Animating Color Tables
Manipulating Palettes and Color Tables
Manipulating Palette Entries

Summary of the Palette Manager

2 1 The Graphics Devices Manager
About This Chapter
About the Graphics Devices Manager
Offsereen Graphics
Using the Graphics Devices Manager

Offscreen Graphics World Flags
Example of Offscreen Graphics Code

Advanced Features of the Graphics Devices Manager
The Graphics Device Record
The 'sern' Resource

Setting a Deviee’s Pixel Depth
Graphics Devices Manager Routines

High—Level Routines
Creating a Graphics World

Working With a Graphics World’s Pixel Map
Updating the Graphics World
Setting and Retrieving the Graphics World
Disposing of a Graphics World

Low—Level Routines

Supporting the Offscreen Graphics World

Contents

|PR2017-01828

Ubisoft EX1002 Page 29

IPR2017-01828
Ubisoft EX1002 Page 30

Contents

(5O
5H
Eu-av-p:1:

Managing the Graphics Device Record
Summary of the Graphics Devices Manager

2 2 The Sound Manager
About This Chapter
About the Sound Manager
Introduction to Sound

Sound Synthesizers
The Square-Wave Synthesizer
The Wave-Table Synthesizer
The Sampled Sound Synthesizer

Sound Commands
Sound Channels

Multiple Channels of Sound
Sound Compression and Expansion
Continuous Play From Disk
Sound Recording

Sound Storage Formats
Sound Resources

The Format 1 ‘snd ' Resource
The Format 2 'snd ' Resource

Sound Files

Chunk Organization and Data Types
The Form Chunk
The Format Version Chunk
The Common Chunk
The Sound Data Chunk

Reading and Writing Sound Files
Using the Sound Manager

Playing 'snd ' Resources
Allocating Sound Channels
Initializing Sound Channels
Releasing Sound Channels
Determining Features of Synthesizers
Playing Frequencies
Playing Sampled Sounds
Installing Voices Into Channels
Manipulating a Sound That Is Playing
Flushing Sound Channels
Pausing and Restarting Sound Channels
Synchronizing Sound Channels
Managing the CPU Load
Producing an Alert Sound
Compressing and Expanding Sounds
Playing Sampled Sounds From Files

Playing an 'snd ' Resource From Disk
Playing a File From Disk
Playing Selections

Recording Sounds Through the Sound Input Dialog Box
Recording Sounds Directly From a Device

Defining a Sound Input Completion Routine
Defining an Interrupt Routine

Getting and Setting Sound Input Device Information

Contents xxi

|PR2017-01828

Ubisoft EX1002 Page 30

IPR2017-01828
Ubisoft EX1002 Page 31

Inside Macintosh, Volume VI

Obtaining Information About Sound Features
Obtaining Information About Available Sound Features
Obtaining Version Information
Obtaining Information About a Single Sound Channel
Obtaining Information About All Sound Channels

Using Double Buffers
Setting Up Double Buffers
Writing a Doubleback Procedure

Specifying Callback Routines
Sound Manager Routines

Playing Sound Resources
Allocating and Releasing Sound Channels
Linking Synthesizers to Sound Channels
Sending Commands to a Sound Channel
Obtaining Information
Playing From Disk
Managing Double Buffers
Compressing and Expanding Audio Data
Recording Sounds
Manipulating Sound Input Devices

Opening and Closing Sound Input Devices
Recording Sounds Directly From Sound Input Devices
Manipulating Device Settings

Constructing Sound Resource and File Headers
Registering Sound Input Devices
Converting Between Milliseconds and Bytes

Summary of the Sound Manager

2 3 The Time Manager
About This Chapter
About the Time Manager

Time Manager Versions
The Original Time Manager
The Revised Time Manager
The Extended Time Manager

Other Time—Related Facilities
The TickCount Function

The Delay Function
The Vertical Retrace Manager

Using the Time Manager
Installing and Activating Task Records
Using Application Global Variables in Tasks
Performing Periodic Tasks
Computing Elapsed Time

Time Manager Routines
Summary of the Time Manager

2 4 The Notification Manager
About This Chapter
About the Notification Manager
Using the Notification Manager

Creating a Notification Request

Contents

|PR2017-01828

Ubisoft EX1002 Page 31

IPR2017-01828
Ubisoft EX1002 Page 32

24—8
24-9

24— 10
24- 10
24-12

25—3
25-3
25-4
25—4
25-5
25-9
25—9

25-10
25—10
25—10
25-11
25-11
25—12
25-12
25-15
25—17
25-20
25-25
25-26
25—28
25—29
25—29
25-30
25-31
25—31
25-34
25-34
25—34
25-35
25—37
25-37
25-40
25—42
25-43
25-44
25—45
25-47
25-48
25-50
25-52
25-54

Defining a Response Procedure
Installing a Notification Request
Removing a Notification Request

Notification Manager Routines
Summary of the Notification Manager

2 5 The File Manager
About This Chapter
About the File Manager
Identifying Files, Directories, and Volumes

File System Specifications
The Evolution of File Specification Strategies

Limitations on MFS Disks

A Simpler Safe—Save Strategy
New Special-Purpose Features

A Quick, Thorough Catalog Search
File IDs
Shared Environments

Remote Mounting
Privilege Information in Foreign File Systems

Using the File Manager
Using FSSpec Records
Updating Files
Searching a Volume
Tracking Files With File IDs
Mounting Volumes Programmatically

Contents

(1O
3H
(D
DHm

Manipulating Privilege Information in Foreign File Systems
High—Level File Manager Routines

Routines That Use FSSpec Records
Making FSSpec Records
Exchanging the Data in Two Files
Functions Modified to Accept FSSpec Records

Opening a Data Fork
Managing HFS

Functions New With HFS

MFS Functions Modified to Accommodate Directory IDs
Low—Level File Manager Routines

Reading Volume lnforrnation
Searching a Catalog
Creating FSSpec Records
Swapping Data Between Two Files
Creating and Using File IDs

Functions for Manipulating File IDs
Functions Changed to Accommodate File IDs

Mounting Volumes
Accessing Privilege Information in Foreign File Systems
Opening Data Forks

Summary of the File Manager

Contents xxi ii

|PR2017-01828

Ubisoft EX1002 Page 32

IPR2017-01828
Ubisoft EX1002 Page 33

Inside Macintosh, Volume VI

26—3
26-3
26—4
26—5
26-9

26- 10
26—1 1
26-20
26—20
26—20
26-22
26—25

\1\1\1\1|\1\1\1\1\1 \oooooocxlm-bww
Q

\ll‘QtQtQNNNNNN
l

O
1..

27—11
27—11
27-12
27-12
27—12
27-12

27-15
27—20
27-21

28—3
28-4
28—6
28—7
28-9
28-9

28-10
28-1]
28-12
28-12
28-13
28-14
28—15
28—16
28-16
28—16

xxiv

2 6 The Standard File Package
About This Chapter
About the Standard File Package
Using the Standard File Package

Presenting the Default Interface
Customizing Your Interface

Customized Dialog Boxes
Callback Routines

Compatibility With Earlier Procedures
Standard File Package Routines

Saving Files
Opening Files

Summary of the Standard File Package

2 7 The Alias Manager
About This Chapter
About the Alias Manager
About Alias Records

Search Strategies for Resolving Alias Records
Fast Search
Exhaustive Search

Using the Alias Manager
Creating Alias Records
Resolving Alias Records

ResolveAlias
MatchAlias

Maintaining Alias Records
Getting Information About Alias Records
Customizing Alias Records

Alias Manager Routines
Creating and Updating Alias Records
Resolving and Reading Alias Records
Filtering Possible Targets

Summary of the Alias Manager

2 8 Memory Management
About This Chapter
About Memory Management

Dividing Memory Among Multiple Applications
Extending an Application’s Available Memory
Extending the Operating Systems Available Memory
Controlling the System Memory Settings

About the Memory Manager
Using Master Pointers
Using Window and Control Definition Functions
Manipulating 24—Bit and 32—Bit Memory Addresses

Using the Memory Manager
Setting and Restoring the A5 Register
Manipulating A5 Without MPW

Memory Manager Routines
Setting and Restofing the A5 World
Manipulating Memory Addresses

Contents

|PR2017-01828

Ubisoft EX1002 Page 33

IPR2017-01828
Ubisoft EX1002 Page 34

28-17
28—18
28-19
28—20
28-21
28-21
28-21
28-23
28-23
28-24
28—25
28-25
28-25
28—26
28—26
28-26
28—26
28-28
28-29
28—30
28-30
28-31
28-31
28-32
28-33
28—33
28—33
28-36
28—36
28-37
28-37
28—37
28-37
28-38
28—38
28—39
28-40
28—41

29—3
29-4

29-5
29-6
29-7

29—8
29—8
29-8

29-12
29—15
29-16
29-16

About Virtual Memory
Using Virtual Memory

Holding and Releasing Memory
Locking and Unlocking Memory
Obtaining Information About Virtual Memory

Information About the System Memory Configuration
Information About Page Mapping

Deferring User Interrupt Handling
Debugger Support Under Virtual Memory

Bus Error Vectors

Special Nonmaskable Interrupt Needs
Supervisor Mode
The Debugging State
Keyboard Input
Page States

Virtual Memory Routines
Holding and Releasing Pages
Locking and Unlocking Pages
Obtaining Page-Mapping Information
Deferring User Interrupt Handling
Determining Which Debugger Functions Are Present
Determining Whether Paging Is Safe
Locking and Unlocking Memory With Caching Enabled
Entering and Exiting the Debugging State
Obtaining Keyboard Input
Determining Page State

About Temporary Memory
Using Temporary Memory

Allocating Temporary Memory
Locking Temporary Memory
Unlocking Temporary Memory
Releasing Temporary Memory
Determining Features of Temporary Memory

Temporary Memory Routines
Requesting Temporary Memory
Locking and Unlocking Temporary Memory
Freeing Temporary Memory

Summary of Memory Management

2 9 Process Management
About This Chapter
About Process Management

How the Process Manager Creates Processes
How the Process Manager Schedules Processes
How Your Application Specifies Scheduling Options

Using the Process Manager
Opening or Printng Files Based on Finder Information
Getting Information About Other Processes
Launching Other Applications

Specifying Launch Options
Controlling Launched Applications

Launching Desk Accessories

Contents 5111911103

Contents xxv

|PR2017-01828

Ubisoft EX1002 Page 34

IPR2017-01828
Ubisoft EX1002 Page 35

Inside Macintosh, Volume VI

29-16
29—17
29-20
29—24

I wwwwwwww IOOOOICDOOO OOOO\IO\O‘4>4>UJ
o:c? _. 0

Process Manager Routines
Getting Process Information
Launching Applications and Desk Accessories

Summary of Process Manager Routines

3 0 The Slot Manager
About This Chapter
About the Slot Manager
Card Initialization

Using the Slot Manager
Enabling and Disabling NuBus Cards
Enabling and Disabling SResource Data Structures
Searching for Disabled SResource Data Structures
Restoring Deleted SResource Data Structures

Slot Manager Routines
The Slot Manager Parameter Block
Determining the Version of the Slot Manager
Getting Information About SResource Data Structures
Enabling, Disabling, or Restoring SResource Data Structures

Summary of the Slot Manager

31 The Power Manager
About This Chapter
About the Power Manager
The Idle State

The Sleep State
The Sleep Queue

Sleep Requests
Sleep Demands
Wakeup Demands
Sleep—Request Revocations

Using the Power Manager
Determining Whether the Power Manager Is Present
Enabling or Disabling the Idle State
Setting, Disabling, and Reading the Wakeup Timer
Placing a Routine in the Sleep Queue
Responding When the Sleep Queue Calls Your Routine
Switching Serial Power On and Off

Power Manager Routines
Controlling the Idle State
Controlling and Reading the Wakeup Timer
Controlling the Sleep Queue
Controlling Serial Power
Reading the Status of the Internal Modern

Reading the Status of the Battery and of the Battery Charger
Summary of the Power Manager

32 The AppleTalk Manager
About This Chapter
About the AppleTalk Manager

Changes to the AppleTalk Manager

Con ten ls

|PR2017-01828

Ubisoft EX1002 Page 35

IPR2017-01828
Ubisoft EX1002 Page 36

32-5
32-8

32—11
32-11
32-1 1
32—12
32—12
32-16
32—17
32— 1 7
32-18
32—20
32-21
32-24
32-25
32-27
32-29
32-29
32-30
32-31
32-32
32—34
32-37
32—38
32—38
32-40
32-43
32—52
32-56
32-58
32—58
32-69
32-73
32—78
32-79
32-79
32—79
32-81
32-83
32-85
32-85
32-86
32-88
32-90
32-91
32—95
32-97

A-l

B-l

Contents

0
EaH
(D
DF.
m

AppleTalk Protocols
AppleTalk Device Drivers, AppleTalk Connection Files, and the LAP Manager

Using the AppleTalk Manager
Determining Whether AppleTalk Phase 2 Drivers Are Present
Deciding Which AppleTalk Protocol to Use

The .MPP Driver

Getting Information About the .MPP Driver
A New NBP Wildcard Character

The LAP Manager
The AppleTalk Transition Queue

Adding and Removing AppleTalk Transition Queue Entries
Sending Messages to the AppleTalk Transition Queue
How the AppleTalk Manager Calls Your AppleTalk Transition Queue Entry
Defining Your Own AppleTalk Transition

The LAP Manager 802.2 Protocol
Attaching and Detaching 802.2 Protocol Handlers

The .ATP Driver

Canceling All Calls to the ATPGetRequest Function
Setting the Timeout Value for the ATP Release Timer

The .XPP Driver

Using the .XPP Driver to Obtain Infomiation About Zones
Obtaining Zone Information

AppleTalk Data Stream Protocol (ADSP)
Using ADSP

The ADSP Connection Control Block
The .DSP Parameter Block

Opening and Maintaining an ADSP Connection
Creating and Using a Connection Listener
Writing a User Routine for Connection Events

.DSP Driver Routines

Establishing and Terminating an ADSP Connection
Establishing and Terminating an ADSP Connection Listener
Maintaining an ADSP Connection

The .ENET Driver

Providing Your Own Ethernet Driver
Changing the Ethernet Hardware Address
Opening the .ENET Driver
Using a Write-Data Structure to Transmit Ethernet Data
Using the Default Ethernet Protocol Handler to Read Data
Using Your Own Ethernet Protocol Handler to Read Data

How the .ENET Driver Calls Your Protocol Handler
How Your Protocol Handler Calls the .ENET Driver

.ENET Driver Routines

Attaching and Detaching an Ethernet Protocol Handler
Writing and Reading Ethernet Packets
Adding and Removing Ethernet Multicast Addresses

Summary of the AppleTalk Manager

A Result Codes

B Routines and Their Memory Behavior

Contents xxvi i

|PR2017-01828

Ubisoft EX1002 Page 36

IPR2017-01828
Ubisoft EX1002 Page 37

Inside Mm‘fumsh. Vcll'lmm W

(3-! C System Traps

D—I D Global Variables

E-1 E The Standard Human Character Set

GL—l Glossary

lN-l Index

_I.'_t'l'l'l'l' Crml‘emx

|PR2017-01828

Ubisoft EX1002 Page 37

IPR2017-01828
Ubisoft EX1002 Page 38

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page.

m..
U:
::-:
a
5“
an:
Ea:
Li
2°
F_.
U}n

E.’16{I}

Color Plate I. Examples of keyboard icons
Color Plate II. A colorized window

Color Plate HI. A colorized movable modal dialog box
Color Plate IV. Design for black-and-white monitors first
Color Plate V. Don’t mimic color effects in black—and—white designs
Color Plate VI. Use light colors for large areas
Color Plate VII. Don’t use bright colors for large areas
Color Plate VIH. Use bright colors for details
Color Plate IX. A consistent light source
Color Plate X. Inconsistent light sources
Color Plate XI. An icon family
Color Plate XII. Consistently designed small icons
Color Plate XIII. Inconsistently designed small icons
Color Plate XIV. Icons with a black outline
Color Plate XV. Icons without a black outline

Color Plate XVI. Apple icon colors
Color Plate XVII. Correct anti-aliasing
Color Plate XVIII. Incorrect anti-aliasing
Color Plate XIX. Consistent use of icon elements
Color Plate XX. Inconsistent use of icon elements

Color Plate XXI. Default system icon families
Color Plate XXII. Examples of control panel icons
Color Plate XXIII. Copying with a pixel map as a mask
Color Plate XXIV. Colorizing
Color Plate XXV. Default color tables

Preface

P-17 Figure P—l. A road map to Volume VI

1 Introduction to the System Software Version 7.0 Environment
1—5 Figure 1—1. Features of the system software version 7.0 environment
1—7 Figure 1-2. The managers constituting the interapplication

communications architecture

1—9 Figure 1—3. Using interapplication communication
1-9 Figure 1-4. Applications using interapplication communication

1-10 Figure 1—5. A publisher, an edition, and a subscriber
1—11 Figure 1-6. Sharing dynamic data with other applications
1—13 Figure l-7. Sending events to other applications
1—14 Figure 1—8. Requesting data from a remote database
1— 17 Figure 1-9. Comparison of TrueType and bitmapped fonts
1—22 Figure 1-10. Using multiple scripts in a single document
1-25 Figure 1-1 1. Overview of chapters in Volume VI

xxix

|PR2017-01828

Ubisoft EX1002 Page 38

IPR2017-01828
Ubisoft EX1002 Page 39

Inside Macintosh, Volume VI

IIII|lIIIII'NNNN
III

\lflOthWWNh—nCOOOOONNO‘U'I-P-Nl—‘xoOOOU'ILhNO\O\l\lmmmwmmmwmmwNbNNNNNNNNflHHHHH
|I WUJUJH-dt—I

NNNNMMMNNNNNMNNNNNNNNNNNNNNNNNNNN
LllLllkllw—‘C

NNNNNN—‘HHH MNt—HOOQQNM
xxx

2 User Interface Guidelines

Figure 2-].
Figure 2-2.
Figure 2—3.
Figure 2-4.
Figure 2—5.
Figure 2—6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-] 3.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2—17.
Figure 2—18.
Figure 2-19.
Figure 2-20.
Figure 2—21.
Figure 2-22.
Figure 2—23.
Figure 2—24.
Figure 2—25.
Figure 2—26.
Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2—30.
Figure 2-31.

Table 2—1.
Table 2-2.
Table 2-3.
Table 2—4.
Table 2-5.
Table 2-6.

Dual carets in mixed-directional text

Multidirectional text correctly highlighted
Reversing the alignment of dialog box items
The Keyboard menu
The boundaries of a font

A progress indicator
The Application menu with a notification symbol
An icon family
A well—designed icon and its selected version
A poorly designed icon and its selected version
Default system icons in black and white
Examples of control panel icons
A movable modal dialog box
A Finder movable modal dialog box
A selected scrolling list
A dialog box with OK and Cancel buttons
A dialog box with OK instead of a Cancel button
A progress indicator that uses a Stop button
A confirmation alert box

The recommended spacing of buttons and text in a dialog box
A well—written dialog box message
The new standard file dialog box for opening files
The save changes dialog box
A sample Edit menu
A sample hierarchical menu with Edition Manager commands
A sample pull-down Size menu and font size dialog box
The Help menu
The appearance of a version 7.0 pop—up menu
An open version 7.0 pop-up menu
A type—in pop-up menu
A type—in pop-up menu with user’s choice added

Examples of keyboard icons
Pattern substitutions for colors in keyboard icons
Translation chart for user documentation

Apple reserved keyboard equivalents for all systems
Additional reserved keyboard equivalents for worldwide systems
Other common keyboard equivalents

3 Compatibility Guidelines
Figure 3-1.
Figure 3-2.
Figure 3—3.
Figure 3-4.
Figure 3—5.
Figure 3-6.
Figure 3—7.
Figure 3-8.
Figure 3—9.
Figure 3-10.

The size menu for a bitmapped font
The size menu for an outline font

A pop—up menu in its inactive and active states
A pop—up control that is right—aligned
An initial dialog box and a list of items to append
The dialog box after items are overlaid
The dialog box after items are appended to the right
The dialog box after items are appended to the bottom
The dialog box after items are appended relative to Item 2
Interactions among an application, the A/UX Toolbox, and
ROM code

Figures, Tables, and Listings

|PR2017-01828

Ubisoft EX1002 Page 39

IPR2017-01828
Ubisoft EX1002 Page 40

ttmummu-u—u-u-mm“
3—26

U)
I

#W-RWNOOwwzfaww ppwww

IIIIIIII???J§h4§ OOQQNGQMOOOOOONUIM-k
00MMMMALALLLwWWWWNHHHH LIN—H—‘ODOOQONLIIJ>

,'_. whulk-b-lk-lk-b-h-PJk##h-fih-llk-b-h-P-bhh-k-b-h-Jk-k-b-h-h
mww®wmm— momwomom

Figures, Tables, and Listings

Status of User Interface Toolbox and Macintosh Operating System
libraries in the A/UX Toolbox

Determining whether a trap is available
Determining whether Gestalt is available
Using Gestalt to determine the Time Manager version
Interpreting a bit field response
Installing a selector function into the system heap
Defining a new Gestalt function

4 The Edition Manager
Figure 4-1.
Figure 4-2.
Figure 4—3.
Figure 4—4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4—8.
Figure 4—9.
Figure 4-10.
Figure 4-1 1.
Figure 4-12.
Figure 4—13.
Figure 4-14.
Figure 4—15.

Figure 4-16.

Figure 4—17.
Figure 4-18.
Figure 4—19.
Figure 4-20.
Figure 4-21.
Figure 4—22.
Figure 4—23.
Figure 4-24.
Figure 4-25.
Figure 4-26.

Listing 4-1.

Listing 4-2.
Listing 4-3.
Listing 4—4.
Listing 4-5.
Listing 4—6.
Listing 4—7.
Listing 4—8.
Listing 4-9.

The default edition icon

A publisher, an edition, and a subscriber
The publisher dialog box
The subscriber dialog box
A document and its corresponding editions
Publisher and subscriber borders

Edition Manager commands in the Edit menu
Edition Manager commands under the Publishing menu command
A document with a publisher and subscriber and its resource fork
The new publisher alert box
A sample publisher dialog box
A sample subscriber dialog box
The publisher options dialog box with update mode set to On Save
The publisher options dialog box with update mode set to Manually
The subscriber options dialog box with update mode
set to Automatically
The subscriber options dialog box with update mode
set to Manually
Edit menu with Show/Hide Borders menu command
Publisher borders
Subscriber borders

A publisher with contents removed
A publisher border within a spreadsheet document
A publisher border with resize handles
A publisher and subscriber with clipped graphics
Creating multiple publishers alert box
Saving multiple publishers alert box
Subscribing directly to a 'PICT' file

Accepting Section Read events and verifying if a
section is registered
Saving a document containing sections
Opening a document containing sections
Creating a publisher
Writing data to an edition
Creating a subscriber
Reading in edition data
Responding to action codes
Using your own edition opener function

Figures, Tables, and Listings xxxi

v11_.
T:
=
rt‘
in
.4a:
5".—
a:
£1:
5'6
r...U:
:1
=
a:{I}

|PR2017-01828

Ubisoft EX1002 Page 40

IPR2017-01828
Ubisoft EX1002 Page 41

Inside Macintosh, Volume VI

5 The Event Manager
5—6 Figure 5-1. Events in a single application environment
5—7 Figure 5—2. Events in a multi-application environment
5-9 Figure 5-3. Events in system software version 7.0

5—11 Listing 5—1. A simple event loop
5-11 Listing 5-2. Processing events
5-14 Listing 5-3. A template for a 'SIZE‘ resource
5-17 Listing 5—4. The Rez input for a sample 'SIZE‘ resource
5-23 Listing 5-5. Posting a hi gh—level event by application signature
5—25 Listing 5-6. Using the PPCBrowser function to post a high-level event
5-27 Listing 5-7. Accepting a high-level event

6 The Apple Event Manager
6-5 Figure 6-1. An Open Documents event
6-8 Figure 6-2. Major components of an Open Documents event

6—10 Figure 6—3. A descriptor record with event class data
6—11 Figure 6—4. A keyword—specified descriptor record for the event class attribute

of an Open Documents event
6-12 Figure 6-5. A descriptor list for a list of aliases
6-13 Figure 6-6. Data structures within an Open Documents event
6-15 Figure 6-7. Accepting and processing an Open Documents event
6— 16 Figure 6—8. The Apple Event Manager calling the handler for an

Open Documents event
6-20 Figure 6-9. Responding to an Open Documents event

6-69 Table 6- 1. Coercion handling provided by the Apple Event Manager

6—26 Listing 6—1. A DoEvent procedure
6-27 Listing 6-2. A DoHighLevelEvent procedure for handling Apple events and

other high-level events
6—28 Listing 6-3. Inserting entries for required Apple events into an application’s

Apple event dispatch table
6-30 Listing 6-4. Inserting entries for Apple events sent by the Edition Manager into

an application’s Apple event dispatch table
6-33 Listing 6-5. A handler for the Open Application event
6—34 Listing 6-6. A handler for the Open Documents event
6-35 Listing 6-7. A handler for the Print Documents event
6-36 Listing 6-8. A handler for the Quit Application event
6-39 Listing 6-9. A handler for the Create Publisher event
6-46 Listing 6—10. Extracting items from a descriptor list
6-47 Listing 6-] l. A function that checks for a keyMissedKeywordAttr attribute
6-49 Listing 6- 12. Adding the keyErrorString parameter to the reply Apple event
6-50 Listing 6— 13. Adding parameters to the reply Apple event
6-54 Listing 6-14. Using the AEInteractWithUser function
6—58 Listing 6-15. Creating a target address
6 58 Listing 6-16. Specifying a target address in an Apple event
6-61 Listing 6-17. Sending an Apple event
6 66 Listing 6-18. An idle function

xxxii Figures, Tables, and Listings

|PR2017-01828

Ubisoft EX1002 Page 41

IPR2017-01828
Ubisoft EX1002 Page 42

\I\I\I\I\I\I\I\I

wwbbbLLLLLOGNLth-RKOOOQLht—KOOOOOQQOQUI\I\I\I\I\I\I\l\]\l\l

IIIIIIIIIII won»on»wmewwNNNNNNNHI— ennuippwwH—II—iososoqoxwhioqo \I\l\l\I\I\I\I\l\l\l\l\l\l\l\l\l\l\l\l\l
"OOOOCXJ III

##NH WWQWOOQUI00000003

Figures, Tables, and Listings

7 The Program-to-Program Communications Toolbox
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7—8.
Figure 7-9.
Figure 7—10.
Figure 7—1 1.
Figure 7—12.
Figure 7—13.
Figure 7-14.
Figure 7—15.
Figure 7—16.
Figure 7—17.
Figure 7—18.

Listing 7—1.
Listing 7-2.
Listing 7—3.
Listing 7—4.
Listing 76.
Listing 7—6.
Listing 7-7.
Listing 7—8.
Listing 7—9
Listing 7-10.
Listing 7-11.
Listing 7—12.
Listing 7-13.
Listing 7—14.
Listing 7-15.

Listing 7-l6.
Listing 7—17.

Listing 7-18.
Listing 7—19.
Listing 7-20.

8 The Data

Figure 8-1.
Figure 8-2.
Figure 8—3.
Figure 8-4.
Figure 8~5.
Figure 8-6.
Figure 8—7.

A PPC Toolbox session between two applications
The Sharing Setup icon
The Sharing Setup control panel
The session termination alert box

The users and groups dialog box
The user termination alert box

The guest dialog box
The PPC Toolbox authentication process
Database and spreadsheet applications using the PPC Toolbox
Two Macintosh applications and their corresponding ports
The PPC Toolbox and a dictionary service application
The program linking dialog box
The program linking dialog box without a zone list
The user identity dialog box
The incorrect password dialog box
The invalid user name dialog box
Transmitting message blocks
The PPC Toolbox parameter blocks

Initializing the PPC Toolbox using the PPCInit function
Opening a PPC poIt
Using a port filter function
Browsing through dictionary service ports
Using the IPCListPorts function to obtain a list of ports
Using the StartSecureSession function to establish a session
Initiating a session using the PPCStart function
Using the PPCInform function to enable a port to receive sessions
Completion routine for a PPCInform function
Accepting a session request using the PPCAccept function
Completion routine for a PPCAccept function
Rejecting a session request using the PPCReject function
Completion routine for a PPCReject function
Using the PPCRead function to read data during a session
Polling the ioResult field to determine if a PPCRead function
has completed
Using the PPCWrite function to write data during a session
Polling the ioResult field to determine if a PPCWrite function
has completed
Ending a PPC session using the PPCEnd function
Closing a PPC port using the PPCClose function
Using the DeleteUserIdentity function to invalidate a user identity

Access Manager
A connection with a database

Using high—level Data Access Manager routines
Using low-level Data Access Manager routines
A flowchart of a session using the high-level interface
A flowchart of a session using the low—level interface
A query document dialog box
Function of a query document

Figures, Tables, and Listings xxxiii

|PR2017-01828

Ubisoft EX1002 Page 42

5.GO
':
«e
.v’
e:0
E(D
,m

an
r_.
V:
:t.3

UsIn

IPR2017-01828
Ubisoft EX1002 Page 43

Inside Macintosh, Volume VI

8-35

8-15
8-23
8—29
8—30
8-41
8—48

WWNMN[LJND—H—t—H—n—\OLIl-hWM[\Jl—‘OOWHOO\O\O\O\O\O\O\O\O\IDKO\D\O\O\O\O\O\O
w¢)u—dh—ID—l Lllr—onhp—

10-5
10-6

10- 12

10-15
10—22

11-4

11-6
11—6
11—7
11—8

11-12
11-13
11—13
11-22
11-32
11—40
11—41

xxxiv

Table 8-1.

Listin
Listi n
Listin
Listin
Listin
Listin

(IQUQUOUQOQUQ
8-1.
8-2
8-3.
8—4.
8-5
8—6

Data types defined by the Data Access Manager

Using the high-level interface
A sample status routine
Sending a query fragment
Using the low—level interface
A result handler

A query definition function

9 The Finder Interface

Figure 9-1.
Figure 9—2.
Figure 9-3.
Figure 9-4.
Figure 9—5.
Figure 9-6.
Figure 9-7.

Figure 9-8.
Figure 9-9.

Figure 9-10.
Figure 9-11.
Figure 9—12.

Listing 9-1.
Listing 9—2.
Listing 9-3.
Listing 9—4.
Listing 9—5.

Default large black—and-white icons
An application icon and its mask
The ResEdit view of an icon and its mask

Examples of document icons
Linking 'ICN#' and 'FREF' resources in a 'BNDL’ resource
The default application-unavailable alert box
The application—unavailable alert box specifying an
application’s name
The application-unavailable alert box with a customized message
The application-unavailable alert box for 'TEXT' and
‘PICT‘ documents
The version data in the information window

Default and customized help balloons for application icons
The System Folder and related folders

‘ICN#' resources for an application and its documents
Using file reference resources
Using a bundle resource
Using the ResolveAliasFile function to open a file
Creating a help balloon resource for an application icon

10 Control Panels

Figure 10—1.
Figure 10—2.
Figure 10-3.

Listing 10- 1.
Listing 10-2.

The Monitors control panel
An Options dialog box for a Monitors control panel
An Options dialog box with superuser controls

Sample of an extension to the Monitors control panel
Resources for a file that extends the Monitors control panel

1 1 The Help Manager
Figure 11—1.
Figure 11—2.
Figure 11—3.
Figure 11—4.
Figure 11-5.
Figure 11—6.
Figure ll-7.
Figure 11-8.
Figure 11-9.
Figure ll-lO.
Figure 11—11.
Figure 11-12.

The Help menu for the Finder
A help balloon drawn with the standard balloon definition function
The tip and hot rectangle for a help balloon
Standard balloon positions and their variation codes
Alternate positions of a help balloon
Default help balloons for the window frame
Default help balloons for the Apple and Help menus
Default help balloons for application and document icons
Help balloons for different states of the Cut command
Help balloons for a changing menu item
A help balloon in a modal dialog box
Static and dynamic windows

Figures, Tables, and Listings

|PR2017-01828

Ubisoft EX1002 Page 43

IPR2017-01828
Ubisoft EX1002 Page 44

11-46
11-47
11-58
11-61

11-23
11-27
11-29
11-31
11-38
11-46
11-48

11-55
11—58
11-60
11—62

12-5
12-6
12—7
12—8
12—9
12—9
12-9

12—10
12-11
12-12
12-12
12-13
12-14
12-15
12-17

12—16

13—4
13-6

13-17

14—9
14—16
14-17
14-18
14-19
14—21
14-22
14—24

Figure 11-13.
Figure 11-14.
Figure 11—15.
Figure 11-16.

Listing 11-1
Listing 11-2
Listing 11—3.
Listing 11-4.
Listing 11-5
Listing 11—6
Listing 11 -7

Listing 11— 8.
Listing 11-9.
Listing 11- 10.
Listing 11— 11

Figures, Tables, and Listings

A tool palette with a help balloon
A help balloon for a dialog box with a title
Default and customized help balloons for an application icon
The Help menu with two appended menu items

A partial menu help resource
The missing items component in a menu help resource
Corresponding 'han' and 'STR#' resources
Using HMCompareltem for a changing menu item
A dialog item list and its help resource
Corresponding 'hwin' and ‘hrct' resources for a tool palette
Specifying help for titled and untitled windows with an
'hwin' resource

Using HMShowBalloon to display help balloons
Creating a help balloon resource for an application icon
Overriding default help balloons
A sample menu help resource for items in the Help menu

1 2 The Font Manager
Figure 12-1.
Figure 12—2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12— 8.
Figure 12—9.
Figure 12- 10.
Figure 12-11.
Figure 12—12.
Figure 12—13.
Figure 12—14.
Figure 12—15.

Listing 12-1.

The standard Roman character set
Terms for font measurements

The ascent line and maximum y-value
A comparison of scaled TrueType and bitmapped fonts
A glyph stretched horizontally
A glyph stretched vertically
A glyph condensed horizontally
The effect of an off—curve point on two Bézier curves
An outline with points on and off the curve
A curve with consecutive off—curve points
An outline glyph
An unmodified outline glyph at a small point size
An instructed outline glyph
A sample Size menu and font size dialog box
The difference between a scaled glyph and a preserved glyph

Checking a font family ID against the font name

1 3 The Resource Manager
Table 13-].
Table 13-2.

Listing 13-].

Resource types available for your application’s use
Resource types reserved for the Operating System’s use

Using‘partial resource calls

14 Worldwide Software Overview

Figure 14-1.
Figure l4-2.
Figure 14-3.
Figure 14—4.
Figure l4-5.
Figure 14-6.
Figure 14—7.
Figure l4~8.

The script, language, and region hierarchy
Types of script systems
The components of the Macintosh Script Management System
Worldwide control panels and desk accessory
Default icons for keyboards, fonts, and scripts
The Keyboard menu
Distinguishing scripts with resource ID ranges for script codes 0—32
Keyboard translation

Figures, Tables, and Listings
XXXV

'71
CI:,_._
'1PD
.7:
—Z~.~
:-_
a'l:.
,
6_

2'_.
=
I:I:

|PR2017-01828

Ubisoft EX1002 Page 44

IPR2017-01828
Ubisoft EX1002 Page 45

Inside Macintosh, Volume V]

14—29
14-30
14-31
14—31
14-31

14-32
14—32
14-33

14—36
14—38
14—38
14-52
14-53
14-54
14—54
14—57
14-69
14-70
14-93
14-96
14—99
14—99

14-100
14—101

14—108

1441
14—42
14-44
14—55

14-56
14—56

14—58
14-66
14-80
14—84
14—95
14-95
14—97
14-98
14-98

14-59
14—61
14—66
14-83

14-88
14—101
14-105

xxxvi

Figure 14—9.
Figure 14-10.
Figure l4-ll.
Figure 14—12.
Figure [4-13.
Figure 14-14.
Figure 14—15.
Figure [4-16.
Figure 14-17.
Figure 14—18.
Figure 14-19.
Figure 14-20.
Figure 14-2].
Figure 14-22.
Figure 14-23.
Figure 14-24.
Figure 14-25.
Figure 14-26.
Figure 14-27.
Figure 14-28.
Figure 14—29.
Figure 14-30.
Figure 14-31.
Figure 14—32.

Figure 14-33.

Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14—6.

Table 14—7.
Table 14—8.
Table 14-9.
Table 14-10.
Table 14—1 1.
Table 14—12.
Table 14—13.
Table 14—14.
Table 14-15.

Listing 14—].
Listing 14-2.
Listing 14—3.
Listing 14-4.
Listing 14-5.
Listing 14-6.
Listing 14-7.

Scripts
Alphabetic, syllabic, and ideographic representations of characters
Three text directions

Contextual forms in cursive English
Stand-alone and contextual forms in Arabic

A ligature in Roman text
Ligatures in Arabic text
Character reordering in Devanagari script (for the word hindi)
Backing—store and display order
Calling the Script Manager routines implemented by a script system
Calling the Script Manager routines
Forward operation of the state machine for word selection
NFindWord header and class tables
NFindWord state table
Format of NFindWord action code
Roman word selection state transitions
Justification in Roman text

The effects of the Roman justification routines
The 'it12' resource header
Inside the 'KCHR' resource
Format of entries in the ‘KSWP‘ resource
The 'itlk' resource entries

Key Caps display of dead keys with Option key pressed
Key Caps display of completcr keys after circumflex dead key
has been pressed
Extracting blocks of Roman text

GetScript and SetScript verbs
Verbs for GetEnvirons and SetEnvirons

Verbs for the KeyScript procedure
U.S. word selection algorithm
Occurrence of word breaks in various character sequences
Significance of the state numbers in the Roman word selection
algorithm
U.S. word select transition table for forward processing
Proportions of slop value to be distributed
The international and keyboard resources
Script, language, and region codes
The keyboard types
The keyboard modifier bits
Changes in handling 'KCHR' (0) key combinations
Changes in ‘KCHR' dead-key completers
Keyboard color icon types and standard icon equivalents

Obtaining optimized word break tables
Substituting and truncating text
Distributing slop value among style runs
Multiscript mapping and sorting
International date and time information

Physical layout of keyboards
Making keyboard equivalents work with multiple scripts

Figures, Tables, and Listings

 Mum-Him .mm—u um i—. m—— ,..... . .m —

|PR2017-01828

Ubisoft EX1002 Page 45

mm.“W-m«KM

IPR2017-01828
Ubisoft EX1002 Page 46

15—5
15-5
15-5
15-6
15-7
15-7
15-8
15-9
15-9

15-10
15—11
15-12
15-15
15—16
15-16
15—32
15-33
15-33
15-33
15-38

15-20

15—34

15-35

16-4
16-7

16-15
16-17
16—18

17-6
17-6
17—7
17—7
17—8
17—8
17-9
[7-9

17—10
17-13
17-14

17-15

17-18
17—18
17-20
17-24

Figures, Tables, and Listings

1 5 TextEdit

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15—4.
Figure 15-5.
Figure [5-6.
Figure 15—7.
Figure 15—8.
Figure 15-9.
Figure 15—10.
Figure 15-11.
Figure 15-12.
Figure 15—13.
Figure 15—14.
Figure 15-15.
Figure 15—16.
Figure 15—17.
Figure 15-18.
Figure 15-19.
Figure 15—20.

Table 15—1.

Listing 15-1.

Listing 15—2.

A right—to—left primary line direction
The display order
The backing-store order
Different levels of runs in a line of text

Discontinuous highlighting display
Highlighting mixed—directional text
Mouse—down region specifics
Dual carets in mixed—directional text

Pasting styled text
Dual carets at a direction boundary
Caret movement across a direction boundary
Font and keyboard script synchronization
The caret position at line end
Word breaks for word selection

A line break with multiple scripts installed
A character offset at a line break

An initial selection before TESetStyle is called
The result of calling TESetStyle to toggle with a bold style
The result of calling TESetStyle to toggle with an italic style
The TextEdit data structures

Constants for the just parameter of TESetJust

Marking the Style menu items so they correspond to the
current selection

Determining the font, face, size, and color of the current selection

16 Graphics Overview
Figure 16—1.
Figure 16-2.
Figure 16—3.
Figure 16—4.
Figure 16-5.

Macintosh graphics chapters
QuickDraw and the graphics managers
Initializing Macintosh graphics
The indexed pixel path
The direct pixel path

1 7 Color QuickDraw
Figure 17—1.
Figure 17-2.
Figure 17—3.
Figure 17-4.
Figure 17-5.
Figure 17—6.
Figure 17—7.
Figure 17-8.
Figure 17-9.
Figure 17—10.
Figure 17-] I.
Figure 17-12.

Table 17-1.
Table 17—2.
Table 17-3.
Table 17-4;

A 32-bit direct pixel
A 16-bit direct pixel
Converting a 16-bit direct pixel to a 32-bit direct pixel
Converting a 48—bit RGB color to a 32—bit direct pixel
Converting a 48-bit RGB color to a 16—bit direct pixel
Converting a 48-bit RGB color to an 8—bit indexed pixel
Converting a 32-bit pixel to a 48-bit RGB color
Converting a 16-bit pixel to a 48-bit RGB color
Converting an 8-bit indexed pixel to a 48-bit RGB color
Copying pixel maps with CopyBits
Copying pixel maps with CopyMask
Copying pixel maps with CopyDeepMask

The default color tables for gray-scale devices
The default color tables for color devices

The new version 2 picture opcodes
Version 2 picture example

Figures, Tables, and Listings xxxvi i

—
.2:7::
s:"1(E
if?

:5-.T'_.
r:
‘1’!n
(——r._.
{[1.i_..._.
1:it

|PR2017-01828

Ubisoft EX1002 Page 46

IPR2017-01828
Ubisoft EX1002 Page 47

Inside Macintosh, Volume VI

19—4 Figure 19- 1. The Color Picker dialog box
19—5 Figure 19-2. The RGB color cube
19-5 Figure 19-3. Getting to pink
19-6 Figure 19-4. Cyan, magenta, and yellow on the color cube
19-7 Figure 19-5. The HLS/HSV color cone

2 0 The Palette Manager
20-9 Figure 20— 1. A courteous palette

20—14 Listing 20—1. A palette ('pltt') resource
20-15 Listing 20-2. A multi—use palette

2 1 The Graphics Devices Manager
21-7 Listing 21-1. Sample offscreen graphics world

2 2 The Sound Manager
22-7 Figure 22-1. The position of the Sound Manager
22-7 Figure 22—2. Bypassing the command queue
22-8 Figure 22-3. Mixing multiple channels of sampled sound
22-9 Figure 22-4. A graph of a wave table

22—16 Figure 22-5. The Sound control panel
22-17 Figure 22-6. The sound recording dialog box
22-19 Figure 22-7. The structure of 'snd ' resources
22—19 Figure 22—8. The location of the data offset bit
22—27 Figure 22-9. The general structure of a chunk
22—32 Figure 22-10. Interleaving stereo sample points
22—33 Figure 22—1 1. A sample AIFF-C file

22-14 Table 22-1. Audio compression and expansion options
22—25 Table 22-2. AIFF and AIFF—C capabilities
22-43 Table 22-3. MIDI values

22-45 Table 22-4. Sample rates
22-65 Table 22—5. Sound input device information selectors

1 22-83 Table 22-6. Sound commands

: 22—99 Table 22-7. The sound header format used by SetupSndHeader

22—21 Listing 22-1. A format 1 ‘snd ' resource
22-21 Listing 22—2 A restructured format 1 'snd ' resource

22-22 Listing 22—3. A format 1 'snd ' resource containing sampled sound data
22-22 Listing 22-4. A resource specification
22—23 Listing 22-5 Resource specification for the Simple Beep
22-24 Listing 22-6 A format 2 'snd ' resource
22-35 Listing 22-7. Playing an 'snd ' resource with SndPlay
22—36 Listing 22—8. Using low—level Sound Manager routines
22-37 Listing 22-9. Creating a sound channel
22-41 Listing 22-10. Using the availableCmd command
22—41 Listing 22—1 1. Using the versionCmd command

1 9 The Color Picker Package

22-42 Listing 22—12. Using the frquurationCmd command
22—49 Listing 22-13. An 'snd ' resource containing compressed sound data

xxxviii Figures, Tables, and Listings

—.——-a,e a ..-L____M.m——.—_.-n—. mm "In mu um.

|PR2017-01828

Ubisoft EX1002 Page 47

IPR2017-01828
Ubisoft EX1002 Page 48

22-51
22-56
22-57
22-58

22—61
22—64
22-64
22—71
22-72
22-74
22-77
22-78
22—79

23-6

23-7

23—11
23-13

23-13
23-14
23-15

24—4
24—5

24—8

25-6
25-8

25—23

25—16
25—18
25-18
25—21
25-21

25-14
25-15
25-19
25-24

Listing 22-14.
Listing 22—15.
Listing 22-16.
Listing 22-17.
Listing 22-18.
Listing 22-19.
Listing 22-20.
Listing 22—21.
Listing 22—22.
Listing 22-23.
Listing 22-24.
Listing 22—25.
Listing 22-26.

Figures, Tables, and Listings

Halving the frequency of a sampled sound
Compressing audio data
Playing an 'snd ‘ resource from disk
Recording through the sound input dialog box
Recording directly from a sound input device
Determining the name of a sound input device
Determining some sound input device settings
Determining whether a sound channel is paused
Determining the number of allocated sound channels
Setting up double buffers
Defining a doubleback procedure
Issuing a callback command
Defining a callback procedure

23 The Time Manager
Figure 23-1.

Figure 23—2.

Listing 23-1.
Listing 23-2.

Listing 23—3.
Listing 23-4.
Listing 23-5

Original and revised Time Managers (drifting, unpredictable
frequency)
The extended Time Manager (drift-free, fixed frequency)

Installing and activating a Time Manager task
Passing the address of the application’s AS world to a
Time Manager task
Defining a Time Manager task that can manipulate global variables
Defining a periodic Time Manager task
Computing elapsed time

24 The Notification Manager
Figure 24-1.
Figure 24—2.

Listing 24- 1.

A notification in the Application menu
A sample alert box

Setting up a notification record

25 The File Manager
Figure 25-1.
Figure 25-2.
Figure 25—3.

Table 25—1.
Table 25—2.
Table 25-3.
Table 25—4.
Table 25-5.

Listing 25—1.
Listing 25
Listing 25

5

-2.
-3.

Listing 2 -4.

Identifying a file in MFS
Identifying a file in HFS
The effect of ioSearchBits on interpretation of ioSearchInfol
and ioSearchInf02

How FSMakeFSSpec interprets file specifications
The effect of FSpExchangeFiles on a catalog entry
The effect of FSpExchangeFiles on a file control block
Fields in ioSearchInfol and ioSearchInfoZ used for a file

Fields in ioSearchInfol and ioSearchInfoZ used for a directory

Testing for PBCatSearch
Opening a document using the FSSpec record
Updating a file with FSpExchangeFiles
Searching a volume with PBCatSearch

Figures, Tables, and Listings xxxix

|PR2017-01828

Ubisoft EX1002 Page 48

’1'}._.
7:
E-:r1:
it ‘
'72a.—.4.—
r:
:11
p:_k_.
(I:1-»._....I—i

Cl":ill.

IPR2017-01828
Ubisoft EX1002 Page 49

Inside Macintosh, Volume VI

26-6
26-7
26-7
26-7

26-8
26-10
26-10
26-11
26-11

27-5

x1

26 The Standard File Package
Figure 26-1.
Figure 26—2.
Figure 26-3.
Figure 26-4.

Listing 26-1.
Listing 26-2.
Listing 26—3.
Listing 26-4.
Listing 26-5.

The default Open dialog box
The default Save dialog box
The New Folder dialog box
The name conflict dialog box

Opening a document
The definition of the default Open dialog box
The definition of the default Save dialog box
The item list for the default Open dialog box
The item list for the default Save dialog box

2 7 The Alias Manager
Figure 27-1. Resolving a relative path

28 Memory Management
Figure 28—1.
Figure 28—2.
Figure 28-3.
Figure 28—4.
Figure 28—5.
Figure 28—6.

Listing 28—1.
Listing 28-2.
Listing 28-3.
Listing 28—4.

2 9 Process

Listing 29- 1.
Listing 29—2.

The memory organization in a single-application environment
The organization of the application partition
The memory organization in a multiple application environment
Using temporary memory
The Memory control panel
A master pointer structure in the 24-bit Memory Manager

Passing A5 to a notification response procedure
Setting up and restoring A5
Translating logical to physical addresses
Determining whether temporaiy memory routines are available

Management

Searching for a specific process
Launching an application

30 The Slot Manager
Table 30- 1.
Table 30-2.

Listing 30—1.
Listing 30—2.

Slot Manager search routines
How the Slot Manager determines the base address used by
an sResource data structure

Disabling and enabling sResource data structures
Searching for sResource data structures

31 The Power Manager
Figure 31-1.
Figure 31-2.
Figure 31-3.

Table 31—1.

Listing 31-1.
Listing 31-2.

Relationship of an application to the Power Manager
How the sleep queue handles a sleep request
How the sleep queue handles a sleep demand

Response of network services to sleep requests and demands

Adding an entry to the sleep queue
A sleep queue routine

Figures, Tables, and Listings

|PR2017-01828

Ubisoft EX1002 Page 49

IPR2017-01828
Ubisoft EX1002 Page 50

32-6
32—9

32-10
32-26
32-82

32-27
32—33
32—34
32—48
32-54
32—57
32—80
32-82
32-84

07CFO? LI‘I—‘

nonCNL‘IIUJl—t

Figures. Tables, and Listings

3 2 The AppleTalk Manager
Figure 32-1. AppleTalk protocols
Figure 32-2. AppleTalk device drivers
Figure 32-3. AppleTalk application interfaces
Figure 32-4. AppleTalk Ethemet packet formats
Figure 32—5. An Ethernet write—data structure

3.T:
="l(D
ill
H:2
EO

20
L"._.
U)
D.
:5

soll)

Listing 32-1. Calling a LAP Manager L802.2 routine from assembly language
Listing 32—2 Using the GetZoneList function
Listing 32-3 Using the GetMyZone function
Listing 32-4. Using ADSP to establish and use a connection
Listing 32-5. Using ADSP to establish and use a connection listener
Listing 32—6. An ADSP user routine
Listing 32-7 Finding an EtherTalk card and opening the .ENET driver
Listing 32-8 Sending a data packet over Ethernet
Listing 32—9 Using the default Ethernet protocol handler to read data

A Result Codes
Table A-1. Result codes

B Routines and Their Memory Behavior
Table B—1. Routines that may move or purge memory
Table B-2. Routines that do not move or purge memory but may not be called

at interrupt time
Table B-3. Routines that may be called at interrupt time

C System Traps
Table C-l. System traps by trap name
Table C-2. System traps by trap word
Table C-3. System traps that take selectors
Table C-4. Routines selected from system traps

D Global Variables
Table D-l. Global variables

E The Standard Roman Character Set
Table E-l. The standard Roman character set

Table E-2. Unencoded PostScript characters

Figures, Tables, and Listings xli

|PR2017-01828

Ubisoft EX1002 Page 50

IPR2017-01828
Ubisoft EX1002 Page 51

Inside Macintosh. 'lmfume W

xiii Ffigures. Tubies. and Listings

|PR2017-01828

Ubisoft EX1002 Page 51

IPR2017-01828
Ubisoft EX1002 Page 52

PREFACE

r—H—w—H—r—H—M—H—u—n—r—n—n—w—ar—ar—w—H—u—r—nr—n—u—H—n—U‘HJIUIU'ILII####WWWWWNNNNHl—‘HOOOOGOOOOOOOOOOOQOUIUI-bw
16

An Overview of the Chapters in Volume VI

About Inside Macintosh

The Development Environment
The System Software Environment
The Format of a Typical Chapter
The Conventions Used in This Volume
Other Documentation
Introduction to the System Software Version 7.0 Environment
User Interface Guidelines

Compatibility Guidelines
The Edition Manager
The Event Manager
The Apple Event Manager
The Program-to-Program Communications Toolbox
The Data Access Manager
The Finder Interface
Control Panels

The Help Manager
The Font Manager
The Resource Manager
Worldwide Software Overview
TextEdit

Graphics Overview
Color QuickDraw
The Picture Utilities Package
The Color Picker Package
The Palette Manager
The Graphics Devices Manager
The Sound Manager
The Time Manager
The Notification Manager
The File Manager
The Standard File Package
The Alias Manager
Memory Management
Process Management
The Slot Manager
The Power Manager
The AppleTalk Manager

A Road Map to Volume VI

P-I

|PR2017-01828

Ubisoft EX1002 Page 52

IPR2017-01828
Ubisoft EX1002 Page 53

Insfds Mac-Emma Volume- W

P-2

|PR2017-01828

Ubisoft EX1002 Page 53

IPR2017-01828
Ubisoft EX1002 Page 54

Preface

ABOUT INSIDE MA CINTOSH

Inside Macintosh is a six—volume set of books that describes how to write an application for

the Apple® Macintosh® family of computers. Inside Macintosh is the definitive guide and
reference for anyone writing software for the Macintosh computer. The first two volumes
describe the routines in the Macintosh User Interface Toolbox and the Macintosh Operating

System. The third volume is a summary of the Pascal interfaces for all routines described in
Volumes I and II. The fourth and fifth volumes describe features and routines introduced

with the Macintosh Plus, Macintosh SE, and Macintosh II computers. Volume VI describes
the managers and features available in system software version 7.0.

Volume I contains the original user interface guidelines for Macintosh applications and an
introduction to memory management and assembly language. It also describes QuickDrawTM,
the Resource Manager, the Event Manager, the Font Manager, the Window Manager, the
Menu Manager, the Dialog Manager, TextEdit, and other routines relating to the user interface
that you can use in your application.

Volume II describes the Macintosh Operating System, including the routines that perform
file I/O, device I/O, memory management, and interrupt handling. It covers the File Manager,
the Device Manager, the Printing Manager, the AppleTalk® Manager, and various drivers
and utilities.

Volume III describes the FinderTM interface, provides an overview of the hardware of the
Macintosh 128K and Macintosh 512K computers, and contains summaries of the Pascal
interfaces for all routines described in Volumes I and II.

Volume IV describes routines introduced with the Macintosh Plus and Macintosh 512K

enhanced computers. It introduces the Hierarchical File System, the SCSI Manager, the
Time Manager, and the List Manager. The volume also describes Changes to various
managers and drivers and presents an overview of the Macintosh Plus hardware.

Volume V describes routines introduced with the Macintosh SE and Macintosh II computers.

It describes Color QuickDraw, the Palette Manager, the Script Manager, the Sound Manager,
the Slot Manager, the Apple Desktop Bus”, and changes made to various managers to support
color. The volume also includes additional user interface guidelines and compatibility guide—

lines. It explains how to add color to menus, windows, and dialog boxes. It also discusses
hierarchical, scrolling, and pop—up menus.

This volume, Volume VI, describes the system software version 7.0 environment, new
managers available with version 7.0, new routines and data structures, new user interface
guidelines, and how to take advantage of the version 70 environment.

Inside Macintosh, Volume V1, is also available in an on—line edition. The on-line edition

provides a navigational model that lets you browse through information and it provides a
search capability to quickly locate routines, data structures, and other text.

The Inside Macintosh X—Refprovides a comprehensive, integrated index for Volumes I
through VI of Inside Macintosh, as well as Programmer’s Introduction to the Macintosh
Family; Technical Introduction to the Macintosh Family; Designing Cards and Driversfor
the Macintosh Family, second edition; and Guide to the Macintosh Family Hardware, second
edition. All these books are available from Addison-Wesley.

About Inside Macintosh P-3

|PR2017-01828

Ubisoft EX1002 Page 54

IPR2017-01828
Ubisoft EX1002 Page 55

Inside Macintosh, Volume V1

The Development Environment

The User Interface Toolbox and Macintosh Operating System routines are available using
Pascal, C, or assembly-language interfaces. How you access these routines depends on the
development environment you are using. This volume shows all routines in their Pascal
interface using the Macintosh Programmer’s Workshop (MPW®). All sample code listings
are shown in MPW Pascal, with a few examples shown in assembly language.

The MPW development environment includes these books: Macintosh Programmer’s
Workshop Development Environment, Volume 1; Macintosh, Programmer’s Workshop
Development Environment, Volume 2; MPW Pascal: Macintosh Programmer’s Workshop
Pascal; MPW C.' Macintosh Programmer’s Workshop C; and MPW Assembler: Macintosh
Programmer’s Workshop Assembler. These books are available from APDA® (Apple
Programmers and Developers Association).

The code listings and other code in this volume were developed using MPW 3.0. They show
methods of using various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in many cases, tested. However, Apple does not
intend that you use these code samples in your application.

If you are programming in assembly language, pay attention to the assembly—language notes
and trap macro notes. These notes provide information about saving and restoring registers,
details of what each register must contain on entry to Operating System routines, what the
routines return in the registers, and other information you might find helpful.

If you are programming in Pascal or C only, you can skip over the assembly-language
information.

This volume occasionally uses SurfWriter, WipeOut, store data, display data, send and
receive, make memo, and spell quick as names of sample programs for illustrative purposes;
these are not actual products of Apple Computer, Inc.

APDA offers worldwide access to a broad range of programming products, resources, and
information for anyone developing on Apple platforms. You’ll find the most current versions
of Apple and third—party development tools, debuggers, compilers, languages, and technical
references for all Apple platforms. To establish an APDA account, obtain additional ordering
information, or find out about site licensing and developer training programs, contact

APDA

Apple Computer, Inc.
20525 Mariani Avenue, M/S 33-G

Cupertino, CA 95014-6299

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
408—562—3910 (elsewhere in the world)

Fax: 408-562-3971
Telex: l71«576

If you provide commercial products and services, call 408-974—4897 for information on the
developer support programs available from Apple.

P-4 About Inside Macintosh

|PR2017-01828

Ubisoft EX1002 Page 55

IPR2017-01828
Ubisoft EX1002 Page 56

Preface

For information on registering signatures, file types, Apple events, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
20525 Mariani Ave., M/S 75—3T

Cupertino, CA 95014-6299

The System Software Environment
Inside Macintosh Volume VI focuses on system software version 7.0; however, many of
the chapters in this volume contain information that is also relevant to system software
version 6.0 and later. See the Compatibility Guidelines chapter for information on
developing applications that can run in both system software version 6.0 and system
software version 7.0.

If the Gestalt function is available, you should use it instead of the SysEnvirons and Environs
routines. You can use the Gestalt function to determine whether all the features your applica-
tion requires are present on a particular Macintosh computer. You should not rely on the
ROM version, since later system software versions can override routines in ROM. See the
Compatibility Guidelines chapter for details on how to use the Gestalt function.

The Format of a Typical Chapter

Almost all chapters in Volume VI have a standard structure. For example, the Edition
Manager chapter contains these sections:

I “About This Chapter” This section describes the information you can find in the chapter
and includes references to related chapters.

I “About the Edition Manager” This section provides an overview of the features provided
by the Edition Manager.

I Additional sections describe concepts related to the Edition Manager.

I “Using the Edition Manager” This section describes the tasks you can accomplish using
the routines provided by the Edition Manager. It describes how to use the most common
routines, gives related user interface information, provides code samples, and supplies
additional information.

I “Edition Manager Routines” This section lists Edition Manager routines in
version 7.0, with routine declarations and descriptions of every parameter for
each routine.

I “Summary of the Edition Manager” This section provides the Edition Manager‘s Pascal
interface for version 7.0 constants, data structures, routines, and result codes, as well as

relevant assembly-language information.

About Inside Macintosh P-5

|PR2017-01828

Ubisoft EX1002 Page 56

IPR2017-01828
Ubisoft EX1002 Page 57

Inside Macintosh, Volume V]

The Conventions Used in This Volume

This volume uses elements such as assembly-language notes, trap macro notes, note boxes,
and warning boxes to set off important information. Trap macro notes and assembly-
language notes are useful only if you are programming in assembly language.

All routines (with a few exceptions) have both a Pascal and assembly-language form. The
summary at the end of each chapter first lists the constants, data structures, and routines
provided with the MPW Pascal interface files, and then lists equivalent assembly-language
information for data structures and routines for use with the MPW Assembler interface files.
The constants for the MPW Assembler interface files are the same as their Pascal equivalents,
so the constant names are shown only in the Pascal section of the summary. (The constants,
data structure names, and routine names in the MPW C interface files are also the same as

their Pascal equivalents.)

When appropriate, the declaration for a procedure or function includes relevant assembly-
language information in the form of a trap macro note that immediately follows the declaration.
The trap macro that corresponds to a Pascal interface routine begins with an underscore
character (_) followed by the Pascal routine name. Trap macro notes appear in this form:

Trap macro For register—based routines, this shows the trap macro
name and describes the parameters that must be in the
registers on entry to the routine and describes the values
returned in the registers.

For stack—based routines, this shows the name of the trap
macro if it is different from the Pascal interface name.

Assembly-language notes appear in this form:

Assembly-language note: This gives information of interest only if you
are programming in assembly language.

If you are programming in Pascal or C only, you can skip over the information in trap macro
notes and assembly-language notes.

Important information is often called out in a note box:

Note: Text set off in this way presents reminders or notes related to the topic.

Information that you need to pay special attention to is shown in a warning box:

A Warning: Warnings like this alert you to situations in which you could damage
software or lose data. A

Words that appear in boldface are key terms or concepts and are defined in the Glossary

P-6 About Inside Macintosh

|PR2017-01828

Ubisoft EX1002 Page 57

IPR2017-01828
Ubisoft EX1002 Page 58

Preface

All code listings use the Courier font (this is Courier) to indicate code from a sample
program that can be compiled. The summary listings and set-off code in text also use Courier
for the actual data structure names, field names, constant names, and routine names that
match the names used in the MPW Pascal interface files.

Many Toolbox and Operating System routines accept a pointer to a parameter block as
a parameter. For these routines, the routine description includes a list of the fields in the
parameter block that are used by the routine.

A typical parameter block description looks like this:
Parameter block

[in/out] [offset] [field name] [size] [description]

—> 0 input] long This is an input parameter

<— 4 ouputl word This is an output parameter

<——> 6 inAndOut long This is an input/output parameter

—) 10 requunt long Requested number of files to send

—> [4 buffer long Pointer to data buffer

(— 18 accCount long Actual number of files sent

The arrow in the first column indicates whether the field is an input parameter, output

parameter, or both. You must supply values for all input parameters and input/output
parameters. The routine returns values in output parameters and input/output parameters.

The second column indicates the offset and is useful only if you are programming in

assembly language or debugging your code. The offset value is the offset in bytes from
the beginning of the parameter block for each field within the structure.

The third column shows the field name as defined in the MPW Pascal interfaces, and the

fourth column shows the size of that field. The size is given in bytes or indicated as word or
long (for long word). Long indicates a field that occupies 4 bytes; word indicates a field
that occupies 2 bytes. The size is provided for your information and is more useful if you
are programming in assembly language. The final column provides a short description
of the field.

Other Documentation

For specific hardware information about the Macintosh family, see Guide to the Macintosh
Family Hardware, second edition, and Designing Cards and Drivers for the Macintosh
Family, second edition; for additional software information, see previous volumes of Inside
Macintosh. Also see Macintosh Worldwide Development: Guide to System Sofiware for a

complete description of all components of the worldwide system software. See Human
Interface Guidelines: The Apple Desktop Interface for a complete description of the Apple
human interface.

About Inside Macintosh P-7

|PR2017-01828

Ubisoft EX1002 Page 58

IPR2017-01828
Ubisoft EX1002 Page 59

Inside Macintosh, Volume V]

AN OVERVIEW OF THE CHAPTERS IN VOLUME VI

The following sections describe the content of each chapter in this volume and tell where to
find additional information in previous volumes. Figure P—l (at the end of the Preface) lists
the chapters in Volume VI and shows which other volumes cover those topics.

Introduction to the System Software Version 7.0 Environment

The first chapter in this volume provides an overview of the features of system software
version 7.0. It describes the operating environment for applications that run in version 7.0.

User Interface Guidelines

The User Interface Guidelines chapter in Volume VI reviews the user interface design prin-
ciples and gives new guidelines for system software version 7.0. The chapter discusses
windows, dialog boxes and movable modal dialog boxes, additions to the standard menus,
terminology, and user feedback. It also gives guidelines for developing worldwide software
and for designing color icons and windows.

The Finder Interface chapter in this volume provides related information on the user interface
presented by the Finder. Individual chapters address specific issues related to the user
interface features provided by a particular manager.

The User Interface Guidelines chapter in Volume I describes the various components of a
Macintosh application and discusses the use of menus, windows, dialog boxes, scroll bars
and other controls.

The User Interface Guidelines chapter in Volume IV discusses use of the arrow keys,
reserved keyboard equivalents, window zooming, and the standard close box.

The User Interface Guidelines chapter in Volume V briefly discusses the use of color in your
application. The chapter describes features of the standard and extended keyboards, and
discusses using sound, hierarchical menus, and scrolling menus in your application.

For more information on the Apple human interface, see the Human Interface Guidelines:
The Apple Desktop Interface.

Compatibility Guidelines

The Compatibility Guidelines chapter describes issues relating to compatibility for various
managers in system software version 7.0. It also includes details on pop—up menus, movable
modal dialog boxes, new routines for manipulating dialog items in a dialog box, and
discusses menu access when an application displays a modal dialog box.

The chapter also shows you how to call Gestalt, the new function for determining various
attributes, versions, and features of the system software.

P-8 An Overview oft/1e Chapters in Volume VI

ulnmmv

|PR2017-01828

Ubisoft EX1002 Page 59

IPR2017-01828
Ubisoft EX1002 Page 60

Preface

The Chapter gives guidelines you should follow to help ensure that your application is com-
patible across the Macintosh family of computers. It also provides information on how
to make your application compatible with A/UX® (Apple’s version of the UNIX® operating
system) and presents a brief overview of how to write software that can be easily localized
for use in other regions.

The Edition Manager

The Edition Manager chapter describes how you can let users publish and subscribe data
among many documents. The Edition Manager is part of the interapplication communications
(lAC) architecture in version 7.0. See the Edition Manager chapter for sample code that
shows how to add publish and subscribe capabilities to your application.

The Event Manager

The Event Manager chapter in Volume VI includes information on all events, including
suspend and resume events. The chapter incorporates information from Programmer’s Guide
to MultiFinder and replaces the information found there. The Event Manager chapter in this
volume also describes how to send and receive high-level events.

For specific information on keyboard events, the modifier flags field of the event record,
reading the keyboard and keypad, and responding to mouse events or disk—inserted events,
see the Toolbox Event Manager chapter in Volume I.

You also may want to read about the Operating System Event Manager, described in
Volume II. The Operating System Event Manager handles low-level, hardware—related
events. The Operating System Event Manager chapter also describes how your application
can post its own events in the event queue. You usually use the Event Manager to send
and retrieve events. For information on the PPostEvent function, see the Operating System
Event Manager chapter in Volume IV.

For information on standard keyboards, an addition to the modifier flags field in the event
record, and the KeyTrans function, see the Toolbox Event Manager chapter in Volume V.

The Apple Event Manager

The Apple Event Manager chapter describes Apple events and how your application can
receive and process the required set of Apple events. It also describes how to create and
send Apple events. -

The Program-to-Program Communications Toolbox

The Program—to—Program Communications (PPC) Toolbox chapter describes how your appli-
cation can exchange message blocks with other applications. The PPC Toolbox provides
low-level control of communication and is generally more suitable for code that is not event-
based or desk accessories or applications that are closely integrated.

An Overview of the Chapters in Volume VI P-9

|PR2017-01828

Ubisoft EX1002 Page 60

IPR2017-01828
Ubisoft EX1002 Page 61

Inside Macintosh, Volume VI

The Data Access Manager

The Data Access Manager chapter describes how your application can communicate with a
database application or other data source running on a remote computer. The chapter
describes how your application can use high—level or low-level routines to initiate communi—
cation with a remote data server, send commands or data to the server, and, after the server

executes the commands, retrieve any requested data from the server.

The Finder Interface

The Finder Interface chapter in this volume describes how to create bundles, file references,
and icons, including small icons and color icons. Code listings show how to set up the
resources the Finder needs to start up your application and display your application’s icons
on the desktop.

The chapter also describes changes to the Finder interface—for example, the new aliases and
stationery documents. It shows how to find special folders, such as the Preferences folder
and Temporary Items folder. In addition, the chapter describes how fonts and sounds are
visible on the desktop and how the user installs fonts and sounds by moving their icons to the
System Folder icon.

The Finder Interface chapter describes the Desktop Manager, a new manager that lets your
application add or remove information from the desktop database.

The Finder Interface chapter in this volume replaces the Finder Interface chapters in
Volumes III and IV.

Control Panels

The Control Panels chapter in this volume describes the new behavior of control panels in
system software version 7.0. If you develop video cards, you can also use the information
in the chapter to create an Options dialog box for the Monitors control panel.

The Control Panel chapter in Volume V describes how to write a control panel. Read the
information in the Control Panels chapter in this volume for additional information on writing
a control panel in system software version 7.0. Control panels written for earlier versions of
system software are compatible with version 7.0.

The Help Manager

The Help Manager chapter discusses how you can provide help balloons that supply your
users with information that describes the actions, behaviors, or properties of elements of
your application. The chapter explains how to create help balloons for menus, windows,
icons, controls, and other elements of the user interface of your application.

P—10 An Overview of the Chapters in Volume VI

|PR2017-01828

Ubisoft EX1002 Page 61

.have.--vfi

IPR2017-01828
Ubisoft EX1002 Page 62

Preface

The Font Manager

The Font Manager chapter in Volume VI describes how your application can take advantage
of TrueTypeTM fonts.

The Font Manager chapter in Volume I describes how the Font Manager works with
QuickDraw to draw characters. It discusses font numbers, character styles, font size,
scaling factors, the ascent line, the base line, the descent line, and leading. The chapter
also describes the format of a bitmapped font.

The Font Manager chapter in Volume IV discusses bitmapped fonts (of resource type 'FONT'
or 'NFNT‘) and font families (of resource type ‘FOND'). It describes a few data structures,
like the font family record.

The Font Manager chapter in Volume V includes information on fractional character widths,
the font search algorithm (how the Font Manager looks for a particular font), and how to
specify colors for a font.

The Resource Manager

The Resource Manager chapter in Volume VI lists the standard resource types in version 7.0.
The chapter also describes routines that you can use to read or write part of a resource.

The Resource Manager chapter in Volume I describes how you can store menus, fonts,
icons, and other data as resources. It gives definitions and descriptions of resource files,
resource forks, and data forks. It describes how to create and open resource files, how to
read resources from a resource file, and how to add, remove, update, and write resources
to a resource file.

The Resource Manager chapter in Volume IV describes a few routines that search only the
current resource file (these routines have the numeral 1 in their routine name). It also
describes two advanced functions, RsrcMapEntry and OpenRFPerm.

The Resource Manager chapter in Volume V describes the RGetResource function and lists
resource types, ROM resources, and resources in the System file.

Worldwide Software Overview

The Worldwide Software Overview chapter provides an introduction to scripts and script
systems. It can help you design your application so that it is compatible with Macintosh
computers throughout the world.

See the Worldwide Software Overview chapter for an introduction to worldwide issues, and
see the User Interface Guidelines chapter for guidelines about developing your application for
use around the world. See the International Utilities Package chapter in Volume I for
information on displaying numbers, currency, time, and dates in the correct format for
various countries around the world. Macintosh Worldwide Development: Guide to System

Software (available from APDA) replaces the Script Manager chapter in Volume V and
provides a more complete description of all components of the worldwide system software.

An Overview of the Chapters in Volume VI P-I]

|PR2017-01828

Ubisoft EX1002 Page 62

IPR2017-01828
Ubisoft EX1002 Page 63

Inside Macintosh, Volume VI

TextEdit

The TextEdit chapter in this volume describes how TextEdit provides support for working
with different script systems. It describes how you can use TextEdit to let the user edit and
display text in multiple scripts and styles when a non-Roman script system is in use. TextEdit
automatically handles text that uses more than one script, style, or direction.

The TextEdit chapter in Volume 1 introduces TextEdit and explains how your application
can use TextEdit routines for basic text formatting and editing.

The TextEdit chapter in Volume IV describes how TextEdit supports automatic scrolling
of text.

The TextEdit chapter in Volume V explains how TextEdit lets you vary text attributes such as
size, style, and font. It also describes the style record that stores the style information.

Graphics Overview

The Graphics Overview chapter provides an introduction to graphics on the Macintosh
computer. The system software provides a rich set of routines that support quick drawing
of objects such as circles, rectangles, and text. The Graphics Overview chapter introduces
many of the concepts and data structures explained in greater detail in the chapters on Color
QuickDraw, the Picture Utilities Package, the Color Picker Package, the Palette Manager,
and the Graphics Devices Manager.

Color QuickDraw

The Color QuickDraw chapter in Volume VI describes how version 7.0 supports both
indexed and direct specification of color. It also describes changes to the pixel map record
and the PICT2 file format, and it describes a routine that lets you convert a bitmap record into
a region. The information in the Color QuickDraw chapter in this volume supplements the
QuickDraw chapter in Volume I and the Color QuickDraw chapter in Volume V.

The QuickDraw chapter in Volume 1 introduces the basic concepts of QuickDraw, including
descriptions of the mathematical foundation of QuickDraw and the graphics environment that
QuickDraw provides. It also describes QuickDraw routines.

The Color QuickDraw chapter in Volume V describes how Color QuickDraw provides
support for drawing objects using a large number of different colors.

The Picture Utilities Package

The Picture Utilities Package chapter describes routines you can use to examine the contents
of pictures and pixel maps.

P-12 An Overview of the Chapters in Volume VI

|PR2017-01828

Ubisoft EX1002 Page 63

IPR2017-01828
Ubisoft EX1002 Page 64

Preface

The Color Picker Package

The Color Picker Package chapter in this volume describes how to present users with a
standard user interface for selecting a color. This chapter replaces the Color Picker Package
chapter in Volume V.

The Palette Manager

The Palette Manager chapter in this volume describes palettes, the default color tables, and
how to create and use a palette to control the color environment. This chapter replaces the
Palette Manager chapter in Volume V.

The Graphics Devices Manager

The Graphics Devices Manager chapter describes how you can prepare offscreen graphics
and move them quickly into view. It also provides useful information if you are developing
a graphics-intensive application. This chapter replaces the Graphics Devices chapter in
Volume V.

The Sound Manager

The Sound Manager chapter in this volume completely replaces any previous information in
Inside Macintosh regarding the Sound Manager. The Sound Manager chapter in Volume V1
is the complete reference and guide for the use of sound. It provides an introduction to sound
and describes sound synthesizers, sound channels, sound commands, sound resources, and
sound files.

The chapter also describes how your application can use the Sound Manager to create and
play sounds, mix and synchronize multiple channels of sound, expand and compress sound
data, and play sounds continuously from disk.

See the Sound Manager chapter in this volume if you want to use any kind of sound in your
application, even if you only want to use the SysBeep procedure.

The Time Manager

The Time Manager chapter in this volume describes the original Time Manager, the revised
Time Manager (available in system software version 6.0.3 and later), and the extended Time
Manager (available in system software version 7.0). It completely replaces the Time Manager
chapter in Volume IV.

The chapter describes how to schedule a routine for later execution, how to schedule a routine
to execute at periodic intervals, and how to compute elapsed time. It also describes other
time-related services, such as those provided by the TickCount and Delay functions, and the
Vertical Retrace Manager.

An Overview of the Chapters in Volume V1 P-13

|PR2017-01828

Ubisoft EX1002 Page 64

IPR2017-01828
Ubisoft EX1002 Page 65

Inside Macintosh, Volume V]

The Notification Manager

The Notification Manager chapter describes how to notify users of significant occurrences
relating to your application when your application is running in the background. Device
drivers, VBL tasks, Time Manager tasks, completion routines, startup code, desk acces—
sories, and applications can use the Notification Manager.

The Notification Manager chapter in this volume replaces the information in Appendix D of
the Programmer's Guide to MultiFinder.

The File Manager

The File Manager chapter in this volume describes how to create a file specification to identify
a file, folder, or volume. It also describes how you can use the File Manager to search for
and quickly find files.

The File Manager chapter in Volume IV describes the file system, including the Macintosh
File System (MFS) and Hierarchical File System (HFS). The chapter provides descriptions
of File Manager data structures and routines.

The chapter on File Manager Extensions in a Shared Environment in Volume V presents
routines that allow your application to more easily execute in a shared environment.

The Standard File Package

The Standard File Package chapter in this volume describes the StandardGetFile and
StandardPutFile procedures available in version 7.0. You can use these two procedures
to present the standard user interface when a user opens or saves a file. The chapter also
describes the two new procedures CustomGetFile and CustomPutFile, which let your
application exercise more control over the user interface when opening and saving files.

The Standard File Package chapter in Volume I describes the original procedures that
present the standard user interface for opening and saving files in earlier system software.
The Standard File Package chapter in Volume IV describes modifications to the original
procedures for use with the Hierarchical File System.

The Alias Manager

The Alias Manager chapter describes how to create and resolve alias records—a new data
structure that describes a file, folder, or volume.

You can use alias records instead of conventional file specifications to store file or directory
information. If you create an alias record, your application can use the Alias Manager to
locate the file or directory when needed!even if the user has renamed it, copied it, restored
it from backup, or moved it. The chapter describes the routines you can use to manage the
information in alias records.

P-14 An Overview of the Chapters in Volume V]

|PR2017-01828

Ubisoft EX1002 Page 65

IPR2017-01828
Ubisoft EX1002 Page 66

Preface

Memory Management

The Memory Management chapter in Volume VI describes 32—bit addressing, virtual memory,
and routines that let your application use available temporary memory. The chapter replaces the
discussion of temporary memory in Chapter 3 of the Programmer’s Guide to MultiFinder.

The Memory Manager chapter in Volume 11 describes the system heap zone and application
heap zone, how to allocate memory blocks, and how to avoid memory fragmentation. It also
discusses dereferencing a handle. lists general-purpose data types, shows the organization of
memory, and gives an overview of the stack and the heap. The routine descriptions discuss
how to set the heap zone size, create handles and pointers. allocate relocatable and
nonrelocatable blocks, and how to free memory in the heap.

The Memory Manager chapter in Volume IV describes improvements to Memory Manager
routines that are largely transparent to your application. It also describes routines that let your
application set or clear flags that the Memory Manager associates with each relocatable block.

Process Management

The Process Management chapter describes how the Process Manager schedules applica-
tions for execution and manages access to shared resources. It describes routines that let
your application get information about any or all running applications. The chapter replaces
the discussion of launching applications found in the Programmer’s Guide to MultiFinder.

The Slot Manager

The Slot Manager chapter in this volume describes how version 7.0 supports 32-bit
addressing of NuBusTM cards. The Slot Manager chapter in Volume V gives an overview
of the firmware of a slot card, explains the slot parameter block, and describes Slot
Manager routines.

The Power Manager

The Power Manager chapter describes a manager used only with the Macintosh Portable in
system software version 6.0.4 and later. This information is useful only if you are writing a
device driver or application that might be affected when power for the various subsystems of
the Macintosh Portable is shut off.

The AppleTalk Manager

The AppleTalk Manager chapter in this volume describes how version 7.0 supports various
link access protocols (for example, the LocalTalk® Link Access Protocol and the EtherTalk®
Link Access Protocol) that can be used for AppleTalk communication. It describes the
AppleTalk Data Stream Protocol (ADSP), a new protocol your application can use to
exchange information between two equal entities.

An Overview oft/1e Chapters in Volume VI P-15

93BJaJd

|PR2017-01828

Ubisoft EX1002 Page 66

IPR2017-01828
Ubisoft EX1002 Page 67

Inside Macintosh, Volume VI

The chapter explains how you can request that your program receive notification each time
another routine opens or closes the .MPP driver or whenever another routine is about to
close the .MPP driver.

The chapter also discusses how the LAP Manager lets your application control communica—
tion over non-LocalTalk networks, such as Ethernet. In addition, it provides information
you can use to write your own protocol handler for Ethernet or 802.3.

The AppleTalk Manager chapters in Volumes 11, IV, and V provide additional information on
the device drivers and protocols associated with AppleTalk. ”

A ROAD MAP TO VOLUME VI

Figure P-l shows each chapter in this volume. If you need to read related Chapters in earlier
volumes of Inside Macintosh for additional information, those other volumes are also shown.

For each chapter, the volumes are shown in the order in which you should read them; the
volumes shown are the only ones you need to read for information on that topic.

P-l6 A Road Map to Volume VI

|PR2017-01828

Ubisoft EX1002 Page 67

IPR2017-01828
Ubisoft EX1002 Page 68

Prefirce

 volume vi Chapter

Introduction to the System Software
version 10 Environment

Ueer Interface Guidelines

Ge-moalioilit}.r Guidelines

Edition Manager

Event Manager

Apple Event Manager

Program-to-Prograrn
Corn municatione Toolbox

Data Access Manager

Finder Interface

Control Panels

Help Manager

Font Manager

Fteseurce Manager

Worldwide Software Overview

TextEdit

Graphics Overview

1v'velume Prioritv

%@

l

.1"
2'"tau

ea

Volume 'll'l Chapter

IIiolor GuickDraw

Picture Utilities Package

Color Picker Package

Palette Manager

Graphics Devices Manager

Sound Manager

Time Manager

Notification Manager

File Manager

Standard File Package

Alias Manager

Memory:[Management

Process Management

Slot Manager

Power Manager

AppleTalk Manager

Figure P-l. A mar] map In Volume VI

.4 Ram! Map m Vrtl'rrrlle W

Volume Priority

II{II!'la
5

P-I?

|PR2017-01828

Ubisoft EX1002 Page 68

IPR2017-01828
Ubisoft EX1002 Page 69

Inside Mdcr'rIMJh, Volume W

P-IS

|PR2017-01828

Ubisoft EX1002 Page 69

..._..__._.‘

IPR2017-01828
Ubisoft EX1002 Page 70

INTRODUCTION TO THE SYSTEM

SOFTWARE VERSION 7.0 ENVIRONMENT

About This Chapter
About the System Software Version 7.0 Environment

The Cooperative Multitasking Environment
Interapplication Communication

Sharing Data Among Applications
Sending Events Between Applications
Exchanging Message Blocks Between Programs

Remote Data Access
Enhanced User Interface
Sound

TrueType Fonts
Graphics
File Management
Memory Management

Temporary Memory
24-Bit and 32—Bit Addressing

Process Management
Timing Services
Compatibility
Worldwide Development
Communication Over a Network
Hardware Interfaces

Overview of Chapters in This Volume

.-
—.—d,..
~.Av
Q.,—..
P.n
..v
5

1—1

|PR2017-01828

Ubisoft EX1002 Page 70

IPR2017-01828
Ubisoft EX1002 Page 71

Inside Mucfnrm'h. Vuhdme W

1-2

|PR2017-01828

Ubisoft EX1002 Page 71

IPR2017-01828
Ubisoft EX1002 Page 72

Introduction to the System Software Version 7.0 Environment

ABOUT THIS CHAPTER

This chapter describes the operating environment for applications that run in system software
version 7.0. It also provides general information about the features available to you when you
design an application to run in the system software version 7 .0 environment.

Read this chapter for an overview of how your application can use the Macintosh®
User Interface Toolbox and Macintosh Operating System routines in system software
version 7.0 to

I share data with other applications using the Edition Manager

I communicate with other applications using the Event Manager, Apple® Event Manager.
or the Program—to-Program Communications (PPC) Toolbox

I access data from other sources, including remote databases. using the Data Access
Manager

I play sounds using the Sound Manager

I keep track of specific files using the Alias Manager

I perform quick searches for specific files using the File Manager

I provide on-line assistance for users with the Help Manager

I draw TrueTypeTM fonts using the Font Manager

I use direct devices for graphics applications using Color QuickDrawTM

I function in worldwide markets using the Script Manager, International Utilities
Package, and TextEdit

This Chapter discusses the features and managers new to version 7.0. In addition, see
the Preface, where “A Road Map to Volume VI” shows each manager discussed in this
volume and illustrates a pathway through related information in previous volumes of
Inside Macintosh.

Although Volume VI focuses on system software version 7.0, many of its chapters contain
information that is also relevant to system software version 6.0 and later. See the
Compatibility Guidelines chapter in this volume for information on developing applications
that can run in both system software version 6.0 and system software version 7.0.

About This Chapter 1-3

.—
_.—.—pk
'14-v
:1.
=t".am.Av
—I

|PR2017-01828

Ubisoft EX1002 Page 72

IPR2017-01828
Ubisoft EX1002 Page 73

Inside Macintosh, Volume V]

ABOUT THE SYSTEM SOFTWARE

VERSION 7.0 ENVIRONMENT

System software version 7.0 extends the environment of the Macintosh computer by
providing even greater support for cooperation between applications. The user interface
continues to build on solid design principles and provides additional benefits; for example,
in version 7.0 users can more directly manipulate icons on the desktop and users can
customize the Apple menu. The Finderm, the Macintosh Operating System, and the User
Interface Toolbox provide and maintain this environment.

The Finder is the system application that lets users organize and manage applications, docu-
ments, folders, and disks on the desktop. Users can choose commands from the Finder menu
bar or use the mouse to perform various tasks. Because the Finder presents the standard
interface that the user becomes familiar with, you need to make sure that your application
performs in an expected manner in the Finder environment.

Macintosh users also expect certain standard behavior from Macintosh applications; for
example, all applications should provide File and Edit menus. Macintosh applications that
follow the user interface guidelines provide consistency and let users determine what action
to take to perform a particular task.

In earlier Macintosh computers a user ran one application at a time. Today’s Macintosh
model recognizes that a user often wants to run many applications at once. System software
version 7.0 provides this cooperative environment.

In system software versions 5.0 and 6.0, the MultiFinder® option provided a cooperative
multitasking environment. In system software version 7.0, the features of MultiFinder are
integrated into the Macintosh Operating System.

The Macintosh Operating System lets the user have several applications open at the same time
and lets the user switch between them. The Operating System also gives the user constant
access to the Finder. This lets a user move among open documents and applications without
having to save or quit the previous document or application. This environment also allows
applications to run in the background. For example, the Finder can copy files while the user
is working on another task in the foreground.

The cooperative environment of the Macintosh allows multiple applications to share the CPU
and other resources. You need to understand how this environment can affect your application.
The next section, “The Cooperative Multitasking Environment,” explains this in more detail.

An important aspect of system software version 7.0 is interapplication communication
(IAC), a new collection of features that help applications work together.

Copy and paste is a simple way in which Macintosh applications work together by sharing
data. In system software version 7.0, applications can provide automated copy and paste
features (that is, your application can automatically update the data that the user pastes into a
document when the original source of information changes). Applications can extend this
concept by using high—level events to request that other applications perform a particular task
or return requested information. Applications and drivers that require close integration with
each other can also extend this concept by reading and writing low—level message blocks.

1-4 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 73

IPR2017-01828
Ubisoft EX1002 Page 74

Introduction to the System Software Version 7.0 Environment

Apple Computer, Inc. has defined a protocol for high-level events called the Apple Event
Interprocess Messaging Protocol. High—level events that adhere to this protocol are called
Apple events. You can help ensure effective communication with other applications by using
this protocol.

Macintosh applications in system software version 7.0 can respond to incoming high—level
events from other applications as well as events generated by the user, and they can also send
high-level events to other applications. Better cooperation and communication between
applications help users to get the most out of any one application or to use the best features
from many applications—in effect, combining the features of many applications to achieve
the desired result.

By including the features provided by IAC in your application, you give the users of your
application even greater power, ease of use, and flexibility in accomplishing their tasks.

Figure 1—] highlights the general areas for which system software version 7.0 provides
routines. The next sections describe these topics in greater detail.

.—

.—
=u»
.1A
A_
CC.—
,-V..—i...

Playing sound continuously from disk

Soundfl Compressing & expanding sound data

Sharing dynamic data Flecordin sound
Communicating between
applications

h Interapplication . . .
communication Supporting direct devrces

(IAC) Graphics * Examining pictureinformation

 I‘. Sharing files across a network
I Accessing remote databases

Q- Networking

TrueType‘ Drawing fonts in

fonts any size

 ‘- File

management
Keeping track of
specific files

Color windows & icons

_ . User W Balloon Help
‘- WOTIdWIde interface Movable modal dialog boxes

 El: Localizing applications
+— Supporting multiple scripts
'* Formatting dates & numbers

E’\‘“‘\z Sorting strings

Cooperative n Cooperating with other
multitasking applications

environment Performing tasks in the
back round

h Memory
Virtual memory Management
24-bit & 32—bit addressing

Temporary memory

:1
Version 7.0

environment

Figure 1—1. Features of the system software version 7.0 environment

About the System Software Version 7.0 Environment 1-5

|PR2017-01828

Ubisoft EX1002 Page 74

Inside Macintosh, Volume VI

The Cooperative Multitasking Environment

The cooperative multitasking environment is a standard part of system software version 7.0.
The Macintosh Operating System and the Finder work together to provide this environment.
MultiFinder is now transparent to the user; the user always has the capability to run more than
one application at a time. Because the user may choose to run other applications in addition to
your application, your application needs to be capable of existing in a shared environment.

The Operating System schedules the processing of all applications and desk accessories.
When a user opens a document or application, the Operating System loads the application
code into memory and schedules the application to run. The application runs at the next
available opportunity. The next available opportunity usually means when the current process
or application gives up the CPU. In most cases, the application runs immediately (or appears
to the user to run immediately).

Once an application is executing, the CPU is available only to that application. The applica
tion can only be interrupted by hardware interrupts, and these are transparent to the
application. However, to allow the user to interact with your application and others, you
must periodically relinquish the CPU using the WaitNextEvent or EventA vail function.
Using these event routines in your application lets the user interact with your application
and also with other applications.

Although the user can have a number of open documents and applications, only one
application is the active application. The active application is the application currently
interacting with the user; its icon appears in the right side of the menu bar. The active
application displays its menu bar and is responsible for highlighting the controls of its
frontmost window.

When your application is the active application and the user switches to another application
(by clicking in the window of a document belonging to another application, for example), the
Operating System sends your application a suspend event. When your application receives a
suspend event, it should prepare to suspend processing, allowing the user to switch to the
other application. For example, in response to a suspend event, your application should
remove the highlighting from the controls of its frontmost window and take any other
necessary actions. The suspension actually occurs the next time your application calls
WaitNextEvent or EventAvail.

Your application also needs to be able to resume processing when the user chooses to work
with your application again. Your application receives a resume event when the user switches
back to your application. In response to a resume event, your application should update the
contents of its windows and highlight the controls of its frontmost window.

The Operating System preserves the environment of your application when it is suspended
and restores that environment before sending it a resume event. Your application does
not need to preserve or restore the operating environment in response to suspend or
resume events.

When you perform user testing of your application, you might want to observe people using
other applications as well as your application, to make sure that your application works well
in a cooperative environment.

See the Compatibility Guidelines and the Event Manager chapters in this volume for specific
information on how your application can handle suspend and resume events and how your
application can take advantage of the cooperative multitasking environment.

1-6 About the System Software Version 7.0 Environment

IPR2017-01828
Ubisoft EX1002 Page 75

IPR2017-01828
Ubisoft EX1002 Page 76

Introduction to the System Software Version 7.0 Environment

Interapplication Communication

The interapplication communications architecture provides support for

I automated copy and paste between applications

I sending and receiving events between applications

I reading and writing blocks of data between applications

The Edition Manager, Apple Event Manager, Event Manager, and PPC Toolbox provide
these features, and Figure 1-2 shows their relationships.

Macintosh OS & Toolbox 3

p—
_—..an
"lAa
Q-,—.—
CH
:.V
.5

‘ Edition Manager

~ Apple Event Manager

\—

‘ PPC Toolbox

Figure 1-2. The managers constituting the interapplication communications architecture

The IAC architecture is built on communication and cooperation between applications. Apple
has defined important standards to help ensure that communication between applications is
effective. Using the Clipboard, applications can share static data by allowing the user to copy
and paste data between documents. Using the Edition Manager, applications can support
dynamic data sharing and allow users to perform automatic copy and paste between docu—
ments. Applications that support dynamic data sharing allow users to copy data from one
document to another and receive automatic updating of the information when the data in the
original document changes. The verbs publish and subscribe describe this form of dynamic
data sharing.

You can let users publish and subscribe among many documents by using the Edition
Manager and implementing the Create Publisher and Subscribe To menu commands. This
is a form of high-level communication between applications; actually, the communication
is indirect, as the Edition Manager provides the interface that allows applications to share
dynamic data.

Your application can publish and subscribe with applications and documents on a local disk
or across a network. In general, anything that you allow the user to copy or paste you should
also allow the user to publish or subscribe to. See “Sharing Data Among Applications” later
in this chapter for more information on using the publish and subscribe features in your
application.

About the System Software Version 7.0 Environment 1—7

|PR2017-01828

Ubisoft EX1002 Page 76

IPR2017-01828
Ubisoft EX1002 Page 77

Inside Macintosh, Volume V]

Using the Apple Event Manager, applications can send Apple events to each other to request
services or information. These types of events are often the result of a user request, or they
can be specific events that your application sends to another application. Apple events provide
a standard way in which your application can communicate with many other applications.
Other high—level events are for applications that choose to use a protocol other than the Apple
Event lnterprocess Messaging Protocol (AEIMP). Applications can use the Event Manager to
send high-level events that follow their own protocol.

The Program—to-Program Communications (PPC) Toolbox is a set of low—level routines that
allow applications to communicate on the local computer or over a network. Using the PPC
Toolbox, applications can exchange blocks of data with each other by reading and writing
low-level message blocks. The PPC Toolbox provides a method of communication between
applications that is more useful for applications that are closely integrated, specifically
designed to work together, or dependent on each other for information. The PPC Toolbox
is typically more useful for code that is not event-based.

Your application can use the PPCBrowser function to allow the user to choose another appli-
cation to which to send high-level events or low-level message blocks. The PPCBrowser
function provides a standard user interface for choosing an application to communicate with,
much like the Standard File Package provides a standard user interface for opening a file.

All these forms of interapplication communication are based on the premise that applications
cooperate with each other. Both the application sending the high—level event or low—level
message block and the application receiving it must agree on the protocol of communication.

Figure 1—3 shows that your application can use the Edition Manager to publish and subscribe
data. Your application can use the Apple Event Manager to send and process Apple events
and the Event Manager to send and receive high-level events. Your application can use the
PPC Toolbox to read and write low-level message blocks. Your application can use any of
these methods to communicate with other applications located on me same computer or across
a network.

As Figure 1-3 shows, managers in the IAC architecture can use the services of other
managers. For example, the Apple Event Manager uses the communication services
of the Event Manager. The Event Manager in turn uses the PPC Toolbox on behalf
of applications.

Figure 1—4 shows how two different applications can use the Edition Manager to publish and
subscribe, and how they can use the routines provided by the Apple Event Manager, the
Event Manager, or the PPC Toolbox to communicate with each other.

The next sections describe the three parts of the IAC architecture: the Edition Manager, the
Apple Event Manager and Event Manager, and the PPC Toolbox.

1-8 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 77

IPR2017-01828
Ubisoft EX1002 Page 78

Immdmvim m the Sysfl’m Sqflu‘ure Varsity: 7.0 E'm-‘irmnmw!

Apple High—level Law-level
events events message

blocks
2.5%];

Apple Event Manager

Event Manager

PFC Toolbox |

Figure 13. Using inlerapplicatiun cummuniculinn

._
._.
:..—
3...-...._
F..-.._.J..
3H

? .3 Apple Ifi : g i:

, - Low-level'17.”:31 H events I 4,. message
i I _ I blocks

: Edition Manaierl ' '

A it; Even! Mans-er I i

.. Event Manaar !

E II ' I .J i -_l. . _ . . v _ #1.
PFC Tnolbox

Figure 1-4. Applications using imcrupplicnlion cmnmunicaliun

Ahmu Him Syflem Sqflit'ru'r Wish»: 7.0 Em'irrmmtrm F-‘i'

|PR2017-01828

Ubisoft EX1002 Page 78

IPR2017-01828
Ubisoft EX1002 Page 79

Inside Macintosh, Volume VI

Sharing Data Among Applications

The Edition Manager lets applications share dynamic data at the user’s request. (The Clipboard
lets applications share static data.) You build publish and subscribe capabilities into your
application in much the same way that you build copy and paste into your application.

Using the Edition Manager, you can let a user publish data by selecting a portion of text,
graphics, or other data within a document and choosing Create Publisher from the Edit
menu. When the user performs this action, your application saves the selected information
in a separate file. The information that is stored in a separate file is referred to as an edition.
You can also let a user subscribe to data in an edition by choosing Subscribe To from the
Edit menu; when the user chooses an edition, your application includes the information
from the edition in the current document. The information in an edition can be shared by
many documents.

A publisher is a portion of a document that is made available to other documents through an
edition. A subscriber is a portion of a document that receives the information from an edition.

Figure 1—5 shows a document containing a publisher, a file containing an edition. and a
document containing a subscriber. The bottom fish in the Fishes of the World document is a

publisher. The information from this publisher is made available to other documents through
the Illustration edition. The Aquarium poster document contains a subscriber that gets its
information from the Illustration edition. Note that when a user selects a publisher or
subscriber within a document, your application should display a border surrounding the
publisher or subscriber.

In general, when a user modifies the contents of a publisher and saves the document. your
application should write the new data to the edition. The Edition Manager then informs all
open applications with documents that subscribe to the edition that the edition contains
updated information. These applications can then automatically update the subscribers in

 2))
Illustration E X P E R I E N C E

Fishes of the The Aquarium
World

The 5mm man am. 719 Sign axmh The gran man am.cm: dklxl w mm was amt lNyhchc evxjs 5km IN]
amp nxcgjhc 2ch aamm nxcgmc me away. mgr: zixeTrunks tmvll 1"ka Thanksu: my Imqk Thanks [a m. not
men: mg: Hit up xclclu m xqctu mg; Hizinc 2.: zkicklz z zjhc 21c mam zl 2m 2.: man: :lxhalhd’nk Gliuw a] xhamamk alluw xhalhdmk anG amcx zk‘as 6 arm mars G amcx zk ms

Aquarium poster

Figure 1-5. A publisher, an edition, and a subscriber

1-10 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 79

IPR2017-01828
Ubisoft EX1002 Page 80

Introduction to the System Software Version 7.0 Environment

the documents. For example, in Figure 1-5, if the user changes the color of the fish in the
Fishes 0f the World document and then saves the document, the change can be automatically
made in the Illustration edition and the Aquarium poster document.

Figure 1-6 shows how a user might create a poster by using information from other docu—
ments. For example, the user could subscribe to separate editions containing an illustration
created by a graphics designer, text created by a writer, and a headline created by an editor.

 Illustration

EXPERIENCE
TheAquarium

EXPERIENCE

TheAquarium
Title text

h—t

,—_ar-r—.A
X.—
EP.r-p
Av
5'ne gun althl am The sjdh man the «Inn mun apt

m s dklxl IN menu ems dktxl lN lhctc cm: :1le IN ;ashd‘h mam: zjxc ashdm hxcghc m: ashdlh hxcmhc 2m:Thanks in MI znmjk ThanKsto)VH znxc|K Thanks to 1m znx
X1: on: my: H|I zxc xclchz xn men: zhgc Hjl11m: 2;: 1km: ll zinc 11c zklckfi 7i 7|hc 7,— mm; 7|xhalhr‘ljhk dfluw a; mar-am qtuw mamdmk all(3 amex ma 5 G amcx ijals G ahicx mat:

Text for poster

Aquarium poster

Figure 1-6. Sharing dynamic data with other applications

Your application should save the new information in the edition whenever the user edits the
publisher and saves the document that contains the publisher—unless the user has indicated
that the information should be saved in the edition on request only. Saving new information
in an edition replaces the previous contents of the edition.

When the information in an edition changes, the Edition Manager informs your application.
Your application should then update any subscribers with the new information from the
edition (unless the user has indicated that updates should be incorporated on request only).

For example, a user might open a word—processing document called My Stocks that accesses
information from an edition called Stock Report. The Stock Report edition might be updated
twice a day by an on-line database. As the information in the edition changes, the My Stocks
document can receive automatic updates with the latest information.

You can implement publish and subscribe capabilities in your application by using the
routines provided by the Edition Manager and supporting the required set of Apple events.
See the Edition Manager chapter for sample code that shows how to add these features to
your application.

About the System Software Version 7.0 Environment 1—] 1

|PR2017-01828

Ubisoft EX1002 Page 80

IPR2017-01828
Ubisoft EX1002 Page 81

Inside Macintosh, Volume VI

Sending Events Between Applications

The Macintosh Operating System provides routines that allow your application to send and
receive events using the Apple Event Manager and Event Manager. The Event Manager
provides a general method for communication between applications. The Apple Event
Manager provides a standard method of communication between applications using the
Apple Event Interproeess Messaging Protocol. (The PPC Toolbox can be used to read
and write low—level message blocks and is more useful for applications that are closely
integrated or perform coordinated tasks.)

Using the Apple Event Manager or Event Manager, applications can send events to other
applications to request services or information. You can send these events between applica—
tions on the same computer or between applications located on different computers on a
network. The Apple Event Manager uses the services of the Event Manager to send and
receive Apple events. The Event Manager uses the communication services of the PPC
Toolbox on behalf of your application to send and receive events.

For high-level events and Apple events, the applications involved must agree on what
they can ask each other and on the action that should be taken in each situation. Both the
application sending the event and the application receiving the event must agree on the
protocol of communication.

Your application should support at least the required set of Apple events sent by the Operating
System. If you plan to implement publish and subscribe capabilities, your application should
also support the Apple events sent by the Edition Manager. You can also implement other
common Apple events or design your own customized Apple events. In addition, sets of
Apple events exist for many specific categories of applications (for example, word processors
or spreadsheets).

If your application acts on an Apple event, it should perform the standard action requested by
that event. This helps ensure that other applications (and eventually users) can send an event
to a particular type of application and expect the other application to understand and act on the
event in a standard way.

In most cases, you should use Apple events to communicate with other applications.
However, if necessary, you can implement your own protocol for high-level events.
Figure 1—7 shows how two applications might use high—level events. For example, a
user might need to update the telephone numbers of everyone in the marketing department.
To accomplish this, the user might use a word-processing application to send a high-
level event with the new telephone numbers across a network to a directory application
running on a Macintosh computer at the company’s headquarters. When the telephone
directory application receives the high-level event, it updates its directory with the new
telephone numbers.

See the Event Manager chapter in this volume for information on how to send and receive
high-level events. See the Apple Event Manager chapter for information on the Apple Event
Interprocess Messaging Protocol.

1—12 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 81

IPR2017-01828
Ubisoft EX1002 Page 82

Introduction to the System Software Version 7.0 Environment

Flvune uumhm 039555491 uor 95550907 nan-555mm
013755574563 use-555456301575552159 03965572169

update plume—W .
lg numbersfurmarketing marsfismw usesssoiw

0155554092 059-555-1092 ‘009-555-3650 ‘09975554!sz
Directory

Phone numbers
019-555-0987
019-555-4563
019-555-2169
019-555-0190
019-555-1092

anager

Toolbox

 —
u—
D._.
'1,—v
C.
='1H....Aw..a

Figure 1-7. Sending events to other applications

Exchanging Message Blocks Between Programs

Using the Event Manager or Apple Event Manager to send events should meet the needs of
most applications for program—to—program communication. However, for low-level control or
to get services not provided by the Event Manager or Apple Event Manager, you can use the
PPC Toolbox. The PPC Toolbox lets you send larger amounts of data to other applications
located on the same computer or across a network. The PPC Toolbox can also be used by
pieces of code that are not event-driven. The PPC Toolbox is usually called by the Operating
System; device drivers, desk accessories, or other code modules can also use it.

Using the PPC Toolbox to send data between programs requires that both your program and
the program you’re communicating with are open at the same time. To initiate communica-
tion, one program opens a port and requests a session with another program. The target
program must also open a port and accept the request. Once a session is established, the two
programs can read and write low-level message blocks.

See the Program-to-Program Communications Toolbox Chapter in this volume for informa—
tion on reading and writing low-level message blocks between programs.

About the System Software Version 7.0 Environment [-13

|PR2017-01828

Ubisoft EX1002 Page 82

IPR2017-01828
Ubisoft EX1002 Page 83

M
'WW

WW
Inside Macintosh, Volume V]

Remote Data Access

Using the Data Access Manager, your application can communicate with databases or other
data sources running on a Macintosh computer or on a remote host computer. For example,
your application can use high—level routines to open a document containing commands to be
sent to a remote data server; initiate communication with the remote data server; send the

commands to the server; and (after the server executes the commands) retrieve the requested
data from the server. You can also use the Data Access Manager to send data to a remote
database or other data source.

If your application knows how to create commands for a remote data server, then your appli—
cation can use low-level routines to send these commands and data directly to the data server.

Figure 1-8 shows how a user in San Francisco might use a spreadsheet application to request
data from a company database in New York. The spreadsheet application can use the Data
Access Manager to request the data from the database. The database application in New York
sends back the requested data, and the spreadsheet application can use this data to generate a
graph of the information.

San FrancisV

Graph munthIg sales

a data for:
@NELU York 05}. Ollflllfls

.
I ‘ ~

III-E III

Monthly Sales,
New York

$30M

$20M

$10M

FY1988
Figure 1-8. Requesting data from a remote database

See the Data Access Manager chapter for information on sending and retrieving information
from a remote database or other data source.

1-14 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 83

IPR2017-01828
Ubisoft EX1002 Page 84

Introduction to the System Software Version 7.0 Environment

Enhanced User Interface

The user interface for system software version 7.0 contains noticeable improvements, such as
support for movable modal dialog boxes, and several new features. The Apple menu can now
contain applications, documents, folders, or other Finder objects. You can supply small icons
that the Finder displays in the Apple menu for your application and documents created by
your application. Names of open applications now appear in the Application menu, a new
menu to the right of all other menus. The Finder displays the small icon for your application
in the right side of the menu bar whenever your application is active.

The structure of the System Folder has changed, including the addition of new folders that
reside inside the System Folder. You can now store preference files in the Preferences folder
and temporary files in the Temporary Items folder.

The Control Panels folder, which is inside the System Folder, replaces the Control Panel desk
accessory. Control panels now appear as individual documents in the Control Panels folder.
The user can open the Control Panels folder from the Finder or the Apple menu. In addition, if
you develop video cards, you can create an Options dialog box that is used with the Monitors
control panel.

.—
_
=.—
-iA-
b—
En.-...

EH
In version 7.0, fonts, desk accessories, keyboards, international resource collections, and
sounds are represented as icons on the desktop. The user installs fonts and sounds by
dragging their icons to the System Folder icon. The user can store desk accessories in the
Apple Menu Items folder within the System Folder or anywhere in the volume. You can
now distribute fonts and desk accessories as movable resource files with separate icons.

The Finder now lets you create one or more icons for a single document or other desktop
object; one of the icons represents the real object, and the others are aliases that point to
the object. Aliases can give convenient access to documents that are nested within many
folders or that reside on a file server.

The Finder can display help balloons with descriptive text when the user moves the cursor to
certain elements of the Finder user interface while help is activated. In addition, if you use
standard windows in your application, the Help Manager automatically displays help balloons
for standard elements of the window, like the title bar and close box. You can use the features

of the Help Manager to display help balloons for other elements of the user interface of your
application. For example, you can create help balloons for menus, dialog boxes, and controls
used by your application.

See the Control Panels, Finder Interface, Help Manager, and User Interface Guidelines
chapters in this volume for information on these user interface features.

About the System Software Version 7.0 Environment 1 ~15

|PR2017-01828

Ubisoft EX1002 Page 84

IPR2017-01828
Ubisoft EX1002 Page 85

Inside Macintosh, Volume VI

Sound

Your application can create and play sounds, mix and synchronize multiple channels of sound,
expand and compress sound data, record sound, and play sounds continuously from disk
using the Sound Manager.

The Sound Manager provides a rich set of routines for producing sounds, from playing a single
sound to playing a set of digitally recorded sounds. You can also compress sound data for
efficient storage of sound data on disk, and expand compressed sound data in real time.

See the Sound Manager chapter in this volume for complete information on using sound in
your application.

TrueType Fonts

System software version 7.0 provides support for TrueType fonts. The Font Manager uses
equations (instead of bitmaps) to define the appearance of glyphs in TrueType fonts. After
using the equation to define a specific glyph in a particular font, the Font Manager translates
the outline to a bitmap for display on the screen.

The advantage of TrueType fonts is that a single TrueType font can be used to generate
glyphs at any size. The TrueType font includes instructions that fine—tune the image of the
font at different sizes. TrueType fonts are also resolution independent; the same TrueType
font can generate glyphs on a 72 dpi device or a 300 dpi device.

Your application can immediately take advantage of TrueType fonts if they are supported by
the user’s system software. However, the Font Manager still supports bitmapped fonts, and
gives preference to bitmapped fonts over TrueType fonts if both are available for a specific
typeface at a particular size.

To offer full support for TrueType fonts, your application can provide a menu command
(such as Size or Other) to let the user choose any size of a TrueType font. Your application
can also request that the Font Manager always choose TrueType fonts over bitmapped fonts.

Figure 1-9 shows an example of on—screen glyphs generated using a TrueType font and a
bitmapped font. The left side of the figure shows glyphs in a TrueType font that is rendered
at 12, 16, 19, 24, 31, 37, and 45 points. The right side of the figure shows glyphs in a
bitmapped font scaled at the same sizes.

See the Font Manager chapter for an introduction to TrueType fonts and for information on
using TrueType fonts in your application.

Graphics

The Macintosh User Interface Toolbox provides a rich set of routines that support graphics.
Using the Toolbox routines, your application can provide fast and high—quality graphics and
visual display to the user.

[—16 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 85

IPR2017-01828
Ubisoft EX1002 Page 86

Introduction to the System Software Version 7.0 Environment

TrueType font scaled on screen Bitmapped font scaled on screen
from 12 pomts to 45 pomts from 12 points to 45 points

\—A
1—1
=n
.1
O
a
=a4-!~-
O
=

Figure 1-9. Comparison of TrueType and bitmapped fonts

You can use the routines provided by QuickDraw to draw text, straight lines. ovals,
rectangles, or any variety of shapes. QuickDraw lets you define multiple drawing environ-
ments (ports)—each with its own coordinate system, location on the screen, and other
characteristics. QuickDraw also performs automatic clipping of drawing environments—
preventing another application from drawing in the drawing environment used by your
application. QuickDraw manages all drawing to the screen and provides a flexible set of
routines your application can use to perform most graphics operations.

Color QuickDraw provides support for gray—scale and color devices. In addition. users can
connect multiple monitors of different sizes, depths, and color capabilities. Color QuickDraw
automatically draws to the appropriate screen and takes advantage of the special
characteristics of that device.

Color QuickDraw in version 7.0 supports both indexed and direct devices. Indexed devices
typically have a color look-up table with 256 entries, meaning that up to 256 different colors
can be displayed at once on the screen. The user’s Video card and monitor determine the
number of bits per pixel and the number of colors that can be displayed on the screen. For
indexed devices, Color QuickDraw supports 1, 2, 4, or 8 bits of information per pixel.

Direct devices do not use a color look—up table; instead, the video card contains enough RAM
to directly store color information for each pixel. This allows direct devices to display up to
16 million colors. For direct devices, Color QuickDraw supports 32 bits of information per
pixel (although only 24 are actually used). See the Graphics Overview chapter in this volume
for a comparison of indexed and direct devices.

About the System Software Version 7.0 Environment 1-17

¥%—_——

|PR2017-01828

Ubisoft EX1002 Page 86

IPR2017-01828
Ubisoft EX1002 Page 87

Inside Macintosh, Volume VI

Using the Palette Manager, you can create palettes for your application. A palette is a
convenient way to group collections of colors. You can also use palettes if your application
makes special uses of color—for example, if your application needs color table animation.
See the Palette Manager chapter in this volume for information on the default color tables
supplied with version 7.0 and for information on how to set up and maintain palettes.

You can use the Color Picker Package to offer users a standard dialog box for choosing a
color. The user can choose any color from the entire range the available device can display.
See the Color Picker Package chapter in this volume for information on how to display the
Color Picker dialog box and for a description of the various color models used by the Color
Picker Package.

You can examine the contents of pictures and pixel maps using the Picture Utilities Package.
See the Picture Utilities Package chapter in this volume for more information.

You can use offscreen graphics to prepare images in a graphics environment you create and
then move the images quickly into View. The Graphics Devices Manager lets your application
get information about particular graphics devices and provides routines your application can
use if it needs exacting control of the graphics environment.

For an introduction to graphics on the Macintosh computer, see the Graphics Overview
chapter in this volume. If you’re developing a graphics-intensive application, see the Color
QuickDraw, Palette Manager, and Graphics Devices Manager chapters in this volume for
information on routines that provide advanced graphics features.

System software version 7.0 also provides support for color icons. See the Finder Interface

chapter in this volume for information on how you can create color icons for your application
and the documents it creates.

File Management

Your application can easily locate the files it needs by using alias records. An alias record is a
data structure that identifies a file, folder, or volume. Whenever your application needs to
store the location of a file or directory that it might need later, you can record the location and
other identifying information in an alias record. The next time your application needs the file
or directory, you can use the alias record to locate it, even if the user has renamed it, copied
it, restored it from backup, or moved it. You can also use alias records to identify objects on
other volumes, including AppleShare® volumes. The Alias Manager provides routines for
managing the information in alias records.

Note that the Finder creates alias objects that are visible to the user, while your application
usually creates alias records when it needs to store identifying information about a file or
directory that it uses internally.

You can also quickly search a disk for particular files using File Manager routines. You can
search for one or more files that match certain criteria that your application specifies. For
example, your application can search for all files that have a modification date later than
June 15, 1991, and the File Manager returns to your application a list of all files that match
this specification.

In version 7.0, individuals can share files with other users. A user can make all files within
one or more of the folders on a local disk available over a network. This increases the chance

that documents created by your application are used in a shared environment.

1-18 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 87

IPR2017-01828
Ubisoft EX1002 Page 88

Introduction to the System Software Version 7.0 Environment

The File Manager provides a new standard format for identifying files. You can use this
standard format in File Manager routines, and other managers also accept files specified
in the new format.

The user interface for opening and saving a file is enhanced in version 7.0. The Standard File
Package provides two new procedures, StandardGetFile and StandardPutFile, that your
application can use to display the standard user interface for choosing a file. To customize the
user interface for choosing a file, you can use the new CustomGetFile and CustomPutFile
procedures.

See the File Manager chapter in this volume for information on identifying and locating files
on a volume, see the Standard File Package chapter for information on letting the user choose
a file, and see the Alias Manager chapter for information on using alias records.

Memory Management

The Macintosh Operating System manages the loading of applications, desk accessories, and
other code into and out of memory. Applications must share the amount of memory available.
Without virtual memory, if an application needs a greater amount of memory than is currently
free for application use in the user’s system, the user must free up sorrre memory. With
virtual memory, the Operating System can store elsewhere the contents of memory in use
by other applications in order to make room for the active application.

Virtual memory extends the available memory beyond the limits of physical RAM by using
part of the available secondary storage (such as a hard disk) to hold portions of programs and
data not currently in use. When an application needs portions of memory stored on disk, the
Operating System brings those portions back into physical memory by swapping them with
other unused portions of memory.

The operation of virtual memory is mostly transparent to your application. The user sets
options in the Memory control panel to control various features of Virtual memory. The
user chooses whether Virtual memory is turned on and, if so, how much virtual memory
is available. The main benefit of virtual memory is that it allows users to run more applica-
tions at once and work with larger amounts of data.

See the Memory Management chapter in this volume for further information on using
virtual memory.

Temporary Memory

Your application can allocate temporary memory if it needs additional memory for short-term
purposes. Your application is not always guaranteed the desired amount of memory, so it
should work correctly even if it does not get the requested memory. For example, you might
allocate a small buffer in your application heap to copy data, and request additional temporary
memory. If the temporary memory is available, your application can use it to copy large
amounts of data more quickly. If the temporary memory is not available, your application
should still be able to perform the copy, although it might take a little longer. As soon as your
application finishes using the temporary memory, you should release it so that the memory
can be made available to other applications.

See the Memory Management chapter for further information on using temporary memory.

About the System Software Version 7.0 Environment 1-19

|PR2017-01828

Ubisoft EX1002 Page 88

.—

.—.—-|.->~
Abv‘
C.
C'1I->—.
O
3

IPR2017-01828
Ubisoft EX1002 Page 89

W

Inside Macintosh, Volume VI

24-Bit and 32-Bit Addressing

For Macintosh computers that support 32-bit addressing, the Memory Manager in version 7.0
uses all 32 bits of a memory address when the 32-bit addressing setting in the Memory
control panel is on. Earlier versions of system software use 24-bit addressing, in which only
the first 24 bits of a memory address are significant, and the upper 8 bits are ignored. For
compatibility, all machines that support 32-bit addressing also support 24—bit addressing.

Macintosh computers that support 32-bit addressing can run with either 32-bit addressing or
24-bit addressing, but not both at the same time. The user chooses 32-bit addressing or 24—bit
addressing by changing the setting in the Memory control panel and restarting the computer.

Applications that use the upper 8 bits of a memory address do not work correctly in 32-bit
addressing mode. Applications that strip the upper 8 bits of a memory address or rely on the
structure of the Memory Manager heap also do not work correctly in 32-bit addressing mode.
Therefore, your application should not directly manipulate the bits in a memory address. If
your application can operate correctly in 32—bit addressing mode, you can indicate this to the
Operating System by setting a flag in your application’s 'SIZE‘ resource. See the Event
Manager chapter for a discussion of the 'SIZE’ resource.

If you use your own customized window definition functions or customized control

definition functions, see the Memory Management chapter for guidelines on avoiding
memory address violations. The Memory Management chapter also provides further
guidelines on how to write an application that works with 32—bit addressing.

Process Management

System software version 7.0 provides support for process management. Your application can
get information about any currently running process, including your own. For example, for a
specified process, you can find the application’s name, type and signature; the number of
bytes in the process partition, the number of free bytes in the application heap, the application
that launched the process, and other information. Your application can also launch other
applications and desk accessories.

When a user opens a desk accessory in version 7.0, the Operating System launches the desk
accessory in its own partition. When a desk accessory is open, the Finder puts the name of
the desk accessory in the list of open applications in the Application menu, and also gives the
active desk accessory its own About command in the Apple menu that includes the name of
the desk accessory. This makes the user interface for desk accessories more consistent with
the user interface of small applications.

You can achieve greater control over other applications using the Process Manager routines.
You can bring an application to the front, get information about other applications, and launch
other applications without terminating your own application. Your application can also
receive notification if any application that it has launched terminates.

System software version 7.0 provides greater support for launching applications and docu-
ments at Startup. All desktop objects in the Startup Items folder are automatically opened at
Startup. All background applications in the Extensions folder are launched early in the Startup
sequence before the Finder is started. Background applications generally perform a specific
task and are invisible to the user. The Startup Items folder and Extensions folder are located
inside the System Folder.

1-20 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 89

IPR2017-01828
Ubisoft EX1002 Page 90

Introduction to the System Software Version 7.0 Environment

See the Process Management chapter in this volume for information on launching other
applications and getting information on currently running processes.

Timing Services

You can schedule routines to execute at a later time using the Time Manager. The Time
Manager provides a hardware-independent method of performing time—related tasks.

You can schedule routines to run periodically or after a specified delay. Time delays can be
specified in milliseconds or microseconds in version 7.0. You can achieve a maximum
resolution of 20 microseconds. This gives you greater accuracy in coordinating sound,
multimedia, and other events that require precise timing.

See the Time Manager chapter in this volume for information on how to schedule a routine
for later execution and how to compute elapsed time.

Compatibility

You can determine what features are available on a Macintosh computer using the Gestalt
function. The Gestalt function provides information about various attributes, versions, and
features of particular software and hardware available on the currently running system.

The Compatibility Guidelines chapter in this volume discusses guidelines you should follow
to ensure that your application is compatible with previous versions of Macintosh system
software as well as with new releases of Macintosh system software.

These guidelines can help you develop your application so that it is compatible across the
Macintosh family of computers. The guidelines also provide information on how to make
your application compatible with A/UX® and how to design your application so that it can
be easily localized for use in other regions.

Worldwide Development

As you develop applications for worldwide markets, you need to consider differences in
scripts, languages, and regions. The Macintosh system software presents one of the most
flexible architectures for developing applications that can support more than one script.

A script, such as Roman, Kanji, or Arabic, is a writing system for a human language such as
English, Japanese or Arabic. Scripts have different characteristics; for example, they can
differ in the direction in which their characters and lines run and in the number of characters

in their character sets. The way in which you need to input, display, render, and edit text may
change depending on the script in use.

A script system is a collection of software facilities that provides for basic differences between
writing systems. Script systems include character sets, fonts, keyboards, and routines for text
collation and word breaks. Examples of script systems are Roman, Japanese, Arabic, Hebrew,
Thai, Devanagari, and Korean. A script system can also be localized for a particular language,
region, or country. For example, the Roman script system has been localized for French,
British, Italian, and US. users (among others). The system software of all Macintosh

About the System Software Version 7.0 Environment 1-2]

.—
D—l
E.-
.1
O
9-
3:CH—.
C
:5

|PR2017-01828

Ubisoft EX1002 Page 90

IPR2017-01828
Ubisoft EX1002 Page 91

Inside Macintosh, Volume VI

computers includes the Roman script system. If another script system is required, it is also
customized for the particular language or region. You can use the Script Management System
to help you display text in the correct format for various scripts.

Worldwide system software consists of the Macintosh Script Management System (that is,
the Script Manager and one or more Macintosh script systems) and related components
(including the International Utilities Package, the international resources, and keyboard
resources).

Measurement systems often differ from country to country, as do currency, sorting order,
word boundaries, and the formatting of dates and times. The International Utilities Package
handles formats for the presentation of numbers, currency, time, and dates in countries
around the world. The international resources and several of the keyboard resources also
contain region-specific or language-specific information, such as date and time formats.

TextEdit also provides support for working with different script systems. You can use
TextEdit to let the user edit and display text in multiple scripts and styles when a non—Roman
script system is in use. TextEdit automatically handles text with more than one script, style,
and direction. For example, TextEdit supports mixing English text (a left-to-right directional
script) with Arabic text (a right-to—left directional script) in the same line.

You should use resources to store text for menus, dialog boxes, and other parts of the user
interface of your application. This lets a translator localize your application for a particular
language, region, or country without requiring modification of your code. In addition, by
using routines provided by the Macintosh Script Management System, you can write your
application so that it works independently of the particular script in use.

Figure 1-10 shows a document created by an application that uses the Macintosh Script
Management System to support more than one script system.

The Macintosh (JJA-SL‘) provides several
writing systems (Ed-“34> L—‘l—‘S yd“)

Figure 1-10. Using multiple scripts in a single document

See the Worldwide Software Overview chapter for an introduction to designing your applica—
tion for worldwide markets, and see the User Interface Guidelines chapter for guidelines
related to developing your application for use around the world. See the TextEdit chapter for
information on using TextEdit when a non-Roman script system is in use. Macintosh
Worldwide Development: Guide to System Software (available from APDA®) provides a
complete description of all components of the worldwide system software, including routines
in the Script Manager.

1-22 About the System Software Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 91

IPR2017-01828
Ubisoft EX1002 Page 92

Introduction to the System Software Version 7.0 Environment

Communication Over a Network

The Macintosh Operating System provides many routines to support applications communi-
cating and sharing data across a network. You can send events between applications located
on different computers using the Event Manager or Apple Event Manager, and read and write
low—level message blocks using the PPC Toolbox. You can send and retrieve information
from a remote database or other data sources using the Data Access Manager. You can share
data and files between applications on different computers using file sharing, the Edition
Manager, and the Alias Manager.

In addition, you can use the network and communication services provided by the AppleTalk®
Manager or Communications Toolbox. The AppleTalk Manager provides routines your
application can use to send and receive information over an AppleTalk network.

The AppleTalk Manager in version 7.0 supports various link access protocols (for example,
the LocalTalk® Link Access Protocol and the EtherTalk® Link Access Protocol) that can be

used for AppleTalk communication. Your application can also use a new protocol, the
AppleTalk Data Stream Protocol (ADSP), to exchange information between two equal
entities. Either end of an ADSP connection can send data at any time. You can use ADSP
to establish two-way communication between computers—for example, for use in office
conferencing. See the AppleTalk Manager chapter for information on the device drivers and
protocols associated with AppleTalk.

The Communications Toolbox provides your application with a standard interface for various
communication services (such as data connections, file transfer, and terminal emulation) that
are often used with a modem, other serial connections, or over an AppleTalk network. See
Macintosh Communications Toolbox Reference Guide (available from APDA) for additional
information on the routines provided by the Communications Toolbox.

Hardware Interfaces

The Macintosh family of computers supports many different types of hardware, including
mouse devices, keyboards, display devices, hard disks, floppy disks, CD-ROM discs, and
other devices. These devices are supported through various hardware interfaces, including
SCSI (Small Computer System Interface), ADB (Apple Desktop Bus”), and SCC (Serial
Communications Chip). In addition, a number of different devices can be supported through
the expansion interfaces (the NuBusTM and processor-direct slots).

You can design expansion cards and drivers for the NuBus and processor—direct slots. For
specific hardware information for the Macintosh family, see the Guide to the Macintosh
Family Hardware, second edition. For information on writing a driver for the Macintosh
family, see Designing Cards and Drivers for the Macintosh Family, second edition, and for
system software information, see Inside Macintosh, Volumes I—VI.

Volume VI (this volume) contains information on the new Power Manager and additional
information on the Slot Manager. The Power Manager is a new manager used with the
Macintosh Portable. The Slot Manager in version 7.0 supports 32-bit addressing of NuBus
cards. See the Power Manager chapter and Slot Manager chapter in this volume for specific
information on these managers.

About the System Software Version 7.0 Environment 1-23

.—

.—
5u-p
'1
‘3
D—
=’2n.—.A.v.—Ii

|PR2017-01828

Ubisoft EX1002 Page 92

IPR2017-01828
Ubisoft EX1002 Page 93

Illi'ifl't’ Macintosh. Volume W

OVERVIEW OF CHAPTERS IN THIS VOLUME

Tlic User lnleri'acc Guidelines chapter and Compatibility Guidelines chapter provide
imponttnt inl'onnntion about (JCS-Signing your application to take advantage oftl‘te
Macintosh user interface and to ensure compatibility ncmss the Macintosh family
of computers.

The rest {if the chapters in this volume show how to use, the new features of version It}

in your application. Each chapter gives detailed descriptions of each manager. including
routines. patrtilnelers. and data stnlc‘turns.

Figure l—I l shOWs where you can find a detailed description of how to use each feature
of the system software version It) environment

3’ 34 Ul'c’r't’i-t’it' riff Chupit’rx iii Thir Vut’nrm’

|PR2017-01828

Ubisoft EX1002 Page 93

IPR2017-01828
Ubisoft EX1002 Page 94

frurndmrfinu m the Sphere”: .Srrflu'rrre Varar'rm EU Errvr'mrrmarrr

lflll‘DdUCIlDr‘l
h

Version Tl] ll , Compatibility '
EnuirunmenlI Guidelines

Chapter] Chapler3 .
s; , y

 User Interface

_ User Finder |—Contro| I‘
énterlpee . Inlerlace l Panels Iuide inea ! Chapter 9 : Chapter 10 -
Chapter 2f _/ é"j

Worldwide

 Help Fun! I. Resource ‘ _ .
Manager Manager ' Manager Worldwroe _ TeflEdit

Chapter 12 Chapie 50W"? Chapler 15

Overview .l

Chaplin-3)! /.

a;Tx
Devices, Networking

B. Communications

.—
_.
.-.-.
E=..—
:
F:.-...--....
..—.“‘5

li'alelle Dala r Sound-

Graphics Color .

Overview OuiokDraw l Manager _ Access - Manager I
Chapter 16 '- ChaplerEE} ': .

Cha ter 17 Manager |' Chapter 22 _.
p . ChaplerBL/j} __~ ..
Color

Pielure - . 5 Graphics Sloi _ - AppleTall-r
Picker Devi-CBS Manager Manager Manager

Package - Chapter 30 . Chapteral _. Chapier 32 _- Utilitiv MChapier 13 ; anager :
Chapter19 Chg ter2 '

/%| r W2}

03. File 3: Memory
Management

 Intera pplioation
Communications {IAC}

_ - ll

Eclrlionj—[n
I Manager Eveni ,Chapter 4 Manager Apple Euenl

I Chapler5 . Manager I:33 .» Chapters J
Program-to—
Program
Communication
Toolbox

Chapter 3’ LI/

File I Slandard _ Alias
Manager File Manager

Chapterea. Package - Chapter?!

|Managemeni

Manager Manager I

Chapter 23 -'. Chalets?

Figure [-I I. Overview of chapters in Volume Ml

Overview of Clarrprar's r'rr This lr’rli'rrrrrr’ L25

|PR2017-01828

Ubisoft EX1002 Page 94

IPR2017-01828
Ubisoft EX1002 Page 95

hm'dc' Mut'fmmh. VOHHHC’ W

I-Et’:

|PR2017-01828

Ubisoft EX1002 Page 95

IPR2017-01828
Ubisoft EX1002 Page 96

2 USER INTERFACE GUIDELINES

3 About This Chapter
3 User Inteiface Design Principles
4 Worldwide Software Development
5 Cultural Values
5 Resources

6 Language Differences
6 Text Display and Text Editing
8 Default Alignment of Interface Elements
8 Keyboards

l 1 Fonts
12 User Documentation

13 Terminology
14 The Version 7.0 Environment
14 User Feedback

15 Background Notification
16 Color Design for Version 7.0 N
16 General Color Design Guidelines F
18 The Icon Family 5
18 Black—and—White Icons 1

19 Small Icons :5
19 Color Icons 3,

20 Consistent Use of Icons 35
21 Customized Icons
22 Windows
‘22 Window Positions
23 The Zoom Box and Window Behavior

23 Dialog Boxes
24 Modal Dialog Box Behaviors
24 Movable Modal Dialog Boxes
25 Keyboard Navigation in Dialog Boxes
26 Button Labels

29 Dialog Box Layout
30 Dialog Box Messages
30 Standard File Dialog Boxes
31 Save Changes Dialog Box
32 Menus
32 File Menu

32 Edit Menu
33 Font Menu

34 Help Menu
34 Keyboard Equivalents
36 Pop-Up Menus
36 Standard Pop—Up Menus
36 Type-In Pop-Up Menus
37 More User Interface Information

2-]

|PR2017-01828

Ubisoft EX1002 Page 96

IPR2017-01828
Ubisoft EX1002 Page 97

{midi} Mariana-Jr. Vuhmrc W

l-J
I

la.)

|PR2017-01828

Ubisoft EX1002 Page 97

IPR2017-01828
Ubisoft EX1002 Page 98

User Interface Guidelines

ABOUT THIS CHAPTER

This chapter provides recommendations about how to adapt your application’s interface to the
Apple® Desktop Interface provided with system software version 7.0. It describes new user
interface guidelines and clarifies existing guidelines. It also introduces several user interface
topics that you need to consider when you design or redesign an application. Throughout the
chapter are references to places where you can find more information about technical
implementation issues.

Your application should maintain the spirit of the Apple Desktop Interface and remain consis—
tent with the guidelines presented earlier in Inside Macintosh, Human Interface Notes, and
Human Interface Guidelines: The Apple Desktop Interface—which present a complete
description of the Apple Desktop Interface.

USER INTERFACE DESIGN PRINCIPLES

This section describes the fundamental principles of the Apple Desktop Interface. It’s a brief
reminder of the basic premises that you should consider when you design your application
for the Macintosh® computer.

K»)

cm(D
.,
_
5PF
(D

:r,Nn
(D

I Metaphors from the real world. Concrete, simple metaphors provide people with
a set of expectations to apply to computer environments. Whenever appropriate, audio
and visual effects can support the metaphors.

I Direct manipulation. Each user action has a perceptible response and the Operating
System provides feedback to verify the effect of the action. For example, icons move
when users drag them. In the Macintosh interface, people don’t have to trust that
abstract commands entered in a text-based interface do what they promise. This means
that when users choose the Bold command, a word changes immediately to boldface~

in comparison to other operating systems in which users type in commands and wait to
see the results when the document is printed.

I See-and-point (not remember-and-type). Users rely on recognition, not recall,
so entities are visible when possible. People don’t have to remember anything the
computer already knows. such as which commands are available.

I Consistency. Effective applications are internally consistent and consistent with
other applications.

I WYSIWYG (what you see is what you get). There is no significant difference
between what users see on the screen and what eventually is printed.

I User control. Users, not the computer or the application, initiate and control all actions.

I Feedback and dialog. Users get feedback about all interactions with the computer,
and it is immediate feedback when possible. This communication should be brief,
direct, and expressed in the users’ vocabulary rather than the programmer’s.

User Interface Design Principles 2—3

|PR2017-01828

Ubisoft EX1002 Page 98

IPR2017-01828
Ubisoft EX1002 Page 99

Inside Macintosh, Volume W

I Forgiveness. As users explore the interface, their actions should generally be revers-
ible so that people explore and learn by doing. Users should be able to identify in
advance any actions that aren’t reversible.

I Perceived stability. Users feel comfortable in a computer environment that remains
understandable and familiar rather than one that changes randomly.

I Aesthetic integrity. Visually confusing or unattractive displays detract from the
effectiveness of human-computer interactions. Therefore different things, like folders
and documents, should look different on the screen. Also, users should be able to

control the superficial appearance of their computer workplaces to display their own
style and individuality. Messes are only acceptable if users make them. Applications
aren’t allowed this freedom.

For further explanation of these design principles, see Human Interface Guidelines: The
Apple Desktop Interface.

WORLDWIDE SOFTWARE DEVELOPMENT

Macintosh worldwide system software is designed to address the complex problems you’ll
encounter when you design your applications to be compatible with regional, linguistic, and
script differences around the globe. Worldwide system software consists of the Macintosh
Script Management System (which is one or more script systems and the Script Manager)
and related components that include the International Utilities Package, the international
resources, and keyboard resources.

The Macintosh computer has always presented one of the most flexible architectures for
developing worldwide software. Because of the enhanced support for script systems in
version 7.0. it’s easier for users to add one or more non—Roman script systems to their
Macintosh computers. With version 7.0, software can be localized with greater ease. Now
it‘s even more advantageous for you to create applications that can be used worldwide.

It’s much easier to design software with worldwide support from the beginning of your
development process. This may mean that you create your application so that it is easy to
localize, or that you adapt it for use in a specific area. Localizing software involves trans—
lating an application’s menus, dialog boxes, alert boxes, and content areas into a language
or regional dialect.

You can also make your application Script Manager—compatible. The Script Manager
routines and the International Utilities Package handlc text issues for all script systems.
If your application is not text—oriented but does simple text processing, using TextEdit
provides adequate support.

If your application does moderate text processing, such as that accomplished by a simple
word processor, you probably want to incorporate Script Manager capabilities. If it does
intensive text processing, such as page layout, you can build in support beyond the Script
Manager routines to handle text for a specific script system.

The following sections outline the major issues you need to consider when you develop soft-
ware for local or worldwide use. For a complete description of the issues and a discussion of
technical implementation, see the TextEdit and Worldwide Software Overview chapters later in

2-4 Worldwide Software Development

|PR2017-01828

Ubisoft EX1002 Page 99

IPR2017-01828
Ubisoft EX1002 Page 100

User Interface Guidelines

this volume. These chapters discuss the routines that assist you in developing your application
for worldwide use. See Macintosh Worldwide Development: Guide to System Software for a
complete discussion of developing worldwide software. This book is available from APDA®.

Cultural Values

Whenever you design a user interface, consider that differences exist in the use of color,
graphics, calendars, text, and the representation of time in various regions around the world.
It’s important that you be able to localize your user interface elements with ease. As an
example, consider how different cultures assign different meanings to colors. The color
white represents purity in one culture and death in another. Therefore you may want to
localize elements of the user interface, such as the colors of text or graphics, in versions of
your application designed for different regions.

Graphics have the potential to enhance your application, but they can also be offensive, In
addition to colors, many cultures assign varying values and characteristics to living creatures,
plants, and inanimate objects. In the United States the owl is a symbol of wisdom and knowl—
edge, whereas in Central America the owl represents witchcraft and black magic. Some
cultures forbid the depiction of uncovered bodies and body parts, while other cultures
enhance marketing materials with pictures of scantily clad people. It‘s a good idea to avoid
the use of seasons, holidays, or calendar events in software that you expect to distribute
worldwide. Also avoid using graphics that represent holidays or seasons, such as Christmas
trees, pumpkins, or snow—or be sure that the symbols can be localized. You can influence
your audience in simple but profound ways by carefully selecting elements of your applica—
tion’s interface. Make sure that visible interface elements can be localized for other regions
around the world.

9923mm].1980z

Different calendars are used to mark time around the world. The United States and most of

Europe observe time according to the Gregorian calendar. The traditional Arabic calendar,
the Jewish calendar, and the Chinese calendar are lunar rather than solar. Often time is marked

one way for business and government purposes while religious events are dated according to
a different calendar. Therefore your application should be flexible in handling dates, and you
may want to provide the user with a way to change the representation of time. Use the
International Utilities Package to handle numbers, dates, and sorting.

Resources

It’s essential to store region-dependent information in resources so that text the user sees can
be translated (during localization) without modifying your application’s code. When you
create resources, consider text size. location, and direction. Remember that text size varies in

different languages. Also, depending on the script system, the direction of text may change.
Most Middle Eastern languages read from right to left instead of left to right, the direction of
Roman script. Text location within a window should be easy to change.

Use the Macintosh Script Management System to handle these situations. See the Worldwide
Software Overview, Compatibility Guidelines, and Resource Manager chapters in this
volume for more information on using resources to store data the user sees. Also consult
Macintosh Worldwide Development: Guide to System Software for more information.

Worldwide Software Development 2-5

|PR2017-01828

Ubisoft EX1002 Page 100

IPR2017-01828
Ubisoft EX1002 Page 101

Inside Macintosh, Volume VI

Language Differences

Languages differ in grammar, structure, meaning, and nuance. Translating languages is a
delicate task and often can cause confusion, so be wary of using colloquial phrases or
nonstandard usage and syntax. Choose your words carefully for command names in menus
and for messages in dialog boxes, alert boxes, and help balloons. When translated, text can
become up to 50 percent larger than US. English text, so you can’t rely on string length.
Text needs room to grow up, down, and sideways.

Potential grammar problems may arise with error messages and the so-called user program-
ming structure of languages like HyperTalk®. The word order of messages may be completely
different in translation, thus rendering a message nonsense when translated. Simple concate-
nation of strings generally doesn’t work when an application is translated. For example, word
order in German usually places the verb at the end of a sentence. Suppose a German devel—
oper built an application that concatenated two strings to create an error message. When
localized for the United States, the application might produce a sentence like “The file with
the long name move.” Instead of concatenating strings, use the ReplaceText function, which
correctly assists with the syntactic ordering of elements. See the Worldwide Software
Overview chapter for information on technical implementation.

Text Display and Text Editing

System software version 7.0 allows users to display different scripts at the same time. A
script is a writing system for a human language. Scripts may differ in the direction in which
their characters and lines run, the size of the character set used to represent the script, and
context dependence. Whenever a user installs a non—Roman script system, at least two scripts
are available, the Roman script that is present on all Macintosh computers and the non—Roman
script. If you use the TextEdit and Dialog Manager routines, you can correctly handle most
text in different scripts. For moderate text processing, the routines provided by the Script
Manager can assist you in implementing these guidelines. The TextEdit and Worldwide
Software Overview chapters in this volume discuss all of these issues thoroughly.

No matter what level of worldwide support you provide, it’s important to avoid two common
assumptions. Characters aren’t necessarily 1 byte; they can be 2 bytes. You also shouldn’t
assume that text is always left—aligned and read from left to right.

Remember that the meaning of a character code depends on the font, and character codes may
be 1 or 2 bytes long. The cursor should move between characters, not bytes, and the Delete
key should erase characters, not bytes. Inserted Characters should appear between other
characters, not between bytes of a 2—byte character. Also be aware of the impact of 2-byte
characters on data transmission.

Use the language—specific routines in the Macintosh Script Management System for breaking
and wrapping words and for string comparison and sorting. Consider word boundaries and
their impact on word wrapping, selection, search, and cut and paste.

Some scripts include multiple sets of numerals. For example, international business in Japan
and the Middle East requires the use of Western digits as well as the digits from a Japanese
script or an Arabic script. Applications that handle numbers should accept all the numerals in
each set as valid. Use the International Utilities Package to handle numbers.

2 6 Worldwide Software Development

|PR2017-01828

Ubisoft EX1002 Page 101

IPR2017-01828
Ubisoft EX1002 Page 102

Ui'i’i' hiI'r’Ij'm'c (Jiiidi'I'I'In’I'

‘I’nu need In prm—‘ide metric and English measurements. UH:- numerii: routines l'ur international
number tlti'inattling and interpretation.

"i’eur application sheuld uppmpriulcly pusilinn the cursor when the user clicks in text. The
rumor. urcaret. should appear where the next character will uppcur whom lypcd. ll [hi5 i5
umhiguuux because of mullidireclinnul chl. uric dual Cill'Clr‘u. an: fihuwn in Figure 2-1. For a
ilelailed discusaiun ul' using dual carclx. sec IhL: 'I'cxtL-Ldil Chapler in this volume.

Roman keyboard icon

' 6 file EIlIt ran Sluie

AVUFITGOlde IEEL'PFB-ll New Turk [LiniirttzLi l‘nlntinu 'I'iInL‘w
Secondary caret Primary caret

Figure Z-l. Dual carats in iItixcd—dil'crclltmttl [cm

Highlighting should apply to u cenligumls set [lfChilHlClL‘l'S in memory. men lhnugh the
glyphs, may nnl appear cumiguous tin Ihe screen. In (lli‘lCl‘ Wfirdfi.)mlt th‘JLIld highlight
characters in phonetic order {the order in which the user speaksa. reads. nr writers} rather
than the erder in which elmmetem appear on xereen. Hewewer. the urrnw keys, shutlld more
the cumur in. [he ilireclinn [hut the armw puinlx. l'Cgill'LllL‘hfi of text direcliun. 'I'hifi guideline
uppliex flL‘l'UfiS script hULIl‘lilflrlCfi when the user (listplays mulliple scriplx. In Figure 3-2 the
nnillidirectinnal text app-Cains cnrrcclly highlighled I'er ediling; Ihe wmda are highlighted in the
order that the user lL‘ildK. [rem right to lel'l. The tninalatien til the tnixeLi—direclimtul Hebrew
and English sentence lh in the windnw labeled “unidirectional highlighting." The Uni-rc-
Hpmltling English wt‘ll'dh. flnwing li'nin left In right. unt- highlighted t'er editing.

muttidirectianal highligminq

. T.'IH rnmmuer’tPnl or A‘JDID. anr‘ulfi

_[I:I:Ier'.'n:- 'n he slate UT:31|TE'FI'|13

Figure 2—2. Mullitlireciinntll text correctly highlighted

Note: IT with uppliculinn USES TcxlEdil I'utllincS. Inml worldwide lexl iSHLICh are
handled In: yuu. 11 mm“ atpplieuliun needs men: mphistiiuted text hendline we
sltnuld 'dlhfl cunfiull the Wnrldwidc Sullwun: Cit-CI new CI‘IIIplCI' in thifi ’l.‘(l]11lTlL'.

llr'm'fdii'ia'e .S'rifi‘n'm'r Ut’I't’I'npan 3- 7

|PR2017-01828

Ubisoft EX1002 Page 102

w
E-
5“ .P.-_,

5“.ft-

3.,i;r:I't-

IPR2017-01828
Ubisoft EX1002 Page 103

Inside Macintosh, Volume V]

Applications that work with tokens (abstractions that have multiple representations) or use
characters that vary from script system to script system should work correctly in all scripts.
For example, a token that represents the concept of “less than or equal to” might have two
representations on a US. system, the 2—byte sequence <2 or the l—byte character 5. If you
use the lntlTokenize function to handle these details, your application doesn’t have to be
aware of the character codes.

Default Alignment of Interface Elements

When dialog boxes are localized for use with worldwide versions of system software, the text
in the dialog box may become longer or shorter. Also, the alignment of controls in the dialog
box may vary with localization. Arabic and Hebrew are written right to left, so the alignment
of items in an Arabic or a Hebrew dialog box is generally right to left, just as dialog box items
in English or Russian are generally left to right. The low-memory global variable TESstust
controls the alignment of interface elements.

When TESstust is —l, the Control Manager reverses the alignment of check boxes and radio
buttons, the Menu Manager reverses the alignment of menu items to be ordered and aligned
on the right, and TextEdit aligns text by default on the right. Create your application so that it
supports both left alignment and right alignment of controls and adjust the alignment as
appropriate. Provide a way for the user to change the default line direction of text. Use the
SetSstust procedure to set the value of the global variable TESstust.

When the alignment of items is reversed, it’s important that the elements appear symmetrical.
Therefore when you create dialog box items, try to make sure that their display rectangles are
the same size. Figure 2-3 shows a typical dialog box and the same dialog box with the align-
ment of its elements reversed. You can see why it’s important to create display rectangles of
the same size.

Keyboards

As stated previously, in version 7.0 users can install multiple script systems. If the Operating
System or an application determines that all conditions are met, it enables the script system,
making it available to users. A script system can contain more than one keyboard layout that
maps character codes to keys on a physical keyboard, and it can support more than one
attached physical keyboard. All keyboards do not have the same set or number of keys and
users may have more than one keyboard attached to their computer. See the Worldwide
Software Overview chapter in this volume for information on installing and enabling script
systems and keyboard resources.

Version 7.0 adds a new Keyboard menu when more than one script system is present or a
localizable resource flag is set. This menu simplifies the user’s access to scripts and key-
boards. The icon for the Keyboard menu appears between the icons for the Help menu and
the Application menu. A keyboard icon appears next to each keyboard name. and the icon
of the active keyboard appears in the menu bar. As Figure 2-4 shows, the Keyboard menu
displays a list of installed keyboard layouts for each enabled script system.

2
l

8 Worldwide Squrare Development

|PR2017-01828

Ubisoft EX1002 Page 103

IPR2017-01828
Ubisoft EX1002 Page 104

[.flrr’r friu‘rff'rrr‘r’ (Frrfrr’r'i’i'nm

: Check It Out I C} Efllrernelu long HfiIJIO Hutton

_ filled-t It In Olnnq Radio Button Check It ULIEI' Q LE. “to“

[Cant-PI] ' UK
\—

Lmnk It Elul U - [ulremety I am; Radio Buttun C}

Check It In I] 'long Radio Bu'ltun Q

Check It UllPr D LB. Shnl't 7.}-

![antfill | UK J

Figure 2-3. ch'craing the alignment Ui' dining hm items

The Keyhnurd menu grnLip-R the kcyhmlrd lilynulfi by script $316111. which are fiL‘ptlfilltfd by
dotted or gray lines. In Figure 3-4. there are Iwn Human kuyb-imrd layout-H [Spanish and
United SHIECSJZ at Single I'lehrcw kcyhuurtl laynul: and two Japanese kcyhnut'd Ian-nuts. Only
Ul‘lt‘ kuyhtmrd luyuut and mu: physical kcyl‘runrd an: active :11 t1 time: the tictix-‘t: condition i5
indicated it}: at chcuknmrk in the menu.

Keyboard icon for active
| Keyboard script

C ? ?*t'i'i» 33% “Hi 1&3“? it»

Flbout Keyboards...

1.. D b ? 2*; —rs ' 1
Keyboard Iayouttor ¢* h‘fialfl /" boundary

active script tHebrew} .. __ _ J

= Espafiul

' U5

Figure 2-4. The Keyboard menu

War-'Mit'rdr’ .chf'rii'm‘i‘ {Jrrvrduprrir’nf 2-9

|PR2017-01828

Ubisoft EX1002 Page 104

IPR2017-01828
Ubisoft EX1002 Page 105

Inside Macintosh, Volume V]

Users can change keyboard layouts by using this menu or by using a keyboard equivalent,
Command—Space bar, to cycle through the keyboard layouts. Don’t use the keyboard
equivalents Command—Space bar and Command—modifier key—Space bar in your application,
since they are reserved for use by the Script Manager. See “Keyboard Equivalents” later in
this chapter for a complete listing of reserved keyboard equivalents.

Table 2—1 shows some new black—and—white versions of keyboard icons for localized ver—
sions of Macintosh system software. They are shown in color on Color Plate I, ”Examples
of Keyboard Icons,” at the beginning of this volume. A keyboard icon represents a localized
keyboard layout. If you develop key—boards or keyboard resources. you must provide
customized icons like these. You create a l6-by-l6 pixel icon in 1—bit, 4-bit, and 25—bit color.
If you use the same colors for the 4-bit and the 8-hit color icons, you only need to provide
one 4—bit icon. This scheme takes up less space in the System file.

To represent your keyboard layout for version 7.0, replace the black-and»white symbol you
previously used to represent a localized keyboard layout with an icon similar to those shown
in Table 2-1 and Color Plate I.

If you are designing a new keyboard icon, use a solid symbol to represent a keyboard layout
for a region that is larger or smaller than a country or province. For example, a diamond
represents the Roman Script System, which is used in the United States, Central America,
and most of Europe. Use the flag of a country or province if the keyboard layout is only used
in that area. For example, the Union J ack represents the keyboard layout localized for use in

Table 2-1. Examples of keyboard icons

Name Icon Name

Arabic 5 Netherlands, comma
decimal separator

Canada , _
. ‘ Roman (U.S.)

Cyrilhc ‘
SpamEHOCyrillic transliterated
Swiss French

Denmark

Faeroe Islands SW1” GermanE"E
Germany Swiss Italian

Hebrew Turkey

Turkish U.S. modifiedas
Japanese Romaji

3E HF
Japanese Katakana United Kingdom

‘ [EEl'J
Korean (preVIOusly _.)

Efifli*fififlh*EF§ [m:
U 't d St t 3

Netherlands, period dec_ima] n1 e a es
separator (previously '-£.')

2—10 Worldwide Software Development

|PR2017-01828

Ubisoft EX1002 Page 105

IPR2017-01828
Ubisoft EX1002 Page 106

User Interface Guidelines

the United Kingdom. Be sure to use the colors that appear on the nation‘s flag. You can also
add a visual indicator to the flag to ShOW some modification. Use a superscript diamond to
indicate a QWERTY transliteration, which is a mapping of sounds from a language to
the Roman keyboard layout. Use a subscript comma or period to indicate which decimal
separator is used. See Table 2-1 for examples of icons with these symbols.

When you design the black—and-white version of a flag icon, use black and a 50 percent
gray pattern. These choices provide the best contrast and legibility. To avoid confusion
between flags of similar design, use the pattern substitutions for colors shown in Table 2-2.
See Table 2—1 to see flags that use the correct pattern substitutions.

Table 2-2. Pattern substitutions for colors in keyboard icons

Pattern Color

I Black Black or blue

 = 50 percent gray Red

25 percent gray Light blue

Diagonal stripes Green

White White or yellow

When the user changes the keyboard layout, you should synchronize the font to that keyboard
layout. You can use the FontScript function to periodically poll the Operating System to find
out if the user has changed the keyboard layout. Choosing a font should set the keyboard
layout to the script of that font. For example, if a user chooses a Japanese font such as
Osaka, your application should change the keyboard script to Japanese. When a user Clicks in
text, your application should set the keyboard layout to correspond to the font of that text.
For a well—designed application, the keyboard icon in the menu bar should always indicate
the status of the font script. The TextEdit chapter in this volume provides an example of auto—
matically synchronizing the font and the keyboard layout.

See the Worldwide Software Overview chapter in this volume for more information on the
Keyboard menu.

Fonts

When you write software that supports non—Roman scripts, don't make assumptions about
font sizes; let the user choose them. For example, system or application fonts may be preset
to 12 or 18 points and a font with a resource ID of 0 is not always set to Chicago. Pay atten—
tion to the use of system and application fonts when the user cannot choose the font. If you
must assign font sizes, use the Script Manager to find appropriate fonts and sizes. Use the
proper font names as defined by worldwide system software. Whenever possible, display
font names in the proper script and font in your Font menu.

Worldwide Software Development 2-1]

|PR2017-01828

Ubisoft EX1002 Page 106

IPR2017-01828
Ubisoft EX1002 Page 107

Inside Macintosh, Volume VI

Diaeritical marks may extend beyond the ascent line. Some fonts, such as Japanese fonts,
contain glyphs that extend to the boundaries of the enclosing rectangle of the font, or to both
minimum-y and maximum-y lines. You should leave room for space between lines of text
and between the top and bottom lines of any enclosing rectangle. See the Font Manager
chapter in this volume for more information. Figure 2-5 shows some glyphs that demonstrate
the boundaries you need to allow for lines of text.

Maximum y-vaiue ---

O
Ascent line --

Base line

Descent line ---

Minimum y-value ---

Figure 2-5. The boundaries of a font

USER DOCUMENTATION

Documentation for users is an essential part of the user interface that you provide. It should
be as well considered and developed as your application’s user interface. Consider the
audience that you address with your product and tailor the documentation to its needs. It‘s
often useful to provide alternate types of documentation for the differing types of users who
make up your audience. Beginners have different needs than expert users.

People have distinct learning styles. Some users learn by seeing, some learn by doing, some
learn by hearing, and some learn through a combination of these styles. It’s best to provide for
the broadest possible range of learning styles. For example, including a written tutorial, a
written reference manual, an on—line tutorial with visual and auditory feedback, and an on-line
help system should meet the needs of nearly everyone who wants to learn to use your product.
As an example of an on-line help system, you can look at Balloon HelpTM in the FinderTM in
version 7.0. For information on including your help system in the Help menu or implementing
Balloon Help for you application, see the Help Manager chapter in this volume.

Develop task-oriented documentation that teaches users how to accomplish the tasks that you
designed your application to perform. Avoid system—oriented documentation that describes
everything that your application can do rather than teaching practical skills.

2- I 2 User Documentation

|PR2017-01828

Ubisoft EX1002 Page 107

IPR2017-01828
Ubisoft EX1002 Page 108

User Interface Guidelines

It’s important to use standard terminology and nonteehnical language in user documentation.
Don’t pass on technical jargon to users and expect them to understand or like it. When you
must use technical terms, be sure to define them at first occurrence, and include a glossary if
your document has many specialized terms. Be consistent in your use of terminology. Make
sure that messages and terms that users see on the screen match what appears in the
documentation.

Apple Computer, Inc., publishes the Apple Publications Style Guide, which codifies the way
in which Apple documentation uses language. It's a guide to writing about the Apple Desktop
Interface. You can obtain this publication through APDA.

It’s very important to translate all user documentation, including tutorials, on—line help, and
books, when you localize your software product. Making your documentation available in a
user’s native language greatly enhances the usability and marketability of your product.

TERMINOLOGY

Use regular language in your applications as well as your documentation. Don’t use technical
jargon or computer science terminology. The majority of users aren’t programmers. It’s
especially important not to use programming terms in menus, dialog boxes, or user books.

In particular, don’t use file type names to refer to Finder documents that users see. Call
documents by the terms that appear in the Kind column in Finder windows. Use the terms in
Table 2-3 in place of the four-letter type names.

L)

CIf.
n:'1
l:—l.—
n:'1

:7n
a:

Table 2-3. Translation chart for user documentation

Previously Suggested
used term terminology Examples

cdev control panel Mouse control panel

RDEV Chooser extension LaserWriter® Chooser extension,

AppleShare® Chooser extension

lNlT system extension File Sharing Extension
(not startup document)

adeV network extension EtherTalk® network extension

ddev database extension Data Access Language (DAL)
database extension

DA desk accessory Calculator desk accessory

FKEY function key 3E—Shift-3 screen-dump utility

standard file dialog box directory dialog box SFGetFile dialog box

MultiFinder® icon active—application icon TeachText application icon

Terminology 2-13
,.

|PR2017-01828

Ubisoft EX1002 Page 108

IPR2017-01828
Ubisoft EX1002 Page 109

Inside Macintosh, Volume VI

In version 7.0 a cooperative multitasking operating environment is always available to users.
Therefore it’s no longer appropriate to use the term MulliFinder to distinguish this environ-
ment from the Finder environment. When you update or revise written material that relates to
version 7.0, replace the term MultiFinder with the term Finder.

THE VERSION 7.0 ENVIRONMENT

This section briefly describes the general user interface recommendations that affect your
application when it runs in the version 7.0 environment. The changes to system software
and the operating environment are described in the Introduction to the System Software
Version 7.0 Environment chapter and in the Compatibility Guidelines chapter in
this volume.

In previous versions of system software, a cooperative multitasking environment was avail—
able to users with MultiFinder. Users could turn on MultiFinder so that they could open
multiple applications at one time; however, most people didn’t use MultiFinder regularly.
In version 7.0 the cooperative multitasking environment is standard. Now all users can open
as many applications and desk accessories as their computer’s memory can support. The
Macintosh computer manages applications in much the same way that each application
handles its own windows.

As in previous versions of system software, only one application can be active at a time. The
frontmost application. the one interacting with the user, is the active application. Its small icon
represents the Application menu in the menu bar and appears next to the application’s name in
the Application menu. Your application should update the controls in the frontmost window
whenever the user switches to your application. If you previously didn’t update your applica-
tion to be compatible with MultiFinder, you now need to modify your application’s event loop
to accommodate a cooperative environment. For more information on the operating environ—
ment in version 7.0, see the Compatibility Guidelines chapter.

User Feedback

When your application is the active application. you need to provide feedback to the user to
i indicate what’s happening. A user learns to predict how long certain operations last. In the

version 7.0 environment, multitasking, virtual memory, and network connectivity cause task
length to become more variable. A user won’t always be able to predict the length of time per
task. Therefore it becomes more essential to display feedback about what is taking place. If
you don’t, the user may think that the Operating System stopped running and may attempt to
correct a perceived error condition, perhaps by manually restarting the machine. At least use
the spinning beach ball or animated watch cursor to indicate an operation in process. If you
can approximately determine the amount of time a task will last, it’s even better to use a

progress indicator so that a user knows that the Operating System is still running and that an
operation is occurring. Figure 2—6 shows an example of a progress indicator.

2-14 The Version 7.0 Environment

|PR2017-01828

Ubisoft EX1002 Page 109

IPR2017-01828
Ubisoft EX1002 Page 110

User Interface Guidelines

Inserting the file “Reallg lung document"
into “wombat data”...

Stop .
Figure 2-6. A progress indicator

Background Notification

When your application runs in the background, you may need to get the user’s attention to
respond to a task completion or a request for input. The Notification Manager provides
several ways for your application to alert the user. When a background task is running and
you need to notify the user, use the Notification Manager to alternate an icon in the menu bar
with the icon for the Application menu or Apple menu as appropriate. In general, you should
display an icon that corresponds to your application or system extension, so that the user gets
a visual clue about which application is requesting attention. In addition, you should display a
diamond—shaped mark next to your application’s name in the Application menu. You can also

 Hide Others
39:23.3; RE:

is)

play a sound. Figure 2—7 shows an example of a notification symbol. m:
:3F—i

1:] 3
Hide My Rm] :5. 93H(D

 l: Finder
o L93” Sample
¢<€z§ My Flpp

Notification symbol
Active application symbol

Figure 2-7. The Application menu with a notification symbol

Nothing more should happen until the user chooses to activate your application, at which time
you can display a modal dialog box. Your dialog box or message must inform the user about
what needs attention, why attention is needed, and what to do. For example, a dialog box
might say “Transmission of the file My Phone List to 415—555—1212 could not be completed
because the phone line went dead,” and it might present the user with two buttons, Try Again
and Cancel.

A background application should not take control from the user by placing an alert box on
the screen when the user hasn’t activated the application. If an immediate response is crucial
and the user doesn’t respond to the notification request, your application needs to handle the
situation gracefully.

See the Notification Manager chapter in this volume for information about implementing
these techniques.

The Version 7.0 Erwironment 2-15

|PR2017-01828

Ubisoft EX1002 Page 110

IPR2017-01828
Ubisoft EX1002 Page 111

Inside Macintosh, Volume V]

COLOR DESIGN FOR VERSION 7.0

The appearance of system software version 7.0 is enhanced by using the color capabilities of
the Macintosh. The use of color makes the interface more visually pleasing. The color also
distinguishes the active window from other windows and enhances user controls on the
window frame. It’s important to recognize that color in the interface is applied to help users
focus their attention on their work and not to draw attention to the interface itself. This section

describes the use of color in the Macintosh interface and provides recommendations about
how you can add color to your icons and applications. Color Plate 11. “A Colorized Window.”
shown at the beginning of this volume, demonstrates the new appearance of colorizcd
windows in version 70.

Note: The figures that demonstrate the guidelines in this section appear on the color
plates found at the beginning of this volume. The printed colors may vary slightly
from the colors that you see on your screen.

The windows and dialog boxes in version 7.0 are designed for aesthetic consistency across all
monitors from black—and—white displays to 85—bit color displays. For display on color monitors,
color and shades of gray have been added to the frames of windows and to user controls. The
window background remains white on all systems and the window contents remain black and
white. For an example see Color Plate 111, “A Colorized Movable Modal Dialog Box,” which
shows a colored frame, but black radio buttons and text. This updated design takes advantage
of the color capabilities of the Macintosh but maintains the consistency of the Macintosh
interface. On color screens, the racing stripes in the title bar and the scroll bars are gray. The
user controls, close box, size box, zoom box, and scroll box are colored to make them more

apparent. The borders of inactive windows are gray and recede into the background so that the
active window’s black frame emphasizes its position in front of the other windows.

For version 7.0 the standard window definition functions have been changed to display color
windows and dialog boxes. Some control definition functions have been updated to display
in color the window’s scroll bars, scroll arrows, scroll box, close box, size box, and zoom
box. If you use the standard window definition functions and standard control definition
functions, your application’s windows will match the appearance of version 7.0 system
windows. If you create your own windows, be compatible with version 7.0 by using the
standard window color table and the guidelines described in this section. Be aware that users
can change the colors of windows and dialog boxes by using the Colors control panel. If you
use the default window color table, you can be sure that the colors you use are consistent
with any color that the user has access to with the Colors control panel. You can use the
Palette Manager to associate a color palette with a window definition. See the Palette Manager
chapter in this volume for more information.

General Color Design Guidelines

Always design for black and white first and then colorize that design. This method ensures that
your design looks good on all Macintosh computers. One example of why this is important is
the text selection mechanism, On a color monitor you might be tempted to change the color
of text to indicate its selection; however, this technique wouldn’t translate to a black—and-white
monitor. In addition, a significant percentage of the population (up to 10 percent of the male

2—16 Color Designfor Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 111

IPR2017-01828
Ubisoft EX1002 Page 112

User Interface Guidelines

population) has color deficiencies and wouldn’t recognize the use of color to indicate selec—
tion. Therefore, you should never use color as the only means of communicating important
information. Color should always be used redundantly. Color Plate IV, “Design for Black-
and—White Monitors First," shows the correct process of designing for black—and—white
monitors and then adding color to those designs. It demonstrates the consistency of the
appearance of the icons and how the aesthetic integrity is maintained across the designs.

Keep black—and—white designs two—dimensional. It’s important to maintain the visual consis—
tency of the Macintosh interface across applications and computer systems. Don’t cause
unnecessary visual clutter by trying to mimic color effects, such as shadows, in black—and-
white designs. Color Plate V, “Don’t Mimic Color Effects in Black—and—White Designs,”
shows icons that were designed in color first and then adapted to a black-and-white design. It
demonstrates the difficulty of trying to mimic color effects. This color plate shows how using

only black pixels and white pixels limits your ability to re—create the appearance of coloricons.

Note: This guideline doesn’t apply to keyboard icons discussed earlier in the
“Worldwide Software Development" section. In that section, specific patterns
represent colors for black—and-white versions of the keyboard icons.

Maintain a close visual relationship between a black—and—white design and its colorized version.
Users should be able to easily recognize standard interface elements and icons across all moni-
tor types. Users ean have several monitors connected to a computer and several computers on
which they use your applications. Your application should look consistent when a user changes
the bit-depth of a monitor or when the user moves your icon or window from a color monitor
to a monochrome monitor.

N

(2'Vi
'D"l
—1
:5H
m

E,mG
(D

Use as few colors as possible in your designs. The fewer colors you use, the less flashing
occurs when the screen’s color table updates during screen redrawing. Using fewer colors
also results in less visual clutter on the screen. If you use a graphics application to do design
work, make sure that the colors you use are available in the default color tables. For more
information about color palettes and color tables, see the Palette Manager chapter later in
this volume.

Use light or subtle colors for large areas. Also use subtle colors to avoid visual clutter on the
screen. To extend the range of light or subtle colors available, you can create colors that are
lighter than those in the default color tables by using a 50 percent pattern of the color and
white. Color Plate VI, “Use Light Colors for Large Areas,” shows some icons that appropri-
ately use colors. Color Plate VII, “Don’t Use Bright Colors for Large Areas,” shows how
too many bright colors can be visually distracting.

Use bright colors sparingly and only in small areas. Bright colors attract the eye and can
distract the user from the information that you’re trying to convey, Bright colors can be
effective in the contents of a window, such as in a chart. However, if bright colors appear all
over the screen, it becomes difficult for the user to focus attention. You can use bright colors
for small details. An example of this technique is the version 7.0 hardware icons (such as the
hard disk icon) that use red and green pixels to represent the Apple logo. For an example of
this guideline, see Color Plate VIII, “Use Bright Colors for Details."

For display on color screens in version 7.0 use true gray wherever you previously used a
50 percent gray pattern. Use true gray in menus for the dotted separator lines between groups
of items and for dimmed menu items.

Color Designfor Version 7.0 2-17

|PR2017-01828

Ubisoft EX1002 Page 112

IPR2017-01828
Ubisoft EX1002 Page 113

Inside Macintosh, Volume V1

Use a consistent light source. On the Macintosh screen the light source always comes from
the upper—left corner of the screen. Therefore windows and other elements have drop
shadows on the lower-right side. Use the light source consistently, so that shading is consis-
tent throughout the interface. Color Plate IX, “A Consistent Light Source,” at the beginning
of this volume, shows three desktop objects that have drop shadows consistent with a light
source at the upper—left corner of the screen. Color Plate X, “Inconsistent Light Sources,”
shows three desktop objects that have different light sources and inconsistent drop shadows.

The Icon Family

In previous versions of system software, you provided a black—and—White 32—by—32 pixel
icon for your application that was automatically reduced to l6-by- l 6 pixels when necessary.
In system software version 7.0, you can provide multiple versions of an icon in black and
white and in color. You can provide a family of icons that includes a 32—by-32 pixel and a
16«by— 16 pixel icon, in 1—bit color (black and white). 4—bit color, and 8—bit color. The
32-by-32 pixel icons appear on the desktop and, if the user chooses by [con from the View
menu, these icons also appear in Finder windows. The l6-by—l6 pixel icons appear in the
menu as the Application menu’s title when your application is active. They also appear next
to your application’s name in the Application menu and in Finder windows when the user
chooses by Small Icon from the View menu. The user can also set the icon size to 16—by-
16 pixels or 32-by-32 pixels in other views. For localized keyboards and keyboard layouts,
you provide a l6—by-l6 pixel icon only, in 1-bit, 4-bit, and 8-bit color. Figure 2-8, shown on
this page in black and white, and Color Plate XI, “An Icon Family,” show a family of icons
for version 7.0.

Figure 2-8. An icon family

See the Finder Interface chapter in this volume for information about which icons you need to
provide and how to create a bundle resource for your application.

The monitor displays the highest—quality icon that its screen allows. That is, if you provide an
8—bit color icon, a 4—bit color icon. and a black—and—white icon, the user sees the 8—bit color

icon on the monitor that supports 8-bit color. If you provide an 8-bit icon but not a 4-bit icon,
the black—and—white icon is displayed on the 4—bit monitor. If you provide a 4—bit icon but not
an 8-bit icon, then the 4—bit icon is displayed on both 4—bit and 8-bit monitors. If you don’t
provide a color icon, then the Finder displays the black-and-white version of the 32-by-32 pixel
icon on all types of monitors.

Black-and-White Icons

As stated previously, you should begin by designing a black-and—white icon. In general,
you should use an outline of one black pixel to create the icon border. Use a minimal

2-18 Color Designfor Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 113

IPR2017-01828
Ubisoft EX1002 Page 114

User Interface Guidelines

number of black pixels in the icon so that the icons appearance is noticeably different when
selected. Figure 2—9 shows an example of a well—designed icon that changes significantly
during selection.

H

Figure 2-9. A well-designed icon and its selected version

If you use too much black or 50 percent gray in your icon, the icon doesn’t appear signifi—
cantly different when the pixels are reversed for selection. Figure 2- 10 shows an example
of an icon with too much black and 50 percent gray.

Figure 2-10. A poorly designed icon and its selected version

Small Icons

N

C1W
FD'1
I—t
:1PP
I'D"'.H:
s:O(D

In version 7.0 you can provide a l6—by— 16 pixel icon that you scale to size rather than relying
on the Operating System to algorithmically reduce your 32-by—32 pixel icon. If you do not
provide a small icon, the Finder reduces the larger icon based on an algorithmic formula that
makes the icon look rough and creates less pleasing visual results.

You should provide a small version of your 32—by—32 pixel icon that you scale. Preserve
as many graphical elements of the icon as possible. In essence you provide the same icon
in a smaller scale. You can fine-tune the small icon by adding and removing pixels. Don’t
eliminate significant elements, or the smaller version of the icon may look different from the
larger version. See Color Plate XII, “Consistently Designed Small Icons," which shows
icons that a designer carefully scaled and tuned to preserve key elements of the icons’
designs. Also see Color Plate XIII, “Inconsistently Designed Small Icons.” to see small
icons that don’t match their corresponding 32-by-32 pixel versions. If you have difficulty
distinguishing the consistency or inconsistency, it’s a good idea to consult with a graphic
designer to design or review your icons.

Color Icons

Version 7.0 ships with full—color icons that appear on color monitors. Your application can
also provide color icons.

Don’t design a color icon that’s substantially different from your black—and—white icon. When
you add color to an icon, it’s best to leave the one-pixel black outline and fill the icon in with
color. Coloring or graying the icon’s outline makes the icon appear less distinct on the desk—
top. Remember that the user can change the background color of the desktop as well as its

Color Designfor Version 7.0 2-19

|PR2017-01828

Ubisoft EX1002 Page 114

IPR2017-01828
Ubisoft EX1002 Page 115

Inside Macintosh, Volume V]

pattern, so your icon may not be displayed against the background on which you designed it.
If you use ResEditTM 2.1 to create your icons, it provides a way to look at your icon against
different backgrounds to see whether your design is effective in various environments such
as black-and—white displays or color displays of different bit depths. Color Plate XIV, “Icons
With a Black Outline.” and Color Plate XV, “Icons Without a Black Outline,” demonstrate

the importance of the black outline of an icon.

Color Plate XVI, “Apple Icon Colors,” identifies the 34 colors used for icon design in
version 7.0 in a palette with the standard 256 colors. If you use ResEdit 2.1 to design and
create your icons, the Finder icon family editor provides easy access to these colors. Choose
Apple Icon Colors from the Color menu. This command sets the palette in the editor (which
is similar to the palette in most graphics applications) to contain the 34 colors used for Finder
icons. See ResEdit Reference for information on using ResEdit 2.1.

If the default color table colors aren’t available. the system software gracefully degrades to
black and white, starting with comparable 8-bit colors, then using 4-bit colors if possible,
and finally displaying the element in black and white if no other choice exists. The system
software won’t substitute colors that aren’t visually close to colors that you assigned. If you
choose colors other than the 34 marked in Color Plate XVI, use them for detail and not for

essential parts of your windows or icons. The selection mechanism for color icons lowers
the brightness of colors to indicate selection. This means that the colors appear darker when
selected. On a color monitor, a black-and-white icon turns gray when selected. On a mono-
chrome monitor, a black—and—white icon uses reverse video to show selection. In order for

selected items to appear distinct from unselected ones, use light colors for large areas.

One technique for enhancing the appearance of your icons is to smooth angular or curved
lines by coloring pixels on jagged edges. Designers refer to this technique as anti-aliasing.
Change the pixel color where you can see a visual break in the outline of a black-and-white
icon. Color Plate XVII, “Correct Anti-Aliasing,” shows an icon in its normal state and then
with anti—aliasing that changes the pixels on the outline of the icon. Color Plate XVIII,
“Incorrect Anti-Aliasing,” shows a different icon in its normal state and then with anti-
aliasing that replaces internal pixels to improve the appearance of the icon. You can find these
figures on the color plates at the beginning of this volume.

The Finder uses only one mask for each size in the icon family, so make sure that all your
icons have the same outline shape. Don’t add pixels or shadows to the outline shape of
color icons. The Finder uses the icon mask for alignment and transformation effects, so
make sure that the mask and all your icons are appropriate for each other.

Consistent Use of Icons

Use icons consistently throughout your designs. For example, if you reuse icon elements when
you modify the generic document icon to represent your own application’s files, make sure that
they match. For example, the Macintosh computer inside the System Folder icon is the same
as the Macintosh that appears as the Finder icon and as part of the Installer icon. The file server

2-20 Color Designfor Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 115

IPR2017-01828
Ubisoft EX1002 Page 116

User Interface Guidelines

icon contains the same gray document icon and the same purple folder icon that appear on
the desktop. Color Plate XIX, “Consistent Use of [con Elements," and Color Plate XX,
“Inconsistent Use of Icon Elements,” at the beginning of this volume, demonstrate this guide—
line. Don’t invent new icons to represent known entities such as folders and documents.

Customized Icons

You can provide the following customized icons if you support the associated features. You can
customize these icons to represent your application. just as you can customize document icons.

I Document icon. This icon represents a document created with your application. You
can customize this icon so that it relates to your application icon by adding graphics to it.
Be sure to maintain the outline of the document. See the Finder Interface chapter in this
volume for more information about displaying customized icons.

I Stationery icon. This icon represents a stationery pad that the user creates from a
document. You can customize the stationery icon for each document icon by adding
graphic elements to the stationery document page. See the Finder Interface chapter in
this volume for more information about stationery.

I Query document icon. This icon represents a file that contains information that the
Data Access Manager uses to transmit a query to a database. You can customize this ‘
icon by adding graphics to the document page. Be sure to maintain the outline of the
icon and the volume symbol that represents the database. See the Data Access Manager
chapter in this volume for more information on using the Data Access Manager.

I Edition icon. This icon represents an edition file that is created when a user chooses
Create Publisher from the Edit menu. You can customize this icon by putting a different
graphic inside the rectangle. Maintain the horizontal orientation and the double-dotted
line of the icon that identify it as an edition icon. See the Edition Manager chapter in
this volume for more information on implementing the Edition Manager.

I Extension icon. This icon represents a system extension. You can customize
this icon by adding a graphic to the puzzle piece. You can display the puzzle piece in
a horizontal or vertical orientation with the protruding part facing any direction. See
the Finder Interface chapter in this volume for more information on displaying
customized icons.

If you support these features but don’t provide customized icons. the Finder displays default
icons for these objects, depicted here in Figure 2—1 1 and in Color Plate XXI. “Default System
Icon Families.” at the beginning of this volume. See the Finder Interface chapter in this volume
for information on how to use the bundle resource to associate these icons with your application.

DD DI; DD
Document Stationery Query Edition Extension

document

Figure 2-11. Default system icons in black and white

Color Design for Version 7.0 2-21

|PR2017-01828

Ubisoft EX1002 Page 116

IPR2017-01828
Ubisoft EX1002 Page 117

Inside Macintosh, Volume V]

If you develop control panels, you must provide an icon family for each control panel. The
control panel icon is a square panel with an indicator on it to identify it. The indicator also
appears on the Control Panels folder. You can add a graphic to the square to customize the
icon. You can display the icon in either a horizontal or vertical orientation. Figure 2—12 shows
some examples of control panel icons in both orientations. The examplcs are shown in color
in Color Plate XXII, “Examples of Control Panel Icons,” at the beginning of this volume.

a.
Control Panels Color Portable User Setup File Sharing

folder Monitor

Figure 2-12. Examples of control panel icons

WINDOWS

This section provides information about window placement and behavior. It also presents
general guidelines about windows and related dialog boxes and alert boxes.

Window Positions

To determine where to place a window, consider what kind of window your application is
opening, what other windows are open and where, and the relationship between the content
of a window and other windows or dialog boxes. Respect the user’s control of the window
and maintain the user’s preferred size, state, and location for the window.

When your application opens a new document window, center it on the desktop. Open each
additional window below and to the right of its predecessor. Before closing a window, check
to see if the user has changed its size, state, or position. Save window positions, then reopen
windows in the size, state, and location in which the user left them.

Before reopening a window, check to make sure that thc size and state arc reasonable for the
user’s current monitor or monitors, which may not be the same as the monitor on which the
document was last open. For example, if a user is working on a word-processing document
on a full—page display and then takes the document home and uses another computer to finish
working, the second computer may have a 13—inch monitor. Then your application should
open the document in a window sized appropriately for the smaller monitor and not
necessarily in the saved size.

If the user hasn’t changed a window’s position, place windows in a position appropriate to
the monitor type. If a user opens, moves, and closes a document window without making
any changes, save the new window position but don’t modify the date stamp.

When you open several windows on multiple screens, place the windows on the screen where
the user is working. If a user drags a window from a Macintosh II monitor to a portrait

2-22 Windows

|PR2017-01828

Ubisoft EX1002 Page 117

IPR2017-01828
Ubisoft EX1002 Page 118

User Interface Guidelines

display monitor, open subsequent windows on the portrait display monitor. The default
position of a window must always be contained on a single screen.

Open dialog boxes and alert boxes on the screen where the user is working. For example, if a
user has two monitors with a text document on the second monitor, open a find—and—replace

dialog box on the screen where the related text document appears, not necessarily on the
monitor where the menu bar is.

The Zoom Box and Window Behavior

A click in the zoom box toggles a window between two states, the user state and the standard
state. The user state, as its name implies, is set by the user. In Human Interface Guidelines:
The Apple Desktop Interface, a windows standard state definition is described as generally
the full screen, or close to it, with the size and location that are best suited to working on
the document.

But Macintosh monitors now come in all shapes, sizes, and configurations, so applications
should never simply assume that the standard state should be as large as the screen. Frequently
the monitor is larger, sometimes much larger, than the most useful size for a window. Screen
real estate is valuable, so use screen-sized windows only when they make sense.

For example, a document for a word processor has a well-defined most—useful width (the
width of a page) and a variable most-useful height (depending on the number of pages).
Therefore the width of the standard state should be the width of a page or the width of the
screen, whichever is smaller, and the height of the standard state should be the height of
the document or the height of the screen, whichever is smaller.

Id

CU?(D
'1

'l—l
:_.
(D

:5,NO(B

When a user clicks the zoom box to change a window from the user state to the standard
state, first determine the appropriate size of the standard state. If this size would fit com—
pletely on the screen without moving the upper-left corner of the window, keep this comer
anchored. Otherwise, move the window to an appropriate default location.

Zooming behavior in multiscreen environments should not violate any of the guidelines
described in this chapter, but it does introduce a single additional rule. The standard state
should be on the monitor containing the largest portion of the window, not necessarily on
the monitor with the menu bar. This means the standard state for a single window may be
on different monitors at different times if the user moves the window around. In any case,

the standard state for any window must always be fully contained on a single screen.

DIALOG BOXES

This section presents revised guidelines for design and layout of effective dialog boxes.
The guidelines rely on the principles of feedback and dialog, forgiveness, and consistency
as described in Human Interface Guidelines: The Apple Desktop Interface. These guide-
lines supersede previous guidelines about dialog boxes published in prior versions of
Inside Macintosh.

Dialog Boxes 2-23

|PR2017-01828

Ubisoft EX1002 Page 118

IPR2017-01828
Ubisoft EX1002 Page 119

Inside Macintosh, Volume V]

Modal Dialog Box Behaviors

In version 7.0 the Dialog Manager has been updated to provide additional support for feedback
mechanisms and menu bar access. When you display a modal dialog box, the Dialog Manager
disables the Application menu, the About Balloon Help command in the Help menu, and the
About Keyboards command in the Keyboard menu. It then checks to see if you are handling
menus during a modal dialog box. These conditions are explained in detail in the Compatibility
Guidelines chapter in this volume,

If the Dialog Manager determines that you are not handling your own menus, it disables the
rest of the menu bar except for the Help menu. The Dialog Manager then determines whether
the dialog box contains an active editable text box and if you have the standard keyboard
equivalents for the Cut, Copy, and Paste commands. If both of these conditions are met, then
the Dialog Manager enables the Edit menu and those commands in the Edit menu.

If the Dialog Manager detects that you are handling menus in your application, it only disables
the Application menu. You must provide access to the Help and Edit menus. T0 support the
Cut, Copy, and Paste commands you need to convert the Clipboard before and after you
display a modal dialog box. You can also provide menu bar access in your application by
enabling menus and commands in those menus that make sense in the context of the current
task. See the Compatibility Guidelines chapter in this volume for information on enabling
menus when you display a modal dialog box.

Movable Modal Dialog Boxes

Version 7.0 introduces a new window class, the movable modal dialog box. The user some-
times needs to see document contents that a modal dialog box obscures. To allow the user to
move a dialog box in this case, you can use a movable modal dialog box rather than a modal
dialog box. The movable modal dialog box has a title bar as part of its standard window so
that the user can move the dialog box by dragging the title bar.

The design of the movable modal dialog box combines the standard modal window with a
title bar with racing stripes, but no close box or zoom box. This design gives the user visual
feedback that the dialog box is modal, and must be responded to before completing any other
action in the active application, but the user can move it. Figure 2-13 shows a movable modal
dialog box with attribute options that affect an area a user would want to see, such as the text
that a border would surround.

Line Style

Figure 2-13. A movable modal dialog box

2-24 Dialog Boxes

|PR2017-01828

Ubisoft EX1002 Page 119

IPR2017-01828
Ubisoft EX1002 Page 120

User Intelface Guidelines

To create a movable modal dialog box, use the window definition ID of the movable modal
dialog box in the standard resource type ’WDEF'. As with all movable windows, be sure to
save the position of the movable modal dialog box window for the next time it‘s used. See
“Creating Movable Modal Dialog Boxes" in the Compatibility Guidelines chapter in this
volume for details on creating movable modal dialog boxes.

Movable modal dialog boxes should respond like modal dialog boxes in most ways. When
you display a movable modal dialog box, however, there are some additional behaviors you
need to support. You must make certain that the dialog box is modal within your application.
That is, the user should not be able to switch to another of your application’s windows while
the dialog box is active. Allow your application to run in the background when you display a
movable modal dialog box. For example, system software version 7.0 uses movable modal
dialog boxes to show that an application is busy with a time-consuming operation, yet a user
can still switch the application to the background. Figure 2- 14 shows a movable modal dialog
box displayed by the Finder when it is copying files.

Copy

Items remaining to be copied:

writing: Picture I
Figure 2-14. A Finder movable modal dialog box

You need to provide access to the menu bar when you display a movable modal dialog box.
Provide access to the Help menu, the Edit menu, the Keyboard menu when appropriate, and
any context-appropriate commands. Also enable the Application menu so the user can switch
to another application.

It’s important to consider whether you can use a modeless dialog box instead of a movable
modal dialog box—to preserve the user’s ability to perform any task in any order. See the
Compatibility Guidelines chapter in this volume for information on implementing movable
modal dialog boxes.

Keyboard Navigation in Dialog Boxes

In previous versions of system software you could select an item in the scrolling list in the
standard file dialog box for opening files by using the keyboard. The ability to select an item
from a set of items by typing the beginning Character or characters of its name is called type
selection. The user can also use the arrow keys to move the selection by one item in the
direction of the arrow. Type selection has been extended to work in other lists, such as the
list of files in a Finder window and the list of available devices in the Chooser.

Some dialog boxes have several elements, such as text boxes and scrolling lists, that can
accept input from the keyboard. lt’s necessary to visually indicate which element is currently
accepting input from the keyboard in order to let users know which of the possible elements
is active. Each element has its own distinct indicator. As in the past, a text box displays a
blinking insertion point or selected text range to indicate that it is accepting keyboard input.

Dialog Boxes 2-25

|PR2017-01828

Ubisoft EX1002 Page 120

IPR2017-01828
Ubisoft EX1002 Page 121

Inside Macintosh, Volume V]

When a scrolling list is the active element in a dialog box, its visual indicator is a rectangular
border of two black pixels, which is separated from the list by one pixel of white space.
Figure 2-15 shows the AppleTalk® Zones list in the Chooser as an active scrolling list area.

2EChooserE

’ e %AppleShare AppleTalk Image'w'r

/ \

E {Wti——I¥’I \— »
lmage'w’riier LaserWriler

AppleTelK Zones
Bear Boulevard

II: n u g a r I: Cl Ll rt
Elephant Avenue
Penguin Place
Stark Street

Tiger Alleg
Wombat Wag _ , © Active
Zebra Zone ~ ADDIETalk Q Inactive

Figure 2-15. A selected scrolling list

When a user activates a scrolling list, using the following QuickDrawTM routines outlines the
scrolling list in the standard way:

PenSizel2,2l;
InsetRecttscrollRect, 3,73);,
FrameRect (scrollRectl ;

Since all typing goes to the active window, there should be only one active area and only one
indicator at any time. If a dialog box has only one element that can accept keyboard input (and
that element is a scrolling list), it’s not necessary to outline a scrolling list. In the standard file
dialog box the user can use type selection to identify the desired file in the list of files, but,
since there’s no other list or text box, the selected list doesn’t have a border.

In a dialog box the user can move the active area to any interface element that accepts keyboard
input, such as a text box, by clicking the desired element or by pressing the Tab key to cycle
through the available elements.

Button Labels

Whenever possible, label a button with a verb that describes the action that it performs. Use
book—title capitalization for button labels. In general, this means that you capitalize one-word
titles and, in multiple-word titles, capitalize words of four or more letters. Usually you don’t
capitalize words like in, an. or and. The specific rules for this type of capitalization appear in
detail in the Apple Publications Style Guide.

Provide a Cancel button whenever you can, and always map Command—period and the
Esc (Escape) key to the Cancel button. Map the Return key and the Enter key to the default
button, which is usually the button with the safest result or the most likely response. Don’t

2-26 Dialog Boxes

|PR2017-01828

Ubisoft EX1002 Page 121

IPR2017-01828
Ubisoft EX1002 Page 122

User [nteiface Guidelines

display a default border around any button if you use the Return key in editable text boxes.
Having two behaviors for one key confuses users and makes the interface less predictable.

In all dialog boxes, any buttons that are activated by key sequences must invert to give visual
feedback that indicates which item has been chosen. A good rule of thumb is to invert the
button for 8 ticks of the clock, which is long enough to be visible, but short enough that it’s not
annoying. All alert boxes and modal dialog boxes that use the ModalDialog procedure exhibit
this behavior. If you implement your own dialog boxes or alert boxes, be sure to include this
behavior. See the Compatibility Guidelines chapter in this volume for more information on the
ModalDialog procedure.

A user typically reads the text in a dialog box until it becomes familiar and then relies on
visual cues, such as button names or positions, to respond. Names such as Save, Quit, or
Erase Disk allow users to identify and click the correct button quickly. These words are often
more clear and precise than words like OK. Yes, and No. If the action can’t be condensed
into a word or two, OK and Cancel or Yes and No may serve the purpose. If you use these
generic words, be sure to phrase the wording in the dialog box so that the action the button
initiates is clear. Figure 2-16 shows a dialog box with appropriate OK and Cancel buttons.

Eat Detector“ options

Pinpoint a purr at: Cat licence price [1:]:

Q 4|] yards

{5} 60 yards E Ed
D 8|] yards

Cancel IJK

Figure 2-16. A dialog box with OK and Cancel buttons

Use Cancel for the button that closes the alert or dialog box and returns the computer to the state
it was in before the alert or dialog box appeared. Cancel means “dismiss this operation, with no
side effects.” It does not mean “I’ve read this dialog box” or “stop what you’re doing regardless.”

When it is impossible to return to the state that existed before an operation began, don’t use the
word Cancel. You can use OK or Stop, which are useful in different situations. Use OK for
the name of a button that closes the alert or dialog box and accepts any changes made while the
dialog box was displayed. Figure 2-17 shows a dialog box that illustrates this guideline.

Custom Formats

That Format gThis Format
'i'et another Formal

Figure 2-17. A dialog box with OK instead of a Cancel button

Dialog Boxes 2—27

|PR2017-01828

Ubisoft EX1002 Page 122

IPR2017-01828
Ubisoft EX1002 Page 123

Inside Macintosh, Volume VI

This dialog box uses OK because clicking the button maintains any changes that were made
subsequent to the display of the dialog box. If the button were named Cancel, clicking it
should remove any formats created, removed, or changed since the dialog box appeared, and
it should return the computer to the state it was in before the dialog box appeared.

Use Stop for a button that halts an operation midstream while accepting the possible side
effects. Stop may leave the results of a panially complete task intact, whereas Cancel always
returns the computer to its previous state. It’s appropriate to change the button name in the
middle of the operation from Cancel to Stop if you can determine when it’s no longer possible
to cancel. Figure 2-18 shows a dialog box that illustrates this guideline. i

Inserting the file “Really long document”
into "wombat data”...

@-
Figure 2-18. A progress indicator that uses a Stop button

The dialog box in Figure 2—18 uses Stop because clicking the button maintains the text that is
already inserted while preventing completion of the insert operation.

In an alert box that requires confirmation, use a word that describes the result of accepting the
message in the dialog box. For example, if a dialog box says “Revert to the last saved version
of this document,” label the button Revert rather than OK. Figure 2- l 9 shows a dialog box
with appropriately labeled buttons.

Revert to the last saved version

of “The Big Red Book”?

Revert
Figure 2-19. A confirmation alert box

If there is a most likely action, use a default button. This button usually completes the action
that the user initiated to bring up the dialog box. The default button is outlined with an
additional border of three black pixels, separated by a border of one white pixel, and its
action is performed when the user clicks the button or presses the Return or Enter key.

Don’t use a default button if the most likely action is dangerous—for example, if it causes a
loss of user data. When there is no default button, pressing Return or Enter has no effect; the

user must explicitly click a button. This guideline protects users from accidentally damaging
their work by pressing Return or Enter out of habit. You can consider using a safe default
button, such as Cancel.

A modal dialog box usually cuts the user off from the task. That is, he or she can’t see

the area of the document that changes when choices are made in the dialog box until
dismissing the dialog box. Once the area becomes visible by dismissing the dialog box, the

lw‘l‘llllll‘

2-28 Dialog Boxes memvllup
|PR2017-01828

Ubisoft EX1002 Page 123

IPR2017-01828
Ubisoft EX1002 Page 124

User Interface Guidelines

user sees whether the changes are the desired ones. If the changes aren’t appropriate, then
the user has to repeat the entire operation. To provide better feedback to the user, you need to
provide a way for the user to see what the changes will be. Therefore, any selection made in a
modal dialog box should immediately update the document contents, or you should provide a
sample area in the dialog box that reflects the changes that the user’s choices will make. In
the case of immediate document updating, the OK button means “accept this change" and the
Cancel button means “undo all changes done by this dialog box.”

Some applications use an Apply button to approximate this behavior. This method confuses
the meaning of OK and Cancel and is not recommended. if you must implement modal dialog
boxes with an Apply button, you need to include a Cancel button and a Revert button in the
dialog box. Otherwise the Cancel button becomes confusing to the user. When there is an
Apply button. the Cancel button undoes the results of the Apply operation and dismisses the
dialog box. The OK button dismisses the dialog box. The Revert button returns the document
to the state it was in before the dialog box was displayed. The user must always be able to
undo any actions caused by the dialog box.

 Dialog Box Layout

In most simple dialog boxes, such as alert boxes. you should place buttons in functional and
consistent locations. both within your application and across all applications that you develop.
Place the action button in the lower-right comer with the Cancel button to its left. Figure 2-20
shows the recommended location for buttons and text. The default button can be any button;
its assignment is secondary to the consistent placement of buttons. This rule keeps the action
button and the Cancel button consistently placed. Otherwise, the buttons would keep changing
location depending on the default choice for the dialog box.

QQEJJQJUI.195“Z

Use warding that makes sense to the

tunnel.ii_s_eE-_______.__-_________________j _______AI

i—‘i -: iii- - A

13 white pixels 5A
23 white pixels

5' "'flhis is where the teat goes. Be sure td

A
B

Figure 2-20. The recommended spacing of buttons and text in a dialog box

Use a consistent amount of white space between the border of the dialog box and its elements.
This creates a balanced appearance in the dialog box. Otherwise the user might perceive a
lopsidedness or other visual imbalance in your dialog box.

The Western reader’s eye tends to move from the upper-left area of the dialog box to the
lower—right area. Put the initial impression that you want to convey in the upper—left area
(like the alert icon that appears in alert boxes), and place the buttons that a user clicks in the
lower-right area. Following this guideline makes it easier for users to identify what’s
important in a dialog box.

Dialog Boxes 2—29

|PR2017-01828

Ubisoft EX1002 Page 124

IPR2017-01828
Ubisoft EX1002 Page 125

Inside Macintosh, Volume VI

When dialog boxes are localized for worldwide versions of system software, the text in the
dialog box may become longer or shorter. The alignment of the items in the dialog box may
vary with localization. Arabic and Hebrew are written right to left, so alignment of the items

1 in an Arabic or Hebrew dialog box should be right to left. The Control Manager, Menu
‘ Manager, and TextEdit routines handle the alignment of dialog box components. For more

information, see the chapters that describe those managers in this volume and previous
volumes. Be sure to create dialog items of the same size, so that they align properly when a

i user has a script that reads from right to left. This guideline is discussed earlier in the“Worldwide Software Development” section of this chapter.

Dialog Box Messages

Write messages in dialog boxes and alert boxes that make sense to the user. Use simple,
nontechnical language and don’t provide system-oriented information that the user can’t
respond to. When possible, give the user information that helps explain how to correct the

, problem. Figure 2-2l shows an example of a well—written dialog box message that replaces
i the message users used to see, “The application is busy or missing.”

The application that created the document
“Progress" could not he found. no gou
want to open the document using the
application “TeachText”?

Cancel

Figure 2-21. A well—written dialog box message

Use the name of the document or application in a dialog box when the text refers to it. For
example, a dialog box that appears when a user Chooses Shut Down after working on the
company’s annual report using the TeachText application should say “Save changes to the
TeachText document “Annual Report” before quitting?” rather than simply “Save changes
before quitting?” This kind of labeling helps users who are working with several documents
or applications at once to make decisions about each one individually,

Standard File Dialog Boxes

The version 7.0 standard file dialog boxes present some new information to the user. They
show a file’s position in relation to the disk it’s stored on. Instead of showing the root level
of a hard disk as the highest level of the directory structure, the desktop now appears as the
top level of the Hierarchical File System. The Drive button has been replaced with the Desktop
button. A user can view and select disk drives from the standard file dialog box and can see
other desktop entities such as the Trash folder. The dialog box that appears when the user
chooses Save As includes a New Folder button that allows the user to create a folder in which

to store the document. The pop-up menu in this dialog box now includes the downward—
pointing triangle for additional visual feedback.

2-30 Dialog Boxes

|PR2017-01828

Ubisoft EX1002 Page 125

IPR2017-01828
Ubisoft EX1002 Page 126

User Interface Guidelines

If you interact with the file system directly and use a dialog box similar to the standard file
dialog boxes, you should replicate the organization and appearance of the standard file dialog
boxes. Figure 2—22 shows an example of the new standard file dialog box for opening files.
For more information, see the Standard File Package chapter in this volume.

@ Desktop v :ILoma Prieta
'2' Lorna Prieta

D Pinkg
C'lndependente
C'Zil
Ci User Interface Guidelines
Ci Surflllriter
1m QT",

Figure 2-22. The new standard file dialog box for opening files

Save Changes Dialog Box

This section describes the new standard dialog box for saving all changes to a document
before a user quits an application. The design presented in Volume IV of Inside Macintosh
created some situations in which users, especially inexperienced users, could experience a
loss of data. The new design addresses those concerns and standardizes the appearance of the
dialog box so that users can quickly identify potentially dangerous actions.

Place the standard warning icon in the upper-left corner of the dialog box. This icon indicates
to users that they need to carefully consider the dialog box message before clicking the default
button or the Return key. The warning icon should always be in the same, predictable location
so that users easily recognize it as a warning and respect its meaning.

Previously the buttons in the save changes dialog box were labeled Yes, No, and Cancel. The
save changes dialog box changes the names of the buttons to correlate to the action users
perform by pressing the button. The buttons should now read Save, Don’t Save, and Cancel.
Using these verbs reinforces the identity of each possible action to the user so that the experi-
ence is more intuitive. In other words, the Don’t Save label provides much more context for
the user than the word No does.

The new design provides a safeguard for the user by standardizing the location of buttons in
a safe configuration. In order to prevent accidental clicks of the wrong button, you should
always keep safe buttons apart from buttons that could cause data loss. Place the Save button
in the lower-right corner with the Cancel button to its left. Place the Don’t Save button on
the left and left—aligned with the message text. This way, the user must explicitly move the
pointer and click the button that could cause irretrievable loss of data. Figure 2-23 shows an
example of a standard save changes dialog box.

Dialog Boxes 2-31

|PR2017-01828

Ubisoft EX1002 Page 126

IPR2017-01828
Ubisoft EX1002 Page 127

Inside Macintosh, Volume VI

 Save changes to the TeachTEHt

& document “Special Memo" before
quitting?

A button that Buttons that are “safe”
causes data loss for data

Figure 2-23. The save changes dialog box

Include the name of your application and the name of the document in the dialog box message,
as shown in Figure 2-23. When a user shuts down the computer, several save changes dialog
boxes may appear if there are several open documents on the desktop. This addition of infor-
mation to the standard message helps the user by identifying to which application and
document the message refers.

MENUS

This section describes changes to applications’ menu style and contents in system software
version 7.0. Applications can include several standard menu items that relate to new features
of system software version 7.0. This section also presents the reserved list of keyboard
equivalents for menu commands.

File Menu

Applications that support high—level database access, as described in the Data Access Manager
chapter later in this volume, need to include the Open Query command in the File menu. This
command opens a query document that establishes communication with a target database.

Edit Menu

If your application implements the capabilities of the Edition Manager, include its commands
in the Edit menu, separated from the standard commands by a gray line. The commands are

I Create Publisher...

I Subscribe To...

I Publisher/Subscriber Options... (context-sensitive toggle command)

I Show/Hide Borders (optional context-sensitive toggle command)

I Stop All Editions (optional command)

2-32 Menus

|PR2017-01828

Ubisoft EX1002 Page 127

IPR2017-01828
Ubisoft EX1002 Page 128

User Interface Guidelines

Figure 2-24 shows a sample Edit menu that includes the required commands.

Undo 382

But aeH

Cong SEC
Paste 381!
Select Hll 33H

Create Publisher...
Subscribe To...

Publisher l‘thions...
Show Clipboard

Figure 2-24. A sample Edit menu

If you find that you need all of the available space in the Edit menu for your application’s
commands, another way to accommodate the Edition Manager commands is by implementing
a hierarchical menu. Include a Publishing command in the Edit menu as the title of the sub—
menu. Use the standard indicator for a hierarchical menu, as shown in Figure 2-25, which
also shows the submenu with the Edition Manager commands. Because hierarchical menus
increase the complexity of your application, it’s best to only use this approach when you have
no other alternative.

N

t:(ID
ED_.
H
:3_.
I'D

:.Dn(D

Undo

Cut .

Copy 38E
Paste 33H
Select HII

Publishing D

Show Clipboard

Figure 2-25. A sample hierarchical menu with Edition Manager commands

Create Publisher...
Subscribe To...
Publisher Options...

The user interface issues, as well as the technical implementation information related to
the Edition Manager capabilities. are described in the Edition Manager chapter later in
this volume.

Font Menu

System software version 7.0 includes TrueTypeTM fonts. If you decide to incorporate basic
support for TrueType fonts into your application, remove the 127-point size limit for bitmapped
fonts. Provide support for all font sizes in your application. Continue to outline font sizes in the
menu for those sizes that appear in the user’s System file. Use plain type for font sizes that
aren’t in the System file. If a TrueType font is present, outline all sizes of that font that you
display in the menu. Provide a way for users to choose whatever font size they desire. When
the user chooses a font size, place a checkmark next to the active font size.

Menus 2-33

|PR2017-01828

Ubisoft EX1002 Page 128

IPR2017-01828
Ubisoft EX1002 Page 129

Inside Macintosh, Volume VI

One method that you can use to support TrueType fonts is to add an Other command to the end
of the Size menu (or the end of the Font menu, if that’s where your application allows users to
choose font sizes). When the user chooses Other, display a dialog box that allows the user
to choose any available font size. You can include a text box in which users can type the font
size they want. If the user enters a font size that’s not currently on the menu, add it to the list
of choices. if the user is adding a TrueType font size, outline the size when you add it to the
menu. If the user is working with a bitmapped font, show the new size in plain type. Provide
a real—time display area to update the font size as the user changes it. Figure 2—26 displays a
sample pull-down Size menu and font size dialog box. See the Font Manager chapter in this
volume for more information on TrueType fonts.

Font Size: [E

The quick
brown fox

Figure 2-26. A sample pull—down Size menu and font size dialog box

Help Menu

System software version 7.0 includes on-line help for system software. The user can access
Apple’s Balloon Help from the Help menu. If you provide help information for your appli—
cation, move the help commands that you provide to the Help menu. It’s a good idea to
include the name of your application next to your help command so that the user can easily
distinguish the type of help to choose. For example, you might include a command called
TeachText Help in the Help menu. Figure 2-27 shows the Help menu.

Hbout Balluun Help...

Show Balloons

Figure 2-27. The Help menu

You can also use the Help Manager to implement Balloon Help for your application. See the
Help Manager chapter for more information and implementation details.

Keyboard Equivalents

In the past, several keyboard equivalents were reserved by Apple for common commands.
Table 2—4 and Table 2—5 show the standard Macintosh keyboard equivalents.

2-34 Menus

|PR2017-01828

Ubisoft EX1002 Page 129

IPR2017-01828
Ubisoft EX1002 Page 130

User Interface Guidelines

Table 2-4. Apple reserved keyboard equivalents for all systems

Menu Keys Command Menu Keys Command

File 3% —N New Edit 33 —Z Undo

File Efi-O Open. . . Edit 33 -X Cut

File SHE-W Close Edit 33 -C Copy
File 3% —S Save Edit Elli-V Paste

File 3% —P Print. . . Edit Efi-A Select All

File Efi-Q Quit

Table 2-5 shows several keyboard equivalents that are reserved for use with worldwide
versions of system software, localized keyboards, and keyboard layouts. These keyboard
equivalents have actions that don’t correspond directly to menu commands, so there is no
menu column with command names in Table 2—5.

Table 2-5. Additional reserved keyboard equivalents for worldwide systems

Keys Action N
E5

33—Space bar Rotate through enabled script systems a
Efi—Option—Space bar Rotate through keyboard layouts within a script E?
33—modifier key—Space bar Apple reserved a:

8

See the section on keyboard equivalents in the Worldwide Software Overview chapter in this
volume for more discussion of handling keyboard equivalents in other script systems.

These key combinations are reserved across all applications. Even if your application doesn‘t
support one of these menu commands, it shouldn‘t use these keyboard equivalents for
another function. This guideline is for the user’s benefit. Reserving these key combinations
provides guaranteed, predictable behavior across all applications.

Creating a situation where Command—O means open 99 percent of the time and ostracize
1 percent of the time would do two things. First, users wouldn’t consider using Command-O
for the latter function because it is used by all other applications to mean open. Second,
changing the meaning of Command—O in your application would weaken the user’s percep—
tion of the consistency of the interface.

Some applications use other common keyboard equivalents, as shown in Table 2—6.

These keyboard equivalents are secondary to the standard keyboard equivalents listed in
Table 2-4 and Table 2-5. If your product doesn’t support one of these functions, then use
these equivalents as you wish.

Table 2-6. Other common keyboard equivalents

Menu Keys Command Menu Keys Command

File 3% -F Find Style 3% -B Bold

File BE —G Find Again Style 3% -I Italic

Style 3% -T Plain Text Style 3% —U Underline

Menus 2—35

|PR2017-01828

Ubisoft EX1002 Page 130

IPR2017-01828
Ubisoft EX1002 Page 131

Inside Macintosh, Volume VI

You shouldn’t assign keyboard equivalents for infrequently used menu commands. Doing so
only burdens your users and constrains your application. Only add keyboard equivalents for
the commands your users employ most frequently.

Pop-Up Menus

In previous versions of system software, pop-up menus did not look sufficiently different
from other Macintosh interface elements. The l-pixel drop shadow that differentiated pop—up
menus from editable text boxes wasn’t a strong visual cue that indicated a menu existed. This

section presents the new standard appearance for pop-up menus that includes additional
graphical feedback It also describes how the new appearance enables some uses that were
previously impossible.

Standard Pop-Up Menus

The new standard pop-up menu adds a downward—pointing triangle identical to the triangle
used to indicate that a menu is too long to fit on the screen and must scroll. All pop-up menus
should add this triangle. Figure 2-28 shows a simple pop-up menu in the new style.

Figure 2-28. The appearance of a version 7.0 pop-up menu

When the user presses the mouse button while the pointer is over the pop-up menu or its label
text, the triangle disappears. When the mouse button is released, the triangle reappears.
Figure 2—29 shows this behavior.

300
film

~/l‘2l][|
2400
4300
9600

Baud:
Baud: IZIJIJ VI

Figure 2-29. An open version 7.0 pop—up menu

See the Compatibility Guidelines chapter in this volume for information on implementing the
standard pop—up menu in your application.

Type-In Pop-Up Menus

Sometimes it is useful to display a list of choices but still allow the user to type in a choice
that the application didn’t know in advance. Keep in mind that users should be able to see
and point; they should never have to remember and type. The type—in option should be an
additional choice when appropriate, not a requirement. If the user types in an item that is
already in the menu, place a checkmark next to the menu item. The menu always highlights
the item that corresponds to the value in the text box. Your application also needs to highlight
the value in the text box. This behavior prevents a quick click in the menu from accidentally

2-36 Menus

|PR2017-01828

Ubisoft EX1002 Page 131

IPR2017-01828
Ubisoft EX1002 Page 132

User Interface Guidelines

wiping out the previous value. It also reinforces the idea that choosing a different value in
the menu changes the value in the text box. You don’t need to invert the menu’s label in
this situation. The new standard pop—up menu lends itself readily to this use, as shown in
Figure 2-30.

Size: Elli Size:

Figure 2-30. A type—in pop-up menu

Ifthe value typed into the text box does not match any of the items in the pop-up menu,
the menu should add the type—in value as the first item and separate it from the rest of the
standard values by a gray line. as shown in Figure 2—31. This appearance makes a clean
distinction between common items that are always available and the typed-in value, which
is only temporary.

Size: -l_:4 Size:

Figure 2-31. A type-in pop—up menu with user’s Choice added

See the Compatibility Guidelines chapter in this volume for more information about using the
new standard pop-up menu in your application.

MORE USER INTERFACE INFORMATION

This chapter has presented the basic ideas you need to consider for supporting the new
interface features of version 7.0. You’ll find more interface information about using the
new managers in the chapters that describe them. You can also get additional information
from the following sources:

I Human Interface Guidelines: The Apple Desktop Interface. Reading, Mass: Addison-
Wesley, 1987.

I Apple Publications Style Guide. Apple Computer, Inc.. 1990.

I ResEdit Reference. Reading, Mass: Addison—Wesley, 1991.

More User Interface Information 2 -3 7

|PR2017-01828

Ubisoft EX1002 Page 132

IPR2017-01828
Ubisoft EX1002 Page 133

Inside .errfmoxh. Volume” VI

I Apph' Diri'rr. ThLH L5 i1 Icchnicafl journal [hall pI'ChCM'.‘ x'ariumi 1111 '1':ch and 21 monthly
column on human 'Lnlcrl‘ucc design.

I Thc APchLink Dm-clupcr Technical Scrvicm hullclin hoard. This hullclin hoard
matinluins 1L [lumun Inlcrl‘ucc Discuasinn lhlmlci' Ihul pl'cwms 1' human Fum'fin'r Mam-.-
:Lnd prm'itlcs answers I'ur qucslium SUhT'I'IiIlflI by Llux'clupurs.

2-33 Mm? wa' .I'mwffiu'r Infijmirm'm:

|PR2017-01828

Ubisoft EX1002 Page 133

IPR2017-01828
Ubisoft EX1002 Page 134

32

45

55

COMPATIBILITY GUIDELINES

About This Chapter
About Compatibility

Using Memory Wisely
Using Assembly Language
Accessing Hardware
Using Low-Memory Global Variables
Determining Whether a Trap Is Available

Running in System Software Version 7.0
Allowing Multiple Applications
Supporting Required Apple Events
Removing Font Size Restrictions
Operating With Virtual Memory
Enabling Menus During a Modal Dialog
Coexisting With the System Menus
Creating Movable Modal Dialog Boxes
Creating Pop—Up Menus
Manipulating Dialog Item Lists

Counting Items in a Dialog Item List
Appending Items to a Dialog Item List
Shortening a Dialog Item List

Localizing Macintosh Programs
General Guidelines

Localizing With the Toolbox
Running Macintosh Programs Under A/UX

How the A/UX Toolbox Works

Using the A/UX Toolbox
A/UX CompatibiIity Guidelines

About the Gestalt Manager
Using the Gestalt Manager

Determining Features of the Operating Environment
Determining Whether Gestalt Is Available
Interpreting Gestalt Responses

Interpreting Responses to Environmental Selectors
Interpreting Responses to Informational Selectors

Adding Gestalt Selectors
Modifying Gestalt Selectors
Specifying Gestalt Selector Functions

Gestalt Manager Routines
Getting Information About the Operating Environment
Adding Selector Codes
Modifying Selector Codes

Summary of the Gestalt Manager
Summary of the Window Manager
Summary of the Control Manager
Summary of the Dialog Manager

A»

O
S:a'
'5no
:3.
5‘
:7
:3.,<

C)
E.E-CD
.7.
BFDV1

3-]

|PR2017-01828

Ubisoft EX1002 Page 134

IPR2017-01828
Ubisoft EX1002 Page 135

{mick :i'j'acfmnxfi. Vrn'anm' W

|PR2017-01828

Ubisoft EX1002 Page 135

IPR2017-01828
Ubisoft EX1002 Page 136

Compatibility Guidelines

ABOUT THIS CHAPTER

This chapter describes how you can write applications that have the greatest chance of operat—
ing on any Macintosh® computer, regardless of its hardware components or available system
software, managers, and device drivers. It also addresses how you can take advantage of
features that are new to system software version 7.0 in ways that are least likely to cause
problems for users who are not running version 7.0. In a word, this chapter provides as much
advice as possible to help you achieve maximum compatibility for your applications on all
Macintosh computers, including those running version 7.0.

System software version 7.0 provides the most important test of software compatibility since
the introduction of the Macintosh II, and you must understand how you may need to revise
your current applications so that they operate correctly with this new system software.
Fortunately, if you have followed the guidelines given in previous volumes of Inside
Macintosh, your applications stand a very good chance of working correctly in version 7.0
without any modification whatsoever. However, version 7.0 introduces many new features
and capabilities that you may wish to use in your applications. This chapter provides a
number of additional guidelines to help you take advantage of those features while retaining
compatibility with previous system software.

This chapter discusses several aspects of writing software that is compatible with all
Macintosh computers:

I what can cause compatibility problems and how in general to avoid those problems

I how to update your application to take maximum advantage of new features of system
software version 7.0

I how to write software that can be easily modified for use in other regions

I how to write applications that execute under A/UX®, Apple Computer, Inc.’s version of
the UNIX® operating system

b4

0
E=
a:
mFF
=
E.
l:FF

<<

:.—.
Q.a
=
=(D{It

I how to determine what software and hardware features are available on a particular
machine

The discussion of revising applications to take advantage of the new capabilities of system
software version 7.0 also includes details about several new features of the Dialog and Menu
Managers, including

I the new pop-up menu control definition

I the system menus

I movable modal dialog boxes

I new Dialog Manager routines to count and manipulate items in dialog boxes

About This Chapter 3-3

|PR2017-01828

Ubisoft EX1002 Page 136

IPR2017-01828
Ubisoft EX1002 Page 137

Inside Macintosh, Volume VI

This chapter also describes the Gestalt Manager, a set of three new Operating System func-
tions that provide applications with a simple and efficient method for determining what
software and hardware features are available on a given machine. You need to use the Gestalt
Manager if your application takes advantage of particular hardware components (such as a
floating-point unit) or software modules (such as Color QuickDrawTM) that are not available
on all Macintosh computers. Your software can also use the Gestalt Manager to inform the
Operating System (and hence other applications) that it is present in the current environment.

The Gestalt Manager is available in system software versions 6.0.4 and later. Your develop-
ment system may supply code that allows you to call Gestalt, on earlier system software
versions; check the documentation provided with your development system to see if this is
possible. Of course, because you cannot use Gestalt to determine if the Gestalt Manager
itself is present, you must do that in some other way; one such method is illustrated in
“Detennining Whether Gestalt Is Available” later in this chapter.

You need to read this chapter if you are interested in writing applications that execute on as
many Macintosh computers as possible or under alternate operating systems such as A/UX.
In particular, if you wish to enhance an existing product so that it supports new features of
system software version 7.0 but also executes correctly in earlier versions of system soft-
ware, or if you wish to write a new product that executes only in version 7.0, you should
look at “Running in System Software Version 7.0” later in this chapter. Read the sections on
the Gestalt Manager later in this chapter if you need to take advantage of specific software or
hardware features that may not be present on all versions of the Macintosh. or if you wish to
inform other applications of the presence of your application in the operating environment.

If you want your applications to run in system software versions earlier than 6.0.4 (where the
Gestalt function is not available), you should be familiar with the Environs procedure,
discussed in the Operating System Utilities chapters of Volumes II and IV, and the
SysEnvirons function, discussed in the Compatibility Guidelines chapter of Volume V. Both
Environs and SysEnvirons perform the kind of function that Gestalt performs—they allow you
to determine what features are available on a specific machine. For reasons outlined later,
however, you should not use either of these routines if the Gestalt function is available.

Unfortunately, no single chapter can provide all the information you need to achieve the
greatest possible compatibility for your applications. Most of the subsequent chapters in this
volume (and indeed all previous volumes of Inside Macintosh) contain numerous warnings
and guidelines that you should heed if you wish to increase the likelihood that your applica—
tions will execute correctly on all members of the Macintosh family and under alternate
operating systems such as A/UX. The Memory Management chapter in this volume, for
example, contains a fuller account of 32-bit clean programming than is given here and is
essential reading for all developers.

The Worldwide Software Overview chapter in this volume gives complete details on the
Script Manager, which can help you write applications that are compatible worldwide.
Similarly, the guidelines given in this chapter on writing A/UX—compatible Macintosh
programs summarize and complement, but do not replace, the discussion in the separate
publication A/UX Toolbox: Macintosh ROM Interface. So the complete story on Macintosh
software compatibility does not end with this chapter, but it does begin here.

3-4 About This Chapter

|PR2017-01828

Ubisoft EX1002 Page 137

IPR2017-01828
Ubisoft EX1002 Page 138

Compatibility Guidelines

ABOUT COMPATIBILITY

Compatibility is the ability of a program to execute properly in different operating environ-
ments. Compatibility is important if you want to write software that runs, with little or no
modification, on all members of the Macintosh family and in all system software versions.
If you want to take advantage of particular software or hardware features that may not be
present on all Macintosh computers, you need to know how to determine when those features
are available.

To appreciate why compatibility is a real concem, imagine that from all the Macintosh com-
puters currently in operation in the world, you were to choose two at random. You would
quite likely find a number of differences in the hardware and software configurations of those
two machines. You might find different CPUs, different memory management units (MMUs),
different amounts of RAM, different shapes and sizes of monitors, and so forth. You are
also likely to find different versions of system software, different ROM versions, different
AppleTalk® drivers, different versions of managers, different printer interfaces, and so forth.
Ideally, you want your product to run on both of those machines, regardless of the many
significant differences between them. If you succeed in writing your application so that it does
operate on both of those machines, you have succeeded in writing compatible software.

Fortunately, it is possible to write software that is compatible across the entire Macintosh line
of computers. This section provides a number of guidelines that you should follow if you
want your applications to run on the greatest number of Macintosh computers. Some of these

guidelines are quite general and apply to all programs; some apply only if you are
programming in assembly language.

One key to achieving compatibility is not to depend on things that may change. Inside
Macintosh contains numerous warnings about which information is likely to change. As
the Operating System and User Interface Toolbox evolve to accommodate the needs of
developers and users, many of their elements will vary. Whenever possible, Apple strives
to add features without altering existing interfaces. In general, you can assume that Operating
System and Toolbox routines are less likely to change than data structures. Therefore, you
should never directly manipulate data structures that are internal to a manager or system
software routine, even if their structure is documented. Instead, you should manipulate those
structures only indirectly, by calling Operating System and Toolbox routines that achieve the
desired effect. In particular, you should never alter any portion of a data structure marked as
unused or reserved.

DJ

('1
E:

~c
M
a.
r
=
:c{<

.11E..
D.
E
E'I'D{I}

Another key to writing compatible code is to code defensively. Do not assume that users
perform actions in a particular order, and do not assume that function and procedure calls
always succeed. You should always test the return values of routines for errors, as illustrated
in most of the code samples presented in this volume.

About Compatibility 3-5

|PR2017-01828

Ubisoft EX1002 Page 138

IPR2017-01828
Ubisoft EX1002 Page 139

Inside Macintosh, Volume V]

Using Memory Wisely

A major cause of compatibility problems, especially in connection with applications running
in the A/UX operating system, is misuse of the Memory Manager. Here are some important
points to keep in mind:

I Do not set or clear bits in master pointers directly. Use Memory Manager traps (for
example, HLoek) instead.

I Always check the handle or pointer returned by a routine to make certain that it is not
NIL. A NIL handle may indicate that a memory allocation failed or that a requested
resource could not be found.

I Always check that a handle marked as purgeable has not been purged before using that
handle. You can check for a purged handle like this:

 IF myiiandle" <> NIL THEN {handle not purged}

I Do not create your own handles; instead, use the Memory Manager function
NewHandle.

I Never make assumptions about the contents of Memory Manager data structures.

If you have followed all these guidelines, it is likely that your application is 32—bit clean: that
is, it operates correctly in an environment where all 32 bits of handles and pointers are used
to store memory addresses. When running with 32—bit addressing in system software
version 7.0 and A/UX, your applications must be 32—bit clean or they may not operate

correctly. See the Memory Management chapter in this volume for more information about
these issues.

Using Assembly Language

In general, your software should not include 68000 instructions that require the processor
to be in supervisor mode; these include instructions that modify the contents of the Status
Register (SR). Do not modify the SR as a means of changing the Condition Code Register
(CCR) half of the SR; instead, use an instruction that addresses the CCR directly. Do not use
the User Stack Pointer or turn interrupts on and off.

If you wish to handle your own exceptions (thereby relying on the position of data in
the exception’s local stack frame), be aware that exception stack frames vary within the
68000 family.

In particular, don’t use the TRAP instruction. Also, the Macintosh SE and Macintosh II
hardware does not support the TAS instruction, which uses a special read—Inodify—write
memory cycle.

Some Macintosh computers use memory protection and may prevent code from writing to
addresses within code segments. Also, the 68020 and 68030 cache code as it is encountered.
You should allocate data blocks on the stack or in heap blocks separate from the code, and
your code should not modify itself.

3-6 About Compatibility

|PR2017-01828

Ubisoft EX1002 Page 139

IPR2017-01828
Ubisoft EX1002 Page 140

Compatibility Guidelines

Accessing Hardware

You should never address hardware directly; whenever possible. use the routines provided
by the various device drivers and managers to send data to the available hardware. The
addresses of memory—mapped hardware (like the VIAl, VIAZ, SCC, and so forth) are
always subject to change, as is the hardware itself. More important, direct access to such
hardware is not possible in every operating environment. in multi-user systems like A/UX.
for instance. the operating system manipulates all hardware; applications simply cannot write
directly to hardware addresses.

You should also avoid writing directly to the screen. Use QuickDraw routines whenever
possible to draw on the screen. If you absolutely must write directly to the screen, do not
assume that the screen is a fixed size or that it is in a fixed location. The location, size, and bit

depth of the screen differ in various machines. On machines without Color QuickDraw, you
can use the QuickDraw global variables screenBits.bounds to determine the size of the main
screen. screenBits.baseAddr to determine the start of the main screen, and screenBits.rowBytes
to determine the offset between rows. On machines with Color QuickDraw, the device list

(described in the Graphics Devices chapter in this volume) tells the location. size, and bit depth
of each screen; screenBits contains the location and size of the main device; and the global
variable Grangn contains a region describing the shape and size of the desktop.

Using Low-Memory Global Variables

Don’t rely on low-memory global variables. Many of these variables have been previously
documented in Inside Macintosh, but many have not. In particular, you must avoid undocu-
mented low—memory global variables because they are most likely to change. But you should
try to avoid even well-known global variables because they may not be available in all envi—
ronments or in the future. In general, you can avoid using low-memory global variables by
using available routines that return the same information. (For example. the TickCount
function returns the same value that is contained in the low—memory global variable Ticks.)

w

GO
E“ato
S".
2‘.
5‘<

n=
E
E.
5'PD(n

Determining Whether a Trap Is Available

One important way that the Operating System and Toolbox have changed through successive
versions of the ROM and system software is by the addition of numerous new traps. For
example. the Time Manager released with system software version 7.0 includes a new trap.
lnsXTime, that provides certain improvements over the existing trap, InsTime. By using
lnsXTime instead of InsTime, your application can ensure that the periodic actions it requests
execute at a fixed frequency that does not drift over time. Before using a trap that is not
available on all machines, however, you need to determine whether it is available; if you call
lnsXTime on a machine that does not implement it, your program will crash.

There are several ways your application can check the availability of a particular trap. First,
you can call the Gestalt function that is discussed later in this chapter to see if the appropriate
version of the corresponding driver or manager is available. For example. the trap lnsXTime
is included in the extended Time Manager but not in earlier versions of the Time Manager. So
you could use Gestalt to determine which version of the Time Manager is available in the
current operating environment. If Gestalt reports that the extended Time Manager is present.
you can safely call lnsXTime to queue your request.

About Compatibility 3- 7

|PR2017-01828

Ubisoft EX1002 Page 140

IPR2017-01828
Ubisoft EX1002 Page 141

Inside Macintosh, Volume VI

There are several cases, however, in which you cannot use Gestalt to determine whether
a specific trap is implemented. You cannot, for instance, use Gestalt to determine whether the
Gestalt trap itself is available. In addition, the trap whose existence you wish to test might not
be included in any manager or, if it is, there might not be a Gestalt selector code for that
manager. The WaitNextEvent trap is a good example of this: there is no way, using Gestalt,
to determine whether WaitNextEvent is available.

A second way to determine the availability of a particular Operating System or Toolbox trap is
by testing directly for the existence of the trap, using the technique illustrated in Listing 3-1.
You should use this method to test whether Gestalt is available before calling Gestalt. You
should also use it to test for the existence of traps not included in managers or drivers about
which Gestalt can report. This listing illustrates how to test the availability of WaitNextEvent.

Listing 3-1. Determining whether a trap is available

FUNCT ON NumWOOIboxtraps: ln:eger;
BECIJ

I7 IGetTrapAddress(,InitGraf, TooITrap) :
NGetmrapAddresstSAAéE, TooITrap) THEN

Jumfloolboxmraps :7 $200
EGSE

 umfloolboxflraps :: $400;
EQD;
FJNCTION Get’l‘rap’ype (the'l‘rap: Integer", : ’l‘rap”‘ype;
CONST

TrapMask : $0800;
BEGIN

IF BAND<theTrap,TrapMask) > 0 THEN
GetTrapType : TooITrap

.T‘Sfi

GetTrapType :: ostrap;

END;

 TUNCTION TrapAvaiIubIe (Lheflrdp: Integer) : Boolean;
VAR

tType: TrapType;
BEGIN

tType :7 Ge:TrapType(:he“rapl;
IF :Type : TOOLTrap r‘HEN
BEGIN

:hemrap :: BANDttheTrap, $D7FF);
IF Lheflrdp >: NummoolboxT1dps THEN

thcflrap _Unimplemented;

END,-
TrapAvaiIabIe :: NGetTrapAddress(theTrap, tType) <

NGetTrapAddress(_Unimplemented, TOOITrap);
END;

FUNCTION WNEAvaiIabIe: Boolean;

CONS‘I'

_Wa;LNeXLEven; : §A860; {;Ldp number of WaitNextEvent}
BEGIN

WNEAvailable :: TrapAvailabIe(,WaitNext3vent);
END;

3-8 About Compatibility

|PR2017-01828

Ubisoft EX1002 Page 141

IPR2017-01828
Ubisoft EX1002 Page 142

Compatibility Guidelines

The NumToolboxTraps function relies on the fact that the lnitGraf trap (trap number $A86E)
is always implemented. If the trap dispatch table is large enough (that is, has more than $200
entries), then $AA6E always points to either Unimplemented or something else, but never to
lnitGraf. As a result, you can check the size of the trap dispatch table by checking to see if the
address of trap $A86E is the same as $AA6E.

After receiving the information about the size of the dispatch table, the TrapAvailable function
first checks to see if the trap to be tested has a trap number greater than the total number of
traps available on the machine. If so, it sets the theTrap variable to Unimplemented before
testing it against the Unimplemented trap.

Note: The technique presented in Listing 3—1 for determining whether a particular
trap is available differs from techniques formerly supported by Apple. The previous
method determined the size of the trap dispatch table by checking the machine type.
This type of check should not be used for any purposes other than simply displaying
the information, as explained in “Using the Gestalt Manager” later in this chapter.

RUNNING IN SYSTEM SOFTWARE VERSION 7.0

The guidelines given in the previous sections apply to all Macintosh applications, regardless
of the version of system software available. If you heed those guidelines, you are likely to
produce applications that run reasonably well in all environments, including system software
version 7.0. Those guidelines define a minimal level of conformance necessary for your
applications to run in version 7.0. Applications that conform to the programming interfaces
documented in Inside Macintosh and violate none of the guidelines presented earlier in this
chapter are called 7.0-compatible because they run in version 7.0 without problems.

An application can be 7.0-compatible, however, without taking advantage of the many new
features available in system software version 7.0 and without exhibiting an awareness that
other applications may be present and may wish to use processor time that would otherwise
go unused. Among applications that do take advantage of new features. there are at least two
levels of involvement with version 7.0.

t»

Oc
E"aQ:
:3
E.
E.‘<

D
E.s:('B
r.
=0U:

An application is 7.0-friendly if it takes advantage of some of the special features of
version 7.0 when executing in that environment, but is still able to perform all its principal
functions when executing in version 6.0. An application is 7.0-dependent if it requires the
existence of features that are available only in version 7.0; it might not even run in version
6.0. Even if 7.0-dependent applications do execute in version 6.0, they are virtually
guaranteed to offer far fewer features there than in version 7.0.

The situation is similar to deciding whether your applications should use Color QuickDraw.
If you revise existing black—and—white drawing programs to incorporate color, your applica-
tions operate either with or without Color QuickDraw. If you introduce new applications that
require Color QuickDraw, they simply won’t run on machines that don’t support color.

Running in System Software Version 7.0 3-9

|PR2017-01828

Ubisoft EX1002 Page 142

Inside Macintosh, Volume VI

The rest of this section gives guidelines on what you can do to existing applications to make
them 7.0-friendly and not simply 7.0-compatible. The following pages describe in overview
how to

• be aware that the user may have launched multiple applications

• support the required set of required Apple® events

• remove font size restrictions to support outline fonts

• make sure that your application operates correctly with virtual memory

Each of these items is discussed more completely elsewhere in this volume. For example, to
learn what you need to do to support outline fonts in your application, see the Font Manager
chapter. For information about cooperating with other open applications, see the Event
Manager chapter and the Process Management chapter.

This section also discusses features of system software version 7.0 that simplify the creation
and manipulation of several new or existing user-interface elements. These new capabilities
allow you to

• get user menu selections while a modal dialog box is displayed

• coexist with system menus

• create movable modal dialog boxes

• create pop-up menus

• count and manipulate items in dialog boxes

Most of these features are not available on system software versions earlier than 7 .0. The
routines that allow you to count the number of items in a dialog item list and add or remove
items from a dialog box have previously been available as part of the Communications
Toolbox. You can determine whether those routines are available by using the Gestalt func
tion to test for the Dialog Manager extensions. You can use the gestaltPopupAttr selector
with Gestalt to determine if the new pop-up control definition function is available.

Note: The four Dialog Manager procedures CouldDialog, CouldAlert, FreeDialog,
and FreeAlert are no longer supported.

Allowing Multiple Applications

System software version 7.0 continues the development of the Macintosh Operating System
into a multitasking environment in which multiple applications can be active and must share
the available system resources. The facilities provided with earlier versions of system
software by the optional MultiFinder® package are now an integral part of system software
version 7.0. This means that your application must display a certain awareness that other
applications might be open at the same time and competing with it for processing time,
memory, control of communications ports, and so forth.

Although most operating systems regulate the sharing of available resources by having the
system parcel them out, the Macintosh Operating System relies on the willingness of fore-

3-10 Running in System Software Version 7.0

IPR2017-01828
Ubisoft EX1002 Page 143

Compatibility Guidelines

ground and background applications to share those resources among themselves. For example,
you can indicate your application's memory requirements by specifying a minimum memory
partition size (below which that application does not execute) and a preferred partition size (at
which the application executes best). The Operating System itself has very little control over
the partition size allotted to your application, other than by limiting that size to the available
memory. Similarly, the Operating System has very little control over which applications
receive processing time because the user ultimately decides when to bring a background appli
cation into the foreground. If your application holds onto the microprocessor for too long
while being switched into the background, other applications may appear sluggish and
unresponsive.

The lesson to be learned from all this is that in system software version 7 .0 your application
must be a good neighbor. You cannot expect the Operating System to force responsible
behavior on your application; rather, you must ensure that your application can happily
coexist with other open applications by following these guidelines:

• Include a 'SIZE' resource (with resource ID -1) that specifies reasonable minimum and
preferred memory partition sizes; if you occasionally need larger amounts of memory,
use the temporary memory routines described in the Memory Management chapter in
this volume.

• Use the WaitNextEvent function instead of the GetNextEvent function in your main
event loop to obtain events from the Toolbox Event Manager; this allows other
applications to use processor time your application doesn't need and allows your
application to perform operations while it is in the background.

• Modify your main event loop to process suspend and resume events; this reduces the
time it takes to switch your application into the foreground or background.

For a more complete discussion of using WaitNextEvent and processing suspend and resume
events, see the Event Manager chapter in this volume. That chapter also includes a description
of the multitasking environment that is standard in system software version 7 .0.

Supporting Required Apple Events

Possibly the most significant new feature in system software version 7.0 is interapplication
communication (IAC), which will play an increasingly important role in future versions of
the Macintosh Operating System. One central part of IAC is the addition of high-level events
to those events that the Event Manager receives and conveys to applications. High-level
events allow applications to communicate with one another by putting events in each other's
event queues.

Apple Computer, Inc. has defined a protocol for high-level events called the Apple Event
Interprocess Messaging Protocol. High-level events that adhere to this protocol are called
Apple events. Some Apple events must be supported by an application that supports any
Apple events; these are known as required Apple events. With a minimal amount of work,
you can modify your main event loop so it supports the required Apple events. In doing so,
you increase the level of compatibility of your application and ease the transition to the day
when applications will expect other applications to support Apple events.

For information on how to support the required Apple events, see the Apple Event Manager
chapter in this volume.

Running in System Software Version 7.0 3-11

IPR2017-01828
Ubisoft EX1002 Page 144

Conrprti'ibifirlv (innft'ft'nca

ground and background applications to share those resources among themselves. For example.
you can indicate your application's memory requirements by specifying a minimum tnemory
partition sine (below which that application does not execute} and a preferred partition sire [at

which the application executes hestt. The Operating System itself has very little control over
the partition size allotted to your application. other than by limiting that sire to tire available
memory. Similarly. the Operating System has very little control over which applications
receive I‘JI'tJL'tESHlt'Ig lime because the user ultimately decides when to bring. a background appli-
cation into the foreground. If your application holds onto the microprocessor for too long
while being switched into the background. other applications may appear sluggish and
ttnresponsive.

The lesson to be learned from all this is that in system software version Ill your application
must be a good neighbor. You cannot expect the Operating System to force responsible
huhavior on your application: rather. you must ensure that yonrapplication can happily
coexist with other open applications by following these guidelines:

I Include a 'SIZE' resource [with resource ID — |]I that specifies reasonable minimum and
prefencd memory partition sizes; if you occasionally need larger amounts of memory.
use the temporary rnetnory routines described in the Memory Management chapter in
this volume.

I Use the Waitls'est Event function instead of the GcthstEvent function in your main
event loop to obtain events from the Toolbox Event Manager; this allows other
applications to use processor time your application doesn't need and allows your
application to perform operations while it is in the background. I Modify your main event loop to process suspend and rest: me events: this reduces the
time it takes to switch your application into the Foreground or background. lllulttlllltt__]'t'

For a ntore complete dichssion of using WaitNextEt-‘ent and processing suspend and restttne
events. see the Event Manager chapter in this volume. That chapter also includes a description
of the multitasking environment that is standard in system software version It}.

 sattt|.1|}!ttf]._u!]
Supporting Required Apple Events

Possibly the most significant new feature in system software version ”Ml is interappliCation
communication tlACl. which will play an increasingly important role in future versions of
the Macintosh Operating System. One central part of lAC is the addition of high-level events
to those events that the Event Manager receives and conveys to applications. High-level
events allow applications to communicate with one another by putting events in each other's
cvenl queues.

Apple Computer. Inc. has defined a protocol for high—level events called the Apple Event
Interproeess Messaging Protocol. High—level events that adltere to this protocol are called
Apple events. Some Apple events must he supported by an application that supports any
Apple events: these are known as required Apple events. With a minimal amount ol" work.
you can modify your main event loop so it supports the required Apple events. [it doing so.

you increase the level of compatibility of your application: and ease the transition to the day
when applications will expect other applications to support Apple events.

For information on how to support the required Apple events. see the Apple Event Manager
chapter in this volume.

i‘t‘tnrnr'tn;I in System Software Version 713 3-H

|PR2017-01828

Ubisoft EX1002 Page 144

IPR2017-01828
Ubisoft EX1002 Page 145

Inside Macintosh, Volume VI

Removing Font Size Restrictions

System software version 7.0 introduces outline fonts, known as TrueTypeTM fonts. An
outline font can be printed or displayed at any point size without the jagged appearance of
some bitmapped fonts. A 7.0-friendly application should allow its users to take advantage of
this improvement. Minimally, this means that users should be able to ask for any point size
up to 32,768. Many applications now let users specify font sizes up to 127 points, but you
should remove even this limitation when running in version 7.0. In addition, your application
should allow users to increase or decrease the font size by 1 point.

You can use the lsOutline routine, documented in the Font Manager chapter in this volume, to
see if a particular font is an outline font. If it is, you might wish to indicate that fact in your
font size menu. For example, suppose that your Size menu for a particular bitmapped font
looks like the one in Figure 3-1.

Figure 3-1. The size menu for a bitmapped font

To provide a visual indication that the selected font is an outline font that looks good at any
size, you might change the menu to look like the one in Figure 3-2. One way to do this is
by outlining all listed sizes. as well as the Other item.

[B Pmflmfi
BE]

«1]!
114}
BE]
24}

[iliiiiitarrm

Figure 3-2. The size menu for an outline font

The User Interface Guidelines chapter in this volume contains additional suggestions on
incorporating outline fonts into your application.

3-12 Running in System Software Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 145

IPR2017-01828
Ubisoft EX1002 Page 146

Compatibility Guidelines

Operating With Virtual Memory

System software version 7.0 supports Virtual memory, a memory management scheme that
extends the logical address space of the machine by using part of the available secondary
storage (usually, a hard disk) to store parts of memory that are not currently in use. When
virtual memory is present, the perceived amount of RAM can extend up to 14 megabytes on
systems with 24-bit ROMS and up to 4 gigabytes on systems with 32-bit clean ROMS.
Because the Operating System has more addressable memory, your applications can ask for
and receive larger blocks of memory than they would if virtual memory were not available.

Virtual memory is available only on machines equipped with a memory management unit
(MMU). Currently, these machines include 68030—based machines (where the MMU is built
into the CPU) as well as 68020-based machines that contain the 68851 Paged Memory
Management Unit. You can use the Gestalt function to determine whether virtual memory is
installed. If it is, you may need to exercise caution to ensure that the normally invisible
operation of virtual memory does not adversely affect the execution of your application.
Applications that might need to be concerned with virtual memory include those that have
critical timing requirements, execute code at interrupt time, or perform debugging operations.

Note: The vast majority of applications do not need to know whether virtual
memory is installed. One type of application that might need to know if virtual memory is operating is a multi—

media application that manages very large images or incorporates many sounds into its
presentations. Imagine that such an application wants to display a large number of intricate
color images in rapid succession, and that some of those images are as large as a megabyte
each. If virtual memory is operating, it is very likely that parts of those images are on disk
when they need to be displayed. This means that in the middle of drawing a picture, the
system has to stop long enough to read those parts of the picture off the disk. The result is
that a noticeable delay may occur, which may be unacceptable.

In a case like this, you can use routines that lock the appropriate data into RAM so that
displaying the image requires no disk access. These routines are fully documented in the
Memory Management chapter later in this volume. Other software that may need to know
about those routines includes drivers, interrupt code, and debugging applications.

saunamnoA'uliquedluoos
Enabling Menus During a Modal Dialog

The Dialog Manager in system software version 7.0 has been modified to make it easier for
your application to allow access to the menu bar during a modal dialog. Sometimes it is
useful (or even necessary) for users to be able to make menu selections while your
application is displaying a modal dialog box. For example, a user might want to turn on
Balloon Help during a modal dialog. Similarly, if the modal dialog box contains several
editable text fields, the user might find it simpler to copy text from one text field and paste
it into another.

Running in System Software Version 7.0 3-13

|PR2017-01828

Ubisoft EX1002 Page 146

IPR2017-01828
Ubisoft EX1002 Page 147

Inside Macintosh, Volume VI

In previous system software versions, user access to menus in the menu bar was prohibited
during a modal dialog unless your application specifically allowed it. Moreover, keyboard
equivalents of the standard Edit menu commands did not operate correctly in a modal dialog
box unless your application provided a filter procedure to replace the standard filter procedure.

In system software version 7.0, the user can access selected menus in the menu bar during a
modal dialog. When your application displays a modal dialog window (of type dBoxProc),
these actions occur:

1 . All menu items in the Help menu are disabled, exceptgthe Show Balloons (or Hide
Balloons) command, which is enabled. '

2. All menu items in the Application menu are disabled.
am

3. If the Keyboard menu appears in the menu bar (that is, if there is more than one script
system installed in the system or if the smehowIcon bit is set in the Script Manager
flags long word), that menu is enabled, but the About Keyboards command is disabled.

In addition, if your application then calls the ModalDialog procedure, several other
actions occur:

4. All your application’s menus are disabled.

5. If the modal dialog box contains a visible and active editable text field and if the menu
bar contains a menu having commands with the standard keyboard equivalents
Command-X, Command-C, and Command-V, then those three commands are enabled.
The user can then use either the menu commands or their keyboard equivalents to cut,

copy, and paste text. (The menu item having keyboard equivalent Command-X must be
one of the first five menu items.)

When the user dismisses the dialog box, all menus are restored to the state they were in prior
to the appearance of the dialog box.

There are some cases in which actions 4 and 5 do not occur when you call ModalDialog.
The enabling and disabling described in steps 4 and 5 does not occur if any of these
conditions happen:

I Your application does not have an Apple menu.

I Your application has an Apple menu, but the menu is disabled when the dialog box
is displayed.

I Your application has an Apple menu, but the first item in that menu is disabled when
the dialog box is displayed.

Note: If your application already handles access to the menu bar during a modal
dialog and you do not want the automatic menu enabling and disabling provided by
system software version 7.0 to occur, you should ensure that one or more of those
conditions is true when you display a modal dialog box.

3-14 Running in System Software Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 147

IPR2017-01828
Ubisoft EX1002 Page 148

Compatibility Guidelines

Coexisting With the System Menus

In system software version 7.0, the menu bar may contain as many as four system menus,
which are menus that provide access to system features such as application switching,
Balloon Help, and keyboard scripts. The four system menus are the Apple menu, the
Application menu, the Help menu, and the Keyboard menu. All four of these menus have
icons as titles. The Apple menu icon is located in its usual location at the left side of the
menu bar, but the three other menu icons are positioned at the right side of the menu bar.

The system menu icons are drawn automatically in the menu bar of any application that
supports an Apple menu and that uses the default system menu bar definition procedure
(that is, resource of type 'MBDF' having ID 0). The Application menu icon is always
drawn. The Help menu icon is drawn if space is available, and the Keyboard menu icon
is drawn if space is available and if more than one script system is available in the system.

Both the Help menu icon and the Keyboard menu icon disappear from the menu bar if your
application installs a menu whose title has a right side that extends into the space occupied
by one or both of those icons. This allows your application to reclaim any space in the
menu bar that would have been occupied by one or both of those two menu icons, if
necessary. However, the Application menu icon is always displayed in the menu bar. If
your application installs a menu whose title is long enough to overlap space occupied by
the Application menu icon, the overlapping portion of that title is placed behind the
Application menu icon.

The system menus are installed into your application’s menu list, so you should not make
any assumptions about the last item (or items) in your menu list. Your application receives
notice of mouse—down events in the menu bar, even when those events concern system

menus. You can still call MenuSelect in response to a mouse-down event in the menu bar,
however, because MenuSelect returns either 0 in the high word when the Apple, Application,

or Keyboard menu is selected, or the HelngrID constant when the Help menu is selected.

dIUODg

Creating Movable Modal Dialog Boxes

a:_..
:r
::_....
<

n::..
aa__.
=I'DU1

The Window Manager in system software version 7.0 allows you to create a new type of
window, called a movable modal dialog box, by specifying the following constant as the
window definition ID when you call NewWindow:

CONST movableDBoxProc : 5; {movable modal dIaLOg box}

The User Interface Guidelines chapter in this volume contains illustrations of movable modal
dialog boxes and recommendations for their use. Note carefully that it is your application’s
responsibility to ensure that any movable modal dialog boxes you create display the behavior
described there. In particular, you must provide the code that prevents the user from bringing
another window in your application forward while a movable modal dialog box is displayed.

Note: The term movable modal dialog box is likely to cause confusion because
windows you create with the movableDBoxProc window definition ID cannot, in
general, be manipulated like other (nonmovable) modal dialog boxes. For example,
you should not call the ModalDialog procedure when the frontmost window is a
movable modal dialog box.

Running in System Software Version 7.0 3—15

|PR2017-01828

Ubisoft EX1002 Page 148

IPR2017-01828
Ubisoft EX1002 Page 149

Inside Macintosh, Volume VI

Creating Pop-Up Menus

The Control Manager in system software version 7.0 makes it much easier for you to create
pop-up menus. Pop-up menus provide the user with a simple way to select from among a list
of choices without having to move up to the menu bar. They are particularly useful in a dialog
box that requires the user to specify a number of settings or values. Figure 3-3 shows a pop-
up menu in both its inactive and active states.

Inactive state Active statew

Baud Rate: E‘fl
Pop-up title Pop-up box

Baud Rate: «300

Figure 3-3. A pop-up menu in its inactive and active states

Prior to system software version 7.0 (or on earlier systems running without the
Communications Toolbox installed), the easiest way to create pop—up menus was to create the
pop—up title as a staticText item in a dialog item list and the pop—up box as a user item. Your
application then needed to draw a box around that user item, draw the drop shadow, and
insert text into the box. Then you could call the PopUpMenuSelect function to draw the pop—
up menu and track the cursor within the menu, making sure to invert the pop—up title while
the menu is active (to duplicate the behavior of menu titles in the menu bar).

The Control Manager in system software version 7.0 allows you to create a pop—up menu as
a new type of control by using the following constant when you call NewControl:

 CONST popupMenuCDEFProc : 1008,- {pop up menu)

If you specify popupMenuCDEFProc (plus any appropriate variation code) as the proch
parameter in NewControl (or specify it as the proch of a control that you open with
GetNewControl), the Control Manager creates a pop-up menu control, which includes
the pop-up title and the pop-up box with a one—pixel drop shadow. The appearance of the
pop-up title and the values in the menu are controlled by other parameters passed to
NewControl (or stored in a resource), as described later in this chapter.

In system software version 7.0, the control definition function specified by the constant
popupMenuCDEFProc also draws the downward-pointing triangle in the pop-up menu. Note
that the triangle is not drawn automatically in earlier system software versions.

To create a pop-up menu, call NewControl and specify popupMenuCDEFProc (plus any
appropriate variation code) as the proch parameter.

3-16 Running in System Software Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 149

IPR2017-01828
Ubisoft EX1002 Page 150

Compatibility Guidelines

FUNCTION NewControl (theWindow: Windothr; boundsRect: Rect;
title: Str255; visible: Boolean; value: Integer;
win: Integer; max: Integer; procID; Integer;
refCon: LongInt) : Controanndle;

The value, min, and max parameters behave differently with pop-up menus than with other
controls created with NewControl. You can specify constants listed below to control the
appearance and location of text in the control. If NewControl returns successfully (that is, if
the returned ControlHandle is not NIL), the control minimum and maximum values contain

information about the new pop-up menu, as described later in this section. In addition,
NewControl may modify the boundsRect parameter to reflect the actual Width of the pop-up
menu box that is created.

When you call NewControl, the value parameter specifies the manner in which the title of the
pop-up menu is to be aligned and drawn. The value parameter should be some combination
of the following constants:

CONST popup"itleLoftJusL : $0000; {left alignment}
popupflitleCenterJust 2 $0001; {center alignment}
popupTitleRightJust : $OOFF; {right alignment}
popupmitleBold : $0l00; {bold text}
popupflitleItalic : $0200; {italic text}
popupTitleUnderline : $0400; {underlined text}
popupritleOutline : $0800; {outlined text}
popuphitleshadow : $1000; {shadow text}
popupTitleCondense * $2000; {condensed text}
popup"itleExtend : $4000; {extended text}
popupflitleNoStyle : $8000; {unstyled text}

Figure 3-4 illustrates the appearance of the pop-up control if you pass the popupTitleRightJust
constant. Note that the position of the pop—up box and the pop-up title are reversed from their
default (left—aligned) positions.

saunapmf)Kuuquedluoz)f
 SDI] t" Baud Rate:

Figure 3-4. A pop—up control that is right—aligned

You can also pass a sum of constants in the value parameter to draw the pop—up title with
more than one of these characteristics. lf NewControl completes successfully, the value

parameter contains the current minimum value of the menu. Your application can then use
the value of the control to determine the currently selected item.

Running in System Software Version 7.0 3-17

|PR2017-01828

Ubisoft EX1002 Page 150

IPR2017-01828
Ubisoft EX1002 Page 151

Inside Macintosh, Volume VI

The min parameter specifies the resource ID of the menu in the pop-up control when the
control is being created. After the control has been created, the pop-up menu control
definition sets the minimum value of the control to l.

The max parameter specifies the Width of the pop-up title area when the control is being
created. After the control has been created, the pop—up menu control definition sets the
maximum value of the control to the number of items in the pop-up menu. ‘

The proch parameter should contain the value popupMenuCDEFProc plus any desired
variation code. Currently recognized variation codes are defined by constants:

CONST popupFixedWidth 2 $0001; {use fixed widtn control}
popupUseAddResMenu : $0004; {use resource for rremi}
popupUseWFont 7 $0008; {use window font}

Constant Description

popupFixedWidth Uses a constant control width. If your application specifies this
value, the pop-up menu control definition function does not
resize the control horizontally to fit long menu items. The width
of the pop—up box is set to the width of the control, minus the
width of the pop-up title your application specifies when it
creates the control. If the contents of the pop—up box do not fit
into the space provided, the text is truncated to fit and ellipses
(...) are appended to its end. If you do not specify this variation
code, the contents of the pop—up box are guaranteed to fit
because the pop—up menu control definition function resizes
the control horizontally (up to the size of the control’s bounding
rectangle).

popupUseAddResMenu Gets menu items from a resource. If your application specifies
this value. the pop—up menu control definition function
interprets the refCon parameter passed to NewControl as a
value of type ResType that specifies the resource type to load
into the menu (using the AddResMenu procedure).

popupUseWFont Uses the font of the specified window. If your application
specifies this value, the pop-up menu control definition
function draws the pop—up menu title using the font and size
of the grafPort that owns the control. In addition, the pop—up
menu, when active, is to use the font and siae of that grafPort
instead of the standard system font.

The refCon parameter is a long integer that is available for your application's use. However.
if you specify popupUseAddResMenu as a variation code, the value in the refCon parameter
is typecast to the type ResType and is used by AddResMenu to add items to the pop-up
menu. For example, if the value in the refCon parameter is Longlnt('FONT'), the pop-up
menu control definition function appends a list of the fonts installed in the system to the menu

3—18 Running in System Software Version 7.0

|PR2017-O1828

Ubisoft EX1002 Page 151

IPR2017-01828
Ubisoft EX1002 Page 152

Compatibility Guidelines

associated with the pop-up menu control. After the control has been created, your application
can use the control handle’s refCon field for whatever use it requires. You can determine
which menu item is currently selected by calling GetCthalue.

Whenever the pop-up control is redrawn, the control definition function calls the CachenuSize
procedure. This procedure recalculates the size of the menu associated with the control (to
allow for the addition or deletion of items in the menu). The control definition function may
also update the width of the pop-up menu control to the sum of the width of the pop—up title,
the width of the longest item in the menu, the width of the downward arrow, and a small
amount of white space. As previously described, your application can override this behavior
by using the variation code popupFixedWidth.

You can obtain the menu handle and the menu ID of the menu associated with the pop-up
control by dereferencing the contrlData field of the control record. The contrlData field is a
handle to a block of private information. For pop-up menu controls, this field is a handle to
a popupPrivateData structure:

 TYPE popupPrivateData :
RECORD

mHandle: MenuHandle; {handle to menu}
mID: Integer; {menu ID}
mPrivate: ARRAY[C..0] OF SigneéByte {reserved}

3ND;

The mHandle field contains a handle to the menu. The mlD field is the ID of the menu. The
mPrivate field is reserved.

Manipulating Dialog Item Lists

The Dialog Manager in system software version 7.0 includes several new routines that
make it easier for you to manipulate dialog item lists. You can count the number of items
in a dialog list by using the CountDITL function. You can add items to an item list by using
the AppendDITL procedure and remove items from the end of an item list by calling the
ShortenDITL procedure.

DJ

0G
E'5
a:
:2
E".:1u-p
’<

C?Cu—.
G-
E
E.ftm

These Dialog Manager extensions are available in system software version 7.0 and also on
any earlier system that has the Communications Toolbox installed. Before calling these
routines, you should make sure that they are available by calling the Gestalt function with
the gestaltDITLExtAttr selector.

Counting Items in a Dialog Item List

You can call the CountDITL function to count the items in a dialog item list.

FUNCTION CountUlTL (theDialog: DialogPtr) : integer;

CountDITL returns the number of items in the dialog item list associated with the dialog box
pointed to by the parameter theDialog.

Running in System Software Version 7.0 3—19

|PR2017-01828

Ubisoft EX1002 Page 152

IPR2017-01828
Ubisoft EX1002 Page 153

Inside Macintosh, Volume VI

Appending Items to a Dialog Item List

You can call the AppenleTL procedure to append items to the end of a dialog item list.

PROC~DUR~ AppendDITL (thCDidlog: DialogP:r; theDITL: Handle; method:
DITLMethOd);

The parameter theDialog specifies the dialog box to whose item list you want to append
items. The parameter theDlTL is a handle to the item list you want to append to that dialog
box’s existing item list. The method parameter specifies the i‘nanner in which you want the
new item list to be appended. The available methods are defined by constants of type
DITLMethod:

TYPE DITLMeLhOd : Integer;

CONST overlayDITL : O; {overlay existing items}
appenc'DITLRight : l; {append at right}
appendDITLBottom : 2; {append at bottom}

Consider the initial dialog box and list of items to be appended that are illustrated in
Figure 3-5.

(0.0) — (0,0) —

Initial dialog box Items to be appended

Figure 3-5. An initial dialog box and a list of items to append

If the method parameter is overlayDITL, the items to be appended are superimposed on any
existing items in the dialog box. Figure 3-6 shows the result of overlaying new dialog items.

(0,0) —

Item 3 Item I

Item 2
Figure 3-6. The dialog box after items are overlaid

3-20 Running in System Software Version 7.0

|PR2017-01828

Ubisoft EX1002 Page 153

IPR2017-01828
Ubisoft EX1002 Page 154

Compatibility Guidelines

The positions of the new items are determined by the coordinate system of the initial
dialog box.

If the method parameter is appenleTLRight, the new items are appended to the right of the
dialog box, as illustrated in Figure 3-7.

(0.0) —

Figure 3-7. The dialog box after items are appended to the right

The positions of the new items are offset by the upper—right coordinate of the port rectangle
of theDialog. AppenleTL automatically expands the dialog box to accommodate the new
dialog items. If you know that your application will need to restore a dialog box to the size
it was before you called AppendDITL, you should save the original size before calling
AppendDITL.

If the method parameter is appendDITLBottom, the new items are appended to the bottom of
the dialog box, as illustrated in Figure 3—8.

(0,0) ‘—

DJ

0o
E'5
:0_._.
:7
=..FF

‘4

D
E.O.*‘D
=
=FD(I)

Figure 3-8. The dialog box after items are appended to the bottom

The positions of the new items are offset by the lower-left coordinate of the original dialog
box. AppenleTL automatically expands the dialog box to accommodate the new dialog
items. If you know that your application will need to restore a dialog box to the size it was
before you called AppendDITL, you should save the original size before calling AppenleTL.

Running in System Software Version 7.0 3-21

|PR2017-01828

Ubisoft EX1002 Page 154

IPR2017-01828
Ubisoft EX1002 Page 155

Inside Macintosh, Volume V]

You can append a list of dialog items relative to existing items in the dialog box by passing a
negative number in the method parameter. The absolute value of this number is interpreted as
the item in the dialog box relative to which the new items are to be positioned. For example,
if the method parameter is —2, the items to be appended are offset from the upper—left corner
of item number 2, as illustrated in Figure 3—9.

(010) —"

Figure 3-9. The dialog box after items are appended relative to Item 2

Because Item 3 was appended relative to the top—left comer of Item 2, it appears on top
of Item 2.

x. Because AppendDITL modifies the contents of the parameter theDITL, your application must
f3 get rid of the dialog item list after calling AppendDITL. Here is a typical calling sequence:

myNewItems :— GetResource('DITL', myID);

3 AppendDITL(myDialog, myNewItems, appendDITLBottom);

!
I

5

i
: ReleaseResource(myNewItems);

Shortening a Dialog Item List

You can call the ShortenDITL procedure to remove items from the end of a dialog item list.

PROCQDURL ShortenDITL (theDialog: Dialogptr; numberILems: Integer);

The parameter theDialog specifies the dialog box from whose item list you want to remove
items. The numberltems parameter specifies how many items to remove from the end of
the item list. Note that ShortenDITL does not automatically resize the dialog box.

LOCALIZING MACINTOSH PROGRAMS

Localization is the process of adapting an application to a specific language, culture, and
region. By planning ahead and making localization relatively painless, you’ll ensure that your
product is ready for international markets in the future. This section provides a brief overview
of what you need to do to make it easy to localize your application. For the complete account
of writing software that is compatible with Macintosh computers throughout the world, you
should read the TextEdit chapter and the Worldwide Software Overview later in this volume.
You should also consult the “Worldwide Software Development” section in the User
Interface Guidelines chapter of this volume.

3-22 Localizing Macintosh Programs

|PR2017-01828

Ubisoft EX1002 Page 155

IPR2017-01828
Ubisoft EX1002 Page 156

Compatibility Guidelines

General Guidelines

The key to easy localization is to store region—dependent information used by your application
as resources (rather than within the application’s code). Text seen by the user can then be
translated without modifying the code. In addition, storing such information in resources
means that your application can be adapted for a different area of the world simply by substi—
tuting the appropriate resources. Make sure that at least the following kinds of information are
stored in resources:

I all text, including special characters and delimiters

I menus and keyboard equivalents for menu commands (if available)

I character, word, phrase, and text translation tables

I address formats, including zip codes and telephone numbers

When you create resources for your applications, remember the following key points:

I text needs room to grow (up, down, and sideways)

D translated text is often 50 percent larger than the US. English text

: diacritical marks, widely used outside the United States, may extend up to the

ascent line

a some system fonts contain characters that extend to both the ascent and descent lines

I potential grammatical problems may arise from error messages, “natural” programming
language structures, and so forth

I text location within a window should be easy to change

t»

('1
S:3

To
9.7H..
5".—.
LTFF

u;

D
E.CL"D.—._.
5m

Localizing With the Toolbox

In addition to these general guidelines, you need to be aware of a host of other localization
issues, such as differences in script systems and measurement systems. The User Interface
Toolbox in system software version 7.0 contains updated versions of several packages and
managers that you can use to facilitate localization of your applications—TextEdit, the
lntemational Utilities Package, and the Script Manager.

Perhaps the most important localization tool is the Script Manager, which contains routines
that allow your application to function correctly with non—Roman scripts (writing systems).
The Script Manager furnishes a standard interface that allows installation of different script
systems, maintains global data structures. supports switching keyboards between different
scripts, and provides a central dispatcher that gives your application access to script systems.
It also contains utilities for text processing and parsing, which are useful for applications that
do a lot of text manipulation. The Script Manager provides easy ways to translate your appli-
cation into another writing system and to coordinate with the lntemational Utilities Package.

The International Utilities Package provides routines for dealing with sorting, currency,
measurement systems, and date and time formatting. These tend to vary in some degree from

Localizing Macintosh Programs 3-23

|PR2017-01828

Ubisoft EX1002 Page 156

IPR2017-01828
Ubisoft EX1002 Page 157

Inside Macintosh, Volume VI

script to script, language to language, and region to region, and your application should take
advantage of the Macintosh Operating System’s ability to present this information in the
correct format based on the current script. It is important that you use the routines in this
package rather than the Operating System Utility routines such as UprString (documented in
Volume II); the Operating System Utility routines do not handle diacritical marks and
(because they are used by the File Manager) cannot be localized for different countries.

TextEdit provides routines that handle basic text formatting and editing capabilities. such as
inserting new text or scrolling text within a window. The versions of TextEdit included in
system software versions 6.0.4 and later contain new features that allow them to work with

different scripts. For example, TextEdit takes advantage of‘the Script Manager’s handling
of double—byte characters to display scripts (such as Kanji) with improved accuracy and
consistency.

For more information about the enhanced versions of TextEdit. see the TextEdit chapter in
this volume. For complete information on both the International Utilities Package and the
Script Manager, see the Worldwide Software Overview chapter.

RUNNING MACINTOSH PROGRAMS UNDER A/UX

A/UX is Apple’s version of the UNIX operating system, which provides a multitasking
and multi-user environment in which users can run applications, One of the most distinctive
features of A/UX in comparison with other implementations of the UNIX operating system
is its ability to run conforming Macintosh applications. Within limits described later in this
section, applications developed for the Macintosh Operating System using the standard
Macintosh User Interface Toolbox routines will execute under A/UX.

The ability to run Macintosh applications under A/UX is provided by enhancements to the
A/UX kernel and by a library of functions known as the A/UX Toolbox. The A/UX
Toolbox is a library of routines that enables a program running under A/UX to call
Macintosh Toolbox routines and native Macintosh Operating System routines. The A/UX
Toolbox provides a bridge between the Macintosh and A/UX environments, giving you
two kinds of code compatibility:

I You can execute Macintosh binary code (applications compiled in the Macintosh
environment) under A/UX, within the current limitations of the A/UX Toolbox.

I You can write common source code that can be separately built (that is, compiled and
linked) into executable code for both environments.

The A/UX Toolbox operates transparently to the user and to applications. This means that
(subject once again to qualifications detailed later) your applications developed for the
Macintosh Operating System should execute under the A/UX operating system.

This section briefly explains how the A/UX Toolbox works and then provides details on
writing Macintosh applications that execute under the A/UX operating system. A/UX
provides such a high level of compatibility with Macintosh applications that your existing
application may very well run under A/UX with no changes whatsoever. In general, if
your application conforms to the interfaces documented in Inside Macintosh, is MultiFinder—

aware, does not rely on low—memory global variables, and heeds the various guidelines
presented in “About Compatibility” earlier in this chapter, it should operate under A/UX.

3 -24 Running Macintosh Programs Under A/UX

|PR2017-01828

Ubisoft EX1002 Page 157

IPR2017-01828
Ubisoft EX1002 Page 158

Compatibility Guidelines

How the AIUX Toolbox Works

The primary function of the A/UX Toolbox is to make available to programs running under
A/UX the standard Macintosh support code described in Inside Macintosh. Most of the
support code consists of routines built into the Macintosh ROM.

The ROM routines fall into two categories, User Interface Toolbox routines and Macintosh
Operating System routines. The A/UX Toolbox uses one of two strategies for supporting a
call to a Macintosh ROM routine, depending on whether the call is to the User Interface
Toolbox or to the native Macintosh Operating System.

When an A/UX Toolbox application calls one of the Macintosh User Interface Toolbox
routines, the A/UX Toolbox intercepts the call and. if necessary. translates the parameters
into a form usable by the ROM. After the AIUX Toolbox performs the translation, it
invokes the ROM code that would be used in the native Macintosh environment.

When an A/UX Toolbox application calls one of the Macintosh Operating System routines,
the A/UX Toolbox diverts the call to a substitute routine in its own library. The A/UX

Toolbox Operating System routines call the standard A/UX libraries to perform the A/UX
equivalents of the Macintosh Operating System functions. The Macintosh Operating System
ROM code is never used under A/UX. Note that some of the built-in User Interface Toolbox

routines generate calls to the Macintosh Operating System routines; these calls are also
intercepted by the A/UX Toolbox and diverted to routines in its own library.

Figure 3— 10 illustrates how the two elements of the A/UX Toolbox library interact with the
application and the ROM code. (1(1an9

Application running
under A/UX

:3w..
<7.—.
i:n
4

:..
a.(D.—_.
=mV)

1 Macintosh A/UXToolbox
Standard Macintosh

 : User ROM interface
_A/U_X <2 OS subset . interface routines
libraries I Toolbox

Macintosh ROM U u
" Y Macintosh

Macintosh v User
08 Interface

Toolbox

Figure 3-10. Interactions among an application, the A/UX Toolbox, and ROM code

Running Macintosh Programs Under A/UX 3—25

|PR2017-01828

Ubisoft EX1002 Page 158

IPR2017-01828
Ubisoft EX1002 Page 159

Inside Macintosh, Volume VI

Using the A/UX Toolbox

The primary limitation on Macintosh applications running under A/UX is that the A/UX
Toolbox does not currently support all managers and drivers. Table 3-1 summarizes the status
of various ROM libraries in A/UX Release 2.0. Note that “Full” support for a manager or
driver means that the version of that manager released with system software 6.0.5 is available.
In particular, there is currently no support under A/UX for any of the new features introduced
in system software version 7.0.

Table 3-1. Status of User Interface Toolbox and Macintosh Operating System libraries in
the A/UX Toolbox

ROM library

Alias Manager
Apple Desktop BusN
AppleTalk Manager
Binary—Decimal Conversion Package
Color Manager
Color Picker Package
Color QuickDraw
Control Manager
Data Access Manager
Deferred Task Manager
Desk Manager
Device Manager
Dialog Manager
Disk Driver

Disk Initialization Package
Edition Manager
Event Manager, Opcrating System
Event Manager, Toolbox
File Manager
Floating-Point Arithmetic and

Transcendental Functions Packages
Font Manager
Gestalt Manager
Help Manager
International Utilities Package
List Manager
Memory Manager
Menu Manager
Notification Manager
Package Manager
Palette Manager
Power Manager
PPC Toolbox

Printing Manager
QuickDraw
Resource Manager
Scrap Manager
Script Manager
SCSI Manager

Implementation

None
None
Full
Full
Full
Full
Full
Full
None
None
Full
Full
Full
Full
Full
None
Partial
Full*
Full

Full*
Full
Full
None
Full
Full
Full
Full
Full
Full
Full
None
None
Full
Full
Full
Full
Full
None

3—26 Running Macintosh Programs Under A/UX

|PR2017-01828

Ubisoft EX1002 Page 159

IPR2017-01828
Ubisoft EX1002 Page 160

Compatibility Guidelines

Table 3-1. Status of User Interface Toolbox and Macintosh Operating System libraries in
the A/UX Toolbox (Continued)

ROM library Implementation

Segment Loader Partial
Serial Driver Full

Shutdown Manager Full”:<
Slot Manager Full
Sound Manager Full
Standard File Package Full
Startup Manager Full
System Error Handler Full"
TextEdit Full

Time Manager Full *
Utilities, Operating System Partial
Utilities, Toolbox Full

Vertical Retrace Manager Partial
Window Manager Full

Note: When A/UX implements a particular manager or driver, the version of that
manager or driver may not be the same as the version available in the Macintosh
Operating System. This means that, whenever possible, you should use Gestalt to
check for the existence of the particular features your application needs. In managers
or drivers marked with an asterisk (*), all routines are implemented under AfUX,
but the behavior is not identical to that in the Macintosh Operating System. See the

publication A/UX Toolbox: Macintosh ROM Interface for complete details on the
implementation of these managers and drivers.

A/UX Compatibility Guidelines

The A/UX Toolbox has been designed to allow as many Macintosh applications as possible
to execute under the A/UX operating system. Because of profound differences between the
two environments, however, it is possible that some applications may not execute correctly
under A/UX. By following these guidelines, you can help ensure that your Macintosh
applications run under A/UX.

but

0

E"cm.—.—.
U
:2..H

<4

0=
a.m
=1
=(Dm

I Make certain that your application is MultiFinder-friendly. MultiFinder is a standard part
of A/UX, just as it is in system software version 7.0 (where the FinderTM and the
Process Manager provide the cooperative multitasking environment). Your application
should include a ‘SIZE' resource and call the WaitNextEvent function in its main event

loop. Note that the version of MultiFinder included with A/UX Release 2.0 is
functionally equivalent to the version of MultiFinder released with system software
version 6.0.5, but it has been customized for use under A/UX.

I Always use the available managers and drivers to manipulate hardware devices. In the

Macintosh Operating System, individual processes and the various libraries can have
much more control over the system than under A/UX, where the kernel manages all
interaction between processes and the underlying hardware. In particular, do not attempt
to read data from or write data to any of the memory-mapped hardware available on a
Macintosh computer.

Running Macintosh Programs Under A/UX 3-2 7

|PR2017-01828

Ubisoft EX1002 Page 160

IPR2017-01828
Ubisoft EX1002 Page 161

Inside Macintosh, Volume V]

I Avoid relying on the low—memory global variables. Not all of them are available
under A/UX.

I Make certain that your application is 32-bit clean (that is, it operates in an environ—
ment where all 32 bits of a handle or pointer are significant in determining memory
addresses).

I Use the Gestalt Manager to determine which versions of managers and drivers are
present in the current operating environment before relying on features that are not
common to all released versions. Generally, the versions of managers available under
A/UX Release 2.0 are the same as those versions included in Macintosh system
software version 6.0.5.

Finally, your application should conform to the programming interfaces described in Inside
Macintosh and should follow the basic compatibility guidelines presented in “About
Compatibility” earlier in this chapter. For further details on running Macintosh applications
under A/UX, see A/UX Toolbox: Macintosh ROM Interface.

ABOUT THE GESTALT MANAGER

The Macintosh family of computers includes many models of computers, and it is likely to
grow in the future. Macintosh software runs on a number of different processors, some of
which are accompanied by floating-point coprocessors or memory management units. In
addition, the installed versions of the system software, drivers, and QuickDraw routines may
vary from machine to machine. To ensure that your applications are maximally compatible
with existing and future versions of the Macintosh, you should keep references to specific
software and hardware features to a minimum.

In general, applications should communicate with the system software and hardware through
the available managers and device drivers. If, however, it is necessary or useful for your
applications to take advantage of software or hardware components that may not be present
on all Macintosh computers, then you need some method of determining whether those
components are available. The Gestalt Manager serves this need by allowing you to get
infomiation about the operating environment in a simple and efficient manner.

System software version 7.0 introduces several new managers and makes significant changes
to many existing managers. To take advantage of new version 7.0 features, and to run on as
many machines as possible, it is more important than ever before that your application deter-
mine the software and hardware components available in a particular operating environment,
To help you develop software for the entire line of Macintosh computers, system software
version 7.0 includes the Gestalt Manager. This manager includes the Gestalt function, which
is a replacement for both the Environs procedure and the SysEnvirons function. The Gestalt
function gives your application the ability to determine information about a large number of
machine—dependent features. You can use the Gestalt function to find the following sorts of
information about the hardware configuration and operating environment of the machine your
application is executing on:

I the type of machine

I the version of the System file currently running

3-28 About the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 161

IPR2017-01828
Ubisoft EX1002 Page 162

Compatibility Guidelines

I the type of CPU

I the type of keyboard attached to the machine

I the type of floating-point processing unit (FPU), if any

I the type of MMU, if any

I the size of available RAM

I the amount of available virtual memory

I the versions of various drivers and managers

I the features of various drivers and managers

I the version of QuickDraw currently present

I whether the A/UX operating system is running or not

How your application uses the resulting information depends on what your application needs
to accomplish For example, in a case where critical hardware features are not available, your
application might display an alert box to notify the user that the required hardwareis missing
and then terminate Or if your application has determined that Color QuickDrawis available,
it could execute alternate code to take advantage of the expanded capabilities of that software.

Associated with the Gestalt function are two other functions—one that allows an application

to register new features with Gestalt and another that allows an application to change the

function used by Gestalt to retrieve a particular piece of information. These two functions
make it easy for your application to announce its presence to other applications, in case they
wish to alter their actions in view of the presence of your application. For example, a macro
utility that intercepts sequences of keyboard presses and translates them into other sequences
can register itself with Gestalt at system initialization time; afterward, other applications can
call Gestalt to determine if that utility is present. 111 this way, Gestalt can act as a central
clearinghouse for information on the available hardware and software features of the
operating environment including any third--party applications that register themselves with
Gestalt. Gestalt therefore provides a further means of cooperation and awareness among
applications executing in the version 7.0 environment.

Although the Gestalt function can provide your application with most of the basic information
it needs about particular software or hardware features, you may still need to call other routines
to determine more specific features For example, if you need to determine the resolution of
the main Macintosh screen, you“ can use the Toolbox Utility procedure ScreenRes. (See the
Toolbox Utilities chapter of Inside Macintosh, Volume I, for a description of this procedure.)

The Gestalt function replaces both the Environs procedure and the current implementation
of the SysEnvirons function as the standard means of determining specific aspects of the
operating environment. The Gestalt functionis simpler to use and provides more information
than either of those routines. Applications that use SysEnvirons still execute correctlyin
system software version 7.0 (the SysEnvirons function calls the Gestalt function).

About the Gestalt Manager 3~29

dulo;)g
N
:5
E
:1'<
1".1

E.Q-
E
E.G'1:

|PR2017-01828

Ubisoft EX1002 Page 162

IPR2017-01828
Ubisoft EX1002 Page 163

Inside Macintosh, Volume VI

Use of the Environs procedure is no longer recommended because it encourages you to think
in terms of ROM versions. not in term of features that may be available. The Gestalt Manager
can also provide information such as ROM version and size, but you should not write appli—
cations that infer the presence of particular software or hardware features on the basis of that
information. When you need to know whether a particular feature is present, you should
request information about it directly, using the appropriate Gestalt selector.

Although you can still call the SysEnvirons function, the Gestalt Manager is simpler and
more efficient, and is the recommended way to get information about the operating environ-
ment. SysEnvirons returns a system environment record containing nine different pieces of
information. Gestalt returns only the information requested by use of a specific selector code
parameter. In most cases, your application really needs only a part of what is contained in the
system environment record. With Gestalt, your application can request only the information
it needs.

USING THE GESTALT MANAGER

The Gestalt Manager includes three functions—Gestalt, NewGestalt, and ReplaceGestalt.
You can use the Gestalt function to obtain information about software or hardware compo-
nents available on the current machine. You can use NewGestalt to register new software
modules (such as drivers and patches) with the Operating System. Use ReplaceGestalt to
replace the function associated with a particular selector code by some other function.

Note: Most applications do not need to use either NewGestalt or ReplaceGestalt.

Determining Features of the Operating Environment

When your application needs information about a specific software or hardware feature that
can be provided by the Gestalt function, your application can pass Gestalt a selector code
(or selector) as one of the parameters. The selector code is simply an indication of what
information your application currently needs. There are two types of selector codes——
predefined selector codes that are always recognized by Gestalt, and application—defined
selector codes that applications may register with Gestalt by calling the NewGestalt function.

If Gestalt can determine the requested information, it returns that information in its second
parameter, known as the response parameter. If Gestalt cannot obtain the desired informa-
tion, it returns a result code indicating the cause of the error; in that case, the value of the
response parameter is undefined. You should always check the result code returned by
Gestalt to make sure that the response parameter contains meaningful information.

Note: When passed one of the predefined selector codes, Gestalt does not move
or purge memory and therefore may be called at any time, even at interrupt time.
However, selector functions associated with application-defined selector codes may
move or purge memory, and applications can alter Gestalt’s predefined selector
functions. As a result, it is safest to assume that Gestalt might always move or purge

memory. The NewGestalt function may move memory and should not be called at
interrupt time.

3-30 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 163

IPR2017-01828
Ubisoft EX1002 Page 164

Compatibility Guidelines

There are two types of predefined selector codes: codes that return information that your
application can use to guide its actions (known as environmental selectors), and codes
that provide information only and should never be used as an indication of some feature’s
existence (known as informational selectors).

It is particularly important that you understand the difference between environmental and
informational selectors. The response returned by Gestalt when it is passed an informational
selector is for your (or the user’s) edification only and should never be used by your application
as a means of determining whether some specific software or hardware feature is available.
For example, you can use Gestalt to test for the version of the ROM installed on a particular
machine, but you should never use this information to guide any of your application’s actions.
Routines you expect to be in ROM may actually be in RAM: hence, you cannot determine that
some routine usually found in ROM is not present simply by looking at the ROM version. Also,
routines contained in ROM may have been patched by the system at startup time, in which case
the system might not have the features that you think it has on the basis of the reported ROM
version. Similar remarks apply to other informational selectors such as ROM size, machine
type, and System file version.

You can use the following environmental selectors to determine information about the
operating environment.

CONST

gestaltAddressingModeAt:r : 'addr'; {addressing mode attributes}

gestaltAllasMgrAttr : 'alis'; {Alias Mgr attribu:es} u
gestaltAppleEventsAttr : ‘evnt'; {Apple events attributes} S

gestaltAppleTalkVersion : 'atlk'; {AppleTalk version} E
gestaltAUXVersion : 'a/ux‘; {A/Ux version if present} fl

gestaltConnMgrAttr : 'conn'; {Connection Mgr attributes} E

gestaltCRMAttr : ‘crm ‘; {Comm Resource Mgr dttrs} E;
gesta;-CTBVersion : 'ctbv'; {Comm Toolbox version} C
gestaltDBAcoessMgrAttr : 'dbac‘; {Data Access Mgr attrs} E

gestaltDITLEXtAttr : ‘ci:l'; {Dialog Mgr extensions} %
gestal:EasyAccossAttr : 'easy'; {jasy Access attributes} E
gestaltEditionMgrAttr : ‘ed:n'; {Edition Mgr attributes} g
gestaltExtToolboxTable : 'xttt'; {Ext Toolbox trap table base}
gestal:?indFolderAttr : 'fold‘; {TindFolder attributes}
ges:alt:ontMgrAttr * ’font'; {Font Mgr attributes}
ges:al:TPUType : 'ipu ‘; {TPU type}
ges_al:FSAttr : ’fs '; {fileesystem attributes}
ges:al::XergrA:tr * 'fxfr'; {Tile Transfer Mgr attrs}
ges:al:{ardwareAttr : 'hdwr'; {iardware attributes}
gestal:%elngrAttr : ’help'; {{elp Mgr attributes}
gestaltéeyboardType : 'kbd ‘; {<eyboaro type}
gestaltaogicalPageSize 2 'pgsz'; {logical page size}
gestal:oogicalRAMSize : 'lram'; {logical RAM size}
gestal:oowMemorySize : 'lmem‘; {low7memory area size}
gestaltliscAttr : 'misc'; {miscellaneous attributes}
gestaltaMUType : ‘mmu '; {MMU type}
gestalt otificationMgrA:tr : 'nmgr’; {Notification Mgr attrs}
gestalthBusConnectors : 'sltc'; {NtBus connector bitmap}
gestaltOSAttr 7 'os '; {O/S attributes}
gestaltOSTable : 'ostt'; {O/S trap table base}

Using the Gestalt Manager 3 -3 I

|PR2017-01828

Ubisoft EX1002 Page 164

IPR2017-01828
Ubisoft EX1002 Page 165

Inside Macintosh, Volume VI

gestaltParityAttr : 'prty'; {parity at:ributes}
gestaltPhysicalRAMSize 7 'ram '; {physical 1AM size}
testalLPopupAttr : 'pop!’; {popeup CDEF attributes}
ges:altPowengrAttr : 'powr'; {Power Mgr attributes}
ges:altPPCToolboxAttr * ’ppc ‘; {PPC Toolbox attributes}
tos:altProcossorTypo : 'proc’; {processor type}
gestathuickdrawVersion = 'qd '; {QuickDraw version}
gestaltResourceMgrAttr ; 'rsrc'; {Resource Mgr attributes}
tos:altScriptCount : 'scr#'; {# 0: active script systems}

gestaltScriptMngersion : 'scri'; {Script Mgr version}
gestaltoeriaLAttr : 'ser '; {serial hardware attributes}
testal;SoundAttr : 'snd '; {sound attributes}
ges:altStandardFileAttr : 'stdf'; {Standard File attributes}
gestaltSthBPAttr * 'nlup'; {StandardNBP attributes}
gestaltfiermMgrAttr : 'term‘; {Terminal Mgr attributes}
gestal:”extfiditVersion : 'te ‘; {“exthit version}
gestaltfiimeMngersion * 'tmgr’; {“ime Mgr version}
gos:alt“oolboxTable : 'tott'; {Toolbox trap table base}
ges:al:Version : 'vers'; {Gestalt version}
ges:altVMAttr ; 'vm '; {Virtual memory attributes}

The following informational selectors are provided for informational purposes only. You can
display the information returned when using these selectors, but you should never use this
information as an indication of What software features or hardware may be available.

CONST gestaltMacninelcon : 'micn'; {machine lCON/cicn res ID}
gestaltMachineType : 'mach'; {machine typo}
gestaltROMSize : 'rom ‘; {ROM size}
gestaltROMVersion : ‘romv‘; {ROM version}
gestaltSystomVorsion : ‘sysv‘; {System lile version}

“Interpreting Gestalt Responses” later in this chapter explains the exact meaning of each of
these selectors and of the values returned by Gestalt in each case.

Determining Whether Gestalt Is Available

Because the Gestalt Manager currently exists only in system software versions 6.0.4 and later
(and in ROM on the Macintosh IIci, the Macintosh Portable, and later machines), you should
make certain that it is actually available before attempting to call it. You can do this by using
the TrapAvailable function defined previously in “Determining Whether a Trap Is Available.”
Listing 3—2 uses that function to determine whether the Gestalt Manager is available.

Listing 3-2. Determining whether Gestalt is available

FJNCTION GestaltAvailable: Boolean;
CONST

_Gestalt = sAiAD;
BEGIN

GestaltAvailable 2: TrapAvailable(_Gestalt);
HNI);

3-32 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 165

IPR2017-01828
Ubisoft EX1002 Page 166

Compatibility Guidelines

Note: If you are using the MPW® development system version 3.2 or later. then
you do not need to perform this check because that version provides glue routines that
allow you to call Gestalt even if it is not in ROM or in the System file. However, if
you are programming in assembly language. this glue is not provided (and you still
need to check that Gestalt is available before calling it).

If you need to know at several different places in your application whether Gestalt is
available, it may be more efficient to define a global Boolean variable that you can test
before calling Gestalt. Listing 3-3 illustrates how to do this. Once again, this code
uses the TrapAvailable function defined earlier.

Listing 3-3. Using Gestalt to determine the Time Manager version

VAR

gHasGestalt: Boolean; {true if Gestal: is implemented}

qHasGeetalt :: TrapAvailable(_Gestaltl;

IF gHasGestalt T{?N BTGIN
myErr :: Gestalt(gestaltTimeMngersion, myFeature);
IF mvErr <> HoErr THEN

DoError(my3rr);

END;

This sample code returns (in the myFeature parameter) the version of the Time Manager
available on the current machine. Before using that information, however, you should test
the result code to make sure that Gestalt was able to determine the requested information.

m

Cc
BTmFF_

E
2t<
r~1 L

Interpreting Gestalt Responses saunapin
When your application calls Gestalt to get information about the operating environment, the
meaning of the value that Gestalt returns in the response parameter depends on the selector code
with which it was called. For example, if you call Gestalt using the gestaltTimeMngersion
selector, it returns a version code in the low—order byte of the response parameter. In this case,
a returned value of 3 indicates that the extended Time Manager is available.

In almost all cases, the last few characters in the selector’s symbolic name form a suffix that

indicates what type of value you can expect Gestalt to return in the response parameter. For
example, if the final characters in a Gestalt selector are Size, then Gestalt returns a size in the
response parameter. The following list shows the meaningful suffixes.

Suffix Meaning

Attr The returned value is a range of 32 bits, the meaning of which must be
determined by comparison with a list of constants. Note that bit 0 is the
least significant bit of the long word.

Using the Gestalt Manager 3 —33

|PR2017-01828

Ubisoft EX1002 Page 166

IPR2017-01828
Ubisoft EX1002 Page 167

Inside Macintosh, Volume V]

Suffix Meaning

Count The returned value is a number indicating how many of the indicated type
of item exist.

Size The returned value is a size. Sizes reported by Gestalt are usually in bytes.

Table The returned value is the base address of a table.

Type The returned value is an index describinga particular type of feature.

Version The returned value is a version number. Implied decimal points may
separate digits of the returned value. For example, a value of $0605
returned in response to the gestaltSystemVersion selector indicates that
system software version 6.0.5 is present.

Selectors that have the suffix Attr deserve special attention; they cause Gestalt to return a bit
field that your application must interpret in order to determine whether a desired feature is
present. For example, the gestaltOSAttr selector requests information about a number of
Operating System features. To determine whether a particular Operating System feature is
available, you need to read the appropriate bit in the response parameter, as Listing 3-4
illustrates.

Listing 3-4. Interpreting a bit field response

VAR

myBit: Integer;
myFeature: LongInt;
myErr: IHZeger;

 IF ghaSGestalt TTTN BTGIN
myErr :: Cestalt(gestaltOSAttr, myFeature);
IF nyErr <> nojrr THEN

DoError(myErr)

ELSE BEGIN

myBit z: gestaTtTeanemSupport;
IF 3itht(@myFeature, 31—myBit) : TRUE THEN

Writeont'temporary memory support available')
ELSE

Writeon('temporary memory support not available');
3ND ;

3ND;

This code uses the Toolbox utility function Bitht to determine whether the appropriate bit in
Gestalt’s response is set to 1. Notice that because bit numbering with Bitht is the opposite of
the usual MC680x0 numbering scheme used by Gestalt, the bit to be tested must be subtracted
from 3|. Also, the first parameter to Bitht is a pointer to a byte; hence the use of the @
operator. Your development system may have other ways of testing the appropriate bit. For
example, if you are using MPW, you could write the test like this:

TE BTst(myFeaLure, myBit) : TRUE THEN

3—34 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 167

IPR2017-01828
Ubisoft EX1002 Page 168

Compatibility Guidelines

Interpreting Responses to Environmental Selectors

Gestalt returns one of the following responses when passed a predefined environmental
selector.

Selector Meaning

gestaltAddressingModeAttr Returns information about the current addressing mode.

CONST gestalLBZBiLAddressirg
gesta1t32BitSysZone
gesta1t32BitCapable

I

[\Jl—‘OHHH

The gestalt32BitAddressing attribute indicates that the machine
started up with 32-bit addressing. The gestalt32BitSysZone
attribute indicates that the system heap has 32—bit clean block
headers (regardless of the type of addressing the machine
started up in). See the Memory Management chapter for more
information about 32—bit addressing.

gestaltAliasMgrAttr Returns information about the Alias Manager.

CONST gestaltAliasMgrPresent : O;

gestaltAppleEventsAttr Returns information about Apple events.
 CONST gestaltAppleEventsPresent : O;

gestaltApplcTalkVersion Returns the version number of the AppleTalk driver currently
installed. In particular, it returns the version number of the
.MPP driver. The version number is placed into the low-
order byte of the result, so you should ignore the three
high—order bytes of the result. If an AppleTalk driver is
not currently open, the response parameter is 0. The driver
does not open until the user requests a network service (for
example, by running the Chooser).

DJ

rfi
S3
'5:DHu.
5'.—.
=A
'<

E—.
D-C'D
.:
5PDm

gestaltAUXVersion Returns the version of A/UX if it is currently executing.
The result is placed into the lower word of the response
parameter. If A/UX is not executing, Gestalt returns

gestaltUnknownErr.

gestaltConnMgrAttr Returns information about the Connection Manager.

CONST gestaltConnMgrPresent : O;
gestaltConnMngMSearchFix = l;

The gestaltConnMngMSearchFix bit flag indicates whether a
fix is present that allows the CMAddSearch routine to work
over the mAttn channel.

Using the Gestalt Manager 3-35

|PR2017-01828

Ubisoft EX1002 Page 168

IPR2017-01828
Ubisoft EX1002 Page 169

Inside Macintosh, Volume VI

Selector Meaning

gestaltCRMAttr Returns information about the Communications Resource
Manager.

CONST gestaltCRMPresent : O;

gestaltCTBVersion Returns the version number of the Communications Toolbox.

gestaltDBAccessMgrAttr Returns information about the Data Access Manager. 3

CONST ges:altDBAccessMérPresent : O;

gestaltDlTLExtAttr Returns information about the Dialog Manager.

CONST gestaltDITLExtPresent : O;

If this flag bit is TRUE, then the Dialog Manager extensions are
available. See “Manipulating Dialog Item Lists” earlier in this
chapter for details about the Dialog Manager extensions
included in system software version 7.0.

gestaltEasyAccessAttr Returns information about the status of Easy Access.

CONST gestaltEasyAccessOLL O;
gestaltEasyAccessOn : l;
gestaltEasyAccessSticky : 2-

3gestaltEasyAccessLoCked :
I

gestaltEditionMgrAttr Returns information about the Edition Manager.
CONST gestaltEditionMgrPresent : O;

gestaltExtToolboxTable Returns the base address of the extended Toolbox trap table.

gestaltFindFolderAttr Returns information about the FindFolder function.

CONST gestaltFindFolderPresont : O;

gestaltFontMgrAttr Returns information about the Font Manager.

CONST gestaltOutiineFonts 2 O;

gestaltFPUType Returns a value that indicates the type of floating-point
coprocessor currently installed, if any.

CONST gestalthFPU : O;
gestalt68881 = l;
gestalt68882 : 2;

gestaltFSAttr Returns information about the file system.

CONST gestaltFullExtFSDispatching : 0;
gestaltHasFSSpecCalls 7 l;

The bit gestaltFullExtFSDispatch indicates that all the routines
selected through the _HFSDispatch macro are avialable to
external file systems.

3—36 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 169

IPR2017-01828
Ubisoft EX1002 Page 170

Selector

gestaltFXergrAttr

gestaltHardwareAttr

gestaltHelngrAttr

gestaltKeyboardType

gestaltLogicalPageSize

gestaltLogicalRAMSize

gestaltLowMemorySize

Compatibility Guidelines

Meaning

Returns information about the File Transfer Manager.

CONST gcsLalLFXergrPresent : 0;

Returns information about the hardware configuration of
the machine.

CONST gestaltHasVIAl = O;
gestaltHasVIAZ : 1;
gestaltHasASC : 3;
gestaltHasSCC : 4;
gestaltHasSCSI e 7;

Returns information about the Help Manager.

CONST gestaltHelngrPresent : 0;

Returns a value that indicates the type of keyboard that is
currently attached to the system.

CONST gestaltMachd
gestaltMacAndPad
gestalLMacPlustd
gestaltEXtADBKbd :
gestaltStdADBKbd :
gestaltDrtblADBKbd :
gestaltDrtblISOKbd :
gestaltStdISOADBKbd =
gestaltExtISOADBKbd :
gestaltADBKdeI :
gestaltADBISOKdeI :

 l—‘l—‘KOOJQOWU‘WthL/JNH HO\.\.\.\-
1f the Apple Desktop Bus is in use, there may be multiple
keyboards or other ADB devices attached to the machine.
Gestalt returns the type of the keyboard on which the last
keystroke occurred.

Returns the logical page size. This value is an unknown 0n
68000—based machines because such machines do not have

logical pages. On those machines, Gestalt returns an error.

Returns the amount of logical memory available. This value
is the same as that returned by gestaltPhysicalRAMSize
when virtual memory is not installed. On some machines,
however, this value might be less than the value returned by
gestaltPhysicalRAMSize because some RAM may be used
by the video display and the Operating System.

Returns the size (in bytes) of the low—memory area. The low—
memory area is used for vectors, global variables, and
dispatch tables.

Using the Gestalt Manager 3-37

m

Cc_
=t
m
I:
c-_.
=,H

R‘.

C?=_.
CL91:___.
:I'Dfl:

|PR2017-01828

Ubisoft EX1002 Page 170

IPR2017-01828
Ubisoft EX1002 Page 171

Inside Macintosh, Volume VI

Selector

gestaltMiscAttr

gestaltMMUType

gestaltNotificationMgrAttr

gestaltNuBusConnectors

gestaltOSAttr

gestaltOSTable

gestaltParityAttr

Meaning

Returns information about miscellaneous pieces of the
Operating System or hardware configuration.

CONST gestaltScrollingThrottle : O;
gestaltSquareMenuBar : 2;

Returns a value that indicates the type of MMU currently
installed, if any.

CONST gestaltNoMMU ; 0;
gestaltAMU = 1;
gestalt68851 r 2;
gestalt6803OMMU : 3;

Returns information about the Notification Manager.

CONST gestaltNotificationPresent : 0;

Returns information about the NuBusTM slot connector loca-

tions. The value returned is a bitmap. For example, the value
returned on a Macintosh II would have bits 9 through E set,
indicating that 6 NuBus slots are present (having locations
9 through E).

Returns general information about the Operating System,
such as whether temporary memory handles are real handles.
The low—order bits of the response parameter are interpreted
as bit flags. A flag is set to l to indicate that the correspond-
ing feature is available. Currently, the following bits are
significant:

CONST gestaltSysZoneGrowable :
gestaltLaunchCanReturn :
gostaltLaunchFuliFiieSpec 2
gestaltdaunchControl =
gestaltTempMemSupport :
gestaltRealTempMemory =
gestaltTempMemTracked :
gestaltIPCSupport :
gestaltSysDebuggerSupport

 mfimUTibWNI—‘O
ll

See the Memory Management chapter in this volume for a full
explanation of the temporary memory features, and see the
Process Management chapter for a full explanation of the
launch control features.

Returns the base address of the Operating System trap table.

Returns information about the parity—checking abilities of
the machine.

CONST gestaltHasParityCapability : O;
gestaltParityEnabied : 1;

Note that parity is not considered to be enabled unless all
installed memory is parity RAM.

3-38 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 171

IPR2017-01828
Ubisoft EX1002 Page 172

Selector

gestaltPhysicalRAMSize

gestaltPopupAttr

gestaltPowengrAttr

gestaltPPCToolboxAttr

gestaltProcessorType

gestathuickdraWVersion

Compatibility Guidelines

Meaning

Returns the number of bytes of physical RAM currently
installed.

Returns information about the pop-up control definition.

CONST gestaltPopupPresent : 0;

If the gestaltPopupPresent bit is set. the version 7.0 pop-up
control definition procedure is present. See “Creating Pop-Up
Menus” earlier in this chapter for details about creating pop—
up menus.

Returns infonnation about the Power Manager, if present.

CONST gestaltPMgrExists : 0
gestaltPMngPUIdle : 1
gestaitPMgrSCC : 2;
gestaltPMgrSOHHd : 3

Returns information about the capabilities of the PPC
Toolbox.

CONST gestaltPPCToolboxPresent = 0;

Returns a value that indicates the type of processor that is
currently running.

CONST gesta1t68000 : 1;
gestalt68010 : 2;
gesta1t68020 : 3;
gestalt68030 : 4;

Returns a 2—byte value indicating the version of QuickDraw
currently present. The high-order byte of that number repre-
sents the major revision number, and the low-order byte
represents the minor revision number. For example. the
Macintosh llci contains QuickDraw version 2.01 in ROM;
on that machine, Gestalt returns the value $0201.

CONST gesta-t0rigina1QD = $000;
gestaltOriginalQD; = $001;
gestalt8BitQD : $100;

, gesta1t32BitQD : $200;
gesta1t32BitQD1l : $210;
gestaltBZBitQDl2 : $220;
gestaltBZBitQDlB : $230;

Values having a major revision number of l or 2 indicate that
Color QuickDraw is available, in either the 8-bit or 32-bit
version. These results do not, however. indicate whether a

color monitor is attached to the system. You need to use high-
level QuickDraw routines to obtain that information.

Using the Gestalt Manager 3-39

u

r:a
E'5

saunamnoAuuqne
|PR2017-01828

Ubisoft EX1002 Page 172

IPR2017-01828
Ubisoft EX1002 Page 173

Inside Macintosh, Volume VI

Selector Meaning

gestaltResourceMgrAttr Returns information about the capabilities of the Resource
Manager.

CONST gestaltPartialercs : O;

gestaltScriptCount Returns the number of script systems currently active.

gestaltScriptMngersion Returns the version number of the Script Manager.

gestaltSerialAttr Returns information about the serial hardware of the machine
(such as whether or not the GPIa line is connected and can be
used for external clocking).

CONST gestaltGPIaToDCDa : O;
gestaltGPIaToRTxCa = l;
gestaltGPIaToDCDb : 2:

gestaltSoundAttr Returns information about the sound capabilities of the
machine.

CONST gestaltStereoCapability =
gestaLtStereoMixing =
gestaltSoundIOMgrPresent :
gestaltBuiltInSoundInput :
gestaltHasSoundInpuLDevice =

Jfitflt—‘O I

If the bit gestaltStereoCapability is TRUE, the available
hardware can play stereo sounds. The bit gestaltStereoMixing
indicates that the sound hardware of the machine mixes both

left and right channels of stereo sound into a single audio signal
for the internal speaker. The gestaltSoundIOMgrPresent bit
indicates that the new sound input routines are available, and
the gestaltBuiltInSoundlnput bit indicates that a built-in sound
input device is available. The gestaltHasSoundlnputDevice bit
indicates that some sound input device is available.

gestaltStandardFileAttr Retums information about the Standard File Package.

CONST gestaltStandardFileE8 : 0;

If this flag bit is set to 1, you can call the four new
procedures StandardPutFile, StandardGetFile,
CustomPutFile, and CustomGetFile. (The name of

the constant reflects the enabling of selectors 5—8 on

the trap macro that handles the Standard File Package.)

gestaltSthBPAttr Returns information about the call StandardNBP (Name-
Binding Protocol).

CONS“ gestaltSthBPPresent : O;

gestaltTermMgrAttr Returns information about the Terminal Manager.

CONS“ gestaltTermMgrPresent : O;

3-40 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 173

IPR2017-01828
Ubisoft EX1002 Page 174

Selector

gestaltTextEditVersion

gestaltTimeMngersion

gestaltToolboxTable

gcstaltVersion

gestaltVMAttr

Compatibility Guidelines

Meaning

Returns a value that indicates Which version of TextEdit is

present.

CONST gestaltTEl :
gestalt”32 :
gestaltflE3 :
gestalt”34 :
qestalt"35 :

I I U‘llbUJNH I

See the TextEdit chapter in this volume for further infor—
mation on the capabilities of the enhanced versions of
TextEdit.

Returns a value that indicates the version of the Time

Manager that is present.

CONST gestaltStandard”imeMgr : 1;
gestaltRevisedTimeMgr : 2;
gestaltExtendedflimeMgr 3; ll

See the Time Manager chapter in this volume for a complete
explanation of the capabilities of each of these three versions.

Returns the base address of the Toolbox trap table.

Returns the version of Gestalt. The current version is 1,

corresponding to a returned value of $0001.

Returns information about virtual memory.

CONST gestaitVMPresent : U;

Interpreting Responses to Informational Selectors

Gestalt returns the following responses when passed a predefined informational selector.

A Warning: Never infer the existence of certain hardware or software features
from the responses that Gestalt returns to your application when you pass it
these selectors. A

Selector

gestaltMachineIcon

gestaltMachineType

Meaning

Returns an icon family resource ID for the current type of
Macintosh.

Returns one of the following values, indicating the type of
machine on which the application is currently running.

CONST gestaltClassic : 1; (Macintosh 128K}
gestaltMacXL : 2; {Macintosh XL}
gestaltMac512K3 = 3; {Macintosh 512KB}
gestaltMacPlus : 4; {Macintosh Plus}

Using the Gestalt Manager 3-41

|PR2017-01828

Ubisoft EX1002 Page 174

IPR2017-01828
Ubisoft EX1002 Page 175

Inside Macintosh, Volume VI

Selector Meaning

gestaltMachineType (continued)

gestaltMacSE : 5; {Macintosh SE}
qostalLMacII : 6; {Macintosh II}
gestaltMacIIX : 7; {Macintosh IIX}'
gestaltMacIch : 8; {Macintosh IICX}
gestalLMacSE03O : 9; {Macintosh 33/30}
gestaltPortable : lC; {Macintosh Portable)
gestaltMacIIci : :2 {Macintosh IIci}
gostalLMacIIfx : 13; {Macintosh IIfX}
gestaltMacClassic : l7; {Macintosh Classic}
gestaltMacIIsi : 18; {Macintosh IIsi}
gestalLMacLC

i| ,_\ k0 {Macintosh LC}

To obtain a string containing the machine’s name, you can pass the
returned value to GetIndString as an index into the resource of
type 'STR#' in the System file having resource ID defined by the
constant kMachineNameStrID.

CONST kMachineNameStZID 7 A16395;

gestaltROMSize Returns the size of the installed ROM. The value is returned in
a word.

gestaltROMVersion Returns the version number of the installed ROM.

gestaltSystemVersion Returns the version number of the currently active System file.
This number is represented as two byte—long numbers. For
example, if your application is running in version 6.0.4, then
Gestalt returns the value $0604. You should ignore the high-order
word of the returned value.

Adding Gestalt Selectors

You can add a new selector code to those already understood by Gestalt by calling the
NewGestalt function. The NewGestalt function requires two parameters. The first parameter
is the new selector to be registered. The second parameter is the address of a selector
function. Gestalt executes the selector function when it needs to determine what value to

pass back when it is called after the new selector code.

The selector code is a four-character sequence of type OSType. For example, Carl’s Object-
Oriented Linker might register itself using the selector code ‘COOL'. If you have registered
a creator string with Apple, you are strongly encouraged to use that sequence as your
selector code.

Note: Apple reserves for its own use all four—character sequences consisting solely
of lowercase letters and nonalphabetic ASCII characters.

The selector function whose address you specify when registering a new Gestalt selector
code can be any function that resides in the system heap and whose calling syntax conforms

3-42 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 175

IPR2017-01828
Ubisoft EX1002 Page 176

Compatibility Guidelines

to that defined in “Specifying Gestalt Selector Functions” later in this chapter. Listing 3-5
illustrates how to install a simple function into the system heap and pass its address to
NewGestalt.

Listing 3-5. Installing a selector function into the system heap

PROGRAM NewGestaltSample;

USES

Memtypes, OSIntf, ToolIntf, {standard includes}
PasLibIntf, {for standard I/O, etc.)
GestaltEqu, {for Gestalt}
Traps; {for trap numbers}

CONST

mySelector : ‘COOL‘; {Gestalt function selector}
gstFuncRsrcType : 'GDEF'; {Gestalt function resource type}
gstFuncRsrcID ; 128; {Gestalt function resource ID}

VAR

gestaltErr: OSErr; {error returned by Gestalt}
gstFuncHandle: Handle; {handle to Gestalt function}
OldGestaltFunc: ProcPtr; {pointer to old function}

BEGIN

{first make sure that Gestalt is available}

IF NOT TrapAvailable(VGestalt) THEN

BEGIN w

WriteLn('Gestalt is not implemented.‘); C

IEexit (1) 2
END; 1::

{load Gestalt function resource into system heap} é
gstFuncHandle :: GetResource(gstFuncRsrcType, gstFuncRsrcID); é
IF gstFuncHandle : NIL THEN '7

BEGIN §
WriteLn('Could not load Gestalt function resource.'); a
IEeXit (1) E

END; 5‘.It,

{detach it from the resource map so it stays around}
DetachResource(gstFuncHandle);
{add the new selector; first assume that it doesn‘t already exist}

gestaltErr :: NewGestalt(mySelector, ProcPtr(gstFuncHandle‘));
IF gestaltErr <> nOErr THEN

BEGIN

WriteLn('Could not add as a new selector.');

{try to replace existing selector}

gestaltErr :: ReplaceGestalt(mySelector,
ProcPtr(gstFuncHandleA), oldGestaltFunc);

IF gestaltErr <> noErr THEN
BEGIN

WriteLn(‘Could not replace selector either.');
IEexit(l);

END;

WriteLn('Selector installed.');

Disposiandle(gstFuncHandle);
END.

Using the Gestalt Manager 3-43

|PR2017-01828

Ubisoft EX1002 Page 176

IPR2017-01828
Ubisoft EX1002 Page 177

Inside Macintosh, Volume VI

You can ensure that the new Gestalt selector function is installed into the system heap by
defining it as a resource (in this case, of type 'GDEF') whose resource attributes are
resSysHeap and resLocked (in other words, lock the resource into the system heap). The
following linking instructions illustrate one way to accomplish this:

 Link GestaltFunc.p.o —rn —ra :resSysHeap,resLocked —rt GDEF:128
—o NewGestaltSamplo

If you are not using MPW, you can set the resource attributes by using ResEdit.

Listing 3—6 shows the actual function definition, contained in the file GestaltFuncp.

Listing 3-6. Defining a new Gestalt function

UNIT Ges:altFunc;

TNT~ RFAC .
JSES

GestaltEqu; {for Gestalt)
CONS'1

myResult = $8765432l; {Gestalt function response}
«JNC‘ION gestaltCool (gestaltSelector: OSType;

VAR gestaltResponse: LongInt) : OSErr;

IMPJEMEVTATION

FUNCTION qestaltCool;
BEGIN

gestaltResponse :: myResult; {return response}
gestaltCool :: noErr; {return no error}

3ND;
END.

Because the new selector function resides in the system heap, Gestalt recognizes and
responds to the new selector until the machines restarts, even if your application terminates
before mat time. As a result, you might want your selector function to determine whether
your application is still running before returning a value to Gestalt. If your application has
terminated, the selector function should return an error.

Note that if you try to register a selector that has already been registered with Gestalt, an
error results.

Modifying Gestalt Selectors

You can use the ReplaceGestalt function to modify the function that Gestalt executes when
passed a particular selector code. As with the function whose address is passed to NewGestalt,
the new function must reside in the system heap and have a calling syntax that conforms to
that defined in the following section, “Specifying Gestalt Selector Functions.” Listing 3-5
illustrates how to replace a Gestalt selector function.

3-44 Using the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 177

IPR2017-01828
Ubisoft EX1002 Page 178

Compatibility Guidelines

To allow the new function to call the function previously associated with the selector in
question, the ReplaceGestalt function returns the address of the previous function.

If you attempt to redefine a selector that is not yet defined, an error is returned; in that case,
the address of the previous function is undefined. Accordingly, you should always test the
result code of ReplaceGestalt before calling Gestalt with the selector in question.

Note: If you modify the function associated with a predefined Gestalt selector, do
not use any bits in the response parameter that are not documented in this chapter.
Apple reserves all undocumented bits in the response parameter returned by prede-
fined Gestalt selectors.

Specifying Gestalt Selector Functions

When you call the NewGestalt and ReplaceGestalt functions, you need to supply the address
of a selector function that is called when some application passes the specified new or
replacement selector to Gestalt. This selector function should have the following syntax and
must reside in the system heap.

FUNCTION mySelectorFunction (seLector: OSType; VAR response: Longlnt)
OSErr;

When you pass the new or replacement selector to Gestalt, Gestalt calls the specified selector
function to determine the information that Gestalt should pass back to the calling software.
Your function should place the result into the long integer pointed to by the response
parameter and should return the result code that Gestalt will return. This function should be
as simple as possible and cannot use global variables in the A5 world unless A5 is set up
explicitly and then restored upon exit. (See the Memory Management chapter in this volume
for an explanation of setting up and restoring the A5 world.)

Your selector function can, if necessary, call Gestalt and pass it other selector codes. Note
that the response variable parameter is the address into which your function should place the
information requested. You cannot depend on that address containing useful information
when your selector function is called.

‘44
A. .

2d
ta:,..,_.
3"_.._....
v.
Aa a
=_.
aa_...
3n:(I:

GESTALT MANAGER ROUTINES

This section describes the three functions in the Gestalt Manager—Gestalt, NewGestalt, and
ReplaceGestalt. They allow you, respectively, to determine what hardware and software
features are present in the operating environment, to add new selectors to those understood
by the Gestalt function, and to replace the functions associated with known selectors.

Gestalt Manager Routines 3—45

|PR2017-01828

Ubisoft EX1002 Page 178

IPR2017-01828
Ubisoft EX1002 Page 179

Inside Macintosh, Volume V1

Getting Information About the Operating Environment

Use the Gestalt function to obtain information about the operating environment. The infor-
mation you need is indicated by the selector parameter, which Gestalt must already recognize.

 FUNCTION Gestalt (selector: OSType; VAR response: LongInt) : OSErr;.

Trap macro _Gestalt "
On entry D0: selector code
On exit A0: response

D0: result code

Upon successful completion of the function, the response parameter contains the information i
requested. Note that Gestalt returns the response from all function selectors in a long integer, i
occupying 4 bytes. In some cases, not all 4 bytes are needed to hold the returned information,
in which case Gestalt places the information in the low—order bytes of the response parameter.

Note: Although the response parameter is declared as a variable parameter, you
cannot use it to pass information to Gestalt or to a Gestalt selector function. Gestalt
interprets the response parameter as an address into which it is to place the result
returned by the selector function specified by the selector parameter. Gestalt ignores
any information already located at that address.

Result codes
noErr 0 No error

gestaltUnknownErr —5550 Could not obtain the response
gestaltUndefSelectorErr —5551 Undefined selector

Adding Selector Codes

Use the NewGestalt function to add selector codes to those already recognized by Gestalt.

FUNCTION NewGestalt (selector: OSType; selectorFunction: ProcPtr)
OSErr ;

Trap macro _NewGestalt
On entry A0: address of new selector function

D0: selector code
On exit D0: result code

3—46 Gestalt Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 179

IPR2017-01828
Ubisoft EX1002 Page 180

Compatibility Guidelines

NewGestalt takes as parameters the selector to be registered and the function that Gestalt calls
when it receives this selector. The interface for the selectorFunction function is defined in

“Specifying Gestalt Selector Functions” earlier in this chapter.

Result codes
noErr 0 No error

memFullErr 7108 Ran out of memory
gestaltDupSelectorErr —5552 Selector already exists
gestaltLocationErr —5553 Function not in system heap

Modifying Selector Codes

The ReplaceGestalt function allows an application to replace the function that is currently
associated with a selector.

FUNCTION ReplaceGestaiL (selector: OSType; se_eCLOrFuncLion: ProcPLr;
 VAR oldGestaltFunction: ProcPtr) : OSErr;

Trap macro _ReplaceGestalt m
On entry A0: address of new selector function A

DO: selector code
On exit A0: address of old selector function

DO: result code

The interface for the selectorFunction function is defined in “Specifying Gestalt Selector
Functions” earlier in this chapter. The new function must reside in the system heap and may
want to call the function previously associated with the named selector. It may do so by using
the address returned in the parameter oldGestaltFunction. If ReplaceGestalt returns an error
of any type, then the value of oldGestaltFunction is undefined.

n
E:1

'E’III,..
z:
B.__...

<4

G
E.a.PD__.
=o([1

Result codes

noErr 0 No error

gestaltUndefSelectorErr —5551 Undefined selector
gestaltLocationErr —5553 Function not in system heap

Gestalt Manager Routines 3-47

|PR2017-01828

Ubisoft EX1002 Page 180

IPR2017-01828
Ubisoft EX1002 Page 181

Inside Macintosh, Volume VI

SUMMARY OF THE GESTALT MANAGER

Constants

CONST {environmental selector codes}

3-48

ges:altAddressingModeAttr
ges:al:Alias grAttr
gestal:Apple3ventsAttr
gestal:AppleTalkVersion
ges:altAUXVersion
gcs:al-ConnMgrAttr
ges:al:CRMAttr
ges:al CTBVersion
ges:al)BAccessMgrAttr
ges:al DITLExtAttr
ges:al EasyAccessAttr
ges:al EditionMgrAttr
ges:al ExtfloolboxTable
gestal FindFolderAttr
gestal FontMgrAttr
ges:al JPUmype
gestaltTSAttr
gestaliTXtngrAttr
gestal:HardwareAttr
gestal:{elngrAttr
gestaltKeyboardType
gestaltuogicalPageSize
gestal:uogicalRAMSize
gestal:rowMemorySize
ges:al:MiscAttr
gestaltMMUType
ges:altNotificationMgrAttr
geSial: uBusConnecLors
gestal:OSAttr
ges:al-OSTable

ges:al:ParityAttr
ges:al:PhysicalRAMSize
ges:al:PopupAttr
gestal:PowengrAttr
ges:al-PPCToolboxAttr

ges:al:ProcessorType
ges:al:QuickdrawVersion
ges:altResourceMgrAttr
gestal:ScriptCount
ges-al-ScripLMngersion
gestal:SerialAttr
ges:ul:SoundAttr
ges:al:StandardFileAttr
ges:al:SthBPAttr

 {I(r(IH(I1}(I[rH

Summary of the Gestalt Manager

'addr'
'alis'
'evnt‘
'ale'
'a/ux'
'conn'
'crm '

‘ctbv'
'dbac'
'ditl'

'easy'
'edtn'
'xttt'
'fold'
'font'

{addressing mode attributes}

{Afias Mgr attributes}
{Apple events attributes}
{AppleTalk version}
{A/UX version if present}
{Connection Mgr attributes}
{Comm Resource Mgr attrs}
{Comm Toolbox version}
{Data Access Mgr attrs}

Dialog Mgr extensions)
Easy Access attributes}
Edition Mgr attributes}
Ext Toolbox trap table base}
RindFoldcr attributes}

Tont Mgr attributes}
TPU type}

file—system attributes}
{File Transfer Mgr attrs}
{nardware attributes}
{Ielp Mgr attributes}
{<eyboard type}

{logical page size}
{logical RAM size}

{low—memory area size}
{miscellaneous attributes}
{MMU type}

{Notification Mgr attrs}
{NuBus connector bitmap}
{O/S attributes}

{O/S trap table base}
{parity aLtribuLes}
{physical RAM size}
{popup CDEF aLLribuLes}
{Power Mgr attributes}
{PPC Toolbox attributes}
{processor type}
{QuickDraw version}
{Resource Mgr attributes}

{# of active script systems}
{Script Mgr version}
{serial hardware attribuLes}
{sound attributes}
{Standard File attributes}
{StandardNBP attributes}

AAAAAAz—sz—a

|PR2017-01828

Ubisoft EX1002 Page 181

IPR2017-01828
Ubisoft EX1002 Page 182

Compatibility Guidelines

gestaltTermMgrAttr : 'term'; {Terminal Mgr attributes}
gestaltTextEdi:Version : 'te '; {TexLEdit version}
gestaltTimeMngersion : 'tmgr'; {Time Mgr version}
gestaltToolboxTable 7 ‘tbtt'; {Tooloox trap table base}
gestaltVersion : ‘vers'; {Gestalt version}
gestalLVMAttr : 'vm '; {virtual memory attributes}

{informational selector codes}
gestaltMachineIcon : 'micn‘; {machine ICON/cicn res ID}
gesLalLMachineType : 'mach'; {machine type}
gestaltROMSize 7 'rom '; {ROM size}
gestaltROMVersion 2 'romv‘; {ROM version}
gesLaLtSystemVersion : 'sysv'; {System file version}

{gestaltAddressingModeAttr response values}
gestalt32BitAddressing : O; {TRUE if booted in 327bit mode}
gestalt32BitSysZone : l; {32—ait compatible system zone}
gestalt32BitCapable 7 2; {macqine is 32—bit capable}

{gestaltAliasMgrAttr response values}
gestaltAliasMgrPresen: : 0; {TRUE if Alias Mgr is present}

{gestaltAppleEventsAttr response values}
gestaltAppleEventsPresent : O; {TRUE if Apple events present}

{gestaltConnMgrAttr response values}

gestaltConnMgrPresent = O; {TRUE if Connection Mgr present}
gestaltConnMngMSearchFix 7 l; {"RUE if CMAddSearch fix present}

{gesta;:CRMAttr response values}

gestaltCRWPresent : O; {TRUE if Comm Resource Mgr present}

a;

c
E'52.71-!..
U’.....—..1-»
'<

C):—.
o.n:.—...._,..
n:in

{gestal:DBAccessMgrAttr response values}
gestaltDBAccessMgrPresent : O; {TRUE ii DaLa Access Mgr present}

{gestal:DTTjExtAttr response values}

gestaltJlTLExtPresent : O; {TRUE if Dialog Mgr extensions present}

 {gestaltEasyAccessAttr response values}
gesLalLEasyAccessOff : 0; {Easy Access present but off}
gestaltEasyAccessOn : 1; {Easy Access on}
gestaltEasyAccessSticky : 2; {Easy Access sticky}
gesLaltEasyAccessLocked : 3; {Easy Access locked}

 {gestaltiditionMgrAttr response values}
gestaltEditionMgrPresent : O; {TRUE if Edition Mgr present}

Summary of the Gestalt Manager 3-49

|PR2017-01828

Ubisoft EX1002 Page 182

IPR2017-01828
Ubisoft EX1002 Page 183

Imide Man'fmnr-‘h. anmuv W

3-51”)

=:L_"I1.-1.~.'

.‘imnmmju' nfn‘w Cam!!! Manager

:— i :':L'-':~.1-.1- 1"

'.'..1] L.-..-:L }

{I—1¢:.Ti1;'_r.1:'.'-.':
I H. u" I I.|'r.')'.':'::

::-.L1 Li:.x:- [4.1:.L.‘: 1;: c—.~.~.'<er'.1' :

‘.:I'[‘!"L''I' I

::-«.'L'.f.'.‘. 13191-2611]
pr? :-: F.‘ ".| '-

|PR2017-01828

Ubisoft EX1002 Page 183

IPR2017-01828
Ubisoft EX1002 Page 184

Compatibility Guidelines

gestalt68851 2; {Motorola 68851 PMMU}
gestalt6803OMMU 7 3; {Motorola 68030 builtein MMU}

{gestaltNotificationMgrAttr response values}
gestaltNotificationPresent = 0; {Notification Mgr present}

{gestaltOSAttr response values}
gestaltSysZoneGrowable = 0; {system heap can grow}
gestaltLaunchCanReturn : {can return from launch}
gestaltLaunchFullFileSpec : {LaunchApplication is available}
gestaltLaunChControl : {Process Manager is available}
gestaltCempMemSupport : {temp memory support present}
gestaltRealTempMemory : {temp memory handles are real}
gestaltmempMemTracked : {Lemp memory handles tracked}
gestaltiPCSupport : (IPC support is present}
gestaltSysDebuggerSupport 4 {system debugger support}

 COQOUlprAJNH
{gestal:ParityAttr response values}
gestaltiasParityCapability 2 0; {machine can check parity}
gestaltParityEnabled 7 1; {parity RAM is installed}

{gestal:PopupAttr response values}
gestaltPopupPresent : 0; {pop—up CDEF is present} aduui)g
{gestal:PowengrAttr response values}
gestaltPMgrExists : 0; {Power Manager is present}
gestaltPMngPUldle = 1; {CPU can idle}
gestaltDMgrSCC 2; {can stop SCC clock}
gestaltDMgrSound 3; {can turn off sound power}

I}

—_m_
Z.___I
F!H.F_
H_.
n
:1_—I
cLII

{gestal;PPCToolboxAttr response values}
gestaltPPCToolboxPresent : O; {TRUE if PPC Toolbox present}

{gestaltProcessorType response values}
gestalt68000 : 1; {68000 processor}
gestalt68010 2 2; {68010 processor}
gestalt68020 : 3; {68020 processor}
gestalt68030 : 4; a {68030 processor}

{gestathuickdrawVersion response values}
gestaltOriginalQD = $000; {original QuiCkDraw}
gestaltOriginalQDl : $001; {original QuickDraw in System 7.0}
gestaltSBitQD = $100; {8—bit Color QuickDraw}
gestalt32BitQD : $200; {327Bit Color QuickDraw}
gestalt32BitQD11 = $210; {32—Bit Color QuickDraw vers. 1.1}
gestalt32BitQD12 : $220; {32—Bit Color QuickDraw vers. 1.2}
gestalt32BitQD13 : $230; {32wBit Color QuiCkDraw vers. 1.3}

Summary of the Gestalt Manager 3-51

|PR2017-01828

Ubisoft EX1002 Page 184

IPR2017-01828
Ubisoft EX1002 Page 185

:WW.

Inside Macintosh, Volume VI

3-52

{gestaltResourceMgrAttr response values}
gestaltPartialercs 2 0; {partial resource functions exist}

{gestaltSerialAttr response values}

gestal:GPIa”oDCDa : O; {GPI connected to DCD on port A}
ges:al:GPla“oRTxCa : l; {GPT connected to RTXC on port A}
ges:al:GPIa“oDCDb : 2; {GPI connected to DCD on port B}

{gestaltSoundAttr response values} .

ges:al:StereoCapability
ges:al-StereoMixing
ges:al:SoundIOMgrPresent
ges:al:BuiltInSoundInput
ges:al:{asSoundInputDevice :

: 0; {stereo capability present}
; {stereo mixing on internal speaker}

{sound input routines available}
{builtein input device available}
{sound input device available}

}| wewH
{gestal:StandardFileAttr response values}
ges:al:StandardFile58 : 0; {new Std File routines available}

{gestal:SthBPAttr response values}
ges:a;:SthBPPresent =

{gestaliTermMgrAttr response values}

ges:altTermMgrPresent ;

UJ0; {“RU if StandardNBP present}

0; {“RU LU if Terminal Mgr present)

{gestal:Text3ditVersion response values}
gestaltTEl : l;
gestaitTE2 :
gestaltTjB :
gestaltTE a
gestaItTEE :

 g

{gestaltTimeMngersion response values}

UTIbUJtU
l
I

{in MacIIci ROM}

{with 6.0.4 scripts on Mac IIci}
{with 6.0.4 scripts on other machines}
{in 6.0.5 and 7.0}

{TextWidthHook available in TextEdit}

gestaitStandardTimeMgr =
gestaitRevisedTimeMgr =
gestaitExtendedTimeMgr =

 1; {standard mime Manager}
2; {revised Time Manager}
3; {extended “ime Manager}

{gestaltVMAttr response values}
gestartVMPresent ,0; {virtual memory present)

{gostaltMachineType response values}
gestaitClassic
gesta-tMacXL

gestaitMaCBlZK
gestaitMacPlus
gesta tMacSE

gestaltMacII
gestaiLMacIIx

LU

:1;

H

<mweww
{Macintosh 128K}
{Macintosh X4}

{Macintosh 512K enhanced}
{Macintosh Plus}
{MacinLosh SE}
{Macintosh II}
{Macintosh IIX}

Summary of the Gestalt Manager

|PR2017-01828

Ubisoft EX1002 Page 185

IPR2017-01828
Ubisoft EX1002 Page 186

C'rmrmtihfffn andrfim‘:

 — '|-: ,

MidL'Line-HHIJeFSL I: .' n I :j 39'3;

Flouiines

F2::—JL_‘T:L;:—I GEE-1. u' L :_;- - .. -' - i} I} ,n—- F 'l'-_~‘.‘_.',-Dr__r;-'.-_ .1':_1-'_T_T '.'.\-

l— l.':-.'r.'_"_' HE}: I~19w-;',ln_;:_~1t:.Jr I: rm. | nr'tsr': (;-:'-_"1',-'_71<.‘; u-..--_1c)‘_ FL.'|c.'1 ice-IL :‘r_'r_:-'. Fr L':

'-'l.'I{I.’_"J'l-IJI{ He;:l.;-‘.'e-1§-: -:-.L - LL t Mum-JE'. 1'=‘.r.J..'l"L ::

Applicaiion-Defined Routines

F1_‘_‘-1L"f':u;3_‘-.I :1}: :‘Jeltu; r. r_.: '--..r-.r;r_ Lur'. Lye-1min r_': c':- Iii-.3: r-‘.—r:pur'..-':-.':: :.DT'.-’;:L'.L II

:-._ .
3..—
7—'I!
A1.. .
':.-.._
'1u.-
=
Cv—

Flesult Codes

HOE.” 0 No error

gestaltUnknuwnEn‘ 4550 Could not obtain the response
gestallUndcfSclcclorbrr 555 I Undefined selector
gestultDupSclucturErr —5552 Selector film-ad},- cxisls
gestalthationErr —5553 Function not in system heap

b'emmmrjv of my Gama? Mmiugw' 3-5.?

|PR2017-01828

Ubisoft EX1002 Page 186

IPR2017-01828
Ubisoft EX1002 Page 187

hmiu'e Mm't'rmilm. Vrshmie W my

SUMMAH‘i‘r OF THE WINDOW MANAGER

Constanta

L'CII-JiT { w: TLC-ION l1l-Ti?".i'._'_i-.'J:1 _ I].-
Jr.m.-'nL-'. uDEnxPrnc ‘3: -I:'.1:=u-':L3'J| tr Ian-.1: | air. . :m E31333.

SUMMAHWr OF THE CONTROL MANAGER

Constants

1' 53011-2”: :TIL'FLL. }

1571':

-, _r-r"t a] i-‘rnnc-n: E
:c'1‘llLk-l .;_;:1rJII:-c:||:}

-:' i:§|'.'. a '. i:f2'1:‘.1l'7'|‘.'.. ';
-' L _d t::-.'-:I.' }

':Lr4_;(_' twat ,-

{ ..rn:c-:‘ . '.:'-.e-:'I fur-XI. :1
-'U'.;L1".r'.I:--.'E L-JZ-Tl'. :-
-' :'_-:I'|r4c'..'_:'.u Lt‘fil ,'
':(':§j:ll'.'.\!:llll_H-T|I'. I L'I-Il ::
{cc-LL end-2r“ L vr;-'.L j
-‘|_|r1.'.-:1'.-'1 .; LE [Ext :-

T'.':'-'-_'T E r. .7“: 2 3-11 I_ {7;th .1
 U593

£1'.H:LEIL3_E‘: I-Lc-rJ'..Hr.ar;..l'! a); {:'.-.-'.r'.c'l lee tr. :-.u'.-r.-;.-}
1r.i|:-. -:'.-:-r'... '.|J'-

 I:..'~‘r i "\."c'.' it: :

5mm,-
: | 1'.I-- 51;". [_.rruvd_-.-_,- '_ e { rte-me ; 1:11;}:-

3—34 Summamr 011m Cmmvi Manager

|PR2017-01828

Ubisoft EX1002 Page 187

IPR2017-01828
Ubisoft EX1002 Page 188

Cnm;m!fbir‘if_1' Guiddinm

SUMMARY OF THE DIALOG MANAGER

Constants

arr-15" -.'_.J.'l'2..[-'.c-‘ '- x- 4-.

Routines

!-';.|r-.'I.'". :-..-r—.I -C':':'.Ir1.'I'Z'TI .l I'.¢'|‘-' .' =..*.;: L's-J .Li::j;-” : TI'.1-.-'.'-'-‘. .'

I'RJL'ZIURZ _-'-.1.';_.:-erlr_'!|‘. ' .5 :'.E"_-;-.'J ' 0;}: ._-I .. : Cuff-"T " I |.'..-.'.-:.l"|.”..'. Iain-5- - ':.'
' :5: T: U

T-‘F-LfJ-L'TTKTRI :E;'.-'-.'I -.'-n|=2 IIT.:.:'-Z:J.:. '.L.:j:: 2:" .xJ...:~'_=i-I _'.' r':'.1.“he?'TT~”-F':'4: I 2'. -'-i-'-'.-'_ i .'

'44
H
:- .h.
=.1

"UM...—..a .

E._.._ ..—
'r
.‘u .
I:
EJ:
I.
=rtT-

Sunmrmu' army Dining Manager 3-55

|PR2017-01828

Ubisoft EX1002 Page 188

IPR2017-01828
Ubisoft EX1002 Page 189

Inside Murmmsh. Vm'mne W

5-56

|PR2017-01828

Ubisoft EX1002 Page 189

IPR2017-01828
Ubisoft EX1002 Page 190

4 THE EDITION MANAGER

3 About This Chapter
3 About the Edition Manager
4 Publishers, Subscribers, and Editions

11 Using the Edition Manager
12 Receiving Apple Events From the Edition Manager

14 Creating the Section Record and Alias Record
17 Saving a Document Containing Sections
19 Opening and Closing a Document Containing Sections
21 Reading and Writing a Section
22 Formats in an Edition

23 Opening an Edition
24 Format Marks

24 Reading and Writing Edition Data
25 Closing an Edition
25 Creating 3 Publisher
28 Creating the Edition Container
30 Opening an Edition Container to Write Data
31 Creating a Subscriber
35 Opening an Edition Container to Read Data
35 Choosing Which Edition Format to Read
37 Using Publisher and Subscriber Options
40 Publishing a New Edition While Saving or Manually
41 Subscribing to an Edition Automatically or Manually
41 Canceling Sections Within Documents
42 Locating a Publisher Through a Subscriber
43 Renaming a Document Containing Sections
43 Displaying Publisher and Subscriber Borders
47 Text Borders

48 Spreadsheet Borders ‘-
49 Object-Oriented Graphics Borders g
50 Bitmapped Graphics Borders 5:
50 Duplicating Publishers and Subscribers 3
52 Modifying a Subscriber g
52 Relocating an Edition §
52 Customizing Dialog Boxes 0%
54 Subscribing to Non-Edition Files 3
55 Getting the Current Edition Opener
56 Setting an Edition Opener
56 Calling an Edition Opener Procedure
59 Opening and Closing Editions
59 Listing Files That Can Be Subscribed To
59 Reading From and Writing to Files
60 Calling 3 Format I/O Procedure
61 Edition Manager Routines
62 Initializing the Edition Manager
62 Creating and Registering a Section
65 Creating and Deleting an Edition Container
67 Setting and Locating a Format Mark
67 Reading in Edition Data

4—1

|PR2017-01828

Ubisoft EX1002 Page 190

IPR2017-01828
Ubisoft EX1002 Page 191

.._._..,...
Inside Mar'j'nfnsh. Vtifimm 1" .’

69
7"!)
7"1
TE:

7’3
7’8
Ell

lWriting (Jul FJJiliun Dalu
Closing am Ediliun Aficr Reading ur Writing
Displaying Dining. Boxes
anuting :1 Publisher and Edition le‘n u Subscriber
lid‘nion Container Furnmts

Reading and Writing Non—Edition Filer;
Summary 0:" illL‘ Ediliun Manager

|PR2017-01828

Ubisoft EX1002 Page 191

IPR2017-01828
Ubisoft EX1002 Page 192

The Edition Manager

ABOUT THIS CHAPTER

This chapter describes how you can use the Edition Manager to allow your users to share and
automatically update data from numerous documents and applications.

The Edition Manager is available only in system software version 7.0. It can be used by
many different applications located on a single disk or throughout a network of Macintosh®
computers. To test for the existence of the Edition Manager, use the Gestalt function,
described in the Compatibility Guidelines chapter of this volume.

Read the information in this chapter if you want your application’s documents to share and
automatically update data, or if you want to share and automatically update data with docu—
ments created by other applications that support the Edition Manager.

For example, a user might want to capture sales figures and totals from within a spreadsheet
and then include this information in a word-processing document that summarizes sales for
a given month. The Edition Manager establishes a connection between these two documents.
When a user modifies the spreadsheet, the information in the word-processing document
can be automatically updated to contain the latest changes. To accomplish this, both the
spreadsheet application and the word—processing application must support the features of
the Edition Manager.

To use this chapter, you should be familiar with sending and receiving high—level events,
described in the Events Manager chapter of this volume. Your application must also support
Apple® events to receive Apple events from the Edition Manager. See the Apple Event
Manager chapter in this volume for detailed information.

ABOUT THE EDITION MANAGER

The Edition Manager provides you with the ability to

I capture data within a document and integrate it into another document

4-

EQ—.v-r.—.A
2'.—t
7.—
9-:.—I—l
2:

’1:('D"1'
I modify information in a document and automatically update any document that shares

its data

I share information between applications on the same computer or across a network of

Macintosh computers

Building the capabilities of the Edition Manager into your program is similar to building cut-
and-paste features into your program. Text, graphics, spreadsheet cells, database reports——
any data that you can select, you can make accessible to other applications that support the
Edition Manager.

About the Edition Manager 4-3

|PR2017-01828

Ubisoft EX1002 Page 192

IPR2017-01828
Ubisoft EX1002 Page 193

Inside Macintosh, Volume VI

This chapter first defines the main elements of the Edition Manager and then discusses how to
save, open, read, and write a document that shares data. In addition, this chapter describes
how to

I make data accessible to other applications

I integrate data into numerous documents

I set update options

I implement borders

I modify shared data

I customize dialog boxes

This chapter also describes an advanced feature that allows applications to share data directly
from a file.

PUBLISHERS, SUBSCRIBERS, AND EDITIONS

A section is a portion of a document that shares its contents with other documents. The

Edition Manager supports two types of sections: publishers and subscribers. A publisher is
a section within a document that makes its data available to other documents or applications.
A subscriber is a section within a document that obtains its data from other documents or

applications.

Your application wtites a copy of the data in each publisher to a separate file called an
edition container. The actual data that is written to the edition container is referred to

as the edition. Your application obtains the data for each subscriber by reading data
from the edition container. Note that filroughout this chapter, the term edition refers to
the edition container and the data it contains.

You publish data when you want to make it available to other documents and applications.
When data is published, it is stored in an edition container. You subscribe to data that a

publisher makes available by reading an edition from its container.

Note: Section and edition container are programmatic terms. You should not use
them in your application or your documentation. Use publishers, subscribers, and
editions. You should also refrain from using other terms such as publication or
subscription to describe the dynamic sharing of information provided by the Edition
Manager. Use the terms publish and subscribe to describe the Edition Manager
features.

Each edition has an icon that is visible from the Finder. Figure 4—1 shows the default
edition icon.

Figure 4-1. The default edition icon

4-4 Publishers, Subscribers, and Editions

|PR2017-01828

Ubisoft EX1002 Page 193

IPR2017-01828
Ubisoft EX1002 Page 194

The Edition Manager

The name that the user specifies for the edition is located beneath the edition icon. To create
customized edition icons, see the Finder Interface chapter in this volume for detailed
information. Figure 4-2 illustrates a document containing a single publisher, its correspond—
ing edition, and a subscriber to the edition in another document.

 November Decemberslant 67 $5677 67 $2549 75525/5 78 $283734 new 57
59356 87 :36le an 35463 9D5569078 smssee $743914

Tulals
 TO Nmk

FROM Lam-A Palmer
Here are me sales llglles lhal you requestedwwwmum.»m

January February Totals 6Slazus $193999 $325145 “. . ‘3
eeeeeeeeee53590 67 $5655 BB $76“ 23$3590 88

 Jammy February TolalsMaia 46 $1938 90 $325! #52313 56 2457 39 -.- 425 55Publisher{ Subscriber
These lrgures relleel me Increases over a Momanlh puma whlch were allecred bythe lnc'easc oosl of
opevallrlg expenses Iov mar permAdjustments to these "glues Wlll Lie evaluatedshortly

$5535 45 $5433 7!

 51324 57 $4537 57 $7559 75seal 3 79 32345 34 $3425 67
54312 67 $3425 80 $5463 9053590 00 $5465 99 wees nu

Figure 4-2. A publisher, an edition, and a subscriber

Note that the publisher and subscriber borders illustrated in Figure 4-2 may appear slightly
different from the borders you see on screen. Figure 4—6 shows a screen—captured image of
the publisher and subscriber borders that appear on screen.

Data always flows in one direction, from publisher to edition to subscriber. Documents that
contain publishers and subscribers do not have to be open at the same time to share data.
Whenever the user saves a document that contains a publisher, the edition changes to reflect
the current data from the publisher. All subscribers update their contents from the edition.
Any number of subscribers can subscribe to a single edition.

To create a publisher within a document, a user selects an area of the document to share and

chooses Create Publisher from the Edit menu (illustrated later in this chapter). Figure 4—3
shows the dialog box that your application should display when the user chooses Create
Publisher.

Preview Ell Editions v l: Lorna Pn‘ela

.r meme 9
J . SIZE sakes regmrtJ

‘1‘ Desktop

4;.

Fl
a....
S".C
D
7.—
7:;
D
9:

3‘:rt-1

9 .

, Name of new edition:

_3randpiano -

Figure 4-3. The publisher dialog box

Publishers, Subscribers, and Editions 4-5

|PR2017-01828

Ubisoft EX1002 Page 194

IPR2017-01828
Ubisoft EX1002 Page 195

Inside Macintosh, Volume VI

Your application provides a thumbnail sketch of the edition data that the Edition Manager
displays in the preview area of the publisher dialog box. Your preview of the edition in this
dialog box should provide a visual cue about the type of information that the user has selected
to publish.

A preview area also appears in the subscriber dialog box (see Figure 4-4). Your preview for
an edition in this dialog box should provide a visual cue about the type of information the
edition contains. For example, it should allow users to distinguish between text information
and spreadsheet arrays.

The publisher dialog box uses the extended interface of the standard file dialog box that
accompanies system software version 7.0. The user navigates through the contents of the
disk using the mouse or keyboard.

A user can modify a publisher within a document just like any other portion of a document.
As a default, each time a user saves a document containing a publisher, your application
should automatically write the publisher’s data to the edition. You also need to provide the
user with the choice of sending new publisher data to an edition manually (that is, only at the
user’s specific request). You can provide these options by using the publisher options dialog
box described later in “Using Publisher and Subscriber Options.”

For example, one user may choose to automatically update an edition each time a document is
saved. This update mode is useful for a user who creates a publisher within a spreadsheet
application that records stock information. Each time the user updates the stock information
and saves the spreadsheet, a new edition automatically becomes available to subscribers.

Another user may choose to update an edition only upon request. This update mode might be
useful for a user who creates a publisher within a word—processing application for a quarterly
sales report. The user incrementally updates the sales report throughout the entire quarter, but
does not want this information to be available to subscribers until the end of the quarter. Only
at the end of each quarter does the user specifically request to update the edition and make it
available to any subscribers.

To create a subscriber within a document, the user places the insertion point and chooses
Subscribe To from the Edit menu. Figure 4-4 shows the dialog box that your application
should display when the user chooses Subscribe To.

Preuiew _ a Editions v :ILoma Prieta

sill: Grand piano gC) sales data

C3 sales report Desktop

3N:

Cancel

Figure 4-4. The subscriber dialog box

4-6 Publishers, Subscribers, and Editions

|PR2017-01828

Ubisoft EX1002 Page 195

IPR2017-01828
Ubisoft EX1002 Page 196

The Edition Manager

The subscriber dialog box also uses the extended interface of the standard file dialog box
introduced with system software version 7.0. Initially, the dialog box should highlight the
name of the last edition published or subscribed to. This allows a user to create a publisher
and immediately subscribe to its edition.

A subscriber receives its data from a single edition. By default, your application should
automatically update a document containing a subscriber whenever a new edition is available.
You also need to provide the user with the choice of receiving the latest edition manually (that
is, only when the user specifically requests it). You can provide these options by using the
subscriber options dialog box described later in “Using Publisher and Subscriber Options.”

For example, one user may choose to automatically receive new editions as they become
available. This update mode is useful for a user who subscribes to information from an

edition that consists of daily sales figures. This user automatically acquires each version
of the sales information as it becomes available.

Another user may choose to receive a new edition only upon request. This update mode is
useful for a user who creates a subscriber to an edition that consists of graphics data (such
as a company logo). The user may require only periodic versions of the logo and not need
frequent updates. In this case, your application should only update the subscriber with a
new edition when the user specifically requests it.

A user can select, cut, copy, or paste an entire subscriber. Although the contents of the sub—
scriber as a whole can be modified, a user cannot edit portions of a subscriber. For example,
a user can underline or italicize the entire subscriber text, but cannot delete a sentence or rotatc

a single graphical object. This restriction protects the user from losing changes to a subscriber
when a new edition arrives. Remember that, as a default, new editions should automatically
update a subscriber. Any changes that a user made to the subsc1iber text would have to be
reapplied when the new edition arrives. See “Modifying a Subscriber” later in this chapter for
further information.

A single document can contain any number or combination of publishers and subscribers.
Figure 4-5 shows an ex ample of a document that contains two publishers and one subscriber
(and their corresponding editions). Remember that data always flows in one direction, from
publisher to edition to subscriber. The “Concert flyer” document contains a publisher that is
subscribed to by the “Benefit concert” document. The “Concert flyer” document also
subscribes to a portion of the “Pianos & palm trees” document. In addition, the “Concert
flyer” document as a whole is subscribed to by the “Sample flyer” document.

L

F]D-
:.
5.I:
?I—
:3
a
:am:
2

You should distinguish each selected publisher and subscriber within a document with a
border. Display a publisher border as 3 pixels wide with 50 percent gray lines, and display
a subscriber border as 3 pixels wide with 75 percent gray lines. A rectangle of one white
pixel should separate the data from the border itself. Borders should be drawn outside the

Publishers, Subscribers, and Editions 4-7

|PR2017-01828

Ubisoft EX1002 Page 196

IPR2017-01828
Ubisoft EX1002 Page 197

Inn-id? Macintosh. Volume W

Subscriber

'li.\|"lll'| or inn-um finch-1‘
L-umi w n. the :1. Mi
:nnmtm m WWIa. -re- :kmm: Iu l|>d—'_l:--:|I-.- !
.ul i-:..saum art-dim l “mu-w"nus camc-

Publisher

Subscriber

Sample fiver

Figure 4-5. A dneuntent and its eurresptmding editinnh

contents, ni'publishers and Hubh'eribers: so that data is: not obscured. See Figure 4-6 for an
illustmtinn 0f the binders as they appear rm screen. See "Displaying PLlhlifihCF and Sllbncribcr
Borders" later in thin ehttpter for detailed inibrmntinn on how to impiemeni bordeni for
specific applications.

Figure 4-6 show}; a document enntaining a: publisher and .1 document containing n 5ub5eriber.
wilh borders displayed For each.

Bnnjers for publishers and xubseribersa should behave like the borders of 'PlCT' gruphiea
within {1 word-processing doeulttent. Your application should diupluy at border whenever the

4-H Ptibh'fltw'fi, Strbxr'rr'hr'rx. rmd Edirr'mtx

|PR2017-01828

Ubisof’t EX1002 Page 197

IPR2017-01828
Ubisoft EX1002 Page 198

The Edition Manager

Lil-“1|

Apple SCSl cable terminators are hardware
devices that attach to a SCSI cat-19. There-
musl be no more than two terminaiers in a
SCSI chain.

Figure 4-6. Publisher and subscriber borders

user clicks within the eontent area of ti publixher or u Huhxeriber. Your application should
hide the border whenever the user clicks outside the eonlenl urea. Set: “Displaying Publisher
and Subscriber Borders." later in th is chapter for detailed information on how to implement
borders for speeiiie applieationx.

You also need to support the standard Edition Manager menu commands in the Edit menu.
These menu items. include

I Create Publisher...

4..
'7‘
E
E:
E
'f'.—
=

E
"J:F.-J

- Subserihe'l‘o...

I Publifihcn’Subscribcr Options...

I Showfi-[ide Borders (optional)

I Stop All Editions (optional)

Publisher's, .S‘trhrt'rihe-rx, mid Editions 4 9

lPR2017-01828

Ubisoft EX1002 Page 198

IPR2017-01828
Ubisoft EX1002 Page 199

Inside Macintosh, Volume VI

Use a dotted line to separate the Edition Manager menu commands from the standard
Edit menu commands Cut, Copy, and Paste. Figure 4-7 shows the standard Edition
Manager menu commands.

Undo 882

Cut 38H

Copy 38C
Paste 38D
Clear
Select Hll 38H

Create Publisher...
Subscribe To...
Subscriber Options...

Show Clipboard

Figure 4-7. Edition Manager commands in the Edit menu

The Publisher Options menu command should toggle with Subscriber Options when a user
selects either a publisher or a subscriber within a document. In addition, you may support a
Show Borders menu command that toggles with Hide Borders to display or hide all publishers
and subscriber borders within documents. You may also support a Stop All Editions menu
command to provide a method for temporarily suspending all update activity in a document.
When the user chooses this command, you should place a checkmark next to it. You should
also stop all publishers from sending data to editions and all subscribers from receiving new
editions. When the user chooses this command again, remove the checkmark and update any
subscribers that are set up to receive new editions automatically.

If you find that you need all of the available space in the Edit menu for your application’s
commands, you may create a hierarchical menu for the Edition Manager menu commands. If
you choose to implement this structure, you should allow users to access the Edition Manager
menu commands through a Publishing menu command in the Edit menu. Because this menu
structure is not as accessible to users, you should implement it only if you have no other
alternative.

Figure 4-8 shows the Edition Manager menu commands in a hierarchical menu structure.

Undo

Cut

Copy SEC
Paste 88”
Select all

Publishing > Create Publisher...
Subscribe To...

Show Clipboard Publisher Options...

Figure 4-8. Edition Manager commands under the Publishing menu command

4-10 Publishers, Subscribers, and Editions

|PR2017-01828

Ubisoft EX1002 Page 199

IPR2017-01828
Ubisoft EX1002 Page 200

The Edition Manager

For each publisher or subscriber within an open document, you must have a section record and
an alias record. The section record contains a time stamp that records the version of the data
that resides in the section. The section record also identifies the section as either a publisher or
subscriber, and it establishes a unique identity for each publisher or subscriber. The section
record does not contain the data within the section. The alias record is a reference to the edition

container from the document that contains the corresponding publisher or subscriber section.

There are special options associated with publishers and subscribers within documents. Your
application can use the publisher and subscriber options dialog boxes provided by the Edition
Manager to make these Choices available to the user. For example, a user can select Open
Publisher within the subscriber options dialog box to access the document containing the
publisher. Your application can also allow a user to cancel subscribers or publishers within
documents, specify when to update an edition from a publisher, or specify when to update a
subscriber with a new edition. These options are described later in this chapter.

USING THE EDITION MANAGER

This section describes how your application can

I receive Apple events from the Edition Manager

I set up a section record and alias record for open documents containing sections

I save a document that contains sections

I open a document that contains sections

I read and write sections

I create a publisher within a document, create its edition container, and write data to it

I create a subscriber within a document and read its data from an edition

To begin, you must determine whether the Edition Manager is available on your system
by using the Gestalt function. The Gestalt selector is gestaltEditionMgrAttr ('edtn'). If the
response parameter returns 1 in the bit defined by the gestaltEditionMgrPresent constant
(bit 0), the Edition Manager is present.

If the Edition Manager is present, load it into memory using the InitEditionPack function.
This function determines whether your machine has enough space in the system heap for
the Edition Manager to operate.

err :: InitEditionPack;

If the InitEditionPack function returns noErr, you have enough space to load the package. If
you do not have enough space, the application can either terminate itself or continue with the
Edition Manager functionality disabled.

Using the Edition Manager 4-11

|PR2017-01828

Ubisoft EX1002 Page 200

J;

M
O.._...,_.
c
D
_7b—Q
2-7.....
5::

CMn:-s

IPR2017-01828
Ubisoft EX1002 Page 201

Inside Macintosh, Volume VI

Receiving Apple Events From the Edition Manager

Applications that use the Edition Manager must support Apple events. This requires that your
application support the required Open Documents event and Apple events sent by the Edition
Manager. See the Apple Event Manager chapter in this volume for information on Apple events.

Apple events sent by the Edition Manager arrive as high—level events. The EventRecord data
type defines the event record.

TYPE EventRecord :

RECORD

what: Integer; {kHighLevelEvent}
message: Longlnt; {'sect'}
when: Longlnt;
where: Point; {'read', 'writ‘, 'cncl', }

{ 'scrl'}

modifiers: Integer
END;

The Edition Manager can send the following Apple events:

I Section Read events ('sect' ‘read')

I Section Write events ('sect' 'writ')

I Section Cancel events ('sect' 'cncl’)

I Section Scroll events ('sect' 'scrl')

Each time your application creates a publisher or a subscriber, the Edition Manager registers
its section. When an edition is updated, the Edition Manager scans its list to locate registered
subscribers. For each registered subscriber that is set up to receive updated editions auto—
matically, your application receives a Section Read event.

If the Edition Manager discovers that an edition file is missing while registering a publisher, it
creates a new edition file and sends the publisher a Section Write event.

When you receive a Section Cancel event, you need to cancel the specified section. Note that
the current Edition Manager does not send you Section Cancel events, but you do need to
provide a handler for future expansion.

If the user selects a subscriber within a document and then selects Open Publisher in the
subscriber options dialog box, the publishing application receives the Open Documents event
and opens the document containing the publisher. The publishing application also receives a
Section Scroll event. Scroll to the location of the publisher. display this section on the user’s
screen, and turn on its border.

See “Opening and Closing a Document Containing Sections” later in this chapter for detailed
information on registering and unregistering a section and writing data to an edition. See
“Using Publisher and Subscriber Options” later in this chapter for information on publisher
and subscriber options. ‘

4-12 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 201

IPR2017-01828
Ubisoft EX1002 Page 202

The Edition Manager

After receiving an Apple event sent by the Edition Manager, use the Apple Event Manager to
extract the section handle. In addition, you must also call the IsRegisteredSection function
to determine Whether the section is registered. It is possible (due to a race condition) to receive
an event for a section that you recently disposed of or unregistered. One way to ensure that an
event corresponds to a valid section is to call the lsRegisteredSection function after you receive
an event. The Apple Event Manager chapter in this volume provides detailed information on
Apple Event Manager routines.

err :: IsRegisteredSection (sectionH);

Listing 4-1 illustrates how to use the Apple Event Manager and install an event handler to
handle Section Read events. You can write similar code for Section Write events, Section

Scroll events, and Section Cancel events.

Listing 4-1. Accepting Section Read events and verifying if a section is registered

{The following goes in your initialization code.)
MyErr 2: AEInstallEventHandler(sectionEventMsgClass {'sect'},

sectionReadMsgID {'read'},
@MyHandleSectionReadEvent, O, FALSE);

{This is the routine the Apple Event Manager calls when a Section Read }
{ event arrives.)

 FUNCTION MyHandleSectionReadEvent(theAppleEvent, reply: AppleEvent;

refCon: songInt) : OSErr;
VAR

getErr: OSErr;
sectionH: SectionHandle;

BEGIN

{Ge: section handle out of Apple event message buffer.) L

getfirr :: GetSectionHandleFromEvent(theAppleEvent, sectionH); m:

IF getErr : noErr THEN 5

BEGIN :
{Do nothing if section is not registered.} E
IF IsRegisteredSection(sectionH) : noErr E

TaEN MyHandleSectionReadEvent :2 DoSectionRead(sectionH); §
END «T.s~ "
BEGIN

MyHandleSectionReadEvent :2 getErr;
3ND; END; {MyHandleSectionReadEvent}

{The following routine should read in subscriber data and update its }
{ display.)
FUNCTION DoSectionRead(subscriber: SectionHandle) : OSErr;
BEGIN

{Your code here.)
END; {DoSectionRead}

(Confinued)

Using the Edition Manager 4-13

|PR2017-01828

Ubisoft EX1002 Page 202

IPR2017-01828
Ubisoft EX1002 Page 203

Inside Macintosh, Volume VI

Listing 4-1. Accepting Section Read events and verifying if a section
is registered (Continued)

{This is part of your Apple event—handling code.)
FUNCTION GetSectionHandLeFromEvent(:heAppleEvent: AppleEvent; VAR

sectionH: SectionHandle) : OSErr;

VAR

ignoreType: Deschpe;
ignoresize: Size;

BEGIN

{Parse section handle out of message buffer.)
GetSectionHandleFromEvent

 :2 AEGetParamPtr< theAppleEvent, {event to parse}
keyDirectObject, {Look for direct object.)
typeSectionH, {Want a SectionHandle type.)
ignoreType, {Ignore type it could get.)
@sectionHl {Put SectionHandle here.)

SizeOfi<sectionH), {size of storage for)
{ SectionHandle}

ignoreSizo); {Ignore storage it used.)
END; {GetSectionHandleFromEvent}

Creating the Section Record and Alias Record

Your application is responsible for creating a section record and an alias record for each
publisher and subscriber section within an open document.

The section record identifies each section as a publisher or subscriber and provides identifi—
cation for each section. The section record does not contain the data within the section; it

describes the attributes of the section. Your application must provide its own method for
associating the data within a section with its section record. Your application is also respon-
sible for saving the data in the section.

The alias field of the section record contains a handle to its alias record. The alias record is

a reference to the edition container from the document which contains the publisher or sub—
scriber section. You should be familiar with the Alias Manager’s conventions for creating
alias records and identifying files, folders, and volumes to locate files that have been moved,
copied, or restored from backup.

When a user saves a document, your application should store all section records and alias
records in the resource fork. Corresponding section records and alias records should have
the same resource ID. This allows compatibility for future changes.

Figure 4-9 shows a document containing a publisher and subscriber, and the corresponding
section records and alias records.

The SectionRecord data type defines the section record. A section record contains information
to identify the data contained within a section as a publisher or a subscriber, a time stamp to
record the last modification of the section, and unique identification for each section.

4-14 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 203

IPR2017-01828
Ubisoft EX1002 Page 204

'Nrr‘ Edi'u'mr Marragr'r

 Subscriber

Publisher

Resource fork

Section record

uerslnn:
kind:
made:
mdDale:
sealionID:

Section record refCon; m
alias: ='

version: Me.”

£239. subPart:_ 303' ””0' nexlSecllon:

defate; . ' conImIBlock:
SECNOMD' : I'EINLIm:IeICon:
alias:

subPafl: Termlnmor
nexiSectrun:
coniroIBIock;
reiNum:

Figure 4-9. A document wilh :1 publisher and Subscriber and its rasourcc ffll'k
1..
y
E
:1:

E
'2_.
::_.

EJ":
P.

;;'1}:1-:1r'l :
n-‘::(| .'-'.l':-"' '-'.r1_-

-:"LI=12€1-.1.»_-k: IEr:.'.-:i---.'

Using rhr Edition Marmgc'r 4J5

|PR2017-01828

Ubisoft EX1002 Page 204

IPR2017-01828
Ubisoft EX1002 Page 205

Inside Macintosh, Volume VI

Field descriptions

version Indicates the version of the section record, currently $01.

kind Defines the section type as either publisher or subscriber with the stPublisher or
stSubscriber constant.

mode Indicates if editions are updated automatically or manually.

mdDate Indicates which version (modification date) of the section’s contents is con-

tained within the publisher or subscriber. The mdDate is set to 0 when you
create a new subscriber section, and is set to the current time when you create a
new publisher. Be sure to update this field each time publisher data is modified.
The section’s modification date is compared to the edition’s modification date to
determine whether the section and the edition contain the same data. The section

modification date is displayed in the publisher and subscriber options dialog
boxes. See “Closing an Edition” later in this chapter for detailed information.

sectionID Provides a unique number for each section within a document. A simple way to
implement this is to create a counter for each document that is saved to disk

with the document. The counter should start at l. The section ID is currently
used as a tie breaker in the GoToPublisher function when there are multiple
publishers to the same edition in a single document. The section ID should not
be 0 or —1. See “Duplicating Publishers and Subscribers” later in this chapter
for information on multiple publishers.

refCon Available for application-specific use.

alias Contains a handle to the alias record for a particular section within a document.

Whenever the user creates a publisher or subscriber, call the NewSection function to create
the section record and the alias record.

err :2 NewSection (container, sectionDocument, kind, soctionID,
initiaIMode, sectionH);

The NewSection function creates a new section record (either publisher or subscriber).
indicates whether editions are updated automatically or manually, sets the modification date,
and creates an alias record from the document containing the section to the edition container.

The sectionDocument parameter can be NIL if your current document has never been saved.
Use the AssociateSection function to update the alias record of a registered section when the
user names or renames a document by choosing Save As from the File menu. If you are
creating a subscriber with the initialMode parameter set to receive new editions automatically,
your application receives a Section Read event each time a new edition becomes available for
this subscriber.

If an error is encountered, the sectionH parameter is set to NIL. If not, sectionH contains the
handle to the allocated section record.

4-16 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 205

IPR2017-01828
Ubisoft EX1002 Page 206

The Edition Manager

Set the initialMode parameter to the update mode for each subscriber and publisher created.
You can specify the update mode using these constants:

CONST sumAutomatic : 0; {subscriber receives new }

{ editions automatically}
sumManual : l; {subscriber receives new)

{ editions manually)
pumOnSave : 0; {publisher sends new }

{ editions on save}

pumManual : 1; {publisher does not send]
i new editions until user }
{ request)

See “Using Publisher and Subscriber Options” later in this chapter for detailed information on
update modes for publishers and subscribers.

Saving a Document Containing Sections

When saving a document that contains sections, you should write out each section record
as a resource of type 'sect' and write out each alias record as a resource of type ’alis' with
the same ID as the section record. See the Resource Manager chapters in Volume I and this
volume for detailed information on resources.

If a user closes a document that contains newly created publishers without attempting to save
its contents, you should display an alert box similar to the one shown in Figure 4-10.

This document contains new Publishers. 'n'ou

mustsauethisdocumenttokeepthem.

SavechangeslotheTeodflthdocument
“untflled” before dosing?

L
'5'll

5‘:am
o
=
2_
m
=
a
a:(D
'1

Figure 4-10. The new publisher alert box

If you keep the section records and alias records for each publisher and subscriber as
resources, you can use the ChangedResonrce or WriteResource function. If you detach
the section records and alias records from each section, you need to clone the handles and
use the AddResource function. See the Resource Manager chapter in Volume V for detailed
information on the ChangedResource, WriteResource, and AddResource functions.

Use the PBExchangeFiles function to ensure that each time you save a document that contains
sections, the file ID remains the same. Saving a file typically involves creating a new file
(with a temporary name), writing data to it, closing it, and then deleting the original file that
you are replacing. You rename the temporary file with the original filename, which leads to a
new file ID. The PBExchangeFiles function swaps the contents of the two files (even if they

Using the Edition Manager 4-] 7

|PR2017-01828

Ubisoft EX1002 Page 206

IPR2017-01828
Ubisoft EX1002 Page 207

Inside Macintosh, Volume VI

are open) by getting both catalog entries and swapping the allocation pointers. If the files are
open, the file control block (FCB) is updated so that the reference numbers still access the
same contents (under a new name). See the File Manager chapter in this volume for detailed
information on the PBExchangeFiles function.

Listing 4—2 illustrates how to save a file that contains sections. As described earlier, you
should write out the eligible section records and alias records as resources to allow for
future compatibility. There are several different techniques for saving or adding resources;
this listing illustrates one technique. The section handles are still valid after using the
AddResource function because this listing illustrates just saving, not closing, the file.

Before you write out sections, you need to see if any publisher sections share the same
control block. Publishers that share the same control block share the same edition.

If a user creates an identical copy of a file by choosing Save As from the File menu and
does not make any changes to this new file, you simply use the AssociateSection function
to indicate to the Edition Manager which document a section is located in.

Listing 4-2. Saving a document containing sections

PROCEDURE SaveDocument(thisDocument; MyDocumentInfoPtr;
numberOfSections: Integer);

aSectionH: SectionHandle;

copiedSectionH: Handle;
copiedAliasH: Handle;
resID: Integer;

thisone: Integer;

BEGIN

{Write contents of publishers that need to be written during save. }
{ The GetSectionAliasPair function returns a handle and l
{ resID to a section. The CheckForDataChanged function }
{ returns TRUE if the data in the section has Changed.)
FOR thisone :: 1 TO numberOfSections DO
BEGIN

aSectionH :: GetSectionAliasPair(thisDocument, thisone, resID);
IF (aSectionHAA.kind : stPublisher) &

(aSectionH““.mode 2 pumOnSave) &
(CheckForDataChanged(aSectionH))

THEN DoWriteEdition(aSectionH, thisDocument);
END; {for}

{Set the curResFile to be the resource fork of thisDocument.l
UseResFile(thisDocument“.resForkRefNum);

{Write all section and alias records to the document.}
FOR thisone :: l TO numberOfSections DO
BEGIN

{Given an index, get the next section handle and rele }
{ from your internal list of sec:ions for this file.)
aSectionH :7 GetSectionAliasPair(thisDocument, thisone, res:D>;

4—18 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 207

IPR2017-01828
Ubisoft EX1002 Page 208

The Edition Manager

{Check for duplication of control block values.}
CheckForDupes(thisDocument, numberOfSections);

{Save section record to disk.}
copiedSectionH :: Handle<aSectionH);
HandToHand(copiedSectionH);
AddResource(copiedSectionH, rSectionType, resID, ");

{Save alias record to disk.)

copiedAliasH :2 Handle(aSectionHAA.alias);
HandToHand(copiedAliasH);
AddResource(copiedSectionH, rAliasType, resID, ");

END; {for}

{Write rest of document to disk.}
END; {SaveDocument}

Opening and Closing a Document Containing Sections

When opening a document that contains sections, your application should use the GetResource
function to get the section record and the alias record for each publisher and subscriber. Set the
alias field of the section record to be the handle to the alias. See the Resource Manager chapter
in Volume I for detailed information on the GetResource function.

You also need to register each section using the RegisterSection function. The RegisterSection
function informs the Edition Manager that a section exists.

err :: RegisterSection (sectionDocument, sectionH, aliasWasUpdated);

The RegisterSection function adds the section record to the Edition Manager’s list of regis-
tered sections. This function assumes that the alias field of each section record is a handle
to the alias record. The alias record is a reference to the edition container from the section’s

document. If the RegisterSection function successfully locates the edition container for a
particular section, the section is registered through a shared control block. The control block
is a private field in the section record.

L
eiA_wH
=.o
=
7_.
m-and

E3‘ca

If the RegisterSection function cannot find the edition container for a particular subscriber,
RegisterSection returns the containerNotFoundWrn result code. If the RegisterSection
function cannot find the edition container for a particular publisher, RegisterSection creates

an empty edition container for the publisher in the last place the edition was located. The
Edition Manager sends your application a Section Write event for that section.

When a user attempts to open a document that contains multiple publishers to the same
edition, you should warn the user by displaying an alert box (see “Duplicating Publishers
and Subscribers” later in this chapter).

When a user opens a document that contains a subscriber (with an update mode set to
automatic), receives a new edition, and then closes the document without making any

changes to the file, you should update the document and simply allow the user to close
it. You do not need to prompt the user to save changes to the file.

Using the Edition Manager 4-19

|PR2017-01828

Ubisoft EX1002 Page 208

IPR2017-01828
Ubisoft EX1002 Page 209

Inside Macintosh, Volume VI

When Closing a document that contains sections, you must unregister each section (using
the UnRegisterSection function) and dispose of each corresponding section record and
alias record.

err :: UnRegisterSection (sectionH);

The UnRegisterSection function removes the section record from the list of registered
sections and unlinks itself from the shared control block.

Listing 4—3 illustrates how to open an existing file that contains sections. As described earlier,
you should retrieve the section and alias resources, connect the pair through the alias field
of the section record, and register the section with the Edition Manager. There are many
different techniques for retrieving resources; this listing shows one technique. If an alias was
out of date and was updated by the Alias Manager during the resolve, the Edition Manager
sets the aliasWasUpdated parameter of the RegisterSection function to TRUE. This means
that you should save the document. Additionally, your application must maintain its own list
of registered sections for each open document that contains sections.

Listing 4-3. Opening a document containing sections

PROCEDURE OpenExistingDocument(thisDocument: MyDocumentInfoPtr);

VAR

sectionH: SectionHandle;
aliasH: AliasHandle;

aliasWasUpdated: Boolean;
registerErr: OSErr;
reSID: Integer;

thisone: Integer;

numberOfSections: Integer;
aName: Str255;

BEGIN

{Set the curResFile to be the resource fork of thisDocument.)
UseResFile(thisDocumentA.resForkRefNum);

{Find out the number of section resources.)

numberOfSections :; Counthesources(rSectionType);

{In determining the number of section/alias resource pairs to }
get, this code only loops for as many sections it finds. l
It is unusual to have more section resources than alias }
resources. Your code may want to check this and handle it }
appropriately. You now have a count of the number of section/alias }
resource pairs to get. Loop to get them, connect them, and register)
the section.)

r‘flr—‘fir‘fir—‘fir‘flr‘fi

4—20 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 209

IPR2017-01828
Ubisoft EX1002 Page 210

FOR Lhisone 2: 1 TO numberOfSections DO
BEGIN

sectionH

thisone));

The Edition Manager

SectionHandle(GeLlIndResource(rSectionType,

{If sectionH is NIL, something could be wrong with the file. }
{ Be sure to check for this.)

(Get the resource ID of the section and use this to get the)
{ alias with the same resource ID.)

GetResInfo<Handle(sectionH), resID, rSectionType, aName);
DetachResource(Handle(sectionH));

{Detaching is not necessary, but it is convenient.}

aliasH :2 AliasHandle(Gethesource(rAliasType, resID));
{If aliasH is NIL, then there could be something wrong }

{ with the file. Be sure to check for this.)

DetachResource(Handle(aliasH));

{Detaching is not necessary, but it is

{Connect section and alias together.)

sectionH““.alias :2 aliasH;

{Register the section.)

convenient.)

registerErr :2 RegisterSection(thisDocumentA.fileSpec,
sectionH, aliasWasUpdated);

{The RegisterSection function may return an error if a section }
{ is not registered. This is not a fatal error. Continue looping)
{ to register remaining sections.)

{Add this section/alias pair to your internal bookkeeping.)
{ The AddSectionAliasPair is a routine

MyAddSecLionAliasPair(thisDocument, sectionH, resID);

{If the alias has changed, make note of this. It is)
. AliasHasChanged is a l{ important to know this when you save

(rouiine that will do this.)
 IF aliasWasUpdated THEN AliasHasChanged(sectionH);

L‘J ND; {for)

END; {OpenExistingDocument}

Reading and Writing a Section

to accomplish this.)

L
ar.
‘5—_—

=
7_.
m
:inM
7:cw

Your application writes publisher data to an edition. New publisher data replaces the previous
contents of the edition, making the previous edition information irretrievable. Your applica—
tion reads data from an edition for each subscriber within a document.

Using the Edition Manager 4-21

|PR2017-01828

Ubisoft EX1002 Page 210

IPR2017-01828
Ubisoft EX1002 Page 211

Inside Macintosh, Volume VI

The following sections describe how to

I use different formats to write to or read from an edition

I open an edition to initiate writing or reading

I set a format mark

I write to or read from an edition

I close an edition after successfully writing or reading data

Formats in an Edition

You can write data to an edition in several different formats. These formats are the same as

Clipboard formats. Clipboard formats are indicated by a four-character tag.

Typically, when a user copies data, you identify the Clipboard formats and then write the data
to scrap. With the Edition Manager, when a user decides to publish data, you identify the
Clipboard formats and then write the data to an edition. You can write multiple formats of the
same data.

For an edition, you should write your preferred formats first. In general, to write data to an
edition, your application should use either 'TEXT' format or ‘PICT‘ format. This allows
your application to share data with most other applications. To subscribe to an edition, your
application should be able to read both 'TEXT' and 'PICT‘ files. In addition, your applica—
tion can write any other private formats that you want to support.

Clipboard formats are described in the Scrap Manager chapter in Volume I.

A few special formats are defined as constants.

CONST kPublisherDocAliasFormat : 'alis'; {alias record from the l

{ edition to publisher}
kPreviewFormat : 'prvw’; {‘PICT' thumbnail sketch}
kFormatListFOrmat : 'mes'; {lists all available }

{ formats}

The kPublisherDocAliasFormat ('alis') format is written by the Edition Manager. It is an alias
record from the edition to the publisher’s document. Appended to the end of the alias is the
section ID of the publisher, which the Edition Manager uses to distinguish between multiple
publishers to a single edition. You should discourage users from making multiple copies of
the same publisher. See “Duplicating Publishers and Subscribers” later in this chapter for
detailed information.

The kPreviewFormat (’prvw') format should be written by any application that publishes
large amounts of data that may be slow to draw a preview. This format holds a preview of
the edition data that is displayed in the preview area of the subscriber dialog box. This format

4-22 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 211

IPR2017-01828
Ubisoft EX1002 Page 212

The Edition Manager

is actually a 'PICT‘ file that is generated by the publishing application and displays well in a
rectangle of 120 by 120 pixels. You can also use this 'PICT' file to display subscriber data
within a document (to save space).

To draw a preview in the 'prvw' format, the Edition Manager calls DrawPicture with a 120
by 120 rectangle. To draw a preview in the 'PICT' format, the Edition Manager examines the
picture’s bounding rectangle and calls DrawPicture with a rectangle that scales the picture
proportionally and centers it in a 120 by 120 area.

The kFormatListFormat ('fmts') format is a virtual format that is read but never written. It is
a list of all the formats and their lengths. Applications can use this format in place of the
EditionHasFormat function (described in “Choosing Which Edition Format to Read” later in
this chapter), which provides a procedural interface to determine which formats are available.

If your application can read two or more of the available formats, use 'fmts' to determine the
priority of these formats for a particular edition. The order of 'fmts' reflects the order in
which the formats were written.

The FormatsAvailable data type defines a record for the 'fmts' format.

 TYPE FormatsAvailable : ARRAY[O..O] OF
 RECORD

theType: FormatType; {forma: type for an edition}
theLength: LongInt {length of edition format }

i type}
3ND ;

For example, an edition container may have a format type ‘TEXT' of length 100, and
a format type 'styl' of length 32. A subscriber to this edition can open it and then read
the format type ‘fmts' to list all available formats. In this example, it returns 16 bytes:
'TEXT' $00000064 'styl' $00000020.

Opening an Edition

For a publisher, use the OpenNewEdition function to initiate the writing of data to an edition.

err :: OpenNewEdition (publisherSectionH, dereator,

publisherSec:ionDocument, refNum);

L
_L‘J
D-

E:O
=
2_
u
=N
Naw

The publisherSectionH parameter is the publisher section that you are writing to the edition.
The dereator parameter is the‘FinderTM creator type of the new edition icon.

The publisherSectionDocument parameter is the document that contains the publisher. This
parameter is used to create an alias from the edition to the publisher’s document. If you pass
NIL for publishersectionDocument, an alias is not made in the edition file. The refNum
parameter returns the reference number for the edition.

For a subscriber, use the OpenEdition function to initiate the reading of data from an edition.

err 2: OpenEdition (subscriberSectionH, refNum);

Using the Edition Manager 4-23

|PR2017-01828

Ubisoft EX1002 Page 212

IPR2017-01828
Ubisoft EX1002 Page 213

Inside Macintosh, Volume VI

The subscriberSectionH parameter is a handle to the section record for a given section. The
refNum parameter returns the reference number for the edition.

The user may rename or move the edition in the Finder. Before writing to or reading data
from an edition, the Edition Manager verifies the name of the edition. This process is
referred to as synching or synchronization. Synching ensures that the Edition Manager’s
existing edition names correspond to the Finder’s existing edition names by updating the
control block.

Format Marks

Each format has its own mark. The mark indicates the next position of a read or write opera—
tion. Initially, a mark automatically defaults to 0. After reading or writing data, the format
mark is set past the last position written to or read from. The mark is similar to the File
Manager’s current read or write position marker for a data fork. Any time that an edition is
open (after calling the OpenEdition or the OpenNewEdition function), any of the marks for
each format can be queried or set.

To set the current mark for a section format to a new location, use the SetEditionFomiatMark
function.

 err :: SetEditionFormatMark (whichEdition, whichFormat,
setMarkTo);

To find where a current mark is for a format in an edition file, use the GetEditionFormatMark
function.

 err :: GetEditionFormatMark (whichEdition, whichPormat,
currentMark);

Reading and Writing Edition Data

With the Edition Manager, you can read or write data a few bytes at a time instead of putting
data into one block as the Scrap Manager does. This model is similar to the data fork of a
Macintosh file. You can read sequentially by setting the mark to O and repeatedly calling read,
or you can jump to a specific offset by setting the mark there. The Edition Manager also adds
the capability to stream multiple formats by keeping a separate mark for each format. This
allows you to write a few bytes of one format and then write a few bytes of another format,
and so forth.

Once you have opened the edition container for a particular publisher, you can begin writing
data to the edition. Use the WriteEdition function to write publisher data to an edition.

 err :: WriteEdition (whichEdition, whichFormat, buffPtr, buffLen);

The WriteEdition function writes the specified format (beginning at the current mark for that
format type) from the buffer pointed to by the buffPtr parameter up to buffLen bytes.

After you open the edition container for a subscriber and determine which formats to read,
use the ReadEdition function to read edition data.

4-24 Using the Edition Manager

'_—‘t

|PR2017-01828

Ubisoft EX1002 Page 213

IPR2017-01828
Ubisoft EX1002 Page 214

The Edition Manager

 err 2: ReadEdition (whichEdi:ion, whichFormat, buffPtr, buffLen);

The ReadEdition function reads the data with the specified format (whichFormat) from the
edition into the buffer. The ReadEdition function begins reading at the current mark for that
format and continues to read up to buffLen bytes. The actual number of bytes read is returned
in the buftLen parameter. Once the buffLen parameter returns a value smaller than the value
you have specified, there is no additional data to read, and the ReadEdition function returns a
noErr result code.

Closing an Edition

When you are done writing to or reading data from an edition, call the CloseEdition function.

 err :— CloseEdition (whiChEdition, successful);

Each time a user edits a publisher within a document, you must update the modification date
in the section record (even if the data is not yet written). When the update mode is set to
Manually, the user can compare the modification dates for a publisher and its edition in the
publisher options dialog box. One modification date indicates when the publisher last wrote
data to the edition, and the other modification date indicates when the publisher section was
last edited.

If the successful parameter for a publisher is TRUE, the CloseEdition function makes the
newly written data available to subscribers and sets the modification date in the mdDate field
of the edition to correspond to the modification date of the publisher’s section record. If the
two dates differ, the Edition Manager sends a Section Read event to all current subscribers.

If the successful parameter for a subscriber is TRUE, the CloseEdition function sets the
modification date of the subscriber’s section record to correspond to the modification date of
the edition.

If you cannot successfully read from or write data to an edition, set the successful parameter
to FALSE. For a publisher, data is not written to the edition, but it should still be saved with
the document that contains the section. When the document is next saved, data can then be

written to the edition. See “Closing an Edition After Reading or Writing” later in this chapter
for additional information on the CloseEdition function.

L

3'1E‘—mnm
C
:1
2'_
5‘:
=
u

ET:n
n

Creating a Publisher

You need to support a Create Publisher menu command in the Edit menu. When a user selects
a portion of a document and chooses Create Publisher from this menu, you should display the
publisher dialog box on the user’s screen. The Create Publisher menu command should
remain dimmed until the user selects a portion of a document.

Use the NewPublisherDialog function to display the publisher dialog box on the user’s
screen. This function is similar to the CustomPutFile procedure described in the Standard
File Package chapter in this volume.

err :4 NewPublisherDialog (repiy);

Using the Edition Manager 4-25

|PR2017-01828

Ubisoft EX1002 Page 214

IPR2017-01828
Ubisoft EX1002 Page 215

Inside Macintosh, Volume V]

The dialog box contains space for a preview (a thumbnail sketch) of the edition and a
space for the user to type in the name of the edition in which to write the publisher data.
Figure 4-11 illustrates a sample publisher dialog box.

Preview 51 Editions v I: Lama Prieta

CI sales data £9553?£23 saws weer? ‘
Desktop

Name of new edition:

Simple graphiti

Figure 4-11. A sample publisher dialog box

The NewPublisherDialog function displays the preview (provided by your application), a text
box with the default name of the edition (provided by your application), and handles all user
input until the user clicks Publish or Cancel.

You pass a new publisher reply record as a parameter to the NewPublisherDialog function.

TYPE NewPubl i SherReply :

RECORD

canceled: eoolean; {user canceled dialog box}
replacing: Boolean; {user Chose existing }

{ filenemc for an edition}
usePart: Boolean; {always FALSE in version 7.0}
preview: Handle; {handle to ‘prvw‘, ‘PlCT‘, }

{ 'TEXT', or 'snd' data}
previewFormat: FormatType; {type of preview}
container: Edi:ionContainerSpec {edition chosen}

END;

You fill in the usePart, preview, previewFormat, and container fields of the new publisher
reply record.

Always set the usePaIt field to FALSE. The preview field contains either NIL or the data to
display in the preview. The previewFormat field should contain 'PICT', 'TEXT‘, or 'prvw'.

Set the container field to be the default name and folder for the edition. The default name

should reflect the data contained in the publisher. For example, if a user publishes a bar Chart
of sales information entitled “sales data,” then the default name for the edition could also

be “sales data.” Otherwise, you should use the document name followed by a hyphen (—)
and a number to establish uniqueness. For example, your default name could be “January
Totals — 3.”

If the document has not been saved, the default name should be “untitled edition <n>” where

n is a number to establish uniqueness. The default folder should be the same as the edition for
the last publisher created in the same document. If this is the first publisher in the document,
the default folder should be the same folder that the document is in.

4-26 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 215

IPR2017-01828
Ubisoft EX1002 Page 216

The Edition Manager

The canceled field of the new publisher reply record indicates whether the user canceled from
the dialog box. The replacing field indicates that the user chose to replace an existing edition
file. If replacing returns FALSE, call the CreateEditionContainerFile function to create an
edition file.

The container field is of data type EditionContainerSpec.

TYPE EditionContainerSpec :

RECORD

thejile: jsSpec; {file containing edition }
{ data}

thejileScript: ScriptCode; {script code of filename}
thelart: EongInt; {which part of file, }

{ always kPartsNotUsed}
thePertName: StrBl; {not used in version 7.0}
theDarLScript: ScriptCode {not used in version 7.0}

END;

The field theFile is of type FSSpec. See the File Manager chapter in this volume for further
information on file system specification records.

You identify the edition using a volume reference number, directory ID, and filenanle. When
specifying an edition, follow the standard conventions described in the File Manager chapter
of this volume.

After filling in the fields of the new publisher reply record, pass it as a parameter to the
NewPublisherDialog function, which displays the publisher dialog box.

8If
NewPublisherDialog (reply);

After displaying the publisher dialog box, use the CreateEditionContainerFile function to create
the edition container, and then use NewSection function to create the section record and the

alias record. See “Creating the Section Record and Alias Record” earlier in this chapter for
detailed information.

In response to the user selecting the Create Publisher menu item, this code illustrates how
your application might set up the preview for the edition, set the default name for the edition
container, and call an application—defined function (DoNewPublisher function) to display the
publisher dialog box on the user’s screen. An application might call the DoNewPublisher
function as a result of the user making a menu selection to create a publisher or in response to
handling the Create Publisher event. See the Apple Event Manager chapter in this volume for
an example handler that handles the Create Publisher event.

L

T
Q
:
rc
=
7_
m
3
2
3:aH

VAR

thisDocument: MyDocumentInfoPtr;
promptForDialog: Boolean;
preview: landle;
previewFormat: TormatType;
defaultLocation: EditionContainerSpec;

BEGIN

{Get a preview to show the user. The MyGetPreviewForSelection }
{ function returns a aandle to the preview.)

preview :: MyGetPreviewForSelection(thisDocument);
previewFormat :: 'TEXT‘;

Using the Edition Manager 4-27

|PR2017-01828

Ubisoft EX1002 Page 216

IPR2017-01828
Ubisoft EX1002 Page 217

Inside Macintosh, Volume VI

defaultLocation :: MyGetDefaultEditionSpec(thisDocument);
promptForDialog :: TRUE;
myErr :: DoNewPublisher(thisDocument, promptForDialog, preview,

previewFormat, defaultLocation);
END;

Creating the Edition Container

Use the CreateEditionContainerFile function to create an edition container to hold the

publisher data.

 err :: CreateEditionContainerFile (editionFile, dereator,

editionFileNameScript);

This function creates an edition container. The edition container is empty (that is, it does not
contain any formats) at this time.

To create a customized icon for the edition container, put the creator signature of your appli-
cation with the icon in your application’s bundle. See the Finder Interface chapter in this
volume for additional information. Depending on the contents of the edition, the file type will
be 'edtp‘ (for graphics), 'edtt' (for text), or 'edts‘ (for sound).

After creating the edition container, use the NewSection function to create the section record
and alias record for the section.

Listing 4-4 illustrates how to create a publisher. The DoNewPublisher function shown in the
listing is a function provided by an application. Note that an application might call the
DoNewPublisher function as a result of the user making a menu selection to create a publisher
or in response to handling the Create Publisher event. See the Apple Event Manager chapter in
this volume for an example handler that handles the Create Publisher event.

The parameters to the DoNewPublisher function include a pointer to information about the
document, a Boolean value that indicates if the function should display the new publisher
dialog box, the preview for the edition, the preview format, and an edition container.

The function displays the publisher dialog box if requested, letting the user accept or
change the name of the edition and the location where the edition should reside. Use the
CreateEditionContainerFile function to create the edition with the given name and location.
Use the NewSection function to create a new section for the publisher.

After the section is created, you must write out the edition data. Be sure to add the newly
created section to your list of sections for this document. There are several different
techniques for creating publishers and unique IDs; this listing displays one technique.

Listing 4-4. Creating a publisher

FUNCTION DoNewPublisher(thisDocument: MyDocumentInfoPtr;
promptForDiaiog: Boolean; preview: Handle;
previewFormat: FormatType;
editionSpeC: EditionContainerSpec) : OSErr;

VAR

getLastErr, dialogErr: OS
createErr, sectionErr: OS

rr
rr

: .A r
r .A I

4—28 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 217

IPR2017-01828
Ubisoft EX1002 Page 218

The Edition Manager

resID: Integer;
:hisSectionH: SectionHandle;
reply: NewPublisherReply;

BEGIN

{Set up info for new publisher reply record}
reply . replacing 2: FALSE;
reply.usePart :: FALSE;
reply.preview :7 preview;
reply.previewFormat 2: previewFormat;
reply.container :2 editionSpec;

IF promptForDialog THEN
 BEGIN {user interaction is allowed}

{Display dialog box and let user select.}
dialogErr :: NewPublisherDialog(reply);
{Dispose of preview data hand-e.}
DisposHandle(reply.preview);
{There's usually no error returned here, but if there is, }

then it makes no sense to continue with this operation.)
IF dialogErr <> noErr THEN MyErrHandler(dialogErr);
{Do nothing if user canceled.}
IF reply.canceled THEN

BEGIN

DoNewPublisher :: userCanceledErr;
3XIT(DoNewPublisher ;

END;
END;
{If user wants Lo replace an existing file, don't create one.}
IF NOT reoly.replacing THEN
BEGIN

createErr ::

CreateEditionContainerFile(reply.container.theTile,
kAppSignature,
reply.container.the7ileScript);

{If the create failed, then this operation can't be completed}
:F createErr <> noErr THEN

BEGIN

DoNewPublisher :2 errAEPermissionDenied;
EXIT(DoNewPublisher);

END;
END;

{Advance counter to make a new unique sectionID for this }
{ document. I: is not required that you equate section IDs with }
{ resources.}
:hisDocumentA.nextSectionID

L.

R
a_H_
c
s
;’H
m
=
u
3:fl:'1

LhisDocument“.neXtSectionID + 1;

{Create a publisher section.)
sectiongrr :2 NewSec:ion(reply.container,

thisDocument“.fileSpecPtr,
sLPublisher, thisDocumentA.nextSectionID,
pumOnSave, LhisSecLionH);

IF (sec:ion3rr <> noErr) & (sectionErr <> multiplePublisherWrn) &
(sec:ion3rr <> notThePublisherWrn) THEN
{If a new section could not be created, don't continue with this }
{ operation.}
MyErrHandler(sectionErr);

U

resID :2 thisDocument“.neXtSectionID;
(Confinued)

Using the Edition Manager 4-29

|PR2017-01828

Ubisoft EX1002 Page 218

IPR2017-01828
Ubisoft EX1002 Page 219

Inside Macintosh, Volume VI

Listing 4-4. Creating a publisher (Continued)

{Add this section/alias pair to my internal bookkeeping.)
{ The AddSectionAliasPair is a routine to accomplish this.)
AddSectionAliasPair(thisDocument, thisSectionH, resID);

{Write out first edition.)
DoWriteEdition(thisSectionH, thisDocument);

(Remember that the section and alias records need to be i
{ saved as resources when tie user saves the document.)

{Set the function result appropriately)
DoNewPublisher 2: MyGetLastError;

LJ
sND; {DoNewPublisher}

Opening an Edition Container to Write Data

Several routines are required to write (publish) data from a publisher to an edition container.
Before writing data to an edition, you must use the OpenNewEdition function. This function
should be used only for a publisher within a document. Use this function to initiate the
writing of data to an edition.

 err :: OpenNewEdition (publisherSeCtionH, dereator,
publisherSectionDocument, refNum);

A user may try to save a document containing a publisher that is unable to write its data to an
edition—because another publisher (that shares the same edition) is writing, another subscriber
(that shares the same edition) is reading, or a publisher located on another computer is regis—
tered to the section. In such a case, you may decide to refrain from writing to the edition so
that the user does not have to wait. You should also refrain from displaying an error to the
user. The contents of the publisher are saved to disk with the document. The next time that the
user saves, you can write the publisher data to the edition. You should discourage users from
making multiple copies of the same publisher and pasting them in the same or other documents
by displaying an alert box (see “Duplicating Publishers and Subscribers” later in this chapter).

If a user clicks Send Edition New within the publisher options dialog box (to write publisher
data to an edition manually), and the publisher is unable to write its data to its edition (for any
of the reasons outlined above), you should display an error message.

After you are finished writing data to an edition, use the CloseEdition function to close
the edition.

Listing 4—5 illustrates how to write data to an edition. As described earlier, you must open the
edition, write each format using the WriteEdition function, and close the edition using the
CloseEdition function. This listing shows how to write text only. If the edition is written
successfully, subscribers receive Section Read events.

Listing 4-5. Writing data to an edition

PROC<DUR~ DoWriteEdi:ion(thePublisherz SectionHandle);

VAR

eRef um: EditionRefNum;
openErr: OSErr;

4-30 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 219

IPR2017-01828
Ubisoft EX1002 Page 220

The Edition Manager

writeErr: OQErr;
closeFrr: OSErr;
LhisDocument: My)ocunen:1nfoptr;
textHandle: Handle;

BEGIN

{Find out which document this section belongs to.
{ The FindDocumont function accomplishes this.)
thisDocument :: FlndDocument(thoPublisher);

{Open edition for writing.}
openErr :: OpenNewEdition(theFublisher, kAppSignature,

thisDocumentA.fileSpecPtr, eRefNum);

 IF openErr <> no rr TH N
{If the open failed, then you can't write, }
i so don‘t continue with this operation.}
MyErrHandler(open3rr);

{Got the text data to write. The GetTextlnSection }
{ junction accomplishes this.}
textHandle :: GetTeXtTnSection(thePualishor, thisDocument);

{Write out text data.}
Hoock(textdandle);
writeErr :: WriteEdition(eRefNum, 'TEXT', textHandle“,

GetHandloSize(textHandle));

HJnLock(:extHandle);
IF writeErr <> nOErr THEN
BEGIN

{There were problems writing; simply close the edition. }
{ when successful : FALSE, the edition data <> section data. l
(NOie: this isn': fatal or bad; it just means that the l
{ da;a wasn't wriiten and no Sectio: Read events will be }
{ generated.}

 closeErr :: CloseEditionleRefNum, FALSE);
‘ND FT-S ‘

BEGIN

{The write was successful; now close the edition. }
{ when successful : TRUE, the edition data 7 section data. }

{ This edition is now available to any subscibers. }
{ Soc;ion Read events will be sent to current subscribers.}
closeErr :: CloseEdition(cRofNum, TRUE);

END;
END; {DOWriteEditiOI’l}

L

J;
—k‘J
a.—.n—.H
T:1-!
7.—
2.?
3..u

T:FD
'1

Creating a Subscriber

You need to create a Subscribe To menu command in the Edit menu. When a user chooses

Subscribe To from this menu, your application should display the subscriber dialog box on
the user’s screen.

Use the NeWSubscriberDialog function to display the subscriber dialog box on the user’s
screen. This function is similar to the CustomGetFile procedure described in the Standard
File Package chapter in this volume.

To create a subscriber. you must get information from the user, such as the name of the
edition being subscribed to. The dialog box displays a listing of all available editions and

Using the Edition Manager 4-31

|PR2017-01828

Ubisoft EX1002 Page 220

IPR2017-01828
Ubisoft EX1002 Page 221

Inside Macintosh, Volume VI

allows the user to see a preview (thumbnail sketch) of the edition selected. Figure 4-12
shows a sample subscriber dialog box.

Preview a Editions v :iLama Prieta

':'.2. Simple graphic.
C) sales data

€13 sales report

Figure 4-12. A sample subscriber dialog box

The subscriber dialog box allows the user to choose an edition to subscribe to. The
NewSubscriberDialog function handles all user interaction until a user clicks Subscribe
or Cancel. When a user selects an edition container, the Edition Manager accesses the
preview for the edition container (if it is available) and displays it.

You pass a new subscriber reply record as a parameter to the NewSubscriberDialog function.

TYPE NewSuioscriberRep ly :
RECORD

canceled: Boolean; {user canceled dialog box}
formatsMask: SignedByte; {formats required]
container: EditionCOntainchpec {edition selected}

END;

The canceled field returns a Boolean value of TRUE if the user clicked Cancel. To indicate

which edition format types (text, graphics, or sound) your application can read, you set the
forrnatsMask field to one or more of these constants:

CCNST kPICTformatMask : 1; {Can subscribe to 'PICT', }
k‘l'lz‘x‘l‘formatMask : 2; { 'TRXT‘ , and }
ksndFormatMask ~ 4; { 'srtd ' .}

To support a combination of formats, add the constants together. For example, a formatsMask
of 3 displays both graphics and text edition format types in the subscriber dialog box.

The container field is of data type EditionContainerSpec. You must initialize the container
field with the default edition volume reference number, directory ID, filename, and part. To
do so, use the GetLastEditionContainerUsed function to obtain the name of the last edition

displayed in the dialog box.

err" :: GetI.astEditionCcmtainerUsed (conLalrtcr);

This function returns the last edition container for which a new subscriber was created

using the NewSection function. If there is no last edition, or if the edition was deleted,

4—32 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 221

IPR2017-01828
Ubisoft EX1002 Page 222

The Edition Manager

GctLastEditionContainerUsed still returns the correct volume reference number and

directory ID to use, but leaves the filename blank and returns the fnfErr result code.

The container field is of data type EditionContainerSpec.

TYPE EditionContainerSpec :

RECORD

theiile: TSSpec; {file containing edition }
{ data}

thejileScrip:: ScriptCode; {script code of filename}
thePart: nongint; {which part of file, }

{ always kPartsNozUsed}
thePartNane: StrSl; {not used in version 7.0}

thePartScript: ScriptCode {not used in version 7.0}
END;

The field theFile is of type FSSpec. See the File Manager chapter in this volume for further
information on file system specification records.

After filling in the fields of the new subscriber reply record, pass it as a parameter to the
NewSubscriberDialog function, which displays the subscriber dialog box.

err :: NewSubscriberDialog (reply);

After displaying the subscriber dialog box, call the NewSection function to create the section
record and the alias record. See “Creating the Section Record and Alias Record” earlier in this
chapter for detailed information.

If the subscriber is set up to receive new editions automatically (not manually), the Edition
Manager sends your application a Section Read event. Whenever your application receives a
Section Read event, it should read the contents of the edition into the subscriber.

Listing 4—6 illustrates how to create a subscriber. As described earlier, you must set up and
display the subscriber dialog box to allow the user to subscribe to all available editions. After
your application creates a subscriber, your application receives a Section Read event to read in
the data being subscribed to. Be sure to add the newly created section to your list of sections
for this file. There are many different techniques for creating subscribers and unique IDs; this
listing displays one technique.

a

EamP!m
o
:
2?—
m
=
w

an(D
a

Listing 4-6. Creating a subscriber

PROCLDURL DoNewSubscriber(thisDocument: MyDocumentInfoPtr);

VAR

getLastErr: OSErr;

dialogHrr: OSErr;
sectionErr; OSErr;
resID: In:eger;
thiSSectionH: SectionHandle;

reply: NewSubscriberReply;

(Continued)

Using the Edition Manager 4-33

|PR2017-01828

Ubisoft EX1002 Page 222

IPR2017-01828
Ubisoft EX1002 Page 223

Inside Macintosh, Volume V]

Listing 4-6. Creating a subscriber (Continued)

 BEGIN

{Put detault edition name into reply record.)
getLastErr :2 GotLastEditionContainerUsed(reply.container);

{Can subscribe to pic:ures or text.)
reply.tormatsMask :: (PICTformatsMask + kTEXTtormatsMask;

{Display dialog box and let user select.)
dialogFrr :: NewSubscriberDialog(reply);
{There‘s usually no error returned here, but if there is,)
{ then it makes no sense to continue with this operation.)
{ Pass control to MyErrHandler.)

IF dialogErr <> no rr TH<N My~rrHandler<dialogErr);

{Do nothing if user canceled.)
IF reply.canceled THEN HXIT(DoNewSubscriber);

{Advance counter to make a new unique sectionID for this)
{ document. It is not necessary to equate section IDs with)
{ resources.)

thisDocumentA.nextSectionID 2: thisDocument“.nextSectionZD + 1;

{Create a subscriber section.)

scctionErr :: NewSection<reply.Container,
ihisDocumcnt“.fileSpecPtr,
stSubscriber,
:hisDocumentA.nextSectionID,
sumAutomatic, thisSectionH);

IF sectionErr <> noErr THEN

{Same reasoning as above. If a new section could not be)
{ created, don‘: con:inue with this operation. Pass)
{ control :0 MyErrHandler.)
MyErrHandler(section;rr);

resID 2: tiisDocumentA.nextSectionLD;

{Add this section/alias pair to your internal bookkeeping. }
{ AddSectionAliasPair is a routine to accomplish this.)
AddSectionAliasPair(thisDocument, thisSectionH, resID);

{Remember that you will receive a Section Read event to read

{ in the edition that you just subscribed to because the initial)
{ mode is set to sumAutomatic.}

{Remember that the section and alias records need to be saved)
{ as resources when the user saves the document.}

'LLJ ND; {DoNewSubscriber}

4-34 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 223

IPR2017-01828
Ubisoft EX1002 Page 224

The Edition Manager

Opening an Edition Container to Read Data

Before reading data from an edition, you must use the OpenEdition function. Your applica-
tion should only use this function for a subscriber. Use this function to initiate the reading of
data from an edition.

 err :: OpenEdition (subscriberSectionH, refNum);

As a precaution, you should retain the old data until the user can no longer undo. This allows
you to undo changes if the user requests it.

Your application can supply a procedure such as DoReadEdition to read in data from the
edition to a subscriber. When your application opens a document containing a subscriber
that is set up to receive new editions automatically, the Edition Manager sends you a Section
Read event if the edition has been updated. The Section Read event supplies the handle to
the section that requires updating. Listing 4-7 provides an example of reading data from
an edition.

Choosing Which Edition Format to Read

After your application opens the edition container for a subscriber, it can look in the edition
for formats that it understands. To accomplish this, use the EditionHasFormat function.

 err :7 EditionHasFormat (whichEdition, whichFormat, formatsize);

The EditionHasFormat function returns the noTypeErr result code if a requested format
is not available. If the requested format is available, this function returns the noErr result
code, and the formatSize parameter contains the size of the data in the specified format or
kFormatLengthUnknown (—l), which signifies that the size is unknown.

After your application opens the edition container and determines which formats it wants to
read, call the ReadEdition function to read in the edition data. See “Reading and Writing
Edition Data” earlier in this chapter for detailed information.

After you have completed writing the edition data into the subscriber section, call the
CloseEdition function to close the edition. See “Closing an Edition” earlier in this chapter
for detailed information.

J—

ma

3c
=
7_
a
:
2.3

CI:
2

Listing 4—7 illustrates how to read data from an edition. As described earlier, you must open
the edition, determine which formats to read, use the ReadEdition function to read in data,
and then use the CloseEdition function to close the edition. This listing shows how to read
only text.

Using the Edition Manager 4-35

|PR2017-01828

Ubisoft EX1002 Page 224

IPR2017-01828
Ubisoft EX1002 Page 225

Inside Macintosh, Volume VI

Listing 4-7. Reading in edition data
1

 PROCEDURE DoReadEdition(theSubscriber: SectionHandle);

VAR

eRethm: EditionRefNum;
openErr: OSErr;
readErr: OSErr;
closehrr: OSErr;
thislocument: MyDocumentInfoPtr;
textiandle: Handle;
formatLen: Size;

BEGIN

{Find out which document this section belongs to. }
{ The FindDocument function accomplishes :his.}
thisDocument :: FindDocument(theSubscriber);

{Open the edition for reading.}
openErr :: OpenEdition(theSubscriber, eRefNum);
lF OpenErr <> noErr THEN
{If the open failed, then most likely you can't read, }
{ so don‘t continue with this operation.}

MyErrHandler(open3rr);

{400k for 'TEXT‘ format.)
IF EditionHasFormat(eRefNum, 'TEXT‘, formatLen) : nOer TH;N
BEGlN

{Get the handle of location to read to. }

{ The GetTextlnSection function accomplishes this.}

textHandle :* GetTeXtInSection(theSubscriber, thisDocument);
SetHandleSize(texLHandle, iormatLen);
HLoc<(textHandle);
readErr :: ReadEdition<eRefNum, 'TEXT', tex:HandleA,

formatLen);
HJnLock(textHandle);

 IF readErr : no~rr TH~N

BEGIN

{The read was successful; now close the edition. }
{ When successful : TRUE, the section data : edition data.}
closeirr :: Closerition(eRefNum, TRUE);
EXIT(30ReadEdition);

3ND ;

INU

'TEXT' format wasn't iound or read error; just close }
tie edition. FAJSE tells the Edition Manager that your application }
did not get the latest edition.}

closeErr :: CloseEdition(eReFNum, FALSE);

{
{
{

m ND; {DoReadEdition}

4 -36 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 225

IPR2017-01828
Ubisoft EX1002 Page 226

The Edition Manager

Using Publisher and Subscriber Options

There are special options associated with publishers and subscribers within documents. Your
application can use the publisher and subscriber options dialog boxes provided by the Edition
Manager to make these choices available to the user. You should make these dialog boxes
available to the user by creating a menu command in the Edit menu that toggles between
Publisher Options (when the user has selected a publisher within a document) and Subscriber
Options (when a user has selected a subscriber within a document).

When a user chooses these menu commands, you need to display the corresponding publisher
or subscriber options dialog box. Use the SectionOptionsDialog function to display the appro—
priate dialog box on the user’s screen.

err :: SecLionOp:ionsDialog (reply);

Each dialog box contains infomiation regarding the section and its edition. Figure 4- 13
shows the publisher options dialog box with the update mode set to On Save.

Publisher to: €113 Simple graphic V

; Send Editions: ~ .
Cancel Publisher

. (E) On Saue

OManuallg Send Edition Now
, Latest Edition Tuesdag y October 17, 1939 5 04 :OIZI PM

Figure 4-13. The publisher options dialog box with update mode set to On Save

Figure 4-14 shows the publisher options dialog box with the update mode set to Manually.

Publisher to: £212 Simple graphic v

' Send Editions: - ~ _Cancel Publisher
C) 0n Saue

© Manually Send Edition Now
Latest Ed1tion Mondau , .June 18, 1990 4 21 39 PM
Last Change Mondag. June 13; 1990 4 21 39 PM Cancel

Figure 4-14. The publisher options dialog box with update mode set to Manually

As a shortcut for the user, you should display the publisher options dialog box when the user
double-clicks on a publisher section within a document.

Using the Edition Manager 4—37

|PR2017-01828

Ubisoft EX1002 Page 226

IPR2017-01828
Ubisoft EX1002 Page 227

Inside Macintosh, Volume V]

Figure 4—15 shows the subscriber options dialog box with the update mode set to
Automatically.

Subscriber to: {3 Simple graphic v

(Bet EdItIons: ‘ Cancel Subscriber
©flutomaticellg
OManuellg Gel Edition Now Open Publisher

Latest Edition Tuesdag, October 17, 1989 5 04 00 PM V

Figure 4-15. The subscriber options dialog box with update mode set to Automatically

Figure 4-16 shows the subscriber options dialog box with the update mode set to Manually.

Subscriber to: {:3 Simple graphic v

' tE 't' : \
GE m ions Cancel Subscriber

Oflutomaticallg

®Manually Get Edition Now [1an Publisher
Latest Edition Mondag , June 18, 1990 4 17 33 PM

Last Reeewed Mondau,dune18, 1990 4 17 33 PM Cancel
Figure 4-16. The subscriber options dialog box with update mode set to Manually

As a shortcut for the user, you should display the subscriber options dialog box when the
user double-clicks on a subscriber section within a document.

You pass a section options reply record as a parameter to the SectionOptionsDialog function.

TY PH SectionOptionsReply :

RECORD

canceled: Boolean; {user canceled dialog box}
changed: Boolean; {changed section record}
sectionH: SectionHandle; {handle to the specified }

{ section record}
acLion: ResType {action codes}

END;

Set the sectionH parameter to the handle to the section record for the section the user selected.

Upon return of the SectionOptionsDialog function, the canceled and changed fields are set. If
the canceled parameter is set to TRUE, the user canceled the dialog box. Otherwise, this
parameter is FALSE. If the changed parameter is TRUE, the section record is changed. For
example, the user may have changed the update mode.

4-38 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 227

IPR2017-01828
Ubisoft EX1002 Page 228

The Edition Manager

The action parameter contains the code for one of five user actions. All action codes dismiss
the publisher and subscriber options dialog boxes when complete.

I action code is 'read' for user selection of the Get Edition Now button

I action code is 'writ' for user selection of the Send Edition Now button

I action code is 'goto' for user selection of the Open Publisher button

I action code is 'cncl‘ for user selection of the Cancel Publisher or Cancel Subscriber button

I action code is ' ' ($20202020) [or user selection of the OK button

Listing 4-8 shows an example of how your application can respond to the action codes
received from the section options rcply rccord. There are several different techniques that
your application can use to accomplish this—this listing shows one technique.

Listing 4-8. Responding to action codes
 PROCEDURE DoOptionsDialog(theSection: SectionHandle);

VAR

reply: SectionOptionReply;
theEditionInfo: EditionInfoRecord;
action:
sodErr:

geiErr:
gpiErr:

BEGIN

reply.sectionH z: theSection;
sodErr :: SectionOptionsDialog(reply);

{Determine what the user did and handle appropriately.)
IF reply.canceled THEN

{The user Changed his/her mind; simply return.}
EXIT(DoOptionsDialog);

L

m
E.2o
=
?_
m
=2::
xO'1IF reply.cnanged THEN

{The section record has Changed; make note of this. }
{ SectionHasCharged is a routine to accomplish this.}
SectionHasChanged(theSection);
{If you customize, you may want to do some posteprocessing now.)

action :: reply.action; {Get the action code.)

IE (action : 'read') THEN
BEGIN {User selected Get Edition Now button.}

DoReadEdition(theSection);

EXIT(DoOptionsDialog);
ND;

 iii
(Confinued)

Using the Edition Manager 4-39

|PR2017-01828

Ubisoft EX1002 Page 228

IPR2017-01828
Ubisoft EX1002 Page 229

Inside Macintosh, Volume V]

Listing 4-8. Responding to action codes (Continued)

l—l T (action : 'writ') THEN
BEGIN {User selected Send Edition Now button.}

DoWriteEdition(theSection);
EXIT(DOOpLionsDialog);

 EID;

T (action : 'go:o‘) THEN
BEGIN {User selected Open Publisher button.}

geiErr :: GetEditionInfo(tieSection, theEditionInfo);
{There‘s usually no error re:urned here, but if }

' tiere is, tien don‘t coniinue with this operation.}
IF geisrr <> noFrr THFN MyTrrHandler(gei3rr);

gpsErr :: GotoPublisherSec:ion(theRditionInfo.con:ainer);
{Same comment as above. Pass control to dyErrHandler }

{ i: tiere's an error.)

IF gpsErr <> n0*rr THfiN Myjrrhandler(gps?rr);
EXIfllDoOptionsDialog);

:EJD;

IF (action 7 'cncl') THEN
BEGIN {User selected Cancel Publisher or Cancel Subscriber button.}

{Call the UnRegisterSection function and dispose of the }
{ section record and the alias record.)
EXITlDoOptionsDialog);

END;

END; {DoOptionsDialog}

The following sections describe the features of me publisher and subscriber options
dialog boxes.

Publishing a New Edition While Saving or Manually

By default, your application should write publisher data to an edition each time the user
saves the document and the contents of the publisher differ from the latest edition. In the
publisher options dialog box. die user can Choose to write new data to an edition each time

the document is saved (by clicking On Save) or only when the user specifically requests it
(by clicking Manually).

When the update mode is set to manual, a user must click the Send Edition Now button

within the publisher options dialog box to write publisher data to an edition. When a user
clicks Send Edition Now. the section options reply record contains the action code ‘writ‘.
Write out the new edition beginning with the OpenNewEdition function. Writing to an edition
manually is useful when a user tends to save a document numerous times while revising it.
4-40 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 229

IPR2017-01828
Ubisoft EX1002 Page 230

The Edition Manager

Each time the user saves the document, check the update mode of the publisher section. If the
publisher section sends its data to an edition on save. check to see whether the publisher data
has changed since it was last written out to the edition. If so, write out the new edition.

In addition, you may also support a Stop All Editions menu command to provide a method
for temporarily suspending all update activity. See “Publishers, Subscribers, and Editions"
earlier in this chapter for additional information.

Subscribing to an Edition Automatically or Manually

By default, your application should subscribe to an edition each time new edition data becomes
available. In the subscriber options dialog box, the user can choose to read new data from an
edition as the data is available (by clicking Automatically) or only when the user specifically
requests it (by clicking Manually).

When the update mode is set to manual, the user must click the Get Edition Now button
within the subscriber options dialog box to receive new editions. When a user clicks this
button, the section Options reply record contains the action code 'read'. Read in the new
edition beginning with the OpenEdition function. See “Opening an Edition Container to
Read Data” earlier in this chapter for detailed information.

When the update mode is set to automatic, your application receives a Section Read event
each time a new edition becomes available. In response, you should read the new edition
data beginning with the OpenNewEdition function.

Your application does not receive Section Read events for subscribers that receive new
editions manually.

You may also support a Stop All Editions menu command to provide a method for
temporarily suspending all update activity. See “Publishers, Subscribers, and Editions”
earlier in this chapter for additional information.

Canceling Sections Within Documents

The option of canceling publishers and subscribers is available to the user through the Cancel
Publisher and Cancel Subscriber buttons in the corresponding options dialog boxes. When
the user wants to cancel the publisher or cancel the subscriber within a document, the action
code of the section options reply record is 'cncl'. See “Relocating an Edition” later in this
chapter for additional information on canceling a section.

a.

M
Q.._.
:1a
:5
7_id
in
5g:

cmon-:

When a user cancels a section (either a publisher or subscriber) and then saves the document,
or when a user closes an untitled document (which contains newly created sections) without
saving, you must unregister each corresponding section record and alias record using the
UnRegisterSection function. In addition, you should also delete the section record and alias
record using the DisposHandle procedure. See the Memory Manager chapter in Volume I for
additional information on the DisposHandle procedure.

Using the Edition Manager 4-41

|PR2017-01828

Ubisoft EX1002 Page 230

IPR2017-01828
Ubisoft EX1002 Page 231

Inside Macintosh, Volume VI

When a user cancels a publisher section and then saves the document, or when a user closes

an untitled document (which contains newly created publishers) without saving, you must
also delete any corresponding edition containers (in addition to deleting section records and
alias records).

Do not delete an edition container file, section record, or alias record until the user saves the

document—the user may decide to undo changes before saving the document.

To locate the appropriate edition container to be deleted (before you use the UnRegisterSeetion
function), use the GetEditionInfo function.

 err :2 GetEditioninfo (sectionH, editionlnfo);

The editionlnfo parameter is a record of data type EditionInfoRecord.

TYP4 «ditionlnfoRecord :

{ECOKD

chate: TineS:amp; {date edition container }
i was created}

mdDate: TimeStamp; {date of Last change}
dereator: OS"ype; {file creator}
deype: OS"ype; {file type}
container: EditionContainerSpec {the edition}

END;

The GetEditionInfo function returns the edition container as part of the edition information.

The chate field contains the creation date of the edition. The mdDate field contains the modi—
fication date of the edition.

The deype and the dereator fields are the type and creator of the edition file. The container
field includes a volume reference number, directory ID, filename, script, and part number for
the edition.

To remove the edition container, use the DeleteEditionContainerFile function.

 err :: DeleteEditionContainerFi1e (editionFile);

Locating a Publisher Through a Subscriber

The user can locate a publisher from a subscriber within a document by clicking the Open
Publisher button in the subscriber options dialog box. As a shortcut, Apple suggests that you
also allow the user to locate a publisher when the user selects a subscriber within a document
and presses Option—double—click.

4-42 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 231

IPR2017-01828
Ubisoft EX1002 Page 232

The Edition Manager

When the action code of the SectionOptionsReply record is 'goto', use the
GoToPublisherSection function.

err :: GoToPublisherSection (container);

The GoToPublisherSection function locates the correct document by resolving the alias in the
edition. and it launches the document’s application if necessary (the Edition Manager sends an
Open Documents event). The Edition Manager then sends the publishing application a Section
Scroll event. If the document containing the requested publisher is located on the same com-
puter as its subscriber, the document opens and scrolls to the location of the publisher. If the
document containing the requested publisher is located on a shared volume (using file sharing),
the document opens and scrolls to the location of the publisher only if the user has privileges
to open the document from the Finder.

You need to provide the GoToPublisherSection function with the edition container. To
accomplish this, use the GetEditionInfo function. See the previous section, “Canceling
Sections Within Documents,” for information on the GetEditionInfo function.

Renaming a Document Containing Sections

If a user renames a document that contains sections by choosing Save As from the File menu,
or if a user pastes a portion of a document that contains a section into another document, use
the AssociateSection function.

Use the AssociateSection function to update the alias record of a registered section.

err := AssociateSection (sectionH, newSectionDocument);

The AssociateSection function internally calls the UpdateAlias function. It is also possible to
update the alias record using the Alias Manager (see the Alias Manager chapter in this volume
for additional information).

Displaying Publisher and Subscriber Borders

Each publisher and subscriber within a document should have a border that appears when a
user selects the contents of these sections. You should display a publisher border as 3 pixels
wide with 50 percent gray lines and a subscriber border as 3 pixels wide with 75 percent gray
lines. Separate the contents of the section from the border itself with one pixel of white space.
To create your borders, you should use patterns—not colors. Depending on the user’s
monitor type, colors may not be distinguishable.

h

r:O...
:-
g.
E
7..
:3
=N
3:
5‘:

Using the Edition Manager 4-43

|PR2017-01828

Ubisoft EX1002 Page 232

IPR2017-01828
Ubisoft EX1002 Page 233

Inside Macintosh, Volume VI

In general, borders for publishers and subscribers should behave like the borders of 'PICT'

graphics within a word-processing document. A border should appear when the user clicks
within the content area of a publisher or a subscriber and disappear when the user clicks
outside the content area of a section. You can also make all publisher and subscriber borders
appear or disappear by implementing an optional Show/Hide Borders menu command.
Figure 4—17 displays the Edition Manager Show/Hide Borders menu command in the
Edit menu.

 Unda

862

Cut 38H

Copy 88C
Paste Bell
Select all 88H

Create Publisher...
Subscribe Ta...

Subscriber flptians...
Show Borders

Show Clipboard

Figure 4-17. Edit menu with Show/Hide Borders menu command

Depending on your application, you may choose to include resize handles or similar compo-
nents in your borders. See “Object-Oriented Graphics Borders” later in this chapter for an
example of resize handles.

Whenever a user selects a portion of a publisher or inserts a cursor into the publisher, you
should display the border as 50 percent gray. A user can copy the contents of a publisher or
subscriber without copying the section itself by selecting the data, copying, and then pasting
the data in a new location. A user can cut and paste a selection that contains an entire publisher
or subscriber, but you should discourage users from making multiple copies of a publisher.
See “Duplicating Publishers and Subscribers” later in this chapter for detailed information.

When the user modifies a publisher, your application should grow or shrink its border to
accommodate the new dimension of the section.

You should display only one publisher border within a document at a time. If a cursor is

inserted within a publisher that is contained within a larger publisher, you should display
only the smaller, internal publisher border. If it is absolutely necessary to display all section
borders within a document at the same time, you can create a Show/Hide Borders menu item.

You do not need to provide support for publishers contained within other publishers. If
you do not, you should dim the Create Publisher menu command (to indicate that it is not

selectable) when a user attempts to create a publisher within an existing publisher.

4-44 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 233

IPR2017-01828
Ubisoft EX1002 Page 234

The Edition Manager

Figure 4-18 shows the recommended border behavior for publishers when borders are
shown, when a user selects the contents of a section, and when a user selects data within

a document that includes a publisher section.

Devices connected to the SCSI port on the hack

of the main unit must have the proper number =
of terminators for the devices to work. correctlg.
land to prevent damage to the SCSI chip inside :
gour computer.

contents highlighted “‘EEI

:-nnected to the : J.

pa...
:5C
D
7a
h:
Da:

3Ga'1

Figure 4-18. Publisher borders

Figure 4—19 shows the recommended border behavior for subscribers when borders are
shown, when a user selects the contents of a section, and when a user selects data within
a document that includes a subscriber section.

Using the Edition Manager 4-45

|PR2017-01828

Ubisoft EX1002 Page 234

IPR2017-01828
Ubisoft EX1002 Page 235

Inside Macintosh, Volume V]

borders displayed

Apple SCSI cable terminatcrs :are hardware devices that attach
to a SCSI cable. There must be no
more than two terminatcrs in a
SCSI chain.

contents highlighted

Apple SCSI cable terminatcrs :
are hardware devices that attach
to a SCSI cable. There must be no
more than two terminatcrs in a
SCSI chain.

are de'n-‘i-zzee that attach
ble. There rnu-at be he

Figure 4-19. Subscriber borders

If a user tries to select only a portion of a subscriber, you should highlight the entire contents
of the subscriber. A user cannot edit the data contained within a subscriber. See “Modifying a
Subscriber” later in this chapter for detailed information.

If a user cancels a section using the publisher or subscriber options dialog box, your applica-
tion should leave the contents of the section within the document, but you should be sure to
remove the borders from this data, as it is no longer considered a section.

Generally, the appearance and function of publisher and subscriber borders should be the
same across different applications. See the following sections entitled “Text Borders,”

“Spreadsheet Borders,” “Object-Oriented Graphics Borders,” and “Bitmapped Graphics
Borders” for descriptions of specialized features for publisher and subscriber borders in word
processing, spreadsheet, or graphics applications.

4-46
Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 235

IPR2017-01828
Ubisoft EX1002 Page 236

The Edition Manager

Text Borders

In word-processing documents, a publisher may contain other publishers. However, one
publisher should not overlap another publisher. You should display only one publisher
border at a lime. If an insertion point is placed within a publisher that is encompassed by
another larger publisher, you should display only the smaller internal publisher border.

In exceptional cases, it may be necessary to display more than one publisher or subscriber
border at a time. For example, a publisher may consist of a paragraph that includes a marker
for a footnote. The data contained within the footnote should also be considered part of the
publisher. When a user selects the paragraph, you should simultaneously display a border
around the footnote.

The border of a publisher that contains text should be located between characters within the
text. The insertion point, when placed on such a boundary, should gravitate toward the
publisher. That is, a click in front (to the left) of a publisher border should place the cursor
inside the publisher, so that subsequent typing goes inside the publisher. Clicking at the end
(to the right) of a publisher border should also place the cursor inside the publisher.

Whenever two separate borders are adjacent to one another (side by side), the boundary click
should go in between them. This is also true for a border that is next to other nontextual
aspects of a document, such as ‘PICT' graphics or page breaks.

When a user removes information from a publisher that contains text data, the border should
become smaller to accommodate the new text. When a user adds information to the publisher,
the border should grow to show the enlarged area of the publisher. The insertion point should
remain within the publisher.

If a user highlights the entire contents of a publisher and then chooses Cut from the Edit
menu, you should not delete the publisher border within the document. The user may intend
to delete the existing publisher data and replace it with new data. or the user may want to
move the entire publisher and its data to a new location. Figure 4-20 shows this state.

The first quarter summarg of our regional sales shows the

effectiveness of our new training program. It is clear that

we need togzaoture the remaining sales potential.

4—

[11D.—.n1—.Aa.—...
.7l—u.-.—
3
h?

T)“:’t"1

Figure 4-20. A publisher with contents removed

You should leave the cursor inside the small publisher border for further typing. If the user
inserts the cursor in a new location (instead of typing data inside the existing border), you
need to remove the empty publisher border from the document to allow the user to move the
publisher. This effectively deletes the publisher from the document. If the user pastes the
publisher that is currently held in the Clipboard, you should recreate its border. If the user
cuts or copies other data from the document before pasting the publisher from the Clipboard,
the publisher should be removed from the Clipboard.

Using the Edition Manager 4-47

|PR2017-01828

Ubisoft EX1002 Page 236

IPR2017-01828
Ubisoft EX1002 Page 237

Inside Macintosh, Volume VI

Spreadsheet Borders

Borders around spreadsheet data or other data in arrays should look and behave very much
like text borders. Figure 4-21 shows a typical border within a spreadsheet document.

14390 2749453

16494 L” .:'_"' . 304890-
Figure 4-21. A publisher border within a spreadsheet document

Note that the border goes below the column headers (A, B, C, D) and to the right of the row
labels (1, 2, 3, 4)—it should not overlap these cell boundaries. The border at the bottom and
the border on the right side can be placed within the adjacent cells (outside of the cells that
constitute the publisher).

In contrast to word-processing applications, borders in spreadsheet documents (or other
documents with array data) can overlap. That is, a user can select a row of cells to be a
publisher and an overlapping column of those cells to be another publisher. You should
never display more than one publisher border at a time. When a user selects a spreadsheet
cell that is part of more than one publisher, you should display only the border of the
publisher that was last edited. (This can be accomplished by comparing the modification
dates of the publishers.)

If it is absolutely necessary to display all section borders within a document at the same
time, you can create a Show/Hide Borders command in the Edit menu to toggle all borders
on and off.

When data is added to or deleted from a publisher that consists of a spreadsheet cell or other
array, its border should grow or shrink to accommodate the addition or deletion of data. A
publisher should behave like a named range in a spreadsheet. For example, if a user cuts a
row within a publisher that consists of a named range in a spreadsheet, you should shrink the
publisher data and its border correspondingly.

When a user cuts a publisher and its entire contents within a spreadsheet document, the entire
section should be held in the Clipboard. Do not leave an empty publisher border in a spread—
sheet (as recommended for text borders). If a user attempts to paste a copy of an existing
publisher, you should warn the user by displaying an alert box (see “Duplicating Publishers
and Subscribers” later in this chapter).

4-48 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 237

IPR2017-01828
Ubisoft EX1002 Page 238

The Edition Manager

Object-Oriented Graphics Borders

In an object-oriented drawing application, the publisher border should fit just around the
selected objects.

You can provide resize handles that appear with all drawing objects to allow the user to resize
the border of a publisher. Figure 4-22 shows a publisher border with resize handles.

Sample Graphics

Figure 4-22. A publisher border with resize handles

A user can create freeform graphics within drawing applications that cause publisher borders
to seemingly float over the area the user publishes. The border acts like a clipping rectanglew
anything within the border becomes the publisher. Figure 4-23 shows a publisher that
contains clipped graphics and its subscriber in another application.

A user can create publishers and subscribers that overlap each other. Thus, borders may
overlap and it may no longer be possible to turn on a particular border when the user clicks
within a publisher. Drawing applications should provide a menu command, Show Borders,
that toggles to Hide Borders. This command should allow users to turn all publisher and
subscriber borders on or off.

J.

r:
a._.
:2-c_I—fl

7.’7t:.....
N
3:F:'1

Using the Edition Manager 4-49

|PR2017-01828

Ubisoft EX1002 Page 238

IPR2017-01828
Ubisoft EX1002 Page 239

Inside Macintosh, Volume V]

Graphics Publisher

Graphics Subscriber
Figure 4-23. A publisher and subscriber with clipped graphics

Bitmapped Graphics Borders

Creating a border around bitmapped graphics in applications is similar to doing so in object-
oriented drawing applications. The border appears around the selected area. The user can
create overlapping publishers and subscribers in bitmapped graphics applications. You need
to provide a Show/Hide Borders command to allow users to turn all borders on and off.

Duplicating Publishers and Subscribers

Whenever a user clicks a publisher or subscriber border, you should change the contents of
the section to a selected state. You should discourage users from making multiple copies of a
publisher and pasting them in the same or other documents, because the contents of the

edition would be difficult or impossible to predict. Multiple copies of the same publisher also
contain the same control block value. See “Creating and Registering a Section” later in this
chapter for detailed information on control blocks.

4-50 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 239

IPR2017-01828
Ubisoft EX1002 Page 240

The Edition Manager

When a user attempts to create a copy of a publisher that already exists, you should display
an alert box such as the one shown in Figure 4-24.

There is another Publisher open to the
Edition “January Sales."

If there is more than one Publisher to an
Edition, the Edition’s contents aren’t
predictable.

Figure 4-24. Creating multiple publishers alert box

When a user attempts to save a document that contains multiple copies of the same publisher,
display an alert box such as the one shown in Figure 4—25.

"Pear end report” contains two
Publishers to the Edition “January Sales.”

If there is more than one Publisher to an
Edition, the Edition’s contents aren’t
predictable.

Figure 4-25. Saving multiple publishers alert box

If a user decides to ignore your alert box, your application should still save the document, but
you should continue to display this error message every time the user saves this document.

A user can modify the contents of any duplicate publisher, but the contents of the edition will
be whichever publisher was the last to write.

When a user Chooses to copy and paste or duplicate a section, use the HandToHand function
(described in the Operating System Utilities chapter in Volume II) to duplicate the section
record and alias record. Put the alias field of the cloned section record with the handle to the

cloned alias record and generate a unique section identification number for it. When exporting
your Clipboard to the scrap, you should also place the section data, section record, and alias
record in the scrap.

J.

{T}
Q.—.n
:'
:.t
7-—n..1
=
’—
I:P:'1

Use the RegisterSection function (described earlier in “Opening and Closing a Document
Containing Sections”) to register the cloned section’s section record.

A user can select the contents of a publisher without selecting the border and copy just the
data to a new location. In this case, the user has simply copied data (and not the publisher).
Do not create a border for this data in the new location.

Using the Edition Manager 4-51

|PR2017-01828

Ubisoft EX1002 Page 240

IPR2017-01828
Ubisoft EX1002 Page 241

Inside Macintosh, Volume V]

Modifying a Subscriber

When the user selects data or clicks in the data area of a subscriber, you should highlight the
entire contents of the subscriber using reverse video. You can allow users to globally adorn
subscribers. For example, a user might select a subscriber within a document and change
all text from plain to hold. However, you should discourage users from modifying the
individual elements contained within a subscriber—for example, by editing a sentence or
rotating an individual graphical object.

Remember that each time a new edition arrives for a subscriber, any modifications that the
user has introduced are overwritten. Global adornment of a subscriber is much easier for

your application to regenerate.

If you do allow a user to edit a subscriber section, provide an enable/disable editing option
within the subscriber options dialog box using the SectionOptionsExpDialog function,
described later in “Customizing Dialog Boxes.” When you allow a user to edit a subscriber,
you should change the subscriber from a selected state to editable data.

In addition to global adornment, your application may also need to support partial selection
of subscribers to enable spell checking and search operations.

Because a user can modify a publisher just like any other portion of a document, its sub—
scriber may change in size as well as content. For example, a user may modify a publisher
by adding two additional columns to a spreadsheet.

Relocating an Edition

In the Finder, users cannot move an edition across volumes. To relocate an edition, the user

must first select its publisher and cancel the section (remember to remove the border). The user
needs to republish and then select a new volume location for the edition. As a convenience for
the user, you should retain the selection of all the publisher data after the user cancels the
section to make it easy to republish the section.

Customizing Dialog Boxes

The expandable dialog box functions allow you to add items to the bottom of the dialog boxes,
apply alternate mapping of events to item hits, apply alternate meanings to the item hits, and
choose the location of the dialog boxes. See the Dialog Manager chapter in Volume 1 and the
Standard File Package chapters in Volumes I and V1 for additional infomiation.

The expandable versions of these dialog boxes require five additional parameters. Use the
NewPublisherExpDialog function to expand the publisher dialog box.

err :: NewPublisherExpDialog (reply, where, expansionDl'l‘Lrele,
dlgHook, filterProc, yourDataPtr);

4-52 Using the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 241

rm

IPR2017-01828
Ubisoft EX1002 Page 242

The Edition Manager

Use the NewSubscriberExpDialog function to expand the subscriber dialog box.

 err :: NewSubscriberExpDialog (reply, where, expansionDZTLresID,
dlgHook, filterProc, yourDataPtr);

Use the SectionOptionsExpDialog function to expand the publisher options and the
subscriber options dialog boxes.

 err :: SectionOptionsExpDialog (reply, where, expansionDITLresZD,
dlgEook, filterProc, yourDataPtr);

The reply parameter is a pointer to a NewPublisherReply, NewSubscriberReply, or
SectionOptionsReply record, respectively.

You can automatically center the dialog box by passing (~l, —l) in the where parameter.

The expansionDITLresID parameter should be 0 or a valid dialog item list ('DITL') resource
ID. This integer is the ID of a dialog item list whose items are appended to the end of the
standard dialog item list. The dialog items keep their relative positions, but they are moved as
a group to the bottom of the dialog box. See the Dialog Manager chapter in Volume I for
additional information on dialog item lists.

The filterProc parameter should be a valid, expandable modal filter procedure pointer or NIL.
This procedure is called by the ModalDialog function. The filterProc function enables you to
map real events (such as a mouse-down event) to an item hit (such as clicking the Cancel
button). For instance, you may want to map a keyboard equivalent to an item hit. See the
Dialog Manager chapter in Volume I for information on the ModalDialog function.

The dlgHook parameter should be a valid, expandable dialog hook procedure pointer or NIL.
This procedure is called after each call to the ModalDialog filter function. The dlgHook param-
eter takes the appropriate action, such as filling in a check box. The itemOffset parameter to
the procedure is the number of items in the dialog item list before the expansion dialog items.
You need to subtract the item offset from the item hit to get the relative item number in the
expansion dialog item list. The return value from the dlgHook parameter is the absolute
item number.

When the Edition Manager displays subsidiary dialog boxes in front of another dialog box on
the user’s screen, your dlgHook and filterProc parameters should check the refCon field in
the WindowRecord data type (from the window field in the DialogRecord) to determine which
window is currently in the foreground. The main dialog box for the NewPublisherExpDialog
and the NewSubscriberExpDialog functions contains the following constant:

4—
7'
O._H_--_a

7.—u
m_1-3
5
flVD
1

CONST sfMainDialogRefCon : 'stdf‘; {new publisher and l
I new subscriber}

Using the Edition Manager 4-53

|PR2017-01828

Ubisoft EX1002 Page 242

IPR2017-01828
Ubisoft EX1002 Page 243

Inside Macintosh, Volume VI

The main dialog box for the SectionOptionsExpDialog function contains the following constant:

CONST emOptionsDialogRefCon : ‘optu'; {options dialog}

See “Summary of the Edition Manager” later in this chapter for additional constants.

The yourDataPtr parameter is reserved for your use. It is passed back to your hook and
modal filter procedure. This parameter does not have to be of type Ptr———it can be any 32-bit
quantity that you want. In Pascal, you can pass in register A6 for yourDataPtr, and make
dlgHook and filterProc local functions without the last parameter. The stack frame is set up
properly for these functions to access their parent local variables. See the Stande File
Package chapter in this volume for detailed information.

For the NewPublisherExpDialog and NewSubscriberExpDialog functions, all the pseudo—
items for the Standard File Package—~such as sfl-IookFirstCall(—l), sfHookNullEventUOO),
sfHookRebuildList(101), and sfHookLastCall(h2)——can be used, as well as
emHookRedrawPreview(l 50).

For the SectionOptionsExpDialog function, the only valid pseudo—items are sfHookFirstCall(—l),
sfl-IookNullEvent(lOO), sfHookLastCall(—2), emHookRedrawPreview(150),
emHookCancelSection(160), emI—IookGoToPublisher(161), emHookGetEditionNow(162),
emHookSendEditionNow(l 62), emHookManualUpdateMode(l 63), and
e1nHookAutoUpdateMode(164). See the Standard File Package chapter in this volume for
information on pseudo—items.

SUBSCRIBING TO NON-EDITION FILES

Using the Edition Manager, a subscriber can read data directly from another document, such
as an entire 'PICT' file, instead of subscribing to an edition. This feature is for advanced
applications that can set up bottleneck procedures for reading. Figure 4-26 shows a document
that is subscribing directly to a 'PICT' file.

For each application, the Edition Manager keeps a pointer to a bottleneck function. The
Edition Manager never opens or closes an edition container directly. Instead, the Edition
Manager calls the current edition opener. The InitEditionPaek function (described later
in “Initializing the Edition Manager”) sets up the current system opener function.

To override the standard opener function, create an opener function that contains the
following parameters.

 FUNCTION MyOpener (selector: EditionOpenerVerb;
VAR PB: EditionOpenerParamBlock) : OSErr;

4-54 Subscribing to Non-Edition Files

|PR2017-01828

Ubisoft EX1002 Page 243

IPR2017-01828
Ubisoft EX1002 Page 244

”It? Edition Manager

__; Subscriber
‘ .._ __.___

Pianos a palm trees
Figure 4—26. Subscribing directly lo a ’PICT' file

Your opener needs to know which formats the file contains and how the dattat is supposed to
be reed or written.

The opener can allocate a handle or pointer to contain information such as file reference
nunther‘h‘. This Vttlue is passed its iOReINLIIn lo the HO procedures.

The eoUpen :tnd eoUpenNet-r edition opener verbs [described later itt "Culling un Edition
Opener Procedure") return at pointer to a function [ruin the actual reading and writing.

The following sections describe

I hourr to get the current edition opener procedure

n how to set your own edition opener procedure

I how to Call] an edition opener procedure

I the edition opener parameters

.l.

:1

:Er-_.
Getting the Current Edition Opener

When you watnt to get the current edition opener procedure. use the GetEditioquenerProc
function.

1"]"1' : "1-“: Li:;' Lr.5r'-.’.2-;.Ie'l~.~r. E'an: -'r*.;.-—'-.'t«'-: '-;

The trimmer parameter returns the pointer to the current edition opener procedure. A different
current opener is kept for each application. One application's opener is never called by
another application.

.‘irrbrr'rr'br'rrt: to Non—Edition Filer 4—55

|PR2017-01828

Ubisoft EX1002 Page 244

IPR2017-01828
Ubisoft EX1002 Page 245

Inside Macintosh, Volume VI

Setting an Edition Opener

You can provide your own edition opener procedure. To do so, use the SetEditionOpenerProc
function.

 err :: SetEditionOpenerProc (@MyOpener);

The @MyOpener parameter is a pointer to the edition opener procedure that you are pro-
viding. If you set the current opener to be a routine in your own code, be sure to call the
GetEditionOpenerProc function first so that you can save the previous opener. If your opener
is passed a selector that it does not understand, use the previous opener provided by the Edition
Manager to handle it. See the next section for a list of selectors.

Calling an Edition Opener Procedure

You use the CallEditionOpenerProc function to call an edition opener procedure. Since
the Edition Manager is a package that may move, a real pointer cannot be safely returned
for the standard opener and I/O procedures. The system opener and the I/O routines are
returned as a value that is not a valid address to a procedure. The CallEditionOpenerProc
and CallFormathProc functions check for these values and call the system procedures.

You should never assume that a value for a system procedure is a fixed constant.

 err :: CallEditionOpenerProc (selector, PB, routine);

Set the selector parameter to one of the edition opener verbs. The edition opener verbs include

I eoCanSubscribe

I eoOpen

I eoClose

I eoOpenNew

I eoCloseNew

The PB parameter of the CallEditionOpenerProc function is an edition opener param—
eter block.

 TYPE EditionOpenerParamBloCk :
RECORD

info: EditionInfoRecord; {edition container to }
{ be subscribed to}

sectionH: SectionHandle; {publisher or }
{ subscriber }
[requesting open}

document: FSSpecPtr; {document passed}
dereator: OSType; {Finder creator type}
ioRefNum: Longint; {reference number}

4-56 Subscribing to Non-Edition Files

|PR2017-01828

Ubisoft EX1002 Page 245

IPR2017-01828
Ubisoft EX1002 Page 246

The Edition Manager

ioProc: FormatIOProcPtr; {routine to read }
{ formats}

success: Boolean; {reading or writing)

formatsMask:

END;

SignedByte

{ was successful}

{formats required to l
{ subscribe}

The routine parameter of the CallEditionOpenerProc function is a pointer to an edition opener
procedure.

The following list shows which fields of the edition opener parameter block are used by the
edition opener verbs.

Opener
verb Field Description Called by

eoCanSubscribe —> info Edition container to subscribe to. NewSubscriberDialog
—> fonnatsMask Formats required to subscribe. function for a
<— Retum value A noErr code indicates that an edition subscriber

conuunercanbesubscnbedto.A

noTypeErr code indicates that an edition
conuunercannotbesubscnbedto.

eoOpen —> info Edition container to open for reading. OpenEdition and
—> sectionH Subscriber section requesting GetStandardFormats

open or NIL. functions for a
(— ioRefNum Reference number for use by 1/0 subscriber

routine. Not the same as EditionRefNum.
<— ioProc I/O routine to call to read formats.

<— Rctum value A noErr code or appropriate error code.

eoClose —> info Edition container to be closed for CloseEdition and L

reading. GetStandardFormats L:
—> sectionH Subscriber section requesting close functions for a E:

or NTL. subscriber g

—> ioRefNum Value returned by eoOpen. "Z
—> ioProc Value returned by eoOpen. :5:
—> success Success value passed to the 3::CloseEdition function. "

(— Return value A noErr code or appropriate error code.

eoOpenNew —> info Edition container to open for writing. OpenNewEdition
—+ secfionli Pubhshersecfioniequesfing funcfionfora

open or NIL. publisher
—> document Document pointer passed into the

OpenNewEdition function.
—> dereator The dereator passed into the

OpenNewEdition function.
(— ioRefNum Reference number for use by 1/0

routine. Not the same as
EditionRefNum.

(— ioProc I/O routine to call to write formats.

(— Retum value A noErr code or appropriate error code.

Subscribing to Non-Edition Files 4-57

|PR2017-01828

Ubisoft EX1002 Page 246

IPR2017-01828
Ubisoft EX1002 Page 247

Inside Marmmsh, Vm’umc’ W

Opener
verb Field Duscriptiun Called by

L‘UL'luscD-"Cw —> irJl'u Ediljnn container 1::- hc cluscd ul'lur CloscEglil inn I'uncn'un

wrm 111:. I'm :1 puhHHher
> neminnH P'uhliyrhcr acctiun rcqucqing chm:

0r NIL.

—> iuRctNum 'v'u1uo returnull by wt)pcnh-‘cw.
— > inProI: ‘v'a1uc rcIurn-Jd by CHOpancw.
—> HlIL'L'L‘S-‘H SIRIUS}. I.‘ziluu pflHSL'd 1:; the

CIUhCEflJiEiUE] t'uflL‘lIcalL

< Return value A JIUEI’I' cnde or up pmpriulc cmrr code.

The amnple code in Liming 4-9 demonstrates haw to inmull ynur nwn edition opener funcliun.

Listing 4+9. UHing your 0wn edition opener f'unL‘Liun

gU;'ie._r rzcelingen-J: : -'_-'-'..1i L irJILfiEJ-J:L:_*:'I-‘-: Lari-'1 ‘.'; (LI '. c-t -.=l 1.!.'-,‘.'1' :-'-.|‘ '.

:-'.::'-.'in:r 051' :.-'.1.’:'--r1r_ spent-L 3 {Ir|!;‘.-.-;_'_ yam. [Etii‘fififl c'.-_7.-r':1'.t-:' :‘-'-_JJ|.
-.!:I-;1 t.'I<_'-r'. FLJL Lhe- 1:196:39; 1r: [fault Lr; firm: quest-2:2!

t':.’|if'. UEJ-I‘fI-I-l «c.1113 1hr» n:i:;in.al -:-:li'_'_r1r| GEN-I'll?!" if _t '. :1; :u_'1_-',:r,st'_-:: II
l r..- .-.'-e'.~_~'--"L~_1: fiver},- 1L dot—:5 SLUL L;:l-'.Jr':L.~.'.L:'1:|-":.‘r

rl'l‘J-C "INTI: r-i'lr'r'dit fr;:'.CI-_'..'-c~:1-..~r -I 31-:-'_-:'.-r.' lid". :- ic.-r'.:"-;'Jc-:1L":' '95-: r--:
:"i I T iu:ll.-I-:+_'-.".r.—'L Em; :arr-Elnr'k' : 0:52: :

:- .‘-13-'I(.‘-.::I.‘}l;lt:'.<_'rLJ‘.[1[:-'-_1,I;

f-'}-'E-'.Ji r f c.-I_-12-_:Jt‘:| I2 [1: : :

:— 3-11: flit [Loni: |.-.'_' EH:- I :53} ,‘

Ll! _ _ bail L iaiJ:;-'.31.JF_-:I- -1 3-1; ch“
§'_J (fit-1"LqirI-'1J_L'."1'J€';1-.

4—58 Suhm'ribing m Nrm—Edm'mr Hie):

|PR2017-01828

Ubisoft EX1002 Page 247

IPR2017-01828
Ubisoft EX1002 Page 248

The Edition Manager

{This funcLion returns noErr if iL can subscribe to the request }

{ file. It is called by tie Edition Manager to build the list of l
{ files in NewSubscriberDialoq. Notice that it calls the original }
{ opener for files it does not understand.}

FUNCTION MyCanSubscribe (VAR PB: EditionOpenerParamBlock) : OSErr;
BEGIN

{Check file type to see it it is a file you can emulate as an }
{ edi:ion.}

IF PB.info.deype e {for examplel'PICT'

THE MyCanSubsCribe :: noErr
{Otierwise, let the saved off edition opener decide.}
ELSE MyCanSubscribe :: CallEdiLicnOpenerProc(eoCanSubscribe,

PB, gOriginalOpener);
END; {MyCanSubscribel

Opening and Closing Editions

Each time the Edition Manager opens or closes an edition container, it calls the current edition
opener procedure and passes it an opener verb and a parameter block.

Your opener must be careful when closing documents since a document may already have
been opened by another application. Be sure to use the Open/Deny modes whenever possible.
Do not close a document if it was already open when your application opened it.

Listing Files That Can Be Subscribed To

The NewSubscriberDialog function calls the eoCanSubscribe opener verb to build the list of
files that can be subscribed to. The preview in the subscriber dialog box is generated by
calling the GetStandardFormats function (described in “Edition Container Formats” later in
this chapter), which calls the format I/O verbs eoOpen, ioHasFormat, ioRead, and then
eoClose. See “Calling 3 Format I/O Procedure” later in this chapter for detailed information
on format I/O verbs.

Reading From and Writing to Files

The 1/0 procedure is a routine that actually reads and writes the data. It too has an interface of
a selector and a parameter block.

To override the standard reading and writing functions, create an I/O function. Note that you
also need to provide your own opener function to call your [/0 function. See “Calling an
Edition Opener Procedure” earlier in this chapter.

FUNCTION MyIO (selector: FormatIOVerb; VAR PB: FormatIOParamBlock)
OSErr;

Subscribing to Non-Edition Files 4—59

|PR2017-01828

Ubisoft EX1002 Page 248

IPR2017-01828
Ubisoft EX1002 Page 249

Jim-dc Maer'rlm.i'h. Valium? VI

Calling 3 Format IID Procedure

'l‘e indicate [U the Edition Manager which format [HO pm ‘crlul'c to user Lise [he
CulanrmatIOPme runeliun.

E‘:'L' -.: (‘.=.| LlTth'l'nfi'. IiiE'rm.‘ Ii::r':lr':-'.". ri-r'. I—‘l'i, [112.2 L229};

Set The selector parameter In (me of the funnel NO verbs. The fill-mart II'O verbs, include

I inHusF-‘Urmut

I iuReudFunnuI

n iuNewFurmcu

I inWritanrmai

The PI] purmneler of [he CallFurIIIallOPnie lilneliun ennlaim'. a Furn'mt [f0 parameter Hock.

Til-TE}:

The mutine parameter ul‘ the CullFennaIIUPme I'uneliun is a painter m a fnrmal HO pmeerlure.

The l‘olltiwing list shows which fields; nl' FunnuthParumBloek are used by the fauna!
lfO verbs.

Opener
verb Parameter Descriplion Called by

iansE’urniul —) iuRetNum I10 rel'erenee number relumed FfiilioniiusFurmuL

h}- elpener. GelSiandziranmiutK.
—> Tommi (“heck fur this furmni. and Remmiriun

<— l'emlullndex An uptimiul enumeration (if Ihq: funeiium
supplied l'urmnt.

(— hul'iLcn li' found. relurn the length size or —I
if size is unknnwn.

-e Return Hlillt" A nuEn‘ or nngl-peljrr code.

itIReahdFUrmu'L 9 iuRetT‘llLin li‘U reference number relLI rneLl by ReerlFrliliun and
opener. GelS'lundnrdl‘unnuix

a funnel Get this furnml. I'uneliuns

a lierulindex Value relurned l1); iuHasFurmal.
—> ol'l'sei Reud formal beginning from lh'n; Ufth‘l.

4—60 Subsrribirrg; m Nriri—Edi'iirm Files

|PR2017-01828

Ubisoft EX1002 Page 249

IPR2017-01828
Ubisoft EX1002 Page 250

Opener
verb

ioNewFormat

ioWriteFormat

TTiii
i

Tiiiii

Parameter

buffPtr
bufflxn

Return value

ioRefNum

format
formatlndex

Return value

ioReiNum

format
formatlndex
offset
buffPtr
buffLen
Return value

Description

Put data beginni

The Edition Manager

Specify buffer length to read, and return
actual amount re

A noErr code, or appropriate error code.

l/O reference number returned by
opener.
Create this form

An optional enu
supplied format.

Called by

ng here.

ceived.

SetEditionFormatMark
and WriteEdition

at. functions
meration of the

A noErr code. or appropriate error code.

l/O reference number returned by
opener.
Get this format.

WriteEdition function

Value returned by ioNewForrnat.
Write format beginning from this offset.
Get data beginning here.
Specify buffer length to write.
A noErr code or appropriate error code.

The marks for each format are kept by the Edition Manager. The format I/O procedure only
needs to be able to read or write, beginning at any offset. If you know that your application
always reads an entire format sequentially, you can ignore the offset.

EDITION MANAGER ROUTINES

This section describes the routines for

I initializing the Edition Manager

I creating and registering a section

I creating and deleting an edition container

I setting and locating a format mark

I reading in edition data

I writing out edition data

I closing an edition after reading or writing

I displaying dialog boxes

I locating a publisher and edition from a subscriber

I reading edition container formats

I reading and writing non—edition files

Edition Manager Routines 4-61

|PR2017-01828

Ubisoft EX1002 Page 250

IPR2017-01828
Ubisoft EX1002 Page 251

Inside Macintosh, Volume VI

Result codes appear at the end of each function where applicable. In addition to the specific
result codes listed, you may receive errors generated by the Alias Manager, File Manager,
and Memory Manager.

Initializing the Edition Manager

You use the InitEditionPack function to initialize the Edition Manager. Note that you should

only call this function once. Before calling this function, be sure to determine whether the
Edition Manager is available on your system by using the Gestalt function. The Gestalt
selector is gestaltEditionMgrAttr ('edtn‘).

FUNCTION InitEditionPaCk : OSEL‘L‘;

The InitEditionPack function returns an error if the package could not be loaded into the

system heap and properly initialized. In addition, you may also receive resource errors.

Result codes
noErr 0 No error

memFullErr 7108 Could not load package

Creating and Registering a Section

You use the NewSection function to create a new section (either publisher or subscriber) and
alias record (which is a reference to the edition container from the document containing the
publisher or subscriber section). The NewSection function allocates two handles in the
current zone: one handle for the section record and another handle for the alias record. Note

that you are responsible for unregistering handles created by the Edition Manager.

 FUNCTION NewSection (container: EditionContainerSpec; sectionDocument:
FSSpecPtr; kind: SectionType; sectionID:
Longlnt; initiaIMode: UpdateMode; VAR sectionH:
SectionHandle) : OSErr;

The container parameter specifies the edition you want to publish or subscribe to. The
sectionDocument parameter contains the volume reference number, directory ID, and
filename of the document that contains a section. The sectionDocument parameter can

be NIL if your current document has never been saved. If so, when the user finally
saves the document, remember to call the AssociateSection function on each section

to update its alias record.

The kind parameter designates the type of section (publisher or subscriber) being created.

A section ID is a unique number for a section within a document. The sectionID parameter
initializes the sectionID field within the new section record. Do not use 0 or —1 for an ID

number; these numbers are reserved. If your application copies a section, you need to specify
a unique number for the copied section.

4-62 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 251

IPR2017-01828
Ubisoft EX1002 Page 252

The Edition Manager

The initialMode parameter contains the update mode for the section. For publishers this is
either the purnOnSave or pumManual constant, and for subscribers it is either sumAutomatic
0r sumManual. A subscriber created with sumAutomatic mode automatically receives a

Section Read event. To prevent this initial Section Read event, you should set the initialMode
parameter to sumManual and then, when NewSection returns, set the mode field of the
section record to sumAutomatic.

If the NewSection function fails, the sectionH parameter is set to NIL. If the function is
successful, sectionH contains the handle to the allocated section record.

Your application receives the multiplePublisherWrn result code if there is another registered
publisher to the same edition. Your application receives the notThePublisheer result code
if another publisher (to the same edition) was the last section to write to the edition. The
multiplePublisherWrn result code takes priority over the notThePublisherWrn result code.

In addition, you may also receive memory and file opening errors.

Result codes
noErr 0 No error

editionMngnitErr —450 Manager not initialized
badSectionErr 4151 Not a valid section type
badSubPartErr —454 Bad edition container spec
multiplePublisheer —460 Already is a publisher
notThePublisherWrn 463 Not the publisher

The NewSection function registers a section similar to the way that the RegisterSection
function informs the Edition Manager about a section (except that the NewSection function
does not resolve an alias to find the edition container).

FUNCTION RegisterSeczion (sectionDocument: FSSpec; sectionH:
Sectionnandle; VAR aliasWasUpdazed: Boolean)
OSErr;

The sectionDocument parameter contains the volume reference number, directory ID, and
filename of the document that contains a section. The sectionH parameter is a handle to the
section record for a given section.

The aliasWasUpdated parameter returns TRUE if the alias for the edition container subscribed
to was out of date and was updated. This may occur if the edition file was moved to a new
location or was renamed.

The RegisterSection function adds the section record to the Edition Manager’s list of
registered sections and tries to allocate a control block. After calling the RegisterSection
function, the controlBlock field of the section record is either NIL or a valid control block.

For a subscriber, the control block is NIL if the RegisterSection function could not locate
the edition container being subscribed to. The RegisterSection function then returns either
the containerNotFoundWrn or the userCanceledErr result code. For a publisher, if the

RegisterSection function could not locate its corresponding edition container, the Edition

Edition Manager Routines 4-63

|PR2017-01828

Ubisoft EX1002 Page 252

IPR2017-01828
Ubisoft EX1002 Page 253

Inside Macintosh, Volume V]

Manager creates an edition container in the last place the edition was located and creates a
control block for it. If the RegisterSection function could not locate a publisher’s corre-
sponding edition container or its volume, the control block is NIL. You should never
re—register a section that is already registered.

Note that you can compare control blocks for individual sections. If two sections contain the
same control block value, these sections publish or subscribe to the same edition (unless the
control block is NIL). The Edition Manager keeps track of how many sections are referencing
a control block to know when it can be deallocated. The control block maintains a count of

how many sections are referencing it. Each time you use the UnRegisterSection function, the
control block subtracts one from the number of sections. When the number of sections

reaches 0, the control block is deallocated.

Your application receives the multiplePublisheer result code if there is another registered
publisher to the same edition. Your application receives the notThePublisheer result code
if another publisher (to the same edition) was the last section to write to the edition. The
multiplePublisherWrn result code takes priority over the notThePublisherWrn result code.

In addition, you may also receive memory and file opening errors.

Result codes
noErr 0 N0 error

userCanceledErr —128 User chose Cancel from a mount server dialog box
editionMngnitErr 450 Manager not initialized
badSectionErr 451 Not valid section type
multiplePublisheer —46O Already is a publisher
containerNotFoundWm —461 Alias was not resolved

notThePublisheer —463 Not the publisher

When a section needs to be disposed of because the document containing the section is closing,
or the user has canceled the section, you need to call the UnRegisterSection function before
disposing of the section.

FUNCTION UnRegisterSection (sectionH: Sectionflandle) : OSBrr;

The sectionH parameter is a handle to the section record for a given section.

The UnRegisterSection function removes the section from the Edition Manager’s list of
registered sections. You can then dispose of the section record and alias record with standard
Memory and Resource Manager calls. Once unregistered, a section does not receive any
events and cannot read or write any data. Depending on your Clipboard strategy, you may
want to unregister sections that have been cut into the Clipboard.

Result codes
noErr 0 N0 error

styErr —47 Section doing l/O
cditionMngnitErr —450 Manager not initialized
notRegisteredSectionErr —452 Not registered

4-64 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 253

IPR2017-01828
Ubisoft EX1002 Page 254

The Edition Manager

Using the IsRegisteredSection function, your application must verify that each event received
is for a registered section. This is necessary because your application may have just called
UnRegisterSection while the event was already being held in the event queue.

FUNCTION IsRegisteredSection (sectionH: SectionHandle) : OSErr;

The sectionH parameter is a handle to the section record for a given section. The
IsRegisteredSection function does not return a Boolean—a noErr result code indicates
that a section is registered.

Result codes
noErr 0 No error

notRegisteredSectionErr —452 Not registered

If a user saves a document that contains sections under another name (using Save As) or

pastes a portion of a document that contains a section into another document, use the
AssociateSection function to update the section’s alias record.

FUNCTION AssociateSection (sectionH: SectionHandle; newSectionDocument:
FSSpecPtr) : OSErr;

The sectionH parameter is a handle to the section record for a given section. The
newSectionDocument parameter contains the volume reference number, directory 1D,
and filename of the new document. The AssociateSection function calls UpdateAlias
on the section’s alias record.

In addition, you may also receive update alias errors.

Result code
noErr 0 No error

Creating and Deleting an Edition Container

4-

PQ-_.H_.
o
5
7I—l
m
=5
:5

Cr:
2Each time a user creates a new publisher section within a document to an edition that does

not already exist, you use the CreateEditionContainerFile function to create an‘empty
edition container.

FUNCTION CreateEditionContainerFile (editionFile: FSSpec;

dereator: OSType;
ediLiQnFilcNameSCIipt: ScriptCode)
OSErr;

The editionFile parameter contains the volume reference number, directory ID, and filename
for the edition container being created. The dereator parameter contains the creator type for
the edition.

Edition Manager Routines 4—65

|PR2017-01828

Ubisoft EX1002 Page 254

IPR2017-01828
Ubisoft EX1002 Page 255

Inside Macintosh, Volume V1

The editionFileNameScript parameter is the script of the filename. It is returned in the
theFileScn'pt field of the edition container specification record. (The new publisher reply
record includes a container field for an edition container specification record.)

The CreateEditionContainerFile function creates an empty edition container file (it does not
contain any formats). This function creates a file type 'edtu'. As soon as you write data to the
edition, the type is updated (to 'edtp' for graphics, 'edtt' for text, or 'edts' for sound). If both
text and pict are written, the type that was written first determines the file type. If your appli-
cation has a bundle, you should designate an icon for the appropriate edition types that you
can write.

In addition, you may also receive file creating errors.

Result codes
noErr O No error

editionMngnitErr —450 Manager not initialized

If a user cancels a publisher section within a document or closes a document containing a
newly created publisher without saving, you need to remove the edition container.

To locate the appropriate edition container to be deleted, use the GetEditionInfo function.
You use the UnRegisterScction function (only after using the GetEditionInfo function) to
unregister the section record and alias record of the publisher being canceled. See “Locating
a Publisher and Edition From a Subscriber” later in this chapter for detailed information on
the GetEditionInfo function. See “Creating and Registering a Section” earlier in this chapter
for detailed information on the UnRegisterSection function.

To remove the edition container, use the DeleteEditionContainchile function.

 FUNCTION DeleteilditionContainerFile (editionFile: FSSpec) : OSErr;

If the user cancels a publisher, do not call the DeleteEditionContainerFile function until
the user saves the document. This allows the user to undo changes and revert to the last
saved version of the document.

The DeleteEditionContainerFile function only deletes the edition container if there is no

registered publisher. You need to unregister a publisher before you can delete its corre—
sponding edition container.

The editionFile parameter contains the volume reference number, directory ID, and filename
for the edition container being deleted.

You should use the DeleteEditionContainerFile function even if there are subscribers to the

edition. When a subscriber section tries to read in data, it receives an error.

In addition, you may also receive file deleting errors.

Result codes
noErr 0 N0 error

editionMgrlnitErr —450 Manager not initialized

4—66 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 255

_'wmm~mfim.W—m~

IPR2017-01828
Ubisoft EX1002 Page 256

The Edition Manager

Setting and Locating a Format Mark

Use the SetEditionFormatMark function to set the current mark for a section format. The mark

indicates the next position of a read or write operation. Initially, a mark defaults to 0. After
reading or writing data, the format mark is set past the last position written to or read from.

FUNCTLON SetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
Forma:Type; se,MarkTo: Longlnt) : OSErr;

The whichEdition parameter is the reference number for the edition. The whichFormat param-
eter indicates the format type for the edition, and the setMarkTo parameter is the offset for the
next read or write for this format.

Result codes
noErr 0 No error
rtNumErr —51 Bad edition reference number

noTypeErr —102 Unknown format (subscriber only)
editionMngnitErr 450 Manager not initialized

Use the GetEditionFormatMark function to locate the current marker for a particular format.

FUNCTION GetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
FormatType; VA? CurrentMarK: LongInL)
OSBrr;

The whichEdition parameter is the reference number for the edition. The whichFormat param-
eter indicates the format type for the edition, and the currentMark parameter is the mark for
the format.

If the edition does not support the format specified in the whichFormat parameter, you receive
a noTypeErr result code.

Result codes
noErr O No error
rtNumErr —51 Bad edition reference number

noTypeErr —102 Unknown format
editionMngnitErr 450 Manager not initialized

Reading in Edition Data

To initiate the reading of data from an edition (for a subscriber), use the OpenEdition function.

FUNCTION OpenEdition (subscriberSectionH: SectionHandle; VAR refNum:
EditionRefNum) : OSErr;

The subscriberSectionH parameter is a handle to the section record for a given section. The
refNum parameter returns the reference number for the edition.

Edition Manager Routines 4-67

|PR2017-01828

Ubisoft EX1002 Page 256

IPR2017-01828
Ubisoft EX1002 Page 257

Inside Macintosh, Volume VI

Multiple subscribers can each call the OpenEdition function simultaneously (each call returns
a different reference number) and read data from a single edition. If a publisher (located on a
different machine) is writing to an edition when you use the OpenEdition function, you
receive an fchkedErr result code.

In addition, you may also receive memory, file opening, and file reading errors.

Result codes
noErr 0 No error

fchkedErr —45 Publisher writing to an edition
permErr —54 Not a subscriber

editionMngnitErr —450 Manager not initialized

Use the EditionHasFormat function to learn in which formats the edition data is available.

FUNCTION EditionHagFormaL (whichEdition: EditionRefNum; whichFormat:
FormatType; VAR fornatsize: Size) : OSErr;

The whichEdition parameter is the reference number for the edition. The whichFormat param-
eter indicates the format type that you are requesting. For the whichFormat parameter. you
should decide which formats to read in the same way that you do when using paste from the
Scrap Manager. You can also get a list of all the available formats and their respective lengths
by reading the kFormatListFormat ('fmts') format. The formatSize parameter specifies the
format length.

If the requested format is available, this function returns noErr, and the formatSize parameter
returns the size of the data in the specified format or kFormatLengthUnknown (—1), which
signifies that the size is unknown. You should therefore continue to read the format until
there is no more data.

Be aware that the EditionHasFormat function may return kFormatLengthUnknown for the
length of the format.

Result codes
noErr 0 No error
rfNumErr —51 Bad edition reference number

noTypeErr —102 Format not available
editionMngnitErr —450 Manager not initialized

Use the ReadEdition function to read data from an edition. This function reads from the

current mark for the specified format.

 FUNCTION Readidition (whichEdition: EditionRefNum; whichFormat:
Forma:Type; buffPtr: UNIV Ptr; VAR buffLen: Size)
OSErr;

The whichEdition parameter is the reference number for the edition. The whichFormat
parameter indicates the format type that you want to read.

4-68 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 257

IPR2017-01828
Ubisoft EX1002 Page 258

The Edition Manager

The buffPtr parameter is a pointer to the buffer into which you want to read the data. The
buffLen parameter is the number of bytes that you want to read into the buffer. The buffLen
parameter is also a return value that returns the total number of bytes read into the buffer. If
the buffLen parameter returns a value smaller than the value you have specified, there is no
additional data to read, and the ReadEdition function returns a noErr result code. If you use
the ReadEdition function after all data is read in, the ReadEditi on function returns an eofErr
result code.

You can read data from an edition while a publisher on the same machine is writing data
to the same edition. The data that you are reading is the old edition (not the data that the
publisher is writing). If the publisher finishes writing data before you are through reading
the old edition data, the ReadEdition function returns an abortErr result code. If the

ReadEdition function returns an abortErr result code, you should stop trying to read data
and use the CloseEdition function with the successful parameter set to FALSE.

In addition, you may also receive file reading errors.

Result codes
noErr 0 N 0 error
abortErr —27 Publisher has written a new edition

eofErr —39 No more data of that format
rfNumErr —51 Bad edition reference number

noTypeErr —102 Format not available
editionMngnitErr —450 Manager not initialized

Writing out Edition Data

To initiate the writing of data from a publisher to its edition container, use the OpenNewEdition
function.

FUNCTlON OpenNewEdition (publisherSectionH: SectionHandle; dereator:
OSType; publisherSectionDocument: FSSpeCPtr; VAR
refNum: EditionRefNum) : OSErr;

The publisherSectionH parameter is the publisher section that is writing to the edition. The
dereator parameter is the Finder creator type of the new edition icon.

&

E
=-

E:
2d

2_
DD
5
m

maa

The publisherSectionDocument parameter is the document that contains the publisher. This
parameter is used to create an alias from the edition to the publisher’s document. If you pass
NIL for publisherSectionDocument, an alias is not made in the edition file.

The refNum parameter returns the reference number for the edition. This parameter is
necessary for subsequent calls to WriteEdition, SetEditionFormatMark, and CloseEdition to
specify which publisher is writing its data to an edition. If the edition cannot be opened for
writing because there is another publisher writing to it, or because the file system does not
allow writing, an error is returned and refNum is set to NIL.

The OpenNewEdition function returns an flLckdErr result code if there is a subscriber on
another machine reading data from the same edition. The OpenNewEdition function returns a
permErr result code if there is a registered publisher to that edition on another machine.

Edition Manager Routines 4-69

|PR2017-01828

Ubisoft EX1002 Page 258

IPR2017-01828
Ubisoft EX1002 Page 259

Inside Macintosh, Volume VI

The Edition Manager allows two registered publishers that are located on the same machine to
write to the same edition. Note that multiple publishers cannot write to the same edition
simultaneously*0nly one publisher can write to an edition at a given time.

In addition, you may also receive file creating, file opening, file reading, resolve alias, and
memory errors.

Result codes
noErr O N0 error

flLckdErr —45 Edition in use by another section
permErr —54 Registered publisher on another machine
wrPermErr —61 Not a publisher
editionMngnitErr —450 Manager not initialized

Use the WriteEdition function to write data to an edition. This function begins writing at the
current mark for the specified format.

 FUNCTION Writeidition (whichEdition: EditionRefNum; whichFormat:
FormatType; buffPtr: UNTV P:r; buffLen: Size) : OSErr;

The whichEdition parameter is the reference number for the edition. The whichFormat
parameter indicates the format type that you want to write.

The buffPtr parameter is a pointer to the buffer that you are writing into the edition. The
buffLen parameter is the number of bytes that you want to write. If the data cannot be entirely
written to the edition, the WriteEdition function returns an error.

In addition, you may also receive file writing and memory errors.

Result codes
noErr O N0 error
rfNumErr —51 Bad edition reference number

editionMngnitErr —450 Manager not initialized

Closing an Edition After Reading or Writing

After finishing reading from or writing to an edition, use the CloseEdition function to close
the edition.

 FUNCTION CloseEdition (whichidition: EditionRefNum; successful: Boolean)
: OSErr;

The whichEdition parameter is the reference number for the edition. The successful parameter
indicates whether your application was successful in reading or writing data to the edition.

When a subscriber successfully finishes reading data from the edition, the CloseEdition
function takes the modification date of the edition file that you have read and puts it in the
mdDate field of the subscriber’s section record. This indicates that the data contained in the
edition and the subscriber section within the document are the same.

4-70 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 259

IPR2017-01828
Ubisoft EX1002 Page 260

The Edition Manager

When a subscriber is unsuccessful in reading data from an edition (because there is not
enough memory, or you didn’t find a format that you can read), set the successful parameter
to FALSE. The CloseEdition function then closes the edition, but does not set the mdDate

field. This implies that the subscriber is not updated with the latest edition.

When a publisher successfully finishes writing data to an edition, the CloseEdition function
makes the data that the publisher has written to the edition available to any subscribers and
sets the corresponding edition file’s modification date (ioFlMdDat) to the mdDate field of the
publisher’s section record. The Edition Manager then sends a Section Read event to all
current subscribers set to automatic update mode. At this point, the file type of the edition file
is set based on the first known format that the publisher wrote.

When a publisher is unsuccessful in writing data to an edition, the CloseEdition function
discards what the publisher has written to the edition. The data contained in the edition prior
to writing remains unchanged, and Section Read events are not sent to subscribers.

In addition, you may also receive file closing errors.

Result codes
noErr 0 No error
rfNumErr —51 Bad edition reference number

editionMngnitErr —450 Manager not initialized

Displaying Dialog Boxes

Use the GetLastEditionContainerUsed function to get the default edition to display. This
function allows a user to easily subscribe to the data recently published.

FUNCTION GetLastEditionContainerUsed (VAR container:

EditionContainerSpec) : OSErr;

If the GetLastEditionContainer function locates the last edition for which a section was created,

the container parameter contains its volume reference number, directory ID, filename, and part,
and returns a noErr result code. (The last edition created is associated with the last time that

your application or another application located on the same machine used the NewSection
function.) If the last edition used is missing, the GetLastEditionContainerUsed function returns
an fnfErr result code, but still returns the correct volume reference number and directory ID
that you should use for the NewSubscriberDialog function.

E

Pass the information from the GetLastEditionContainerUsed function to the

NewSubscriberDialog function.

Result codes
noErr 0 No error
fnfErr —43 Edition container not found

editionMngnitErr —450 Manager not initialized

Edition Manager Routines 4-71

|PR2017-01828

Ubisoft EX1002 Page 260

IPR2017-01828
Ubisoft EX1002 Page 261

Inside Macintosh, Volume VI

The Edition Manager supports three dialog boxes: publisher, subscriber, and options dialog
boxes. Your application can display simple dialog boxes that appear centered on the user’s
screen, or you can customize your dialog boxes.

Unlike the Standard File routines, the NewPublisherDialog and the NewSubscriberDialog
functions allow you to specify the initial volume reference number and directory ID so
that there can be one default location for editions for all applications.

Use the NewSubscriberDialog function to display the subscriber dialog box on the
user’s screen.

FUNCTION NewSubscriberDialog (VAR reply: NewSubscriberReply) : OSErr;

The reply parameter contains the new subscriber reply record.

 TYPE NewSubscriberReply :

RECORD

canceled: Boolean; {user canceled }
{ dialog box}

formatsMask: SignedByte; {formats required}
container: EditionContainerSpec {edition selected}

END;

The NewSubscriberDialog function (which is based on the CustomGetFile procedure
described in the Standard File Package chapter in this volume) switches to the volume refer-
ence number and directory ID and selects the filename of the edition container that you
passed in. Use the GetLastEditionContainerUsed function to set the edition container to the

last edition that was either published or subscribed to. This allows the user to publish and
then easily subscribe.

The formatsMask field indicates which edition format type (text, graphics, and sound) to
display within the subscriber dialog box. You can set the formatsMask field to the following
constants: kTEXTformatMask (l), kPICTformatMask (2), or ksndFormatMask (4). To
support a combination of formats, add the constants together. For example, a formatsMask
of 3 displays both graphics and text edition format types in the subscriber dialog box.

Note that if an edition does not contain either 'PICT’, 'TEXT', or 'snd ' data, it will not be

seen by the NewSubscriberDialog function (unless you install an opener that adds it using
eoCanSubscribe).

If the NewSubscriberDialog function returns with the canceled field set to TRUE, the user
canceled the dialog box. Otherwise, this field is FALSE and the container field holds the
edition container for the new subscriber.

Result codes
noErr O N 0 error

editionMngnitErr —450 Package not initialized
badSubPartErr —454 Bad edition container spec

4-72 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 261

IPR2017-01828
Ubisoft EX1002 Page 262

The Edition Manager

Use the NewPublisherDialog function to display the publisher dialog box on the user’s screen.

 FUNCTION NewPublisherDialog (VAR reply: NewPublisherReply) : OSErr;

The reply parameter contains a new publisher reply record.

iJ TYP; NewPublisherReply :

RECORD

canceled: Boolean; {user canceled dialog box}
replacing: Boolean; {user chose existing }

{ filename for an edition}

usePart: joolean; {always false in version 7.0}
preview: Handle; {handle to 'prvw', 'PICT', }

{ 'TEXT', or 'snd' data}

previewFormat: Tormati‘ype; {type of preview}
container: EditionContainerSpec {edition chosen}

END;

The NewPublisherDialog function (which is based on the CustomPutFile procedure described
in the Standard File Package chapter) switches to the volume reference number and directory
ID and sets the text edit field to the filename of the edition container that you passed in. Set the
fileName field of the file system specification record to be the default name of the edition file.
(The new publisher reply record includes a container field for an edition container specification
record, and the edition container specification record includes a field [theFile] for a file system
specification record.) See “Creating a Publisher” earlier in this chapter for information on the
default file specification.

The usePart field must be set to FALSE before calling the NewPublisherDialog function.

Set the preview field to be a handle to 'prvw', ‘PICT‘, 'TEXT', or 'snd ' data. Set the
previewFormat field to indicate which type of data the handle references.

Upon return of the NewPublisherDialog function, the canceled and replacing fields are set. If
the canceled field is set to TRUE, the user canceled the dialog box. If the replacing field is
TRUE, the user chose an existing filename from the list of available editions and confirmed
this replacement. If the replacing field is TRUE, do not call the CreateEditionContainerFile
function, which creates a new edition container. The container field contains the volume

reference number, directory TD, and filename for the edition that the user selected.

You should deallocate the handle referenced by the preview field to free up memory.

Result codes
noErr 0 No error

editionMngnitErr ~450 Package not initialized
badSubPartErr 454 Bad edition container spec

Edition Manager Routines 4- 73

 .iafimmmuompg1-,

|PR2017-01828

Ubisoft EX1002 Page 262

IPR2017-01828
Ubisoft EX1002 Page 263

Inside Macintosh, Volume V]
Use the SectionOptionsDialog function to display the publisher options and subscriber
options dialog boxes on the user’s screen.

FUNCTION SectionOptionsDialog (VAR reply: SectionOptionsReply) : OSErr;

The reply parameter contains a section options reply record.

 TYPE SectionOpLionsRepLy :
 RECORD

canceled: Boolean; {user canceled dialog box}
changed: Boolean; {changed the section record}
sectionH: SectionHandle; {handle to the Specified }

{ section record}
action: ResType {action codes}

END;

Set the sectionH parameter to the handle to the section record for the section the user selected.

Upon return of the SectionOptionsDialog function, the canceled and changed fields are set. If
the canceled parameter is set to TRUE, the user canceled the dialog box. Otherwise, this
parameter is FALSE. If the changed parameter is TRUE. the user changed the section record.
For example, the update mode may have changed.

The action field contains the code for one of five user actions.

I action code is 'read' for user selection of the Get Edition Now button

I action code is 'writ’ for user selection of the Send Edition Now button

I action code is 'goto‘ for user selection of the Open Publisher button

I action code is 'cncl‘ for user selection of the Cancel Publisher or Cancel Subscriber
button

I action code is ' ' ($20202020) for user selection of the OK button

Note that you may receive memory errors.

The NewSubscriberExpDialog, NewPublisherExpDialog, and SectionOptionsExpDialog
functions are the same as the simple dialog functions but have five additional parameters.
These additional parameters allow you to add items to the bottom of the dialog boxes,
apply alternate mapping of events to item hits, apply alternate meanings to the item hits,
and choose the location of the dialog boxes.

 FUNCTION NewSubscriherExpDialog (VAR repLy: NewSubscriberReply; where:
Doint; expansionDlTLresID: InLegcr;
dlgHook: ExlegHookProcPtr; filterProc:
EXpModalFilterProcPtr; yourDataPtr: UNIV
P:r) : OSErr; i

4— 74 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 263

IPR2017-01828
Ubisoft EX1002 Page 264

The Edition Manager

FUNCTION NewPublisherExpDialog (VAR reply: NewPublisherReply; where:
Point; expansionDITLresID: Integer;
dLgHook: ExlegHookProePtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr: UNIV
Ptr) : OSBrr;

 FUNCTION SectionOptionsEXpDialog (VAR repIy: SectionOptionsRepIy; where:

Point; expansionDITLresID: Integer;
dlgHook: ExpDIgHookProcPtr;
filterProc: EXpModalFiltchrOCPLr;
yourDataP:r: UNIV Ptr) : OSErr;

The reply parameter contains a pointer from the new subscriber reply, new publisher reply,
or the section options reply records.

You can automatically center the dialog box by passing (—1, —l) in the where parameter.

The expansionDITLresID parameter should be 0 or a valid dialog item list ('DITL') resource
ID. This integer is the ID of a dialog item list whose items are appended to the end of the
standard dialog item list. The dialog items keep their relative positions, but they are moved as
a group to the bottom of the dialog box. See the Dialog Manager chapter in Volume I for
additional information on dialog item lists.

The filterProc parameter should be a valid expandable modal filter procedure pointer or NIL.
This procedure is called by the ModalDialog procedure. This function allows you to map real
events (such as a mouse-down event) to an item hit (such as clicking a Cancel button). For
instance, you may want to map a keyboard equivalent to an item hit.

The dlgHook parameter should be a valid expandable dialog hook procedure pointer or NIL.
This procedure is called after each call to the ModalDialog procedure. The dialog hook
procedure takes the appropriate action, such as filling in a check box. The itemOffset
parameter to the procedure is the number of items in the dialog item list before your
expansion dialog items. You need to subtract the item offset from the item hit to get the
relative item number in the expansion dialog item list. The return value from the dialog hook
procedure is the absolute item number.

The yourDataPtr parameter is reserved for your use. It is passed back to your hook and
modal—dialog filter function. This parameter does not have to be of type Ptr—it can be any
32-bit quantity that you want. In Pascal, you can pass in register A6 for yourDataPtr, and
make dialog hook and filter procedure local functions without the last parameter. The stack
frame is set up properly for these functions to access their parent local variables. See the
Standard Filc Package chapter in this volume for detailed information.

L

E
a
El
9
7_
m
=
m
a:aH

For the NewPublisherExpDialog and NewSubscriberExpDialog functions, all the pseudo-
items for the Standard File Package such as h00kFirstCa11(—l), hookNullEvent(100),
hookRebuildList(lOl), and hookLastCall(—2) can be used, as well as
hookRedrawPreview(150).

Edition Manager Routines 4-75

IPR2017-01828

Ubisoft EX1002 Page 264

IPR2017-01828
Ubisoft EX1002 Page 265

Inside Macintosh, Volume V1

For the SectionOptionsExpDialog function, the only valid pseudo-items are hookFirstCall(—l),
hookNullEvent(100), hookLastCall(—2), emHookRedrawPreview(150),
emHookCancelSection(l 60), emHookGoToPublisher(l 6 l), emHookGetEditionN0w(l 62),
emHookSendEditionNow(162), emHookManualUpdateMode(163), and
emHookAutoUpdateMode(l 64).

If you have an expandable dialog hook function, it must contain the following parameters.

 FUNCTION MyExpDigHook (itemoffset: Integer; itemHit: Integer; theDialog:
DialogPtr; yourDataPtr: Ptr) : Integer;

If you have an expandable modal-dialog filter function, it must contain the following
parameters.

FUNCTION MyExpModalFilter (theDialog: DialogPtr; VAR theEvent:
EventRecord; itemOffset: Integer; VAR itemHit:
Integer; yourDataPtr: Ptr) : Boolean;

Locating a Publisher and Edition From a Subscriber

The GetEditionInfo function returns information about a section’s edition such as its location,

last modification date, creator, and type.

FUNCTION GetEditionTnfo (sectionH: SectionHandIe; VAR editionInfo:
EditionlnfoRecord) : OSErr;

The sectionH parameter is a handle to the section record for a given section. The editionlnfo
parameter contains an edition information record. The GetEditionInfo function returns the
public information contained in the section’s control block.

The Edition Manager synchronizes to ensure that the existing edition name corresponds to the
Finder’s existing edition name. If the control block field of the section record is NIL, or the
edition cannot be located, the GetEditionlnfo function returns an fnfErr result code.

TYP* *ditiOnInIoRecord :

{ECORD

chate: r“imeStamp; {date edition container }
{ was created}

mdDate: TimeStamp; {date of last change}
dereator: OSType; {file creator}
IdType: OSType; {file type}
container: EditionContainerSpec {the edition}

3ND;

The chate field contains the creation date of the edition. The rndDate field contains the
modification date of the edition.

4-76 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 265

IPR2017-01828
Ubisoft EX1002 Page 266

The Edition Manager

The dereator and deype fields are the creator and type of the edition file. The container
field includes a volume reference number, directory ID, filename, script, and part number
for the edition.

Result codes
noErr 0 No error

fnfErr —43 Not registered or file moved
editionMngnitErr —450 Manager not initialized

When the user wants to locate the publisher for a particular subscriber (by choosing Open
Publisher in the subscriber options dialog box), the action code 'goto‘ is returned to you.

Use the GetEditionInfo function to find the edition container. You should next use the

GoToPublisherSection function to open the document containing the publisher.

Use the GoToPublisherSection function to resolve the alias in the edition to find the document

containing its publisher. In general, this function internally uses the GetStandardFormats
function to get the alias to the publisher document and then resolves the alias. It next sends the
Finder an Apple event to open the document (which launches its application if necessary) and,
after the publisher is registered, sends a Section Scroll event to the publisher.

As an optimization, if there is a registered publisher, the GoToPublisherSection function
simply sends a Section Scroll event to the publisher.

If the edition does not contain an alias and there are no registered publishers, then the
GoToPublisherSection function sends an Open Documents event to open the edition to
the creating application.

If the edition container is not an edition file (such as when you are using bottlenecks to
subscribe to non—edition files), the GoToPublisherSection function sends the Finder an
Apple event to open that file.

FUNCTION GoToPublisherSection (container: EditionContainerSpec) : OSErr;

The container parameter includes the edition volume reference number, directory ID, and
filename. You obtain the edition container by calling the GetEditionInfo function.

4.

{'11Q._.,.,._.
o
3
7.—
2;
=
fi
3:(t-:

In addition, you may also receive resolve alias errors.

Result codes

noErr L 0 No error

editionMngnitErr —450 Manager not initialized
badSubPartErr —454 Invalid edition container

Edition Manager Routines 4- 77

|PR2017-01828

Ubisoft EX1002 Page 266

IPR2017-01828
Ubisoft EX1002 Page 267

Inside Macintosh, Volume VI

Edition Container Formats

The Edition Manager calls the GetStandardFormats function to get the alias used in the
GoToPublisherSection function and to get the preview shown in the subscriber dialog
box. You probably do not need to call this function directly.

FUNCTION GetStandardFormats (con:ainer: EditionContainerSpec; VAR
previewFormat: FormaLType; preview,
publisherAlias, formats: Handle)
: OSErr;

The container parameter is a pointer to the edition volume reference number, directory ID,
filename, and part.

You should pass in valid handles for the formats that you want and NIL for the formats that
you don’t want. The handles are resized to the size of the data.

The preview parameter tries to find one of four formats: 'prvw', 'PICT', 'TEXT', or 'snd '.
The publisherAlias parameter reads the format kPublisherDocAliasFormat ('alis‘). and the
formats parameter reads the virtual format kFormatListFormat ('fmts'). The first format that

was written returns in the preview handle and the previewFormat parameter is set to its type.
If one of the requested formats cannot be found, GetStandardFormats returns a noTypeErr
result code.

Result codes
noErr 0 No error

noTypeErr —102 Edition container not found
editionMngnitErr —450 Manager not initialized

Reading and Writing Non-Edition Files

The Edition Manager never opens or closes an edition container directly—it calls the current
edition opener. See “Subscribing to Non-Edition Files” earlier in this chapter for additional
information.

To override the standard opener function, you should create an opener function that contains
the following parameters.

 FUNCTION MyOpener (selector: EditionOpenerVerb; VAR PB:
EditionOpenerParamBlock) : OSErr;

When this function is called by the Edition Manager, the selector parameter is set to one of the
edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew, eoCanSubscribe). The
PB parameter contains an edition opener parameter block record.

Use the GetEditionOpenerProc function to locate the current edition opener procedure.

FUNCTTON GetEditionOpenerProc (VAR opener: EditionOpenerProcPtr) : OSErr;

The opener procedure returns the pointer to the current edition opener procedure.

4-78 Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 267

IPR2017-01828
Ubisoft EX1002 Page 268

The Edition Manager

Use the SetEditionOpenProc function to provide your own edition opener procedure.

FUNCTION SetEditionOpenerProc (opener: EditionOpenerProcPtr) : OSErr;

The opener parameter is a pointer to the edition opener procedure that you are providing.

Use the CallEditionOpenerProc function to call an edition opener procedure pointer.

FUNCTION CallEditionOpenerProc (selector: EditionOpenerVerb; VAR PB:

EditionOpenerParamBlock; routine:
EditionOpenerProcPtr) : OSErr;

When this function is called by the Edition Manager, the selector parameter is set to one of the
edition opener verbs (eoOpen, eoClose, eoOpenNew, eoCloseNew, eoCanSubscribe). The
PB parameter contains an edition opener parameter block record.

kl TYP; EditionOpenerParamBlock =

RECORD

info: EditionInfoRecord; {edition container to }
be subscribed to}

sectionH: SectionHandle; {publisher or)
{ subscriber }

requesting open}
document: FSSpecPtr; {document passed}
dereator: OSType; {Finder creator type}
ioRefNum: LongInt; reference number}
ioProc: FormathProcPtr; (routine to read }

{ formats}

success: Boolean; reading or writing }
{ was successful}

formatsMask: SignedByte (formats required to }
subscribe}

END;

The routine parameter is a pointer to an edition opener procedure.

To override the standard reading and writing functions, you should create an 10 function that
contains the following parameters.

FUNCTION MyIO (selector: FormatIOVerb; VAR PB: FormatIOParamBlock)
OSErr;

Set the selector parameter to one of the format I/O verbs (ioHasFormat, ioReadFormat,
ioNewFormat, ioWriteFormat). The PB parameter contains a format I/O parameter
block record.

Edition Manager Routines 4-79

4—

5'}a..
.-
.-.
=
7.—._.—.—_....—
7:r:
-:

|PR2017-01828

Ubisoft EX1002 Page 268

IPR2017-01828
Ubisoft EX1002 Page 269

Inrir'a‘e Mrar't'nms'h. Volume V!

Use the CnllFOImntICJPrm: function to call a format [0 procedure.

EUHCTLCN CaLLFurmdLICProe :su;?:Lorr FormaLTflfinrb: HfiP Pi:
FULTGLIUFaLfiWBLUck; rvuLine: FU'HaLTDPrDflFLrh

.JEFh'r;

Set the selector parameter to one of the format HO verbs {ieHasFomaL iuReadFurmat,

ioNewFonnaL ioWfiteFonmit}. The PB pauameler contains a format U0 parameter
block record.

TIPE ForanIC?aramB]nck _

HECUHJ

iOReTKdT: LOHGLSL; {Lelerence nmmber:

formdL: FormaLTypfi: {Haitian TCYduL type]
€1.1T'Eiilil.;:ZL-t':?.: Lo:LgI:t'.: {GE-Elle}: - t; 'rr: '

{ u: [ormdle
oifeeL: Lonflinz; tar?
huLLFZr: PLT: { tern}
D1.'.r[-T.Erl'_-: L-OI'JCILHL ,‘r LEEiLr'i}

E2313:

The routine parameter is a pointer to a I'Dmmt H0 prmedure.

4-8:“? Edition Manager Routines

|PR2017-01828

Ubisoft EX1002 Page 269

IPR2017-01828
Ubisoft EX1002 Page 270

The Edition Manager

SUMMARY OF THE EDITION MANAGER

Constants

CONST {resource types}

rSectionType = 'sect';

{section types}
stSubscriber : $01;
stPublisher r $OA;

{update modes}
sumAutomatic O;

sunManual : l;

pumOnSave = O;

pumManual : 1;

{edition container subpart number)
{PartsNotUsed = O;
(PartNumberUnknown : 71;

{preview size}
(PreviewWidth = 120;

<PreviewHeight = 120;

{special formats}
(PublisherDocAliasFormat = ‘alis';

kPreviewFormat = 'prvw';
(FormatListFormat = 'fmts';

{bits for formatMask}
kPICTformatMask : l;
kTEXTformatMask = 2;
ksndFormatMask : 4;

{Finder :ypes for edition files}
kPlCTEdi:ionFileType :
kTTXTTditionFileType :
ksndEditionFileType :
kUnknownEditionFileType =

m' an U

n5 {1. ('1' 5:

Summary of the Edition Manager

{resource type for a section}

{subscriber section type}
{publisher section type}

{subscriber receives new }

{ editions automatically}
{subscriber receives new }
{ editions manually}
{publisher sends new }
{ editions on save}
{publisher does not send }
{ new editions until user }
{ request}

{edition is the whole file}
[not used in version 7.0}

{preview width}
{preview height}

{alias record from the }

{ edition to publisher}
{'PICT' thumbnail sketch}
{list of all available }
{ formats and their sizes}

J—

F!
a_.H_
o
=
a:i—
m
z:5
7:
E

{graphics format}
{text format}
{sound format}

{contains ‘PICT’, }
{ 'TEXT', and }

{ ‘snd ' file types}
{unknown file type}

4-81

|PR2017-01828

Ubisoft EX1002 Page 270

IPR2017-01828
Ubisoft EX1002 Page 271

Inside Macintosh, Volume VI

{miscellaneous}

kFormatLengthUnknown : —l; {length of format unknown}

{message IDs for Apple events sent by the Edition Manager}

sectionEventMsgClass : 'secL'; {Apple events sent by the }

{ Edition Manager}
section1eadMsgID : 'read'; {Section Read events}
sectionWriLeMsgID = 'writ'; {Section Write events}
sectionScrollMsgID : 'scrl'; {Section Scroll events}
sectionCancelMsgID : 'cncl'; {Section Cancel events}

{refCon field when displaying stacked dialog boxes}

sfMainDialogRefCon ; 'stdf'; {new publisher and }
{ new subscriber}

stewFolderDialogRefCon = 'nfdr'; {new folder}

szeplaceDialogRefCon : 'rplc'; {replace dialog}
sfSLaLWarnDialoqRefCon = 'stat'; {warning dialog}
strrorDialogRefCon : 'err '; {error dialog}
emOptionsDialogRefCon : 'optn'; {options dialog}
emCancelSectionDialogRefCon = 'cncl'; {cancel section}
emGotoPubEerialogRefCon : 'gerr'; {locate publisher}

{pseudoii:em hits for dialogHookS}

emHookRedrawPreview : 150; {for NewPublisher or }

{ NewSubscriber dialogs}
emHookCancelSection : 160; {for SectionOptions dialog}
emHookGoToPublisher : 161; {for SectionOptions dialog}
emHookGetEditionNow : 162; {for SectionOptions dialog}
emHookSendEditionNow : 162; {for SectionOptions dialog}
emHookManualUpdateMode : 163; {for SectionOptions dialog}
emHookAutoUpdateMode : 164; {for SectionOptions dialog}

Data Types

TYPE TimeStamp : Longlnt; {seconds since 1904} ‘
EditionRefNum : Handle; {for use in Edition I/O}
deateMode = Integer; {sumAutomatic, }

{ sumManual, }
{ pumOnSave, pumManual}

SectionType = SignedByte; {stSubscriber or stPublisher}
l

FormatType : PACKED ARRAY[..4] OF CHAR;

{similar to ResType used }
{ by the Scrap Manager}

SectionHandle : ASectionPtr;
SectionPtr : ASectionRecord;
SectionRecord :
RECORD

version: SignedByte; {always 1 in version 7.0}

4—82 Summary of the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 271

IPR2017-01828
Ubisoft EX1002 Page 272

The Edition Manager

kind: SectionType; {publisher or subscriber}
mode: deateMode; {automatic or manual}
mdDate: TimeStamp; {last change to section}
sectionID: songlnt; {application—specific, }

{ unique per document}
refCon: uongInt; {applicationispecific}
alias AliasHandle; {handle to alias record}
{The following fields are private and are set up by the }
{ RegisterSection function.)

|

i subPart: LongInt; {private}
g nextSection: SectionHandle; {private}

i controlBlock: Handle; {private}2 refNum: EditionRefNum {private}
END;

EditionContainerSpecPtr =“EditionContainerSpec;
EditionContainerSpec :

:!
! RECORD

theFile: TSSpec; {file containing edition }
{ data}

theFileScript: ScriptCode; {script code of filename}
thePart: songlnt; {which part of file, }

{ always kPartsNotUsed}
thePartName: StrBl; {not used in version 7.0}

thePartScript: ScriptCode {not used in version 7.0}
END;

FormatsAvailable : ARRAY[0..0] OF
RECORD L

theType: FormatType; {format type for an edition} :

theLength: LongInt {length of edition format } é

{ type} E
END; :

EditionlnfoRecord : fi
RECORD "

chate: TimeStamp; {date edition container }

_ { was created)
mdDate: TimeStamp; {date of last change}
dereator: OSType; {file creator}
deype: OSType; {file type}
container: EditionContainerSpec

{the edition}
END;

Summary of the Edition Manager 4-83

|PR2017-01828

Ubisoft EX1002 Page 272

IPR2017-01828
Ubisoft EX1002 Page 273

Inside Macintosh, Volume VI

NewPublisherReply :
RECORD

canceled:

replacing:

usePart:

preview:

previewFormat:
container:

3ND;

VewSubscriberReply
QECORD

canceled:
formatsMask:
container:

EVD;

SectionOptionsReply
RECORD

canceled:

changed:
sectionH:

action:

END;

EditionOpenerVerb

 RECORD

info:

sec:ionH:

document:
derea:or:
ioRefNum:
ioProc:

SUCCESS:

formatsMask:

 3ND;

4—84

Boolean; {user canceled dialog box}
Boolean; {user chose existing }

{ filename for an edition}
Boolean; {always FALSE in version 7.0}
{andle; {handle to 'prvw', 'PICT', }

{ ’TEXT‘, or 'snd‘ data}
FormatType; {type of preview}
EditionContainerSpec

{edi:ion chosen}

Boolean; {user canceled dialog box}
SignedByte; {formats required}
EditionContainerSpec

{edition selected}

Boolean; {uscr canceled dialog box}
Boolean; {changed the section record}

SectionHandle; {handle to the specified }
{ scction record}

ResType {action codes}

2 (eoOpen, eoClose, eoOpenNew, eoCloseNew
eoCanSubscribe);

EditionOpenerParamBlock :

 EditionlnfoRecord;
{edition container to }
{ be subscribed to}

SectionHandle;
{publisher or subscriber}
{ requesting open}

TSSpecPtr; {document passed}

OSType; {Finder creator type}
songInt; {reference number}
TormatIOProcPtr;

{routine to read formats}
{reading or writing was }
{ successful}

{formats required to }
{ subscribe}

Boolean;

SignedBy:e

Summary of the Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 273

IPR2017-01828
Ubisoft EX1002 Page 274

The Edition Manager

FormatIOVerb : (ioHasFormat, ioReadFormat, ioNewFormat,
ioWriteFormat);

FormatIOParamBlock :
RECORD

ioRefNum: LongInt; {reference number}
format: TormatType; {edition format type}
formatlndex: Longlnt; {opener—specific enumeration }

{ of formats}

offset: oonngt; {offset into format}
buffPtr: Dtr; {data starts here}
buffLen: LongInt [length of data}

END;

Routines

Initializing the Edition Manager

FUNCTION InitEditionPack OSErr;

Creating and Registering a Section

FUNCTION NewSection

TUNcfllON RegisterSection

jUNC"ION UnRegisterSection

TUNC"ION IsRegisteredSection
jUNC"ION AssociateSection

 (container: EditionContainerSpec;
section)0cument: FSSpecPtr; kind:
SectionType; sectionID: Longlnt;
initiaiMode: UpdateMode; VAR sectionH:
Section{andle) : OSErr;

(sectionDOCument: FSSpec; sectionH:
Sectioniandle; VAR aliasWasUpdated:

Boolean) : OSErr;

(sectioni: Sec:ionHandle) : OSErr;

(sectioni: Sec:ionHandle) : OSErr;

(sectioni: Sec:ionUandle;
newSectionDocument: FSSpecPtr)
OSErr;

Creating and Deleting an Edition Container

 FUNC"ION CreateEditionContainerFile

 FUNC“ION DeleteEditionContainerFile

(editionFile: jsSpec; dereator: OSType;
editionFileNameScript: ScriptCode)
OSErr;

(editionFile: TSSpec) : OSErr;

Summary of the Edition Manager 4-85

|PR2017-01828

Ubisoft EX1002 Page 274

IPR2017-01828
Ubisoft EX1002 Page 275

Inside Macintosh, Volume VI

Setting and Locating a Format Mark

FUNCTION SetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
FormatType; setMarkTo: LongInt) : OSErr;

FUNCTION GetEditionFormatMark (whichEdition: EditionRefNum; whichFormat:
FormatType; VAR currentMark: LongInt)
OSErr;

Reading in Edition Data

FUNCTION OpenEdition (subscriberSectionH: SectionHandle; VAR refNum:
EditionRefNum) : OSErr;

FUNCTION EditionHasFormat (whichEdition: EditionRefNum; whichFormat:
FormatType; VAR formatsize: Size) : OSErr;

FUNCTION ReadEdition (whichEdition: EditionRefNum; whichFormat:
FormatType; buffPtr: UNIV Ptr; VAR buffLen:
Size) : OSErr;

Writing out Edition Data

FUNCTION OpenNewEdition (publisherSectionH: SectionHandle; dereator:
OSType; publisherSectionDocument: FSSpecPtr;
VAR refNum: EditionRefNum) : OSErr;

FUNCTION WriteEdition (whichEdition: EditionRefNum; whichFormat:
FormatType; buffPtr: UNIV Ptr; buffLen: Size)

OSErr;

Closing an Edition After Reading or Writing

 FUNCTION CloseEdition (whichEdition: EditionRefNum; successful:
Boolean) : OSErr;

Displaying Dialog Boxes

FUNCTION GetLastEditionContainerUsed (VAR container: EditionContainerSpec)
OSEI‘r;

FUNCTION NewSubscriberDialog (VAR reply: NewSubscriberReply)
OSErr;

FUNCTION NewPuinsherDialog (VAR reply: NewPublisherReply)
OSErr;

4—86 Summary ofthe Edition Manager

|PR2017-01828

Ubisoft EX1002 Page 275

IPR2017-01828
Ubisoft EX1002 Page 276

The Edition Manager

FUNCTION SectionOptionsDialog (VAR reply: SectionOptionsReply)

OSErr;

FUNCTION NewSubscriberExpDialog (VAR reply: NewSubscriberReply;
where: Point; expansionDITLresID:
In:eger; dlgHook:
ExlegHookProthr; filterProc:
ExpModalFilterProcPtr; yourDataPtr:
JNIV Ptr) : OSErr;

 FUNCTION NewPublisherEXpDialog (VAR reply: NewPublisherReply;
where: Point; expansionDITLresID:
Integer; dlgHook:
ExlegHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr:
JNIV Ptr) : OSErr;

FUNCTION SectionOptionsExpDialog (VAR reply: SectionOptionsReply;
where: Point; expansionDITLresID:
Integer; dlgHook:
ExlegHookProcPtr; filterProc:
ExpModalFilterProcPtr; yourDataPtr:
UNIV Ptr) : OSErr;

Locating a Publisher and Edition From a Subscriber

FUNCTION GetEditionInfo (sectionH: SectionHandle; VAR editionlnfo:
EditionInfoRecord) : OSErr;

FUNCTION GoToPublisherSection (container: EditionContainerSpec) : OSErr;

Edition Container Formats

FUNCTION GetStandardFormats (container: EditionContainerSpec; VAR

previewFormat: FormatType; preview,
publisherAlias, formats: Handle) : OSErr;

4..
—L‘AA—.—.H._..
v.—I—i
7.—R...
.d,u
.7I.C’1

Reading and Writing Non-Edition files
RUNCTION GetEditionOpenerProc (VAR opener: EditionOpenerProcPtr) : OSErr;

 TUNCTION SetEditionOpenerProc (opener: EditionOpenerProcPtr) : OSErr;
TUNCTION CallEditionOpenerProc (selector: EditionOpenerVerb; VAR PB:

EditionOpenerParamBlock; rouLine:
EditionOpenerProcPtr) : OSErr;

FUNCTION CallFormatIOProc (selector: FormathVerb; VAR PB:
TormatIOParamBlock; routine:
TormatIOProcPtr) : OSErr;

Summary of the Edition Manager 4-87

|PR2017-01828

Ubisoft EX1002 Page 276

Inside Macintosh, Volume VI

Application-Defined Routines

FUNCTION MyExpDlgHook (itemOffset: Integer; itemHit: Integer;
theDialog: DialogPtr; yourDataPtr: Ptr)
Integer;

FUNCTION MyExpModalFilter (theDialog: DialogPtr; VAR theEvent:

FUNCTION MyOpener

FUNCTION MyIO

Result Codes

no Err
abortErr
eofErr
fnfErr
flLckedErr
fBsyErr
rfNumErr
permErr
wrPermErr
noTypeErr
memFullErr
userCanceledErr
editionMgrlnitErr
badSectionErr
notRegisteredSectionErr
badSubPartErr
multiplePublisherWm
containerNotFoundWm
notThePublisherWm

0
-27
-39
--43
--45
--47
-51
-54
-61

-102
-108
-128
--450
--451
--452
--454
--460
--461
--463

EventRecord; itemOffset: Integer; VAR
itemHit: Integer; yourDataPtr: Ptr) :
Boolean;

(selector: EditionOpenerVerb; VAR PB:
EditionOpenerParamBlock) : OSErr;

(selector: FormatIOVerb; VAR PB:
FormatIOParamBlock) : OSErr;

No error
Publisher has written a new edition
No additional data in the format
Edition container not found
Publisher writing to an edition
Section doing 1/0
Bad edition reference number
Not a subscriber
Not a publisher
Format not available
Could not load package
User chose Cancel from dialog box
Manager not initialized or could not load package
Not a valid section type
Not registered
Bad edition container spec or invalid edition container
Already is a publisher
Alias was not resolved
Not the publisher

4-88 Summary of the Edition Manager

IPR2017-01828
Ubisoft EX1002 Page 277

5 THE EVENT MANAGER

3 About This Chapter
4 About the Event Manager
5 Introduction to Events
5 Low-Level Events
6 Operating-System Events
8 High-Level Events

10 Event Processing
10 The Event Loop
12 Event Masks
12 Switching Contexts
13 Specifying Memory Requirements and Scheduling Options
14 The Structure of a 'SIZE' Resource
17 Creating a 'SIZE' Resource
18 Using the Event Manager
18 Receiving Low-Level Events
19 Responding to Operating-System Events
21 Receiving High-Level Events
22 Identifying High-Level Event Senders and Receivers
23 Sending High-Level Events
26 Requesting Return Receipts
27 Responding to Events From Other Applications
28 Searching for a Specific High-Level Event
29 Event Manager Routines
29 Receiving Events
30 Sending Events
31 Receiving a Specific High-Level Event
32 Converting Process Serial Numbers and Port Names
33 Summary of the Event Manager

5-1

IPR2017-01828
Ubisoft EX1002 Page 278

_.
Smomm-thm

It)
I”:
I2
I}
14
13'
13
18
19
El
22
23
”.26
2?

”.28
29
29
3t}
3]
32
33

THE EVENT MANAGER

About This Chapter
About the Event Manager
Introduction to Events

Low-Level Events

Operating-System Events
Hi git-Level Events

Event Processing
The Event Ieop
Event Masks

Switching Contexts
Specifying Memory Requirements and Scheduling Options

The Stnieture or :i 'SIZL“ Resource

Creating, a 'SIZE' Resource
Using the Event Manager

Receiving Low-Level Events
Responding to Operating-System Events
Receiving High-Level Events
Idenlit'ving High-Level Event Senders and Receivers;
Sending High-Level Events
Requesting Return Receipts
Responding to Events From Other Applications
Searching for E1 Specific High-Level Event

Event Manager Routines
Receiving Events
Sending Evenly;
Receiving a Specific High-Level Event
Converting Process Serial Numbers and Port Names

Summary of the Event Manager

Ln
I

-..

|PR2017-01828

Ubisoft EX1002 Page 278

Inside Macintosh, Volume VI

5-2

IPR2017-01828
Ubisoft EX1002 Page 279

The Event Manager

ABOUT THIS CHAPTER

This chapter describes how your application can use the Toolbox Event Manager to send events
to other applications and to receive events from other applications. The Toolbox Event Manager
in system software version 7 .0 provides routines for sending and receiving a new type of event,
a high-level event. In addition, Apple Computer, Inc. has defined a protocol for high-level
events called the Apple® Event Interprocess Messaging Protocol. High-level events that adhere
to this protocol are called Apple events. Your application can also define other types of high
level events and send them to applications, either locally or across a network.

This chapter also describes the operation of the multitasking environment formerly known as
MultiFinder®, which is now an integral part of the Macintosh® Operating System in system
software version 7.0. In this environment, numerous applications can be open simultaneously,
cooperatively sharing the available system resources. The Macintosh Operating System coordi
nates the execution of multiple applications by sending another type of event, an operating
system event, to applications whenever their execution status changes or whenever processor
time is available for background processing. Your application takes advantage of this multi
tasking capability primarily by receiving operating-system events that guide its execution.

The Event Manager routines that let your application communicate with other applications
depend on the services of the Program-to-Program Communications (PPC) Toolbox and are
available in system software version 7 .0. Before using any of the routines that handle high
level events, you should first use the Gestalt function to determine that the PPC Toolbox is
present. You can also use Gestalt to determine which multitasking features of the Operating
System are present. See the Compatibility Guidelines chapter in this volume for a full account
of using Gestalt.

The ability to have multiple applications open at once is available when running system soft
ware version 7.0 or when running MultiFinder in system software versions 5.0 and 6.0. Any
significant differences between the multitasking environment of version 7 .0 and that provided
by MultiFinder in earlier system versions are noted at the appropriate locations in this chapter.
In system software earlier than version 7.0, there is no recommended way to determine
whether MultiFinder is running or whether other applications are open if it is running. When
running in system software version 7.0, applications that need to know what other applications
are open (for example, to send high-level events to them) can get that information by calling
one of three functions: the PPCBrowser function or the IPCListPorts function (both docu
mented in the Program-to-Program Communications Toolbox chapter in this volume) or the
GetNextProcess function (documented in the Process Management chapter in this volume).

The information in this chapter supplements the information in the Toolbox Event Manager
chapter of Inside Macintosh, Vokime I and Volume V. (In this chapter, the term Event
Manager refers to the Toolbox Event Manager, not the Operating System Event Manager.)
In addition, the sections on cooperative multitasking supersede the information in the
Programmer's Guide to MultiFinder.

To use this chapter, you should be familiar with the way in which the Macintosh Operating
System manages processes. See "About Process Management" in the Process Management
chapter in this volume for a detailed description of how the Operating System schedules
processes, performs context switches, and launches applications. If you want to communi
cate with applications across a network, then you should be familiar with the discussion of
authentication in the Program-to-Program Communications Toolbox chapter in this volume.

About This Chapter 5-3

IPR2017-01828
Ubisoft EX1002 Page 280

The Event Manager

ABOUT THlS CHAPTER

This chapter describes how your application can use the Toolbox Event Manager to send events
to other applications and to receive events from other applications. The 'l'oolbox Event Manager
in system software version It] provides routines for sending and receiving a new type of event.
a high-level event. In addition. Apple Computer. Inc. has defined a protocol for high—level
events called the Apple“? Event Interpmcess Messaging Protocol. High—level events that adhere
to this protocol are called Apple events. Your application can also dcline other types of high-
level events and send them to applications. either locally or across a network.

This chapter also describes the operation of the multitasking environment formerly known as
MultiFinder—R. which is now an integral part ofthe Macintosh-"5‘5 Operating System in system
software version "Lil. In this environment. numerous applications can be open sittttlltaneously.
cooperatively sharingT the available system resources. The Macintosh Operating System coordi—
nates the execution of multiple applications by sending another type of event. an operating-
system event, to applications whenever their execution status changes or whenever processor
time is available for background possessing. Your application takes advantage of this multi—
tasking capability primarily by receiving operating—system events that guide its execution.

The Event Manager routines that let your application communicate with other applications
depend on the services of the Program-to-Program Communications [PFC] Toolbox and are
available in system software version "Ml. Before using any of the routines that handle high-
level events. you should first use the Gestalt function to determine that the PPC Toolbox is
present. You can also use Gestalt to determine which multitasking features of the Operating
System are present. See the Compatibility lGuidelines chapter in this volume for a full account
ofusing Gestalt.

The ability to have multiple applications open at once is available when running system soft-
ware version 'l'tl or when running MultiFindcr in system software versions it} and {1.0. Any
significant differences between the multitasking environment of version It} and that provided
by MultiFinder in earlier system versions are noted at the appropriate locations in this chapter.
in systetn software earlier than version it]. there is no recommended way to determine
whether MultiFinder is running or whether other applications are open if it is running. When

running in system software version it]. applications that need to know what other applications
are open tfor example. to send high-level events to them; cart get that information by calling
one of three functions: the PPCBI'owser function or the lPCListPorts function {both docu—

mented in the Progratn—to—Progratn lCommonicatiorts Toolbox chapter in this volume] or the
GetNestProcess function {documented in the Process Management chapter in this volume].

The infonnation in this chapter supplements the information in the Toolbox Event Manager
chapter of ins-rite Macintosh. Vol-time l and Volume V. (In this chapter. the term Event
Manager refers to the'l'oolbos Event Manager. not the Operating System Event Manager. t

In addition. the sections on cooperative multitasking supersede the information in the
Programmer’s Garlic to Mtrft‘r'Fintfer.

To use this chapter. you should he familiar with the way in which the Macintosh Operating
System manages processes. See “About Process Management" in the Process Management
chapter in this volume for a detailed description of how the flip-crating System schedules

processes. performs contest switches. and launches applications. If you want to connnuni-
cate with applications across a network. then you should be familiar with the discussion of
authentication in the Program—to—ngrarn Connnunicalions Toolbox chapter in this volume.

About This Chapter 5 -_‘i

|PR2017-01828

Ubisoft EX1002 Page 280

Inside Macintosh, Volume VI

ABOUT THE EVENT MANAGER

Most Macintosh programs are event-driven: they decide what to do from moment to moment
by asking the Event Manager for events and responding to them one by one in whatever way
is appropriate. The Event Manager is your application's primary link to the user, to other
applications that are running at the same time as your application, to the various managers that
are controlling operations in the Macintosh, and to the Operating System itself. Events sent to
your application from these various sources can communicate important information to it and
help ensure its smooth operation. "

You can use the Event Manager to

• receive key presses and mouse clicks as input for your application

• receive indication that your application's windows need to be activated or updated

• allow other applications to use the available system resources when no events are
pending for your application

• send events to other applications

• receive events from other applications

• respond to events received from other applications

• search for a specific event from another application

This chapter provides a brief introduction to events and then discusses a number of particular
topics that are related to high-level events and the multitasking environment that is standard in
system software version 7 .0. It explains

• how to structure your main event loop to receive and process events

• how to create a 'SIZE' resource to specify your application's memory requirements and
scheduling options

• how to receive and process high-level events

• how to send high-level events to other applications

This chapter also provides some information about Apple events, Apple's new protocol
governing a class of high-level events. Additional information about Apple events, including
descriptions of how to process the required Apple events, is provided in the Apple Event
Manager chapter in this volume.

5-4 About the Event Manager

IPR2017-01828
Ubisoft EX1002 Page 281

The Event Manager

INTRODUCTION TO EVENTS

Events are of various types, distinguished according to their origin and meaning. On the most
basic level, events are created every time a user presses a key on the keyboard, presses the
mouse button, releases the mouse button, or inserts a disk.

Still other events can arise from changes in the processing status of an application. For
example, if a user brings an application to the foreground, the Operating System sends a
resume event to that application. Some of the work of reactivating the application is done
automatically, both by the Operating System and by the Window Manager; the resume
event is an indication for your application to take care of any further processing needed
as a result of the application being reactivated.

In system software version 7.0, the Event Manager recognizes a new type of event-the
high-level event-that allows communication and information transfer between cooperating
applications. For example, a spreadsheet application may want to obtain some information
from a database application. The spreadsheet can send a high-level event to the database
requesting the information; the database can then reply with the requested information by
sending another high-level event back to the spreadsheet.

Low-Level Events

Events that report actions by the user (such as pressing the mouse button, typing on the
keyboard, or inserting a disk) and events that report that the Event Manager has no other
events to report (null events) are called low-level events because they report very low-level
hardware and software occurrences. Figure 5-1 depicts the relationships among the
Operating System Event Manager, the Toolbox Event Manager, the Window Manager,
and a single application.

The Operating System Event Manager detects and reports very low-level events such as
changes in the attached hardware. Hardware-related events are mouse clicks, key presses,
disk insertions, and so forth.

Other low-level events can arise from changes in windows on the screen. For example, if
a user has several documents open while running an application, the user can switch from
one document to another by clicking in the appropriate window. Before your application is
sent such an event, the Window Manager does some work for you, such as highlighting
the newly activated window and unhighlighting the deactivated window. As illustrated in
Figure 5-1, activate and update events are not placed into the event queue but are sent directly
to the Toolbox Event Manager.""

Applications can generate events themselves and send them (using the PostEvent function) to
the Operating System Event Manager for processing. These types of events are application
specific. In an environment where only one application can execute at a time, application
defined events allow your application to send events to itself. You should be careful not to
post events that are not normally placed in the event queue (such as activate events).

Note: In system software version 7 .0, the work done by application-defined events
must be accomplished using Apple events or other high-level events.

Introduction to Events 5-5

IPR2017-01828
Ubisoft EX1002 Page 282

lite Event Manager

INTRODUCTION TO EVENTS

Eants are oh.variou5 lypc5 distinguished acutrding to their origin and tt‘teatiing. On the most
basic level. events are created every time a user pressesa key on the kcymboard presses the
mouse btttton.releI15es the mouse hutton. ot insens a disk.

Still otlter events can arise from changesIn the processing status ol an application. lor
example ifa user htIngs an application to the foreground the Operating System sends a
re5umL' event to that application. Some IIfthe work}:of reactivating the application is donL
automatically. both by the Operating System attd by the Window Manager; the resume
event is an indication for your application to take care of any further possessing needed
as a result of the application being reactivated.

ln system software version Hi. the Event Manager recogniaes a new type oi' event—the
high—leve| event—that allows communication and information transfer between cooperating

applications. For example. It spreadsheet application may 1Ivanl to obtain some information
ire-In I1 database application. the spreadsheet can send a high- level event to the database
requesting tlte inionnation; the database can then reply with the requested iniormation by
sending another high-level event hack to the spreadsheet.

LOW-LEVEI Events

Events that report actions by the user [such as pressing the mouse button. typing on the

keyboard. or inserting a disk} and events that report tltat the Event Manager has no other
events to report {null events} are called lair-level {"I’I’FH.I‘ because they report very low-level
hardware and software occurrences. Figure fi—I depicts the relationships; among the
Operating System Event Manager. the Toolbox Event Manager. the Window Manager.
and a single applicatiott.

The Operating System Event Manager detects attd repons very low-level events such as
changes in the attached hardware. Hardware-related events are mouse clicks. lIey presses.
disk insenions. and so forth.

Other low-level events can arise from changes in windows on the screen. For example. if
a user has several documents open while running an applieation. the user can switch from
one Ito-Cement to another by clicking in the appropriate window. Before your application is
sent such an event. tlte Window Manager does some work for you. such as highlighting
the newly activated window and unhighligltting the deactivated window. .-’I..5 illustrated in
Figure 5— l . activate and update events are not placed into the event queue but are sent directly
to the 'l‘oolbos Livent Manager."

Applications can generate events themselves and send them {using the PostEvent function} to
the Operating System Event Manager for processing. These types of events are application-
specific. in an environment where only one application eatt eseeute at a time. application—
dclined cvettts allow your application to send events to itself. You should be careful not to
post events that are not normally placed in the event queue {such as activate events}.

Note: in system software version "I‘ll. the work done by application-defined events
must be accomplished using Apple events or other high-level events.

ltttroa‘m'II'oI-I to Events 5 5

|PR2017-01828

Ubisoft EX1002 Page 282

Inside Macintosh, Volume VI

Key up
Key down
Auto key
Mouse up
Mouse down

)

Activate

[
Window j Update
Manager

1 > ._ _____ _

OS Event
Managsr

Event20
Event19

Event 1

Toolbox Event
Manager -

Event
queue

n Event stream

Application-defined .A.
.______.~v:i

Figure 5-1. Events in a single application environment

Operating-System Events

The cooperative multitasking environment introduces a new type of event to allow the Operating
System to communicate information to an application about changes in the operating status of
that application. For example, when your application is switched into the background, the
Operating System sends it a suspend event. Then, when your application is switched back into
the foreground, it receives a resume event. These types of events are known as operating
system events.

Figure 5-2 illustrates how the Event Manager helps provide this cooperative multitasking envi
ronment. The main new source of events is the Macintosh Operating System itself, which sends
suspend, resume, and mouse-moved events to applications through the Toolbox Event Manager.
(In system software versions earlier than 7.0, these events are sent by MultiFinder.) In addition
to the event queue created by the Operating System Event Manager, the Toolbox Event Manager
maintains a separate event queue for each open application. The events in the Operating System
Event Manager queue are always sent to the foreground application, but other events (for
example, update events from the Window Manager) can be sent to background applications.

5-6 Introduction to Events

IPR2017-01828
Ubisoft EX1002 Page 283

inside Marianna. Voinme W

Key up
Key down
Auto key
Mouse up
Mouse down

flActivate

Update

window Toolbox Event

:3 . Manager

Marla 9F

J Event stream

Q
figure S-I. Events itt a single application envirottment

Apptieation—detined

Operating-System Events

The cooperative multitasking environment introduces a new type ot‘event to allow the Operating
System to communicate information to an application about changes in the operating, status of
that application. For example. when your application: is switched into the background. the
Operating System sends it a suspend event. Then. when your application is switched back into
the foreground. it receives a resume event. These types of events are known as operating-
.v_t'.t'tem events.

Figure 5-2 illustrates how the Event Manager helps provide this tee-operative tttultilasking envi-
ronment. The main new source ot‘events is the Macintosh Operating System itself. which sends
suspend. resume. and mouse—moved events to applications through the Toolbox Livent Manager.
(In system software versions earlier titan It}. these events are sent by MultiFintJer} In addition
to the event queue created by the (thratting System Event Manager. the 'l'oolbos Event Manager
maintains a separate event queue for each open application. The events in the Operating System
Event Manager queue are always sent to the foreground application. but other evenls Elitr
example. update events from the Window Manager] can he sent to background applications.

5—6 Introduction to Events

|PR2017-01828

Ubisoft EX1002 Page 283

Key up
Key down
Auto key
Mouse up
Mouse down

Window
Manager

Application
defined

Activate
Update

>
tf>

Event 5
Event 4

Event 1

The Event Manager

OS Event
Manager

D
Event20
Event 19 Event

queue

Event 1

D Mouse moved
Suspend

Toolbox Event Resume

< Multi Finder Manager

n

~ Event stream
~

Event25 Event 10
Event24 Event 9

Event1 Event 1

Figure 5-2. Events in a multi-application environment

Because your application might'need to execute differently depending on whether it is
running in the foreground or in the background, you can inspect the low bit of the message
field of an operating-system event to determine whether the event is a suspend or a resume
event. For example, if you need to notify the user of some special occurrence while your
application is executing in the background, you cannot simply put up an alert box. Instead,
you should use the Notification Manager to queue a notification request that will be presented
to the user at the appropriate moment.

When your application receives a suspend event, it does not actually become inactive until it
makes its next request to receive events from the Event Manager. At the time that it receives
the suspend event, your application can inspect the convertClipboard flag in the message field

Introduction to Events 5-7

IPR2017-01828
Ubisoft EX1002 Page 284

the Eryn! Manager

Key up
Key clown
Auto key
Mouse up

Mouee—down

F Event 20—
_ "fl Event

5 queue

_ Event 1

J Mouse moved
Activate Suspend

Update Resume —Window |—> Toolbox Event . .Manager Manager Q: MultIFInder
{—3

/ Eventelrean'lQ _

i Event 5 i i Event 25 Event 10
Event4 ; 'Event24 ' Evente _

i Eventt I I Eventt LEventt !

fipfiliegtio n- ‘1 B J
"é:- E

Figure 5-2.. Events in a multi-applicution environment

Because your application might-need to execute differently depending on whether it is
running in the foreground or in the background. you can inspect the low hit of the message
I‘ielrl oil—an operating-system event to determine whether the event is :1 suspend or at resume
event. For example. if you nectl to notify the user of some special necurrenee while your
application is executing in the background. you cannot simply put up an alert box. Instead.
you should use the Notification Manager to queue :1 notification request that will he presented
to the user at the upprt‘ipriale moment.

When your application receives a suspend event. it does not actually become inactive until it
makes its next request to receive events from the Event Manager. At the time that it receives
the auspcnd event. yourapplieution eun inspect the eonvertClipb-oard flag in the message field

httmrt‘ur'tr'mt to Events 5— 3"

|PR2017-01828

Ubisoft EX1002 Page 284

Inside Macintosh, Volume VI

of the event record to see whether it should convert any local scrap into the global scrap.
Your application should also hide any floating windows, selections, and so on. Then you
should call WaitNextEvent to relinquish the processor and allow the Operating System to
schedule other processes for execution. It is important to minimize the processing you do in
response to a suspend event because otherwise the machine may appear sluggish.

When control returns to your application, the first event it receives is a resume event. Your
application may now convert the global scrap back to its private scrap, if necessary. As part
of the resume or suspend event, the Operating System informs your application if the
Clipboard has changed by setting bit 1 of the message field of the event record.

"'
There are two other kinds of operating-system events, mouse-moved events and
application-died events. A mouse-moved event is sent to an application to indicate
that the user has moved the mouse outside of the region specified to the WaitN extEvent
routine. The application-died event is sent whenever an application launched by your
application terminates or crashes.

Note: Some early versions of MultiFinder do not send application-died events, and
your application should not depend on receiving them. These events are provided
primarily for use by debuggers. In system software version 7.0, application-died
events are now sent as Apple events.

High-Level Events

In system software version 7.0, the Event Manager introduces a new type of event, the high
level event, along with a number of new Event Manager routines that let applications commu
nicate with each other by exchanging high-level events. A high-level event is an event that
your application can send to another application to send it some information, to receive from
it some information, or to have it perform some action. For example, your application can
send an event to anoth~r application instructing that application to perform a specific action,
such as adding a row to a spreadsheet or changing the font size of a paragraph. Your appli
cation can also send an event to another application requesting information from that
application-for example, requesting a dictionary application to return the definition of a
particular word. When you send a high-level event to another application, you can also
include additional information or commands in an optional data buffer. For example, your
application can use a high-level event to send a list of new words and definitions to a
dictionary application.

Figure 5-3 shows the general event-handling mechanism in system software version 7.0.
Three different applications are communicating with one another by sending and receiving
high-level events. High-level events are placed in a separate event queue maintained by the
Operating System. The Operating System maintains a high-level event queue for each
application that has announced itself as capable of receiving high-level events. The high-level
event queues are limited in size only by available memory.

Note: Because high-level events are not stored in the Operating System event queue,
you cannot flush high-level events by calling the FlushEvents procedure.

5-8 Introduction to Events

IPR2017-01828
Ubisoft EX1002 Page 285

Disk 7~~
Key up 'ill! :;;:/ ===u
Key down ~-----~

insert

Auto key O/S Event
Mouse up Manager
Mouse down

D
Event Event 20

queue Event 19

Event 1
Window

D Manager

Activate~
Update Toolbox Event

Manager

tf?
n

Event stream
{j

Events Event25
Event4 Event24

Event 1 Event 1

PPG
Toolbox

D

Mouse moved
Suspend

The Event Manager

High
level
event
queue

Resume ~---~
/' Process
"'-----' Manager

Event 10
Event 9

Event 1

Figure 5-3. Events in system software version 7 .0

For effective communication between applications, your application must define the set of
high-level events it responds to and let other applications know the events it accepts. By
implementing the capabilities to send events to and receive events from other applications,
you allow other applications to interact with your application and provide enhanced
capabilities to your users.

Introduction to Events 5-9

IPR2017-01828
Ubisoft EX1002 Page 286

The Event Manager

Auto key DIS Event PPC
Mouse up Manager Toolbox
Mouse down

High-
Event Event 29.- m H %I level
queue Event 19 5 event

[El-("Ill | latte-1|] [t-uo-ut1_| queue

Event 1 iWindow

Manager U

 Mouse moved

Suspend

I_|

Resume Process
<2

l Event stream

Event 5 Event 25 Event 1G a

Event 4 Event 24 Event {-1

Elton": WI ml
ll 3 it

e 6
.. ll2 I

Figure 5-3. Events in system sol'thtre version "Lil

 Activate

Update Toolbox Event
Manager

For effective communication between applications. your applieation must define the set oli
high-level events it responds toand let other applications know the events it accepts. By
implementing the capabilities to send events to and receive events- from other applications.
you allow other applications to interact with your application and provide enhanced
capabilities to your users.

[unwittinvinrt Fri Events 5- 9

|PR2017-01828

Ubisoft EX1002 Page 286

Inside Macintosh, Volume VI

Generally, there is no restriction on the type of processing that one application can request
from another by sending it a high-level event. For a high-level event sent by one application
to be understood by another application, however, the sender and receiver must agree on a
protocol, that is, on the way the event is to be interpreted. Apple events are high-level events
whose structure and interpretation are determined by the Apple Event Interprocess Messaging
Protocol.

To make your application 7.0-friendly, you should support the required Apple events, as
described in the Apple Event Manager chapter in this volume. In addition, you may want
your application to support other common Apple events. For example, the Edition Manager
uses Apple events to communicate information about document sections among the various
applications that may publish sections or subscribe to them. The Edition Manager sends the
appropriate Apple events to applications that want to maintain up-to-date subscriber sections
within their documents. If a user alters a section of a document that has previously been
published and updates the edition, the Edition Manager might post an Apple event to the
application indicating that a new edition is available. The application receiving the Apple
event can then update the subscriber or ignore the information, as the user dictates. For
complete information on responding to Apple events sent by the Edition Manager, see the
Edition Manager chapter in this volume.

To ensure compatibility and smooth interaction with other Macintosh applications, you
should use the Apple event protocol for high-level events whenever possible. You should
define new protocols only if your application must communicate with applications on other
computers that use different protocols or if your application has other special needs. For
complete information about Apple events and on implementing the required set of Apple
events, see the Apple Event Manager chapter in this volume.

Note: All Macintosh system software that sends or receives high-level events uses
the Apple events protocol.

EVENT PROCESSING

In system software version 7.0, the cooperative multitasking capabilities previously available
through MultiFinder are an integral part of the Operating System. As a result, applications
running under version 7.0 must process events and reserve memory in ways that contribute
to the smooth operation of all applications that are open. In practice, this means that you
should retrieve events from the Event Manager by using the WaitNextEvent function and that
you should include a 'SIZE' resource that specifies a reasonable memory partition size. This
section shows how to retrieve events from the Event Manager, how to mask out unwanted
events, and how to specify memory and scheduling options for your application.

The Event Loop

In applications that are event-driven (that is, which decide what to do at any time by receiving
and responding to events), you can obtain information about events that are pending by
calling Event Manager routines. Since you call these routines repeatedly, the section of code
in which you request events from the Event Manager usually takes the form of a loop; this
section of code is the event loop.

5-10 Event Processing

IPR2017-01828
Ubisoft EX1002 Page 287

The Event Manager

A simple event loop might look something like the one given in Listing 5-1. It consists of an
endless loop that retrieves an event and decides whether it is a null event. If the event is not a
null event, the event loop calls DoEvent, an application-defined procedure, to process the
event. Otherwise, the procedure calls an application-defined idling procedure, Doldle.

PROCEDURE EventLoop;
VAR

Listing 5-1. A simple event loop

cursorRgn: RgnHandle;
gotEvent: Boolean;
event: EventRecord;

BEGIN
cursorRgn := NewRgn; {pass an empty region the first time thru}
REPEAT

gotEvent := WaitNextEvent(everyEvent, event, GetSleep, cursorRgn);
AdjustCursor(event.where, cursorRgn);
IF gotEvent THEN

DoEvent(event)
ELSE

Doidle;
UNTIL FALSE; {loop forever}

END;

The DoEvent procedure must determine what kind of event the call to WaitNextEvent retrieved
and act accordingly. Notice that the parameter passed to DoEvent is the event record received
by WaitNextEvent. Essentially, the procedure is just a large conditional statement that branches
according to the value of the what field of the event record. Listing 5-2 defines a simple
DoEvent procedure.

Listing 5-2. Processing events

PROCEDURE DoEvent(event: EventRecord);
BEGIN

CASE event.what OF
mouseDown:

DoMouseDown(event);
mouseUp:

DoMouseUp(event);
keyDown, autoKey:

DoKeyDown(event);
activateEvt:

DoActivate(event);
updateEvt:

Do Update (event) ;
osEvt:

DoOSEvent(event);
kHighLevelEvent:

DoHighLevelEvent(event);
END;

END; { DoEvent}

Event Processing 5-11

IPR2017-01828
Ubisoft EX1002 Page 288

The Event Manager

A simple event loop might1ook something like the one given in Listing 5-l. It consists of (111
endless loop that retrieves an event and decides whether it is a null event. If the event is not Lt

null event. the event loop cults DoEvcnl. an application-defined procedure. to process the
event. Otherwise. the procedure cults :In application-defined idling procedure. Doldlc.

Listing 5-1. A simple event loop

T-‘ELJCFII'JURF Fi‘-_-‘t'.-I'_t,._.c:0t::,-
.R

"Eur-EU]. 21g“: iigJII-ierxjie;
ego: Event : Per.) i can;
event: -_-"t-'c-nt.F.t':c:e‘_c'1;

HHG I I:

t"'.;t's—‘.ot'R{;:I :— E-ftswi-“tcgrg; {pg-.33. 33.". ECt‘.-Z'—' 13:31:)” 13.:- 2113!. T true 1311]}
REPHEC

i;C)LE"eI'.L :-
.1-_cij'.;_-1t.C.‘t_r_-:D.t',

event 3 Iiet..'>'t:e[;-, r.'tu..-:-:.3:|ttgrii:

The Dt‘IEvent procedure must detenTtine what kind of event the call to WailNextEvent retrieved

and act accordingly. Notice that the parameter passed to DoEvcnt is the event record received
bv Wuit‘testb'vent. Essentially. the procedureIs just a large conditional] statement that branches
according to the value of the what iteld of the event record. Listing 5— 2 dettnes 31 simple
Dotivent procedure.

Listing 5-2. Processing events

ICELJL'KI: LtCiEveII'. teven‘. : event iée-..'r_=:-J' '.u
_.‘.r

rte: LLL—"Jp:

L3c3:-’.

.-’_t‘. I; 11-03;. I ,
DUKE-g Dug-5:1 {event : ;

act '.-..-ar,.e:'- . .- 1

3-:-. ..-
E
:-
#-_.
2In.3-
2
T:I:.l

Event Protet'sr'ng 5— J“ I

|PR2017-01828

Ubisoft EX1002 Page 288

Inside Macintosh, Volume VI

The main addition to your application's event loop in system software version 7 .0 is the
recognition of high-level events (using the constant kHighLevelEvent) and the appropriate
processing of those events. The procedure defined in Listing 5-2 calls DoHighLevelEvent,
an application-defined routine, to interpret the high-level event further.

Event Masks

Several of the Event Manager routines can be restricted to operate on a specific event type or
group of types. You do this by disabling (or "masking out"l the events you are not interested
in receiving. To specify which event types an Event Manager routine governs, supply a
parameter known as an event mask. Masks for each individual event type are available as
predefined constants:

CONST everyEvent -1; {every event}
mDownMask 2. , {mouse-down}
mUpMask 4. , {mouse-up}
keyDownMask 8; {key-down}
keyUpMask 16; {key-up}
autoKeyMask 32; {auto-key}
updateMask 64; {update}
diskMask 128; {disk-inserted}
activMask 256; {activate}
highLevelEventMask 1024; {high-level}
osMask -32768; {operating-system}

You can form any particular mask you need by adding or subtracting mask constants.
For example, to request the next available event that is not a mouse-up event, you
can use the code

myErr := WaitNextEvent(everyEvent-mUpMask, myEvent, mySleep, myMRgnHnd);

Note that masking out types of events does not remove those events from the Operating
System event queue. If a type of event is masked out, it is simply ignored by the Toolbox
Event Manager when it reads the event queue. Note also that you cannot mask out null
events. Even if every other kind of event is disabled, the Event Manager reports a null event.

In system software version 7.0, you can mask out high-level events by subtracting the
constant highLevelEventMask from your event mask. (This constant has the same value
as the defunct constant networkMask.)

Switching Contexts

Applications running in the background receive processing time when the front application
makes an event call (that is, calls WaitNextEvent, GetNextEvent, or EventAvail) and there
are no events pending for that front application. An application running in the background
should relinquish the CPU regularly to ensure a timely return to the foreground application
when necessary.

5-12 Event Processing

IPR2017-01828
Ubisoft EX1002 Page 289

.__...1.L.L

gnu-

IILI'I'n'e I'rcfrrr'intm'h. Voltaire W

The main addition ll] 3mm Ltpplicatiprfrt event lump in system software x'et'5ion 10 is the
reLognition ot high- leiel Lx'ents {u5ing the LOI‘ISlElHllilllj:_"l‘|l.E‘.Cll":1ItT|l}:ll‘tilll'iL‘Elppllipriillc
prpL‘e55iroI LII thii5e e'Iertt5. The pl-tKJLLlLII'tt LlL‘liiIeLlill].i51ing5-3 LailI‘I DUI-lith .eielfivent.
an applieation-defined mutine. to inILrpret the high- lev LI exent turtliLI.

Event Masks

Several ol'the Event Manager routine5 can be rentrieled to openlle on :1 5peei1'ic event type or
group of lypen‘. You do this by L1i5abling {or "thanking 111:1"1 the evenln you are not interested

in receiving. To specify which event type; an Event Manager routine govern 5. supply a
parameter known :15 an event In:15l~'.. Hanks. l'oreach lllLlll-‘itllltil event type are available I15
preLlel'inL-Ll constants:

You can form any particular Inaak you neetl by atltiing or subtracting mask connlantn.
l"tI|'ex:1111ple.ItI requeaal [he nexl available L‘I'enl that is nol a mouste—Llp event, you
can Lute the code

Note that tnL'15]-;ingI out type-5 ol' evenlIL Linen not retttm—‘e tllo5e erentn from [he Operating
Sy‘almn event queue. Ii'a type ol'event i5 tna5lL'eLl out. it in hllTiPlly' ignored by the 'l'oolbox
Event Manager when it rearl5 the event queue. Hole .1150 that you cannot mank out null
events. Even il'every other kind ot'exent i5 disabled. the Event Manager repnItI; a null event.

In 5y5tetn 5ot'tware I-‘eraion "LEI. you can thank out high-level events; in}! 5Llh1raL'1ing the
eomtant highlerelEI-entMahk from your event mask. {Thin constant lIaL the same value
a5 the defunct L‘on5tant netuL-orlLMLmkl

Switching Contexts

Applications; running in the background receive proeeming time 1when the from application
make; an event eall Ithat in. L‘all5 WailNexlEI'enL. UelNexlEI'enL or ErenlAI-aill and there

are no events pending for that from application. An application running in the background
should relinquinh [he CPU regularly In en5urt: a litnely relun't to 1lie foreground application
when neeehnary.

5- 1'2 L'I'I’rti Ft'tlfi'rt’.i'$l'-H‘E:

|PR2017-01828

Ubisoft EX1002 Page 289

The Event Manager

In system software version 7.0 (or under MultiFinder in earlier versions), the available
processing time is distributed among multiple applications through a procedure known as
context switching (or just switching). When a context switch occurs, the Process Manager
allocates processing time to a process that is different from the one that had been receiving
processing time. Two types of context switching may occur: major and minor. All switching
occurs at a well-defined time, namely, when an application calls WaitNextEvent.

A major switch is a complete context switch: an application's windows are moved from the
background to the foreground, or vice versa. In a major switch, two applications are
involved, the one being switched to the foreground and the one being switched to the
background. The AS worlds of both applications are switched, as well as the relevant low
memory environment. If those applications receive suspend and resume events, they are so
notified at the time that a major switch occurs.

Major switching does not occur when a modal dialog box is the frontmost window, although
minor switching (discussed next) can still occur. To determine whether major switching can
occur, the Operating System checks (among other things) to see if the window definition
procedure of the frontmost window is dBoxProc because the type dBoxProc is specifically
reserved for modal dialog boxes. (Major switching can still occur when a movable modal
dialog box is the frontmost window.)

A minor switch occurs when an application is switched out to give time to background
processes. A minor switch always involves two applications, a background application and
the application yielding time to it (which may be some other background application). In a
minor switch, the AS worlds of those two applications are switched, as are the low-memory
environments. However, the layers of windows are not switched, and neither application
receives either suspend or resume events.

Note: Your application can also get switched out if it calls a Toolbox routine that
makes an event call. For example, your application may get switched out when calling
ModalDialog.

Specifying Memory Requirements and Scheduling Options

Every application executing under system software version 7.0, as well as every application
executing under MultiFinder, should contain a 'SIZE' resource. One of the principal func
tions of the 'SIZE' resource is to inform the Operating System about the memory size
requirements for the application (hence the name 'SIZE') so that the Operating System can
set up an appropriately sized partition for the application. The 'SIZE' resource is also used
to indicate certain schedulin~ options to the Operating System, such as whether the applica
tion can run in the background, whether it can accept suspend and resume events, and so
forth. The 'SIZE' resource in system software version 7 .0 contains additional information
indicating whether the application is 32-bit clean, whether the application wishes to receive
notification of the termination of any applications it has launched, and whether the application
wishes to receive high-level events.

This section explains the structure of a 'SIZE' resource and the meaning of each of its fields.
It also shows how to specify the Rez input for a 'SIZE' resource. You are responsible for
creating the information in this resource.

Event Processing 5-13

IPR2017-01828
Ubisoft EX1002 Page 290

The Event i’vi'rrrrrrgrr

In system software version It} tor trnder Mtrltil‘inder in earlier versions). the available
processing time is distributed among multiple applications through a procedure known as

t'r’HEH’XI .ttrr'itr'hirt‘t: tot'jttsl softening]. ’When a et'tntest switch occurs- the Process Manager
allocates processing time to a process that is different from the one that had been receiving
processing time. Two types ol'contesl switching may occur: major and minor, All switching

occurs at a well-defined time. namely. when an application calls WaitNestEvenl.

A rtlrtjor switch is a complete corrlesl switch: an applications windows are moved from the

hac kground to the foreground. or vice versa. In a major switch. two applications are
involved. the one being switched to the foreground and the one being switched to the
backgnitlnd. The A5 worlds of both applications are switched. as well as the relevant Iow—
mernory environment. If those applications receive suspend and resume events. they are so
notilied at the time that a major switch occurs.

Major switching does not occur when a modal dialog hos is the frontmost window. although
minor switching trlisctrssed nest) can still occur. To determine whether major switching can
occur. the Operating Syslen'r elreclss lamong other things] to see if the window delinition
procedure of the frorttmost window is dBosPro-c because the type dBos Free is specifically
reserved for modal dialog boxes. (Major switching cart still occur when a movable modal
dialog box is the I'routnrost window}

A rrn'um' switch occurs when an application is switched our to give time to background
processes. A minor switch always involves two applications. a background application and
the application yielding time to it [which may be some other hackgrouud application}. In a
minor switch. the A5 worlds ot'those two applications are switched. as are the loss-'-rrtcrrtory
environments. However. the layers of windows are rrol switched. and neither application
receives either suspend or resume events.

Note: Your application can also gel switched out if it calls a Toolhos rorrline that
makes an event call. For example. your application may get switched out when calling
Modal Dialog.

Speeitying lrllemoryrr Requirements and Scheduling Options

Every application esecrrting rrtrder system software version It}. as well as every application
executing under MultiFinder. should contain :1 'SIZF.‘ resotrrce. One of the principal l'unc-
lions oftl‘re 'SIZE' resource is to inform the Operating System about the memory size
requirements for the application thence the name 'SIZE'} so that the Operating System cart

Scl up an appropriately sized partition for the application. 'l'he rf‘ilZJir resource is also used
to indicate certain scheduling options to the Operating System. such as whether the applica-
tion can run in the background whether it can accept suspend and resume events and so
forth. The SIZE' resource in system soltware versron Ml contains additional irrlormatiort
indicating whether the application is 32-bit clean. whether the application wishes to receive
notification ofthe termination of any applications it has launched. and whether the application
Wishes to receive high-level events.

This section explains the structure ol‘a 'SIZE' resource and the meaning of each of its fields.
It also shots-s how to specify tire Rea input for a 'SlZE' rcsotrrce. You are responsible for
creating the information in this resource.

Event Processing 5— Li

C
"'_'
If
I'.
=—r.
pr—I
=H_...

_.-
1':I'..[

|PR2017-01828

Ubisoft EX1002 Page 290

Inside Macintosh, Volume VI

The Structure of a 'SIZE' Resource

A 'SIZE' resource consists of a 16-bit flags field, followed by two 32-bit size fields. The
flags field specifies operating characteristics of the application, and the size fields indicate the
minimum and preferred partition sizes for the application. The minimum partition size
is the actual limit below which your application will not run. The preferred partition size
is the memory size at which your application can run most effectively and which the Operating
System attempts to secure upon launch of the application. If that amount of memory is
unavailable, the application is placed into the largest contiguous block available, provided that
it is larger than the specified minimum size.

Note: If the amount of available memory is between the minimum and the preferred
sizes, the Finder™ displays a dialog box asking if the user wants to run the applica
tion using the amount of memory available. If your application does not have a
'SIZE' resource, it is assigned a default partition size of 512 KB.

When you define a 'SIZE' resource, you should give it a resource ID of -1. A user can
modify the preferred size in the Finder's information window for your application. If the user
does alter the partition size, the Operating System creates a new 'SIZE' resource having
resource ID 0. At application launch time, the Launch function looks for a 'SIZE' resource
with ID O; if this resource is not found, it uses your original 'SIZE' resource with ID -1.
This new 'SIZE' resource is also created when the user modifies any of the other settings in
the resource.

Listing 5-3 shows the structure of the 'SIZE' resource.

Listing 5-3. A template for a 'SIZE' resource

type 'SIZE'
boolean reserved; /*reserved*/
boolean ignoreSuspendResumeEvents, /*ignores suspend-resume events*/

acceptSuspendResumeEvents; /*accepts suspend-resume events*/
boolean reserved; /*reserved*/
boolean cannotBackground, /*does no background processing*/

canBackground; /*can use background null events*/
boolean needsActivateOnFGSwitch, /*needs activate event*/

doesActivateOnFGSwitch;
boolean backgroundAndForeground,

onlyBackground;
boolean dontGetFrontClicks,

getFrontClicks;
boolean ignoreAppDiedEvents,

acceptAppDiedEvents;
boolean not32BitCompatible,

is32BitCompatible;
boolean notHighLevelEventAware,

isHighLevelEventAware;
boolean onlyLocalHLEvents,

localAndRemoteHLEvents;

5-I4 Event Processing

/*needs no activate event*/
/*app has a user interface*/
/*app has no user interface*/
/*no mouse events on resume*/
/*get mouse events on resume*/
/*applications use this*/
/*app launchers use this*/
/*works with 24-bit addr*/
/*works with 24- or 32-bit addr*/
/*can't use high-level events*/
/*can use high-level events*/
/*only local high-level events*/
/*also remote high-level events*/

IPR2017-01828
Ubisoft EX1002 Page 291

} ;

boolean notStationeryAware,
isStationeryAware;

boolean dontUseTextEditServices,
useTextEditServices;

boolean reserved;
boolean reserved;
boolean reserved;

unsigned longint;
unsigned longint;

The Event Manager

/*can't use stationery documents*/
/*can use stationery documents*/
/*can't use inline services*/
/*can use inline services*/
/*reserved*/
/*reserved*/
/*reserved*/
/*memory sizes are in bytes*/
/*preferred memory size*/
/*minimum memory size*/

The nonreserved bits in the flags field have the following meanings.

Flag descriptions

acceptSuspendResumeEvents When set, indicates that your application can process suspend
and resume events (which the Operating System sends to
your application before sending it into the back-ground or
when bringing it into the foreground). In this way, your
application knows when to process the global scrap.

canBackground When set, indicates that your application wants to receive
null event processing time while in the background. If your
application has nothing to do in the background, you
should not set this flag.

doesActivateOnFGSwitch When set, indicates that your application takes responsibility
for activating and deactivating any windows in response to a
suspend or resume event. If the acceptSuspendResumeEvents
flag is set, if the doesActivateOnFGSwitch flag is not set,
and if the application is suspended, then the application
receives an activate event. However, if you set the
doesActivateOnFGSwitch flag, then your application won't
receive activate events, and you must take care of activation
and deactivation when it receives the corresponding suspend
or resume event. This means that if the application's window
is frontmost, the suspend event should be treated as though a
deactivate event were received as well (assuming that both the
doesActivateOnFGSwitch and acceptSuspendResumeEvents
flags are set). For example, scroll bars should be deactivated,

... blinking insertion points should be hidden, and selected text
should be deselected if your application moves to the back
ground. If you do not set this flag, then a window must be
created to force the activate and deactivate events to occur.

only Background When set, indicates that your application runs only in the
background. Usually this is because it does not have a user
interface and cannot run in the foreground.

Event Processing 5-15

IPR2017-01828
Ubisoft EX1002 Page 292

The Event Manager

":-:_t:_. i '31:;

3173:: l r-.t:'.

"'-'_'Jt:1l e.] r'.
':':n-'-lu .tt'.

 ._ :_.r_-.l . .'-,n
The “unreserved hits in tltc flags field have the following meanings.

Flag descriptions

aeceptSuspendResunteEvents When set. indicates that your application can process suspend
and resume events (which the l{'Jp-eraling System sends to

your application before sending it into the hack—ground or
when bringing it into the t'oregroundi. In this Wit)". your
application knows when to process the global scrap.

canHackground 1|t‘lt'hen set. indicates that your application wants to receive
null event processing time while in the hackground. ”your
application has nothing to do in the background. you
should not set this flag.

doesActivateOnFGSwitch when set. indicates that your application takes resp-tntsihilitv
for activating and deactivating an‘_\.r windows in response to a
suspend or resume event. It the aeeeptSustmthestnneEvents
flag is set. if the doesfitctivatetJni-‘UStvitch [lag is not set.
and if the application is suspended. then Ihe application
receives an activate event. However. it you set the
doesAetit-‘ateflnl‘GStvilch l'lag. then your application won't
receive activate events. and you must take care til-ttL'livtl'titJtl

and deactivation when it receives the corresponding suspend
or resunte event. This means that ii'the application‘s window
is l'rttnltnost. the suspend event should he treated as though a
deactivate evettt were received as well [asstnning that both the
tithSAUllt-‘tilfifln FGSVv'lICli and aeceptSuspendltesunteLit-ents
Flags are set]. For example. scroll bars should he deactivated.

"blinking insertion points should be hidden. and selected text
should he deselecled il'vonr application moves to the hack-
ground. it you do not set this ling. then a window must he
created to force the activate and deactivate events to occur.

only-Background When set. indicates thal your application runs only in the
background. Usually this is because it does not have a user
interface and cannot run iii the foreground.

E1. Wit i’rric'r’s's'r'rrg 5 — .l' 5

lPR2017-01828

Ubisoft EX1002 Page 292

Inside Macintosh, Volume VI

getFrontClicks

acceptAppDiedEvents

is32BitCompatible

isHighLevelEventAware

localAndRemoteHLEvents

isStationery Aware

useTextEditServices

When set, indicates that your application is to receive the
mouse-down and mouse-up events that are used to bring
your application into the foreground when the user clicks in
your application's frontmost window. Typically, the user
simply wants to bring your application into the foreground,
so it is usually not desirable to receive the mouse events
(which would probably move the insertion point or start
drawing immediately, depending on the application). The
Finder is one application, however, that has the
getFrontClicks flag set.

When set, indicates that your application is to be notified
that an application launched by this application has termi
nated or crashed. See the Process Management chapter in
this volume for more information about launching applica
tions and receiving Application Died events.

When set, indicates that your application can be run with
the 32-bit Memory Manager. You should not set this flag
unless you have thoroughly tested your application on a
32-bit system (such as a Macintosh Ilci running system
software version 7 .0 in 32-bit mode, or under A/UX®).

When set, indicates that your application can send and
receive high-level events. If this flag is not set, the Event
Manager does not give your application high-level events
when you call WaitNextEvent. There is no way to mask out
types of high-level events; if this flag is set, you will receive
all types of high-level events sent to your application.

When set, indicates that your application is to be visible to
applications running on other computers on a network (in
addition to applications running on the local machine). If
this flag is not set, your application does not receive high
level events across a network.

When set, indicates that your application can recognize
stationery documents. If this flag is not set and the user
opens a stationery document, the Finder duplicates the
document and prompts the user for a name for the
duplicate document.

When set, indicates that your application can use the inline
text services provided by TextEdit. See the TextEdit chapter
in this volume for information about the inline input
capabilities of TextEdit.

Note: If you set the acceptSuspendResumeEvents flag, you should also set the
doesActivateOnFGSwitch flag.

The modifiers field in the event record now contains additional information about a mouse
down event. In system software version 7.0, the activeFlag modifier flag in the modifiers
field of a mouse-down event record is set to indicate that the mouse-down event caused a
foreground switch. Your application can use this flag to determine whether to process the

5-16 Event Processing

IPR2017-01828
Ubisoft EX1002 Page 293

The Event Manager

mouse-down event (probably depending on whether the clicked item was visible before the
foreground switch). This modifier is set for all mouse-down events that cause a foreground
switch, regardless of whether your application's getFrontClicks flag is set or whether the
mouse click was in your application's front window. In system software versions prior to
7 .0, this flag is never set for mouse-down events, and your application cannot tell if the
mouse click caused a foreground switch. As a result, your application should always process
a mouse-down event if its getFrontClicks flag is set.

Listing 5-4 shows the input for a sample 'SIZE' resource.

Listing 5-4. The Rez input for a sample 'SIZE' resource

resource 'SIZE' (-1) {
reserved,
acceptSuspendResumeEvents,
reserved,

} ;

canBackground,
doesActivateOnFGSwitch,
backgroundAndForeground,
dontGetFrontClicks,
ignoreAppDiedEvents,
is32BitCompatible,
isHighLevelEventAware,
localAndRemoteHLEvents,
isStationeryAware,
dontUseTextEditServices,
reserved,
reserved,
reserved,
kPrefSize * 1024,
kMinSize * 1024

/*reserved*/
/*accepts suspend-resume events*/
/*reserved*/
/*can use background null events*/
/*needs no activate event*/
/*app has a user interface*/
/*no mouse events on resume*/
/*applications use this*/
/*works with 24- or 32-bit addr*/
/*can use high-level events*/
/*also remote high-level events*/
/*can use stationery documents*/
/*can't use inline input services*/
/*reserved*/
/*reserved*/
/*reserved*/
/*preferred memory size*/
/*minimum memory size*/

This resource specification indicates, among other things, that the application is 32-bit clean,
can handle stationery documents, and accepts both local and network high-level events. You
are responsible for defining the constants kPrefSize and kMinSize; for example, if you set
kPrefSize to 50, the preferred partition size will be 50 KB.

Creating a 1SIZE 1 Resource

When creating a 'SIZE' resourc~ you first need to determine the various operating charac
teristics of your application. For example, if your application has nothing useful to do when
it is in the background, then you should not set the canBackground flag. Similarly, if you
have not tested your application in an environment that uses all 32 bits of a handle or pointer
for memory addresses, then you should not set the is32BitCompatible flag.

Next, you need to determine what your application's memory requirements are likely to be.
There is no simple formula for determining the appropriate partition size requirements for all
applications because so many factors affect memory requirements. An application's memory
requirements depend on the static heap size, the dynamic heap, the A5 world, and the stack.
The static heap size includes objects that are always present during the execution of the
application-for example, code segments, Toolbox data structures for window records, and

Event Processing 5-17

IPR2017-01828
Ubisoft EX1002 Page 294

Inside Macintosh, Volume VI

so on. Dynamic heap requirements come from various objects created on a per-document basis
(which may vary in size proportionally with the document itself) and objects that are required
for specific commands or functions. The size of the AS world depends on the amount of global
data and the number of intersegment jumps the application contains. Finally, the stack contains
variables, return addresses, and temporary information. The application stack size varies
among computers, so you should base your values for the stack size according to the stack size
required on a Macintosh Plus (8 KB). The Process Manager automatically adjusts your
requested amount of memory to compensate for the different stack sizes on different machines.
For example, if you request 512 KB, more stack space (approximately 16 KB) will be
allocated on machines with larger default stack sizes.

Unfortunately, it is simply impossible to forecast all of these conditions with any great degree
of reliability. You should be able to determine reasonably accurate estimates for the stack
size, static heap size, A5 world, and jump table. In addition, you can use tools such as
MacsBug's heap-exploring commands to help you empirically determine your application's
dynamic memory requirements.

USING THE EVENT MANAGER

You can use the Toolbox Event Manager to receive information about hardware-related
events, about changes in the appearance of your application's windows, or about changes
in the operating status of your application. You can also use the Event Manager to communi
cate directly with other applications. This communication can include sending events to other
applications, receiving events from other applications, and searching for specific events from
other applications.

The events that your application can send to and receive from other applications are called
high-level events. Your application can both send and receive high-level events, but it
generally only receives low-level events and should not send them. Your application receives
both low-level and high-level events in the same way, which is by asking the Event Manager
for the next available event. If the event your application receives is a high-level event, your
application might need to use another Event Manager routine to retrieve an optional data
buffer accompanying that event.

Receiving Low-Level Events

Applications receive events one at a time by asking the Event Manager for the next available
event. You use Event Manager routines to receive (or in the case of EventA vail, simply to
look at) the next available event that is pending for your application. The Event Manager
returns to your application an event record, which includes the relevant information about
that event.

Your application can use the WaitNextEvent, GetNextEvent, and EventAvail functions to
retrieve events from the Event Manager. GetNextEvent returns the next available event of
a specified type. Further, if the event returned is in the event queue, GetNextEvent removes
it from the queue. EventAvail is just like GetNextEvent, except that if the event reported
is in the event queue, it is left there. EventA vail thus allows your application to look at the
next event in the event queue without actually processing the event.

5-18 Using the Event Manager

IPR2017-01828
Ubisoft EX1002 Page 295

The Event Manager

You should use the WaitNextEvent function to retrieve an event from the Event Manager.
WaitNextEvent requires four parameters: an event mask, an event record, a sleep value,
and a mouse region. If WaitNextEvent returns successfully, the event record contains
information about the retrieved event. The sleep parameter specifies the amount of time (in
ticks) that your application agrees to relinquish the processor if no events are pending for
it. When that time expires or when an event becomes available for your application, the
Process Manager schedules your application for execution. In general, you should specify
a value greater than 0 in the sleep parameter so that other applications can receive processing
time if they need it. Your application should not sleep more than 15 ticks if you use TextEdit
because the fastest cursor blink occurs every 15 ticks.

The mouseRgn parameter to WaitNextEvent specifies a screen region that lets you determine
the conditions when your application is to receive notice of mouse-moved events. Your
application receives mouse-moved events only when the mouse is outside of the specified
region and your application is the foreground process. You can use the mouseRgn parameter
as a convenient way to change the shape of the cursor-for example, when the mouse moves
from the content area of a window to the scroll bar.

Note: If your application calls WaitNextEvent, it should not call the SystemTask
procedure.

For low-level events, the event record filled in by WaitNextEvent has the following structure:

TYPE EventRecord
RECORD

what:
message:
when:
where:
modifiers:

END;

Integer;
Longint;
Longint;
Point;
Integer

{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

For high-level events, however, several of the fields of the event record have different
meanings. See "Receiving High-Level Events" later in this chapter.

Responding to Operating-System Events

Operating-system events are of type osEvt and are assigned the event code previously
assigned to app4Evts (type 4 application events).

CONST osEvt = 15;

If your application does not handle suspend and resume events (as indicated by a flag in its
'SIZE' resource), then the Operating System has to trick your application into performing
scrap coercion to ensure that the contents of the Clipboard can be transferred from one
application to another. This process adds to the time it takes to move the foreground
application to the background and vice versa and thereby makes the user interface look
cumbersome.

Using the Event Manager 5-19

IPR2017-01828
Ubisoft EX1002 Page 296

The Event Manager

You should use the WaitNextEvent function to retrieve an event from the Event Manager.
WaitNestEvent requires four parameters: an event mask. an event record. a sleep value.
and a mouse region. it WaitNestEvent returns successfully. the event record contains
information about the retrieved event. The sleep parameter specifies the amount of time {in
ticks) that your application agrees to relinquish the processor if no events are pending for
it. when that time espi res or when an event becomes available for your application. the
Process Manager schedules your application for execution. In general. you should speeil'y
a value greater than t] in the sleep parameter so that other applications can receive pnz-cessing
time if they need it. Your application should not sleep more than 15 ticks it' you use TextEdit
because the lastest cursor blink occurs every 15 ticks.

The mouseRgn parameter to WaitNestEvent specifies a screen region that lets you determine
the conditions when your application is to receive notice of tuna sc—moved events. Your
application Iceeives mouse-moved events only when the mouse is outside of the specified
region and your application is the foreground process. You can use the mouseRgn parameter
as a convenient way to change the shape of the cursor—tor example. when the mouse moves
from the content area of a window to the scroll bar.

Note: If your application calls WaitNestEvent. it should not call the SystemTask
procedure.

For low-level events. the event record filled in by WaitNestEvent has the following structure:

""-".J':' Event E-rtcot'cl .
h. lit "'1 1l"F.L‘.

'n':'.t"'!'|.": STU-Ji :' ior'r- :

;-' 7: L‘. ,-

For high-level events. however. several of the Fields of the event record have different
meanings. See "Receiving High-Level Events" later in this chapter.

Responding to Operating-System Events

Operating-system events arc of type osEvt and are assigned the event code previously
assigned to app-'1 Evts {type 4 application events].1
If your application does not handle suspend and resurrie events {as indicated by a llag in its
'SIZE' resource]. then the Operating System has to trick your application into tan-forming
scrap coercion to ensure that the contents of the Clipboard can he transferred from one
application to another. This process adds to the time it takes to move the Iorcground
application to the background and vice versa and thereby makes the user inlen'ace look
cumbersome.

Using the Event Manager 549

|PR2017-01828

Ubisoft EX1002 Page 296

Inside Macintosh, Volume VI

Your application should respond to a suspend event by moving its private scrap into the
Clipboard and then returning to the main event loop. Also, your application can do anything
else necessary to get ready for a major switch. When your application receives a resume event
and if the Clipboard has been altered, your application should copy the contents of the
Clipboard, convert them back to its private scrap, and do anything else required for a fore
ground switch. After processing the scrap in this way, your application resumes executing.

Note: When switched into the background, an application should hide its
Clipboard window. The contents of the Clipboard are not valid unless the
application is frontmost.

In an osEvt event record, the message field contains information indicating whether the event
is a mouse-moved, suspend, or resume event and whether Clipboard conversion is required
when the application resumes execution. The message field has the following structure:

Bit

0

Meaning

0 if a suspend event
1 if a resume event

1 0 if Clipboard conversion not required
1 if Clipboard conversion required

2-23 Reserved

24-31 suspendResumeMessage if a suspend or resume event
mouseMovedMessage if a mouse-moved event

Note that you need to examine the low byte of the message field to determine what kind of
operating-system event you have received. The messages passed in bits 24-31 are defined
by constants:

CONST suspendResumeMessage
mouseMovedMessage

$01;
$FA;

{suspend or resume event}
{mouse-moved event}

If the event is a suspend or resume event, you need to examine the first bit of the high byte to
figure out whether that event is a suspend or resume event. Bits 0 and 1 are meaningful only
if bits 24-31 indicate that the event is a suspend or resume event. You can use the constants
resumeFlag and convertClipboardFlag to determine whether the event is a resume event, and
whether Clipboard conversion is required:

CONST resumeFlag
convertClipboardFlag

5-20 Using the Event Manager

1 · '
2;

{resume event}
{Clipboard conversion required}

IPR2017-01828
Ubisoft EX1002 Page 297

““-..v-—-.F.I.'-

Inside Macintosh. Volume VI

Your application should respond to a suspend event by moving its private scrap into the
Clipboard and then retuming to tlte main event loop. Also. your application can do anything
else necessary to get ready for a major switch. When your application receives a resutne event
and il‘ the Clipboard has been altered. your application should copy the contents of the
Clipboard. convert them back to its private scrap. and do anything else required For a lore-
ground switch. After processing the scrap in this way. your application resumes executing.

Note: When switched into the background. an application should hide its
Clipboard window. The contents of the Clipboard are not valid unless the
application is l‘rontmost.

o,

In an osEvt event record. the message Iield contains inionnation indicating whether the event
is a mouse-moved. suspend. or resume eveltt and whether Clipboard conversion is required
when the application resumes execution. The message field has the followmg structure:

Bit Meaning

It} t] if a suspend event
| it a resume event

] t} it‘ Clipboard conversion not required
I if Clipboard conversion required

2—23 Resets-ed

lit—3| suspendResutneMessage il' a suspend or resume event
mouse MovedMessage if :1 mouse-moved event

Note that you need to examine the low byte of the message field to determine what kind of
operating-system event you have received. The messages passed in bits 24—31 are defined
by constants:

II' the event is a suspend or resume event. you need to entatltine the first hit out-the high byte to
figure out whether that event is a suspend or resume event. tilts [l and l are meaningful only
it'bits 24—3l indicate that the event is a suspend or resume event. You can use the constanls
resumeFlag and convenClipmardFlag to determine whether the event is a resume event. and
whether Clipboard conversion is required:

 " restart-Tit- | .'.t'_.- .. .- -_ ' ear-Ln— :-
n'.‘r'm'-.ro.-':';ir-I'. :'r-t';-'.i :'r-t"'. :- oI.'-1'.'-.-'r:-r't.-i'.". Lpi'icn-zt'ril- i =-'.-_a

5-20 Using the Event Manager

|PR2017-01828

Ubisoft EX1002 Page 297

The Event Manager

Receiving High-Level Events

In system software version 7.0, your application can receive a high-level event when it
retrieves an event from the Event Manager. As always, your application determines what kind
of event it has received by looking at the what field of the event record returned by the Event
Manager. The event code for high-level events is defined by a constant name.

CONST kHighLevelEvent = 23;

For high-level events, two fields of the event record have special meanings. The message
field and the where field of the event record together define the specific type of high-level
event and are interpreted as type OSType, not Longint or Point. The message field contains
the event class of this high-level event. For example, Apple events sent by the Edition
Manager have the event class 'sect'. You can define your own class of events that are specific
to your application. If you have registered your application signature, then you can use your
signature to define the class of events that belong to your application. Note, however, that
Apple reserves all lowercase letters and nonalphabetic characters for the classes of events
defined by Apple.

For high-level events, the where field in the event record contains a second message
specifier, called the event ID. The event ID defines the particular type of event (or message)
within the class of events defined by the event class. For example, the Section Read Apple
event sent by the Edition Manager has event class 'sect' and event ID 'read'. The Open
Documents Apple event sent by the Finder has event class 'aevt' and event ID 'odoc'. You
can define your own set of event IDs, corresponding to your own event class. For example,
if the message field contains 'biff and the where field contains 'cmdl ', then the high-level
event indicates the type of event defined by 'cmdl' within the class of events defined by the
application with the signature 'biff.

Unlike low-level events and operating-system events, high-level events may not be completely
determined by the event record returned to your application when it calls WaitNextEvent. For
example, you might still need to know which other application sent you the high-level event
or what additional data that application wants to send you. This further information about the
high-level event is available to your application by calling the AcceptHighLevelEvent function.
The additional information associated with a high-level event includes

• the identity of the sender of the event

• a unique number that identifies this particular event

• the address and length of a'tlata buffer that can contain optional data

To obtain this additional information, your application must call AcceptHighLevelEvent
before calling WaitNextEvent again. By convention, calling AcceptHighLevelEvent
indicates that your application intends to process the high-level event.

Note: Because the where field of an event record for a high-level event is used to
select a specific kind of event (within the class determined by the message field),
high-level event records do not contain the mouse position at the time of the event.
Moreover, it is dangerous to interpret the where field before interpreting the what
field because different event classes can contain overlapping sets of event IDs.

Using the Event Manager 5-21

IPR2017-01828
Ubisoft EX1002 Page 298

the Event Manager

Receiving High-Level Events

In system software version it]. your application can receive a high-level event when it
retrieves an event from the Event Manager. As always. your application determines what kind
ofevent it ltas received by looking at the whal field of the event record returned by the Event
Manager. The event code for high-level events is tlelined lay a constant name.

For high-level events. two fields of the event record have special meanings. The message
field and the where field of the event record together define the specific type of hi gh—level
event and are interpreted as type OS'l'ype. not LongInt or Point. The message field contains
the event eltms of this high—level event. For example. Apple events sent by [he Edition
Manager have the event class 'scct'. You can define your own class of events that are specific
to your application. If you have registered your application signature. then you can use yottr
signature to define the class of events that belong to your application. Nole. however. lhal
Apple reserves all lowercase letters. and nonalphahetic characters for the classes ofevents
deli ned by Apple.

I‘or hi gh-level events. the where field in the event record contains a second message
specifier. called the event ID. The even! ID defines the particular type of event {or message}
within the class of events defined by the event class, For example. Ihe Seclion Read Apple

event sent by the Edition Manager has event class 'sect' and event ID 'rcad'. The Open
Documents Apple event sent by the Finder has event class 'aevt' and event ID 'odoc'. You
can define your own set of event IDs. correspondiny.I to your own evenl class. For example,
if the message field contains ‘itiff and the where field contains 'cmdl'. then the high—level
event indicates the type of event definetl by 'cmdl' within the class ofevcnts defined by the
application with the signature 'hil't‘.

Unlike low-level events anti operating-system events. hi gh-level events may not he completely
determined by the event record returned to your application when it calls WaitNetttEvent. For
example. you might still need to know which otherapplicat ion sent you the high-level event
or what additional data that application wants to send you. This funher infomtation uhoul the
high-level event is availahle to your application by calling the Accepti—lighl.evelEvent function.
The additional information associated 1.vith a high-level event includes

I the identity of the sender of the event

I a unique numherthat identities this particular event

I the address and length of a’data buffer that can contain optional dala

To obtain this additional information. your applical ion must call AccepttlighLevelEvenl
before calling WaitNelevent again. By convention. calling AcceptHigh].evelEvenl
indicates that your application intends to process the high—level event.

Note: Because the where field of an event record fora high-level event is used to
select a specific kind of event (within the class determined lty the message field].
hi git-level event records do not contain the mouse position at the time of the event.
Moleover. it is dangemus to interpret the where field before interpreting the what
field because different event classes can contain overlapping sets of event IDs.

Using the Event Manager 5—2 I

til
7‘
-.I:
=.—
1g_
3
=-
=
I:'1:'l

|PR2017-01828

Ubisoft EX1002 Page 298

Inside Macintosh, Volume VI

The section "Responding to Events From Other Applications" later in this chapter describes
how to use the AcceptHighLevelEvent function.

Identifying High-Level Event Senders and Receivers

When you receive a high-level event, part of the information returned by AcceptHighLevelEvent
is the sender of the event. You can use that information to respond selectively to requests made
by other applications or to know which application to send any replies to. The information about
the sender is provided in the form of a target ID record, defined as follows:

TYPE TargetID =
RECORD

sessionID:
name:
location:
recvrName:

END;

Longint;
PPCPortRec;
LocationNameRec;
PPCPortRec

{session reference number}
{sender's port name}
{sender's port location}
{reserved}

The sessionID field corresponds to the session reference number created by the PPC
Toolbox. This is a 32-bit number that uniquely identifies a PPC Toolbox session (or
connection) with another application. The name and location fields contain the sender's
port name and port location (and have no meaning when posting an event). If the
sending application is on the same machine as the receiving application, you can
determine the sending application's process serial number by calling the
GetProcessSerialN umberFromPortN ame function.

When you post a high-level event, you can specify its recipient in one of four ways:

• by port name and port location (specified in a target ID record)

• by a session ID

• by the application's creator signature

• by a process serial number

Note that to specify the recipient of a high-level event sent to an application across a network,
you can use only its target ID or its session ID. You can use any of the four ways when
sending high-level events to applications on the local machine.

When you are replying to a high-level event, it is easy to identify the recipient because you
can use the target ID record that you receive from AcceptHighLevelEvent, the session ID
contained in that target ID record, or the process serial number (if the receiving process
is local). Note that replying by session ID is always the fastest way to respond to a high
level event.

When you are not replying to a previous event, you need to determine the identity of the
target application yourself. You can use one of several methods to do this. If the target
application is on the local machine, you can search for that application's creator signature
or its process serial number by calling the GetProcessinformation function. See "Getting
Information About Other Processes" in the Process Management chapter of this volume

5-22 Using the Event Manager

IPR2017-01828
Ubisoft EX1002 Page 299

The Event Manager

for a detailed explanation of GetProcessinformation and for examples of using it to generate
a list of process serial numbers of all open processes on the local machine.

If the application to which you want to send a high-level event is located on a remote machine,
you need to identify it either by its session ID or by its target ID. You can call the PPCBrowser
function to let the user browse for a specific port. You can call the IPCListPorts function to
obtain a list of all ports registered with the target PPC Toolbox. See the Program-to-Program
Communications Toolbox chapter in this volume for an explanation of both of these functions.

Sending High-Level Events

You use the PostHighLevelEvent routine to send a high-level event to another application.
When doing so, you need to provide six pieces of information:

• an event record with the event class and event ID assigned appropriately

• the identity of the recipient of the event

• a unique number that identifies this particular event

• a data buff er that can contain optional data

• the length of the data buff er

• options determining how the event is posted

Note: To send an Apple event, use the Apple Event Manager function AESend. The
Apple Event Manager uses the Event Manager to post Apple events. For information
on posting Apple events, see the Apple Event Manager chapter in this volume.

As indicated in the previous section, you can identify the recipient of the high-level event in
one of four ways. Listing 5-5 illustrates how to send a high-level event to an application on
the local machine. In this example, an application is sending an event to an application whose
signature is 'boff.

Listing 5-5. Posting a high-level event by application signature

PROCEDURE PostTest;
VAR

myEvent:
myRecvID:
myOpts:
myErr:

BEGIN

EventRecord;
OSType;
Longint;
OSErr;

{an event record}
{receiver ID}
{posting options}

myEvent.what := kHighLevelEvent;
myEvent.message := Longint('boff');
myEvent.where := Point(Longint('cmdl'));
myOpts := receiverIDisSignature + nReturnReceipt;
myRecvID := 'boff';
myErr := PostHighLevelEvent(myEvent, @myRecvID, 0, NIL, 0, myOpts);
IF myErr <> noErr THEN

DoError(myErr);
END;

Using the Event Manager 5-23

IPR2017-01828
Ubisoft EX1002 Page 300

The Event Manager

For a detailed explanation of CielProeesslnformalion and for examples of using it to generate
a list. of process serial numbers of all open processes on the local machine.

if the application to which you want to send a high-level event is located on a remote machine.
you need to identify it either by its session ID or by its target ID. You earl call the PPCErotvser
function to let the user browse for a speeil'ie port. You ean call the lPCListPorts function to
obtain a list of all ports registered with the target PPC 'l'oolhos. See the Prograin-to-Progrant
Communications Toolhos chapter in this volume for an explanation of both of these functions.

Sending High-Level Eve-nts

You use the PostHighLet-elLivent routine to send a high-level event to another application.
1t-‘t'hen doing so. you need to provide six pieces ofinl'urmatinn:

I an event record with the event class and event ID assigned appropriately

I the identity ol'the recipient of the event

I a unique number that identifies this paniettlar event

I a data htti'l'er that can eontaitt optional data

I the length ol'the data be tTer

I options determining how the event is posted

Note: To send an Apple event. ttse the Apple Event Manager function A ESend. The
Apple Event Manager uses the Event Manager to post Apple events. For intormatioti
on posting Apple events. see the Apple Event Manager chapter in this volume.

As indicated in the previous section. you can identify the recipient at the high—level event in
one of four ways. Listingr 5—5 illustrates hovv to send a high—level event to an application on
the local machine. In this example. an application is sending an event to an application tvhose
signature is 'hol'f'.

Listing 5-5. Posting a high-level event by application signature

??=.‘-.".7..'.'_|I-E- :er- “‘9 -- -

Using the Evert! Manager 5-2.9

|PR2017-01828

Ubisoft EX1002 Page 300

Inside Macintosh, Volume VI

In this example, there is no additional data to transmit, so the sending application provides NIL
as the pointer to the data buffer and sets the buffer length to 0. Note that the receiver is speci
fied by its creator signature and that the sender requests a return receipt. The myOpts parameter
specifies posting options, which are of two types: delivery options and options associated with
the receiverID parameter. You can specify one or more delivery options to indicate if you want
the other application to receive the event at the next opportunity and to indicate if you want
acknowledgment that the other application received the event. You use the options associated
with the receiverID parameter to indicate how you are specifying the recipient of the event. To
set the various posting options, use constants.

CONST nAttnMsg $00000001; {give this message priority}
priorityMask $000000FF;
nReturnReceipt $00000200; {return receipt requested}
systemOptionsMask $00000FOO;
receiverIDisTargetID $00005000; {ID lS target ID}

receiverIDisSessionID $00006000; {ID lS PPC session ID}
receiverIDisSignature $00007000; {ID lS creator signature}
receiverIDisPSN $00008000; {ID lS process serial num}
receiverIDMask $0000FOOO;

When you specify the receiving application in the receiverID parameter, you can use these
constants to specify the receiver of the event by session ID, process serial number, signature,
or target ID. Any of these specifications allows you to send an event to another application on
the local machine. To send events to an application on a remote machine, you can specify the
recipient only by the session ID or target ID.

When you specify the receiver of the event by target ID, use the constant receiverIDisTargetID
in the postingOptions parameter and specify a pointer to a target ID record for the receiverID
parameter.

TYPE TargetID =
RECORD

sessionID:
name:
location:
recvrName:

END;

Longint;
PPCPortRec;
LocationNameRec;
PPCPortRec {unused for posting}

When you pass a target ID record, you need to specify only the name and location fields. You
can use the IPCListPorts function to list all of the existing port names along with information
on whether the port will accept authenticated service on the machine specified by the port
location name. For information on how to use the IPCListPorts function, see the PPC
Toolbox chapter in this volume.

You can also use the PPCBrowser function to fill in a target ID record. Listing 5-6 illustrates
how to use the PPCBrowser function to post a high-level event. In this example, the sending
application wants to locate a dictionary application and have the dictionary return the
definition of a word to it.

5-24 Using the Event Manager

IPR2017-01828
Ubisoft EX1002 Page 301

The Event Manager

Listing 5-6. Using the PPCBrowser function to post a high-level event

FUNCTION PostWithPPCBrowser (aTextPtr: Ptr; textlength: Longint) : OSErr;
VAR

myHLEvent: EventRecord;
myErr: OSErr;
myNumTries: Integer;
myPortinfo: PortinfoRec;
myTarget: TargetID;

BEGIN
{use PPCBrowser to get the target}
myErr := PPCBrowser('Select an Application', 'Application', FALSE,

myTarget.location, myPortinfo, NIL, '');
IF myErr = NoErr THEN
BEGIN

{copy portname into myTarget.name}
myTarget.name := myPortinfo.name;

myHLEvent.what := kHighLevelEvent;
myHLEvent.message := Longint('Dict');
myHLEvent.where := Point(Longint('Defn'));

{if a connection is broken, then sessClosedErr is returned to }
{ PostHighLevelEvent; to reestablish the connection, just post }
{ the event one more time}
myNumTries := O;
REPEAT

myErr := PostHighLevelEvent(myHLEvent, @myTarget, 0, aTextPtr,
textlength, receiverIDisTargetID) ;

myNumTries := myNumTries + 1;
UNTIL (myErr <> sessClosedErr) OR (myNumTries > 1);

END;

PostWithPPCBrowser .- myErr;
END;

{return any error}

This example puts up a dialog box asking the user to select a dictionary. When one is selected,
this code posts a high-level event to that dictionary application asking for the definition of the
selected text. Note that the sending application and the receiving application must both agree
that definition queries are to be of event class 'Diet' and event ID 'Defn'. It is necessary to
define a private protocol only in cases where no suitable Apple event exists.

"' Note: You should avoid passing handles to the receiving application in an attempt to
share a block of data. It is better to put the relevant data into a buffer (as illustrated in
Listing 5-6) and pass the address of the buffer. If you absolutely must share data by
passing a handle, make sure that the block of data is located in the system heap.

If a high-level event is posted successfully, PostHighLevelEvent returns the result code
noErr, which indicates only that the event was successfully passed to the PPC Toolbox.
Your application needs to call another Event Manager routine (EventA vail, GetNextEvent,
or WaitNextEvent) to give the other application an opportunity to receive the event.

Using the Event Manager 5-25

------------- -- -- - ------

IPR2017-01828
Ubisoft EX1002 Page 302

The Event Manager

Listing 5-6. Using the PPCBrowser function to post a high-level event

FuutfiathFiflfltowwor itTexiFtL: PLL; Lfixtlcnath: LDLQIHL E : USELL;

*vcnr: fivo::Rororu:
fiSEIt;

va'I : 3F£2;0wee:t'5ciorr ‘hfip‘icerion'. Fh'EE.

' LIL—TO. Il'L. "i"

—"G:-1t,=.rl?.:'t' fr; t't—j'r'.n'|1-'.--'i Fr; j
- rcnrecijoi, fHSL post J

This example puts up :1 dialog hos asking the user to select a dictionary. When one is selected.
this code posts :1 hi git-level event to that dictionary application asking 1'or the definition of the
selected text. Note that tlte sending application and the receiving application must both agree
that definition queries are to he elevent class ‘Dict' and event [D 'Deln'. [t is necessary to
define a private protocol only in cases vvltere no suitable Apple event exists.9!

Note: You should avoid passing handles to the receiving application in an attempt to

share a block of data. It is better to put the relevant data into a hui‘fer {as illusLtated in
Listing :r-{iJ and pass the address of the buffer. if you ahsolutely must share data by
passing a handle. make sure that the block of data is located in the system heap.

'J'I
T:k
d=n
:J_
B
=
5
I:-.".'.I

If a high—level event is posted Successfully. PostHighLet-‘elEvent retLIms the result code
noErr. which indicates only that the event was successfully passed to the PPC 'l‘oolhox.
Your application needs to call another Event Manager mutine [EventAvaiL GetNelevent.
or WaitNextEvent] to give the other application an opportunity to receive the event,

firing the Event Manager 5-25

|PR2017-01828

Ubisoft EX1002 Page 302

Inside Macintosh, Volume VI

The event you send may require the other application to return some information to your
application by sending a high-level event back to your application. You can scan for the
response by using GetSpecificHighLevelEvent. If your application must wait for this event,
you might want to display a watch cursor or take other action as appropriate to your applica
tion. You also might want to implement a timeout mechanism in case your application never
receives a response to the event.

Requesting Return Receipts

When you post a high-level event, you can request a return receipt by including the constant
nRetumReceipt as one of the posting options. This requests that the Event Manager send
your application a high-level event that tells you whether the other application accepted your
event. Note that this does not necessarily mean that the other application performed any action
you might have requested from it.

A return receipt is a high-level event having an event class and an event ID indicated by the
two constants:

CONST HighLevelEventMsgClass
rtrnReceiptMsgID

'jaym';
'rtrn';

Return receipts are posted by the Event Manager on the machine of the receiving application
(and not by the receiving application itself). No data buffer is associated with a return receipt.
However, the posting Event Manager sets the modifiers field of the high-level event record to
one of the following values:

CONST msgWasNotAccepted
msgWasFullyAccepted
msgWasPartiallyAccepted

0;
1;
2;

The constant msgWasNotAccepted indicates that your event was not accepted by the
receiving application. This means that the receiving application was notified of the arrival
of your event (through WaitNextEvent) but did not call AcceptHighLevelEvent to accept
the event. The constant msgWasFullyAccepted indicates that the receiving application
did call AcceptHighLevelEvent and retrieved all the data in the optional data buffer.
The constant msgWasPartiallyAccepted indicates that the receiving application called
AcceptHighLevelEvent, but that the application's data buffer was too small to hold the
data sent with your application and that the receiving application called WaitNextEvent
before retrieving the rest of the buffer.

Note that a return receipt does not indicate the identity of the receiving application. To deter
mine on whose behalf the Event Manager has sent you a particular return receipt, you need to
call AcceptHighLevelEvent. When AcceptHighLevelEvent returns successfully, the sender
parameter contains a target ID record with the fields filled in for the receiving application.
With return receipts, the msgLen parameter is 0, the msgBuff parameter is NIL, and the
msgRefCon field contains the unique number of the refCon parameter of the original high
level event sender (that is, your application).

5-26 Using the Event Manager

IPR2017-01828
Ubisoft EX1002 Page 303

Inside Muet'IImsI'i. t-‘ut'tmie W

The event you send mat.r require the other application to retuni some in t'onnation to y'oui

application hv sending a high- level event hack to your application. ‘t on can sLatt for the
response by using GelSpeLtlILHIghLeIelLIeIIt ll-3t'tLII application must wait tor this event.
3ott might want to display a watch ctIIsor or take other action as appropriate to your applica—

tion. You also might want to implement a timeout mechanism in case your application never
receives a response to the event.

Requesting Return Receipts ..

When you post a high-level event. you can request a return receipt by including the constant
tIRelurnReceipt as one of the ptistiug options. 't'his requests that the Event Manager send
your application a high-level event that tells you whether the other application accepted your
event. Note that this does not necessarily mean that the other application performed any action
you might have requested from it.

A return receipt is a high—level ei'ent having an event class and an event ID indicated by the
two constants:

 ".:'.'.1".'..'- ':"I.I.

Return receipts are posted by the Event Manager on the machine ot'the receiving application
(and not by the receiving application itself}. No data buffer is associated with a return receipt.
However. the posting l-lI-cnt Manager sets the modifiers held of the high-level event record to
one of the following values:

The constant tnngasl‘VotAccepted indicates that your event was not accepted by the
receiving application. This means that the receiving application was notified of the arrival
of your event tthrough Waitl'IIestE'i-entt but did not call AcceptHigthvclEI-ent to accept
the event. The constant nisgWastiullynccepted indicates that the receiving application

did call Accepti-IighlaeseiEvent and relriesed all the data in the optional data butter.
The constant mngasl—‘at‘tiallvflcccpted indicates that the receiv' ing application Lalled
AcceptHighLeielLivent. hut that the application I. data hultcr was too small to hold the
data sent with your application and that the receiving application called WailNextEs out
before retrievingI the rest of the buffer.

Note that a return receipt does not indicate the identity of the receiving application. To deter—
mine on whose hehalfthe Event Manager has sent you a particular return receipt. you need to
call fteecptHighlxvelEvent. When AcceptE-iighlcvelEI-cnl returns successfully. the sender

parameter contains a target [D record with the Iields filled in for the receiving application.
li'v'ith return receipts. the ntsgLen parameter is 0. the msgBIIt't parameter is NIL. and the
l'llfigRCl‘Cl'ltl field contains the unique nutnher ol‘ the fell—Ton parameter of the original high-
level event sender {that is. your application}.

5-2:“. Using the Event Manager

|PR2017-01828

Ubisoft EX1002 Page 303

The Event Manager

Responding to Events From Other Applications

You can identify high-level events by the value in the what field of the event record. The
message and where fields further classify the type of high-level event. Your application can
choose to recognize as many events as are appropriate. Some high-level events may be fully
specified by their event record only, while others may include additional information in an
optional buffer. To get that additional information or to find the sender of the event, use the
AcceptHighLevelEvent function.

Note: To respond to an Apple event, use the Apple Event Manager, as described in
the Apple Event Manager chapter in this volume.

Listing 5-7 illustrates how to call AcceptHighLevelEvent. In general, you cannot know in
advance how big the optional data buffer is, so you can allocate a zero-length buffer and then
resize it if the call to AcceptHighLevelEvent returns the error bufferlsSmall.

VAR
myTarg:
myRefCon:
myBuff:
myLen:
myErr:

Listing 5-7. Accepting a high-level event

TargetID;
Longint;
Ptr;
Longint;
OSErr;

{target ID record}

BEGIN
myLen : = 0;
myBuff := NIL;

{start with a 0-byte buffer}

myErr := AcceptHighLevelEvent(myTarg, myRefCon, myBuff, myLen);

IF myErr = bufferisSmall THEN
BEGIN

myBuff := NewPtr(myLen); {get new pointer}
myErr .- AcceptHighLevelEvent(myTarg, myRefCon, myBuff, myLen);

END;

IF myErr <> noErr THEN DoError(myErr);
END;

The ID of the sender of the evoot is returned in the first parameter, which is a target ID record.
You can inspect the fields of that record to determine which application sent the event. That
record also contains the session reference number that identifies this communication as well
as the port name and port location of the sender. If the high-level event requires that you
return information, you can use the value returned in the sender parameter to send an event
back to the requesting application.

The buffer parameter points to any additional data associated with the event. Any data in the
additional buffer is defined by the particular high-level event. On input, the length parameter
contains the size of the buffer. If no error occurs, on output the length parameter contains the

Using the Event Manager 5-27

IPR2017-01828
Ubisoft EX1002 Page 304

The Event Manager

Responding to Events From Other Applications

You can identity high-level events by the value in the what field of the event reeord. The
message and where fields further classify the type of high-level event. Your application can
choose to recognize as many events as are appropriate. Some high-level events may be fully
specified by their event record only. while others may include additional information in an
optional buffer. To get tltat additional information or to find the sender of the event. use the
Acceptl-lighLevelEvent function.

Note: To respond to an Apple event. use the Apple Event Manager. as described in
the Apple Event Manager chapter in this volume.

Listing 5-? illustrates how to call AeeeptHighLevelEvenl. In general, you cannot know in
atlvanee how big the optional data buffer is. so you can allocate a xero-length buffer and then

:r resize it It the call to AceeptHighLevelEveut returns the cunt hult'erlsSmaJl.

Listing 5-7. Aeeepting a high—level event

-.=t.—'. ".' tester-:3!

HLZ'éI a

3"!" .—:-‘_1 : _-; .:'-'.:. .‘L; ', :_: .J :r-,"_ e E;v__.'1—_'rt't

:::'-.'I--.e' Sort, tr-,-:_’-..: ‘ t Ii".-'|-+rtl' J

The ID tilthe sender ol'the event is retttrned in the first parameter. which is a target ID record.
You can inspect the fields of that record to determine which application sent the event. That
record also contains the session reference ttttmher that identifies this communication as well

as the port name and port location otthe sender. It the high-level event requires that you
return intertnation. you can use the value retttrtted in the sender parameter to send an event
hack to the requesting applieation.

the butter parameter points to any additional data assoeiated with the event. Any date in the
additional buffer is defined by the particular high—level event. On input. Ihe length parameter
contains the size of the buffer. [1' no error occurs. on output the length parameter contains the

Using the Event Manager 5-2?

|PR2017-01828

Ubisoft EX1002 Page 304

Inside Macintosh, Volume VI

size of the message accepted. If the error bufferlsSmall occurs, the length parameter contains
the size of the message yet to be received. The reference constant parameter is a unique
number your application can use to identify communication associated with this event.

Searching for a Specific High-Level Event

Sometimes you do not want to accept the next available high-level event pending for your
application. Instead, you might want to select one such event from among all the high-level
events in your application's high-level event queue. For example, you might want to look
for a return receipt for a high-level event you previously posted before processing other high
level events.

You can select a specific high-level event by calling the GetSpecificHighLevelEvent function.
One of the parameters you pass to this function is a filter function that you provide. Your filter
function should examine an event in your application's high-level event queue and determine
if that message is the kind of event you wish to receive. If it is, your filter function returns
TRUE. This indicates that your filter function does not want to inspect any more events. If
the filter function finds an event of the desired type, it should call AcceptHighLevelEvent to
retrieve it. When your function returns TRUE, the GetSpecificHighLevelEvent function itself
returns TRUE.

If your filter function returns FALSE for an event in the high-level event queue,
then GetSpecificHighLevelEvent looks at the next event in the high-level event queue
and executes your filter function. If the filter function returns FALSE for all the high-level
events in the queue, then GetSpecificHighLevelEvent itself returns FALSE to your
application.

Here's how you declare the filter function whose address you pass to
GetSpecificflighLevelEvent:

FUNCTION aFilter (yourDataPtr: Ptr; msgBuff: HighLevelEventMsgPtr;
sender: TargetID) : Boolean;

The yourDataPtr parameter indicates the criteria your function should use to search for a
specific event. The msgBuff parameter contains a pointer to a high-level event message
record that has this structure:

TYPE HighLevelEventMsg =
RECORD

HighLevelEventMsgHeaderLength:
version:
reservedl:
theMsgEvent:
userRefCon:
postingOptions:
msgLength:

END;

5-28 Using the Event Manager

Integer;
Integer;
Longint;
EventRecord;
Longint;
Longint;
Long Int

IPR2017-01828
Ubisoft EX1002 Page 305

The Event Manager

When you call GetSpecificHighLevelEvent and it executes your filter function for a high-level
event waiting in the high-level event queue, the fields of HighLevelEventMsg are filled in by
the Event Manager. You can then compare the fields of this record to the information you
pass in the yourDataPtr parameter to determine if that event suits your needs. For example,
the yourDataPtr parameter might contain the signature of a return receipt. You can test its
value against the event class contained in the theMsgEvent field of the high-level event
message record.

EVENT MANAGER ROUTINES

In system software version 7.0, the Event Manager includes routines for receiving events,
sending high-level events, receiving high-level events, and searching for specific high
level events.

Receiving Events

You can use the WaitNextEvent function to receive events one at a time from the Event
Manager.

FUNCTION WaitNextEvent (eventMask: Integer; VAR theEvent: EventRecord;
sleep: Longint; mouseRgn: RgnHandle) : Boolean;

The WaitNextEvent function returns in the theEvent parameter the next available event of a
specified type or types and, if the event is in the event queue, removes it from the queue. If no
events are pending for your application, WaitNextEvent waits for a specified amount of time
for an event. (During this time, processing time may be allocated to background processes.) If
an event occurs, it is returned as the value of the parameter theEvent. If no event occurs (and
the queue is empty), WaitNextEvent returns a null event in theEvent. WaitNextEvent returns
FALSE if the event being returned is a null event; otherwise, WaitNextEvent returns TRUE.

The eventMask parameter specifies which kinds of events are to be returned; this parameter is
interpreted as a sum of event mask constants (listed earlier in "Event Masks"). If no event of
any of the designated types is available, WaitNextEvent returns a null event.

The sleep parameter specifies the number of ticks (sixtieths of a second) that your application
agrees to relinquish the processor if no events are pending for it.

The mouseRgn parameter specifies a region inside of which mouse movement does not
cause mouse-moved events. In other words, your application receives mouse-moved events
only when the cursor is outside of the specified region. The region is specified in global
coordinates. If you pass an empty region or a NIL region handle, mouse-moved events are
not generated. Note that your application should recalculate the mouseRgn parameter when it
receives a mouse-moved event or it will continue to receive mouse-moved events as long as
the cursor position is outside the original mouseRgn.

Event Manager Routines 5-29

IPR2017-01828
Ubisoft EX1002 Page 306

The Event Manager

when yott call UetSpeciEicHighLevelEvent and it executes your litter function for a high-level
event waiting in the high-level event queue. the fields of HigbLeveIEventMsg are filled in by
the Event Manager. You can then compare the fields of this record to the information you
pass in the yottrDataPtr parameter to determine il‘ that event suits your needs. For example,
the yourDataPtr parameter might contain the signature of a rettlm receipt. You can test its
value against the event class contained in the tbeMngt-ent Iicld ol' the high—level event
message t'ccord.

EVENT MANAGER FlOUTINES

In systent software version It]. the Livent Manager includes routines l‘or receiving events.
sending high-level events. rcceiying high-level events. and searching for specilic high-
level events.

Receiving Events

You can use the Waitl's'estljvent function to receive evertts one at a time from the Event

Manager.

 :.' lcfl.: I"_J|'.'._-' ' L j " ._. _|.‘_'L'F'__! "

The WaitNesti—Lvent function returns in the lhel-ivent parameter the next available event ol'a
specified type or types and. it'the event is in the event queue. removes it from the queue. If no
events are pending for your application. WaitNestEvent waits for a specified amount of time
l'oran event. {During this time. processing time may be allocated to background processes.) If
an event occurs. it is returned as the value of the paran‘tctcr tlteEvent. If no event occurs tand
the queue is empty]. WaitNestljvent returns a null event in thehvenl. WailNesIl—Zvent returns
FALSE il'thc event being returned is a null event: otherwiset WaitNestEvent returns TRL'E.

'l'he eventMask parameter specifies I.vhich kinds ol" events are to be returned: this parameter is
interpreted as a sum ol'eyent mask constants [listed eariier in “Event Masks"). 11' no event 01'
any of the designated types is available. ‘i‘tr'aithlextEvent returns a null event.

The sleep parameter specifies the number of ticks {sislietbs of a second} that your application
agrees to relinquish the processor it no events are pending for it.

The ttiouseHgn parameter specifies a region inside of which i‘nouse movement does not
cause mouse-moved events. In other words. your application receives mouse—moved events
only when the cursor is outside ol‘ the specified region. the region is specified in global
coordinates. if you pass an etltpty region or a NIL region handle. i‘nouse-ntoycd events are
ttot generated. Note that your application should recalculate the inouseRgn parameter when it
receives a mouse-moved event or it will continue to receive mouse-mined events as long as
the cttrsor position is outside the original mouseRgu.

Event Manager Ron tines 5 -2 9

|PR2017-01828

Ubisoft EX1002 Page 306

Inside Macintosh, Volume VI

Some high-level events may be fully specified by their event record only, while others may
include additional information in an optional buffer. To get any additional information and
to find the sender of the event, use the AcceptHighLevelEvent function.

FUNCTION AcceptHighLevelEvent (VAR sender: TargetID; VAR msgRefcon:
Longint; msgBuff: Ptr; VAR msgLen:
Longint) : OSErr;

The sender of the event is specified in the sender parameter, which is a target ID record. The
sender parameter contains the session reference number that fdentifies this communication
and the port name and port location of the sender.

The msgRefcon parameter is a unique number that is used to identify this event. If you send a
response to this event, you should specify the same value of msgRefcon so that the sender of
the event can associate the reply with the original request.

The msgBuff parameter points to any additional data associated with the event. The msgLen
parameter contains the size of the buffer. Your application is responsible for allocating the
memory for the additional data pointed to by the msgBuff parameter. If the msgBuff parameter
points to an area in memory that is not large enough to hold all the data associated with the
event, AcceptHighLevelEvent returns the result code bufferlsSmall. If AcceptHighLevelEvent
returns the result code bufferlsSmall, the msgLen parameter contains the number of bytes
remaining. You can call AcceptHighLevelEvent again to receive the rest of the data.

Result codes
no Err
buff eris Small
noOutstandingHLE

Sending Events

0
-607
-608

No error
Buff er is too small
No outstanding high-level event

You can use the PostHighLevelEvent routine to send a high-level event to another application.

FUNCTION PostHighLevelEvent (theEvent: EventRecord; receiverID: Ptr {UNIV
Longint}; msgRefcon: Longint; msgBuff: Ptr;
msgLen: Longint; postingOptions: Longint) :
OSErr;

You specify the event to send in the parameter theEvent and include any additional data for
the event by providing a pointer to a data buffer in the msgBuff parameter. The msgLen
parameter specifies the size of the data buffer. The receiverID parameter specifies the recipient
of the event. The msgRefcon parameter specifies a unique number associated with this event.
Your application can set this field to any value it chooses.

You can specify the receiver of the event by session ID, process serial number, signature, or
port name and port location. You can use any of these specifications to send an event to
another application on the local machine. You can use only the session ID or port name and
port location to send an event to an application on a remote machine.

5-30 Event Manager Routines

IPR2017-01828
Ubisoft EX1002 Page 307

r
I
i
i

The Event Manager

You use the postingOptions parameter to specify delivery options and options associated with
the receiverID parameter. You can specify one or more delivery options to indicate whether
you want the other application to receive the event at the next opportunity and to indicate
whether you want acknowledgment that the event was received by the other application. You
use the options associated with the receiverID parameter to indicate how you are specifying
the recipient of the event.

If the application to which you are sending a high-level event terminates, you will receive
sessionClosedErr when you next call PostHighLevelEvent. If you do not care about any state
information about that session, you can just resend your event. Otherwise, you must restart
another session and resend your event.

If your application is running in the background and posts a high-level event that requires
the network authentication dialog box to be displayed, your application will receive a
noUserlnteractionAllowed result code. This prevents a background application from
displaying a modal dialog. Instead, you can use the Notification Manager to inform the
user that your application needs attention. When the user brings your application to the
foreground, you can repost the event. If the reposting is successful, your application can
return to the background and continue to post high-level events without further user
interaction. Note that the error noUserlnteractionAllowed is returned only on the first
posting of a high-level event to a remote target.

Result codes
no Err
connectioninvalid
no U serlnteractionAllowed
sessionClosedErr

0
-609
-610
-917

No error
Connection is invalid
Cannot interact directly with user
Session closed

Receiving a Specific High-Level Event

You can use the GetSpecificHighLevelEvent function to select and optionally retrieve a
specific high-level event from the high-level event queue.

FUNCTION GetSpecificHighLevelEvent (aFilter: GetSpecificFilterProcPtr;
yourDataPtr: UNIV Ptr; VAR err:
OSErr) : Boolean;

You specify your filter function in the aFilter parameter. GetSpecificHighLevelEvent calls your
filter function once for each event in the high-level event queue until your filter function returns
TRUE or the end of the queue iS'reached. You use the yourDataPtr parameter to specify the
criteria your filter function should use to select a specific event. For example, you can specify
the yourDataPtr parameter as a msgRefcon value to search for a particular event or as a pointer
to a target ID record to search for a specific sender of an event. Or you can search for a specific
class ofevent.

Result codes
no Err
noOutstandingHLE

0
-608

No error
No outstanding high-level event

Event Manager Routines 5-31

IPR2017-01828
Ubisoft EX1002 Page 308

Inside Macintosh, Volume VI

Here's how you declare the filter function aFilter:

FUNCTION aFilter (yourDataPtr: Ptr; msgBuff: HighLevelEventMsgPtr;
sender: TargetID) : Boolean;

The yourDataPtr parameter indicates the criteria your filter function should use to search
for a specific event. The msgBuff parameter contains a pointer to a record of type
HighLevelEventMsg, which provides information about the event: the event record for
the high-level event, the posting options of the event, and so forth. The sender parameter
contains the target ID of the application that sent the event. ..
Your filter function can compare the contents of the yourDataPtr parameter with the contents
of the msgBuff or senderID parameters. If your filter function finds a match, it should return
TRUE. If your filter function does not find a match, it should return FALSE. Your filter
procedure can call AcceptHighLevelEvent, if necessary.

Converting Process Serial Numbers and Port Names

The Event Manager provides two utility functions to convert between process serial numbers
and port names. Both functions are intended to map serial numbers to port names (or vice
versa) for applications open on the local machine. They do not return useful results for
applications open on remote machines.

Use GetProcessSerialNumberFromPortName to get the serial number of the process
registered at a specific port.

FUNCTION GetProcessSerialNumberFromPortName (portName: PPCPortRec; VAR
PSN: ProcessSerialNumber)
OSErr;

The portName parameter specifies the port name registered to a process whose serial number
you want. The process serial number is returned in the PSN parameter. You can use the
returned process serial number to send a high-level event to that process. Do not interpret the
value of the serial number.

Result codes
no Err
noPortErr

0
-903

No error
Invalid port name

Use GetPortNameFromProcessSerialNumber to get the port name registered to a process
having a specific process serial number.

FUNCTION GetPortNameFromProcessSerialNumber (VAR portName: PPCPortRec;
PSN: ProcessSerialNumber)
OSErr;

The PSN parameter specifies the process serial number that you want to map to a port name.
The port name is returned in the portN ame parameter.

Result codes
noErr
procNotFound

0
-600

5-32 Event Manager Routines

No error
No eligible process with specified process serial
number

IPR2017-01828
Ubisoft EX1002 Page 309

The Event Manager

SUMMARY OF THE EVENT MANAGER

Constants

CONST {event masks}
every Event
mDownMask
mUpMask
keyDownMask
keyUpMask
autoKeyMask
updateMask
diskMask
activMask
highLevelEventMask
osMask

-1;
2;
4;
8;
16;
32;
64;
128;
256;
1024;

-32768;

{flags for suspend and resume events}

{every event}
{mouse-down}
{mouse-up}
{key-down}
{key-up}
{auto-key}
{update}
{disk-inserted}
{activate}
{high-level}
{operating-system}

{resume event} resumeFlag
convertClipboardFlag

1;

= 2; {Clipboard conversion required}

{message codes for operating-system
suspendResumeMessage $01;
mouseMovedMessage = $FA;

events}
{suspend or resume event}
{mouse-moved event}

{event codes for operating-system and high-level events}
osEvt 15;
kHighLevelEvent = 23;

{high-level event posting options}
nAttnMsg $00000001; {give this message priority}
priorityMask $000000FF;
nReturnReceipt $00000200; {return receipt requested}
systemOptionsMask $00000FOO;
receiverIDisTargetID $00005000; {ID

receiverIDisSessionID $00006000; {ID

receiverIDisSignature $00007000; {ID

receiverIDisPSN $00008000; {ID

receiverIDMask $0000FOOO;

{class and ID values for return receipt}
HighLevelEventMsgClass
rtrnReceiptMsgID

'jaym';
= 'rtrn';

{modifiers values in return receipt}
msgWasNotAccepted O;
msgWasFullyAccepted
msgWasPartiallyAccepted

1 · '
2.

'

is target ID}

lS PPC session ID}

is creator signature}
is process serial num}

Summary of the Event Manager 5-33

IPR2017-01828
Ubisoft EX1002 Page 310

TIM Ew'm‘ Mrumgw

SUMMARY OF THE EVENT MANAGER

Constants

.‘Isit_]'.‘.'n:-.= Put. L i .-.I I LIL -:-=.': ' ,-

SmmHMj‘ Lgf HIP Event Manager 5-33

|PR2017-01828

Ubisoft EX1002 Page 310

,--

Inside Macintosh, Volume VI

Data Types

TYPE TargetID =
RECORD

sessionID:
name:
location:
recvrName:

END;

TargetIDPtr

HighLevelEventMsg =

Longint;
PPCPortRec;
LocationNameRec;
PPCPortRec

"Target ID;

{session reference number}
{sender's port name}
{sender's port location}
{reserved}

RECORD
HighLevelEventMsgHeaderLength:
version:

Integer;
Integer;
Longint;
EventRecord;
Longint;
Longint;
Long Int

reservedl:
theMsgEvent:
userRefCon:
postingOptions:
msgLength:

END;

HighLevelEventMsgPtr "HighLevelEventMsg;

GetSpecificFilterProcPtr

Routines

Receiving Events

FUNCTION WaitNextEvent

FUNCTION AcceptHighLevelEvent

Sending Events

FUNCTION PostHighLevelEvent

ProcPtr;

(eventMask: Integer; VAR theEvent:
EventRecord; sleep: Longint; mouseRgn:
RgnHandle) : Boolean;

(VAR sender: TargetID; VAR msgRefcon:
Longint; msgBuff: Ptr; VAR msgLen:
Longint) : OSErr;

(theEvent: EventRecord; receiverID: Ptr
{UNIV Longint}; msgRefcon: Longint;
msgBuff: Ptr; msgLen: Longint;
postingOptions: Longint) : OSErr;

5-34 Summary of the Event Manager

IPR2017-01828
Ubisoft EX1002 Page 311

The Event Manager

Receiving a Specific High-Level Event

FUNCTION GetSpecificHighLevelEvent (aFilter: GetSpecificFilterProcPtr;
yourDataPtr: UNIV Ptr; VAR err: OSErr)
: Boolean;

Converting Process Serial Numbers and Port Names

FUNCTION GetProcessSerialNumberFromPortName (portName: PPCPortRec; VAR PSN:
ProcessSerialNumber) : OS Err;

FUNCTION GetPortNameFromProcessSerialNumber (VAR portName: PPCPortRec; PSN:
ProcessSerialNumber) : OS Err;

Application-Defined Routines

{filter function for GetSpecificHighLevelEvent}

FUNCTION aFilter

Result Codes

no Err
procNotFound
bufferlsSmall
noOutstandingHLE
connectionlnvalid
noU serlnteractionAllowed

0
-600
-607
-608
-609
-610

(yourDataPtr: Ptr; msgBuff:
HighLevelEventMsgPtr; sender:
TargetID) : Boolean;

No error
No eligible process with specified process serial number
Buff er is too small
No outstanding high-level event
Connection is invalid
Cannot interact directly with user

Summary of the Event Manager 5-35

IPR2017-01828
Ubisoft EX1002 Page 312

The Evcvii‘ Mririrlgr’r

Receiving a Specific High-Level Event

FLT-if; |'.'Ur-.' L;-;r Lip-acii ;-:'-Hi-q;2:..e1.'e . Fri-12.": Wei-'1'. 1c): : 'JE'. .‘.iEJf‘fJi 1i:“i—'i I '. 9; Pro;- f': l .-
;.':..ir :Ju'. ui'r L: I_[‘.'l'.' Fr t : .'.--.i. -.'.-r; ; -‘_J.".‘.i-;L: :-
: If. :0: sari,-

Converting Process Serial Numbers and Port Names

 l-‘lJIJ-:_"l"_:J?J ”(L-cal : J'. r;:e:--..-::’_-.'r-:' i ;-. | I':L]."II'.‘L'.-I ':':c'::".'.- 4:: '.'.!‘-.'ci:' i.—' " Binnie: : .--‘.'l'1'.I'T 71041; '4

 l": :':i':i-:;.'.:'-3-_-I iraI B-IJ." be: .-

 FL'I-IaITZLEI-I Unit [-01 i; f-.'.:g;n..:~; 1; :_:|n,—-; c::_-. -:<:--._-';Z-.'-:' | -;| _ .'I',:nit.‘--_.-r .--._-<_ 112.: r_!-.'r_ure: : l"‘.'1i'_:-1 .' Fr—ui'; f'i-IH:
II H3-]; . up: -_:.~_';'_!-.' I. 1:: Z [‘.‘Hrrlw: i : {35-1 " 1' J

Application-Defined Routines

-, fi '_ r [.‘L [duct iur'. i:_:L 15-. -I .‘.‘LTi' -:::L| i 95-5 ". :gI‘.I.-..-'-.-'u': I 1 _-

FLT-IE I'ZTJII‘.‘ ,_|_- J.'_| er

Ftesult COLIES

nuErr i} No error

procf‘iolFound 431210 Nu uligibie PHI-Ctifih' wilh simcificd process serial nu1|1hi:i'
bufferleinull ~51]? Buffer is; we small

nuOuleandingHLE 4:08 No outstanding high-level cvcm
connectionlm-‘aliti 410$“ Cnnnecliur: is invalid

noUser!nteructionAllim-eLl —fil|[} Cannot interact directly wilh user

Srrmmrirji' uf‘h‘w Even! Manager 5-35

|PR2017-01828

Ubisoft EX1002 Page 312

Inside Macintosh, Volume VJ

5-36

IPR2017-01828
Ubisoft EX1002 Page 313

IPR2017-01828
Ubisoft EX1002 Page 314

THE APPLE EVENT MANAGER

About This Chapter
About the Apple Event Manager
Introduction to Apple Events

Types of Apple Events
Components of Apple Events
Data Structures Within Apple Events
Responding to Apple Events
Requesting Services Through Apple Events

Using the Apple Event Manager
Accepting an Apple Event
Installing Entries Into the Apple Event Dispatch Tables
Handling the Required Apple Events

Required Apple Events
Handling the Open Application Event
Handling the Open Documents Event
Handling the Print Documents Event
Handling the Quit Application Event
Handling Apple Events Sent by the Edition Manager
Handling the Create Publisher Event

Getting Data out of an Apple Event
Getting Data out of a Parameter
Getting Data out of an Attribute
Getting Data out of a Descriptor List

Writing Apple Event Handlers
Replying to an Apple Event
Disposing of Apple Event Data Structures
Interacting With the User
Creating an Apple Event

Adding Parameters to an Apple Event
Specifying a Target Address

Sending an Apple Event
Dealing With Timeouts
Writing an Idle Function
Writing a Reply Filter Function
Writing and Installing Coercion Handlers
The Application Died Event

Apple Event Manager Routines
Creating and Managing the Apple Event Dispatch Tables
Dispatching Apple Events
Getting Parameters and Attributes From Apple Events
Counting the Items in Descriptor Lists
Getting Items From Descriptor Lists
Getting Data and Keyword-Specified Descriptor Records From AE Records
Requesting User Interaction
Requesting More Time to Respond to Apple Events
Suspending and Resuming Apple Event Handling
Creating Apple Events
Creating and Duplicating Descriptor Records
Creating Descriptor Lists and AE Records

a

y.—H_.u
c
71,
c
:.—
7.—
:;1-!
FI:f:~.

|PR2017-01828

Ubisoft EX1002 Page 314

IPR2017-01828
Ubisoft EX1002 Page 315

ma'i'dc’Macinmsh, Vniumo W

3*}
9i]
9‘1

()3
9f)
98
99

100

l [I i
I [)3
I [15

A Liding Items; to Descriptor List};
Adding Dam and Keyword—Specified DCSCI'iplUI' Rccm‘da In AE Records
Adding Parumclcrt-s and Attributes; In Applc hi'cmx
Sanding Apple [ix-cuts,

Culling [he Sin-x and Dilritl'iplnl' 'l'ypcs, 01' Dmcripmr Rucurdh‘
Dclcting Dcxcriplur Rccurdn
Duallucuting Memory E‘m' Descriptor Rumrds
Cucr‘ciug Dcscr‘iplnr Type};
Creating and Managing the Courcion Hundlar Tables
Creating and Managing lhc Special Handler Tiihlux

Summary 111' the Apple Fax-ant Milnzigcr

|PR2017-01828

Ubisoft EX1002 Page 315

IPR2017-01828
Ubisoft EX1002 Page 316

The Apple Event Manager

ABOUT THIS CHAPTER

This chapter describes Apple® events and how your application can use the Apple Event
Manager to receive and process the required set of Apple events sent by the Finder“. This
chapter also describes how to use the Apple Event Manager to send Apple events to other
applications and how to process Apple events received from other applications.

As explained in the Event Manager chapter in this volume, the Event Manager in system
software version 7.0 introduces high~level events, along with a number of new Event
Manager routines that let applications communicate with each other by sending high-level
events. Using Event Manager routines, your application can create and process its own
high-level events,

However, effective interapplication communication requires that applications agree on a stan-
dard set of conventions—a common vocabulary. To provide such a standard, Apple Computer,
Inc.. has defined a protocol called the Apple Event Interprocess Messaging Protocol
(AEIMP). High—level events that adhere to this protocol are called Apple events. You can
help ensure effective communication with other applications by using this protocol.

System software uses Apple events to communicate information to your application; you
should support the required set of Apple events sent by the Finder to your application. In
addition, you can support Apple events that are common to many applications. Using the
routines of the Apple Event Manager, you can use Apple events to communicate with other
applications in a standard way. Using Apple events to ensure better cooperation between
your application and other applications helps users to get the most out of any one application
or to use the best features from many applications—in effect. combining the features of
many applications to achieve the desired result.

By following the standards specified by AEIMP, you can also define your own Apple events.
You can choose to publish these so that other applications can use them, or you may choose
to keep them unpublished for exclusive use by your own applications.

The Apple Event Manager is available only in system software version 7.0. T0 determine
whether the Apple Event Manager is available, use the Gestalt function described in the
Compatibility Guidelines chapter of this volume.

The interapplication communications architecture of system software version 7.0 consists
of three main components: the Apple Event Manager. the Event Manager, and the Program—
to-Program Communications (PPC) Toolbox. See the Introduction to the System Software
Version 7.0 Environment chapter in this volume for an overview of the relationships among
these components. If you intend to use high—level events that do not rely on AEIMP, read
the Event Manager chapter of this volume. This chapter describes the information you need
to know to support Apple events in your application. To allow your application to send
Apple events to applications on remote computers, you may wish to use the PPCBrowser
function, which is described in the Program—to—Program Communications Toolbox chapter
of this volume.

While the Apple events used by the Edition Manager are discussed in this chapter, you must
refer to the Edition Manager chapter of this volume for a full discussion of how to implement
the Edition Manager’s publish and subscribe features.

For descriptions of all publicly available Apple events. see the Apple Event Registry.
available from Macintosh® Developer Technical Support.

About This Chapter 6-3

|PR2017-01828

Ubisoft EX1002 Page 316

3‘

>"U
En:
r11<
2
i:

Za:
5
9:

HQCb-:

IPR2017-01828
Ubisoft EX1002 Page 317

Inside Macintosh, Volume VI

ABOUT THE APPLE EVENT MANAGER

Apple events provide your application with a standard mechanism for communicating with
other applications. You can use Apple events and the Apple Event Manager to

I respond to the required Apple events (Open Application, Open Documents, Print
Documents, and Quit Application) that are sent by the Finder

I respond to the Apple events sent by the Edition Manager and allow users to share
data among documents created by multiple applications

I provide services to other applications

I request services from other applications

By supporting the required Apple events, your application can take advantage of the more
reliable launch and termination mechanisms built into system software version 7.0, You can
also take advantage of the services provided by the Edition Manager by responding to the
Apple events sent by the Edition Manager. These and additional core Apple events can be used
by nearly all applications to communicate with system software or with other applications.

You can also support functional-area Apple events related to your application in order to
provide services to other applications or to request services from other applications. Finally,
if your application defines Apple events for all the actions that a user can perform, you can
record user actions by generating the corresponding Apple event for each action, saving a
copy of the Apple event, and then sending the Apple event to your own application for
handling. Apple events that are recorded in this way can later be played back to automate
tasks previously performed by the user.

To support Apple events in your application, you must

I decide which Apple events (in addition to the required ones) to support

I set bits in the 'SIZE' resource to indicate that your application supports
high-level events

I create an Apple event dispatch table

I include code to handle high—level events in your main event loop

I handle the Apple events your application receives and wishes to support

I create the Apple events you wish your application to generate

This chapter begins with an introduction to Apple events and then describes

I the required Apple events that your application must support to be 7.0—friendly

I how to use the Apple Event Manager to send and process Apple events

6-4 About the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 317

”Ar1-,.v

IPR2017-01828
Ubisoft EX1002 Page 318

The Apple Event Manager

INTRODUCTION TO APPLE EVENTS

Applications typically use Apple events to request services from and provide services to
other applications. For example, the Open Documents event, sent by the Finder, requests
that your application open specified documents. When your application supports this Apple
event, it should respond by opening those documents in the manner that your application
normally opens documents.

A transaction involving Apple events is initiated by a client application, which sends an
Apple event to request a service (for example, printing a list of files, spell—checking a list of
words, or performing a numerical calculation). The application providing the service is called
a server application. These applications can reside on the same local computer or on
remote computers connected to a network.

Figure 6-1 shows a common Apple event, the Open Documents event. You see that the
Finder application is the client; it requests that the SuriWriter application open the documents
named Dec. Invoice and Nov. Invoice. The SurfWriter application responds to the Finder’s
request by opening windows containing the specified documents.

Apple event

Open Documents

Dec. Invoice
Nov. invoice

, Dec Inv0ice
Client Sen/er , ,. _ . , Nov Inv0ice =

application application BM,My Germany83‘ Fiaiiciscq, Ca

Desig n $200A it $500
Fl m $200
TOTAL $900

Figure 6-1. An Open Documents event

The Finder is also the source application of the Open Documents event. A source application
is one that sends an Apple event to another application or to itself. In Figure 6-1. the SurfWriter
application is the target application of the event. The target application is the one addressed
to receive the Apple event. The terms Client application and source application are not always
synonymous, nor are the terms server application and target application. Typically, an Apple
event client sends an Apple event requesting a service from an Apple event server; in this case,
the server is the target application of the Apple event. The Apple event server may send back a
different Apple event as a response—in which case, the client becomes the target of the
responding Apple event.

GK

>'5
’U
(T
m4m
5FF

2$9
5W

W(‘DH

Introduction to Apple Events 6-5

|PR2017-01828

Ubisoft EX1002 Page 318

IPR2017-01828
Ubisoft EX1002 Page 319

Inside Macintosh. Volume V]

Types of Apple Events

Apple events fall into one of several broad categories.

I Required Apple events consist of four core Apple events that the Finder sends
to applications. These events are called Open Documents, Open Application, Print
Documents, and Quit Application. They are a subset of the core Apple events and are
described in detail later in this chapter.

I Core Apple events are used by nearly all applications to communicate. The suite of
core Apple events is described in the Apple Event Registry; Apple recommends that all
applications support the core Apple events.

I Functional-area Apple events are supported by applications with related features.
Apple events related to text manipulation for word-processing applications and Apple
events related to graphics manipulation for drawing applications are examples of
functional-area Apple events. Functional—area Apple events are defined by Apple in
consultation with interested developers and are published in the Apple Event Registry.
Apple recommends that all developers support functional—area Apple events appropriate
for their types of applications.

I Custom Apple events are defined by a developer for use by the developer’s own
applications. You should register all of your custom Apple events with Macintosh
Developer Technical Support. You can choose to publish your Apple events in the
Apple Event Registry so that other applications can share them, or you may choose to
keep them unpublished for exclusive use by your own applications.

Components of Apple Events

An Apple event consists of attributes (which identify the Apple event and denote its task) and,
often, parameters (which contain data to be used by the target application). An application uses
the Apple Event Manager to create an Apple event. Using arguments you pass to the
AECreateAppleEvent function and to other Apple Event Manager routines, the Apple Event
Manager constructs the necessary data structures containing attributes and parameters and
converts these structures into an Apple event. Applications must use the Apple Event
Manager’s AESend function to transmit the Apple event. After receiving an Apple event,
applications must use Apple Event Manager routines to extract the attributes and parameters of
the event.

Attributes are a fundamental component of Apple events. Apple event attributes are
records that identify the event class, event 1D, target application, and other characteristics
of an Apple event. Taken together, the attributes of an Apple event denote the task to be
performed on any data specified in the Apple event’s parameters. You do not have any
direct way to access the data stored in these records. You must use Apple Event Manager
routines to extract or specify the attributes.

An Apple event parameter is a record containing data that the target application uses.
Unlike Apple event attributes (which contain information that can be used by both the Apple
Event Manager and the target application), Apple event parameters contain data used only by
the target application. For example, an attribute like the event ID is used by the Apple Event

6-6 Introduction 10 Apple Events

|PR2017-01828

Ubisoft EX1002 Page 319

IPR2017-01828
Ubisoft EX1002 Page 320

The Apple Event Manager

Manager to call a handler from the server application’s dispatch table, and the server appli—
cation must have a handler to process the event identified by that attribute. By comparison.
the list of documents contained in a parameter to an Open Documents event is used only by
the server application. As with attributes, you do not have any direct way to access the data
structure of a parameter. You have to use Apple Event Manager functions to extract data
from or put data into parameters.

Note that Apple event parameters are different from the parameters of Apple Event Manager
functions. Apple event parameters are records private to the Apple Event Manager; function
parameters are arguments you pass to the function or that the function returns to you. You
typically specify the Apple event parameters (as well as the attributes) in parameters to Apple
Event Manager functions. For example, the AEGetParamPtr function uses a buffer to return
the data contained in an Apple event parameter. You specify which Apple event parameter in
one of the parameters of the AEGetParamPtr function.

Apple events are identified by their event class and event ID attributes. The event class is
the attribute that identifies a group of related Apple events. The event class appears in the
message field of the event record for an Apple event. For example. the four required Apple
events (in fact, all core Apple events) have the value 'aevt' in the message fields of their event
records. The value 'aevt' can also be represented by the kCoreEventClass constant. Several
event classes are shown here.

Event class Value Description

kCoreEventClass 'aevt' A core Apple event
kAEFinderEvents 'F N DR‘ An event that the Finder accepts
kSectionEventMsgClass 'sect' An event sent by the Edition Manager

The event ID is the attribute that identifies the particular Apple event within its event class. In
conjunction with the event class, the event ID uniquely identifies the Apple event and commu—
nicates what action the Apple event should perform. (The event le appear in the where field
of the event record for an Apple event.) For example, the event ID of an Open Documents event
has the value 'odoc' (which can also be represented by the kAEOpenDocuments constant). The
kCoreEventClass constant in combination with the kAEOpenDocuments constant identifies the
Open Documents event to the Apple Event Manager.

Shown here are the event IDs for the four required Apple events.

Event ID Value Description

kAEOpenApplication 'oapp' Open your application
kAEOpenDocuments 'odoc' Open documents
kAEPrintDocuments 'pdoc' Print documents
kAEQuitApplication 'quit‘ Quit your application

The target application’s address is another required attribute. As previously described. the
target application is the one addressed to receive the Apple event. Your application can send
an Apple event to itself or to another application (on the same computer or on a remote
computer connected to the network).

a

%’'5.—
C
F}(1C.—..A

?.—
7::
:5
SD3.:('t
"A

Introduction to Apple Events 6-7

|PR2017-01828

Ubisoft EX1002 Page 320

IPR2017-01828
Ubisoft EX1002 Page 321

Inside Macintosh, Volume VI

As with attributes, there are various types of Apple event parameters. A direct parameter
contains the data to be acted upon by the server application. For example, a list of documents
is contained in the direct parameter of the Print Documents event. Direct parameters are
usually required parameters parameters that the server application needs in order to
carry out the task denoted by the Apple event. Some Apple events also take additional
parameters, which the server application uses in addition to the data specified in the
direct parameter. For example, an Apple event for arithmetic operations may include
additional parameters that specify operands in an equation. Additional parameters may be
required or optional.

An optional parameter is a supplemental parameter that also can be used to specify data
to the server application. Optional parameters need not be included in an Apple event; default
values for optional parameters are part of the event definition. The server application that
handles the event must supply default values if the optional parameters are omitted.

Figure 6-2 shows in greater detail the components of the Open Documents event that was
introduced in Figure 6-].

Open Document event

Event class attribute:
kCoreEventClass

Event ID attribute:

kAEOpenDocument

Dee lnv0ice

Client _ _ Server 7 Nov m ace

application Target address attribute. application Elm v I
application With the mummy
Signature IWAVEI Sa'i FldllClSCO, CaDesign sumAil $500

. Film $200. TOTAL $900

Direct parameter: smwme,
list of files

(Deolnvoice
Nov. Invoice)

i

Figure 6-2. Major components of an Open Documents event

“-4...
To process the information contained in the Open Documents event, the SurfWriter applica-
tion uses the AEProcessAppleEvent function. The AEProcessAppleEvent function provides
an easy way for your application to identify the event class and event ID of the Apple event
and to direct the Apple Event Manager to call the code in your program that handles the
Apple event.

Data Structures Within Apple Events

Applications must use Apple Event Manager functions to create and send an Apple event. The
Apple Event Manager constructs its own internal data structures to contain the information in
an Apple event. To gain access to this data, the target application also must use Apple Event
Manager functions. Neither the sender nor the receiver of an Apple event can directly manip-
ulate the data inside an Apple event; each must rely on Apple Event Manager functions to do
so. This section describes the data structures that the Apple Event Manager uses to create and
to process Apple events.

6-8 Introduction to Apple Events

|PR2017-01828

Ubisoft EX1002 Page 321

IPR2017-01828
Ubisoft EX1002 Page 322

The Apple Event Manager

Descriptor records are the fundamental structures from which Apple events are constructed.
A descriptor record is a data structure of type AEDesc; it consists of a handle to data and a
descriptor type that identifies the type of the data referred to by the handle.

TYPE AEDCSC :

RECORD {descriptor record}
descrip:orType: DescType; {type of data being passed.)
da:aHandle: Handle {handle to data being passed}

EJD;
The data referred to by the dataHandle field in the descriptor record is private to the Apple Event
Manager. You can supply or extract this data only by using Apple Event Manager routines.

The descriptor type is a structure of type DescTypc, which in turn is of data type ResType—
that is, a four—character string. Constants are usually used in place of these four-character
strings when referring to descriptor types. Descriptor types represent various data types. Here
is a list of descriptor type constants, their values, and thc types of data they represent.

Descriptor type Value Description

typcBoolean ’bool' Boolean value

typeChar 'TEXT' Untenninated string
typeSMlnt ‘shor' 16—bit integer
typclnteger 'long' 32—bit integer
typeSMFloat 'sing' SANE® single
typeFloat 'doub' SANE double
typeLongInteger 'long' 32—bit integer
typeShortlnteger 'shor' 16-bit integer
typeLongFloat 'doub' SANE double
typeShortFloat 'sing' SANE single
typeExtended 'exte‘ SANE extended
typeComp 'comp' SANE comp

typeMagnitude 'magn‘ Unsigned 32—bit integer
. typeAEList 'li st' List of descriptor records

typeAERecord 'reco‘ List of keyword-specified descriptor records

' typeAppleEvent 'aevt‘ Apple event record
typeTrue 'true' TRUE Boolean value
typeFalse 'fals' FALSE Boolean value
typeAlias 'alis' Alias record

l typeEnumerated 'cnum’ Enumerated data
typeType 'type' Four-Character code for event class or event ID

‘ typeAppParameters 'appa' Process Manager launch parameters

l typePropcrty 'prop' Apple event property a
typeFSS 'fs 3 ' File system specification 3
typeKeyword 'keyw' Apple event keyword 3.5
typeSectionH ‘sect' Handle to a section record 3
typeWildCard '* * * *‘ Matches any type E
typeApplSignature 'si gn' Application signature E
typeSessionID ‘ssid' Session [D Z
typeTargetID 'targ‘ Target ID record g
typeProcessSerialNumber 'p s n ' Process serial number 3‘;
typeNull 'null' NULL or nonexistent data 2‘;

l Introduction to Apple Events 6-9

F_—__ _ _____.__._

|PR2017-01828

Ubisoft EX1002 Page 322

IPR2017-01828
Ubisoft EX1002 Page 323

Inside Macintosh, Volume V]

Figure 6-3 illustrates a descriptor record with a descriptor type of typeType, which specifies that
the data in the descriptor record must consist of a four-character code. The data in this particular
descriptor record is specified by the constant kCoreEventClass, whose value is ‘aevt’.

Data type AEDesc

Descriptor type: typeType

_ Event class

(kCoreEventClass)

Figure 6-3. A descriptor record with event class data

A descriptor record that contains the address of the target or source of an Apple event is called
an address descriptor record.

TYPE AEAodressDesc : AEDesc; {address descriptor record}

As you will see later, the address can be specified as an application signature, a process serial
number, a session ID, a target ID record, or a data type that you define.

Data for attributes and parameters is contained in descriptor records. The attributes and
parameters themselves are identified by keywords. The AEKeyword data type is defined
as a four-character code.

TY?‘ AfiKeyword : PACKED ARRAYH . . 4] OF Char;

{keyword for a descriptor }
I record}

Constants are typically used for keywords. Shown here is a list of these keyword constants,
their four—character codes, and the attributes and parameters they represent.

Attribute keyword Value Description

keyAddressAttr 'addr' Address of target application
keyEventClassAttr 'evcl' Event class of Apple event
keyEventlDAttr 'evid' Event ID of Apple event
keyEventSourceAttr 'esrc' Source of the Apple event
keylnteractLevelAttr ‘inte‘ Settings for allowing the Apple Event Manager

to bring a server application to the foreground
keyMissechywordAttr 'miss' First required parameter remaining in an

Apple event

keyOptionalKeywordAttr ’optk' List of optional parameters for the Apple event
keyRetumIDAttr 'rtid' Return ID for reply Apple event
keyTimeoutAttr 'timo' Length of time in ticks that the client will

wait for a reply or a result from the server

keyTransactionIDAttr ‘tran' Transaction ID identifying a series of
Apple events

6-10 Introduction to Apple Events

|PR2017-01828

Ubisoft EX1002 Page 323

IPR2017-01828
Ubisoft EX1002 Page 324

The Apple Event Manager

Parameter keyword Value Description

keyDirectObject '————' Direct parameter
keyErrorNumber 'errn' Error number parameter
kcyErrorString 'errs' Error string parameterI

keyProcessSerialNumbcr 'p s n Process serial number parameter

A data structure of type AEKeyDesc consists of a keyword and a descriptor record. This data
structure, called a keyword-specified descriptor record, is used by the Apple Event
Manager to fully identify and describe an attribute or a parameter of an Apple event.

TYPE AEKeyDesc : («eywordespecified descriptor record}

RECORD

descKey: AEKeyword; {keyword}
descConLenL: AEDesc {descriptor record}

3ND ;

Figure 6—4 illustrates a keyword-specified descriptor record for the event class attribute of an
Open Documents event. The keyEventClassAttr keyword identifies its descriptor record as
containing event class data. The data is of the typeType descriptor type, and the data identifies
the event class as kCoreEventClass.

Data type AEKeyDesc

keyEventClassAttr

Descriptor record:

Descriptor type: typeType

Event class

(kCoreEventClass)

Figure 6-4. A keyword—specified descriptor record for the event class attribute of
an Open Documents event

When extracting data from an Apple event, you use Apple Event Manager functions to return
data in a buffer specified by a pointer. or to return descriptor records containing the data, or
to return lists of descriptor records (called descriptor lists) containing the data. As previously
noted. the descriptor record (of data type AEDesc) is the fundamental structure in Apple events,
and it contains a handle to data. A descriptor list is a data structure of type AEDescList
defined by the data type AEDesc—that is, a descriptor list is a descriptor record that contains a
list of other descriptor records.

 TYP< A Deschist : AEDesc; {list of descriptor records}

An example of a descriptor list that you will be using is the direct parameter for the Open
Documents event. As illustrated in Figure 6—5, this descriptor list is a list of descriptor
records that contain alias records to filenames. (The Alias Manager chapter of this volume
describes alias records in detail.)

3

>'5
’U
"D
E4.m
=,..
7h
h:
:5
23
7:PD'1

Introduction to Apple Events 6—] I

|PR2017-01828

Ubisoft EX1002 Page 324

IPR2017-01828
Ubisoft EX1002 Page 325

Inside Macintosh, Volume V]

Data type AEDescList

Descriptor type: typeAELlst

List of descriptor records:

Descriptor type: typeAlias

Data: Alias record for filename
(Nov. InVOIce)

Descriptor type: typeAlias

Data: Alias record for filename
(Dec. InVOIce)

Figure 6-5. A descriptor list for a list of aliases

Closely related to a descriptor list is a structure of data type AERecord; in fact, it is defined by
the data type AEDescList.

TYPE AERecord 7 AEDescList; {list of keyword—specified)

{ descriptor records}

While a descriptor list is a descriptor record that contains a list of other descriptor records,
an AE record of data type AERecord contains a list of keyword—specified descriptor records
describing parameters. A descriptor list ofdata type AERecord contains no attributes, only
parameters.

There is one final data structure to consider: the Apple event record. An Apple event
record is a structure of data type Appleb‘vent defined as an AB record. It is used for
describing a full-fledged Apple event.

 TYPE ApplcFvcnt : AERccord; {list or attributes and parameters }
{ necessary for an Apple event}

An Apple event record is basically a descriptor record (of descriptor type typeAppleEvent) with
a handle to a list of keyword—specified descriptor records. These descriptor records describe
the attributes and parameters for an Apple event. When you use the AECreateAppleEvent
function, the Apple Event Manager creates an Apple event record containing the attributes for
an Apple event’s event class, event ID, target address, return ID, and transaction ID. You then

use Apple Event Manager functions such as AEPutParamDesc to add parameters to the Apple
event. Figure 6—6 shows an example of an Apple event—a structure containing a list of
keyword—specified descriptor records that name the attributes and parameters of an Open
Documents event.

6-12 Introduction to Apple Events

|PR2017-01828

Ubisoft EX1002 Page 325

IPR2017-01828
Ubisoft EX1002 Page 326

'Hrr’ rippir’ EI'E'HE Manager

Data type AppleEvent

trwfinpleEwnt

Data: Lisl of atlributes and parameters

Event class attribute

Keyword: keyEventCtassAttr

DESCFJDIOI' I'E-‘COI'U: Descriptor type: IVPBTVPE

Date: Event Class
{kCoreEUenlCiass}

Event ID atlribute

Keyword: keyEventtDAttr

Descriptor record: Descriptor type: lypeType
_ Event ID

Data. [RAE Op enDocumenis‘i

Target application attribute

keyhddresshttr

Descriptor record: Descriptor type: typeAppiSigriature

Date: Target application's.
address E'WAVE')

Diretlparameter

Keyword: keyDIrecchject

Descriptor recs-rd: Descriptor type: typeAEList
Data: List oi descriptor

records:

Descriptor type: typeAlies

Alias record Ior iilename

(Nov. Invoice}

 |——_IIIII

Data: Alias record [or filename

(Dec. Invoice}

—'l

Figure fi-fi. Data structures; within an Open Documcnls cvcril

5"
[a-—u...--un.-_-
”'-n-5—.
c-_P'.‘
=.n.
'1}Ha..—
=
2.:
I:a"E

hrn'urfrrr'rr'rm m ANN? E1'(’Hi'.'|' 6— I3

|PR2017-01828

Ubisoft EX1002 Page 326

IPR2017-01828
Ubisoft EX1002 Page 327

Inside Macintosh, Volume V]

The internal structure of an Apple event record is nearly identical to an AB record. They differ
in the content referred to by the data handles that they contain: the former has a list of attributes
and, possibly, parameters referred by its handle; the latter contains only parameters. However,
you can pass an Apple event record to any Apple Event Manager function that expects an AB
record. Since both are structures of data type AEDescList, which is derived from the data type
AEDesc, you can pass Apple event records, AE records, descriptor lists, and descriptor
records to any Apple Event Manager functions that expect records of data type AEDesc.

The data in Apple event records, AE records, and descriptor lists—all of which are descriptor
recordsiis private to the Apple Event Manager. The Apple Event Manager maintains these
different data structures because it stores different kinds of information in their handles.

Although all the information you need is available by calling the appropriate Apple Event
Manager functions, the Apple Event Manager needs a way to tell these different descriptor
records apart. It does this by looking at their data types.

Responding to Apple Events

A client application uses the Apple Event Manager to create and send an Apple event requesting
a service. A server application responds by using the Apple Event Manager to process the
Apple event, to extract data from the attributes and parameters of the Apple event, and to return
a result to the client application. The server provides its own routines for performing the action
requested by the client’s Apple event.

As its first step in supporting Apple events, your application must be able to respond to the
required Apple events sent by the Finder. If you plan to implement publish and subscribe
capabilities, your application must respond to the Apple events sent by the Edition Manager.
You can also respond to Apple events sent by your own application or by other applica—
tions. This section provides a quick overview of the steps your application takes in responding
to Apple events.

To respond to Apple events, your application must

I test for high—level events in its event loop

I use the AEProcessAppleEvent function to process Apple events

I provide handler routines for the Apple events it supports

I use Apple Event Manager functions to extract the parameters and attributes from
Apple events

I use the AElnteractWithUser function—if your application requires input from the user
when your application is responding to an Apple eventito bring your application to the
foreground to interact with the user

I return a result for the client

Note that in order for your application to respond to Apple events sent from remote computers,
the user of your application must allow network users to link to your application. The user
does this by selecting your application from the Finder and choosing Sharing from the File
menu and then clicking the Allow Remote Program Linking check box. If the user has not yet
started program linking, the Sharing command offers to display the Sharing Setup control
panel so that the user can start program linking. The user must also authorize remote users for

6-14 Introduction [0 App]6 Events

|PR2017-01828

Ubisoft EX1002 Page 327

y...—

IPR2017-01828
Ubisoft EX1002 Page 328

The Apple Event Manager

program linking by using the Users and Groups control panel. Program linking and setting up
authenticated sessions are described in the Program—to-Program Communications Toolbox
chapter in this volume.

An Apple event (like all high—level events) is identified by a message class of kHighLevelEvent
in the what field of the event record. You test the what field of the event record to determine

whether an event is a high—level event. If the what field contains the kHighLeveIEvent constant
and your application defines any high—level events other than Apple events, test the message
field of the event record to determine whether the high-level event is something other than an
Apple event. If the high-level event is not one that you’ve defined for your application, assume
that it is an Apple event. (Note that you are encouraged to use Apple events instead of defining
your own high—level events whenever possible.)

After determining that an event is an Apple event, use the AEProcessAppleEvent function to
let the Apple Event Manager identify the event. Figure 6-7 shows how the SurfWriter
application accepts and begins to process an Apple cvcnt sent by the Finder.

Apple event

Open Writs
Dec. Invoice
Nov. Invoice

Client Sewer

application application

Sun‘WrIter

 Event loop
CASE eventwhat OF

kHighLeveIEvent:
DoHighLevelEvent

(event)

DoHighLevelEvent(event)

CASE eventmessage OF
myHighLevelEvent1:
myHighLeveIEventZ:

OTHERWISE

AEProcessAppleEvent(

 evenU Apple Event Manager

Figure 6-7. Accepting and processing an Open Documents event

The AEProcessAppleEvent function begins processing the Apple event. The
AEProcessAppleEvent function identifies the Apple event by examining the data in the
event class and event ID attributes. The AEProcessAppleEvent function in turn uses that
data to call the Apple event handler that your application provides for that event. An Apple
event handler is a function that extracts the pertinent data from the Apple event,
performs the action requested by the Apple event, and returns a result. For example, if the
event has an event class of kCoreEventClass and an event ID of kAEOpenDocuments, the
AEProcessAppleEvent function calls your application’s routine for handling the Open
Documents event.

Introduction to Apple Events 6-15

ex

”'2
c
c_
ft
L'l'l4.m
::..
’l.—
a;
=
:s
7:P:
'1

|PR2017-01828

Ubisoft EX1002 Page 328

IPR2017-01828
Ubisoft EX1002 Page 329

brittle Mat-future. Valium! 1"!

You install Apple event handlerh by using the AElnatallEt'entl-lundler I'utlcticm. Thih I'unctiun
creates an Apple event dispatch table that the Apple Event Manager uses te tnap Apple
events la handlcrri in your applicatiun. Alter heinpr called by Ihe At—ZPrncesxAppleEL-‘enl
l'urtctien [u prtJ-ceas an Apple eventt the Apple Event Manager reads the Apple event dispatch
tattle and. it' your application has installed a handler for that Apple event. calls yuur handler to
finish responding tn the event. Figure lit-8 shim-'14. how the Flew ul'cuntml passes I'rmn ynur
app] ieatiun to the Apple Event Manager and hack to year application.

Server

application

Su rtWrIter

Apple Event Manager

Apple event dispatch table

Event h a ‘ flaqdler _ _

Open Documentsl @MyHanpleODoe ‘—

Print Dpcurpents [@MyHa-ndlePDe-c
'— _

AEProcessAppleEvenltevent

H ___._h ._t ._1
__TL__

l Call MyHandIeODec

MyHandleODoetanAp pteEve ntt
. extract list of documents

fren'l direct parameter
- open each document in a

window
. return function result and.

it appropriate. error string

Figure 6-8. The Apple Erenl Manager calling the handler for an Open Documents event

Yuur Apple event handlerr; must generally pert'enn the t'nlluwing tasks:

I extract the parameters and attributes fer the Apple event

I Check that all the required parameters have been extracted

I set uxer in teractiun let-cl preferences it' necessary and. it' your application needa tn interact
IWith the uaer. US: the AElnteract'tr‘r’ithlfscr l'unctittn 10 bring it In the titregreuntl

I perthnn the action requested h}E the Apple event

I dispose of any copies of descriptor records that have been created

I retain a result for the client

fi—lé htt‘rrrdm't‘frm m Apple Evenly

|PR2017-01828

Ubisoft EX1002 Page 329

IPR2017-01828
Ubisoft EX1002 Page 330

The Apple Event Manager

You must use Apple Event Manager functions to extract the data from Apple events. You can
also use Apple Event Manager functions to get data out of descriptor records, descriptor lists,
and AE records. Most of these routines are available in two forms: one that uses a buffer to

return a copy of the desired data, and one that returns a copy of the descriptor record contain-
ing the data. The following list shows the main functions you can use to access the data of an
Apple event.

Function Description

AEGetParamPtr Uses a buffer to return the data contained in a parameter; used,
for example, to extract the result code from the keyErrorNumber
parameter of a reply Apple event.

AEGetParamDesc Returns the descriptor record or descriptor list for a parameter;
used, for example. to extract the descriptor list for a list of alias
records specified in the direct parameter of the Open Documents
event

AEGetAttributePtr Uses a buffer to return the data contained in an attribute; used, for

example, to determine the source of an Apple event by extracting
the data from the keyEventSourceAttr attribute.

AEGetAttributeDesc Returns the descriptor record for a parameter; used, for example,
to make a copy of a descriptor record containing the address of
an application.

AECountltems Returns the number of descriptor records in a descriptor list;
used, for example, to determine the number of alias records for
documents specified in the direct parameter of the Open
Documents event.

AEGetNthPtr Uses a buffer to return the data for a descriptor record that is
contained in a descriptor list; used, for example, to extract a
document’s alias record from the descriptor list specified in the
direct parameter of the Open Documents event.

AEGetNthDesc Returns a descriptor record from a descriptor list; used, for
example, to get the descriptor record containing an alias record
from the list specified in the direct parameter of the Open
Documents event.

You can specify the descriptor type of the resulting data for these functions; if this is different
from the descriptor type of the attribute or parameter. the Apple Event Manager attempts to
coerce it to the specified type. In the direct parameter of the Open Documents event, for
example, each descriptor record in the descriptor list is an alias record; each alias record
specifies a document to be opened. As explained in the File Manager chapter of this volume,
all your application usually needs is the file system specification (FSSpec) record of the
document. When you extract the descriptor from the descriptor list, you can request that the
Apple Event Manager return the data to your application as a file system specification record
instead of as an alias record.

OK

3"'5
EG
Ef,PD
3_.

7.—
m
=
N
I:
E

Introduction to Apple Events 6-17

|PR2017-01828

Ubisoft EX1002 Page 330

IPR2017-01828
Ubisoft EX1002 Page 331

Inside Macintosh, Volume VI

After extracting all known parameters, your handler should check that it retrieved all the
required parameters by checking whether the keyMissedKeywordAttr attribute exists. If
the attribute exists, then your handler has not retrieved all the required parameters, and it
should return an error.

In some cases, the server may need to interact with the user when it handles an Apple event.
For example, your handler for the Print Documents event may need to display a print options
dialog box and get settings from the user before printing. Your handler should always use the
AEInteractWithUser function before displaying a dialog box or alert box or otherwise inter-
acting with the user. By specifying one of these flags to the AESetInteractionAllowed function,
you can set your application’s user interaction level preferences.

Flag Description

kAEInteractWithSelf User interaction with your server application in response to an
Apple event may be allowed only when the client application is
your own application—that is, only when your application is
sending the Apple event to itself.

kAEInteractWithLocal User interaction with your server application in response to an
Apple event may be allowed only if the client application is on
the same computer as your application; this is the default if the
AESetInteractionAllowed function is not used.

kAEInteractWithAll User interaction with your server application in response to
an Apple event may be allowed for any client application on
any computer.

For a server application to allow user interaction in response to the client’s Apple event,
two conditions must be met. First, the client application must request that your server appli-
cation allow user interaction. Second, your server application must allow user interaction
in response to the Apple event sent from that client application as described in the previous
list. If these conditions are met and your application needs to interact with the user, the
AEInteractWithUser function brings your application to the foreground if it isn’t already in
the foreground. Your application can then display its dialog box or alert box or otherwise
interact with the user. AEInteractWithUser brings your server application to the front either
directly or after the user responds to a notification request.

When your application acts on an Apple event, it should perform the standard action requested
by that event. For example, if the Apple event is the Open Documents event, your application
should open the specified documents in titled windows just as if the user had selected each
document from the Finder and then chosen Open from the File menu. You should strive to
create routines that can be called in response to both user events and Apple events. To do this,
you need to isolate code for interacting with the user from the code that performs the requested
action—such as opening a document. You then call the code that performs the requested action
from your Apple event handler.

When you extract a descriptor record by using the AEGetParamDesc, AEGetAttributeDesc,
AEGetNthDesc, or AEGetKeyDesc function, the Apple Event Manager creates a copy of the
descriptor record for you to use. When your handler is finished using a copy of a descriptor
record, you should dispose of it—and thereby deallocate the memory it uses—by calling the
AEDisposeDesc function.

6-18 Introduction to Apple Events

|PR2017-01828

Ubisoft EX1002 Page 331

IPR2017-01828
Ubisoft EX1002 Page 332

The Apple Event Manager

The required Apple events ask your application to perform tasks—open your application,
open or print documents, or quit your application. Other Apple events may ask your
application to return data. For example, if your application is a spelling checker, the client
probably expects data in the form of a list of misspelled words to be returned from your
application, If a reply is requested, the Apple Event Manager prepares a reply Apple event
for the client by passing a default reply Apple event to your handler. The default reply
Apple event has no parameters when it is passed to your handler. Your handler can add any
parameters to the reply Apple event. If your application is a spelling checker, for example,
you can return a list of misspelled words in a parameter.

Your handler routine should always set its function result either to noErr if it successfully
handles the Apple event or to a nonLero result code if an error occurs. If an error occurs, the
Apple Event Manager adds a keyEirorNumber parameter to the reply Apple event; this
parameter contains the result code that your handler returns. The client should check whether
the keyEIrorNumber parameter exists to determine whether your handler performed the
requested action. In addition to returning a result code, your handler can also return an error
string in the keyErrorString parameter of the reply Apple event. The client can use this string
in an error message to the user.

If the source requested a reply, the Apple Event Manager returns the reply Apple event to the
source. The reply Apple event is identified by the event class kCoreEventClass and by the event
lD kAEAnswer. When you have finished using the reply Apple event, you should dispose of
it—and thereby deallocate the memory it uses—by calling the AEDisposeDesc function

When your handler returns a result code to the Apple Event Manager, you have finished your
response to the client’s Apple event. Figure 6-9 shows the entire process of responding to an
Apple event. The next section describes how to send an Apple event.

Requesting Services Through Apple Events

Your application can use Apple events to request services from other applications. By using
Finder events, for example, your application can simulate the behavior of the Finder by
requesting that the Finder perform such operations as launching an application on your
behalf. By using functional-area Apple events, your application can request services from
applications related to your own—for example, asking a spelling checker application to check
the text in a document created by your application. All publicly available Apple events are
defined and published in the Apple Event Registry. Consult the Apple Event Registry for the
format and function of Apple events that your application may wish to send.

The previous section describes how a server application responds to a client application’s
request for services. This section briefly describes the steps your application must take to act
as a client application and request such services. To request a service through an Apple event,
your application must

I create an Apple event by calling the AECreateAppleEvent function

I use Apple Event Manager functions to add parameters and any other necessary attributes
to the Apple event

I call the AESend function to send the Apple event

I dispose of any copies of descriptor records that you have created

I process the reply Apple event (optional)

Introduction to Apple Events 6-19

a.

lo'5'
'5.—
r:
P"<a:
:5a
7H
=0....
:.:

CI:0:'l

|PR2017-01828

Ubisoft EX1002 Page 332

IPR2017-01828
Ubisoft EX1002 Page 333

his‘irir' .-‘rfrrr'iirrr;.fi'fr. i-"m'rrirric W

Apple event

Dec. Invoice
Nov. Invoice

Client Server

application application

Su rt'h‘tl'nler

Event [can
CASE eventwhat OF "

kHigthvelEvc nt;
DoHighLovelE uenltevenl}

DoHighLevelEventtevenl}

CASE eventmessage OF

myHighLevolEuentI: ,—' "myHighLevelEvenlEr Appie Event Manager
OTHERWISE - --—._.'\

AEPrUCE$$AppteEvenl{event} Appie event dispatch table '

1Event Handler _ _

Open Documents: @MyHandleQDoc

' Prinl Down-Lents @MyHandlEPDoc

Call Myl-iandieDDoo

MyH andteODoctanAppt-L‘Event}

- extract list of documents

from direct parameter
1 open each document in a

window

, - return function resull and. _
' it appropriate, error string—IQ Fteturn “9P1? APP"? EVEN-

Apple event

Figure 6-9. Ruapumling to an Open Dnuumunls urcnl

fi-Z’U friH'rJdrrt'n'rm m Amie L'l't’J'm'

|PR2017-01828

Ubisoft EX1002 Page 333

IPR2017-01828
Ubisoft EX1002 Page 334

The Apple Event Manager

Use the AECreateAppleEvent function to create an Apple event record. Using the arguments
you pass to the AECreateAppleEvent function, the Apple Event Manager constructs the data
structures describing the event class, the event ID, and the target address attributes of an Apple
event. The event class and event ID, of course, identify the particular event you wish to send.
The target address identifies the application to which you wish to send the Apple event.

To act as a server application for your application, the target must support high-level events
and must be open. The server can be your own application, another application running on
the user’s computer, or an application running on another user’s computer connected to the
network. Your application should offer some facility to launch a server application if it is not
already running. It is recommended that you use the Open Selection event (identified by the
event class kAEFinderEvents and the event ID kAEOpenSclcction) to request that the Finder
launch applications; however, the Process Manager also provides a means for your applica—
tion to launch other applications. See the Apple Event Registry for information on Finder
events, and see the Process Management chapter in this volume for information on using the
Process Manager.

Your application should also offer a facility to allow the user to choose among the various
applications available as servers. The PPCBrowser function allows users to select target appli-
cations on the user’s computer as well as those available on computers connected to the
network. The PPCBrowser function presents a standard user interface for choosing a target
application, much as the Standard File Package provides a standard user interface for opening
and saving files. See the Program-to—Program Communications Toolbox chapter of this volume
for details on using the PPCBrowser function.

If the server application is on a remote computer on a network, the user of that computer must
allow program linking to the server application. The user of the server application does this
by selecting the application from the Finder and choosing Sharing from the File menu and
then clicking the Allow Remote Program Linking check box. If the user has not yet started
program linking, the Sharing command offers to display the Sharing Setup control panel so
that the user can start program linking. The user must also authorize remote users for pro—
gram linking by using the Users and Groups control panel. Program linking and setting up
authenticated ses—sions are described in the Program—to-Program Communications Toolbox
chapter in this volume.

There are two other attributes you specify in the AECreateAppleEvent function: the reply ID and
the transaction ID. For the reply lD attribute, you’ll usually specify the kAutoGenerateReturnID
constant to the AECreateAppleEvent function. This constant ensures that the Apple Event
Manager generates a unique retum ID for the reply Apple event returned from the server. For
the transaction ID attribute, you’ll usually specify the kAnyTransactionID constant, which
indicates that this Apple event is not one of a series of interdependent Apple events.

The Apple event record created with the AECreateAppleEvent function serves as a template for
the Apple event you want to send. To add the remaining attributes and parameters necessary
for your Apple event, you must use these additional Apple Event Manager functions.

Function Description

AEPutParamPtr Takes a keyword, descriptor type, and pointer to data. converts
them into a parameter, and adds the parameter to or replaces it in
an Apple event record; used, for example, to place numbers into
the parameters of an Apple event requesting that the server
perform a calculation.

ax

Ll>'5
'5.—
m
€11<a
:5.,
?i—i
so
5
a:

0‘:r:F:

Introduction to Apple Events 6-21

|PR2017-01828

Ubisoft EX1002 Page 334

IPR2017-01828
Ubisoft EX1002 Page 335

Inside Macintosh, Volume V]

Function

AEPutParamDesc

AEPutAttributePtr

AEPutAttributeDesc

Description

Takes a keyword and a descriptor record, converts them into a
parameter, and adds the parameter to or replaces it in an Apple
event record; used, for example, to place a descriptor list
containing alias records into the direct parameter of an Apple
event that requests a server to manipulate files.

Takes a keyword, descriptor type, and pointer to data, converts
them into an attribute, and adds the attribute to or replaces it in an
Apple event record; used, for example, to change the event ID of
an Apple event record that is waiting to be sent.

Takes a keyword and a descriptor record, converts them into an
attribute, and adds the attribute to or replaces it in an Apple event
record; used, for example, to replace the descriptor record used
for the target address attribute in an Apple event record waiting to
be sent.

Descriptor records and descriptor lists are the basic components from which an Apple event
record is constructed; these are passed to the AEPutParamDese and AEPutAttributeDese
functions. Use the following functions to create descriptor records and descriptor lists.

Funcfion

AECreateDesc

AEPutPtr

AEPutDesc

Description

Takes a descriptor type and a pointer to data and converts them
into a descriptor record; used, for example, to create a descriptor
record that is used as an attribute or a parameter in an Apple
event record.

Takes a descriptor type and a pointer to data, converts them into a
descriptor record, and adds the record to a descriptor list; used,
for example, to place into a descriptor list a number that is used
as the parameter of an Apple event requesting a calculation.

Adds a descriptor record to a descriptor list; used, for example, to
add into the descriptor list an alias record that is used as the direct
parameter of an Apple event requesting file manipulation.

After you add all the attributes and parameters required for the Apple event, use the AESend
function to send the Apple event. The Apple Event Manager uses the Event Manager to
transmit the Apple event to the server application.

The AESend function requires that you specify whether and how your application should
wait for a reply from the server. When the server receives your Apple event, the Apple Event
Manager prepares a reply Apple event for your application by passing a default reply Apple
event to the server. The Apple Event Manager returns any nonzero result code from the
server’s handler in the keyErrorNumber parameter of the reply Apple event. If your applica-
tion wants to return an error string, add it to the reply Apple event in the keyErrorString
parameter. The server can also use this reply Apple event to return any data you requested*
for example, the results of a numerical calculation or a list of misspelled words.

6-22 Introduction to Apple Events

|PR2017-01828

Ubisoft EX1002 Page 335

.7__.,

IPR2017-01828
Ubisoft EX1002 Page 336

The Apple Event Manager

You specify how your application should wait for a reply by using one of these flags in the
sendMode parameter of the AESend function.

Flag Description

kAENoReply Your application does not want a reply Apple event; the server
processes your Apple event as soon as it has the opportunity.

kAEQucueReply Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
process and respond to your Apple event.

kAEWaitReply Your application wants a reply Apple event and is willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event.

If you specify the kAEWaitReply flag, you may provide an idle function. This function should
process any events that occur while your application is waiting for a reply. You supply a
pointer to your idle function as a parameter to the AESend function. So that your application
can process other Apple events while it is waiting for a reply, you can also specify an optional
filter function to the AESend function that filters Apple events.

If your Apple event may require the user to interact with the server application (for example,
to specify print or file options), you can communicate your user—interaction preferences
to the server by specifying one of the following flags in the sendMode parameter of the
AESend function.

Flag Description

kAENeverInteract The server application should never interact with the user in
response to this Apple event. If this flag is set, AEInteractWithUser
does not bring the server application to the foreground (this is the
default when an Apple event is sent to a remote application).

kAECanInteract The server application can interact with the user in response to
this Apple event—by convention, if the user needs to supply
information to the server. If this flag is set and the server allows
interaction, AEInteractWithUser brings the server application to
the foreground (this is the default when an Apple event is sent to
a local application).

kAEAlwaysInteract The server application can interact with the user in response to
this Apple event—by convention, even if no information is
needed from the user. If this flag is set and the server allows
interaction, AEInteractWithUser brings the server application to
the foreground. The Apple Event Manager does not distinguish
between this flag and the kAECanInteract flag—distinguishing
between them is the responsibility of the server application.

a

>U
1:._
ft
in<
2_._.
7_
g
=
u
T:
2

Introduction to Apple Events 6-23

|PR2017-01828

Ubisoft EX1002 Page 336

IPR2017-01828
Ubisoft EX1002 Page 337

Inside Macintosh, Volume VI

Flag Description

kAECanSwitchLayer If both the client and server allow interaction and this flag is set,
AElnteractWithUser brings the server directly to the foreground
if adherence to the principle of user control allows. If the action
would be contrary to this principle, AEInteractWithUser uses
the Notification Manager to request that the user bring the server
application to the foreground. If both the client and server allow
interaction and this flag is not set, AElnteractWithUser always
uses the Notification Manager to request that the user bring the
server application to the foreground.

The server can set its own interaction preferences. The interaction of your client’s preferences
and the server’s is explained in “Interacting With the User” later in this chapter.

After you send an Apple event. your application is responsible for disposing of the Apple
event record—and thereby deallocating the memory it uses—by calling the AEDisposeDesc
function. If you create one descriptor record and add it to another, the Apple Event Manager
creates a copy of the newly created one and adds that copy to the existing one. For example,
you might use the AECreateDesc function to create a descriptor record that you wish to add to
an Apple event. When you use the AEPutParamDesc function, it creates a copy of your
newly created descriptor record and adds that copy as a parameter to an existing Apple event.

Your application should dispose of all the descriptor records that are created in order to add
parameters and attributes to an Apple event. You normally dispose of your Apple event and
its reply after you receive a result from the AESend function. You should dispose of these
even if AESend returns an error result. If your application requests a reply Apple event. your
application must also dispose of the reply Apple event when finished processing it.

Your application can request a reply Apple event. If you specify the kAEWaitReply flag, the
reply Apple event is returned in a parameter you pass to the AESend function. If you specify
the kAEQueueReply flag to the AESend function, the reply Apple event is returned in the
event queue. In this case, the reply is identified by the event class kCoreEventClass and the
event ID kAEAnswer; your application processes reply events that it receives in its event
queue in the same manner that server applications process Apple events, as described earlier
in “Responding to Apple Events.”

Your application should check for the keyErrorNumber parameter of the reply Apple event to
ensure that the server performed the requested action. Any error messages that the server
returns for you to display to your user will appear in the keyErrorString parameter.

When your handler is finished using a copy of a descriptor record used in the reply Apple
event, you should dispose of them bothiand thereby deallocate the memory they use—by
calling the AEDisposeDesc function.

The next section, “Using the Apple Event Manager,” describes in greater detail the routines
necessary for sending and responding to Apple events.

6-24 Introduction to Apple Events

|PR2017-01828

Ubisoft EX1002 Page 337

IPR2017-01828
Ubisoft EX1002 Page 338

The Apple Event Manager

USING THE APPLE EVENT MANAGER

The following sections explain in more detail how to use the Apple Event Manager to receive,
accept, and send Apple events. The first two sections describe how to accept and process
Apple events and how to install entries into the Apple event dispatch table. The following
section fully explains how your application should handle the required Apple events, and it
provides code that shows sample handlers for the required Apple events.

Additional sections describe how to

I handle events that support publish and subscribe features

I get data out of an Apple event

I write handlers that perform the action requested by an Apple event

I reply to an Apple event

I dispose of Apple event data structures

I interact with the user when processing an Apple event

I create an Apple event

I send an Apple event

I write an idle function

I write a reply filter function

I write and install coercion handlers

I use the Application Died event to ascertain the termination of an application that has been
launched by your application

The Apple Event Manager is available only in system software version 7.0. Use the Gestalt
function with the gestaltAppleEventsAttr selector to determine whether the Apple Event
Manager is available. In the response parameter. the bit defined by the constant
gestaltAppleEventsPresent is set if the Apple Event Manager is available.

CONS‘l‘ gestaltAppleEventsAttr r ’evnt'; {Gestalt selector}
gestaltAppleiiventsPresent : U; ‘kiJI this bit is set, then }

{ Apple Event Mgr's available}

o

w
1
'3PD
LT<(D
5..

?ii!
a:
3
r.“

(10('D
-:

Using the Apple Event Manager 6-25

|PR2017-01828

Ubisoft EX1002 Page 338

IPR2017-01828
Ubisoft EX1002 Page 339

Inside Macintosh, Volume V]

Accepting an Apple Event

To accept Apple events (or any other high-level events), you must set the appropriate flags
in your application’s ‘SIZE' resource and include code to handle high—level events in your
application’s main event loop.

Two flags in the 'SIZE' resource determine whether an application receives high-level events:

I The isHighLevelEventAware flag must be set for your application to receive any high-
level events.

I The localAndRemoteHLEvents flag must be set for your application to receive high-
level events sent from another computer on the network.

Note that in order for your application to respond to Apple events sent from remote computers,
the user of your application must also allow network users to link to your application. The user
does this by selecting your application from the Finder and choosing Sharing from the File
menu and then clicking the Allow Remote Program Linking check box. If the user has not yet
started program linking. the Sharing command offers to display the Sharing Setup control
panel so that the user can start program linking. The user must also authorize remote users for
program linking by using the Users and Groups control panel. Program linking and setting up
authenticated sessions are described in the Program—to-Program Communications Toolbox
chapter in this volume.

For a complete description of the 'SIZE' resource, see the Event Manager chapter in this
volume.

Apple events (and other high-level events) are identified by a message class of kHighLevelEvent
in the what field of the event record. You can test the what field of the event record to determine

whether the event is a high—level event.

Listing 6-1 is an example of a procedure called from an application’s main event loop that
handles events, including high—level events. The procedure determines the type of event
received and then calls another routine to take the appropriate action.

Listing 6-1. A DoEvent procedure

PROCEDJRE DoEvent (evenL: EventRecord);

BEGIN

CASE even:.what OF {determine the type of event}
monieDownz

DoMouseDcwn (event) ;

{handle other kinds m“ even:s}

{handle highilevel events, including Apple events}
kHighLevelEven i :

DoHighLevelEvent (event) ;
END;

3ND;

6-26 Using the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 339

IPR2017-01828
Ubisoft EX1002 Page 340

The Apple Event Manager

Listing 6—2 is an example of a DoHighLevelEvent procedure that handles Apple events and also
handles the high—level event identified by the event class mySpecialHLEventClass and the event
ID mySpeciall-lLEventID. Note that, in most cases, you should use Apple events to communi-
cate with other applications.

Listing 6-2. A DoHighLevelEvent procedure for handling Apple events and
other hi gh-level events

 PROCEDURE DoiighLevelEven: (event: EventRecord);

 myErr: OSErr;

I: (event.nessage : Longlnt(mySpecielHthentClass)) AND
(LongIn:(event.whe:e) 7 LongInt(mySpecialHLEventID)) THEN

EGIN

{it‘s a highelevel event :hat doesn't use AEIMP}
myjrr :, HandleMySpecialHLEvent(event);
IF uyErr <> noErr THEN

DcErrorimyErr); {perform the necessary error handling}

 w

3ND

*484 {otherw;5e, assume that :he event is an Apple event}
BEGIN

myErr :: AEProcessAppleEven:(event);
IF myErr <> noErr TEEN

 DoError(myErr)7
 END ,-

END;

If your application accepts high—level events that do not follow the Apple Event lnterprocess
Messaging Protocol (AEIMP), you must dispatch these high-level events before calling
AEProcessAppleEvent. To dispatch a high—level event that does not follow AEIMP, for each
event you should check the event class, the event ID, or both to see if the event is one that
your application can handle.

After receiving a high»level event (and, if appropriate. checking whether it is a type of hi gh-
level event other than an Apple event), your application typically calls the AEProcessAppleEvent
function. The AEProcessAppleEvent function determines the type of Apple event received, gets
the event buffer that contains the parameters and attributes of the Apple event, and calls the
corresponding Apple event handler routine in your application.

You should provide a handler routine for each Apple event that your application supports.
Your handler routine for a particular Apple event is responsible for performing the action
requested by the Apple event, and your handler can optionally retum data in the reply
Apple event.

After your handler finishes processing the Apple event and adds any parameters to the default
reply. it should return a result code to AEProcessAppleEvent. If the client application is waiting
for a reply, the Apple Event Manager returns the reply Apple event to the client.

9

>c
'5—a
E<a
5H

2m
5m
a:(D
H

Using the Apple Event Manager 6—27

|PR2017-01828

Ubisoft EX1002 Page 340

IPR2017-01828
Ubisoft EX1002 Page 341

Inside Macintosh, Volume VI
Installing Entries Into the Apple Event Dispatch Tables

When your application receives an Apple event, use the AEProcessAppleEvent function to
retrieve the data buffer of the event and to route the Apple event to the appropriate Apple
event handler in your application. Your application supplies an Apple event dispatch table to
provide a mapping between the Apple events your application supports and the Apple event
handlers provided by your application.

To install entries into your application’s Apple event dispatch table, use the
AEInstallEventHandler function. You usually install entries for all of the Apple events
that your application accepts into your application’s Apple event dispatch table.

For each Apple event your application supports, you should install entries in your Apple
event dispatch table that specify

I the event class of the Apple event

I the event ID of the Apple event

I the address of the Apple event handler for the Apple event

I a reference constant

You provide this information to the AEInstallEventHandler function. In addition, you indicate
to the AEInstallEventHandler function whether the entry should be added to your application’s
Apple event dispatch table or the system Apple event dispatch table.

The system Apple event dispatch table is a table in the system heap that contains
handlers that are available to all applications and processes running on the same computer.
The handlers in your application’s Apple event dispatch table are available only to your applica—
tion. If AEProcessAppleEvent cannot find a handler for the Apple event in your application’s
Apple event dispatch table, it looks in the system Apple event dispatch table for a handler. If it
doesn’t find a handler there either, it returns the eirAEEventNotHandled result code.

Listing 6-3 illustrates how to add entries for the required Apple events to your application’s
Apple event dispatch table.

Listing 6-3. Inserting entries for required Apple events into an application’s
Apple event dispatch table

 myErr :7 AEIns:allEven:Handler (kCoreEventClass, kAEOpenAppLication,
@MdendieOAPP, U, FAJSE);

Th myErr <> noErr THEN DOErrorimyErr);
myErr :: AEIns:allEven:Handler (kCOrefiventClass, kAEOpenDocuments,

@MyHandleODOC, 0, FAJSE);
TF myErr <> :o;rr EHEN Dohrrortmyhrr);
myErr :7 AEIns:allEven:Handler (kCoreEventClass, kAEDIintDOCuKents,

@MyHanoiePDOC, 0, FAJSE);
IF myHrr <> nohrr THEN DOHTVOr(myHrr);
myErr :7 AEInstallEventHandler (kCoreEventCLass, kAEQuitApplication,

@MyEandleQUZT, 0, FALSE);
1F nyHrr <> noHrr THEN DoHrror(myHrr);

6-28 Using the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 341

IPR2017-01828
Ubisoft EX1002 Page 342

The Apple Event Manager

The code in Listing 643 creates an entry for all required Apple events in the Apple event
dispatch table. The first entry creates an entry for the Open Application event. The entry
indicates the event class and event ID of the Open Application event and the address of the
handler for that event and specifies 0 as the reference constant. This entry is installed into
the application‘s Apple event dispatch table.

The reference constant is passed to your handler by the Apple Event Manager each time your
handler is called. Your application can use this reference constant for any purpose. If your
application doesn’t use the reference constant, use 0 as the value.

The last parameter to the AElnstallEventHandler function is a Boolean value that determines
whether the entry is added to the system Apple event dispatch table or to your applications
Apple event dispatch table. To add the entry to your application’s dispatch table, use FALSE
as the value of this parameter. If you specify TRUE, the entry is added to the system’s Apple
event dispatch table.

If you add a handler to the system Apple event dispatch table, the handler that you specify
must reside in the system heap. If there was already an entry in the system Apple event
dispatch table for the same event class and event ID. it is replaced. Therefore, if there is an
entry in the system Apple event dispatch table for the same event class and event ID, you
should chain it to your system handler as explained in “Creating and Managing the Apple
Event Dispatch Tables” later in this chapter.

Note: When an application calls a system Apple event handler, the A5 register is
set up for the calling application. For this reason, if you provide a system Apple
event handler, it should never use A5 global variables or anything that depends on a
particular context; otherwise, the application that calls the system handler may crash.

For any entry in your Apple event dispatch table, you can specify a wildcard value for the
event class, event ID, or both. You specify a wildcard by supplying the typeWildCard
constant when installing an entry into the Apple event dispatch table. A wildcard value
matches all possible values.

For example, if you specify an entry with the typeWildCard event class and the
kAEOpenDocuments event ID, the Apple Event Manager dispatches Apple events of
any event class and an event ID of kAEOpenDocuments to the handler for that entry.

If you specify an entry with the kCoreEventClass event class and the typeWildCard event ID,
the Apple Event Manager dispatches Apple events of the kCoreEventClass event class and
any event 1D to the handler for that entry.

If you specify an entry with the typeWildCard event class and the typeWildCard event 1D, the
Apple Event Manager dispatches all Apple events of any event class and any event ID to the
handler for that entry.

If the AEProcessAppleEvent function cannot find a handler for an Apple event in either the
application’s Apple event dispatch table or the system Apple event dispatch table, it returns
the result code errAEEventNotHandled to the Apple event server. If the client is waiting for a
reply, AESend also returns this result code as its function result.

ON

I»'3
Ea:

m4
2Ind..,.

7.h—
a:
=
2:

0’:G'1

Using the Apple Event Manager 6-29

|PR2017-01828

Ubisoft EX1002 Page 342

IPR2017-01828
Ubisoft EX1002 Page 343

Inside Macintosh, Volume VI

If your application supports the Edition Manager, you should also add entries to your appli—
cations Apple event dispatch table for the Apple events that your application receives from
the Edition Manager. Listing 6—4 shows how to add entries for these Apple events to your
application’s Apple cvcnt dispatch table.

Listing 6-4. Inserting entries for Apple events sent by the Edition Manager into an
application’s Apple event dispatch table

myErr :: AEIiscalliventfiandle:(section3venLMggClass, soc:ionReadMSg:D,

@MyHandLeSectionReadEvent, 0, FAMSH);
IF myErz <> :oEr: THEN DOErrorimyErr);
myErr :: AEInstalljventHandlertscctionEvanMsgClass,

sectionWriteMsgID,
@MyHandleSectionWriteEvent, O, FALSE);

IF myErr <> :oFrV WHHN UOHrrorimy3rr);

myErr :7 AEIistalljven:Handler(sectionEventMsgClass,
sectionScrollMsgID,
@MyHandloSocLionScroli3vent, O, FALSE);

IF myErr <> :oEr: THEN DOErrOrimyErr);

See “Handling Apple Events Sent by the Edition Manager" later in this chapter for the
parameters associated with these events. See the Edition Manager chapter in this volume
for information on how your application should respond to the Apple events sent by the
Edition Manager.

Handling the Required Apple Events

This section describes the required Apple events—the Apple events your application must
support to be 7.0-friendly—and the descriptor types for all parameters of the required
Apple events. It also describes how to write the handlers for these events, and it provides
sample code.

To support the required Apple events, you must set the necessary flags in the 'SIZE’ resource
of your application, install entries into your application’s Apple event dispatch table, add
code to the event loop of your application to recognize high—level events, and call the
AEProcessAppleEvent function, as described in the preceding two sections. You must also
write handlers to handle each Apple event; this section describes how to write these handlers.

Required Apple Events

When a user opens or prints a file from the Finder, the Finder sets up the information your
application can use to determine which files to open or print. In version 7.0, if your applica-
tion supports high-level events, the Finder communicates this information to your application
through the required Apple events.

The Finder sends one of the required Apple events to your application to request that it open
or print a list of documents, inform it that the Finder has just opened your application, or
inform it that the Finder is about to terminate your application.

6-30 Using the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 343

IPR2017-01828
Ubisoft EX1002 Page 344

The Apple Event Manager

These are the required Apple events.

Apple event Requested action

Open Application Perform tasks associated with opening your application

Open Documents Open the specified documents

Print Documents Print the specified documents

Quit Application Perform tasks—such as releasing memory, requesting the user to
save documents, and so on—associated with quitting; the Finder
sends this event to an application immediately after sending it a
Print Documents event or if the user chooses Restart or Shut Down

from the Finder’s Special menu

The Finder uses the required Apple events as part of the new mechanisms in system software
version 7.0 for launching and terminating applications. This new method of communicating
Finder information to your application replaces the mechanisms used in earlier versions of
system software.

Applications that do not support high-level events can still use the CountAppFiles, GetAppFiles,
and CerppFiles procedures (or the GetAppParms procedure) to get the Finder information. See
the Segment Loader chapter of Volume II for information on these routines. To make your
application 7.0-friendly and compatible with earlier versions of system software, it must support
both the old and new mechanisms.

Use the Gestalt function to determine whether the Apple Event Manager is present. If it is and
the isHighLevelEventAware flag is set in your application’s 'SIZE' resource, your applica-
tion receives the Finder information through the required Apple events.

If your application accepts high—level events, the Finder sends it an Open Application, Open
Documents, or Print Documents event immediately after launching your application. Upon
receiving any of these events. your application should perform the action requested by
the event.

Note: This section describes the required Apple events as they are sent by the
Finder. When sent by other applications or processes, these same Apple events—
which are among the core Apple events described in the Apple Event Registry—can
include optional parameters not listed here, To be 7.0—friendly, your application only
needs to handle the required parameters that are described in this section.

Open Application—perform tasks associated with opening an application :

Event class kCoreEventClass E

Event ID kAEOpenApplication 5:
Parameters None ;
Requested action Perform any tasksvsuch as opening an untitled document window— 3

that you would normally perform when a user opens your application. E

Using the Apple Event Manager 6-3]

|PR2017-01828

Ubisoft EX1002 Page 344

IPR2017-01828
Ubisoft EX1002 Page 345

Inside Macintosh, Volume V]

Open Documents—open the specified documents

Event class kCoreEventClass

Event ID kAEOpenDocuments

Required parameter
Keyword: keyDirectObject
Descriptor type: typeAEList
Data: A list of alias records for the documents to be opened

Requested action Open the documents specified in the keyDirectObject parameter.

; Print Documents—print the specified documents

Event class kCoreEventClass

Event ID kAEPri ntDocuments

Required parameter
Keyword: keyDirectObject
Descriptor type: typeAEList
Data: A list of alias records for the documents to be printed

Requested action Print the documents specified in the kcyDirectObject parameter without
opening windows for the documents.

Quit Application—perform tasks associated with quitting

Event class kCoreEventC lass

Event ID kA EQuitApplication

Parameters None l

Requested action Perform any tasks that your application would normally perform when
the user chooses Quit. Such tasks typically include asking the user if
he or she wants to save documents that have been changed. The
Finder sends this event to an application immediately after sending it a
Print Documents event or if the user chooses Restart or Shut Down

from the Finder’s Special menu.

Your application needs to recognize only two descriptor types to handle the required Apple
events: descriptor lists and alias records. The Open Documents event and Print Documents
event use descriptor lists to store a list of documents to open. Each document is specified as
an alias record in the descriptor list.

You can retrieve the data that specifies the document to open as an alias record, or you can
request that the Apple Event Manager coerce the alias record to a file system specification
(FSSpec) record. The file system specification record provides a standard method of

identifying files in version 7.0. See the File Manager chapter in this volume for a complete
description of how to specify files using file system specification records.

6-32 Using the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 345

IPR2017-01828
Ubisoft EX1002 Page 346

The Apple Event Manager

Handling the Open Application Event

When the user opens your application, the Finder uses the Process Manager to launch your
application. On startup, your application typically performs any needed initialization, and then
begins to process events. If your application supports high—level events, your application
receives the Open Application event.

To handle the Open Application event, your application should do just what the user expects
it to do when your application is opened. For example, your application might open a new
untitled window in response to an Open Application event.

Listing 6-5 shows a handler that processes the Open Application event. The Open Application
event does not have any required parameters. This handler first calls an application—defined
function called MyGotRequiredParams. This function checks to see if the Apple event con-
tains any required parameters. By definition, the Open Application event should not contain
any required parameters so, if the Apple event does contain any, the handler returns an error.
Otherwise the handler opens a new document window.

Listing 6-5. A handler for the Open Application event

 FURCTLON MyHandleOApp (theAppleEvent,rep1y: Appleivent;

handlerRefcon: Longlnt) : OSErr;
VAR

myfirr: OSEIr;
BZFIN

myErr := MyGotRequiredParums (LheApplCEvcnt);
IE myErr <> noErr THEQ

MylandLeCApp :7 myjrr
LSa

Bh‘GlN

:‘O \lew;

My{andleOApp :: noEr;;
ijxl);'pv .

Thc MyGotRequiredParams function checks that all required parameters have been extracted
from the Apple event. See Listing 6—11 in “Writing Apple Event Handlers” later in this chapter
for a description of the MyGotRequiredParams function.

Handling the Open Documents Event

To handle the Open Documents event. your application should open the documents specified
in the Apple event. The Open Documents event contains a list of documents to open in its
direct parameter. Your application extracts this information and then opens the specified
documents.

Listing 6-6 shows a handler for the Open Documents event, The handler illustrates how to
open the documents referred to in the direct parameter.

Using the Apple Event Manager 6-33

o

>'5
Ea

F.4m
3~

2_.
m
EIn!
NaH

|PR2017-01828

Ubisoft EX1002 Page 346

IPR2017-01828
Ubisoft EX1002 Page 347

Inside Macintosh, Volume VI

Listing 6-6. A handler for the Open Documents event
 FUNCTION MyHandlcODoc (thoAppioEVQnt,repry: AppieEvent;

handIerRefcon: LongInt) : OSErr;
VAR

myFSS: FSSpec;
docList: AEDescList;
myErr: OSErr;
index, itemsInList: hongInt;
ac:nalSize: Size;
keywd: AE<cyword;
re-urnedType: DescType;

BEGIN

iget :he direct parameter——a descriptor listeeand put it into docLiSC}
myErr : AEGetDaramDesc(theAppIeEven:, keyDirectObject, typeAELis:,

docList);
IF myErr <> nojrr THEN Bobrror<mybrr);
{C1ec< for missing required parameters}

 myFrr :: MVGotRoqnirodParams(LhoApoieEvenL)7
IF mvErr <> nodrr THdN {an error occurred}

BEGIN {do the necessary error handLing}
4yHandIeODoc :7 myErr;
Exit (MyiandleODoc);

313;

{count the numoer of descriptor records in the List}
myirr :: A:Countitems (dochist, itemsInList);
{now get each descrijtor record from the list, coorcc the returned }

Q de-a to an FSSpcc record, and open the associated tile}
FOR index :2 I TO itemsInList DO

BEGIN

myErr :7 AEGetNthPtrtdocList, index, typeFSS, keywd,
returnedType, @myFSS, Sizeof<myFss),
actualsize);

IF myirr <> noErr THfiN Doflrror(myHrr);
myfirr :: MyOpenFilet@myFSSi;
IF myirr <> no<rr THdN Doarror(myErr);

END,-
myErr :: AEDisposeDesc<docnist);
MyHandleODoc :: noErr;

END;

The handler in Listing 6—6 first uses the AEGetParamDesc function to get the direct parameter
(specified by the keyDirectObject keyword) out of the Apple event. The handler requests
that AEGetParamDesc return a descriptor list in the docList variable. The handler then
checks to make sure that it has retrieved all of the required parameters by calling the
MyGotRequiredParams function (see Listing 6—11 for a description of this routine).

Once the handler has retrieved the descriptor list from the Apple event, it uses AECountItems
to count the number of descriptors in the list. Using the returned number as an index, the
handler can get the data of each descriptor record in the list. This handler requests that the
AEGetNthPtr function coerce the data in the descriptor record to a file system specification
record. The handler can then use the file system specification record as a parameter to its
own routine for opening files.

For more information on the AEGetParamDesc function, see “Getting Data out of a Parameter”
later in this chapter. Also see “Getting Data out of a Descriptor List” for further information on
the AEGetNthPtr and AECountItems functions.

6-34 Using the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 347

IPR2017-01828
Ubisoft EX1002 Page 348

The Apple Event Manager

After extracting the file system specification record that describes the document to open, your
application can use this record to open the file. For example, in Listing 6—6, the code passes
the file system specification record to its routine for opening files, the MyOpenFile function.

The MyOpenFile function is designed so that it can be called both in response to the Open
Documents event and to events generated by the user. For example, when the user chooses
Open from the File menu, the code that handles the mouse-down event uses the StandardGetFile
procedure to let the user choose a file: it then calls MyOpenFile, passing the file system speci—
fication record returned by StandardGetFile. By isolating code that performs a requested action
from code that interacts with the user, you can easily adapt your application to handle Apple
events that request the same action

Note that your handler should use the AEDisposeDesc function to dispose of the descriptor
list when your handler no longer requires the data in it. Your handler should also return a
result code.

Handling the Print Documents Event

To handle the Print Documents event, your application should print the documents specified
in the Apple event. The Print Documents event contains a list of documents to print in its
direct parameter. Your application extracts this information and then prints the specified
documents. Your application should not open any windows for the documents. Also note
that your application should remain open after processing the Print Documents event; the
Finder sends your application a Quit Application event immediately after sending it a Print
Documents event.

Listing 6-7 shows a handler for the Print Documents event. This handler is similar to the
handler for the Open Documents event. The code illustrates how to print the documents
referred to in the direct parameter.

Listing 6-7. A handler for the Print Documents event

 FUNCTION MyHandlePDoc (theAppleEvent,rep1y: AppleElent;

handierRefcon: Longlnt) : OSErr;
VAR

myFSS: FSSpec;
docList: AEDescList;
myHrr: OSHTT;
index, iLCmS:nLiSc: LongInL;
actuaisize: Size;
keywd: AEKeyword;
returnedType: DescType;

BEG I N

{get ’he direc: parametereea descriptor list——and pat it into docList}
myErr :: AEGetParamDesc(theAppieEvent, keyDirectObjeCt, :ypeAEList,

dociist);
IF myErr <> nOErr “HEN DOErrortmyFrr};
{Checc ior missing required paranctcrs}
nyErr :: MyGotRequiredPardms(theAppieEvenL);
IF myErr <> noErr ”HEN {an error occurred}

BEGIN

{do the necessary error handling}
MyHandlePDoc :: myErr;
Exit(MyHandiePDoc);

PEN) ; (Continued)

Using the Apple Event Manager 6-35

9

>'5‘_U_
FD
R4,(D
=a
e_
a
=
ea:(t
‘1

|PR2017-01828

Ubisoft EX1002 Page 348

IPR2017-01828
Ubisoft EX1002 Page 349

hunk” Mrtt'iiirrrflr, Vm’mnc Vt
Listing b-?. A humllci' fur the Print Dummcnls ::I'cnt It'umtnuctli

Handling the Quit Application Event

Tu hundlc 1h:- (Juil Apptiuutiun In em. _‘_I"IJLII'it['l|'Jiit:£11ilJt'I Should Inks am}- aLcIinns that an:
IILIL'chI'y hcl'uru i1 i5 terminated {such tlfi Sawing any “pull dUL'LII'l'IL‘I'th]. Liming ti—H Shit-“'5
an umunplc wt :1 hundlcrt'ur thu Quil Application event.

The Finder nunds yuur :Ippliculiun :I Quit Application ct'cnl immcdigucly ul'tcr 2: Print Duuumcnti.
LT'L'CIIL TEJL' FilILiCl'ttit-ut} huntis yuur uppiicutiun :1 Quit Applicaitiun cvcul il'lhc usuruhnnscx
Itch-Inn car Shul Down Iran] the Finder's Spcciui mcnu.

Listing fin-H. A handler that till: Quil Appiicutiun L,‘\-'L:II|.

"'_.'i .'|'. |l'_.'._.:.':|--_=:_' :‘i'.- ::_— .-'.'.|-‘-|'_.! |._--_-:'I
t :I. ' I '_I | '

I --.i: .
I. _

I _ | -'-I

I I: I

"LE:
I7 I

_ I — . | I

III,

The handler in Lthing fi—H calla :Irmlher I‘IIIiclinn supplied by the application. III»:
M)"Prcput'c'I'uTL'I'nIiIatIlI: t'LIi'IL'IimI 'l'liih l'LIIiutioli aunts this documents; for any open wintlnwa
:llld I'L‘tIIrIIh tl Btmlcain II'EIluL‘ that ind iutlcx whethcr 1hr Quit rcqucsl was; L'ill'tL't‘lt'll by III: Inter.

6—36 Living my Empty Err-III .IW:III{I,I.:(’J"

|PR2017-01828

Ubisoft EX1002 Page 349

IPR2017-01828
Ubisoft EX1002 Page 350

The Apple Event Manager

This is another example of isolating code for interacting with the user from the code that
performs the requested action. Structuring your application in this way allows your applica-
tion to use the same routine when responding to a user event (such as choosing the Quit
command from the File menu) or to the corresponding Apple event. (For a description of the
MyGotRequiredParams function, see “Writing Apple Event Handlers” later in this chapter.)

Note that your handler must not call the ExitToShell procedure. In Listing 6—8, the application
calls the ExitToShell procedure only if the handler returns noErr as its function result.

Handling Apple Events Sent by the Edition Manager

If your application provides publish and subscribe capabilities. it should handle the Apple
events sent by the Edition Manager in addition to the required Apple events. Your application
should also handle the Create Publisher event. The Create Publisher event is described in the
next section.

The Edition Manager sends your application Apple events to communicate information about
the publishers and subscribers in your application’s documents. Specifically, the Edition
Manager uses Apple events to notify your application

I when the information in an edition is updated

I when your application needs to write the data from a publisher to an edition

I when your application should locate a particular publisher and scroll the document to
that location

The Apple events sent by the Edition Manager to your application are the Section Read event.
Section Write event, and Section Scroll event.

Section Read—read information into the specified section

Event class SectionEventMsgClass

Event ID SectionReadMsgID

Required parameter
Keyword: keyDirectObject
Descriptor type: typeSectionH
Data: A handle to the section record of the subscriber whose edition

contains updated information

Requested action Update the subscriber with the new information from the edition.

Section Write—write the specified section to an edition 3

Event class SectionEventMsgClass >

Event ID SectionWIiteMsgID 2%

Required parameter 51

Keyword: keyDirectObject a
Descriptor type: typeSectionH 3
Data: A handle to the section record of the publisher g

Requested action Write the publisher’s data to its edition. 0%q

Using the Apple Event Manager 6-37

|PR2017-01828

Ubisoft EX1002 Page 350

IPR2017-01828
Ubisoft EX1002 Page 351

ll

Inside Macintosh, Volume VI

Section Scroll—scroll the document to the specified section

Event class SectionEventMsgClass

Event ID SectionScrollMsgID

Required parameter
Keyword: keyDirectObject
Descriptor type: typeSectionH
Data: A handle to the section record of the publisher to scroll to

Requested action Scroll the document to the publisher identified by the specified
section record.

See the Edition Manager chapter in this volume for details on how your application should
respond to these events.

Handling the Create Publisher Event

If your application supports publish and subscribe capabilities, it should also handle the
Create Publisher event.

Create Publisher—create a publisher

Event class kAEMiscStdSuite

Event ID kAECreatePublisher

Required parameter None

Optional parameter
Keyword: keyDirectObject
Descriptor type: typeObjectSpeci fi er
Data: The part of the document to publish. If this parameter is omitted,

publish the current selection.

Optional parameter
Keyword: keyAEEditionFileLoc
Descriptor type: typeAlias
Data: An alias record that contains the location of the edition container to

create If this parameter is omitted. use the default edition container.

Requested action Create a publisher for the specified data using the specified location
for the edition container. If the data isn’t specified, publish the
current selection. If the location of the edition isn’t specified, use
the default location.

When your application receives the Create Publisher event, it should create a publisher by
writing the publisher’s data to an edition. The data of the publisher, and the location and
name of the edition. are defined by the Apple event. If the Create Publisher event includes a
keyDirectObject parameter, then your application should publish the data contained in the
parameter. If the keyDirectObject parameter is missing, then your application should publish
the current selection. If the document doesn’t have a current selection, your handler for the
event should return a nonzero result code.

6—38 Using the Apple Event Manager

|PR2017-01828

Ubisoft EX1002 Page 351

IPR2017-01828
Ubisoft EX1002 Page 352

IPR2017-01828
Ubisoft EX1002 Page 353

IPR2017-01828
Ubisoft EX1002 Page 354

IPR2017-01828
Ubisoft EX1002 Page 355

IPR2017-01828
Ubisoft EX1002 Page 356

IPR2017-01828
Ubisoft EX1002 Page 357

IPR2017-01828
Ubisoft EX1002 Page 358

IPR2017-01828
Ubisoft EX1002 Page 359

IPR2017-01828
Ubisoft EX1002 Page 360

IPR2017-01828
Ubisoft EX1002 Page 361

IPR2017-01828
Ubisoft EX1002 Page 362

IPR2017-01828
Ubisoft EX1002 Page 363

IPR2017-01828
Ubisoft EX1002 Page 364

IPR2017-01828
Ubisoft EX1002 Page 365

IPR2017-01828
Ubisoft EX1002 Page 366

IPR2017-01828
Ubisoft EX1002 Page 367

IPR2017-01828
Ubisoft EX1002 Page 368

IPR2017-01828
Ubisoft EX1002 Page 369

IPR2017-01828
Ubisoft EX1002 Page 370

IPR2017-01828
Ubisoft EX1002 Page 371

IPR2017-01828
Ubisoft EX1002 Page 372

IPR2017-01828
Ubisoft EX1002 Page 373

IPR2017-01828
Ubisoft EX1002 Page 374

IPR2017-01828
Ubisoft EX1002 Page 375

IPR2017-01828
Ubisoft EX1002 Page 376

IPR2017-01828
Ubisoft EX1002 Page 377

IPR2017-01828
Ubisoft EX1002 Page 378

IPR2017-01828
Ubisoft EX1002 Page 379

IPR2017-01828
Ubisoft EX1002 Page 380

IPR2017-01828
Ubisoft EX1002 Page 381

IPR2017-01828
Ubisoft EX1002 Page 382

IPR2017-01828
Ubisoft EX1002 Page 383

IPR2017-01828
Ubisoft EX1002 Page 384

IPR2017-01828
Ubisoft EX1002 Page 385

IPR2017-01828
Ubisoft EX1002 Page 386

IPR2017-01828
Ubisoft EX1002 Page 387

IPR2017-01828
Ubisoft EX1002 Page 388

IPR2017-01828
Ubisoft EX1002 Page 389

IPR2017-01828
Ubisoft EX1002 Page 390

IPR2017-01828
Ubisoft EX1002 Page 391

IPR2017-01828
Ubisoft EX1002 Page 392

IPR2017-01828
Ubisoft EX1002 Page 393

IPR2017-01828
Ubisoft EX1002 Page 394

IPR2017-01828
Ubisoft EX1002 Page 395

IPR2017-01828
Ubisoft EX1002 Page 396

IPR2017-01828
Ubisoft EX1002 Page 397

IPR2017-01828
Ubisoft EX1002 Page 398

IPR2017-01828
Ubisoft EX1002 Page 399

IPR2017-01828
Ubisoft EX1002 Page 400

IPR2017-01828
Ubisoft EX1002 Page 401

IPR2017-01828
Ubisoft EX1002 Page 402

IPR2017-01828
Ubisoft EX1002 Page 403

IPR2017-01828
Ubisoft EX1002 Page 404

IPR2017-01828
Ubisoft EX1002 Page 405

IPR2017-01828
Ubisoft EX1002 Page 406

IPR2017-01828
Ubisoft EX1002 Page 407

IPR2017-01828
Ubisoft EX1002 Page 408

IPR2017-01828
Ubisoft EX1002 Page 409

IPR2017-01828
Ubisoft EX1002 Page 410

IPR2017-01828
Ubisoft EX1002 Page 411

IPR2017-01828
Ubisoft EX1002 Page 412

IPR2017-01828
Ubisoft EX1002 Page 413

IPR2017-01828
Ubisoft EX1002 Page 414

IPR2017-01828
Ubisoft EX1002 Page 415

IPR2017-01828
Ubisoft EX1002 Page 416

IPR2017-01828
Ubisoft EX1002 Page 417

IPR2017-01828
Ubisoft EX1002 Page 418

IPR2017-01828
Ubisoft EX1002 Page 419

IPR2017-01828
Ubisoft EX1002 Page 420

IPR2017-01828
Ubisoft EX1002 Page 421

IPR2017-01828
Ubisoft EX1002 Page 422

IPR2017-01828
Ubisoft EX1002 Page 423

IPR2017-01828
Ubisoft EX1002 Page 424

IPR2017-01828
Ubisoft EX1002 Page 425

IPR2017-01828
Ubisoft EX1002 Page 426

IPR2017-01828
Ubisoft EX1002 Page 427

IPR2017-01828
Ubisoft EX1002 Page 428

IPR2017-01828
Ubisoft EX1002 Page 429

IPR2017-01828
Ubisoft EX1002 Page 430

IPR2017-01828
Ubisoft EX1002 Page 431

IPR2017-01828
Ubisoft EX1002 Page 432

IPR2017-01828
Ubisoft EX1002 Page 433

IPR2017-01828
Ubisoft EX1002 Page 434

IPR2017-01828
Ubisoft EX1002 Page 435

IPR2017-01828
Ubisoft EX1002 Page 436

IPR2017-01828
Ubisoft EX1002 Page 437

IPR2017-01828
Ubisoft EX1002 Page 438

IPR2017-01828
Ubisoft EX1002 Page 439

IPR2017-01828
Ubisoft EX1002 Page 440

IPR2017-01828
Ubisoft EX1002 Page 441

IPR2017-01828
Ubisoft EX1002 Page 442

IPR2017-01828
Ubisoft EX1002 Page 443

IPR2017-01828
Ubisoft EX1002 Page 444

IPR2017-01828
Ubisoft EX1002 Page 445

IPR2017-01828
Ubisoft EX1002 Page 446

IPR2017-01828
Ubisoft EX1002 Page 447

IPR2017-01828
Ubisoft EX1002 Page 448

IPR2017-01828
Ubisoft EX1002 Page 449

IPR2017-01828
Ubisoft EX1002 Page 450

IPR2017-01828
Ubisoft EX1002 Page 451

IPR2017-01828
Ubisoft EX1002 Page 452

IPR2017-01828
Ubisoft EX1002 Page 453

IPR2017-01828
Ubisoft EX1002 Page 454

IPR2017-01828
Ubisoft EX1002 Page 455

IPR2017-01828
Ubisoft EX1002 Page 456

IPR2017-01828
Ubisoft EX1002 Page 457

IPR2017-01828
Ubisoft EX1002 Page 458

IPR2017-01828
Ubisoft EX1002 Page 459

IPR2017-01828
Ubisoft EX1002 Page 460

IPR2017-01828
Ubisoft EX1002 Page 461

IPR2017-01828
Ubisoft EX1002 Page 462

IPR2017-01828
Ubisoft EX1002 Page 463

IPR2017-01828
Ubisoft EX1002 Page 464

IPR2017-01828
Ubisoft EX1002 Page 465

IPR2017-01828
Ubisoft EX1002 Page 466

IPR2017-01828
Ubisoft EX1002 Page 467

IPR2017-01828
Ubisoft EX1002 Page 468

IPR2017-01828
Ubisoft EX1002 Page 469

IPR2017-01828
Ubisoft EX1002 Page 470

IPR2017-01828
Ubisoft EX1002 Page 471

IPR2017-01828
Ubisoft EX1002 Page 472

IPR2017-01828
Ubisoft EX1002 Page 473

IPR2017-01828
Ubisoft EX1002 Page 474

IPR2017-01828
Ubisoft EX1002 Page 475

IPR2017-01828
Ubisoft EX1002 Page 476

IPR2017-01828
Ubisoft EX1002 Page 477

IPR2017-01828
Ubisoft EX1002 Page 478

IPR2017-01828
Ubisoft EX1002 Page 479

IPR2017-01828
Ubisoft EX1002 Page 480

IPR2017-01828
Ubisoft EX1002 Page 481

IPR2017-01828
Ubisoft EX1002 Page 482

IPR2017-01828
Ubisoft EX1002 Page 483

IPR2017-01828
Ubisoft EX1002 Page 484

IPR2017-01828
Ubisoft EX1002 Page 485

IPR2017-01828
Ubisoft EX1002 Page 486

IPR2017-01828
Ubisoft EX1002 Page 487

IPR2017-01828
Ubisoft EX1002 Page 488

IPR2017-01828
Ubisoft EX1002 Page 489

IPR2017-01828
Ubisoft EX1002 Page 490

IPR2017-01828
Ubisoft EX1002 Page 491

IPR2017-01828
Ubisoft EX1002 Page 492

IPR2017-01828
Ubisoft EX1002 Page 493

IPR2017-01828
Ubisoft EX1002 Page 494

IPR2017-01828
Ubisoft EX1002 Page 495

IPR2017-01828
Ubisoft EX1002 Page 496

IPR2017-01828
Ubisoft EX1002 Page 497

IPR2017-01828
Ubisoft EX1002 Page 498

IPR2017-01828
Ubisoft EX1002 Page 499

IPR2017-01828
Ubisoft EX1002 Page 500

IPR2017-01828
Ubisoft EX1002 Page 501

IPR2017-01828
Ubisoft EX1002 Page 502

IPR2017-01828
Ubisoft EX1002 Page 503

IPR2017-01828
Ubisoft EX1002 Page 504

IPR2017-01828
Ubisoft EX1002 Page 505

IPR2017-01828
Ubisoft EX1002 Page 506

IPR2017-01828
Ubisoft EX1002 Page 507

IPR2017-01828
Ubisoft EX1002 Page 508

IPR2017-01828
Ubisoft EX1002 Page 509

IPR2017-01828
Ubisoft EX1002 Page 510

IPR2017-01828
Ubisoft EX1002 Page 511

IPR2017-01828
Ubisoft EX1002 Page 512

IPR2017-01828
Ubisoft EX1002 Page 513

IPR2017-01828
Ubisoft EX1002 Page 514

IPR2017-01828
Ubisoft EX1002 Page 515

IPR2017-01828
Ubisoft EX1002 Page 516

IPR2017-01828
Ubisoft EX1002 Page 517

IPR2017-01828
Ubisoft EX1002 Page 518

IPR2017-01828
Ubisoft EX1002 Page 519

IPR2017-01828
Ubisoft EX1002 Page 520

IPR2017-01828
Ubisoft EX1002 Page 521

IPR2017-01828
Ubisoft EX1002 Page 522

IPR2017-01828
Ubisoft EX1002 Page 523

IPR2017-01828
Ubisoft EX1002 Page 524

IPR2017-01828
Ubisoft EX1002 Page 525

IPR2017-01828
Ubisoft EX1002 Page 526

IPR2017-01828
Ubisoft EX1002 Page 527

IPR2017-01828
Ubisoft EX1002 Page 528

IPR2017-01828
Ubisoft EX1002 Page 529

IPR2017-01828
Ubisoft EX1002 Page 530

IPR2017-01828
Ubisoft EX1002 Page 531

IPR2017-01828
Ubisoft EX1002 Page 532

IPR2017-01828
Ubisoft EX1002 Page 533

IPR2017-01828
Ubisoft EX1002 Page 534

IPR2017-01828
Ubisoft EX1002 Page 535

IPR2017-01828
Ubisoft EX1002 Page 536

IPR2017-01828
Ubisoft EX1002 Page 537

IPR2017-01828
Ubisoft EX1002 Page 538

IPR2017-01828
Ubisoft EX1002 Page 539

IPR2017-01828
Ubisoft EX1002 Page 540

IPR2017-01828
Ubisoft EX1002 Page 541

IPR2017-01828
Ubisoft EX1002 Page 542

IPR2017-01828
Ubisoft EX1002 Page 543

IPR2017-01828
Ubisoft EX1002 Page 544

IPR2017-01828
Ubisoft EX1002 Page 545

IPR2017-01828
Ubisoft EX1002 Page 546

IPR2017-01828
Ubisoft EX1002 Page 547

IPR2017-01828
Ubisoft EX1002 Page 548

IPR2017-01828
Ubisoft EX1002 Page 549

IPR2017-01828
Ubisoft EX1002 Page 550

IPR2017-01828
Ubisoft EX1002 Page 551

IPR2017-01828
Ubisoft EX1002 Page 552

IPR2017-01828
Ubisoft EX1002 Page 553

IPR2017-01828
Ubisoft EX1002 Page 554

IPR2017-01828
Ubisoft EX1002 Page 555

IPR2017-01828
Ubisoft EX1002 Page 556

IPR2017-01828
Ubisoft EX1002 Page 557

IPR2017-01828
Ubisoft EX1002 Page 558

IPR2017-01828
Ubisoft EX1002 Page 559

IPR2017-01828
Ubisoft EX1002 Page 560

IPR2017-01828
Ubisoft EX1002 Page 561

IPR2017-01828
Ubisoft EX1002 Page 562

IPR2017-01828
Ubisoft EX1002 Page 563

IPR2017-01828
Ubisoft EX1002 Page 564

IPR2017-01828
Ubisoft EX1002 Page 565

IPR2017-01828
Ubisoft EX1002 Page 566

IPR2017-01828
Ubisoft EX1002 Page 567

IPR2017-01828
Ubisoft EX1002 Page 568

IPR2017-01828
Ubisoft EX1002 Page 569

IPR2017-01828
Ubisoft EX1002 Page 570

IPR2017-01828
Ubisoft EX1002 Page 571

IPR2017-01828
Ubisoft EX1002 Page 572

IPR2017-01828
Ubisoft EX1002 Page 573

IPR2017-01828
Ubisoft EX1002 Page 574

IPR2017-01828
Ubisoft EX1002 Page 575

IPR2017-01828
Ubisoft EX1002 Page 576

IPR2017-01828
Ubisoft EX1002 Page 577

IPR2017-01828
Ubisoft EX1002 Page 578

IPR2017-01828
Ubisoft EX1002 Page 579

IPR2017-01828
Ubisoft EX1002 Page 580

IPR2017-01828
Ubisoft EX1002 Page 581

IPR2017-01828
Ubisoft EX1002 Page 582

IPR2017-01828
Ubisoft EX1002 Page 583

IPR2017-01828
Ubisoft EX1002 Page 584

IPR2017-01828
Ubisoft EX1002 Page 585

IPR2017-01828
Ubisoft EX1002 Page 586

IPR2017-01828
Ubisoft EX1002 Page 587

IPR2017-01828
Ubisoft EX1002 Page 588

IPR2017-01828
Ubisoft EX1002 Page 589

IPR2017-01828
Ubisoft EX1002 Page 590

IPR2017-01828
Ubisoft EX1002 Page 591

IPR2017-01828
Ubisoft EX1002 Page 592

IPR2017-01828
Ubisoft EX1002 Page 593

IPR2017-01828
Ubisoft EX1002 Page 594

IPR2017-01828
Ubisoft EX1002 Page 595

IPR2017-01828
Ubisoft EX1002 Page 596

IPR2017-01828
Ubisoft EX1002 Page 597

IPR2017-01828
Ubisoft EX1002 Page 598

IPR2017-01828
Ubisoft EX1002 Page 599

IPR2017-01828
Ubisoft EX1002 Page 600

IPR2017-01828
Ubisoft EX1002 Page 601

IPR2017-01828
Ubisoft EX1002 Page 602

IPR2017-01828
Ubisoft EX1002 Page 603

IPR2017-01828
Ubisoft EX1002 Page 604

IPR2017-01828
Ubisoft EX1002 Page 605

IPR2017-01828
Ubisoft EX1002 Page 606

IPR2017-01828
Ubisoft EX1002 Page 607

IPR2017-01828
Ubisoft EX1002 Page 608

IPR2017-01828
Ubisoft EX1002 Page 609

IPR2017-01828
Ubisoft EX1002 Page 610

IPR2017-01828
Ubisoft EX1002 Page 611

IPR2017-01828
Ubisoft EX1002 Page 612

IPR2017-01828
Ubisoft EX1002 Page 613

IPR2017-01828
Ubisoft EX1002 Page 614

IPR2017-01828
Ubisoft EX1002 Page 615

IPR2017-01828
Ubisoft EX1002 Page 616

IPR2017-01828
Ubisoft EX1002 Page 617

IPR2017-01828
Ubisoft EX1002 Page 618

IPR2017-01828
Ubisoft EX1002 Page 619

IPR2017-01828
Ubisoft EX1002 Page 620

IPR2017-01828
Ubisoft EX1002 Page 621

IPR2017-01828
Ubisoft EX1002 Page 622

IPR2017-01828
Ubisoft EX1002 Page 623

IPR2017-01828
Ubisoft EX1002 Page 624

IPR2017-01828
Ubisoft EX1002 Page 625

IPR2017-01828
Ubisoft EX1002 Page 626

IPR2017-01828
Ubisoft EX1002 Page 627

IPR2017-01828
Ubisoft EX1002 Page 628

IPR2017-01828
Ubisoft EX1002 Page 629

IPR2017-01828
Ubisoft EX1002 Page 630

IPR2017-01828
Ubisoft EX1002 Page 631

IPR2017-01828
Ubisoft EX1002 Page 632

IPR2017-01828
Ubisoft EX1002 Page 633

IPR2017-01828
Ubisoft EX1002 Page 634

IPR2017-01828
Ubisoft EX1002 Page 635

IPR2017-01828
Ubisoft EX1002 Page 636

IPR2017-01828
Ubisoft EX1002 Page 637

IPR2017-01828
Ubisoft EX1002 Page 638

IPR2017-01828
Ubisoft EX1002 Page 639

IPR2017-01828
Ubisoft EX1002 Page 640

IPR2017-01828
Ubisoft EX1002 Page 641

IPR2017-01828
Ubisoft EX1002 Page 642

IPR2017-01828
Ubisoft EX1002 Page 643

IPR2017-01828
Ubisoft EX1002 Page 644

IPR2017-01828
Ubisoft EX1002 Page 645

IPR2017-01828
Ubisoft EX1002 Page 646

IPR2017-01828
Ubisoft EX1002 Page 647

IPR2017-01828
Ubisoft EX1002 Page 648

IPR2017-01828
Ubisoft EX1002 Page 649

IPR2017-01828
Ubisoft EX1002 Page 650

IPR2017-01828
Ubisoft EX1002 Page 651

IPR2017-01828
Ubisoft EX1002 Page 652

IPR2017-01828
Ubisoft EX1002 Page 653

IPR2017-01828
Ubisoft EX1002 Page 654

IPR2017-01828
Ubisoft EX1002 Page 655

IPR2017-01828
Ubisoft EX1002 Page 656

IPR2017-01828
Ubisoft EX1002 Page 657

IPR2017-01828
Ubisoft EX1002 Page 658

IPR2017-01828
Ubisoft EX1002 Page 659

IPR2017-01828
Ubisoft EX1002 Page 660

IPR2017-01828
Ubisoft EX1002 Page 661

IPR2017-01828
Ubisoft EX1002 Page 662

IPR2017-01828
Ubisoft EX1002 Page 663

IPR2017-01828
Ubisoft EX1002 Page 664

IPR2017-01828
Ubisoft EX1002 Page 665

IPR2017-01828
Ubisoft EX1002 Page 666

IPR2017-01828
Ubisoft EX1002 Page 667

IPR2017-01828
Ubisoft EX1002 Page 668

IPR2017-01828
Ubisoft EX1002 Page 669

IPR2017-01828
Ubisoft EX1002 Page 670

IPR2017-01828
Ubisoft EX1002 Page 671

IPR2017-01828
Ubisoft EX1002 Page 672

IPR2017-01828
Ubisoft EX1002 Page 673

IPR2017-01828
Ubisoft EX1002 Page 674

IPR2017-01828
Ubisoft EX1002 Page 675

IPR2017-01828
Ubisoft EX1002 Page 676

IPR2017-01828
Ubisoft EX1002 Page 677

IPR2017-01828
Ubisoft EX1002 Page 678

IPR2017-01828
Ubisoft EX1002 Page 679

IPR2017-01828
Ubisoft EX1002 Page 680

IPR2017-01828
Ubisoft EX1002 Page 681

IPR2017-01828
Ubisoft EX1002 Page 682

IPR2017-01828
Ubisoft EX1002 Page 683

IPR2017-01828
Ubisoft EX1002 Page 684

IPR2017-01828
Ubisoft EX1002 Page 685

IPR2017-01828
Ubisoft EX1002 Page 686

IPR2017-01828
Ubisoft EX1002 Page 687

IPR2017-01828
Ubisoft EX1002 Page 688

IPR2017-01828
Ubisoft EX1002 Page 689

IPR2017-01828
Ubisoft EX1002 Page 690

IPR2017-01828
Ubisoft EX1002 Page 691

IPR2017-01828
Ubisoft EX1002 Page 692

IPR2017-01828
Ubisoft EX1002 Page 693

IPR2017-01828
Ubisoft EX1002 Page 694

IPR2017-01828
Ubisoft EX1002 Page 695

IPR2017-01828
Ubisoft EX1002 Page 696

IPR2017-01828
Ubisoft EX1002 Page 697

IPR2017-01828
Ubisoft EX1002 Page 698

IPR2017-01828
Ubisoft EX1002 Page 699

IPR2017-01828
Ubisoft EX1002 Page 700

IPR2017-01828
Ubisoft EX1002 Page 701

IPR2017-01828
Ubisoft EX1002 Page 702

IPR2017-01828
Ubisoft EX1002 Page 703

IPR2017-01828
Ubisoft EX1002 Page 704

IPR2017-01828
Ubisoft EX1002 Page 705

IPR2017-01828
Ubisoft EX1002 Page 706

IPR2017-01828
Ubisoft EX1002 Page 707

IPR2017-01828
Ubisoft EX1002 Page 708

IPR2017-01828
Ubisoft EX1002 Page 709

IPR2017-01828
Ubisoft EX1002 Page 710

IPR2017-01828
Ubisoft EX1002 Page 711

IPR2017-01828
Ubisoft EX1002 Page 712

IPR2017-01828
Ubisoft EX1002 Page 713

IPR2017-01828
Ubisoft EX1002 Page 714

IPR2017-01828
Ubisoft EX1002 Page 715

IPR2017-01828
Ubisoft EX1002 Page 716

IPR2017-01828
Ubisoft EX1002 Page 717

IPR2017-01828
Ubisoft EX1002 Page 718

IPR2017-01828
Ubisoft EX1002 Page 719

IPR2017-01828
Ubisoft EX1002 Page 720

IPR2017-01828
Ubisoft EX1002 Page 721

IPR2017-01828
Ubisoft EX1002 Page 722

IPR2017-01828
Ubisoft EX1002 Page 723

IPR2017-01828
Ubisoft EX1002 Page 724

IPR2017-01828
Ubisoft EX1002 Page 725

IPR2017-01828
Ubisoft EX1002 Page 726

IPR2017-01828
Ubisoft EX1002 Page 727

IPR2017-01828
Ubisoft EX1002 Page 728

IPR2017-01828
Ubisoft EX1002 Page 729

IPR2017-01828
Ubisoft EX1002 Page 730

IPR2017-01828
Ubisoft EX1002 Page 731

IPR2017-01828
Ubisoft EX1002 Page 732

IPR2017-01828
Ubisoft EX1002 Page 733

IPR2017-01828
Ubisoft EX1002 Page 734

IPR2017-01828
Ubisoft EX1002 Page 735

IPR2017-01828
Ubisoft EX1002 Page 736

IPR2017-01828
Ubisoft EX1002 Page 737

IPR2017-01828
Ubisoft EX1002 Page 738

IPR2017-01828
Ubisoft EX1002 Page 739

IPR2017-01828
Ubisoft EX1002 Page 740

IPR2017-01828
Ubisoft EX1002 Page 741

IPR2017-01828
Ubisoft EX1002 Page 742

IPR2017-01828
Ubisoft EX1002 Page 743

IPR2017-01828
Ubisoft EX1002 Page 744

IPR2017-01828
Ubisoft EX1002 Page 745

IPR2017-01828
Ubisoft EX1002 Page 746

IPR2017-01828
Ubisoft EX1002 Page 747

IPR2017-01828
Ubisoft EX1002 Page 748

IPR2017-01828
Ubisoft EX1002 Page 749

IPR2017-01828
Ubisoft EX1002 Page 750

IPR2017-01828
Ubisoft EX1002 Page 751

IPR2017-01828
Ubisoft EX1002 Page 752

IPR2017-01828
Ubisoft EX1002 Page 753

IPR2017-01828
Ubisoft EX1002 Page 754

IPR2017-01828
Ubisoft EX1002 Page 755

IPR2017-01828
Ubisoft EX1002 Page 756

IPR2017-01828
Ubisoft EX1002 Page 757

IPR2017-01828
Ubisoft EX1002 Page 758

IPR2017-01828
Ubisoft EX1002 Page 759

IPR2017-01828
Ubisoft EX1002 Page 760

IPR2017-01828
Ubisoft EX1002 Page 761

IPR2017-01828
Ubisoft EX1002 Page 762

IPR2017-01828
Ubisoft EX1002 Page 763

IPR2017-01828
Ubisoft EX1002 Page 764

IPR2017-01828
Ubisoft EX1002 Page 765

IPR2017-01828
Ubisoft EX1002 Page 766

IPR2017-01828
Ubisoft EX1002 Page 767

IPR2017-01828
Ubisoft EX1002 Page 768

IPR2017-01828
Ubisoft EX1002 Page 769

IPR2017-01828
Ubisoft EX1002 Page 770

IPR2017-01828
Ubisoft EX1002 Page 771

IPR2017-01828
Ubisoft EX1002 Page 772

IPR2017-01828
Ubisoft EX1002 Page 773

IPR2017-01828
Ubisoft EX1002 Page 774

IPR2017-01828
Ubisoft EX1002 Page 775

IPR2017-01828
Ubisoft EX1002 Page 776

IPR2017-01828
Ubisoft EX1002 Page 777

IPR2017-01828
Ubisoft EX1002 Page 778

IPR2017-01828
Ubisoft EX1002 Page 779

IPR2017-01828
Ubisoft EX1002 Page 780

IPR2017-01828
Ubisoft EX1002 Page 781

IPR2017-01828
Ubisoft EX1002 Page 782

IPR2017-01828
Ubisoft EX1002 Page 783

IPR2017-01828
Ubisoft EX1002 Page 784

IPR2017-01828
Ubisoft EX1002 Page 785

IPR2017-01828
Ubisoft EX1002 Page 786

IPR2017-01828
Ubisoft EX1002 Page 787

IPR2017-01828
Ubisoft EX1002 Page 788

IPR2017-01828
Ubisoft EX1002 Page 789

IPR2017-01828
Ubisoft EX1002 Page 790

IPR2017-01828
Ubisoft EX1002 Page 791

IPR2017-01828
Ubisoft EX1002 Page 792

IPR2017-01828
Ubisoft EX1002 Page 793

IPR2017-01828
Ubisoft EX1002 Page 794

IPR2017-01828
Ubisoft EX1002 Page 795

IPR2017-01828
Ubisoft EX1002 Page 796

IPR2017-01828
Ubisoft EX1002 Page 797

IPR2017-01828
Ubisoft EX1002 Page 798

IPR2017-01828
Ubisoft EX1002 Page 799

IPR2017-01828
Ubisoft EX1002 Page 800

IPR2017-01828
Ubisoft EX1002 Page 801

IPR2017-01828
Ubisoft EX1002 Page 802

IPR2017-01828
Ubisoft EX1002 Page 803

IPR2017-01828
Ubisoft EX1002 Page 804

IPR2017-01828
Ubisoft EX1002 Page 805

IPR2017-01828
Ubisoft EX1002 Page 806

IPR2017-01828
Ubisoft EX1002 Page 807

IPR2017-01828
Ubisoft EX1002 Page 808

IPR2017-01828
Ubisoft EX1002 Page 809

IPR2017-01828
Ubisoft EX1002 Page 810

IPR2017-01828
Ubisoft EX1002 Page 811

IPR2017-01828
Ubisoft EX1002 Page 812

IPR2017-01828
Ubisoft EX1002 Page 813

IPR2017-01828
Ubisoft EX1002 Page 814

IPR2017-01828
Ubisoft EX1002 Page 815

IPR2017-01828
Ubisoft EX1002 Page 816

IPR2017-01828
Ubisoft EX1002 Page 817

IPR2017-01828
Ubisoft EX1002 Page 818

IPR2017-01828
Ubisoft EX1002 Page 819

IPR2017-01828
Ubisoft EX1002 Page 820

IPR2017-01828
Ubisoft EX1002 Page 821

IPR2017-01828
Ubisoft EX1002 Page 822

IPR2017-01828
Ubisoft EX1002 Page 823

IPR2017-01828
Ubisoft EX1002 Page 824

IPR2017-01828
Ubisoft EX1002 Page 825

IPR2017-01828
Ubisoft EX1002 Page 826

IPR2017-01828
Ubisoft EX1002 Page 827

IPR2017-01828
Ubisoft EX1002 Page 828

IPR2017-01828
Ubisoft EX1002 Page 829

IPR2017-01828
Ubisoft EX1002 Page 830

IPR2017-01828
Ubisoft EX1002 Page 831

IPR2017-01828
Ubisoft EX1002 Page 832

IPR2017-01828
Ubisoft EX1002 Page 833

IPR2017-01828
Ubisoft EX1002 Page 834

IPR2017-01828
Ubisoft EX1002 Page 835

IPR2017-01828
Ubisoft EX1002 Page 836

IPR2017-01828
Ubisoft EX1002 Page 837

IPR2017-01828
Ubisoft EX1002 Page 838

IPR2017-01828
Ubisoft EX1002 Page 839

IPR2017-01828
Ubisoft EX1002 Page 840

IPR2017-01828
Ubisoft EX1002 Page 841

IPR2017-01828
Ubisoft EX1002 Page 842

IPR2017-01828
Ubisoft EX1002 Page 843

IPR2017-01828
Ubisoft EX1002 Page 844

IPR2017-01828
Ubisoft EX1002 Page 845

IPR2017-01828
Ubisoft EX1002 Page 846

IPR2017-01828
Ubisoft EX1002 Page 847

IPR2017-01828
Ubisoft EX1002 Page 848

IPR2017-01828
Ubisoft EX1002 Page 849

IPR2017-01828
Ubisoft EX1002 Page 850

IPR2017-01828
Ubisoft EX1002 Page 851

IPR2017-01828
Ubisoft EX1002 Page 852

IPR2017-01828
Ubisoft EX1002 Page 853

IPR2017-01828
Ubisoft EX1002 Page 854

IPR2017-01828
Ubisoft EX1002 Page 855

IPR2017-01828
Ubisoft EX1002 Page 856

IPR2017-01828
Ubisoft EX1002 Page 857

IPR2017-01828
Ubisoft EX1002 Page 858

IPR2017-01828
Ubisoft EX1002 Page 859

IPR2017-01828
Ubisoft EX1002 Page 860

IPR2017-01828
Ubisoft EX1002 Page 861

IPR2017-01828
Ubisoft EX1002 Page 862

IPR2017-01828
Ubisoft EX1002 Page 863

IPR2017-01828
Ubisoft EX1002 Page 864

IPR2017-01828
Ubisoft EX1002 Page 865

IPR2017-01828
Ubisoft EX1002 Page 866

IPR2017-01828
Ubisoft EX1002 Page 867

IPR2017-01828
Ubisoft EX1002 Page 868

IPR2017-01828
Ubisoft EX1002 Page 869

IPR2017-01828
Ubisoft EX1002 Page 870

IPR2017-01828
Ubisoft EX1002 Page 871

IPR2017-01828
Ubisoft EX1002 Page 872

IPR2017-01828
Ubisoft EX1002 Page 873

IPR2017-01828
Ubisoft EX1002 Page 874

IPR2017-01828
Ubisoft EX1002 Page 875

IPR2017-01828
Ubisoft EX1002 Page 876

IPR2017-01828
Ubisoft EX1002 Page 877

IPR2017-01828
Ubisoft EX1002 Page 878

IPR2017-01828
Ubisoft EX1002 Page 879

IPR2017-01828
Ubisoft EX1002 Page 880

IPR2017-01828
Ubisoft EX1002 Page 881

IPR2017-01828
Ubisoft EX1002 Page 882

IPR2017-01828
Ubisoft EX1002 Page 883

IPR2017-01828
Ubisoft EX1002 Page 884

IPR2017-01828
Ubisoft EX1002 Page 885

IPR2017-01828
Ubisoft EX1002 Page 886

IPR2017-01828
Ubisoft EX1002 Page 887

IPR2017-01828
Ubisoft EX1002 Page 888

IPR2017-01828
Ubisoft EX1002 Page 889

IPR2017-01828
Ubisoft EX1002 Page 890

IPR2017-01828
Ubisoft EX1002 Page 891

IPR2017-01828
Ubisoft EX1002 Page 892

IPR2017-01828
Ubisoft EX1002 Page 893

IPR2017-01828
Ubisoft EX1002 Page 894

IPR2017-01828
Ubisoft EX1002 Page 895

IPR2017-01828
Ubisoft EX1002 Page 896

IPR2017-01828
Ubisoft EX1002 Page 897

IPR2017-01828
Ubisoft EX1002 Page 898

IPR2017-01828
Ubisoft EX1002 Page 899

IPR2017-01828
Ubisoft EX1002 Page 900

IPR2017-01828
Ubisoft EX1002 Page 901

IPR2017-01828
Ubisoft EX1002 Page 902

IPR2017-01828
Ubisoft EX1002 Page 903

IPR2017-01828
Ubisoft EX1002 Page 904

IPR2017-01828
Ubisoft EX1002 Page 905

IPR2017-01828
Ubisoft EX1002 Page 906

IPR2017-01828
Ubisoft EX1002 Page 907

IPR2017-01828
Ubisoft EX1002 Page 908

IPR2017-01828
Ubisoft EX1002 Page 909

IPR2017-01828
Ubisoft EX1002 Page 910

IPR2017-01828
Ubisoft EX1002 Page 911

IPR2017-01828
Ubisoft EX1002 Page 912

IPR2017-01828
Ubisoft EX1002 Page 913

IPR2017-01828
Ubisoft EX1002 Page 914

IPR2017-01828
Ubisoft EX1002 Page 915

IPR2017-01828
Ubisoft EX1002 Page 916

IPR2017-01828
Ubisoft EX1002 Page 917

IPR2017-01828
Ubisoft EX1002 Page 918

IPR2017-01828
Ubisoft EX1002 Page 919

IPR2017-01828
Ubisoft EX1002 Page 920

IPR2017-01828
Ubisoft EX1002 Page 921

IPR2017-01828
Ubisoft EX1002 Page 922

IPR2017-01828
Ubisoft EX1002 Page 923

IPR2017-01828
Ubisoft EX1002 Page 924

IPR2017-01828
Ubisoft EX1002 Page 925

IPR2017-01828
Ubisoft EX1002 Page 926

IPR2017-01828
Ubisoft EX1002 Page 927

IPR2017-01828
Ubisoft EX1002 Page 928

IPR2017-01828
Ubisoft EX1002 Page 929

IPR2017-01828
Ubisoft EX1002 Page 930

IPR2017-01828
Ubisoft EX1002 Page 931

IPR2017-01828
Ubisoft EX1002 Page 932

IPR2017-01828
Ubisoft EX1002 Page 933

IPR2017-01828
Ubisoft EX1002 Page 934

IPR2017-01828
Ubisoft EX1002 Page 935

IPR2017-01828
Ubisoft EX1002 Page 936

IPR2017-01828
Ubisoft EX1002 Page 937

IPR2017-01828
Ubisoft EX1002 Page 938

IPR2017-01828
Ubisoft EX1002 Page 939

IPR2017-01828
Ubisoft EX1002 Page 940

IPR2017-01828
Ubisoft EX1002 Page 941

IPR2017-01828
Ubisoft EX1002 Page 942

IPR2017-01828
Ubisoft EX1002 Page 943

IPR2017-01828
Ubisoft EX1002 Page 944

IPR2017-01828
Ubisoft EX1002 Page 945

IPR2017-01828
Ubisoft EX1002 Page 946

IPR2017-01828
Ubisoft EX1002 Page 947

IPR2017-01828
Ubisoft EX1002 Page 948

IPR2017-01828
Ubisoft EX1002 Page 949

IPR2017-01828
Ubisoft EX1002 Page 950

IPR2017-01828
Ubisoft EX1002 Page 951

IPR2017-01828
Ubisoft EX1002 Page 952

IPR2017-01828
Ubisoft EX1002 Page 953

IPR2017-01828
Ubisoft EX1002 Page 954

IPR2017-01828
Ubisoft EX1002 Page 955

IPR2017-01828
Ubisoft EX1002 Page 956

IPR2017-01828
Ubisoft EX1002 Page 957

IPR2017-01828
Ubisoft EX1002 Page 958

IPR2017-01828
Ubisoft EX1002 Page 959

IPR2017-01828
Ubisoft EX1002 Page 960

IPR2017-01828
Ubisoft EX1002 Page 961

IPR2017-01828
Ubisoft EX1002 Page 962

IPR2017-01828
Ubisoft EX1002 Page 963

IPR2017-01828
Ubisoft EX1002 Page 964

IPR2017-01828
Ubisoft EX1002 Page 965

IPR2017-01828
Ubisoft EX1002 Page 966

IPR2017-01828
Ubisoft EX1002 Page 967

IPR2017-01828
Ubisoft EX1002 Page 968

IPR2017-01828
Ubisoft EX1002 Page 969

IPR2017-01828
Ubisoft EX1002 Page 970

IPR2017-01828
Ubisoft EX1002 Page 971

IPR2017-01828
Ubisoft EX1002 Page 972

IPR2017-01828
Ubisoft EX1002 Page 973

IPR2017-01828
Ubisoft EX1002 Page 974

IPR2017-01828
Ubisoft EX1002 Page 975

IPR2017-01828
Ubisoft EX1002 Page 976

IPR2017-01828
Ubisoft EX1002 Page 977

IPR2017-01828
Ubisoft EX1002 Page 978

IPR2017-01828
Ubisoft EX1002 Page 979

IPR2017-01828
Ubisoft EX1002 Page 980

IPR2017-01828
Ubisoft EX1002 Page 981

IPR2017-01828
Ubisoft EX1002 Page 982

IPR2017-01828
Ubisoft EX1002 Page 983

IPR2017-01828
Ubisoft EX1002 Page 984

IPR2017-01828
Ubisoft EX1002 Page 985

IPR2017-01828
Ubisoft EX1002 Page 986

IPR2017-01828
Ubisoft EX1002 Page 987

IPR2017-01828
Ubisoft EX1002 Page 988

IPR2017-01828
Ubisoft EX1002 Page 989

IPR2017-01828
Ubisoft EX1002 Page 990

IPR2017-01828
Ubisoft EX1002 Page 991

IPR2017-01828
Ubisoft EX1002 Page 992

IPR2017-01828
Ubisoft EX1002 Page 993

IPR2017-01828
Ubisoft EX1002 Page 994

IPR2017-01828
Ubisoft EX1002 Page 995

IPR2017-01828
Ubisoft EX1002 Page 996

IPR2017-01828
Ubisoft EX1002 Page 997

IPR2017-01828
Ubisoft EX1002 Page 998

IPR2017-01828
Ubisoft EX1002 Page 999

IPR2017-01828
Ubisoft EX1002 Page 1000

IPR2017-01828
Ubisoft EX1002 Page 1001

IPR2017-01828
Ubisoft EX1002 Page 1002

IPR2017-01828
Ubisoft EX1002 Page 1003

IPR2017-01828
Ubisoft EX1002 Page 1004

IPR2017-01828
Ubisoft EX1002 Page 1005

IPR2017-01828
Ubisoft EX1002 Page 1006

IPR2017-01828
Ubisoft EX1002 Page 1007

IPR2017-01828
Ubisoft EX1002 Page 1008

IPR2017-01828
Ubisoft EX1002 Page 1009

IPR2017-01828
Ubisoft EX1002 Page 1010

IPR2017-01828
Ubisoft EX1002 Page 1011

IPR2017-01828
Ubisoft EX1002 Page 1012

IPR2017-01828
Ubisoft EX1002 Page 1013

IPR2017-01828
Ubisoft EX1002 Page 1014

IPR2017-01828
Ubisoft EX1002 Page 1015

IPR2017-01828
Ubisoft EX1002 Page 1016

IPR2017-01828
Ubisoft EX1002 Page 1017

IPR2017-01828
Ubisoft EX1002 Page 1018

IPR2017-01828
Ubisoft EX1002 Page 1019

IPR2017-01828
Ubisoft EX1002 Page 1020

IPR2017-01828
Ubisoft EX1002 Page 1021

IPR2017-01828
Ubisoft EX1002 Page 1022

IPR2017-01828
Ubisoft EX1002 Page 1023

IPR2017-01828
Ubisoft EX1002 Page 1024

IPR2017-01828
Ubisoft EX1002 Page 1025

IPR2017-01828
Ubisoft EX1002 Page 1026

IPR2017-01828
Ubisoft EX1002 Page 1027

IPR2017-01828
Ubisoft EX1002 Page 1028

IPR2017-01828
Ubisoft EX1002 Page 1029

IPR2017-01828
Ubisoft EX1002 Page 1030

IPR2017-01828
Ubisoft EX1002 Page 1031

IPR2017-01828
Ubisoft EX1002 Page 1032

IPR2017-01828
Ubisoft EX1002 Page 1033

IPR2017-01828
Ubisoft EX1002 Page 1034

IPR2017-01828
Ubisoft EX1002 Page 1035

IPR2017-01828
Ubisoft EX1002 Page 1036

IPR2017-01828
Ubisoft EX1002 Page 1037

IPR2017-01828
Ubisoft EX1002 Page 1038

IPR2017-01828
Ubisoft EX1002 Page 1039

IPR2017-01828
Ubisoft EX1002 Page 1040

IPR2017-01828
Ubisoft EX1002 Page 1041

IPR2017-01828
Ubisoft EX1002 Page 1042

IPR2017-01828
Ubisoft EX1002 Page 1043

IPR2017-01828
Ubisoft EX1002 Page 1044

IPR2017-01828
Ubisoft EX1002 Page 1045

IPR2017-01828
Ubisoft EX1002 Page 1046

IPR2017-01828
Ubisoft EX1002 Page 1047

IPR2017-01828
Ubisoft EX1002 Page 1048

IPR2017-01828
Ubisoft EX1002 Page 1049

IPR2017-01828
Ubisoft EX1002 Page 1050

IPR2017-01828
Ubisoft EX1002 Page 1051

IPR2017-01828
Ubisoft EX1002 Page 1052

IPR2017-01828
Ubisoft EX1002 Page 1053

IPR2017-01828
Ubisoft EX1002 Page 1054

IPR2017-01828
Ubisoft EX1002 Page 1055

IPR2017-01828
Ubisoft EX1002 Page 1056

IPR2017-01828
Ubisoft EX1002 Page 1057

IPR2017-01828
Ubisoft EX1002 Page 1058

IPR2017-01828
Ubisoft EX1002 Page 1059

IPR2017-01828
Ubisoft EX1002 Page 1060

IPR2017-01828
Ubisoft EX1002 Page 1061

IPR2017-01828
Ubisoft EX1002 Page 1062

IPR2017-01828
Ubisoft EX1002 Page 1063

IPR2017-01828
Ubisoft EX1002 Page 1064

IPR2017-01828
Ubisoft EX1002 Page 1065

IPR2017-01828
Ubisoft EX1002 Page 1066

IPR2017-01828
Ubisoft EX1002 Page 1067

IPR2017-01828
Ubisoft EX1002 Page 1068

IPR2017-01828
Ubisoft EX1002 Page 1069

IPR2017-01828
Ubisoft EX1002 Page 1070

IPR2017-01828
Ubisoft EX1002 Page 1071

IPR2017-01828
Ubisoft EX1002 Page 1072

IPR2017-01828
Ubisoft EX1002 Page 1073

IPR2017-01828
Ubisoft EX1002 Page 1074

IPR2017-01828
Ubisoft EX1002 Page 1075

IPR2017-01828
Ubisoft EX1002 Page 1076

IPR2017-01828
Ubisoft EX1002 Page 1077

IPR2017-01828
Ubisoft EX1002 Page 1078

IPR2017-01828
Ubisoft EX1002 Page 1079

IPR2017-01828
Ubisoft EX1002 Page 1080

IPR2017-01828
Ubisoft EX1002 Page 1081

IPR2017-01828
Ubisoft EX1002 Page 1082

IPR2017-01828
Ubisoft EX1002 Page 1083

IPR2017-01828
Ubisoft EX1002 Page 1084

IPR2017-01828
Ubisoft EX1002 Page 1085

IPR2017-01828
Ubisoft EX1002 Page 1086

IPR2017-01828
Ubisoft EX1002 Page 1087

IPR2017-01828
Ubisoft EX1002 Page 1088

IPR2017-01828
Ubisoft EX1002 Page 1089

IPR2017-01828
Ubisoft EX1002 Page 1090

IPR2017-01828
Ubisoft EX1002 Page 1091

IPR2017-01828
Ubisoft EX1002 Page 1092

IPR2017-01828
Ubisoft EX1002 Page 1093

IPR2017-01828
Ubisoft EX1002 Page 1094

IPR2017-01828
Ubisoft EX1002 Page 1095

IPR2017-01828
Ubisoft EX1002 Page 1096

IPR2017-01828
Ubisoft EX1002 Page 1097

IPR2017-01828
Ubisoft EX1002 Page 1098

IPR2017-01828
Ubisoft EX1002 Page 1099

IPR2017-01828
Ubisoft EX1002 Page 1100

IPR2017-01828
Ubisoft EX1002 Page 1101

IPR2017-01828
Ubisoft EX1002 Page 1102

IPR2017-01828
Ubisoft EX1002 Page 1103

IPR2017-01828
Ubisoft EX1002 Page 1104

IPR2017-01828
Ubisoft EX1002 Page 1105

IPR2017-01828
Ubisoft EX1002 Page 1106

IPR2017-01828
Ubisoft EX1002 Page 1107

IPR2017-01828
Ubisoft EX1002 Page 1108

IPR2017-01828
Ubisoft EX1002 Page 1109

IPR2017-01828
Ubisoft EX1002 Page 1110

IPR2017-01828
Ubisoft EX1002 Page 1111

IPR2017-01828
Ubisoft EX1002 Page 1112

IPR2017-01828
Ubisoft EX1002 Page 1113

IPR2017-01828
Ubisoft EX1002 Page 1114

IPR2017-01828
Ubisoft EX1002 Page 1115

IPR2017-01828
Ubisoft EX1002 Page 1116

IPR2017-01828
Ubisoft EX1002 Page 1117

IPR2017-01828
Ubisoft EX1002 Page 1118

IPR2017-01828
Ubisoft EX1002 Page 1119

IPR2017-01828
Ubisoft EX1002 Page 1120

IPR2017-01828
Ubisoft EX1002 Page 1121

IPR2017-01828
Ubisoft EX1002 Page 1122

IPR2017-01828
Ubisoft EX1002 Page 1123

IPR2017-01828
Ubisoft EX1002 Page 1124

IPR2017-01828
Ubisoft EX1002 Page 1125

IPR2017-01828
Ubisoft EX1002 Page 1126

IPR2017-01828
Ubisoft EX1002 Page 1127

IPR2017-01828
Ubisoft EX1002 Page 1128

IPR2017-01828
Ubisoft EX1002 Page 1129

IPR2017-01828
Ubisoft EX1002 Page 1130

IPR2017-01828
Ubisoft EX1002 Page 1131

IPR2017-01828
Ubisoft EX1002 Page 1132

IPR2017-01828
Ubisoft EX1002 Page 1133

IPR2017-01828
Ubisoft EX1002 Page 1134

IPR2017-01828
Ubisoft EX1002 Page 1135

IPR2017-01828
Ubisoft EX1002 Page 1136

IPR2017-01828
Ubisoft EX1002 Page 1137

IPR2017-01828
Ubisoft EX1002 Page 1138

IPR2017-01828
Ubisoft EX1002 Page 1139

IPR2017-01828
Ubisoft EX1002 Page 1140

IPR2017-01828
Ubisoft EX1002 Page 1141

IPR2017-01828
Ubisoft EX1002 Page 1142

IPR2017-01828
Ubisoft EX1002 Page 1143

IPR2017-01828
Ubisoft EX1002 Page 1144

IPR2017-01828
Ubisoft EX1002 Page 1145

IPR2017-01828
Ubisoft EX1002 Page 1146

IPR2017-01828
Ubisoft EX1002 Page 1147

IPR2017-01828
Ubisoft EX1002 Page 1148

IPR2017-01828
Ubisoft EX1002 Page 1149

IPR2017-01828
Ubisoft EX1002 Page 1150

IPR2017-01828
Ubisoft EX1002 Page 1151

IPR2017-01828
Ubisoft EX1002 Page 1152

IPR2017-01828
Ubisoft EX1002 Page 1153

IPR2017-01828
Ubisoft EX1002 Page 1154

IPR2017-01828
Ubisoft EX1002 Page 1155

IPR2017-01828
Ubisoft EX1002 Page 1156

IPR2017-01828
Ubisoft EX1002 Page 1157

IPR2017-01828
Ubisoft EX1002 Page 1158

IPR2017-01828
Ubisoft EX1002 Page 1159

IPR2017-01828
Ubisoft EX1002 Page 1160

IPR2017-01828
Ubisoft EX1002 Page 1161

IPR2017-01828
Ubisoft EX1002 Page 1162

IPR2017-01828
Ubisoft EX1002 Page 1163

IPR2017-01828
Ubisoft EX1002 Page 1164

IPR2017-01828
Ubisoft EX1002 Page 1165

IPR2017-01828
Ubisoft EX1002 Page 1166

IPR2017-01828
Ubisoft EX1002 Page 1167

IPR2017-01828
Ubisoft EX1002 Page 1168

IPR2017-01828
Ubisoft EX1002 Page 1169

IPR2017-01828
Ubisoft EX1002 Page 1170

IPR2017-01828
Ubisoft EX1002 Page 1171

IPR2017-01828
Ubisoft EX1002 Page 1172

IPR2017-01828
Ubisoft EX1002 Page 1173

IPR2017-01828
Ubisoft EX1002 Page 1174

IPR2017-01828
Ubisoft EX1002 Page 1175

IPR2017-01828
Ubisoft EX1002 Page 1176

IPR2017-01828
Ubisoft EX1002 Page 1177

IPR2017-01828
Ubisoft EX1002 Page 1178

IPR2017-01828
Ubisoft EX1002 Page 1179

IPR2017-01828
Ubisoft EX1002 Page 1180

IPR2017-01828
Ubisoft EX1002 Page 1181

IPR2017-01828
Ubisoft EX1002 Page 1182

IPR2017-01828
Ubisoft EX1002 Page 1183

IPR2017-01828
Ubisoft EX1002 Page 1184

IPR2017-01828
Ubisoft EX1002 Page 1185

IPR2017-01828
Ubisoft EX1002 Page 1186

IPR2017-01828
Ubisoft EX1002 Page 1187

IPR2017-01828
Ubisoft EX1002 Page 1188

IPR2017-01828
Ubisoft EX1002 Page 1189

IPR2017-01828
Ubisoft EX1002 Page 1190

IPR2017-01828
Ubisoft EX1002 Page 1191

IPR2017-01828
Ubisoft EX1002 Page 1192

IPR2017-01828
Ubisoft EX1002 Page 1193

IPR2017-01828
Ubisoft EX1002 Page 1194

IPR2017-01828
Ubisoft EX1002 Page 1195

IPR2017-01828
Ubisoft EX1002 Page 1196

IPR2017-01828
Ubisoft EX1002 Page 1197

IPR2017-01828
Ubisoft EX1002 Page 1198

IPR2017-01828
Ubisoft EX1002 Page 1199

IPR2017-01828
Ubisoft EX1002 Page 1200

IPR2017-01828
Ubisoft EX1002 Page 1201

IPR2017-01828
Ubisoft EX1002 Page 1202

IPR2017-01828
Ubisoft EX1002 Page 1203

IPR2017-01828
Ubisoft EX1002 Page 1204

IPR2017-01828
Ubisoft EX1002 Page 1205

IPR2017-01828
Ubisoft EX1002 Page 1206

IPR2017-01828
Ubisoft EX1002 Page 1207

IPR2017-01828
Ubisoft EX1002 Page 1208

IPR2017-01828
Ubisoft EX1002 Page 1209

IPR2017-01828
Ubisoft EX1002 Page 1210

IPR2017-01828
Ubisoft EX1002 Page 1211

IPR2017-01828
Ubisoft EX1002 Page 1212

IPR2017-01828
Ubisoft EX1002 Page 1213

IPR2017-01828
Ubisoft EX1002 Page 1214

IPR2017-01828
Ubisoft EX1002 Page 1215

IPR2017-01828
Ubisoft EX1002 Page 1216

IPR2017-01828
Ubisoft EX1002 Page 1217

IPR2017-01828
Ubisoft EX1002 Page 1218

IPR2017-01828
Ubisoft EX1002 Page 1219

IPR2017-01828
Ubisoft EX1002 Page 1220

IPR2017-01828
Ubisoft EX1002 Page 1221

IPR2017-01828
Ubisoft EX1002 Page 1222

IPR2017-01828
Ubisoft EX1002 Page 1223

IPR2017-01828
Ubisoft EX1002 Page 1224

IPR2017-01828
Ubisoft EX1002 Page 1225

IPR2017-01828
Ubisoft EX1002 Page 1226

IPR2017-01828
Ubisoft EX1002 Page 1227

IPR2017-01828
Ubisoft EX1002 Page 1228

IPR2017-01828
Ubisoft EX1002 Page 1229

IPR2017-01828
Ubisoft EX1002 Page 1230

IPR2017-01828
Ubisoft EX1002 Page 1231

IPR2017-01828
Ubisoft EX1002 Page 1232

IPR2017-01828
Ubisoft EX1002 Page 1233

IPR2017-01828
Ubisoft EX1002 Page 1234

IPR2017-01828
Ubisoft EX1002 Page 1235

IPR2017-01828
Ubisoft EX1002 Page 1236

IPR2017-01828
Ubisoft EX1002 Page 1237

IPR2017-01828
Ubisoft EX1002 Page 1238

IPR2017-01828
Ubisoft EX1002 Page 1239

IPR2017-01828
Ubisoft EX1002 Page 1240

IPR2017-01828
Ubisoft EX1002 Page 1241

IPR2017-01828
Ubisoft EX1002 Page 1242

IPR2017-01828
Ubisoft EX1002 Page 1243

IPR2017-01828
Ubisoft EX1002 Page 1244

IPR2017-01828
Ubisoft EX1002 Page 1245

IPR2017-01828
Ubisoft EX1002 Page 1246

IPR2017-01828
Ubisoft EX1002 Page 1247

IPR2017-01828
Ubisoft EX1002 Page 1248

IPR2017-01828
Ubisoft EX1002 Page 1249

IPR2017-01828
Ubisoft EX1002 Page 1250

IPR2017-01828
Ubisoft EX1002 Page 1251

IPR2017-01828
Ubisoft EX1002 Page 1252

IPR2017-01828
Ubisoft EX1002 Page 1253

IPR2017-01828
Ubisoft EX1002 Page 1254

IPR2017-01828
Ubisoft EX1002 Page 1255

IPR2017-01828
Ubisoft EX1002 Page 1256

IPR2017-01828
Ubisoft EX1002 Page 1257

IPR2017-01828
Ubisoft EX1002 Page 1258

IPR2017-01828
Ubisoft EX1002 Page 1259

IPR2017-01828
Ubisoft EX1002 Page 1260

IPR2017-01828
Ubisoft EX1002 Page 1261

IPR2017-01828
Ubisoft EX1002 Page 1262

IPR2017-01828
Ubisoft EX1002 Page 1263

IPR2017-01828
Ubisoft EX1002 Page 1264

IPR2017-01828
Ubisoft EX1002 Page 1265

IPR2017-01828
Ubisoft EX1002 Page 1266

IPR2017-01828
Ubisoft EX1002 Page 1267

IPR2017-01828
Ubisoft EX1002 Page 1268

IPR2017-01828
Ubisoft EX1002 Page 1269

IPR2017-01828
Ubisoft EX1002 Page 1270

IPR2017-01828
Ubisoft EX1002 Page 1271

IPR2017-01828
Ubisoft EX1002 Page 1272

IPR2017-01828
Ubisoft EX1002 Page 1273

IPR2017-01828
Ubisoft EX1002 Page 1274

IPR2017-01828
Ubisoft EX1002 Page 1275

IPR2017-01828
Ubisoft EX1002 Page 1276

IPR2017-01828
Ubisoft EX1002 Page 1277

IPR2017-01828
Ubisoft EX1002 Page 1278

IPR2017-01828
Ubisoft EX1002 Page 1279

IPR2017-01828
Ubisoft EX1002 Page 1280

IPR2017-01828
Ubisoft EX1002 Page 1281

IPR2017-01828
Ubisoft EX1002 Page 1282

IPR2017-01828
Ubisoft EX1002 Page 1283

IPR2017-01828
Ubisoft EX1002 Page 1284

IPR2017-01828
Ubisoft EX1002 Page 1285

IPR2017-01828
Ubisoft EX1002 Page 1286

IPR2017-01828
Ubisoft EX1002 Page 1287

IPR2017-01828
Ubisoft EX1002 Page 1288

IPR2017-01828
Ubisoft EX1002 Page 1289

IPR2017-01828
Ubisoft EX1002 Page 1290

IPR2017-01828
Ubisoft EX1002 Page 1291

IPR2017-01828
Ubisoft EX1002 Page 1292

IPR2017-01828
Ubisoft EX1002 Page 1293

IPR2017-01828
Ubisoft EX1002 Page 1294

IPR2017-01828
Ubisoft EX1002 Page 1295

IPR2017-01828
Ubisoft EX1002 Page 1296

IPR2017-01828
Ubisoft EX1002 Page 1297

IPR2017-01828
Ubisoft EX1002 Page 1298

IPR2017-01828
Ubisoft EX1002 Page 1299

IPR2017-01828
Ubisoft EX1002 Page 1300

IPR2017-01828
Ubisoft EX1002 Page 1301

IPR2017-01828
Ubisoft EX1002 Page 1302

IPR2017-01828
Ubisoft EX1002 Page 1303

IPR2017-01828
Ubisoft EX1002 Page 1304

IPR2017-01828
Ubisoft EX1002 Page 1305

IPR2017-01828
Ubisoft EX1002 Page 1306

IPR2017-01828
Ubisoft EX1002 Page 1307

IPR2017-01828
Ubisoft EX1002 Page 1308

IPR2017-01828
Ubisoft EX1002 Page 1309

IPR2017-01828
Ubisoft EX1002 Page 1310

IPR2017-01828
Ubisoft EX1002 Page 1311

IPR2017-01828
Ubisoft EX1002 Page 1312

IPR2017-01828
Ubisoft EX1002 Page 1313

IPR2017-01828
Ubisoft EX1002 Page 1314

IPR2017-01828
Ubisoft EX1002 Page 1315

IPR2017-01828
Ubisoft EX1002 Page 1316

IPR2017-01828
Ubisoft EX1002 Page 1317

IPR2017-01828
Ubisoft EX1002 Page 1318

IPR2017-01828
Ubisoft EX1002 Page 1319

IPR2017-01828
Ubisoft EX1002 Page 1320

IPR2017-01828
Ubisoft EX1002 Page 1321

IPR2017-01828
Ubisoft EX1002 Page 1322

IPR2017-01828
Ubisoft EX1002 Page 1323

IPR2017-01828
Ubisoft EX1002 Page 1324

IPR2017-01828
Ubisoft EX1002 Page 1325

IPR2017-01828
Ubisoft EX1002 Page 1326

IPR2017-01828
Ubisoft EX1002 Page 1327

IPR2017-01828
Ubisoft EX1002 Page 1328

IPR2017-01828
Ubisoft EX1002 Page 1329

IPR2017-01828
Ubisoft EX1002 Page 1330

IPR2017-01828
Ubisoft EX1002 Page 1331

IPR2017-01828
Ubisoft EX1002 Page 1332

IPR2017-01828
Ubisoft EX1002 Page 1333

IPR2017-01828
Ubisoft EX1002 Page 1334

IPR2017-01828
Ubisoft EX1002 Page 1335

IPR2017-01828
Ubisoft EX1002 Page 1336

IPR2017-01828
Ubisoft EX1002 Page 1337

IPR2017-01828
Ubisoft EX1002 Page 1338

IPR2017-01828
Ubisoft EX1002 Page 1339

IPR2017-01828
Ubisoft EX1002 Page 1340

IPR2017-01828
Ubisoft EX1002 Page 1341

IPR2017-01828
Ubisoft EX1002 Page 1342

IPR2017-01828
Ubisoft EX1002 Page 1343

IPR2017-01828
Ubisoft EX1002 Page 1344

IPR2017-01828
Ubisoft EX1002 Page 1345

IPR2017-01828
Ubisoft EX1002 Page 1346

IPR2017-01828
Ubisoft EX1002 Page 1347

IPR2017-01828
Ubisoft EX1002 Page 1348

IPR2017-01828
Ubisoft EX1002 Page 1349

IPR2017-01828
Ubisoft EX1002 Page 1350

IPR2017-01828
Ubisoft EX1002 Page 1351

IPR2017-01828
Ubisoft EX1002 Page 1352

IPR2017-01828
Ubisoft EX1002 Page 1353

IPR2017-01828
Ubisoft EX1002 Page 1354

IPR2017-01828
Ubisoft EX1002 Page 1355

IPR2017-01828
Ubisoft EX1002 Page 1356

IPR2017-01828
Ubisoft EX1002 Page 1357

IPR2017-01828
Ubisoft EX1002 Page 1358

IPR2017-01828
Ubisoft EX1002 Page 1359

IPR2017-01828
Ubisoft EX1002 Page 1360

IPR2017-01828
Ubisoft EX1002 Page 1361

IPR2017-01828
Ubisoft EX1002 Page 1362

IPR2017-01828
Ubisoft EX1002 Page 1363

IPR2017-01828
Ubisoft EX1002 Page 1364

IPR2017-01828
Ubisoft EX1002 Page 1365

IPR2017-01828
Ubisoft EX1002 Page 1366

IPR2017-01828
Ubisoft EX1002 Page 1367

IPR2017-01828
Ubisoft EX1002 Page 1368

IPR2017-01828
Ubisoft EX1002 Page 1369

IPR2017-01828
Ubisoft EX1002 Page 1370

IPR2017-01828
Ubisoft EX1002 Page 1371

IPR2017-01828
Ubisoft EX1002 Page 1372

IPR2017-01828
Ubisoft EX1002 Page 1373

IPR2017-01828
Ubisoft EX1002 Page 1374

IPR2017-01828
Ubisoft EX1002 Page 1375

IPR2017-01828
Ubisoft EX1002 Page 1376

IPR2017-01828
Ubisoft EX1002 Page 1377

IPR2017-01828
Ubisoft EX1002 Page 1378

IPR2017-01828
Ubisoft EX1002 Page 1379

IPR2017-01828
Ubisoft EX1002 Page 1380

IPR2017-01828
Ubisoft EX1002 Page 1381

IPR2017-01828
Ubisoft EX1002 Page 1382

IPR2017-01828
Ubisoft EX1002 Page 1383

IPR2017-01828
Ubisoft EX1002 Page 1384

IPR2017-01828
Ubisoft EX1002 Page 1385

IPR2017-01828
Ubisoft EX1002 Page 1386

IPR2017-01828
Ubisoft EX1002 Page 1387

IPR2017-01828
Ubisoft EX1002 Page 1388

IPR2017-01828
Ubisoft EX1002 Page 1389

IPR2017-01828
Ubisoft EX1002 Page 1390

IPR2017-01828
Ubisoft EX1002 Page 1391

IPR2017-01828
Ubisoft EX1002 Page 1392

IPR2017-01828
Ubisoft EX1002 Page 1393

IPR2017-01828
Ubisoft EX1002 Page 1394

IPR2017-01828
Ubisoft EX1002 Page 1395

IPR2017-01828
Ubisoft EX1002 Page 1396

IPR2017-01828
Ubisoft EX1002 Page 1397

IPR2017-01828
Ubisoft EX1002 Page 1398

IPR2017-01828
Ubisoft EX1002 Page 1399

IPR2017-01828
Ubisoft EX1002 Page 1400

IPR2017-01828
Ubisoft EX1002 Page 1401

IPR2017-01828
Ubisoft EX1002 Page 1402

IPR2017-01828
Ubisoft EX1002 Page 1403

IPR2017-01828
Ubisoft EX1002 Page 1404

IPR2017-01828
Ubisoft EX1002 Page 1405

IPR2017-01828
Ubisoft EX1002 Page 1406

IPR2017-01828
Ubisoft EX1002 Page 1407

IPR2017-01828
Ubisoft EX1002 Page 1408

IPR2017-01828
Ubisoft EX1002 Page 1409

IPR2017-01828
Ubisoft EX1002 Page 1410

IPR2017-01828
Ubisoft EX1002 Page 1411

IPR2017-01828
Ubisoft EX1002 Page 1412

IPR2017-01828
Ubisoft EX1002 Page 1413

IPR2017-01828
Ubisoft EX1002 Page 1414

IPR2017-01828
Ubisoft EX1002 Page 1415

IPR2017-01828
Ubisoft EX1002 Page 1416

IPR2017-01828
Ubisoft EX1002 Page 1417

IPR2017-01828
Ubisoft EX1002 Page 1418

IPR2017-01828
Ubisoft EX1002 Page 1419

IPR2017-01828
Ubisoft EX1002 Page 1420

IPR2017-01828
Ubisoft EX1002 Page 1421

IPR2017-01828
Ubisoft EX1002 Page 1422

IPR2017-01828
Ubisoft EX1002 Page 1423

IPR2017-01828
Ubisoft EX1002 Page 1424

IPR2017-01828
Ubisoft EX1002 Page 1425

IPR2017-01828
Ubisoft EX1002 Page 1426

IPR2017-01828
Ubisoft EX1002 Page 1427

IPR2017-01828
Ubisoft EX1002 Page 1428

IPR2017-01828
Ubisoft EX1002 Page 1429

IPR2017-01828
Ubisoft EX1002 Page 1430

IPR2017-01828
Ubisoft EX1002 Page 1431

IPR2017-01828
Ubisoft EX1002 Page 1432

IPR2017-01828
Ubisoft EX1002 Page 1433

IPR2017-01828
Ubisoft EX1002 Page 1434

IPR2017-01828
Ubisoft EX1002 Page 1435

IPR2017-01828
Ubisoft EX1002 Page 1436

IPR2017-01828
Ubisoft EX1002 Page 1437

IPR2017-01828
Ubisoft EX1002 Page 1438

IPR2017-01828
Ubisoft EX1002 Page 1439

IPR2017-01828
Ubisoft EX1002 Page 1440

IPR2017-01828
Ubisoft EX1002 Page 1441

IPR2017-01828
Ubisoft EX1002 Page 1442

IPR2017-01828
Ubisoft EX1002 Page 1443

IPR2017-01828
Ubisoft EX1002 Page 1444

IPR2017-01828
Ubisoft EX1002 Page 1445

IPR2017-01828
Ubisoft EX1002 Page 1446

IPR2017-01828
Ubisoft EX1002 Page 1447

IPR2017-01828
Ubisoft EX1002 Page 1448

IPR2017-01828
Ubisoft EX1002 Page 1449

IPR2017-01828
Ubisoft EX1002 Page 1450

IPR2017-01828
Ubisoft EX1002 Page 1451

IPR2017-01828
Ubisoft EX1002 Page 1452

IPR2017-01828
Ubisoft EX1002 Page 1453

IPR2017-01828
Ubisoft EX1002 Page 1454

IPR2017-01828
Ubisoft EX1002 Page 1455

IPR2017-01828
Ubisoft EX1002 Page 1456

IPR2017-01828
Ubisoft EX1002 Page 1457

IPR2017-01828
Ubisoft EX1002 Page 1458

IPR2017-01828
Ubisoft EX1002 Page 1459

IPR2017-01828
Ubisoft EX1002 Page 1460

IPR2017-01828
Ubisoft EX1002 Page 1461

IPR2017-01828
Ubisoft EX1002 Page 1462

IPR2017-01828
Ubisoft EX1002 Page 1463

IPR2017-01828
Ubisoft EX1002 Page 1464

IPR2017-01828
Ubisoft EX1002 Page 1465

IPR2017-01828
Ubisoft EX1002 Page 1466

IPR2017-01828
Ubisoft EX1002 Page 1467

IPR2017-01828
Ubisoft EX1002 Page 1468

IPR2017-01828
Ubisoft EX1002 Page 1469

IPR2017-01828
Ubisoft EX1002 Page 1470

IPR2017-01828
Ubisoft EX1002 Page 1471

IPR2017-01828
Ubisoft EX1002 Page 1472

IPR2017-01828
Ubisoft EX1002 Page 1473

IPR2017-01828
Ubisoft EX1002 Page 1474

IPR2017-01828
Ubisoft EX1002 Page 1475

IPR2017-01828
Ubisoft EX1002 Page 1476

IPR2017-01828
Ubisoft EX1002 Page 1477

IPR2017-01828
Ubisoft EX1002 Page 1478

IPR2017-01828
Ubisoft EX1002 Page 1479

IPR2017-01828
Ubisoft EX1002 Page 1480

IPR2017-01828
Ubisoft EX1002 Page 1481

IPR2017-01828
Ubisoft EX1002 Page 1482

IPR2017-01828
Ubisoft EX1002 Page 1483

IPR2017-01828
Ubisoft EX1002 Page 1484

IPR2017-01828
Ubisoft EX1002 Page 1485

IPR2017-01828
Ubisoft EX1002 Page 1486

IPR2017-01828
Ubisoft EX1002 Page 1487

IPR2017-01828
Ubisoft EX1002 Page 1488

IPR2017-01828
Ubisoft EX1002 Page 1489

IPR2017-01828
Ubisoft EX1002 Page 1490

IPR2017-01828
Ubisoft EX1002 Page 1491

IPR2017-01828
Ubisoft EX1002 Page 1492

IPR2017-01828
Ubisoft EX1002 Page 1493

IPR2017-01828
Ubisoft EX1002 Page 1494

IPR2017-01828
Ubisoft EX1002 Page 1495

IPR2017-01828
Ubisoft EX1002 Page 1496

IPR2017-01828
Ubisoft EX1002 Page 1497

IPR2017-01828
Ubisoft EX1002 Page 1498

IPR2017-01828
Ubisoft EX1002 Page 1499

IPR2017-01828
Ubisoft EX1002 Page 1500

IPR2017-01828
Ubisoft EX1002 Page 1501

IPR2017-01828
Ubisoft EX1002 Page 1502

IPR2017-01828
Ubisoft EX1002 Page 1503

IPR2017-01828
Ubisoft EX1002 Page 1504

IPR2017-01828
Ubisoft EX1002 Page 1505

IPR2017-01828
Ubisoft EX1002 Page 1506

IPR2017-01828
Ubisoft EX1002 Page 1507

IPR2017-01828
Ubisoft EX1002 Page 1508

IPR2017-01828
Ubisoft EX1002 Page 1509

IPR2017-01828
Ubisoft EX1002 Page 1510

IPR2017-01828
Ubisoft EX1002 Page 1511

IPR2017-01828
Ubisoft EX1002 Page 1512

IPR2017-01828
Ubisoft EX1002 Page 1513

IPR2017-01828
Ubisoft EX1002 Page 1514

IPR2017-01828
Ubisoft EX1002 Page 1515

IPR2017-01828
Ubisoft EX1002 Page 1516

IPR2017-01828
Ubisoft EX1002 Page 1517

IPR2017-01828
Ubisoft EX1002 Page 1518

IPR2017-01828
Ubisoft EX1002 Page 1519

IPR2017-01828
Ubisoft EX1002 Page 1520

IPR2017-01828
Ubisoft EX1002 Page 1521

IPR2017-01828
Ubisoft EX1002 Page 1522

IPR2017-01828
Ubisoft EX1002 Page 1523

IPR2017-01828
Ubisoft EX1002 Page 1524

IPR2017-01828
Ubisoft EX1002 Page 1525

IPR2017-01828
Ubisoft EX1002 Page 1526

IPR2017-01828
Ubisoft EX1002 Page 1527

IPR2017-01828
Ubisoft EX1002 Page 1528

IPR2017-01828
Ubisoft EX1002 Page 1529

IPR2017-01828
Ubisoft EX1002 Page 1530

IPR2017-01828
Ubisoft EX1002 Page 1531

IPR2017-01828
Ubisoft EX1002 Page 1532

IPR2017-01828
Ubisoft EX1002 Page 1533

IPR2017-01828
Ubisoft EX1002 Page 1534

IPR2017-01828
Ubisoft EX1002 Page 1535

IPR2017-01828
Ubisoft EX1002 Page 1536

IPR2017-01828
Ubisoft EX1002 Page 1537

IPR2017-01828
Ubisoft EX1002 Page 1538

IPR2017-01828
Ubisoft EX1002 Page 1539

IPR2017-01828
Ubisoft EX1002 Page 1540

IPR2017-01828
Ubisoft EX1002 Page 1541

IPR2017-01828
Ubisoft EX1002 Page 1542

IPR2017-01828
Ubisoft EX1002 Page 1543

IPR2017-01828
Ubisoft EX1002 Page 1544

IPR2017-01828
Ubisoft EX1002 Page 1545

IPR2017-01828
Ubisoft EX1002 Page 1546

IPR2017-01828
Ubisoft EX1002 Page 1547

IPR2017-01828
Ubisoft EX1002 Page 1548

IPR2017-01828
Ubisoft EX1002 Page 1549

IPR2017-01828
Ubisoft EX1002 Page 1550

IPR2017-01828
Ubisoft EX1002 Page 1551

IPR2017-01828
Ubisoft EX1002 Page 1552

IPR2017-01828
Ubisoft EX1002 Page 1553

IPR2017-01828
Ubisoft EX1002 Page 1554

IPR2017-01828
Ubisoft EX1002 Page 1555

IPR2017-01828
Ubisoft EX1002 Page 1556

IPR2017-01828
Ubisoft EX1002 Page 1557

IPR2017-01828
Ubisoft EX1002 Page 1558

IPR2017-01828
Ubisoft EX1002 Page 1559

IPR2017-01828
Ubisoft EX1002 Page 1560

IPR2017-01828
Ubisoft EX1002 Page 1561

IPR2017-01828
Ubisoft EX1002 Page 1562

IPR2017-01828
Ubisoft EX1002 Page 1563

IPR2017-01828
Ubisoft EX1002 Page 1564

IPR2017-01828
Ubisoft EX1002 Page 1565

IPR2017-01828
Ubisoft EX1002 Page 1566

IPR2017-01828
Ubisoft EX1002 Page 1567

IPR2017-01828
Ubisoft EX1002 Page 1568

IPR2017-01828
Ubisoft EX1002 Page 1569

IPR2017-01828
Ubisoft EX1002 Page 1570

IPR2017-01828
Ubisoft EX1002 Page 1571

IPR2017-01828
Ubisoft EX1002 Page 1572

IPR2017-01828
Ubisoft EX1002 Page 1573

IPR2017-01828
Ubisoft EX1002 Page 1574

IPR2017-01828
Ubisoft EX1002 Page 1575

IPR2017-01828
Ubisoft EX1002 Page 1576

IPR2017-01828
Ubisoft EX1002 Page 1577

IPR2017-01828
Ubisoft EX1002 Page 1578

IPR2017-01828
Ubisoft EX1002 Page 1579

IPR2017-01828
Ubisoft EX1002 Page 1580

IPR2017-01828
Ubisoft EX1002 Page 1581

IPR2017-01828
Ubisoft EX1002 Page 1582

IPR2017-01828
Ubisoft EX1002 Page 1583

IPR2017-01828
Ubisoft EX1002 Page 1584

IPR2017-01828
Ubisoft EX1002 Page 1585

IPR2017-01828
Ubisoft EX1002 Page 1586

IPR2017-01828
Ubisoft EX1002 Page 1587

IPR2017-01828
Ubisoft EX1002 Page 1588

IPR2017-01828
Ubisoft EX1002 Page 1589

IPR2017-01828
Ubisoft EX1002 Page 1590

IPR2017-01828
Ubisoft EX1002 Page 1591

IPR2017-01828
Ubisoft EX1002 Page 1592

IPR2017-01828
Ubisoft EX1002 Page 1593

IPR2017-01828
Ubisoft EX1002 Page 1594

IPR2017-01828
Ubisoft EX1002 Page 1595

IPR2017-01828
Ubisoft EX1002 Page 1596

IPR2017-01828
Ubisoft EX1002 Page 1597

IPR2017-01828
Ubisoft EX1002 Page 1598

IPR2017-01828
Ubisoft EX1002 Page 1599

IPR2017-01828
Ubisoft EX1002 Page 1600

IPR2017-01828
Ubisoft EX1002 Page 1601

IPR2017-01828
Ubisoft EX1002 Page 1602

IPR2017-01828
Ubisoft EX1002 Page 1603

IPR2017-01828
Ubisoft EX1002 Page 1604

IPR2017-01828
Ubisoft EX1002 Page 1605

IPR2017-01828
Ubisoft EX1002 Page 1606

IPR2017-01828
Ubisoft EX1002 Page 1607

IPR2017-01828
Ubisoft EX1002 Page 1608

IPR2017-01828
Ubisoft EX1002 Page 1609

IPR2017-01828
Ubisoft EX1002 Page 1610

IPR2017-01828
Ubisoft EX1002 Page 1611

IPR2017-01828
Ubisoft EX1002 Page 1612

IPR2017-01828
Ubisoft EX1002 Page 1613

IPR2017-01828
Ubisoft EX1002 Page 1614

IPR2017-01828
Ubisoft EX1002 Page 1615

IPR2017-01828
Ubisoft EX1002 Page 1616

IPR2017-01828
Ubisoft EX1002 Page 1617

IPR2017-01828
Ubisoft EX1002 Page 1618

IPR2017-01828
Ubisoft EX1002 Page 1619

IPR2017-01828
Ubisoft EX1002 Page 1620

IPR2017-01828
Ubisoft EX1002 Page 1621

IPR2017-01828
Ubisoft EX1002 Page 1622

IPR2017-01828
Ubisoft EX1002 Page 1623

IPR2017-01828
Ubisoft EX1002 Page 1624

IPR2017-01828
Ubisoft EX1002 Page 1625

IPR2017-01828
Ubisoft EX1002 Page 1626

IPR2017-01828
Ubisoft EX1002 Page 1627

IPR2017-01828
Ubisoft EX1002 Page 1628

IPR2017-01828
Ubisoft EX1002 Page 1629

IPR2017-01828
Ubisoft EX1002 Page 1630

IPR2017-01828
Ubisoft EX1002 Page 1631

IPR2017-01828
Ubisoft EX1002 Page 1632

IPR2017-01828
Ubisoft EX1002 Page 1633

IPR2017-01828
Ubisoft EX1002 Page 1634

IPR2017-01828
Ubisoft EX1002 Page 1635

IPR2017-01828
Ubisoft EX1002 Page 1636

IPR2017-01828
Ubisoft EX1002 Page 1637

IPR2017-01828
Ubisoft EX1002 Page 1638

IPR2017-01828
Ubisoft EX1002 Page 1639

IPR2017-01828
Ubisoft EX1002 Page 1640

IPR2017-01828
Ubisoft EX1002 Page 1641

IPR2017-01828
Ubisoft EX1002 Page 1642

IPR2017-01828
Ubisoft EX1002 Page 1643

IPR2017-01828
Ubisoft EX1002 Page 1644

IPR2017-01828
Ubisoft EX1002 Page 1645

IPR2017-01828
Ubisoft EX1002 Page 1646

IPR2017-01828
Ubisoft EX1002 Page 1647

IPR2017-01828
Ubisoft EX1002 Page 1648

IPR2017-01828
Ubisoft EX1002 Page 1649

IPR2017-01828
Ubisoft EX1002 Page 1650

IPR2017-01828
Ubisoft EX1002 Page 1651

IPR2017-01828
Ubisoft EX1002 Page 1652

IPR2017-01828
Ubisoft EX1002 Page 1653

IPR2017-01828
Ubisoft EX1002 Page 1654

IPR2017-01828
Ubisoft EX1002 Page 1655

IPR2017-01828
Ubisoft EX1002 Page 1656

IPR2017-01828
Ubisoft EX1002 Page 1657

IPR2017-01828
Ubisoft EX1002 Page 1658

IPR2017-01828
Ubisoft EX1002 Page 1659

IPR2017-01828
Ubisoft EX1002 Page 1660

IPR2017-01828
Ubisoft EX1002 Page 1661

IPR2017-01828
Ubisoft EX1002 Page 1662

IPR2017-01828
Ubisoft EX1002 Page 1663

IPR2017-01828
Ubisoft EX1002 Page 1664

IPR2017-01828
Ubisoft EX1002 Page 1665

IPR2017-01828
Ubisoft EX1002 Page 1666

IPR2017-01828
Ubisoft EX1002 Page 1667

IPR2017-01828
Ubisoft EX1002 Page 1668

IPR2017-01828
Ubisoft EX1002 Page 1669

IPR2017-01828
Ubisoft EX1002 Page 1670

IPR2017-01828
Ubisoft EX1002 Page 1671

IPR2017-01828
Ubisoft EX1002 Page 1672

IPR2017-01828
Ubisoft EX1002 Page 1673

IPR2017-01828
Ubisoft EX1002 Page 1674

IPR2017-01828
Ubisoft EX1002 Page 1675

IPR2017-01828
Ubisoft EX1002 Page 1676

IPR2017-01828
Ubisoft EX1002 Page 1677

IPR2017-01828
Ubisoft EX1002 Page 1678

IPR2017-01828
Ubisoft EX1002 Page 1679

IPR2017-01828
Ubisoft EX1002 Page 1680

IPR2017-01828
Ubisoft EX1002 Page 1681

IPR2017-01828
Ubisoft EX1002 Page 1682

IPR2017-01828
Ubisoft EX1002 Page 1683

IPR2017-01828
Ubisoft EX1002 Page 1684

IPR2017-01828
Ubisoft EX1002 Page 1685

IPR2017-01828
Ubisoft EX1002 Page 1686

IPR2017-01828
Ubisoft EX1002 Page 1687

IPR2017-01828
Ubisoft EX1002 Page 1688

IPR2017-01828
Ubisoft EX1002 Page 1689

IPR2017-01828
Ubisoft EX1002 Page 1690

IPR2017-01828
Ubisoft EX1002 Page 1691

IPR2017-01828
Ubisoft EX1002 Page 1692

IPR2017-01828
Ubisoft EX1002 Page 1693

IPR2017-01828
Ubisoft EX1002 Page 1694

IPR2017-01828
Ubisoft EX1002 Page 1695

IPR2017-01828
Ubisoft EX1002 Page 1696

IPR2017-01828
Ubisoft EX1002 Page 1697

IPR2017-01828
Ubisoft EX1002 Page 1698

IPR2017-01828
Ubisoft EX1002 Page 1699

IPR2017-01828
Ubisoft EX1002 Page 1700

IPR2017-01828
Ubisoft EX1002 Page 1701

IPR2017-01828
Ubisoft EX1002 Page 1702

IPR2017-01828
Ubisoft EX1002 Page 1703

IPR2017-01828
Ubisoft EX1002 Page 1704

IPR2017-01828
Ubisoft EX1002 Page 1705

IPR2017-01828
Ubisoft EX1002 Page 1706

IPR2017-01828
Ubisoft EX1002 Page 1707

IPR2017-01828
Ubisoft EX1002 Page 1708

IPR2017-01828
Ubisoft EX1002 Page 1709

IPR2017-01828
Ubisoft EX1002 Page 1710

IPR2017-01828
Ubisoft EX1002 Page 1711

IPR2017-01828
Ubisoft EX1002 Page 1712

IPR2017-01828
Ubisoft EX1002 Page 1713

IPR2017-01828
Ubisoft EX1002 Page 1714

IPR2017-01828
Ubisoft EX1002 Page 1715

IPR2017-01828
Ubisoft EX1002 Page 1716

IPR2017-01828
Ubisoft EX1002 Page 1717

IPR2017-01828
Ubisoft EX1002 Page 1718

IPR2017-01828
Ubisoft EX1002 Page 1719

IPR2017-01828
Ubisoft EX1002 Page 1720

IPR2017-01828
Ubisoft EX1002 Page 1721

IPR2017-01828
Ubisoft EX1002 Page 1722

IPR2017-01828
Ubisoft EX1002 Page 1723

IPR2017-01828
Ubisoft EX1002 Page 1724

IPR2017-01828
Ubisoft EX1002 Page 1725

IPR2017-01828
Ubisoft EX1002 Page 1726

IPR2017-01828
Ubisoft EX1002 Page 1727

IPR2017-01828
Ubisoft EX1002 Page 1728

IPR2017-01828
Ubisoft EX1002 Page 1729

IPR2017-01828
Ubisoft EX1002 Page 1730

IPR2017-01828
Ubisoft EX1002 Page 1731

IPR2017-01828
Ubisoft EX1002 Page 1732

IPR2017-01828
Ubisoft EX1002 Page 1733

IPR2017-01828
Ubisoft EX1002 Page 1734

IPR2017-01828
Ubisoft EX1002 Page 1735

IPR2017-01828
Ubisoft EX1002 Page 1736

IPR2017-01828
Ubisoft EX1002 Page 1737

IPR2017-01828
Ubisoft EX1002 Page 1738

IPR2017-01828
Ubisoft EX1002 Page 1739

IPR2017-01828
Ubisoft EX1002 Page 1740

IPR2017-01828
Ubisoft EX1002 Page 1741

IPR2017-01828
Ubisoft EX1002 Page 1742

IPR2017-01828
Ubisoft EX1002 Page 1743

IPR2017-01828
Ubisoft EX1002 Page 1744

IPR2017-01828
Ubisoft EX1002 Page 1745

IPR2017-01828
Ubisoft EX1002 Page 1746

IPR2017-01828
Ubisoft EX1002 Page 1747

IPR2017-01828
Ubisoft EX1002 Page 1748

IPR2017-01828
Ubisoft EX1002 Page 1749

IPR2017-01828
Ubisoft EX1002 Page 1750

IPR2017-01828
Ubisoft EX1002 Page 1751

IPR2017-01828
Ubisoft EX1002 Page 1752

IPR2017-01828
Ubisoft EX1002 Page 1753

IPR2017-01828
Ubisoft EX1002 Page 1754

IPR2017-01828
Ubisoft EX1002 Page 1755

IPR2017-01828
Ubisoft EX1002 Page 1756

IPR2017-01828
Ubisoft EX1002 Page 1757

IPR2017-01828
Ubisoft EX1002 Page 1758

IPR2017-01828
Ubisoft EX1002 Page 1759

IPR2017-01828
Ubisoft EX1002 Page 1760

IPR2017-01828
Ubisoft EX1002 Page 1761

IPR2017-01828
Ubisoft EX1002 Page 1762

IPR2017-01828
Ubisoft EX1002 Page 1763

IPR2017-01828
Ubisoft EX1002 Page 1764

IPR2017-01828
Ubisoft EX1002 Page 1765

IPR2017-01828
Ubisoft EX1002 Page 1766

IPR2017-01828
Ubisoft EX1002 Page 1767

