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I hereby declare that all the statements made in this Declaration are of my 

own knowledge and true; that all statements made on information and belief are 

believed to be true; and further that these statements were made with the 

knowledge that willful false statements and the like so made are punishable by fine 

or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false 

statements may jeopardize the validity of the application or any patent issued 

thereon. 

I declare under the penalty of perjury that all statements made in this 

Declaration are true and correct. 

 

Executed July 19, 2017 in Douglas, Massachusetts.   

  
/William R. Michalson/ 
William R. Michalson 
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I. INTRODUCTION 

1. My name is William R. Michalson.  I am a professor of electrical and 

computer engineering at Worcester Polytechnic Institute in Massachusetts. 

2. I have been engaged by Microsoft Corporation (“Microsoft”) to 

investigate and opine on certain issues relating to U.S. Patent No. 9,635,136 B2 5 

(the “’136 Patent”) entitled “Optimized Image Delivery Over Limited Bandwidth 

Communication Channels” in Microsoft’s Petition for Inter Partes Review of the 

’136 Patent (“Microsoft IPR Petition”) which requests the Patent Trial and Appeal 

Board (“PTAB”) to review and cancel all claims of the ’136 Patent—claims 1-27 

(“Challenged Claims”).   10 

3. I have also been engaged by Microsoft to investigate and opine on 

certain issues relating to four other patents that are related to the ’136 Patent—U.S. 

Patent Nos. 7,908,343 B2 (“the ’343 Patent”), 7,139,794 B2 (“the ’794 Patent”), 

8,924,506 B2 (“the ’506 Patent”), and  9,253,239 B2 (“the ’239 Patent”) —in 

additional petitions for inter partes review by Microsoft.  I understand that 15 

Bradium Technologies LLC (“Bradium”) is asserting all four patents against 

Microsoft in an on-going patent infringement lawsuit, No. 1:15-cv-00031-RGA, 

filed in the U.S. District Court for the District of Delaware on January 9, 2015 and 

amended to add the ’239 Patent on March 14, 2016.  I have provided opinions 

regarding the invalidity of the Bradium patents in each of the following cases: 20 
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• 794 Patent: IPR2015-01432, instituted Dec. 23, 2015, Final Written 

Decision issued Dec. 21, 2016 

• ’343 Patent: 

o IPR2015-01434, institution denied Dec. 23, 2015 

o IPR2016-00448, instituted July 25, 2016 5 

• ’506 Patent: 

o IPR2015-01435, institution denied Dec. 23, 2015 

o IPR2016-00449, instituted July 27, 2016 

• ’239 Patent: IPR2016-01897, instituted April 5, 2017 

• U.S. Patent No. 9,641,644: IPR2017-01616, filed June 22, 2017 10 

I have also been engaged by Microsoft to analyze U.S. Patent No. 9,641,645. 

4. I understand that the ’136 Patent has not yet been asserted in litigation 

against Microsoft. 

5. I understand that the ’136 Patent was purportedly assigned to 

Bradium.  Bradium is therefore referred to as the “Patent Owner” in this 15 

declaration. 

6. In this declaration, I will first discuss the technology background 

related to the ’136 Patent and then provide my analyses and opinions regarding 

claims 1-27 of the ’136 Patent.  The discussion of the technology background 
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includes an overview of that technology as it was known before December 2000, 

which I understand as the earliest priority date claimed by the ’136 Patent.  This 

overview provides some of the bases for my opinions with respect to the ’136 

Patent. 

7. This declaration is based on the information currently available to me.  5 

To the extent that additional information becomes available, I reserve the right to 

continue my investigation and study, which may include a review of documents 

and information that may be produced, as well as testimony from depositions that 

may not yet be taken. 

8. In forming my opinions, I have relied on information and evidence 10 

identified in this declaration, including the ’136 Patent, the prosecution history of 

the ’136 Patent, and prior art references listed as Exhibits to the Microsoft IPR 

Petition and listed as appendices of this declaration.  The Appendices to this 

declaration include a number of references known to those in the art to describe 

technical concepts relevant to the subject matter of this declaration, and include 15 

(for example) patents, technical publications, and industry standards.  In my 

opinion, an expert or a person of ordinary skill in the art in the subject matter 

relevant to this declaration would consider each of the Appendices to this 

declaration relevant to the subject matter of this declaration and would reasonably 

rely on such materials to form an opinion as to the state of the art prior to 20 
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December 27, 2000, the interpretation of the prior art references relied upon in 

Microsoft’s petition, and the obviousness of the claims challenged in the petition.  I 

have also relied on my own personal experience in the field of computer graphics, 

which includes the design and development of computer graphic hardware, 

software, and display systems. 5 

II. SUMMARY OF OPINIONS 

9. Claims 1-27 of the ’136 Patent relate to a system and method for 

dynamic visualization of image data transferred through a communications 

channel.  For the reasons explained below, none of the features described in Claims 

1-27 of the ’136 Patent were novel as of either October 1999 or December 2000,1 10 

                                           
1 I understand that the inventors alleged during the prosecution of U.S. Patent No. 

7,644,131 that “the herein invention was first defined in October 1999.”  See, e.g. 

IPR2016-00448, Ex. 2064.  However, this statement related to a different 

application and no corroboration was provided for the assertion of this date.  I refer 

to this date only because it is the earliest invention date which I am aware of 

3DVU or Bradium having asserted.  Nothing in this declaration should be taken as 

an admission that the subject matter claimed in the ‘136 Patent was actually 

invented on this date, and I reserve the right to offer rebuttal testimony if Bradium 
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nor does the ’136 Patent teach a novel and non-obvious way of combining these 

known features. 

10. Claims 1-27 of the ’136 Patent relate to well-known technologies in 

the computer industry such as multi-resolution hierarchical maps, image 

compression, packetized data transmission, and three-dimensional (3D) graphics 5 

rendering.  No element of Claims 1-27 is novel, and Claims 1-27 do not bring these 

elements together in a way that brings any benefit beyond what a person of 

ordinary skill in art would expect from the known functions of the individual 

components.  Claims 1-27 describe techniques that were well-known in the field, 

and combine them in ways that would have been readily apparent to a person of 10 

ordinary skill in the art with predictable results. 

11. It is my opinion that each of Claims 1-27 is invalid under the 

patentability standard of 35 U.S.C. § 103 as I understand it and as explained to me 

by Microsoft’s counsel.  Within this declaration I discuss specific grounds of 

invalidity of Claims 1-27; however, my opinion that Claims 1-27 are invalid under 15 

35 U.S.C. § 103 is not limited to these specific grounds, and indeed, it is my 

opinion that Claims 1-27 would have been invalid in light of the general 

                                                                                                                                        
seeks to argue or present evidence of an invention date prior to the effective filing 

date for any claim. 
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knowledge of a person of ordinary skill in the art at the time of the alleged 

invention. 

12. For purposes of my analyses in this declaration only, I provide my 

proposed construction of certain terms in Claims 1-27 in detail in a later part of this 

declaration. 5 

13. The subsequent sections of this declaration will first provide my 

qualifications and experience and then describe details of my analyses and 

observations. 

III. QUALIFICATIONS AND EXPERIENCE 

A. Education and Work Experience 10 

14. I received a Ph.D. degree in Electrical Engineering in 1989 and a 

Master of Science degree in Electrical Engineering in 1985 from the Worcester 

Polytechnic Institute.  I received a Bachelor of Science degree in Electrical 

Engineering from Syracuse University in 1981. 

15. I have more than twenty years of experience in the fields of electrical 15 

engineering, computer systems, navigation systems, and communications systems.  

My experience includes the design, implementation and use of geographic 

information systems (“GIS”), as well as the design, implementation and use of 

navigation systems relying on GPS and other positioning system technologies.  I 

also have extensive experience in computer communication and data processing 20 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

7 
 

systems as well as systems for the efficient transmission of digital images and 

other data.  Additionally, I have experience in the design and implementation of 

hardware and software systems used to render image data for display.   

16. I have published 16 papers in technical journals and 97 papers in 

technical conferences.  I hold eight U.S. patents in the fields of handheld GPS 5 

(Global Positioning System), portable geolocation devices, and communication 

networks.  I have also authored one book chapter relating to optical interconnect 

networks for massively parallel computers.  I became a Senior Member of the 

Institute of Electrical and Electronics Engineers (IEEE) in 2003. 

17. My experience spans from product designs and R&D in industry, 10 

teaching, research and development in an educational and research institution to 

technology consulting to industry.  I was an engineer at Raytheon Company for ten 

years from 1981 to 1991.  During this period, I worked on projects related to 

computer display hardware for various applications, including air traffic control 

applications.   15 

18. After leaving Raytheon Company, I joined the Worcester Polytechnic 

Institute and became a full-time faculty member there in 1991.  My research at 

WPI focuses on navigation systems and related technologies.  I am the director of 

WPI’s Robot Navigation and Control Laboratory.   
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19. My research projects at WPI cover various technologies and include 

(1) a system using tracking and communications technologies to track shipping 

containers, (2) an automotive based system that combined GPS and map data in an 

automotive environment, (3) a remote hazard detection system using GPS and 

radio communications, and (4) a differential GPS system that combined GPS and 5 

radio technologies to determine the precise path of vehicles operating off-road 

during forest operations.   

20. I have worked as a consultant in the navigation and communication 

systems fields, e.g., in the context of space shuttle docking operations, transfer of 

traffic information to GPS devices, combinations of GPS and cellular 10 

communications for tracking purposes, and map-based handheld tracking devices.   

21. I am familiar with numerous GIS and mapping products that existed 

in the market since the late 1980s, including systems and software developed by 

Etak, Microsoft, DeLorme, and others.  In the conduct of my research and other 

work, I have routinely used commercially available GIS and mapping products and 15 

have developed mapping and visualization software for specialized applications.  

Additionally, I have used and incorporated database systems such as Microsoft 

Access, Borland Paradox, Oracle, SQL and others in my research and have 

incorporated database systems into other hardware and software systems for use in 

storing and retrieving GIS-related data. 20 
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22. I have done extensive research work in communications and 

networking system design, and have worked with all of the digital, analog and 

software components needed to build communications and navigation systems.  

My work with communications and networking protocols began in the mid-1980s 

with TCP/IP over packet radio.  I have used these and other communications and 5 

networking protocols extensively in conducting my research.  In addition, my work 

on GPS and navigation systems involved implementing low-latency 

communications to support differential techniques that allow a GPS receiver to 

provide more accurate positioning information. 

23. I have extensive experience with the development and maintenance of 10 

server computers, including the installation and maintenance of web servers and 

file servers, as well as the design, development, test, and maintenance of web 

based applications.  These applications typically employ C/C++, Java, JavaScript, 

PHP, HTML, MySQL, and etc.  I am also experienced with server-client systems 

where the client computer exchanges navigation and/or geographical information 15 

with server computer through a wired and/or wireless network. 

24. My curriculum vitae, which provides a detailed summary of my 

education, work experience, publication, teaching history, and etc. is attached to 

this declaration as Appendix A. 
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B. Compensation 

25. I am being compensated for the services I am providing in this and 

other Microsoft IPR petitions.  The compensation is not contingent upon my 

performance, the outcome of this inter partes review or any other proceedings, or 

any issues involved in or related to this inter partes review or any other 5 

proceedings. 

C. Documents and Other Materials Relied Upon 

26. The documents on which I rely for the opinions expressed in this 

declaration are documents and materials identified in this declaration, including the 

’136 Patent, patents related to the ’136 Patent, the prosecution history for the ’136 10 

Patent and other patents related to the ’136 Patent, the prior art references and 

information discussed in this declaration, including the references attached as 

exhibits to the IPR Petition for the ’136 Patent: U.S. Patent No. 5,956,039 to 

Woods et al (“Woods”) (Ex. 1003), TerraVision II: Visualizing Massive Terrain 

Databases in VRML by M. Reddy et al., IEEE Computer Graphics and 15 

Applications, March/April 1999 (“Reddy”) (Ex. 1004), U.S. Patent No. 7,324,228 

B2 to Chiarabini et al (“Chiarabini”) (Ex. 1006), B. Fuller and I. Richer, The 

MAGIC Project: From Vision to Reality, IEEE Network May/June 1996, pp. 15-25 

(“Fuller”) (Ex. 1011), and any other references specifically identified in this 

declaration, in their entirety, even if only portions of these documents are 20 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

11 
 

discussed here in an exemplary fashion.  I have also considered certain arguments 

made by Bradium and its hired experts, including Dr. Peggy Agouris, in IPRs of 

related patents, which do not change my opinion that the claims of the ’136 Patent 

are obvious.2 

IV. STATEMENT OF LEGAL PRINCIPLES 5 

A. Claim Construction 

27. Microsoft’s counsel has advised that, when construing claim terms of 

an unexpired patent, a claim subject to inter partes review receives the “broadest 

reasonable interpretation in light of the specification of the patent in which it 

appears.”   10 

B. Anticipation 

28. Microsoft’s counsel has advised that in order for a patent claim to be 

valid, the claimed invention must be novel.  Microsoft’s counsel has further 

advised that if each and every element of a claim is disclosed in a single prior art 

                                           
2 I understand that Microsoft’s burden of proof for institution of an IPR does not 

extend to rebutting every possible counter-argument, so I will not discuss every 

argument previously made by Bradium or its expert in previous IPRs.  However, I 

reserve the right to offer testimony in rebuttal to any arguments or evidence 

submitted by Bradium in this proceeding. 
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reference, then the claimed invention is anticipated, and the invention is not 

patentable according to pre-AIA 35 U.S.C. § 102 effective before March 16, 2013.  

In order for an invention in a claim to be anticipated, all of the elements and 

limitations of the claim must be shown in a single prior reference, arranged as in 

the claim.  A claim is anticipated only if each and every element as set forth in the 5 

claim is found, either expressly or inherently described, in a single prior art 

reference.  In order for a reference to inherently disclose a claim limitation, that 

claim limitation must necessarily be present in the reference.   

C. Obviousness 

29. Microsoft’s counsel has also advised me that obviousness under pre-10 

AIA 35 U.S.C. § 103 effective before March 16, 2013 is a basis for invalidity.  I 

understand that where a prior art reference does not disclose all of the limitations 

of a given patent claim, that patent claim is invalid if the differences between the 

claimed subject matter and the prior art reference are such that the claimed subject 

matter as a whole would have been obvious at the time the invention was made to a 15 

person having ordinary skill in the relevant art.  Obviousness can be based on a 

single prior art reference or a combination of references that either expressly or 

inherently disclose all limitations of the claimed invention.  In an obviousness 

analysis, it is not necessary to find precise teachings in the prior art directed to the 
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specific subject matter claimed because inferences and creative steps that a person 

of ordinary skill in the art would employ can be taken into account. 

30. I understand that obviousness is not driven by a rigid formula, but is a 

flexible inquiry that reflects the fact that a person of ordinary skill in the art 

exercising ordinary creativity may find a variety of reasons to combine the 5 

teachings of different references.  I understand that a non-exclusive list of possible 

factors that may give a person of ordinary skill in the art a reason to combine 

references includes combining elements according to known methods to yield 

predictable results; simple substitution of known elements to obtain predictable 

results; use of known techniques to improve similar devices in the same way; 10 

applying known techniques to known devices ready for improvement to yield 

predictable results; choosing from a finite number of identified, predictable 

solutions, with a reasonable expectation of success; known work in one field of 

endeavor prompting variations of it for use in the same field; and teaching in the 

prior art that would have led one of ordinary skill to combine prior art reference 15 

teachings to arrive at the claimed invention. 

V. LEVEL OF ORDINARY SKILL IN THE ART 

31. I understand from Microsoft’s counsel that the claims and 

specification of a patent must be read and construed through the eyes of a person of 

ordinary skill in the art at the time of the priority date of the claims.  I have also 20 
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been advised that to determine the appropriate level of a person having ordinary 

skill in the art, the following factors may be considered:  (a) the types of problems 

encountered by those working in the field and prior art solutions thereto; (b) the 

sophistication of the technology in question, and the rapidity with which 

innovations occur in the field; (c) the educational level of active workers in the 5 

field; and (d) the educational level of the inventor. 

32. The “Background” section of the ’136 Patent describes a “well 

recognized problem” of how to reduce the latency for transmitting full resolution 

images over the Internet on an “as needed” basis, particularly for “complex 

images” such as “geographic, topographic, and other highly detailed maps.”  Ex. 10 

1001 at 1:61-2:2.  

33. To solve this problem and to address some perceived issues in the 

existing art, the ’136 Patent discloses a system capable of “optimally presenting 

image data on client systems with potentially limited processing performance, 

resources, and communications bandwidth.”  Id. at 3:66-4:2.  The ’136 Patent 15 

states that the disclosed technology can achieve faster image transfer by (1) 

dividing the source image into parcels/tiles, (2) processing the parcels/tiles into a 

series of progressively lower resolution parcels/tiles, and (3) requesting and 

transmitting the parcels/tiles needed for a particular viewpoint in a priority order, 

generally lower-resolution tiles first. 20 
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34. In light of the disclosed technology of the ’136 Patent, a person of 

ordinary skill in the art for the ’136 Patent would need education or work 

experience in computer network communications.  Because a “common 

application” of the ’136 Patent is to transmit “geographic, topographic, and other 

highly detailed maps,” (id. at 1:64-66), a person of ordinary skill in the art would 5 

require some knowledge and experience with geographic information systems 

(“GIS”). 

35. Based on the above considerations and factors, it is my opinion that a 

person having ordinary skill in the art should have a Master of Science or 

equivalent degree in electrical engineering or computer science, or alternatively a 10 

Bachelor of Science or equivalent degree in electrical engineering or computer 

science, with at least 5 years of experience in a technical field related to geographic 

information system (“GIS”) or the transmission of image data over a computer 

network.  This description is approximate and additional educational experience 

could make up for less work experience and vice versa. 15 

36.   I understand that in IPR proceedings involving related patents, 

Bradium and its expert have offered a definition of the level of ordinary skill in the 

art which differs from mine.  See, e.g. IPR2016-00448, Paper 20 at 8 and Ex. 2003, 

¶¶ 15-19.  As I explained in those related proceedings, Bradium’s position 

regarding the level of ordinary skill in the art was incorrect.   20 
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37. For example, Bradium argued that my proposed level of ordinary skill 

in the art was incorrect because one of the named inventors, Mr. Levanon, would 

not have met my definition of the level of ordinary skill in the art.  Bradium also 

asserted that the other named inventor, Mr. Lavi, also would not qualify as a 

person of ordinary skill in the art.  I disagree. 5 

38. First of all, I understand that a person of ordinary skill in the art is not 

a specific individual, but a hypothetical individual at the time of the alleged 

invention who is familiar with the relevant art in the field and is capable of making 

reasonable inferences from that art, in addition to being a person of ordinary 

creativity.  If an alleged invention is not in fact novel but simply applies principles 10 

that were well-known in the art with predictable results, as is the case with the ’136 

Patent, it is certainly possible that the named inventors might have less education 

and experience than a hypothetical person of ordinary skill in the art. 

39. Additionally, based on my review of Mr. Levanon’s linkedin profile 

(Ex. 1015), it does not appear as though Mr. Levanon would meet Bradium and Dr. 15 

Agouris’ proposed definition of a person of ordinary skill in the art, because Mr. 

Levanon does not have a four-year degree or equivalent in any of the fields of art 

identified by Bradium.  See also Ex. 1019 (Levanon Deposition Transcript) at 

31:19-22.   
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40. However, having considered the proposed level of ordinary skill 

previously offered by Bradium and Dr. Agouris, the opinions that I offer in this 

declaration would not change if Bradium’s proposed level of ordinary skill were 

applied. 

41. My conclusions would not change if the level of ordinary skill in the 5 

art were assessed in October 1999, which was the earliest invention date asserted 

by Bradium during the prosecution of related patents, or in December 2000, when 

the earliest applications to which the ’136 Patent claims priority were filed. 

VI. TECHNOLOGY BACKGROUND OF THE ’136 PATENT 

42. It is my opinion that the ’136 Patent recites an obvious and predictable 10 

combination of elements that were well-known in the art at the time the ’136 

Patent was filed and at the time of alleged invention.  In this section of my 

declaration, I provide an overview of some general principles that were understood 

in the art at the time of filing of the ’136 Patent, and therefore would be within the 

knowledge of a person of ordinary skill in the art.  I use certain references 15 

(including both patents and non-patent literature) to illustrate the background 

knowledge of a person of ordinary skill in the art, but the knowledge of a person of 

ordinary skill in the art at the time regarding the claimed features would not have 

been limited to these specific references.   
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43. The ’136 Patent recites that the “preferred operational environment of 

the present invention is generally shown in Fig. 1” and links a network server with 

a client system “through a communications network, such as the Internet 14 

generally and various tiers of Internet service providers (ISPs) including a wireless 

connectivity provider.”  Ex. 1001, 5:51-64; Fig. 1: 5 

 

44. Based on my review of the entire specification of the ’136 Patent, it 

appears to me that the inventors describe a system that relied on conventional 

network connections, including conventional wireless networking methods, and 

that the underlying means of transmitting data over the Internet or over a wireless 10 

network are not emphasized as a point of novelty.  In other words, in order to 
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implement the alleged invention in the ’136 Patent, a person of ordinary skill in the 

art would have to rely on existing methods already known in the art of connecting 

to the Internet and sending data over a wireless connection, since the ’136 Patent 

does not provide any novel teachings about this aspect of the alleged system.  This 

fact is particularly relevant to certain claim limitations which relate to, e.g., the 5 

bandwidth of the communications channel, whether the communications channel is 

wireless, and the type of client device which operates the ’136 Patent’s user 

software, because the ability to connect to the Internet, or connect to the Internet 

via a wireless channel or on a “small” client device such as a PDA, is something 

that the ’136 Patent assumes that a person of ordinary skill in the art would already 10 

know how to do.  I considered this relevant to my analysis later in this declaration 

that these claim limitations are obvious over the references discussed and that a 

person of ordinary skill in the art would, for example, have a reasonable 

expectation of success implementing the system described by Reddy (which itself 

describes a laptop computer) on portable devices or via a wireless connection. 15 

45. I provide below a general description of the underlying technology of 

transmitting data over the Internet and via wireless connections as it existed in 

2000 and in before. 
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A. Data Communications Over the Internet 

46. The predominant computer networking technology and set of 

communications protocols used for most online communications today and prior to 

the filing of the application for the ’136 Patent is known as the Internet Protocol 

(IP) suite including TCP/IP, named after its two main component protocols: the 5 

Transmission Control Protocol and the Internet Protocol.  While other protocols, 

such as the User Datagram Protocol, or UDP, are also part of the IP suite of 

protocols, the ’136 Patent teaches at 8:37-58 that its preferred embodiment uses 

TCP/IP to send data packets.  In this declaration I do not provide a detailed 

description of all characteristics of the very well-known TCP/IP protocols, but 10 

focus on a few specific aspects of TCP/IP that are pertinent to the claims at issue in 

the ’136 Patent.  TCP/IP transmits data between computers in a network using data 

packets, which are formatted units of data carried by the network as suitably sized 

blocks.  Packets are composed of a header and a payload.  The “payload” is the 

information which the packet is actually intended to convey.  The header refers to 15 

supplemental data placed at the beginning of a block, and contains information in a 

standard format such as the sender’s and recipient’s Internet Protocol addresses, a 

sequence number indicating where in a sequence of packets being transmitted the 

packet falls, an offset (how far into the data the payload begins) and the protocol 

governing the format of the payload.  The addresses are used to route the packet to 20 
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its destination, although unlike a circuit-switched connection, different packets 

going between the same sender and recipient at the same time may take different 

routes over the network (and therefore may not arrive in the same order that they 

were originally sent).  A rough analogy for data packets is that the header is the 

“envelope” which contains the address used to deliver the packet, while the 5 

payload is the contents of the envelope.  The destination computer uses 

information in the header to place the data packet in its proper place in order, from 

which the original data contained in multiple packets can be reassembled.  When 

data segments arrive in the wrong order TCP/IP buffers the out-of-order data until 

all data can be properly re-ordered and delivered to the application. 10 

47. Before data is transmitted using TCP/IP, the sender and the 

destination exchange a short series of messages confirming a connection (also 

known as opening a “socket”).  The connection in this case simply means that the 

sender and the destination exchange messages to confirm that they are able to 

exchange messages via the network.  When the destination computer receives a 15 

packet, it sends a short confirmation message to the sender that the packet has been 

received.  If the confirmation is not received within a certain time period, the 

sender re-sends the packet.  This method avoids losing data in transmission if the 

transmission of a single packet fails. 
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48. A common consideration in building online systems is how large to 

make the data packets.  Among other trade-offs, smaller packets may be more 

likely to reach their destination without loss or error; however, because the header 

size is similar for a large packet and a small packet, the amount of bandwidth taken 

up by header overhead increases with the use of smaller packets.  In general, there 5 

are a variety of packet sizes that may be used in the transfer of a TCP/IP packet 

from source to destination since lower-level network protocols may have 

limitations on packet length based on the physical layer or other requirements.  

Typically, the network protocols used at any given layer in a protocol stack set the 

minimum and maximum packet lengths that may be transferred. 10 

B. Data Communications in Wireless Mobile Systems 

49. By the late 1990s, it was well-known in the art that digital data could 

be transmitted by TCP/IP over wireless networks.  For example, Appendix X, “The 

challenges of mobile computing,” Computer vol. 27, no. 4, pp. 38, 47 (April 1994) 

provides an overview of methods for implementing internet connections on mobile 15 

devices as of 1994, noting that while wireless networks typically deliver lower 

bandwidth than wired networks, cellular telephone products of the time could 

already achieve transmission rates of 9-10 kilobits per second.   

50. In another example in 1996, K. Brown and S. Singh, A Network 

Architecture for Mobile Computing, INFOCOM ’96, Fifteenth Annual Joint 20 
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Conference of the IEEE Computer Societies, Networking the Next Generation, 

Proceedings IEEE vol. 3, pp. 1388-1397 (Appendix Y) describes technologies that 

integrate wireless or mobile networks with existing fixed data networks such as the 

Internet.  This integration was described by using mobile data protocols to interact 

and be compatible with the TCP/IP structure of the Internet.  This paper described 5 

how the Universal Mobile Telecommunications System (UMTS) under 

development in Europe was expected to offer average mobile data rates of between 

1-2 megabytes per second (Mbps) per mobile user.  Among other features, “Mobile 

users will be able to access their data and other services such as… map services.”  

App. Y at 2. 10 

51. Appendix Z, Kreller, B. et al “UMTS: a middleware architecture and 

mobile API approach,” Personal Communications, IEEE, vol. 5, no. 2, pp. 32-38 

(April 1998) describes the development of third-generation (3G) mobile networks 

offering “high-bit-rate data services, guaranteed on-demand bandwidth, and low 

delays.”  Id. at 32.  To illustrate the development of frameworks to connect mobile 15 

telephone networks with existing fixed networks, the authors use the example of a 

mapping service called “City Guide,” which allows a mobile device to request and 

download map imagery and other data from a server via hypertext transfer protocol 

(HTTP) to “provide access to maps describing the current surroundings.”  Id. at 33.  

The CityGuide could use JPEG compression and decompression, and could 20 
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achieve bandwidth of up to 9.6 kbps using the then-existing Global System for 

Mobile Communications (GSM) cellular data standard.  Id. at 36, 37.  Further, the 

CityGuide system is an early example of the use of “[w]eb pages to allow instant 

access to further information about a particular location” by using a browser on a 

mobile device.  Id. At 33. 5 

C. Image Tiles and Image Pyramids 

52. The ’136 Patent describes sub-dividing a high resolution source image 

into a regular array of image parcels (a.k.a. image tiles), and pre-processing the 

image into a series of derivative images of progressively lower resolutions.  Ex. 

1001 at 6:32-43; Fig. 2.  Preferably, the resolution decreases by a factor of four for 10 

each derivative image in the series.  Id. at 6:43-47.  Fig. 2 of the six provisional 

applications to which the ’136 Patent claims priority (which is identical in all six 

provisional applications) best illustrates this image tiling and image pyramid 

scheme.  Ex. 1021 at Fig. 2. 
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53. This image processing scheme, however, had been developed and 

widely used long before the ’136 Patent’s priority date.  For example, Hanan 

Samet’s book The Design and Analysis of Spatial Data Structures discloses 

generating an image “pyramid” from a 2nx2n image array,  where the pyramid is “a 5 

sequence of arrays {A(i)} such that A(i-1) is a version of A(i) at half the scale of 

A(i).”  App. B, Hanan Samet, The Design and Analysis of Spatial Data Structures 

at 12 (1989, Reprinted with corrections in January, 1994).  Fig. 1.7 in the Samet 

book is virtually the same as Fig. 2 of the ’136 Patent’s provisional application.   
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54. In another example, U.S. Patent No. 5,263,136 (DeAguiar et al) filed 

on April 30, 1991 and issued on November 16, 1993, entitled System for Managing 

Tile Images using Multiple Resolutions, discloses an “image memory management 

system for tiled images,” where “each source image is stored as a full resolution 5 

image and a set of lower-resolution subimages.”  App. C at Abstract; Figs. 1 and 2.  

Suitable applications of the DeAguiar patent’s image tiling and image pyramid 

scheme include “electrical schematics, topographical maps, satellite images, 

heating/ventilating/air conditioning (HVAC) drawings, and the like.”  Id. at col. 

6:65-7:2. 10 
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55. U.S. Patent 4,972,319 to Delorme, filed on Sept. 25, 1987 and issued 

on Nov. 20, 1990, also showed that image tiling and image pyramid can be used in 

mapping applications.  Specifically, the Delorme patent discloses a “global 

mapping system which organizes mapping data into a hierarchy of successive 5 

magnitudes or levels for presentation of the mapping data with variable resolution, 

starting from a first or highest magnitude with lowest resolution and progressing to 

a last or lowest magnitude with highest resolution.”  App. D at Abstract.  A 

pyramid of successively lower resolution image tiles is shown in Fig. 8 of the 

Delorme 319 patent.  Id. at Fig. 8.  10 
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56. In yet another example, a 1996 article entitled “The MAGIC Project: 

From Vision to Reality” by Barbara Fuller and Ira Richer (“Fuller”) also shows the 

image tiling and image pyramid scheme for mapping applications.  Ex. 1011 at 

Fig. 3.  5 
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57. Microsoft itself used a multi-resolution tiling system in an online 

mapping application, TerraServer, starting in the mid 1990s.  See, e.g. Barclay et 

al, “Microsoft TerraServer: A Spatial Data Warehouse,” Microsoft Technical 

Report MS-TR-99-29, June 1999, Revised February 2000 (Ex. 1030) (“Barclay”).3  5 

TerraServer stored “aerial, satellite, and topographic images of the earth in a SQL 

database available via the Internet.”  Barclay, Abstract.  TerraServer stored image 

data in the database in JPEG or GIF format in a “pyramid” of image tiles at 

varying resolutions.  Id., § 2.1.  Source imagery is first cut into high-resolution tiles 

using a “TerraCutter” program: 10 

                                           
3 Also available online at https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/msr_tr_99_29_terraserver.pdf (accessed September 29, 

2016). 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

30 
 

 

58. Barclay, Fig. 7.  Once the high-resolution tiles have been generated, 

“[f]our higher resolution tiles are sub-sampled onto one lower resolution tile,” this 

process is “repeated for the number of levels in the image hierarchy.”  Id.  § 2.1.  

Tiles are requested using HTTP protocol by a “thin-client” graphical web browser.  5 

Fig. 9 of Barclay shows how TerraServer down-samples image tiles into a 

hierarchy or image pyramid of tiles at varying resolutions: 

 

See also id., § 3.4. 

59. I was personally familiar with the TerraServer system around the time 10 

that it was released in 1998 because I personally used the system at the time and it 
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was widely discussed in the GIS community after it became very popular very 

quickly.  The description in Ex. 1030 is consistent with my own recollection at the 

time of how the TerraServer operated.  I have also considered a number of 

additional contemporaneous documents describing TerraServer, including the 

original 1999 version of Barclay (Ex. 1032), a version of Barclay that was 5 

published in the proceedings of the ACM SIGMOD (Association for Computing 

Machinery’s Special Interest Group on Management of Data) in 2000 (Ex. 1035), 

an earlier 1998 Microsoft White Paper on Terra Server (Ex. 1034, with Cornell 

University Library submission record as Ex. 1033), a 1998 Microsoft White Paper 

on TerraServer (Ex. 1036) and several Internet Archive captures from the late 10 

1990s and 2000 of the technical information on the TerraServer page (Exs. 1037-

1042).  All of this information is consistent with and supports my understanding of 

the operation of the TerraServer program which I discussed in regard to Ex. 1030.  

Additionally, all of these documents were contemporaneously generated 

descriptions of TerraServer that long pre-date the litigation in this case.  Therefore, 15 

it is my opinion that a reasonable person in the field of computer science, whether 

an expert or a person of ordinary skill in the art, would rely on these exhibits as 
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indicative of what was known in the art of online Geographic Information Systems 

prior to the alleged invention date and effective filing date of the ’136 Patent.4 

60. Bradium also previously mischaracterized a portion of Ex. 1030 in 

other IPRs relating to other Bradium patents.  For example, in a “Motion for 

Observations” on my deposition testimony in IPR2016-00448, Bradium quoted a 5 

portion of Ex. 1030 saying that the solution described in Ex. 1030 “had not been 

attempted before” and that “many people felt it was impossible without using an 

object-oriented or object-relational system” as somehow relevant to Bradium’s 

“argument that VRML is essentially a set of objects that are linked to one another.”  

IPR2016-00448, Paper 44, Observation No. 3; see also Appendix NN at 52:1-12.  10 

This argument is such a complete non sequitur that it is difficult to even make 

sense of what Bradium was trying to argue.  Simply put, the quoted portion of Ex. 

1030 had nothing to do with VRML.  Since Bradium’s position here was 

incoherent, it is more straightforward for me to explain what the quoted portion of 

Ex. 1030 actually said.  Microsoft’s TerraServer project was originally developed 15 

by a research group focused on “scaleable servers” who wanted to demonstrate a 

                                           
4 Naturally, some of these exhibits were accessed from the Internet more recently 

and contain additional markings reflective of when they were accessed, but the 

documents themselves are much older than that. 
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“large Internet server with a large database and heavy web traffic,” and in order to 

generate such traffic they “needed to build an application that would be interesting 

to millions of web users.”  One of the reasons that the authors describe for utlizing 

a large scale geographic database as the test case is that: 

The solution as we defined it - a wide-area, client/server 5 

imagery database application stored in a commercially 

available SQL database system - had not been attempted 

before.  Indeed, many people felt it was impossible 

without using an object-oriented or object-relational 

system. 10 

Ex. 1030 at 2-3. 

61. Read in context, this portion of Ex. 1030 is discussing how creating a 

large-scale commercially available application based on commonly used SQL 

databases made TerraServer a good application for demonstrating scalable server 

concepts.  This has nothing to do with VRML.  Of course, it is also true that 15 

VRML at the time was capable of using mip-mapped textures, including 

geographically linked images (indeed, this is a key teaching of Reddy, which is 

illustrated in Figures 1 and 3, for example), but that is not specifically what Ex. 

1030 was discussing.  To the extent that Bradium may raise similar arguments in 

this proceeding, particularly if it does so in a more coherent manner, I may choose 20 

to respond in more detail. 
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D. Compression of Image Tiles 

62. The ’136 Patent discusses that the image tiles can preferably be 

compressed, e.g., for a fixed compression ratio of 4:1.  Ex. 1001 at 6:48-53.  

Numerous methods existed, however, long before the ’136 Patent’s priority date, to 

compress images for either a variable or fixed ratio. 5 

63. One widely used method of digital image compression is JPEG 

compression, which is based on the Discrete Cosine Transform (“DCT”), and is 

described in the International Telegraph and Telephone Consultative Committee 

(“CCITT”) Recommendation T.81 published in September 1992 (App. F).  JPEG 

compression includes the following main steps: “1. The image is broken into 8x8 10 

blocks of pixels. 2. Working from left to right, top to bottom, the DCT is applied to 

each block. 3. Each block is compressed through quantization. 4. The array of 

compressed blocks that constitute the image is stored in a drastically reduced 

amount of space. 5. When desired, the image is reconstructed through 

decompression, a process that uses the Inverse Discrete Cosine Transform 15 

(IDCT).”  App. G at 1, Ken Cabeen & Peter Gent, Image Compression and the 

Discrete Cosine Transform.  

64. Another widely used method of digital image compression is based on 

the wavelet transform.  For example, Marc Antonini et al.’s 1992 paper Image 

Coding Using Wavelet Transform discloses a scheme for image compression using 20 
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the wavelet transform.  See generally App. H.  In addition, the Antonini paper 

shows that image compression using wavelet transform not only achieves a good 

image quality (id. at 217-18), but is also suitable for a progressive transmission 

scheme to “allow the receiver to recognize a picture as quickly as possible at 

minimum cost.”  Id. at 218-19.5   5 

65. The JPEG 2000 image compression standard, which was designed as 

the next version of the JPEG Standard to address its identified problems, uses 

discrete wavelet transform. 

                                           
5 I understand that Bradium has mischaracterized my discussion of the use of 

wavelet transformation in previous IPRs as somehow teaching away from the use 

of progressive resolution enhancement (a term which does not appear in the claims 

of the ’136 patent) by transmitting successive resolution levels.  Simply put, this is 

wrong because the two things have little or nothing to do with each other.  Many 

forms of compression were well known prior to the alleged invention and effective 

filing dates of the ’136 Patent which could be used either to compress individual 

images or “tiles,” or to progressively send differential images to form a complete 

image, and neither taught away from the other. 
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E. Progressive Image Resolution Enhancement 

66. The progressive image resolution enhancement technique described 

and claimed in the ’136 Patent is one of the “conventional” solutions that have 

been used to reduce the latency of transmitting complex images over a 

communications network, as admitted in the “Background of the Invention” 5 

section of the ’136 Patent.  Ex. 1001 at 2:11-21 (“Different conventional systems 

have been proposed to reduce the latency affect by transmitting the image in highly 

compressed formats that support progressive resolution build-up of the image 

within the current client field of view. . . . Progressive image resolution 

transmission, typically using a differential resolution method, permits an 10 

approximate image to be quickly presented with image details being continuously 

added over time.”) (emphasis added).  

67. For example, U.S. Patent No. 5,321,520 to Inga et al., filed July 20, 

1992 and issued June 14, 1994, discloses a “Progressive Image Enhancement” 

(“PIE”) method, where a “‘crude’ image is presented to the subscriber” first and 15 

then the method “progressively enhance[s] the quality of the presented image” over 

time.  App. I at col. 12:65-13:1.  “The longer the user observes a selected image, 

the ‘better’ the image becomes in the sense of pixel resolution and quantity of gray 

levels.”  Id. at col. 13:1-3.  
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68. U.S. Patent No. 6,182,114 to Yap et al. was filed January 9, 1998 and 

issued January 30, 2001.  The “Background of the Invention” section of the ’136 

Patent mentions Yap.  The Yap Patent recognizes that “progressive transmission” 

is an existing approach to solve the problem of “realtime visualization of large 

scale images over a ‘thinwire’ model of computation,” i.e., over a “low bandwidth 5 

line.”  App. J at col. 1:47-65.  In addition to the traditional progressive 

transmission method, where the higher resolution of the entire image will be 

eventually transmitted, the Yap Patent discloses an improved version of 

progressive transmission, where “resolution is also varied over the physical extent 

of the image.”  Id. at col. 2:4-17.  Specifically, the Yap Patent discloses that “high 10 

resolution data is transmitted at the user’s gaze point but with lower resolution as 

one moves away from that point.”  Id. at 2:18-20.  The same scheme is used in the 

’136 Patent.   

F. Three-Dimensional Graphics 

1. Overview of 3D Computer Graphics principles 15 

69. The “field” section of the ’136 Patent notes that the claimed invention 

is designed “to support presentation of high-resolution images subject to dynamic 

viewing frustums.”  Ex. 1001, 1:52-57.  The term “frustum” is used in computer 

graphics to refer to the field of view of a three-dimensional image, and is 

analogous to the view through a viewfinder of a real-world camera, except that the 20 
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“camera” is notional and is simply the basis for the calculations that the computer 

does to render the image.  In order to understand this aspect of the ’136 Patent and 

how the prior art relates to it, I discuss below certain concepts in the field of 

computer graphics.  Computer graphics is the art and science of drawing pictures 

on a display screen using a computer.  A picture generated using computer 5 

graphics is created from numerical data describing the objects to be drawn.  

Computer graphics is generally divided into 2D ("two-dimensional") graphics that 

only depict images in two dimensions and 3D ("three-dimensional") graphics that 

depict images in three dimensions, although by way of representing them on a 2D 

screen.   10 

70. An image that shows up on a computer display typically corresponds 

to a large, rectangular, two-dimensional array of values in a computer memory 

called a frame buffer.  An individual location in the frame buffer can hold a color 

value corresponding to one "dot" or picture element, or pixel for short, on the 

display screen.  In the simple example shown below, the values in the frame buffer 15 

at each pixel are either 0 or 1, which get displayed as black and white, respectively, 

on the screen. 
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71. In display systems, color values at each pixel are usually either 

represented by a single number representing shades of gray, or by 3 numbers, R, G, 

and B, corresponding to red, green, and blue intensity values, for each location on 

the screen.  The computer display is generated by repeatedly "scanning out" the 5 

array of numerical pixel values from the frame buffer memory in successive rows 

(at a rate, for example, of 60 frames/second), which produces the actual colors seen 

at each location on the screen.   

72. When the computer changes an image displayed on the screen, it 

updates the corresponding values in the frame buffer.  Simply writing a new 10 

number into the frame buffer at a given location results in a new color appearing at 

that position on the screen starting with the next refresh cycle.   

73. Creating an image of a 3D scene involves taking a mathematical 

description of the objects in a scene, looking at it from a given point of view, and 
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figuring out what colors to draw at all the pixel locations in the frame buffer to 

create the corresponding image on the screen, as shown in the following example 

of a 3D house being drawn on a 2D display.  All 3D points in the scene are mapped 

to the corresponding pixels on the screen by projecting along lines of sight, as 

though the scene was being photographed by a camera onto film.  The “projection 5 

plane” below is another term for the “viewing frustum” as the term is used in the 

’136 Patent. 

 

74. The mathematical description of the scene is known as a 3D model.  

Each 3D object in the 3D model is typically represented using a collection of 10 

geometric “primitives” such as points, lines, and polygons (usually triangles) that 

make up the object surfaces.  In the simple example above, the house might be 

modeled using 4 polygons for the walls and 4 more polygons for the roof.  Each 

polygon is defined by its vertices or corners.  Typically, each vertex is specified 
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using 3D numerical coordinates, X, Y, and Z, for its location in 3D space and R, G, 

and B values for its color.  A mathematical process called rendering is used to 

model a virtual "camera" looking at the 3D scene from a particular point of view, 

mathematically project all the 3D polygons into the corresponding 2D pixels in the 

display, and assign the appropriate colors to them in the frame buffer. 5 

75. Various 3D computer graphics systems are built around the concept of 

a graphics pipeline.  Acting like an assembly line, the graphics pipeline takes in the 

"raw materials" consisting of the data for the underlying 3D model and processes 

these through a series of computational steps to produce the image displayed on the 

2D screen.  In its simplest form, a graphics pipeline is described as having a series 10 

of three general phases, geometry, rasterization, and display, as shown in the 

diagram below: 

 

76. In the above diagram, the 3D model represents the X, Y, Z 

coordinates and R, G, B color values for all the 3D polygons that make up the 15 

objects in the desired scene, along with certain other information such as the 

location of the camera, light sources, display boundaries, etc.  Geometry refers to 
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the calculations performed to mathematically transform the 3D coordinates of all 

the polygons in the 3D model into corresponding screen coordinates given the 

location and orientation of the imaginary camera viewing the scene.  Rasterization 

refers to the computations that determine all of the 2D pixel locations that will be 

visible within each 3D polygon and the colors those pixels should have.  Display is 5 

then the process of writing the 2D pixel color values into the frame buffer and 

thereby causing the corresponding image to be displayed on the screen. 

77. Rasterizing a polygon generally involves three main tasks: 

determining which pixels fall within the polygon (scan conversion), determining 

which of these pixels are visible on the screen (visible-surface determination), and 10 

determining what color to assign each visible pixel (shading).   

78. The process of determining which pixels within the scan converted 

polygons will actually be visible on the screen is known as visible-surface 

determination.  Depending on the direction from which the scene is viewed by the 

virtual camera, certain polygons (or portions thereof) may be occluded by other 15 

polygons and not visible on the screen, such as the back wall of the house in the 

example shown above.  One common way to solve the visible surface problem is to 

write the RGB value for a pixel into the frame buffer only if its 3D position is 

closer to the camera than what may have been previously written into that same 

location by another polygon, much as an oil painting is painted in layers from back 20 
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to front.  This involves what is known in the art as depth buffering or z-buffering, 

that is, keeping track of the depth or "Z" value (distance from the viewer's eye) 

currently residing at each pixel.   

79. Once the scan conversion and rasterization processes are complete, 

the graphics program must assign colors to each visible pixel, a process that has 5 

evolved substantially over the history of computer graphics and depends on the 

level of realism desired in the resulting image.  In the simple example below, only 

the scan converted pixels that make up the edges of each polygon are drawn with 

black pixels. 

 10 

Example of a Wireframe Image 

80. The resulting collection of polygons approximating the three-

dimensional object is sometimes referred to as a “mesh” or “polygon mesh.”  The 

use of meshes, including foundational work performed by Microsoft to represent 

three-dimensional objects at varying levels of detail, is described in detail in 15 

Hughes Hoppe’s 1996 paper “Progressive Meshes,” (App. N), which was 
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published in the SIGGRAPH ’96: Proceedings of the 23rd annual conference on 

computer graphics and interactive techniques, pp. 99-108, and is also available 

online at http://research.microsoft.com/en-us/um/people/hoppe/pm.pdf.   

2. Texture 

81. In 1974, “texture mapping” was developed as a further improvement 5 

in adding detail to objects or images.  Texture mapping involves applying a 2D 

image or function approximating some real-world material like wood, bricks, 

fabric, marble, or a checkerboard, to the surface of polygons (i.e, the mesh) as in 

the image shown below.  The "pixels" of a texture map are often referred to as 

texture elements or texels to distinguish them from the pixels of the resulting 10 

image.  Texture mapping is like applying wallpaper or a decal to a surface.  It is 

possible to construct a brick wall by carefully drawing many 3D bricks, which 

takes a lot of work, or one can simply paste a photograph of a brick wall onto an 

otherwise flat wall, which is easier and looks like a brick wall if you don't look too 

close.  Texture mapping has become standard in 3D graphics systems to use 15 

texture mapping to quickly fill in realistic detail for many of the objects in a 3D 

scene, especially floors, walls, sky, and other background areas.  Textures can be 

either color images, or can be monochrome images used to modulate the 

untextured color of the polygon. 
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82. Some textures may be generic- for example, a 3D graphics rendering 

program might re-use a “wood” texture for all objects represented as wood.  In this 

scenario, the texture is essentially “wallpaper” with a repeating pattern applied to 

certain objects or surfaces within the field of view. 

83. Textures may also be unique, or specific to a particular surface or 5 

object.  This is often the case when photographs are used as textures.  For example, 

when satellite or aerial photographs are used in a 3D rendering of a landscape, the 

specific portions of the imagery that correspond to a particular location are mapped 

onto the terrain at that location.  For example, U.S. Patent No. 5,179,638 to 

Dawson et al., assigned to Honeywell, Inc., (App. K) illustrates how an aerial 10 

photograph can be used as “texture data” and mapped onto co-located digital 

elevation data, as shown in Fig. 2: 
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84. This technique of using aerial imagery as a texture applied to a three-

dimensional model of terrain is also known as a “synthetic view.”  Synthetic view 

technology can be used in aviation to provide a pilot operating at night or bad 

weather with a synthesized view of the terrain around them based on actual 5 

position (e.g. derived from GPS). Appendix AA, Hansen, J. et al, “Real-time 

synthetic vision cockpit display for general aviation,” AeroSense ’99, International 

Society for Optics and Photonics, 1999, describes such a system.  In the figure 

below, the bottom portion of the figure shows a wire-frame diagram illustrating the 

three-dimensional model of terrain, while the top image shows the synthetic view 10 

created by rendering satellite imagery on the terrain model: 
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85. Microsoft used a similar technique with its popular Flight Simulator 

series of computer games, starting with Flight Simulator 1995.  Flight Simulator 

utilized a real-time 3D rendering of terrain features with textures generated from a 

variety of sources, including satellite imagery.  The figure below illustrates a 3D 5 

perspective view generated in Flight Simulator 2000, which was actually released 

in late 1999: 
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3. Virtual Reality Modeling Language (VRML) 

86. VRML was a well-known industry standard that defined a file format 

for describing interactive 3D objects and worlds (App. KK).  The 1997 release 

version of the VRML standard, commonly known as VRML97, specified a file 5 

format by which visual information, e.g., the texture and 3D modeling discussed 

herein, can be stored on a computer and viewed. 

87. A user wishing to view visual information stored in the VRML format 

could typically use a VRML viewer program, a VRML browser or a plug-in that 

worked with an off-the-shelf web browser.  Because VRML was designed to 10 

operate in a client-server system, e.g., conveying visual information via web pages, 

a typical network-based VRML application would rely on an underlying Internet 
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mechanism of hypertext data requests to fetch VRML data from a server to a user 

computer.  One advantage of VRML file format was that it allowed for 

hyperlinking to other media such as text and images, and thus provided a 

mechanism by which a user could navigate through a visual scene being viewed, 

while in the background, the VRML application would fetch and/or render 5 

additional data. 

G. Mip-Maps 

88. The provisional applications that the ’136 Patent claims priority to 

described the use of “mip-maps” as “surface textures when rendering a two-

dimensional representation of a three-dimensional scene.”  See, e.g., Ex. 1010 at 7-10 

9.  This mip-mapping technology, however, has been used for rendering surface 

textures since 1979, more than two decades before the filing date of the provisional 

applications to which the ’136 Patent claims priority.  App. L at 2, Lance Williams, 

Pyramidal Parametrics, Computer Graphics, vol. 17, no. 3, July 1983. 

89. The term “mip” derives from the Latin phrase “multum in parvo” 15 

meaning “many things in a small place.”  The term was adopted by Lance 

Williams in his 1983 paper, which indicated that “the mip-mapping technology has 

been used successfully to bandlimit texture mapping . . . since 1979.”  Id.  Mip-

mapping has been adopted in several versions of the OpenGL Standard prior to the 

filing date of the ’136 Patent, including OpenGL 1.1 released in March 1997 and 20 
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OpenGL 1.2.1 released in April 1999.  App. M, “Mipmapping” section of the 

OpenGL 1.1 Standard;6  App. T at 129-131.  OpenGL (GL stands for “graphics 

library”) is a 3D graphics standard originally designed and released by Silicon 

Graphics, Inc. of Mountain View, CA.  As defined in OpenGL 1.1, a mipmap is 

“an ordered set of arrays representing the same image; each array has a resolution 5 

lower than the previous one.  If the texture has dimensions , then there are 

mipmap arrays.  The first array is the original texture with 

dimensions .  Each subsequent array has dimensions where 

are the dimensions of the previous array.”  Id.   

90. An illustration of the mipmap pyramid is shown below.  See 10 

Photospector Blog, http://photospector.com/gigapixels/.   

                                           
6 Available online at 

https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html#S

ECTION00681100000000000000 
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91. By the late 1990s, mipmaps were commonly used in 3D graphics 

applications, among other purposes, to render object textures at varying levels of 

detail based on the proximity of the object to the simulated viewpoint.  For 

example, it would ordinarily be preferable to display an object in close proximity 5 

to the viewpoint at a high level of detail where the display is capable of showing a 

high level of texture detail, whereas for more distant objects a lower level of 

resolution is preferable because the display screen is unlikely to be capable of 

displaying the highest-resolution texture at a great distance, and because lower-

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

52 
 

resolution textures require far less system resources and bandwidth to retrieve, load 

and render.  U.S. Patent No. 5,760,783 to Migdal et al (“Migdal,” App. BB) is a 

patent from Silicon Graphics which describes how mipmaps may be used to render 

textures- including satellite or aerial photographs used as terrain textures for large 

maps, such as a flight simulator application.  App. BB, 9:5-17, 10:14-19.  Migdal 5 

illustrates how mipmaps at higher levels of detail may be used for points closer to 

the viewpoint and lower levels of detail for more distant objects.  For example, Fig. 

4C of Migdal illustrates a perspective view of regions of three different level of 

detail maps aligned with a center line from an eyesight location: 

 10 
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92. Migdal teaches that Fig. 4C illustrates that the clip-map “contains 

sufficient texel data to cover larger minified areas in the background of a display 

where coarser texture detail is appropriate.”  Id. at 10:3-5.  In my opinion, this 

teaching of Migdal is representative of what was already well-known in the art 

long before the earliest priority date claimed by the ’136 Patent: that 3D graphics 5 

applications could use “mipmaps” or similar level-of-detail pyramids, to render 

objects closer to the viewpoint at a higher resolution and objects more distant from 

the viewpoint at a lower resolution. 

93. Fuller (Ex. 1011) also illustrates this principle of using mipmaps to 

display closer objects at higher resolution and more distant objects at lower 10 

resolution.  Fuller describes an online system for 2D and 3D visualization of map 

data, which creates a 3D perspective representation of a landscape using a digital 

elevation model (DEM), then uses mipmaps of aerial images as the textures.  Ex. 

1002, Fig. 4: 
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94. Fig. 3 of Fuller shows that higher resolution images are mapped onto 

portions of the terrain nearest the viewer, while lower resolution images are 

mapped onto more distant portions of the terrain: 
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H. Storage of image data 

95. In practical systems, the visual information in the form of image tiles, 

image pyramids, mip-maps, 3D graphics, meshes, and so on, is stored on a 

computer from which users can access the visual information. 5 

96. The ’136 Patent describes that a network image server system stores 

the source image data.  Ex. 1001 at 6:16-30.  The source image data is typically a 

high-resolution bit-map raster map and/or satellite imagery of geographic regions.  

Id.  The ’136 Patent describes that this source image data is pre-processed to obtain 

a series of derivative images, and is also subdivided into a regular array such that 10 

each resulting image parcel has a same resolution.  The ’136 Patent then describes 

that each image parcel is “preferably” stored in a file such that any image parcel 

can be located by specification of a KD, X and Y value.   
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97. Many formats for storing images, and the trade-offs for storage and 

retrieval efficiency, were well-known for several years before the filing of the ’136 

Patent.  The formats and trade-offs related to the color space used for image 

representation, the tile size used in case of multi-resolution images, whether 

different portions of an image are stored in one file or multiple files, the number 5 

and details of headers used to indicate information about the image, and so on. 

98. For example, GeoTIFF is a file format (Appendix GG) for storing 

geographical image files using the well-known Tagged Image File Format (TIFF).  

The GeoTIFF spec defines a set of TIFF tags provided to describe all 

"Cartographic" information associated with TIFF imagery that originates from 10 

satellite imaging systems, scanned aerial photography, scanned maps, digital 

elevation models, or as a result of geographic analyses.  Its aim is to allow means 

for tying a raster image to a known model space or map projection, and for 

describing those projections.  The 1.0 release version of the GeoTIFF file format 

builds upon the then available revision 6.0 of TIFF. 15 

99. TIFF (Appendix HH) defines a file format for storing image data.  In 

particular, TIFF 6.0 provides for storage of multiple images in a single TIFF file, 

each image corresponding to a subfile.  These images could be, e. g., a full 

resolution image and its reduced resolution representations. 
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100. FlashPix by Kodak was another well-known format for storing images 

(Appendix II).  A FlashPix file stored image data in a hierarchy of resolutions from 

the highest available for an image, down to the lowest defined format (§2.1).  

Thus, a FlashPix file could contain either a single resolution image or an entire 

multi-resolution hierarchy (§2.2, FIG. 2.3).  For convenient access, each resolution 5 

image was organized in tiles, which represented rectangular pixel arrays of the 

image.  (§2.3. FIG. 2.4). 

101. These techniques, and other obvious variations, for storing image 

data, including multiple resolution versions of an image, provided multiple 

implementation choices.  Depending on design criteria such as the amount of 10 

storage available, tolerance to header overhead, transmission latency when the 

images are to be transferred over a network, portability and compatibility with 

client viewing programs, a person of ordinary skill in the art designing such a 

system would be able to select a storage method for storing images in a single file, 

with each tile in its separate file, or with all tiles of one resolution in a single file, 15 

and so on. 

VII. OVERVIEW OF THE ’136 PATENT 

102. The ’136 Patent describes a system in which “[l]arge-scale images are 

retrieved over network communications channels for display on a client device by 
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selecting an update image parcel relative to an operator controlled image viewpoint 

to display via the client device.”  Ex. 1001 at Abstract. 

103. The “Background” section of the ’136 Patent describes a “well 

recognized problem” of how to reduce the latency for transmitting full resolution 

images over the Internet on an “as needed” basis, particularly for “complex 5 

images” such as “geographic, topographic, and other highly detailed maps.”  Ex. 

1001 at 1:61-2:11.  The ’136 Patent states that solutions already in existence 

included “transmitting the image in highly compressed formats that support 

progressive resolution build-up of the image within the current client field of 

view.”  Id. at 2:11-15.  The ’136 Patent also states that such “conventional” 10 

solutions, like the ones described in U.S. Pat. Nos. 4,698,689 (Tzou) and 6,182,114 

(Yap), usually “presume that client systems have an excess of computing 

performance, memory and storage” and are “generally unworkable for smaller, 

often dedicated or embedded” clients.  Id. at 2:22-3:33.  According to the ’136 

Patent, the conventional solutions do not work well under “limited network 15 

bandwidth” situations.  Id. at 3:33-62. 

104. To address these perceived issues in the existing art, the ’136 Patent 

discloses a system purportedly capable of “optimally presenting image data on 

client systems with potentially limited processing performance, resources, and 

communications bandwidth.”  Id. at 3:67-4:3.  20 
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105. Specifically, the ’136 Patent describes an image distribution system 

having a network image server and a client system, where a client can input 

navigational commands to adjust a 3D viewing frustum for the image displayed on 

the client system.  Id. at 5:51-6:15.  High-resolution source image data is pre-

processed by the image server into a series K1-N of derivative images of 5 

progressively lower image resolution.  Id. at 6:31-37, Fig. 2: 

 

106. The source image is also subdivided into a regular array of 64 by 64 

pixel resolution image parcels (a.k.a. image tiles), and each image parcel may be 

compressed to fit into a single TCP/IP packet for faster transmission.  Id. at 6:31-10 

53; 8:37-58.   
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107. The client system in the ’136 Patent has a “parcel request” subsystem 

to request image parcels from the server, a “control block” that directs the transfer 

of received image parcels and overlay data to a local parcel data store.  Id. at 7:35-

57.  The control block also decompresses the image parcels and directs a 

“rendering engine” to render them.  Id. at 7:58-60; Fig. 3.  5 

108. When the viewing point is changed in response to a user navigation 

command, the control block “determines the ordered priority of image parcels to be 

requested from the server . . . to support the progressive rendering of the displayed 

image.”  Id. at 8:17-20.  A number of image parcel requests are then placed in a 

request queue, to be issued by the parcel request subsystem according to each 10 

request’s assigned request priority.  Id. at 8:17-25; 9:33-45.  Although various 

factors may affect the priority assigned to a parcel request, e.g., the “resolution of 
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the client display” (10:2-13) or whether the image parcel is “outside of the viewing 

frustum” (10:35-37), generally speaking, “image parcels with lower resolution 

levels will accumulate greater priority values,” so “a complete image of at least 

low resolution will be available for rendering” in a fast manner (11:17-29).  In 

addition, the control parameter for calculating the priority can be set in a way that 5 

gives “higher priority for parcels covering areas near the focal point of the viewer” 

to make sure that image parcels are requested “based on the relative contribution of 

the image parcel data to the total display quality of the image.”  Id. at 11:30-48.  

The ’136 Patent acknowledges that storing and retrieving image tiles in a manner 

that facilitated retrieving them based on their position and resolution level was 10 

known in the art, e.g. in Yap.  Ex. 1001 at 2:28-54.  The ’136 Patent also 

acknowledges that zoom and pan functions for user image navigation were well 

known (id. at 1:60-65) as the Tzou Patent taught selective transmission of low 

resolution image data and subsequent updating of the prior transmission with 

succeeding refined images (id. at 2:12-17), the Yap Patent suggested updated 15 

transmission of image data parcels based on the user gaze point as the user-

controlled image viewpoint (id. at 2:38-54).  Woods further discloses using URLs 

to request VRML resources (e.g., textures) which are prioritized based on criteria 

such as the position and orientation of the viewpoint.  Ex.1003 at 7:27-36, 7:66-

8:8. 20 
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109. In the ’136 Patent, after the needed parcels are requested and received, 

an algorithm is used to select the image parcel for rendering and display.  Id. at 

9:46-51.  Overlay data may also be added to the display if its image coordinates 

matches the current image parcel location.  Id. at 9:55-58.  The ’136 Patent 

discloses that two-dimensional image parcels are displayed in a three-dimensional 5 

space using projection transform.  Id. at 6:5-15; 8:7-15; 9:46-51; 11:30-42; 12:1-

10.  In my opinion, there is no disclosure in the specification of the ’136 Patent that 

teaches or suggests that the images displayed are mapped onto an elevation model.   

The ’136 Patent does not mention an elevation model or surface model or any 

other surface geometry data onto which the imagery would be texture mapped.  10 

The ’136 Patent specification suggests that an overlay may include 3D objects (id. 

at 6:25-30), but a person of ordinary skill in the art would understand such 

“overlays” to be displayed on top of the imagery like other overlays such as “icons, 

buildings, and landmark names.”  The specification of the ’136 Patent effectively 

discloses a view that is “three-dimensional” in the sense that it generates a viewing 15 

perspective that contains position, rotation, and height components, but operating 

over a flat plane of terrain imagery.  Id. at 6:5-15.   

110. The ’136 Patent states that its disclosed technology can achieve faster 

image transfer by (1) dividing the source image into parcels/tiles, (id. at 6:31-47), 

(2) processing the parcels/tiles into a series of progressively lower resolution 20 
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parcels/tiles, (id.) and (3) requesting and transmitting the parcels/tiles needed for a 

particular viewpoint in a priority order, generally lower-resolution tiles first.  Id. 

3:66-5:2.  

VIII. IDENTIFICATION OF THE PRIOR ART AND SUMMARY OF 
OPINIONS 5 

111. As explained below, it is my opinion that the prior art references cited 

in this Declaration disclose all technical features in Claims 1-27 of the ’136 Patent, 

thus rendering them unpatentable. 

112. Based on my review of the prior art references, claims 1-27 of the 

’136 Patent are obvious for the following reasons: 10 

• Claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-26 are obvious over Reddy 

in view of Woods 

• Claims 5, 14, and 23 are obvious over Reddy in view of Woods and 

Chiarabini 

• Claims 9, 18, and 27 are obvious over Reddy in view of Woods and 15 

Fuller. 

113. I discuss these references individually below:  

A. Reddy 

114. “TerraVision II: Visualizing Massive Terrain Databases in VRML” by 

Martin Reddy et al. (“Reddy”) (Ex. 1004) was published in the March/April 1999 20 
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issue of IEEE Computer Graphics and Applications.  From my 25+ year 

experience as an IEEE member, I am very familiar with the IEEE, which is the 

world’s largest association of technical professionals and publishes a number of 

well-respected peer-reviewed periodical journals.  The IEEE Computer Graphics 

and Applications was a well-known publication.  In my opinion, persons of 5 

ordinary skill in the art in the field of computer graphics would be familiar with the 

IEEE and its publications, consider IEEE publications to be established, reliable 

sources of information accessible to those of skill in the art, and would rely on the 

publication and copyright dates indicated on the face of an article in an IEEE 

publication as a reliable indication of the actual publication date of the article.  10 

Reddy bears such publication dates on each page and a 1999 copyright date on the 

first page of the article (page 30 of the journal).  In my opinion, the publication 

dates indicated on the face of Reddy are a type of information that persons in the 

field of computer graphics would reasonably rely upon.  Reddy includes a footnote 

“0272-1716/99/$10.00 © 1999 IEEE.”  Based on my experience, this footnote 15 

means that Reddy was published sometime in the year 1999.  Further, it was 

common practice to release IEEE journals to the public in the beginning of the 

stated period of the journal, For example, based on my experience receiving 

numerous IEEE journals over the past 25 years, the March-April 1999 issue would 
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have been sent to subscribers in late February or early March 1999.  Therefore, 

Reddy was published more than one year prior to December 27, 2000. 

B. Woods 

115. U.S. Patent No. 5,956,039 is a patent issued on September 21, 1999.  

Therefore, because Woods was issued more than one year prior to the earliest 5 

claimed priority date of the ’136 Patent, Woods is prior art as the law has been 

explained to me. 

C. Chiarabini 

116. U.S. Patent No. 7,324,228 B2 is a patent that issued from an 

application filed on August 24, 2001.  Therefore, Chiarabini was filed before the 10 

earliest non-provisional application to which the ’136 Patent claims priority, which 

was filed on December 24, 2001.  I discuss Chiarabini below as prior art against 

Claims 5, 14, and 23, which recite that the number of parallel requests is 

determined based on network response latency and available system resources.  I 

have been informed that the mere fact that the ’136 Patent claims priority to earlier 15 

provisional applications filed in 2000 does not necessarily mean that the claims are 

automatically entitled to that priority date.  I have further been informed that a 

claim is not entitled to a priority date from an earlier application unless the 

disclosure in that earlier application, and every other application in the chain of 

priority, supports every element of the claim.  20 
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117. In my opinion, none of the provisional applications to which the ’136 

patent claims priority (Exs. 1066-1071) contains any support for determining the 

number of parallel requests based on network response latency and available 

system resources as recited by claims 5, 14, and 23.  None of the provisional 

applications mentions “latency” or “system resources.”  Nor is there any 5 

description of this subject matter using different terms. 

118. For example, Provisional Application No. 60/258,465 (Ex. 1066) 

states at page 8 lines 22 through 25 that “[d]ownloading is asynchronous; the 

renderer maintains a priority queue of download requests, and separate threads are 

downloading images. Whenever a download is complete, another download is 10 

initiated immediately, based on the highest-priority request.” 

119. In my opinion, while this disclosure does mention “separate threads,” 

it says nothing about how many threads or requests are active at one time, nor 

about adjusting the number of threads or requests that are used based on network 

latency and available system resources. Having reviewed the entirety of the 15 

provisional applications, I found no other disclosures that are even vaguely related 

to this claim limitation.  

120. Therefore, it is my opinion that the December 2000 provisional 

applications to which the ’136 Patent claims priority do not support claims 5, 14, 

and 23.  Therefore, Chiarabini is prior art against these claims. 20 
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121. In addition, it is my opinion that if claims 5, 14, and 23 are construed 

to require a runtime determination of the number of parallel requests, then they 

should not receive a priority date earlier than November 3, 2016 when the ’136 

Patent was filed.  While it is true that the statement that “[t]he number of pool 

threads is determined as a balance between the available system resources and the 5 

network response latency” (Ex. 1001 at 9:6-9) was included in the nonprovisional 

application filed on Dec. 24, 2001, a person of ordinary skill in the art would 

understand this statement to describe a design-time decision made by the system 

designer(s).  This is clear from the preceding statement that “a pool of four 

network request threads” is used “[i]n the preferred embodiments” (id. at 9:4-6), 10 

and also the subsequent suggestion that the number four was determined based on 

“[e]mpirical[]” data suggesting it works well “for many wireless devices” (id. at 

8:67-9:3).  If the thread pool was adjusted automatically at runtime, there would 

not be a preferred pool size or a need to resort on empirical data to determine an 

appropriate pool size.  Furthermore, there is no discussion in the ’136 Patent of 15 

actually adjusting the number of request threads at runtime or any indication as to 

what “available system resources” would warrant adjusting the number of request 

threads at runtime.  
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D. Fuller 

122. “The MAGIC Project: From Vision to Reality,” by Barbara Fuller and 

Ira Richer (“Fuller”) (Ex. 1011) was published in the May/June 1996 issue of IEEE 

Network.  I explained my familiarity with IEEE and its publications, as well as the 

widespread knowledge in the art of IEEE publications, above in regard to Reddy, 5 

and in my opinion the same analysis would apply to Fuller. 

123. In my opinion, persons of ordinary skill in the art in the field of 

computer graphics would be familiar with the IEEE and its publications, consider 

IEEE publications to be established, reliable sources of information accessible to 

those of skill in the art, and would rely on the publication and copyright dates 10 

indicated on the face of an article in an IEEE publication as a reliable indication of 

the actual publication date of the article.  Fuller bears such publication dates 

(“IEEE Network * May/June 1996”) on each page and a 1996 copyright date on 

the first page of the article (page 15 of the journal).  In my opinion, the publication 

dates indicated on the face of Fuller are a type of information that persons in the 15 

field of computer graphics would reasonably rely upon.  In my experience, the 

publication dates indicated in Fuller indicates that Fuller was published sometime 

in 1996.  Further, it was common practice to release IEEE journals to the public in 

the beginning of the stated period of the journal, For example, based on my 

experience receiving numerous IEEE journals over the past 25 years, the May/June 20 
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1996 issue would have been sent to subscribers in late April or early May 1996.  

Therefore, Fuller was published more than one year prior to December 27, 2000. 

IX. CLAIM CONSTRUCTION 

124. In conducting my analyses of the asserted claims of the ’136 Patent, I 

have applied the legal understandings I set out below regarding claim constructions 5 

consistent with the “broadest reasonable interpretation” (BRI) standard described 

above, and offer them only for this Inter Partes Review.  The claim constructions 

do not necessary reflect the appropriate claim constructions to be used in litigation 

proceedings, such as litigation in a district court, where a different standard 

applies.  For example, I have been informed that if Bradium argues for a narrow 10 

claim construction or otherwise relies on a narrow interpretation of a particular 

term in an IPR, Bradium may be precluded from relying on a broader interpretation 

or construction in litigation. 

125. I understand that, under the BRI claim construction, claim terms are 

given their ordinary and customary meaning as would be understood by one of 15 

ordinary skill in the art in the context of the entire disclosure.  An inventor may 

rebut that presumption by providing a definition of the term in the specification 

with reasonable clarity, deliberateness, and precision.  In the absence of such a 

definition, limitations are not to be read from the specification into the claims. 
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A. “Wireless Portable Device” in Claims 1, 10, and 19 

126. In my opinion, this term does not require further construction and 

should be given its plain and ordinary meaning.  “Wireless” is a common, well-

understood term, as is “portable.”  Therefore, in my opinion, a “wireless portable 

device” is simply a device that is wireless and portable. The term “wireless 5 

portable device” does not specifically appear in the specification of the ’136 patent, 

and having reviewed the specification, I did not see any evidence that the inventors 

acted to specifically define a “wireless portable device” as anything other than its 

ordinary meeting. 

127. 114. I understand that in IPR2016-01897, Bradium proposed that the 10 

term “mobile device” in the related ’239 Patent be construed as “a portable small 

client such as a mobile phone, smart phone, or personal digital assistant (PDA) that 

is constrained to limited bandwidth.”  I further understand that in its Decision to 

institute IPR of the ’239 Patent, the Board rejected Bradium’s proposed limiting 

construction of “mobile device” and determined that the term needed no further 15 

construction.  IPR2016-01897, Paper 17 at 9-10 (April 5, 2017).  In general, 

Bradium’s prior arguments have attempted to conflate the size, mobility, 

processing power, type of network connection, and bandwidth features described 

in the specification of the Bradium patents, in my view erroneously because these 

are different things.  For example, while the specification of the ’136 Patent gives 20 
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various examples of a “small client” (see e.g. Ex. 1001 at 3:11-18), “small client” 

is not the claim language, nor is it appropriate in my view to limit the construction 

of the term based solely on representative examples. 

B. “Thereby Enabling Efficient Use of Network Bandwidth in 
Conditions of Network Latency” in Claims 1, 10, and 19 5 

128. In my opinion, this phrase of the independent claims of the ’136 

patent should be construed to have no limiting effect.  I have been informed by 

counsel that “[a] ‘whereby’ clause that merely states the result of the limitations in 

the claim adds nothing to the patentability or substance of the claim” and that 

merely “laudatory” descriptions of the results of a process step are not given 10 

patentable weight when such a description “simply expresses the intended result of 

a process step positively recited.”  In my opinion, the term “efficient,” is vague in 

this context and could have a wide variety of meanings depending on the specific 

application.  Therefore, in my opinion, a person of ordinary skill in the art would 

understand this phrase only as stating the general goal for more efficient use of 15 

bandwidth, rather than a clear defining statement of the scope of the claims.  As 

such, the “thereby” phrase in the independent claims does nothing more than state 

a “laudatory” description of the preceding language, e.g. “the first wireless 

portable device handles download operations of at least the first image parcel and 

the second image parcel in parallel.”  Nevertheless, it is my opinion that this claim 20 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

72 
 

language is taught by the prior art references discussed in this declaration even if it 

is construed to have a limiting effect, as I discuss further below. 

C. “Configure[d][…] as a server to provide access to [the] at least 
some image parcels received by the wireless portable device” in 
claims 1, 10, and 19 5 

129. In my opinion, under the broadest reasonable interpretation, this term 

includes simply that the local store may provide parcels needed for display.  

Neither this claim language nor anything like it appears in the specification of the 

’136 Patent.  The ’136 Patent refers to a local parcel data store 46 (Ex. 1001 at 

7:46-51, 9:19-32, 10:16-19, Fig. 3) and refers to a network server 12 (e.g., Fig. 2).  10 

However, the ’136 Patent never describes the local parcel store as a server or 

describes configuring the local parcel store as a server.  For example, nothing in 

the specification of the ’136 Patent describes local parcel store acting as either an 

HTTP server or a database server, nor is there any indication that the local parcel 

store on a client is used to serve data parcels to other client devices in a network.  I 15 

have reviewed the specification of the ’136 Patent and I have found no other 

teaching in the ’136 Patent that a person of ordinary skill in the art would 

understand to support this claim language.   

130. Nonetheless, in view of the specification, a person of ordinary skill in 

the art would understand the “configured ... as a server to provide access to” as 20 

referring to the local parcel store’s ability to satisfy needs for certain image 
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parcels, namely those that have already been downloaded and stored in the local 

parcel store.  It would be obvious to a person of ordinary skill that a cache like the 

local parcel store described in the ’136 Patent would be implemented as a software 

module with APIs for storing items to the cache and for retrieving items from the 

cache.  The local parcel store is the closest thing in the ’136 Patent to a “server” 5 

because it provides parcels that are needed by the client, such as the parcel request 

client 42.  

131. The cache of the Mozilla open source browser illustrates my point that 

a simple cache acts as a server.  I use Mozilla as an example because it was a well-

known open source web browser in the mid to late 1990s.  While Mozilla’s source 10 

code was and is still available for download from Mozilla, I examined a version of 

the source code packaged with a 1999 book titled “Netscape Mozilla Source Code 

Guide.”  (Ex. 1060.)   This source code on the CD-ROM is packaged with the 

name “mozilla-source-m8” which corresponds to the M8 release on July 16, 1999.7  

The source code folders and files on the CD-ROM have modified dates that are 15 

                                           
7 See, e.g., https://www-archive.mozilla.org/releases/history.html (Mozilla release 

history). 
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from July 15, 1999 or earlier: 

   

132. The Mozilla cache included APIs to request resources from the 

cache.  For example, the “GetObj” API allowed the caller to provide a URL to 

retrieve the associated content from the cache.  Ex. 1061 (nsCacheManager.h) at 5 

line 79.  The Mozilla cache similarly provided APIs (“AddObject”) for adding an 

object to the cache.  (Ex. 1062 (nsMemModule.h) at line 57; Ex. 1063 

(nsDiskModule.h) at line 41.  In my opinion, the Mozilla browser cache is 
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conventional in these respects and is consistent with how persons of ordinary skill 

in the art would have understood and expected caches to operate. 

133. Because conventional client-side caches could provide locally stored 

content for a specified URL, a person of ordinary skill in the art would understand 

a conventional cache to be configured as a server in the context of the ’136 Patent. 5 

D.  “Image Parcel” in Claims 1, 10, and 19 

134. In my opinion, this term does not require construction, or alternatively 

should be given its plain and ordinary meaning, that is, “a parcel of image data.”  I 

understand that in IPR2015-01432, the IPR of the ’794 Patent, the Board construed 

this term as  “an element of an image array, with the image parcel being specified 10 

by the X and Y position in the image array coordinates and an image set resolution 

index.”  The Board cited claim language appearing at 6:22-26 of the ’794 Patent 

(and at 6:48-57 of the ’136 Patent) stating that “[t]he image parcels are preferably 

stored in a file of defined configuration such that any image parcel can be located 

by specification of a KD, X, Y value representing the image set resolution index D 15 

and the corresponding image array coordinate” (emphasis added).  In my opinion, 

this language in the specification describes a particular embodiment, rather than 

defining the term “image parcel.”  In fact, when Bradium wanted to claim that 

particular identification scheme, it did so explicitly in the claims.  See, e.g., 

U.S. Patent No. 7,908,343 at claim 1 (“storing each data parcel on the remote 20 
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computer in a file of defined configuration such that a data parcel can be located by 

specification of a KD, X, Y value”); U.S. Patent No. 8,924,506 at claim 7.  

Therefore, in my opinion, it would be incorrect to read this more detailed claim 

language into the simple term “image parcel.” 

135. It is also my opinion that a person of ordinary skill in the art would 5 

not interpret the plain and ordinary meaning of the term “image parcel” to require a 

particular method of identifying such image parcels.  There are a number of 

different identification schemes that could be used to uniquely identify a particular 

image parcel within an image pyramid.  For example, U.S. Patent No. 4,972,319, 

issued in 1990, depicts and describes two different identification schemes for 10 

image parcels in the same kinds of image pyramids: 

 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

77 
 

136. Ex. 1065 (Delorme ’319 Patent) at 11:61-14:24 (describing scheme 

shown in Fig. 8) and 14:25-22:34 (describing scheme shown in Fig. 13).  

Therefore, in my opinion, a person of ordinary skill in the art would not understand 

the term “image parcel” to require any particular preferred identification scheme. 

137. It is also my opinion that Bradium has taken positions in the related 5 

litigation which are inconsistent with a narrow construction of “image parcel.”  For 

example, Bradium’s litigation infringement contentions with respect to the ’343 

Patent (Ex. 1072) appeared to suggest that the “tiles” in accused Microsoft 

products are the claimed “image parcels.”  Yet the Bing maps tile system uses a 

“quad key” system which interpolates X and Y values to create a single string 10 

identifying the tile, and does not include a separate variable for level of detail.  Ex. 

1073 at 4-6. 

138. However, as I will discuss further in this declaration, it is my opinion 

that the challenged claims of the ’136 Patent are obvious over the prior art 

references cited in this declaration even under the narrower construction of “image 15 

parcel” previously applied by the Board. 

E. All Remaining Claim Terms 

139. In my opinion, all other claim terms of the ‘’136 Patent should be 

given their plain and ordinary meaning.  If Bradium or the Board proposes any 

different claim construction for any term, I reserve the right to offer responsive 20 
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testimony regarding the proper construction of the term and how the claims are 

obvious under the proposed constructions. 

X. UNPATENTABILITY OF CLAIMS 1-27 OF THE ’136 PATENT 

A. Claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-26 are Unpatentable 
as Obvious Over Reddy in View of Woods 5 

140. In my opinion, each of claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-

26 are disclosed and rendered obvious by Reddy (Ex. 1004) in view of Woods (Ex. 

1003).  These references collectively teach all features of claims 1-4, 6-8, 10-13, 

15-17, 19-22, and 24-26, and a person of ordinary skill in the art would be 

motivated to combine the teachings of the references for the reasons discussed 10 

below. 

141. Reddy and Woods provide related, contemporary teachings about the 

state of the art in 2D and 3D visualization of large image data sets such as maps 

that give examples of reasons why the claims of the ’136 Patent cover technology 

that was already well-known to those of skill in the art.  Reddy describes in detail a 15 

versatile software system for retrieving geographic information over the Internet or 

WWW and displaying it to a user in a dynamic, three-dimensional manner using 

well-known level-of-detail management techniques to optimize the use of limited 

bandwidth to retrieve geographic data. 
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142. Reddy teaches a system for disseminating and viewing massive terrain 

databases and 3D maps over the Web using a VRML browser or a customized 

browser or a plug-in to a web browser such as Netscape Navigator or Internet 

Explorer.  The 3D map images are stored in a hierarchical data structure made up 

of a multiresolution hierarchy of images in which an original image and its 5 

downsampled versions at multiple resolutions are stored.  Reddy teaches priority-

related features such as a “coarse-to-fine” algorithm to enhance resolution and 

“pre-fetching” tiles based on an expected flightpath. However, Reddy does not 

explicitly use the word “priority.”  Woods is in a closely related field to Reddy 

because it also describes using VRML to access 3-D scenes over the Internet. 10 

Woods teaches how browsing in such scenes may be enhanced by prioritizing 

elements of the scene based on the proximity to the user viewpoint, as well as 

using a queue of browser fetch requests to retrieve elements of the scene.  I will 

discuss each of these references in more detail below. 

1. Overview of Asserted References 15 

a. Reddy 

143. Reddy is an IEEE publication that was published in the March/April 

1999 issue of IEEE Computer Graphics and Applications journal.  The authors 

worked at SRI International, where they developed a system called TerraVision II 

for visualization of massive terrain databases using the VRML language.  Ex. 1004 20 
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at Title.  TerraVision II was designed to allow users to access large terrain 

databases via a network connection such as the World Wide Web or the Internet.  

Id. at ¶ 1.  

144. The TerraVision II system built on earlier work over several years by 

SRI on an earlier version of the TerraVision system, which was designed to 5 

operate in connection with a project called MAGIC (“Multidimensional 

Applications and Gigabit Internetwork Consortium”) for the visualization of large 

amounts of three-dimensional data over a high-speed ATM network.  I discussed a 

1996 paper regarding earlier work on the MAGIC project, Fuller et al. (Ex. 1011) 

previously in this declaration.  TerraVision, MAGIC, and TerraVision II were all 10 

funded partially by Defense Advanced Research Projects Agency (DARPA).  See 

Ex. 1004, p. 37 (Acknowledgements). 

145. As Reddy and his co-authors describe, TerraVision II extends the 

work performed in connection with TerraVision and MAGIC to a software 

program that could access data over a conventional WWW connection (not just a 15 

high-speed connection) and could operate on a variety of devices such as PCs and 

laptops, by working in connection with standard Internet browsers. 

146. Reddy discloses that there was an increasing interest and need for 

researchers, including geographers, cartographers, geologists, and computer 

scientists, to access 3D maps and spatial data over the World Wide Web or even 20 
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28.8K modem connections.  Id. at inset on p. 30.  Reddy notes that, however, 

traditional single-resolution VRML images did not scale well for such use.  Id. at ¶ 

1.  For example, Reddy notes that some terrain models could run into hundreds of 

gigabytes in size.  Id. at ¶ 2. 

147. To allow user access to map details, e.g., being able to view a 5 

particular building in a particular city starting from a satellite image of the earth 

Reddy discloses a technique in which data is progressively downloaded to the user 

as the user performs rotations and zooms.  Id. at ¶ 3.  In the TerraVision II system, 

the progressive downloading functionality was implemented on user devices in 

multiple ways including a VRML browser, a VRML plug-in to a web browser such 10 

as Netscape Communicator or Microsoft Internet Explorer or a custom TerraVision 

II browser.  Id. at ¶ 31.   

148. A key feature of Reddy involved generating a pyramid of multi-

resolution images of an original image.  Id. at ¶ 15.  For example, if the original 

image is 1024 x 1024 pixels, then the pyramid might contain the original image 15 

along with down-sampled versions different levels of detail (LOD) at resolutions 

of 512 x 512 pixels, 256 x 256 pixels, 128 x 128 pixels, and so on.  Id. at ¶ 15. 

149. As Figure 1a shows, each pyramid image is then segmented into 

rectangular tiles, where all tiles have the same pixel dimensions. 
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150. Because each tile has the same pixel dimensions, the resolution and 

the number of tiles is reduced by a factor of two at each down-sampled level.  The 

following chart summarizes the example disclosed by Reddy in Fig. 1 and the 

accompanying text at ¶¶15-17 (referring to the “source” layer as level 0): 5 

Layer Total 
dimensions of 
layer (pixels) 

Tiles in layer Tile 
dimensions 
(pixels per 
tile) 

Each pixel at 
this layer 
corresponds 
to ____ pixels 
in the source 
layer 

0 (source) 1024x1024 8x8 128x128 1 
1 512x512 4x4 128x128 4 (2x2) 
2 256x256 2x2 128x128 16 (4x4) 
3 128x128 1 128x128 64 (8x8) 
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151. Using Figure 1b, Reddy further gives an example of how the multi-

resolution pyramid can be used to download tiles at the appropriate resolutions to 

render a perspective view.  Id. at ¶¶ 15-17.  Reddy describes this as follows: 

“Figure 1b shows the lower-right corner in high resolution with the surrounding 

regions displayed in progressively lower resolution.  Assuming a tile size of 128 x 5 

128 pixels, this example requires downloading and rendering only 491 Kbytes (10 

tiles) instead of the entire 3.1-Mbyte high-resolution image.8 If the user’s location 

                                           
8 The definitions of “kilobyte” and “megabyte” can be confusing because of an 

informal custom that has become prevalent in the computer industry. According to 

the standard definition, the terms “kilobyte” and “megabyte” refer to 1,000 and 

1,000,000 bytes, respectively. However, because 210 bytes is 1024 bytes, which is 

very nearly 1000, and 220 bytes is 1,048,576 byes, which is very nearly 1,000,000, 

it has become commonplace in the computer industry to refer to 1024 bytes and 

1,048,576 bytes as 1 kilobyte and 1 megabyte, respectively, and in fact this 

alternative interpretation has become incorporated in some standards such as the 

JEDEC family of memory standards. The reasons for the distinction are described 

in a National Institute of Standards and Technology webpage available at 

http://physics.nist.gov/cuu/Units/binary.html.  I note the difference for purposes of 

this analysis because the figures given in Reddy for tile sizes suggest that Reddy 
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is the bottom-right corner, then distant imagery is rendered at lower resolution than 

near imagery and we have achieved distance-based LOD.”  Id. at ¶ 16.9 

 

                                                                                                                                        
uses the standard decimal (1000 bytes/kilobyte) notation while the ’136 Patent uses 

the binary (1024 bytes/kilobyte) notation. 

9 The numbers in this example work as follows. The original image has a size of 

1,024 x 1,024 pixels, at 24 bits per pixel (e.g., 8 bits for each color GB). This adds 

up to 1024 x 1024 pixels x 24 bits/pixel = 25165824 bits = 3145728 bytes = 

3.145728 MB (assuming 1Mbyte = 1 million bytes). Similarly, 10 tiles at `18 x 128 

resolution each add up to 128 x 128 x 24 bits/pixel x 10 = 3932160 bits = 491420 

bytes = 491.42 KB (assuming 1 KB = 1,000 bytes).   
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152. The graphic below, based on Fig. 1 of Reddy, illustrates how ten of 

the tiles from the different levels in Fig. 1(a) correspond to Fig. 1(b), which shows 

the tiles that would be used to render a perspective view: 

 

153. Another important aspect of Reddy is that the image data is 5 

downloaded from the image database based on a user’s viewpoint.  Id. at ¶ 3.  For 

example, if a user’s location is the bottom-right corner, then distant imagery is 

rendered at lower resolution than near imagery and we have achieved distance-

based LOD.  Id. at ¶ 16.  Thus, Reddy’s technique only needs to fetch and display 

data for the region that the user is viewing and only at a sufficient resolution for 10 

the user’s viewpoint.  Id. at ¶ 17.  As the user zooms into an image, the program 

downloads imagery at higher and higher resolutions.  Id. at ¶ 3. 
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154. During prior proceedings involving the related ’343 and ’506 Patents, 

Patent Owner Bradium and its expert mischaracterized Reddy in numerous ways, 

which I will discuss briefly in this Declaration.  However, I reserve the right to 

offer further rebuttal to any arguments made or arguments submitted by Bradium 

in this proceeding.   5 

155. For example, Bradium previously characterized Reddy as “directed to 

a specialized client workstation image viewing software operating on conventional, 

fixed site computer system over a high bandwidth Internet connection.”  IPR2016-

00448, Paper 20 at 19-20; Ex. 2003, ¶ 64.  In my opinion, this characterization 

overlooks a substantial purpose of the teachings of the Reddy reference, which 10 

should be readily apparent to a person of ordinary skill in the art.   

156. The work described on Reddy built on previous work funded by the 

DARPA Multidimensional Applications Gigabit Internet Consortium (MAGIC) 

project, which had previously resulted in the development of the original 

TerraVision system, which was partially described in 1996 in B. Fuller and I. 15 

Richer, The MAGIC Project: From Vision to Reality, IEEE Network May/June 

1996 pp.15-25, Ex. 1011.  The original TerraVision system was designed to 

operate over a high speed ATM network.  However, the later work described in 

Reddy, including its description of the TerraVision II software and VRML 

browsing techniques, focused on extending the concepts developed in the earlier 20 
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research performed by SRI to a wider variety of networks and devices, not just the 

high speed networks used in the original iteration of TerraVision.   

157. To that end, Reddy states several times that a purpose of the teachings 

discussed therein is to develop a system that can be accessed over the Internet 

using a standard, generic browser on any device, not just a specialized system 5 

operating on a high and workstation on a specialized high speed network.  For 

example, Reddy refers several times to the desire to disseminate maps and spatial 

data over the “World Wide Web”  (Ex. 1004, ¶¶ 1, 9, 48), using standard browser 

software and java scripts (Id., ¶¶ 3, 7, 9, 11, 31, 32, 39, 42, 47-49).  In my opinion, 

it is readily apparent from reading Reddy as a whole that a significant purpose of 10 

Reddy’s teaching is to enable a wide variety of users to access geographic data 

over the Internet using standard browsing techniques and standard browser 

software that can be implemented on a wide variety of devices including small 

clients.   

158. In my opinion, the characterization of Reddy previously provided by 15 

Bradium cherry-picks particular citations that relate to specific embodiments 

operating on a high-bandwidth network, and ignores both the additional teachings 

of Reddy that relate to applying the same principles either on more limited devices 

or more limited networks, as well as the broader teachings that a person of ordinary 

skill in the art would glean or infer from Reddy.   20 
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159. For example, Reddy teaches that its system can be implemented on a 

PC connected to the Internet and that a standard VRML browser can be used to 

browse the same data, which makes the system particularly well-suited to “military 

mission planning and battle damage assessments, emergency relief efforts, and 

other distributed time-critical environments.”  Ex. 1004, ¶ 48.   5 

160. Bradium and Dr. Agouris both submitted arguments at some point 

during IPR2016-00448 which argued that the teachings in Reddy regarding 

military and emergency scenarios were intended for use with offline data saved on 

the laptop or with the basic functionality of VRML only (not TerraVision).  The 

Board previously correctly rejected this argument as an improper reading of Reddy 10 

(IPR2016-00448, Paper 9 at 23-24).  Likewise, Dr. Agouris admitted during her 

deposition that Reddy taught that a laptop computer could be used for online 

browsing.  Ex. 1018 at 157:4-158:12.   

161. Bradium and its expert previously repeatedly attempted to distinguish 

between different embodiments taught in Reddy, such as the TerraVision II 15 

software and a standard VRML browser.  I understand that a person of ordinary 

skill in the art would read Reddy as a whole for all that it teaches or suggests, and 

not simply for specific embodiments as Bradium reads it.  Nevertheless, such 

distinctions are incorrect. 
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162. For example, Bradium previously cited Ex. 1014 (SRI Digital Earth 

Paper) which is a web posting by SRI at approximately the same time that Reddy 

was published describing the various facets of its terrain visualization system.  

While Bradium cited this exhibit in order to attempt to argue that the capability of 

a standard VRML browser would have been much more limited than TerraVision, 5 

this exhibit actually contains numerous teachings which showed that a person of 

ordinary skill in the art would have recognized the ability to apply the relevant 

teachings of Reddy to various devices.  For example, page 1 of Ex. 1014 explains 

that SRI’s digital earth proposal is to extend TerraVision functionality to 

“commercial, off-the-shelf” software (id. at 1), enable “open solutions” for a “wide 10 

cross-section of users” and integrate VRML support “directly with Internet 

browser software” (id. at 2-3).  And while Bradium cited pp. 4-5 of Ex. 1014 as 

“contrasting TerraVision running on fast graphics workstation with accessing the 

data only via a standard browser” (IPR2016-00448, Paper 20 at 22), the same 

section also clearly states that it is “feasible” that some of the features provided by 15 

TerraVision “could be implemented for a standard VRML browser through the use 

of various Java scripts embedded in the scene, or running externally to the 

browser.”  Ex. 1014 at 4.  This evidence supports my opinion that a person of 

ordinary skill in the art would be motivated to consider all of the pertinent 

teachings of Reddy to be applicable to generic browsers that could execute on a 20 
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standard computer, including one connected to a limited bandwidth 

communications channel, or a mobile device. 

163. Bradium also previously confused the types of data that the 

embodiments described in Reddy can display.  Reddy teaches a flexible system 

which allows browser software to locate and display several types of 5 

geographically linked data, including imagery such as satellite or aerial 

photography, as well as elevation data (based on digital elevation models such as 

the USGS digital elevation model), and features such as annotations or objects that 

exist on the terrain.  Ex. 1004, ¶¶ 3, 12-18, 22-26.  The imagery is divided into 

pyramids, just like the preferred embodiments described in the ’136 Patent.  See, 10 

e.g. Ex. 1004, Fig. 1; Ex. 1001, Fig. 2.  It is my opinion that a person of ordinary 

skill in the art would recognize that satellite and aerial images are, by nature, 

specific to particular coordinates since they depict a specific portion of the earth.  

While Reddy also teaches the ability to display digital elevation data as 3D 

polygons and drape imagery as textures over those 3D polygons, Reddy’s 15 

teachings are not limited to such preferred embodiments, and a person of ordinary 

skill in the art would recognize that Reddy’s teachings relating to displaying large 

sets of two-dimensional imagery utilizing a perspective viewpoint (see, e.g. Fig. 1) 

would apply whether or not elevation data was also used.  This distinction is 

important because Bradium’s previous arguments (see, e.g. IPR2016-00448, Paper 20 
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20 at 37-38) conflated the three-dimensional polygonal models used to model 

elevation in Reddy with the two-dimensional texture imagery.  The ’136 Patent 

itself does not describe any form of elevation modeling, but the claims do not 

exclude it either.  It is my understanding that 3DVU developed an elevation 

modeling scheme several years after the applications to which the ’136 Patent 5 

claims priority were filed.  In effect, the ’136 Patent effectively describes a later-

developed, less sophisticated example of the teachings of Reddy, just without 

elevation. 

164. I also have been informed by counsel that Bradium’s counsel argued 

at the oral hearing in IPR2016-00448 that the teaching of an “image pyramid” in 10 

Fig. 1 of Reddy should be disregarded because it is just a “concept,” and further 

implied that the “image pyramid” was not actually used in implementation of 

Reddy.  Appendix NN at 46:22-48:5.  This argument is wrong.  Reddy teaches in 

numerous places that the systems described even in preferred embodiments include 

two-dimensional imagery, such as satellite and aerial photographs of particular 15 

geographic regions.  See, e.g. Ex. 1004, ¶¶ 2-3, 6, 15-18, 23-24.  Indeed, ¶ 23 

specifically states that an “image pyramid” like those shown in Fig. 1 is 

incorporated into the model.  Fig. 3 and the accompanying text at ¶¶ 19-21 

describe how such image pyramids can be linked to other forms of data contained 

within the embodiments described in Reddy using a “geotile” structure.  Therefore, 20 
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even if the Board chooses to only read Reddy for the specific embodiments it 

describes and not for all that it teaches, the image pyramid of Fig. 1 of Reddy is 

very much a part of those embodiments.  Moreover, it is my understanding that 

even if the image pyramid in Reddy were only taught as a “concept,” and it is 

much more than that, such teachings would still be considered by a person of 5 

ordinary skill in the art to determine the obviousness of later patents claiming the 

same technology because a prior art reference must be considered for all that it 

teaches or suggests. 

b. Woods 

165. Woods teaches methods for “increasing the performance associated 10 

with creating simulated 3D worlds from a network” by using a priority scheme 

which sorts the priority of graphic objects (or “assets”) in the 3D scene based on, 

inter alia, their proximity to a viewpoint.  Ex. 1003 at Abstract.  The priority 

scheme is “used to determine the fetching, pre-fetching, and caching of URLs.”  Id.  

In a preferred embodiment, Woods teaches prioritization methods to retrieve 15 

graphic objects over the Internet in VRML.  Id. at 4:62-5:4.  Woods teaches that 

constraints in viewing 3D images online include “the bandwidth of the Internet 

connection and the limited resources and processing power of the local computer 

system.  Id. at 2:61-34.  For example, Woods teaches examples of Internet 

connections used to retrieve VRML data ranging from 28 KBps (kilobits per 20 
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second) modems to 144 KBps ISDN lines, but that “bottleneck problems due to 

limited bandwidth” can arise even for faster connections.  Id. at 3:17-27.  

166. Woods proposes to address such problems and “increase[] 

performance by the efficient use of limited resources” by “fetching objects in order 

of their importance.”  Id. at 3:50-56.  Accordingly, “a priority scheme is used to 5 

determine the fetching, pre-fetching, and caching of data assets.”  Id. at 3:56-58.  

Although the system taught by Woods is flexible and may incorporate multiple 

factors to determine priority, the proximity to the camera is typically a key factor 

in the priority determination.  For example, as shown in Fig. 5A, regions are 

prioritized based on the camera position and direction, with the region directly in 10 

front of the camera receiving the highest priority: 
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Id. at 9:19-10:64 (describing Fig. 5A). 

167. Woods further teaches that the priority calculation may also take into 

account the movement of the camera; for example, more distant regions in the 

direction that the camera is moving may acquire more importance as the camera 

moves faster.  Id. at 10:1-17. 5 

168. Although Woods teaches that its prioritization scheme may be used to 

retrieve a variety of geographically linked “assets” including, for example, 

buildings, moving objects, and sounds, Woods specifically teaches that its 

prioritization scheme may be used to retrieve textures, which are used to “apply 

texture to geometric shapes after they are rendered.”  Such textures may be 10 

identified by “URLs from which textures can be obtained.”  Id. at 6:42-49.  Woods 

further teaches viewing VRML data at a variety of levels of detail (“LOD”) using 

hierarchically-organized data.  Id. at 6:24-35. 

169. Woods prioritizes objects to be retrieved by first placing them in an 

“asset database table” which tracks (inter alia) the priorities of objects in the table.  15 

Id. at 11:66-12:5.  Woods teaches that “[i]n a preferred embodiment, asset fetching 

is performed in an execution thread that is separate from the browser’s runtime 

thread.”  Id. at 12:56-58.  This fetching thread can support a “configurable queue 

of fetch elements comprising a number of ‘active’ fetches,” so that “multiple assets 

can be fetched at the same time.”  Id. at 12:58-62.  Although the number of 20 
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simultaneous fetches may be configured “based on various hardware and software 

parameters” which are “apparent to those skilled in the relevant art(s),” Woods 

teaches a preferred embodiment featuring a fetch queue with four active fetch 

requests and one waiting fetch request, which becomes an active request when a 

previous active request is completed, as shown in Fig. 8: 5 

 

Id. at 12:56-13:47. 
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170. Woods teaches that a computer system suitable for performing the 

methods taught therein may include a communications interface 724, which may 

be a PCMCIA slot and which can carry signals over a cellular phone or RF link.  

Id. at 15:36-50.  From my experience in the industry, I am aware that PCMCIA 

(Personal Computer Memory Card International Association) cards were a 5 

standardized format designed specifically to enable designers to adapt peripheral 

devices to laptop computers.  The larger ISA expansion slots typically used in 

desktop computers were impractical for laptop computers because of their size.  

Additionally, for memory applications, traditional storage devices such as floppy 

disk drives and hard disks consumed too much power for laptop computers of the 10 

time, in addition to being too large.  PCMCIA was designed to address these 

problems for laptops.  

171. The PCMCIA organization was founded in 1989 and its membership 

throughout the 1990s included most major well known computer companies such 

as Fujitsu, Intel, Mitsubishi, IBM, Lotus, and Microsoft.  This organization 15 

developed a series of standards for PCMCIA cards that could fit in laptops 

throughout the 1990s. These specifications defined the physical sizes and 

connection protocols for “PC card” peripheral devices that could fit into a laptop 

connection port.  For example, a Type I PCMCIA card had a thickness of 3.3 mm, 

while a Type III card had a thickness of 10.5 mm.  The figure below, from an 20 
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Internet Archive capture of the PCMCIA organization website from the late 1990s, 

shows the dimensions of a typical PCMCIA card which could fit into a laptop: 

 

172. According to the PCMCIA, “the power and versatility of PC cards 

quickly made them standard equipment in mobile computers.”  Such devices were 5 

used not only for memory, but for features such as wireless networks, modems, 

and other functions in notebook, laptop, palm-top, and other portable computers. 

The figure below, which is consistent with my recollection of the common 

appearance of PCMCIA devices in the 1990s from my own experience, shows a 

typical PCMCIA card device inserted into the slot on a laptop computer:  10 
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173. Because PCMCIA cards were specifically associated with and 

designed for laptop and other portable computers, it is my opinion that a person of 

ordinary skill in the art would therefore interpret the disclosure in Woods of 

PCMCIA cards to suggest use of a laptop or other portable computer. 5 

2. A person of ordinary skill in the art would be motivated to 
combine Reddy and Woods 

174. In my opinion, a person of ordinary skill in the art would combine 

Reddy and Woods for several reasons.  First of all, both references are in the same 

field or closely analogous art. Reddy and Woods both relate to the retrieval of 10 

image data over the Internet in order to display an interactive, three-dimensional 

view of a world. Even more specifically, both references relate to browsing such 

data using VRML. In my opinion, a person of ordinary skill in the art familiar with 

the teaching of one VRML reference such as Reddy to access the image data over 

the Internet would naturally look to the teachings of other VRML references such 15 
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as Woods for potential improvements to such a system. Additionally, Reddy and 

Woods are both directed to similar problems because each reference relates to 

accessing portions of large image data sets over a network and retrieving the 

portions of the data set needed to display a particular view while optimizing the 

use of bandwidth. Since the teachings of Woods are designed to optimize the use 5 

of limited bandwidth, such teachings would logically commend themselves to the 

attention of a person of ordinary skill in the art designing a system for routing 

geographic data over the Internet as taught in Reddy.   

175. In particular, a person of ordinary skill in the art would recognize that 

one challenge faced by Reddy is optimizing the use of limited bandwidth and 10 

limited computing resources on a client device when accessing a large geographic 

database.  For example, Reddy teaches in ¶48 that the software may be 

implemented on a PC or a laptop in a “distributed, time-critical” environment such 

as military mission planning, battle damage assessments, and emergency relief 

efforts.  In my opinion, a person of ordinary skill in the art would recognize that 15 

mobility and portable access to a network, like that provided by a wireless modem, 

would be extremely desirable in such circumstances.  Additionally, Reddy 

specifically teaches that its system can be used on a PC (personal computer) or a 

laptop computer, which indicates that a primary purpose of the TerraVision II 

system is to expand on the previous TerraVision system by expanding it to be 20 
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operable on a wide range of devices, including the type of devices suitable for 

mobile or field use in the scenarios described in Reddy.  These teachings of Reddy 

would motivate a person of ordinary skill in the art to consider teachings relevant 

to how to (1) make the software operate effectively in on a portable device capable 

of operating in an environment such as emergency relief, and (2) access data 5 

remotely in a mobile context.  In my opinion, based on my review of Reddy and 

Woods as well as my knowledge of the art of computer graphics and networking, it 

is my opinion that a person of ordinary skill in the art would consider Woods 

relevant to both questions.  

176. In particular, although Reddy teaches situations in which a wireless 10 

connection would be extremely desirable as discussed above, it does not explicitly 

teach a wireless connection. Woods, however, explicitly teaches methods of 

accessing data over the Internet using a wireless connection that are readily 

applicable to laptop devices like those taught by Reddy.  Specifically, Woods 

teaches that the communications interface to access VRML data over the Internet 15 

may be a wireless link such as a cellular phone or RF link, implemented in a 

communications interface such as a PCMCIA card commonly used in laptop 

computers.  Ex. 1003 at 15:36-50.  As I discussed above, wireless connections 

using a PCMCIA card were extremely well known by the late 1990s and using 

such a connection to browse VRML data from a laptop as taught by Reddy would 20 
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be a simple matter of using-the-shelf, already available technology in a manner 

consistent with its intended use. Accordingly, it is my opinion that a person of 

ordinary skill in the art would have virtually no difficulty making this modification 

and therefore would have a reasonable chance of success. 

177. It is my understanding that prior art references should be considered 5 

for all that they teach and not merely for their preferred embodiments.  In my 

opinion, a person of ordinary skill in the art would understand that Reddy teaches 

broadly applicable methods of accessing and viewing geographic information over 

a network, not just the specific embodiments discussed as examples of these 

teachings.  Even if the Board looks only at the separate TerraVision II and VRML 10 

browser embodiments, it would still be obvious to a person of ordinary skill in the 

art that both of these embodiments could be used on either a laptop computer or a 

tablet computer (PDA) and that the relevant features taught by Reddy could be 

used in connection with a VRML browser on either type of device. Reddy teaches 

that TerraVision II can be operated on a “PC connected to the Internet.”  In my 15 

opinion, a person of ordinary skill in the art would understand this teaching to 

mean that TerraVision II is software that can be operated on any appropriate 

common consumer computer hardware, whether that computer takes the form of a 

desktop computer, laptop computer, or tablet computer.   
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178. At the time of the alleged invention and the priority filing of the ’136 

Patent, processors for mobile devices (e.g. laptops) had been developed that 

offered similar processing power (e.g. clock speeds) to the processors used in most 

commonly known PCs.  I reviewed Ex. 1031, which is a summary published by 

Intel of the key statistics of Intel processors over time, which confirms my 5 

recollection that this is the case.10  For example, as of October 1999, Intel had 

released a mobile processor with a 1GHz maximum clock speed.  Ex. 1031 at 32-

33 (showing 1 GHz and 1.13 GHz Pentium III Notebook Processors). 

179. Additionally, at the time of the alleged invention, the operating 

systems that were commonly used on laptop computers (such as various versions 10 

of Windows, particularly Windows 95, Windows 98, Windows NT, and Windows 

2000) were exactly the same as the most common operating systems used on 

desktop PCs.  I personally installed Windows NT on laptop computers in the mid 

to late 1990s.  Additionally, Microsoft offered a version of Windows (Windows 

CE) for even smaller portable devices which was based on Windows NT and could 15 

                                           
10 In my opinion, a person of ordinary skill in the art would reasonably rely on such 

summaries published by Intel in order to evaluate the capabilities of processors at 

the time, and such summaries are generally reflective of the state of the art over 

time due to Intel’s dominant market position. 
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operate software based on similar coding languages, so that software written for 

Windows on a PC could be easily “ported” to a mobile computing device using 

techniques that would have been well-known to a person of ordinary skill in the 

art.   For example, operating systems (including the various versions of Windows) 

would offer an Application Programmer Interface (API) to guide developers in 5 

writing software that can interact with the features of the operating system and its 

host computer through calls to those functions, so transposing software to a 

different operating system is generally a matter of updating the software calls to 

relate to the API for the new operating system.  This was a very routine task in the 

software field.  Indeed, Ex. 1014 itself notes specifically at p. 2 that “we have 10 

engineered TerraVision to be easily portable to other platforms and we have 

recently performed a port to Microsoft’s Windows NT platform.”  Therefore, a 

person of ordinary skill in the art at the time (indeed, even an ordinary user who 

was not even a person of ordinary skill in the art) could have run and installed 

TerraVision II on a laptop computer with no modification.  Therefore, a person of 15 

ordinary skill in the art would have every reason to expect that Reddy’s teachings, 

including but not limited to TerraVision II itself, would operate on a suitable 

laptop or other mobile/portable computing device.   

180. In my opinion, a person of ordinary skill in the art would further 

recognize that Reddy’s use of commonly known Web browsers for accessing map 20 
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information over the Internet would enable any device that is connected to the 

Internet, and which uses one of these known browsers, to access map data 

regardless of whether the connection is a wired connection or a mobile connection, 

and regardless of the speed at which that Internet connection operates.  This is so 

because, as I discussed previously in section VI.A, the TCP/IP protocol provides a 5 

layer of abstraction for the data being sent; in other words, as long as there is a 

means to transport TCP/IP packets, any type of digital data can be sent using 

TCP/IP packets – the TCP/IP protocol makes no assumptions about the type of 

data contained in the data packets, in merely facilitates the transfer of those 

packets. 10 

181. Therefore, applying the teachings of Reddy on a portable wireless 

device (e.g., a laptop with a PCMCIA card connected to a wireless network, as 

taught by Woods) would require no more than the application of a known 

technique (a wireless network to access the Internet) with predictable results, and 

achieving the benefits of both references, because wireless connections allowed 15 

users to retrieve the same data from Internet as any other Internet connection.  

Additionally, there were at the time a finite number of known ways for a laptop 

computer to access the Internet (e.g. Ethernet plug, dial-up modem connection, 

internal or external modem), of which wireless PCMCIA cards were one very well-

known method.  Therefore, a person of ordinary skill in the art seeking to use a 20 
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laptop to access geographic data over the internet would know that a wireless 

connection such as a wireless PCMCIA card was one of the known, finite ways to 

do that. 

182. Additionally, Reddy teaches that tiles requested and downloaded from 

a server are prioritized using a “coarse-to-fine” algorithm to retrieve lower-5 

resolution tiles first (Ex. 1004 at ¶¶ 21, 44) and by “prefetching” tiles along the 

user’s predicted flight path (id. at ¶ 46).  However, Reddy does not explain specific 

technical details regarding how such tile requests are prioritized.  Woods, however, 

explains in detail how tiles are prioritized for download to optimize use of 

bandwidth.  Specifically, Woods teaches that the objects within a scene may be 10 

assigned priorities based on their distance from the viewpoint, as well as based on 

the motion of the viewpoint.  Ex. 1003 at Abstract, 10:1-17.  In my opinion, a 

person of ordinary skill in the art would recognize that the prioritization features of 

Woods would meet the goals taught by Reddy of retrieving needed data based on 

proximity to a viewpoint and projected flightpath, while improving the utilization 15 

of limited bandwidth to retrieve data, which is likewise a goal of Reddy.  In other 

words, the priority weighing and priority queue of Woods would predictably 

improve fetching of imagery in Reddy (by first using bandwidth to retrieve the data 

that contributes the most to a scene) in the same manner as it improves fetching of 

imagery in Woods. 20 
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183. In my opinion, the teachings of the prioritization features of Woods 

are readily applicable to retrieve imagery tiles as taught by Reddy.  For example, 

Woods teaches that the “assets” prioritized for retrieval using its priority scheme 

include inline nodes and textures.  Ex. 1003 at 6:16-23, 6:42-49.  Fig. 5A of 

Woods shows an exemplary prioritization of inline and texture assets.  Id. at 9:19-5 

10:64, Fig. 5A.  Reddy’s hierarchical VRML data set relies on inlining and the 

terrain tiles include satellite or aerial imagery.  Ex. 1004 at ¶¶ 3, 18, 19-21, 24.  A 

person of ordinary skill in the art would know that the satellite or aerial imagery 

tiles taught by Reddy are simply textures applied to the surface of the earth.  

Therefore, in my opinion such tiles could be retrieved just as readily using the 10 

priority fetching features of Woods as the building tiles taught in the preferred 

embodiment of Woods. 

3. Claim 1 

184. In my opinion, all limitations of claim 1 are taught or suggested by 

Reddy in view of Woods. 15 

Preamble: A method of communicating images for display to a plurality of 
wireless portable devices, the method comprising steps of:  

185. In my opinion, Reddy in view of Woods teaches the preamble of 

claim 1, to the extent that it is found limiting.  Reddy teaches a method for 
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communicating images for display to a portable computing device, while Woods 

teaches that such devices may be wireless.   

186. Reddy teaches a system for retrieving “massive” terrain data sets 

including satellite and aerial imagery (which are typically very large-scale images, 

as Reddy teaches in ¶1, which suggests that photorealistic terrain models may be 5 

on the order of “hundreds of gigabytes”) over the Internet or World Wide Web 

(“WWW”) (network communications channels).  See, e.g. Ex. 1004 at p. 30 

(subtitle), ¶¶1, 5, 9, 10, 12, 31.  Reddy teaches a system that can be implemented as 

a plug-in in connection with a standard web browser (Ex. 1004 at ¶¶ 31, 32), and 

that the system may be implemented on, for example, a PC connected to the 10 

Internet or a laptop machine (limited communication bandwidth computer device), 

which makes the system particularly useful in “military mission planning… 

emergency relief efforts, and other distributed time-critical conditions.”  Id., ¶48.  

The benefits of using a portable device (such as a laptop) in a military or 

emergency response scenario (where users of the system might be, for example, 15 

operating out of a mobile or field expedient command center with similarly field 

expedient network connections) should be readily apparent to the user.  Reddy 

further teaches that the tiling employed by its system enables a user to visualize a 

scene utilizing a much smaller amount of downloaded data than the full-resolution 

underlying image.  Id., ¶16.  A person of ordinary skill in the art would recognize 20 
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that a goal of Reddy is enabling access to large databases of mapping information 

under conditions of limited bandwidth, like those that would be encountered in a 

military or emergency response scenario.   

187. Reddy further teaches displaying the retrieved image data on a client 

device.  For example, Fig. 1(b) shows a how the image displayed on the screen of 5 

the user device is segmented into tiles of different resolutions which have been 

retrieved from the server.  Fig. 2 shows how the image displayed on the screen of 

the user computing device uses a tiled pyramid structure to display terrain closer to 

the viewpoint at a higher resolution than more distant terrain.  Fig. 5 shows a 

screenshot of a screen on the client device, showing a 3D perspective view of Fort 10 

Irwin, California.  Id., ¶¶ 16-18, 38; see also Fig. 4 and ¶ 26. 

188. In my opinion, a person of ordinary skill in the art would further 

recognize that Reddy’s use of commonly known web browsers for accessing map 

information over the Internet would enable any device that is connected to the 

Internet, and which uses one of these known browsers, to access map data 15 

regardless of the speed at which that Internet connection operates.  This is so 

because, as I discussed previously in section Error! Reference source not found., 

the TCP/IP protocol provides a layer of abstraction for the data being sent; in other 

words, as long as there is a means to transport TCP/IP packets, virtually any type 

of digital data can be sent using TCP/IP packets.  20 
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189. It is also my opinion that a person of ordinary skill in the art would 

recognize the need to reduce bandwidth consumption in situations where multiple 

users need to share the use of a common communications channel.  In my opinion, 

the military and disaster relief scenarios taught by Reddy are exemplary of 

situations where a person of ordinary skill in the art could expect a large group of 5 

users (e.g. the staff of a command center) to have to share access to a common 

network connection under field expedient conditions.  Under such conditions, a 

person of ordinary skill in the art would recognize that the bandwidth available to 

each user would be limited by the need to share the connection, as well as the need 

to minimize each user’s use of bandwidth to avoid adversely impacting others.  10 

Similar constraints could arise even in typical consumer or office use scenarios, 

e.g. when a large number of users of an Internet gateway approach the bandwidth 

limits of the gateway. 

190. In my opinion, it was well known to persons of ordinary skill in the 

art by the late 1990s that laptop computers were “portable” computers. Indeed, 15 

portability is the primary purpose of a laptop computer.  For example, the 1999 

Microsoft Computer Dictionary specifically lists laptop computers as an example 

of a “portable computer.”  Ex. 1045 at 349-350 (table). 

191. While Reddy does not specifically identify a wireless connection, it 

would have been well known in the art, as well as specifically described by 20 
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Woods, that laptop computers like those discussed in Reddy could connect to the 

Internet wirelessly. I note here there is nothing whatsoever in Reddy that teaches 

away from using a wireless connection; Reddy simply describes methods that can 

be used in a computer connected to the Internet by any suitable method.  Wireless 

computer modems for laptop computers were such a suitable method. 5 

192. The PCMCIA card and wireless interface described by Woods are a 

good example of such wireless connections.  Woods discloses that clients may 

communicate wirelessly with the servers.  Ex. 1003 at 15:36-50 (channel 728 may 

be a “cellular phone link” or “RF link”).  Woods also discloses that the 

communications interface of the client computing device may be a “PCMCIA slot 10 

and card.”  Id. at 15:39-42.  PCMCIA (or PC Card) refers to a card-based interface 

for peripheral devices that was developed for laptops and other portable computing 

devices.  See, e.g., Ex. 1045 (MSFT Dictionary) at 336 (noting that PCMCIA 

standard was “primarily [for] laptop, palmtop, and other portable computers”).  

PCMCIA cards having wireless capabilities, as discussed in Woods, were widely 15 

available prior to the alleged invention and filing date of the ’136 Patent 

193. For example, by 1999, Proxim, Inc. offered a RangeLAN2 PC Card 

designed to provide high speed wireless internet connections to “mobile users who 

require continuous LAN connectivity.”  Ex. 1051 at 1.  This device, which was 
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designed for “Windows CE Handheld PCs,” offered a 1.6 Mbps data rate and is 

shown below: 

 

Id. 

194. As another example, by 2000, Cisco’s Aironet 340 series of products 5 

included a PC Card wireless adapter for laptop computers, which supported data 

rates up to 11 Mbps.  Ex. 1052.  Such devices allowed a laptop computer to 

connect to a wireless router using a PC card in the laptop, as shown in the 

following diagram: 
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195. The Cisco Aironet products could use the IEEE 802.11 wireless 

internet or “wi-fi” standard, which is specifically mentioned in Ex. 1052.   

196. More generally, it was well known by 2000 that portable laptop 

computers could connect wirelessly to networks and the Internet.  By that time, 5 

IBM was touting the wireless capabilities of its ThinkPad laptops.  See, e.g., Ex. 

1050 (Thinkpad X press release).  For example, IBM advertised that its Thinkpad 

X series Ultraportable computer offered “for wireless LAN connectivity, an 

optional industry-standard 802.11b LAN PC Card” as well as Bluetooth wireless 

technology options, including a PC card. 10 
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197. Likewise, by 1999 Apple Computer, Inc. had also released its 

“AirPort” family of wireless connection products based on the IEEE 802.11 family 

of wireless connection standards.  Ex. 1048, 1049.  Among other products, the 11-

Mbps AirPort card was available for Macintosh computers including the 

PowerBook, which was well known as an Apple marketing name for notebook 5 

computers: 

 

Ex. 1049 at 3. 

198. I personally recall being aware as of 1999 and 2000 that similar 

wireless access devices on PC Cards were available, and the exhibits discussed 10 

above are consistent with my recollection. 

199. Therefore, in my opinion a person of ordinary skill in the art would 

recognize that preamble of claim 1, including a “wireless portable device,” is 

taught or suggested by the combination of Reddy and Woods through Reddy’s 

teaching of a laptop and Woods’ teaching of wireless connections suitable for 15 

laptops. In my opinion, a person of ordinary skill in the art would also recognize 

that using such a wireless connection as taught by Woods on a laptop as taught by 
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Reddy could be accomplished using methods well-known in the art with 

predictable results. 

200. It is also my opinion that a “plurality” of wireless portable devices as 

claimed is also obvious over Reddy in view of Woods. It is noteworthy that the 

’136 Patent itself does not contain any specific teaching of plural users. Therefore, 5 

in my opinion, the only way that the claimed “plurality” of wireless portable 

devices could be supported at all by the specification is if one assumes that a 

person of ordinary skill in the art would already know that a server providing 

access to data over a network such as the Internet could respond to requests from 

multiple client devices.  This is exactly the case with both Reddy and Woods. 10 

Because both references teach servers that provide data in response to requests 

received from client devices over the Internet to provide data for display, and are 

not limited to a single client, in my opinion, a person of ordinary skill in the art 

would recognize that the servers taught by both references would be operable to 

provide such data to a plurality of devices.  Both references repeatedly refer to 15 

plural “users.”  Ex. 1004 at ¶¶ 7, 10, 31-37, 46, 49, 51; Ex. 1003 at 2:48-51, 3:39-

44.   

201. Reddy further teaches specifically that its teachings are “particularly 

useful in military mission planning and battle damage assessment, emergency 

relief efforts, and other distributed time-critical operations.”  Ex. 1004, ¶ 48.  In my 20 
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opinion, a person of ordinary skill in the art would recognize that these are 

situations in which it is desirable for multiple users to have access to the same data. 

In fact, Reddy specifically refers to “multiple users” at ¶ 51.  Therefore, in my 

opinion, the “plurality of wireless portable devices” limitation is obvious. 

1.A: pre-processing a source image to obtain a series (K0, K1 . . . KN) of related 5 
images of progressively lower image resolution,  

202. In my opinion, Reddy teaches this element because it teaches that the 

server systems for providing imagery may process source image data into a grid of 

tiles organized into a hierarchy of different resolution levels.  As to the 

“processing” on the server, Reddy discloses teaches two alternatives.  First, the 10 

required terrain data may be pre-computed offline.  Ex. 1004, ¶52.  Second, terrain 

data may be generated “on the fly” by parsing the URL path name, using a script 

on the server, to generate the necessary VRML data.  Id. In other words, in this 

second alternative, if processed data is not already available (which is a situation 

that might come up in a time-critical scenario, e.g. military or disaster response, 15 

where new imagery is being made available for a first time) the script can parse the 

URL request, decide what data needs to be made available, and then conduct the 

necessary processing in order to make that data available.  

203. I understand the phrase “series K1-N of derivative images of 

progressively lower resolution” to mean that there is a source image, followed by a 20 
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series of layers of tiles in which the source image has been divided into a 

derivative layer of tiles at lower resolution.  For example, at layer KN+1, there will 

be 1/4 as many tiles as there are at layer KN, each tile having half the resolution of 

layer KN.  In other words, layer KN+1 is a derivative of layer KN in which every tile 

in layer KN+1 is the result of combining an array of four adjacent KN tiles at lower 5 

resolution.  This system corresponds with the teachings of Reddy, as illustrated by 

Fig. 1: 
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204. In my opinion, a person of ordinary skill in the art would understand 

the teaching of Reddy to mean that a server generates the series of derivative 

images.  

205. While Woods does not describe processing the source image data, it 

does discuss levels of detail organized as a hierarchy such that an application can 5 

automatically select appropriate levels of detail for rendering based on the distance 

between the camera and the relevant area.  Ex. 1003 at 6:23-35.  In my opinion, a 

person of ordinary skill in the art would recognize that such level of detail 

hierarchies are in most cases the result of processing a source image into a mip-

map. 10 

1.B: wherein each related image of the series (K0, K1 . . . KN) comprises pixel 
data and is subdivided into a regular array of image parcels, and each image 
parcel of each regular array of the image parcels forms a discrete portion of 
the source image;  

206. In my opinion, Reddy clearly states that each image within the 15 

“pyramid” of images comprises pixel data.  Ex. 1004 at ¶¶ 15-16.  Reddy teaches 

that each layer of the pyramid, including the highest resolution layer (K0) is 

“segmented into” an array of tiles, so that each tile at a given level maps onto four 

tiles at the next higher level.  Ex. 1004, ¶¶12-16, Fig. 1.  For example, in Fig. 1, the 

bottom layer is an 8x8 array of tiles.  The rest of the “image pyramid” contains 20 

four different resolutions of the original image, each formed into an array ranging 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

118 
 

from 8x8 tiles at the highest resolution to a single tile at the lowest, with 4x4 and 

2x2 arrays in between.  This teaching is substantially identical to the ’136 Patent’s 

disclosure in Fig. 2 and at 6:3147 of the division of source image data into 

derivative images of progressively lower image resolution, as shown by a 

comparison of Fig. 1 of Reddy and Fig. 2 of the ’136 Patent: 5 

  

207. It is also my opinion that each tile in the image pyramid shown above 

corresponds to a specific geographic area and a discrete portion of the source 

image; that is, the portion of the image covered by the tile at that particular level of 

detail.  Reddy teaches that such tiles are retrieved for a particular view based on 10 

their position in relation to the viewpoint and their resolution.  Ex. 1004 at ¶¶ 16-

17.   

208. I understand that in IPR2015-01432 relating to the ’794 Patent, the 

Board construed the term “image parcel” as “an element of an image array, with 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

119 
 

the image parcel being specified by the X and Y position in the image array 

coordinates and an image set resolution index.”  As I discussed above in § IX.D, I 

do not believe that the term “image parcel” should be limited to this embodiment.  

In my opinion, even if the Board were to adopt this construction, the Board’s 

previous construction is met by the tiles of Reddy.  For example, Reddy teaches in 5 

¶¶ 16-17 that tiles are retrieved for a particular view based on their position in 

relation to the viewpoint and their resolution.  In my opinion, it would be obvious 

to a person of ordinary skill in the art that the browser taught by Reddy would need 

to specify the location and resolution level within the “pyramid” of tiles within the 

view.  The resolution level within the pyramid corresponds to the “resolution 10 

index” within the “image parcel,” if the term is construed this way.  For example, 

to compose the view shown in Fig. 1(b) of Reddy, the browser would need to 

retrieve the image tiles shown at a specified location (x, y) and resolution.  For 

example, among other image tiles, the browser would need to retrieve the tile 

shown in red from the lower right-hand corner of the pyramid at the highest 15 

resolution and the tile shown in blue from the upper left-hand corner of the 

pyramid at a resolution two steps lower: 
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209. A person of ordinary skill in the art would readily appreciate that the 

image parcels that make up any layer within Reddy’s image pyramid form a two 

dimensional array.  The standard way to identify an element of a two-dimensional 

array is to use an index for each dimension.  An exemplary discussion of this is 5 

found in Foundations of C++ and Object-Oriented Programming by Namir C. 

Shammas (1998).  Shammas explains, for example, that an element in a 

multidimensional array is accessed using the following syntax 

“arrayName[IndexOfDimension1][IndexOfDimension2]...”  Ex. 1043 at 369.  In 

my opinion, Shammas’ discussion of multidimensional arrays is consistent with 10 

what a person of ordinary skill in the art would have learned in an introductory 

programming class by the late 1990s.  I would also note that Woods uses this 
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convention to identify particular grid regions which are similarly organized as an 

“array of grid elements” (Ex. 1003 at 8:46-52).  The upper right corner grid region 

in Figs. 5A-5D is denoted “1, 6” because it is in the sixth position (X position) of 

the first row (Y position). 

210. A person of ordinary skill in the art would further recognize that 5 

Reddy’s image pyramid is a three-dimensional array of image parcels (or an array 

of two dimensional arrays) since there are several layers in the pyramid.  The 

layers within the pyramid are a third dimension.  And the standard way of 

accessing an element of a three-dimensional array would be to use yet another 

index corresponding to the third dimension.  See, e.g., Ex. 1043 (Shammas) at 369; 10 

id. at 378 (example of three-dimensional array “fXMat” with three indices).  The 

’136 Patent’s preferred identification scheme which uses an X and Y position and 

an image set resolution index (which merely identifies the layer in the pyramid) is 

not inventive.  It simply relies on an index for each dimension of a multi-

dimensional array and is an obvious, perhaps the most obvious, way of identifying 15 

image parcels within Reddy’s image pyramid. 

211. Reddy further teaches that the methods of locating and retrieving tiles 

taught therein can be used to retrieve data expressed in a variety of geocentric or 

local coordinate systems.  See, e.g. Ex. 1004, ¶¶ 27, 29-30 and sidebar (“What 

shape is the earth?”)  The sidebar on p. 35 of Reddy discusses a well-known 20 
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problem of how to accurately represent the surface of the earth.  While the simplest 

way to represent the surface of the earth is as a sphere, the earth is not in fact a 

perfect sphere.  For example, the radius of the earth from the center to the equator 

is larger than the radius from the center to the north and south poles, which means 

that the earth is described in geometric terms as an “oblate spheroid” or ellipsoid.  5 

The actual mean sea level of the earth also varies by approximately 100m due to 

local variations relating to the earth’s gravitational field.  As p. 35 of Reddy 

explains, the earth’s surface can be modeled as a surface called a Geoid: 

 

212. Since 1984, the standard geoid surface used by the Department of 10 

Defense (and most other U.S. government agencies) is defined by the World 

Geodetic System 1984, or WGS84.   

213. While the shape of the earth presented a challenge in computer-aided 

mapping, it would have been known to a person of ordinary skill in the art, as well 
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as specifically taught in Reddy, that solutions to these problems, such as the 

WGS84 datum, had been identified well before the earliest claimed priority date of 

the ’136 Patent.  Reddy further teaches in ¶¶ 27 and 29-30 that the geocentric 

coordinate system described therein could be used to display data from a wide 

variety of coordinate systems, including Lambert Conformal Conic, Universal 5 

Transverse Mercator (UTM), or systems representing “small-scale regions” by 

converting into the specific VRML geocentric system used in the preferred 

embodiment of Reddy.  In my opinion, such conversions would have been well 

within the ability of a person of ordinary skill in the art as of December 2000, and 

many of these systems represented coordinates at least in part using simple x, y 10 

coordinates.   

214. For example, UTM, which is specifically referenced in Reddy, ¶ 27, 

and the closely related Military Grid Reference System (MGRS) based on UTM, 

first divide the earth into a series of latitude and longitude bands, then represent 

coordinates within those bands using a coordinate system that represents the 15 

position as an “easting” and a “northing” representing the distance in meters that 

one would have to travel east and north from a reference point within that band.  

Therefore, one of the reference systems explicitly referenced as supported by 

Reddy does rely on the use of x, y coordinates at a local level.  Conversion from 

UTM to an X, Y tile address was already known in the art, and was used by 20 
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Microsoft in the TerraServer system that I discussed previously, as described by 

Barclay (Ex. 1030), § 2.3. 

215. Additionally, the issue of viewing data on a worldwide scale involves 

more complex problems than viewing data on a local scale.  The ’136 Patent itself 

does not, in my opinion, contain any discussion relating to solving problems of 5 

viewing data on a worldwide coordinate system.  In my opinion, while Reddy 

certainly teaches solutions to complex solutions of displaying data on a worldwide 

coordinate system, there is no reason that a person of ordinary skill in the art would 

view its teachings as limited to these scenarios, and in my opinion, a person of 

ordinary skill in the art would certainly understand that the principles taught by 10 

Reddy could be applied in a more simple local coordinate system using only x and 

y coordinates and level of detail.   

1.C: storing the image parcels of the series for serving by one or more servers;  

216. As I discussed above in regard to Claim 1, preamble, Reddy teaches a 

system that is implemented in conjunction with a web browser and operates by 15 

sending requests for tiles and other geographic data.   

217. The conventional web browsers taught by Reddy are used to access 

web pages.  Fundamental to the operation of the World Wide Web is the notion of 

a browser making hypertext transfer protocol, or HTTP, requests to an HTTP 

server.  A POSITA would understand that by convention, these world wide web 20 
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requests are made by sending requests for content to an HTTP server computer on 

TCP/IP port 80 (normal http requests) or on TCP/IP port 443 (secure https 

requests).  Requests from an HTTP client application, such as a known web 

browser such as those cited by Reddy and Woods, are then responded to by the 

HTTP server, again using TCP/IP on ports 80 or 443.11 5 

218. Therefore, in my opinion, a person of ordinary skill in the art would 

understand these teachings of Reddy, in view of the knowledge of a person of 

ordinary skill in the art and the background art of web browser software and the 

VRML, to teach that the geographic browser of Reddy sends requests to a server 

(remote computer) to retrieve geotiles containing links to imagery files, which are 10 

then requested by URL.   

219. These teachings are analogous to the ’136 Patent’s use of HTML 

requests.  Ex. 1001, 7:40-44.  In my opinion, it is both disclosed and obvious in 

view of Reddy’s discussion of retrieving image data over the internet that a server 

receives and responds to requests sent by a client.  Indeed, this is how a browser 15 

accessing data over the internet works- the browser sends a request that is routed to 

                                           
11 While it is possible to use other TCP/IP ports to perform these transactions, by 

1994 ports 80 and 443 had been adopted for http and https respectively.  See 

RFC1700 pages 20 and 34 respectively. 
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a server, the server receives the request and responds to it.  In my opinion, a person 

of ordinary skill in the art would clearly understand in view of Reddy’s discussion 

of a geographic browser that downloads specified geographic information that such 

a browser would receive that data from a server that receives requests for specific 

information (e.g. by URLs, as taught by Reddy at ¶¶ 19 and 21) and responds to 5 

those requests for information by sending responsive data stored on the server or 

another connected server.  Because the claim language recites “one or more 

servers,” not a single server, there is no requirement in the claims, in my opinion, 

that the image parcels are stored on the same computer that receives requests.  

Therefore, in my opinion, Reddy teaches “storing the image parcels of the series 10 

for serving by one or more servers” as claimed.  The tiles of Reddy are “image 

parcels” under any construction for the reasons that I explained previously. 

220. Additionally, the ’136 Patent itself does not contain a particularly 

detailed description of the server architecture.  The server discussed in the ’136 

Patent is mentioned only briefly, and most of the discussion relates to operations 15 

on the client side and the format of data received by the client.  The ’136 Patent 

effectively assumes that a person of ordinary skill in the art would already know 

how to design a server that can respond to requests from a client and provide 

responsive data.  Therefore, in my opinion, the teachings of Reddy disclose and 

enable a server to the same extent as the ’136 Patent. 20 
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221. Additionally, Woods specifically teaches a server to store and provide 

VRML data such as textures.  Ex. 1003 at Fig. 1, 5:15-38. 

1.D: providing client software to a wireless portable device;  

222. In my opinion, this element is taught by and obvious in view of Reddy 

and Woods.  As an initial matter, the ’136 Patent does not clearly state or provide 5 

any amplifying information in the specification as to how client is software is 

“provided” to a client device.  The closest disclosure in the ’136 Patent is its 

teaching that the client software “is preferably implemented by software plug-in or 

application executed by the client system . . . that utilizes basic software and 

hardware services provided by the client system.”  Ex. 1001 at 7:37-40.  Nothing in 10 

this teaching specifies whether software is “provided” to a client device prior to 

runtime, at runtime, or how it is loaded onto the client device, such as whether the 

server sends the software to the client or whether the software is provided by some 

other means.  The claim itself also does not say what client software is provided to 

the wireless portable device, because none of the other claim elements or 15 

dependent claims refer back to the client software.  However, it is my opinion that 

Reddy and Woods disclose providing client software to a wireless portable device 

to at least the same extent, if not more, that the term is supported by the 

specification of the ’136 Patent. 
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223. For example, Reddy teaches that it utilizes Java scripts and applets in 

connection with a browser plug-in to enable users to view data.  Ex. 1004 at ¶¶ 10, 

26, 32-33.  Browser plug-ins were typically software designed to extend the 

functionality of an existing browser, and so would be installed in addition to the 

browser that was already installed.  A person of ordinary skill in the art as of 1999 5 

or 2000 would also be familiar with both Java scripts and applets. Java scripts and 

applets were typically small applications that would be downloaded from a server 

to a client when the client device viewed a web page.  Moreover, it was standard 

practice by the late 1990s for web sites that used plug-ins to provide the plug-ins 

for download or at least to provide links to where the plug-ins could be 10 

downloaded. 

224. Woods further teaches that computer programs enabling the computer 

system “to perform the features of the present invention” may be received via the 

communications interface.  Ex. 1003 at 15:58-16:8.  Therefore, in my opinion, a 

person of ordinary skill in the art would understand that both Reddy and Woods 15 

teach or suggest providing client software to the user device, which may be a 

wireless portable device, from a server. 
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1.E: receiving a first request at the one or more servers from the first wireless 
portable device over a network communication channel,  

225. As I discussed above in regard to claim element 1.C, in my opinion, a 

person of ordinary skill in the art would understand in view of the teachings of 

Reddy that the geographic image server receives requests from a browser on a 5 

client device to retrieve geotiles containing URL links to imagery files, which are 

in turn retrieved by requests for the URLs.  Ex. 1004 at ¶¶ 19, 21. 

226. Woods likewise teaches that elements of the scene, such as textures, 

may be retrieved (“fetched”) by requests for assets at particular URLs.  Ex. 1003 at 

Abstract, 6:42-49, 7:27-35, 13:21-34.  Therefore, in my opinion, a person of 10 

ordinary skill in the art would understand that both Reddy and Woods teach 

systems in which servers receive fetch requests based on URLs.  Additionally, 

because the system of fetch queues taught by Woods simply sorts requests for 

particular data identified by the URL, a person of ordinary skill in the art would 

understand that in typical VRML browser implementation, these fetch requests 15 

would consist of HTTP “get” requests for the URL.  Because Reddy also teaches 

that tiles of imagery are located by URLs, the fetch requests of Woods are readily 

suited to issue get requests for URLs of image tiles as described by Reddy, and a 

person of ordinary skill in the art would have a reasonable expectation of success 

in making this modification. It is therefore taught or suggested by Reddy and 20 
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Woods that the server receives requests identifying URLs.  I previously discussed 

how Reddy and Woods teach a “wireless portable device” and a “network 

communication channel” in regard to the preamble of claim 1, and in my opinion 

the same teachings apply to this claim element. 

1.F: wherein the network communication channel is at least in part wireless, 5 

227. In my opinion, this claim element is taught by Woods and further 

obvious over the combination of Reddy and Woods.  Woods teaches that the 

communications interface 724 may connect to a channel 728 which may connect to 

a network and can include, among other communications channels, a cellular 

phone link or RF link.  Ex. 1003 at 15:36-50.   10 

228. A person of ordinary skill in the art would know that such wireless 

links, particularly in view of the wireless networking standards in existence at the 

time, could be used to carry conventional Internet traffic such as HTTP “get” 

messages (alternatively referred to as “fetch” requests”) from a client to a server, 

and packetized data sent in response.  Because Reddy teaches that its methods may 15 

be implemented on a “PC connected to the Internet,” a person of ordinary skill in 

the art would understand that the same network traffic needed to implement 

Reddy’s methods, i.e. the requests and responses discussed above, could be 

implemented using a wireless connection as discussed by Woods. In my opinion, 

such wireless communications links would meet the need for mobility suggested in 20 
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the military and emergency response scenarios described by Reddy.  Ex. 1004 at ¶ 

48. 

1.G: the first request being for a first image parcel of the series, wherein the 
first image parcel is selected based on a first user-controlled image viewpoint 
on the first wireless portable device relative to the source image;  5 

229. In my opinion, Reddy teaches this element.  Reddy teaches a system 

designed to enable a user to view geographic information or imagery downloaded 

over the web using a 2D pan-and-zoom display or three-dimensional simulated 

viewpoint chosen or navigated to by the user/operator.  Ex. 1004, ¶¶ 2-3, 13-17, 

21, 38, 42, Fig. 5.  Terrain tiles include the image data that gets texture mapped 10 

onto the elevation model.  Id. at ¶ 18.  Tiles are selected based on the user’s 

proximity to the tile in question.  Id., ¶¶ 12-17, 19-22, 29, 42-46, Fig. 1, 4, 5.  For 

example, Fig. 1(b) and accompanying text describe how higher resolution tiles are 

downloaded for the area nearest the user’s viewpoint, while paragraph 21 teaches 

that “when the user approaches a region of terrain, more detail is progressively 15 

loaded and displayed in a coarse-to-fine fashion.  In my opinion, a person of 

ordinary skill in the art would recognize these teachings to disclose that the update 

data parcel (terrain tiles) are selected based on an operator controlled image 

viewpoint (user perspective) relative to a predetermined image (the source 

imagery/map data that the user is viewing).  Ex. 1004, ¶3.   20 
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230. When a user zooms into a target region, progressively higher 

resolution data is downloaded and displayed.  Ex. 1004 at ¶ 3.  In Reddy, the 

system need only fetch and display data for the region that the user is viewing.  Ex. 

1004 at ¶ 17.  Therefore, Reddy teaches that the user’s computer issues requests for 

specified data from a server for the appropriate resolution and location based on 5 

the user’s viewpoint, in the form of image tiles corresponding to an element of the 

image array.  Reddy teaches that updated tiles are requested in response to changes 

in user-controlled image viewpoints.  Ex. 1004 at ¶ 37. 

231. In my opinion, Woods also describes a server that receives requests 

for image parcels based on a user viewpoint.  Woods describes how clients 10 

download VRML data files from a “web server” over a network.  Ex. 1003 at 5:15-

48, Fig. 1.  Woods describes the use of URLs to fetch VRML objects including 

textures.  Id. at 3:27-47, 6:42-49, 13:20-30.  Woods also describes prioritized 

downloading of VRML data files based on a first user-controlled viewpoint.  Ex. 

1003 at 7:66-8:8 (prioritized list of downloads is responsive to user movement of 15 

the camera). 

1.H: sending the first image parcel from the one or more servers to the first 
wireless portable device over the network communication channel, in 
response to the first request;  

232. As I previously discussed in regard to the preamble of claim 1 and 20 

claim element 1.E, Reddy teaches a system for browsing geographic data over the 
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Internet (which is a network communications channel), which means that image 

tiles (update data parcels) are sent by one or more servers in response to requests 

from the client.  In a typical client-server interaction using HTTP requests, the 

sequence of actions is that the client device sends the request for an object, which 

is received by the server, which obtains the requested object and sends it to the 5 

client device, which then receives it.  Therefore, the server performs the step of 

sending data (in this case, the update data parcel) in response to the client requests.  

As I discussed in regard to claim element 1.E, a person of ordinary skill in the art 

would understand that the geographic browsing methods taught by Reddy are 

driven by requests from the client side.  Therefore, in my opinion, it would be 10 

obvious to a person of ordinary skill in the art that the servers supporting the 

system of Reddy would transmit update data parcels in response to client requests, 

and therefore the step of sending the update data parcel is performed in response to 

the first request. 

233. Woods similarly describes the fetching of VRML resources from a 15 

web server using URLs.  Ex. 1003 at 2:31-37, 3:30-35, 5:14-25, 5:39-48.  In my 

opinion, because a person of ordinary skill in the art would understand that the 

typical operation of an HTML-based server was that the server would receive “get” 

requests for a particular URLs, and send the requested data in response to those get 
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requests, that this teaching means that Woods describes the servers which send 

data in response to client requests. 

1.I: receiving a second request at the one or more servers from the first 
wireless portable device over the network communication channel,  

234. This claim element differs from claim element 1.E only in that it 5 

describes a second request instead of a first request.  In my opinion, a person of 

ordinary skill in the art would recognize that subsequent requests for tiles in the 

system of Reddy would be retrieved in the same manner as the first request.   

235. For example, Reddy discusses how a user would navigate through a 

scene, such as by zooming in or “flying” over an image, which in my opinion 10 

would result in requests for imagery for the appropriate location and zoom level.  

See, e.g. Ex. 1004, ¶¶ 3, 36-38.  In addition, Reddy teaches (and it would also be 

obvious to a person of ordinary skill in the art) that more detailed, higher-

resolution tiles are requested by the client program as a user approaches a 

particular region of the map.  Id., ¶ 21.   15 

1.J: the second request being for a second image parcel of the series, wherein 
the second image parcel is selected based on the first user-controlled image 
viewpoint on the first wireless portable device relative to the source image,  

236. In my opinion, Reddy and Woods both teach or suggest this element.  

For example, Fig. 1(b) of Reddy shows a viewpoint-dependent perspective which 20 

would require requesting (and therefore the server receiving requests for) multiple 
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tiles based on the same viewpoint.  Reddy further teaches that data is progressively 

loaded in a “coarse-to-fine” fashion so that lower-resolution tiles may be displayed 

while higher-resolution tiles are still being downloaded.  Ex. 1004 at ¶¶ 21, 44.  

Therefore, it would be obvious in view of Reddy to retrieve and request a second 

tile (e.g., a higher-resolution tile, or another tile forming a different portion of the 5 

same scene) based on the same viewpoint as the first tile.   

237. Woods also discloses downloading multiple resources in a priority 

order for the same viewpoint.  For example, Woods describes and shows via Fig. 

5A an example wherein based on the camera position and direction one grid region 

is designated priority 1, eight others are designated priority 2, and twelve others are 10 

designated priority 3.  Ex. 1003 at 8:55-10:64.  In my opinion, a person of ordinary 

skill in the art would understand from these teachings of Woods that multiple 

assets (including textures) would be retrieved in a priority sequence based on the 

same viewpoint. Because more needed resources are loaded into the priority queue 

first, Woods teaches that subsequent fetch requests for data based on the same 15 

viewpoint would be issued after a first request.  For example, because resources are 

downloaded in a priority order (id. at 13:5-20), requests associated with a priority 1 

grid region would be received before those associated with the priority 2 and 3 grid 

regions.   
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238. It is also my opinion that such a priority scheme would provide 

substantially the same benefits to implement the coarse-to-fine prioritization taught 

by Reddy.  In Woods, textures that are needed sooner are loaded sooner. For 

example, the outside textures of a building are loaded before the inside textures of 

the building. Reddy teaches that coarse tiles are needed before higher resolution 5 

tiles as the user approaches them. Therefore, it would make sense to load coarse 

tiles before higher resolution tiles using the prioritization scheme of words in the 

same manner. 

1.K: the step of receiving the second request being performed after the step of 
receiving the first request;  10 

239. In my opinion, this claim element would be obvious to a person of 

ordinary skill in the art over Reddy and Woods in view of the teachings that I 

discussed above regarding claim element 1.J.  For example, Reddy teaches that 

lower resolution tiles are retrieved (that is, that requests for those tiles are sent by 

the client and received by the server) before higher resolution tiles.  Woods further 15 

teaches the use of a priority queue which (in a preferred embodiment) retrieves 

four “assets” simultaneously and then retrieves additional assets first from a 

“waiting” queue and then from a list of assets to be retrieved.  Ex. 1003, Fig. 8, 

12:56-13:47.  In my opinion, a person of ordinary skill in the art would recognize 

that in the priority queue of Woods, a later “fetch” request would naturally be 20 
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received by the server after an earlier “fetch” request. For example, a fetch request 

in the waiting queue at a time would be sent and received after a fetch request that 

was in an active queue the same time. 

240. As I discussed above, it is also my opinion that a person of ordinary 

skill in the art would recognize that the priority setting scheme of Woods would be 5 

readily applied to retrieve image tiles in a coarse to fine manner as taught by 

Reddy simply by retreating geographic texture tiles using the woods fetching 

scheme this combination would result in later requests for tiles from the same 

viewpoint being received after earlier requests for the tiles from that viewpoint. 

1.L: sending the second image parcel from the one or more servers to the first 10 
wireless portable device over the network communication channel, in 
response to the second request; wherein:  

241. In my opinion, Reddy and Woods disclose this claim element. This 

claim element is nearly identical to claim element 1.H, except that it relates to the 

second image parcel rather than the first. In my opinion, it would be obvious that 15 

subsequent tiles requested would be sent in the same manner as the “first” tile (that 

is, the server would receive the request for the tile and then send the tile in 

response to the request) and therefore my discussion above regarding claim 

elements 1.H applies. 
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1.M: the first wireless portable device renders at least a portion of the first 
image parcel before finishing receiving the second image parcel; 

242. In my opinion, Reddy teaches this element.  For example, in addition 

to its disclosure that imagery is downloaded from “coarse to fine,” Reddy notes 

that “[m]ost VRML browsers perform nonblocking network reads so that the user 5 

can still interact with the scene while higher resolution imagery and elevation 

loads.”  Ex. 1004, ¶¶ 21, 44.  A person of ordinary skill in the art would understand 

that “non-blocking reads” means that the network reads (that is, the requests for 

data over the network) do not occupy (that is, “block”) the processor the entire 

time that they are being executed. This allows other functions, such as rendering 10 

the scene with the data that is received, to be performed while data is still being 

downloaded from the network. In my opinion, a person of ordinary skill in the art 

would understand this disclosure to confirm that imagery is rendered while 

additional imagery is received.  This is necessarily the case because unless some 

imagery was rendered while other imagery was being downloaded for a particular 15 

scene, there would be nothing for a user to “interact” with.   

243. Reddy discloses other scenarios which make it clear that some 

imagery is rendered while other imagery is still being downloaded.  For example, 

Reddy discloses “walk” and “fly” navigation modes.  These modes would have to 

allow for tiles to be displayed while other tiles are still being requested and 20 
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received, because the needed tiles would be identified while the viewpoint is 

moving as the viewpoint is controlled by the user.  Reddy also discloses pre-

fetching of the tiles identified by predicting the user’s path of movement.  Ex. 

1004, ¶ 46.  The pre-fetched tiles “are immediately available for rendering.”  Id.   

244. In my opinion, Woods also teaches or suggests this element because 5 

Woods repeatedly refers to which assets are needed first for display.  Indeed, 

retrieving assets first needed for display so that those assets can be displayed while 

lower-priority objects are being retrieved is the central purpose of Woods.  See, 

e.g., Ex. 1003, 4:56-59 (invention prioritizes “that data which is most likely 

perceived”); 7:36-55 (describing prioritization of objects that “user will be able to 10 

interact with” to avoid spending time “fetching images which are not immediately 

rendered because they are not visible to the user”).  A person of ordinary skill in 

the art would understand from these teachings that earlier retrieved, higher priority 

objects are rendered while later, lower priority objects are still be requested.  

Woods also teaches that “asset fetching is performed in an execution thread that is 15 

separate from the browser’s runtime thread.”  Ex. 1003, 12:56-6.  A person of 

ordinary skill in the art would understand from this teaching that rendering of 

imagery retrieved by the browser would be performed by the browser’s runtime 

thread, since asset fetching is the only function separated into a distinct thread.  

The purpose of such multi-threading a is to enable different functions to be 20 
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performed simultaneously (if multiple processors are used, or very nearly 

simultaneously, to an extent imperceptible to a human user, if a single processor is 

used) without the processor needing to switch between different processes.  In my 

opinion, a person of ordinary skill in the art would recognize that this feature 

would enable a user to interact with earlier downloaded objects which are rendered 5 

by the browser runtime thread while other objects are being fetched by the asset 

fetching execution thread. 

245. In my opinion, this element is also obvious because it merely recites a 

conventional and well-known feature of Web browsers at the time of the alleged 

invention and of the earliest asserted priority date.  By 1999 and 2000, many 10 

common web browsers, such as Netscape, downloaded images and rendered them 

one at a time as they were downloaded, without waiting for the remaining images 

to be downloaded before rendering.  See, e.g.,. Ex. 1054 (Brown, Using Netscape 

2) at 95, 443 (showing “Display Images: While Loading” setting).  Woods notes 

that VRML browsers operate similarly to web browsers.  Ex. 1003, 2:34-47.  A 15 

person of ordinary skill in the art would read this teaching of Woods in view of the 

common knowledge in the art that web browsers typically rendered and retrieved 

data simultaneously. 
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1.N: the first wireless portable device issues the first request and the second 
request according to a priority order;  

246. In my opinion, Wood teaches this element.  Woods teaches that 

objects to be downloaded are assigned a priority, after which the highest priority 

objects are placed in the fetch queue to retrieve objects in order of their priority.  5 

Ex. 1003, Abstract, Fig. 8, 3:50-58, 11:66-12:5, 12:56-13:47.  Therefore, Woods 

teaches that different fetch requests are issued in a priority order. 

1.O: priority of the second request in the priority order is not higher than 
priority of the first request in the priority order; 

247. In my opinion, Woods teaches this element because it teaches that the 10 

highest priority assets are requested first.  Ex. 1003, Fig. 8 step 802, 12:47-50, 

13:5-9.  I previously discussed the “second request” in regard to claim elements 

1.I-1.K, and in my opinion it would be obvious that because the requests with 

highest priority are issued first, a later request would not have a higher priority 

than an earlier request. 15 

1.P: the first wireless portable device stores the first image parcel and the 
second image parcel in a local parcel storage at the first wireless portable 
device;  

248. Reddy and Woods both teach this element.  Reddy teaches the use of a 

tile cache to “eliminate[] the need to reload and parse data for terrain regions that 20 

the user has recently browsed.”  Ex. 1004, ¶ 45.  Woods likewise teaches that the 

client device includes main and secondary memory assets such as textures may be 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

142 
 

stored in a cache on the client device.  Ex. 1003, Fig. 7, 3:5-7, 3:14-15, 4:59-61, 

12:2-12, 14:19-60.  Such caches correspond to the claimed “local parcel storage” at 

the client device which can store terrain imagery or texture tiles (first and second 

image parcels). 

1.Q: before issuing the first request, the first wireless portable device 5 
determines that a third image parcel is usable for the first user-controlled 
image viewpoint and the third image parcel is already stored in the local 
parcel storage, and the first wireless portable device renders the third image 
parcel before issuing the first request without requesting the third image 
parcel over the network communication channel; 10 

249. In my opinion, this claim element is taught by and obvious in view of 

both Reddy and Woods.  Despite the length of the claim element, what it claims is 

actually very simple. This claim element basically says, in layman’s terms, that the 

client checks to see if it already has a particular image parcel before sending a 

request for it.  This function is roughly analogous to looking in the refrigerator to 15 

see if there is already milk in the refrigerator before going to the grocery store to 

buy more.  Reddy and Woods both teach this claim element because both 

references use caches which can be used to store data that has already been 

downloaded so that the client does not need to request that data again. I discussed 

the tile caches of both Reddy and Woods above in regard to claim element 1.P, and 20 

I will explain in more detail how those caches meet the specific language of this 

claim. 
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250. Reddy teaches that tile caching eliminates the need to request the 

same data again.  Ex. 1004, ¶ 45.  Additionally, Reddy teaches using and 

displaying lower-resolution data available in the cache while higher-resolution tiles 

have yet to arrive.  Id., ¶ 44.  Both of these teachings mean that the client software 

determines whether a needed tile is stored in memory and if so, using that tile 5 

instead of making an unnecessary and duplicative request for the same tile. 

251. In addition to the tile caching features of Woods that I discussed 

above regarding claim element 1.P, Woods further teaches that the asset database 

table used to assign priorities includes a “cache status” field that indicates whether 

an asset is in local storage, and that assets in the table may be “checked for their 10 

current state to determine whether or not they have been fetched.”  Ex. 1003, 12:6-

12, 12:52-55.  For example, a cache status of 1 indicates that an asset is “in 

memory.”  Id. at 12:10-12.  Therefore, according to this operation of Woods, the 

cache status field is first checked, and if an asset is already available in local 

storage (“in memory”), the asset does not need to be requested through the priority 15 

queue.  This corresponds to the claim element.  It is also my opinion that Woods’ 

method of tracking the cache status of tiles would also advantageously meet the 

functional goal taught by Reddy (as discussed immediately above) of using and 

rendering locally stored tiles when such tiles are available, in order to avoid 

wasting bandwidth through unnecessary tile requests. 20 
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1.R: the first wireless portable device handles download operations of at least 
the first image parcel and the second image parcel in parallel, thereby 
enabling efficient use of network bandwidth in conditions of network latency; 

252. In my opinion, Woods teaches this element.  Woods teaches that 

assets may be fetched by the active request queue “simultaneously,” i.e., in 5 

parallel.  Ex. 1003, Fig. 8, 13:20-34.  It would be obvious to apply this method to 

retrieve tiles, or “image parcels” as described by Reddy (that is, textures for the 

surface of the earth) for the same reasons that I discussed previously.   

253. As I discussed above in section IX.B, it is my opinion that the phrase 

“thereby enabling efficient use of network bandwidth in conditions of network 10 

latency” is not limiting (as the law has been explained to me) because it simply 

explains a laudatory intended effect of the preceding language rather than further 

defining the claims.  However, it is my opinion that even if this phrase is construed 

as a limitation, it is taught by Woods. 

254. Woods teaches that one of the “limited resources” it is intended to 15 

address is the “access time” for resources, i.e., “the amount of time it takes to 

retrieve the data from the limited resource and send it to the appropriate place to be 

presented to the user.”  Ex. 1003, 3:5-12.  Network resources have the “greatest 

access time” and can create “bottleneck problems due to limited bandwidth.”  Id., 

3:15-27.  In my opinion, a person of ordinary skill in the art would understand that 20 

this description of the access time over a network would be understood as network 
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latency.  For example, Web Performance Tuning by Patrick Killelea (1998) 

describes “latency” as “the time between making a request and beginning to see a 

result.”  Ex. 1044 at 43.12  Therefore, a person of ordinary skill in the art would 

understand that “conditions of network latency” refer to such conditions where 

access time is increased, whether due to bottleneck problems associated with 5 

limited bandwidth (which can in turn create network latency, much like a lane 

closure on a freeway causes individual cars to move more slowly) or other 

problems.  Woods further teaches that its teachings of prioritization and parallel 

downloads are intended to “increase performance by the efficient use of limited 

resources.”  Ex. 1003, 3:50-54.  Therefore, in my opinion, a person of ordinary 10 

skill in the art would understand that Woods teaches the “thereby” clause 

following this claim element even if it is construed as limiting. 

1.S: the local parcel store is configured as a server to provide access to the at 
least some image parcels received by the first wireless portable device. 

255. For the reasons that I previously discussed in section IX.C, the 15 

specification of the ’136 Patent does not provide any support for this term other 

than a cursory mention of a local parcel store that the browser, e.g. the parcel 

                                           
12 Killelea is an O’Reilly reference book focused on techniques for improving web 

site performance.  In my opinion, Killelea is well within the level of ordinary skill 

in the art.    
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request client 42, may gain access to.  This element cannot be interpreted to be any 

narrower than this without going far beyond the actual support in the specification.  

I discussed above in regard to claim elements 1.P and 1.Q how Reddy and Woods 

disclose client-side caches which provide access to tiles previously downloaded.  

See, e.g. Ex. 1004, ¶¶ 21, 45; Ex. 1003, 3:56-60, 14:18-27.  In my opinion, the 5 

client-side caches in both Reddy and Woods can be accessed by the browser so 

that the browser can access and display image parcels (described as tiles in Reddy 

and textures in Woods).  It is also my opinion that Reddy and Woods support and 

enable this element at least to the same extent as the minimal disclosure in the 

specification of the ’136 Patent. 10 

4. Claim 10 

256. In my opinion, claim 10 is obvious over Reddy and Woods for 

substantially the same reasons and based on the same teachings that I previously 

discussed in regard to claim 1.  Claim 1 and claim 10 contain mostly the same 

claim elements as each other.  The primary difference is that claim 1 is worded to 15 

recite a method which is primarily performed by a server, while claim 10 recites a 

computer system comprising servers which are configured to perform the same 

method steps. In my opinion, this difference in the wording of the claims is not 

material to the patentability of claim 10 because both claims recite essentially the 

same technical features and the teachings of Reddy and Woods relating to those 20 
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technical features would invalidate the claims for a method performed on a server 

or a server configured to perform the method in the same manner.  For example, 

the preamble of claim 10 is obvious in view of the teachings that I previously 

discussed above in regard to the preamble of claim 1 (“wireless portable devices”) 

as well as claim elements 1.C (“one or more servers”), 1.E (“ network 5 

communication channel”), and 1.F (“network communication channel is at least in 

part wireless”).  Nevertheless, for the sake of completeness, I discussed below the 

related teachings of claim 1 which also teach the elements of claim 10. 

Claim 10, Preamble: A computing system comprising one or more servers, 
wherein the one or more servers are coupled to a wireless portable device by a 10 
network communication channel, the network communication channel being 
at least in part wireless, the one or more servers being configured to:    

257. In my opinion, the preamble of claim 10 is obvious in view of the 

teachings that I previously discussed above in regard to the preamble of claim 1 

(“wireless portable devices”) as well as claim elements 1.C (“one or more 15 

servers”), 1.E (“ network communication channel”), and 1.F (“network 

communication channel is at least in part wireless”).   

10.A: pre-process a source image to obtain a series (K0, K1 . . . KN) of related 
images of progressively lower image resolution,  

258. In my opinion, this claim element is obvious in view of the teachings 20 

that I previously discussed in regard to claim element 1.A. 

10.B: wherein each related image of the series (K0, K1 . . . KN) comprises pixel 
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data and is subdivided into a regular array of image parcels, and each image 
parcel of each regular array of the image parcels forms a discrete portion of 
the source image;  

259. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.B.   5 

10.C: store the image parcels of the series for serving by the one or more 
servers;  

260. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.C. 

10.D: provide client software to the wireless portable device;  10 

261. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.D. 

10.E: receive a first request from the wireless portable device over the 
network communication channel,  

262. In my opinion, this claim element is obvious in view of the teachings 15 

that I previously discussed in regard to claim element 1.E. 

10.F: the first request being for a first image parcel of the series, wherein the 
first image parcel is selected based on a first user-controlled image viewpoint 
on the wireless portable device relative to the source image;  

263. In my opinion, this claim element is obvious in view of the teachings 20 

that I previously discussed in regard to claim element 1.G. 

10.G: send the first image parcel from the one or more servers to the wireless 
portable device over the network communication channel, in response to the 
first request;  

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

149 
 

264. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.H. 

10.H: receive a second request from the wireless portable device over the 
network communication channel,  

265. In my opinion, this claim element is obvious in view of the teachings 5 

that I previously discussed in regard to claim element 1.I. 

10.I: the second request being for a second image parcel of the series, wherein 
the second image parcel is selected based on the first user-controlled image 
viewpoint on the wireless portable device relative to the source image,  

266. In my opinion, this claim element is obvious in view of the teachings 10 

that I previously discussed in regard to claim element 1.J. 

10.J: the second request being received by the one or more servers after the 
first request is received by the one or more servers; and  

267. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.K. 15 

10.K: send the second image parcel from the one or more servers to the 
wireless portable device over the network communication channel, in 
response to the second request; wherein:  

268. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.L. 20 

10.L: the wireless portable device renders at least a portion of the first image 
parcel before finishing receiving the second image parcel;  

269. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.M. 
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10.M: the wireless portable device issues the first request and the second 
request according to a priority order;  

270. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.N. 

10.N: priority of the second request in the priority order is not higher than 5 
priority of the first request in the priority order;  

271. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.O. 

10.O: the wireless portable device stores the first image parcel and the second 
image parcel in a local parcel storage at the first wireless portable device;  10 

272. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.P. 

10.P: before issuing the first request, the first wireless portable device 
determines that a third image parcel is usable for the first user-controlled 
image viewpoint and that the third image parcel is already stored in the local 15 
parcel storage, and the wireless portable device renders the third image parcel 
before issuing the first request without requesting the third image parcel over 
the network communication channel;  

273. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.Q. 20 

10.Q: the wireless portable device handles download operations of at least the 
first image parcel and the second image parcel in parallel, thereby enabling 
efficient use of network bandwidth in conditions of network latency; and  

274. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.R. 25 
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10.R: the local parcel store is configured as a server to provide access to the at 
least some image parcels received by the wireless portable device.  

275. In my opinion, this claim element is obvious in view of the teachings 

that I previously discussed in regard to claim element 1.S.  

5. Claim 19 5 

276. In my opinion, claim 19 is obvious over Reddy and Woods based on 

the same and teachings that I discussed above in regard to claim 1.  The primary 

difference between claim 19 and claim 1 is that claim 19 focuses on the operation 

of the client device and therefore uses a “wherein” clause to describe the operation 

of the server and describes the requests and data exchanged between the client and 10 

the server from the perspective of the client (“wireless portable device”) instead of 

the server. Conversely, claim 1 describes client-server interaction from the 

perspective of the server and uses “wherein” clauses to describe the operation of 

the client. However, in my opinion, both of these claims describe its actually the 

same client-server interaction, and therefore the same teachings of Reddy and 15 

Woods are applicable.  

277. For example, claim 1 recites “receiving a first request at the one or 

more servers from the first wireless portable device . . .” while claim 19 recites that 

the wireless portable device is configured to “send a first request for the first image 

parcel of the series to the one or more servers over the network communications 20 
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channel.”  Yet both of these claim elements refer to the same interaction: a client 

device sends a request, over a network communications channel, which is received 

by a server. Likewise, the elements of claims 1 and 19 that refer to data (e.g. image 

parcels) being sent from the server to the client device are describing the same 

client-server interaction whether they are phrased based on “sending” the data from 5 

the server or “receiving” the data at the client.  For the sake of completeness, I will 

describe below where I previously discussed the relevant teachings of Reddy and 

Woods for each element of claim 19. 

Preamble: A wireless portable device, wherein: 

278. In my opinion, the preamble of claim 19 is obvious over the same 10 

teachings of Reddy and Woods that I previously discussed in regard to the 

preamble of claim 1. 

19.A: the wireless portable device is coupled to one or more servers over a 
network communication channel, the network communication channel being 
at least in part wireless, 15 

279. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to the preamble of claim 

1 (wireless portable device coupled to one or more servers) and claim element 1.F 

(network communication channel being at least in part wireless). 
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19.B: the one or more servers storing a series (K0, K1 . . . KN) of related images 
of progressively lower image resolution, 

280. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim elements 1.A 

(series of related images of progressively lower image resolution) and 1.C (servers 5 

store image parcels). 

19.C: each related image of the series (K0, K1 . . . KN) comprising pixel data 
and being subdivided into a regular array of image parcels, each image parcel 
of each regular array of the image parcel of the series forming a discrete 
portion of a source image,  10 

281. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.B. 

19.D: the series being obtained by processing the source image, the one or 
more servers being configured to serve the related images of the series; 

282. In my opinion, this claim element is obvious over the same teachings 15 

of Reddy and Woods that I previously discussed in regard to claim element 1.A. 

the wireless portable device is configured to: 

19.E: determine a first image parcel of the series based on a first user-
controlled image viewpoint on the wireless portable device relative to the 
source image; 20 

283. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.G. 
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19.F: send a first request for the first image parcel of the series to the one or 
more servers over the network communication channel; 

284. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim elements 1.E 

(one or more servers receives request send from wireless portable device) and 1.G 5 

(request is for a first image parcel of the series). 

19.G: receive the first image parcel from the one or more servers over the 
network communication channel, in response to the first request; 

285. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.H. 10 

19.H: determine a second image parcel based on the first user-controlled 
image viewpoint on the wireless portable device relative to the source image; 

286. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.J. 

19.I: send a second request for the second image parcel to the one or more 15 
servers, the second request being sent after the first request; and 

287. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim elements 1.I 

(server receives second request sent from the wireless portable device) and 1.K 

(second request is sent after the first request). 20 
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19.J: receive the second image parcel from the one or more servers to the 
wireless portable device over the network communication channel, in 
response to the second request; 

288. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.L. 5 

19.K: render at least a portion of the first image parcel before finishing 
receiving the second image parcel; 

289. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.M. 

19.L: store the first image parcel and the second image parcel in a local parcel 10 
storage at the first wireless portable device; 

290. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.P.  

19.M: before sending the first request, determine that a third image parcel is 
usable for the first user-controlled image viewpoint and the third image parcel 15 
is already stored in the local parcel storage, and render the third image parcel 
without requesting the third image parcel over the network communications 
channel; 

291. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.Q. 20 

19.N: handle download operations of at least the first image parcel and the 
second image parcel in parallel, thereby enabling efficient use of network 
bandwidths in conditions of network latency; 

292. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.R. 25 
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19.O: configure the local parcel store as a server to provide access to at least 
some image parcels received by the wireless portable device; 

293. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.S. 

19.P: the first request and the second request are issued according to a 5 
priority order; 

294. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.N. 

19.Q: priority of the second request in the priority order is not higher than 
priority of the first request in the priority order. 10 

295. In my opinion, this claim element is obvious over the same teachings 

of Reddy and Woods that I previously discussed in regard to claim element 1.O. 

6. Claims 2, 11, and 20 

Claim 2: The method of claim 1, wherein the first user-controlled image 
viewpoint is determined based on a navigational input of the first wireless 15 
portable device 

Claim 11: The computing system of claim 10, wherein the first user-controlled 
image viewpoint is determined based on a navigational input of the wireless 
portable device 

Claim 20: The wireless portable device of claim 19, further configured to 20 
determine the first user-controlled image viewpoint based on a navigational 
input of the wireless portable device 

296. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 

discuss these claims together. 25 
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297. As I previously discussed in regard to claim element 1.G, Reddy 

teaches that a user may select an image viewpoint, for example, by “flying” and 

zooming into an area of interest.  For example, in ¶ 3, Reddy describes the scenario 

as follows (emphasis added): 

The following scenario indicates the capabilities 5 

required.  Say a user wants to find a particular building in 

a particular city.  Her journey begins with a 3D model of 

the earth viewed from space.  This model is texture 

mapped with satellite imagery of 100 kilometers 

resolution— that is, each pixel in the texture map 10 

represents a region on the planet’s surface covering 100 

km2.  To find the city, the user first rotates the earth to 

view the target region in more detail.  As she zooms into 

the region, higher resolution data, such as elevation and 

imagery, are progressively downloaded and displayed 15 

until she is “flying” over mountains with imagery down 

to one-meter resolution.  Over certain parts of the terrain, 

alternative imageries are available, such as aerial 

photographs; the user can select any image to view on 

top of the terrain geometry.  As she approaches a built 20 

up area, 3D models of buildings come into view.  When 

the user clicks on a building, information about it is 

displayed in a separate frame on the browser.  Using this 

method, the user locates the target building.  Throughout 

the navigation, the user’s location is displayed via an 25 
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active map interface that provides a context for the 

landscape being viewed. 

298. In my opinion, it would be clear to a person of ordinary skill in the art 

in view of this teaching that the navigation system taught by Reddy would require 

navigational inputs on the user computing device to determine a viewpoint.  Reddy 5 

teaches an alternative form of navigational input for determining a viewpoint in 

Fig. 5 and the accompanying text at paragraph 37 (emphasis added): 

 

Active maps.  When flying over terrain, it’s often difficult 

for users to maintain a global context for their position.  10 

We thus employ a map display, managed by a Java 

applet.  Through the EAI, we can obtain the user location 
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in the geographic environment.  We might do this, for 

example, using the position_changed eventOut of a 

ProximitySensor placed around the entire scene.  We can 

then project this 3D geocentric coordinate onto the map 

display so users can easily ascertain their location in the 5 

world.  Users can also click over the map and then 

move the viewpoint directly to that location.  We do 

this by updating and binding a Viewpoint node in the 

VRML scene graph. 

299. In my opinion, this teaching of Reddy also satisfies this claim 10 

element. 

300. Woods similarly discloses that VRML allows users to navigate spaces 

(e.g., “the streets of a city”) by controlling the viewpoint of a virtual camera using 

an input device.  Ex. 1003, 2:39-43 (“3D rendering is performed from the 

viewpoint of a virtual camera that has the ability to move and tilt in any direction 15 

in response to user input, via a mouse, keyboard or other input device.”); 2:48-56 

(describing navigation through “three dimensional worlds”).  Woods further 

discloses prioritizing the download of VRML resources based on the user-

controlled camera position / viewpoint.  Ex. 1003, 7:66-8:8, 8:55-59, 11:62-65.  In 

my opinion, these teachings of Woods also disclose that a viewpoint is determined 20 

in response to a navigational input (e.g. via the input devices described). 
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7. Claims 3, 12, and 21 

Claim 3: The method of claim 2 wherein the navigational input comprises 
three-dimensional positional coordinate data and rotational positional data. 

Claim 12: The computing system of claim 11, wherein the navigational input 
comprises three-dimensional positional coordinate data and rotational 5 
positional data. 

Claim 21: the wireless portable device of claim 19, wherein the navigational 
input comprises three-dimensional positional coordinate data and rotational 
positional data. 

301. In my opinion, these claim limitations are substantially similar to each 10 

other, other than depending from different independent claims.  Therefore, I will 

discuss these claims together. 

302. In my opinion, it would be obvious to a person of ordinary skill in the 

art that displaying a perspective view from a viewpoint, which I previously 

discussed in regard to claim element 1.G, would require at least x, y, and z (altitude 15 

or height) coordinates, as well as the direction of view (rotational position data, 

although the specification of the ’136 patent never uses this term).  For example, a 

person of ordinary skill in the art would readily recognize that Figures 3, 4, and 5 

of Reddy all depict perspective views of a scene from a defined viewpoint (with x, 

y, and z coordinates) in a particular direction.  Paragraph 37 of Reddy further 20 

explains how a user can use a map display (shown in a separate window from the 

perspective view, to move directly to a particular location).  For example, in Fig. 5 

of Reddy, the perspective view in the center of the image corresponds to the map 
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shown on the left.  The green square in the map shows the area of interest, and the 

blue wedge shows the view direction (east-northeast in the example, which is 

rotational position data) from the viewpoint: 

 

303. Additionally, the scene shown in Fig. 5 of Reddy also requires an 5 

altitude (the “z” coordinate under the most commonly used convention, although 

the naming of the axes is arbitrary) in order to create a three-dimensional 

perspective.  I previously discussed in regard to claim 2 how Reddy utilizes 

navigational inputs to define a viewpoint. 

304. Woods also teaches a three-dimensional viewpoint including three-10 

dimensional coordinates and rotation data.  Woods discloses that users can “move 
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and tilt” the camera / viewpoint “in any direction.”  Ex. 1003, 2:39-43; see also id., 

3:41-42 (“Users are free to move in any direction, change viewing angles, and 

movement speeds.”).  “Viewing angles” (i.e. the direction that the camera is 

looking) are another way of describing the rotational data for a camera.  Woods 

also discloses that VRML uses a three-dimensional coordinate system and that the 5 

default camera position “is located at (0,0,10) and looks along the negative z-axis.”  

Id., 6:13-15.  In my opinion, a person of ordinary skill in the art would understand 

“(0,0,10)” to be three-dimensional positional coordinate data.  Using the 

conventional (x,y,z) coordinate notation, the coordinates (0,0,10) would denote a 

position at the origin of the x and y axes (i.e. the X and Y axes are 0) and 10 units 10 

along the Z axis, while “look[ing] along the negative z-axis” means that the camera 

is looking from this position toward the origin (0,0,0) of the coordinate system.  In 

layman’s terms, this describes a camera above the x, y plane looking down.  The 

view of the camera (looking down) is rotational positional data.  Woods also 

discloses that prioritization may take into account “camera position, orientation, 15 

speed and direction.”  Id., 9:61-63, Abstract (referencing “position, orientation, and 

velocity of the camera”).  In my opinion, these disclosures are analogous to the 

’136 specification’s high level description of navigation controls.  Ex. 1001, 6:5-

12, 8:7-13. 
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8. Claims 4, 13, and 22 

Claim 4: The method of claim 2, wherein the first wireless portable device 
stores requests for image parcels to be downloaded from the one or more 
servers in a priority queue, and wherein responsive to a change in the 
navigational input, a request is removed from the priority queue. 5 

Claim 13: The computing system of claim 11, wherein the wireless portable 
device stores requests for the image parcels of the series to be downloaded 
from the one or more servers in a priority queue, and wherein responsive to a 
change in the navigational input, a request is removed from the priority queue. 

Claim 22: The wireless portable device of claim 20, further configured to store 10 
requests for image parcels to be downloaded from the one or more servers in 
a priority queue, and, responsive to a change in the navigational input, to 
remove a request from the priority queue. 

305. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 15 

discuss these claims together. 

306. In my opinion, Woods teaches this limitation.  Woods teaches a 

priority queue comprising “configurable queue of fetch elements comprising a 

number of ‘active’ fetches” and one waiting fetch, which are used to retrieve the 

highest priority assets.  Ex. 1003, Fig. 8, 12:56-13:47.  Woods further teaches 20 

removing requests from the priority in response to a navigational input.  Woods 

teaches that when asset priorities change, waiting or even active fetch requests may 

be aborted, i.e., removed from the priority queue.  Id., 13:62-14:17.  Woods further 

teaches that assets are “prioritized based on the position of the camera” (id., 7:66-

8:8), and that priorities can be updated when the camera crosses a region boundary 25 
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(id., 12:35-36).  In my opinion, a person of ordinary skill in the art would 

understand from these teachings that in certain scenarios a fetch request may be 

removed from the priority queue in response to a navigational input.  For example, 

if the camera position changes (that is, a change in a navigational input) so that 

other assets gain a higher priority than assets in the active or waiting slots in the 5 

request queue, those requests previously in the queue may be aborted, that is, 

removed from the queue. 

9. Claims 6, 15, and 24 

Claim 6: The method of claim 1, further comprising sending overlay data by 
the one or more servers to the first wireless portable device over the network 10 
communication channel. 

Claim 15: The computing system of claim 10, wherein the one or more servers 
are further configured to send overlay data to the wireless portable device 
over the network communication channel. 

Claim 24: The wireless portable device of claim 19, further configured to 15 
receive overlay data sent by the one or more servers to the wireless portable 
device over the network communication channel, and to render the overlay 
data when rendering parcel images of the series. 

307. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 20 

discuss these claims together. 

308. In my opinion, Reddy teaches this claim.  Reddy teaches that terrain 

tile files are linked to “feature files,” which may contain information such as 

cultural features, roads, and terrain or other annotations (Ex. 1004, ¶¶ 22-26), while 
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example in the introduction describes a user viewing 3D buildings and information 

about the buildings (Id., ¶ 3).  Such information may be overlaid on the image in 

order to show the information in its correct position on the map.  For example, Fig. 

4 shows roads and buildings in Ft. Benning overlaid on the aerial view: 

 5 

309. In my opinion, all of these features in the “feature files” of Reddy 

satisfy the claimed “overlay data” in this claim.  It is also my opinion that a person 

of ordinary skill in the art would recognize that many of the types of data discussed 

in Reddy, particularly in ¶ 25, would typically and preferably be displayed as 

overlay data.  For example, the data contained in feature files may include features 10 

such as weather data, e.g. wind vectors, and the system may be used in military 

mission planning (id., ¶ 48).  A “wind vector” is a graphical icon that shows the 

direction and speed of the wind in a particular direction.  For example, the figure 
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below from an FAA aviation weather report shows the wind vector graphical 

icons:13 

 

310. In my opinion, it would be obvious to a person of ordinary skill in the 

art that the most likely use of such information is to overlay it on a map in order to 5 

provide the most relevant information at a user, as shown in the example above. 

                                           
13 Although this illustrative example is recent, a person of ordinary skill in the art 

would recognize that similar figures have been used in official weather reports for 

decades. 
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311. In my opinion, Reddy’s teaching of military mission planning uses 

would also lead a person of ordinary skill in the art to incorporate military 

operational graphics, which are graphical icons widely used in military planning 

and operations to depict military units in a concise, standardized manner.  For 

example, the symbol below depicts an armored cavalry or reconnaissance 5 

battalion:14 

 

                                           
14 See Army Field Manual (FM) 1-02/Marine Corps Reference Publication (MCRP) 

5-12A, available online at 

http://www1.udel.edu/armyrotc/current_cadets/cadet_resources/manuals_regulatio

ns_files/FM%201-02%20-%20Operational%20Terms%20&%20Graphics.pdf 

(accessed September 28, 2016).  Although this is the current version of the manual, 

in my experience working on defense contracts the concept of using operation 

icons to depict military units would have been well-known by 1999 or 2000. 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

168 
 

312. In my opinion, and based on my experience working on military and 

defense-related projects, the ubiquitous use of such operational symbols in military 

maps would provide a strong motivation for a person of ordinary skill in the art to 

utilize such graphical icons in the system of Reddy, based on Reddy’s suggestion 

of using the system for military mission planning.  Further, one of the most 5 

common uses of such icons is to display them on a map as an overlay in order to 

conveniently depict their locations.  For example, even before the modern 

computer era it was common military practice to display such information on 

literal “overlays,” which were sheets of transparent material (such as acetate) 

marked with reference lines in order to enable the overlay to be lined up with an 10 

underlying map so that geographically referenced information can be shown on its 

correct place without marking the underlying map:15 

                                           
15 See, e.g. Army Field Manual (FM) 3-25.26, Chapter 7 (“Overlays”).  Available 

online at https://fas.org/irp/doddir/army/fm3-25-26.pdf. 
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313. In the modern computer era, including prior to the effective filing date 

of the ’136 Patent, the same function may be accomplished electronically by 

providing annotations such as geographically-referenced operational symbols as an 

electronic “overlay” so that the data can be displayed on top of a base map.  This is 5 

precisely what Reddy describes in regard to “feature files.”  Therefore, in my 

opinion, it would be obvious to a person of ordinary skill in the art that Reddy 

teaches overlay data. 

10. Claims 7, 16, and 25 

Claim 7: The method according to claim 6, wherein the overlay data 10 
comprises text annotations relating to at least one item selected from the 
group consisting of: one or more street names, one or more building names, 
and one or more landmarks.   

Claim 16: The computing system of claim 15, wherein the overlay data 
comprises text annotations relating to at least one item selected from the 15 
group consisting of: one or more street names, one or more building names, 
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and one or more landmarks.   

Claim 25: The wireless portable device of claim 24, wherein the overlay data 
comprises text annotations relating to at least one item selected from the 
group consisting of: one or more street names, one or more building names, 
and one or more landmarks.   5 

314. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 

discuss these claims together. 

315. Reddy teaches that the feature files include information such as 

annotations, Ex. 1004, ¶¶ 6, 22, 25-26, and that the user in the example case in the 10 

introduction can access annotations about a target building, id., ¶ 3.  In my opinion, 

it would be obvious to a person of ordinary skill in the art that since (1) a purpose 

of Reddy is to visualize and understand geographic information and (2) the system 

supports annotations, particularly through its use of “feature files,” text annotations 

such as street or building names and landmarks would be a likely use for the 15 

system in order to provide usable information to a user in addition to visualizing 

the terrain.  For example, a user who wanted to see roads displayed on a map (See, 

e.g. Fig. 4 of Reddy) would naturally want to see the names of roads, and it would 

be reasonable to expect that the information about the target building discussed in 

the scenario in ¶ 3 would include the name of the building, which satisfies the 20 

claim element. 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

171 
 

11. Claims 8, 17, and 26 

Claim 8: The method of claim 1, wherein the wireless portable device issues 
the first request and the second request according to a priority order based at 
least in part on viewable areas corresponding to the first user-controlled 
image viewpoint. 5 

Claim 17: The computing system of claim 10, wherein the wireless portable 
device issues the first request and the second request according to a priority 
order based at least in part on viewable areas corresponding to the first user-
controlled image viewpoint. 

Claim 26: The wireless portable device of claim 19, further configured to send 10 
the first request and the second request according to a priority order based at 
least in part on viewable areas corresponding to the first user-controlled 
image viewpoint. 

316. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 15 

discuss these claims together. 

317. In my opinion, Woods teaches this element.  The term “viewable 

areas” is not used in the specification of the ’136 Patent or discussed in the file 

history, and in my opinion this term does not require construction.  I do note that 

the term “viewable” is used several times in the specification to simply refer to 20 

tiles that are viewable.  See, e.g. Ex. 1001, Fig. 5 item 82 (“determine viewable 

parcels for update”), 9:20-22 (“ in order to make optimal use of the available 

memory, only currently viewable image parcels are subject to download”); 10:60-

64 (“ the argument P vertices sent to S represent the position of the vertices 

composing each of the polygons, after being clipping [sic] to the viewing frustum, 25 
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viewable within the display space having the fixed resolution [xRes, yRes]”); 11:9-

14 (“ thus, the accumulated priority for any image parcel pending download is the 

sum of the values returned by the function S for each of the viewable polygons that 

require some part of the image parcel as the source data for texture map rendering 

of the polygon”).  Therefore, in my opinion, the term “viewable areas” includes at 5 

least prioritizing areas that are viewable over areas that are not. 

318. Woods describes a priority scheme to ensure “the most important data 

is fetched first (i.e., that data which is most likely perceived).”  Ex. 1003, 4:56-61.  

Woods also suggests it is wasteful to prioritize the downloading of VRML data 

that will not be rendered right away because it would not be visible to the user.  Id., 10 

7:37-47.  Woods further describes prioritizing VRML assets based on the user-

controlled camera position and direction.  In Fig. 5A, for example, the grid region 

in front of the camera (region 3,4) is designated priority 1, surrounding grid 

regions are designated priority 2, and still further grid regions are designated 

priority 3.  Id., 9:40-10:64.   15 
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319. Thus, in the Reddy–Woods combination, the tiles in front of the 

camera close to the gaze or focus point (that is, those in the area that is viewable 

from the camera) be prioritized over those that are further away (e.g., grid region 

3,5 in Fig. 5A) or off-screen entirely (e.g., grid region 3,2 in Fig. 5A, which is 5 

behind the camera). 

320. It is also my opinion that it would be obvious as a matter of simple 

common sense that all else equal, VRML assets (such as textures or geography 

tiles as taught by Reddy) closer to the camera would take up more screen space 

than assets further away.  Therefore, because of the correlation between distance 10 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

174 
 

and screen size, prioritization by distance also prioritizes assets “at least in part” 

based on viewable areas. 

B. Ground 2: Claims 5, 14, and 23 are unpatentable under 35 U.S.C. 
§ 103(a) over Reddy in view of Woods and Chiarabini 

1. The Reddy-Woods-Chiarabini Combination 5 

321. In my opinion, Claims 5, 14, and 23 are unpatentable over Reddy in 

view of Woods and further in view of Chiarabini.  Chiarabini is a Hewlett-Packard 

patent that discloses “methods and systems that enable faster and more reliable 

downloading of data received from an external content source.”  Ex. 1006 at 1:19-

23.  Chiarabini describes a system in which a client downloads large images from a 10 

server over the Internet by downloading segments of the image in parallel.  Id. at 

2:43-51, 3:27-43.  Chiarabini further teaches that the number of parallel download 

threads can be adjusted in order to download the image data more efficiently.  Id. 

at 3:27-43, 9:46-10:15. 

2. Motivations to Combine 15 

322. A person of ordinary skill in the art would be motivated to combine 

the teachings of Chiarabini with those of Reddy and Woods.  Similar to Reddy and 

Woods, Chiarabini describes downloading segments of image data corresponding 

to “a big image file.”  Ex. 1006 at 8:63-67.  Like Reddy and Woods, Chiarabini 

describes client-side browsers that download image data from servers over the 20 
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Internet.  Id. at 5:59-66.  Similar to Woods, Chiarabini describes downloading 

multiple image segments in parallel for improved downloading efficiency.  Id. at 

3:27-43.  Additionally, Reddy teaches the use of multi-threaded browsing.  Ex. 

1004 at ¶ 41.  A person of ordinary skill would have easily recognized that 

Chiarabini’s improved downloading technique was applicable to the type of image 5 

downloading described in Reddy and Woods.  Indeed, Reddy’s image tiles are 

segments of an original image just like the image segments described in 

Chiarabini. 

323. Woods provides express motivation to combine in noting that the 

number of active and waiting fetches in a given implementation depends on 10 

various parameters that will be apparent to persons of ordinary skill in the art.  Ex. 

1003 at 12:67-13:4.  Chiarabini provides specific and complementary teachings 

regarding how the number of parallel download requests can be optimized to more 

efficiently use available network bandwidth. 

324. While Chiarabini discusses using its parallel downloading scheme in a 15 

system that downloads images for printing, it discloses that, alternatively, the 

downloaded image data could be displayed or simply stored for later use.  Ex. 1006 

at 6:21-26.  A person of ordinary skill in the art would appreciate that Chiarabini’s 

teachings are not limited to printing-related systems but are also applicable to 

image display applications like those described in Reddy and Woods.  Indeed, 20 
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Chiarabini discloses on HTTP GET commands.  Id. at 9:20-26.  A person of 

ordinary skill in the art would understand that VRML applications like most 

Internet-based applications use HTTP commands to download resources.  See Ex. 

1003 at 2:34-47 (VRML browsers operate like web browsers). 

3. Claims 5, 14, and 23 are Obvious 5 

The method of claim 1, wherein number of parallel image parcel download 
operations by the first wireless portable device for image parcels of the series 
is determined based at least in part on network response latency and available 
system resources. 

The computing system of claim 10, wherein number of parallel image parcel 10 
download operations by the wireless portable device for the image parcels of 
the series is determined based at least in part on network response latency and 
available system resources. 

The wireless portable device of claim 19, wherein number of parallel image 
parcel download operations by the wireless portable device for image parcels 15 
of the series is determined based at least in part on network response latency 
and available system resources. 

325. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 

discuss these claims together. 20 

326. Chiarabini discloses determining the number of parallel image 

requests based at least in part on network latency.  Chiarabini describes adjusting 

the number of parallel requests for imagery data based on network performance.  

Ex. 1006 at 3:33-43.  Chiarabini notes that this approach “optimi[zes] the capacity 

of the line” (id. at 3:33-43), which a person of ordinary skill in the art would 25 
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understand as meaning it makes efficient use of available bandwidth to more 

quickly download the image data.  Chiarabini discloses checking the download 

speed of the executing download threads.  Id. at 9:9:46-51.  If any of the active 

download threads is achieving a transfer speed at or above a predetermined 

threshold (e.g., 20 Kb/s), this indicates that the connection is not yet “saturated,” 5 

and an additional download thread is spawned.  Id. at 9:51-53. 

327. However, Chiarabini discloses that if none of the executing download 

threads is achieving good speed, no additional download thread will be spawned 

until one of the executing threads achieves good speed or no other download thread 

is executing.  Id. at 9:46-51.  This would result in a decrease of the number of 10 

parallel downloads if a network began to exhibit increased latency.  To illustrate, 

imagine five threads are downloading but none at a rate greater than 10 Kb/s.  

When one of the five download threads finishes its download, the number of 

concurrent threads is reduced to four.  A new fifth thread will only be spawned if 

the speed of one of the four executing threads reaches the threshold (e.g., 20 Kb/s).    15 

The same would occur when the next thread completes and there are only 3 

executing threads.  The only time a new thread would be spawned notwithstanding 

poor network performance (or high latency) would be when there are no threads 

running.  Id. at 9:46-51.  Therefore, Chiarabini’s approach adjusts the number of 

threads up or down based on network performance.  20 
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328. A person of ordinary skill would have understood the relationship 

between latency and download speed.  For example, Killelea describes “latency” as 

“the time between making a request and beginning to see a result.”  Ex. 1044 at 43.  

To determine the number of parallel download requests based on download speed 

as disclosed in Chiarabini is to do so based at least in part on network response 5 

latency as claimed.  Chiarabini also discloses that a client can determine transfer 

speed by pinging the server.  Ex. 1003 at 8:16-19, Fig. 4 (steps 240, 242).  A 

person of ordinary skill would have been familiar with using the ping utility to test 

network latency.  Killelea discusses using ping to measure the latency between a 

first computer and a remote computer over a network.  Ex. 1044 at 45-46. 10 

329. Chiarabini also discloses capping the number of threads that can be 

spawned “so that the line is not overloaded.”  Ex. 1003 at 9:54-60.  Chiarabini 

suggests a maximum of eight for a 128 Kb/s connection and a maximum of four 

for slower connections.  Id. at 9:53-60.  This limit also promotes efficient use of 

network bandwidth. 15 

330. It also would have been obvious to a POSITA that the number of 

parallel image parcel requests be determined based at least in part on available 

system resources.  Woods discloses a multi-threaded implementation with a 

“fetching process thread” that is separate from the browser’s main “runtime 

thread.”  Ex. 1003 at 12:56-59.  Woods describes an example that allows for four 20 
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parallel, “active fetches.”  Ex. 1003 at 12:56-67.  This is similar to the ’136 

patent’s suggestion that four download threads are used in the preferred 

embodiments.  Ex. 1001 at 9:4-6.   

331. Woods also points out that “the number of active fetches and waiting 

fetches used in a specific implementation of the present invention depends on 5 

various hardware and software parameters, and will be apparent to those skilled in 

the relevant art(s).”  Ex. 1003 at 12:67-13:4 (emphasis added).16  A person of 

ordinary skill would have understood Woods to be alluding to the obvious 

relationship between multithreading and system resources such as operating system 

support, number and speed of the processors, and memory.  A person of ordinary 10 

skill would have understood Woods to be alluding to the obvious relationship 

between multithreading and system resources (e.g., operating system support, 

number and speed of the processors, memory).  It was well understood that more 

                                           
16 While Bradium may argue that this disclosure is vague, I would note that 

the ’136 Patent itself says nothing about which “available system resources” 

should impact the number of parallel requests or how or about how the “network 

response latency” should impact the number of parallel requests.  Thus, the ’136 

Patent suggests that persons of skill in the art would have understood how to 

determine the appropriate number of parallel requests. 
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powerful computers could support a larger number of threads.  For example, 

Programming Microsoft Visual Basic 6.0 by Francesco Balena (1999) notes that 

“you can increase the size of the thread pool when you deploy your application on 

a more powerful system.”  Ex. 1064 at 877. 

332. Although many operating systems did support multi-threading by the 5 

late 1990s, not all operating systems did.  For example, Operating Systems 

Concepts by Abraham Silberschatz and Peter Baeer Galvin (1998) noted that “new 

operating systems” were providing thread support.  Ex. 1055 at 192.  (In my 

opinion, Silberschatz is representative of textbooks undergraduate students would 

have used in operating systems courses in the late 1990s.)  The Palm operating 10 

system, for example, did not support multithreaded applications as discussed in 

Palm Database Programming by Eric Giguere (1999).  1059 (Giguere) at 15-16.  

As a result, a person of ordinary skill in the art would have known it would be 

more challenging to try to implement parallel download requests in an application 

for a Palm device.  See, e.g., id. at 15-16, 102-105 (describing techniques for 15 

breaking up long operations into small chunks “to avoid the appearance of hanging 

the device”).  By comparison, it would be easier to implement because Windows 

CE supported multithreaded applications as discussed for example in 

Programming Microsoft Windows CE by Douglas Boling (1998).  Ex. 1058 at 493-
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507 (comparing multithreading in Windows CE with Windows NT and Windows 

98). 

333. It was also well known that computers with multiple processors could 

support a greater number of threads than single processor devices.  Programming 

with Threads by Steve Kleiman et al. (1996), provides exemplary guidance on this 5 

point: 

You may wish to experiment with different strategies for 

choosing the right number of threads; your experiments 

need to consider both the number of processors 

available and the amount of work required for reach 10 

thread (sometimes called the grain size).  Allocating a 

few more threads than the number of processors is a 

good starting point. 

Ex. 1057 at 285 (emphasis added).  Kleiman’s book was known in the art as a 

practical guide to multithreaded programming.  Single processor computers must 15 

perform context switches to execute instructions associated with different threads.  

See, e.g., Ex. 1058 (Boling) at 493.  Furthermore, there is overhead associated with 

the context switches that must occur for a processor to switch between threads.  

Win32 Multithreaded Programming by Aaron Cohen and Mike Woodring (1998) 

is an O’Reilly reference book discusses this in its introductory chapter.  Ex. 1056  20 

at 5-6.  Because CPU cycles are lost during context switches, a faster processor 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

182 
 

would better be able to handle the increased number of context switches for a 

larger number of threads.  See, e.g., id. at 335-336 (stressing importance of capping 

the number of threads to avoid overwhelming the system).  Threads also require 

memory (e.g., a stack and program counter) and thus the number of threads is also 

constrained by available memory.  See, e.g., Ex. 1055 (Silberschatz) at 103; Ex. 5 

1058 (Boling) at 499.  

334. This claim element is also inherently disclosed because both Woods 

and Chiarabini disclose using four parallel download requests which is the same 

number used in the preferred (and only) embodiments described in the ’136 Patent.  

Ex. 1003 at 12:65-67; Ex. 1006 at 9:53-60.  The ’136 Patent suggests that four 10 

parallel requests strikes the right “balance between the available system resources 

and the network response latency, given the available bandwidth of the network 

connection.”  Ex. 1001 at 9:4-6. 

335. Finally, Woods also discloses that a particular system resource—

cache space—can impact the number of parallel requests.  A simple example 15 

illustrates this.  Assume that the next four VRML resources to be downloaded, call 

them resources A-D, have the following priorities: 

Resource Priority 
A 5 
B 6 
C 7 
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D 8 

Woods describes an exemplary client that supports four simultaneous fetches.  Ex. 

1003 at 12:65-67.  Woods also discloses that it may be desirable to avoid 

downloading resources with priority 7 or lower if the cache is already full.  Id. at 

14:45-47.  In the above example, therefore, if the cache is full, only two assets, A 

and B, would be downloaded, and they would be downloaded in parallel.  However, 5 

if the cache is not full, all four assets would be downloaded in parallel. 

C. Ground 2: Claims 9, 18, and 27 are unpatentable under 35 U.S.C. 
§ 103(a) over Reddy in view of Woods and Fuller 

1. The Reddy-Woods-Fuller Combination 

336. In my opinion, claims 9, 18, and 27 are unpatentable over Reddy in 10 

view of Woods and further in view of Fuller.  Fuller, which was published 

approximately three years before Reddy, describes an earlier version of the 

TerraVision application used with the MAGIC (“Multidimensional Applications 

and Gigabit Internetwork Consortium”) project.  Ex. 1011 at 15.  Like Reddy, 

Fuller teaches how a user may “view and navigate through (i.e. ‘fly over’) a 15 

representation of a landscape created from aerial or satellite imagery.”  Id. at 17.  

Such imagery is processed into a series of “tiles” at resolutions varying by factors 

of two at each level, so that “[l]ow-resolution tiles are required for terrain that is 
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distant from the viewpoint, whereas high-resolution tiles are required for close-in 

terrain.”  Id. at 17, Fig. 3: 

 

Cf. Ex. 1004, Fig. 1. 

337. Fuller further teaches prioritizing tile retrieval in order to address 5 

problems caused by network congestion resulting in late delivery of the tiles.  

Requests to the server for tiles “assign[] one of three levels of priority to each tile 

requested,” so that coarser tiles are likely to be retrieved first.  Ex. 1011 at 19.  

Among the reasons for which coarser tiles are downloaded first are that “the 

rendering algorithm needs the coarse tiles before it needs the next-higher- 10 

resolution tiles” and that “there are fewer tiles at the coarser resolutions, so it is 

less likely that they will be delayed.”  Id.  Therefore, the priority order of first and 

second tiles (e.g., a higher-resolution tile and a lower-resolution tile) is issued 

based on the resolution of the two tiles as claimed. 

Microsoft Corp.   Exhibit 1005



DECLARATION OF PROF. WILLIAM R. MICHALSON 
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2 

PTAB CASE NO. IPR2017-01817 

185 
 

338. Fuller further teaches that planned future work included delivering 

data to “end users with a range of communications speeds, link qualities, 

computational powers, and display capabilities” as well as providing data to 

mobile users.  Id. at 19. 

2. A person of ordinary skill in the art would be motivated to 5 
come by Reddy, Woods, and Fuller 

339. In my opinion, Fuller is analogous art to Reddy and Woods such that a 

person of ordinary skill in the art addressing issues relating to retrieving data to 

display imagery in three dimensions would naturally look to Fuller.  Like Reddy 

and Woods, Fuller refers to retrieving data over a network to display in three 10 

dimensions. In fact, Fuller describes an earlier embodiment of the TerraVision 

projects described in Reddy, although in my opinion a person of ordinary skill in 

the art would recognize that the teachings of Fuller are not limited to these specific 

preferred embodiments described in Fuller.   

340. In my opinion, Reddy and Woods teach a common goal of optimizing 15 

bandwidth usage by prioritizing retrieval of the most needed elements of a three-

dimensional scene, including geographic imagery.  For example, Reddy teaches 

that it is desirable to load tiles in a “coarse-to-fine” manner (Ex. 1004, ¶¶ 21, 44).  

Fuller teaches that assigning higher priority to lower resolution tiles is one means 

of accomplishing this goal.  Ex. 1011 at 19.  In my opinion, a person of ordinary 20 
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skill in the art would recognize that assigning higher priorities to lower-and 

resolution tiles is compatible with the prioritized fetching scheme of Woods. 

Indeed, because Woods teaches that a variety of factors may be incorporated into a 

priority calculation, prioritizing lower resolution tiles as taught by Fuller is simply 

adding another variable into the existing algorithm. Incorporating priority based on 5 

resolution as taught by Fuller into the efficient data request of Woods would 

achieve the goal (prioritizing lower resolution tiles) taught by Reddy and Fuller 

with predictable results. 

3. Claims 9, 18, and 27 

Claim 9: The method of claim 1, wherein the first wireless portable device 10 
issues the first request and the second request according to a priority order 
based at least in part on resolution of the first image parcel and resolution of 
the second image parcel. 

Claim 18: The computing system of claim 10, wherein the wireless portable 
device issues the first request and the second request according to a priority 15 
order based at least in part on resolution of the first image parcel and 
resolution of the second parcel. 

Claim 27: The wireless portable device of claim 19, further configured to send 
the first request and the second request according to a priority order based at 
least in part on resolution of the first image parcel and resolution of the 20 
second image parcel. 

341. In my opinion, these claim limitations are substantially similar to each 

other, other than depending from different independent claims.  Therefore, I will 

discuss these claims together. 
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342. In my opinion, the combination of Reddy, Woods, and Fuller render 

these limitations obvious.  As noted above, Fuller describes prioritized 

downloading of map tiles.  Fuller teaches that requests to the server for tiles 

“assign[] one of three levels of priority to each tile requested,” so that coarser tiles 

are likely to be retrieved first.  Id.  Therefore, the priority order of first and second 5 

tiles (e.g., a higher-resolution tile and a lower-resolution tile) is issued based at 

least in part on the resolution of the two tiles as claimed. 

343. While Fuller teaches a preferred embodiment designed to operate on a 

high-speed ATM network, it is my opinion that the use of this preferred 

embodiment does not teach away from this combination. The only feature of Fuller 10 

that needs to be used in the combination to meet the claim limitation is the 

prioritization of lower-resolution tiles over higher-resolution tiles. In my opinion, a 

person of ordinary skill in the art would recognize that this feature would provide 

substantially the same benefit regardless of the speed or type of network over 

which the client device requests tiles from the server, including dial-up-15 

connections common and in the late 1990s, and the wireless connections described 

by Woods which could reach several megabits per second.  Additionally, while 

Fuller teaches an example of network demand based on obtaining maximum 

performance from the system, such as a full screen display, 30 frames per second, 

and uncompressed tiles (see Ex. 1011 at 21), a person of ordinary skill in the art 20 
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would recognize that the teachings of Fuller are not limited to systems requiring 

such performance. For example, simply adjusting factors such as utilizing 

compression for tiles, the frame rate (indeed, 3DVU’s own car navigation products 

which Bradium relied on as evidence of secondary indicia of non-obviousness 

barely managed one frame per second despite the fact that they did not even 5 

request data over a network), and a smaller viewing window would reduce the data 

requirements by several orders of magnitude and would have been well within the 

capabilities of common wireless network connections at the time the ’136 Patent 

was filed. 

XI. CONCLUSION 10 

344. It is my opinion that the Challenged Claims of the ’136 Patent are 

invalid as obvious.   

345. This is the END of my declaration.  
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Tel: (508) 461-6242 
Cell: (508) 331-4134 

 

1. Personal: 

1.1 Education 
Ph.D. in Electrical Engineering, 1989, Worcester Polytechnic Institute, Worcester, 
Massachusetts. 
 

Dissertation: A Parallel Computer Architecture for Real-Time Decision Making.  The 
dissertation develops a hierarchical, multiple processor, computer 
architecture for executing artificial intelligence programs in real-time.  
Dissertation Directors: Dr. Peter E. Green and Dr. R. James Duckworth. 

  
Minor Areas: Minor sequences completed in Mathematics and Physics. 
  
Specialties: Area examinations passed in the fields of Computer Architecture, 

Probabilistic Systems Analysis, and State Space Analysis. 
 
M.S. in Electrical Engineering, 1985, Worcester Polytechnic Institute, Worcester, Massachusetts. 
 

Specialties: The courses taken stressed Computer Architecture, Communications 
Systems, and Solid-State Physics. 

 
B.S. in Electrical Engineering, 1981, Syracuse University, Syracuse, New York. 
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1.2 Work experiences - Academic. 
1991-Present Worcester Polytechnic Institute 

Professor of Electrical and Computer Engineering; Professor of Computer 
Science. 

 Effective July 1, 2005 Promoted to the rank of Full Professor (Professor of 
Electrical and Professor of Computer Science) 

 November 17, 2004 Appointed dual professorship, adding the title of 
Associate Professor of Computer Science. 

 July 1, 1998 Granted tenure and promoted to the rank of Associate 
Professor. 

 August 1, 1992 Assistant Professor of Electrical Engineering (tenure-
track). 

 August 1, 1991 Visiting Assistant Professor of Electrical Engineering. 
 January 1, 1990 Adjunct Assistant Professor of Electrical Engineering. 
 

1.3 Work experiences other than teaching (chronological). 
2012-2014 Grid Roots, LLC 
 
Grid Roots, LLC is a company which was formed in 2012 for the purpose of commercializing a 
navigation and tracking device for use by children and the elderly to allow caregivers to non-
intrusively monitor their activities.  The system under development integrates GPS, inertial and 
beacon-based navigation technologies to develop a system for users to track deployed devices.  
My responsibilities within Grid Roots, LLC relate to hardware and software engineering, as well 
as the development of IP related to tracking individuals. 
 
1995-Present Research Associates, LLC 
 
Research Associates, LLC is a company I formed in which I perform engineering and consulting 
in the areas of computer systems, communications and navigation.  All of my litigation-related 
and other consulting activities are performed through Research Associates, LLC. 
 
1988-1991 Raytheon Company 
 
Subsequent to receiving my Ph. D., I returned to the Equipment Division of the Raytheon 
Company.  Shortly after I returned, I was promoted to a title of Engineer, Design and 
Development which was the highest title I could hold based on my level of education and years 
of experience.  Within a year, I was selected to sit on the engineering staff of a newly formed 
System Engineering Department of the Division’s Computer and Displays Laboratory.   In this 
department I acted primarily as a consultant to other departments within the laboratory.  My 
responsibilities ranged from leading the hardware/software development of supercomputer-class 
computer systems to performing applied research into the exploitation of new technology.  My 
role was similar to that of a Principle Investigator in an academic setting as I was responsible for 
securing funding and personnel, leading research efforts, interacting with the research sponsor, 
and reporting results.  At the time of my departure I was involved with the following projects: 
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Fault-Tolerant Multiprocessor 

The development of a highly fault tolerant, highly reliable, real-time computer system 
intended for long-duration spaceborne applications.  This system is designed to produce 
in excess of one gigaoperation per second of raw processing power. 
 

Optimal Task Allocation 
A program of applied research into the use of Genetic Algorithms for deriving optimal 
mappings of software tasks to the hardware processing elements in distributed systems. 
 

Performance Modeling and Scaling 
This project focused on the development of simulation models for characterizing the 
performance of a large scale multiple processor system.  These models formed a basis for 
predicting system performance for several different hardware configurations to ensure 
compliance with system specifications. 

 
High Clutter Signal Detection 

A program of applied research into the use of Neural Networks to detect the presence of 
targets in extremely high clutter environments. 

 
Power Efficient Computing 

A program of applied research into an Integrated Optical computer structure that is 
designed to maximize the number of computations that can be performed per unit of 
power. 
 

1985-1988 Raytheon Company (Leave of Absence) 
 
In 1985 I became one of two people in the Equipment Division to receive Aldo Miccioli 
Fellowships.  This Fellowship was awarded to allow me to pursue full-time study towards the 
Ph.D. degree.   I returned to Raytheon during the summer of 1986, but otherwise remained on 
leave of absence to dedicate my time to my studies. 

 
1982-1985 Raytheon Company 
 
Engineer in the VLSI Design Department of the Computer and Displays Laboratory within 
Raytheon's Equipment Division.  I was lead engineer for the design of several semi-custom VLSI 
circuits for both signal and data processing applications. 
 
1981-1982 Raytheon Company 
 
Engineer in the Cursive Displays Department of the Computer and Displays Laboratory. I 
designed and debugged circuit assemblies which were used in vector displays for air traffic 
control applications. 
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1.4 Consulting experiences. 

1.4.1 Law-Related 
 
Locata LBS LLC v. YellowPages.com LLC,  
Retained by Baker Botts on behalf of defendant YellowPages.com.  Case before the Central 
District of California (2:13-cv-07664).  See also IPR2015-00151.  Retained 9/14 to present. 
 
M/A-COM Technology Solutions Holdings, Inc. v. Laird Technologies, Inc. 
Retained by Erise IP on behalf of Laird Technologies, Inc., for invalidity consulting regarding 
U.S. Patent No. 6,272,349.  Retained 6/14 to present. 
 
Certusview Technologies, LLC v. S&N Locating Services, LLC and S&N Communications, 
Inc., 
Retained by Baker &McKenzie on behalf of defendant S&N.  Patents-in-suit are U.S. Patents 
8,265,344, 8,290,204, 8,340,359, 8,407,001, and 8,532,341.  Case before the Eastern District of 
Virginia, (2:13-cv-346).  Deposed 11/8/14; Retained 6/14 to present. 
 
adidas AG and adidas America, Inc. v. Under Armour, Inc. and MapMyFitness, Inc. 
Retained by Kilpatrick Townsend on behalf of plaintiff adidas.   Case before the District of 
Delaware, (1:14-cv-00130).  Retained 5/14 to present. 
 
GeoTag, Inc., v. AT&T Mobility LLC and AT&T Services, Inc., 
Retained by Baker Botts as an expert on behalf of defendant AT&T.  Patent-in-suit is U.S. Patent 
5,930,474.  Case before the Northern District of Texas, Dallas Division, (3:13-cv-00169).  
Deposed 5/29/14; Retained 1/14 to 9/14.  Matter settled. 
 
Nokia Corp v. HTC Corp. 
Retained by Quinn Emanuel as an expert on behalf of defendant HTC.  Case being litigated in 
Germany.  Patent number EP0766811B1.  Retained 12/13 to 2/14.  Matter settled. 
 
Porto Technology, Co., Ltd. et al. v. Cellco Partnership d/b/a Verizon Wireless 
Retained by Wiley-Rein as an expert on behalf of defendant Verizon.  Case before the United 
States District Court for the Eastern District of Virginia (Case No. 3:13-cv-00265).  Retained 
10/13 to 2/14.  Matter dismissed. 
 
Nokia Corp v. HTC Corp. 
Retained by McDermott Will and Emery and White & Case as an expert on behalf of defendant 
HTC.  Case before the United States District Court for the District of Delaware (Case No. Case 
No. 1:12-cv-00550-UNA and Case No. 1:12-cv-551-UNA.  Retained 6/13 to 2/14.  Matter 
settled. 
 
NXP B.V. v. Research In Motion, Ltd., et al. 
Retained by Fish and Richardson as an expert on behalf of defendant Research In Motion.  
Patent-in-suit is U.S. Patent 6,501,420.  Case before the United States District Court for the 
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Middle District of Florida (Case No. 6:12-cv-00498).  Deposed 9/18/13; Testified in Court: 
4/1/14 and 4/2/14; Retained 5/13 to 4/14. 
 
Vehicle IP LLC v. Wal-Mart Stores Inc., et al. 
Retained by Polsinelli-Shugart, as an expert on behalf of defendant Werner Enterprises.  Patent-
in-suit is U.S. Patent 5,694,322.  Case before the United States District Court for the District of 
Delaware (Case No. 1:10-cv-00503).  Deposed 7/15/13 and 9/20/13; Testified in Court: 9/27/13 
and 9/30/13; Retained 4/13 to 9/13. 
 
TracBeam, LLC v. Google Inc. 
Retained by Quinn-Emanuel as an expert on behalf of defendant Google.  Patents-in-suit are U.S. 
Patents 7,764,231 and 7,525,484.  Case before the United States District Court for the Eastern 
District of Texas (6:11-cv-00093).  Deposed 2/5/14; Retained 3/13 to 6/14. 
 
Microsoft Corporation and Google Inc., v. GeoTag, Inc. 
Retained by Perkins-Coie as an expert on behalf of plaintiff Microsoft Corporation.  Patent-in-
suit is U.S. Patents 5,930,474.  Case before the United States District Court for the District of 
Delaware (1:11-cv-00175).  Retained 1/13 to present. 
 
GeoTag, Inc., v. Frontier Communications Corp., et al., 
Retained by multiple firms as an expert on behalf of defendants.  Patent-in-suit is U.S. Patents 
5,930,474.  Case before the Eastern District of Texas, Marshall Division, (2:10-cv-00265; other 
defendants are listed in case numbers 2:10-cv-00265, 2:10-cv-00272, 2:10-cv-00437, 2:10-cv-
00569, 2:10-cv-00570, 2:10-cv-00571, 2:10-cv-00572, 2:10-cv-00573, 2:10-cv-00574, 2:10-cv-
00575, 2:10-cv-00587, 2:11-cv-00175, 2:11-cv-00404, 2:11-cv-00421, 2:11-cv-00424, 2:11-cv-
00425, 2:11-cv-00570, 2:12-cv-00043, 2:12-cv-00051, 2:12-cv-00436, 2:12-cv-00438, 2:12-cv-
00439, 2:12-cv-00441, 2:12-cv-00442, 2:12-cv-00444, 2:12-cv-00445, 2:12-cv-00446, 2:12-cv-
00447, 2:12-cv-00448, 2:12-cv-00449, 2:12-cv-00450, 2:12-cv-00452, 2:12-cv-00454, 2:12-cv-
00456, 2:12-cv-00459, 2:12-cv-00460, 2:12-cv-00462, 2:12-cv-00464, 2:12-cv-00466, 2:12-cv-
00468, 2:12-cv-00469, 2:12-cv-00470, 2:12-cv-00471, 2:12-cv-00473, 2:12-cv-00474, 2:12-cv-
00475, 2:12-cv-00476, 2:12-cv-00476, 2:12-cv-00477, 2:12-cv-00480, 2:12-cv-00481, 2:12-cv-
00482, 2:12-cv-00482, 2:12-cv-00483, 2:12-cv-00486, 2:12-cv-00487, 2:12-cv-00520, 2:12-cv-
00521, 2:12-cv-00523, 2:12-cv-00524, 2:12-cv-00525, 2:12-cv-00527, 2:12-cv-00528, 2:12-cv-
00530, 2:12-cv-00532, 2:12-cv-00534, 2:12-cv-00535, 2:12-cv-00536, 2:12-cv-00537, 2:12-cv-
00542, 2:12-cv-00543, 2:12-cv-00545, 2:12-cv-00547, 2:12-cv-00548, 2:12-cv-00549, 2:12-cv-
00550, 2:12-cv-00551, 2:12-cv-00552, 2:12-cv-00555, 2:12-cv-00556, 2:12-cv-00570, 2:12-cv-
00572, 2:12-cv-00573, 2:12-cv-00575, 2:12-cv-00587, 3:13-cv-00217).  Deposed 5/29/14; 
Retained 1/13 to 9/14. 
 
MOSAID Technologies Inc., v. Realtek Semiconductor Corporation 
Retained by Sidley Austin, LLP as an expert on behalf of defendant Realtek Semiconductor 
Corporation.  Patents-in-suit are U.S. Patents 5,131,006; 5,151,920; 5,422,887; 5,706,428; 
6,563,786; and 6,992,972.  Case before the United States District Court for the Eastern District 
of Texas (Tyler Division) (Case No. 2:11-cv-00179).  Retained 12/12 to 12/12.  Matter settled. 
 
Hoyt A. Flemming v. Cobra Electronics Corporation 
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Retained by Sidley Austin, LLP as an expert on behalf of defendant Cobra Electronics 
Corporation.  Patents-in-suit are U.S. Patents RE39038, RE40653 and RE41905.  Case before the 
United States District Court for the District of Idaho (Case No. 1:12-cv-00392).  Retained 11/12 
to 06/13.  Matter settled. 
 
LBS Innovations LLC v. Aaron Bros., Inc., et al. 
Retained as an expert on behalf of defendants Whole Foods Marketplace, Comerica, Hotels.com, 
Academy, Ltd., and Homestyle Dining.  Patent-in-suit is U.S. Patent 6,091,956.  Case before the 
Eastern District of Texas, Marshall Division, (Case No. 2:11-cv-00142-MHS-CMC.  Deposed 
10/5/12; Retained 7/12 to 12/12.  Plaintiff moved to dismiss. 
 
Advanced Media Networks, L.L.C. v. Gogo LLC et al. 
Retained by Sidley Austin, LLP as an expert on behalf of defendant Gogo.  Patent-in-suit is U.S. 
Patent 5,960,074.  Case before the United States District Court for the Central District of 
California (Case No. 11-cv-10474).  Deposed 2/6/13.  Retained 7/12 to 8/13. 
 
Walker Digital, LLC v. Google Inc. 
Retained by O’Melveny & Meyers, LLP as an expert on behalf of defendant Google Inc.  
Patents-in-suit are U.S. Patents 6,199,014.  Case before the United States District Court for the 
District of Delaware (Case No. 1:11-cv-00309-SLR).  Deposed 2/27/13 - 2/28/13.  Retained 6/12 
to present (case stayed as of 8/13). 
 
Silver State Intellectual Technologies, Inc. v. Garmin International, Inc., et al. 
Retained by Erise IP, P.A. as an expert on behalf of defendants Garmin International, Inc. and 
Garmin USA, Inc.  Patents-in-suit are U.S. Patents 6,525,768; 6,529,824; 6,542,812; 7,343,165; 
7,522,992; 7,593,812; 7,650,234; 7,702,455 and 7,739,039.  Case before the United States 
District Court for the District of Nevada (Case No. 2:11-cv-1578).  Deposed 2/19/14; Retained 
4/12 to present. 
 
Beacon Navigation GmbH v. Toyota Motor Corporation, et al. 
Retained by Kirkland & Ellis, LLP on behalf of defendants Toyota Motor Corporation; Toyota 
Motor North America, Inc.; Toyota Motor Sales, U.S.A. Inc.; Toyota Motor Engineering & 
Manufacturing North America, Inc.; Toyota Motor Manufacturing, Indiana, Inc.; Toyota Motor 
Manufacturing, Kentucky, Inc.; Toyota Motor Manufacturing Mississippi, Inc.; Mazda Motor 
Corporation; Mazda Motor of America, Inc.; Fuji Heavy Industries, Ltd.; Fuji Heavy Industries 
U.S.A. Inc.; Subaru of America, Inc.; Jaguar Land Rover North America, LLC; Jaguar Cars 
Limited; Land Rover; Volvo Car Corporation; and Volvo Cars of North America, LLC; Adduci 
Mastriani & Schaumberg, LLP on behalf of defendants Suzuki and Garmin; Crowell-Moring on 
behalf of General Motors; Dickstein Shapiro on behalf og Chrysler Group, LLC; Finnegan, 
Henderson, Farabow, Garrett & Dunner on behalf of Bayerische Motoren Werke AG, BMW of 
North America, LLC, and BMW Manufacturing Co. LLC; Fish & Richardson on behalf of 
Honda Motor Co., Ltd., Honda North America, Inc., American Honda Motor Co., Inc., Honda 
Manufacturing of Alabama, LLC, Honda Manufacturing of Indiana, LLC, and Honda of 
America, Mfg., Inc.; Frommer Lawrence and Haug, LLP on behalf of Dr. Ing. h.c.F. Porsche AG 
and Porsche Cars North America, Inc.; Hogan Lovells on behalf of Daimler AG, Mercedes-Benz 
USA, LLC, or Mercedes-Benz U.S. International, Inc.; Quinn-Emanuel on behalf of Nissan and 
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Ford.  Case before the US International Trade Commission, Washington D.C., in the matter of:  
“Certain Automotive Navigation Systems, Components Thereof, and Products Containing Same, 
Inv. No. 337-TA-814.  Case withdrawn by Plaintiff.  Retained 1/12 – 4/12. 
 
 
Beacon Navigation GmbH v. Toyota Motor Corporation, et al. 
Retained by Kirkland & Ellis, LLP on behalf of defendants Toyota Motor Corporation; Toyota 
Motor North America, Inc.; Toyota Motor Sales, U.S.A. Inc.; Toyota Motor Engineering & 
Manufacturing North America, Inc.; Toyota Motor Manufacturing, Indiana, Inc.; Toyota Motor 
Manufacturing, Kentucky, Inc.; Toyota Motor Manufacturing Mississippi, Inc.; Mazda Motor 
Corporation; Mazda Motor of America, Inc.; Fuji Heavy Industries, Ltd.; Fuji Heavy Industries 
U.S.A. Inc.; Subaru of America, Inc.; Jaguar Land Rover North America, LLC; Jaguar Cars 
Limited; Land Rover; Volvo Car Corporation; and Volvo Cars of North America, LLC.  Multiple 
cases before the United States District Court for the District of Delaware.  Case numbers 1:11-
cv-00942-UNA, 1:11-cv-00941-UNA, 1:11-cv-00951-UNA, 1:11-cv-00952-UNA, 1:11-cv-
00936-UNA, 1:11-cv-00937-UNA, 1:11-cv-00955-UNA, 1:11-cv-00959-UNA, and 1:11-cv-
00960-UNA.  Currently stayed.  Retained 1/12 to Present. 
 
Beacon Wireless Solutions, Inc., et al., v. Garmin International, Inc., et al. 
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of defendant Garmin.  Matter 
involves alleged trade secret misappropriation.  Case before the United States District Court for 
the Western District of Virginia, Harrisonburg Division (Case No. 5:11-cv-00025).  Testified in 
Court: 5/25/12.  Retained 12/11 to 5/25/12. 
 
Tramontane IP, LLC v. Garmin Int'l, Inc., et al. 
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of defendant Garmin.  Patents-
in-suit are U.S. Patents 6,526,268 and 7,133,775.  Case before the United States District Court 
for the Eastern District of Virginia (Case No. 1:2011-cv-00918).  Case Settled.  Retained 11/11 
to 12/11. 
 
Sourceprose, Inc. v. AT&T, Inc., MetroPCS Communications, Inc., et al. 
Retained by Kilpatrick Townsend as an expert on behalf of defendant AT&T.  Patents-in-suit are 
US Patent Nos. 7,142,217 and 7,161,604.  Case before the United States District Court for the 
Western District of Texas, Austin Division.  Case number 1:11-cv-00117. Retained 11/11 to 
present. 
 
Furuno Electric Co., Ltd. and Furuno U.S.A., Inc. v. Honeywell International, Inc. 
Retained by Quinn-Emanuel as an expert on behalf of complainant Furuno. Case before the US 
International Trade Commission, Washington D.C., in the matter of: “Certain GPS Navigation 
Products, Components Thereof, and Related Software,” Investigation number 337-TA-810.  
Patents-in-suit are U.S. Patent Nos. 6,084,565; 7,095,367; 7,089,094; and 7,161,561.  Case 
settled.  Retained 8/11 – 12/11. 
 
Honeywell International, Inc. v. Furuno Electric Co., Ltd. and Furuno U.S.A., Inc. 
Retained by Quinn-Emanuel as an expert on behalf of respondent Furuno. Case before the US 
International Trade Commission, Washington D.C., in the matter of: “Certain GPS Navigation 
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Products, Components Thereof, and Related Software,” Investigation number 337-TA-783.  
Patents-in-suit are U.S. Patent Nos. 7,209,070; 6,865,452; 5,461,388; and 6,088,653.  Case 
Settled.  Retained 8/11 – 12/11. 
 
Triangle Software, Inc. v. Garmin International, Inc. 
Retained by Weil, Gotshal & Manges, LLP., as an expert on behalf of defendant Garmin.  
Patents-in-suit are US Patents 7,557,730, 7,221,287, 7,375,649, 7,508,321 and 7,702,452.  Case 
before the United States District Court, Eastern District of Virginia, Case No.  1:10-cv-1457 
CMH/TCB.  Deposed 7/28/11; Testified in Court: 11/3/11 (jury trial).  Retained 4/11 to 11/11. 
 
Garmin International, Inc. v. Pioneer Corporation and Pioneer Electronics (USA), Inc. 
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of plaintiff Garmin.  Patents-
in-suit are U.S. Patents 5,365,448; 5,424,951; and 6,122,592.  Case before the United States 
District Court for the District of Kansas.  Case No. 10-CV-2080 JWL/GLR.  Declarative 
Judgment action stayed.  Retained 3/11 to 11/11. 
 
Visteon Global Technologies, Inc. And Visteon Technologies, LLC v. Garmin 
International, Inc. 
Retained by Shook, Hardy and Bacon as an expert on behalf of defendant Garmin.  Patents-in-
suit are US Patents 5,544,060, 5,654,892, 5,832,408, 5,987,375 and 6,097,316.  Case before the 
United States District Court, Eastern District of Michigan, Case No.  2:10-cv-10578--PDB-
MAR.  Deposed 10/9/12; Retained 12/10 to present. 
 
Thomson Licensing SAS and Thomson Licensing, LLC. v. Realtek Semiconductor 
Corporation 
Retained by Sidley-Austin as an expert on behalf of respondent Realtek Semiconductor. Case 
before the US International Trade Commission, Washington D.C., in the matter of: “Certain 
Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, And Components 
Thereof,” Investigation number 337-TA-741.  Patent-in-suit is US Patent 6,121,941. Deposed 
6/29/11; Testified in Court: 9/15/11 and 9/16/11.  Retained 11/10 – 9/11. 
 
Ambato Media, LLC. v. Clarion Co., LTD., et al. 
Retained by Traurig-Greenberg as an expert on behalf of defendant Garmin.  Patent-in-suit is US 
Patent 5,432,542.  Case before the United States District Court for the Eastern District Of Texas, 
Marshall Division.  Case number 2:09-CV-242. Deposed 4/26/12 and 5/10/12; Testified in 
Court: 7/11/12.  Retained 10/10 to present. 
 
Gabriel Technologies Corporation and Trace Technologies, LLC, v. Qualcomm 
Incorporated, Snaptrack, Inc. and Norman Krasner 
Retained by Cooley-Godward as an expert on behalf of defendants Qualcomm, Snaptrack, and 
Krasner.  Trade secret misappropriation case related to US Patents 6,377,209, 6,583,757, 
6,661,372, 6,799,050, 6,861,980, 6,895,249, 7,254,402, 7,289,786, 7,319,876, 7,421,277, 
7,446,655, 7,570,958, 7,574,195, and 7,660,588.  Case before the Southern District of California 
San Diego Division, Case No.  08-cv-1992 MMA POR.  Retained 6/10 to 7/12. 
 
SiRF/CSR v. Global Locate/Broadcom Corporation 
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Retained by Wilmer-Hale as an expert on behalf of defendant Global Locate / Broadcom.  
Patents-in-suit are US Patents 5,663,735, 6,480,150, 6,519,466, 6,650,879, 6,882,827, 6,934,322, 
7,412,157, 7,236,883, and 7,573,422.  Case before the Central District of California, Case No. 
8:06-cv-01216 and Case No. 8:10-cv-01281.  Retained 9/10 to 1/11. 
 
Pioneer Electronics v. Garmin Corporation 
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of respondent Garmin In the 
matter of Certain Multimedia Display and Navigation Devices and Systems, Components 
Thereof, and Products Containing Same; Inv. No. 337-TA-694.  Patents-in-suit are U.S. Patents 
5,365,448; 5,424,951; and 6,122,592.  Case before the U.S. International Trade Commission. 
Deposed on 7/29/10; Testified at technology tutorial (8/27/20) and in the evidentiary hearing 
(9/20/10).  Retained 4/10 to 9/10. 
 
EMSAT Advanced Geo-Location Technology, LLC and Location Based Services LLC, v. 
AT&T Mobility, LLC 
Retained by Baker-Botts as an expert on behalf of defendant AT&T Mobility, LLC.  Patents-in-
suit are U.S. Patents 7,289,763; 5,946,611; 6,324,404; and 6,847,822.  Case before the U.S. 
District Court for the Northern District of Ohio, Eastern Division, Civil Action No. 4:08 CV 822. 
Deposed 5/4/10; Testified in Court: 5/10/10 (Markman hearing).  Retained 12/09 to 3/11. 
 
Tendler Cellular of Texas, LLC v. AT&T Mobility, LLC, et al. 
Retained by Baker-Botts as an expert on behalf of defendants AT&T Mobility, LLC, et al. 
Patents-in-suit are U.S. Patents 7,447,508; 7,305,243; 7,050,818; and 6,519,463.  Case before the 
U.S. District Court for the Eastern District of Texas (Tyler), Civil Action No. 6:09-CV-00115.  
Retained 8/09 to 7/10. 
 
Ambit Corporation v. Delta Air Lines, Inc., and Aircell LLC. 
Retained by Sidley Austin, LLP., as an expert on behalf of defendants Delta Airlines, Inc., and 
Aircell, LLC.  Patent-in-suit is US patent 7,400,858.  Case before the US District Court, District 
of Massachusetts, Boston, Civil Action No. 1:09-CV-10217-WGY.  Deposed 12/4/09; Testified 
in Court: 12/7/09 (evidentiary hearing), 7/10 (jury trial).  Retained 8/09 to 7/10. 
 
GPS Industries, Inc. and Optimal I.P. Holdings, L.P. v. Altex Corporation, et. al. 
Retained by Hitchcock-Evert as an expert on behalf of defendants Altex Corporation, Deca 
International Corporation, Golflogix, Inc. and L1 Technologies. Patent-in-suit is US patent 
5,364,093. Case before the US District Court, Northern District of Texas, Dallas Division, Civil 
Action No. 3-07-CV0831-K. Deposed 6/30/09.  Retained 5/08 through 7/09. 
 
Satellite Tracking of People, LLC v. Omnilink Systems, Inc. 
Retained by DLA Piper as an expert on behalf of defendant Omnilink Systems, Inc.. Patent-in-
suit is US patent RE39,909. Case before the US District Court, Eastern District of Texas, 
Marshall Division, Civil Action No. 2-08CV-116.  12/08 – 1/11. 
 
SiRF Technology, Inc. v. Global Locate, Inc. 
Retained by DLA Piper/WilmerHale as an expert on behalf of Global Locate.  Patents-in-suit 
include US patents 6,304,216; 6,417,801; 6,606,346; 6,651,000; 6,704,651; 6,937,187; 
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7,043,363; 7,091,904; 7,132,980 and 7,158,080.  Case before the US International Trade 
Commission, Washington D.C., in the matters of: “Certain GPS Devices and Products 
Containing Same,” Investigation number 337-TA-602 (Global Locate, plaintiff) and “Certain 
GPS Chips, Associated Software and Systems, and Products Containing Same,” Investigation 
number 337-TA-596 (SiRF Technologies, plaintiff).  My work focused on the 7,043,363 and 
7,091,904 patents in defense of Global Locate/Broadcom from June 2007 through March 2008.  
Deposed 1/18-1/19/08; testified at trial 3/18-3/19/08. 
 
Intellectual Science and Technology  
Retained Dykema Gossett, PLCC as a technical expert on patent infringement issues related to 
“suspend-to-RAM” technologies in personal computers.  Pre-litigation work. 
 
Intellectual Science and Technology, Inc., v. Sony, JVC and Panasonic 
Retained Dykema Gossett, PLCC as a technical expert on patent infringement issues related to 
US Patent 5,748,575, US Patent 6,222,799, US Patent 6,785,198, US Patent 6,662,239 and US 
Patent 6,717,890.  Sony Electronics Inc., case number 2:06-CV-10406, JVC Americas Corp., 
case number 2:06-CV-10409 and Panasonic Corporation of North America case number 2:06-
CV-10412.  Cases heard in United States District Court, Eastern District of Michigan, Southern 
Division.  Expert for Intellectual Science and Technology, Inc.  Dec 2006 – 2008.. 
 
Kirsch Technologies v. Xerox, Canon 
Retained Dykema Gossett, PLCC as an Expert Witness on patent infringement issues related to 
US Patent 4,816,911, Canon case number CA 00-72775, Xerox case number CA 00-72778, cases 
heard in United States District Court, Eastern District of Michigan, Southern Division.  Expert 
for Kirsch Technologies.  Nov 2006 – 2008.. 
 
American Video Graphics v. ATI Technologies 
Retained by Sidley, Austin, Brown & Wood, Dallas, TX as a technical expert on patent 
infringement issues related to US Patents 5,132,670, 5,109,520, 5,084,830, 4,761,642, 4,742,474, 
4,734,690, 4,730,185 and 4,694,286.  Hewlett-Packard Co., et al., defendants, case number CA 
6:04-CV-379-LED and Sony Corporation of America et al., defendants, case number CA 6:04-
CV-399-LED.  Cases heard in United States District Court, Eastern District of Texas, Tyler 
Division.  Expert for ATI Technologies, intervener.  Jan 2005 – Sep 2005. 
 
Microsoft v. EMC 
Dewey Ballantine, LLP, Washington, D.C., as a technical expert on patent infringement issues 
related to US Patents 5,588,147; 5,689,700; 6,393,466; 6,424,151; 6,490,594; and 6,632,248.  
Wrote a declaration on behalf of Microsoft.  Oct 2004 – Jan 2005. 
 
Optimum Return v. Meier Brothers 
Retained by Sidley, Austin, Brown & Wood, Dallas, TX as a technical expert on Copyright 
infringement allegations related to software owned by Optimum Return, LLC.  Cyberkatz 
Consulting, Inc., Handsquare, LLC, Meier Brothers, et al., defendants, case number CA 3-
03CV1064-D.  Case heard in United States District Court, Northern District of Texas, Dallas 
Division.  Expert for Meier Brothers.  July 2004. 
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Parental Guide of Texas, Inc. v. Funai Corp., et. al. 
Technical expert for defendants JVC and Panasonic in their dispute over non-infringement of US 
Patent number 4,605,964. 
 
Elonex I.P. Holdings, LTD. and Elonex PLC, Phase II 
Expert witness for defendants Chuntex, Acer, Tatung, Lite-On, Daewoo and Envision in their 
dispute with Elonex non-infringement and validity for US Patent numbers 5,389,952; 5,648,799; 
and 5,880,719. 
 
Storage Computer Corporation vs. Veritas Software 
Technical expert for the plaintiff in matters involving Patents US 5,257,367; US 5,893,919; and 
US 6,098,128. 
 
Storage Computer Corporation vs. Seagate Technology LLC 
Technical expert for the defendant in matters involving US Patent RE 34,100. 
 
Elonex I.P. Holdings, LTD. and Elonex PLC, vs. Packard Bell et. al., CA 98-689-GMS 
Expert witness for defendants ViewSonic Corp., Dell Computer Corporation, MAG Technology 
USA, Princeton Graphic Systems, Inc., Micron Electronics, Sony Electronics and Capetronic 
Computer USA in their dispute with Elonex non-infringement and validity for US Patent 
numbers 5,389,952; 5,648,799; and 5,880,719.   

1.4.2 Engineering Consulting 
 
Offspring Media Inc. 
Technical consultant for the development of real-time auralization algorithms for integration into 
a consumer electronics product.  Sep 2004. 
 
Raytheon Company, Sudbury, MA 
Development of techniques and requirements for implementing a fault tolerant computer system 
using software implemented fault tolerance (SIFT) techniques on commercial off-the-shelf 
processing hardware.  The resultant system is to be used for highly reliable radar data and signal 
processing. 
 
TVM Techno Venture Management 
Provided consulting services to assist in assessing the technical claims of a company pursuing 
venture capital investment for a hardware implemented RAID 5 system . 
 
Keyhold Engineering Inc., Northboro, MA. 
Development of a prototype system for automatically calibrating multiple channel audio systems. 
 
American Navigation Systems Inc., Milbury, MA. 
Consulting on the development of the hand-held personal navigation and mapping system. 
 
Lincoln Laboratory, Bedford, MA. 
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Simulated, tested and evaluated a GPS integrity monitoring algorithm developed at Lincoln 
Laboratories. 
 

1.5 Licenses and Certifications 

1.5.1 Commercial 
General Radiotelephone Operator License 
Ship RADAR endorsement 

1.5.2 Amateur 
Amateur Extra class radio operator license. 
 

2. Courses Taught at WPI 

2.1 Course Descriptions 
Short descriptions of the courses taught are as follows: 
 
EE572N  Advanced System Architecture 
 

This course focuses on the architectural techniques used to achieve high-performance in 
SISD and SIMD computer systems.  In this course the interaction between the software 
application and hardware architecture and the effect of this interaction on achievable 
performance is stressed.  The course begins by covering the basic architectural tricks used to 
enhance system performance and ends with a series of case studies that analyze specific 
architectures such as the CRAY and CDC vector supercomputers, the MasPar, the Connection 
Machine, the ICL DAP, and others. 
 
ECE505  Computer Architecture 
 

This course is an introductory graduate course in computer architecture.  Most aspects of 
CPU architecture are covered using a combined hardware/software approach.  Specific topics 
include datapath design, memory systems, microprogramming, memory management, operating 
systems, and instruction set design. 
 
ECE579M  Real-Time System Design 
 

This course focuses on the design of computer systems for which the timeliness of producing 
results is a critical factor for establishing the correctness of the system design.  Topics covered 
include hardware specification, real-time operating systems and programming, scheduling, 
communications, and validation/verification.  Issues and choices arising for single processor and 
distributed systems are also covered.  Both hard and soft real-time system issues and the 
interactions between real applications and real systems is stressed.  
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ECE2010  Introduction to Electrical and Computer Engineering. 
 

The objective of this course is to introduce students to the broad field of electrical and 
computer engineering within the context of real world applications.  This course is designed for 
first-year students who are considering ECE as a possible major or for non-ECE students 
fulfilling an out-of-major degree requirement.  The course will introduce basic electrical circuit 
theory as well as analog and digital signal processing methods currently used to solve a variety 
of engineering design problems in areas such as entertainment and networking media, robotics, 
renewable energy and biomedical applications. Laboratory experiments based on these 
applications are used to reinforce basic concepts and develop laboratory skills, as well as to 
provide system-level understanding. Circuit and system simulation analysis tools are also 
introduced and emphasized. 
 
 
ECE2022  Introduction to Digital Circuits and Computer Engineering. 
 

The objective of this course is to expose students (including first year students) to basic 
electrical and mathematical concepts that underlie computer engineering while continuing an 
introduction to basic concepts of circuits and systems in a hands-on environment. Experiments 
representing practical devices introduce basic electrical engineering concepts and skills which 
typify the study and practice of electrical and computer engineering. In the laboratory, the 
students construct, troubleshoot, and test analog and digital circuits that they have designed. 
They will also be introduced to the nature of the interface between hardware and software in a 
typical microprocessor based computer. 
 
ECE2801  Foundations of Embedded Systems 
 

This course teaches the principles of programming microprocessors and microcontrollers for 
real-time applications.  Students are introduced to software engineering principles and are taught 
how to translate product specifications into engineering solutions. 
 
ECE2799  ECE Design 
 

This is a new course added to the curriculum that teaches sophomore Electrical Engineering 
students the basic principles of design.  Topics are covered which range from project planning 
and management through manufacturing and implementation.  Students are exposed to external 
factors influencing design such as safety, liability, cost, and other constraints. 
 
ECE3801  Logic Circuits 
 

This is an introductory course in logic circuit design.  Topics covered include Boolean Logic, 
Algebraic minimization of logic equations, Karnaugh Maps, sequential machine design and 
timing analysis. 
 
ECE3803  Introduction to Microprocessor Systems 
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This is an undergraduate-level first-course in microprocessor design.  Topics covered include 

timing analysis, address decoding, memory system design, assembly language programming, 
programmed I/O, and digital/analog interfacing.  Experiments are run using ISA-bus interfaces to 
standard PCs. 
 
ECE3810  Advanced Digital System Design 
 
      This course addresses the design of advanced digital logic systems using VHDL to design, 
synthesize and model digital circuits, and to implement these circuits using Xilinx FPGA 
devices.  The course emphasizes understanding functional design, designing for speed and power 
objectives, and testing.  The course ends with students designing moderately complicated 
“system on a chip” (SOC) based systems 
 
ECE4815  Computer Architecture (crosslisted as CS4515) 
 

A first course in computer architecture.  Essential aspects of CPU architecture are covered 
using a combined hardware/software approach.  Students learn how a CPU interprets and 
processes instructions.  Issues associated with interfacing hardware with software are covered in 
detail as are the hardware/software tradeoffs associated with performance optimization. 
 
ECE4801  Microprocessor System Design 
 

Microprocessor System Design is the second course in the microprocessor sequence.  In this 
course, students learn the advanced concepts used in modern microprocessor systems.  Topics 
such as system organization, dynamic and cache memory systems, communications, mixed 
language programming, and device driver design are covered. 
 
ECE430X  Fundamentals of Navigation Systems 
 

This course introduces students to the fundamentals of navigation using electronic systems.  
The course covers types of navigation systems, how to interpret sensor data and sources of 
navigation system error.  Topics include: types of navigation systems (dead reckoning, inertial, 
radio based systems), sensors and error sources, coordinate frames and transformations, system 
dynamics and measurement processing.  Case studies explore the use of accelerometers, 
gyroscopes, GPS (including, differential and assisted GPS) as well as other types of navigation 
systems. 

 
RBE 3001  Unified Robotics III 
 

Third of a four-course sequence introducing foundational theory and practice of robotics 
engineering from the fields of computer science, electrical engineering and mechanical 
engineering. The focus of this course is actuator design, embedded computing and complex 
response processes. Concepts of dynamic response as relates to vibration and motion planning 
will be presented. The principles of operation and interface methods various actuators will be 
discussed, including pneumatic, magnetic, piezoelectric, linear, stepper, etc. Complex feedback 
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mechanisms will be implemented using software executing in an embedded system. The 
necessary concepts for real-time processor programming, re-entrant code and interrupt signaling 
will be introduced. Laboratory sessions will culminate in the construction of a multi-module 
robotic system that exemplifies methods introduced during this course. 
 
RBE 3002  Unified Robotics IV 
 

Fourth of a four-course sequence introducing foundational theory and practice of robotics 
engineering from the fields of computer science, electrical engineering and mechanical 
engineering. The focus of this course is navigation, position estimation and communications. 
Concepts of dead reckoning, landmark updates, inertial sensors, vision and radio location will be 
explored. Control systems as applied to navigation will be presented. Communication, remote 
control and remote sensing for mobile robots and tele-robotic systems will be introduced. 
Wireless communications including wireless networks and typical local and wide area 
networking protocols will be discussed. Considerations will be discussed regarding operation in 
difficult environments such as underwater, aerospace, hazardous, etc. Laboratory sessions will be 
directed towards the solution of an open-ended problem over the course of the entire term. 

 
RBE 400x  Robot System Engineering and Design 

 
The designers of robotic systems start with a system requirement to define the  mechanical, 

electrical and software systems which must work together to achieve the system 
goals.  Typically, parallel teams of engineers will work concurrently to create the requirements 
document as well as model various aspects of the system to verify operational capabilities and 
the ability to meet time and budget constraints.   For complex systems, the development of such 
teams can itself be a complex problem since the project has to be organized in such a way that 
parallel teams can work independently, yet have excellent communication channels and 
information passing to insure project success. 
 
This course explores the tools and techniques used to develop complex systems.  The topics 
covered include: requirements development; system architecture and partitioning; requirements 
flowdown; functional and interface specifications; trade studies; system modeling and 
simulation; system integration; as well as design verification and validation. 

 
RBE500  Foundations of Robotics 

Foundations and principles of processing sensor information in robotic systems.  Topics 
include an introduction to probabilistic concepts related to sensors, sensor signal processing, 
multi-sensor control systems and optimal estimation.   The material presented will focus on the 
types of control problems encountered when a robot must operate in an environment where 
sensor noise and/or tracking errors are significant.  Techniques for assessing the stability, 
controllability and expected accuracy of multi-sensor control and tracking systems will be 
presented.  Lab projects will involve processing live and synthetic data, robot simulation and 
projects involving the control of robot platforms. 
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3. List of Publications: 

3.1 Journal Papers 
[1] T. Padir, W.R. Michalson, et. al., “Implementation of an Undergraduate Robotics 

Engineering Curriculum,” Computers in Education Journal, vol. I, no. 3, pp. 92-101, 
2010. 

[2] W. R. Michalson, A. Navalekar and H. Parikh, “Error mechanisms in indoor positioning 
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55, no. 1, 2008. 
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System," NAVIGATION J. Inst. Nav., vol. 51, no. 2, pp. 133-142, Summer, 2004. 
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[8] G. Bogdanov, W. R. Michalson, and R. Ludwig, “A new apparatus for non-destructive 
evaluation of green-state powder metal compacts using the electrical resistivity method,” 
Measurement Science and Technology, IOP Publishing, vol. 11,  pp. 157-166, January 
2000. 

[9] B. Findlen, E. Reuter, R. Campbell, and W. R. Michalson, “Effects of time domain 
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[12] Woltereck, R. Ludwig, and W. Michalson, "A Quantitative Analysis of the Separation of 
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IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 772-781, January 1997. 

[13] W. R. Michalson, “Auralization on a Laptop PC,” abstract appears in The Journal of the 
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611, October 1994. 

3.2 Conference Papers 
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Differentially Coherent Integration for L1C Acquisition,” Proc. 2013 International 
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[7] G. Fischer, W. R. Michalson, T. Padir and G. Pollice,”Development of a Laboratory Kit 
for Robotics Engineering Education” AAAI 2010 Spring Symposium on Educational 
Robotics and Beyond: Design and Evaluation, Mar. 22-24, Palo Alto, CA, 2010. 

[8] W.R. Michalson, and F. J. Looft, “Designing Robotic Systems: Preparation for an 
Interdisciplinary Capstone Experience,” American Society of Engineering Educators 
2010 Annual Conference, Louisville, KY, Jun 20-23, 2010. 
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Real-Time Systems, Dec 3-6, 1991. 

[93] W. Jessop, W. Michalson, and R. Some, "Fault Injection for Verifying Fault Tolerant 
System Behavior," Workshop on Experimental Evaluation, El Segundo, CA, May 1-3, 
1990. 

[94] W. R. Michalson and P. Heldt, "A Hybrid Architecture for the ART 2 Neural Model," 
Proc. International Joint Conference on Neural Networks, pp. 167-70, Washington D.C., 
Jan 15-19, 1990. 

[95] W. R. Michalson, "A Review of the Current State of Logic Synthesis," 2nd Annual IEEE 
ASIC Seminar and Exhibit, Rochester, NY, Sep 25- 28, 1989. 

[96] P. E. Green and W. R. Michalson, "Real-Time Evidential Reasoning and Network Based 
Processing," Proc. IEEE 1st International Conference on Neural Networks, pp. 359-365, 
San Diego, CA, Jun 21-24, 1987. 

[97] P. E. Green, R. J. Juels, and W. R. Michalson, "Real Time Artificial Intelligence 
Architecture," Proc. Workshop on Future Directions in Computer Architecture and 
Software, pp. 328-330, Charleston, SC, May 5-7, 1986. 

 

3.3 Book Chapters 
[1] W. Michalson and E. Schnieder, "An Approach for Implementing a Reconfigurable 

Optical Interconnection Network for Massively Parallel Computers," in Optical 
Interconnection - Foundations and Approaches, C. Tocci and H. J. Caulfield Eds., Artech 
House, proposed release January 1994. 

 

3.4 Patents 
 
Precision location methods and systems  
United States Patent 8,928,459, Issued January 6, 2015 
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The invention describes systems and methods for determining the location of a transmitter by 
jointly and collectively processing the full sampled signal data from a plurality of receivers to 
form a single solution. 
 
Apparatus and methods for addressable communication using voice-grade radios 
United States Patent 8,284,711, Issued 9 October 2012 
The invention relates to methods and apparatus for conducting directed communication using 
voice-grade radios. The methods and apparatus can be used to form a packet-switched wireless 
network using legacy analog transceivers, providing, e.g., both data and voice-over-Internet 
Protocol communication.  
 
Multi-channel electrophysiologic signal data acquisition system on an integrated circuit. 
United States Patent 7896807, issued 3 March 2011. 
A physiologic data acquisition system includes an analog input, a sigma-delta front end signal 
conditioning circuit adapted to subtract out DC and low frequency interfering signals from and 
amplify the analog input before analog to digital conversion. The system can be programmed to 
acquire a selected physiologic signal, e.g., a physiologic signal characteristic of or originating 
from a particular biological tissue. The physiologic data acquisition system may include a 
network interface modulating a plurality of subcarriers with respective portions of an acquired 
physiologic signal. A receiver coupled to the network interface can receive physiologic data 
from, and send control signals and provide power to the physiologic data acquisition system over 
a single pair of wires. The network interface can modulate an RF carrier with the plurality of 
modulated subcarriers and transmit the resulting signal to the receiver across a wireless network. 
An integrated circuit may include the physiologic data acquisition system. Also included are 
methods for acquiring physiologic data comprising the step of selectively controlling an 
acquisition circuit to acquire the physiologic signal. 
 
Methods and apparatus for high resolution positioning.  United States Patent 7292189.  The 
invention relates to a method of signal analysis that determines the location of a transmitter and 
to devices that implement the method. The method includes receiving by at least three receivers, 
from a transmitter, a first continuous-time signal having a first channel. The first channel 
includes a first plurality of signal carriers having known relative initial phases and having known 
frequencies which are periodically spaced and which are orthogonal to one another within a first 
frequency range. The signal analysis method also includes determining the phase shifts of the 
carriers of the first channel resulting from the distance the carriers traveled in reaching the first 
receiver. Analysis of the phase shifts yields time difference of arrival information amongst the 
receivers, which is further processed to determine the location of the transmitter.  6 Nov 2007. 
 
A Reconfigurable Indoor Geolocation System, US Patent Number 7,079,025.  A portable 
reconfigurable geolocation system is provided. The system includes a portable user node and one 
or more portable pseudolite nodes in communication one another and with the user node. Each of 
the user nodes and pseudolite nodes includes a transmitter that generates a signal on one or more 
carrier frequencies. Each signal is modulated with digital signals necessary to establish distances 
between the nodes and to convey data between the nodes. Each node also includes a receiver for 
receiving and demodulating the signals transmitted between the nodes, and a processor for 
receiving the demodulated signals, extracting data values and derived values from the 
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demodulated signals and determining a three-dimensional position of each node in the system.  
Issued 18 Jul 2006. 
 
Auto-Calibrating Surround System, United States Patent 7158643.  A multi-channel surround 
sound system and method is described that allows automatic and independent calibration and 
adjustment of the frequency, amplitude and time response of each channel of the surround sound 
system. The disclosed auto-calibrating surround sound (ACSS) system includes a processor that 
generates a test signal represented by a temporal maximum length sequence (MLS) and supplies 
the test signal as part of an electric input signal to a loudspeaker. A microphone coupled to the 
processor receives the signal in a listening environment. The processor correlates the received 
sound signal with the test signal in the time domain and determines from the correlated signals a 
whitened response of the audio channel in the listening environment.  Issued 2 Jan 2007. 
 
Hand-held GPS-mapping device, US. Patent Number 5,987,380.  A hand-held navigation, 
mapping and positioning device contains a GPS receiver, a database capable of storing vector or 
bit mapped graphics, a viewing port, an embedded processor, a simplified user interface, a data 
compression algorithm, and other supporting electronics, The viewport is configured such that 
the data presented in the viewport if clearly visible in any ambient light condition. The database 
stores compressed image data which might include topographical map data, user annotations, 
building plans, or any other image. The system includes an interface to a personal computer 
which may be used to annotate or edit graphic information externally to the device for later 
upload. In addition, the device contains a simple menu-driven user interface which allows 
panning and zooming the image data, marking locations of interest, and other such functions. 
The device may be operated from an internal rechargeable battery, or powered externally.  , 
Issued 16 Nov 1999. 
 
Hand-held GPS-mapping device, US. Patent Number 5,902,347. A hand-held navigation, 
mapping and positioning device contains a GPS receiver, a database capable of storing vector or 
bit mapped graphics, a viewing port, an embedded processor, a simplified user interface, a data 
compression algorithm, and other supporting electronics. The viewpoint is configured such that 
the data presented in the viewport is clearly visible in any ambient light condition. The database 
stores compressed image data which might include topographical map data, user annotations, 
building plans, or any other image. The system includes an interface to a personal computer 
which may be used to annotate or edit graphic information externally to the device for later 
upload. In addition, the device contains a simple menu-driven user interface which allows 
panning and zooming the image data, marking locations of interest, and other such functions. 
The device may be operated from an internal rechargeable battery, or powered externally. Issued 
11 May 19/99. 
 

3.5 Professional Presentations 
 
American Ambulance Association Annual Meeting: Low-cost VHF/UHF Interoperability for 
digital telemetry, Las Vegas, NV, Dec. 2005. 
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California Ambulance Association, Keynote address: Alternatives to solving interoperability 
problems in Land Mobile Radios, Lake Tahoe, NV, July 2005. 
 
Museum of Science Lecture Series: The Next Generation of Information and Communications 
Technologies-What does the Future Hold?, William R. Michalson and Brian King, January 14, 
2004. 
 
Agilent Wireless Technology Summit: Dynamic Node Location in an Ad Hoc Indoor 
Communications and Positioning Network, William R. Michalson, January 27, 2004 
 
Security & Technology Online (SATO) Security Leadership Council.  Panel discussion on Smart 
Surveillance, Command and Control, Oct 28-29, 2004. 
 
“Worcester Polytechnic Institute Barcelona Summit: The Future of Information Technology,” 
delivered presentation entitled “Personal Navigation in the Information Age,” Apr 2001. 
 

4. Projects advised (undergraduate). 

4.1 Major Qualifying Projects (current) 
[1] Voice Release System, B. Waldron, WZM-MQP-1M10, in process. 

4.2 Major Qualifying Projects (completed) 
[2] Aeacus, N. Anderson, D. Praetorius and C. Roddy, co-advised with S. Nestinger, 2011. 

[3] Realization of Performance Advancements for WPI’s UGV-Prometheus, M. Akmanalp, 
R. Doherty, J. Gorges, P. Kalauskas, E. Peterson and F. Polido, co-advised with T. Padir, 
S. Nestinger, M. Ciraldi, K. Stafford, 2011. 

[4] Autonomous Underwater Vehicle, J. Baker, C. Frumento, J. Grzyb and T. North, co-
advised w/I. Hussein, 2011. 

[1] Tactical Vest, V. Brisian, J. Fernando, A. Khandaker and J. Zorrilla DeLos Santos, 2011. 

[2] Marsupial AUV, N. Smith, B. Berard and C. Pietre, Lincoln Laboratory Project Center, 
co-advised with G. Heiniman, 2010. 

[3] Voice Release System, J. Low, WZM-MQP-1M10, 2010. 

[4] Design and Realization of an Intelligent Unmanned Ground Vehicle, J. Barrett, B. Roy 
and D. Sacco, Co-Advised w/T. Padir, 2010.  

[5] Accurate Real-Time Audio Circuit Simulation, B. Gleason, WZM-MB09, 2010. 

[6] Optimization and Control Design of an Autonomous Underwater Vehicle, D. Moussette, 
A. Palooparambil, and J. Raymond, AE- IIH-0003, co-advised w/I. Hussein, 2010. 

[7] Design of Autonomous Underwater Vehicle and Optimization of Hydrodynamic 
Properties and Control, R. David, WZM-3A08, 2009. 

[8] Robotic Bass Player, B. Kosherick, M. Brown, and A. Teti, WZM-RB08, 2008. 
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[9] Public Safety Radio System, P. Lucia, I. Levin and M. Barone, WZM-1A08, 2008. 

[10] Aircraft Lasercom Terminal Compact Optical Module, B. Scoville and S. Rose, Lincoln 
Laboratory Project Center, WZM-2A08, 2008. 

[11] GPS Attitude Determination System, J.P. Salmon, Michael LaBossiere and Mark 
Minotaur, 2005. 

[12] FPGA-Based VHF Modem With Integrated Testability, Andrew Dupont and Jack Coyne, 
2005. 

[13] TMR Computer System, Maulin Patel, Omar Moussa and Matthew Kwiatkowski, 2005. 

[14] GPS Signal Generator, Tim Coffey, 2005. 

[15] Dipole Antenna Placement in a Falcon-20 Aircraft, Emily Anesta and David Plourde, 
Lincoln Laboratories Project Center, A-Term, 2004. 

[16] GPS Attitude Determination System, Joshua Holwell, Himanshu Agrawal and Andrew 
Coonradt, 2004. 

[17] TMR Computer System, Ryan Angilly, Mitch Lauer and Dan Debiasio, 2004. 

[18] Personal Inertial Navigation System, Jason DeChiaro and Christopher Strus, 2003. 

[19] WZM-MQP-4A02: PC I/O in High Stress Environments, John Niesz and James Kent, 
2003. 

[20] WZM-MQP-2A02: Vacuum Tube Amplifier, Joseph Kambourakis and Gregory Molnar, 
2003. 

[21] Container Tracking System, Victoria Chaplick, 2003. 

[22] WZM-MQP-2A03: Heat Management System for PCs, Ernest Cardin, Kevin Candiloro 
and Stephen Leavey, 2002. 

[23] WZM-MQP-1313: Digital Image Enhancement, Julie Bolduc, Joeseph Perry, Wei Fu, 
2002. 

[24] WZM-MQP-2A01: Synchronized Audio Sample Looper, Joel Gottshalk, Robert Conrad 
and Sanford Freedman, 2002. 

[25] WZM-MQP-1A01: Springboard Digital Multimeter, Pavel Loven and Andrew Young, 
2002. 

[26] Ballistic Missile Defense Analysis Toolkit, Winfield Peterson, Doug Tilkin and Benjamin 
Wilson, Lincoln Laboratories Project Center, 2002. 

[27] HU-FB-CS01, C Sound Synthesizer, Peter W. DeBonte (co-advised). 

[28] WZM-MQP-1A00: StrongArm-Based Computer System, Bradford Snow, 2001. 

[29] WZM-MQP-1C01: PC Controlled Laser Light Show Device, Joel Smith, 2001. 

[30] WZM-MQP-1E00: PIC-based MIDI Sequencer Malcolm Beaulieu, 2001. 

[31] WZM-MQP-2A00: Automotive PC Development Platform Travis Pouliot and David 
Philips, 2001. 
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[32] The RoadCom Automotive Computing System, Benjamin Kennedy and John Pong, 2000. 

[33] WZM-MQP-1A99: Compressed Sample Wavetable Synthesizer, Justin Brzozoski, 2000. 

[34] WZM-MQP-3499, Automatically Equalizing Monitor, Fernando Braghin,  Tenzin Lama, 
Rahul Bhan and Dion Soetadi, 2000. 

[35] 99D163M: Railroad Communication, Benjamin Richards, 2000. 

[36] CS-MXC-IE00: PIC Real-Time Sequencer, Alexander Goodrich, 2000. 

[37] 99D514M: Design of a Microphone Preamplifier, Eric Reuter, 2000. 

[38] WZM-MQP-1A99, MPEG Audio Deck, Justin Brzozoski, 2000. 

[39] Digital Image Enhancement, Julie Bolduc, Wei Fu and Joseph Perry, 2000. 

[40] WZM-MQP-4A98, Railroad Communications System, Matthew Lug, 1999. 

[41] 99D078M: Modular Effects Processor II, Erik Neyland, 1999. 

[42] 99D176M: Portable Digital Audio Recorder Eric Toledo and Duc Truong, 1999. 

[43] EE-WZM-1A97, C Sound Synthesizer, Ross E. Borgeson, Michael W. Hamel and 
Matthew S. Walsh, 1998. 

[44] EE-WZM-4A97, Firewire Audio Device, Daniel R. Stutzbach, 1998. 

[45] EE-WZM-2A97, Modular Effects Processor, Michael J. Dellisanti, 1998. 

[46] EE-WZM-3A97, GPS Personal Navigation, Jeffery A. Alderson and Helder Machado, 
1998. 

[47] HU-FB-CS01, C Sound Synthesizer, Peter W. DeBonte (co-advised). 

[48] EE-WZM-1E97, PM Measurement System, Yevgeniy Bogdanov. 

[49] EE-REL-C008, Design and Development of a Microprocessor-Based Gaussmeter, David 
M. Burnham. 

[50] EE-WZM-RC01, Acoustic Guitar Amplifier, Christopher Thomas. 

[51] EE-WZM-GSD1, Guitar Sustaining Device, Paul D’Ambra. 

[52] EE-RXV-5260, Audio Feedback Elimination System, Ross D. Pease and John R. 
Pelliccio. 

[53] EE-RJD-M963, Embedded Systems Design, Christopher A. Briggs and Anthony J. 
Viapiano. 

[54] EE-WHE-9601, GPS Hazard Detector, Michael Roberts, William Cidela, and Chris 
Mangiarelli. 

[55] EE-WZM-2C96, Flexible Synthesis, Noah T. Vawter and Luke Demoracski. 

[56] EE-WZM-1A96, Tap Dancer MIDI Interface, Thomas Trela and William Dowell. 

[57] EE-WZM-2A96, GPS Hazard Detector II, Will Brothers, Jon Day, and John Zaghi. 

[58] EE-WZM-3A96, Loudspeaker Data Acquisition System, Adam Gross. 

[59] EE-WZM-4A96, Audio Morphing Processor, William Butterfield and Ted Phipps. 
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[60] EE-WZM-5A96, Acoustic Modeling, Peter DeBonte. 

[61] EE-WZM-1B96, Distributed Audio Controller, Stephen S. Richardson. 

[62] EE-WZM-1A95, Acoustic Hazard Meter, Ronald D. Slack. 

[63] EE-WZM-2A95, Forest Service DGPS, Joshua J. Single and Michael T. Spadazzi. 

[64] EE-WZM-1C95, Audio to MIDI Converter, Jennifer R. Principe. 

[65] EE-WZM-1D95, Low Cost Auralizer, Jason R. Hills and Mark R. Paulson. 

[66] EE-WZM-3A95, Passive Radiator Design, Kevin R. Weldon. 

[67] EE-WZM-1C94, Char Model Generation, Colin J. Florendo. 

[68] EE-WZM-1D94, Wide Area DGPS Simulator, Daniel Cohen and Robert Schroter. 

[69] EE-WZM-2D94, Digital Soundcard, Timothy Alsberg (Russian Project Center). 

[70] EE-WZM-3D94, Digital Univibe, Andrew Willis and Daniel Toohey. 

[71] EE-WZM-1A94, DSP Based Real-Time Audio Feedback Eliminator, Kevin M. Eddy. 

[72] EE-WZM-2A94, Digital LCD Oscilloscope, William F. Brown and John F. Ebersole. 

[73] 93D236M, MIDI Mapper, Jonathan Kemble and Brian Candiloro.  

[74] EE-WZM-1C93, Fault-Tolerant Computer, Frederick N. Parmenter. 

[75] EE-WZM-1A93, Wireless MIDI Controller, Sanjay Raja, Charles Cimalore, Ty 
Panagoplos. 

[76] EE-WZM-2A93, Multiple Pitch Detector, Jeanne A. Sawtelle. 

[77] EE-WZM-3A93, Multiprocessor Cache Coherence, Lauren C. Lind and Norman E. 
Rhodes. 

[78] EE-WZM-1C92, A Simulation of the DLX Architecture, Lisa Harlow. 

[79] EE-WZM-2C92, A New Microprocessor Development System, Gregory B. Burlingame, 
David J. Fortin, Kevin S. Pearson. 

[80] EE-WZM-1A92, Digital Audio Sampler, Roger D. Gagnon and James M. Lach. 

[81] EE-WZM-2A92, Intelligent Harmonizer, Prabhjot S. Anand and Aftab M. Yusuf. 

[82] EE-WZM-3A92, Computerized Audio Mixer, Richard J. Wood. 

[83] EE-WZM-1B92, Real-Time Harmonizer, Mohiuddin M. Kahn. 

[84] EE-WZM-1A91, Residue Number System Processor, Ravdeep S. Anand and Christine A. 
Easton. 

[85] EE-WZM-2A91, SCSI Bus Analyzer, Brian Costello, George Delouriero, Matthew 
Maguire, and Keith Nevins. 
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4.3 Graduate Theses Advised and Co-Advised 

4.3.1 MS Theses (current) 
[1] No Current MS Students 

 

4.3.2 MS Theses (completed) 
[1] Morin, Russell, “A Novel Localization System For Experimental Autonomous 

Underwater Vehicles,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 2010. 

[2] Navalekar, Abhijit, “Design of an OFDM-Based VHF Modem,” MS Thesis, primary 
advisor, Worcester Polytechnic Institute. 

[3] Ahlehagh, Hasti, “Techniques for Communications and Geolocation Using Wireless Ad 
Hoc Networks,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 2004. 

[4] Sebastian, Dalys, “Development of a Field-Deployable Ultrasound Scanner System,” MS 
Thesis, co-advisor, Worcester Polytechnic Institute, 2004. 

[5] Tobgay, Sonam, “Novel Concepts for RF Surface Coils with Integrated Receivers,” MS 
Thesis, co-advisor, Worcester Polytechnic Institute, 2004. 

[6] Breen, Daniel, “Characterization of Multi-Carrier Locator Performance,” MS Thesis, co-
advisor, 2004. 

[7] Aghogho, Obi, “A Novel Radio Frequency Coil Design for Breast Cancer Screening in a 
Magnetic Resonance Imaging System,” MS Thesis, co-advisor, Worcester Polytechnic 
Institute, 2003. 

[8] Fei, Ming, “Electromagnetic Detection, Infrared Visualization and Image Processing 
Techniques for Non-Metallic Inclusions in Molten Aluminum,” MS Thesis, co-advisor, 
2002. 

[9] Lavoie, Bruce, “Design and Implementation of an N-Channel Self Calibrating Audio 
System,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 2000. 

[10] Bogdonov, Gene, “Theoretical and Practical Implementation of Electrical Impedance 
Material Inspection of Powder Metallurgy Compacts,” MS Thesis, co-advisor, Worcester 
Polytechnic Institute, 1999. 

[11] Messier, Andrew, “Modeling the Effects of Terrain Masking on GPS Accuracy and 
Integrity,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1998. 

[12] Antonescu, Bogdan, “Elliptic Curve Cryptosystems on Embedded Microprocessors,” 
Bogdan Antonescu, MS Thesis, co-advisor, Worcester Polytechnic Institute, 1998. 

[13] Lai, Qiang, “Ground-Penetrating Radar Data Processing System,” MS Thesis, co-advisor, 
Worcester Polytechnic Institute, 1998. 

[14] Soria-Rodríguez, Pedro, “Multicast-Based Interactive-Group Object-Replication For 
Fault Tolerance,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1998.  
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[15] Hoy, William, “Audio Signal Denoising Using Wavelets,” MS Thesis, primary advisor, 
Worcester Polytechnic Institute, 1997. 

[16] Progri, Ilir, “Harmonic Flow Monitoring by means of Global Positioning System,” MS 
Thesis, primary advisor, Worcester Polytechnic Institute, 1997. 

[17] Bretchko, Pavel, “Pulsed Hysteresis Graph System,” MS Thesis, co-advisor, Worcester 
Polytechnic Institute, 1997. 

[18] Repkin, Dmitry V., “A Hierarchical Neural Network Based Data Processing System for 
Ground Penetrating Radar,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 
1997. 

[19] Metsis, Sophocles, “Design of a Real-Time Capable, Fault-Tolerant, Distributed 
System,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1996. 

[20] Hill, Jonathan, “Efficient Implementation of Mesh Generation and FDTD Simulation of 
Electromagnetic Fields,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 
1996. 

[21] Dunkelberg, John, “FEM Mesh Mapping to a SIMD Machine Using Genetic 
Algorithms,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1996. 

[22] Leuenberger, Georg, “Design and Development of a Microprocessor Based Gauss 
Meter,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1995. 

[23] Valentino, Ralph, “DISC: A Dynamic Instruction Set Coprocessor,” MS Thesis, primary 
advisor, Worcester Polytechnic Institute, 1995. 

[24] Muley, Aalok, “A Fault Tolerant Network for a Real-Time Environment,” MS Thesis, 
primary advisor, Worcester Polytechnic Institute, 1994. 

[25] Mohan, Surrender, “Automatic Surface Mesh Generation for 3D Solid Models Using 
Delaunay Algorithm,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1994. 

[26] Petrangelo, John, “Experimental Preconditioners for Large Dense Systems,” MS Thesis, 
co-advisor, Worcester Polytechnic Institute, 1994. 

[27] Schneider, Eric, “Design, Simulation, and Analysis of a 3D Integrated Optical 
Computer,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1993. 

[28] Palmer, Bradley, “A Comparison of Three Protocols Supporting Time-Dependent and 
Time-Independent Communications,” MS Thesis, primary advisor, Worcester 
Polytechnic Institute, 1992. 

[29] Clayton, Shawn, “An Analysis of the Real-Time Behavior of Galactica Net,” MS Thesis, 
primary advisor, Worcester Polytechnic Institute, 1992. 

[30] Levergood, Thomas, “An Experimental Evaluation of Split User/Supervisor Cache 
Memories,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1992. 

[31] Lavalee, James, “The Design and Development of Real-Time Systems Using Ada and the 
Activation Framework,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1992. 

[32] Velazques, Javier, “The Development of a Real-Time Environment Using the Activation 
Framework,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1992. 
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4.3.3 Ph. D. Dissertations (current) 
[1] Jitesh, “Ad-Hoc Networking for Bandwith Limited LMR Systems,” primary advisor. 

4.3.4 Ph. D. Dissertations (completed) 
[1] Iyer, Vishwanath, “Broadband Impedance Matching of Antenna Radiators,” Ph.D. 

Dissertation, co-advisor, Worcester Polytechnic Institute, 2010. 

[2] Navalekar, Abhijit, “Distributed Digital Radios For Land Mobile Radio Applications,” 
Ph.D. Dissertation, primary advisor, Worcester Polytechnic Institute, 2009. 

[3] Parikh, Hemish, “Design of an OFDM Transmitter and Receiver for Precision Personnel 
Location,” primary advisor. 

[4] Progri, Ilir, “An Assessment of Indoor Geolocation Systems,” Ph.D. Dissertation, 
primary advisor, Worcester Polytechnic Institute, 2003. 

[5] Li, Xinrong, “Super-Resolution TOA Estimation with Diversity Techniques for Indoor 
Applications,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2003. 

[6] Leuenberger, Gerog H. W., “Electrostatic Density Measurements in Green-State PM 
Parts,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2003. 

[7] Bogdanov, Gene, “Radio-Frequency Coil Design for High Field Magnetic Resonance 
Imaging,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2002. 

[8] Elbirt, Adam J., “Reconfigurable Computing for Symmetric-Key Algorithms,” Ph.D. 
Dissertation, co-advisor, Worcester Polytechnic Institute, 2002. 

[9] Bretchko, Pavel, “Design and Development of Ultra-wideband DC-Coupled Amplifier,” 
Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2001. 

[10] Hill, Jonathan, “Development of an Experimental Global Positioning System (GPS) 
Receiver Platform for Navigation Algorithm Evaluation,” Ph.D. Dissertation, primary 
advisor, 2001. 

[11] Spasojević, Mirko, “Creation of Sparse Boundary Element Matricies for 2-D and Axi-
symmetric Electrostatic Problems Using a Bi-orthogonal Wavelet,” Ph.D. Dissertation, 
co-advisor, Worcester Polytechnic Institute, 1997. 

[12] Shi, Funan, “Optimal Designs of Gradient and RF Coils for Magnetic Resonance Imaging 
(MRI) Instrument,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 
1996. 

5. Proposals and Funding (past 5 years): 

5.1 In Review 
$ 199,996 A National Model Robotics Curriculum, NSF (PI: Dr. M. Gennert, Co-PIs: Drs. 

T. Padir, W.R. Michalson, G. Fischer and C. Demetry), May 2009. 
 
$ 199,052 A National Model Robotics Capstone, NSF (PI: Dr. W.R. Michalson, Co-PIs: 

Drs.T. Padir, C. Demetry, G. Tryggvason and F. Looft), May 2009. 
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$ 399,791 Modular System for Teaching Robotics Engineering (MySTRE), NSF (PI: Dr. G. 
Fischer, Co-PIs: Drs. W.R. Michalson and T. Padir), March 2009. 

5.2 Funding Received 
$ 50,524  PCGO Broadband Modem, Powerwave Technologies, Inc., (PI: Dr. W.R. 

Michalson), May 2009. 

$ 1,245,000 Real-Time Troop Status Monitoring System, US Army Telemedicine and 
Advanced Technology Research Center. (PI: Dr. Peder Pedersen, Co-PIs: Drs. 
William R. Michalson and Yitzhak Mendelson). Third year of funding.  Projected 
funding period: Oct 1, 2004 to Sep 30, 2005. 

$ 148,422 Precision Personnel Locator System, National Institute of Justice (PI: Dr. John 
Orr, Co-PIs: Drs. David Cyganski and William R. Michalson). Second year of 
funding.  Projected funding period: Sep 1, 2004 to Oct 31, 2005.  Grant code 
219240. 

$ 74,048 High-Speed VHF Modem, US Army Telemedicine and Advanced Technology 
Research Center (PI: Dr. William R. Michalson).  Funding period: Mar 1, 2004 to 
Dec 31, 2004. Grant code 214370. 
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PREFACE 

Spatial data consist of points, lines, rectangles, regions, surfaces, and volumes. The 
representation of such data is becoming increasingly important in applications in 
computer graphics, computer vision, database management systems, computer-aided 
design, solid modeling, robotics, geographic information systems (GIS), image pro
cessing, computational geometry, pattern recognition, and other areas. Once an appli
cation has been specified, it is common for the spatial data types to be more precise. 
For example, consider a geographic information system (GIS). In such a case, line 
data are differentiated on the basis of whether the lines are isolated (e.g., earthquake 
faults), elements of tree-like structures (e.g., rivers and their tributaries), or elements 
of networks (e.g., rail and highway systems). Similarly region data are often in the 
form of polygons that are isolated (e.g., lakes), adjacent (e.g., nations), or nested (e.g., 
contours). Clearly the variations are large. 

Many of the data structures currently used to represent spatial data are hierarchi
cal. They are based on the principle of recursive decomposition (similar to divide and 
conquer methods [Aho74]). One such data structure is the quadtree (octree in three 
dimensions). As we shall see, the term quadtree has taken on a generic meaning. In 
this book, it is my goal to show how a number of hierarchical data structures used in 
different domains are related to each other and to q~adtrees. My presentation concen
trates on these different representations and illustrates how a number of basic opera
tions that use them are performed. 

Hierarchical data structures are useful because of their ability to focus on the 
interesting subsets of the data. This focusing results in an efficient representation and 
in improved execution times. Thus they are particularly convenient for performing set 
operations. Many of the operations described can often be performed as efficiently, or 
more so, with other data structures. Nevertheless hierarchical data structures are 
attractive because of their conceptual clarity and ease of implementation. In addition, 
the use of some of them provides a spatial index. This is very useful in applications 
involving spatial databases. 
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As an example of the type of problems to which the techniques described in this 
book are applicable, consider a cartographic database consisting of a number of maps 
and some typical queries. The database contains a contour map, say at 50-foot eleva
tion intervals, and a land use map classifying areas according to crop growth. Our 
goal is to determine all regions between 400- and 600-foot elevation levels where 
wheat is grown. This will require an intersection operation on the two maps. Such an 
analysis could be rather costly, depending on the way the maps are represented. For 
example, since areas where com is grown are of no interest, we wish to spend a 
minimal amount of effort searching such regions. Yet traditional region representa
tions such as the boundary code [Free7 4] are very local in application, making it 
difficult to avoid examining a com-growing area that meets the desired elevation 
criterion. In contrast, hierarchical representations such as the region quadtree are 
more global in nature and enable the elimination of larger areas from consideration. 

Another query might be to determine whether two roads intersect within a given 
area. We could check them point by point; however, a more efficient method of 
analysis would be to represent them by a hierarchical sequence of enclosing rectangles 
and to discover whether in fact the rectangles do overlap. If they do not, the search is 
terminated. If an intersection is possible, more work may have to be done, depending 
on which method of representation is used. 

A similar query can be constructed for point data- for example, to determine 
all cities within 50 miles of St. Louis that have a population in excess of 20,000. 
Again we could check each city individually. However, using a representation that 
decomposes the United States into square areas having sides of length 100 miles 
would mean that at most four squares need to be examined. Thus California and its 
adjacent states can be safely ignored. 

Finally, suppose we wish to integrate our queries over a database containing 
many different types of data (e.g., points, lines, areas). A typical query might be, 
"Find all cities with a population in excess of 5,000 people in wheat-growing regions 
within 20 miles of the Mississippi River." In this book we will present a number of 
different ways of representing data so that such queries and other operations can be 
efficiently processed. 

This book is organized as follows. There is one chapter for each spatial data 
type, in which I present a number of different data structures. The aim is to gain the 
ability to evaluate them and to determine their applicability. Two problems are treated 
in great detail: the rectangle intersection problem, discussed in the context of the 
representation of collections of small rectangles (Chapter 3), and the point location 
problem, discussed in the context of the representation of curvilinear data (Chapter 4). 
A comprehensive treatment of the use of quadtrees and octrees in other applications in 
computer graphics, image processing, and geographic information systems (GIS) can 
be found in [Same90b]. 

Chapter 1 gives a general introduction to the principle of recursive decomposi
tion with a concentration on two-dimensional regions. Key properties, as well as a 
historical overview, are presented. 
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Chapter 2 discusses hierarchical representations of multidimensional point data. 
These data structures are particularly useful in applications in database management 
systems because they are designed to facilitate responses to search queries. 

Chapter 3 examines the hierarchical representation of collections of small rec
tangles. Such data arise in applications in computational geometry, very large-scale 
integrations (VLSI), cartography, and database management. Examples from these 
fields (e.g., the rectangle intersection problem) are used to illustrate their differences. 
Many of the representations are closely related to those used for point data. This 
chapter is an expansion of [Same88a]. 

Chapter 4 treats the hierarchical representation of curvilinear data. The primary 
focus is on the representation of polygonal maps. The goal is to be able to solve the 
point location problem. Quadtree-like solutions are compared with those from com
putational geometry such as the K-structure [Kirk83] and the layered dag [Edel86a]. 

Chapter 5 looks at the representation of three-dimensional region data. In this 
case, a number of octree variants are examined, as well as constructive solid geometry 
(CSG) and the boundary model (BRep). Algorithms are discussed for converting 
between some of these representations. The representation of surfaces (i.e., 2.5-
dimensional data) is also briefly discussed in this chapter. 

There are a number of topics for which justice requires a considerably more 
detailed treatment. However, due to space limitations, I have omitted a detailed dis
cussion of them and instead refer interested readers to the appropriate literature. For 
example, surface representations are discussed briefly with three-dimensional data in 
Chapter 5 (also see Chapter 7 of [Same90b ]). The notion of a pyramid is presented 
only at a cursory level in Chapter 1 so that it can be contrasted with the quadtree. In 
particular, the pyramid is a multiresolution representation, whereas the quadtree is a 
variable resolution representation. Readers are referred to Tanimoto and Klinger 
[Tani80] and the collection of papers edited by Rosenfeld [Rose83a] for a more 
comprehensive exposition on pyramids. 

Results from computational geometry, although related to many of the topics 
covered in this book, are discussed only in the context of representations for collec
tions of small rectangles (Chapter 3) and curvilinear data (Chapter 4). For more 
details on early work involving some of these and related topics, interested readers 
should consult the surveys by Bentley and Friedman [Bent79b], Overmars [Over88a], 
Edelsbrunner [Edel84], Nagy and Wagle [Nagy79], Peuquet [Peuq84], Requicha 
[Requ80], Srihari [Srih81], Samet and Rosenfeld [Same80d], Samet [Same84b, 
Same88a], Samet and Webber [Same88c, Same88d], and Toussaint [Tous80]. 

There are also a number of excellent texts containing material related to the 
topics that I cover. Rosenfeld and Kak [Rose82a] should be consulted for an ency
clopedic treatment of image processing. MantyUi [Mant87] has written a comprehen
sive introduction to solid modeling. Burrough [Burr86] provides a survey of geo
graphic information systems (GIS). Overmars [Over83] has produced a particularly 
good treatment of multidimensional point data. In a similar vein, see Mehlhorn's 
[Mehl84] unified treatment of multidimensional searching and computational 
geometry. For thorough introductions to computational geometry, see Preparata and 
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K-structure and the layered dag in Section 4.3 are relevant to computational geometry. 
Bucket methods such as linear hashing, spiral hashing, grid file. and EXCELL. in Sec
tion 2.8, and R-trees in Section 3.5.3 are important in the study of database manage
ment systems. Methods for multidimensional searching that are discussed include k-d 
trees in Section 2.4, range trees and priority search trees in Section 2.5, and point
based rectangle representations in Section 3.4. The discussions of the representation 
of two-dimensional regions in Chapter 1, polygonal representations in Chapter 4, and 
use of point methods for focussing the Hough Transform are relevant to image pro
cessing. Finally the rectangle-representation methods and plane-sweep methods of 
Chapter 3 are important in the field of VLSI design. 

The natural home for courses that use this book is in a computer science depart
ment, but the book could also be used in a curriculum in geographic information 
systems (GIS). Such a course is offered in geography departments. The emphasis for 
a course in this area would be on the use of quadtree-like methods for representing 
spatial data. 
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Shamos [Prep85] and Edelsbrunner [Edel87] (also see [Prep83, 0Rou88]). A broader 
view of the literature can be found in related bibliographies such as the ongoing col
lective effort coordinated by Edelsbrunner [Edel83c, Edel88], and Rosenfeld's annual 
collection of references in the journal Computer Vision, Graphics, and Image Pro
cessing (e.g., [Rose88]). 

Nevertheless, given the broad and rapidly expanding nature of the field, I am 
bound to have omitted significant concepts and references. In addition at times I 
devote a disproportionate amount of attention to some concepts at the expense of oth
ers. This is principally for expository purposes; I feel that it is better to understand 
some structures well rather than to give readers a quick runthrough of buzzwords. For 
these indiscretions, I beg your pardon and hope you nevertheless bear with me. 

My approach is an algorithmic one. Whenever possible, I have tried to motivate 
critical steps in the algorithms by a liberal use of examples. I feel that it is of 
paramount importance for readers to see the ease with which the representations can 
be implemented and used. In each chapter, except for the introduction (Chapter I), I 
give at least one detailed algorithm using pseudo-code so that readers can see how the 
ideas can be applied. The pseudo-code is a variant of the ALGOL [Naur60] program
ming language that has a data structuring facility incorporating pointers and record 
structures. Recursion is used heavily. This language has similarities to c [Kern78], 
PASCAL [Jens74], SAIL [Reis76], and ALGOL w [Baue68]. Its basic features are 
described in the Appendix. However, the actual code is not crucial to understanding 
the techniques, and it may be skipped on a first reading. The index indicates the page 
numbers where the code for each algorithm is found. 

In many cases I also give an analysis of the space and time requirements of dif
ferent data structures and algorithms. The analysis is usually of an asymptotic nature 
and is in terms of big 0 and .Q notation [Knut76]. The big 0 notation denotes an 
upper bound. For example, if an algorithm takes O(log2N) time, then its worst-case 
behavior is never any worse than log2N. The .Q notation denotes a lower bound. As 
an example of its use, consider the problem of sorting N numbers. When we say that 
sorting is Q(N·log2N) we mean that given any algorithm for sorting, there is some set 
of N input values for which the algorithm will require at least this much time. 

At times I also describe implementations of some of the data structures for the 
purpose of comparison. In such cases counts, such as the number of fields in a record, 
are often given. These numbers are meant only to amplify the discussion. They are 
not to be taken literally, as improvements are always possible once a specific applica
tion is analyzed more carefully. 

Each chapter contains a substantial number of exercises. Many of the exercises 
develop further the material in the text as a means of testing the reader's understand
ing, as well as suggesting future directions. When the exercise or its solution is not 
my own, I have preceded it with the name of its originator. The exercises have not 
been graded by difficulty. They rarely require any mathematical skills beyond the 
undergraduate level for their solution. However, while some of the exercises are quite 
straightforward, others require some ingenuity. Solutions, or references to papers that 
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contain the solution, are provided for a substantial number of the exercises that do nor 
require programming. Readers are cautioned to try to solve the exercises before turn
ing to the solutions. It is my belief that much can be learned this way (for the studem 
and, even more so, for the author). The motivation for undertaking this task was my 
wonderful experience on my first encounter with the rich work on data structures by 
Knuth [Knut73a, Knut73b]. 

An extensive bibliography is provided. It contains entries for both this book and 
the companion text [Same90b]. Not all of the references that appear in the bibliogra
phy are cited in the two texts. They are retained for the purpose of giving readers the 
ability to access the entire body of literature relevant to the topics discussed in them. 
Each reference is annotated with a key word(s) and a list of the numbers of the sec
tions in which it is cited in either of the texts (including exercises and solutions). In 
addition, a name and credit index is provided that indicates the page numbers in thb 
book on which each author's work is cited or a credit is made. 
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A GUIDE TO THE INSTRUCTOR 

This book can be used in a second data structures course, one with emphasis on 
the representation of spatial data. The focus is on the use of the principle of divide
and-conquer for which hierarchical data structures provide a good demonstration. 
Throughout the book both worst-case optimal methods and methods that work well in 
practice are emphasized in conformance with my view that the well-rounded computer 
scientist should be conversant with both types of algorithms. This material is more 
than can be covered in one semester; but the instructor can reduce it as necessary. For 
example, the detailed examples can be skipped or used as a basis of a term project or 
programming assignments. 

The book can also be used to organize a course to be prerequisite to courses in 
computer graphics and solid modeling, computational geometry, database manage
ment systems, multidimensional searching, image processing, and VLSI design. The 
discussions of the representations of two-dimensional regions in Chapter 1, polygonal 
representations in Chapter 4, and most of Chapter 5 are relevant to computer graphics 
and solid modeling. The discussions of plane-sweep methods and their associated 
data structures such as segment trees, interval trees, and priority search trees in Sec
rions 3.2 and 3.3 and point location and associated data structures such as the 
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INTRODUCTION 1 

There are numerous hierarchical data structuring techniques in use for representing 
spatial data. One commonly used technique is the quadtree, which has evolved from 
work in different fields. Thus it is natural that a number of adaptations of it exist for 
each spatial data type. Its development has been motivated to a large extent by a 
desire to save storage by aggregating data having identical or similar values. We will 
see, however, that this is not always the case. In fact, the savings in execution time 
that arise from this aggregation are often of equal or greater importance. 

In this chapter we start with a historical overview of quadtrees, including 
definitions. Since the primary focus in this book is on the representation of regions, 
what follows is a discussion of region representation in the context of different space 
decomposition methods. This is done by examining polygonal and nonpolygonal til
ings of the plane. The emphasis is on justifying the use of a decomposition into 
squares. We conclude with a detailed analysis of the space requirements of the quad
tree representation. 

Most of the presentation in this chapter is in the context of two-dimensional 
regions. The extension of the topics in this chapter, and remaining chapters, to three
dimensional region data, and higher, is straightforward and, aside from definitions, is 
often left to the exercises. Nevertheless, the concept of an octree, a quadtree-like 
representation of three-dimensional regions, is defined and a brief explanation is given 
of how some of the results described here are applicable to higher-dimensional data. 

1.1 BASIC DEFINITIONS 

First, we define a few terms with respect to two-dimensional data. Assume the 
existence of an array of picture elements (termed pixels) in two dimensions. We use 
the term image to refer to the original array of pixels. If its elements are black or 
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2 II 1 INTRODUCTION 

white, then it is said to be binary. If shades of gray are possible (i.e., gray levels), the 
image is said to be a gray -scale image. In the discussion, we are primarily concerned 
with binary images. Assume that the image is on an infinite background of white pix
els. The border of the image is the outer boundary of the square corresponding to the 
array. 

Two pixels are said to be 4-adjacent if they are adjacent to each other in the 
horizontal or vertical direction. If the concept of adjacency also includes adjacency at 
a corner (i.e., diagonal adjacencies), then the pixels are said to be 8-adjacent. A sets 
is said to be four-connected (eight-connected) if for any pixels p, q ins there exists a 
sequence of pixels p = p 0 , p 1, • • • , Pn = q in s, such that Pi+I is 4-adjacent (8-
adjacent) to Pi• 0 ~ i < n. 

A black region, or black four-connected component, is a maximal four
connected set of black pixels. The process of assigning the same label to all 4-
adjacent black pixels is called connected component labeling (see Chapter 5 of 
[Same90b]). A white region is a maximal eight-connected set of white pixels defined 
analogously. The complement of a black region consists of a union of eight
connected white regions. Exactly one of these white regions contains the infinite 
background of white pixels. All the other white regions, if any, are called holes in the 
black region. The black region, say R, is surrounded by the infinite white region and R 

surrounds the other white regions, if any. 
A pixel is said to have four edges, each of which is of unit length. The bound

my of a black region consists of the set of edges of its constituent pixels that also 
serve as edges of white pixels. Similar definitions can be formulated in terms of rec
tangular blocks, all of whose pixels are identically colored. For example, two disjoint 
blocks, P and Q, are said to be 4-adjacent if there exists a pixel p in P and a pixel q in Q 

such that p and q are 4-adjacent. Eight-adjacency for blocks (as well as connected 
component labeling) is defined analogously. 

1.2 OVERVIEW OF QUADTREES AND OCTREES 

The term quadtree is used to describe a class of hierarchical data structures whose 
common property is that they are based on the principle of recursive decomposition of 
space. They can be differentiated on the following bases: 

1. The type of data they are used to represent 
2. The principle guiding the decomposition process 
3. The resolution (variable or not) 

Currently they are used for point data, areas, curves, surfaces, and volumes. 
The decomposition may be into equal parts on each level (i.e., regular polygons and 
termed a regular decomposition), or it may be governed by the input. In computer 
graphics this distinction is often phrased in terms of image-space hierarchies versus 
object-space hierarchies, respectively [Suth74]. The resolution of the decomposition 

APPENDIX B

Microsoft Corp.   Exhibit 1005



1.2 OVERVIEW OF QUADTREES AND OCTREES II 3 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 I I I I 
0 0 0 0 I I I I 
0 0 0 I I I I I 
0 0 I I I I I I 0 0 0 I I I I 0 0 
0 0 I I I 0 0 0 

a b 

A 
Level 3---------------

NW 

Level 2 --

Level I--------

Leve I 0 - --- - - - - - - - - -- - - -

d 
7 8 9 10 

2 3 

6 

II 

c 

15 16 17 18 

Figure 1.1 An example of (a) a region, (b) its binary array, 
(c) its maximal blocks (blocks in the region are shaded), and 
(d) the corresponding quadtree 

(i.e., the number of times that the decomposition process is applied) may be fixed 
beforehand, or it may be governed by properties of the input data. For some applica
tions we can also differentiate the data structures on the basis of whether they specify 
the boundaries of regions (e.g., curves and surfaces) or organize their interiors (e.g., 
areas and volumes). 

The first example of a quadtree representation of data is concerned with the 
representation of two-dimensional binary region data. The most studied quadtree 
approach to region representation, called a region quadtree (but often termed a quad
tree in the rest of this chapter), is based on the successive subdivision of a bounded 
image array into four equal-sized quadrants. If the·array does not consist entirely of 
ls or entirely of Os (i.e., the region does not cover the entire array), then it is subdi
vided into quadrants, subquadrants, and so on, until blocks are obtained that consist 
entirely of 1 s or entirely of Os; that is, each block is entirely contained in the region or 
entirely disjoint from it. The region quadtree can be characterized as a variable reso
lution data structure. 

As an example of the region quad tree, consider the region shown in Figure 1.1 a 
represented by the 23 x 23 binary array in Figure 1.1 b. Observe that the 1 s correspond 
to picture elements (i.e., pixels) in the region, and the Os correspond to picture ele
ments outside the region. The resulting blocks for the array of Figure 1.1 b are shown 
in Figure 1.1c. This process is represented by a tree of degree 4 (i.e., each nonleaf 
node has four sons). 
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(i.e., the number of times that the decomposition process is applied) may be fixed

beforehand, or it may be governed by properties of the input data. For some applica-

tions we can also differentiate the data structures on the basis of whether they specify

the boundaries of regions (e.g., curves and surfaces) or organize their interiors (e.g.,

areas and volumes).

The first example of a quadtree representation of data is concerned with the

representation of two-dimensional binary region data. The most studied quadtree

approach to region representation, called a region quadtree (but often termed a quad—

tree in the rest of this chapter), is based on the successive subdivision of a bounded

image array into four equal-sized quadrants. If the‘array does not consist entirely of

1s or entirely of 0s (i.e., the region does not cover the entire array), then it is subdi-

vided into quadrants, subquadrants, and so on, until blocks are obtained that consist

entirely of 1s or entirely of OS; that is, each block is entirely contained in the region or

entirely disjoint from it. The region quadtree can be characterized as a variable reso-
lution data structure.

As an example of the region quadtree, consider the region shown in Figure 1.1a

represented by the 23 x 23 binary array in Figure l.1b. Observe that the 1s correspond

to picture elements (i.e., pixels) in the region, and the 0s correspond to picture ele-

ments outside the region. The resulting blocks for the array of Figure 1.1b are shown

in Figure l.1c. This process is represented by a tree of degree 4 (i.e., each nonleaf

node has four sons).
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In the tree representation, the root node corresponds to the entire array. Each 
son of a node represents a quadrant (labeled in order NW, NE, sw, SE) of the region 
represented by that node. The leaf nodes of the tree correspond to those blocks for 
which no further subdivision is necessary. A leaf node is said to be black or white 
depending on whether its corresponding block is entirely inside (it contains only 1 s) or 
entirely outside the represented region (it contains no ls). All nonleaf nodes are said 
to be gray (i.e., its block contains Os and 1 s). Given a 211 x 211 image, the root node is 
said to be at level n while a node at level 0 corresponds to a single pixel in the image. 1 

The region quad tree representation for Figure 1.1 c is shown in Figure 1.1 d. The leaf 
nodes are labeled with numbers, while the nonleaf nodes are labeled with letters. The 
levels of the tree are also marked. 

Our definition of the region quadtree implies that it is constructed by a top-down 
process. In practice, the process is bottom-up, and one usually uses one of two 
approaches. The first approach [Same80b] is applicable when the image array is not 
too large. In such a case, the elements of the array are inspected in the order given by 
the labels on the array in Figure 1.2 (which corresponds to the image of Figure l.la). 
This order is also known as a Morton order [Mort66] (discussed in Section 1.3). By 
using such a method, a leaf node is never created until it is known to be maximal. An 
equivalent statement is that the situation does not arise in which four leaf nodes of the 
same color necessitate the changing of the color of their parent from gray to black or 
white as is appropriate. (For more details, see Section 4.1 of [Same90b ].) 

The second approach [Same81a] is applicable to large images. In this case, the 
elements of the image are processed one row at a time-for example, in the order 
given by the labels on the array in Figure 1.3 (which corresponds to the image of Fig
ure l.la). This order is also known as a row or raster-scan order (discussed in Section 
1.3). A quadtree is built by adding pixel-sized nodes one by one in the order in which 
they appear in the file. (For more details, see Section 4.2.1 of [Same90b].) This pro
cess can be time-consuming due to the many merging and node insertion operations 
that need to take place. 

The above method has been improved by using a predictive method [Shaf86a, 
Shaf87a], which only makes a single insertion for each node in the final quadtree and 
performs no merge operations. It is based on processing the image in row order (top 
to bottom, left to right), always inserting the largest node (i.e., block) for which the 
current pixel is the first (upper leftmost) pixel. Such a policy avoids the necessity of 
merging since the upper leftmost pixel of any block is inserted before any other pixel 
of that block. Therefore it is impossible for four sibling nodes to be of the same color. 
This method makes use of an auxiliary array of size 0(2 11

) for a 211 x 211 image. (For 
more details, see Section 4.2.3 of [Same90b].) 

The region quadtree is easily extended to represent three-dimensional binary 
region data and the resulting data structure is called a region octrcc (termed an octrcc 

1 Alternatively we can say that the root node is at depth 0 while a node at depth 11 corresponds to a single 
pixel in the image. In this book both concepts of level and depth are used to describe the relative position of 
nodes. The one that is chosen is context dependent. 
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Figure 1.2 Morton order for the pixels of Figure 1. 1 

in the rest of this chapter). We start with a 2n x 2n x 2n object array of unit cubes 
(termed voxels or obels). The octree is based on the successive subdivision of an 
object array into octants. If the array does not consist entirely of 1 s or entirely of Os, it 
is subdivided into octants, suboctants, and so on until cubes (possibly single voxels) 
are obtained that consist of 1 s or of Os; that is, they are entirely contained in the region 
or entirely disjoint from it. 

This subdivision process is represented by a tree of degree 8 in which the root 
node represents the entire object and the leaf nodes correspond to those cubes of the 
array for which no further subdivision is necessary. Leaf nodes are said to be black or 
white (alternatively, full or void) depending on whether their corresponding cubes are 
entirely within or outside the object, respectively. All nonleaf nodes are said to be 
gray. Figure 1.4a is an example of a simple three-dimensional object, in the form of a 
staircase, whose octree block decomposition is given in Figure 1.4b and whose tree 
representation is given in Figure 1.4c. 

The region quadtree is a member of a class of representations characterized as 
being a collection of maximal (according to an appropriate definition) blocks, each of 
which is contained in a given region and whose union is the entire region. The sim
plest such representation is the runlength code, where the blocks are restricted to 
1 x m rectangles [Ruto68]. A more general representation treats the region as a union 
of maximal square blocks (or blocks of any other desired shape) that may possibly 
overlap. Usually the blocks are specified by their centers and radii. This representa
tion is called the medial axis transformation (MAT) [Blum67, Rose66]. Of course, 
other approaches are also possible (e.g., rectangular coding [Kim83, Kim86], TID 
[Scot85, Scot86]). 

I 2 3 4 5 6 7 8 
9 10 II 12 13 14 15 16 
17 18 19 20 21 22 23 24 
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. Figure 1.3 Raster-scan order for the pixels of Figure 1. 1 
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7 5 11 9 8 6 12 10 

a b c 

Figure 1.4 (a) Example three-dimensional object; (b) its 
octree block decomposition; (c) its tree representation 

The region quadtree is a variant on the maximal block representation. It 
requires the blocks to be disjoint and to have standard sizes (i.e., sides of lengths that 
are powers of two) and standard locations. The motivation for its development is a 
desire to obtain a systematic way to represent homogeneous parts of an image. Thus 
to transform the data into a region quadtree, a criterion must be chosen for deciding 
that an image is homogeneous (i.e., uniform). 

One such criterion is that the standard deviation of its gray levels is below a 
given threshold t. Using this criterion, the image array is successively subdivided into 
quadrants, subquadrants, and so on until homogeneous blocks are obtained. This pro
cess leads to a regular decomposition. If one associates with each leaf node the mean 
gray level of its block, the resulting region quadtree will then completely specify a 
piecewise approximation to the image where each homogeneous block is represented 
by its mean. The case where t = 0 (i.e., a block is not homogeneous unless its gray 
level is constant) is of particular interest since it permits an exact reconstruction of the 
image from its quadtree. 

Note that the blocks of the region quadtree do not necessarily correspond to 
maximal homogeneous regions in the image. Most likely there exist unions of the 
blocks that are still homogeneous. To obtain a segmentation of the image into maxi
mal homogeneous regions, we must allow merging of adjacent blocks (or unions of 
blocks) as long as the resulting region remains homogeneous. This is achieved by a 
'split-and-merge' algorithm [Horo76]. However, the resulting partition will no longer 
be represented by a quadtree; instead the final representation is in the form of an adja
cency graph. Thus the region quadtree is used as an initial step in the segmentation 
process. 

For example, Figure 1.5b-d demonstrates the results of the application, in 
sequence, of merging. splitting, and grouping .to the initial image decomposition of 
Figure 1.5a. In this case. the image is initially decomposed into 16 equal-sized square 
blocks. Next the 'merge' step attempts to form larger blocks by recursively merging 
groups of four homogeneous 'brothers' (the four blocks in the NW and SE quad
rants of Figure 1.5b). The ·split" step recursively decomposes blocks that are not 
homogeneous (the NE and sw quadrants of Figure 1.5c) until a particular homo
geneity criterion is satisfied or a given level is encountered. Finally the ·grouping' 
step aggregates all homogeneous 4-adjacent black blocks into one region apiece; 
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Figure 1.4 (3) Example three-dimensional object; (b) its

octree block decomposition; (0) its tree representation

The region quadtree is a variant on the maximal block representation. It

requires the blocks to be disjoint and to have standard sizes (i.e., sides of lengths that

are powers of two) and standard locations. The motivation for its development is a

desire to obtain a systematic way to represent homogeneous parts of an image. Thus

to transform the data into a region quadtree, a criterion must be chosen for deciding

that an image is homogeneous (i.e., uniform).

One such criterion is that the standard deviation of its gray levels is below a

given threshold t. Using this criterion. the image array is successively subdivided into

quadrants, subquadrants, and so on until homogeneous blocks are obtained. This pro-

cess leads to a regular decomposition. If one associates with each leaf node the mean

gray level of its block. the resulting region quadtree will then completely specify a

piecewise approximation to the image where each homogeneous block is represented

by its mean. The case where t=0 (i.e., a block is not homogeneous unless its gray

level is constant) is of particular interest since it permits an exact reconstruction of the

image from its quadtree.

Note that the blocks of the region quadtree do not necessarily correspond to

maximal homogeneous regions in the image. Most likely there exist unions of the

blocks that are still homogeneous. To obtain a segmentation of the image into maxi—

mal homogeneous regions. we must allow merging of adjacent blocks (or unions of

blocks) as long as the resulting region remains homogeneous. This is achieved by a

‘split-and-merge‘ algorithm [Horo76]. However, the resulting partition will no longer

be represented by a quadtree; instead the final representation is in the form of an adja—

cency graph. Thus the region quadtree is used as an initial step in the Segmentation

process.

For example. Figure 1.5b—d demonstrates the results of the application, in

sequence. of merging. splitting. and grouping .to the initial image decomposition of

Figure 1.5a. In this case. the image is initially decomposed into 16 equal—sized square

blocks. Next the ‘merge‘ step attempts to form larger blocks by recursively merging

groups of four homogeneous ‘brothers‘ (the four blocks in the NW and SE quad—

rants of Figure 1.5b). The ‘split‘ step recursively decomposes blocks that are not

homogeneous (the NE and SW quadrants of Figure 1.5c) until a particular homo-

geneity criterion is satisfied or a given level is encountered. Finally the ‘grouping‘

step aggregates all homogeneous 4-adjacent black blocks into one region apiece;
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a b 

c d 

Figure 1.5 Example illustrating the 'split-and-merge' 
segmentation procedure: (a) start, (b) merge, (c) split, 
(d) grouping 

the 8-adjacent white blocks are similarly aggregated into white regions (Figure l.5d). 
An alternative to the region quadtree representation is to use a decomposition 

method that is not regular (i.e., rectangles of arbitrary size rather than squares). This 
alternative has the potential of requiring less space. Its drawback is that the determi
nation of optimal partition points may be computationally expensive (see Exercise 
1.1 0). A closely related problem, decomposing a region into a minimum number of 
rectangles, is known to be NP-complete2 [Gare79] if the region is permitted to contain 
holes [Ling82]. 

The homogeneity criterion ultimately chosen to guide the subdivision process 
depends on the type of region data represented. In the remainder of this chapter we 
shall assume that the domain is a 2n x 2n binary image with 1, or black, corresponding 
to foreground and 0, or white, corresponding to background (e.g., Figure l.l ). 

2 A problem is in NP if it can be solved nondetenninistically in polynomial time. A nondetenninistic 
solution process proceeds by 'guessing' a solution and then verifying that the solution is correct. Assume 
that n is the size of the problem (e.g., for sorting, n is the number of records to be sorted). Intuitively. then. 
a problem is in NP if there is a polynomial P (n) such that if one guesses a solution. it can be n~ritied in 
0 (P (n )) time, whether the guess is indeed a correct solution. Thus the verification process is the 1-.t·y to 
detennining whether a problem is in NP, not the actual solution of the problem. 

A problem is NP-complete if it is 'at least as hard' as any other problem in NP. Some\\ lt:tt 111on: 

fonnally. a problem P 1 in NP is NP-complete if the following property holds: for all other problems ;• in Nl'. if 
P1 can be solved detenninistically in 0 (j (n )) time, then P; can be solved in 0 (P (j (n ))) time i11r ~~~tile~ 

polynomial P. It has been conjectured that no NP-complete problem can be solved detenttinisticall\ 111 

polynomial time. but this is not known for sure. The theory of NP-completene~s is discussed in dctatl 111 

[Gare79]. 
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Nevertheless the quadtree and octree can be used to represent multicolored data (e.g., 
a landuse class map associating colors with crops [Same87a]). 

It is interesting to note that Kawaguchi, Endo, and Matsunaga [Kawa83] use a 
sequence of m binary-valued quadtrees to encode image data of 2111 gray levels, where 
the various gray levels are encoded by use of Gray codes (see, e.g., [McC165]). This 
should lead to compaction (i.e., larger-sized blocks) since the Gray code guarantees 
that the binary representation of the codes of adjacent gray level values differ by only 
one binary digit.3 Note, though, that if the primary interest is in image compression, 
there exist even better methods (see, e.g., [Prat78]); however, they are beyond the 
scope of this book (but see Chapter 8 of [Same90b]). In another context, Kawaguchi, 
Endo, and Yokota [Kawa80b] point out that a sequence of related images (e.g., in an 
animation application) can be stored compactly as a sequence of quadtrees such that 
the i'11 element is the result of exclusive oring the first i images (see Exercise l. 7). 

Unfortunately the term quadtree has taken on more than one meaning. The 
region quadtree, as described earlier, is a partition of space into a set of squares whose 
sides are all a power of two long. This formulation is due to Klinger [Klin71] and 
Klinger and Dyer, who used the term Q-tree [Klin76], whereas Hunter [Hunt78] was 
the first to use the term quadtree in such a context. Actually a more precise term 
would be quadtrie, as it is really a trie structure [Fred60] in two dimensions.4 A simi
lar partition of space into rectangular quadrants, also termed a quadtree, was used by 
Finkel and Bentley [Fink74]. It is an adaptation of the binary search tree [Knut73b] to 
two dimensions (which can be easily extended to an arbitrary number of dimensions). 
It is primarily used to represent multidimensional point data, and we shall refer to it as 
a point quadtree where confusion with a region quadtree is possible. 

As an example of a point quadtree, consider Figure 1.6, which is built for the 
sequence Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami5 

3 The Gray code is motivated by a desire to reduce errors in transitions between successive gray level 
values. Its one bit difference guarantee is achieved by the following encoding. Consider the binary 
representation of the integers from 0 to 2111

- I, This representation can be obtained by constructing a binary 
tree, say T. of height m where each left branch is labeled 0 while each right branch is labeled I. Each leaf 
node, say P. is given the label formed by concatenating the labels of the branches taken by the path from the 
root to P. Enumerating the leaf nodes from left to right yields the binary integers 0 to 2111

- I. The Gray 
codes of the integers are obtained by constructing a new binary tree, say T', such that the labels of some of 
the branches in T' are the reverse of what they were in T. The algorithm is as follows. Initially. T' is a copy 
ofT. Next, traverse Tin preorder (i.e .. visit the root node, followed by the left and right subtrees). For each 
branch in T labeled I. exchange the labels of the two descendant branches of its corresponding branch in T'. 

No action is taken for descendants of branches in T labeled 0. Enumerating the leaf nodes in r' from left to 
right yields the Gray codes of the integers 0 to 2111

- I. For example. for 8 gray levels (i.e .. m = 3 ). we have 
OOO.OOI,Oll.OIO.IIO.lll.IOI.IOO, 
4 In a one-dimensional trie structure. each data item or key is treated as a sequence of characters where each 
character has M possible values. A node at depth i in the trie represents an M-way branch depending on the 
i

111 
character. The data are stored in the leaf nodes, and the shape of the trie is independent of the order in 

which the data are processed. Such a structure is also known as a digital tree [Knut73b], 
5 The correspondence between coordinate values and city names is not geographically correct. This liberty 
has been taken so that the ~ame example can be used throughout the text to illustrate a variety of concepts. 
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(0,100) (100,100) 

(60, 75) 
TORONTO 

(80,65) 
BUFFALO 

(5,45) f 
y 

DENVER (35, 40) 
CHICAGO 

(25,35) 
OMAHA 

(85,15) 

(50,10) ATLANTA 

MOBILE 

!90 51 L 
MIAMIJ 

(0,0) (100,0) 

x---

CHICAGO 

~ 
DENVER TORONTO OMAHA MOBILE 

~ ~ ~! 
BUFFALO ATLANTA MIAMI 

~ ~~ 
Figure 1.6 A point quadtree and the records it represents 

in the order in which they are listed here. 6 Its shape is highly dependent on the order 
in which the points are added to it. Of course, trie-based point representations also 
exist (see Sections 2.6.1 and 2.6.2). 

Exercises 
1.1. The region quadtree is an alternative to an image representation that is based on the use 

of an array or even a list. Each of these image representations may be biased in favor of 
the computation of a particular adjacency relation. Discuss these biases for the array, list, 
and quadtree representations. 

1.2. Given the array representation of a binary image, write an algorithm to construct the 
corresponding region quadtree. 

6 Refer to Figure 2,5 to see how the point quadtree is constructed in an incremental fashion for Chicago, 
Mobile, Toronto, and Buffalo. 
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1.3. Given an image represented by a region quadtree with 8 black and w white nodes, how 
many additional nodes are necessary for the nonleaf nodes? 

1.4. Given an image represented by a region octree with 8 black and w white nodes, how 
many additional nodes are necessary for the nonleaf nodes? 

1.5. Suppose that an octree is used to represent a collection of disjoint spheres. What would 
you use as a leaf criterion? 

1.6. The quadtree can be generalized to represent data in arbitrary dimensions. As we saw, 
the octree is its three-dimensional analog. The renowned artist Escher [Coxe86] is noted 
for etchings of unusual interpretations of geometric objects such as staircases. How 
would you represent one of Escher's staircases? 

1.7. Let E8 denote an exclusive or operation. Given a sequence of related images, 
<P11 , P11 _ 1, • • ·, P0>, define another sequence <Q11 , Q11 _ 1, • • • ,Q0> such that Q0 =Po and 
Q; = P; E8 Q;_ 1 fori > 0. Show that when the sequences P and Q are represented as quad
trees, replacing sequence P by sequence Q results in fewer nodes. 

1.8. Prove that in Exercise 1.7 the sequence P can be reconstructed from the sequence Q. In 
particular, given Q; and Q;_ 1, determine P;. 

1.9. Write an algorithm to construct the Gray codes of the integers 0 to 2111 -1. 
1.10. Find a polynomial-time algorithm to decompose a region optimally so that its quadtree 

representation uses a minimum amount of space (i.e., a minimum number of nodes). In 
this case, you can assume that the decomposition lines can be placed in arbitrary posi
tions so that the space requirement is reduced. In other words, the decomposition lines 
need not split the space into four squares of equal size. Thus the decomposition is similar 

to that induced by a point quadtree. 

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES 

The origin of the principle of recursive decomposition, upon which all quadtrees are 
based, is difficult to ascertain. Below, to give some indication of the uses of the 
region quadtree, some of its applications to geometric data are traced briefly. Most 
likely it was first seen as a way of aggregating blocks of zeros in sparse matrices. 
Indeed Hoare [Hoar72] attributes a one-level decomposition of a matrix into square 
blocks to Dijkstra. Morton [Mort66] used it as a means of indexing into a geographic 
database (i.e., it acts as a spatial index). 

Warnock, in a pair of reports that serve as landmarks in computer graphics 
[Warn68, Warn69b], described the implementation of hidden-line and hidden-surface 
elimination algorithms using a recursive decomposition of the picture area. The pic
ture area is repeatedly subdivided into rectangles that are successively smaller while 
searching for areas that are sufficiently simple to be displayed. Klinger [Klin71] and 
Klinger and Dyer [Klin76] applied these ideas to pattern recognition and image pro
cessing, while Hunter [Hunt78] used them for an animation application. 

The SRI robot project [Nils69] used a three-level decomposition of space to 
represent a map of the robot's world. Eastman [East70] observes that recursive 
decomposition might be used for space planning in an architectural context and 
presents a simplified version of the SRI robot representation. A quadtree-like represen
tation in the form of production rules called OF-expressions (denoting 'depth-first') is 
discussed by Kawaguchi and Endo [Kawa80a] and Kawaguchi, Endo, and Yokota 
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1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES II 11 

[Kawa80b] (see also Section 1.5). Tucker [Tuck84a] uses quadtree refinement as a 
control strategy for an expert vision system. 

The three-dimensional variant of the region quadtree-the octree-was 
developed independently by a number of researchers. Hunter [Hunt78] mentioned it 
as a natural extension of the quad tree. Reddy and Rubin [Redd78] proposed the 
octree as one of three representations for solid objects. The second is a three
dimensional generalization of the point quad tree of Finkel and Bentley [Fink7 4 ]-that 
is, a decomposition into rectangular parallelepipeds (as opposed to cubes) with planes 
perpendicular to the x, y, and z axes. The third breaks the object into rectangular 
parallelepipeds that are not necessarily aligned with an axis. The parallelepipeds are 
of arbitrary sizes and orientations. Each parallelepiped is recursively subdivided into 
parallelepipeds in the coordinate space of the enclosing parallelepiped. Reddy and 
Rubin prefer the third approach for its ease of display. 

Situated somewhere between the second and third approaches of Reddy and 
Rubin is the method of Brooks and Lozano-Perez [Broo83] (see also [Loza81 ]), who 
use a recursive decomposition of space into an arbitrary number of rectangular paral
lelepipeds, with planes perpendicular to the x, y, and z axes, to model space in solving 
the findpath or piano movers problem [Schw88] in robotics. This problem arises 
when planning the motion of a robot in an environment containing known obstacles 
and the desired solution is a collision-free path obtained by use of a search. Faverjon 
[Fave84] discusses an approach to this problem that uses an octree, as do Samet and 
Tamminen [Same85g] and Fujimura and Samet [Fuji89]. 

Jackins and Tanimoto [Jack80] adapted Hunter and Steiglitz's quadtree transla
tion algorithm [Hunt78, Hunt79b] to objects represented by octrees. Meagher 
[Meag82a] developed numerous algorithms for performing solid modeling operations 
in an environment where the octree is the underlying representation. Yau and Srihari 
[Yau83] extended the octree to arbitrary dimensions in the process of developing 
algorithms to handle medical images. 

Both quadtrees and octrees are frequently used in the construction of meshes for 
finite element analysis. The use of recursive decomposition for meshes was initially 
suggested by Rheinboldt and Mesztenyi [Rhei80]. Yerry and Shephard [Yerr83] 
adapted the quadtree and octree to generate meshes automatically for three
dimensional solids represented by a superquadric surface-based modeler. This has 
been extended by Kela, Voelcker, and Goldak [Kela84b] (see also [Kela86]) to mesh 
boundary regions directly, rather than through discrete approximations, and to facili
tate incremental adaptive analysis by exploiting the spatial index nature of the quad
tree and octree. 

Parallel to the development of the quadtree and octree data structures, there has 
been related work by researchers in the field of image understanding. Kelly [Kell71] 
introduced the concept of a plan, which is a small picture whose pixels represent 
gray-scale averages over 8x8 blocks of a larger picture. Needless effort in edge detec
tion is avoided by first determining edges in the plan and then using these edges to 
search selectively for edges in the larger picture. Generalizations of this idea 
motivated the development of multiresolution image representations-for example, 
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Figure 1. 7 Structure of a pyramid having three levels 

the recognition cone of Uhr [Uhr72], the preprocessing cone of Riseman and Arbib 
[Rise77], and the pyramid of Tanimoto and Pavlidis [Tani75]. Of these representa
tions, the pyramid is the closest relative of the region quadtree. 

Given a 211 x 211 image array, say A(n), a pyramid is a sequence of arrays {A(i)} 
such that A(i -1) is a version of A(i) at half the scale of A(i). A(O) is a single pixel. Fig
ure 1.7 shows the structure of a pyramid having three levels. It should be clear that a 
pyramid can also be defined in a more general way by permitting finer scales of reso
lution than the power of two scale. 

At times, it is more convenient to define a pyramid in the form of a tree. Again, 
assuming a 211 x 211 image, a recursive decomposition into quadrants is performed, just 
as in quadtree construction, except that we keep subdividing until we reach the indi
vidual pixels. The leaf nodes of the resulting tree represent the pixels, while the nodes 
immediately above the leaf nodes correspond to the array A(n -1 ), which is of size 
211

-
1 x 211

-
1

• The nonleaf nodes are assigned a value that is a function of the nodes 
below them (i.e., their sons) such as the average gray level. Thus we see that a 
pyramid is a multiresolution representation, whereas the region quadtree is a variable 

I 2 3 4 5 6 7 8 

9 10 II 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

Figure 1.8 Example pyramid A(3) 
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Figure 1.9 A(2) corresponding to Figure 1.8 
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the recognition cone of Uhr [Uhr72], the preprocessing cone of Riseman and Arbib

[Rise77], and the pyramid of Tanimoto and Pavlidis [Tani75]. Of these representa-

tions, the pyramid is the closest relative of the region quadtree.

Given a 2" X 2” image array, say A(n), a pyramid is a sequence of arrays {A(i)}

such thatA(i—l) is a version 0fA(i) at half the scale 0fA(i). A(0) is a single pixel. Fig-

ure 1.7 shows the structure of a pyramid having three levels. It should be clear that a

pyramid can also be defined in a more general way by permitting finer scales of reso-

lution than the power of two scale.

At times, it is more convenient to define a pyramid in the form of a tree. Again,

assuming a 2" X 2" image, a recursive decomposition into quadrants is performed, just

as in quadtree construction, except that we keep subdividing until we reach the indi—

vidual pixels. The leaf nodes of the resulting tree represent the pixels, while the nodes

immediately above the leaf nodes correspond to the array A(n—l), which is of size
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below them (i.e., their sons) such as the average gray level. Thus we see that a
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Figure 1.9 A(2) corresponding to Figure 1.8
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I 2 3 4 5 6 7 8 

9 10 II 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

Figure 1. 10 The overlapping blocks in which pixel 28 
participates 

resolution representation. Another analogy is that the pyramid is a complete quadtree 
[Knut73a]. 

The above definition of a pyramid is based on nonoverlapping 2 x 2 blocks of 
pixels. An alternative definition, termed an overlapping pyramid, uses overlapping 
blocks of pixels. One of the simplest schemes makes use of 4 x 4 blocks that overlap 
by 50% in both the horizontal and vertical directions [Burt81]. For example, Figure 
1.8 is a 23 x 23 array, say A(3), whose pixels are labeled 1-64. Figure 1.9 is A(2) 
corresponding to Figure 1.8 with elements labeled A-P. The 4 x 4 neighborhood 
corresponding to element Fin Figure 1.9 consists of pixels 10--13, 18-21, 26-29, and 
34-37. This method implies that each block at a given level participates in four 
blocks at the immediately higher level. Thus the containment relations between 
blocks no longer form a tree. For example, pixel28 participates in blocks F, G, J, and K 

in the next higher level (see Figure 1.10 where the four neighborhoods corresponding 
to F, G, J, and K are drawn as squares). 

To avoid treating border cases differently, each level in the overlapped pyramid 
is assumed to be cyclically closed (i.e., the top row at each level is adjacent to the bot
tom row and similarly for the columns at the extreme left and right of each level). 
Once again we say that the value of a node is the average of the values of the nodes in 
its block on the immediately lower level. The overlapped pyramid may be compared 
with the Quadtree Medial Axis Transform (see Section 9.3.1 of [Same90b]) in the 
sense that both may result in nondisjoint decompositions of space. 

Pyramids have been applied to the problems of feature detection and extraction 
since they can be used to limit the scope of the search. Once a piece of information of 
interest is found at a coarse level, the finer resolution levels can be searched. This 
approach was followed by Davis and Roussopoulos [Davi80] in approximate pattern 
matching. Pyramids can also be used for encoding information about edges, lines, and 
curves in an image [Shne81c, Krop86]. One note of caution: the reduction of resolu
tion has an effect on the visual appearance of edges and small objects [Tani76]. In 
particular, at a coarser level of resolution, edges tend to get smeared, and region 
separation may disappear. Pyramids have also been used as the starting point for a 
'split-and-merge' segmentation algorithm [Piet82]. 

Quadtree-like decompositions are useful as space-ordering methods. The pur
pose is to optimize the storage and processing sequences for two-dimensional data by 
mapping them into one dimension (i.e., linearizing them). This mapping should pre-
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Figure 1. 11 The result of applying a number of different 
space-ordering methods to an 8 x 8 image whose first ele
ment is in the upper left corner of the image: {a) row order, 
(b) row-prime order, (c) Morton order, (d) Peano-Hilbert 
order, {e) Cantor-diagonal order, (f) spiral order 

serve the spatial locality of the original two-dimensional image in one dimension. The 
result of the mapping is also known as a space-filling curve [Gold81, Witt83] because 
it passes through every point in the image. 

Goodchild and Grandfield [Good83] discuss a number of space-ordering 
methods, some of which are illustrated in Figure 1.11. Each has different characteris
tics. The row (Figure l.lla), also known as raster-scan, and row-prime orders (Figure 
l.llb) are similar in the same way as are the Morton [Mort66, Pean90] (Figure l.llc) 
and the Peano-Hilbert [Hilb91] (Figure l.ll d) orders. The primary difference is that 
in both the row-prime and Peano-Hilbert orders every element is a 4-adjacent neigh
bor of the previous element in the sequence, and thus they have a slightly higher 
degree of locality than the row and Morton orders, respectively. Both the Morton and 
Peano-Hilbert orders exhaust a quadrant or subquadrant of a square image before exit
ing it. They are both related to quadtrees; however, as we saw above, the Morton 
order does not traverse the image in a spatially contiguous manner (the result has the 
shape of the letter 'N' or 'z' and is also known as N order [Whit82] and z order 
[Oren84]). 

For both the Morton and Peano-Hilbert orders, there is no need to know the 
maximum values of the coordinates. The Morton order is symmetric, while the 
Peano-Hilbert order is not. One advantage of the Morton order is that the position of 
each element in the ordering (termed its key) can be determined by interleaving the 
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serve the spatial locality of the original two-dimensional image in one dimension. The

result of the mapping is also known as a space-filling curve [Gold81, Witt83] because

it passes through every point in the image.

Goodchild and Grandfield [Good83] discuss a number of space-ordering

methods, some of which are illustrated in Figure 1.11. Each has different characteris-

tics. The row (Figure 1.11a), also known as raster-scan, and row-prime orders (Figure

1.11b) are similar in the same way as are the Morton [Mort66, Pean90] (Figure 1.11c)

and the Peano-Hilbert [Hilb91] (Figure 1.11d) orders. The primary difference is that

in both the row-prime and Peano-Hilbert orders every element is a 4-adjacent neigh-

bor of the previous element in the sequence, and thus they have a slightly higher

degree of locality than the row and Morton orders, respectively. Both the Morton and

Peano-Hilbert orders exhaust a quadrant or subquadrant of a square image before exit-

ing it. They are both related to quadtrees; however, as we saw above, the Morton

order does not traverse the image in a spatially contiguous manner (the result has the

Shape of the letter ‘N’ or ‘Z’ and is also known as N order [Whit82] and Z order

[Oren84]),

. For both the Morton and Peano-Hilbert orders, there is no need to know the
maxm‘um values of the coordinates. The Morton order is symmetric, while the

Pfiano'Hilbert order is not. One advantage of the Morton order is that the position of
eaCh Element in the ordering (termed its key) can be determined by interleaving the
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bits of the x and y coordinates of the element; this is not easy for the Peano-Hilben 
order. Another advantage of the Morton order is that the recursion necessary for its 
generation is quite easy to specify. 

Other orders are the Cantor-diagonal order (Figure 1.11 e) and the spiral order 
(Figure 1.11 f). The Cantor-diagonal order proceeds outward from the origin and visits 
the elements in an order similar to row-prime with the difference that elements are 
visited in order of their increasing 'Manhattan' (or 'city block') distance.? Thus it is 
good for ordering a space that is unbounded in the two directions emanating from the 
origin which has been relocated to the center of the image. On the other hand, the 
spiral order is attractive when ordering a space that is unbounded in the four directions 
emanating from the origin. 

The most interesting orders, as far as we are concerned, are the Morton and 
Peano-Hilbert orders since they can also be used to order a space that has been aggre
gated into squares. Of these two orderings, the Morton order is by far the more fre
quently used as a result of the simplicity of the conversion process between the key 
and its corresponding element in the multidimensional space. In this book we are pri
marily interested in Morton orderings. (For further discussion of some of the proper
ties of these two orderings, see [Patr68, Butz71, Alex79, Alex80, Laur85].) 

Exercises 
1.11. Write an algorithm to extract the x andy coordinates from a Peano-Hilbert order key. 
1.12. Write an algorithm to construct the Peano-Hilbert key for a given point (x,y). Try to 

make it optimal. 
1.13. Suppose that you are given a 2" x 2" array of points such that the horizontal and vertical 

distances between 4-adjacent points are 1. What is the average distance between succes
sive points when the points are ordered according to the orders illustrated in Figure 1.11? 
What about a random order? 

1.14. Suppose that you are given a 2" x 2" image. Assume that the image is stored on disk in 
pages of size 2m x 2m where n is much larger than m. What is the average cost of retriev
ing a pixel and its 4-adjacent neighbors when the image is ordered according to the orders 
illustrated in Figure 1.11? 

1.15. The traveling salesman problem [Lawl85] is one where a set of points is given and it is 
desired to find the path of minimum distance such that each point is visited only once. 
This is an NP-complete problem [Gare79] and thus there is a considerable amount of work 
in formulating approximate solutions to it [Bent82]. For example, consider the following 
approximate solution. Assume that the points are uniformly distributed in the unit 
square. Let d be the expected Euclidean distance between two independent points. Now, 
sort the points using the row order and the Morton order. Laurini [Laur85] simulated the 
average Euclidean distance between successive points in these orders and found it to be 
d/2 for the row order and d/3 for the Morton order. Can you derive these averages 
analytically? What are the average values for the other orders illustrated in Figure 1.11? 
What about a random order? 

7 The Manhattan distance between points (x 1, y 1) and (x 2 , y 2 ) is 1 x 1 - x 2 1 + 1 y 1 - Y2 1 (for more details, see 
Section 9.1 of [Same90b ]). 
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1.16. Suppose that the traveling salesman problem is solved using a traversal of the points in 
Morton order as discussed in Exercise 1.15. In particular, assume that the set of points is 
decomposed in such a way that each square block contains just one point. This yields a 
point representation that is analogous to the region quadtree (termed a PR quadtree and 
discussed in Section 2.6.2). How close does such a solution come to optimality? 

1.4 SPACE DECOMPOSITION METHODS 

In general, any planar decomposition used as a basis for an Image representation 
should possess the following two properties: 

1. The partition should be an infinitely repetitive pattern so that it can be used 
for images of any size. 

2. The partition should be infinitely decomposable into increasingly finer pat
terns (i.e., higher resolution). 

In this section, the discussion is restricted to two-dimensional data. Thus we are 
dealing with planar space decompositions. Space decompositions can be classified 
into two categories, depending on the nature of the pattern. The pattern can consist of 
polygonal shapes or nonpolygonal shapes. The polygonal shapes are generally com
putationally simpler since their sides can be expressed in terms of linear relations 
(e.g., equations of lines). They are good for approximating the interior of a region. 
The nonpolygonal shapes are more flexible since they provide good approximations, 
in terms of measures, of the boundaries (e.g., perimeter) of regions as well as their 
interiors (e.g., area). 8 

Moreover, the normals to the boundaries of nonpolygonal shapes are not re
stricted to a fixed set of directions. For example, in the case of rectangular tiles, there 
is a 90 degree discontinuity between the normals to boundaries of adjacent tiles. This 
lack of continuity is a drawback in applications in fields such as computer graphics 
where such tasks as shading make use of the directions of the surface. However, 
working with nonpolygonal shapes generally requires use of floating point arithmetic, 
and hence it is usually more complex. 

The remainder of this section expands on a number of polygonal decomposi
tions and compares them. It also contains a brief discussion of one nonpolygonal 
decomposition that consists of a collection of sector-like objects whose arcs are not 
necessarily part of a circle. This method is based on polar coordinates where the arc 
joining two distinct points is formed by linear interpolation. The term sector tree is 
used to describe it. This discussion is of an advanced nature and can be skipped on an 
initial reading. 

x Recall the statement in Section 1.2 that hierarchical data structures are often differentiated on the basis of 
whether they specify the boundaries of regions or organize their interiors. 
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1.4.1 Polygonal Tilings 

Bell, Diaz, Holroyd, and Jackson [Bell83] discuss a number of polygonal tilings of the 
plane (i.e., tessellations) that satisfy property I. Figure 1.12 illustrates some of these 
tessellations. They also present a taxonomy of criteria to distinguish between the vari
ous tilings. The tilings, consisting of polygonal tiles, are described by use of a nota
tion based on the degree of each vertex as the edges (i.e., sides) of the 'atomic' tile are 
visited in order, forming a cycle. For example, the tiling described by [4.82] (Figure 
1.12c) has the shape of a triangle where the first vertex has degree four while the 
remaining two vertices have degree eight apiece. 

A tiling is said to be regular if the atomic tiles are composed of regular 
polygons (i.e., all sides are of equal length as are the interior angles). A molecular tile 
is an aggregation of atomic tiles to form a hierarchy. It is not necessarily constrained 
to have the same shape as the atomic tile. When a tile at level k (for all k >0) has the 
same shape as a tile at level 0 (i.e., it is a scaled image of a tile at level 0), then the til
ing is said to be similar. 

Bell et al. focus on the isohedral tilings where a tiling is said to be isohedral if 
all the tiles are equivalent under the symmetry group of the tiling. A more intuitive 

a b 

c d 

e 

Figure 1.12 Sample tessellations: (a) [ 441 square; 
(b) [ 631 equilateral triangle; (c) [ 4.821 isoceles triangle; 
(d) {4.6.121 30-60 right triangle; (e) [3 61 hexagon 
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6

Figure 1.12 Sample tessellations.‘ (a) [4"] square;

(b) [63] equilateral triangle; (0) [4.82] isoceles triangle;

(d) [4.6. 12] 30—60 right triangle; (e) [36] hexagon
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a b 

Figure 1.13 Examples of (a) isohedral and 
(b) nonisohedral tilings 

way to conceptualize this definition is to assume the position of an observer who 
stands in the center of a tile having a given orientation and scans the surroundings. If 
the view is independent of the tile, the tiling is isohedral. For example, consider the 
two tilings in Figure 1.13 consisting of triangles (Figure 1.13a) and trapezoids (Figure 
1.13b). The triangles are isohedral, whereas the trapezoids are not, as can be seen by 
the view from tiles A and B. 

In the case of the trapezoidal tiling, the viewer from A is surrounded by an 
infinite number of concentric hexagons, whereas this is not the case for B. In other 
words, the trapezoidal tiling is not periodic. Also note that all of the tiles in Figure 
1.13a are described by [ 63 ], while those in Figure 1.13b are either [32 .4 2], [32 .62

], or 
[3.4.62 ] (i.e., tiles labeled 1, 2, and 3, respectively, in Figure 1.13b). When the 
isohedral tilings are classified by the action of their symmetry group, there are 81 dif
ferent types [Grtin77, Grtin87]. When they are classified by their adjacency structure, 
as done here, there are 11 types. 

The most relevant criterion to the discussion is the distinction between limited 
and unlimited hierarchies of tilings. A limited tiling is not similar. A tiling that 
satisfies property 2 is said to be unlimited. Equivalently, in a limited tiling, no change 
of scale lower than the limit tiling can be made without great difficulty. An alternative 
characterization of an unlimited tiling is that each edge of a tile lies on an infinite 
straight line composed entirely of edges. Interestingly the hexagonal tiling [3 6 ] is lim
ited. Bell et al. claim that only four tilings are unlimited. These are the tilings given 
in Figure 1.12a-d. Of these, [ 44 

], consisting of square atomic tiles (Figure 1.12a), and 
[ 63 ], consisting of equilateral triangle atomic tiles (Figure 1.12b ), are well-known reg
ular tessellations [Ahuj83]. For these two tilings we consider only the molecular tiles 
given in Figures 1.14a and 1.14b. 

The tilings [44
] and [63

] can generate an infinite number of different molecular 
tiles where each molecular tile at the first level consists of n 2 atomic tiles (n > 1 ). 
The remaining nonregular unlimited triangular tilings, [ 4.82

] (Figure 1.12c) and 
[4.6.12] (Figure 1.12d), are less well understood. One way of generating [4.82 ] and 
[4.6.12] is to join the centroids of the tiles of [44 ] and [63], respectively, to both their 
vertices and midpoints of their edges. Each of the tilings [4.82

] and [4.6.12] has two 
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Figure 1.14 Examples illustrating unlimited tilings: (a) [4 4
} 

hierarchy, (b) [6 3] hierarchy, (c) ordinary [4.82
] hierarchy, 

(d) ordinary [ 4.6.12] hierarchy, (e) rotation [ 4.82] hierarchy, 
(f) reflection [ 4.6. 12] hierarchy 

types of hierarchy. [ 4.82 ] has an ordinary (Figure 1.14c) and a rotation hierarchy 
(Figure 1.14e) requiring a rotation of 135 degrees between levels. [ 4.6.12] has an 
ordinary (Figure 1.14d) and a reflection hierarchy (Figure 1.14t), which requires a 
reflection of the basic tile between levels. 

The distinction between the two types of hierarchies for [4.82
] and [4.6.12] is 

necessary because the tiling is not similar without a rotation or a reflection when the 
hierarchy is not ordinary. This can be seen by observing the use of dots in Figure 1.14 
to delimit the atomic tiles in the first molecular tile. Similarly broken lines are used to 
delimit the components of tiles at the second level (assuming atomic tiles are at level 
0). For the ordinary [ 4.82 ] and [ 4.6.12] hierarchies, each molecular tile at the first 
level consists of n 2 (n > 1) atomic tiles. In the reflection hierarchy of [ 4.6.12], each 
molecular tile at the first level consists of 3 · n 2 (n > 1) atomic tiles, while for the 
rotation hierarchy of [ 4.82], 2 . n 2 (n > 1) atomic tiles comprise a molecular tile at the 
first level. 

To represent data in the Euclidean plane, any of the unlimited tilings could have 
been chosen. For a regular decomposition, the tilings [ 4.82

] and [ 4.6.12] are ruled out. 
Comparing 'square' [44 ] and 'triangular' [63 ] quadtrees, we find that they differ in 
terms of adjacency and orientation. Let us say that two tiles are neighbors if they are 
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Figure 1.14 Examples illustrating unlimited tilings: (a) [4“]
hierarchy, (b) [63] hierarchy, (c) ordinary [4.82] hierarchy,
(d) ordinary [4.6.12] hierarchy, (e) rotation [4.82] hierarchy,
(f) reflection [4.6.12] hierarchy

types of hierarchy. [4.82] has an ordinary (Figure 1.14c) and a rotation hierarchy

(Figure 1.14e) requiring a rotation of 135 degrees between levels. [4.6.12] has an

ordinary (Figure 1.14d) and a reflection hierarchy (Figure 1.140, which requires a
reflection of the basic tile between levels.

The distinction between the two types of hierarchies for [4.82] and [4.6.12] is
necessary because the tiling is not similar without a rotation or a reflection when the

hierarchy is not ordinary. This can be seen by observing the use of dots in Figure 1.14

to delimit the atomic tiles in the first molecular tile. Similarly broken lines are used to

delimit the components of tiles at the second level (assuming atomic tiles are at level

0). For the ordinary [4.82] and [4.6.12] hierarchies, each molecular tile at the first
level consists of n2 (n > 1) atomic tiles. In the reflection hierarchy of [4.6.12], each

molecular tile at the first level consists of 3 ~212 (n > 1) atomic tiles, while for the

rotation hierarchy of [4.82], 2 - n2 (n > 1) atomic tiles comprise a molecular tile at the
first level.

To represent data in the Euclidean plane, any of the unlimited tilings could have

been chosen. For a regular decomposition, the tilings [4.82] and [4.6.12] are ruled out.
Comparing ‘square’ [44] and ‘triangular’ [63] quadtrees, we find that they differ in

terms of adjacency and orientation. Let us say that two tiles are neighbors if they are
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adjacent either along an edge or at a vertex. A tiling is uniformly adjacent if the dis
tances between the centroid of one tile and the centroids of all its neighbors are the 
same. The adjacency number of a tiling is the number of different intercentroid dis
tances between any one tile and its neighbors. In the case of [44

], there are only two 
adjacency distances, whereas for [63

] there are three adjacency distances. 
A tiling is said to have uniform orientation if all tiles with the same orientation 

can be mapped into each other by translations of the plane that do not involve rotation 
or reflection. Tiling [44

] displays uniform orientation, while [63
] does not. Under the 

assumption that uniform orientation and a minimal adjacency distance is preferable, 
we say that [44

] is more useful than [63
]. It is also very easy to implement. Neverthe

less, [63 ] ·has its uses. For example, Yamaguchi, Kunii, Fujimura, and Toriya 
[Yama84] use a triangular quadtree to generate an isometric view from an octree 
representation of an object (see Section 7 .1.4 of [Same90b ]). 

Of the limited tilings, many types of hierarchies may be generated [Bell83]; 
however, in general, they cannot be decomposed beyond the atomic tiling without 
changing the basic tile shape. This is a serious deficiency of the hexagonal tessella
tion [36

] (Figure 1.12e) since the atomic hexagon can be decomposed only into tri
angles. Nevertheless the hexagonal tessellation is of considerable interest. It is regu
lar, has a uniform orientation, and, most important, displays a uniform adjacency (i.e., 
each neighbor of a tile is at the same distance from it). 

There are a number of different hexagonal hierarchies distinguished by classify
ing the shape of the first-level molecular tile on the basis of the number of hexagons 
that it contains. Three of these tiling hierarchies are given in Figure 1.15 and are 
called n-shapes where n denotes the number of atomic tiles in the first-level molecular 
tile. Of course, these n-shapes are not unique. 

a b 

c 

Figure 1. 15 Three different hexagonal tiling hierarchies: 
(a) 4-shape, (b) 7-shape, (c) 9-shape 
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The 4-shape and the 9-shape have an unusual adjacency property in the sense 
that no matter how large the molecular tile becomes, contact with two of the tiles (i.e., 
the one above and the one below) is along only one edge of a hexagonal atomic tile, 
while contact with the remaining four molecular tiles is along nearly one-quarter of 
the perimeter of the corresponding molecular tile. The hexagonal pattern of the 4-
shape and 9-shape molecular tiles has the shape of a rhombus. In contrast, a 7-shape 
molecular tile has a uniform contact with its six neighboring molecular tiles. 

The type of quadtree used often depends on the grid formed by the image sam
pling process. Square quadtrees are appropriate for square grids and triangular quad
trees for triangular grids. In the case of a hexagonal grid [Burt80], the 7-shape hierar
chy is frequently used since the shape of its molecular tile is more like a hexagon. It 
is usually described as rosette-like (i.e., a septree). Note that septrees have jagged 
edges as they are merged to form larger units (e.g., Figure 1.15b). The septree is used 
by Gibson and Lucas [Gibs82] (who call it a generalized balanced ternary or GBT for 
short) in the development of algorithms analogous to those existing for quadtrees. 

Although the septree can be built up to yield large septrees, the smallest resolu
tion in the septree must be decided upon in advance since its primitive components 
(i.e., hexagons) cannot later be decomposed into septrees. Therefore the septree 
yields only a partial hierarchical decomposition in the sense that the components can 
always be merged into larger units, but they cannot always be broken down. For 
region data, a pixel is generally an indivisible unit, and thus unlimited decomposition 
is not absolutely necessary. However, in the case of other data types such as points 
(see Chapter 2) and lines (see Chapter 4), we will see that the decomposition rules of 
some representations require that two entities be separated, which may lead to a level 
of decomposition not known in advance (e.g., a decomposition rule that restricts each 
square to contain at most one point). In this book the discussion is limited to square 
quadtrees and their variants. 

When the data are spherical, a number of researchers have proposed the use of a 
representation based on an icosahedron (a 20-faced polyhedron whose faces are regu
lar triangles) [Dutt84, Feke84]. The icosahedron is attractive because, in terms of the 
number of faces, it is the largest possible regular polyhedron. Each of the triangular 
faces can be further decomposed in a recursive manner into n 2 (n > 1) spherical tri
angles (the [63 ] tiling). 

Fekete and Davis [Feke84] let n = 2, which means that at each level of decom
position, three new vertices are generated by halving each side of the triangle; con
necting them together yields four triangles. They use the term property sphere to 
describe their representation. The property sphere has been used in object recogni
tion; it is also of potential use in mapping the globe because it can enable accurate 
modeling of regions around the poles. For example, see Figure 1.16, which is a prop
erty sphere representation of some spherical data. In contrast, planar quadtrees are 
less attractive the farther we get from the equator due to distortions in planarity caused 
by the earth's curvature. Of course, for true applicability for mapping, we need a 
closer approximation to a sphere than is provided by the 20 triangles of the 
icosahedron. Moreover, we want a way to distinguish between different elevations. 
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a b 

c 

Figure 1. 16 Property sphere representation of some 
spherical data: (a) data, (b) decomposition on a sphere, 
(c) decomposition on a plane 

Dutton [Dutt84] lets n = -13, which means that at each level of decomposition, 
one new vertex is created by connecting the centroid of the triangle to its vertices. 
The result is an alternating sequence of triangles so that each level is fully contained 
in the level that was created two steps previously and has nine times as many triangles 
as that level. Dutton uses the term triacon to describe the resulting hierarchy. As an 
example, consider Figure 1.17, which illustrates four levels of a triacon decomposi
tion. The initial and odd-numbered decompositions are shown with heavy lines, and 
the even-numbered decompositions are shown with broken and thin lines. 

Figure 1. 17 Example of a triacon hierarchy 

APPENDIX B

Microsoft Corp.   Exhibit 1005

APPENDIX B

22 II 1 INTRODUCTION

 
 

    
 

 

AAAAA

QVVVV
C

Figure 1.16 Property sphere representation of some

spherical data: (a) data, (b) decomposition on a sphere,

(c) decomposition on a plane

Dutton [Dutt84] lets n = \/—3‘, which means that at each level of decomposition,

one new vertex is created by connecting the centroid of the triangle to its vertices.

The result is an alternating sequence of triangles so that each level is fully contained

in the level that was created two steps previously and has nine times as many triangles

as that level. Dutton uses the term triacon to describe the resulting hierarchy. As an

example, consider Figure 1.17, which illustrates four levels of a triacon decomposi-

tion. The initial and odd-numbered decompositions are shown with heavy lines, and

the even-numbered decompositions are shown with broken and thin lines.

 
Figure 1.17 Example of a triacon hierarchy
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The icosahedron is not the only regular polyhedron that can be used to model 
spherical data. Others include the tetrahedron. hexahedron, octahedron, and dodeca
hedron, which have 4, 6, 8, and 12 faces, respectively. Collectively these five 
polyhedra are known as the Platonic solids [Peuq84 ]. The faces of the tetrahedron 
and octahedron are equilateral triangles, while the faces of the hexahedron and do
decahedron are squares and regular pentagons, respectively. 

The dodecahedron is not an appropriate primitive because the pentagonal faces 
cannot be further decomposed into pentagons or other similar shapes. The tetrahedron 
and hexahedron (the basis of the octree) have internal angles that are too small to 
model a sphere properly, thereby leading to shape distortions. 

Dutton [Dutt84] points out that the octahedron is attractive for modeling spheri
cal data such as the globe because it can be aligned so that the poles are at opposite 
vertices and the prime meridian and the equator intersect at another vertex. In addi
tion, one subdivision line of each face is parallel to the equator. Of course, for all of 
the Platonic solids, only the vertices of the solids touch the sphere; the facets of the 
solids are interior to the sphere. 

Other decompositions for spherical data are also possible. Tobler and Chen 
lTobl86] point out the desirability of a close relationship to the commonly used sys
tem of latitude and longitude coordinates. In particular, any decomposition that is 
chosen should enable the use of meridians and parallels to refer to the data. An addi
tional important goal is for the partition to be into units of equal area, which rules out 
the use of equally spaced lines of latitude (of course, the lines of longitude are equally 
spaced). In this case, the sphere is projected into a plane using Lambert's cylindrical 
projection [Adam49], which is locally area preserving. Authalic coordinates 
[Adam49], which partition the projection into rectangles of equal area, are then 
derived. (For more details, see [Tobl86].) 

The quadtree decomposition has the property that at each subdivision stage, the 
image is subdivided into four equal-sized parts. When the original image is a square, 
the result is a collection of squares, each of which has a side whose length is a power 
of 2. The binary image tree (termed bintree) [Know80, Tamm84a, Same88b] is an 
alternative decomposition defined in a manner analogous to the region quadtree except 
that at each subdivision stage we subdivide the image into two equal-sized parts. In 
two dimensions, at odd stages. we partition along the x coordinate, and at even stages, 
along the y coordinate. The bintree is equivalent to the region quadtree if we replace 
all leaf nodes at odd stages of subdivision by two identically colored sons. 

The bintree is related to the region quadtree in the same way as the k-d tree 
[Bent75b] (see Section 2.4) is related to the point quadtree [Fink74]. The difference is 
that region quadtrees and bintrees are used to represent region data with fixed subdivi
sion points, while point quadtrees and k-d trees are used to represent point data where 
the values of the points determine the subdivision. For example. Figure 1.18 is the 
bintree representation corresponding to the image of Figure 1. 1. We assume that for 
the x (y) partition, the left subtree corresponds to the west (south) half 0+ the image 
and the right subtree corresponds to the east (north) half. Once again, as in Figure 1.1, 
all leaf nodes are labeled with numbers, and the non leaf nodes are labeled with letters. 
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Figure 1. 18 Bintree representation corresponding to Fig
ure 1. 1: (a) block decomposition, (b) bin tree representation 
of blocks in (a) 

The quadtree and bintree decompose a region into equal-sized parts. Kanatani 
[Kana85] suggests using splitting rules based on the Fibonacci sequence of numbers. 
The Fibonacci numbers consist of the sequence of numbers /; that satisfy the relation 
/; = /; _1 + /; _2, with f 0 = 1 and f 1 = 1. We can try to devise both quad tree and bintree 
splitting rules based on such a sequence. Generally for a decomposition scheme to be 
useful in geometric applications, it must have pixel-sized squares (i.e., 1 x 1) as the 
primitive tiles. At first glance, it appears that the Fibonacci sequence gives quite a bit 
of leeway in deciding on a splitting sequence and on the sizes of the regions 
corresponding to the subtrees and the primitive tiles. 

One possible quadtree splitting rule is to restrict all shapes to squares with sides 
whose lengths are Fibonacci numbers. Clearly not all the shapes can be squares since 
we cannot aggregate these squares into larger squares that obey this rule. Another 
possibility is to restrict the shapes to rectangles the length of whose sides are either 
equal Fibonacci numbers or are successive Fibonacci numbers (see Exercise 1.26). 
We term this condition the 2-d Fibonacci condition. 

In this discussion, we have assumed splitting rules that ensure that vertical sub
division lines at the same level are colinear as well as for horizontal lines at the same 
level. For example, when using a quadtree splitting rule, the vertical lines that subdi
vide the NW and sw quadrants are colinear, as well as for the horizontal lines that sub
divide the NW and NE quadrants. An alternative is to relax the colinearity restriction; 
however, the sides of the shapes must still satisfy the 2-d Fibonacci condition (see 
Exercise 1.27). 

As can be seen in Exercises 1.26 and 1.27, neither a quadtree nor a bintree can 
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Figure 1.18 Bintree representation corresponding to Fig-
ure 1.1: (a) block decomposition, (b) bintree representation
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The quadtree and bintree decompose a region into equal-sized parts. Kanatani

[Kana85] suggests using splitting rules based on the Fibonacci sequence of numbers.

The Fibonacci numbers consist of the sequence of numbers )2 that satisfy the relation

)2 =fH +fi_2, with f0 = 1 and f1 = 1. We can try to devise both quadtree and bintree

splitting rules based on such a sequence. Generally for a decomposition scheme to be

useful in geometric applications, it must have pixel—sized squares (i.e., 1 x 1) as the

primitive tiles. At first glance, it appears that the Fibonacci sequence gives quite a bit

of leeway in deciding on a splitting sequence and on the sizes of the regions

corresponding to the subtrees and the primitive tiles.

‘ One possible quadtree splitting rule is to restrict all shapes to squares with sides

whose lengths are Fibonacci numbers. Clearly not all the shapes can be squares since

we cannot aggregate these squares into larger squares that obey this rule. Another

possibility is to restrict the shapes to rectangles the length of whose sides are either

equal Fibonacci numbers or are successive Fibonacci numbers (see Exercise 1.26).
We term this condition the Z-d Fibonacci condition.

In this discussion, we have assumed splitting rules that ensure that vertical sub—

division lines at the same level are colinear as well as for horizontal lines at the same

level. For example, when using a quadtree splitting rule, the vertical lines that subdi-

vide the NW and SW quadrants are colinear, as well as for the horizontal lines that sub-

divide the NW and NE quadrants. An alternative is to relax the colinearity restriction;

however, the sides of the shapes must still satisfy the 2-d Fibonacci condition (see

Exercise 1.27).

As can be seen in Exercises 1.26 and 1.27, neither a quadtree nor a bintree can
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Figure 1.19 {a) An arbitrary space decomposition and 
(b) its BSP tree. The arrows indicate the direction of the 
positive halfspaces. 

be used by itself as a basis for Fibonacci-based space decomposition; however, a com
bination of the two structures could be used. When the lengths of the sides of a rec
tangle are equal, the rectangle is split into four rectangles such that the lengths of the 
sides satisfy the 2-d Fibonacci condition. When the lengths of the sides of a rectangle 
are not equal, the rectangle is split into two rectangles with the split along a line (an 
axis) parallel to the shorter (longer) of the two sides. Interestingly the dimensions of 
the A-series of European paper are based on a Fibonacci sequence-that is, the ele
ments of the series are of dimension/; x fi_ 1 multiplied by an appropriate scale factor. 

Another variation on the bintree idea, termed adaptive hierarchical coding 
(AHC), is proposed by Cohen, Landy, and Pavel [Cohe85b]. In this case, the image is 
again split into two equal-sized parts at each stage, but there is no need to alternate 
between the x andy coordinates. The decision as to the coordinate on which to parti
tion depends on the image. This technique may require some work to get the optimal 
partition from the point of view of a minimum number of nodes (see Exercise 1.29). 

An even more general variation on the bintree is the BSP tree of Fuchs, Kedem, 
and Naylor [Fuch80, Fuch83]. Its variants are used in some hidden-surface elimina
tion algorithms (see Section 7.1.5 of [Same90b]) and in some implementations of 
beam tracing (see Section 7.3 of [Same90b ]). It is applicable to data of arbitrary 
dimension, although here it is explained in the context of two-dimensional data. At 
each subdivision stage, the image is subdivided into two parts of arbitrary size. Note 
that successive subdivision lines need be neither orthogonal nor parallel. Therefore 
the resulting decomposition consists of arbitrarily shaped convex polygons. 

The BSP tree is a binary tree. To be able to assign regions to the left and right 
subtrees, we associate a direction with each subdivision line. In particular, the sub
division lines are treated as separators between two halfspaces.9 Let the line have the 

d 
9 A (linear) halfspace in d-space is defined by the inequality L, a; ·X; ;:: 0 on the d + l homogeneous 

J=O 

coordinates (x 0 = l ). The half space is represented by a column vector a. In vector notation, the inequality is 
written as a · x;:: 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to 
note that halfspaces are volume, not boundary, elements. 
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Figure 1.19 (a) An arbitrary space decomposition and

(b) its BSP tree. The arrows indicate the direction of the

positive halfspaces.
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bination of the two structures could be used. When the lengths of the sides of a rec~

tangle are equal, the rectangle is split into four rectangles such that the lengths of the
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axis) parallel to the shorter (longer) of the two sides. Interestingly the dimensions of

the A-series of European paper are based on a Fibonacci sequence—that is, the ele-

ments of the series are of dimension f,- x f,-_. multiplied by an appropriate scale factor.

Another variation on the bintree idea, termed adaptive hierarchical coding

(AHC), is proposed by Cohen, Landy, and Pavel [Cohe85b]. In this case, the image is

again split into two equal—sized parts at each stage, but there is no need to alternate

between the x and y coordinates. The decision as to the coordinate on which to parti~

tion depends on the image. This technique may require some work to get the optimal

partition from the point of view of a minimum number of nodes (see Exercise 1.29).

An even more general variation on the bintree is the BSP tree of Fuchs, Kedem,

and Naylor [Fuch80, Fuch83]. Its variants are used in some hidden-surface elimina-

tion algorithms (see Section 7.1.5 of [Same90b]) and in some implementations of

beam tracing (see Section 7.3 of [Same90b]). It is applicable to data of arbitrary

dimension, although here it is explained in the context of two-dimensional data. At

each subdivision stage, the image is subdivided into two parts of arbitrary size. Note

that successive subdivision lines need be neither orthogonal nor parallel. Therefore

the resulting decomposition consists of arbitrarily shaped convex polygons.

The BSP tree is a binary tree. To be able to assign regions to the left and right

subtrees, we associate a direction with each subdivision line. In particular, the sub-

division lines are treated as separators between two halfspaces.9 Let the line have the

 

d

9 A (linear) halfspace in d-space is defined by the inequality Elm-1,20 on the d +1 homogeneousI=0

coordinates (x0 = l). The halfspace is represented by a column vector a. In vector notation, the inequality is

written as a -x Z 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to

note that halfspaces are volume, not boundary, elements.
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equation ,, . .r + h · y + c = 0. We say that the right subtree is the 'positive' side and 
contains all subdivision lines formed by separators that satisfy a · x + h · y + c ~ 0. 
Sintilarly we say that the left subtree is 'negative' and contains all subdivision lines 

for111ed by separators that satisfy a · x + b · y + c < 0. As an example, consider Fig

ure 1.19a, which is an arbitrary space decomposition whose BSP tree is given in Figure 
1.19b. Notice the use of arrows to indicate the direction of the positive halfspaces. 

Exercises 
1.17. Given a [63] tiling such that each side of an atomic tile has a unit length, compute the 

three adjacency distances from the centroid of an atomic tile. 
1.18. Repeat Exercise 1.17 for [36

] and [ 44
], again assuming that each side of an atomic tile has 

a unit length. 
1.19. Suppose that you are given an image in the form of a binary array of pixels. The result is 

a square grid. How can you view this grid as a hexagonal grid? 
1.20. Show how the property sphere data structure can be used to model the earth. In particu

lar, discuss how to represent landmass features, such as mountain ranges and crevices. 
1.21 Suppose that you use an icosahedron to model spherical data. Initially there are 20 faces. 

How many faces are there after the first level of decomposition when 11 = 2? 11 = -13? 
1.22. What is the ratio of leaf nodes to nonleaf nodes in a bintree for ad-dimensional image? 
1.23. What is a lower bound on the ratio of leaf nodes in a bintree to that in a quadtree for ad

dimensional image? What is an upper bound? What is the average? 
1.24. Is it true that the total number of nodes in a bintree is always less than that in the 

corresponding quadtree? 
1.25. The Fibonacci numbers are defined by the relation /,, = /,,_ 1 + f,,_ 2 • Devise a two

dimensional analog of this relation to correspond to a splitting rule that would have to be 
satisfied in a Fibonacci-based space decomposition that yields four parts. Generalize this 
result to 11 dimensions. 

1.26. Give a counterexample to the use of a quadtree splitting rule in a Fibonacci-based space 
decomposition. 

1.27. Give a counterexample to the use of a bintree splitting rule in a Fibonacci-based space 
decomposition. 

1.28. Suppose that you use the combination quadtree-bintree approach to a Fibonacci-based 
space decomposition. Prove that any image such that the lengths of its sides satisfy the 
2-d Fibonacci condition can be decomposed into subimages whose sides obey this pro
perty and with a primitive tile of size I x I. 

1.29. Suppose that you use the AHC method. How many different rectangles and positions must 

be examined in building such a structure for a 2" >< 2" image? 

1.4.2 Nonpolygonal Tilings 

In the previous section we focused on space decompositions based on polygonal tiles. 

This is the prevalent method in use today. For certain applications, however, the use 
of polygonal tiles can lead to problems. For example, suppose that we have a decom
position based on square tiles. In this case, as the resolution is increased, the area of 
the appro, imated region approaches the true value of the area; however, this is not 
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true for a boundary measure such as the perimeter. To see this, consider a quadtree 
approximation of an isosceles right triangle where the ratio of the approximated per
imeter to the true perimeter is 4/ (2 + -J2) (see Exercise 1.30). Other problems include 
the discontinuity of the normals to the boundaries of adjacent tiles. 

There are a number of ways of attempting to overcome these problems. The 
hierarchical probe model of Chen l Chen85b] is an approach based on treating space 
as a polar plane and recursively decomposing it into sectors. We say that each sector 
consists of an origin, two sides (labeled 1 and 2 corresponding to the order in which 
they are encountered when proceeding in a counterclockwise direction), and an arc. 
The points at which the sides of the sector intersect (or touch) the object are called 
contact points. (p,8) denotes a point in the polar plane. Let (pi, 8i) be the contact 
point with the maximum value of p in direction 8i. Each sector represents a region 
bounded by the points (0,0), (p 1,81), and (p2,82), where 81 =2krt/211 and 
82 = 8 1 + 2rt/211 such that k and n are nonnegative integers (k < 211

). The arc between 
the two nonorigin contact points (p 1, 8 1) and (p2 , 82) of a sector is approximated by 
the linear parametric equations (0 ~ t ~ 1 ): 

Note that the interpolation curves are arcs of spirals due to the linear relation between 
p and 8. 

The sector tree is a binary tree that represents the result of recursively subdivid
ing sectors in the polar plane into two sectors of equal angular intervals. Thus the 
recursive decomposition is only with respect to 8, not p. The decomposition stops 
whenever the approximation of a part of an object by a sector is deemed to be ade
quate. The computation of the stopping condition is implementation dependent. For 
example, it can be the max~mum deviation in the value of p between a point on the 
boundary and the corresponding point (i.e., at the same value of 8) on the approximat
ing arc. Initially the universe is the interval [0,2rt). 

In the presentation, we assume that the origin of the polar plane is contained 
within the object. See Exercise 1.36 for a discussion of how to represent an object 
that does not contain the origin of the polar plane. The simplest case arises when the 
object is convex. The result is a binary tree where each leaf node represents a sector 
and contains the contact points of its corresponding arc. For example, consider the 
object in Figure 1.20. The construction of its sector tree approximation is shown in 

Figure 1.20 Example convex object 
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8 
a b 

c d 

Figure 1.21 Successive sector tree approximations for the 
object of Figure 1.20: (a) rr intervals, (b) rr/2 intervals, (c) rr/4 
intervals, (d) rr/8 intervals 

Figures 1.21a-d. The final binary tree is given in Figure 1.22 with interval endpoints 
labeled according to Figure 1.21 d. 

The situation is more complex when the object is not convex. This means that 
each side of a sector may intersect the boundary of the object at an arbitrary, and pos
sibly different, number of contact points. In the following, each sector will be seen to 
consist of a set of alternating regions within and outside the object. These regions are 
three-sided or four-sided and have at least one side that is colinear with a side of the 
sector. The discussion is illustrated with the object of Figure 1.23a whose sector tree 
decomposition is given in Figure 1.23b. The final binary tree is given in Figure 1.24. 
A better indication of the quality of the approximation can be seen by examining Fig
ure 1.23c, which contains an overlay of Figures 1.23a and 1.23b. 

When the boundary of the object intersects a sector at two successive contact 
points, say P and Q, that lie on the same side, say s, of the sector, then the region 

[,./4,3,./8) 
(2,3) 

[0,2,.) 

[Q,,.) 

[3,./8,,./2) 
(3,4) 

Figure 1.22 Binary tree representation of the sector tree 
of Figure 1.20 
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Figure 1.21 Successive sector tree approximations for the

object of Figure 1.20: (a) 1: intervals, (b) n/2 intervals, (c) n/4

intervals, (d) n/8 intervals

Figures 1.21a—d. The final binary tree is given in Figure 1.22 with interval endpoints

labeled according to Figure 1.21d.

The situation is more complex when the object is not convex. This means that

each side of a sector may intersect the boundary of the object at an arbitrary, and pos—

sibly different, number of contact points. In the following, each sector will be seen to

consist of a set of alternating regions within and outside the object. These regions are
three-sided or four—sided and have at least one side that is colinear with a side of the

sector. The discussion is illustrated with the object of Figure 1.23a whose sector tree

decomposition is given in Figure 1.23b. The final binary tree is given in Figure 1.24.

A better indication of the quality of the approximation can be seen by examining Fig—

ure 1.23c, which contains an overlay of Figures 1.23a and 1.23b.

When the boundary of the object intersects a sector at two successive contact

points, say P and Q, that lie on the same side, say S, of the sector, then the region

[021!)

(SJ)

[om/2)
 
 [O.1r/4)/[1r/4.1r/2) (1251/4) [Sn/4.1:)

(L2) (4.5) (5,6)

[1r/4,31r/8) [SW/BJIIZ)
(2,3) (3.4)

Figure 1.22 Binary tree representation of the sector tree

of Figure 1.20
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a b c 

Figure 1.23 (a) Example object, (b) its sector tree descrip
tion, and (c) a comparison of the sector tree approximation 
(thin lines) with the original object (thick lines). Note the 
creation of a hole corresponding to the region formed by 
points A, 8, 6, 7, C, 0, and 5 

bounded by s and PQ must be approximated. Without loss of generality, assume that 
the region is inside the object. There are two choices. An inner approximation 
ignores the region by treating the segment of s between P and Q as part of the approxi
mated boundary (e.g., the region between points 9 and 10 in sector [9rr/8, 5rr/4) in 
Figure 1.23b). 

An outer approximation inserts two identical contact points, say R and T, on the 
other side of the sector and then approximates the region by the three-sided region 
formed by the segment of s between P and Q and the spiral arc approximations of PR 

and QT. The value of R (and hence T) is equal to the average of the value of p at P and 
Q. For example, the region between points 4 and 5 in sector [57t/ 4, 3rr/2) in Figure 
1.23b is approximated by the region formed with points c and D. 

Of course, the same approximation process is applied to the part of the region 
outside the object. In Figure 1.23b, we have an inner approximation for the region 
between points 7 and 8 in sector [3rr/2, 27t), and an outer approximation for the region 
between points 5 and 6 in sector [97t/ 8, 57t/ 4 ), by virtue of the introduction of points A 

and B. 

One of the problems with the sector tree is that its use can lead to the creation of 
holes that do not exist in the original object. This situation arises when the decompo
sition is not carried out to a level of sufficient depth. For example, consider Figure 
1.23b, which has a hole bounded by the arcs formed by points A, B, 6, 7, c, D, and 5. 
This is a result of the inner approximation for the region between points 7 and 8 in 
sector [37t/2, 27t) and an outer approximation for the region between points 4 and 5 in 
sector [57t/ 4, 3rr/2). This situation can be resolved by further decomposition in either 
or both of sectors [3rr/2, 27t) and [57t/ 4, 3rr/2). 

The result of the approximation process is that each sector consists of a collec
tion of three-sided and four-sided regions that approximate the part of the object con
tained in the sector. This collection is stored in the leaf node of the sector tree as a list 
of pairs of points in the polar plane. It is interesting to observe that the boundaries of 
the interpolated regions are not stored explicitly in the tree. Instead each pair of points 
corresponds to the boundary of a region. Since the origin of the polar plane is within 
the object, an odd number of pairs of points is associated with each leaf node. For 
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[0,7T} 
(1,2) 

(6,7) [57T/4,37T/2} 
(5,C) 
(4,0) 
(9,8) 
(10,11) 

[7T,97T/8} (8,6) [97T/8,57T/4} 
(2,3) (A,5) 

(3,4) 

Figure 1.24 Binary tree representation of the sector tree 
of Figure 1.23 

example, consider the leaf node in Figure 1.24 corresponding to the sector 
[Srr/4, 3:-::/2). The first pair, together with the origin, defines the first region (e.g., 
(6,7)). The :1ext two pairs of points define the second region (e.g., (5,c) and (4,D)), 
with each successive two pairs of points defining the remaining regions. 

The sector tree is a partial polar decomposition, as the subdivision process is 
based only on the value of 8. A total polar decomposition would partition the polar 
plane on the basis of both p and 8. The result is analogous to a quadtree, and it is 
termed a polar quadtree. There are a number of possible rules for the decomposition 
process (see Exercise 1.42). For example, consider a decomposition that recursively 
halves both p and 8 at each level. In general, the polar quadtree is a variant of a maxi
mal block representation. As in the sector tree, the blocks are disjoint. Unlike the 
sector tree, blocks in the polar quadtree do have standard sizes. In particular, all 
blocks in the polar quadtree are either three sided (i.e., sectors) or four sided (i.e., 
quadrilaterals, two of whose sides are arcs). Thus the sides of polar quadtree blocks 
are not based on interpolation. 

The primary motivation for presenting the sector tree is to show that space 
decompositions could also be based on nonpolygonal tiles. In the rest of this book the 
primary concern is with space decompositions based on rectangles (especially 
squares) and showing how a number of operations can be performed when they serve 
as the underlying representation. The techniques are quite general and can be applied 
to most space decomposition methods. Thus the sector tree is not discussed further 
except in the context of its adaptation to the representation of three-dimensional data 
(see Section 5.6). Nevertheless, Lhe following contains a brief mention of some of the 
operations to which the sector tree lends itself. 

Set operations such as union and intersection are straightforward. Scaling is 
trivial as the sector tree need not be modified; all values of p are interpreted as scaled 
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by the appropriate scale factor. The number of nodes in a sector tree is dependent on 
its orientation-that is, on the points chosen as the origin and the contact point chosen 
to serve as (p,O). Rotation is not so simple; it cannot be implemented by simply rear
ranging pointers (but see Exercise 1.40). Translation is computationally expensive 
since the change in the relative position of the object with respect to the origin means 
that the entire sector tree must be reconstructed. 

Exercises 
1.30. Prove that for an isosceles right triangle represented by a region quadtree, the ratio of the 

approximated perimeter to the true perimeter is 4/(2 + {2). 
1.31. Repeat Exercise 1.30 for a circle (i.e., find the ratio). 
1.32. When the objects have linear sides, polygonal tiles are superior. How would you use the 

sector tree decomposition method with polygonal tiles? 
1.33. In the discussion of the situation arising when the boundary of the object intersects a sec

tor at two successive contact points, say P and Q, that lie on the same side, say s, of the 
sector, we assumed that the region bounded by s and PQ was inside the object. Suppose 
that this region is outside the object. How does this affect the inner and outer approxima
tions? 

1.34. Can you traverse the boundary of an object represented by a sector tree by visiting each 
leaf node just once? 

1.35. When using a sector tree, how would you handle the situation that the boundary of the 
object just touches the side of a sector without crossing it (i.e., a tangent if the boundary 
is differentiable)? 

1.36. How would you use a sector tree to represent an object that does not contain the origin of 
the polar plane? 

1.37. The outer approximation used in building a sector tree always yields a three-sided region. 
Two of the sides are arcs of spirals with respect to a common origin. This implies a sharp 
discontinuity of the derivative at the point at which they meet. Can you devise a way to 
smoothe this discontinuity? 

1.38. Does the inner approximation used in building a sector tree always underestimate the 
area? Similarly does the outer approximation always overestimate the area? 

1.39. Compare the inner and outer approximations used in building a sector tree. Is there ever 
a reason for the outer approximation to be preferred over the inner approximations (or 
vice-versa)? 

1.40. Define a complete sector tree in an analogous manner to a complete binary tree-that is, 
all leaf nodes are at the same level, say n. Prove that a complete sector tree is invariant 
under rotation in multiples of 2rt/2". 

1.41. Write an algorithm to trace the boundary of an object represented by a sector tree. 
1.42. Suppose that it is desired to decompose space into nonpolygonal shapes. Develop a 

quadtree-like data structure based on polar coordinates (i.e., p and 8). Investigate dif
ferent splitting rules for polar quadtrees. In particular, you do not need to alternate the 
splits-that is, you could split on p several times in a row, and so on. This technique is 
used in the adaptive k-d tree [Frie77] (see Section 2.4.1) by decomposing the quartering 
process into two splitting operations-one for the x coordinate and one for they coordi
nate. What are the possible shapes for the quadrants of such trees (e.g., a torus, 
doughnut, wheels with spokes)? 
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1.5 SPACE REQUIREMENTS 

The primary motivation for the development of the quadtree was the desire to reduce 
the amount of space necessary to store data through the use of aggregation of homo
geneous blocks. As we will see in subsequent chapters, an important by-product of 
this aggregation is the reduction of the execution time of a number of operations (e.g., 
connected component labeling, component counting). However, a quadtree imple
mentation does have overhead in terms of the nonleaf nodes. For an image with B and 
w black and white blocks. respectively, 4 · (B + W)/3 nodes are required. In contrast, a 
binary array representation of a 2n x 211 image requires only 2211 bits; however, this 
quantity grows quite quickly. Furthermore, if the amount of aggregation is minimal 
(e.g., a checkerboard image), the quadtree is not very efficient. 

The overhead for the nonleaf nodes can be reduced at times by using a pointer
less representation. Pointer-less representations can be grouped into two categories. 
The first, termed a DF-eJ.pression, represents the quadtree as a traversal of its consti
tuent nodes [Kawa80a]. For example, letting 'B', 'w', and 'G' correspond to black, 
white, and gray nodes, respectively, and assuming a traversal in the order NW, NE, sw, 
and SE, the quadtree of Figure 1.1 would be represented by GWGWWBBGWGW 

BBBWBGBBGBBBWW. 

The second approach treats the quadtree as a collection of the leaf nodes 
comprising it. Each node is represented by a pair of numbers [Garg82c]. The first 
number is the level of the tree at which the node is located. The second number is 
termed a /ocational code. It is formed by a concatenation of base 4 digits correspond
ing to directional codes that locate the node along a path from the root of the quadtree. 
The directional codes take on the values 0, 1, 2, 3 corresponding to quadrants NW, NE, 

sw, SE, respectively. For example, node 15 in Figure 1.1 is represented by the pair of 
numbers (0,320), which is decoded as follows. The base 4 locational code is 320. 
The pair denotes a node at level 0 that is reached by a sequence of transitions, SE, sw, 
and NW, starting at the root. A quadtree representation based on the use of locational 
codes is called linear quadtree by Gargantini [Garg82a, Garg82c] (because the 
addresses are keys in a linear list of nodes). Pointer-less representations are discussed 
in greater detail in Chapter 2 of [Same90b]. 

The worst case for a quadtree of a given depth in terms of storage requirements 
occurs when the region corresponds to a checkerboard pattern as in Figure 1.25. The 
amount of space required is obviously a function of the resolution (i.e., the number of 
levels in the quadtree). the size of the image (i.e., its perimeter), and its positioning in 
the grid within which it is embedded. As a simple example, Dyer [Dyer82] has shown 
that arbitrarily placing a square of size 2m x 2m at any position in a 211 x 211 image 
requires an average of 0 (2m+l + n -m) quad tree nodes. An alternative characteriza
tion of this result is that the average amount of space necessary is 0 (p +n) where p is 
the perimeter (in pixel widths) of the block. 

Dyer's 0 (p +n) result for a square image is merely an instance of the earlier 
work of Hunter and Steiglitz [Hunt78, Hunt79a] who proved some fundamental 
theorems on the space requirements of images represented by quadtrees. In their 
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Figure 1.25 A checkerboard and its quadtree 

studies, Hunter and Steiglitz used simple polygons (polygons with nonintersecting 
edges and without holes); however, these theorems have been observed to hold in 
arbitrary images (see [Rose82b] for empirical results in a cartographic environment). 

In Hunter and Steiglitz's formulation, a polygon is represented by a three-color 
variant of the quadtree. In essence, there are three types of nodes: interior, boundary, 
and exterior. A node is said to be of type boundary if an edge of the polygon passes 
through it. Interior and exterior nodes correspond to areas within, and outside, 
respectively, the polygon and can be merged to yield larger nodes. The resulting 
quadtree is analogous to the MX quadtree representation of point data described below 
(for more details, see Section 2.6.1 ), and this term will be used to describe it. In par
ticular, boundary nodes are analogous to black nodes, while interior and exterior 
nodes are analogous to white nodes. 

Figure 1.26 illustrates a sample polygon and its MX quadtree. One disadvantage 
of the MX quadtree representation for polygonal lines is that a width is associated with 
them, whereas in a purely technical sense these lines have a width of zero. Also shift
ing operations may result in information loss. (For more appropriate representations 
of polygonal lines, see Chapter 4.) 

An upper bound on the number of nodes in such a representation of a polygon 
can be obtained in the following manner. First, we observe that a curve of length 
d + E (E > 0) can intersect at most six squares of side width d. Now consider a 
polygon, say G, having perimeter p, that is embedded in a grid of squares each of side 
width d. Mark the points at which G enters and exits each square. Choose one of 
these points, say P, as a starting point for a decomposition of G into a sequence of 
curves. Define the first curve in G to be the one extending from P until six squares 
have been intersected and a crossing is made into a different seventh square. This is 
the starting point for another curve in G that intersects six new squares, not counting 
those intersected by any previous curve. 
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studies, Hunter and Steiglitz used simple polygons (polygons with nonintersecting

edges and without holes); however, these theorems have been observed to hold in

arbitrary images (see [Rose82b] for empirical results in a cartographic environment).

In Hunter and Steiglitz’s formulation, a polygon is represented by a three-color

variant of the quadtree. In essence, there are three types of nodes: interior, boundary,

and exterior. A node is said to be of type boundary if an edge of the polygon passes

through it. Interior and exterior nodes correspond to areas within, and outside,

respectively, the polygon and can be merged to yield larger nodes. The resulting

quadtree is analogous to the MX quadtree representation of point data described below

(for more details, see Section 2.6.1), and this term will be used to describe it. In par-

ticular, boundary nodes are analogous to black nodes, while interior and exterior

nodes are analogous to white nodes.

Figure 1.26 illustrates a sample polygon and its MX quadtree. One disadvantage

of the MX quadtree representation for polygonal lines is that a width is associated with

them, whereas in a purely technical sense these lines have a width of zero. Also shift-

ing operations may result in information loss. (For more appropriate representations

of polygonal lines, see Chapter 4.)

An upper bound on the number of nodes in such a representation of a polygon

can be obtained in the following manner. First, we observe that a curve of length

d+8(8 > O) can intersect at most six squares of side width d. Now consider a

polygon, say G, having perimeter p, that is embedded in a grid of squares each of side

width d. Mark the points at which G enters and exits each square. Choose one of

these points, say P, as a starting point for a decomposition of G into a sequence of

curves. Define the first curve in G to be the one extending from P until six squares

have been intersected and a crossing is made into a different seventh square. This is

the starting point for another curve in G that intersects six new squares, not counting

those intersected by any previous curve.

Microsoft Corp. Exhibit 1005



34 II INTRODUCTION 

Nt I 
I rst' 

-~ 
M-

11 

Figure 1.26 Hunter and Steiglitz's quadtree representa
tion of a polygon 

We now decompose G into a series of such curves. Since each curve adds at 
most six new squares and has length of at least d, we see that a polygon with perimeter 
p cannot intersect more than 6 ·I pi dl squares. Given a quadtree with a root at level11 
(i.e., the grid of squares is of width 211

), at level i each square is of width i. Therefore 
polygon G cannot intersect more than B (i) = 6 ·I p!il quadrants at level i. Recall that 
our goal is to derive an upper bound on the total number of nodes. This bound is 
attained when each boundary node at level i has three brother nodes that are not inter
sected. Of course, only boundary nodes can have sons, and thus no more than 
B (i) nodes at level i have sons. Since each node at level i is a son of a node at level 
i + 1, there are at most 4 · B (i + 1) nodes at level i. Summing up over 11 levels 
(accounting for a root node at level 11 and four sons), we find that the total number of 
nodes in the tree is bounded by 

n-2 

1 +4+ L4 ·B(i+1) 
i=O 

n-2 

~ 5 + 24 · ~ I __L_ l 
,(..; 2t+l 
i=O 

n-2 1 
~ 5 + 24 · (11-1) + 24 · p · L----;-:;:! 

i=O 2 

~ 24 . 11 - 19 + 24 . p. 
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Therefore, we have proved: 

Theorem 1 .1 The quadtree corresponding to a polygon with perimeter 
p embedded in a 211 x 2" image has a maximum of 24 · n - 19 + 24 · p 
(i.e., o(p +n)) nodes. D 

The proof of Theorem 1.1 is based on a decomposition of the polygon into a 
sequence of curves, each of which intersects at most six squares. This bound can be 
tightened by examining patterns of squares to obtain minimum lengths and 
corresponding ratios of possible squares per unit length. For example, observe that 
once a curve intersects six squares, the next curve of length d in the sequence can 
intersect at most two new squares. In contrast, it is easy to construct a sequence of 
curves of length d + E (E > 0) such that almost each curve intersects two squares of 
side length d. Such a construction leads to an upper bound of the form 
a . n + b + 8 · p where a and b are constants (see Exercise 1.48). Hunter and Steiglitz 
use a slightly different construction to obtain a bound of 16 · n - 11 + 16 · p (see Exer
cise 1.49). 

Nevertheless, the bound of Theorem 1.1 is attainable as demonstrated by the fol
lowing examples. First, consider a square of side width 2 that consists of the central 
four squares in a 2" x 2" image (see Figure 1.27). Its quadtree has 16 · n - 11 nodes 
(see Exercise 1.50). Second, consider a curve that follows a vertical line through the 
center of a 211 x 2" image. Now, make it a bit longer by making it intersect all of the 
pixels on either side of the vertical line (see Figure 1.28). As n increases, the total 
number of nodes in the quadtree approaches 8 · p where p = 2" (see Exercise 1.51 ). A 
polygon having a number of nodes approaching 8 · p can be constructed in a similar 
manner by approximating a square in the center of the image whose side is one-fourth 
the side of the image (see Exercise 1.52). In fact, it has been shown by Hunter 
[Hunt78] that 0 (p +n) is a least upper bound on the number of nodes in a quadtree 
corresponding to a polygon (see Exercise 1.53). 

I::::: I 
l:::::f:ill 

I 

Figure 1.27 Example quadtree with 16 . n- 11 nodes 
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Figure 1.28 Example quadtree with approximately 8 · p 
nodes 

Theorem 1.1 can be recast by measuring the perimeter p in terms of the length 
of a side of the image in which the polygon is embedded-i.e., for a 2n x 2n image 
p = p' · 2n. Thus the value of the perimeter no longer depends on the resolution of 
the image. Restating Theorem 1.1 in terms of p' results in a quadtree having 
0 (p' · 2n + n) nodes. This leads to the following important corollary: 

Corollary 1 .1 The maximum number of nodes in a quadtree 
corresponding to an image is directly proportional to the resolution of the 
Image. 0 

The significance of Corollary 1.1 is that when using quadtrees, increasing the 
image resolution leads to a linear growth in the number of nodes. This is in contrast to 
the binary array representation where doubling the resolution leads to a quadrupling of 
the number of pixels. 

Since in most practical cases the perimeter, p, dominates the resolution, n, the 
results of Theorem 1.1 are usually interpreted as stating that the number of nodes in a 
quhdtree is proportional to the perimeter of the regions contained therein. 10 Meagher 
[Meag80] has shown that this theorem also holds for three-dimensional data (i.e., for 
polyhedra represented by octrees) when the perimeter is replaced by the surface area. 
The perimeter and the surface area correspond to the size of the boundary of the 
polygon and polyhedron-that is, in two and three dimensions, respectively. In d 
dimensions this result can be stated as follows: 

Theorem 1 .2: The size of a d-dimensional quadtree of a d-dimensional 
polyhedron is proportional to the sum of the resolution and the size of the 
boundary of the object. 0 

10 Of course, the storage used by runlength codes is also proportional to the perimeter of the regions. 
However, runlength codes do not facilitate access to different parts of the regions (i.e., they have poor spatial 
indexing properties). 
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Figure 1.28 Example quadtree with approximately 8 - p
nodes

Theorem 1.1 can be recast by measuring the perimeter p in terms of the length

of a side of the image in which the polygon is embedded—i.e., for a 2" X 2" image

p =p’ - 2". Thus the value of the perimeter no longer depends on the resolution of

the image. Restating Theorem 1.1 in terms of p’ results in a quadtree having

0 ( p’ - 2" + n) nodes. This leads to the following important corollary:

Corollary 1.1 The maximum number of nodes in a quadtree

corresponding to an image is directly proportional to the resolution of the

image. El

The significance of Corollary 1.1 is that when using quadtrees, increasing the

image resolution leads to a linear growth in the number of nodes. This is in contrast to

the binary array representation where doubling the resolution leads to a quadrupling of

the number of pixels.

Since in most practical cases the perimeter, p, dominates the resolution, It, the

results of Theorem 1.1 are usually interpreted as stating that the number of nodes in a

quadtree is proportional to the perimeter of the regions contained therein.10 Meagher

[Meag80] has shown that this theorem also holds for three-dimensional data (i.e., for

polyhedra represented by octrees) when the perimeter is replaced by the surface area.

The perimeter and the surface area correspond to the size of the boundary of the

polygon and polyhedron—that is, in two and three dimensions, respectively. In d
dimensions this result can be stated as follows:

Theorem 1.2: The size of a d-dimensional quadtree of a d-dimensional

polyhedron is proportional to the sum of the resolution and the size of the

boundary of the object. [:1

'0 Of course, the storage used by runlength codes is also proportional to the perimeter of the regions.
However, runlength codes do not facilitate access to different parts of the regions (i.e., they have poor spatial
indexing properties).
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Aside from their implications on the storage requirements, Theorems 1.1 and 1.2 
also directly affect the analysis of the execution time of algorithms. In particular, 
most algorithms that execute on a quadtree representation of an image instead of an 
array representation have an execution time proportional to the number of blocks in 
the image rather than the number of pixels. In its most general case, this means that 
the application of a quadtree algorithm to a problem in d-dimensional space executes 
in time proportional to the analogous array-based algorithm in the (d -1 )-dimensional 
space of the surface of the original d-dimensional image. Thus quadtrees are some
what like dimension-reducing devices. 

Theorem 1.2 assumes that the image consists of a polyhedron. Walsh [Wals85] 
lifts this restriction and obtains a weaker complexity bound. Assuming an image of 
resolution nand measuring the perimeter, say p, in terms of the number of border pix
els, he proves that the total number of nodes in a d-dimensional quadtree is less than 
or equal to 4 · n · p. Furthermore he shows that the number of black nodes is less than 
or equal to (2d- 1) · n · pld. 

The complexity measures discussed above do not explicitly reflect the fact that 
the amount of space occupied by a quadtree corresponding to a region is extremely 
sensitive to its orientation (i.e., where it is partitioned). For example, in Dyer's exper
iment, the number of nodes required for the arbitrary placement of a square of size 
2m x 2m at any position in a 211 x 211 image ranged between 4 · (n -m) + 1 and 
4·p+16·(n-m)-27, with the average being O(p+n-m). Clearly shifting the 
image within the space in which it is embedded can reduce the total number of nodes. 
The problem of finding the optimal position for a quadtree can be decomposed into 
two parts. First, we must determine the optimal grid resolution and, second, the 
partition points. 

Grosky and Jain [Gros83] have shown that for a region such that w is the max
imum of its horizontal and vertical extent (measured in pixel widths) and 
211

-
1 < w ~ 211

, the optimal grid resolution is either n or n + 1. In other words embed
ding the region in a larger area than 211 +1 x 211 +1 and shifting it around will not result 
in fewer nodes. Using similar reasoning, it can be shown that translating a region by 
2k pixels in any direction does not change the number of black or white blocks of size 
less than 2k x 2k [Li82]. 

Armed with the above results, Li, Grosky, and Jain [Li82] developed the follow
ing algorithm that treats the image as a binary array and finds the configuration of the 
region in the image so that its quadtree requires a minimum number of nodes. First, 
enlarge the image to be 211 +1 x 211 +1

, and place the region within it so that the region's 
northernmost and westernmost pixels are adjacent to the northern and western bord
ers, respectively, of the image. Next apply successive translations to the image of 
magnitude power of two in the vertical, horizontal, and comer directions and keep 
count of the number of leaf nodes required. Initially 2211 +2 leaf nodes are necessary. 
The following is a more precise statement of the algorithm: 

1. Attempt to translate the image by (x,y) where x and y correspond to unit 
translations in the horizontal and vertical directions, respectively. Each of 
x andy takes on the values 0 or 1. 
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2. For the result of each translation in step 1, construct a new array at one-half 
the resolution. Each entry in the new array corresponds to a 2 x 2 block in 
the translated array. For each entry in the new array that corresponds to a 
single color (not gray) 2 x 2 block in the translated array, decrement the 
leaf node count by 3. 

3. Recursively apply steps 1 and 2 to each result of steps 1 and 2. This pro
cess stops when no single-color 2 x 2 block is found in step 2 (i.e., they are 
all gray) or if the new array is a 1 x 1 block. Record the total translation 
and the minimum leaf node count. 

Step 2 makes use of the property that for a translation of 2k, there is a need to 
check only if single-color blocks of size 2k x 2k or more are formed. In fact, because 
of the recursion, at each step we check only for the formation of blocks of size 
2k+i x 2k+i. Note that the algorithm tries every possible translation since any integer 
can be decomposed into a summation of powers of two (i.e., use its binary representa
tion). In fact this is why a translation of (0,0) is part of step l. Although the algo
rithm computes the positioning of the quadtree with the minimum number of leaf 
nodes, it is also the positioning of the quadtree with the minimum total number of 
nodes since the number of nonleaf nodes in a quad tree ofT leaf nodes is (T -1)/3. 

As an example of the algorithm, consider the region given in Figure 1.29a 
whose block decomposition is shown in Figure 1.29b. Its quadtree requires 52 leaf 
nodes. The first step is to enlarge the image, place the region in the upper left comer, 
and form the array (Figure 1.30). The optimal positioning is such that Figure 1.30 is 
shifted 7 units in the horizontal direction and 3 units in the vertical direction. This 
corresponds to a sequence of translations ( 1,1 ), ( 1,1 ), and (I ,0). The intermediate 
translated arrays are shown in Figure 1.31. All gray nodes in the translated arrays are 
labeled with a 'G' while black nodes are shaded. The optimal quadtree contains 46 
leaf nodes and is given in Figure 1.32. 

Now let us trace the algorithm as it applies the optimal sequence of translations, 
in more detail. Initially the leaf node count is 256. A translation of ( 1,1) leads to Fig
ure 1.31 a where 58 of the array entries correspond to single-color 2 x 2 blocks in the 
translated array. The leaf node count is decremented by 58 · 3 = 174, resulting in 

a b 

Figure 1.29 Example (a) image and (b) its block decom
position used to demonstrate the optimal positioning 
process 
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2. For the result of each translation in step 1, construct a new array at one-half

the resolution. Each entry in the new array corresponds to a 2 X 2 block in

the translated array. For each entry in the new array that corresponds to a

single Color (not gray) 2 X 2 block in the translated array. decrement the

leaf node count by 3.

3. Recursively apply steps 1 and 2 to each result of steps 1 and 2. This pro-

cess stops when no single-color 2 X 2 block is found in step 2 (i.e., they are

all gray) or if the new array is a l X 1 block. Record the total translation
and the minimum leaf node count.

Step 2 makes use of the property that for a translation of 2", there is a need to
check only if single-color blocks of size 2" X 2" or more are formed. In fact, because
of the recursion, at each step we check only for the formation of blocks of size

2“1 X 2"“. Note that the algorithm tries every possible translation since any integer
can be decomposed into a summation of powers of two (i.e., use its binary representa-

tion). In fact this is why a translation of (0,0) is part of step 1. Although the algo—

rithm computes the positioning of the quadtree with the minimum number of leaf

nodes, it is also the positioning of the quadtree with the minimum total number of

nodes since the number of nonleaf nodes in a quadtree of T leaf nodes is (T—l)/3.

As an example of the algorithm, consider the region given in Figure 12%

whose block decomposition is shown in Figure 12%. Its quadtree requires 52 leaf

nodes. The first step is to enlarge the image, place the region in the upper left comer,

and form the array (Figure 1.30). The optimal positioning is such that Figure 1.30 is
shifted 7 units in the horizontal direction and 3 units in the vertical direction. This

corresponds to a sequence of translations (1,1), (1,1), and (1,0). The intermediate

translated arrays are shown in Figure 1.31. All gray nodes in the translated arrays are

labeled with a ‘G’ while black nodes are shaded. The optimal quadtree contains 46

leaf nodes and is given in Figure 1.32.

Now let us trace the algorithm as it applies the optimal sequence of translations,

in more detail. Initially the leaf node count is 256. A translation of (1,1) leads to Fig-

ure 1.31a where 58 of the array entries correspond to single-color 2 X 2 blocks in the

translated array. The leaf node count is decremented by 58 -3= 174, resulting in

 
a

Figure 1.29 Example (a) image and (b) its block decom—

position used to demonstrate the optimal positioning
process
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Figure 1.30 The array corresponding to the image in Fig
ure 1.29 prior to the start of the optimal positioning process 

82. The next translation of ( 1,1) leads to Figure 1.31 b, where 11 of the array entries 
correspond to single-color 2 x 2 blocks. Therefore 11 · 3 = 33 is subtracted from 82, 
and the leaf node count is now 49. The final translation of (1 ,0) leads to Figure 1.31 c, 
where only one of the array entries corresponds to a single-color 2 x 2 block in the 
translated array. Decrementing the leaf node count results in 46 nodes, and the pro
cess terminates. Of course, we have failed to describe the remaining 4n - 3 transla
tions that were also attempted. 

Despite trying all possible translations, the algorithm is quite efficient. The key 
is that for each translation, only the blocks whose motion can lead to space saving 
need to be considered. This is a direct consequence of the property that a translation 
of 2k does not change the number of blocks of size less than 2k x 2k. For an image 
that has been enlarged to fit in a 2n+i x 2n+i array, the algorithm will have a maximum 
depth of recursion of n. Since at each level of recursion we need an array at half the 
resolution of the previous level, the total amount of space required is (4/3). 22n+2 . 

G G 

G G • 
G 

G till 
c 

lliiJ G 

b 

a 

Figure 1.31 The successive translated arrays at half
resolution after application of (a) (1, 1) and (b) (1, 1 ), and 
(c) (1,0) to the original image array of Figure 1.30 

APPENDIX B

Microsoft Corp.   Exhibit 1005

APPENDIX B

1.5 SPACEREQUIREMENTS II 39

 
Figure 1.30 The array corresponding to the image in Fig-

ure 1.29 prior to the start of the optimal positioning process

82. The next translation of (1,1) leads to Figure 1.31b, where 11 of the array entries

correspond to single-color 2 X 2 blocks. Therefore 11 - 3 = 33 is subtracted from 82,

and the leaf node count is now 49. The final translation of (1,0) leads to Figure 1.31c,

where only one of the array entries corresponds to a single-color 2 X 2 block in the

translated array. Decrementing the leaf node count results in 46 nodes, and the pro-

cess terminates. Of course, we have failed to describe the remaining 4” — 3 transla-

tions that were also attempted.

Despite trying all possible translations, the algorithm is quite efficient. The key

is that for each translation, only the blocks whose motion can lead to space saving

need to be considered. This is a direct consequence of the property that a translation

of 2" does not change the number of blocks of size less than 2" X 2". For an image
that has been enlarged to fit in a 2”“ X 2”“ array, the algorithm will have a maximum

depth of recursion of 21. Since at each level of recursion we need an array at half the

resolution of the previous level, the total amount of space required is (4/3) - 22””.

 
Figure 1.31 The successive translated arrays at half-

resolution after application of (a) (1,1) and (b) (1,1), and

(c) (1,0) to the original image array of Figure 1.30
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Figure 1.32 Optimal positioning of the quadtree of Figure 
1.29 

The basic computational task of the algorithm is to count 2 x 2 blocks of a single 
color. It can be shown that 4 · n · 22

n+
2 array elements are examined in this process 

(see Exercise 1.63). Thus the algorithm uses 0 (22n) space and takes 0 (n · 22n) time. 
Nevertheless experiments with typical images show that the algorithm has little effect 
(e.g., [Same84c]). 

Exercises 
1.43. Consider the arbitrary placement of a square of size 2m x 2m at any position in a 2" x 2" 

image. Prove that in the best case 4 · (n -m) + 1 nodes are required, while the worst case 
requires 4 · p + 16 · (n -m )- 27 nodes. How many of these nodes are black and white, 
assuming that the square is black? Prove that on the average, the number of nodes that is 
required is 0 (p +n -m ). 

1.44. What are the worst-case storage requirements of storing an arbitrary rectangle in a quad
tree corresponding to a 2" x 2" image? Give an example of the worst case and the 
number of nodes it requires. 

1.45 Assume that the probability of a particular pixel's being black is one-half and likewise for 
being white. Given a 2" x 2" image represented by a quadtree, what is the expected 
number of nodes, say E (n ), in the quad tree? Also compute the expected number of black, 
white, and gray nodes. 

1.46 Suppose that instead of knowing the probability a particular pixel is black or white, we 
know the percentage of the total pixels in the image that are black. Given a 2" x 2" 
image represented by a quadtree, what is the expected number of nodes in the quadtree? 

1.47. The proof of Theorem 1.1 and the subsequent discussion raise the question of how N 

squares should be arranged so that each is intersected by a curve of minimum length 
extending to the outside of the squares on each end. Such a configuration leads to a 
minimal curve in the sense that it has a maximal ratio of squares to length. For which 
value of N is this ratio the smallest? 

1.48. Try to prove that the upper bound of Theorem 1.1 can be tightened to be a · n + b + 8 · p 
where a and b are constants. 
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Figure 1.32 Optimal positioning of the quadtree of Figure
1.29

The basic computational task of the algorithm is to count 2 X 2 blocks of a single

color. It can be shown that 4 - n - 22’”2 array elements are examined in this process
(see Exercise 1.63). Thus the algorithm uses 0 (22”) space and takes 0 (n - 22”) time.

Nevertheless experiments with typical images show that the algorithm has little effect

(e.g., [Same84c]).

Exercises

1.43. Consider the arbitrary placement of a square of size 2m x 2"’ at any position in a 2" x 2"

image. Prove that in the best case 4 - (n —-m) + 1 nodes are required, while the worst case

requires 4 - p + 16 - (n —-m)—- 27 nodes. How many of these nodes are black and white,

assuming that the square is black? Prove that on the average, the number of nodes that is

required is 0 (p+n —m).

1.44. What are the worst-case storage requirements of storing an arbitrary rectangle in a quad—

tree corresponding to a 2” x2” image? Give an example of the worst case and the

number of nodes it requires.

1.45 Assume that the probability of a particular pixel’s being black is one—half and likewise for

being white. Given a 2” x2” image represented by a quadtree, what is the expected

number of nodes, say E(n), in the quadtree? Also compute the expected number of black,

white, and gray nodes.

1.46 Suppose that instead of knowing the probability a particular pixel is black or white, we

know the percentage of the total pixels in the image that are black. Given a 2" x 2"

image represented by a quadtree, what is the expected number of nodes in the quadtree?

1.47. The proof of Theorem 1.1 and the subsequent discussion raise the question of how N

squares should be arranged so that each is intersected by a curve of minimum length

extending to the outside of the squares on each end. Such a configuration leads to a

minimal curve in the sense that it has a maximal ratio of squares to length. For which
value ofN is this ratio the smallest?

1.48. Try to prove that the upper bound of Theorem 1.1 can be tightened to be a - n + b + 8 - p
where a and b are constants.
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1.49. Decompose the polygon used in the proof of Theorem 1.1 into a sequence of curves in 
the following manner. Mark the points where G enters and exits each square of side 
width d. Choose one of these points, say P, and define the first curve in G as extending 
from P until four squares have been intersected and a crossing is made into a different 
fifth square. This is the starting point for another curve in c that intersects four new 
squares, not counting those intersected by any previous curve. Prove that all of the 
curves, except for the last one, must be at least of length d. Using this result, prove that 
the upper bound on the number of nodes in the quad tree is 16 · n - 11 + 16 · p. 

1.50. Prove that the quadtree corresponding to a square of side width 2 consisting of the central 
four squares in a 2" x 2" image has 16 · n - 11 nodes (see Figure 1.27). 

1.51. Take a curve that follows a vertical line through the center of a 2" x 2" image and 
lengthen it slightly by making it intersect all of the pixels on either side of the vertical 
line (see Figure 1.28). Prove that as n increases, the total number of nodes in the quad
tree approaches 8 · p where p = 2". 

1.52. Using a technique analogous to that used in Exercise 1.51, construct a polygon of perime
ter p by approximating a square in the center of the image whose side is one-fourth the 
side of the image. Prove that its quadtree has approximately 8 · p nodes. 

1.53. Prove that 0 (p +n) is a least upper bound on the number of nodes in a quad tree 
corresponding to a polygon. Assume that p ::; 22

" (i.e., the number of pixels in the 
image). Equivalently the polygon boundary can touch all of the pixels in the most trivial 
way but can be no longer. Decompose your proof into two parts depending on whether p 
is greater than 4 · n. 

1.54. Can you prove that for an arbitrary quadtree (not necessarily a polygon), the number of 
nodes doubles as the resolution is doubled? 

1.55. Derive a result analogous to Theorem 1.1 for a three-dimensional polyhedron represented 
as an octree. In this case the perimeter corresponds to the surface area. 

1.56. Prove Theorem 1.2. 
1.57. Assuming an image of resolution n and measuring the perimeter, say p, in terms of the 

number of border pixels, prove that the total number of nodes in a d-dimensional quad
tree is less than or equal to 4 · n · p. 

1.58. Assuming an image of resolution n and measuring the perimeter, say p, in terms of the 
number of border pixels, prove that the total number of black nodes in a d-dimensiona1 
quad tree is less than or equal to (2d - 1) · n ·pI d. 

1.59. How tight are the bounds obtained in Exercises 1.57 and 1.58 for the number of nodes in 
ad-dimensional quadtree for an arbitrary region? Are they realizable? 

1.60. Prove that for a region such that w is the maximum of its horizontal and vertical extent 
(measured in pixel widths) and 2"-1 < w ::; 2n, the optimal grid resolution is either n or 
n+!. 

1.61. Prove that translating a region by 2k pixels in any direction does not change the number 
of black or white blocks of size less than 2k x 2k. 

1.62. Can you formally prove that the method described in the text does indeed yield the 
optimal quadtree? 

1.63. Prove that 4 · n · 2~"+2 array elements are examined in the process of constructing the 
optimal quadtree. 

1.64. How would you find the optimal bintree? 
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SYSTEM FOR MANAGING TILED IMAGES USING
MULTIPLE RESOLUTIONS

MICROFICHE APPENDIX

A microfiche appendix containing computer source
code is attached. The microfiche appendix comprises
one (1) sheet of microfiche having 74 frames.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to memory manage-
ment systems and, more particularly, to the memory
management of large digital images.

2. Description of the Prior Art
The present invention comprises a memory manage-

ment system for large digital images. These digital, or
raster, images are made up of a matrix of individually
addressable pixels, which are ultimately represented
inside of a computer as bit-maps. Large digital images,
such as those associated with engineering drawings,
topographic maps, satellite images, and the like, are
often manipulated by a computer for the purpose of
viewing or editing by a user. The size of, such images
are often on the order of tens and even hundreds of

Megabytes. .Given the current cost of semiconductor
memory it is economically impracticable to dedicate a
random access memory (RAM) to storing even a single
large digital image (hereinafter just referred to as a
“digital image”). Thus, the image is usually stored on a
slower, secondary storage medium such as a magnetic
disk, and only the sections being used are copied into
main memory (also called RAM memory).

However, as is well known by users of computer
aided design (“CAD”) systems, a simplistic memory
transfer scheme will cause degraded performance dur-
ing many typical operations, including zooming or pan-
ning. Essentially, during such operations, the computer
cannot transfer data between disk and main memory
fast enough so that the user must wait for a video dis-
play to be refreshed. Clearly, these periods of waiting
on memory transfers are wasteful of engineering time.

Presently, to enhance main memory storage of only
relevant sections of a digital image, the image is logi-
cally segmented into rectangular regions called “tiles”.
Two currently preferred standards for segmenting an
image into tiles are promulgated by the Computer
Aided Logistics Support (CALS) organization of the
United States government (termed the “CALS stan-
dard” herein) and by Aldus Corporation of Seattle,
Washington, as defined in the Tagged Image Format
File (TIFF) definition (e.g., “TIFF Specification, Revi-
sion 5.0, Appendix L). Among other tile sizes, both
standards define a square tile having dimensions of
512x 512 pixels. Thus, if each pixel requires one byte of
storage, the storage of one such tile would require a
minimum of 256 kilobytes of memory.

Others, such as Thayer, et al. (US. Pat. No.
4,965,751) and Sawada, et al. (US. Pat. No. 4,920,504)
have discussed tiling or blocking a memory. However,
such computer hardware is generally associated with a
graphics board for improving the speed of pixel trans-
fers between a frame buffer and a video display by
addressing a group of pixels simultaneously. These sys-
tems have no relationship to tiling of the image itself
and thus do not require knowledge of image size. Tiling
has also been used to refer to polygon filling as in Dal-

10

15

20

25

30

35

40

45

50

55

60

65

2

rymple, et al. (US. Pat. No. 4,951,230), which is unre-
lated to the notion of tiling discussed herein.

The patent to Ewart (US Pat. No. 4,878,183) dis-
cusses interlaced cells, each cell containing one or more
pixels, for storing continuous tone images such as pho-
tographs. The variable size cells are used to vary the
resolution of an image according to a distance which is
to be perceived by a user. However, the Ewart disclo-
sure does not discuss rasterized binary images contain-
ing line drawings, nor does Ewart discuss virtual mem-
ory management for modifying or editing images, as
will be more fully discussed below.

Even when stored in a mass storage system, an image
library, containing a number of digital images, will con-
sume disk space very quickly. Furthermore, “raw”
digital images are generally too large to transfer from
mass storage to portable floppy disks, or between com-
puter systems (by telephone, for example), in a timely
and inexpensive manner unless some means is used to
reduce the size of the image. Hence, users of binary
images employ image compression techniques to im-
prove storage and transfer efficiencies. One existing
compression standard applicable to facsimile transmis-
sion, CCITT Group IV, or T6 compression, is now
being used for digital images. Like many other compres-
sion techniques, however, the CCITT standard uses
statistical techniques to compress data and, hence, it
does not always produce a compressed image that is
smaller than the original, uncompressed image. That
means that image libraries will often contain a mix of
compressed and uncompressed binary images. Similar
compression standards exist for color and gray-scale
images such as those promulgated by the JPEG (Joint
Photog. Exp. Group) Standards Committee of the
CCITT as SGV III Draft Standard.

At the present time, digital images are typically
viewed and modified with an image editor using an
off-the-shelf computer workstation. These workstations
usually come with a sophisticated operating system,
such as UNIX, that employs a virtual memory to effec-
tively manage memory accesses in secondary and main
memories. In an operating system having virtual mem-
ory, the data that represents the executable instructions
for a program or the variables used by that program do
not need to reside entirely in main memory. Instead, the
operating system brings portions of the program into
main memory only as needed. (The data that is not
stored in main memory being stored on magnetic disk or
other like nonvolatile memory.) The address space that
is available to any one application program is generally
managed in blocks ofconvenient sizes called “pages” or
“segments”.

In general, a virtual memory system allows applica-
tion programs to be written and executed without con-
cern for the management of virtual memory carried out
by the operating system. Thus, independence of the size
of main memory is achieved by creating a “virtua ”
address space for the program. The operating system
translates virtual addresses into physical addresses (in a
main or cache memory) with the aid of an “address
translation table”. This table contains one entry per
virtual memory segment of status information. For in-
stance, segment status will commonly include informa-
tion about whether a segment is currently in main mem-
ory, when a segment was last used, a disk address at
which the disk copy of the segment resides, and a RAM
address at which the segment resides (only valid if the
segment is currently loaded in main memory).
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When the program attempts to access data in a seg-
ment that is not currently resident in main memory, the
operating system reads the segment from disk into main
memory. The operating system may need to discard
another segment to make room for the new one (by
overwriting the area of main memory occupied by the
old segment), so some method of determining which
segment to discard is required. Usually the method is to
discard the least recently used segment. If the discarded
segment was modified then it must be written back to
disk. The operating system completes the “swap” oper-
ation by updating the address translation table entries of
the new and discarded segments.

In summary, the conventional memory management
schemes consider data to be in one of two states: resi-

dent or not resident in main memory. Which segments
are stored in main memory at any given time is gener-
ally determined only by past usage, with no way of
predicting future memory demands. For instance, just
because a segment is the least recently used does not
mean that it will not be used at the very next memory
access.

However, the management of virtual memory for
images departs significantly from conventional virtual
memory schemes because images and computer pro-
grams are accessed in very different ways. Computer
programs tend to access one small neighborhood of
virtual address, and then jump to some distant, essen-
tially random, location. However, during normal image
processing operations an image is accessed in one of a
finite set of predictable patterns. It is not Surprising then
that conventional memory management systems can
significantly degrade performance when used in image
processing applications by applying inappropriate, mem-
ory management rules. Rules which should be abided
by a memory management system for large digital im-
ages are the following:

1. Image memory must be managed as rectangular
image regions (called “tiles”), not as linear memory
address ranges.

2. An image tile can exist in five forms: uncompressed
memory-resident, compressed memory-resident, un-
compressed disk-resident, compressed disk-resident and
“can be derived from other available image tiles”, in
contrast to the two basic forms of memory-resident and
disk-resident available in conventional virtual memory
schemes.

3. The image region that will be affected by a particu-
lar image processing operation is known before the
operation begins, and that information can be conveyed
to the memory manager.

4. An image memory manager must be tunable to
different system capabilities and image types. For exam-
ple, many computers can decompress a tile of binary
data much faster that they can retrieve the uncom-
pressed version of the same tile from disk. On the other
hand, some images cannot be compressed at all.

5. An image memory management system should
support the capability to “undo” editing operations
which is built into the memory manager for optimal
performance and ease of use. Thus, the memory man-
ager could easily save copies of the compressed tiles in
the afi'ected region, and quickly restore the image to the
original state by simply modifying the tile directory
entries to point to the old version.

Reader, et a1., (“Address Generation and Memory
Management for Memory Centered Image Processing
Systems”, SPIE, Vol. 757, Methods for Handling and
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Processing Imagery, 1987) discuss a primitive memory
management system for images. However, in that sys-
tem, image tiles are only stored in memory and not on
disk. Furthermore, in the Reader, et al., system, there is
no capability to handle images in compressed form, nor
is there any discussion of “undoing” editing operations.

Consequently, a need exists for an image memory
management system that provides: linkages with a ras-
ter image editor which includes modify and undo opera-
tions, true virtual memory for large images specifying
locations on disk and in memory, simultaneous handling
of compressed and uncompressed images, and a method
for rapidly constructing reduced resolution views of the
image for display. The latter need is particularly impor-
tant when viewing a large image reduced to fit on a
video display.

SUMMARY OF THE INVENTION

The above-mentioned needs are satisfied by the pres-
ent invention which includes a memory management
system for tiled images. The memory management sys-
tem includes a tile manager for maintaining a virtual
memory comprising a main memory and a secondary
memory such as a disk. The tiled images may include
tiles in compressed or uncompressed form.

The tile manager selects the form of image tile that
most appropriately matches a request. Each tile of an
image may exist in one or more of five different forms,
or states, as follows: uncompressed and resident in the
image data cache, compressed and resident in the image
data cache, uncompressed and resident on disk, com-
pressed and resident on disk and not loaded but re-creat-
able using data from higher-resolution image tiles.

An image stack having successively lower-resolution
subimages is constructed from a full resolution source
image. The lower-resolution images in the image stack
may be used to enhance such standard image accesses as
zooming and panning where high speed image reduc-
tion is advantageous.

The image memory management system provides
linkages with image processing applications that facili-
tate image modifications. The tile manager need only
store compressed tiles that relate to so-called undoable
operations.

These and other objects and features of the present
invention will become more fully apparent from the
following description and appended claims taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an image stack com-
prising full, half, quarter and eighth resolution tiled
images;

FIG. 2 is a full resolution image of a mechanical part;
FIG. 3 is a half resolution image of the mechanical

part shown in FIG. 2; '
FIG. 4 is a quarter resolution image of the mechanical

part shown in FIG. 2;
FIG. 5 is an eighth resolution image of the mechani-

cal part shown in FIG. 2;
FIG. 6 is a block diagram showing one preferred

embodiment of a computer system that includes the
present invention;

FIG. 7 is a memory map showing the general ar-
rangement of cache memory according to the present
invention;
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FIG. 8 is a state diagram defining the flow of tile data
between different storage states according to the pres-
ent invention;

FIGS. 9A and B are a diagram of one preferred data
structure defining document information according to
the present invention;

FIG. 10 is a diagram of one preferred data structure
defining a tile header for maintaining the status of com-
pressed or uncompressed tiles;

FIG. 11 is a diagram of a partial calling hierarchy for
the various functions of the presently preferred embodi-
ment of the tile manager of the present invention;

FIG. 12 is a flow diagram of one preferred embodi~
ment of the tile manager;

FIG. 13 is a flow diagram defining the "initialize
cache manager” function referred to in the flow dia-
gram of FIG. 12;

FIG. 14 is a state diagram of the locking and unlock

10

15

ing of a memory, state, according to the present inven- .
tion;

FIGS. 15A, 15B, and ISC are a flow diagram defining
the “create image access context” function referred to
in FIG. 12;

FIG. 16 is a diagram, of a data structure defining the
access context referred to in FIGS. 15A,B;

FIGS. 17A and 17B are a flow diagram defining the
“save region for undo” function referred to in FIG.
153;

FIG. 18 is a flow diagram defining the “load tiled
raster image” function referred to in FIG. 12;

FIG. 19 is a flow diagram defining the “load TIFF
subimage tile information into tile headers” function
referred to in FIG. 18;

FIG. 20 is a flow diagram defining a “store tile info in
tile headers” function referred to in FIG. 12;

FIG. 21 is a flow diagram defining the “begin undoa-
ble raster operation” function referred to in FIG. 12;

FIGS. 22A and 22B are a flow diagram defining the
“read rows from region” function referred to in FIG.
12;

FIGS. 23A and 23B are a flow diagram defining the
“write rows to region" function referred to in FIG. 12;

FIG. 24 is a flow diagram defining the “close image
access context” function referred to in FIG. 12;

FIGS. 25A and 25B are a flow diagram defining the
“undo previous raster operations” function referred to
in FIG. 12;

FIG. 26 is a flow diagram defining the “quit cache
manager” function referred to in FIG. 12;

FIG. 27 is a flow diagram defining the “lock ex-
panded image tile group" function referred to in FIG.
22A;

FIG. 28 is a flow diagram defining the “lock ex-
panded tile” function referred to in FIG. 27; .

FIG. 29 is a flow diagram defining the “unlock ex-
panded image tile group” function referred to in FIG.
27;

FIG. 30 is a flow diagram defining the “unlock ex-
panded tile” function referred to in FIG. 29;

FIG. 31 is a flow diagram defining the “create tile
from higher-resolution tiles” function referred to in
FIG. 28;

FIG. 32 is a flow diagram defining the “allocate space
for uncompressed version of tile” function referred to in
FIG. 28;

FIG. 33 is a flow diagram defining the “create un-
compressed version of tile from compressed version”
function referred to in FIG. 28; ‘
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’ FIG. 34 is a flow diagram defining the “create com-
pressed low resolution tile from compressed higher-
resolution tiles” function referred to in FIG. 31;

FIG. 35 is a flow diagram defining the “capy uncom-
pressed high resolution tile to uncompressed low reso-
lution tiles” function referred to in FIG. 31;

FIGS. 36A and 36B are a flow diagram defining the
“collect freeable cache memory” function referred to in
FIG. 32;.

FIG. 37 is a flow diagram defining the “free uncom-
pressed version of tile” function referred to in FIGS.
36A,B; and

FIG. 38 is a flow diagram defining the “create com-
pressed version of tile from uncompressed version”
functionreferred to in FIG. 17B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference is now made to the drawings wherein like
parts are designated with like numerals throughout.

FIG. 1 illustrates an image stack, generally indicated
at 100. The design of the image stack 100 is based on the
idea that image memory can be managed as small square
regions, called tiles, that are mostly independent of one
another. In general, a tile may be either uncompressed
(also termed expanded) or compressed. While the basic
uncompressed tile size could be a variable, it is presently
preferred to be fixed at 32 kilobytes, or 512 pixels by 512
pixels to conform with the Computer Aided Logistics
Support (CALS) raster file format standard for binary
images. (Note that the present invention allows binary
and color images to coexist in a common image memory
management system.)

In order to compensate for lower performance ex-
pected with a virtual memory management system for
images, particularly when reducing large portions (by
combining pixels) of the image for display, the present
invention automatically maintains a series of reduced
resolution copies, called subimages, of the full resolu-
tion image. Preferably, the resolution (i.e., pixels per
inch) of each subimage is reduced by exactly half rela-
tive to the next higher-resolution subimage. Thus, the
image stack 100 can be visualizing as an inverted
pyramid, wherein the images can be stacked beginning
with a full resolution subimage (or image) 102 at the
top, followed by a half resolution subimage 104, then a
quarter resolution subimage 106, and an eighth resolu-
tion subimage 108. (In FIG. 1, the subimages 102—108
are outlined by bolded lines.)

The subimages 102, 104, 106, 108 are superimposed
on a set of tiled subimages 110a, 110b, 110e, 1100’, re-
spectively, defining sets of tiles. The extent of the image
stack 100 ends at the resolution that allows the entire

subimage to be stored within a single tile 108 (prefera-
bly 512x512 pixels square). Each lower-resolution
subimage 104—108 is a faithful representation of the full
resolution subimage 102 at all times, with the exception
of certain times during operations that modify the ap-
pearance of the full resolution subimage 102.

FIG. 2 illustrates an 8i">< 11", A-size mechanical

drawing (to scale) as the full resolution subimage 102
showing a mechanical part 120a. Ofcourse, other larger
drawings such as, for example, D-size and E-size may be
used by the present invention. Also, other image pro-
cessing applications besides mechanical drawings may
be used with the present invention including electrical
schematics, topographical maps, satellite images, hea-
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ting/ventilating/air conditioning (HVAC) drawings,
and the like.

FIG. 3 illustrates the corresponding half resolution
subimage 104 showing the half resolution part 12%.
FIG. 4 illustrates the corresponding quarter resolution
subimage 106 showing the quarter resolution part 120v.
Lastly, FIG. 5 illustrates an eighth resolution subimage
108 showing the eighth resolution part 120d. In the
preferred embodiment, reduced resolution subimages
can be used any time that a reduction factor of 2:1 or
higher would be used to scale a region of interest in the
full resolution subimage 102 for display, plotting or
copying-

The subimages 102-108 can be loaded from a source
image file, if they exist, or they can be created on de-
mand by the image memory management system of the
present invention. The present invention includes edit-
ing capabilities that allow a user to trade off between
“quick flas ” pan/zoom performance and file size as
measured by the number of reduced resolution subim-
ages stored with each image. Depending on the applica-
tion, the user will normally opt to store one or more
reduced resolution subimages with each source image
file.

The lower-resolution subimages, for example, subim-
ages 104—108, are utilized by the image memory man-
agement system to produce the illusion of instant access
to any region of the image at any scale factor (not just
the scale factor of the overview subimage). Increasing
the number of lower-resolution subimages gives a
higher quality “first flash” image during panning and
zooming and reduces the time to get the final version of
the image to the screen.

FIG. 6 illustrates a computer workstation generally
indicated at 150 which is representative of the type of
computer that is used with the present invention. The
workstation 150 comprises a computer 152, a color
monitor 154, a mouse 156, a keyboard 158, a floppy disk
drive 160, a hard disk drive 162 and an Ethernet com-

munications port 164. The computer 152 includes a
motherboard bus 166 and an I/O bus 168. The I/O bus

168, in one preferred embodiment, is an IBM PC/AT ®
bus, also known as an Industry Standard Architecture
(ISA) bus. The two buses 166, 168 are electrically con-
nected by an I/O bus interface and controller 170.

The I/O bus 168 provides an electromechanical com-
munication path for a number of I/O circuits. For exam-
ple, a graphics display controller 172 connects the mon-
itor 154 to the I/O bus 168. In the presently preferred
embodiment, the monitor 154 is a 19-inch color monitor

having a 1,024x 768 pixel resolution. A serial communi-
cations controller 174 connects the mouse 156 to the

I/O bus 168. The mouse 156 is used to “pick” an image
entity displayed on the monitor 154.

The I/O bus 168 also supports the hard disk drive
162, and the Ethernet communications port 164. A hard
disk controller 176 connects the hard disk drive 162 to

the I/O bus 168. The hard disk drive 162, in one possible
configuration of the workstation generally indicated at
150, stores 60 megabytes of data. An Ethernet commu-
nications controller 178 connects an Ethernet communi-

cations port 164 with the I/O bus 168. The Ethernet
communications controller 178 supports the industry
standard communications protocol TCP/IP which in-
cludes FTP and Telnet functions. The Ethernet com-

munications port 164 of the preferred embodiment al-
lows the Workstation 150 to be connected to a network
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which may include, among other things, a document
scanner (not shown) and a print server (not shown).

The motherboard bus 166 also supports certain basic
I/O peripherals. For example, the motherboard bus 166
is connected to a keyboard and floppy disk controller
180 which supports the keyboard 158 and the floppy
disk drive 160. The floppy disk drive 160, in one present
configuration, can access floppy disks which store up to
1.2 megabytes of data.

The fundamental processing components of the com-
puter 152 are a microprocessor 182 such as, for example,
an 80386 microprocessor manufactured by Intel, a math
coprocessor 184 such as, for example, a 80387 math
coprocessor also manufactured by Intel and a main
memory generally indicated at 186 comprising, for ex-
ample, 4 megabytes of random access memory (RAM).
The main memory 186 is used to store certain computer
software including a Unix compatible operating system
188 such as, for example, SCO Xenix licensed by Santa
Cruz Operation of Santa Cruz, California, a subsidiary
of Microsoft Corporation, an image processing applica-
tion 190, a tile manager 192, and an image data cache
194. The image processing application 190 includes
editing functions such as zoom and pan.

Another presently preferred computer workstation
150 having somewhat different processing components
from those just described is available from Sun Mi-
crosystems, Inc. of Mountain View, California, under
the tradename “SPARCstation 1”. In such an embodi-

ment, the UNIX compatible operating system would be
licensed directly from Sun.

Although a representative workstation has been
shown and described, one skilled in the applicable tech-
nology will understand that many other computer and
workstation configurations are available to support the
present invention.

FIG. 7 illustrates a representative configuration of
the image data cache 194 some time after the tile man-
ager 192 (FIG. 6) begins operation. A set of compressed
tiles 222 are kept at the low addresses of the image data
cache 194, and a set ofuncompressed (or expanded) tiles
224 at the high addresses of the image data cache 194.
The terms expanded or uncompressed are used inter-
changeably. In between the two sets of tiles 222, 224 is
a reserved area 226 (free cache memory). As the opera-
tion of the tile manager 192 continues, the image data
cache 194 becomes more unordered. As the cache re-

quirement for compressed or uncompressed tiles in-
creases, each set of tiles 222, 224 approach the reserve
area 226 from each end. In fact, the reserve area 226 can
become completely exhausted.

Since the memory management schemes that apply to
compressed data allocation are very different from that
of uncompressed data, it is desirable to keep the two sets
of tiles 222, 224 separate. Compressed tiles are variable
sized tiles (blocks of memory) 222a, b, c,d,e,fwhereas the
uncompressed tiles are all fixed sized tiles 224a,b,c,d and
therefore the locations of the fixed sized tiles 224 are

interchangeable. Linked lists of allocated memory are
kept sorted according to size and address for com-
pressed tiles. The number of linked lists is a variable
number but presently there are about 64 different size
categories for compressed tiles and only one size cate-
gory for uncompressed tiles (for binary images).

To use the image data cache 194, the memory man-
agement functions begin by determining how much fast
memory (RAM) and slow memory (disk or host mem-
ory) is available for image memory uses. When an image
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is loaded, the system allocates memory for, image infor-
mation and related tile directory structures. Cache man-
agement parameters are modified as necessary to bal-
ance the requirements for expanded tile and compressed
tile cache memory. The expanded tile cache memory
pool and the compressed tile cache memory pool allow
tiles from different images to intermingle. Expanded
and compressed tiles are kept in separate areas as much
as possible so that memory allocation can be optimized
for each of two different situations (i.e., fixed allocation
block size versus variable size). However, the storage
ranges of compressed and expanded tiles are allowed to
mingle so as to maximize the flexibility of the cache
usage.

FIG. 8 is a state diagram illustrating the flow ofimage
data or tiles between different storage states 250. A tile
can contain data in one or more of five states or forms

as illustrated by ovals in FIG. 8. The possible forms are:
uncompressed and resident in cache memory (state
252); compressed and resident in cache memory (state
256); uncompressed and resident on disk (state 268);
compressed and resident on disk (state 262); “not
loaded” but re-creatable using information from higher-
resolution image tiles (state 272).

For most image access operations, the image data
must be uncompressed and resident in cache memory
252. HoweVer, that form consumes the most cache
memory of any of the five forms. Therefore, a primary
function of the tile manager 192 is to transform image
tile data between state 252 and the other states which

consume less (in the case of state 256) or no cache mem-
ory whatsoever (in the cases of states 268, 262 and 272).

The eight transformation operations, shown in square
boxes in FIG. 8, constitute the main computational
operations associated with managing image memory.
The operation. “load compressed tile image data from
disk into cache memory” 264 is typically the first opera—
tion performed on a tile because most pre-scanned im-
ages are stored in compressed form in disk files. (A
discussion of this “virtual loading” is provided herein-
below.) The load operation 264 is performed by the
Load CompFromDisk function which simply copies
data from the disk into cache memory. The disk loca-
tion and number of bytes to read is stored in the tile
header fields 368 and 376 shown in FIG. 10.

The function LoadCompFromDisk is normally used
by the function LockCompHandle when the tile man-
ager 192 needs to access the compressed form of data
associated with a tile. LockCompHandle is analogous to
LockEpoandle, described in FIG. 28. The LockCom-
pI-Iandle function is also included in source code form in
the Microfiche Appendix, in the file tilealloc.c.

Compressed data in cache 256 can be written back to
the disk by the operation 260. This is the reverse of the
LoadCompFromDisk function. The present embodi~
ment is capable of writing to disk in a wide variety of
file formats. One skilled in the art can easily create a
function to perform this task.

Compressed data in cache can be uncompressed (also
termed “expanded") into another region of cache mem-
ory by the expand operation 258. The expand operation
258 is controlled by the “Expand Tile” function 440
which is described with respect to FIG. 33. The method
of image compression varies according to image type
(e.g. binary, 8-bit color, 24-bit color). Commonly used
compression techniques include CCITT T.6 for binary
images and CCITT SGVIII (draft standard) for color
and gray-scale images. The ExpandTile function 440
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selects the appropriate compression algorithm by refer-
ring to field 306 ofthe Document Information Structure
shown in FIG. 9.

Uncompressed data in cache 252 can be compressed
and written to a separate region of cache memory by
the compress operation 254. The compress operation
254 is controlled by the CompressTile function 450
described with respect to FIG. 38. Like ExpandTile,
the CompressTile function 450 uses an image compres-
sion algorithm appropriate to the image type.

Uncompressed data on disk 268 can also be read di-
rectly into cache memory by the load operation 270.
The load operation 270 is performed by the LoadEx-
pFromDisk function, which appears in source code
form in the Microfiche Appendix, in file diskcach.c.
The 1.0adEprromDisk function is analogous to Load-
CompFromDisk. The MadEprromDisk function re-
fers to the fields 362 and 374 of the tile header 350

shown in FIG. 10, for the location and number of bytes
of the expanded file data on the disk.

Uncompressed data in cache 252 can be written back
to the disk by the save to disk operation 266. This opera- .
tion is analogous to the save to disk operation 260 which
operates on compressed data. The present embodiment
can write compressed or uncompressed tile data to disk
in a variety of formats. One skilled in the art can easily
implement an equivalent function.

Image data for tiles in the “not loaded” state 272 must
be constructed by resampling higher-resolution tiles.
(During normal operation, only lower-resolution tiles
can exist in this state—the full resolution subimage tiles
are always “loaded”.) The present embodiment pro-
vides two operations from the “not loaded" state 272 to
the “loaded” state 252, 256. Uncompressed higher-reso—
lution tile data is resampled to create uncompressed
data in cache 252 by the resample Operation 274. Simi-
larly, in the resample operation 276, compressed data in
cache 256 can be created from compressed higher-reso-
lution tile data.

In both resampling operations, extensive advantage is
taken of the fact that the resolutions of adjacent subim-
ages in the subimage stack are related by a power of 2.
This greatly simplifies and speeds the resampling opera-
tion. Basic resampling techniques are well-known (See,
for example, A. Rosenfeld and A. C. Kab, Digital Pic-
ture Processing, Academic Press, 1976). The resampling
operation 274 and 276 are controlled by the function
LoadSubImTile 436 described with respect to FIG. 31.

In summary, FIG. 8 shows that a great part of the tile
manager’s utility derives from its ability to coordinate a
variety of forms of image data in the course of complex
image processing operations.

Generally, the way data starts out on the disk 162 is
by loading a tiled image file into an application 190 via
the tile manager 192. An image file, like a Tagged
Image File Format (TIFF) or CALS tiled image file,
for example, can be loaded instantaneously, in a virtual
sense. In the tiled formats, there are tiled image data
that is stored in the image file and at the beginning of
the file there is a directory with entries that locate the
tiles (for example, the disk file version of tile 0 in subim-
age 0, (0,0), is located at one address in the file and the
disk file version of tile 1, subimage 0 (0,1) is located at
another address in the file). When an image file is
loaded, the tile manager 192 gets the tile offsets and
stores them in the tile directory and does nothing else.
Hence, the image file is basically loaded without copy-
ing any data from the disk 162 into the image data cache
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194, and a directory is created that maps the tiles in the
virtual image memory space onto the disk 162.

FIG. 9A illustrates a document information structure

300. Each image, or document, in the system is associ-
ated with (and described by) a document information
structure (called “docinfo”, defined in FIG. 9). The
docinfo structure contains information about the image
as a whole, such as color and pixel organization, etc. It
also contains a list of subimages contained in the image.
Each subimage entry in the docinfo structure contains
information about that subimage, such as width and
height, etc. The intention is to make this data visible
only to cache management functions and low-level
access functions. The overall docinfo data structure 300

contains the following information:
302 Self-reference to document handle. Handle value

assigned to this document by the host procedure
which created the document. This value is unique
over the entire system.

304 “Overviews Invalid” flag. This flag is true if the
document is in the middle of a write operation.

306 Cache image compression algorithm. Compres-
sion algorithm used by the memory manager for
this image.

308 Image color type. How the image is displayed.
310 Bits per image pixel. Number of bits per image

pixel. '
312 Tile size information. Size of expanded tile in

pixels. The tiles are assumed to be square.
314 Number of subimages in doc. Number of subim-

ages maintained in this document. The minimum
value is one (the full resolution subimage).

316 Input file info. Input raster file information.
318 Output file info. Output raster file information.
320 List of subimage headers. Array of pointers to

subimage header structures 321. The first entry in
the array is always the full resolution image. Each
position thereafter corresponds to a 2X resolution
reduction from the previous subimage.

The subimage header structure 321 is illustrated in
FIG. 9B. Each subimage has its own entry with each
field as follows:

312 Pointer to tile headers.

314 Pointer to tile directory. Pointer to array of
pointers to tile header records. This two-dimen-
sional table provides an easy way to access individ-
ual tile headers on a (row,col) basis.

326 Subimage width and height. The width (x extent)
and height (y extent) of the document measured in
pixels.

328 Number of tile rows & cols in subimage. Number
of tile rows in the image and the number of tile
columns (i.e., the number of tiles needed to span the
height and width of the image).

330 Image stack index of this subimage. This is the
position of the subimage in the docinfo structure
subimage list. It can also be used to determine the
factor by which the subimage resolution is reduced
relative to the full resolution subimage.

332 Pixel resolution of this subimage. Scan resolution
in pixels per millimeter.

FIG. 10 illustrates the tile header 350. The tile man-

ager’s analog to the conventional address translation
table is the tile directory. The tile directory is a two-di-
mensional array of entries corresponding to the two-di-
mensional array of tiles that form the image. Each full
and reduced resolution image has its own tile directory.
The tile directory record contains a list of pointers to
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lists of individual tile headers. The list in the tile direc-

tory record has one entry for each row of tiles. Each of
those entries points to a tile header record list with as
many elements as tile columns. Thus, there is one tile
directory record per subimage and one tile header re-
cord per tile. The tile header record defines the current
state of the tile and contains information used by the
cache management functions. The tile header contains
the following information:

352 Pointer to document containing this tile. Pointer
to the document to which this tile belongs.

354 Index of subimage containing this tile. Index of
the subimage (i.e., image stack layer) that contains
this tile.

356 Row and column indices of tile. Tile row and

column position of this tile within the subimage.
358 Status information. Defines the current state of

the tile. This includes lock counts for expanded and
compressed tiles.

360 Preserve count. Value greater than zero means
the tile is desired for future operation, so the tile
should be preserved in cache if possible.

362 Location of uncompressed image data in cache
memory. Location of uncompressed (expanded)
image data for this tile (if it exists). Status flag
“ExpCached” will be true to indicate that the data
is currently in expanded tile cache memory.

364 Location of compressed image data in cache
memory. Location of compressed image data for
this tile (if it exists). 'Status flag “CompCached”
will be true to indicate that the data is currently in
compressed tile cache memory.

366 Location of uncompressed image data on disk.
Location of uncompressed (expanded) image data
for this tile (if it exists). Status flag “ExpOnDisk”
will be true to indicate that the data is currently on
disk.

368 Location of compressed image data on disk. Lo-
cation of compressed image data for this tile (if it
exists). Status flag “CompOnDisk” will be true to
indicate that the data is currently on disk.

370 Link to next less recently used tile. Pointer to
next older (less recently used) tile, not necessarily a
tile in this image.

372 Link to next more recently used tile. Pointer to
next newer (more recently used) tile, not necessar-
ily a tile in this image.

374 Number of bytes of expanded data in tile.
376 Number of bytes of compressed data in tile.
FIG. 11 illustrates a calling hierarchy 400 for the

constituent functions. Further discussions relating to
flow diagrams, herein, will include names which corre-
spond to source code modules written in the “C” pro-
gramming language. The object code is presently gen-
erated from the source code using a “C” compiler li-
censed by Sun Microsystems, Inc. However, one skilled
in the technology will recognize that the steps of the
accompanying flow diagrams can be implemented by
using a number of different compilers and/or program-
ming languages.

The top level in the program hierarchy is Main 402.
Main initiates the functions calls to the lower level

functions. Main embodies the top level control flow of
the present invention.

The first function called by Main is Initialize Cache
Manager 404 (InitCacheManager). InitCacheManager
allocates the RAM and disk swap space needed for a

Microsoft Corp. Exhibit 1005 -



APPENDIX C

Microsoft Corp.   Exhibit 1005

APPENDIX C

5,263,136
13

particular raster image. It must be called before at-
tempting to load any image tiles into memory.

The next function Main may call is Load Tiled Raster
Image 408 (LoadTIFF). LoadTIFF manages the load-
ing of tiled images. This is the process where an existing
image file on disk is mapped into memory.

Main will then call the function Begin Undoable
Raster Operation 410 (BeginUndoableRasOp). Begi-
nUndoableRasOp marks the beginning of a distinct,
“undoable” raster image operation. This function does
not save any region of image memory but only creates
a new entry on the undo stack. The current version of
the tiles in the affected region are saved by InitIma-
geAccess.

The following function called by Main is Create
Image Access Context 412 (InitImageAccess). InitIma-
geAccess prepares the tile cache manager for upcoming
accesses to a particular region of the specified image.

10

15

This function creates a data structure called an “access -

context” (defined in FIG. 16) that is used by the sequen-
tial access functions.

Main optionally calls the function Read Rows From
Region 414 (ReadRowToRow) next according to the
operation performed by the user. ReadRowToRow
causes one input/output buffer row or strip to be read
and transformed from tiled image memory as specified
in the associated InitImageAccess call and the resulting
access context.

The next optional function called by Main is Write
Rows To Region 416 (WriteRowToRow), again ac-
cording to the operation performed by the user. Write-
RowToRow causes one input/output buffer row or
strip to be transformed and written to tiled image mem-
ory as specified in the associated InitImageAccess call
and the resulting access context.

It should be understood that other access functions,

such as random pixel accesses, may optionally be called
by Main.

Main then calls the function Close Image Access
Context 418 (EndlmageAccess). EndlmageAccess ter-
minates and discards an image access context. The
memory allocated for the access context structure is
freed. The tile manager is informed that the specified
region of image memory is no longer needed by this
operator.

The next function, Undo Previous Raster Operations
420 (UndoPreviousRasOp), is optionally called by
Main. UndoPreviousRasOp restores the specified re-
gion to its original state using information from the
undo stack.

The last function Main calls is Quit Cache Manager
422 (EndCacheManager). EndCacheManager frees the
RAM and disk swap space. This function basically re-
verses what InitCacheManager does.

The second level of functions on the calling hierar-
chy 400 is shown starting with Load TIFF Subimage
Tile Information into Tile Headers 424 (LoadTiff-
TilesStd) which is called by function LoadTIFF 408.
LoadTiffTilesStd manages the loading of TIFF images
with strip structure.

The LoadTifiTilesStd function 424 calls a function

Store Tile Information in Tile Headers 425 (Load-
SubImDiskCache). LoadSublmDiskCache loads the
tile directory of the specified subimage with informa-
tion about the location, size and format of individual

image tiles contained in a disk-resident tiled image file.
It is the low-level interface for the “indirect file load”
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capability. The tile headers are assumed to be com-
pletely zeroed when this function is called.

The InitImageAccess function 412 calls a function
Save Region For Undo 426 (SaveRegionForUndo).
SaveRegionForUndo saves the specified region on the
undo stack. It is called from within InitImageAccess if
the SaveForUndo flag is true. It can also be used for
low level operations that do not go through InitIma-
geAccess. SaveRegionForUndo can then be called mul-
tiple times for different documents and different regions
within a document so that arbitrarily complex editing
operations can be easily undone.

The ReadRowToRow function 414 calls a function

Lock Expanded Image Tile Group 428 (ExpTileLock).
ExpTileLock “locks” memory handles referring to
expanded image tiles. (The notion of locking and un-
locking memory blocks is further discussed below with
reference to FIG. 14.) It also updates the associated tile
header structure as appropriate for the operating sys-
tem.

The ReadRowToRow function 414 also calls a func-

tion Unlock Expanded Image Tile Group,430 (Exp-
TileUnlock). ExpTileUnlock unlocks memory handles
referring to expanded image tiles. It also updates the
associated tile header structure as appropriate for the
operating system.

The function ExpTileUnlock 430 calls a function
Unlock Expanded Tile 432 (UnlockEpr-Iandle). Un-
lockExpl-landle unlocks an individual expanded tile
handle. The lock count is decremented as appropriate.
The tile is not actually swapped out of cache at this
point but it becomes a candidate for swapping.

The function ExpTileLock 428 calls a function Lock
Expanded Tile 434 (LockEpoandle). LockEpoandle
locks an individual expanded tile handle. The lock
count is incremented and the status flags are set as ap-
propriate.

The LockExpl-Iandle function calls a function Create
Tile From Higher-Resolution Tiles 436 (LoadSubIm-
Tile). LoadSubImTile creates a valid expanded version
of the specified tile by scaling down from the next high-
er-resolution subimage. This function is called recur-
sively as necessary to get to a higher-resolution subim-
age where there is valid data. (Note: the tiles in the
full-resolution subimage are always valid and loaded
although not necessarily present in the cache memory.)

The function LockEpoandle 434 next calls a func-
tion Allocate Space for Uncompressed Version of Tile
438 (AllocEpoandle). AllocEpoandle allocates
space in cache memory for a single expanded tile.

The function LockEpoandle 434 also calls a func-
tion Create Uncompressed Version of Tile From Com—
pressed Version 440 (ExpandTile). ExpandTile uses a
tile that exists in compressed form but not expanded
form, allocates space for an expanded tile and decom-
presses the image data into that space.

The function LoadSubImTile 436 calls a function

Create Compressed Lower-Resolution Tile From Com-
pressed Higher-Resolution Tiles 442 (Comp-
CopyToOview). CompCopyToOview creates a valid
compressed version of the specified tile by sealing down
from compressed or expanded version of the given
higher-resolution subimage tiles. The function Load-
SubImTile 436 also calls a function Copy Uncom-
pressed High-Resolution Tiles to Uncompressed Low-
Resolution Tile 444 (CopyTileToOview).
CopyTileToOview updates the region of the next low-
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er-resolution overview corresponding to the specified
tile.

The Function CompCopyToOview 442 calls a func-
tion Collect Freeable Cache Memory 446 (CollectFre-
eCache). CollectFreeCache collects freed memory
states or enlarges the cache file and adds the new mem-
ory capacity to the reserve list. This function is called
when the cache manager usage exceeds preset limits.
Therefore it makes sense to take time to free up as much
memory as is convenient at this opportunity.

The function CollectFreeCache calls a function Free

Uncompressed Version of Tile 448 (FreeEpoandle).
FreeEpoandle frees space used for storage of ex-
panded image tiles.

The function CollectFreeCache 446 also calls a func-

tion Create Compressed Version of Tile From Uncom-
pressed Version 450 (CompressTile). CompressTile
uses a tile that exists in expanded form but not com-
pressed form, allocates space for a compressed tile and
compresses the image data into that space.

FIG. 12 is the top-level control flow for the tile man-
ager 192 (also called “Main”). The tile manager 192 can
be executed on a number of operating systems or with-
out an operating system. However, the workstation 150
(FIG. 6) preferably includes the Unix compatible oper-
ating system 188. Another preferred operating system is
Microsoft MS-DOS running with or without Microsoft
Windows 3.0.

Moving from a start state 470 to an initialization State
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404, the tile manager 192 performs an initialization of 30
the image data cache 194 to determine the available
memory space, or the amount of physical RAM and
disk space available for a cache “file”. At this point, the
cache appears to the tile manager 192 as one contiguous
range of physical addresses in memory. If the tile cache
has already been initialized, this step is skipped. The
possibility of multiple image access contexts (discussed
below) allows multiple simultaneous requests.

The tile manager 192 has another parameter which is
called the fast memory portion of the image data cache
194. This parameter is particularly relevant when work-
ing on top of another virtual operating system such as
Unix. The fast memory limit specifies approximately
how much of the image cache file is actually kept in
RAM memory at any moment by the native operating
system (e.g., Unix). The balance of data (the less re-
cently used portion) is likely to have been swapped out
to the disk. The tile manager attempts to limit the
amount of cache space used to store expanded tiles to
less than the fast memory limit, but the limit can be
exceeded if necessary with some degradation in perfor-
mance. However, the total cache size limit is never
exceeded. In operating systems without virtual memory
capabilities built in (e.g., MS-DOS), the fast memory
limit is the same as the total cache size limit.

Then the tile manager 192 moves to a function 472
wherein the tile manager 192 loads a tiled raster image
file. The function 472 (comprising the function 408, for
example) loads any type of image file, and preferably a
tiled image, into the memory address space configured
by the tile manager 192. If the image to be modified is
already loaded, this step is skipped. Then the tile man-
ager 192 moves to a function 410 where the tile manager
192 marks the beginning of an undoable raster operation
if the tile manager 192 is writing to the image. The
function 410 is an optional state and it is only used if the
user wants to be able to undo the operation that modi-
fies the image.
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Any time that a region of the image needs to be ac-
cessed (for reading or writing) an image access context
is created. This image access context is used to define
the region for use by the tile manager. The creation is
performed automatically by the file manager without
effort by the user. For example, an image access context
is created when the user draws a line in a region of the
image.

Referring back to FIG. 12, the tile manager 192 tran-
sitions to a function 412 to create the image access con-
text. The image access context contains all of the state
information about the access operation. It is possible to
have multiple access contexts opened simultaneously
with each access having stored state information con-
tained in the access context. Thus, the tile manager 192
is re-entered and re-used by interleaved operations
without confusion due to the unique access contexts of
each image operation;

The tile manager 192 proceeds to a loop state 474
wherein the tile manager 192 begins a FOR-loop for all
of the rows or columns in the region. The FOR-loop is
executed multiple times if the operation specified by the
user is a row or column strip oriented access. Strips are
composed of one or more rows or one or more columns
of data. For each of the strips, the tile manager 192
reads or writes the rows or columns of data in the strip
in a function 476. The function 476 actually comprises a
set of functions including ReadRowtoRow 414 (FIG.
11) and WriteRowtoRow 416.

When the tile manager 192 has processed all the row
and columns in the region, the tile manager 192 moves
to a function (EndImageAccess) 418 where the tile
manager 192 closes the image access context which
frees all of the temporary buffers that were allocated for
the image access context.

The tile manager 192 transitions to an undo previous
raster operation function (UndoPreviousRasOp) 420.
This causes a modified image to revert to its previous
state. The image tiles that had been modified are re-
placed by their original versions. This again is an op-
tional step that the user initiates, if a mistake is made.

If the raster image is required for future operations,
the tile manager moves to state 422. Otherwise, moving
to a state 478, the tile manager 192 unloads the raster
image. Unloading the raster image simply frees the
memory that had been associated with that particular
raster image. This is not a save raster image operation
which would be slightly more complicated, but a save
operation could be executed here. Of course, the image
processing application 190 supports loading and saving
raster images.

Ifmore operations will be performed the tile manager
moves to state 480. Otherwise, from state 478, tile man-
ager 192 moves to a quit cache manager function (End-
CacheManager) 422. Herein, the tile manager 192 frees
the image data cache 194 (FIG. 6). Presumably, all of
the images have been unloaded as in the state 478 so that
this operation frees the image data cache memory and
prepares the system for shut down. Lastly, the tile man-
ager 192 terminates at an end state 480.

FIG. 13 illustrates the initializing of the cache man-
ager function 404. The function 404 is entered by the
task manager 192 at a state 488. Then, moving to a state
490, the task manager 192 initializes the cache usage
variables. Of course, in the beginning, all of the cache
space is available for use, in what is called the free-mem-
ory reserve list. That is, no cache memory is being used
for expanded or compressed image data.
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At state 492, the task manager 192 allocates tile cache
memory by requesting a portion of the address space
fromthe memory space owned by the operating system.
In a virtual memory system such as Unix, the request is
handled by memory mapping a large file. The operating
system does not allocate any memory, but it reserves an
address space. Moving to a state 494, the task manager
192 allocates a common blank tile. When dealing with
binary images, space is reserved for one blank tile,
which is kept around at all times for common usage by
any number of operations, or access contexts.

At state 496 a compression buffer is allocated to be
used as a scratch buffer when compressing data since, in
general, the size of the resulting compressed data is
unknown before a tile of image data is compressed.
Hence, compressed data blocks will be variable sized.
The tile manager 192 then exits the InitCacheManager
function 404 at an end state 498.

FIG. 14 illustrates a general memory state diagram
with reference to a block of memory being “locked” or
“unlocked”. In the diagram, ovals are states and rectan-
gular blocks are operations.

The state diagram is entered at a start state 502 by a
new memory block. There are three basics states.
“FREE” is a state 504 where there is no memory allo-
cated. Actually, a block of memory is considered free if
it is in one of the memory free lists, i.e., the “reserve free
list”, the “compressed free list” or the “expanded tile
free list”. It should be understood that the free list for

the compressed tiles are actually composed of many
lists based on the varying sizes of memory blocks.

Within a tile header (FIG. 10) the tile manager 192
controls a memory handle which is a structure that has
a pointer to (or location of) image data in the cache and
a lock count (not shown) for both compressed and ex-
panded versions of a tile.

A memory block transitions from the free state to
unlocked, but allocated is through a state 506 for allo-
cating the memory handle, which moves the block out
of the free list and into use by a tile. As opposed to free,
unlocked means that the memory block containsvalid
data and that it is associated with a tile but not currently
being accessed. That is, the block is not being read or
written at the time.

Now, the tile is unlocked at a state 508 but it contains

valid data. Therefore, the next step is to lock the block,
or lock the memory handle at a state 512 and then it
becomes a locked memory state at a state 514. That
means it contains valid data and it is currently in use.
The block can be locked more than once, each time just
incrementing the lock count.

The lock count may be incremented multiple times,
for example, when two access contexts (operations) are
accessing the same region of memory. Hence, both
contexts lock the block of memory or tile by increment-
ing the lock count. When the first access context is done
it decrements the lock count. But the tile manager 192
knows that that tile is. still in use by an access because
the locked count is still non-zero.

The inverse operation is to unlock the handle at a
state 516 and as long as the lock count is not decre-
mented to zero at state 518, it stays locked. Once the
lock count is decremented to zero, it becomes unlocked

again at the state 508. '
An unlocked tile is fair game for the tile manager 192

when the memory manager needs to find some space to
lock a new tile. Therefore, when the tile manager 192 is
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looking for space, unlocked memory blocks may be
freed and returned to the free memory lists.

The way to go from the unlocked state 508 to the free
state 504 is by freeing the handle in which case the
memory block is moved onto the free memory list.

Referring now to FIG. 15, the flow diagram for the
InitImageAccess function 412 shows the operation
where the tile manager 192 creates the image access
context starting at a state 530. At a state 532 the input
parameters are validated. If there is an error with the
input parameters, the function ends immediately at an
end state 534.

Input parameters include a document handle indicat-
ing which image that the user wants to read or write
from. Thus, the document handle must be validated.
Another parameter is whether the user wants to read or
write to the image. A transformation matrix, also input,
basically directs how to scale, rotate, shear, etc., the
image data.

If the input parameters are valid, the tile manager 192
locks the document handle at a state 536. The document

handle locks and unlocks just like other structures and
resources in the tile manager and it prevents one user of
a particular document or image from modifying or
deleting that image while another operation or another
access context is still using that document.

Then, at a state 538, the tile manager 192 tests
whether a non-orthogonal rotation has been specified.
For example, a rotation of 30° causes the tile manager
192 go into a special operation that initializes the access
with rotation. That also creates an access context but

after a more involved process. Then the tile manager
192 ends the function 412 at a state 534 with a valid
access context for rotations.

If an orthogonal rotation is specified then the tile
manager 192, allocates a conventional access context at
a state 542. Then the tile manager 192 continues to a
decision state 544 wherein the subimage selection crite-
rion is specified. For instance, the user may request the
“low resolution” option which selects the lowest reso-
lution subimage in the document’s image stack. (In the
context of an image editor, this may be the best solution
during zooming or panning.) The user may also specify
“most available”—i.e., whatever subimage has tiles
currently in cache memory, regardless of the resolution.
In either case, the tile manager 192 proceeds to a state
546 to select the reduced resolution subimage that is
appropriate to that particular choice, i.e., either the one
that has the resolution just greater than what was re-
quested or a subimage whose tiles covering the access
region are currently in cache. Now, at a state 548, the
tile manager 192 adjusts the transformation matrix so as
to now refer to the reduced resolution subimage rather
than the full resolution subimage by adjusting scale
factors.

Alternatively, if the state 544 determines that the full
resolution subimage is selected then the transformation
matrix is unchanged. Proceeding to a state 552, the pixel
and tile limits of the affected image region are calcu-
lated. Knowing these limits, in a state 554, the tile man-
ager 192 creates a temporary directory for the tiles in
that region. This directory is a two-dimensional array
that references the tiles that contains the affected pixels.
Later on the tile manager 192 refers to the region tile
directory because it is specific to tiles that are inside the
affected region.

The tile manager 192 then initializes the image scaling
functions in a state 556. Such scaling functions presently
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used are the subject of applicant’s concurrent applica-
tion entitled “Process for High Speed Rescaling of
Binary Images” (U.S. Ser. No. 08/014,085, filed Feb. 4,
1993, which is a continuation of Ser. No. 07/949,761

filed Sep. 23,1992, now abandoned, which is a continua-
tion of Ser. No. 07/693,010 filed Apr. 30, 1991 now
abandoned.

Moving on, the tile manager 192 tests whether polyg-
onal clipping is required at a state 558. For example, a
request may be made to only read from within a specific
polygonal region. If that is the case, the tile manager
192 initializes the polygonal region clipping functions in
the tile manager 192 by passing in the boundary lists.
The polygonal clipping function translates the bound-
ary lists into edge lists that are used to very efficiently
read out the rows or columns of data.

For example, suppose a “flood” request is made to
turn all of the pixels black within an octagonal region.
One way to accomplish the operation is to specify the
points of the corners of the octagon in image coordi-
nates and pass that in with the initialization of access
context request, which would pass those vertices of the
polygon into the polygonal clipping function set up
function.

Then the tile manager 192 comes to a state 562, where
the tile manager 192 allocates buffers for sealing, if
necessary. This is the situation where intermediate cop-
ies of the rows or columns of data may need to be kept
during the process of scaling. Then the tile manager 192
tests whether the user specified that the region needed
to be saved for undoing, at a decision state 564.

An important feature of the present invention is an
“undo” operation that is integrated with the image
memory management so that only compressed tiles
need to be saved after an undoable edit operation. In
this way, a user can easily and quickly retract an edit
operation that is no longer desired. For example, in
mapping applications, e.g., USGS Quadrangle maps,
the impression of a very large map is desired, but it is
really composed of smaller map quadrants that were
separately scanned, trimmed, adjusted and fit together.
The smaller maps can be visually and logically joined
into a single, large image. Using the present invention, a
user can add a feature, such as a new sub-division, town,

or road, that crosses a map boundary, specifying that
the feature is undoable. Later, the user can remove the

feature modification to the image by Specifying the
undo operation.

Now at a decision state 568, the question is whether
to update the subimages during the operation. If this is
a write operation the tile manager 192 always writes
into the full resolution subimage and the changes
“trickle down” into the low resolution subimages. But
the tile manager 192 has an option as to whether the
lower-resolution tiles are updated during the modifica-
tion operation or later when the tiles are requested for
viewing operations. There are advantages in doing
them both ways.

For example, if the affected region is small, it is more
efficient to update the subimages while progressing
through the operation. In this mode, when the tile is
unlocked, the manager 192 immediately copies the data
down into the next lower subimage tile but only one of
the corners of the tile is affected. Thus, only portions of
the low resolution subimage tiles need to be modified.

If, however, the subimages are not updated during
the operation, then as soon as the image access context
is created all of the subimage tiles that overlap the af-
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fected region are invalidated (they become “not
loaded”). Hence, when the memory manager goes to
access them again at some later time, it has to recon-
struct them from the higher-resolution tiles. The advan-
tage of that is that the memory requirement at any one
moment is half of that of if the tile manager 192 was
updating all of the tiles simultaneously. In this way, the
tile manager 192 sets a flag at a state 570.

In state 572 the tile manager 192 “preserves” the
affected tiles in the affected subimages. Again, it relates
to whether the tile manager 192 is updating subimages
or not. If the tile manager 192 is reading, then it pre-
serves only the tiles in the region of the subimage that
will be accessed.

The ability to “preserve”, or preferentially retain tiles
that will be accessed in the course of the operation, is an
important feature of the present invention that can yield
significantly higher performance in certain situations
where memory capacity limitations are encountered.
When a tile is “preserved” for a particular access opera-
tion, it’s preserve count 360 is incremented. The cache
manager treats tiles with non-zero preserve counts dif-
ferently from tiles with zero preserve count. The cache
manager will discard unlocked unpreserved tiles before
discarding older preserved tiles. (The cache manager
normally discards older or less recently used tiles before
discarding newer or more recently used tiles.)

Then, within the creation of the access context, the
tile manager 192 actually locks down the first row or
column of tiles in the region to establish the cache mem-
ory requirement for this operation, at a state 574. If this
succeeds, then the caller is assured that there will be
sufficient cache space for the entire operation.

The tile manager 192 can perform row or column
accesses. However, the following discussion only refers
to a row access.

Then, at a decision state 576, if the tile manager 192
cannot satisfy the request to lock down that first row of
tiles, the function 412 terminates at the end state 578.
Otherwise, at state 580 the tile manager 192 initializes
the row access functions.

Now, once the tile manager 192 has initialized the
row access function in state 580 the tile manager 192
invalidates the affected subimage tiles if the tile man-
ager 192 is writing to the full resolution subimage at a
state 582. Finally, in a state 584 the tile manager 192
returns the handle or a pointer to this access context to
the user. From then on the user just uses this pointer to
the access context and pointers to input and output
buffers to get the next row or column of data.

FIG. 16 illustrates the access context structure 600.

The structure 600 operates on a high level to hide the
low level operation from the user and contains book-
keeping information along with some memory manage-
ment information. The access context 600 contains the

following information:
602 Pointer to affected doc. Pointer to the document

being accessed.
604 “Subimage Choice” option value. Specifies how

to choose which of the subimages will be read from
or written to.

606 Index of affected subimage. Index of the specific
subimage directly affected by this access context.

608 Access quantum. Specifies “granularity” of
image access.

610 Read/write option. Specifies what type of image
memory accesses to prepare for (e.g., read or
write).
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612 Basic orthogonal rotation value. Specifies the
image rotation in terms of how the bits in each
buffer row are read from or written to the image
(e.g., write buffer row to image column with in-
creasing “y” coordinate).

614 Pixel combination operation. Specifies the pixel
operation performed when combining the buffer
contents and image contents. The results of the
operation are stored in the output buffer when

» reading. The results go into image memory when
writing.

616 Sealer type operation. Specifies the type of scaler
preferred. In other embodiments, this may include
fast low-accuracy scaling and line width-preserv-
ing scaling.

618 “Update overviews” flag. True flag indicates
overview subimages should be updated in the
course of this modification of the full resolution

image. This causes the overviews to be correct
when the access is complete.

620 [/0 buffer width & height. Width (i.e., row
length), total number of rows to process and pitch
in pixels of the input/output bitmap.

622 1/0 buffer pitch (bytes/row). Pitch of the input-
/output buffer in bytes used for multi-row accesses.
The input/output buffer is assumed to be a contigu-
ous memory bitmap at least as large as the access
quanta. It is always read or written in the natural
order (by rows, low address to high). Flipping and

rotation is always done on the image memory side.
624 1/0 buffer bit offset to start of run. Indicates

where the buffer’s x=0 pixel lies within the first
long word of the buffer’s storage space. It must be
between 0 and 31 inclusive. This parameter allows
the caller to match up with arbitrary bit align-
ments.

626 Rows per strip (for AQ_STRIP access quan-
tum). When operating in the AQ._STRIP mode,
this specifies the maximum number of rows per
input/output strip. Fewer rows may be written into
the last strip if the end of the access region is hit
before the strip is filled. ~

628 Number of I/O buffer rows yet to be processed.
This variable is used in the access routines to keep
track of the number of input/output rows remain-
ing for the access operation.

630 Pointer to access function used in “Seq~
BuflmageAccess”. Pointer to the image access
function that is tailored to the specific access mode
requested.

632 Stepping directions for image row and column
indices. The stepping increment each time the in-
put/output buffer is advanced one row and one
pixel. The allowed values are +1, 0, and — l.

634 Pointer to polygon clipping information. Refers
to an edge table structure for controlling polygonal
boundary clipping.

636 Pointer to raster scaling information. Tile level
access information used by lower level modules in
the course of the operation.

638 Pointer to uncompressed data in currently locked
tiles. Pointer to an array of pointers directly into
expanded tile image data. This list is used to accel-
erate sequential access into image memory. As
each new tile row or column is encountered in a

sequential access, this array is set to point directly
into the affected tiles, which have been brought
into cache memory and locked down. In other
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embodiments this could also be used to point to
compressed tiles.

640 Pointer to region tile directory. Pointer to a 2-
dimensional array of pointers to the tiles in the
affected region of the subimage.

642 Next image row & column to be accessed. The
index of the next image row and column to be
accessed in sequential row and column operations.

644 Terminal row & column of access region. Stop-
ping values for sequential row and column opera-
tions.

646 Unclipped extent of access region. Defines the
image region that will be accessed over the course
of the operation.

648 Clipped extent of access region. Defines the por-
tion of the requested image region that actually
falls within the boundaries of the image. Pixels
outside of this rectangle are treated as background
pixels.

650 Clipped image buffer bit offset and length. These
values specify where, in the intermediate image
row or column buffer, the first bit from the clipped
image region is located and how many bits are to be
read from or written to tiled image memory.

652 Number of tile rows & cols in access region.
Number of tile columns and rows in the affected

region.
654 Row & column of currently locked tiles. Column

and/or row index of the currently locked tile or
tiles.

656 Image row & col at origin of first tile in access
region. Pixel coordinates of the upper-left pixel in
the upper-left tile of the affected region.

658 Number of I/O buffer rows held over for next

strip. Number of rows ofoutput data that did not fit
into the previous row and must be returned in the
next and subsequent rows when expanding while
reading image data.

660 Pointer to image tiling/untiling buffer. Points to
a temporary buffer to hold data extracted from
tiled memory prior to scaling when reading from
image memory.

662 Number of bytes in tiling/untiling buffer. Size of
buffer in bytes.

664 Bit offset for tiling/untiling buffer. Bit offset to
the first valid pixel in tiling/untiling buffer.

666 Access transformation matrix. The transforma-

tion matrix mapping input/output buffer pixels
onto the pixels of this subimage.

FIG. 17 illustrates the flow diagram for the “Save
Region for Undo” function 426 as referenced in FIG.
15. The tile manager 192 starts at a state 680, moves to
682 where the tile manager 192 looks the document
handle of the affected document that contains the re-

gion to save for undo. The tile manager 192 can save
multiple regions from multiple documents sequentially
and then undo them all in one operation later. Thus, the
application programmer is allowed to easily undo multi-
ple.region operations with a single undo call at a. later
point.

Moving to a state 684, the tile manager 192 clips the
modified region to the image boundaries since there is
no information to save outside of the image. Then the
tile manager 192 moves to a decision state 686 wherein
the tile manager 192 tests whether the affected region
overlaps the image. If there is no overlap, that is to say,
there is no image data to save, then the tile manager 192
moves to a state 688 where the tile manager 192 unlocks
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the document handle and terminates the function 426 at
an end state 690.

If, however at state 686, the modified region does
overlap the image, the tile manager 192 moves to a state
692 wherein the tile manager 192 allocate memory for
an “undo region header". The undo region header is
similar to a document header, but reduced compara-
tively in the amount of data conveyed therein. The
undo region header will be associated with tile header
information, etc.

The tile manager 192 then moves to a state 694 where
the tile manager 192 allocates memory for “undo region
tile headers”. These tile headers will be used to store

copies of the original versions of the tiles in the affected
region. The tile manager 192 then proceeds to a state
696 wherein the tile manager 192 makes an “undo tile
directory”.

Then the tile manager 192 moves to a loop state 698
where the tile manager 192 loops for each tile row in the
region. The tile manager 192 then transitions to a loop
state 700 wherein the tile manager 192 loops again for
each tile column in the region (Thus, there is a two-di-
mensional loop.)

The tile manager 192 moves from the state 700 to a
decision state 702 where the tile manager 192 checks to
see if that particular tile in the document is loaded in the
image cache memory. If the tile is not loaded, the tile
manager 192 skips to the next tile in the region by re-
turning to the loop state 700. OtherWise, if the tile is
loaded, the tile manager 192 marks the undo copy of the
tile as loaded in a state 704.

Note that there are two tiles. One is the original ver-
sion of the tile that is still associated with the document

and the second is the copy that the tile manager 192 is
going to make and associate with the undo region
header.

At a decision state 706, a test determines whether the
document tile is blank. If the tile is blank (i.e., all back-
ground color), then the tile manager 192 moves to a
state 708 and simply marks the undo tile as “blank” and
returns to the FOR-loop at 700. If the document tile is
not blank, then the tile manager 192 moves to a state 710
and the tile manager 192 marks the undo tile as “not
blank” and moves to a state 712 Wherein the tile man-

ager 192 tests whether the document tile has a valid
copy of compressed data on the disk.

If a valid copy of compressed data does reside on
disk, the tile manager 192 moves to a state 714 and
simply copies the compressed tile disk location and size
information from the document tile header to the undo

tile header. Note that it is possible for a particular tile to
have multiple representations of the same data. That is,
a compressed version and an expanded version of the
tile may exist in cache simultaneously. And a tile may
have a compressed version in cache as well as on the
disk. For undo, the strategy is to store the most compact
version possible. The most compact version with regard
to cache memory usage is to have a copy of the com-
pressed tile on the disk.

If there is no compressed copy of the tile on the disk,
the tile manager 192 proceeds to a decision state 716
wherein the tile manager 192 determines whether an
uncompressed copy of the document tile resides on the
disk. If the test succeeds, the tile manager 192 enters a
state 718 and copies the uncompressed tile disk location
and size information from the document tile to the undo

tile and then returns to the inner FOR-loop at a loop
state 700.
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If, at state 716, there is no uncompressed tile informa-
tion on the disk, the tile manager 192 continues execu-
tion to a state 720 in FIG. 178 wherein the tile manager
l9210cks the compressed version of the document tile.
This locking of the compressed version of the document
tile may cause an expanded version of the document tile
to be compressed and a compressed version created.
Therefore, there is a possibility of an error and that is
checked at the decision state 722.

If there is an error than the tile manager 192 unlocks
the document handle at a state 724 and terminates with
an error condition at the end state 726. If there was no

error in locking the compressed version of the tile then
the tile manager 192 moves from the state 722 to a state
728 wherein the tile manager 192 allocates and locks
down cache memory for a copy of the compressed data
to be associated with the undo header. There is another

error possibility at this point and the tile manager 192
checks for an error at a decision state 730. If there is an

error then the tile manager 192 returns to a state 724 and
thereafter terminates the function 426.

If there was no error in locking cache memory at the
state 730, the tile manager 192 m0ves to a state 732 and
copies the compressed data from the document tile to
the undo tile. The tile manager 192 actually copies the
data that is stored within the tile—i.e., the compressed
image data is copied from the document version to the
undo version. Then the tile manager 192 moves to a
state 734 and unlocks the compressed version of the
document tile. Now, at a state 736, the tile manager 192
unlocks the compressed version of the undo tile and the
tile manager 192 returns to the inner FOR-loop at state
700 on FIG. 17A where the tile manager 192 loops back
to continue the loop for all of the tiles in the affected
region.

When the tile manager 192 is done with all of the tiles
in the affected region, the tile manager 192 moves to a
state 738 where the tile manager 192 links the new undo
header into the undo region list. Thus, multiple regions
can be saved in the undo list and then in one operation,
by calling undo previous raster operation, all of the
operations that had been accumulated, can be undone.
Then the tile manager 192 moves to a state 742 wherein
the tile manager 192 unlocks the document handle and
terminates the function 426 normally.

FIG. 18 shows the load tile to raster image function
(LoadTifi). FIG. 18 is a flow diagram for the part of
LoadTiff that loads tiled images only. In reference to
FIG. 18, the overall process may be understood
whereby an existing file on the disk, i.e., an image file on
disk, is mapped into memory. As described below, the
overall process permits loading large images in a short
time period relative to how long it would take to actu-
ally copy all of the image data into the computer’s mem-
ory. In accordance with the present invention, the pro-
cess shown in FIG. 18 is called the indirect loading
capability. As shown in FIG. 18, the tile manager 192
begins the LoadTIFF function 408 at a start state 750
and moves to a state 752 where the tile manager 192
opens the input file that is on the disk. If there is an error
on the disk, the tile manager 192 prints an error message
at a state 754 and terminates at an end state 756. If no

error exists, then the tile manager 192 moves to a state
758 and checks for the TIFF header structure that iden-

tifies that the input file is in fact a TIFF file. While the
disclosure below discusses a TIFF file, it is to be under-
stood that the process shown in FIG. 18 may be per-
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formed on all types of tiled files, such as a MIL-R~
28002A Type II file or an IBM IOCA tiled file.

Still referring to FIG. 18, if the tile manager 192 finds
something other than TIFF header structure at state
758, the tile manager 192 moves to state 754 to indicate
an error, and then exits at the end state 756. If the tile
manager 192 finds a TIFF header structure while at
state 758, the tile manager 192 move to a state 760,
wherein the tile manager 192 counts the number of
subimages in the TIFF file, one or more of which may
exist in a TIFF file.

Next, the tile manager 192 moves to a state 762 and
reads the full resolution subimage information which
constitutes the basic information about the image, e.g.,
the image width and height, the size of the tiles, the
compression format that is used, and the resolution. If
the basic image information is not present and in proper
form, the tile manager 192 moves to the state 754 to
indicate an error. 0n the other hand, if no error is indi-
cated at state 762, the tile manager 192 moves to state
764, wherein the tile manager 192 creates a skeleton
document and locks that document. The skeleton docu-

ment at this point contains no cache memory but only
tile directory and tile headers that represent in a virtual
sense the tiles that compose the image.

The tile manager 192 next moves to a state 766 where
the TIFF full resolution subimage tile information is
loaded into the tile headers for the full resolution subim-

age, as more fully disclosed below in reference to FIG.
19. Next, the tile manager 192 moves to a loop state 768
where there is a loop for each of the remaining lower
resolution subimages. While in this loop, the tile man-
ager 192 accesses a decision state 770, wherein the tile
manager 192 determines whether

fr/Ir= 2n (1)

where

fr is the full resolution subimage resolution in pixels
per inch; and .

lr is the particular low resolution subimage resolution
in pixels per inch.

If the ratio of fr to lr is a power of two, then a success-
ful test is indicated, and the tile manager 192 moves to
a function 424 and loads the TIFF subimage tile infor-
mation into the tile headers for that particular subimage
level. On the other hand, if the ratio of fr to lr is not a
power of two, as indicated at the decision state 770, then
the tile manager 192 ignores the particular subimage
under test and returns to the state 768 until all of the

subimages in the file are processed. When all subimages
have been processed, the tile manager 192 moves to a
state 772 and unlocks the document handle of the newly
created document and terminates normally at an end
state 756.

Now referring to FIG. 19, the function 424 whereby
the tile manager 192 loads the TIFF subimage tile infor-
mation into tile headers is shown. More particularly, the
tile manager 192 begins at a start state 780 and moves to
a state 782 wherein the tile manager 192 reads the num-
ber of tiles in the subimage. Then the tile manager 192
moves to a state 784 wherein the tile manager 192 allo-
cates temporary buffers for the tile mode offset and byte
count lists. These three lists have one entry each per tile
in the subimage. If the tile manager 192 cannot properly
allocate the temporary buffers, then the tile manager
192 exits with an error condition at an end state 786.

Upon successful allocation of the buffers, the tile
manager 192 moves to a state 788 where the tile man-
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ager 192 reads the tile offset and byte count information
from the disk file into the allocated buffers. In the TIFF

file standard, all tiles are stored in the same mode (e.g.,
compressed). However, other tiled file formats (e.g.,
MIL-R-28002A Type II) specify the storage mode for
each tile. The tile mode simply states whether a particu-
lar tile is stored in compressed form, in uncompressed
form, or whether the tile is all foreground or back-
ground color. The tile manager 192 next moves to a
state 790 where the tile manager 192 fills in the tile
storage mode list. At state 790, the tile manager 192
synthesizes the tile mode information that the TIFF file
does not contain itself. Then the tile manager 192 moves
to the function 425 wherein the tile manager 192 stores
the information in the subimage tile headers (FIG. 10),
and terminates at an end state 786.

Now referring to FIG. 20, the function 425 whereby
the tile manager 192 stores file information in tile head-
ers is shown. The tile manager 192 begins this process at
a start state 800 and moves to a state 802 where the tile

manager 192 locks the document handle of the docu-
ment for which the tile manager 192 is loading the
subimage for. This function is performed once per
subimage in the file and there may be multiple subim-
ages in the file. Consequently, the locking of the docu-
ment handle function can be performed several times in
the process of loading a single document.

As shown in FIG. 20, in the event that an error oc-
curs in locking the document handle the tile manager
192 terminates at an end state 804. On the other hand, if
the tile manager 192 successfully locks the document
handle at state 802, the tile manager 192 moves to a state
806 where the tile manager 192 determines whether the
number of tiles in the file matches the number of tiles

expected for the particular subimage in the particular
file or document. If a mismatch exists between the ac-

tual and expected number of tiles, the tile manager 192
moves to a state 808 to print an error message and then
terminates at the end state 804. On the other hand, in the
event that the number of actual tiles matches the num-

ber of expected tiles, the tile manager 192 moves to a
loop state 810 where the tile manager 192 enters the first
part of a FOR-loop for each tile row. Still referring to
FIG. 20, the tile manager 192 moves from state 810 to
state 812 for each tile column. Accordingly, it will be
understood that the tile manager 192 is processing a
two-dimensional array at the states 810, 812.

In accordance with the present invention, the tile
manager 192 processes, at states 810, 812, all of the tiles
required to cover the particular subimage. Next, the tile
manager 192 moves to a decision state 814 wherein the
tile manager checks the value in the tile mode entry to
determine whether the tile data is compressed. If the tile
data is compressed, the tile manager 192 moves to a
state 816 and stores the file offset and byte count in the
compressed tile handle. The compressed tile handle is a
part of the tile header structure, and the file offset is the
location of the compressed data for the particular tile
within the file as measured by a byte offset from the
start of the file. The byte count represents the number of
bytes of compressed data associated with the particular
file starting at the offset that is provided at the tile.
From state 816, the tile manager moves to state 828,
wherein the tile manager sets a flag to indicate that the
particular tile is not blank.

In the event that the tile manager determines at state
814 that the tile data is not compressed, the tile manager
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192 moves to a decision state 818 where the tile man-

ager 192 checks to see if the data is uncompressed. If the
data is uncompressed on the disk, the tile manager 192
stores the file offset byte count information in the un-
compressed tile handle in state 820. From state 818, the
tile manager moves to state 828, wherein the tile man-
ager sets a flag to indicate that the particular tile is not
blank.

If the tile manager 192 determines at state 818 that the
tile data is not uncompressed, then the tile manager 192
moves to state 822, wherein the tile manager 192 checks
to see whether the tile is all foreground at a state 822.
For example, in a black and white drawing engineering
document, foreground color is black, so the tile man-
ager 192 treats a foreground as a black tile. If the tile is
determined to be a foreground tile, the tile manager 192
proceeds to state 824, wherein the tile manager 192
creates an all foreground tile, and then sets the flag as
not blank at state 828. As an example, if the image being
processed is a color image, the tile manager 192 could
fill the tile with the foreground color at the state 824.

On the other hand, if the tile is not all foreground, the
tile manager proceeds to state 826 to determine whether
the tile is all background. As discussed above, binary
images usually have background pixels which are white
or zero value. If a particular tile is blank, the tile man-
ager 192 moves to a state 828 where the tile manager
192 sets the blank flag to indicate that the tile is indeed
a blank tile. If at the state 826 the tile manager 192
determines that the tile is not all background, the tile
manager 192 terminates with an error at an end state
830. In other words, having determined at state 822 that
the particular tile was not all foreground, the only possi-
bility left at state 826 is that the tile is all background.
Consequently, a determination at state 826 that the tile
is not all background indicates an error.

From state 828, the tile manager 192 moves to a state
832 and sets the loaded flag to true indicating that a
valid image information set has been associated with the
particular tile. The tile manager 192 completes the loop
described above for each tile. After having processed
each tile in the particular image, the tile manager 192
exits the two FOR-loops and moves to a state 834 where
the tile manager 192 unlocks the document handle and
then terminates normally at the end state 830.

Now referring to FIG. 21, the tile manager 192 per-
forms a function which for purposes of the present
invention will be termed “Undoable Raster Operation”.
The function shown in FIG. 21 is performed by the tile
master 192 in the function “Begin Undoable Ras-Op”,
and is a relatively simple function, the purpose of which
is to clear the undo region list. More particularly, in the
process shown in FIG. 21, the tile manager 192 frees all
of the undo regions associated with the previous opera-
tion to prepare for a new undo operation. Indeed, the
present invention could be configured to have multiple
level undo, i.e., the system of the present invention
could undo two or three or more operations going into
the past and also to be able toredo all of those opera-
tions at the user’s choice. For example, the last three
operations could be undone and then the oldest of those
operations redone.

In specific reference to FIG. 21, the tile manager 192
begins at a start state 840 and then proceeds to loop state
842, in which the tile manager 192 executes a FOR-loop
for each undo region in the current list. The tile man-
ager 192 loops to a state 844 where the tile manager 192
frees all of the memory associated with that undo re-
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gion. This may include freeing compressed data that is
stored in cache or expanded data that is stored in cache
and associated with the undo region. When the tile
manager 192 finishes all of the regions, the tile manager
192 terminates at an end state 846.

Now referring to FIGS. 22A and 22B, there is shown
the control flow for the ReadRowToRow function 414

which produces one or more rows of scaled image data
each time it is performed. It is one of the basic image
access functions. It should be understood that the tile

manager 192 can also read columns of an image, etc., so
as to produce a rotated output.

The tile manager 192 enters the function 414 by mov-
ing to a start state 850 and proceeds to a decision state
852 where the tile manager 192 checks for a region
overrun. In other words, when the access context is

created, the region that is going to be read in the course
of the overall operation is specified, and in the event
that the read row to row subfunction is accessed too

many times, the region will be overrun. Any such over-
run is detected by the tile manager 192 at state 852 and
reported at state 854. In the event of an overrun, the tile
manager 192 terminates at an end state 856.

If, on the other hand, no region overrun has oc-
curred, the tile manager 192 moves to a decision state
858 where the tile manager 192 checks to see whether
old results are carried over to the new strip. Such a
carryover could occur when, for example, raster data is
being enlarged by expanding one or more lines from the
image. For example, when raster data is being enlarged
by 4X, each line of input generates four (4) lines of
output. Accordingly, three (3) output rows could be
carried over for later strips. With this eventuality in
mind, the tile manager 192 ascertains whether any data
is being carried over and if so, the tile manager 192 uses
the carried-over data before generating a new row.
Consequently, if there is new data carried over, the tile
manager 192 moves to a state 860 where new rows are
generated from the carried over data.

Next, the tile manager 192 moves to a state 862 where
the tile manager 192 checks to see if a particular strip is
full. For purposes of the present invention, a strip is a
collection of rows, i.e., a set of numbers arranged in
rows As indicated at state 862, if the strip is full, then
the tile manager 192 ends at the end state 856.

If the strip is not full and the tile manager 192 has
used up all the carried over data, then the tile manager
192 moves to a decision state 864 where the tile man-

ager 192 checks for ghosting, i.e., the skipping of some
rows of data in order to produce a low quality image
while panning or zooming. If ghosting is in effect, the
tile manager 192 moves to state 866, wherein the tile
manager 192 calculates the number of blank lines to
create. The system then moves to a state 868 where the
tile manager 192 writes the blank lines to the output
strip buffer.

From state 864, if no ghosting was detected, or state
868, if ghosting is not in effect, the system moves to
state 870 where the tile manager 192 again checks to see
if the strip buffer is full. If it is, the tile manager 192 exits
at the end state 856. If it is not, the tile manager 192
checks to see that there are still input rows to read in a
decision state 872. If there aren’t, the tile manager 192
has reached the end of the specified image region, and
proceeds to state 874 to obtain another row of output
data by flushing the sealer buffers. In accordance with
the present invention, in the state 874 the tile manager
192 sets a flag that is subsequently passed down to the
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sealer functions to flush intermediate results from the

sealer functions. This is the case when for reducing
data, i.e., if a plurality of rows is being combined into
one output row. That is how the last output row is
produced.

From state 874, the system moves to state 894, shown
in FIG. 228. On the other hand, in the event that there
are no unread image rows at state 872, the system moves
to decision state 876, where the system determines
whether the row is outside of the valid image bound-
aries. If yes, the system moves to a state 878, where the
tile manager 192 substitutes blank lines for the input.
The tile manager proceeds from state 878 to a state 894,
shown in FIG. 22B. If the answer to the decision at state

876 is no, the, system moves to a decision state 880,
shown in FIG. 223, to check whether the row is con-
tained in the currently locked tile row.

At state 880, the tile manager 192 moves down the
image, and the system sequentially passes through sue-
cessive tile rows. Each tile contains, e.g., 512 rows, so
when a particular tile row is locked it stays locked until
all 512 image rows in that tile row have been read. Each
time the system arrives at a new row it tests to see that
the row is contained in the currently locked tile row. If
it is not, the system moves to the state 430 (function
ExpTileUnlock) to unlock the old tile row and lock
down the new tile row (at state 428). In addition, the tile
manager 192 has to unpreserve the row of tiles that was
just unlocked. Unpreserving them tells the memory
manager that those tiles are no longer needed for this
access operation and it can do what it wishes with them.

Next, the system proceeds to a decision state 882 to
determine whether any tiles are blank. If they are, the
tile manager 192 substitutes a reference to a “common
blank tile” and that common blank tile is used, as indi-

cated at state 884. All tiles that are blank are mapped
onto this common blank tile. Consequently, the tile
manager 192 uses less image memory.

From state 884, 882, or 880, as appropriate, tile man-
ager 192 proceeds to a decision state 886 to check for
polygonal clipping. If the tile manager 192 is doing
polygonal clipping then each input row of data is
clipped as appropriate for that polygon in states 888 and
890. The loop allows multiple clipped regions within
each row. If there is no clipping, then the tile manager
192 simply copies the entire input row from the image
into the input row buffer in a state 892. Then the tile
manager 192 move to a state 894 where the tile manager
192 passes these input rows through the sealer if the tile
manager 192 is scaling the data. Finally, the tile man-
ager 192 takes the results of the sealers and copies that
information to the output strip buffer if necessary at a
state 896. The tile manager 192 then returns to the state
870 (shown in FIG. 22A) where the tile manager 192
continues the process of retrieving input rows and seal-
ing them until the tile manager 192 has filled the output
strip buffer. The system then moves to the termination
condition at the end state 856.

Now referring to FIG. 23A, a process which will be
referred to as “Write Rows to Region” will be de-
scribed. The tile manager 192 starts at state 900 and
moves to state 902 where the tile manager 192 tests for
region overrun. Region overrun can occur when the
calling function attempts to write more rows to the

image than was specified when the access context was
created. If the region was Overrun, the tile manager 192
reports an error at state 904 and terminates with an
error at state 906. If there is no region overrun, the tile
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manager 192 moves to the FOR-loop in state 908 where
the tile manager 192 loops for each input row in the
input buffer, which is the buffer that is passed in by the
calling function. It contains the data that is to be pro-
cessed and written to the image. The loop is executed
for each row and moves to state 910 where the input
data is passed through the sealer functions and put into
a temporary buffer. If the sealer does not always pro-
duce an output row, as is the case when reducing the
resolution, a plurality of input rows may have to be
combined to produce a single output row. So, at the
state 912, the tile manager 192 determines whether an
output row was produced after the input row is scaled.
Ifnot, the tile manager 192 goes back to the loop at state
908 and continues the process as described. On the
other hand, when the tile manager determines at state
912 that an output row was produced, the tile manager
192 moves to state 914 which is a FOR-loop for each
copy of the scale row to write to the image. It may be
the case that more than one copy of the scaled row
needs to be written into image memory. This is the case
when the tile manager 192 is expanding the input image
data. It may be that one input row is replicated four
times to get a 4X expansion factor.

Next, the tile manager 192 moves to state 916 where
the tile manager 192 checks to see if the destination row
index is outside of the image’s clipping boundaries. If so,
the tile manager 192 simply ignores it and moves back
to state 914. If it is within the clip boundaries the tile
manager 192 moves to state 918 where the tile manager
192 determines whether the destination row is in the

currently locked tile row. If it is not, the tile manager
192 moves to state 920 where the tile manager 192 un-
preserves and unlocks the old tile row that is currently
locked. The tile manager 192 then moves to state 922 to
determine whether the update overview flag is true.
This is an option that is specified in the 10 access context
and it determines how lower-resolution tiles are up-
dated when the full resolution subimage is modified. If
the update overview flag is true, then the tile manager
192 moves to state 924 where the tile manager 192 un-
preserves the low resolution tiles that will no longer be
needed.

After the system has unpreserved the low resolution
tiles that are no longer needed at state 924, the system
moves to state 926 and locks down the new tile row.

Only the full resolution tile row is locked at this level.
The low resolution tiles are actually updated when the
call to unlock the old tile row is made.

Next, the tile manager 192 moves to state 928 to de-
termine whether an error was detected when the new

tile row was locked. If so, the system terminates with an
error condition at state 906. If there is no error or if in

state 918 the tile manager 192 finds that the destination
row is currently in the locked tile row, the tile manager
192 moves to state 930 in FIG. 233. At state 930, the tile
manager 192 determines whether polygonal clipping is
activated. If it is, the tile manager 192 computes the clip
points for the current image row, as indicated at state
932, which results in a list of clip point pairs.

The tile manager 192 then moves to state 934,
wherein the tile manager 192 conducts a FOR-loop for
each of the clip point pairs that the tile manager 192
computed in state 930. As shown in FIG. 23B, the tile
manager 192 loops to state 936 where the tile manager
192 copies pixels from a sealer output buffer to the
image row between each pair of clip points. When that
loop terminates, the tile manager 192 returns to state
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914 in FIG. 22A. 0n the other hand, if the tile manager
determines at state 930 that polygonal clipping is not
active, the tile manager 192 moves to state 938, wherein
the tile manager 192 copies the sealer output buffer
pixels to the image row without clipping. The tile man-
ager 192 then proceeds to state 914.

Now referring to FIG. 24, the tile manager starts at
state 950 in the end access function shown in FIG. 24

and proceeds to state 952. At state 952, the system
cleans up after row or column access functions by free-
ing buffers used by the row or column access functions.

Next, at state 954, the tile manager 192 unlocks the
last row or column of tiles accessed. Then, the system
moves to state 956 where the tile manager 192 un-
preserves any tiles in the region that are still preserved.
The system may perform the functions at states 954, 956
when an operation was aborted in mid-progress and it
cleans up after those partially completed operations.

At state 958, the tile manager 192 cleans up after the
polygonal clipping function. If there was polygonal
clipping involved in this access context the tile manager
192 has to free the buffers that contain the polygon edge
information.

Next, the system moves to state 960, where the tile
manager 192 frees scaler buffers, the temporary tile
directory, etc.. From state 960, the system moves to
state 962, wherein the tile manager 192 unlocks the
document handle to indicate to the memory manager
that the access context no longer is referring to the
particular document associated with the document han-
die.

The tile manager 192 next moves to state 964 where
the memory that was used to store the data for the
access context is freed. Then, the system ends the clean
up function at state 966.

Referring now to FIGS. 25A,B, a function is shown
which, for purposes of the present invention, will be
termed the “Undo Previous Raster Operations”. The
tile manager 192 starts at state 970 and moves to state
972, wherein the tile manager determines whether any
undo regions exist in the list or if the list is empty. If no
regions exist then the tile manager 192 moves to end
state 974 and terminates normally.

If the tile manager 192 determines at state 972 that
“undo” regions do exist, the tile manager 192 moves to
state 976, where the tile manager 192 enters a loop for
each undo region in the list. In this loop, the tile man-
ager 192 moves to state 978 where the tile manager 192
locks the affected document handle. The document
handle that is locked is the one that was stored in the

undo region header that tells where that particular undo
region came from. The tile manager 192 moves from
state 978 to state 980 where the tile manager 192 saves
the current document region to support redo (i.e. an
“undo” operation following by another “undo” opera-
tion). Then the tile manager 192 moves to state 982 to
invalidate the affected tiles in, the lower-resolution
subimages. The strategy represented by states 980, 982
in FIG. 25A is to save the minimum amount of informa-

tion that is needed to reconstruct the image, which
means the tile manager 192 saves only the affected tiles
in the full res subimage.

Next, the system moves to a loop indicated by the
states 984, 986. In this loop, for each tile, the tile man-
ager 192 moves to state 988, discarding the document
tile image data. Then the tile manager 192 moves to
state 990 to determine whether the undo tile is loaded. If

it is not loaded, the tile manager 192 moves to state 992
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where the tile manager 192 marks the document tile as
“not loaded”. If the tile is determined to be loaded at

state 990, the tile manager 192 moves to state 994 to
mark the document tile as “loaded”. From state 994, the

system moves to state 996 in FIG. 25B.
At state 996, shown in FIG. 25B, the tile manager 192

determines whether the undo tile is marked as blank. If

it is, the tile manager 192 moves to state 998, wherein
the tile manager marks the document tile as blank, and
then the system loops back to state 986. If the undo tile
is determined to be not blank at state 996, the tile man-

ager 192 move to state 1000. At state 1000, the tile man-
ager 192 checks to see if the undo tile points to com-
pressed data on the disk. If it does, the tile manager 192
moves to state 1002 and copies the disk location and size
information about the compressed data into the docu-
ment tile header and loops back around. If there is no
compressed data on the disk, then the tile manager 192
moves from state 1000 to state 1004, wherein the tile

manager 192 determines whether uncompressed data
exists on the disk associated with the undo tile.

If so,the tile manager 192 moves to state 1006,
wherein the file manager 192 copies the disk location
and size information about the uncompressed data into
the document tile header and loops back to state 986. If
the system determines at state 1004 that there is no
uncompressed data on the disk, the tile manager 192
proceeds to state 1008, wherein the tile manager 192
determines whether the undo tile “points” to uncom-
pressed data in cache memory. If it does, the tile man-
ager 192 moves to state 1010, wherein the tile manager
192 copies the pointer to the uncompressed data from
the undo header to the document tile header.

From state 1010, the system returns to state 986. If no
uncompressed data exists in the cache, however, as
determined in state 1008, the tile manager 192 stores a
pointer to the compressed data in cache in the docu-
ment tile header and returns to state 986.

Referring back to FIG. 25A, when the tile manager
192 has completed the loop described above, the system
moves to state 1014, unlocking the document handle.
From state 1014, the tile manager 192 proceeds to state
1016, wherein the tile manager 192 frees the memory
associated with the undo header. The tile manager 192
then moves to state 976. Thus, the system returns to
state 976 for each undo region in the list. As intended by
the present invention, the tile manager 192 continues
the loop for all of the regions in the list. The undo re-
gions are restored in “last-in-first-out” order. At the
completion of the looping process described above, the
system moves to state 974.

Now referring to FIG. 26, when the tile manager 192
ends the cache management, the tile manager 192 starts
the process shown in FIG. 26 at state 1020 and proceeds
to state 1022 wherein the system frees the compression
buffer. From state 1022, the system proceeds to state
1024, wherein the system frees the common blank tile.
Next, the system moves to state 1026 to free the tile
cache memory. The system then ends the process
shown in FIG. 26 at state 1028.

FIG. 27 provides an explanation of the function exp
tile lock. The tile manager 192 starts at state 1040 and
moves to state 1042 where the tile manager 192 enters a
FOR-loop for each tile row to be locked. In accordance
with the present invention, the system in the exp tile
lock function is capable of locking down all the tiles in
a two dimensional region.
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For each tile in the specified region, the system
moves to state 1046, wherein the tile manager 192 deter-
mines whether the particular tile is blank. To make this
determination, the system examines flags in the tile
header itself or checks the image data for that tile to
determine if there are any non-background pixels. If it is
not a blank tile, the tile manager 192 move to state 434
where the tile manager 192 locks the uncompressed
version of the tile. Then the tile manager 192 proceeds
to state 1050, wherein the tile manager 192 determines
whether an error had occurred in the process of creat-
ing the uncompressed version of the tile. If no error is
found at state 1050, the tile manager 192 continues to
loop to the next tile in the region by returning to state
1044. If an error did occur, as determined at state 1050,
the system proceeds to state 430 to unlock previously
locked tiles, and then ends at state 1056.

In the event that the tile manager 192 at state 1046
detected that the particular tile was a virtual blank tile,
i.e., a tile that exists only by virtue of the fact that there
is a tile directory entry for that tile, the tile manager 192
take no action, other than to loop back to state 1044 for
further processing.

FIG. 28 illustrates the control flow for the “lock

expanded tile” function 434 wherein the tile manager
192 takes a single tile and locks the expanded version of
the tile in the image data cache 194. The tile manager
192 enters the function 434 at a start state 1060, and
proceeds to a decision state 1062 wherein the tile man-
ager 192 tests whether the tile is marked as “loaded”. As
already mentioned, a loaded tile is one that either con.
tains or references valid image data, is either uncom-
pressed or compressed image data, and it either resides
in cache memory or on the disk. If the tile is not loaded,
the tile manager 192 moves to a function 436 wherein
the tile must be created from higher resolution tiles
which are loaded. Afterwards, the tile manager 192
determines if there was an error in a decision state 1066.

If there was an error, the tile manager 192 terminates
the function 434 at an end state 1068 and reports the
error condition. Otherwise, if there was no error in

creating the tile, the tile manager 192 continues, moving
from the state 1066 to a decision state 1070.

The tile to be locked is now loaded so the tile man-

ager 192 tests whether the uncompressed version of the
tile is in cache memory. The objective of the function
434 is to guarantee that there is an uncompressed ver-
sion of the tile in cache memory. Now, if the uncom-
pressed version is not in the cache, the tile manager 192
proceeds to a decision state 1072 to determine whether
the selected tile is a blank tile.

If the tile is blank, the tile manager 192 proceeds to a
state 438 to create a blank tile. Note here that the func-

tion ExpTileLock 428 (FIG. 27) will detect a blank tile
before calling the function 434 if it can take advantage
of using a common blank tile at a higher level. In other
words, if the tiles are locked for reading only, i.e., the
image data will not be modified in any way, then all
blank tiles can refer to the same section of blank mem-

ory. However, if the tiles are locked for writing, all tiles
must have their own memory because different image
data can be written to the different tiles.

At this point, state 438, memory has presumably been
allocated for a blank tile. Moving to a state 1074, the tile
manager 192 tests whether there was an error and
moves to the end state 1068 if there was an error.

Returning in the discussion to the decision state 1072,
if the tile is not blank, then the tile manager 192 transi-
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tions to a decision state 1076 and tests whether there is

a uncompressed version of that tile on the disk. If the
uncompressed version is on disk, then the tile manager
192 reads that uncompressed version from the disk into
cache memory at a state 1078. Then the tile manager
192 moves to the state 1074 to test for errors.

If, at the state 1076, there is not an uncompressed
version on the disk, the tile manager 192 moves to the
function 440 so as to create the tile from the compressed
version. The compressed version can be either in cache
memory or on the disk, and this is handled by the func-
tion 440. Again, the tile manager 192 checks for an error
at the state 1074.

Now, assuming that there was no error found at the
state 1074, the result is that the tile manager 192 has an
uncompressed version of the tile in cache. Therefore,
the tile manager 192 proceeds to a decision state 1080 to
verify that the uncompressed version is valid. It is some-
times the case that the uncompressed version of a tile is
locked by one access context and then for come reason
it is invalidated by another access context. This happens
when the first access context is reading an uncom-
pressed version of a tile from a lower resolution image,
and another access context is actively modifying the full
resolution subimage with a particular setting ofparame-
ters. If the tile not valid, the function 434 is terminated
at the end state 1068.

Alternatively, a valid tile that was determined at the
state 1080 causes the tile manager 192 to increment the
uncompressed data lock count for that tile at a state
1082. The lock count starts out at zero for an unlocked

tile and can increment as high as necessary. However,
the lock count will be decremented once for each un-

locking operation. It is important to match the number
of times a tile is locked with the number of times the tile

is unlocked. Otherwise, the tile would end up in a per-
manently allocated (unfreeable), locked state.

Proceeding to a decision state 1084, the tile manager
192 tests whether the tile is locked for writing or for
reading. If the tile manager 192 locked the tile for writ-
ing, the execution of the function 434 continues to a
state 1086 wherein the “blank” status flag is invalidated.
The blank status flag is actually a combination of two
flags. One that says that the tile is blank or not blank and
the second flag that says if the first flag is valid or not.
The reason for two flags is that the way to detect that a
tile is blank is by searching through all the pixels in that
tile. To do so every time the file is accessed would be
wasteful so occasionally, truly blank tiles won't be han-
dled as blank tiles. Hence, there is a second flag that is
set, in the state 1086, when the first flag is invalid. The
second flag indicates that the tile must later be examined
to determine whether it is still blank.

The tile manager 192 next moves to a state 1088 to
invalidate the disk-resident, uncompressed version of
the tile, if one exists. This is because the tile manager
192 will modify the cache-resident version of the tile.
To synchronize the cache-resident and disk-resident
versions, the disk-resident version is invalidated. Then,
at a state 1090, the tile manager 192 invalidates and frees
the compressed versions if they exist.

A compressed version of the tile may be in cache or
on the disk and, at the state 1090, the tile manager 192
cleans both out of memory. Thus, at the end of the
“lock for writing” operation, the only valid version of
the tile is the expanded version in cache, which at this
point is locked. Then the tile manager 192 continues to
a state 1092 to move the newly locked, expanded ver-

Microsoft Corp. Exhibit 100.5



APPENDIX C

Microsoft Corp.   Exhibit 1005

APPENDIX C

5,263,136
35

sion of the tile to the front of the “most recently used
(MRU)” list of uncompressed tiles.

The MRU list is a doubly-linked list wherein, starting
at the beginning, the tile is found that was most recently
used, then the next most recently used, and so on, the
last tile was used the longest time ago. That list is used
by the cache manager to determine which tiles are least
likely to be used again as a second level of criteria.

Finally, the tile manager 192 terminates the LockEx-
pHandle at the end state 1068.

FIG. 29 illustrates the control flow for the “unlock-

ing expanded image tile group” function 430. The func—
tion 430 is just the reverse of lock expanded image tile
group. In other words, there is a region of locked tiles
which must be unlocked because the access to the tiles

is complete. Generally, the two functions, ExpTileLock
and ExpTileUnlock are called for a row or column of
image data rather than a region but an entire region
lock/unlock is possible.

The tile manager 192 enters the function 430 at a start
state 1110. The loop states 1102 and 1104 represent the
beginning of nested FOR-loops. That is, the outer loop,
beginning at the state 1102, unlocks a row of tiles, and
the inner loop, beginning at the state 1104 unlocks a
column of tiles. Moving from the state 1102, to the state
1104, and then to the function 432, the tile manager 192
unlocks the uncompressed version of the tile. When all
the tiles in the region are unlocked, the tile manager 192
terminates the function 430 at an end state 1108.

Now referring to FIG. 30, the tile manager 192 enters
the UnlockEpoandle function 432, referred to in FIG.
29, at a start state 1110. The tile manager 192 proceeds
to a decision state 1112 to test whether the uncom-

pressed version of the currently selected tile is in fact
locked, i.e., whether the lock count is non-zero. If the

tile is not locked, the tile manager 192 exits the function
432 at an end state 1114.

If, at the state 1112, the tile is found to be locked, the
tile manager 192 moves to a state 1116 to decrement the
lock count. Thereafter, the execution continues to a

decision state 1118 wherein the tile manager 192 tests
whether the “update overview” flag is set true. If the
flag is set, the tile manager 192 moves to a state 1120 to
update the corresponding lower-resolution tiles. In the
process of modifying tiles, the tile manager 192 locks a
tile down in the image data cache to write to it. When
the tile is unlocked, that is a signal to the memory man-
ager to update the lower resolution tiles that correspond
to the higher resolution tile. Thus, the image data in the
high resolution tile being unlocked is copied down into
the lower resolution tiles, all the way down to the bot-
tom of the image stack. '

Once the lower resolution images are modified, or if
the overviews are not being updated, the tile manager
192 proceeds to a decision state 1122 to test whether the
lock count is exactly zero. If the lock count is not zero,
the tile manager 192 terminates the function 432 at the
end state 1114.

Otherwise, the tile manager 192 moves to a state 1124
to clear the "cache" collection delay” flag. The cache
collection delay flag is set by the tile manager after
unsuccessfully trying to reduce the expanded memory
usage of the cache file. It is cleared in the function 432
because there is now the possibility of freeing the tile
that was just unlocked. In other words, the tile can be
removed from the cache to create some space. This flag
prevents the’tile manager or the cache manager from
making repeated, unsuccessful attempts to create space.
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After the tile manager 192 clears the flag, execution
proceeds to a decision state 1126 to determine whether
the uncompressed version of the tile is invalid. As ex-
plained hereinabove, it is possible for one access context
to have the expanded version of the tile locked down
and another access context to invalidate the data in that

tile. The tile must remain in memory until the first ac-
cess context unlocks the tile. Once it is unlocked and the

lock count is decremented to zero, if the tile is invalid,

the tile manager 192 moves to a state 1128 to free the
uncompressed tile version, or remove the tile from the
image data cache. In either case, the tile manager 192
terminates the function 432 at the end state 1114.

FIG. 31 illustrates the control flow for the “create tile

from higher-resolution tiles” function 436 referred to in
FIG. 28. The tile manager 192 begins the function 436 at
a start state 1140 and proceeds to a decision state 1142 to
determine whether the tile is in fact already loaded, in
which case no further processing is needed and the tile
manager 192 terminates the function 436 at an end state
1144. Assuming that the tile is not loaded, the tile man-
ager 192 moves to a decision state 1146 to test whether
a higher resolution subimage exists.

This function is called only for lower resolution
subimages where the tile manager 192 can create the
lower-resolution tiles from higher-resolution tiles.
Hence, higher-resolution subimages must exist for the
function to succeed. If no higher-resolution subimages
exist, the tile manager 192 reports the error and tenni-
nates the function 436 at the end state 1144.

If the higher-resolution subimage does exist, the tile
manager 192 proceeds to a state 1150 to calculate the
indices of, or locate, the four higher-resolution tiles that
reduce to this tile. There are four tiles involved because

the preferred resolution step between subimage levels is
two in the presently preferred embodiment. Thus, since
there are two dimensions, four higher-resolution tiles
are required to produce each next lower resolution tile.

Thereafter, the tile manager 192 enters a FOR-loop at
a loop state 1152. For each of the four higher-resolution
tiles, the tile manager 192 tests whether the tile is loaded
in the image data cache, at a decision state 1154. If the
tile is not loaded, then the tile manager 192 moves to a
state 1156 wherein a recursive call is made to the “load

subimage tile” function to create the corresponding
higher-resolution tile from yet higher-resolution tiles.
This case occurs if a the tile is a few layers down in the
image stack and the tiles in all but the full resolution
subimage had been invalidated. Therefore, the function
436 invokes itself to work all the way back up to the top
level, recreate the higher-resolution tiles and then work
back down to the tile of interest. Only higher-resolution
tiles that map to the particular lower-resolution tile
need be loaded

Assuming that all the higher-resolution tiles have
been loaded, the FOR-loop terminates and the tile man-
ager 192 proceeds to test whether all of the higher-reso-
lution tiles are blank. If all four of the high resolution
tiles mapped to this low resolution are blank, the tile
manager 192 transitions to a state 1160 to mark the low
resolution tile as blank. The tile manager 192 does not
create any image data for the blank, lower-resolution
tile. The tile manager 192 and terminates the function
436 at the end state 1144.

If, however, one or more of the higher-resolution
tiles is not blank, the tile manager 192 moves to a state
1162 to make a determination as to whether it is faster to

create the lower-resolution tile by scaling the com-
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pressed version of the higher-resolution tiles or the
expanded version of the higher-resolution tiles. An al-
gorithm is used at the state 1162 to decide which is
faster and depends on the machine that the program is
running on, and other considerations. If it is faster to
scale the compressed data the tile manager 192 moves to
the function 442 to create the compressed, lower-reso-
lution tile directly from the compressed higher-resolu-
tion tiles. ,

Now, if it is determined that it is faster to scale the

expanded version of the data, the tile manager 192
moves from the state 1162 to a state 1166 to allocate

memory for the uncompressed version of the lower-
resolution tile. From the state 1166, the tile manager 192
moves to the beginning of a FOR-loop at a loop state
1168 wherein for each of the higher-resolution tiles the
tile manager 192 scales the expanded version of the
higher-resolution tile directly into the proper position in
the lower-resolution tile using the function 444. When
the tile manager 192 has scaled each of the four high
resolution tiles, the tile manager 192 has completed the
creation of the expanded version of the low resolution
tile.

The tile manager 192 then proceeds, from either of
the states 1168 or 442 to a decision state 256 wherein the

tile manager 192 determines if an error was incurred in
that process. If there was an error, the tile manager 192
moves to a state 1172 to report the error. From either of
the states 1170 (if no error) or 1172, the tile manager
terminates the function 436 at the end state 1144.

FIG. 32 contains the flow diagram for the “allocate
space for uncompressed version of tile" function 438
referred to in FIG. 28. The tile manager 192 enters the
function 438 at a start state 1180 and moves to a decision

state 1182 to test whether the “soft” uncompressed
cache usage limit is exceeded. The soft uncompressed
cache limit is a number that is cast into the tile manager
192 during initialization and it basically sets a guideline
for how much of the image data cache is to be devoted
to uncompressed image data. If the cache manager gets
a request for uncompressed cache space and finds that
this soft limit has been exceeded, it attempts to reduce
the amount of expanded image data that is held in cache
either by compressing expanded tiles or by discarding
expanded tiles that have valid compressed versions or
some other way to recreate them.

If the tile manager 192 finds that the soft limit is ex-
ceeded, the tile manager 192 moves to a state 1184 to
first check whether the “cache collection delay” flag is
set. This flag is set after an unsuccessful attempt to
reduce cache memory usage and prevents repeated
unsuccessful calls to collect free cache at a state 1186.

Thus, the tile manager 192 will not try to reduce the
expanded memory usage until the flag is cleared in the
“unlock expanded tile handle” function 432 (FIG. 30).

If the cache collection delay flag is not set, the tile
manager moves to a state 1186 to collect free cache
memory by freeing uncompressed tiles. After that, the
tile manager 192 moves to a decision state 1188 to test
whether the soft uncompressed cache usage limit is still
exceeded after an attempt to reduce the memory usage.
If the usage is still exceeded, the tile manager 192 prints
a warning message on the video display 154 (FIG. 6) at
a state 1190 and then sets the cache collection delay flag
at a state 1192.

Returning in the discussion to the state 1182, if the
soft limit was not exceeded, or if it was not exceeded at
the state 1188, the tile manager 192 moves to a decision
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state 1194 to determine whether there is memory avail-
able in the uncompressed tile free list. If there is not
memory available in the uncompressed tile free list, then
the tile manager 192 moves to a decision state 1196 to
determine whether there is memory available in the
cache reserve list. If there is no memory available there,
the tile manager 192 moves to a state 329 wherein the
tile manager 192 again tries to collect free cache space
by unlocking or freeing both uncompressed and com-
pressed tiles. At this point, the tile manager 192 must
free space in order to allocate space for this uncom-
pressed tile. The tile manager 192 moves to a state 1200
to determine whether memory is now available in the
cache reserve list. In the state 1198, when the cache

memory space is freed, it is placed into the cache re-
serve list. If memory is not available, then the tile man-
ager 192 moves to a state 1202 and prints a “cache
overflow” error message and terminates the function
438 with an error condition at the end state 1204.

Now, taking an alternate path from the states 1194,
1196 and 1200, if the tile manager 192 can successfully
get space for the uncompressed tile data, then the tile
manager 192 moves to a state 1206 where the tile man-
ager 192 finds the free block with the highest memory
address. If there is a choice between two or more free

memory blocks, the tile manager 192 chooses the one
with the highest address to try to keep all of the ex-
panded image data at the high address end of the cache
file. Once the tile manager 192 finds the highest address
block, it moves to a state 1208 to unlink the free block
from the free memory link list.

There are actually two possibilities for the free mem-
ory link list when the tile manager 192 is looking for
expanded memory. One is the uncompressed tile free
list and the other is the cache reserve list. In either case,

the tile manager 192 unlinks the block of memory that
the tile manager 192 is interested in from the free list
and relinks the remaining memory blocks of the affected
free list.

The tile manager 192 then transitions to a state 1210
to initialize the newly allocated block to all background
color. Then the tile manager 192 moves to a state 1212
to move the description of the memory block (a pointer
to the tile header) to the front of the most recently used
tile list. Moving to a state 1214, the tile manager 192
updates the soft uncompressed cache memory usage
counter that was checked at the state 1182. The tile

manager 192 continues to a state 1216 to store the mem-
ory address in the tile header. The memory block that
the tile manager 192 has just allocated is a pointer that
is stored in the tile header data structure. That is how

the memory block is associated with the tile. Then the
tile manager 192 terminates normally from the function
438 at the end state 1204.

FIG. 33 illustrates the process by which the present
invention expands the compressed version of a tile to
create an uncompressed version. Specifically, as shown
in FIG. 33, the tile manager 192 starts at a start state
1220 and moves to a test functiOn at state 1222, where

the tile manager 192 determines whether the com-
pressed version of the tile, or the compressed tile data,
is in cache memory. If it is not, then the tile manager 192
moves to state 1224, wherein the system loads the nec-
essary data from the disk. If there is an error detected at
state 1224, the tile manager 192 moves to state 1228 to
terminate the process.

From state 1226, if compressed data was successfully
loaded from the disk or from state 1222 if it was in cache
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to begin with, the tile manager 192 moves to state 1230,
wherein the tile manager 192 locks the compressed tile
image data. This step simply increments the lock count
on the compressed memory state. From state 1230, the
system moves to state 1232, wherein the tile manager
192 allocates and locks the uncompressed tile memory
block. The system then moves to state 1234 to deter-
mine whether an error occurred at state 1232. If so, the

tile manager 192 moves to state 1236 and unlocks the
compressed tile data. From state 1236, the system
moves to state 1238 to report the error. The system then
terminates at end state 1228.

On the other hand, if no error existed as determined

at state 1234, the system moves to state 1240, wherein
the tile manager 192 uncompresses the compressed data.
Next, the tile manager 192 moves to state 1242 to deter-
mine whether an error occurred at state 1240. If an

error occurred at state 1240, the tile manager 192 moves
to state 1236 and functions as described previously.
Otherwise, the tile manager 192 moves to stat 1244 to
unlock the compressed and uncompressed data, and
then terminates at end state 1228.

FIG. 34 illustrates a process for creating compressed
low resolution tiles from compressed higher resolution
tiles. The tile manager 192 starts at start state 1250 and
proceeds to state 1252, wherein the system enters a loop
which is followed by the system for each of the four
high resolution tiles required to produce a single low
resolution tile. More specifically, at state 1252 the tile
manager 192 locks the compressed version of the high
resolution tile. The system then proceeds to state 1256,
wherein the tile manager 192 determines whether an
error occurred at state 1254. In the event that an error

occurred, the tile manager proceeds to end state 1258
and terminates. If no error occurred, the tile manager
192 returns to state 1252 and continues the loop de-
scribed above for each of the four high resolution tiles.

After processing all four high resolution tiles as de-
scribed, the system proceeds to state 1260 where the tile
manager 192 scales the compressed data to half resolu-
tion. The process performed at state 1260 results in a
compressed version of the low resolution tile. Then the
tile manager 192 moves to a loop represented by states
1262, 1264, wherein for each of the high resolution tiles
the tile manage 192 unlocks the compressed version of
the tile.

Next, the tile manager 192 moves to state 1266 where
the tile manager 192 allocates and locks memory for the
compressed version of the low resolution tile. At state
1266, the tile manager 192 actually puts the compressed
version of the low resolution tile in a general, common
buffer that is large enough to hold the maximum possi-
ble size of the compressed results. The actual valid data
is usually much less than that than the maximum possi-
ble size, so the tile manager 192 only saves the valid
amount of data.

From state 1266, the system moves to state 1268 to
determine whether an error occurred at state 1266. If an

error occurred, the system moves to end state 1258 and
terminates. Otherwise, the system moves to state 1270
where the tile manager 192 copies the compressed data
out of the temporary compressed data buffer into the
newly allocated space in the cache. Then the tile man-
ager 192 moves to state 1272 where the tile manager 192
unlocks the compressed version of the low resolution
tile that now contains valid data. The system then termi-
nates normally at state 1258.
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Now referring to FIG. 35, a process is shown
whereby the system resamples uncompressed high reso-
lution tiles to an uncompressed low resolution tile. The
tile manager 192 starts at start state 1280 and moves to
state 1282, wherein the tile manager 192 locks the un-
compressed version of a single high resolution tile. This
function scales a single high resolution tile to update
one quarter of a tile in the half-resolution subimage.
That quarter tile is rescaled to update one-sixteenth of a
tile in the quarter-resolution subimage. This continues
to the lowest resolution subimage. Next, the tile man-
ager 192 proceeds to state 1284 to determine whether an
error occurred in locking the uncompressed version of
the high resolution tile. If there Was an error, then the
tile manager 192 proceeds to state 1286 and terminates
with an error condition. Otherwise, the tile manager
192 moves to state 1288 where the tile manager 192
determines how many levels of the subimage are to be
updated. This function can be used to update a subset of
subimages or the entire image stack in the case where a
single tile is modified in the full resolution subimage. It
will propagate that change all the way down to the
lowest-resolution subimage in the image stack.

Next, the tile manager 192 proceeds to state 1290
where the tile manage 192 determines the tile index that
is to be updated. In accordance with the present inven-
tion, when a change is propagated from the higher
resolution down to the low resolution of tiles, the sys-
tem calculates which tile corresponds to the affected
area. Then the tile manager 192 moves to state 1290
where the tile manager 192 determines whether the low
resolution tile that the tile manager 192 is about to up-
date is marked as loaded or not. This step is intended for
the situation in which not all of the low resolution sub-

states are populated during the loading of a raster im-
age.

If the system determines that one or more low resolu-
tion tiles are not loaded, the system proceeds to state
1294, wherein the tile manager 192 invalidates all of the
low resolution tiles that would otherwise be affected by
the change. The system then exits normally at end state
1286. If the low resolution tile is about to be modified is

loaded, as determined at state 1292, the tile manager 192
moves to state 1296, wherein the system locks the un-
compressed version of the low resolution tile. The tile
manager 192 then moves to state 1298 to determine
whether an error occurred at state 1296 and, if so, the
system moves to end state 1286 to terminate. Otherwise,
the system moves to state 1300. wherein the tile man-
ager 192 scales the raster data from the high resolution
tile down to the low resolution tile. Then the tile man-

ager 192 moves to state 1302 where the tile manager 192
unlocks the high resolution tile.

Next, the system moves to state 1304, wherein the tile
manager 192 recursively modifies the loop variables
such that the low resolution tiles that the tile manager
192 just finished updating become the high resolution
tiles for the next succeeding iteration. Once all the
subimages have been updated as described, the system
exits at end state 1286.

Now referring to FIGS. 36A and 36B, a process to
collect free cache is shown. This process can be called
from several other processes. The tile manager 192
begins at start state 1310 in FIG. 36A and moves to state
1312 to determine whether a cache collection operation
is in process. If so, the system exits at end state 1314.
This prevents recursive calls to collect free cache
which might otherwise occur. If the system at state
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1312 determines that no collection is in progress, then
the tile manager 192 moves to state 1316 where the tile
manager 192 sets a flag indicating that a collection is in
progress.

From state 1316, the system moves to state 1320,
where the tile manager 192 estimates the number of
memory blocks to free in this operation. The reason for
freeing a number ofblocks instead ofjust one block is to
reduce the computational overhead associated with the
cache collection operations. The tile manager 192 typi-
cally estimates the amount of memory required to equal
the number of tiles in a single row of the full resolution
subimage of the document associated with the most
recently used tile.

Once this estimate has been made, the system pro-
ceeds to state 1322 wherein the tile manager 192 con-
siders the options that the tile manager 192 passed into
this function. There are three options. One, as indicated
at state 1324, is to reduce the uncompressed cache usage ‘
only while not affecting the compressed data that is
currently held in cache. The second option, indicated at
state 1328, is to reduce the compressed cache memory
usage only. The third option, indicated at state 1326, is
to reduce the total cache memory usage including both
compressed and uncompressed data.

From state 1324 or state 1326, the tile manager 192
moves to state 1330, where the tile manager 192 stores
all of the free states currently in the uncompressed free
list into the cache reserve list. As the tile manager 192
performs the process in state 1330, the tile manager 192
attempts to consolidate the memory blocks. That is, if
there are two free blocks that are adjacent to one an-
other, the system automatically turns them into a single,
larger contiguous block. From state 1328, on theother
hand, the system moves to state 1358, shown in FIG.
36B and discussed below.

From state 1330, the tile manager 192 moves to state
1332, wherein the tile manager 192 determines whether
the tile manager 192 has created a memory block large
enough to satisfy the initial request. If so, the tile man-
ager 192 terminates normally at end state 1314. Other-
wise, the tile manager 192 moves to state 1334 where
the tile manager 192 frees any unlocked, uncompressed
tiles which are blank. The tile manager 192 then moves
to state 1336 where the tile manager 192 determines
whether the tile manager 192 has free sufficient mem-
ory. If so, the tile manager 192 exits at end state 1314.
Otherwise, the tile manager 192 moves to state 1338
where the tile manager 192 frees unlocked, unpreserved
uncompressed tiles that have valid compressed versions
in cache or are on a disk, or that have valid, uncom-

pressed versions on the disk beginning with the least
recently used tile. After having freed that particular
class of tiles, if the tile manager 192 determines, at state
1340, that the memory request has been satisfied, the tile
manager 192 moves to state 1314 and terminates. Other-
wise, the tile manager 192 moves to state 1342, shown in
FIG. 3613. .

Now referring to FIG. 36B, the tile manager 192
begins at state 1342, wherein the tile manager 192 com-
presses the free unlocked, unpreserved uncompressed
tiles that don’t have a valid compressed version or other
source from which the tile can be recreated. To do this

the tile manager 192 processes expanded tile data
through a compression algorithm. The tile manager 192
then creates a compressed version of that tile so that the
uncompressed version of the tile can be discarded.
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Next, the tile manager 192 moves to state 1344,
wherein the system determines whether the request
made at state 1342 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1348, wherein the tile manager 192 frees
unlocked, but preserved uncompressed tiles that have
valid compressed or uncompressed copies. The tile
manager 192 preferentially frees the oldest such tiles.

From the state 1348, the tile manager 192 proceeds to
a decision state 1350 to test whether the request made at
the state 1348 was satisfied. If so, the function 446 is
terminated at the end state 1346. Otherwise, the tile

manager 192 moves to a state 1352 to compress and then
free unlocked, but preserved, uncompressed tiles that
do not have valid compressed versions.

Next, the tile manager 192 moves to state 1354,
wherein the system determines whether the request
made at state 1352 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1356, wherein the tile manager 192 deter-
mines whether to free data memory blocks. If not, the
system terminates at state 1346. Otherwise, the system
moves to state 1358, to free unlocked preserved, uncom-
pressed tiles that don’t have valid compressed versions
already.

The system next moves to state 1360 to determine
whether the request has been satisfied. If so, the system
terminates at state 1346. Otherwise, the system moves to
state 1362 to print an error message, and then terminate
at state 1346.

Now referring to FIG. 37, the tile manager 192 starts
at state 1380 and moves to state 1382 where the tile

manager 192 determines whether the uncompressed
version is in fact still locked—that is if the lock count

for uncompressed version of that tile is non-zero. If the
tile is still locked then the tile manager 192 moves to
state 1384 and prints a warning message. Then the tile
manager 192 terminates at end state 1386.

If, at state 1382, the system determined that the un-
compressed version is not locked, then the tile manager
192 moves to state 1388 where the tile manager 192
determines whether the uncompressed data has already
been freed. If it has then the tile manager 192 terminates
at end state 1386. Otherwise, the tile manager 192
moves to state 1390 where the tile manager 192 unlinks
the uncompressed memory state from the most recently
used list.

From state 1390, the tile manager 192 moves to state
1392 where the tile manager 192 updates and decre-
ments the total uncompressed memory usage counter
by the appropriate amount. The tile manager 192 then
moves to state 1394 where the tile manager 192 moves
the memory block to the uncompressed memory free
list. In accordance with the present invention, the tile
manager 192 keeps the list sorted by decreasing address.
Consequently, when the tile manager 192 allocates ex-
panded memory blocks, the tile manager 192 tends to
choose the preferred blocks that have higher addresses
because they are at the front of the free list.

Next, the tile manager 192 moves to state 1396,
wherein the tile manager 192 sets a pointer in the tile
header to null and the tile manager 192 sets the uncom-
pressed tile status flags. This ensures that the tile header
reflects the fact that it no longer has an uncompressed
data associated with it. Then the tile manager 192 termi-
nates at end state 1386.

Now referring to FIG. 38, a process by which the
system compresses a tile is shown. The system begins at
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start state 1400, and moves to state 1402, wherein the

tile manager 192 determines whether the uncompressed
tile data is in cache memory. If it is not, the tile manager
192 moves to state 1404 and loads the uncompressed
data into cache memory from the disk. The system then
moves to state 1406, to determine whether an error
occurred at state 1404. If so, the system terminates at
end state 1408. Otherwise, the system proceeds to state
1410.

At state 1410, the tile manager 192 locks the uncom-
pressed tile data, and then moves to state 1412, to deter-
mine whether an error occurred at state 1410. If an

error occurred, the system terminates at end state 1408.
Otherwise, the system moves to state 1414, wherein the
tile manager 192 compresses the image data into a com-
mon buffer. For binary images of text and line draw-
ings, the tile manager 192 uses a CCITT group 4 encod-
ing.

From state 1414, the tile manager 192 moves to state
1416 to determine whether an error occurred at state

1414. If an error indeed occurred, the system moves to»
state 1418 to unlock the uncompressed tiles, and then
exits at end state 1408. Otherwise, the system proceeds
to state 1420, wherein the tile manager 192 allocates and
locks cache memory space for the compressed tile data.

From state 1420, the system proceeds to state 1422 to
determine whether an error occurred at state 1420. If an

error occurred, the system moves to state 1418 and

proceeds as described above. Otherwise, the system
moves to state 1424, wherein the tile manager 192 cop-
ies the compressed data from the common buffer into
the newly allocated cache memory state. The system
moves from state 1424 to state 1426, wherein the tile

manager 192 unlocks the compressed and uncom-
pressed tile data and then terminates at end state 1408.

While the above detailed description has shown, de-
scribed and pointed out the fundamental novel features
of the invention as applied to various embodiments, it
will be understood that various omissions and substitu-

tions and changes in the form and details of the device
illustrated may be made by those skilled in the art, with-
out departing from the spirit of the invention.

What is claimed is:

1. An image memory management system, compris-
mg:

a computer having a processor and an image mem-
ory, the image memory comprising a main memory
and a secondary memory;

an image stack, located in the image memory, com-
prising a plurality of similar digital images, each
digital image having a plurality of pixels grouped
into at least one tile, and each digital image having
a resolution different from the other digital images;

means for accessing a selected one of the tiles in the
image stack;

first means for transferring a selected one of the tiles
from the secondary memory to the main memory
when the tile is accessed by the accessing means
and the tile is absent from the main memory; and

second means for transferring a selected one of the
tiles from the main memory to the secondary mem-
ory when the main memory is full.

2. The system defined in claim 1, additionally com-
prising means for modifying a selected one of the tiles.
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3. The system defined in claim 2, wherein the second
transferring means only transfer tiles that have been
modified by the modifying means.

4. The system defined in claim 1, wherein the main
memory is semiconductor memory.

5. The system defined in claim 1, wherein the second-
ary memory is a magnetic disk.

6. The system defined in claim 1, wherein each tile is
square.

7. The system defined in claim 1, wherein a lowest
resolution digital image comprises one tile.

8. The system defined in claim 1, wherein a prese-
lected digital image in the image stack is resampled to
obtain another digital image in the image stack.

9. The system defined in claim 1, wherein at least one
of the digital images is compressed.

10. The system defined in claim 1, wherein the access-
ing means is responsive to an image access operation
selected by a user.

11. The system defined in claim 10, wherein the
image access operation is zooming or panning the im-
age.

12. The system defined in claim 10, wherein the
image access operation is reversible.

13. A method of managing images in a computer
having a processor and an image memory comprising a
slower access memory and a faster access memory,
comprising the steps of:

creating a digital image;
resampling the digital image so as to form an image

stack comprising the digital image and one or more
lower resolution digital images;

dividing each image into equal sized, rectangular
tiles; and

evaluating a location in the image memory of tiles in
each digital image of the image stack in a given
region of interest.

14. The method defined in claim 13, additionally
comprising updating modified regions of all images
when an edit operation is completed.

15. The method defined in claim 13, wherein the
evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the faster access memory in compressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higher resolution tiles.
16. The method defined in claim 13, wherein the

evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higher resolution tiles.
17. The method defined in claim 13, wherein the

evaluating step includes selecting the digital image with
the lowest resolution higher than a requested resolution
at a given view scale.. t t t #

Microsoft Corp. Exhibit 1005‘



APPENDIX D

Microsoft Corp.   Exhibit 1005

United States Patent [19]

Delorme

[54] ELECTRONIC GLOBAL MAP GENERATING
SYSTEM

[76] Inventor: David M. Delorme, 356 Range Rd.,
Cumberland, Me. 04021

[21] Appl. No.: 101,315

 

 
 
 

 
  

[22] Filed: Sep. 25, 1987

[51] Int. Cl.5 ............................................ .. 60913 29/00
[52] US. Cl. .................................. .. 364/419; 434/150;

340/990

[58] Field of Search .............. .. 364/419, 449; 434/150,
434/130; 340/990

[56] References Cited

U.S. PATENT DOCUMENTS
400,642 4/1889 Beaumont ........................... .. 283/34

751,226 10/1899 Van Der Grintcn . 283/34
752,957 2/1904 Colas ....................... .. 283/34

1,050,596 1/1913 Bacon 283/34
1,610,413 12/1924 Balch
2,094,543 9/1937 Lackey ct .
2,354,785 8/1944 Von Rohl
2,431,847 12/1947 Dusen ..... ..

283/34
353/11

.. 434/150
.. 353/11

2,650,517 9/1953 Falk . . . . . . . . . . . . . . . . . .. 355/77
3,248,806 5/1966 Schrader . . . . . . . . . . . . . . . .. 434/150
3,724,079 4/1973 Jasperson et a1. .... .. 33/15 B
4,315,747 2/1982 McBryde .................. .. 434/150
4,673,197 6/1987 Stipelman et al. ................ .. 434/150
4,689,747 .8/1987 Krouse et al. .................... .. 364/449
4,737,927 4/1988 Hanabusa et a1. ................ .. 340/990

OTHER PUBLICATIONS

“Equal—Area Projections for World Statistical Maps",

|fim

APPENDIX D

[11] Patent Number:

[45] Date of Patent:

4,972,319

Nov. 20, 1990

McBryde and Thomas, US Dept. of Commerce, Coast
and Geodetic Survey, Spec. Pub. 245, 1949.
“The Quadtree and Related Hierarchical Data Struc-
tures”, Hanan Samet, Computer Surveys, vol. 16, No. 2,
Jun. 1984.

Primary Examiner—Jerry Smith
Assistant Examiner—Kim T. Bui

Attorney, Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak & Seas

[57] ABSTRACT

A global mapping system which organizes mapping
data into a hierarchy of successive magnitudes or levels
for presentation of the mapping data with variable reso-
lution, starting from a first or highest magnitude with
lowest resolution and progressing to a last or lowest
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cessive descending horizontal level or magnitude con-
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tude directly above it. The top or first level of the
pyramid contains 4 tiles, the second levle contains 16
tiles, the third contains 64 tiles and so on, such that the
base of a 16 magnitude or level pyramid would contain
4 to the 16th power or 4,294,967,296 tiles. This total
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rate data base tiles is stored in the database under a

unique filename.

33 Claims, 9 Drawing Sheets

 

 

Microsoft Corp. Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005

APPENDIX D

US. Patent Nov. 20, 1990 Sheet 1 of9 4,972,319

 
Microsoft Corp. Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005

V APPENDIX ‘D

US. Patent Nov.20, 1990 Sheet 2 of 9 4,972,319,

FIG.3A ' FIG.38

 
Microsoft Corp. Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



APPENDIX D

Microsoft Corp.   Exhibit 1005



INTERNATIONAL  TELECOMMUNICATION  UNION

CCITT T.81
THE  INTERNATIONAL (09/92)
TELEGRAPH  AND  TELEPHONE
CONSULTATIVE  COMMITTEE

TERMINAL  EQUIPMENT  AND  PROTOCOLS
FOR  TELEMATIC  SERVICES

INFORMATION  TECHNOLOGY –
DIGITAL  COMPRESSION  AND  CODING
OF  CONTINUOUS-TONE  STILL  IMAGES –
REQUIREMENTS  AND  GUIDELINES

Recommendation  T.81

APPENDIX F

Microsoft Corp.   Exhibit 1005



Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent
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and 39 international organizations participate in CCITT which is the body which sets world telecommunications
standards (Recommendations).

The approval of Recommendations by the members of CCITT is covered by the procedure laid down in CCITT Resolution
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Recommendations submitted to it and establishes the study programme for the following period.

In some areas of information technology, which fall within CCITT’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of CCITT Recommendation T.81 was approved on 18th September 1992.
The identical text is also published as ISO/IEC International Standard 10918-1.

___________________

CCITT   NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized private operating agency.

  ITU  1993
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Introduction

This CCITT Recommendation | ISO/IEC International Standard was prepared by CCITT Study Group VIII and the Joint
Photographic Experts Group (JPEG) of ISO/IEC JTC 1/SC 29/WG 10. This Experts Group was formed in 1986 to
establish a standard for the sequential progressive encoding of continuous tone grayscale and colour images.

Digital Compression and Coding of Continuous-tone Still images, is published in two parts:

– Requirements and guidelines;

– Compliance testing.

This part, Part 1, sets out requirements and implementation guidelines for continuous-tone still image encoding and
decoding processes, and for the coded representation of compressed image data for interchange between applications.
These processes and representations are intended to be generic, that is, to be applicable to a broad range of applications for
colour and grayscale still images within communications and computer systems. Part 2, sets out tests for determining
whether implementations comply with the requirments for the various encoding and decoding processes specified in Part
1.

The user’s attention is called to the possibility that – for some of the coding processes specified herein – compliance with
this Recommendation | International Standard may require use of an invention covered by patent rights. See Annex L for
further information.

The requirements which these processes must satisfy to be useful for specific image communications applications such as
facsimile, Videotex and audiographic conferencing are defined in CCITT Recommendation T.80. The intent is that the
generic processes of Recommendation T.80 will be incorporated into the various CCITT Recommendations for terminal
equipment for these applications.

In addition to the applications addressed by the CCITT and ISO/IEC, the JPEG committee has developped a compression
standard to meet the needs of other applications as well, including desktop publishing, graphic arts, medical imaging and
scientific imaging.

Annexes A, B, C, D, E, F, G, H and J are normative, and thus form an integral part of this Specification. Annexes K, L
and M are informative and thus do not form an integral part of this Specification.

This Specification aims to follow the guidelines of CCITT and ISO/IEC JTC 1 on Rules for presentation of CCITT |
ISO/IEC common text.
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INTERNATIONAL  STANDARD
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

CCITT  RECOMMENDATION

INFORMATION  TECHNOLOGY – DIGITAL  COMPRESSION
AND  CODING  OF CONTINUOUS-TONE  STILL  IMAGES –

REQUIREMENTS  AND  GUIDELINES

1 Scope

This CCITT Recommendation | International Standard is applicable to continuous-tone – grayscale or colour – digital still
image data. It is applicable to a wide range of applications which require use of compressed images. It is not applicable to
bi-level image data.

This Specification

– specifies processes for converting source image data to compressed image data;

– specifies processes for converting compressed image data to reconstructed image data;

– gives guidance on how to implement these processes in practice;

– specifies coded representations for compressed image data.

NOTE – This Specification does not specify a complete coded image representation. Such representations may include
certain parameters, such as aspect ratio, component sample registration, and colour space designation, which are application-
dependent.

2 Normative references

The following CCITT Recommendations and International Standards contain provisions which, through reference in this
text, constitute provisions of this CCITT Recommendation | International Standard. At the time of publication, the
editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements
based on this CCITT Recommendation | International Standard are encouraged to investigate the possibility of applying
the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers
of currently valid International Standards. The CCITT Secretariat maintains a list of currently valid CCITT
Recommendations.

– CCITT Recommendation T.80 (1992), Common components for image compression and communication –
Basic principles.

3 Definitions, abbreviations and symbols

3.1 Definitions and abbreviations

For the purposes of this Specification, the following definitions apply.

3.1.1 abbreviated format:  A representation of compressed image data which is missing some or all of the table
specifications required for decoding, or a representation of table-specification data without frame headers, scan headers,
and entropy-coded segments.

3.1.2 AC coefficient: Any DCT coefficient for which the frequency is not zero in at least one dimension.

3.1.3 (adaptive) (binary) arithmetic decoding: An entropy decoding procedure which recovers the sequence of
symbols from the sequence of bits produced by the arithmetic encoder.

3.1.4 (adaptive) (binary) arithmetic encoding: An entropy encoding procedure which codes by means of a recursive
subdivision of the probability of the sequence of symbols coded up to that point.

3.1.5 application environment: The standards for data representation, communication, or storage which have been
established for a particular application.

CCITT Rec. T.81 (1992 E) 1
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3.1.6 arithmetic decoder: An embodiment of arithmetic decoding procedure.

3.1.7 arithmetic encoder: An embodiment of arithmetic encoding procedure.

3.1.8 baseline (sequential): A particular sequential DCT-based encoding and decoding process specified in this
Specification, and which is required for all DCT-based decoding processes.

3.1.9 binary decision: Choice between two alternatives.

3.1.10 bit stream: Partially encoded or decoded sequence of bits comprising an entropy-coded segment.

3.1.11 block: An 8 × 8 array of samples or an 8 × 8 array of DCT coefficient values of one component.

3.1.12 block-row:  A sequence of eight contiguous component lines which are partitioned into 8 × 8 blocks.

3.1.13 byte: A group of 8 bits.

3.1.14 byte stuffing: A procedure in which either the Huffman coder or the arithmetic coder inserts a zero byte into
the entropy-coded segment following the generation of an encoded hexadecimal X’FF’ byte.

3.1.15 carry bit:  A bit in the arithmetic encoder code register which is set if a carry-over in the code register overflows
the eight bits reserved for the output byte.

3.1.16 ceiling function: The mathematical procedure in which the greatest integer value of a real number is obtained
by selecting the smallest integer value which is greater than or equal to the real number.

3.1.17 class (of coding process): Lossy or lossless coding processes.

3.1.18 code register: The arithmetic encoder register containing the least significant bits of the partially completed
entropy-coded segment. Alternatively, the arithmetic decoder register containing the most significant bits of a partially
decoded entropy-coded segment.

3.1.19 coder: An embodiment of a coding process.

3.1.20 coding: Encoding or decoding.

3.1.21 coding model: A procedure used to convert input data into symbols to be coded.

3.1.22 (coding) process: A general term for referring to an encoding process, a decoding process, or both.

3.1.23 colour image: A continuous-tone image that has more than one component.

3.1.24 columns: Samples per line in a component.

3.1.25 component: One of the two-dimensional arrays which comprise an image.

3.1.26 compressed data: Either compressed image data or table specification data or both.

3.1.27 compressed image data: A coded representation of an image, as specified in this Specification.

3.1.28 compression: Reduction in the number of bits used to represent source image data.

3.1.29 conditional exchange: The interchange of MPS and LPS probability intervals whenever the size of the LPS
interval is greater than the size of the MPS interval (in arithmetic coding).

3.1.30 (conditional) probability estimate: The probability value assigned to the LPS by the probability estimation
state machine (in arithmetic coding).

3.1.31 conditioning table: The set of parameters which select one of the defined relationships between prior coding
decisions and the conditional probability estimates used in arithmetic coding.

3.1.32 context: The set of previously coded binary decisions which is used to create the index to the probability
estimation state machine (in arithmetic coding).

3.1.33 continuous-tone image: An image whose components have more than one bit per sample.

3.1.34 data unit: An 8 × 8 block of samples of one component in DCT-based processes; a sample in lossless processes.
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3.1.35 DC coefficient: The DCT coefficient for which the frequency is zero in both dimensions.

3.1.36 DC prediction:  The procedure used by DCT-based encoders whereby the quantized DC coefficient from the
previously encoded 8 × 8 block of the same component is subtracted from the current quantized DC coefficient.

3.1.37 (DCT) coefficient: The amplitude of a specific cosine basis function – may refer to an original DCT coefficient,
to a quantized DCT coefficient, or to a dequantized DCT coefficient.

3.1.38 decoder: An embodiment of a decoding process.

3.1.39 decoding process: A process which takes as its input compressed image data and outputs a continuous-tone
image.

3.1.40 default conditioning: The values defined for the arithmetic coding conditioning tables at the beginning of
coding of an image.

3.1.41 dequantization: The inverse procedure to quantization by which the decoder recovers a representation of the
DCT coefficients.

3.1.42 differential component: The difference between an input component derived from the source image and the
corresponding reference component derived from the preceding frame for that component (in hierarchical mode coding).

3.1.43 differential frame: A frame in a hierarchical process in which differential components are either encoded or
decoded.

3.1.44 (digital) reconstructed image (data): A continuous-tone image which is the output of any decoder defined in
this Specification.

3.1.45 (digital) source image (data): A continuous-tone image used as input to any encoder defined in this
Specification.

3.1.46 (digital) (still) image: A set of two-dimensional arrays of integer data.

3.1.47 discrete cosine transform; DCT: Either the forward discrete cosine transform or the inverse discrete cosine
transform.

3.1.48 downsampling (filter):  A procedure by which the spatial resolution of an image is reduced (in hierarchical
mode coding).

3.1.49 encoder: An embodiment of an encoding process.

3.1.50 encoding process: A process which takes as its input a continuous-tone image and outputs compressed image
data.

3.1.51 entropy-coded (data) segment: An independently decodable sequence of entropy encoded bytes of compressed
image data.

3.1.52 (entropy-coded segment) pointer: The variable which points to the most recently placed (or fetched) byte in
the entropy encoded segment.

3.1.53 entropy decoder: An embodiment of an entropy decoding procedure.

3.1.54 entropy decoding: A lossless procedure which recovers the sequence of symbols from the sequence of bits
produced by the entropy encoder.

3.1.55 entropy encoder: An embodiment of an entropy encoding procedure.

3.1.56 entropy encoding: A lossless procedure which converts a sequence of input symbols into a sequence of bits
such that the average number of bits per symbol approaches the entropy of the input symbols.

3.1.57 extended (DCT-based) process: A descriptive term for DCT-based encoding and decoding processes in which
additional capabilities are added to the baseline sequential process.

3.1.58 forward discrete cosine transform; FDCT:  A mathematical transformation using cosine basis functions which
converts a block of samples into a corresponding block of original DCT coefficients.
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3.1.59 frame: A group of one or more scans (all using the same DCT-based or lossless process) through the data of one
or more of the components in an image.

3.1.60 frame header: A marker segment that contains a start-of-frame marker and associated frame parameters that are
coded at the beginning of a frame.

3.1.61 frequency: A two-dimensional index into the two-dimensional array of DCT coefficients.

3.1.62 (frequency) band: A contiguous group of coefficients from the zig-zag sequence (in progressive mode coding).

3.1.63 full progression: A process which uses both spectral selection and successive approximation (in progressive
mode coding).

3.1.64 grayscale image: A continuous-tone image that has only one component.

3.1.65 hierarchical: A mode of operation for coding an image in which the first frame for a given component is
followed by frames which code the differences between the source data and the reconstructed data from the previous
frame for that component. Resolution changes are allowed between frames.

3.1.66 hierarchical decoder: A sequence of decoder processes in which the first frame for each component is followed
by frames which decode an array of differences for each component and adds it to the reconstructed data from the
preceding frame for that component.

3.1.67 hierarchical encoder: The mode of operation in which the first frame for each component is followed by frames
which encode the array of differences between the source data and the reconstructed data from the preceding frame for
that component.

3.1.68 horizontal sampling factor: The relative number of horizontal data units of a particular component with respect
to the number of horizontal data units in the other components.

3.1.69 Huffman decoder: An embodiment of a Huffman decoding procedure.

3.1.70 Huffman decoding: An entropy decoding procedure which recovers the symbol from each variable length code
produced by the Huffman encoder.

3.1.71 Huffman encoder: An embodiment of a Huffman encoding procedure.

3.1.72 Huffman encoding: An entropy encoding procedure which assigns a variable length code to each input symbol.

3.1.73 Huffman table: The set of variable length codes required in a Huffman encoder and Huffman decoder.

3.1.74 image data: Either source image data or reconstructed image data.

3.1.75 interchange format:  The representation of compressed image data for exchange between application
environments.

3.1.76 interleaved: The descriptive term applied to the repetitive multiplexing of small groups of data units from each
component in a scan in a specific order.

3.1.77 inverse discrete cosine transform; IDCT: A mathematical transformation using cosine basis functions which
converts a block of dequantized DCT coefficients into a corresponding block of samples.

3.1.78 Joint Photographic Experts Group; JPEG: The informal name of the committee which created this
Specification. The “joint” comes from the CCITT and ISO/IEC collaboration.

3.1.79 latent output:  Output of the arithmetic encoder which is held, pending resolution of carry-over (in arithmetic
coding).

3.1.80 less probable symbol; LPS: For a binary decision, the decision value which has the smaller probability.

3.1.81 level shift: A procedure used by DCT-based encoders and decoders whereby each input sample is either
converted from an unsigned representation to a two’s complement representation or from a two’s complement
representation to an unsigned representation.
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3.1.82 lossless: A descriptive term for encoding and decoding processes and procedures in which the output of the
decoding procedure(s) is identical to the input to the encoding procedure(s).

3.1.83 lossless coding: The mode of operation which refers to any one of the coding processes defined in this
Specification in which all of the procedures are lossless (see Annex H).

3.1.84 lossy: A descriptive term for encoding and decoding processes which are not lossless.

3.1.85 marker:  A two-byte code in which the first byte is hexadecimal FF (X’FF’) and the second byte is a value
between 1 and hexadecimal FE (X’FE’).

3.1.86 marker segment: A marker and associated set of parameters.

3.1.87 MCU-row:  The smallest sequence of MCU which contains at least one line of samples or one block-row from
every component in the scan.

3.1.88 minimum coded unit; MCU:  The smallest group of data units that is coded.

3.1.89 modes (of operation): The four main categories of image coding processes defined in this Specification.

3.1.90 more probable symbol; MPS: For a binary decision, the decision value which has the larger probability.

3.1.91 non-differential frame: The first frame for any components in a hierarchical encoder or decoder. The
components are encoded or decoded without subtraction from reference components. The term refers also to any frame in
modes other than the hierarchical mode.

3.1.92 non-interleaved: The descriptive term applied to the data unit processing sequence when the scan has only one
component.

3.1.93 parameters: Fixed length integers 4, 8 or 16 bits in length, used in the compressed data formats.

3.1.94 point transform:  Scaling of a sample or DCT coefficient.

3.1.95 precision: Number of bits allocated to a particular sample or DCT coefficient.

3.1.96 predictor:  A linear combination of previously reconstructed values (in lossless mode coding).

3.1.97 probability estimation state machine: An interlinked table of probability values and indices which is used to
estimate the probability of the LPS (in arithmetic coding).

3.1.98 probability interval:  The probability of a particular sequence of binary decisions within the ordered set of all
possible sequences (in arithmetic coding).

3.1.99 (probability) sub-interval:  A portion of a probability interval allocated to either of the two possible binary
decision values (in arithmetic coding).

3.1.100 procedure: A set of steps which accomplishes one of the tasks which comprise an encoding or decoding
process.

3.1.101 process: See coding process.

3.1.102 progressive (coding): One of the DCT-based processes defined in this Specification in which each scan
typically improves the quality of the reconstructed image.

3.1.103 progressive DCT-based: The mode of operation which refers to any one of the processes defined in Annex G.

3.1.104 quantization table: The set of 64 quantization values used to quantize the DCT coefficients.

3.1.105 quantization value: An integer value used in the quantization procedure.

3.1.106 quantize: The act of performing the quantization procedure for a DCT coefficient.

3.1.107 reference (reconstructed) component: Reconstructed component data which is used in a subsequent frame of a
hierarchical encoder or decoder process (in hierarchical mode coding).
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3.1.108 renormalization:  The doubling of the probability interval and the code register value until the probability
interval exceeds a fixed minimum value (in arithmetic coding).

3.1.109 restart interval:  The integer number of MCUs processed as an independent sequence within a scan.

3.1.110 restart marker:  The marker that separates two restart intervals in a scan.

3.1.111 run (length):  Number of consecutive symbols of the same value.

3.1.112 sample: One element in the two-dimensional array which comprises a component.

3.1.113 sample-interleaved: The descriptive term applied to the repetitive multiplexing of small groups of samples from
each component in a scan in a specific order.

3.1.114 scan: A single pass through the data for one or more of the components in an image.

3.1.115 scan header: A marker segment that contains a start-of-scan marker and associated scan parameters that are
coded at the beginning of a scan.

3.1.116 sequential (coding): One of the lossless or DCT-based coding processes defined in this Specification in which
each component of the image is encoded within a single scan.

3.1.117 sequential DCT-based: The mode of operation which refers to any one of the processes defined in Annex F.

3.1.118 spectral selection: A progressive coding process in which the zig-zag sequence is divided into bands of one or
more contiguous coefficients, and each band is coded in one scan.

3.1.119 stack counter: The count of X’FF’ bytes which are held, pending resolution of carry-over in the arithmetic
encoder.

3.1.120 statistical conditioning: The selection, based on prior coding decisions, of one estimate out of a set of
conditional probability estimates (in arithmetic coding).

3.1.121 statistical model: The assignment of a particular conditional probability estimate to each of the binary
arithmetic coding decisions.

3.1.122 statistics area: The array of statistics bins required for a coding process which uses arithmetic coding.

3.1.123 statistics bin: The storage location where an index is stored which identifies the value of the conditional
probability estimate used for a particular arithmetic coding binary decision.

3.1.124 successive approximation: A progressive coding process in which the coefficients are coded with reduced
precision in the first scan, and precision is increased by one bit with each succeeding scan.

3.1.125 table specification data: The coded representation from which the tables used in the encoder and decoder are
generated and their destinations specified.

3.1.126 transcoder: A procedure for converting compressed image data of one encoder process to compressed image
data of another encoder process.

3.1.127 (uniform) quantization:  The procedure by which DCT coefficients are linearly scaled in order to achieve
compression.

3.1.128 upsampling (filter):  A procedure by which the spatial resolution of an image is increased (in hierarchical mode
coding).

3.1.129 vertical sampling factor: The relative number of vertical data units of a particular component with respect to
the number of vertical data units in the other components in the frame.

3.1.130 zero byte: The X’00’ byte.

3.1.131 zig-zag sequence: A specific sequential ordering of the DCT coefficients from (approximately) lowest spatial
frequency to highest.

3.1.132 3-sample predictor: A linear combination of the three nearest neighbor reconstructed samples to the left and
above (in lossless mode coding).
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3.2 Symbols

The symbols used in this Specification are listed below.

A probability interval

AC AC DCT coefficient

ACji AC coefficient predicted from DC values

Ah successive approximation bit position, high

Al successive approximation bit position, low

Api ith 8-bit parameter in APPn segment

APPn marker reserved for application segments

B current byte in compressed data

B2 next byte in compressed data when B = X’FF’

BE counter for buffered correction bits for Huffman coding in the successive approximation
process

BITS 16-byte list containing number of Huffman codes of each length

BP pointer to compressed data

BPST pointer to byte before start of entropy-coded segment

BR counter for buffered correction bits for Huffman coding in the successive approximation
process

Bx byte modified by a carry-over

C value of bit stream in code register

Ci component identifier for frame

Cu horizontal frequency dependent scaling factor in DCT

Cv vertical frequency dependent scaling factor in DCT

CE conditional exchange

C-low low order 16 bits of the arithmetic decoder code register

Cmi ith 8-bit parameter in COM segment

CNT bit counter in NEXTBYTE procedure

CODE Huffman code value

CODESIZE(V) code size for symbol V

COM comment marker

Cs conditioning table value

Csi component identifier for scan

CT renormalization shift counter

Cx high order 16 bits of arithmetic decoder code register

CX conditional exchange

dji data unit from horizontal position i, vertical position j

djik dji  for component k

D decision decoded
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Da in DC coding, the DC difference coded for the previous block from the same component;
in lossless coding, the difference coded for the sample immediately to the left

DAC define-arithmetic-coding-conditioning marker

Db the difference coded for the sample immediately above

DC DC DCT coefficient

DCi DC coefficient for ith block in component

DCk kth DC value used in prediction of AC coefficients

DHP define hierarchical progression marker

DHT define-Huffman-tables marker

DIFF difference between quantized DC and prediction

DNL define-number-of-lines marker

DQT define-quantization-tables marker

DRI define restart interval marker

E exponent in magnitude category upper bound

EC event counter

ECS entropy-coded segment

ECSi ith entropy-coded segment

Eh horizontal expansion parameter in EXP segment

EHUFCO Huffman code table for encoder

EHUFSI encoder table of Huffman code sizes

EOB end-of-block for sequential; end-of-band for progressive

EOBn run length category for EOB runs

EOBx position of EOB in previous successive approximation scan

EOB0, EOB1, ..., EOB14 run length categories for EOB runs

EOI end-of-image marker

Ev vertical expansion parameter in EXP segment

EXP expand reference components marker

FREQ(V) frequency of occurrence of symbol V

Hi horizontal sampling factor for ith component

Hmax largest horizontal sampling factor

HUFFCODE list of Huffman codes corresponding to lengths in HUFFSIZE

HUFFSIZE list of code lengths

HUFFVAL list of values assigned to each Huffman code

i subscript index

I integer variable

Index(S) index to probability estimation state machine table for context index S

j subscript index

J integer variable
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JPG marker reserved for JPEG extensions

JPGn marker reserved for JPEG extensions

k subscript index

K integer variable

Kmin index of 1st AC coefficient in band (1 for sequential DCT)

Kx conditioning parameter for AC arithmetic coding model

L DC and lossless coding conditioning lower bound parameter

Li element in BITS list in DHT segment

Li(t) element in BITS list in the DHT segment for Huffman table t

La length of parameters in APPn segment

LASTK largest value of K

Lc length of parameters in COM segment

Ld length of parameters in DNL segment

Le length of parameters in EXP segment

Lf length of frame header parameters

Lh length of parameters in DHT segment

Lp length of parameters in DAC segment

LPS less probable symbol (in arithmetic coding)

Lq length of parameters in DQT segment

Lr length of parameters in DRI segment

Ls length of scan header parameters

LSB least significant bit

m modulo 8 counter for RSTm marker

mt number of Vi,j parameters for Huffman table t

M bit mask used in coding magnitude of V

Mn nth statistics bin for coding magnitude bit pattern category

MAXCODE table with maximum value of Huffman code for each code length

MCU minimum coded unit

MCUi ith MCU

MCUR number of MCU required to make up one MCU-row

MINCODE table with minimum value of Huffman code for each code length

MPS more probable symbol (in arithmetic coding)

MPS(S) more probable symbol for context-index S

MSB most significant bit

M2, M3, M4, ... , M15 designation of context-indices for coding of magnitude bits in the arithmetic coding
models

n integer variable

N data unit counter for MCU coding

N/A not applicable
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Nb number of data units in MCU

Next_Index_LPS new value of Index(S) after a LPS renormalization

Next_Index_MPS new value of Index(S) after a MPS renormalization

Nf number of components in frame

NL number of lines defined in DNL segment

Ns number of components in scan

OTHERS(V) index to next symbol in chain

P sample precision

Pq quantizer precision parameter in DQT segment

Pq(t) quantizer precision parameter in DQT segment for quantization table t

PRED quantized DC coefficient from the most recently coded block of the component

Pt point transform parameter

Px calculated value of sample

Qji quantizer value for coefficient ACji

Qvu quantization value for DCT coefficient Svu

Q00 quantizer value for DC coefficient

QACji quantized AC coefficient predicted from DC values

QDCk kth quantized DC value used in prediction of AC coefficients

Qe LPS probability estimate

Qe(S) LPS probability estimate for context index S

Qk kth element of 64 quantization elements in DQT segment

rvu reconstructed image sample

R length of run of zero amplitude AC coefficients

Rvu dequantized DCT coefficient

Ra reconstructed sample value

Rb reconstructed sample value

Rc reconstructed sample value

Rd rounding in prediction calculation

RES reserved markers

Ri restart interval in DRI segment

RRRR 4-bit value of run length of zero AC coefficients

RS composite value used in Huffman coding of AC coefficients

RSTm restart marker number m

syx reconstructed value from IDCT

S context index

Svu DCT coefficient at horizontal frequency u, vertical frequency v

10 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

SC context-index for coding of correction bit in successive approximation coding

Se end of spectral selection band in zig-zag sequence

SE context-index for coding of end-of-block or end-of-band

SI Huffman code size

SIGN 1 if decoded sense of sign is negative and 0 if decoded sense of sign is positive

SIZE length of a Huffman code

SLL shift left logical operation

SLL α β logical shift left of α by β bits

SN context-index for coding of first magnitude category when V is negative

SOF0 baseline DCT process frame marker

SOF1 extended sequential DCT frame marker, Huffman coding

SOF2 progressive DCT frame marker, Huffman coding

SOF3 lossless process frame marker, Huffman coding

SOF5 differential sequential DCT frame marker, Huffman coding

SOF6 differential progressive DCT frame marker, Huffman coding

SOF7 differential lossless process frame marker, Huffman coding

SOF9 sequential DCT frame marker, arithmetic coding

SOF10 progressive DCT frame marker, arithmetic coding

SOF11 lossless process frame marker, arithmetic coding

SOF13 differential sequential DCT frame marker, arithmetic coding

SOF14 differential progressive DCT frame marker, arithmetic coding

SOF15 differential lossless process frame marker, arithmetic coding

SOI start-of-image marker

SOS start-of-scan marker

SP context-index for coding of first magnitude category when V is positive

Sqvu quantized DCT coefficient

SRL shift right logical operation

SRL α β logical shift right of α by β bits

Ss start of spectral selection band in zig-zag sequence

SS context-index for coding of sign decision

SSSS 4-bit size category of DC difference or AC coefficient amplitude

ST stack counter

Switch_MPS parameter controlling inversion of sense of MPS

Sz parameter used in coding magnitude of V

S0 context-index for coding of V = 0 decision

t summation index for parameter limits computation

T temporary variable

CCITT Rec. T.81 (1992 E) 11
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Taj AC entropy table destination selector for jth component in scan

Tb arithmetic conditioning table destination identifier

Tc Huffman coding or arithmetic coding table class

Tdj DC entropy table destination selector for jth component in scan

TEM temporary marker

Th Huffman table destination identifier in DHT segment

Tq quantization table destination identifier in DQT segment

Tqi quantization table destination selector for ith component in frame

U DC and lossless coding conditioning upper bound parameter

V symbol or value being either encoded or decoded

Vi vertical sampling factor for ith component

Vi,j jth value for length i in HUFFVAL

Vmax largest vertical sampling factor

Vt temporary variable

VALPTR list of indices for first value in HUFFVAL for each code length

V1 symbol value

V2 symbol value

xi number of columns in ith component

X number of samples per line in component with largest horizontal dimension

Xi ith statistics bin for coding magnitude category decision

X1, X2, X3, ... , X15 designation of context-indices for coding of magnitude categories in the arithmetic coding
models

XHUFCO extended Huffman code table

XHUFSI table of sizes of extended Huffman codes

X’values’ values within the quotes are hexadecimal

yi number of lines in ith component

Y number of lines in component with largest vertical dimension

ZRL value in HUFFVAL assigned to run of 16 zero coefficients

ZZ(K) Kth element in zig-zag sequence of quantized DCT coefficients

ZZ(0) quantized DC coefficient in zig-zag sequence order

4 General

The purpose of this clause is to give an informative overview of the elements specified in this Specification. Another
purpose is to introduce many of the terms which are defined in clause 3. These terms are printed in italics upon first usage
in this clause.

12 CCITT Rec. T.81 (1992 E)
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4.1 Elements specified in this Specification

There are three elements specified in this Specification:

a) An encoder is an embodiment of an encoding process. As shown in Figure 1, an encoder takes as input
digital source image data and table specifications, and by means of a specified set of procedures generates
as output compressed image data.

b) A decoder is an embodiment of a decoding process. As shown in Figure 2, a decoder takes as input
compressed image data and table specifications, and by means of a specified set of procedures generates as
output digital reconstructed image data.

c) The interchange format, shown in Figure 3, is a compressed image data representation which includes all
table specifications used in the encoding process. The interchange format is for exchange between
application environments.

TISO0650-93/d001

Encoder

Table
specifications

Source
image data

Compressed
image data

Figure 1  –  Encoder

FIGURE 1 [D01] 5 cm = 195%

TISO0660-93/d002

Decoder

Table
specifications

Compressed
image data

Reconstructed
image data

Figure 2  –  Decoder

FIGURE 2 [D02] 6 cm 234%

Figures 1 and 2 illustrate the general case for which the continuous-tone source and reconstructed image data consist of
multiple components. (A colour image consists of multiple components; a grayscale image consists only of a single
component.) A significant portion of this Specification is concerned with how to handle multiple-component images in a
flexible, application-independent way.

CCITT Rec. T.81 (1992 E) 13

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

TISO0670-93/d003

Application environment
A

Compressed image data, including table specifications

Application environment
B

Figure 3  –  Interchange format for compressed image data

FIGURE 3 [D03] 9,5cm = 371 %

These figures are also meant to show that the same tables specified for an encoder to use to compress a particular image
must be provided to a decoder to reconstruct that image. However, this Specification does not specify how applications
should associate tables with compressed image data, nor how they should represent source image data generally within
their specific environments.

Consequently, this Specification also specifies the interchange format shown in Figure 3, in which table specifications are
included within compressed image data. An image compressed with a specified encoding process within
one application environment, A, is passed to a different environment, B, by means of the interchange format.
The interchange format does not specify a complete coded image representation. Application-dependent information,
e.g. colour space, is outside the scope of this Specification.

4.2 Lossy and lossless compression

This Specification specifies two classes of encoding and decoding processes, lossy and lossless processes. Those based on
the discrete cosine transform (DCT) are lossy, thereby allowing substantial compression to be achieved while producing a
reconstructed image with high visual fidelity to the encoder’s source image.

The simplest DCT-based coding process is referred to as the baseline sequential process. It provides a capability which is
sufficient for many applications. There are additional DCT-based processes which extend the baseline sequential process
to a broader range of applications. In any decoder using extended DCT-based decoding processes, the baseline decoding
process is required to be present in order to provide a default decoding capability.

The second class of coding processes is not based upon the DCT and is provided to meet the needs of applications
requiring lossless compression. These lossless encoding and decoding processes are used independently of any of the
DCT-based processes.

A table summarizing the relationship among these lossy and lossless coding processes is included in 4.11.

The amount of compression provided by any of the various processes is dependent on the characteristics of the particular
image being compressed, as well as on the picture quality desired by the application and the desired speed of compression
and decompression.

14 CCITT Rec. T.81 (1992 E)
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4.3 DCT-based coding

Figure 4 shows the main procedures for all encoding processes based on the DCT. It illustrates the special case of a single-
component image; this is an appropriate simplification for overview purposes, because all processes specified in this
Specification operate on each image component independently.

TISO0680-93/d004

DCT-based encoder8 × 8 blocks

FDCT Quantizer Entropy
encoder

Table
specifications

Table
specifications

Source
image data

Compressed
image data

Figure 4  –  DCT-based encoder simplified diagram

FIGURE 4 [D04] 7 cm = 273 %

In the encoding process the input component’s samples are grouped into 8 × 8 blocks, and each block is transformed by
the forward DCT (FDCT) into a set of 64 values referred to as DCT coefficients. One of these values is referred to as the
DC coefficient and the other 63 as the AC coefficients.

Each of the 64 coefficients is then quantized using one of 64 corresponding values from a quantization table (determined
by one of the table specifications shown in Figure 4). No default values for quantization tables are specified in this
Specification; applications may specify values which customize picture quality for their particular image characteristics,
display devices, and viewing conditions.

After quantization, the DC coefficient and the 63 AC coefficients are prepared for entropy encoding, as shown in Figure
5. The previous quantized DC coefficient is used to predict the current quantized DC coefficient, and the difference is
encoded. The 63 quantized AC coefficients undergo no such differential encoding, but are converted into a one-
dimensional zig-zag sequence, as shown in Figure 5.

The quantized coefficients are then passed to an entropy encoding procedure which compresses the data further. One of
two entropy coding procedures can be used, as described in 4.6. If Huffman encoding is used, Huffman table
specifications must be provided to the encoder. If arithmetic encoding is used, arithmetic coding conditioning table
specifications may be provided, otherwise the default conditioning table specifications shall be used.

Figure 6 shows the main procedures for all DCT-based decoding processes. Each step shown performs essentially the
inverse of its corresponding main procedure within the encoder. The entropy decoder decodes the zig-zag sequence of
quantized DCT coefficients. After dequantization the DCT coefficients are transformed to an 8 × 8 block of samples by
the inverse DCT (IDCT).

4.4 Lossless coding

Figure 7 shows the main procedures for the lossless encoding processes. A predictor combines the reconstructed values of
up to three neighbourhood samples at positions a, b, and c to form a prediction of the sample at position x as shown in
Figure 8. This prediction is then subtracted from the actual value of the sample at position x, and the difference is
losslessly entropy-coded by either Huffman or arithmetic coding.
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TISO0690-93/d005

DC

DC DC

Block Block

AC AC

AC AC

i - 1i

01 07

70 77

i - 1 i

i - 1 i

DIFF = DC  - DC

Differential DC encoding Zig-zag order

Figure 5  –  Preparation of quantized coefficients for entropy encoding

FIGURE 5 [D05] 8 cm = 313 %

TISO0700-93/d006

DCT-based decoder

Table
specifications

Table
specifications

Dequantizer IDCTEntropy
decoder

Compressed
image data

Reconstructed
image data

Figure 6  –  DCT-based decoder simplified diagram

FIGURE 6 [D06] 6,5 cm = 254 %

TISO0710-93/d007

Predictor

Table
specifications

Lossless encoder

Entropy
encoder

Source
image data

Compressed
image data

Figure 7  –  Lossless encoder simplified diagram

FIGURE 7  [D07] 6,5 cm = 254 %
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TISO0720-93/d008

c b

a x

Figure 8  –  3-sample prediction neighbourhood

FIGURE 8 [D08] 5 cm = 195 %

This encoding process may also be used in a slightly modified way, whereby the precision of the input samples is reduced
by one or more bits prior to the lossless coding. This achieves higher compression than the lossless process (but lower
compression than the DCT-based processes for equivalent visual fidelity), and limits the reconstructed image’s worst-case
sample error to the amount of input precision reduction.

4.5 Modes of operation

There are four distinct modes of operation under which the various coding processes are defined: sequential
DCT-based, progressive DCT-based, lossless, and hierarchical. (Implementations are not required to provide all of
these.) The lossless mode of operation was described in 4.4. The other modes of operation are compared as follows.

For the sequential DCT-based mode, 8 × 8 sample blocks are typically input block by block from left to right, and block-
row by block-row from top to bottom. After a block has been transformed by the forward DCT, quantized and prepared for
entropy encoding, all 64 of its quantized DCT coefficients can be immediately entropy encoded and output as part of the
compressed image data (as was described in 4.3), thereby minimizing coefficient storage requirements.

For the progressive DCT-based mode, 8 × 8 blocks are also typically encoded in the same order, but in multiple scans
through the image. This is accomplished by adding an image-sized coefficient memory buffer (not shown in Figure 4)
between the quantizer and the entropy encoder. As each block is transformed by the forward DCT and quantized, its
coefficients are stored in the buffer. The DCT coefficients in the buffer are then partially encoded in each of multiple
scans. The typical sequence of image presentation at the output of the decoder for sequential versus progressive modes of
operation is shown in Figure 9.

There are two procedures by which the quantized coefficients in the buffer may be partially encoded within a scan. First,
only a specified band of coefficients from the zig-zag sequence need be encoded. This procedure is called spectral
selection, because each band typically contains coefficients which occupy a lower or higher part of the frequency spectrum
for that 8 × 8 block. Secondly, the coefficients within the current band need not be encoded to their full (quantized)
accuracy within each scan. Upon a coefficient’s first encoding, a specified number of most significant bits is encoded first.
In subsequent scans, the less significant bits are then encoded. This procedure is called successive approximation. Either
procedure may be used separately, or they may be mixed in flexible combinations.

In hierarchical mode, an image is encoded as a sequence of frames. These frames provide reference reconstructed
components which are usually needed for prediction in subsequent frames. Except for the first frame for a given
component, differential frames encode the difference between source components and reference reconstructed
components. The coding of the differences may be done using only DCT-based processes, only lossless processes, or
DCT-based processes with a final lossless process for each component. Downsampling and upsampling filters may be
used to provide a pyramid of spatial resolutions as shown in Figure 10. Alternatively, the hierarchical mode can be used to
improve the quality of the reconstructed components at a given spatial resolution.

Hierarchical mode offers a progressive presentation similar to the progressive DCT-based mode but is useful in
environments which have multi-resolution requirements. Hierarchical mode also offers the capability of progressive
coding to a final lossless stage.
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TISO0730-93/d009

Progressive

Sequential

Figure 9  –  Progressive versus sequential presentation

FIGURE 9 [D09] 9,5 cm = 371 %

TISO0740-93/d010

Figure 10  –  Hierarchical multi-resolution encoding

FIGURE 10 [D10] 9.5 cm = 374 %

4.6 Entropy coding alternatives

Two alternative entropy coding procedures are specified: Huffman coding and arithmetic coding. Huffman coding
procedures use Huffman tables, determined by one of the table specifications shown in Figures 1 and 2. Arithmetic coding
procedures use arithmetic coding conditioning tables, which may also be determined by a table specification. No default
values for Huffman tables are specified, so that applications may choose tables appropriate for their own environments.
Default tables are defined for the arithmetic coding conditioning.
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The baseline sequential process uses Huffman coding, while the extended DCT-based and lossless processes may use
either Huffman or arithmetic coding.

4.7 Sample precision

For DCT-based processes, two alternative sample precisions are specified: either 8 bits or 12 bits per sample. Applications
which use samples with other precisions can use either 8-bit or 12-bit precision by shifting their source image samples
appropriately. The baseline process uses only 8-bit precision. DCT-based implementations which handle 12-bit source
image samples are likely to need greater computational resources than those which handle only
8-bit source images. Consequently in this Specification separate normative requirements are defined for 8-bit and
12-bit DCT-based processes.

For lossless processes the sample precision is specified to be from 2 to 16 bits.

4.8 Multiple-component control

Subclauses 4.3 and 4.4 give an overview of one major part of the encoding and decoding processes – those which operate
on the sample values in order to achieve compression. There is another major part as well – the procedures which control
the order in which the image data from multiple components are processed to create the compressed data, and which
ensure that the proper set of table data is applied to the proper data units in the image. (A data unit is a sample for lossless
processes and an 8 × 8 block of samples for DCT-based processes.)

4.8.1 Interleaving multiple components

Figure 11 shows an example of how an encoding process selects between multiple source image components as well as
multiple sets of table data, when performing its encoding procedures. The source image in this example consists of the
three components A, B and C, and there are two sets of table specifications. (This simplified view does not distinguish
between the quantization tables and entropy coding tables.)

TISO0750-93/d011

A

B

C

Encoding
process

Source
image data Table speci-

fication 1
Table speci-

fication 2

Compressed
image data

Figure 11  –  Component-interleave and table-switching control

FIGURE 11 [D11] 7 cm = 273 %

In sequential mode, encoding is non-interleaved if the encoder compresses all image data units in component A before
beginning component B, and then in turn all of B before C. Encoding is interleaved if the encoder compresses a data unit
from A, a data unit from B, a data unit from C, then back to A, etc. These alternatives are illustrated in Figure 12, which
shows a case in which all three image components have identical dimensions: X columns by Y lines, for a total of n data
units each.
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A 1 A
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B B
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TISO0760-93/d012

A  , A  , ....A  ,1 2 n B  , B  , ....B  , C  , C  , ....C  1 2 n 1 2 n

Scan 1 Scan 2 Scan 3

Data unit encoding order, non-interleaved

A  , B  , C  , A  , B  , C  , ....A  , B  , C21 1 1 2 2 n n n

Scan 1

Data unit encoding order, interleaved

Figure 12  –  Interleaved versus non-interleaved encoding order

FIGURE 12 [D12] 9,5 cm = 371 %

These control procedures are also able to handle cases in which the source image components have different dimensions.
Figure 13 shows a case in which two of the components, B and C, have half the number of horizontal samples relative to
component A. In this case, two data units from A are interleaved with one each from B and C. Cases in which components
of an image have more complex relationships, such as different horizontal and vertical dimensions, can be handled as
well. (See Annex A.)

A1 A

A

2

n

X

Y

1 2

Y

B B

n/2B

1 2

Y

n/2

C C

C

TISO0770-93/d013

X/2 X/2

A  , A  , B  , C  , A  , A  , B  , C  , ....A    , A  , B    , C23 4 n-1 n1 2 1 1 2 n/2 n/2

Scan 1
Data unit encoding order, interleaved

Figure 13  –  Interleaved order for components with different dimensions

FIGURE 13 [D13] 8 cm = 313 %
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4.8.2 Minimum coded unit

Related to the concepts of multiple-component interleave is the minimum coded unit (MCU). If the compressed image
data is non-interleaved, the MCU is defined to be one data unit. For example, in Figure 12 the MCU for the non-
interleaved case is a single data unit. If the compressed data is interleaved, the MCU contains one or more data units from
each component. For the interleaved case in Figure 12, the (first) MCU consists of the three interleaved data units A1, B1,
C1. In the example of Figure 13, the (first) MCU consists of the four data units A1, A2 , B1, C1.

4.9 Structure of compressed data

Figures 1, 2, and 3 all illustrate slightly different views of compressed image data. Figure 1 shows this data as the output
of an encoding process, Figure 2 shows it as the input to a decoding process, and Figure 3 shows compressed image data
in the interchange format, at the interface between applications.

Compressed image data are described by a uniform structure and set of parameters for both classes of encoding processes
(lossy or lossless), and for all modes of operation (sequential, progressive, lossless, and hierarchical). The various parts of
the compressed image data are identified by special two-byte codes called markers. Some markers are followed by
particular sequences of parameters, as in the case of table specifications, frame header, or scan header. Others are used
without parameters for functions such as marking the start-of-image and end-of-image. When a marker is associated with a
particular sequence of parameters, the marker and its parameters comprise a marker segment.

The data created by the entropy encoder are also segmented, and one particular marker – the restart marker – is used to
isolate entropy-coded data segments. The encoder outputs the restart markers, intermixed with the entropy-coded data, at
regular restart intervals of the source image data. Restart markers can be identified without having to decode the
compressed data to find them. Because they can be independently decoded, they have application-specific uses, such as
parallel encoding or decoding, isolation of data corruptions, and semi-random access of entropy-coded segments.

There are three compressed data formats:

a) the interchange format;

b) the abbreviated format for compressed image data;

c) the abbreviated format for table-specification data.

4.9.1 Interchange format

In addition to certain required marker segments and the entropy-coded segments, the interchange format shall include the
marker segments for all quantization and entropy-coding table specifications needed by the decoding process. This
guarantees that a compressed image can cross the boundary between application environments, regardless of how each
environment internally associates tables with compressed image data.

4.9.2 Abbreviated format for compressed image data

The abbreviated format for compressed image data is identical to the interchange format, except that it does not include all
tables required for decoding. (It may include some of them.) This format is intended for use within applications where
alternative mechanisms are available for supplying some or all of the table-specification data needed for decoding.

4.9.3 Abbreviated format for table-specification data

This format contains only table-specification data. It is a means by which the application may install in the decoder the
tables required to subsequently reconstruct one or more images.

4.10 Image, frame, and scan

Compressed image data consists of only one image. An image contains only one frame in the cases of sequential and
progressive coding processes; an image contains multiple frames for the hierarchical mode.

A frame contains one or more scans. For sequential processes, a scan contains a complete encoding of one or more image
components. In Figures 12 and 13, the frame consists of three scans when non-interleaved, and one scan if all three
components are interleaved together. The frame could also consist of two scans: one with a non-interleaved component,
the other with two components interleaved.
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For progressive processes, a scan contains a partial encoding of all data units from one or more image components.
Components shall not be interleaved in progressive mode, except for the DC coefficients in the first scan for each
component of a progressive frame.

4.11 Summary of coding processes

Table 1 provides a summary of the essential characteristics of the various coding processes specified in this Specification.
The full specification of these processes is contained in Annexes F, G, H, and J.

Table 1 – Summary:  Essential characteristics of coding processes

Baseline process (required for all DCT-based decoders)

• DCT-based process
• Source image: 8-bit samples within each component
• Sequential
• Huffman coding:  2 AC and 2 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Extended DCT-based processes

• DCT-based process
• Source image: 8-bit or 12-bit samples
• Sequential or progressive
• Huffman or arithmetic coding:  4 AC and 4 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Lossless processes

• Predictive process (not DCT-based)
• Source image: P-bit samples (2  ≤  P  ≤  16)
• Sequential
• Huffman or arithmetic coding:  4 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Hierarchical processes

• Multiple frames (non-differential and differential)
• Uses extended DCT-based or lossless processes
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans
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5 Interchange format requirements

The interchange format is the coded representation of compressed image data for exchange between application
environments.

The interchange format requirements are that any compressed image data represented in interchange format shall comply
with the syntax and code assignments appropriate for the decoding process selected, as specified in Annex B.

Tests for whether compressed image data comply with these requirements are specified in Part 2 of this Specification.

6 Encoder requirements

An encoding process converts source image data to compressed image data. Each of Annexes F, G, H, and J specifies a
number of distinct encoding processes for its particular mode of operation.

An encoder is an embodiment of one (or more) of the encoding processes specified in Annexes F, G, H, or J. In order to
comply with this Specification, an encoder shall satisfy at least one of the following two requirements.

An encoder shall

a) with appropriate accuracy, convert source image data to compressed image data which comply with the
interchange format syntax specified in Annex B for the encoding process(es) embodied by the encoder;

b) with appropriate accuracy, convert source image data to compressed image data which comply with the
abbreviated format for compressed image data syntax specified in Annex B for the encoding process(es)
embodied by the encoder.

For each of the encoding processes specified in Annexes F, G, H, and J, the compliance tests for the above requirements
are specified in Part 2 of this Specification.

NOTE – There is no requirement in this Specification that any encoder which embodies one of the encoding processes
specified in Annexes F, G, H, or J shall be able to operate for all ranges of the parameters which are allowed for that process. An
encoder is only required to meet the compliance tests specified in Part 2, and to generate the compressed data format according to
Annex B for those parameter values which it does use.

7 Decoder requirements

A decoding process converts compressed image data to reconstructed image data. Each of Annexes F, G, H, and J
specifies a number of distinct decoding processes for its particular mode of operation.

A decoder is an embodiment of one (or more) of the decoding processes specified in Annexes F, G, H, or J. In order to
comply with this Specification, a decoder shall satisfy all three of the following requirements.

A decoder shall

a) with appropriate accuracy, convert to reconstructed image data any compressed image data with parameters
within the range supported by the application, and which comply with the interchange format syntax
specified in Annex B for the decoding process(es) embodied by the decoder;

b) accept and properly store any table-specification data which comply with the abbreviated format for table-
specification data syntax specified in Annex B for the decoding process(es) embodied by the decoder;

c) with appropriate accuracy, convert to reconstructed image data any compressed image data which comply
with the abbreviated format for compressed image data syntax specified in Annex B for the decoding
process(es) embodied by the decoder, provided that the table-specification data required for decoding the
compressed image data has previously been installed into the decoder.

Additionally, any DCT-based decoder, if it embodies any DCT-based decoding process other than baseline sequential,
shall also embody the baseline sequential decoding process.

For each of the decoding processes specified in Annexes F, G, H, and J, the compliance tests for the above requirements
are specified in Part 2 of this Specification.
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Annex  A

Mathematical definitions

(This annex forms an integral part of this Recommendation | International Standard)

A.1 Source image

Source images to which the encoding processes specified in this Specification can be applied are defined in this annex.

A.1.1 Dimensions and sampling factors

As shown in Figure A.1, a source image is defined to consist of Nf components. Each component, with unique identifier
Ci, is defined to consist of a rectangular array of samples of xi columns by yi lines. The component dimensions are derived
from two parameters, X and Y, where X is the maximum of the xi values and Y is the maximum of the yi values for all
components in the frame. For each component, sampling factors Hi and Vi are defined relating component dimensions xi
and yi to maximum dimensions X and Y, according to the following expressions:

x X
H

H
y Y

V
Vi

i

max
i

i

max
= ×L

M
M

O

P
P ×L

M
M

O

P
Pand ,

where Hmax and V max are the maximum sampling factors for all components in the frame, and   is the ceiling function.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and 512 samples per line,
and with the following sampling factors:

Component
Component 1
Component 2 2

0 4 1
2 2
1 1

0 0

1 1
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= =
= =
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,
,
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Then X = 512, Y = 512, Hmax = 4, Vmax = 2, and xi and yi for each component are

Component 0
Component
Component

x y
x y
x y

0 0

1 1

2 2

512 256
1 256 512
2 128 256

= =
= =
= =

,
,
,

NOTE – The X, Y, Hi , and Vi  parameters are contained in the frame header of the compressed image data (see B.2.2),
whereas the individual component dimensions xi  and yi  are derived by the decoder. Source images with xi  and yi  dimensions which do
not satisfy the expressions above cannot be properly reconstructed.

A.1.2 Sample precision

A sample is an integer with precision P bits, with any value in the range 0 through 2P – 1. All samples of all components
within an image shall have the same precision P. Restrictions on the value of P depend on the mode of operation, as
specified in B.2 to B.7.

A.1.3 Data unit

A data unit is a sample in lossless processes and an 8 × 8 block of contiguous samples in DCT-based processes. The left-
most 8 samples of each of the top-most 8 rows in the component shall always be the top-left-most block. With this top-left-
most block as the reference, the component is partitioned into contiguous data units to the right and to the bottom (as
shown in Figure A.4).

A.1.4 Orientation

Figure A.1 indicates the orientation of an image component by the terms top, bottom, left, and right. The order by which
the data units of an image component are input to the compression encoding procedures is defined to be left-to-right and
top-to-bottom within the component. (This ordering is precisely defined in A.2.) Applications determine which edges of a
source image are defined as top, bottom, left, and right.
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a)  Source image with multiple components b)  Characteristics of an image component

Figure A.1  –  Source image characteristics

FIGURE A-1 [D14] 8 cm = 313 %

A.2 Order of source image data encoding

The scan header (see B.2.3) specifies the order by which source image data units shall be encoded and placed within the
compressed image data. For a given scan, if the scan header parameter Ns = 1, then data from only one source component
– the component specified by parameter Cs1 – shall be present within the scan. This data is non-interleaved by definition.
If Ns > 1, then data from the Ns components Cs1 through CsNs shall be present within the scan. This data shall always be
interleaved. The order of components in a scan shall be according to the order specified in the frame header.

The ordering of data units and the construction of minimum coded units (MCU) is defined as follows.

A.2.1 Minimum coded unit (MCU)

For non-interleaved data the MCU is one data unit. For interleaved data the MCU is the sequence of data units defined by
the sampling factors of the components in the scan.

A.2.2 Non-interleaved order (Ns == 1)

When Ns = 1 (where Ns is the number of components in a scan), the order of data units within a scan shall be left-to-right
and top-to-bottom, as shown in Figure A.2. This ordering applies whenever Ns = 1, regardless of the values of
H1 and V1.

TISO0790-93/d015

Left Right

Top

Bottom

Figure A.2  –  Non-interleaved data ordering

FIGURE A.2 [D15] 3,5 cm = 136 %
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A.2.3 Interleaved order (Ns > 1)

When Ns > 1, each scan component Csi is partitioned into small rectangular arrays of Hk horizontal data units by Vk
vertical data units. The subscripts k indicate that Hk and Vk are from the position in the frame header component-
specification for which Ck = Csi. Within each Hk by Vk array, data units are ordered from left-to-right and top-to-bottom.
The arrays in turn are ordered from left-to-right and top-to-bottom within each component.

As shown in the example of Figure A.3, Ns = 4, and MCU1 consists of data units taken first from the top-left-most region
of Cs1, followed by data units from the corresponding region of Cs2, then from Cs3 and then from Cs4. MCU2 follows the
same ordering for data taken from the next region to the right for the four components.
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Figure A.3  –  Interleaved data ordering example

FIGURE A.3 [D16] 7,5 cm = 293 %

A.2.4 Completion of partial MCU

For DCT-based processes the data unit is a block. If xi is not a multiple of 8, the encoding process shall extend the number
of columns to complete the right-most sample blocks. If the component is to be interleaved, the encoding process shall also
extend the number of samples by one or more additional blocks, if necessary, so that the number of blocks is an integer
multiple of Hi. Similarly, if yi is not a multiple of 8, the encoding process shall extend the number of lines to complete the
bottom-most block-row. If the component is to be interleaved, the encoding process shall also extend the number of lines
by one or more additional block-rows, if necessary, so that the number of block-rows is an integer multiple of Vi.

NOTE – It is recommended that any incomplete MCUs be completed by replication of the right-most column and the bottom
line of each component.

For lossless processes the data unit is a sample. If the component is to be interleaved, the encoding process shall extend
the number of samples, if necessary, so that the number is a multiple of Hi. Similarly, the encoding process shall extend
the number of lines, if necessary, so that the number of lines is a multiple of Vi.

Any sample added by an encoding process to complete partial MCUs shall be removed by the decoding process.

A.3 DCT compression

A.3.1 Level shift

Before a non-differential frame encoding process computes the FDCT for a block of source image samples, the samples
shall be level shifted to a signed representation by subtracting 2P – 1, where P is the precision parameter specified in B.2.2.
Thus, when P = 8, the level shift is by 128; when P = 12, the level shift is by 2048.
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After a non-differential frame decoding process computes the IDCT and produces a block of reconstructed image samples,
an inverse level shift shall restore the samples to the unsigned representation by adding 2P – 1 and clamping the results to
the range 0 to 2P – 1.

A.3.2 Orientation of samples for FDCT computation

Figure A.4 shows an image component which has been partitioned into 8 × 8 blocks for the FDCT computations. Figure
A.4 also defines the orientation of the samples within a block by showing the indices used in the FDCT equation of A.3.3.

The definitions of block partitioning and sample orientation also apply to any DCT decoding process and the output
reconstructed image. Any sample added by an encoding process to complete partial MCUs shall be removed by the
decoding process.

C i
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Figure A.4  –  Partition and orientation of  8 x 8 sample blocks

FIGURE A.4 [D17] 6 cm = 234 %

A.3.3 FDCT and IDCT (informative)

The following equations specify the ideal functional definition of the FDCT and the IDCT.

NOTE – These equations contain terms which cannot be represented with perfect accuracy by any real implementation. The
accuracy requirements for the combined FDCT and quantization procedures are specified in Part 2 of this Specification. The accuracy
requirements for the combined dequantization and IDCT procedures are also specified in Part 2 of this Specification.
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A.3.4 DCT coefficient quantization (informative) and dequantization (normative)

After the FDCT is computed for a block, each of the 64 resulting DCT coefficients is quantized by a uniform quantizer.
The quantizer step size for each coefficient Svu is the value of the corresponding element Qvu from the quantization table
specified by the frame parameter Tqi (see B.2.2).
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The uniform quantizer is defined by the following equation. Rounding is to the nearest integer:

Sq round
S
Qvu

vu

vu
= F

HG
I
KJ

Sqvu is the quantized DCT coefficient, normalized by the quantizer step size.

NOTE – This equation contains a term which may not be represented with perfect accuracy by any real implementation. The
accuracy requirements for the combined FDCT and quantization procedures are specified in Part 2 of this Specification.

At the decoder, this normalization is removed by the following equation, which defines dequantization:

R Sq Qvu vu vu= ×

NOTE – Depending on the rounding used in quantization, it is possible that the dequantized coefficient may be outside the
expected range.

The relationship among samples, DCT coefficients, and quantization is illustrated in Figure A.5.

A.3.5 Differential DC encoding

After quantization, and in preparation for entropy encoding, the quantized DC coefficient Sq00 is treated separately from
the 63 quantized AC coefficients. The value that shall be encoded is the difference (DIFF) between the quantized DC
coefficient of the current block (DCi which is also designated as Sq00) and that of the previous block of the same
component (PRED):

DIFF DC PREDi= −

A.3.6 Zig-zag sequence

After quantization, and in preparation for entropy encoding, the quantized AC coefficients are converted to the zig-zag
sequence. The quantized DC coefficient (coefficient zero in the array) is treated separately, as defined in A.3.5. The zig-
zag sequence is specified in Figure A.6.

A.4 Point transform

For various procedures data may be optionally divided by a power of 2 by a point transform prior to coding. There are
three processes which require a point transform: lossless coding, lossless differential frame coding in the hierarchical
mode, and successive approximation coding in the progressive DCT mode.

In the lossless mode of operation the point transform is applied to the input samples. In the difference coding of the
hierarchical mode of operation the point transform is applied to the difference between the input component samples and
the reference component samples. In both cases the point transform is an integer divide by 2Pt, where Pt is the value of the
point transform parameter (see B.2.3).

In successive approximation coding the point transform for the AC coefficients is an integer divide by 2Al, where Al is the
successive approximation bit position, low (see B.2.3). The point transform for the DC coefficients is an arithmetic-shift-
right by Al bits. This is equivalent to dividing by 2Pt before the level shift (see A.3.1).

The output of the decoder is rescaled by multiplying by 2Pt. An example of the point transform is given in K.10.
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Figure A.5  –  Relationship between 8 × 8-block samples and DCT coefficients

FIGURE A.5 [D18] 21 cm = 821 %
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10 11 15 16 14 15 27 28

12 14 17 13 16 26 29 42

13 18 12 17 25 30 41 43

19 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure A.6 – Zig-zag sequence of quantized DCT coefficients

A.5 Arithmetic procedures in lossless and hierarchical modes of operation

In the lossless mode of operation predictions are calculated with full precision and without clamping of either overflow or
underflow beyond the range of values allowed by the precision of the input. However, the division by two which is part of
some of the prediction calculations shall be approximated by an arithmetic-shift-right by one bit.

The two’s complement differences which are coded in either the lossless mode of operation or the differential frame
coding in the hierarchical mode of operation are calculated modulo 65 536, thereby restricting the precision of these
differences to a maximum of 16 bits. The modulo values are calculated by performing the logical AND operation of the
two’s complement difference with X’FFFF’. For purposes of coding, the result is still interpreted as a 16 bit two’s
complement difference. Modulo 65 536 arithmetic is also used in the decoder in calculating the output from the sum of
the prediction and this two’s complement difference.
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Annex  B

Compressed data formats

(This annex forms an integral part of this Recommendation | International Standard)
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

This annex specifies three compressed data formats:

a) the interchange format, specified in B.2 and B.3;
b) the abbreviated format for compressed image data, specified in B.4;
c) the abbreviated format for table-specification data, specified in B.5.

B.1 describes the constituent parts of these formats. B.1.3 and B.1.4 give the conventions for symbols and figures used in
the format specifications.

B.1 General aspects of the compressed data format specifications

Structurally, the compressed data formats consist of an ordered collection of parameters, markers, and entropy-coded data
segments. Parameters and markers in turn are often organized into marker segments. Because all of these constituent parts
are represented with byte-aligned codes, each compressed data format consists of an ordered sequence of 8-bit bytes. For
each byte, a most significant bit (MSB) and a least significant bit (LSB) are defined.

B.1.1 Constituent parts

This subclause gives a general description of each of the constituent parts of the compressed data format.

B.1.1.1 Parameters

Parameters are integers, with values specific to the encoding process, source image characteristics, and other features
selectable by the application. Parameters are assigned either 4-bit, 1-byte, or 2-byte codes. Except for certain optional
groups of parameters, parameters encode critical information without which the decoding process cannot properly
reconstruct the image.

The code assignment for a parameter shall be an unsigned integer of the specified length in bits with the particular value
of the parameter.

For parameters which are 2 bytes (16 bits) in length, the most significant byte shall come first in the compressed data’s
ordered sequence of bytes. Parameters which are 4 bits in length always come in pairs, and the pair shall always be
encoded in a single byte. The first 4-bit parameter of the pair shall occupy the most significant 4 bits of the byte. Within
any 16-, 8-, or 4-bit parameter, the MSB shall come first and LSB shall come last.

B.1.1.2 Markers

Markers serve to identify the various structural parts of the compressed data formats. Most markers start marker segments
containing a related group of parameters; some markers stand alone. All markers are assigned two-byte codes: an X’FF’
byte followed by a byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may optionally be preceded by any
number of fill bytes, which are bytes assigned code X’FF’.

NOTE – Because of this special code-assignment structure, markers make it possible for a decoder to parse the compressed
data and locate its various parts without having to decode other segments of image data.

B.1.1.3 Marker assignments

All markers shall be assigned two-byte codes: a X’FF’ byte followed by a second byte which is not equal to 0 or X’FF’.
The second byte is specified in Table B.1 for each defined marker. An asterisk (*) indicates a marker which stands alone,
that is, which is not the start of a marker segment.
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Table B.1 – Marker code assignments

Code Assignment Symbol Description

Start Of Frame markers, non-differential, Huffman coding

X’FFC0’
X’FFC1’
X’FFC2’
X’FFC3’

SOF0
SOF1
SOF2
SOF3

Baseline DCT
Extended sequential DCT
Progressive DCT
Lossless (sequential)

Start Of Frame markers, differential, Huffman coding

X’FFC5’
X’FFC6’
X’FFC7’

SOF5
SOF6
SOF7

Differential sequential DCT
Differential progressive DCT
Differential lossless (sequential)

Start Of Frame markers, non-differential, arithmetic coding

X’FFC8’
X’FFC9’
X’FFCA’
X’FFCB’

JPG
SOF9
SOF10
SOF11

Reserved for JPEG extensions
Extended sequential DCT
Progressive DCT
Lossless (sequential)

Start Of Frame markers, differential, arithmetic coding

X’FFCD’
X’FFCE’
X’FFCF’

SOF13
SOF14
SOF15

Differential sequential DCT
Differential progressive DCT
Differential lossless (sequential)

Huffman table specification

X’FFC4’ DHT Define Huffman table(s)

Arithmetic coding conditioning specification

X’FFCC’ DAC Define arithmetic coding conditioning(s)

Restart interval termination

X’FFD0’ through X’FFD7’ RSTm* Restart with modulo 8 count “m”

Other markers

X’FFD8’
X’FFD9’
X’FFDA’
X’FFDB’
X’FFDC’
X’FFDD’
X’FFDE’
X’FFDF’
X’FFE0’ through X’FFEF’
X’FFF0’ through X’FFFD’
X’FFFE’

SOI*
EOI*
SOS
DQT
DNL
DRI
DHP
EXP
APPn
JPGn
COM

Start of image
End of image
Start of scan
Define quantization table(s)
Define number of lines
Define restart interval
Define hierarchical progression
Expand reference component(s)
Reserved for application segments
Reserved for JPEG extensions
Comment

Reserved markers

X’FF01’
X’FF02’ through X’FFBF’

TEM*
RES

For temporary private use in arithmetic coding
Reserved
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B.1.1.4 Marker segments

A marker segment consists of a marker followed by a sequence of related parameters. The first parameter in a marker
segment is the two-byte length parameter. This length parameter encodes the number of bytes in the marker segment,
including the length parameter and excluding the two-byte marker. The marker segments identified by the SOF and SOS
marker codes are referred to as headers: the frame header and the scan header respectively.

B.1.1.5 Entropy-coded data segments

An entropy-coded data segment contains the output of an entropy-coding procedure. It consists of an integer number of
bytes, whether the entropy-coding procedure used is Huffman or arithmetic.

NOTES

1 Making entropy-coded segments an integer number of bytes is performed as follows: for Huffman coding, 1-bits are
used, if necessary, to pad the end of the compressed data to complete the final byte of a segment. For arithmetic coding, byte alignment
is performed in the procedure which terminates the entropy-coded segment (see D.1.8).

2 In order to ensure that a marker does not occur within an entropy-coded segment, any X’FF’ byte generated by either a
Huffman or arithmetic encoder, or an X’FF’ byte that was generated by the padding of 1-bits described in NOTE 1 above, is followed
by a “stuffed” zero byte (see D.1.6 and F.1.2.3).

B.1.2 Syntax

In B.2 and B.3 the interchange format syntax is specified. For the purposes of this Specification, the syntax specification
consists of:

– the required ordering of markers, parameters, and entropy-coded segments;
– identification of optional or conditional constituent parts;
– the name, symbol, and definition of each marker and parameter;
– the allowed values of each parameter;
– any restrictions on the above which are specific to the various coding processes.

The ordering of constituent parts and the identification of which are optional or conditional is specified by the syntax
figures in B.2 and B.3. Names, symbols, definitions, allowed values, conditions, and restrictions are specified immediately
below each syntax figure.

B.1.3 Conventions for syntax figures

The syntax figures in B.2 and B.3 are a part of the interchange format specification. The following conventions, illustrated
in Figure B.1, apply to these figures:

– parameter/marker indicator:   A thin-lined box encloses either a marker or a single parameter;

– segment indicator:  A thick-lined box encloses either a marker segment, an entropy-coded data segment,
or combinations of these;

– parameter length indicator:  The width of a thin-lined box is proportional to the parameter length (4, 8,
or 16 bits, shown as E, B, and D respectively in Figure B.1) of the marker or parameter it encloses; the
width of thick-lined boxes is not meaningful;

– optional/conditional indicator:   Square brackets indicate that a marker or marker segment is only
optionally or conditionally present in the compressed image data;

– ordering:   In the interchange format a parameter or marker shown in a figure precedes all of those shown
to its right, and follows all of those shown to its left;

– entropy-coded data indicator:  Angled brackets indicate that the entity enclosed has been entropy
encoded.

TISO0830-93/d019

D E F[ B ]Segment
Optional
segment

[ [

Figure B.1 – Syntax notation conventions

Figure B.1 [D19], = 3 cm = 118%

CCITT Rec. T.81 (1992 E) 33

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

B.1.4 Conventions for symbols, code lengths, and values

Following each syntax figure in B.2 and B.3, the symbol, name, and definition for each marker and parameter shown in
the figure are specified. For each parameter, the length and allowed values are also specified in tabular form.

The following conventions apply to symbols for markers and parameters:

– all marker symbols have three upper-case letters, and some also have a subscript. Examples: SOI, SOFn;

– all parameter symbols have one upper-case letter; some also have one lower-case letter and some have
subscripts. Examples: Y, Nf, Hi, Tqi.

B.2 General sequential and progressive syntax

This clause specifies the interchange format syntax which applies to all coding processes for sequential DCT-based,
progressive DCT-based, and lossless modes of operation.

B.2.1 High-level syntax

Figure B.2 specifies the order of the high-level constituent parts of the interchange format for all non-hierarchical
encoding processes specified in this Specification.

TISO0840-93/d020

Compressed image data

SOI Frame EOI

Tables/
misc. [ [Frame header DNL

segment Scan2

[[[ [ Scan 1

[[Scan last

Tables/
misc.[ [

Scan header [ECS0

Scan

Frame

ECS last-1 ECS lastRST last-1 ]

Entropy-coded segment 0 Entropy-coded segment last

<MCU  >, <MCU  >,        · · ·        <MCU   >1 2 Ri <MCU  >, <MCU       >,        · · ·        <MCU     >n n + 1 last

Figure B.2 – Syntax for sequential DCT-based, progressive DCT-based,
and lossless modes of operation

RST0

Figure B.2 [D20], = 10 cm = 391.%

The three markers shown in Figure B.2 are defined as follows:

SOI:  Start of image marker – Marks the start of a compressed image represented in the interchange format or
abbreviated format.

EOI:   End of image marker – Marks the end of a compressed image represented in the interchange format or
abbreviated format.

RSTm:  Restart marker – A conditional marker which is placed between entropy-coded segments only if restart
is enabled. There are 8 unique restart markers (m = 0 - 7) which repeat in sequence from 0 to 7, starting with
zero for each scan, to provide a modulo 8 restart interval count.

The top level of Figure B.2 specifies that the non-hierarchical interchange format shall begin with an SOI marker, shall
contain one frame, and shall end with an EOI marker.
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The second level of Figure B.2 specifies that a frame shall begin with a frame header and shall contain one or more scans.
A frame header may be preceded by one or more table-specification or miscellaneous marker segments as specified in
B.2.4. If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan.

For sequential DCT-based and lossless processes each scan shall contain from one to four image components. If two to
four components are contained within a scan, they shall be interleaved within the scan. For progressive DCT-based
processes each image component is only partially contained within any one scan. Only the first scan(s) for the components
(which contain only DC coefficient data) may be interleaved.

The third level of Figure B.2 specifies that a scan shall begin with a scan header and shall contain one or more entropy-
coded data segments. Each scan header may be preceded by one or more table-specification or miscellaneous marker
segments. If restart is not enabled, there shall be only one entropy-coded segment (the one labeled “last”), and no restart
markers shall be present. If restart is enabled, the number of entropy-coded segments is defined by the size of the image
and the defined restart interval. In this case, a restart marker shall follow each entropy-coded segment except the last one.

The fourth level of Figure B.2 specifies that each entropy-coded segment is comprised of a sequence of entropy-
coded MCUs. If restart is enabled and the restart interval is defined to be Ri, each entropy-coded segment except the last
one shall contain Ri MCUs. The last one shall contain whatever number of MCUs completes the scan.

Figure B.2 specifies the locations where table-specification segments may be present. However, this Specification hereby
specifies that the interchange format shall contain all table-specification data necessary for decoding the compressed
image. Consequently, the required table-specification data shall be present at one or more of the allowed locations.

B.2.2 Frame header syntax

Figure B.3 specifies the frame header which shall be present at the start of a frame. This header specifies the source image
characteristics (see A.1), the components in the frame, and the sampling factors for each component, and specifies the
destinations from which the quantized tables to be used with each component are retrieved.

C1 1 1 1 C C

SOF PLf Y X Nf

H V Tq 2 2 V2H Tq 2 Nf Nf Nf NfH V Tq

n

TISO0850-93/d021

Frame header

Frame component-specification parameters

Component-specification
parameters

Figure B.3 – Frame header syntax

Figure B.3 [D21], = 5.5 cm = 215.%

The markers and parameters shown in Figure B.3 are defined below. The size and allowed values of each parameter are
given in Table B.2. In Table B.2 (and similar tables which follow), value choices are separated by commas (e.g. 8, 12) and
inclusive bounds are separated by dashes (e.g. 0 - 3).

SOFn:  Start of frame marker – Marks the beginning of the frame parameters. The subscript n identifies whether
the encoding process is baseline sequential, extended sequential, progressive, or lossless, as well as which
entropy encoding procedure is used.

SOF0: Baseline DCT

SOF1: Extended sequential DCT, Huffman coding

SOF2: Progressive DCT, Huffman coding
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SOF3: Lossless (sequential), Huffman coding

SOF9: Extended sequential DCT, arithmetic coding

SOF10: Progressive DCT, arithmetic coding

SOF11: Lossless (sequential), arithmetic coding

Lf:  Frame header length – Specifies the length of the frame header shown in Figure B.3 (see B.1.1.4).

P:  Sample precision – Specifies the precision in bits for the samples of the components in the frame.

Y:   Number of lines – Specifies the maximum number of lines in the source image. This shall be equal to the
number of lines in the component with the maximum number of vertical samples (see A.1.1). Value 0 indicates
that the number of lines shall be defined by the DNL marker and parameters at the end of the first scan (see
B.2.5).

X:   Number of samples per line – Specifies the maximum number of samples per line in the source image. This
shall be equal to the number of samples per line in the component with the maximum number of horizontal
samples (see A.1.1).

Nf:   Number of image components in frame – Specifies the number of source image components in the frame.
The value of Nf shall be equal to the number of sets of frame component specification parameters (Ci, Hi, Vi,
and Tqi) present in the frame header.

Ci:  Component identifier – Assigns a unique label to the ith component in the sequence of frame component
specification parameters. These values shall be used in the scan headers to identify the components in the scan.
The value of Ci shall be different from the values of C1 through Ci − 1.

Hi:  Horizontal sampling factor – Specifies the relationship between the component horizontal dimension
and maximum image dimension X (see A.1.1); also specifies the number of horizontal data units of component
Ci in each MCU, when more than one component is encoded in a scan.

Vi:  Vertical sampling factor – Specifies the relationship between the component vertical dimension and
maximum image dimension Y (see A.1.1); also specifies the number of vertical data units of component Ci in
each MCU, when more than one component is encoded in a scan.

Tqi:  Quantization table destination selector – Specifies one of four possible quantization table destinations
from which the quantization table to use for dequantization of DCT coefficients of component Ci is retrieved. If
the decoding process uses the dequantization procedure, this table shall have been installed in this destination
by the time the decoder is ready to decode the scan(s) containing component Ci. The destination shall not be re-
specified, or its contents changed, until all scans containing Ci have been completed.

Table B.2 – Frame header parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lf 16 8 + 3 × Nf

P 18 8-255 8, 12 8, 12 2-165

Y 16 0-65 535

X 16 1-65 535

Nf 18 1-255 1-255 1-4 1-255

Ci 18 0-25535

Hi 14 1-43550

Vi 14 1-43550

Tqi 18 0-312 0-355 0-3 0-125
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B.2.3 Scan header syntax

Figure B.4 specifies the scan header which shall be present at the start of a scan. This header specifies which
component(s) are contained in the scan, specifies the destinations from which the entropy tables to be used with each
component are retrieved, and (for the progressive DCT) which part of the DCT quantized coefficient data is contained in
the scan. For lossless processes the scan parameters specify the predictor and the point transform.

NOTE – If there is only one image component present in a scan, that component is, by definition, non-interleaved. If there is
more than one image component present in a scan, the components present are, by definition, interleaved.

2 2 2

NsTd NsTa

NsCs

SOS Ls Ns Ss Se Ah Al

Cs1 Td1 Ta1 Cs Td Ta

TISO0860-93/d022

Scan header

Component-specification
parameters

Scan component-specification parameters

Figure B.4 – Scan header syntax

Figure B.4 [D22], = 5.5 cm = 215.%

The marker and parameters shown in Figure B.4 are defined below. The size and allowed values of each parameter are
given in Table B.3.

SOS:  Start of scan marker – Marks the beginning of the scan parameters.

Ls:  Scan header length – Specifies the length of the scan header shown in Figure B.4 (see B.1.1.4).

Ns:  Number of image components in scan – Specifies the number of source image components in the scan. The
value of Ns shall be equal to the number of sets of scan component specification parameters (Csj, Tdj, and Taj)
present in the scan header.

Csj:  Scan component selector – Selects which of the Nf image components specified in the frame parameters
shall be the jth component in the scan. Each Csj shall match one of the Ci values specified in the frame header,
and the ordering in the scan header shall follow the ordering in the frame header. If Ns > 1, the order of
interleaved components in the MCU is Cs1 first, Cs2 second, etc. If Ns > 1, the following restriction shall be
placed on the image components contained in the scan:

j

N

j j

s
H V

=
∑ × ≤

1
10,

where Hj and Vj are the horizontal and vertical sampling factors for scan component j. These sampling factors
are specified in the frame header for component i, where i is the frame component specification index for which
frame component identifier Ci matches scan component selector Csj.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and
512 samples per line, and with the following sampling factors:

Component

Component 1

Component 2 2

0 4 1

1 2

2 2

0 0

1 1

2

H V

H V

H V

= =
= =
= =

,

,

Then the summation of Hj × Vj is (4 × 1) + (1 × 2) + (2 × 2) = 10.

The value of Csj shall be different from the values of Cs1 to Csj – 1.
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Tdj:  DC entropy coding table destination selector – Specifies one of four possible DC entropy coding table
destinations from which the entropy table needed for decoding of the DC coefficients of component Csj is
retrieved. The DC entropy table shall have been installed in this destination (see B.2.4.2 and B.2.4.3) by the
time the decoder is ready to decode the current scan. This parameter specifies the entropy coding table
destination for the lossless processes.

Taj:  AC entropy coding table destination selector – Specifies one of four possible AC entropy coding table
destinations from which the entropy table needed for decoding of the AC coefficients of component Csj is
retrieved. The AC entropy table selected shall have been installed in this destination (see B.2.4.2 and B.2.4.3)
by the time the decoder is ready to decode the current scan. This parameter is zero for the lossless processes.

Ss:  Start of spectral or predictor selection – In the DCT modes of operation, this parameter specifies the first
DCT coefficient in each block in zig-zag order which shall be coded in the scan. This parameter shall be set to
zero for the sequential DCT processes. In the lossless mode of operations this parameter is used to select the
predictor.

Se:  End of spectral selection – Specifies the last DCT coefficient in each block in zig-zag order which shall be
coded in the scan. This parameter shall be set to 63 for the sequential DCT processes. In the lossless mode of
operations this parameter has no meaning. It shall be set to zero.

Ah:   Successive approximation bit position high – This parameter specifies the point transform used in the
preceding scan (i.e. successive approximation bit position low in the preceding scan) for the band of coefficients
specified by Ss and Se. This parameter shall be set to zero for the first scan of each band of coefficients. In the
lossless mode of operations this parameter has no meaning. It shall be set to zero.

Al:  Successive approximation bit position low or point transform – In the DCT modes of operation this
parameter specifies the point transform, i.e. bit position low, used before coding the band of coefficients
specified by Ss and Se. This parameter shall be set to zero for the sequential DCT processes. In the lossless
mode of operations, this parameter specifies the point transform, Pt.

The entropy coding table destination selectors, Tdj and Taj, specify either Huffman tables (in frames using Huffman
coding) or arithmetic coding tables (in frames using arithmetic coding). In the latter case the entropy coding table
destination selector specifies both an arithmetic coding conditioning table destination and an associated statistics area.

Table B.3 – Scan header parameter size and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Ls 16 6 + 2 × Ns

Ns 18 1-4

Csj 18 0-255a)

Tdj 14 0-1 0-3 0-3 0-3

Taj 14 0-1 0-3 0-3 0

Ss 18 0-1 0-1 0-63 1-7b)

Se 18 63- 63- Ss-63c) 0

Ah 14 0-1 0-1 0-13 0

Al 14 0-1 0-1 0-13 0-15

a) Csj shall be a member of the set of Ci specified in the frame header.

b) 0 for lossless differential frames in the hierarchical mode (see B.3).

c) 0 if Ss equals zero.

38 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

B.2.4 Table-specification and miscellaneous marker segment syntax

Figure B.5 specifies that, at the places indicated in Figure B.2, any of the table-specification segments or miscellaneous
marker segments specified in B.2.4.1 through B.2.4.6 may be present in any order and with no limit on the number of
segments.

If any table specification for a particular destination occurs in the compressed image data, it shall replace any previous
table specified for this destination, and shall be used whenever this destination is specified in the remaining scans in the
frame or subsequent images represented in the abbreviated format for compressed image data. If a table specification for a
given destination occurs more than once in the compressed image data, each specification shall replace the previous
specification. The quantization table specification shall not be altered between progressive DCT scans of a given
component.

TISO0870-93/d023

Tables or miscellaneous marker segment

Marker
segment1

[ ]
Marker

segment 2
[ ]

Marker
segment last

[ ]

Marker segment

Quantization table-specification
or

Huffman table-specification
or

Arithmetic conditioning table-specification
or

Restart interval definition
or

Comment
or

Application data

Figure B.5 – Tables/miscellaneous marker segment syntax

Figure B.5 [D23], = 7.5 cm = 293.%

B.2.4.1 Quantization table-specification syntax

Figure B.6 specifies the marker segment which defines one or more quantization tables.

Q
1

Q Q
0 63

Lq Pq Tq

TISO0880-93/d024

DQT

Define quantization table segment

Multiple (t = 1, ..., n)

Figure B.6 – Quantization table syntax

Figure B.6 [D24], = 3.5 cm = 136.%

The marker and parameters shown in Figure B.6 are defined below. The size and allowed values of each parameter are
given in Table B.4.

DQT:   Define quantization table marker – Marks the beginning of quantization table-specification parameters.

Lq:   Quantization table definition length – Specifies the length of all quantization table parameters shown in
Figure B.6 (see B.1.1.4).
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Pq:  Quantization table element precision – Specifies the precision of the Qk values. Value 0 indicates 8-bit Qk
values; value 1 indicates 16-bit Qk values. Pq shall be zero for 8 bit sample precision P (see B.2.2).

Tq:   Quantization table destination identifier – Specifies one of four possible destinations at the decoder into
which the quantization table shall be installed.

Qk:  Quantization table element – Specifies the kth element out of 64 elements, where k is the index in the zig-
zag ordering of the DCT coefficients. The quantization elements shall be specified in zig-zag scan order.

Table B.4 – Quantization table-specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lq 16 16 2 65 64
1

+ ∑ + ×
=t

n

Pq t( )b g Undefined

Pq 14 16 0 0, 1 0, 1 Undefined

Tq 14 16 0-3 Undefined

Qk 18, 16 1-255, 1-65 535 Undefined

The value n in Table B.4 is the number of quantization tables specified in the DQT marker segment.

Once a quantization table has been defined for a particular destination, it replaces the previous tables stored in that
destination and shall be used, when referenced, in the remaining scans of the current image and in subsequent images
represented in the abbreviated format for compressed image data. If a table has never been defined for a particular
destination, then when this destination is specified in a frame header, the results are unpredictable.

An 8-bit DCT-based process shall not use a 16-bit precision quantization table.

B.2.4.2 Huffman table-specification syntax

Figure B.7 specifies the marker segment which defines one or more Huffman table specifications.

TISO0890-93/d025

DHT Lh Tc Th L 1 L 2 L 16

Define Huffman table segment

Symbol-length
assignment

Multiple (t = 1, ..., n)

Symbol-length assignment parameters

Figure B.7 – Huffman table syntax

V1,1 V1,2 V1,L1
V2,1 V2,2 V2,L2

V16,1 V16,2 V16,L16

Figure B.7 [D25], = 5.5 cm = 215.%
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The marker and parameters shown in Figure B.7 are defined below. The size and allowed values of each parameter are
given in Table B.5.

DHT:   Define Huffman table marker – Marks the beginning of Huffman table definition parameters.

Lh:   Huffman table definition length – Specifies the length of all Huffman table parameters shown in Figure B.7
(see B.1.1.4).

Tc:  Table class – 0 = DC table or lossless table, 1 = AC table.

Th:   Huffman table destination identifier – Specifies one of four possible destinations at the decoder into which
the Huffman table shall be installed.

L i:  Number of Huffman codes of length i – Specifies the number of Huffman codes for each of the 16 possible
lengths allowed by this Specification. Li’s are the elements of the list BITS.

Vi,j :  Value associated with each Huffman code – Specifies, for each i, the value associated with each Huffman
code of length i. The meaning of each value is determined by the Huffman coding model. The Vi,j’s are the
elements of the list HUFFVAL.

Table B.5 – Huffman table specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lh 16 2 17
1

+ ∑ +
=t

n

tmc h

Tc 14 0, 1 0

Th 14 0, 1 0-3

Li 18 0-255

Vi, j 18 0-255

The value n in Table B.5 is the number of Huffman tables specified in the DHT marker segment. The value mt is the
number of parameters which follow the 16 Li(t) parameters for Huffman table t, and is given by:

m Lt
i

i= ∑
=1

16

In general, mt is different for each table.

Once a Huffman table has been defined for a particular destination, it replaces the previous tables stored in that
destination and shall be used when referenced, in the remaining scans of the current image and in subsequent images
represented in the abbreviated format for compressed image data. If a table has never been defined for a particular
destination, then when this destination is specified in a scan header, the results are unpredictable.
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B.2.4.3 Arithmetic conditioning table-specification syntax

Figure B.8 specifies the marker segment which defines one or more arithmetic coding conditioning table specifications.
These replace the default arithmetic coding conditioning tables established by the SOI marker for arithmetic coding
processes. (See F.1.4.4.1.4 and F.1.4.4.2.1.)

TcDAC La Tb Cs

TISO0900-93/d026

Define arithmetic conditioning segment

Multiple (t = 1, ..., n)

Figure B.8 – Arithmetic conditioning table-specification syntax

Figure B.8 [D26], = 3 cm = 117.%

The marker and parameters shown in Figure B.8 are defined below. The size and allowed values of each parameter are
given in Table B.6.

DAC:   Define arithmetic coding conditioning marker – Marks the beginning of the definition of arithmetic
coding conditioning parameters.

La:   Arithmetic coding conditioning definition length – Specifies the length of all arithmetic coding
conditioning parameters shown in Figure B.8 (see B.1.1.4).

Tc:  Table class –  0 = DC table or lossless table, 1 = AC table.

Tb:   Arithmetic coding conditioning table destination identifier – Specifies one of four possible destinations at
the decoder into which the arithmetic coding conditioning table shall be installed.

Cs:  Conditioning table value – Value in either the AC or the DC (and lossless) conditioning table. A single
value of Cs shall follow each value of Tb. For AC conditioning tables Tc shall be one and Cs shall contain a
value of Kx in the range 1 ≤ Kx ≤ 63. For DC (and lossless) conditioning tables Tc shall be zero and Cs shall
contain two 4-bit parameters, U and L. U and L shall be in the range 0 ≤ L ≤ U ≤ 15 and the value of Cs shall be
L + 16 × U.

The value n in Table B.6 is the number of arithmetic coding conditioning tables specified in the DAC marker segment.
The parameters L and U are the lower and upper conditioning bounds used in the arithmetic coding procedures defined
for DC coefficient coding and lossless coding. The separate value range 1-63 listed for DCT coding is the Kx conditioning
used in AC coefficient coding.

Table B.6 – Arithmetic coding conditioning table-specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

La 16 Undefined 2 + 2 × n

Tc 14 Undefined 0, 1 0-255

Tb 14 Undefined 0-3

Cs 18 Undefined 0-255 (Tc = 0), 1-63 (Tc = 1) 0-255
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B.2.4.4 Restart interval definition syntax

Figure B.9 specifies the marker segment which defines the restart interval.

DRI Ri

TISO0910-93/d027

Lr

Define restart interval segment

Figure B.9 – Restart interval definition syntax

Figure B.9 [D27], = 2.5 cm = 98.%

The marker and parameters shown in Figure B.9 are defined below. The size and allowed values of each parameter are
given in Table B.7.

DRI:   Define restart interval marker – Marks the beginning of the parameters which define the restart interval.

Lr:   Define restart interval segment length – Specifies the length of the parameters in the DRI segment shown in
Figure B.9 (see B.1.1.4).

Ri:  Restart interval – Specifies the number of MCU in the restart interval.

In Table B.7 the value n is the number of rows of MCU in the restart interval. The value MCUR is the number of MCU
required to make up one line of samples of each component in the scan. The SOI marker disables the restart intervals. A
DRI marker segment with Ri nonzero shall be present to enable restart interval processing for the following scans. A DRI
marker segment with Ri equal to zero shall disable restart intervals for the following scans.

Table B.7 – Define restart interval segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lr 16 4

Ri 16 0-65 535 n × MCUR

B.2.4.5 Comment syntax

Figure B.10 specifies the marker segment structure for a comment segment.

COM Lc

TISO00920-93/d028

Cm
1

. . . Cm
Lc-2

Comment segment

Figure B.10 – Comment segment syntax

Figure B.10 [D28], = 2.8cm = 98.%
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The marker and parameters shown in Figure B.10 are defined below. The size and allowed values of each parameter are
given in Table B.8.

COM:  Comment marker – Marks the beginning of a comment.

Lc:   Comment segment length – Specifies the length of the comment segment shown in Figure B.10
(see B.1.1.4).

Cmi:  Comment byte – The interpretation is left to the application.

Table B.8 – Comment segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lc 16 2-65 535

Cmi 18 0-25522

B.2.4.6 Application data syntax

Figure B.11 specifies the marker segment structure for an application data segment.

1 . . .APP n Lp Ap Ap Lp-2

TISO0930-93/d029

Application data segment

Figure B.11 – Application data syntax

Figure B.11 [D29], = 2.8 cm = 98.%

The marker and parameters shown in Figure B.11 are defined below. The size and allowed values of each parameter are
given in Table B.9.

APPn:  Application data marker – Marks the beginning of an application data segment.

Lp:   Application data segment length – Specifies the length of the application data segment shown in
Figure B.11 (see B.1.1.4).

Api:  Application data byte – The interpretation is left to the application.

The APPn (Application) segments are reserved for application use. Since these segments may be defined differently for
different applications, they should be removed when the data are exchanged between application environments.

Table B.9 – Application data segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lp 16 2-65 535

Api 18 0-25522
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B.2.5 Define number of lines syntax

Figure B.12 specifies the marker segment for defining the number of lines. The DNL (Define Number of Lines) segment
provides a mechanism for defining or redefining the number of lines in the frame (the Y parameter in the frame header) at
the end of the first scan. The value specified shall be consistent with the number of MCU-rows encoded in the first scan.
This segment, if used, shall only occur at the end of the first scan, and only after coding of an integer number of MCU-
rows. This marker segment is mandatory if the number of lines (Y) specified in the frame header has the value zero.

DNL Ld NL

TISO0940-93/d030

Define number of lines segment

Figure B.12 – Define number of lines syntax

Figure B.12 [D30], = 2.8 cm = 98.%

The marker and parameters shown in Figure B.12 are defined below. The size and allowed values of each parameter are
given in Table B.10.

DNL:   Define number of lines marker – Marks the beginning of the define number of lines segment.

Ld:   Define number of lines segment length – Specifies the length of the define number of lines segment shown
in Figure B.12 (see B.1.1.4).

NL:   Number of lines – Specifies the number of lines in the frame (see definition of Y in B.2.2).

Table B.10 – Define number of lines segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Ld 16 4-65535a)

NL 16 1-65 535a)

a) The value specified shall be consistent with the number of lines coded at the point where the DNL segment
terminates the compressed data segment.

B.3 Hierarchical syntax

B.3.1 High level hierarchical mode syntax

Figure B.13 specifies the order of the high level constituent parts of the interchange format for hierarchical encoding
processes.
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SOI EOI

TISO0950-93/d031

Compressed image data

[Tables/misc.] DHP segment Frame 1 Framelast

Figure B.13 – Syntax for the hierarchical mode of operation

Figure B.13 [D31], = 3 cm = 117.%

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. The
hierarchical mode compressed image data may include EXP marker segments and differential frames which shall follow
the initial non-differential frame. The frame structure in hierarchical mode is identical to the frame structure in non-
hierarchical mode.

The non-differential frames in the hierarchical sequence shall use one of the coding processes specified for SOFn markers:
SOF0, SOF1, SOF2, SOF3, SOF9, SOF10 and SOF11. The differential frames shall use one of the processes specified for
SOF5, SOF6, SOF7, SOF13, SOF14 and SOF15. The allowed combinations of SOF markers within one hierarchical
sequence are specified in Annex J.

The sample precision (P) shall be constant for all frames and have the identical value as that coded in the DHP marker
segment. The number of samples per line (X) for all frames shall not exceed the value coded in the DHP marker segment.
If the number of lines (Y) is non-zero in the DHP marker segment, then the number of lines for all frames shall not exceed
the value in the DHP marker segment.

B.3.2 DHP segment syntax

The DHP segment defines the image components, size, and sampling factors for the completed hierarchical sequence of
frames. The DHP segment shall precede the first frame; a single DHP segment shall occur in the compressed image data.

The DHP segment structure is identical to the frame header syntax, except that the DHP marker is used instead of the
SOFn marker. The figures and description of B.2.2 then apply, except that the quantization table destination selector
parameter shall be set to zero in the DHP segment.

B.3.3 EXP segment syntax

Figure B.14 specifies the marker segment structure for the EXP segment. The EXP segment shall be present if (and only
if) expansion of the reference components is required either horizontally or vertically. The EXP segment parameters apply
only to the next frame (which shall be a differential frame) in the image. If required, the EXP segment shall be one of the
table-specification segments or miscellaneous marker segments preceding the frame header; the EXP segment shall not be
one of the table-specification segments or miscellaneous marker segments preceding a scan header or a DHP marker
segment.

TISO0960-93/d032

EXP Le Eh Ev

Expand segment

Figure B.14 – Syntax of the expand segment

Figure B.14 [D32], = 2.5 cm = 98.%
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The marker and parameters shown in Figure B.14 are defined below. The size and allowed values of each parameter are
given in Table B.11.

EXP: Expand reference components marker – Marks the beginning of the expand reference components
segment.

Le:  Expand reference components segment length – Specifies the length of the expand reference components
segment (see B.1.1.4).

Eh:  Expand horizontally – If one, the reference components shall be expanded horizontally by a factor of two.
If horizontal expansion is not required, the value shall be zero.

Ev:  Expand vertically – If one, the reference components shall be expanded vertically by a factor of two.
If vertical expansion is not required, the value shall be zero.

Both Eh and Ev shall be one if expansion is required both horizontally and vertically.

Table B.11 – Expand segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Le 16 3,1

Eh 14 0, 1

Ev 14 0, 1

B.4 Abbreviated format for compressed image data

Figure B.2 shows the high-level constituent parts of the interchange format. This format includes all table specifications
required for decoding. If an application environment provides methods for table specification other than by means of the
compressed image data, some or all of the table specifications may be omitted. Compressed image data which is missing
any table specification data required for decoding has the abbreviated format.

B.5 Abbreviated format for table-specification data

Figure B.2 shows the high-level constituent parts of the interchange format. If no frames are present in the compressed
image data, the only purpose of the compressed image data is to convey table specifications or miscellaneous marker
segments defined in B.2.4.1, B.2.4.2, B.2.4.5, and B.2.4.6. In this case the compressed image data has the abbreviated
format for table specification data (see Figure B.15).

TISO0970-93/d033

SOI EOI

Compressed image data

[Tables/misc.]

Figure B.15 – Abbreviated format for table-specification data syntax

Figure B.15 [D33], = 3 cm = 117.%   dim. à 100

B.6 Summary

The order of the constituent parts of interchange format and all marker segment structures is summarized in Figures B.16
and B.17. Note that in Figure B.16 double-lined boxes enclose marker segments. In Figures B.16 and B.17 thick-lined
boxes enclose only markers.

The EXP segment can be mixed with the other tables/miscellaneous marker segments preceding the frame header but not
with the tables/miscellaneous marker segments preceding the DHP segment or the scan header.
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Figure  à l'italienne B.17 [D35], = 21 cm = 821.%
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Annex  C

Huffman table specification

(This annex forms an integral part of this Recommendation | International Standard)

A Huffman coding procedure may be used for entropy coding in any of the coding processes. Coding models for
Huffman encoding are defined in Annexes F, G, and H. In this Annex, the Huffman table specification is defined.

Huffman tables are specified in terms of a 16-byte list (BITS) giving the number of codes for each code length from
1 to 16. This is followed by a list of the 8-bit symbol values (HUFFVAL), each of which is assigned a Huffman code. The
symbol values are placed in the list in order of increasing code length. Code lengths greater than 16 bits are not allowed.
In addition, the codes shall be generated such that the all-1-bits code word of any length is reserved as a prefix for longer
code words.

NOTE – The order of the symbol values within HUFFVAL is determined only by code length. Within a given code length
the ordering of the symbol values is arbitrary.

This annex specifies the procedure by which the Huffman tables (of Huffman code words and their corresponding 8-bit
symbol values) are derived from the two lists (BITS and HUFFVAL) in the interchange format. However, the way in
which these lists are generated is not specified. The lists should be generated in a manner which is consistent with the
rules for Huffman coding, and it shall observe the constraints discussed in the previous paragraph. Annex K contains an
example of a procedure for generating lists of Huffman code lengths and values which are in accord with these rules.

NOTE – There is no requirement in this Specification that any encoder or decoder shall implement the procedures in
precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function
specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it
satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in
Part 2.

C.1 Marker segments for Huffman table specification

The DHT marker identifies the start of Huffman table definitions within the compressed image data. B.2.4.2 specifies the
syntax for Huffman table specification.

C.2 Conversion of Huffman table specifications to tables of codes and code lengths

Conversion of Huffman table specifications to tables of codes and code lengths uses three procedures. The first procedure
(Figure C.1) generates a table of Huffman code sizes. The second procedure (Figure C.2) generates the Huffman codes
from the table built in Figure C.1. The third procedure (Figure C.3) generates the Huffman codes in symbol value order.

Given a list BITS (1 to 16) containing the number of codes of each size, and a list HUFFVAL containing the symbol
values to be associated with those codes as described above, two tables are generated. The HUFFSIZE table contains a list
of code lengths; the HUFFCODE table contains the Huffman codes corresponding to those lengths.

Note that the variable LASTK is set to the index of the last entry in the table.
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TISO1000-93/d036

Generate_size_table

K = 0
I = 1
J = 1

No

Yes

HUFFSIZE(K) = I
K = K + 1
J = J + 1

J > BITS(I)
?

I = I + 1
J = 1

No I > 16
?

Yes

HUFFSIZE(K) = 0
LASTK = K

Done

Figure C.1 – Generation of table of Huffman code sizes

Figure C.1 [D36], = 16 cm = 625 %
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A Huffman code table, HUFFCODE, containing a code for each size in HUFFSIZE is generated by the procedure in
Figure C.2. The notation “SLL CODE 1” in Figure C.2 indicates a shift-left-logical of CODE by one bit position.

TISO1010-93/d037

Generate_code_table

K = 0
CODE = 0
SI = HUFFSIZE(0)

HUFFCODE(K) = CODE
CODE = CODE + 1
K = K + 1

Yes

No

HUFFSIZE(K) = SI
?

Yes

No

HUFFSIZE(K) = 0
?

Done

NoYes

CODE = SLL CODE 1
SI = SI + 1

HUFFSIZE(K) = SI
?

Figure C.2 – Generation of table of Huffman codes

Figure C.2 [D37], = 16.5 cm = 645.%

Two tables, HUFFCODE and HUFFSIZE, have now been generated. The entries in the tables are ordered according to
increasing Huffman code numeric value and length.

The encoding procedure code tables, EHUFCO and EHUFSI, are created by reordering the codes specified by
HUFFCODE and HUFFSIZE according to the symbol values assigned to each code in HUFFVAL.
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Figure C.3 illustrates this ordering procedure.

TISO1020-93/d038

Order_codes

K = 0

Yes

No

K < LASTK
?

Done

I = HUFFVAL(K)
EHUFCO(I) = HUFFCODE(K)
EHUFSI(I) = HUFFSIZE(K)
K = K + 1

Figure C.3 – Ordering procedure for encoding procedure code tables

Figure C.3 [D38], = 11.5 cm = 449.%

C.3 Bit ordering within bytes

The root of a Huffman code is placed toward the MSB (most-significant-bit) of the byte, and successive bits are placed in
the direction MSB to LSB (least-significant-bit) of the byte. Remaining bits, if any, go into the next byte following the
same rules.

Integers associated with Huffman codes are appended with the MSB adjacent to the LSB of the preceding Huffman code.
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Annex  D

Arithmetic coding
(This annex forms an integral part of this Recommendation | International Standard)

An adaptive binary arithmetic coding procedure may be used for entropy coding in any of the coding processes except
the baseline sequential process. Coding models for adaptive binary arithmetic coding are defined in Annexes F, G,
and H. In this annex the arithmetic encoding and decoding procedures used in those models are defined.

In K.4 a simple test example is given which should be helpful in determining if a given implementation is correct.

NOTE – There is no requirement in this Specification that any encoder or decoder shall implement the procedures in
precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function
specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it
satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in
Part 2.

D.1 Arithmetic encoding procedures

Four arithmetic encoding procedures are required in a system with arithmetic coding (see Table D.1).

Table D.1 – Procedures for binary arithmetic encoding

Procedure Purpose

Code_0(S) Code a “0” binary decision with context-index S

Code_1(S) Code a “1” binary decision with context-index S

Initenc Initialize the encoder

Flush Terminate entropy-coded segment

The “Code_0(S)”and “Code_1(S)” procedures code the 0-decision and 1-decision respectively; S is a context-index
which identifies a particular conditional probability estimate used in coding the binary decision. The “Initenc” procedure
initializes the arithmetic coding entropy encoder. The “Flush” procedure terminates the entropy-coded segment in
preparation for the marker which follows.

D.1.1 Binary arithmetic encoding principles

The arithmetic coder encodes a series of binary symbols, zeros and ones, each symbol representing one possible result of a
binary decision.

Each “binary decision” provides a choice between two alternatives. The binary decision might be between positive and
negative signs, a magnitude being zero or nonzero, or a particular bit in a sequence of binary digits being zero or one.

The output bit stream (entropy-coded data segment) represents a binary fraction which increases in precision as bytes are
appended by the encoding process.

D.1.1.1 Recursive interval subdivision

Recursive probability interval subdivision is the basis for the binary arithmetic encoding procedures. With each binary
decision the current probability interval is subdivided into two sub-intervals, and the bit stream is modified (if necessary)
so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol which occurred.

In the partitioning of the current probability interval into two sub-intervals, the sub-interval for the less probable symbol
(LPS) and the sub-interval for the more probable symbol (MPS) are ordered such that usually the MPS sub-interval is
closer to zero. Therefore, when the LPS is coded, the MPS sub-interval size is added to the bit stream. This coding
convention requires that symbols be recognized as either MPS or LPS rather than 0 or 1. Consequently, the size of the
LPS sub-interval and the sense of the MPS for each decision must be known in order to encode that decision.
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The subdivision of the current probability interval would ideally require a multiplication of the interval by the probability
estimate for the LPS. Because this subdivision is done approximately, it is possible for the LPS sub-interval to be larger
than the MPS sub-interval. When that happens a “conditional exchange” interchanges the assignment of the sub-intervals
such that the MPS is given the larger sub-interval.

Since the encoding procedure involves addition of binary fractions rather than concatenation of integer code words, the
more probable binary decisions can sometimes be coded at a cost of much less than one bit per decision.

D.1.1.2 Conditioning of probability estimates

An adaptive binary arithmetic coder requires a statistical model – a model for selecting conditional probability estimates to
be used in the coding of each binary decision. When a given binary decision probability estimate is dependent on a
particular feature or features (the context) already coded, it is “conditioned” on that feature. The conditioning of
probability estimates on previously coded decisions must be identical in encoder and decoder, and therefore can use only
information known to both.

Each conditional probability estimate required by the statistical model is kept in a separate storage location or “bin”
identified by a unique context-index S. The arithmetic coder is adaptive, which means that the probability estimates at
each context-index are developed and maintained by the arithmetic coding system on the basis of prior coding decisions
for that context-index.

D.1.2 Encoding conventions and approximations

The encoding procedures use fixed precision integer arithmetic and an integer representation of fractional values in which
X’8000’ can be regarded as the decimal value 0.75. The probability interval, A, is kept in the integer
range X’8000’ ≤ A < X’10000’ by doubling it whenever its integer value falls below X’8000’. This is equivalent to
keeping A in the decimal range 0.75 ≤ A < 1.5. This doubling procedure is called renormalization.

The code register, C, contains the trailing bits of the bit stream. C is also doubled each time A is doubled. Periodically
– to keep C from overflowing – a byte of data is removed from the high order bits of the C-register and placed in the
entropy-coded segment.

Carry-over into the entropy-coded segment is limited by delaying X’FF’ output bytes until the carry-over is resolved. Zero
bytes are stuffed after each X’FF’ byte in the entropy-coded segment in order to avoid the accidental generation of
markers in the entropy-coded segment.

Keeping A in the range 0.75 ≤ A < 1.5 allows a simple arithmetic approximation to be used in the probability interval
subdivision. Normally, if the current estimate of the LPS probability for context-index S is Qe(S), precise calculation of
the sub-intervals would require:

Qe(S) × A Probability sub-interval for the LPS;
A – (Qe(S) × A) Probability sub-interval for the MPS.

Because the decimal value of A is of order unity, these can be approximated by

Qe(S) Probability sub-interval for the LPS;
A – Qe(S) Probability sub-interval for the MPS.

Whenever the LPS is coded, the value of A – Qe(S) is added to the code register and the probability interval is reduced to
Qe(S). Whenever the MPS is coded, the code register is left unchanged and the interval is reduced to A – Qe(S). The
precision range required for A is then restored, if necessary, by renormalization of both A and C.

With the procedure described above, the approximations in the probability interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe(S) is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling gives one-third of the probability interval to the MPS and two-
thirds to the LPS. To avoid this size inversion, conditional exchange is used. The probability interval is subdivided using
the simple approximation, but the MPS and LPS sub-interval assignments are exchanged whenever the LPS sub-interval is
larger than the MPS sub-interval. This MPS/LPS conditional exchange can only occur when a renormalization will be
needed.

Each binary decision uses a context. A context is the set of prior coding decisions which determine the context-index, S,
identifying the probability estimate used in coding the decision.

Whenever a renormalization occurs, a probability estimation procedure is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding of LPS and MPS provide, by means of a table-based probability estimation
state machine, a direct estimate of the probabilities.

CCITT Rec. T.81 (1992 E) 55

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

D.1.3 Encoder code register conventions

The flow charts in this annex assume the register structures for the encoder as shown in Table D.2.

Table D.2 – Encoder register connections

MSB LSB

C-register 0000cbbb, bbbbbsss, xxxxxxxx, xxxxxxxx

A-register 00000000, 00000000, aaaaaaaa, aaaaaaaa

The “a” bits are the fractional bits in the A-register (the current probability interval value) and the “x” bits are the
fractional bits in the code register. The “s” bits are optional spacer bits which provide useful constraints on carry-over, and
the “b” bits indicate the bit positions from which the completed bytes of data are removed from the C-register. The “c” bit
is a carry bit. Except at the time of initialization, bit 15 of the A-register is always set and bit 16 is always clear (the LSB
is bit 0).

These register conventions illustrate one possible implementation. However, any register conventions which allow
resolution of carry-over in the encoder and which produce the same entropy-coded segment may be used. The handling of
carry-over and the byte stuffing following X’FF’ will be described in a later part of this annex.

D.1.4 Code_1(S) and Code_0(S) procedures

When a given binary decision is coded, one of two possibilities occurs – either a 1-decision or a 0-decision is coded.
Code_1(S) and Code_0(S) are shown in Figures D.1 and D.2. The Code_1(S) and Code_0(S) procedures use probability
estimates with a context-index S. The context-index S is determined by the statistical model and is, in general, a function
of the previous coding decisions; each value of S identifies a particular conditional probability estimate which is used in
encoding the binary decision.

TISO1800-93/d039

Code_1(S)

No YesMPS(S) = 1
?

Code_LPS(S) Code_MPS(S)

Done

Figure D.1 – Code_1(S) procedure

Figure D.1 [D39], = 9 cm = 352.%

56 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

TISO1030-93/d040

Code_0(S)

MSP(S) = 0
?

No Yes

Code_LPS(S) Code_MPS(S)

Done

Figure D.2 – Code_0(S) procedure

Figure D.2 [D40], = 9 cm = 352 %

The context-index S selects a storage location which contains Index(S), an index to the tables which make up the
probability estimation state machine. When coding a binary decision, the symbol being coded is either the more probable
symbol or the less probable symbol. Therefore, additional information is stored at each context-index identifying the sense
of the more probable symbol, MPS(S).

For simplicity, the flow charts in this subclause assume that the context storage for each context-index S has an additional
storage field for Qe(S) containing the value of Qe(Index(S)). If only the value of Index(S) and MPS(S) are stored, all
references to Qe(S) should be replaced by Qe(Index(S)).

The Code_LPS(S) procedure normally consists of the addition of the MPS sub-interval A – Qe(S) to the bit stream and a
scaling of the interval to the sub-interval, Qe(S). It is always followed by the procedures for obtaining a new LPS
probability estimate (Estimate_Qe(S)_after_LPS) and renormalization (Renorm_e) (see Figure D.3).

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPS sub-interval is coded.

The Code_MPS(S) procedure normally reduces the size of the probability interval to the MPS sub-interval. However, if
the LPS sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is
coded instead. Note that conditional exchange cannot occur unless the procedures for obtaining a new LPS probability
estimate (Estimate_Qe(S)_after_MPS) and renormalization (Renorm_e) are required after the coding of the symbol (see
Figure D.4).
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TISO1040-93/d041

Code_LPS(S)

A = A – Qe(S)

Yes

No

A < Qe(S)
?

C = C + A
A = Qe(S)

Estimate_Qe(S)_after_LPS
Renorm_e

Done

Figure D.3 – Code_LPS(S) procedure with conditional MPS/LPS exchange

Figure D.3 [D41], = 13.5 cm = 528.%
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TISO1050-93/d042

Code_MPS(S)

A = A – Qe(S)

No

No

Yes

Yes

A < X’8000’
?

A < Qe(S)
?

C = C + A
A = Qe(S)

Estimate_Qe(S)_after_MPS
Renorm_e

Done

Figure D.4 – Code_MPS(S) procedure with conditional MPS/LPS exchange

Figure D.4 [D42], = 16.5 cm = 645.%

D.1.5 Probability estimation in the encoder

D.1.5.1 Probability estimation state machine

The probability estimation state machine consists of a number of sequences of probability estimates. These sequences are
interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the
arithmetic coder renormalization. Some of these sequences are used during the initial “learning” stages of probability
estimation; the rest are used for “steady state” estimation.

Each entry in the probability estimation state machine is assigned an index, and each index has associated with it a
Qe value and two Next_Index values. The Next_Index_MPS gives the index to the new probability estimate after an MPS
renormalization; the Next_Index_LPS gives the index to the new probability estimate after an LPS renormalization. Note
that both the index to the estimation state machine and the sense of the MPS are kept for each context-index S. The sense
of the MPS is changed whenever the entry in the Switch_MPS is one.

The probability estimation state machine is given in Table D.3. Initialization of the arithmetic coder is always with
an MPS sense of zero and a Qe index of zero in Table D.3.

The Qe values listed in Table D.3 are expressed as hexadecimal integers. To approximately convert the 15-bit integer
representation of Qe to a decimal probability, divide the Qe values by (4/3) × (X’8000’).
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Table D.3 – Qe values and probability estimation state machine

Index Qe Next_ Index Switch Index Qe Next_ Index Switch

_Value _LPS _MPS _MPS _Value _LPS _MPS _MPS

10 X’5A1D’ 11 11 1 157 X’01A4’ 155 158 0
11 X’2586’ 14 12 0 158 X’0160’ 156 159 0
12 X’1114’ 16 13 0 159 X’0125’ 157 160 0
13 X’080B’ 18 14 0 160 X’00F6’ 158 161 0
14 X’03D8’ 20 15 0 161 X’00CB’ 159 162 0
15 X’01DA’ 23 16 0 162 X’00AB’ 161 163 0
16 X’00E5’ 25 17 0 163 X’008F’ 161 132 0
17 X’006F’ 28 18 0 164 X’5B12’ 165 165 1
18 X’0036’ 30 19 0 165 X’4D04’ 180 166 0
19 X’001A’ 33 10 0 166 X’412C’ 181 167 0
10 X’000D’ 35 11 0 167 X’37D8’ 182 168 0
11 X’0006’ 19 12 0 168 X’2FE8’ 183 169 0
12 X’0003’ 10 13 0 169 X’293C’ 184 170 0
13 X’0001’ 12 13 0 170 X’2379’ 186 171 0
14 X’5A7F’ 15 15 1 171 X’1EDF’ 187 172 0
15 X’3F25’ 36 16 0 172 X’1AA9’ 187 173 0
16 X’2CF2’ 38 17 0 173 X’174E’ 172 174 0
17 X’207C’ 39 18 0 174 X’1424’ 172 175 0
18 X’17B9’ 40 19 0 175 X’119C’ 174 176 0
19 X’1182’ 42 20 0 176 X’0F6B’ 174 177 0
20 X’0CEF’ 43 21 0 177 X’0D51’ 175 178 0
21 X’09A1’ 45 22 0 178 X’0BB6’ 177 179 0
22 X’072F’ 46 23 0 179 X’0A40’ 177 148 0
23 X’055C’ 48 24 0 180 X’5832’ 180 181 1
24 X’0406’ 49 25 0 181 X’4D1C’ 188 182 0
25 X’0303’ 51 26 0 182 X’438E’ 189 183 0
26 X’0240’ 52 27 0 183 X’3BDD’ 190 184 0
27 X’01B1’ 54 28 0 184 X’34EE’ 191 185 0
28 X’0144’ 56 29 0 185 X’2EAE’ 192 186 0
29 X’00F5’ 57 30 0 186 X’299A’ 193 187 0
30 X’00B7’ 59 31 0 187 X’2516’ 186 171 0
31 X’008A’ 60 32 0 188 X’5570’ 188 189 1
32 X’0068’ 62 33 0 189 X’4CA9’ 195 190 0
33 X’004E’ 63 34 0 190 X’44D9’ 196 191 0
34 X’003B’ 32 35 0 191 X’3E22’ 197 192 0
35 X’002C’ 33 19 0 192 X’3824’ 199 193 0
36 X’5AE1’ 37 37 1 193 X’32B4’ 199 194 0
37 X’484C’ 64 38 0 194 X’2E17’ 193 186 0
38 X’3A0D’ 65 39 0 195 X’56A8’ 195 196 1
39 X’2EF1’ 67 40 0 196 X’4F46’ 101 197 0
40 X’261F’ 68 41 0 197 X’47E5’ 102 198 0
41 X’1F33’ 69 42 0 198 X’41CF’ 103 199 0
42 X’19A8’ 70 43 0 199 X’3C3D’ 104 100 0
43 X’1518’ 72 44 0 100 X’375E’ 199 193 0
44 X’1177’ 73 45 0 101 X’5231’ 105 102 0
45 X’0E74’ 74 46 0 102 X’4C0F’ 106 103 0
46 X’0BFB’ 75 47 0 103 X’4639’ 107 104 0
47 X’09F8’ 77 48 0 104 X’415E’ 103 199 0
48 X’0861’ 78 49 0 105 X’5627’ 105 106 1
49 X’0706’ 79 50 0 106 X’50E7’ 108 107 0
50 X’05CD’ 48 51 0 107 X’4B85’ 109 103 0
51 X’04DE’ 50 52 0 108 X’5597’ 110 109 0
52 X’040F’ 50 53 0 109 X’504F’ 111 107 0
53 X’0363’ 51 54 0 110 X’5A10’ 110 111 1
54 X’02D4’ 52 55 0 111 X’5522’ 112 109 0
55 X’025C’ 53 56 0 112 X’59EB’ 112 111 1
56 X’01F8’ 54 57 0
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D.1.5.2 Renormalization driven estimation

The change in state in Table D.3 occurs only when the arithmetic coder interval register is renormalized. This must always
be done after coding an LPS, and whenever the probability interval register is less than X'8000' (0.75 in decimal notation)
after coding an MPS.

When the LPS renormalization is required, Next_Index_LPS gives the new index for the LPS probability estimate. When
the MPS renormalization is required, Next_Index_MPS gives the new index for the LPS probability estimate. If
Switch_MPS is 1 for the old index, the MPS symbol sense must be inverted after an LPS.

D.1.5.3 Estimation following renormalization after MPS

The procedure for estimating the probability on the MPS renormalization path is given in Figure D.5. Index(S) is part of
the information stored for context-index S. The new value of Index(S) is obtained from Table D.3 from the column labeled
Next_Index_MPS, as that is the next index after an MPS renormalization. This next index is stored as the new value of
Index(S) in the context storage at context-index S, and the value of Qe at this new Index(S) becomes the new Qe(S).
MPS(S) does not change.

TISO1060-93/d043

Figure D.5 – Probability estimation on MPS renormalization path

Estimate_Qe(S)_
   after_MPS

I = Index(S)
I = Next_Index_MPS(I)
Index(S) = I
Qe(S) = Qe_Value(I)

Done

Figure D.5 [D43], = 7 cm = 273.%
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D.1.5.4 Estimation following renormalization after LPS

The procedure for estimating the probability on the LPS renormalization path is shown in Figure D.6. The procedure is
similar to that of Figure D.5 except that when Switch_MPS(I) is 1, the sense of MPS(S) must be inverted.

TISO1070-93/d044

Figure D.6 – Probability estimation on LPS renormalization path

Estimate_Qe(S)_
  after_LPS

I = Index(S)

No YesSwitch_MPS(I) = 1
?

I = Next_Index_LPS(I)
Index(S) = I
Qe(S) = Qe_Value(I)

MPS(S) = 1 – MPS(S)

Done

Figure D.6 [D44], = 14 cm = 547.%

D.1.6 Renormalization in the encoder

The Renorm_e procedure for the encoder renormalization is shown in Figure D.7. Both the probability interval register A
and the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT; when CT is zero,
a byte of compressed data is removed from C by the procedure Byte_out and CT is reset to 8. Renormalization continues
until A is no longer less than X’8000’.
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TISO1080-93/d045

Renorm_e

A = SLL A 1
C = SLL C 1
CT = CT – 1

No

Yes

Done

CT = 8

Byte_out

No

Yes

A < X’8000’
?

CT = 0
?

Figure D.7  –  Encoder renormalization procedure

Figure D.7 [D45], = 16.5 cm = 645.%

The Byte_out procedure used in Renorm_e is shown in Figure D.8. This procedure uses byte-stuffing procedures which
prevent accidental generation of markers by the arithmetic encoding procedures. It also includes an example of a
procedure for resolving carry-over. For simplicity of exposition, the buffer holding the entropy-coded segment is assumed
to be large enough to contain the entire segment.

In Figure D.8 BP is the entropy-coded segment pointer and B is the compressed data byte pointed to by BP. T in Byte_out
is a temporary variable which is used to hold the output byte and carry bit. ST is the stack counter which is used to count
X’FF’ output bytes until any carry-over through the X’FF’ sequence has been resolved. The value of ST rarely exceeds 3.
However, since the upper limit for the value of ST is bounded only by the total entropy-coded segment size, a precision of
32 bits is recommended for ST.

Since large values of ST represent a latent output of compressed data, the following procedure may be needed in high
speed synchronous encoding systems for handling the burst of output data which occurs when the carry is resolved.
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TISO1090-93/d046

Byte_out

T = SRL C 19

Yes

No

B = B + 1

Stuff_0

ST = ST + 1

Yes No

Output_stacked_
   zeros

BP = BP + 1
B = T

BP = BP + 1
B = T

C = C AND X’7FFFF’

Done

Output_stacked_
   X’FF’s

T > X’FF’
?

T = X’FF’
?

Figure D.8  –  Byte_out procedure for encoder

Figure D.8 [D46], = 18 cm = 704.%

When the stack count reaches an upper bound determined by output channel capacity, the stack is emptied and the stacked
X’FF’ bytes (and stuffed zero bytes) are added to the compressed data before the carry-over is resolved. If a carry-over
then occurs, the carry is added to the final stuffed zero, thereby converting the final X’FF00’ sequence to the X’FF01’
temporary private marker. The entropy-coded segment must then be post-processed to resolve the carry-over and remove
the temporary marker code. For any reasonable bound on ST this post processing is very unlikely.

Referring to Figure D.8, the shift of the code register by 19 bits aligns the output bits with the low order bits of T. The
first test then determines if a carry-over has occurred. If so, the carry must be added to the previous output byte before
advancing the segment pointer BP. The Stuff_0 procedure stuffs a zero byte whenever the addition of the carry to the data
already in the entropy-coded segments creates a X’FF’ byte. Any stacked output bytes – converted to zeros by the carry-
over – are then placed in the entropy-coded segment. Note that when the output byte is later transferred from T to the
entropy-coded segment (to byte B), the carry bit is ignored if it is set.
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If a carry has not occurred, the output byte is tested to see if it is X’FF’. If so, the stack count ST is incremented, as the
output must be delayed until the carry-over is resolved. If not, the carry-over has been resolved, and any stacked X’FF’
bytes must then be placed in the entropy-coded segment. Note that a zero byte is stuffed following each X’FF’.

The procedures used by Byte_out are defined in Figures D.9 through D.11.

TISO1810-93/d047

Yes

No

Done
BP = BP + 1
B = 0
ST = ST – 1

Output_stacked_
   zeros

ST = 0
?

Figure D.9  –  Output_stacked_zeros procedure for encoder

Figure D.9 [D47], = 8.5 cm = 332.%

TISO1100-93/d048

Output_stacked_
   X’FF’s

Yes

No

Done
BP = BP + 1
B = X’FF’
BP = BP + 1
B = 0
ST = ST – 1

ST = 0
?

Figure D.10  –  Output_stacked_X’FF’s procedure for encoder

Figure D.10 [D48], = 8.5 cm = 332.%
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TISO1110-93/d049

Stuff_0

No

Yes

Done

BP = BP + 1
B = 0

B = X’FF’
?

Figure D.11  –  Stuff_0 procedure for encoder

Figure D.11 [D49], = 10 cm = 391.%

D.1.7 Initialization of the encoder

The Initenc procedure is used to start the arithmetic coder. The basic steps are shown in Figure D.12.

TISO1120-93/d050

Initenc

Done

Initialize statistics areas
ST = 0
A = X’10000’
A = (see Note below)
C = 0
CT = 11
BP = BPST – 1

Figure D.12  –  Initialization of the encoder

Figure D.12 [D50], = 9 cm = 352.%
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The probability estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a
Qe index of zero as defined by Table D.3. The stack count (ST) is cleared, the code register (C) is cleared, and the interval
register is set to X’10000’. The counter (CT) is set to 11, reflecting the fact that when A is initialized to X’10000’ three
spacer bits plus eight output bits in C must be filled before the first byte is removed. Note that BP is initialized to point to
the byte before the start of the entropy-coded segment (which is at BPST). Note also that the statistics areas are initialized
for all values of context-index S to MPS(S) = 0 and Index(S) = 0.

NOTE – Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized to
zero.

D.1.8 Termination of encoding

The Flush procedure is used to terminate the arithmetic encoding procedures and prepare the entropy-coded segment for
the addition of the X’FF’ prefix of the marker which follows the arithmetically coded data. Figure D.13 shows this flush
procedure. The first step in the procedure is to set as many low order bits of the code register to zero as possible without
pointing outside of the final interval. Then, the output byte is aligned by shifting it left by CT bits; Byte_out then removes
it from C. C is then shifted left by 8 bits to align the second output byte and Byte_out is used a second time. The
remaining low order bits in C are guaranteed to be zero, and these trailing zero bits shall not be written to the entropy-
coded segment.

TISO1130-93/d051

Flush

Done

Byte_out

C = SLL C 8

C = SLL C CT

Clear_final_bits

Byte_out
Discard_final_zeros

Figure D.13  –  Flush procedure

Figure D.13 [D51], = 15.5 cm = 606.%
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Any trailing zero bytes already written to the entropy-coded segment and not preceded by a X’FF’ may, optionally, be
discarded. This is done in the Discard_final_zeros procedure. Stuffed zero bytes shall not be discarded.

Entropy coded segments are always followed by a marker. For this reason, the final zero bits needed to complete decoding
shall not be included in the entropy coded segment. Instead, when the decoder encounters a marker, zero bits shall be
supplied to the decoding procedure until decoding is complete. This convention guarantees that when a DNL marker is
used, the decoder will intercept it in time to correctly terminate the decoding procedure.

TISO1140-93/d052

Clear_final_bits

No

Yes

C = T

T = T + X’8000’

Done

T = C + A – 1
T = T AND
T = X’FFFF0000’

T < C
?

Figure D.14  –  Clear_final_bits procedure in Flush

Figure D.14 [D52], = 14 cm = 547.%
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TISO1150-93/d053

BP = BP – 1

BP = BP + 1

Done

Discard_final_zeros

Yes

Yes

Yes

No

No

No

BP < BPST
?

B = 0
?

B = X’FF’
?

Figure D.15  –  Discard_final_zeros procedure in Flush

Figure D.15 [D53], = 12.5cm = 489.%

D.2 Arithmetic decoding procedures

Two arithmetic decoding procedures are used for arithmetic decoding (see Table D.4).

The “Decode(S)” procedure decodes the binary decision for a given context-index S and returns a value of either 0 or 1. It
is the inverse of the “Code_0(S)” and “Code_1(S)” procedures described in D.1. “Initdec” initializes the arithmetic
coding entropy decoder.

Table D.4 – Procedures for binary arithmetic decoding

Procedure Purpose

Decode(S) Decode a binary decision with context-index S

Initdec Initialize the decoder
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D.2.1 Binary arithmetic decoding principles

The probability interval subdivision and sub-interval ordering defined for the arithmetic encoding procedures also apply to
the arithmetic decoding procedures.

Since the bit stream always points within the current probability interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the bit stream. This is done recursively, using the same probability
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts from the bit stream
any interval the encoder added to the bit stream. Therefore, the code register in the decoder is a pointer into the current
probability interval relative to the base of the interval.

If the size of the sub-interval allocated to the LPS is larger than the sub-interval allocated to the MPS, the encoder invokes
the conditional exchange procedure. When the interval sizes are inverted in the decoder, the sense of the symbol decoded
must be inverted.

D.2.2 Decoding conventions and approximations

The approximations and integer arithmetic defined for the probability interval subdivision in the encoder must also be
used in the decoder. However, where the encoder would have added to the code register, the decoder subtracts from the
code register.

D.2.3 Decoder code register conventions

The flow charts given in this section assume the register structures for the decoder as shown in Table D.5:

Table D.5 – Decoder register conventions

MSB LSB

Cx register xxxxxxxx, xxxxxxxx

C-low bbbbbbbb, 00000000

A-register aaaaaaaa, aaaaaaaa

Cx and C-low can be regarded as one 32-bit C-register, in that renormalization of C shifts a bit of new data from bit 15 of
C-low to bit 0 of Cx. However, the decoding comparisons use Cx alone. New data are inserted into the “b” bits of C-low
one byte at a time.

NOTE – The comparisons shown in the various procedures use arithmetic comparisons, and therefore assume precisions
greater than 16 bits for the variables. Unsigned (logical) comparisons should be used in 16-bit precision implementations.

D.2.4 The decode procedure

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the code register that the encoder added. The amount left in the code register is the offset from the base of the current
probability interval to the sub-interval allocated to the binary decisions not yet decoded. In the first test in the decode
procedure shown in Figure D.16 the code register is compared to the size of the MPS sub-interval. Unless a conditional
exchange is needed, this test determines whether the MPS or LPS for context-index S is decoded. Note that the LPS for
context-index S is given by 1 – MPS(S).
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When a renormalization is needed, the MPS/LPS conditional exchange may also be needed. For the LPS path, the
conditional exchange procedure is shown in Figure D.17. Note that the probability estimation in the decoder is identical
to the probability estimation in the encoder (Figures D.5 and D.6).

TISO1160-93/d054

Decode(S)

A = A – Qe(S)

A < X’8000’

D = MPS(S)

Return D

Yes No

Yes

No

Di=iCond_MPS_exchange(S)
Renorm_d

D = Cond_LPS_exchange(S)
Renorm_d

Cx < A
?

Figure D.16  –  Decode(S) procedure

Figure D.16 [D54], = 13.5 cm = 528.%

For the MPS path of the decoder the conditional exchange procedure is given in Figure D.18.
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TISO1170-93/d055

Yes No

Return D

D = MPS(S)
Cx = Cx – A
A = Qe(S)

D = 1 – MPS(S)
Cx = Cx – A
A = Qe(S)

Estimate_Qe(S)_
   after_MPS

Estimate_Qe(S)_
   after_LPS

Figure D.17  –  Decoder LPS path conditional exchange procedure

A < Qe(S)
?

Cond_LPS_
exchange(S)

Figure D.17 [D55], = 12 cm = 469.%

TISO1180-93/d056

Yes No

D = 1 – MPS(S) D = MPS(S)

Return D

Estimate_Qe(S)_
   after_LPS

Estimate_Qe(S)_
   after_MPS

Cond_MPS_
     exchange(S)

A < Qe(S)
?

Figure D.18  –  Decoder MPS path conditional exchange procedure

Figure D.18 [D56], = 12 cm = 469.%
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D.2.5 Probability estimation in the decoder

The procedures defined for obtaining a new LPS probability estimate in the encoder are also used in the decoder.

D.2.6 Renormalization in the decoder

The Renorm_d procedure for the decoder renormalization is shown in Figure D.19. CT is a counter which keeps track of
the number of compressed bits in the C-low section of the C-register. When CT is zero, a new byte is inserted into C-low
by the procedure Byte_in and CT is reset to 8.

Both the probability interval register A and the code register C are shifted, one bit at a time, until A is no longer less than
X’8000’.

TISO1190-93/d057

Renorm_d

Yes

No

Byte_in

CT = 8

Done

Yes

No

A = SLL A 1
C = SLL C 1
CT = CT – 1

CT = 0
?

A < X’8000’
?

Figure D.19  –  Decoder renormalization procedure

Figure D.19 [D57], = 16.5 cm = 645.%
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The Byte_in procedure used in Renorm_d is shown in Figure D.20. This procedure fetches one byte of data,
compensating for the stuffed zero byte which follows any X’FF’ byte. It also detects the marker which must follow the
entropy-coded segment. The C-register in this procedure is the concatenation of the Cx and C-low registers. For simplicity
of exposition, the buffer holding the entropy-coded segment is assumed to be large enough to contain the entire segment.

B is the byte pointed to by the entropy-coded segment pointer BP. BP is first incremented. If the new value of B is not a
X’FF’, it is inserted into the high order 8 bits of C-low.

TISO1200-93/d058

Byte_in

BP = BP + 1

Yes No

Unstuff_0 C = C + SLL B 8

Done

B = X’FF’
?

Figure D.20  –  Byte_in procedure for decoder

Figure D.20 [D58], = 12 cm = 469.%
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The Unstuff_0 procedure is shown in Figure D.21. If the new value of B is X’FF’, BP is incremented to point to the next
byte and this next B is tested to see if it is zero. If so, B contains a stuffed byte which must be skipped. The zero B is
ignored, and the X’FF’ B value which preceded it is inserted in the C-register.

If the value of B after a X’FF’ byte is not zero, then a marker has been detected. The marker is interpreted as required and
the entropy-coded segment pointer is adjusted (“Adjust BP” in Figure D.21) so that 0-bytes will be fed to the decoder
until decoding is complete. One way of accomplishing this is to point BP to the byte preceding the marker which follows
the entropy-coded segment.

TISO1210-93/d059

Unstuff_0

BP = BP + 1

Yes No

C = C OR X’FF00’

Done

Interpret_marker
Adjust BP

B = 0
?

Figure D.21  –  Unstuff_0 procedure for decoder

Figure D.21 [D59], = 12 cm = 469.%
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D.2.7 Initialization of the decoder

The Initdec procedure is used to start the arithmetic decoder. The basic steps are shown in Figure D.22.

TISO1220-93/d060

Initdec

Byte_in

C = SLL C 8

Done

Byte_in

Initialize statistics areas
BP = BPST – 1
A = X’0000’
A = (see Note below)
C = 0

C = SLL C 8
CT = 0

Figure D.22  –  Initialization of the decoder

Figure D.22 [D60], = 16 cm = 625.%

The estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a Qe index of
zero as defined by Table D.3. BP, the pointer to the entropy-coded segment, is then initialized to point to the byte before
the start of the entropy-coded segment at BPST, and the interval register is set to the same starting value as in the encoder.
The first byte of compressed data is fetched and shifted into Cx. The second byte is then fetched and shifted into Cx. The
count is set to zero, so that a new byte of data will be fetched by Renorm_d.

NOTE – Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized to
zero.

D.3 Bit ordering within bytes

The arithmetically encoded entropy-coded segment is an integer of variable length. Therefore, the ordering of bytes and
the bit ordering within bytes is the same as for parameters (see B.1.1.1).
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Annex  E

Encoder and decoder control procedures

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the encoder and decoder control procedures for the sequential, progressive, and lossless modes of
operation.

The encoding and decoding control procedures for the hierarchical processes are specified in Annex J.

NOTES

1 There is no requirement in this Specification that any encoder or decoder shall implement the procedures in precisely
the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function specified
in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it satisfy the
requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in Part 2.

2 Implementation-specific setup steps are not indicated in this annex and may be necessary.

E.1 Encoder control procedures

E.1.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shown in Figure E.1.

TISO1230-93/d061

Encode_image

Append SOI marker

Encode_frame

Append EOI marker

Done

Figure E.1  –  Control procedure for encoding an image

Figure E.1 [D61], = 11.5 cm = 449.%
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E.1.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed data, optional X’FF’ fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scans in the frame. The frame header is first appended,
and then the scans are coded. Table specifications and other marker segments may precede the SOFn marker, as indicated
by [tables/miscellaneous] in Figure E.2.

Figure E.2 shows the encoding process frame control procedure.

TISO1240-93/d062

Encode_frame

Encode_scan

Yes

No

Done

[Append DNL
segment]

Yes

No

[Append tables/miscellaneous]
Append SOF   marker and rest
   of frame header

First scan
?

More scans
?

Figure E.2  –  Control procedure for encoding a frame

n

Figure E.2 [D62], = 14 cm = 547.%

E.1.3 Control procedure for encoding a scan

A scan consists of a single pass through the data of each component in the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one component is coded in the scan, the data are interleaved. If
restart is enabled, the data are segmented into restart intervals. If restart is enabled, a RSTm marker is placed in the coded
data between restart intervals. If restart is disabled, the control procedure is the same, except that the entire scan contains a
single restart interval. The compressed image data generated by a scan is always followed by a marker, either the EOI
marker or the marker of the next marker segment.
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Figure E.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the number of restart intervals which make up the scan. “m” is the restart interval modulo counter needed for the
RSTm marker. The modulo arithmetic for this counter is shown after the “Append RSTm marker” procedure.

TISO1250-93/d063

Encode_scan

Done

Yes

No

Encode_restart_
   interval

[Append tables/miscellaneous]
Append SOS marker and rest of

scan header
m = 0

Append RST   marker
m = (m + 1) AND 7

More intervals
?

Figure E.3  –  Control procedure for encoding a scan

m

Figure E.3 [D63], = 13 cm = 508.%
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E.1.4 Control procedure for encoding a restart interval

Figure E.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU) in the restart interval or when it has completed
the image scan.

TISO1260-93/d064

Reset_encoder

Encode_MCU

Prepare_for_marker

Done

Yes

No

Encode_restart_
interval

More MCU
?

Figure E.4  –  Control procedure for encoding a restart interval

Figure E.4 [D64], = 12 cm = 469.%

The “Reset_encoder” procedure consists at least of the following:

a) if arithmetic coding is used, initialize the arithmetic encoder using the “Initenc” procedure described
in D.1.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.1.1.5.1);

c) for lossless processes, reset the prediction to a default value for all components in the scan (see H.1.1);

d) do all other implementation-dependent setups that may be necessary.

The procedure “Prepare_for_marker” terminates the entropy-coded segment by:

a) padding a Huffman entropy-coded segment with 1-bits to complete the final byte (and if needed stuffing a
zero byte) (see F.1.2.3); or

b) invoking the procedure “Flush” (see D.1.8) to terminate an arithmetic entropy-coded segment.

NOTE – The number of minimum coded units (MCU) in the final restart interval must be adjusted to match the number
of MCU in the scan. The number of MCU is calculated from the frame and scan parameters. (See Annex B.)
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E.1.5 Control procedure for encoding a minimum coded unit (MCU)

The minimum coded unit is defined in A.2. Within a given MCU the data units are coded in the order in which they occur
in the MCU. The control procedure for encoding a MCU is shown in Figure E.5.

TISO1270-93/d065

Encode_MCU

N = 0

Done

Yes

No

N = N + 1
Encode data unit

N = Nb
?

Figure E.5  –  Control procedure for encoding a minimum coded unit (MCU)

Figure E.5 [D65], = 12 cm = 469.%

In Figure E.5, Nb refers to the number of data units in the MCU. The order in which data units occur in the MCU is
defined in A.2. The data unit is an 8 × 8 block for DCT-based processes, and a single sample for lossless processes.

The procedures for encoding a data unit are specified in Annexes F, G, and H.

E.2 Decoder control procedures

E.2.1 Control procedure for decoding compressed image data

Figure E.6 shows the decoding process control for compressed image data.

Decoding control centers around identification of various markers. The first marker must be the SOI (Start Of Image)
marker. The “Decoder_setup” procedure resets the restart interval (Ri = 0) and, if the decoder has arithmetic decoding
capabilities, sets the conditioning tables for the arithmetic coding to their default values. (See F.1.4.4.1.4 and F.1.4.4.2.1.)
The next marker is normally a SOFn (Start Of Frame) marker; if this is not found, one of the marker segments listed in
Table E.1 has been received.
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TISO1280-93/d066

Decode_image

No

Yes

ErrorDecoder_setup

Interpret markers

Decode_frame

Done

No

Yes

SOI marker
?

SOF   marker
?

n

Figure E.6  –  Control procedure for decoding compressed image data

Figure E.6 [D66], = 14 cm = 547 %

Table E.1 – Markers recognized by “Interpret markers”

Marker Purpose

DHT Define Huffman Tables

DAC Define Arithmetic Conditioning

DQT Define Quantization Tables

DRI Define Restart Interval

APPn Application defined marker

COM Comment

Note that optional X’FF’ fill bytes which may precede any marker shall be discarded before determining which marker is
present.
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The additional logic to interpret these various markers is contained in the box labeled “Interpret markers”. DHT markers
shall be interpreted by processes using Huffman coding. DAC markers shall be interpreted by processes using arithmetic
coding. DQT markers shall be interpreted by DCT-based decoders. DRI markers shall be interpreted by all decoders.
APPn and COM markers shall be interpreted only to the extent that they do not interfere with the decoding.

By definition, the procedures in “Interpret markers” leave the system at the next marker. Note that if the expected SOI
marker is missing at the start of the compressed image data, an error condition has occurred. The techniques for detecting
and managing error conditions can be as elaborate or as simple as desired.

E.2.2 Control procedure for decoding a frame

Figure E.7 shows the control procedure for the decoding of a frame.

TISO1290-93/d067

Decode_frame

Interpret markers

Decode_scan

Done

Yes

No

Yes

No

Interpret frame header

SOS marker
?

EOI marker
?

Figure E.7  –  Control procedure for decoding a frame

Figure E.7 [D67], = 13.5 cm = 528.%

The loop is terminated if the EOI marker is found at the end of the scan.

The markers recognized by “Interpret markers” are listed in Table E.1. Subclause E.2.1 describes the extent to which the
various markers shall be interpreted.
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E.2.3 Control procedure for decoding a scan

Figure E.8 shows the decoding of a scan.

The loop is terminated when the expected number of restart intervals has been decoded.

TISO1300-93/d068

Decode_scan

Done

Yes

No

Interpret scan header
m = 0

Decode_restart_
   interval

More intervals
?

Figure E.8  –  Control procedure for decoding a scan

Figure E.8 [D68], = 11.5cm = 449.%
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E.2.4 Control procedure for decoding a restart interval

The procedure for decoding a restart interval is shown in Figure E.9. The “Reset_decoder” procedure consists at least of
the following:

a) if arithmetic coding is used, initialize the arithmetic decoder using the “Initdec” procedure described
in D.2.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.2.1.3.1);

c) for lossless process, reset the prediction to a default value for all components in the scan (see H.2.1);

d) do all other implementation-dependent setups that may be necessary.

TISO1310-93/d069

Reset_decoder

Decode_MCU

Find marker

Done

Yes

No

Decode_restart_
interval

More MCU
?

Figure E.9  –  Control procedure for decoding a restart interval

Figure E.9 [D69], = 12 cm = 469.%

At the end of the restart interval, the next marker is located. If a problem is detected in locating this marker, error handling
procedures may be invoked. While such procedures are optional, the decoder shall be able to correctly recognize restart
markers in the compressed data and reset the decoder when they are encountered. The decoder shall also be able to
recognize the DNL marker, set the number of lines defined in the DNL segment, and end the “Decode_restart_interval”
procedure.

NOTE – The final restart interval may be smaller than the size specified by the DRI marker segment, as it includes only the
number of MCUs remaining in the scan.
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E.2.5 Control procedure for decoding a minimum coded unit (MCU)

The procedure for decoding a minimum coded unit (MCU) is shown in Figure E.10.

In Figure E.10 Nb is the number of data units in a MCU.

The procedures for decoding a data unit are specified in Annexes F, G, and H.

TISO1320-93/d070

Decode_MCU

N = 0

Done

Yes

No

N = N + 1
Decode_data_unit

N = Nb
?

Figure E.10  –  Control procedure for decoding a minimum coded unit (MCU)

Figure E.106 [D70], = 11.5 cm = 449.%
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Annex  F

Sequential DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

This annex provides a functional specification of the following coding processes for the sequential DCT-based mode of
operation:

1) baseline sequential;

2) extended sequential, Huffman coding, 8-bit sample precision;

3) extended sequential, arithmetic coding, 8-bit sample precision;

4) extended sequential, Huffman coding, 12-bit sample precision;

5) extended sequential, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in F.1, and the decoding process is specified in F.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

F.1 Sequential DCT-based encoding processes

F.1.1 Sequential DCT-based control procedures and coding models

F.1.1.1 Control procedures for sequential DCT-based encoders

The control procedures for encoding an image and its constituent parts – the frame, scan, restart interval and
MCU – are given in Figures E.1 to E.5. The procedure for encoding a MCU (see Figure E.5) repetitively calls the
procedure for encoding a data unit. For DCT-based encoders the data unit is an 8 × 8 block of samples.

F.1.1.2 Procedure for encoding an 8 ×× 8 block data unit

For the sequential DCT-based processes encoding an 8 × 8 block data unit consists of the following procedures:

a) level shift, calculate forward 8 × 8 DCT and quantize the resulting coefficients using table destination
specified in frame header;

b) encode DC coefficient for 8 × 8 block using DC table destination specified in scan header;

c) encode AC coefficients for 8 × 8 block using AC table destination specified in scan header.

F.1.1.3 Level shift and forward DCT (FDCT)

The mathematical definition of the FDCT is given in A.3.3.

Prior to computing the FDCT the input data are level shifted to a signed two’s complement representation as described in
A.3.1. For 8-bit input precision the level shift is achieved by subtracting 128. For 12-bit input precision the level shift is
achieved by subtracting 2048.

F.1.1.4 Quantization of the FDCT

The uniform quantization procedure described in Annex A is used to quantize the DCT coefficients. One of four
quantization tables may be used by the encoder. No default quantization tables are specified in this Specification.
However, some typical quantization tables are given in Annex K.

The quantized DCT coefficient values are signed, two’s complement integers with 11-bit precision for 8-bit input
precision and 15-bit precision for 12-bit input precision.
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F.1.1.5 Encoding models for the sequential DCT procedures

The two dimensional array of quantized DCT coefficients is rearranged in a zig-zag sequence order defined in A.3.6. The
zig-zag order coefficients are denoted ZZ (0) through ZZ(63) with:

ZZ(0)  =  Sq
00

,ZZ(1)  =  Sq
01

,ZZ(2)  =  Sq
10,•,•,•,ZZ(63)  =  Sq

77

Sqvu are defined in Figure A.6.

Two coding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)..ZZ(63).
The coefficients are encoded in the order in which they occur in zig-zag sequence order, starting with the DC coefficient.
The coefficients are represented as two’s complement integers.

F.1.1.5.1 Encoding model for DC coefficients

The DC coefficients are coded differentially, using a one-dimensional predictor, PRED, which is the quantized DC value
from the most recently coded 8 × 8 block from the same component. The difference, DIFF, is obtained from

DIFF = ZZ(0) – PRED

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient prediction
is initialized to 0. (Recall that the input data have been level shifted to two’s complement representation.)

F.1.1.5.2 Encoding model for AC coefficients

Since many coefficients are zero, runs of zeros are identified and coded efficiently. In addition, if the remaining
coefficients in the zig-zag sequence order are all zero, this is coded explicitly as an end-of-block (EOB).

F.1.2 Baseline Huffman encoding procedures

The baseline encoding procedure is for 8-bit sample precision. The encoder may employ up to two DC and two AC
Huffman tables within one scan.

F.1.2.1 Huffman encoding of DC coefficients

F.1.2.1.1 Structure of DC code table

The DC code table consists of a set of Huffman codes (maximum length 16 bits) and appended additional bits (in most
cases) which can code any possible value of DIFF, the difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way that no code consists entirely of 1-bits
(X’FF’ prefix marker code avoided).

The two’s complement difference magnitudes are grouped into 12 categories, SSSS, and a Huffman code is created for
each of the 12 difference magnitude categories (see Table F.1).

For each category, except SSSS = 0, an additional bits field is appended to the code word to uniquely identify which
difference in that category actually occurred. The number of extra bits is given by SSSS; the extra bits are appended to the
LSB of the preceding Huffman code, most significant bit first. When DIFF is positive, the SSSS low order bits of DIFF
are appended. When DIFF is negative, the SSSS low order bits of (DIFF – 1) are appended. Note that the most significant
bit of the appended bit sequence is 0 for negative differences and 1 for positive differences.

F.1.2.1.2 Defining Huffman tables for the DC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C. No more than two Huffman tables may be defined for coding of DC coefficients.
Two examples of Huffman tables for coding of DC coefficients are provided in Annex K.
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Table F.1 – Difference magnitude categories for DC coding

SSSS DIFF values

10 0

11 –1,1

12 –3,–2,2,3

13 –7..–4,4..7

14 –15..–8,8..15

15 –31..–16,16..31

16 –63..–32,32..63

17 –127..–64,64..127

18 –255..–128,128..255

19 –511..–256,256..511

10 –1 023..–512,512..1 023

11 –2 047..–1 024,1 024..2 047

F.1.2.1.3 Huffman encoding procedures for DC coefficients

The encoding procedure is defined in terms of a set of extended tables, XHUFCO and XHUFSI, which contain the
complete set of Huffman codes and sizes for all possible difference values. For full 12-bit precision the tables are relatively
large. For the baseline system, however, the precision of the differences may be small enough to make this description
practical.

XHUFCO and XHUFSI are generated from the encoder tables EHUFCO and EHUFSI (see Annex C) by appending to the
Huffman codes for each difference category the additional bits that completely define the difference. By definition,
XHUFCO and XHUFSI have entries for each possible difference value. XHUFCO contains the concatenated bit pattern of
the Huffman code and the additional bits field; XHUFSI contains the total length in bits of this concatenated bit pattern.
Both are indexed by DIFF, the difference between the DC coefficient and the prediction.

The Huffman encoding procedure for the DC difference, DIFF, is:

SIZE = XHUFSI(DIFF)

CODE = XHUFCO(DIFF)

code SIZE bits of CODE

where DC is the quantized DC coefficient value and PRED is the predicted quantized DC value. The Huffman code
(CODE) (including any additional bits) is obtained from XHUFCO and SIZE (length of the code including additional
bits) is obtained from XHUFSI, using DIFF as the index to the two tables.

F.1.2.2 Huffman encoding of AC coefficients

F.1.2.2.1 Structure of AC code table

Each non-zero AC coefficient in ZZ is described by a composite 8-bit value, RS, of the form

RS = binary ’RRRRSSSS’
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The 4 least significant bits, ’SSSS’, define a category for the amplitude of the next non-zero coefficient in ZZ, and the 4
most significant bits, ’RRRR’, give the position of the coefficient in ZZ relative to the previous non-zero coefficient (i.e.
the run-length of zero coefficients between non-zero coefficients). Since the run length of zero coefficients may exceed
15, the value ’RRRRSSSS’ = X’F0’ is defined to represent a run length of 15 zero coefficients followed by a coefficient
of zero amplitude. (This can be interpreted as a run length of 16 zero coefficients.) In addition, a special value
’RRRRSSSS’ = ’00000000’ is used to code the end-of-block (EOB), when all remaining coefficients in the block are
zero.

The general structure of the code table is illustrated in Figure F.1. The entries marked “N/A” are undefined for the
baseline procedure.

0 1 2 109

0
.
.
.

15

EOB
N/A
N/A
N/A
ZRL

.      .      .

RRRR

SSSS

TISO1330-93/d071

COMPOSITE VALUES

Figure F.1 – Two-dimensional value array for Huffman coding

Figure F.1 [D71] =4 cm = 156 %

The magnitude ranges assigned to each value of SSSS are defined in Table F.2.

Table F.2 – Categories assigned to coefficient values

SSSS AC coefficients

11 –1,1

12 –3,–2,2,3

13 –7..–4,4..7

14 –15..–8,8..15

15 –31..–16,16..31

16 –63..–32,32..63

17 –127..–64,64..127

18 –255..–128,128..255

19 –511..–256,256..511

10 –1 023..–512,512..1 023

The composite value, RRRRSSSS, is Huffman coded and each Huffman code is followed by additional bits which specify
the sign and exact amplitude of the coefficient.

The AC code table consists of one Huffman code (maximum length 16 bits, not including additional bits) for each
possible composite value. The Huffman codes for the 8-bit composite values are generated in such a way that no code
consists entirely of 1-bits.
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The format for the additional bits is the same as in the coding of the DC coefficients. The value of SSSS gives the number
of additional bits required to specify the sign and precise amplitude of the coefficient. The additional bits are either the
low-order SSSS bits of ZZ(K) when ZZ(K) is positive or the low-order SSSS bits of ZZ(K) – 1 when ZZ(K) is negative.
ZZ(K) is the Kth coefficient in the zig-zag sequence of coefficients being coded.

F.1.2.2.2 Defining Huffman tables for the AC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C.

In the baseline system no more than two Huffman tables may be defined for coding of AC coefficients. Two examples of
Huffman tables for coding of AC coefficients are provided in Annex K.

F.1.2.2.3 Huffman encoding procedures for AC coefficients

As defined in Annex C, the Huffman code table is assumed to be available as a pair of tables, EHUFCO (containing the
code bits) and EHUFSI (containing the length of each code in bits), both indexed by the composite value defined above.

The procedure for encoding the AC coefficients in a block is shown in Figures F.2 and F.3. In Figure F.2, K is the index
to the zig-zag scan position and R is the run length of zero coefficients.

The procedure “Append EHUFSI(X’F0’) bits of EHUFCO(X’F0’)” codes a run of 16 zero coefficients (ZRL code of
Figure F.1). The procedure “Code EHUFSI(0) bits of EHUFCO(0)” codes the end-of-block (EOB code). If the last
coefficient (K = 63) is not zero, the EOB code is bypassed.

CSIZE is a procedure which maps an AC coefficient to the SSSS value as defined in Table F.2.

F.1.2.3 Byte stuffing

In order to provide code space for marker codes which can be located in the compressed image data without decoding,
byte stuffing is used.

Whenever, in the course of normal encoding, the byte value X’FF’ is created in the code string, a X’00’ byte is stuffed
into the code string.

If a X’00’ byte is detected after a X’FF’ byte, the decoder must discard it. If the byte is not zero, a marker has been
detected, and shall be interpreted to the extent needed to complete the decoding of the scan.

Byte alignment of markers is achieved by padding incomplete bytes with 1-bits. If padding with 1-bits creates a X’FF’
value, a zero byte is stuffed before adding the marker.

F.1.3 Extended sequential DCT-based Huffman encoding process for 8-bit sample precision

This process is identical to the Baseline encoding process described in F.1.2, with the exception that the number of sets of
Huffman table destinations which may be used within the same scan is increased to four. Four DC and four AC Huffman
table destinations is the maximum allowed by this Specification.

F.1.4 Extended sequential DCT-based arithmetic encoding process for 8-bit sample precision

This subclause describes the use of arithmetic coding procedures in the sequential DCT-based encoding process.

NOTE – The arithmetic coding procedures in this Specification are defined for the maximum precision to encourage
interchangeability.

The arithmetic coding extensions have the same DCT model as the Baseline DCT encoder. Therefore, Annex F.1.1 also
applies to arithmetic coding. As with the Huffman coding technique, the binary arithmetic coding technique is lossless. It
is possible to transcode between the two systems without either FDCT or IDCT computations, and without modification of
the reconstructed image.

The basic principles of adaptive binary arithmetic coding are described in Annex D. Up to four DC and four AC
conditioning table destinations and associated statistics areas may be used within one scan.

The arithmetic encoding procedures for encoding binary decisions, initializing the statistics area, initializing the encoder,
terminating the code string, and adding restart markers are listed in Table D.1 of Annex D.
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TISO1340-93/d072

Encode_AC_
coefficients

K = 0
R = 0

K = K + 1

ZZ(K) = 0
?

Yes

YesNo

No

R = R + 1

K = 63
?

Append EHUFSI(X’F0’) bits
       of EHUFCO(X’F0’)
R = R – 16

Append EHUFSI(X’00’) bits
of EHUFCO(X’00’)

Yes R > 15
?

No

Encode_R,ZZ(K)

R = 0

K = 63
?

No Yes

Done

Figure F.2 – Procedure for sequential encoding of AC coefficients with Huffman coding

Figure F.2 [D72] = 21 cm = 821 %

92 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

TISO1350-93/d073

Encode_R,ZZ(K)

SSSS = CSIZE(ZZ(K))
RS = (16 × R) + SSSS
Append EHUFSI(RS) bits
       of EHUFCO(RS)

ZZ(K) < 0
?

Yes

No

ZZ(K) = ZZ(K) – 1

Append SSSS
low order bits of ZZ(K)

Done

Figure F.3 – Sequential encoding of a non-zero AC coefficient

Figure F.3 [D73] 14 cm = 547 %

Some of the procedures in Table D.1 are used in the higher level control structure for scans and restart intervals described
in Annex E. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic coder are reset
to the standard initial value as part of the Initenc procedure which restarts the arithmetic coder. At the end of scans and
restart intervals, the Flush procedure is invoked to empty the code register before the next marker is appended.

F.1.4.1 Arithmetic encoding of DC coefficients

The basic structure of the decision sequence for encoding a DC difference value, DIFF, is shown in Figure F.4.

The context-index S0 and other context-indices used in the DC coding procedures are defined in Table F.4
(see F.1.4.4.1.3). A 0-decision is coded if the difference value is zero and a 1-decision is coded if the difference is not
zero. If the difference is not zero, the sign and magnitude are coded using the procedure Encode_V(S0), which is
described in F.1.4.3.1.

F.1.4.2 Arithmetic encoding of AC coefficients

The AC coefficients are coded in the order in which they occur in the zig-zag sequence ZZ(1,...,63). An end-of-block
(EOB) binary decision is coded before coding the first AC coefficient in ZZ, and after each non-zero coefficient. If the
EOB occurs, all remaining coefficients in ZZ are zero. Figure F.5 illustrates the decision sequence. The equivalent
procedure for the Huffman coder is found in Figure F.2.
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Encode_DC_DIFF

V = DIFF

V = 0
?

No Yes

Code_1(S0)
Encode_V(S0)

Code_0(S0)

Done

Figure F.4 – Coding model for arithmetic coding of DC difference

Figure F.4 [D74] = 11.5 cm = 449 %

The context-indices SE and S0 used in the AC coding procedures are defined in Table F.5 (see F.1.4.4.2). In Figure F.5,
K is the index to the zig-zag sequence position. For the sequential scan, Kmin is 1 and Se is 63. The V = 0 decision is part
of a loop which codes runs of zero coefficients. Whenever the coefficient is non-zero, “Encode_V(S0)” codes the sign and
magnitude of the coefficient. Each time a non-zero coefficient is coded, it is followed by an EOB decision. If the EOB
occurs, a 1-decision is coded to indicate that the coding of the block is complete. If the coefficient for K = Se is not zero,
the EOB decision is skipped.

F.1.4.3 Encoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement integer values. The
decomposition of these signed integer values into a binary decision tree is done in the same way for both the DC and AC
coding models.

Although the binary decision trees for this section of the DC and AC coding models are the same, the statistical models
for assigning statistics bins to the binary decisions in the tree are quite different.

F.1.4.3.1 Structure of the encoding decision sequence

The encoding sequence can be separated into three procedures, a procedure which encodes the sign, a second procedure
which identifies the magnitude category, and a third procedure which identifies precisely which magnitude occurred
within the category identified in the second procedure.

At the point where the binary decision sequence in Encode_V(S0) starts, the coefficient or difference has already been
determined to be non-zero. That determination was made in the procedures in Figures F.4 and F.5.

Denoting either DC differences (DIFF) or AC coefficients as V, the non-zero signed integer value of V is encoded by the
sequence shown in Figure F.6. This sequence first codes the sign of V. It then (after converting V to a magnitude and
decrementing it by 1 to give Sz) codes the magnitude category of Sz (code_log2_Sz), and then codes the low order
magnitude bits (code_Sz_bits) to identify the exact magnitude value.
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There are two significant differences between this sequence and the similar set of operations described in F.1.2 for
Huffman coding. First, the sign is encoded before the magnitude category is identified, and second, the magnitude is
decremented by 1 before the magnitude category is identified.

TISO1370-93/d075

Encode_AC_
Coefficients

K = Kmin

K = EOB
?

Yes

No

Code_1(SE)

Code_0(SE)

K = K + 1 K = K + 1

V = ZZ(K)

V = 0
?

Yes

No

Code_0(S0)

Code_1(S0)
Encode_V(S0)

K = Se
?

YesNo

Done

Figure F.5 – AC coding model for arithmetic coding

Figure F.5 [D75] = 21 cm = 821 %
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TISO1380-93/d076

Encode_V(S)

Encode_sign_of_V

Sz = | V | – 1

Encode_log2_Sz

Encode_Sz_bits

Done

Figure F.6 – Sequence of procedures in encoding non-zero values of V

Figure F.6 [D76] = 13.5 cm = 528 %

F.1.4.3.1.1 Encoding the sign

The sign is encoded by coding a 0-decision when the sign is positive and a 1-decision when the sign is negative
(see Figure F.7).

The context-indices SS, SN and SP are defined for DC coding in Table F.4 and for AC coding in Table F.5. After the sign
is coded, the context-index S is set to either SN or SP, establishing an initial value for Encode_log2_Sz.

F.1.4.3.1.2 Encoding the magnitude category

The magnitude category is determined by a sequence of binary decisions which compares Sz against an exponentially
increasing bound (which is a power of 2) in order to determine the position of the leading 1-bit. This establishes the
magnitude category in much the same way that the Huffman encoder generates a code for the value associated with the
difference category. The flow chart for this procedure is shown in Figure F.8.

The starting value of the context-index S is determined in Encode_sign_of_V, and the context-index values X1 and X2
are defined for DC coding in Table F.4 and for AC coding in Table F.5. In Figure F.8, M is the exclusive upper bound for
the magnitude and the abbreviations “SLL” and “SRL” refer to the shift-left-logical and shift-right-logical operations – in
this case by one bit position. The SRL operation at the completion of the procedure aligns M with the most significant bit
of Sz (see Table F.3).

The highest precision allowed for the DCT is 15 bits. Therefore, the highest precision required for the coding decision
tree is 16 bits for the DC coefficient difference and 15 bits for the AC coefficients, including the sign bit.
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TISO1390-93/d077

Encode_sign_of_V

V < 0
?

Yes No

Code_1(SS) Code_0(SS)

S = SN S = SP

Done

Figure F.7 – Encoding the sign of V

Figure F.7 [D77] = 11 cm = 430 %

Table F.3 – Categories for each maximum bound

Exclusive upper
bound (M)

Sz range Number of low order
magnitude bits

11111 0 10

11112 1 10

11114 2,3 11

11118 4,...,7 12

11116  8,...,15 13

32332 16,...,31 14

66464 32,...,63 15

12128 64,...,127 16

25256 128,...,255 17

15512 256,...,511 18

11 024 512,...,1 023 19

22 048 1 024,...,2 047 10

14 096 2 048,...,4 095 11

18 192 4 096,...,8 191 12

16 384 8 192,...,16 383 13

32 768 16 384,...,32 767 14
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Encode_log2_Sz

M = 1

Sz < M
?

Yes

No

Code_1(S)

M = 2
S = X1

Sz < M
?

Yes

No

Code_1(S)

M = 4
S = X2

Sz < M
?

Yes

No

Code_1(S) Code_0(S)

M = SLL M 1
S = S + 1

M = SRL M 1

Done

Figure F.8 – Decision sequence to establish the magnitude category
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F.1.4.3.1.3 Encoding the exact value of the magnitude

After the magnitude category is encoded, the low order magnitude bits are encoded. These bits are encoded in order of
decreasing bit significance. The procedure is shown in Figure F.9. The abbreviation “SRL” indicates the shift-right-
logical operation, and M is the exclusive bound established in Figure F.8. Note that M has only one bit set – shifting M
right converts it into a bit mask for the logical “AND” operation.

The starting value of the context-index S is determined in Encode_log2_Sz. The increment of S by 14 at the beginning of
this procedure sets the context-index to the value required in Tables F.4 and F.5.

TISO1410-93/d079

Encode_Sz-bits

S = S + 14

M = SRL M 1

M = 0
?

Yes

No

T = M AND Sz

T = 0
?

NoYes

Code_0(S) Code_1(S)

Figure F.9 – Decision sequence to code the magnitude bit pattern

Done

Figure F.9 [D79] = 16.5 cm = 645 %
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F.1.4.4 Statistical models

An adaptive binary arithmetic coder requires a statistical model. The statistical model defines the contexts which are used
to select the conditional probability estimates used in the encoding and decoding procedures.

Each decision in the binary decision trees is associated with one or more contexts. These contexts identify the sense of the
MPS and the index in Table D.3 of the conditional probability estimate Qe which is used to encode and decode the binary
decision.

The arithmetic coder is adaptive, which means that the probability estimates for each context are developed and
maintained by the arithmetic coding system on the basis of prior coding decisions for that context.

F.1.4.4.1 Statistical model for coding DC prediction differences

The statistical model for coding the DC difference conditions some of the probability estimates for the binary decisions on
previous DC coding decisions.

F.1.4.4.1.1 Statistical conditioning on sign

In coding the DC coefficients, four separate statistics bins (probability estimates) are used in coding the zero/not-zero (V =
0) decision, the sign decision and the first magnitude category decision. Two of these bins are used to code the V = 0
decision and the sign decision. The other two bins are used in coding the first magnitude decision, Sz < 1; one of these
bins is used when the sign is positive, and the other is used when the sign is negative. Thus, the first magnitude decision
probability estimate is conditioned on the sign of V.

F.1.4.4.1.2 Statistical conditioning on DC difference in previous block

The probability estimates for these first three decisions are also conditioned on Da, the difference value coded for the
previous DCT block of the same component. The differences are classified into five groups: zero, small positive, small
negative, large positive and large negative. The relationship between the default classification and the quantization scale is
shown in Figure F.10.

–5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5

0

TISO1420-93/d080

. . .. . .

– large – small + small + large

DC difference

Classification

Figure F.10 – Conditioning classification of difference values

Figure F.10 [D80] = 3 cm = 117 %

The bounds for the “small” difference category determine the classification. Defining L and U as integers in the range 0 to
15 inclusive, the lower bound (exclusive) for difference magnitudes classified as “small” is zero for L = 0, and is 2L–1 for
L > 0.

The upper bound (inclusive) for difference magnitudes classified as “small” is 2U.

L shall be less than or equal to U.

These bounds for the conditioning category provide a segmentation which is identical to that listed in Table F.3.

F.1.4.4.1.3 Assignment of statistical bins to the DC binary decision tree

As shown in Table F.4, each statistics area for DC coding consists of a set of 49 statistics bins. In the following
explanation, it is assumed that the bins are contiguous. The first 20 bins consist of five sets of four bins selected by a
context-index S0. The value of S0 is given by DC_Context(Da), which provides a value of 0, 4, 8, 12 or 16, depending on
the difference classification of Da (see F.1.4.4.1.2). The remaining 29 bins, X1,...,X15,M2,...,M15, are used to code
magnitude category decisions and magnitude bits.
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Table F.4 – Statistical model for DC coefficient coding

Context-index Value Coding decision

S0 DC_Context(Da) V = 0
SS S0 + 1 Sign of V

SP S0 + 2 Sz < 1 if V > 0

SN S0 + 3 Sz < 1 if V < 0

X1 20 Sz < 2

X2 X1 + 1 Sz < 4

X3 X1 + 2 Sz < 8

. . .

. . .

X15 X1 + 14 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

F.1.4.4.1.4 Default conditioning for DC statistical model

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define Arithmetic coding Conditioning) marker segment, as described in Annex B.

F.1.4.4.1.5 Initial conditions for DC statistical model

At the start of a scan and at the beginning of each restart interval, the difference for the previous DC value is defined to be
zero in determining the conditioning state.

F.1.4.4.2 Statistical model for coding the AC coefficients

As shown in Table F.5, each statistics area for AC coding consists of a contiguous set of 245 statistics bins. Three bins are
used for each value of the zig-zag index K, and two sets of 28 additional bins X2,...,X15,M2,...,M15 are used for coding
the magnitude category and magnitude bits.

The value of SE (and also S0, SP and SN) is determined by the zig-zag index K. Since K is in the range 1 to 63, the
lowest value for SE is 0 and the largest value for SP is 188. SS is not assigned a value in AC coefficient coding, as the
signs of the coefficients are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

The value of X2 is given by AC_Context(K). This gives X2 = 189 when K ≤ Kx and X2 = 217 when K > Kx, where Kx is
defined using the DAC marker segment (see B.2.4.3).

Note that a X1 statistics bin is not used in this sequence. Instead, the 63 × 1 array of statistics bins for the magnitude
category is used for two decisions. Once the magnitude bound has been determined – at statistics bin Xn, for example – a
single statistics bin, Mn, is used to code the magnitude bit sequence for that bound.

F.1.4.4.2.1 Default conditioning for AC coefficient coding

The default value of Kx is 5. This may be modified using the DAC marker segment, as described in Annex B.

F.1.4.4.2.2 Initial conditions for AC statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D.

CCITT Rec. T.81 (1992 E) 101

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

Table F.5 – Statistical model for AC coefficient coding

Context-index Value Coding decision

SE 3 × (K – 1) K = EOB

S0 SE + 1 V = 0

SS Fixed estimate Sign of V

SN,SP S0 + 1 Sz < 1

X1 S0 + 1 Sz < 2

X2 AC_Context(K) Sz < 4

X3 X2 + 1 Sz < 8

. . .

. . .

X15 X2 + 13 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

F.1.5 Extended sequential DCT-based Huffman encoding process for 12-bit sample precision

This process is identical to the sequential DCT process for 8-bit precision extended to four Huffman table destinations as
documented in F.1.3, with the following changes.

F.1.5.1 Structure of DC code table for 12-bit sample precision

The two’s complement difference magnitudes are grouped into 16 categories, SSSS, and a Huffman code is created for
each of the 16 difference magnitude categories.

The Huffman table for DC coding (see Table F.1) is extended as shown in Table F.6.

Table F.6 – Difference magnitude categories for DC coding

SSSS Difference values

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

15 –32 767..–16 384,16 384..32 767

F.1.5.2 Structure of AC code table for 12-bit sample precision

The general structure of the code table is extended as illustrated in Figure F.11. The Huffman table for AC coding is
extended as shown in Table F.7.
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0 1 2

0
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.

15

EOB
N/A
N/A
N/A
ZRL

.      .      .

RRRR

SSSS

TISO1430-93/d081

13 14

COMPOSITE VALUES

Figure F.11 – Two-dimensional value array for Huffman coding

Figure F.11 {D81] = 4.5 cm = 176 %

Table F.7 – Values assigned to coefficient amplitude ranges

SSSS AC coefficients

11 –2 047..–1 024,1 024..2 047

12 –4  095..–2 048,2 048..4  095

13 –8 191..–4  096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

F.1.6 Extended sequential DCT-based arithmetic encoding process for 12-bit sample precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the FDCT
computation.

The structure of the encoding procedure is identical to that specified in F.1.4 which was already defined for a 12-bit
sample precision.

F.2 Sequential DCT-based decoding processes

F.2.1 Sequential DCT-based control procedures and coding models

F.2.1.1 Control procedures for sequential DCT-based decoders

The control procedures for decoding compressed image data and its constituent parts – the frame, scan, restart interval and
MCU – are given in Figures E.6 to E.10. The procedure for decoding a MCU (Figure E.10) repetitively calls the
procedure for decoding a data unit. For DCT-based decoders the data unit is an 8 × 8 block of samples.

F.2.1.2 Procedure for decoding an 8 ×× 8 block data unit

In the sequential DCT-based decoding process, decoding an 8 × 8 block data unit consists of the following procedures:

a) decode DC coefficient for 8 × 8 block using the DC table destination specified in the scan header;

b) decode AC coefficients for 8 × 8 block using the AC table destination specified in the scan header;

c) dequantize using table destination specified in the frame header and calculate the inverse 8 × 8 DCT.

F.2.1.3 Decoding models for the sequential DCT procedures

Two decoding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)...ZZ(63).
The coefficients are decoded in the order in which they occur in the zig-zag sequence order, starting with the DC
coefficient. The coefficients are represented as two’s complement integers.
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F.2.1.3.1 Decoding model for DC coefficients

The decoded difference, DIFF, is added to PRED, the DC value from the most recently decoded 8 × 8 block from the
same component. Thus ZZ(0) = PRED + DIFF.

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient is
initialized to zero.

F.2.1.3.2 Decoding model for AC coefficients

The AC coefficients are decoded in the order in which they occur in ZZ. When the EOB is decoded, all remaining
coefficients in ZZ are initialized to zero.

F.2.1.4 Dequantization of the quantized DCT coefficients

The dequantization of the quantized DCT coefficients as described in Annex A, is accomplished by multiplying each
quantized coefficient value by the quantization table value for that coefficient. The decoder shall be able to use up to four
quantization table destinations.

F.2.1.5 Inverse DCT (IDCT)

The mathematical definition of the IDCT is given in A.3.3.

After computation of the IDCT, the signed output samples are level-shifted, as described in Annex A, converting the
output to an unsigned representation. For 8-bit precision the level shift is performed by adding 128. For 12-bit precision
the level shift is performed by adding 2 048. If necessary, the output samples shall be clamped to stay within the range
appropriate for the precision (0 to 255 for 8-bit precision and 0 to 4 095 for 12-bit precision).

F.2.2 Baseline Huffman Decoding procedures

The baseline decoding procedure is for 8-bit sample precision. The decoder shall be capable of using up to two DC and
two AC Huffman tables within one scan.

F.2.2.1 Huffman decoding of DC coefficients

The decoding procedure for the DC difference, DIFF, is:

T = DECODE

DIFF = RECEIVE(T)

DIFF = EXTEND(DIFF,T)

where DECODE is a procedure which returns the 8-bit value associated with the next Huffman code in the compressed
image data (see F.2.2.3) and RECEIVE(T) is a procedure which places the next T bits of the serial bit string into the low
order bits of DIFF, MSB first. If T is zero, DIFF is set to zero. EXTEND is a procedure which converts the partially
decoded DIFF value of precision T to the full precision difference. EXTEND is shown in Figure F.12.
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TISO1440-93/d082

EXTEND(V,T)

V   = 2     t
T –1

V < V 
?

t Yes

No

V   = (SLL –1 T) + 1
V = V + V  

t

t

Return V

Figure F.12 – Extending the sign bit of a decoded value in V

Figure F.12 [D82] = 11 cm = 430 %

F.2.2.2 Decoding procedure for AC coefficients

The decoding procedure for AC coefficients is shown in Figures F.13 and F.14.
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TISO1450-93/d083

Decode_AC_
coefficients

K = 1
ZZ(1,...,63) = 0

K = K + 1 K = K + 16

RS = DECODE

SSSS = RS modulo 16
RRRR = SRL RS 4
R = RRRR

SSSS = 0
?

Yes

No

K = K + R

Decode_ZZ(K)

K = 63
?

R = 15
?

No

Yes

Yes

No

Done

Figure F.13 – Huffman decoding procedure for AC coefficients 

Figure F.13 [D83] = 21 cm = 821 %
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TISO1460-93/d084

Decode_ZZ(K)

ZZ(K) = RECEIVE(SSSS)
ZZ(K) = EXTEND(ZZ(K),SSSS)

Done

Figure F.14 – Decoding a non-zero AC coefficient

Figure F.14 [D84] = 7 cm = 273 %

The decoding of the amplitude and sign of the non-zero coefficient is done in the procedure “Decode_ZZ(K)”, shown in
Figure F.14.

DECODE is a procedure which returns the value, RS, associated with the next Huffman code in the code stream
(see F.2.2.3). The values SSSS and R are derived from RS. The value of SSSS is the four low order bits of the composite
value and R contains the value of RRRR (the four high order bits of the composite value). The interpretation of these
values is described in F.1.2.2. EXTEND is shown in Figure F.12.

F.2.2.3 The DECODE procedure

The DECODE procedure decodes an 8-bit value which, for the DC coefficient, determines the difference magnitude
category. For the AC coefficient this 8-bit value determines the zero run length and non-zero coefficient category.

Three tables, HUFFVAL, HUFFCODE, and HUFFSIZE, have been defined in Annex C. This particular implementation
of DECODE makes use of the ordering of the Huffman codes in HUFFCODE according to both value and code size.
Many other implementations of DECODE are possible.

NOTE – The values in HUFFVAL are assigned to each code in HUFFCODE and HUFFSIZE in sequence. There are no
ordering requirements for the values in HUFFVAL which have assigned codes of the same length.

The implementation of DECODE described in this subclause uses three tables, MINCODE, MAXCODE and VALPTR,
to decode a pointer to the HUFFVAL table. MINCODE, MAXCODE and VALPTR each have 16 entries, one for each
possible code size. MINCODE(I) contains the smallest code value for a given length I, MAXCODE(I) contains the largest
code value for a given length I, and VALPTR(I) contains the index to the start of the list of values in HUFFVAL which
are decoded by code words of length I. The values in MINCODE and MAXCODE are signed 16-bit integers; therefore, a
value of –1 sets all of the bits.

The procedure for generating these tables is shown in Figure F.15. The procedure for DECODE is shown in Figure F.16.
Note that the 8-bit “VALUE” is returned to the procedure which invokes DECODE.
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TISO1470-93/d085

Figure F.15 – Decoder table generation

Decoder_tables

I = 0
J = 0

MAXCODE(I) = –1 I = I + 1

I > 16
?

Yes

No

BITS(I) = 0
?

No

Yes

Done

VALPTR(I) = J
MINCODE(I) = HUFFCODE(J)
J = J + BITS(I) – 1
MAXCODE(I) = HUFFCODE(J)
J = J + 1

Figure F.15 [D85] = 14.5 cm = 567 %
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TISO1480-93/d086

DECODE

I = 1
CODE = NEXTBIT

I = I + 1
CODE = (SLL CODE 1) + NEXTBIT

CODE > MAXCODE(I)
?

Yes

No

J = VALPTR(I)
J = J + CODE – MINCODE(I)
VALUE = HUFFVAL(J)

Return VALUE

Figure F.16 – Procedure for DECODE

Figure F.16 [D86] = 14 cm = 547 %
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F.2.2.4 The RECEIVE procedure

RECEIVE(SSSS) is a procedure which places the next SSSS bits of the entropy-coded segment into the low order bits of
DIFF, MSB first. It calls NEXTBIT and it returns the value of DIFF to the calling procedure (see Figure F.17).

TISO1490-93/d087

RECEIVE(SSSS)

I = 0
V = 0

I = I + 1
V = (SLL V 1) + NEXTBIT

I = SSSS
?

Yes

No

Return V

F igur e F.17 – Pr ocedur e for  R EC E I V E (SSSS)

Figure F.17 [D87] = 11.5 cm = 449 %

F.2.2.5 The NEXTBIT procedure

NEXTBIT reads the next bit of compressed data and passes it to higher level routines. It also intercepts and removes stuff
bytes and detects markers. NEXTBIT reads the bits of a byte starting with the MSB (see Figure F.18).

Before starting the decoding of a scan, and after processing a RST marker, CNT is cleared. The compressed data are read
one byte at a time, using the procedure NEXTBYTE. Each time a byte, B, is read, CNT is set to 8.

The only valid marker which may occur within the Huffman coded data is the RSTm marker. Other than the EOI or
markers which may occur at or before the start of a scan, the only marker which can occur at the end of the scan is the
DNL (define-number-of-lines).

Normally, the decoder will terminate the decoding at the end of the final restart interval before the terminating marker is
intercepted. If the DNL marker is encountered, the current line count is set to the value specified by that marker. Since the
DNL marker can only be used at the end of the first scan, the scan decode procedure must be terminated when it is
encountered.
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TISO1500-93/d088

NEXTBIT

CNT = 0
?

Yes

No

B = NEXTBYTE
CNT = 8

B = X’FF’
?

Yes

No

B2 = NEXTBYTE

B2 = 0
?

Yes

Yes

No

No

B2 = DNL
?

BIT = SRL B 7
CNT = CNT – 1
B = SLL B 1

Process DNL marker

Return BIT Error Terminate scan

Figure F.18 – Procedure for fetching the next bit of compressed data

Figure F.18 [D88] = 17 cm = 665 %

F.2.3 Sequential DCT decoding process with 8-bit precision extended to four sets of Huffman tables

This process is identical to the Baseline decoding process described in F.2.2, with the exception that the decoder shall be
capable of using up to four DC and four AC Huffman tables within one scan. Four DC and four AC Huffman tables is the
maximum allowed by this Specification.

F.2.4 Sequential DCT decoding process with arithmetic coding

This subclause describes the sequential DCT decoding process with arithmetic decoding.

The arithmetic decoding procedures for decoding binary decisions, initializing the statistical model, initializing the
decoder, and resynchronizing the decoder are listed in Table D.4 of Annex D.

Some of the procedures in Table D.4 are used in the higher level control structure for scans and restart intervals described
in F.2. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic decoder are reset to
the standard initial value as part of the Initdec procedure which restarts the arithmetic coder.
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The statistical models defined in F.1.4.4 also apply to this decoding process.

The decoder shall be capable of using up to four DC and four AC conditioning tables and associated statistics areas within
one scan.

F.2.4.1 Arithmetic decoding of DC coefficients

The basic structure of the decision sequence for decoding a DC difference value, DIFF, is shown in Figure F.19. The
equivalent structure for the encoder is found in Figure F.4.

TISO1510-93/d089

Decode_DC_DIFF

D = Decode(S0)

D = 0
?

No Yes

Decode_V(S0) DIFF = 0

DIFF = V

Done

Figure F.19 – Arithmetic decoding of DC difference

Figure F.19 [D89] = 13 cm = 508 %

The context-indices used in the DC decoding procedures are defined in Table F.4 (see F.1.4.4.1.3).

The “Decode” procedure returns the value “D” of the binary decision. If the value is not zero, the sign and magnitude of
the non-zero DIFF must be decoded by the procedure “Decode_V(S0)”.

F.2.4.2 Arithmetic Decoding of AC coefficients

The AC coefficients are decoded in the order that they occur in ZZ(1,...,63). The encoder procedure for the coding process
is found in Figure F.5. Figure F.20 illustrates the decoding sequence.
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TISO1520-93/d090

Decode_AC_
coefficients

K = Kmin

D = Decode(SE)

D = 1
?

Yes

No

K = K + 1 K = K + 1

D = Decode(S0)

D = 0
?

Yes

No

Decode_V(S0)

ZZ(K) = V

K = Se
?

YesNo

Done

Figure F.20 – Procedure for decoding the AC coefficients

Figure F.20 [D90] = 21 cm = 821 %  presque pleine...

The context-indices used in the AC decoding procedures are defined in Table F.5 (see F.1.4.4.2).
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In Figure F.20, K is the index to the zig-zag sequence position. For the sequential scan, Kmin = 1 and Se = 63. The
decision at the top of the loop is the EOB decision. If the EOB occurs (D = 1), the remaining coefficients in the block are
set to zero. The inner loop just below the EOB decoding decodes runs of zero coefficients. Whenever the coefficient is
non-zero, “Decode_V” decodes the sign and magnitude of the coefficient. After each non-zero coefficient is decoded, the
EOB decision is again decoded unless K = Se.

F.2.4.3 Decoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement 16-bit integer values. The
decoding decision tree for these signed integer values is the same for both the DC and AC coding models. Note, however,
that the statistical models are not the same.

F.2.4.3.1 Arithmetic decoding of non-zero values

Denoting either DC differences or AC coefficients as V, the non-zero signed integer value of V is decoded by the
sequence shown in Figure F.21. This sequence first decodes the sign of V. It then decodes the magnitude category of V
(Decode_log2_Sz), and then decodes the low order magnitude bits (Decode_Sz_bits). Note that the value decoded for Sz
must be incremented by 1 to get the actual coefficient magnitude.

TISO1530-93/d091

Decode_V(S)

Decode_sign_of_V

Decode_log2_Sz

Decode_Sz_bits

V = Sz + 1

SIGN = 1
?

Yes
V = –V

Done

Figure F.21 – Sequence of procedures in decoding non-zero values of V

No

Figure F.21 [D91] = 15.5 cm = 606 %
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F.2.4.3.1.1 Decoding the sign

The sign is decoded by the procedure shown in Figure F.22.

The context-indices are defined for DC decoding in Table F.4 and AC decoding in Table F.5.

If SIGN = 0, the sign of the coefficient is positive; if SIGN = 1, the sign of the coefficient is negative.

TISO1540-93/d092

Decode_sign_of_V

SIGN = Decode(SS)

SIGN = 1
?

Yes No

S = SN S = SP

Done

Figure F.22 – Decoding the sign of V

Figure F.22 [D92] = 11 cm = 430 %

F.2.4.3.1.2 Decoding the magnitude category

The context-index S is set in Decode_sign_of_V and the context-index values X1 and X2 are defined for DC coding in
Table F.4 and for AC coding in Table F.5.

In Figure F.23, M is set to the upper bound for the magnitude and shifted left until the decoded decision is zero. It is then
shifted right by 1 to become the leading bit of the magnitude of Sz.
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TISO1550-93/d093

Decode_log2_Sz

M = 1

D = Decode(S)

D = 0
?

Yes

No

M = 2
S = X1

M = 4
S = X2

D = Decode(S)

D = Decode(S)

D = 0
?

YesD = 0
?

Yes

No

No

M = SLL M 1
S = S + 1

M = SRL M 1
Sz = M

Done

Figure F.23 – Decoding procedure to establish the magnitude category
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F.2.4.3.1.3 Decoding the exact value of the magnitude

After the magnitude category is decoded, the low order magnitude bits are decoded. These bits are decoded in order of
decreasing bit significance. The procedure is shown in Figure F.24.

The context-index S is set in Decode_log2_Sz.

TISO1560-93/d094

Decode_Sz_bits

S = S + 14

M = SRL M 1

M = 0
?

Yes

No

D = Decode(S) Done

D = 0
?

Yes

No

Sz = M OR Sz

Figure F.24 – Decision sequence to decode the magnitude bit pattern

Figure F.24 [D94] = 16 cm = 625 %

F.2.4.4 Decoder restart

The RSTm markers which are added to the compressed data between each restart interval have a two byte value which
cannot be generated by the coding procedures. These two byte sequences can be located without decoding, and can
therefore be used to resynchronize the decoder. RSTm markers can therefore be used for error recovery.
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Before error recovery procedures can be invoked, the error condition must first be detected. Errors during decoding can
show up in two places:

a) The decoder fails to find the expected marker at the point where it is expecting resynchronization.

b) Physically impossible data are decoded. For example, decoding a magnitude beyond the range of values
allowed by the model is quite likely when the compressed data are corrupted by errors. For arithmetic
decoders this error condition is extremely important to detect, as otherwise the decoder may reach a
condition where it uses the compressed data very slowly.

NOTE – Some errors will not cause the decoder to lose synchronization. In addition, recovery is not
possible for all errors; for example, errors in the headers are likely to be catastrophic. The two error
conditions listed above, however, almost always cause the decoder to lose synchronization in a way which
permits recovery.

In regaining synchronization, the decoder can make use of the modulo 8 coding restart interval number in the low order
bits of the RSTm marker. By comparing the expected restart interval number to the value in the next RSTm marker in the
compressed image data, the decoder can usually recover synchronization. It then fills in missing lines in the output data by
replication or some other suitable procedure, and continues decoding. Of course, the reconstructed image will usually be
highly corrupted for at least a part of the restart interval where the error occurred.

F.2.5 Sequential DCT decoding process with Huffman coding and 12-bit precision

This process is identical to the sequential DCT process defined for 8-bit sample precision and extended to four Huffman
tables, as documented in F.2.3, but with the following changes.

F.2.5.1 Structure of DC Huffman decode table

The general structure of the DC Huffman decode table is extended as described in F.1.5.1.

F.2.5.2 Structure of AC Huffman decode table

The general structure of the AC Huffman decode table is extended as described in F.1.5.2.

F.2.6 Sequential DCT decoding process with arithmetic coding and 12-bit precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the IDCT
computation.

The structure of the decoding procedure in F.2.4 is already defined for a 12-bit input precision.
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Annex  G

Progressive DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the following coding processes for the progressive DCT-based mode
of operation:

1) spectral selection only, Huffman coding, 8-bit sample precision;

2) spectral selection only, arithmetic coding, 8-bit sample precision;

3) full progression, Huffman coding, 8-bit sample precision;

4) full progression, arithmetic coding, 8-bit sample precision;

5) spectral selection only, Huffman coding, 12-bit sample precision;

6) spectral selection only, arithmetic coding, 12-bit sample precision;

7) full progression, Huffman coding, 12-bit sample precision;

8) full progression, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in G.1, and the decoding process is specified in G.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

The number of Huffman or arithmetic conditioning tables which may be used within the same scan is four.

Two complementary progressive procedures are defined, spectral selection and successive approximation.

In spectral selection the DCT coefficients of each block are segmented into frequency bands. The bands are coded in
separate scans.

In successive approximation the DCT coefficients are divided by a power of two before coding. In the decoder the
coefficients are multiplied by that same power of two before computing the IDCT. In the succeeding scans the precision of
the coefficients is increased by one bit in each scan until full precision is reached.

An encoder or decoder implementing a full progression uses spectral selection within successive approximation. An
allowed subset is spectral selection alone.

Figure G.1 illustrates the spectral selection and successive approximation progressive processes.

G.1 Progressive DCT-based encoding processes

G.1.1 Control procedures and coding models for progressive DCT-based procedures

G.1.1.1 Control procedures for progressive DCT-based encoders

The control procedures for encoding an image and its constituent parts – the frame, scan, restart interval and MCU – are
given in Figures E.1 through E.5.

The control structure for encoding a frame is the same as for the sequential procedures. However, it is convenient to
calculate the FDCT for the entire set of components in a frame before starting the scans. A buffer which is large enough to
store all of the DCT coefficients may be used for this progressive mode of operation.

The number of scans is determined by the progression defined; the number of scans may be much larger than the number
of components in the frame.
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Figure G.1 – Spectral selection and successive approximation progressive processes
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The procedure for encoding a MCU (see Figure E.5) repetitively invokes the procedure for coding a data unit. For
DCT-based encoders the data unit is an 8 × 8 block of samples.

Only a portion of each 8 × 8 block is coded in each scan, the portion being determined by the scan header parameters Ss,
Se, Ah, and Al (see B.2.3). The procedures used to code portions of each 8 × 8 block are described in this annex. Note,
however, that where these procedures are identical to those used in the sequential DCT-based mode of operation, the
sequential procedures are simply referenced.

G.1.1.1.1 Spectral selection control

In spectral selection the zig-zag sequence of DCT coefficients is segmented into bands. A band is defined in the scan
header by specifying the starting and ending indices in the zig-zag sequence. One band is coded in a given scan of the
progression. DC coefficients are always coded separately from AC coefficients, and only scans which code DC
coefficients may have interleaved blocks from more than one component. All other scans shall have only one component.
With the exception of the first DC scans for the components, the sequence of bands defined in the scans need not follow
the zig-zag ordering. For each component, a first DC scan shall precede any AC scans.

G.1.1.1.2 Successive approximation control

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). The successive approximation bit position parameter Al specifies the actual point
transform, and the high four bits (Ah) – if there are preceding scans for the band – contain the value of the point transform
used in those preceding scans. If there are no preceding scans for the band, Ah is zero.

Each scan which follows the first scan for a given band progressively improves the precision of the coefficients by one bit,
until full precision is reached.

G.1.1.2 Coding models for progressive DCT-based encoders

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). These models also apply to the progressive DCT-based encoders, but with the
following changes.

G.1.1.2.1 Progressive encoding model for DC coefficients

If Al is not zero, the point transform for DC coefficients shall be used to reduce the precision of the DC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded, using the procedure described in Annex
F. If Ah is not zero, the least significant bit of the point transformed DC coefficients shall be coded, using the procedures
described in this annex.

G.1.1.2.2 Progressive encoding model for AC coefficients

If Al is not zero, the point transform for AC coefficients shall be used to reduce the precision of the AC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded using modifications of the procedures
described in Annex F. These modifications are described in this annex. If Ah is not zero, the precision of the coefficients
shall be improved using the procedures described in this annex.

G.1.2 Progressive encoding procedures with Huffman coding

G.1.2.1 Progressive encoding of DC coefficients with Huffman coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.2.1. If
the successive approximation bit position parameter Al is not zero, the coefficient values shall be reduced in precision by
the point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits are appended to the compressed bit stream
without compression or modification (see G.1.2.3), except for byte stuffing.

G.1.2.2 Progressive encoding of AC coefficients with Huffman coding

In spectral selection and in the first scan of successive approximation for a component, the AC coefficient coding model is
similar to that used by the sequential procedures. However, the Huffman code tables are extended to include coding of
runs of End-Of-Bands (EOBs). See Table G.1.
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Table G.1 – EOBn code run length extensions

EOBn code Run length

EOB0 1

EOB1 2,3

EOB2 4..7

EOB3 8..15

EOB4 16..31

EOB5 32..63

EOB6 64..127

EOB7 128..255

EOB8 256..511

EOB9  512..1 023

EOB10 1 024..2 047

EOB11 2 048..4 095

EOB12 4 096..8 191

EOB13 8 192..16 383

EOB14 16 384..32 767

The end-of-band run structure allows efficient coding of blocks which have only zero coefficients. An EOB run of length
5 means that the current block and the next four blocks have an end-of-band with no intervening non-zero coefficients.
The EOB run length is limited only by the restart interval.

The extension of the code table is illustrated in Figure G.2.

0 1 2 .      .      .

RRRR

SSSS

13 14

EOB0
EOB1

.

.

.
EOB14

ZRL

0
1
.
.
.

14
15

TISO1580-93/d096

COMPOSITE VALUES

Figure G.2 – Two-dimensional value array for Huffman coding

Figure G.2 [D96] = 4.5 cm = 176 %

The EOBn code sequence is defined as follows. Each EOBn code is followed by an extension field similar to the
extension field for the coefficient amplitudes (but with positive numbers only). The number of bits appended to the EOBn
code is the minimum number required to specify the run length.

If an EOB run is greater than 32 767, it is coded as a sequence of EOB runs of length 32 767 followed by a final EOB run
sufficient to complete the run.

At the beginning of each restart interval the EOB run count, EOBRUN, is set to zero. At the end of each restart interval
any remaining EOB run is coded.

The Huffman encoding procedure for AC coefficients in spectral selection and in the first scan of successive
approximation is illustrated in Figures G.3, G.4, G.5, and G.6.
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TISO1590-93/d097

Encode_AC_
coefficients_SS

K = Ss – 1
R = 0

K = K + 1

ZZ(K) = 0
?

No

Encode_EOBRUN R = R + 1

R < 16
?

K = Se
?Yes

Yes

No

Encode_ZRL

EOBRUN =
EOBRUN + 1

No

Yes

EOBRUN = X’7FFF’
?

Encode_R_ZZ(K)

Encode_EOBRUN

K = Se
?

Done

No Yes

Figure G.3 – Procedure for progressive encoding of AC coefficients with Huffman coding

YesNo

Figure G.3[D97] = Pleine page
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In Figure G.3, Ss is the start of spectral selection, Se is the end of spectral selection, K is the index into the list of
coefficients stored in the zig-zag sequence ZZ, R is the run length of zero coefficients, and EOBRUN is the run length of
EOBs. EOBRUN is set to zero at the start of each restart interval.

If the scan header parameter Al (successive approximation bit position low) is not zero, the DCT coefficient values ZZ(K)
in Figure G.3 and figures which follow in this annex, including those in the arithmetic coding section, shall be replaced
by the point transformed values ZZ’(K), where ZZ’(K) is defined by:

ZZ’(K)  =
ZZ(K)x

2Al

EOBSIZE is a procedure which returns the size of the EOB extension field given the EOB run length as input. CSIZE is a
procedure which maps an AC coefficient to the SSSS value defined in the subclauses on sequential encoding (see F.1.1
and F.1.3).

TISO1600-93/d098

Encode_EOBRUN

EOBRUN = 0
?

Yes

No

SSSS = EOBSIZE(EOBRUN)
I = SSSS × 16
Append EHUFSI(I)
   bits of EHUFCO(I)
Append SSSS low order
   bits of EOBRUN
EOBRUN = 0

Done

Figure G.4 – Progressive encoding of a non-zero AC coefficient

Figure G.4 [98] = 11 cm = 430 %

TISO1610-93/d099

Encode_ZRL

Append EHUFSI(X’F0’)
   bits of EHUFCO(X’F0’)
R = R – 16

Done

Figure G.5 – Encoding of the run of zero coefficients
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Figure G.5 [99] = 7 cm = 273 %

TISO1620-93/d100

Encode_R_ZZ(K)

SSSS = CSIZE(ZZ(K))
I = (16 × R) + SSSS
Append EHUFSI(I)
   bits of EHUFCO(I)   

ZZ(K) < 0
?

Yes

No ZZ(K) = ZZ(K) – 1

Append SSSS low order
   bits of ZZ(K)
R = 0

Done

Figure G.6 – Encoding of the zero run and non-zero coefficient

Figure G.6 [D100] = 12.5 cm = 489 %

G.1.2.3 Coding model for subsequent scans of successive approximation

The Huffman coding structure of the subsequent scans of successive approximation for a given component is similar to the
coding structure of the first scan of that component.

The structure of the AC code table is identical to the structure described in G.1.2.2. Each non-zero point transformed
coefficient that has a zero history (i.e. that has a value ± 1, and therefore has not been coded in a previous scan) is defined
by a composite 8-bit run length-magnitude value of the form:

RRRRSSSS

The four most significant bits, RRRR, give the number of zero coefficients that are between the current coefficient and the
previously coded coefficient (or the start of band). Coefficients with non-zero history (a non-zero value coded in a
previous scan) are skipped over when counting the zero coefficients. The four least significant bits, SSSS, provide the
magnitude category of the non-zero coefficient; for a given component the value of SSSS can only be one.

The run length-magnitude composite value is Huffman coded and each Huffman code is followed by additional bits:

a) One bit codes the sign of the newly non-zero coefficient. A 0-bit codes a negative sign; a 1-bit codes a
positive sign.

b) For each coefficient with a non-zero history, one bit is used to code the correction. A 0-bit means no
correction and a 1-bit means that one shall be added to the (scaled) decoded magnitude of the coefficient.
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Non-zero coefficients with zero history are coded with a composite code of the form:

HUFFCO(RRRRSSSS)   +   additional bit  (rule a)   +   correction bits  (rule b)

In addition whenever zero runs are coded with ZRL or EOBn codes, correction bits for those coefficients with non-zero
history contained within the zero run are appended according to rule b above.

For the Huffman coding version of Encode_AC_Coefficients_SA the EOB is defined to be the position of the last point
transformed coefficient of magnitude 1 in the band. If there are no coefficients of magnitude 1, the EOB is defined to be
zero.

NOTE – The definition of EOB is different for Huffman and arithmetic coding procedures.

In Figures G.7 and G.8 BE is the count of buffered correction bits at the start of coding of the block. BE is initialized to
zero at the start of each restart interval. At the end of each restart interval any remaining buffered bits are appended to the
bit stream following the last EOBn Huffman code and associated appended bits.

In Figures G.7 and G.9, BR is the count of buffered correction bits which are appended to the bit stream according to rule
b. BR is set to zero at the beginning of each Encode_AC_Coefficients_SA. At the end of each restart interval any
remaining buffered bits are appended to the bit stream following the last Huffman code and associated appended bits.

G.1.3 Progressive encoding procedures with arithmetic coding

G.1.3.1 Progressive encoding of DC coefficients with arithmetic coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.4.1. If
the successive approximation bit position parameter is not zero, the coefficient values shall be reduced in precision by the
point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits shall be coded as binary decisions using a
fixed probability estimate of 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.2 Progressive encoding of AC coefficients with arithmetic coding

Except for the point transform scaling of the DCT coefficients and the grouping of the coefficients into bands, the first
scan(s) of successive approximation is identical to the sequential encoding procedure described in F.1.4. If Kmin is
equated to Ss, the index of the first AC coefficient index in the band, the flow chart shown in Figure F.5 applies. The
EOB decision in that figure refers to the “end-of-band” rather than the “end-of-block”. For the arithmetic coding version
of Encode_AC_Coefficients_SA (and all other AC coefficient coding procedures) the EOB is defined to be the position
following the last non-zero coefficient in the band.

NOTE - The definition of EOB is different for Huffman and arithmetic coding procedures.

The statistical model described in F.1.4 also holds. For this model the default value of Kx is 5. Other values of Kx may be
specified using the DAC marker code (Annex B). The following calculation for Kx has proven to give good results for 8-
bit precision samples:

Kx = Kmin + SRL  (8 + Se – Kmin)  4

This expression reduces to the default of Kx = 5 when the band is from index 1 to index 63.
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TISO1630-93/d101

Encode_AC_
coefficients_SA

K = Ss – 1
R = 0
BR = 0

K = K + 1

ZZ(K) = 0
?

No Yes

R > 15
?

Yes

No K ≥ EOB
?

Yes

No

|ZZ(K)| = 1
?

Yes

No

Encode_EOBRUN
Append_BE_bits
Encode_ZRL
Append_BR_bits

Append LSB of ZZ(K)
   to buffered bits
BR = BR + 1Encode_EOBRUN

Append_BE_bits
Encode_R_ZZ(K)
Append_BR_bits

K = Se
?

No

Yes

Yes

NoK = Se
?

EOBRUN =
   EOBRUN + 1
BE = BE + BR

EOBRUN = X’7FFF’
?

Yes

No

Encode_EOBRUN
Append_BE_bits

Done

R = R + 1

Figure G.7 – Successive approximation coding of AC coefficients using Huffman coding
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TISO1640-93/d102

Append_BE_bits

BE = 0
?

Yes

No

Append BE buffered bits
   to bit stream
BE = 0

Done

Figure G.8 – Transferring BE buffered bits from buffer to bit stream

Figure G.8 [D102] = 9.5 cm = 371 %

TISO1650-93/d103

Append_BR_bits

BR = 0
?

Yes

No

Append BR buffered bits
   to bit stream
BR = 0

Done

Figure G.9 – Transferring BR buffered bits from buffer to bit stream

Figaure G.9 [D103] = 9.5 cm = 371 %
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G.1.3.3 Coding model for subsequent scans of successive approximation

The procedure “Encode_AC_Coefficient_SA” shown in Figure G.10 increases the precision of the AC coefficient values
in the band by one bit.

As in the first scan of successive approximation for a component, an EOB decision is coded at the start of the band and
after each non-zero coefficient.

However, since the end-of-band index of the previous successive approximation scan for a given component, EOBx, is
known from the data coded in the prior scan of that component, this decision is bypassed whenever the current index, K,
is less than EOBx. As in the first scan(s), the EOB decision is also bypassed whenever the last coefficient in the band is
not zero. The decision ZZ(K) = 0 decodes runs of zero coefficients. If the decoder is at this step of the procedure, at least
one non-zero coefficient remains in the band of the block being coded. If ZZ(K) is not zero, the procedure in Figure G.11
is followed to code the value.

The context-indices in Figures G.10 and G.11 are defined in Table G.2 (see G.1.3.3.1). The signs of coefficients with
magnitude of one are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.3.1 Statistical model for subsequent successive approximation scans

As shown in Table G.2, each statistics area for subsequent successive approximation scans of AC coefficients consists of a
contiguous set of 189 statistics bins. The signs of coefficients with magnitude of one are coded with a fixed probability
value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.2 Progressive decoding of the DCT

The description of the computation of the IDCT and the dequantization procedure contained in A.3.3 and A.3.4 apply to
the progressive operation.

Progressive decoding processes must be able to decompress compressed image data which requires up to four sets of
Huffman or arithmetic coder conditioning tables within a scan.

In order to avoid repetition, detailed flow diagrams of progressive decoder operation are not included. Decoder operation
is defined by reversing the function of each step described in the encoder flow charts, and performing the steps in reverse
order.
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TISO1660-93/d104

Encode_AC_
coefficients_SA

K = Kmin

K < EOBx
?

Yes

No

K = EOB
?

Yes

No

Code_1(SE)

Code_0(SE)

K = K + 1 K = K + 1

ZZ(K) = 0
?

Yes

No

Code_0(S0)

CodeSA_ZZ(K)

K = Se
?

YesNo

Done

Figure G.10 – Subsequent successive approximation scans for coding
of AC coefficients using arithmetic coding

Figure G.10 [D104] = PLEINE

130 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

TISO1670-93/d105

CodeSA_ZZ(K)

T = LSB ZZ(K)
Yes No| ZZ(K) | > 1

? Code_1(S0)

T = 1
?

YesNo ZZ(K) > 0
?

No Yes

Code_0(SC) Code_1(SC) Code_1(SS) Code_0(SS)

Done

Figure G.11 – Coding non-zero coefficients for subsequent successive approximation scans

Figure G.11 [D105] = 11 cm = 430 %

Table G.2 – Statistical model for subsequent scans of successive
approximation coding of AC coefficient

Context-index AC coding Coding decision

SE 3 × (K–1) K = EOB

S0 SE + 1 V = 0

SS Fixed estimate Sign

SC S0 + 1 LSB ZZ(K) = 1
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Annex  H

Lossless mode of operation

(This annex forms an integral part of this Recommendation | International Standard)
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

This annex provides a functional specification of the following coding processes for the lossless mode of operation:

1) lossless processes with Huffman coding;

2) lossless processes with arithmetic coding.

For each of these, the encoding process is specified in H.1, and the decoding process is specified in H.2. The functional
specification is presented by means of specific procedures which comprise these coding processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified in this annex. It is necessary only that an encoder or decoder
implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this
Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the
compliance tests specified in Part 2.

The processes which provide for sequential lossless encoding and decoding are not based on the DCT. The processes used
are spatial processes based on the coding model developed for the DC coefficients of the DCT. However, the model is
extended by incorporating a set of selectable one- and two-dimensional predictors, and for interleaved data the ordering of
samples for the one-dimensional predictor can be different from that used in the DCT-based processes.

Either Huffman coding or arithmetic coding entropy coding may be employed for these lossless encoding and decoding
processes. The Huffman code table structure is extended to allow up to 16-bit precision for the input data. The arithmetic
coder statistical model is extended to a two-dimensional form.

H.1 Lossless encoder processes

H.1.1 Lossless encoder control procedures

Subclause E.1 contains the encoder control procedures. In applying these procedures to the lossless encoder, the data unit
is one sample.

Input data precision may be from 2 to 16 bits/sample. If the input data path has different precision from the input data, the
data shall be aligned with the least significant bits of the input data path. Input data is represented as unsigned integers
and is not level shifted prior to coding.

When the encoder is reset in the restart interval control procedure (see E.1.4), the prediction is reset to a default value. If
arithmetic coding is used, the statistics are also reset.

For the lossless processes the restart interval shall be an integer multiple of the number of MCU in an MCU-row.

H.1.2 Coding model for lossless encoding

The coding model developed for encoding the DC coefficients of the DCT is extended to allow a selection from a set of
seven one-dimensional and two-dimensional predictors. The predictor is selected in the scan header (see Annex B). The
same predictor is used for all components of the scan. Each component in the scan is modeled independently, using
predictions derived from neighbouring samples of that component.

H.1.2.1 Prediction

Figure H.1 shows the relationship between the positions (a, b, c) of the reconstructed neighboring samples used for
prediction and the position of x, the sample being coded.
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c b

xa

TISO1680-93/d106

Figure H.1  –  Relationship between sample and prediction samples

Figure H.1 [D106] = 4.5 cm = 176 %

Define Px to be the prediction and Ra, Rb, and Rc to be the reconstructed samples immediately to the left, immediately
above, and diagonally to the left of the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table H.1.

Table H.1 – Predictors for lossless coding

Selection-value Prediction

0 No prediction (See Annex J)

1 Px = Ra

2 Px = Rb

3 Px = Rc

4 Px = Ra + Rb – Rc

5 Px = Ra + ((Rb – Rc)/2)a)

6 Px = Rb + ((Ra – Rc)/2)a)

7 Px = (Ra + Rb)/2

a) Shift right arithmetic operation

Selection-value 0 shall only be used for differential coding in the hierarchical mode of operation. Selections 1, 2 and 3 are
one-dimensional predictors and selections 4, 5, 6, and 7 are two-dimensional predictors.

The one-dimensional horizontal predictor (prediction sample Ra) is used for the first line of samples at the start of the scan
and at the beginning of each restart interval. The selected predictor is used for all other lines. The sample from the line
above (prediction sample Rb) is used at the start of each line, except for the first line. At the beginning of the first line and
at the beginning of each restart interval the prediction value of 2P – 1 is used, where P is the input precision.

If the point transformation parameter (see A.4) is non-zero, the prediction value at the beginning of the first lines and the
beginning of each restart interval is 2P – Pt – 1, where Pt is the value of the point transformation parameter.

Each prediction is calculated with full integer arithmetic precision, and without clamping of either underflow or overflow
beyond the input precision bounds. For example, if Ra and Rb are both 16-bit integers, the sum is a 17-bit integer. After
dividing the sum by 2 (predictor 7), the prediction is a 16-bit integer.
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For simplicity of implementation, the divide by 2 in the prediction selections 5 and 6 of Table H.1 is done by an
arithmetic-right-shift of the integer values.

The difference between the prediction value and the input is calculated modulo 216. In the decoder the difference is
decoded and added, modulo 216, to the prediction.

H.1.2.2 Huffman coding of the modulo difference

The Huffman coding procedures defined in Annex F for coding the DC coefficients are used to code the modulo 216

differences. The table for DC coding contained in Tables F.1 and F.6 is extended by one additional entry. No extra bits
are appended after SSSS = 16 is encoded. See Table H.2.

Table H.2 – Difference categories for lossless Huffman coding

SSSS Difference values

10 0

11 –1,1

12 –3,–2,2,3

13 –7..–4,4..7

14 –15..–8,8..15

15 –31..–16,16..31

16 –63..–32,32..63

17 –127..–64,64..127

18 –255..–128,128..255

19 –511..–256,256..511

10 –1 023..–512,512..1 023

11 –2 047..–1 024,1 024..2 047

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

15 –32 767..–16 384,16 384..32 767

16 32 768

H.1.2.3 Arithmetic coding of the modulo difference

The statistical model defined for the DC coefficient arithmetic coding model (see F.1.4.4.1) is generalized to a two-
dimensional form in which differences coded for the sample to the left and for the line above are used for conditioning.

H.1.2.3.1 Two-dimensional statistical model

The binary decisions are conditioned on the differences coded for the neighbouring samples  immediately above and
immediately to the left from the same component. As in the coding of the DC coefficients, the differences are classified
into 5 categories: zero(0), small positive (+S), small negative (–S), large positive (+L), and large negative (–L). The two
independent difference categories combine to give 25 different conditioning states. Figure H.2 shows the two-dimensional
array of conditioning indices. For each of the 25 conditioning states probability estimates for four binary decisions are
kept.

At the beginning of the scan and each restart interval the conditioning derived from the line  above is set to zero for the
first line of each component. At the start of each line, the difference to the left is set to zero for the purposes of calculating
the conditioning.
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TISO1690-93/d107
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Difference to left
(position a)

Difference above (position b)

Figure H.2  –  5 × 5 Conditioning array for two-dimensional statistical model

Figure H.2 [D107] = 7 cm = 273 %

H.1.2.3.2 Assignment of statistical bins to the DC binary decision tree

Each statistics area for lossless coding consists of a contiguous set of 158 statistics bins. The first 100 bins consist of
25 sets of four bins selected by a context-index S0. The value of S0 is given by L_Context(Da,Db), which provides a
value of 0, 4,..., 92 or 96, depending on the difference classifications of Da and Db (see H.1.2.3.1). The value for S0
provided by L_Context(Da,Db) is from the array in Figure H.2.

The remaining 58 bins consist of two sets of 29 bins, X1, ..., X15, M2, ..., M15, which are  used to code magnitude
category decisions and magnitude bits. The value of X1 is given by X1_Context(Db), which provides a value of 100 when
Db is in the zero, small positive or small negative categories and a value of 129 when Db is in the large positive or large
negative categories.

The assignment of statistical bins to the binary decision tree used for coding the difference  is given in Table H.3.

Table H.3 – Statistical model for lossless coding

Context-index Value Coding decision

S0 L_Context(Da,Db) V = 0

SS S0 + 1 Sign

SP S0 + 2 Sz < 1 if V > 0

SN S0 + 3 Sz < 1 if V < 0

X1 X1_Context(Db) Sz < 2

X2 X1 + 1 Sz < 4

X3 X1 + 2 Sz < 8

. . .

. . .

X15 X1 + 14 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215
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H.1.2.3.3 Default conditioning bounds

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define-Arithmetic-Conditioning) marker segment, as described in Annex B.

H.1.2.3.4 Initial conditions for statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D.

H.2 Lossless decoder processes

Lossless decoders may employ either Huffman decoding or arithmetic decoding. They shall be capable of using up to four
tables in a scan. Lossless decoders shall be able to decode encoded image source data with any input precision from 2 to
16 bits per sample.

H.2.1 Lossless decoder control procedures

Subclause E.2 contains the decoder control procedures. In applying these procedures to the lossless decoder the data unit
is one sample.

When the decoder is reset in the restart interval control procedure (see E.2.4) the prediction is reset to the same value
used in the encoder (see H.1.2.1). If arithmetic coding is used, the statistics are also reset.

Restrictions on the restart interval are specified in H.1.1.

H.2.2 Coding model for lossless decoding

The predictor calculations defined in H.1.2 also apply to the lossless decoder processes.

The lossless decoders, decode the differences and add them, modulo 216, to the predictions to create the output. The
lossless decoders shall be able to interpret the point transform parameter, and if non-zero, multiply the output of the
lossless decoder by 2Pt.

In order to avoid repetition, detailed flow charts of the lossless decoding procedures are omitted.
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Annex  J

Hierarchical mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the coding processes for the hierarchical mode of operation.

In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame. Such frames may
be followed by a sequence of differential frames. A non-differential frame shall be encoded or decoded using the
procedures defined in Annexes F, G and H. Differential frame procedures are defined in this annex.

The coding process for a hierarchical encoding containing DCT-based processes is defined as the highest numbered
process listed in Table J.1 which is used to code any non-differential DCT-based or differential DCT-based frame in the
compressed image data format. The coding process for a hierarchical encoding containing only lossless processes is
defined to be the process used for the non-differential frames.

Table J.1 – Coding processes for hierarchical mode

Process Non-differential frame specification

11 Extended sequential DCT, Huffman, 8-bit Annex F, process 2

12 Extended sequential DCT, arithmetic, 8-bit Annex F, process 3

13 Extended sequential DCT, Huffman, 12-bit Annex F, process 4

14 Extended sequential DCT, arithmetic, 12-bit Annex F, process 5

15 Spectral selection only, Huffman, 8-bit Annex G, process 1

16 Spectral selection only, arithmetic, 8-bit Annex G, process 2

17 Full progression, Huffman, 8-bit Annex G, process 3

18 Full progression, arithmetic, 8-bit Annex G, process 4

19 Spectral selection only, Huffman, 12-bit Annex G, process 5

10 Spectral selection only, arithmetic, 12-bit Annex G, process 6

11 Full progression, Huffman, 12-bit Annex G, process 7

12 Full progression, arithmetic, 12-bit Annex G, process 8

13 Lossless, Huffman, 2 through 16 bits Annex H, process 1

14 Lossless, arithmetic, 2 through 16 bits Annex H, process 2

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. It may
include EXP marker segments and differential frames which shall follow the initial non-differential frame. The frame
structure in hierarchical mode is identical to the frame structure in non-hierarchical mode.

Either all non-differential frames within an image shall be coded with DCT-based processes, or all non-differential frames
shall be coded with lossless processes. All frames within an image must use the same entropy coding procedure, either
Huffman or arithmetic, with the exception that non-differential frames coded with the baseline process may occur in the
same image with frames coded with arithmetic coding processes.

If the non-differential frames use DCT-based processes, all differential frames except the final frame for a component shall
use DCT-based processes. The final differential frame for each component may use a differential lossless process.

If the non-differential frames use lossless processes, all differential frames shall use differential lossless processes.

For each of the processes listed in Table J.1, the encoding processes are specified in J.1, and decoding processes are
specified in J.2.

NOTE – There is  no requirement in this Specification that any encoder or decoder which embodies one of the
above-named processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is
necessary only that an encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder
to be considered in compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for
decoders), as determined by the compliance tests specified in Part 2.
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In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame followed by a
sequence of differential frames. A non-differential frame shall use the procedures defined in Annexes F, G, and H.
Differential frame procedures are defined in this annex.

J.1 Hierarchical encoding

J.1.1 Hierarchical control procedure for encoding an image

The control structure for encoding of an image using the hierarchical mode is given in Figure J.1.

TISO1700-93/d108

Encode_image

Encode_frame

Append EOI marker

Done

Yes

No

YesNo

[Generate down-sampled images]
Append SOI marker
[Append tables/miscellaneous]
Append DHP marker segment

Reconstruct components
using matching

decoder process

[Upsample reference components and
    append EXP marker segment]
Generate differential components
Encode_differential_frame
Reconstruct differential components
Reconstruct components

Differential frame
?

More frames
?

Figure J.1  –  Hierarchical control procedure for encoding an image

Figure J.1 [D108] = 18 cm = 704 %

In Figure J.1 procedures in brackets shall be performed whenever the particular hierarchical encoding sequence being
followed requires them.
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In the hierarchical mode the define-hierarchical-progression (DHP) marker segment shall be placed in the compressed
image data before the first start-of-frame. The DHP segment is used to signal the size of the image components of the
completed image. The syntax of the DHP segment is specified in Annex B.

The first frame for each component or group of components in a hierarchical process shall be encoded by a
non-differential frame. Differential frames shall then be used to encode the two’s complement differences between source
input components (possibly downsampled) and the reference components (possibly upsampled). The reference
components are reconstructed components created by previous frames in the hierarchical process. For either differential or
non-differential frames, reconstructions of the components shall be generated if needed as reference components for a
subsequent frame in the hierarchical process.

Resolution changes may occur between hierarchical frames in a hierarchical process. These changes occur if
downsampling filters are used to reduce the spatial resolution of some or all of the components of the source image. When
the resolution of a reference component does not match the resolution of the component input to a differential frame, an
upsampling filter shall be used to increase the spatial resolution of the reference component. The EXP marker segment
shall be added to the compressed image data before the start-of-frame whenever upsampling of a reference component is
required. No more than one EXP marker segment shall precede a given frame.

Any of the marker segments allowed before a start-of-frame for the encoding process selected may be used before either
non-differential or differential frames.

For 16-bit input precision (lossless encoder), the differential components which are input to a differential frame are
calculated modulo 216. The reconstructed components calculated from the reconstructed differential components are also
calculated modulo 216.

If a hierarchical encoding process uses a DCT encoding process for the first frame, all frames in the hierarchical process
except for the final frame for each component shall use the DCT encoding processes defined in either Annex F or Annex
G, or the modified DCT encoding processes defined in this annex. The final frame may use a modified lossless process
defined in this annex.

If a hierarchical encoding process uses a lossless encoding process for the first frame, all frames in the hierarchical process
shall use a lossless encoding process defined in Annex H, or a modified lossless process defined in this annex.

J.1.1.1 Downsampling filter

The downsampled components are generated using a downsampling filter that is not specified in this Specification. This
filter should, however, be consistent with the upsampling filter. An example of a downsampling filter is provided in  K.5.

J.1.1.2 Upsampling filter

The upsampling filter increases the spatial resolution by a factor of two horizontally, vertically, or both. Bi-linear
interpolation is used for the upsampling filter, as illustrated in Figure J.2.

a x b a

x

b

TISO1710-93/d109

Figure J.2  –  Diagram of sample positions for upsampling rules

Figure J.2 [D109] = 4 cm = 156 %
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The rule for calculating the interpolated value is:

P (Ra Rb) / 2x = +

where Ra and Rb are sample values from adjacent positions a and b of the lower resolution image and Px is the
interpolated value. The division indicates truncation, not rounding. The left-most column of the upsampled image matches
the left-most column of the lower resolution image. The top line of the upsampled image matches the top line of the lower
resolution image. The right column and the bottom line of the lower resolution image are replicated to provide the values
required for the right column edge and bottom line interpolations. The upsampling process always doubles the line length
or the number of lines.

If both horizontal and vertical expansions are signalled, they are done in sequence – first the horizontal expansion and
then the vertical.

J.1.2 Control procedure for encoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the encoding of differential
frames, and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frames
differ from the frames of Annexes F, G, and H only at the coding model level.

J.1.3 Encoder coding models for differential frames

The coding models defined in Annexes F, G, and H are modified to allow them to be used for coding of two’s complement
differences.

J.1.3.1 Modifications to encoder DCT encoding models for differential frames

Two modifications are made to the DCT coding models to allow them to be used in differential frames. First, the FDCT of
the differential input is calculated without the level shift. Second, the DC coefficient of the DCT is coded directly –
without prediction.

J.1.3.2 Modifications to lossless encoding models for differential frames

One modification is made to the lossless coding models. The difference is coded directly – without prediction. The
prediction selection parameter in the scan header shall be set to zero. The point transform which may be applied to the
differential inputs is defined in Annex A.

J.1.4 Modifications to the entropy encoders for differential frames

The coding of two’s complement differences requires one extra bit of precision for the Huffman coding of AC coefficients.
The extension to Tables F.1 and F.7 is given in Table J.2.

Table J.2 – Modifications to table
of AC coefficient amplitude ranges

SSSS AC coefficients

15 –32 767..–16 384, 16 384..32 767

The arithmetic coding models are already defined for the precision needed in differential frames.
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J.2 Hierarchical decoding

J.2.1 Hierarchical control procedure for decoding an image

The control structure for decoding an image using the hierarchical mode is given in Figure J.3.

TISO1720-93/d110

Decode_image

ErrorInterpret markers

Done

Decode_frame

Non-Hierarchical mode

No

Yes

Yes

No

Yes

Yes

No

No

[Upsample reference components]
Decode_differential_frame
Reconstruct_components

SOI marker
?

EOI marker
?

Hierarchical
?

Differential frame
?

Figure J.3  –  Hierarchical control procedure for decoding an image

Figure J.3 [D110] = 18 cm = 704 %
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The Interpret markers procedure shall decode the markers which may precede the SOF marker, continuing this decoding
until either a SOF or EOI marker is found. If the DHP marker is encountered before the first frame, a flag is set which
selects the hierarchical decoder at the “hierarchical?” decision point. In addition to the DHP marker (which shall precede
any SOF) and the EXP marker (which shall precede any differential SOF requiring resolution changes in the reference
components), any other markers which may precede a SOF shall be interpreted to the extent required for decoding of the
compressed image data.

If a differential SOF marker is found, the differential frame path is followed. If the EXP was encountered in the Interpret
markers procedure, the reference components for the frame shall be upsampled as required by the parameters in the EXP
segment. The upsampling procedure described in J.1.1.2 shall be followed.

The Decode_differential_frame procedure generates a set of differential components. These differential components shall
be added, modulo 216, to the upsampled reference components in the Reconstruct_components procedure. This creates a
new set of reference components which shall be used when required in subsequent frames of the hierarchical process.

J.2.2 Control procedure for decoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the decoding of differential
frames and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frame
differs from the frames of Annexes F, G, and H only at the decoder coding model level.

J.2.3 Decoder coding models for differential frames

The decoding models described in Annexes F, G, and H are modified to allow them to be used for decoding of two’s
complement differential components.

J.2.3.1 Modifications to the differential frame decoder DCT coding model

Two modifications are made to the decoder DCT coding models to allow them to code differential frames. First, the IDCT
of the differential output is calculated without the level shift. Second, the DC coefficient of the DCT is decoded directly –
without prediction.

J.2.3.2 Modifications to the differential frame decoder lossless coding model

One modification is made to the lossless decoder coding model. The difference is decoded directly – without prediction. If
the point transformation parameter in the scan header is not zero, the point transform, defined in Annex A, shall be
applied to the differential output.

J.2.4 Modifications to the entropy decoders for differential frames

The decoding of two’s complement differences requires one extra bit of precision in the Huffman code table. This is
described in J.1.4. The arithmetic coding models are already defined for the precision needed in differential frames.
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Annex  K

Examples and guidelines

(This annex does not form an integral part of this Recommendation | International Standard)

This annex provides examples of various tables, procedures, and other guidelines.

K.1 Quantization tables for luminance and chrominance components

Two examples of quantization tables are given in Tables K.1 and K.2. These are based on psychovisual thresholding and
are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as
examples only and are not necessarily suitable for any particular application. These quantization values have been used
with good results on 8-bit per sample luminance and chrominance images of the format illustrated in Figure 13. Note that
these quantization values are appropriate for the DCT normalization defined in A.3.3.

If these quantization values are divided by 2, the resulting reconstructed image is usually nearly indistinguishable from the
source image.

Table K.1 – Luminance quantization table

16 11 10 16 124 140 151 161

12 12 14 19 126 158 160 155

14 13 16 24 140 157 169 156

14 17 22 29 151 187 180 162

18 22 37 56 168 109 103 177

24 35 55 64 181 104 113 192

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 199

Table K.2 – Chrominance quantization table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99
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K.2 A procedure for generating the lists which specify a Huffman code table

A Huffman table is generated from a collection of statistics in two steps. The first step is the generation of the list of
lengths and values which are in accord with the rules for generating the Huffman code tables. The second step is the
generation of the Huffman code table from the list of lengths and values.

The first step, the topic of this section, is needed only for custom Huffman table generation and is done only in the
encoder. In this step the statistics are used to create a table associating each value to be coded with the size (in bits) of the
corresponding Huffman code. This table is sorted by code size.

A procedure for creating a Huffman table for a set of up to 256 symbols is shown in Figure K.1. Three vectors are defined
for this procedure:

FREQ(V) Frequency of occurrence of symbol V
CODESIZE(V) Code size of symbol V
OTHERS(V) Index to next symbol in chain of all symbols in current branch of code tree

where V goes from 0 to 256.

Before starting the procedure, the values of FREQ are collected for V = 0 to 255 and the FREQ value for V = 256 is set to
1 to reserve one code point. FREQ values for unused symbols are defined to be zero. In addition, the entries in
CODESIZE are all set to 0, and the indices in OTHERS are set to –1, the value which terminates a chain of indices.
Reserving one code point guarantees that no code word can ever be all “1” bits.

The search for the entry with the least value of FREQ(V) selects the largest value of V with the least value of FREQ(V)
greater than zero.

The procedure “Find V1 for least value of FREQ(V1) > 0” always selects the value with the largest value of V1 when
more than one V1 with the same frequency occurs. The reserved code point is then guaranteed to be in the longest code
word category.
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TISO1730-93/d111

Code_size

Done

V1 = OTHERS(V1)

V2 = OTHERS(V2)

OTHERS(V1) = V2

YesNo

No

Yes

No

Yes

CODESIZE(V1) =
CODESIZE(V1) + 1

CODESIZE(V2) =
CODESIZE(V2) + 1

Find V1 for least value of
   FREQ(V1) > 0
Find V2 for next least value
   of FREQ(V2) > 0

FREQ(V1) =
   FREQ(V1) +
   FREQ(V2)
FREQ(V2) = 0

V2 exists
?

OTHERS(V1) = –1
?

OTHERS(V2) = –1
?

Figure K.1  –  Procedure to find Huffman code sizes

    

Figure K.1 [D111] = 21 cm = 821 % (PAGE PLEINE)
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Once the code lengths for each symbol have been obtained, the number of codes of each length is obtained using the
procedure in Figure K.2. The count for each size is contained in the list, BITS. The counts in BITS are zero at the start of
the procedure. The procedure assumes that the probabilities are large enough that code lengths greater than 32 bits never
occur. Note that until the final Adjust_BITS procedure is complete, BITS may have more than the 16 entries required in
the table specification (see Annex C).

TISO1740-93/d112

Count_BITS

I = 0

I = I + 1

Adjust_BITS

Done

Yes

No

Yes

No

I = 257

BITS(CODESIZE(I)) =
BITS(CODESIZE(I)) + 1

CODESIZE(I) = 0
?

Figure K.2  –  Procedure to find the number of codes of each size

Figure K.2 [D112] = 16 cm = 625 %
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Figure K.3 gives the procedure for adjusting the BITS list so that no code is longer than 16 bits. Since symbols are paired
for the longest Huffman code, the symbols are removed from this length category two at a time. The prefix for the pair
(which is one bit shorter) is allocated to one of the pair; then (skipping the BITS entry for that prefix length) a code word
from the next shortest non-zero BITS entry is converted into a prefix for two code words one bit longer. After the BITS
list is reduced to a maximum code length of 16 bits, the last step removes the reserved code point from the code length
count.

TISO1750-93/d113

Adjust_BITS

I = 32

Yes

No

J = I – 1 I = I – 1

J = J – 1

I = I – 1

Done

Yes No

No

No

Yes

Yes

BITS(I) = BITS(I) – 1

BITS(I) = BITS(I) – 2
BITS(I – 1) = BITS(I – 1) + 1
BITS(J + 1) = BITS(J + 1) + 2
BITS(J) = BITS (J) – 1

BITS(I) > 0
?

BITS(J) > 0
?

BITS(I) = 0
?

I = 16
?

Figure K.3  –  Procedure for limiting code lengths to 16 bits

Figure K.3 [D113] = 20 cm = 782 %
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The input values are sorted according to code size as shown in Figure K.4. HUFFVAL is the list containing the input
values associated with each code word, in order of increasing code length.

At this point, the list of code lengths (BITS) and the list of values (HUFFVAL) can be used to generate the code tables.
These procedures are described in Annex C.

TISO1760-93/d114

Sort_input

J = 0

J = J + 1

I = I + 1

Done

Yes

No

Yes

No

No

Yes

HUFFVAL(K) = J
K = K + 1

I = 1
K = 0

CODESIZE(J) = I
?

J > 255
?

I > 32
?

Figure K.4  –  Sorting of input values according to code size

Figure K.4 [D114] = 20.5 cm = 801 %

K.3 Typical Huffman tables for 8-bit precision luminance and chrominance

Huffman table-specification syntax is specified in B.2.4.2.

148 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

K.3.1 Typical Huffman tables for the DC coefficient differences

Tables K.3 and K.4 give Huffman tables for the DC coefficient differences which have been developed from the average
statistics of a large set of video images with 8-bit precision. Table K.3 is appropriate for luminance components and Table
K.4 is appropriate for chrominance components. Although there are no default tables, these tables may prove to be useful
for many applications.

Table K.3 – Table for luminance DC coefficient differences

Category Code length Code word

10 2 000

11 3 010

12 3 011

13 3 100

14 3 101

15 3 110

16 4 1110

17 5 11110

18 6 111110

19 7 1111110

10 8 11111110

11 9 111111110

Table K.4 – Table for chrominance DC coefficient differences

Category Code length Code word

10 12 000

11 12 01

12 12 10

13 13 110

14 14 1110

15 15 11110

16 16 111110

17 17 1111110

18 18 11111110

19 19 111111110

10 10 1111111110

11 11 11111111110

K.3.2 Typical Huffman tables for the AC coefficients

Tables K.5 and K.6 give Huffman tables for the AC coefficients which have been developed from the average statistics of
a large set of images with 8-bit precision. Table K.5 is appropriate for luminance components and Table K.6 is appropriate
for chrominance components. Although there are no default tables, these tables may prove to be useful for many
applications.
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Table K.5 – Table for luminance AC coefficients (sheet 1 of 4)

Run/Size Code length Code word

0/0   (EOB) 14 1010

0/1 12 00

0/2 12 01

0/3 13 100

0/4 14 1011

0/5 15 11010

0/6 17 1111000

0/7 18 11111000

0/8 10 1111110110

0/9 16 1111111110000010

0/A 16 1111111110000011

1/1 14 1100

1/2 15 11011

1/3 17 1111001

1/4 19 111110110

1/5 11 11111110110

1/6 16 1111111110000100

1/7 16 1111111110000101

1/8 16 1111111110000110

1/9 16 1111111110000111

1/A 16 1111111110001000

2/1 15 11100

2/2 18 11111001

2/3 10 1111110111

2/4 12 111111110100

2/5 16 1111111110001001

2/6 16 1111111110001010

2/7 16 1111111110001011

2/8 16 1111111110001100

2/9 16 1111111110001101

2/A 16 1111111110001110

3/1 16 111010

3/2 19 111110111

3/3 12 111111110101

3/4 16 1111111110001111

3/5 16 1111111110010000

3/6 16 1111111110010001

3/7 16 1111111110010010

3/8 16 1111111110010011

3/9 16 1111111110010100

3/A 16 1111111110010101
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Table K.5 (sheet 2 of 4)

Run/Size Code length Code word

4/1 16 111011

4/2 10 1111111000

4/3 16 1111111110010110

4/4 16 1111111110010111

4/5 16 1111111110011000

4/6 16 1111111110011001

4/7 16 1111111110011010

4/8 16 1111111110011011

4/9 16 1111111110011100

4/A 16 1111111110011101

5/1 17 1111010

5/2 11 11111110111

5/3 16 1111111110011110

5/4 16 1111111110011111

5/5 16 1111111110100000

5/6 16 1111111110100001

5/7 16 1111111110100010

5/8 16 1111111110100011

5/9 16 1111111110100100

5/A 16 1111111110100101

6/1 17 1111011

6/2 12 111111110110

6/3 16 1111111110100110

6/4 16 1111111110100111

6/5 16 1111111110101000

6/6 16 1111111110101001

6/7 16 1111111110101010

6/8 16 1111111110101011

6/9 16 1111111110101100

6/A 16 1111111110101101

7/1 18 11111010

7/2 12 111111110111

7/3 16 1111111110101110

7/4 16 1111111110101111

7/5 16 1111111110110000

7/6 16 1111111110110001

7/7 16 1111111110110010

7/8 16 1111111110110011

7/9 16 1111111110110100

7/A 16 1111111110110101

8/1 19 111111000

8/2 15 111111111000000
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Table K.5 (sheet 3 of 4)

Run/Size Code length Code word

8/3 16 1111111110110110

8/4 16 1111111110110111

8/5 16 1111111110111000

8/6 16 1111111110111001

8/7 16 1111111110111010

8/8 16 1111111110111011

8/9 16 1111111110111100

8/A 16 1111111110111101

9/1 19 111111001

9/2 16 1111111110111110

9/3 16 1111111110111111

9/4 16 1111111111000000

9/5 16 1111111111000001

9/6 16 1111111111000010

9/7 16 1111111111000011

9/8 16 1111111111000100

9/9 16 1111111111000101

9/A 16 1111111111000110

A/1 19 111111010

A/2 16 1111111111000111

A/3 16 1111111111001000

A/4 16 1111111111001001

A/5 16 1111111111001010

A/6 16 1111111111001011

A/7 16 1111111111001100

A/8 16 1111111111001101

A/9 16 1111111111001110

A/A 16 1111111111001111

B/1 10 1111111001

B/2 16 1111111111010000

B/3 16 1111111111010001

B/4 16 1111111111010010

B/5 16 1111111111010011

B/6 16 1111111111010100

B/7 16 1111111111010101

B/8 16 1111111111010110

B/9 16 1111111111010111

B/A 16 1111111111011000

C/1 10 1111111010

C/2 16 1111111111011001

C/3 16 1111111111011010

C/4 16 1111111111011011
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Table K.5 (sheet 4 of 4)

Run/Size Code length Code word

C/5 16 1111111111011100

C/6 16 1111111111011101

C/7 16 1111111111011110

C/8 16 1111111111011111

C/9 16 1111111111100000

C/A 16 1111111111100001

D/1 11 11111111000

D/2 16 1111111111100010

D/3 16 1111111111100011

D/4 16 1111111111100100

D/5 16 1111111111100101

D/6 16 1111111111100110

D/7 16 1111111111100111

D/8 16 1111111111101000

D/9 16 1111111111101001

D/A 16 1111111111101010

E/1 16 1111111111101011

E/2 16 1111111111101100

E/3 16 1111111111101101

E/4 16 1111111111101110

E/5 16 1111111111101111

E/6 16 1111111111110000

E/7 16 1111111111110001

E/8 16 1111111111110010

E/9 16 1111111111110011

E/A 16 1111111111110100

F/0    (ZRL) 11 11111111001

F/1 16 1111111111110101

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110
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Table K.6 – Table for chrominance AC coefficients (sheet 1 of 4)

Run/Size Code length Code word

0/0   (EOB) 12 00

0/1 12 01

0/2 13 100

0/3 14 1010

0/4 15 11000

0/5 15 11001

0/6 16 111000

0/7 17 1111000

0/8 19 111110100

0/9 10 1111110110

0/A 12 111111110100

1/1 14 1011

1/2 16 111001

1/3 18 11110110

1/4 19 111110101

1/5 11 11111110110

1/6 12 111111110101

1/7 16 1111111110001000

1/8 16 1111111110001001

1/9 16 1111111110001010

1/A 16 1111111110001011

2/1 15 11010

2/2 18 11110111

2/3 10 1111110111

2/4 12 111111110110

2/5 15 111111111000010

2/6 16 1111111110001100

2/7 16 1111111110001101

2/8 16 1111111110001110

2/9 16 1111111110001111

2/A 16 1111111110010000

3/1 15 11011

3/2 18 11111000

3/3 10 1111111000

3/4 12 111111110111

3/5 16 1111111110010001

3/6 16 1111111110010010

3/7 16 1111111110010011

3/8 16 1111111110010100

3/9 16 1111111110010101

3/A 16 1111111110010110

4/1 16 111010
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Table K.6 (sheet 2 of 4)

Run/Size Code length Code word

4/2 19 111110110

4/3 16 1111111110010111

4/4 16 1111111110011000

4/5 16 1111111110011001

4/6 16 1111111110011010

4/7 16 1111111110011011

4/8 16 1111111110011100

4/9 16 1111111110011101

4/A 16 1111111110011110

5/1 16 111011

5/2 10 1111111001

5/3 16 1111111110011111

5/4 16 1111111110100000

5/5 16 1111111110100001

5/6 16 1111111110100010

5/7 16 1111111110100011

5/8 16 1111111110100100

5/9 16 1111111110100101

5/A 16 1111111110100110

6/1 17 1111001

6/2 11 11111110111

6/3 16 1111111110100111

6/4 16 1111111110101000

6/5 16 1111111110101001

6/6 16 1111111110101010

6/7 16 1111111110101011

6/8 16 1111111110101100

6/9 16 1111111110101101

6/A 16 1111111110101110

7/1 17 1111010

7/2 11 11111111000

7/3 16 1111111110101111

7/4 16 1111111110110000

7/5 16 1111111110110001

7/6 16 1111111110110010

7/7 16 1111111110110011

7/8 16 1111111110110100

7/9 16 1111111110110101

7/A 16 1111111110110110

8/1 18 11111001

8/2 16 1111111110110111

8/3 16 1111111110111000
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Table K.6 (sheet 3 of 4)

Run/Size Code length Code word

8/4 16 1111111110111001

8/5 16 1111111110111010

8/6 16 1111111110111011

8/7 16 1111111110111100

8/8 16 1111111110111101

8/9 16 1111111110111110

8/A 16 1111111110111111

9/1 19 111110111

9/2 16 1111111111000000

9/3 16 1111111111000001

9/4 16 1111111111000010

9/5 16 1111111111000011

9/6 16 1111111111000100

9/7 16 1111111111000101

9/8 16 1111111111000110

9/9 16 1111111111000111

9/A 16 1111111111001000

A/1 19 111111000

A/2 16 1111111111001001

A/3 16 1111111111001010

A/4 16 1111111111001011

A/5 16 1111111111001100

A/6 16 1111111111001101

A/7 16 1111111111001110

A/8 16 1111111111001111

A/9 16 1111111111010000

A/A 16 1111111111010001

B/1 19 111111001

B/2 16 1111111111010010

B/3 16 1111111111010011

B/4 16 1111111111010100

B/5 16 1111111111010101

B/6 16 1111111111010110

B/7 16 1111111111010111

B/8 16 1111111111011000

B/9 16 1111111111011001

B/A 16 1111111111011010

C/1 19 111111010

C/2 16 1111111111011011

C/3 16 1111111111011100

C/4 16 1111111111011101

C/5 16 1111111111011110
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Table K.6 (sheet 4 of 4)

Run/Size Code length Code word

C/6 16 1111111111011111

C/7 16 1111111111100000

C/8 16 1111111111100001

C/9 16 1111111111100010

C/A 16 1111111111100011

D/1 11 11111111001

D/2 16 1111111111100100

D/3 16 1111111111100101

D/4 16 1111111111100110

D/5 16 1111111111100111

D/6 16 1111111111101000

D/7 16 1111111111101001

D/8 16 1111111111101010

D/9 16 1111111111101011

D/A 16 1111111111101100

E/1 14 11111111100000

E/2 16 1111111111101101

E/3 16 1111111111101110

E/4 16 1111111111101111

E/5 16 1111111111110000

E/6 16 1111111111110001

E/7 16 1111111111110010

E/8 16 1111111111110011

E/9 16 1111111111110100

E/A 16 1111111111110101

F/0   (ZRL) 10 1111111010

F/1 15 111111111000011

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110

CCITT Rec. T.81 (1992 E) 157

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

K.3.3 Huffman table-specification examples

K.3.3.1 Specification of typical tables for DC difference coding

A set of typical tables for DC component coding is given in K.3.1. The specification of these tables is as follows:

For Table K.3 (for luminance DC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00’

The set of values following this list is

X’00 01 02 03 04 05 06 07 08 09 0A 0B’

For Table K.4 (for chrominance DC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 03 01 01 01 01 01 01 01 01 01 00 00 00 00 00’

The set of values following this list is

X’00 01 02 03 04 05 06 07 08 09 0A 0B’

K.3.3.2 Specification of typical tables for AC coefficient coding

A set of typical tables for AC component coding is given in K.3.2. The specification of these tables is as follows:

For Table K.5 (for luminance AC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 02 01 03 03 02 04 03 05 05 04 04 00 00 01 7D’

The set of values which follows this list is

X’01 02 03 00 04 11 05 12 21 31 41 06 13 51 61 07

X’ 22 71 14 32 81 91 A1 08 23 42 B1 C1 15 52 D1 F0

X’ 24 33 62 72 82 09 0A 16 17 18 19 1A 25 26 27 28

X’ 29 2A 34 35 36 37 38 39 3A 43 44 45 46 47 48 49

X’ 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67 68 69

X’ 6A 73 74 75 76 77 78 79 7A 83 84 85 86 87 88 89

X’ 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6 A7

X’ A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4 C5

X’ C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E1 E2

X’ E3 E4 E5 E6 E7 E8 E9 EA F1 F2 F3 F4 F5 F6 F7 F8

X’ F9 FA’
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For Table K.6 (for chrominance AC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 02 01 02 04 04 03 04 07 05 04 04 00 01 02 77’

The set of values which follows this list is:

X’00 01 02 03 11 04  05 21 31 06 12 41 51 07 61 71

X’ 13 22 32 81 08 14 42 91 A1 B1 C1 09 23 33 52 F0

X'15 62 72 D1 0A 16 24 34 E1 25 F1 17 18 19 1A 26

X'27 28 29 2A 35 36 37 38 39 3A 43 44 45 46 47 48

X'49 4A 53 54 55 56 57 58 59 5A 63 64  65 66 67 68

X'69 6A 73 74 75 76 77 78 79 7A 82 83 84 85 86 87

X'88 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5

X'A6 A7 A8 A9 AA B2 B3 B4 B5  B6 B7 B8 B9 BA C2 C3

X'C4 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA

X'E2 E3 E4 E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8

X'F9 FA’

K.4 Additional information on arithmetic coding

K.4.1 Test sequence for a small data set for the arithmetic coder

The following 256-bit test sequence (in hexadecimal form) is structured to test many of the encoder and decoder paths:

X’00020051     000000C0     0352872A     AAAAAAAA     82C02000     FCD79EF6     74EAABF7     697EE74C’

Tables K.7 and K.8 provide a symbol-by-symbol list of the arithmetic encoder and decoder operation. In these tables the
event count, EC, is listed first, followed by the value of Qe used in encoding and decoding that event. The decision D to
be encoded (and decoded) is listed next. The column labeled MPS contains the sense of the MPS, and if it is followed by
a CE (in the “CX” column), the conditional MPS/LPS exchange occurs when encoding and decoding the decision (see
Figures D.3, D.4 and D.17). The contents of the A and C registers are the values before the event is encoded and decoded.
ST is the number of X’FF’ bytes stacked in the encoder waiting for a resolution of the carry-over. Note that the A register
is always greater than X’7FFF’. (The starting value has an implied value of X’10000’.)

In the encoder test, the code bytes (B) are listed if they were completed during the coding of the preceding event. If
additional bytes follow, they were also completed during the coding of the preceding event. If a byte is listed in the
Bx column, the preceding byte in column B was modified by a carry-over.

In the decoder the code bytes are listed if they were placed in the code register just prior to the event EC.

For this file the coded bit count is 240, including the overhead to flush the final data from the C register. When the
marker X’FFD9’ is appended, a total of 256 bits are output. The actual compressed data sequence for the encoder is (in
hexadecimal form)

X’655B5144     F7969D51     7855BFFF     00FC5184     C7CEF939     00287D46     708ECBC0     F6FFD900’
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Table K.7 – Encoder test sequence (sheet 1 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

11 0 0 5A1D 0000 00000000 11 0

12 0 0 CE 5A1D A5E3 00000000 11 0

13 0 0 2586 B43A 0000978C 10 0

14 0 0 2586 8EB4 0000978C 10 0

15 0 0 1114 D25C 00012F18 19 0

16 0 0 1114 C148 00012F18 19 0

17 0 0 1114 B034 00012F18 19 0

18 0 0 1114 9F20 00012F18 19 0

19 0 0 1114 8E0C 00012F18 19 0

10 0 0 080B F9F0 00025E30 18 0

11 0 0 080B F1E5 00025E30 18 0

12 0 0 080B E9DA 00025E30 18 0

13 0 0 080B E1CF 00025E30 18 0

14 0 0 080B D9C4 00025E30 18 0

15 1 0 080B D1B9 00025E30 18 0

16 0 0 17B9 80B0 00327DE0 14 0

17 0 0 1182 D1EE 0064FBC0 13 0

18 0 0 1182 C06C 0064FBC0 13 0

19 0 0 1182 AEEA 0064FBC0 13 0

20 0 0 1182 9D68 0064FBC0 13 0

21 0 0 1182 8BE6 0064FBC0 13 0

22 0 0 0CEF F4C8 00C9F780 12 0

23 0 0 0CEF E7D9 00C9F780 12 0

24 0 0 0CEF DAEA 00C9F780 12 0

25 0 0 0CEF CDFB 00C9F780 12 0

26 1 0 0CEF C10C 00C9F780 12 0

27 0 0 1518 CEF0 000AB9D0 16 0 65

28 1 0 1518 B9D8 000AB9D0 16 0

29 0 0 1AA9 A8C0 005AF480 13 0

30 0 0 1AA9 8E17 005AF480 13 0

31 0 0 174E E6DC 00B5E900 12 0

32 1 0 174E CF8E 00B5E900 12 0

33 0 0 1AA9 BA70 00050A00 17 0 5B

34 0 0 1AA9 9FC7 00050A00 17 0

35 0 0 1AA9 851E 00050A00 17 0

36 0 0 174E D4EA 000A1400 16 0
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Table K.7 – Encoder test sequence (sheet 2 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

37 0 0 174E BD9C 000A1400 16 0

38 0 0 174E A64E 000A1400 16 0

39 0 0 174E 8F00 000A1400 16 0

40 0 0 1424 EF64 00142800 15 0

41 0 0 1424 DB40 00142800 5 0

42 0 0 1424 C71C 00142800 5 0

43 0 0 1424 B2F8 00142800 5 0

44 0 0 1424 9ED4 00142800 5 0

45 0 0 1424 8AB0 00142800 5 0

46 0 0 119C ED18 00285000 4 0

47 0 0 119C DB7C 00285000 4 0

48 0 0 119C C9E0 00285000 4 0

49 0 0 119C B844 00285000 4 0

50 0 0 119C A6A8 00285000 4 0

51 0 0 119C 950C 00285000 4 0

52 0 0 119C 8370 00285000 4 0

53 0 0 0F6B E3A8 0050A000 3 0

54 0 0 0F6B D43D 0050A000 3 0

55 0 0 0F6B C4D2 0050A000 3 0

56 0 0 0F6B B567 0050A000 3 0

57 1 0 0F6B A5FC 0050A000 3 0

58 1 0 1424 F6B0 00036910 7 0 51

59 0 0 1AA9 A120 00225CE0 4 0

60 0 0 1AA9 8677 00225CE0 4 0

61 0 0 174E D79C 0044B9C0 3 0

62 0 0 174E C04E 0044B9C0 3 0

63 0 0 174E A900 0044B9C0 3 0

64 0 0 174E 91B2 0044B9C0 3 0

65 0 0 1424 F4C8 00897380 2 0

66 0 0 1424 E0A4 00897380 2 0

67 0 0 1424 CC80 00897380 2 0

68 0 0 1424 B85C 00897380 2 0

69 0 0 1424 A438 00897380 2 0

70 0 0 1424 9014 00897380 2 0

71 1 0 119C F7E0 0112E700 1 0

72 1 0 1424 8CE0 001E6A20 6 0 44

73 0 0 1AA9 A120 00F716E0 3 0

CCITT Rec. T.81 (1992 E) 161

APPENDIX F

Microsoft Corp.   Exhibit 1005



ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 3 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

174 1 0 1AA9 8677 00F716E0 3 0

175 0 0 2516 D548 00041570 8 0 F7

176 1 0 2516 B032 00041570 8 0

177 0 0 299A 9458 00128230 6 0

178 0 0 2516 D57C 00250460 5 0

179 1 0 2516 B066 00250460 5 0

180 0 0 299A 9458 00963EC0 3 0

181 1 0 2516 D57C 012C7D80 2 0

182 0 0 299A 9458 0004B798 8 0 96

183 0 0 2516 D57C 00096F30 7 0

184 0 0 2516 B066 00096F30 7 0

185 0 0 2516 8B50 00096F30 7 0

186 1 0 1EDF CC74 0012DE60 6 0

187 1 0 2516 F6F8 009C5FA8 3 0

188 1 0 299A 9458 0274C628 1 0

189 0 0 32B4 A668 0004C398 7 0 9D

190 0 0 2E17 E768 00098730 6 0

191 1 0 2E17 B951 00098730 6 0

192 0 0 32B4 B85C 002849A8 4 0

193 1 0 32B4 85A8 002849A8 4 0

194 0 0 3C3D CAD0 00A27270 2 0

195 1 0 3C3D 8E93 00A27270 2 0

196 0 0 415E F0F4 00031318 8 0 51

197 1 0 415E AF96 00031318 8 0

198 0 0 CE 4639 82BC 000702A0 7 0

199 1 0 415E 8C72 000E7E46 6 0

100 0 0 CE 4639 82BC 001D92B4 5 0

101 1 0 415E 8C72 003B9E6E 4 0

102 0 0 CE 4639 82BC 0077D304 3 0

103 1 0 415E 8C72 00F01F0E 2 0

104 0 0 CE 4639 82BC 01E0D444 1 0

105 1 0 415E 8C72 0002218E 8 0 78

106 0 0 CE 4639 82BC 0004D944 7 0

107 1 0 415E 8C72 000A2B8E 6 0

108 0 0 CE 4639 82BC 0014ED44 5 0

109 1 0 415E 8C72 002A538E 4 0

110 0 0 CE 4639 82BC 00553D44 3 0
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Table K.7 – Encoder test sequence (sheet 4 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

111 1 0 415E 8C72 00AAF38E 2 0

112 0 0 CE 4639 82BC 01567D44 1 0

113 1 0 415E 8C72 0005738E 8 0 55

114 0 0 CE 4639 82BC 000B7D44 7 0

115 1 0 415E 8C72 0017738E 6 0

116 0 0 CE 4639 82BC 002F7D44 5 0

117 1 0 415E 8C72 005F738E 4 0

118 0 0 CE 4639 82BC 00BF7D44 3 0

119 1 0 415E 8C72 017F738E 2 0

120 0 0 CE 4639 82BC 02FF7D44 1 0

121 1 0 415E 8C72 0007738E 8 0 BF

122 0 0 CE 4639 82BC 000F7D44 7 0

123 1 0 415E 8C72 001F738E 6 0

124 0 0 CE 4639 82BC 003F7D44 5 0

125 1 0 415E 8C72 007F738E 4 0

126 0 0 CE 4639 82BC 00FF7D44 3 0

127 1 0 415E 8C72 01FF738E 2 0

128 0 0 CE 4639 82BC 03FF7D44 1 0

129 1 0 415E 8C72 0007738E 8 1

130 0 0 CE 4639 82BC 000F7D44 7 1

131 0 0 415E 8C72 001F738E 6 1

132 0 0 3C3D 9628 003EE71C 5 1

133 0 0 375E B3D6 007DCE38 4 1

134 0 0 32B4 F8F0 00FB9C70 3 1

135 1 0 32B4 C63C 00FB9C70 3 1

136 0 0 3C3D CAD0 03F0BFE0 1 1

137 1 0 3C3D 8E93 03F0BFE0 1 1

138 1 0 415E F0F4 000448D8 7 0 FF00FC

139 0 0 CE 4639 82BC 0009F0DC 6 0

140 0 0 415E 8C72 00145ABE 5 0

141 0 0 3C3D 9628 0028B57C 4 0

142 0 0 375E B3D6 00516AF8 3 0

143 0 0 32B4 F8F0 00A2D5F0 2 0

144 0 0 32B4 C63C 00A2D5F0 2 0

145 0 0 32B4 9388 00A2D5F0 2 0

146 0 0 2E17 C1A8 0145ABE0 1 0
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Table K.7 – Encoder test sequence (sheet 5 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

147 1 0 2E17 9391 0145ABE0 1 0

148 0 0 32B4 B85C 00084568 7 0 51

149 0 0 32B4 85A8 00084568 7 0

150 0 0 2E17 A5E8 00108AD0 6 0

151 0 0 299A EFA2 002115A0 5 0

152 0 0 299A C608 002115A0 5 0

153 0 0 299A 9C6E 002115A0 5 0

154 0 0 2516 E5A8 00422B40 4 0

155 0 0 2516 C092 00422B40 4 0

156 0 0 2516 9B7C 00422B40 4 0

157 0 0 1EDF ECCC 00845680 3 0

158 0 0 1EDF CDED 00845680 3 0

159 0 0 1EDF AF0E 00845680 3 0

160 0 0 1EDF 902F 00845680 3 0

161 1 0 1AA9 E2A0 0108AD00 2 0

162 1 0 2516 D548 000BA7B8 7 0 84

163 1 0 299A 9458 00315FA8 5 0

164 1 0 32B4 A668 00C72998 3 0

165 1 0 3C3D CAD0 031E7530 1 0

166 1 0 415E F0F4 000C0F0C 7 0 C7

167 0 0 CE 4639 82BC 00197D44 6 0

168 0 0 415E 8C72 0033738E 5 0

169 1 0 3C3D 9628 0066E71C 4 0

170 1 0 415E F0F4 019D041C 2 0

171 0 0 CE 4639 82BC 033B6764 1 0

172 1 0 415E 8C72 000747CE 8 0 CE

173  0 0 CE 4639 82BC 000F25C4 7 0

174 1 0 415E 8C72 001EC48E 6 0

175 1 0 CE 4639 82BC 003E1F44 5 0

176 1 0 4B85 F20C 00F87D10 3 0

177 1 0 CE 504F 970A 01F2472E 2 0

178 0 0 CE 5522 8D76 03E48E5C 1 0

179 0 0 504F AA44 00018D60 8 0 F9

180 1 0 4B85 B3EA 00031AC0 7 0

181 1 0 CE 504F 970A 0007064A 6 0

182 1 0 CE 5522 8D76 000E0C94 5 0

183 1 0 59EB E150 00383250 3 0
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Table K.7 – Encoder test sequence (sheet 6 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

184 0 1 59EB B3D6 0071736A 2 0

185 1 0 59EB B3D6 00E39AAA 1 0

186 1 1 59EB B3D6 0007E92A 8 0 38

187 1 1 5522 B3D6 000FD254 7 0

188 1 1 504F BD68 001FA4A8 6 0

189 0 1 4B85 DA32 003F4950 5 0

190 1 1 CE 504F 970A 007FAFFA 4 0

191 1 1 4B85 A09E 00FFED6A 3 0

192 0 1 4639 AA32 01FFDAD4 2 0

193 0 1 CE 4B85 8C72 04007D9A 1 0

194 1 1 CE 504F 81DA 0000FB34 8 0 39 00

195 1 1 4B85 A09E 0002597E 7 0

196 1 1 4639 AA32 0004B2FC 6 0

197 0 1 415E C7F2 000965F8 5 0

198 1 1 CE 4639 82BC 0013D918 4 0

199 0 1 415E 8C72 00282B36 3 0

200 0 1 CE 4639 82BC 0050EC94 2 0

201 1 1 4B85 F20C 0003B250 8 0 28

202 1 1 4B85 A687 0003B250 8 0

203 1 1 4639 B604 000764A0 7 0

204 0 1 415E DF96 000EC940 6 0

205 1 1 CE 4639 82BC 001ECEF0 5 0

206 0 1 415E 8C72 003E16E6 4 0

207 1 1 CE 4639 82BC 007CC3F4 3 0

208 0 1 415E 8C72 00FA00EE 2 0

209 1 1 CE 4639 82BC 01F49804 1 0

210 0 1 415E 8C72 0001A90E 8 0 7D

211 1 1 CE 4639 82BC 0003E844 7 0

212 0 1 415E 8C72 0008498E 6 0

213 1 1 CE 4639 82BC 00112944 5 0

214 0 1 415E 8C72 0022CB8E 4 0

215 1 1 CE 4639 82BC 00462D44 3 0

216 1 1 415E 8C72 008CD38E 2 0

217 1 1 3C3D 9628 0119A71C 1 0

218 1 1 375E B3D6 00034E38 8 0 46

219 1 1 32B4 F8F0 00069C70 7 0

220 1 1 32B4 C63C 00069C70 7 0
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Table K.7 – Encoder test sequence (sheet 7 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

221 0 1 32B4 9388 00069C70 7 0

222 1 1 3C3D CAD0 001BF510 5 0

223 1 1 3C3D 8E93 001BF510 5 0

224 1 1 375E A4AC 0037EA20 4 0

225 0 1 32B4 DA9C 006FD440 3 0

226 1 1 3C3D CAD0 01C1F0A0 1 0

227 1 1 3C3D 8E93 01C1F0A0 1 0

228 0 1 375E A4AC 0003E140 8 0 70

229 1 1 3C3D DD78 00113A38 6 0

230 0 1 3C3D A13B 00113A38 6 0

231 0 1 415E F0F4 00467CD8 4 0

232 1 1 CE 4639 82BC 008E58DC 3 0

233 0 1 415E 8C72 011D2ABE 2 0

234 1 1 CE 4639 82BC 023AEBA4 1 0

235 1 1 415E 8C72 0006504E 8 0 8E

236 1 1 3C3D 9628 000CA09C 7 0

237 1 1 375E B3D6 00194138 6 0

238 1 1 32B4 F8F0 00328270 5 0

239 1 1 32B4 C63C 00328270 5 0

240 0 1 32B4 9388 00328270 5 0

241 1 1 3C3D CAD0 00CB8D10 3 0

242 1 1 3C3D 8E93 00CB8D10 3 0

243 1 1 375E A4AC 01971A20 2 0

244 0 1 32B4 DA9C 032E3440 1 0

245 0 1 3C3D CAD0 000B70A0 7 0 CB

246 1 1 415E F0F4 002FFCCC 5 0

247 1 1 415E AF96 002FFCCC 5 0

248 1 1 3C3D DC70 005FF998 4 0

249 0 1 3C3D A033 005FF998 4 0

250 1 1 415E F0F4 01817638 2 0

251 0 1 415E AF96 01817638 2 0

252 0 1 CE 4639 82BC 0303C8E0 1 0

253 1 1 4B85 F20C 000F2380 7 0 C0

254 1 1 4B85 A687 000F2380 7 0

255 0 1 4639 B604 001E4700 6 0

256 0 1 CE 4B85 8C72 003D6D96 5 0

Flush: 81DA 007ADB2C 4 0 F6

FFD9
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Table K.8 – Decoder test sequence (sheet 1 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

11 0 0 5A1D 0000 655B0000 0 65 5B

12 0 0 CE 5A1D A5E3 655B0000 0

13 0 0 2586 B43A 332AA200 7 51

14 0 0 2586 8EB4 332AA200 7

15 0 0 1114 D25C 66554400 6

16 0 0 1114 C148 66554400 6

17 0 0 1114 B034 66554400 6

18 0 0 1114 9F20 66554400 6

19 0 0 1114 8E0C 66554400 6

10 0 0 080B F9F0 CCAA8800 5

11 0 0 080B F1E5 CCAA8800 5

12 0 0 080B E9DA CCAA8800 5

13 0 0 080B E1CF CCAA8800 5

14 0 0 080B D9C4 CCAA8800 5

15 1 0 080B D1B9 CCAA8800 5

16 0 0 17B9 80B0 2FC88000 1

17 0 0 1182 D1EE 5F910000 0

18 0 0 1182 C06C 5F910000 0

19 0 0 1182 AEEA 5F910000 0

20 0 0 1182 9D68 5F910000 0

21 0 0 1182 8BE6 5F910000 0

22 0 0 0CEF F4C8 BF228800 7 44

23 0 0 0CEF E7D9 BF228800 7

24 0 0 0CEF DAEA BF228800 7

25 0 0 0CEF CDFB BF228800 7

26 1 0 0CEF C10C BF228800 7

27 0 0 1518 CEF0 B0588000 3

28 1 0 1518 B9D8 B0588000 3

29 0 0 1AA9 A8C0 5CC40000 0

30 0 0 1AA9 8E17 5CC40000 0

31 0 0 174E E6DC B989EE00 7 F7

32 1 0 174E CF8E B989EE00 7

33 0 0 1AA9 BA70 0A4F7000 4

34 0 0 1AA9 9FC7 0A4F7000 4

35 0 0 1AA9 851E 0A4F7000 4

36 0 0 174E D4EA 149EE000 3

37 0 0 174E BD9C 149EE000 3

38 0 0 174E A64E 149EE000 3

39 0 0 174E 8F00 149EE000 3

40 0 0 1424 EF64 293DC000 2
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Table K.8 – Decoder test sequence (sheet 2 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

41 0 0 1424 DB40 293DC000 2

42 0 0 1424 C71C 293DC000 2

43 0 0 1424 B2F8 293DC000 2

44 0 0 1424 9ED4 293DC000 2

45 0 0 1424 8AB0 293DC000 2

46 0 0 119C ED18 527B8000 1

47 0 0 119C DB7C 527B8000 1

48 0 0 119C C9E0 527B8000 1

49 0 0 119C B844 527B8000 1

50 0 0 119C A6A8 527B8000 1

51 0 0 119C 950C 527B8000 1

52 0 0 119C 8370 527B8000 1

53 0 0 0F6B E3A8 A4F70000 0

54 0 0 0F6B D43D A4F70000 0

55 0 0 0F6B C4D2 A4F70000 0

56 0 0 0F6B B567 A4F70000 0

57 1 0 0F6B A5FC A4F70000 0

58 1 0 1424 F6B0 E6696000 4 96

59 0 0 1AA9 A120 1EEB0000 1

60 0 0 1AA9 8677 1EEB0000 1

61 0 0 174E D79C 3DD60000 0

62 0 0 174E C04E 3DD60000 0

63 0 0 174E A900 3DD60000 0

64 0 0 174E 91B2 3DD60000 0

65 0 0 1424 F4C8 7BAD3A00 7 9D

66 0 0 1424 E0A4 7BAD3A00 7

67 0 0 1424 CC80 7BAD3A00 7

68 0 0 1424 B85C 7BAD3A00 7

69 0 0 1424 A438 7BAD3A00 7

70 0 0 1424 9014 7BAD3A00 7

71 1 0 119C F7E0 F75A7400 6

72 1 0 1424 8CE0 88B3A000 3

73 0 0 1AA9 A120 7FBD0000 0

74 1 0 1AA9 8677 7FBD0000 0

75 0 0 2516 D548 9F7A8800 5 51

76 1 0 2516 B032 9F7A8800 5

77 0 0 299A 9458 517A2000 3

78 0 0 2516 D57C A2F44000 2

79 1 0 2516 B066 A2F44000 2

80 0 0 299A 9458 5E910000 0
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Table K.8 – Decoder test sequence (sheet 3 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

181 1 0 2516 D57C BD22F000 7 78
182 0 0 299A 9458 32F3C000 5
183 0 0 2516 D57C 65E78000 4
184 0 0 2516 B066 65E78000 4
185 0 0 2516 8B50 65E78000 4
186 1 0 1EDF CC74 CBCF0000 3
187 1 0 2516 F6F8 F1D00000 0
188 1 0 299A 9458 7FB95400 6 55
189 0 0 32B4 A668 53ED5000 4
190 0 0 2E17 E768 A7DAA000 3
191 1 0 2E17 B951 A7DAA000 3
192 0 0 32B4 B85C 72828000 1
193 1 0 32B4 85A8 72828000 1
194 0 0 3C3D CAD0 7E3B7E00 7 BF
195 1 0 3C3D 8E93 7E3B7E00 7
196 0 0 415E F0F4 AF95F800 5
197 1 0 415E AF96 AF95F800 5
198 0 0 CE 4639 82BC 82BBF000 4
199 1 0 415E 8C72 8C71E000 3
100 0 0 CE 4639 82BC 82BBC000 2
101 1 0 415E 8C72 8C718000 1
102 0 0 CE 4639 82BC 82BB0000 0
103 1 0 415E 8C72 8C71FE00 7 FF 00
104 0 0 CE 4639 82BC 82BBFC00 6
105 1 0 415E 8C72 8C71F800 5
106 0 0 CE 4639 82BC 82BBF000 4
107 1 0 415E 8C72 8C71E000 3
108 0 0 CE 4639 82BC 82BBC000 2
109 1 0 415E 8C72 8C718000 1
110 0 0 CE 4639 82BC 82BB0000 0
111 1 0 415E 8C72 8C71F800 7 FC
112 0 0 CE 4639 82BC 82BBF000 6
113 1 0 415E 8C72 8C71E000 5
114 0 0 CE 4639 82BC 82BBC000 4
115 1 0 415E 8C72 8C718000 3
116 0 0 CE 4639 82BC 82BB0000 2
117 1 0 415E 8C72 8C700000 1
118 0 0 CE 4639 82BC 82B80000 0
119 1 0 415E 8C72 8C6AA200 7 51

120 0 0 CE 4639 82BC 82AD4400 6
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Table K.8 – Decoder test sequence (sheet 4 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

121 1 0 415E 8C72 8C548800 5

122 0 0 CE 4639 82BC 82811000 4

123 1 0 415E 8C72 8BFC2000 3

124 0 0 CE 4639 82BC 81D04000 2

125 1 0 415E 8C72 8A9A8000 1

126 0 0 CE 4639 82BC 7F0D0000 0

127 1 0 415E 8C72 85150800 7 84

128 0 0 CE 4639 82BC 74021000 6

129 1 0 415E 8C72 6EFE2000 5

130 0 0 CE 4639 82BC 47D44000 4

131 0 0 415E 8C72 16A28000 3

132 0 0 3C3D 9628 2D450000 2

133 0 0 375E B3D6 5A8A0000 1

134 0 0 32B4 F8F0 B5140000 0

135 1 0 32B4 C63C B5140000 0

136 0 0 3C3D CAD0 86331C00 6 C7

137 1 0 3C3D 8E93 86331C00 6

138 1 0 415E F0F4 CF747000 4

139 0 0 CE 4639 82BC 3FBCE000 3

140 0 0 415E 8C72 0673C000 2

141 0 0 3C3D 9628 0CE78000 1

142 0 0 375E B3D6 19CF0000 0

143 0 0 32B4 F8F0 339F9C00 7  CE

144 0 0 32B4 C63C 339F9C00 7

145 0 0 32B4 9388 339F9C00 7

146 0 0 2E17 C1A8 673F3800 6

147 1 0 2E17 9391 673F3800 6

148 0 0 32B4 B85C 0714E000 4

149 0 0 32B4 85A8 0714E000 4

150 0 0 2E17 A5E8 0E29C000 3

151 0 0 299A EFA2 1C538000 2

152 0 0 299A C608 1C538000 2

153 0 0 299A 9C6E 1C538000 2

154 0 0 2516 E5A8 38A70000 1

155 0 0 2516 C092 38A70000 1

156 0 0 2516 9B7C 38A70000 1

157 0 0 1EDF ECCC 714E0000 0

158 0 0 1EDF CDED 714E0000 0

159 0 0 1EDF AF0E 714E0000 0

160 0 0 1EDF 902F 714E0000 0
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Table K.8 – Decoder test sequence (sheet 5 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

161 1 0 1AA9 E2A0 E29DF200 7 F9

162 1 0 2516 D548 D5379000 4

163 1 0 299A 9458 94164000 2

164 1 0 32B4 A668 A5610000 0

165 1 0 3C3D CAD0 C6B4E400 6 39

166 1 0 415E F0F4 E0879000 4

167 0 0 CE 4639 82BC 61E32000 3

168 0 0 415E 8C72 4AC04000 2

169 1 0 3C3D 9628 95808000 1

170 1 0 415E F0F4 EE560000 7 00

171 0 0 CE 4639 82BC 7D800000 6

172 1 0 415E 8C72 81FA0000 5

173 0 0 CE 4639 82BC 6DCC0000 4

174 1 0 415E 8C72 62920000 3

175 1 0 CE 4639 82BC 2EFC0000 2

176 1 0 4B85 F20C BBF00000 0

177 1 0 CE 504F 970A 2AD25000 7 28

178 0 0 CE 5522 8D76 55A4A000 6

179 0 0 504F AA44 3AA14000 5

180 1 0 4B85 B3EA 75428000 4

181 1 0 CE 504F 970A 19BB0000 3

182 1 0 CE 5522 8D76 33760000 2

183 1 0 59EB E150 CDD80000 0

184 0 1 59EB B3D6 8CE6FA00 7 7D

185 1 0 59EB B3D6 65F7F400 6

186 1 1 59EB B3D6 1819E800 5

187 1 1 5522 B3D6 3033D000 4

188 1 1 504F BD68 6067A000 3

189 0 1 4B85 DA32 C0CF4000 2

190 1 1 CE 504F 970A 64448000 1

191 1 1 4B85 A09E 3B130000 0

192 0 1 4639 AA32 76268C00 7 46

193 0 1 CE 4B85 8C72 245B1800 6

194 1 1 CE 504F 81DA 48B63000 5

195 1 1 4B85 A09E 2E566000 4

196 1 1 4639 AA32 5CACC000 3

197 0 1 415E C7F2 B9598000 2

198 1 1 CE 4639 82BC 658B0000 1

199 0 1 415E 8C72 52100000 0

200 0 1 CE 4639 82BC 0DF8E000 7 70
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Table K.8 – Decoder test sequence (sheet 6 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

201 1 1 4B85 F20C 37E38000 5

202 1 1 4B85 A687 37E38000 5

203 1 1 4639 B604 6FC70000 4

204 0 1 415E DF96 DF8E0000 3

205 1 1 CE 4639 82BC 82AC0000 2

206 0 1 415E 8C72 8C520000 1

207 1 1 CE 4639 82BC 827C0000 0

208 0 1 415E 8C72 8BF31C00 7 8E

209 1 1 CE 4639 82BC 81BE3800 6

210 0 1 415E 8C72 8A767000 5

211 1 1 CE 4639 82BC 7EC4E000 4

212 0 1 415E 8C72 8483C000 3

213 1 1 CE 4639 82BC 72DF8000 2

214 0 1 415E 8C72 6CB90000 1

215 1 1 CE 4639 82BC 434A0000 0

216 1 1 415E 8C72 0D8F9600 7 CB

217 1 1 3C3D 9628 1B1F2C00 6

218 1 1 375E B3D6 363E5800 5

219 1 1 32B4 F8F0 6C7CB000 4

220 1 1 32B4 C63C 6C7CB000 4

221 0 1 32B4 9388 6C7CB000 4

222 1 1 3C3D CAD0 2EA2C000 2

223 1 1 3C3D 8E93 2EA2C000 2

224 1 1 375E A4AC 5D458000 1

225 0 1 32B4 DA9C BA8B0000 0

226 1 1 3C3D CAD0 4A8F0000 6 C0

227 1 1 3C3D 8E93 4A8F0000 6

228 0 1 375E A4AC 951E0000 5

229 1 1 3C3D DD78 9F400000 3

230 0 1 3C3D A13B 9F400000 3

231 0 1 415E F0F4 E9080000 1

232 1 1 CE 4639 82BC 72E40000 0

233 0 1 415E 8C72 6CC3EC00 7 F6

234 1 1 CE 4639 82BC 435FD800 6

235 1 1 415E 8C72 0DB9B000 5

236 1 1 3C3D 9628 1B736000 4

237 1 1 375E B3D6 36E6C000 3

238 1 1 32B4 F8F0 6DCD8000 2

239 1 1 32B4 C63C 6DCD8000 2

240 0 1 32B4 9388 6DCD8000 2
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Table K.8 – Decoder test sequence (sheet 7 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

241 1 1 3C3D CAD0 33E60000 0

242 1 1 3C3D 8E93 33E60000 0

Marker detected: zero byte fed to decoder

243 1 1 375E A4AC 67CC0000 7

244 0 1 32B4 DA9C CF980000 6

245 0 1 3C3D CAD0 9EC00000 4

246 1 1 415E F0F4 40B40000 2

247 1 1 415E AF96 40B40000 2

248 1 1 3C3D DC70 81680000 1

249 0 1 3C3D A033 81680000 1

Marker detected: zero byte fed to decoder

250 1 1 415E F0F4 75C80000 7

251 0 1 415E AF96 75C80000 7

252 0 1 CE 4639 82BC 0F200000 6

253 1 1 4B85 F20C 3C800000 4

254 1 1 4B85 A687 3C800000 4

255 0 1 4639 B604 79000000 3

256 0 1 CE 4B85 8C72 126A0000 2

K.5 Low-pass downsampling filters for hierarchical coding

In this section simple examples are given of downsampling filters which are compatible with the upsampling filter defined
in J.1.1.2.

Figure K.5 shows the weighting of neighbouring samples for simple one-dimensional horizontal and vertical low-pass
filters. The output of the filter must be normalized by the sum of the neighbourhood weights.

1 2 1 1

2

1

TISO1770-93/d115

Figure K.5  –  Low-pass filter example

Figure K.5 [D115] = 4 cm = 156 %

The centre sample in Figure K.5 should be aligned with the left column or top line of the high resolution image when
calculating the left column or top line of the low resolution image. Sample values which are situated outside of the image
boundary are replicated from the sample values at the boundary to provide missing edge values.

If the image being downsampled has an odd width or length, the odd dimension is increased by 1 by sample replication on
the right edge or bottom line before downsampling.
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K.6 Domain of applicability of DCT and spatial coding techniques

The DCT coder is intended for lossy coding in a range from quite visible loss to distortion well below the threshold for
visibility. However in general, DCT-based processes cannot be used for true lossless coding.

The lossless coder is intended for completely lossless coding. The lossless coding process is significantly less effective
than the DCT-based processes for distortions near and above the threshold of visibility.

The point transform of the input to the lossless coder permits a very restricted form of lossy coding with the “lossless”
coder. (The coder is still lossless after the input point transform.) Since the DCT is intended for lossy coding, there may
be some confusion about when this alternative lossy technique should be used.

Lossless coding with a point transformed input is intended for applications which cannot be addressed by DCT coding
techniques. Among these are

– true lossless coding to a specified precision;

– lossy coding with precisely defined error bounds;

– hierarchical progression to a truly lossless final stage.

If lossless coding with a point transformed input is used in applications which can be met effectively by DCT coding, the
results will be significantly less satisfactory. For example, distortion in the form of visible contours usually appears when
precision of the luminance component is reduced to about six bits. For normal image data, this occurs at bit rates well
above those for which the DCT gives outputs which are visually indistinguishable from the source.

K.7 Domain of applicability of the progressive coding modes of operation

Two very different progressive coding modes of operation have been defined, progressive coding of the DCT coefficients
and hierarchical progression. Progressive coding of the DCT coefficients has two complementary procedures, spectral
selection and successive approximation. Because of this diversity of choices, there may be some confusion as to which
method of progression to use for a given application.

K.7.1 Progressive coding of the DCT

In progressive coding of the DCT coefficients two complementary procedures are defined for decomposing the 8 × 8 DCT
coefficient array, spectral selection and successive approximation. Spectral selection partitions zig-zag array of DCT
coefficients into “bands”, one band being coded in each scan. Successive approximation codes the coefficients with
reduced precision in the first scan; in each subsequent scan the precision is increased by one bit.

A single forward DCT is calculated for these procedures. When all coefficients are coded to full precision, the DCT is the
same as in the sequential mode. Therefore, like the sequential DCT coding, progressive coding of DCT coefficients is
intended for applications which need very good compression for a given level of visual distortion.

The simplest progressive coding technique is spectral selection; indeed, because of this simplicity, some applications may
choose – despite the limited progression that can be achieved – to use only spectral selection. Note, however, that the
absence of high frequency bands typically leads – for a given bit rate – to a significantly lower image quality in the
intermediate stages than can be achieved with the more general progressions. The net coding efficiency at the completion
of the final stage is typically comparable to or slightly less than that achieved with the sequential DCT.

A much more flexible progressive system is attained at some increase in complexity when successive approximation is
added to the spectral selection progression. For a given bit rate, this system typically provides significantly better image
quality than spectral selection alone. The net coding efficiency at the completion of the final stage is typically comparable
to or slightly better than that achieved with the sequential DCT.

K.7.2 Hierarchical progression

Hierarchical progression permits a sequence of outputs of increasing spatial resolution, and also allows refinement of
image quality at a given spatial resolution. Both DCT and spatial versions of the hierarchical progression are allowed, and
progressive coding of DCT coefficients may be used in a frame of the DCT hierarchical progression.

The DCT hierarchical progression is intended for applications which need very good compression for a given level of
visual distortion; the spatial hierarchical progression is intended for applications which need a simple progression with a
truly lossless final stage. Figure K.6 illustrates examples of these two basic hierarchical progressions.
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TISO1780-93/d116

DCT path

DCT (dif)

Lossless (dif)
+

Point transform

Bounded error on
reconstructed image

DCT (dif)

Lossless path

Predicted (dif)

No error on
reconstructed image

Predicted (dif)

Predicted (dif)

Figure K.6  –  Sketch of the basic operations of the hierarchical mode

Figure K.6 [D116] = 14 cm = 547 %

K.7.2.1 DCT Hierarchical progression

If a DCT hierarchical progression uses reduced spatial resolution, the early stages of the progression can have better image
quality for a given bit rate than the early stages of non-hierarchical progressive coding of the DCT coefficients.  However,
at the point where the distortion between source and output becomes indistinguishable, the coding efficiency achieved
with a DCT hierarchical progression is typically significantly lower than the coding efficiency achieved with a non-
hierarchical progressive coding of the DCT coefficients.

While the hierarchical DCT progression is intended for lossy progressive coding, a final spatial differential coding stage
can be used. When this final stage is used, the output can be almost lossless, limited only by the difference between the
encoder and decoder IDCT implementations. Since IDCT implementations can differ significantly, truly lossless coding
after a DCT hierarchical progression cannot be guaranteed. An important alternative, therefore, is to use the input point
transform of the final lossless differential coding stage to reduce the precision of the differential input. This allows a
bounding of the difference between source and output at a significantly lower cost in coded bits than coding of the full
precision spatial difference would require.

K.7.2.2 Spatial hierarchical progression

If lossless progression is required, a very simple hierarchical progression may be used in which the spatial lossless coder
with point transformed input is used as a first stage. This first stage is followed by one or more spatial differential coding
stages. The first stage should be nearly lossless, such that the low order bits which are truncated by the point transform are
essentially random – otherwise the compression efficiency will be degraded relative to non-progressive lossless coding.
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K.8 Suppression of block-to-block discontinuities in decoded images

A simple technique is available for suppressing the block-to-block discontinuities which can occur in images compressed
by DCT techniques.

The first few (five in this example) low frequency DCT coefficients are predicted from the nine DC values of the block
and the eight nearest-neighbour blocks, and the predicted values are used to suppress blocking artifacts in smooth areas of
the image.

The prediction equations for the first five AC coefficients in the zig-zag sequence are obtained as follows:

K.8.1 AC prediction

The sample field in a 3 by 3 array of blocks (each block containing an 8 × 8 array of samples) is modeled by a
two-dimensional second degree polynomial of the form:

P(x,y) = A1(x2y2) + A2(x2y) + A3(xy2) + A4(x2) + A5(xy) + A6(y2) + A7(x) + A8(y) + A9

The nine coefficients A1 through A9 are uniquely determined by imposing the constraint that the mean of P(x,y) over
each of the nine blocks must yield the correct DC-values.

Applying the DCT to the quadratic field predicting the samples in the central block gives a prediction of the low
frequency AC coefficients depicted in Figure K.7.

TISO1790-93/d117

x x

x x

x

DC

Figure K.7  –  DCT array positions of predicted AC coefficients

Figure K.7 [D.117] = 8 cm = 313 %

The prediction equations derived in this manner are as follows:

For the two dimensional array of DC values shown

DC1 DC2 DC3
DC4 DC5 DC6
DC7 DC8 DC9

The unquantized prediction equations are

AC01 = 1,13885 (DC4 – DC6)
AC10 = 1,13885 (DC2 – DC8)
AC20 = 0,27881 (DC2 + DC8 – 2 × DC5)
AC11 = 0,16213 ((DC1 – DC3) – (DC7 – DC9))
AC02 = 0,27881 (DC4 + DC6 – 2 × DC5)

The scaling of the predicted AC coefficients is consistent with the DCT normalization defined in A.3.3.
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K.8.2 Quantized AC prediction

The prediction equations can be mapped to a form which uses quantized values of the DC coefficients and which
computes quantized AC coefficients using integer arithmetic. The quantized DC coefficients need to be scaled, however,
such that the predicted coefficients have fractional bit precision.

First, the prediction equation coefficients are scaled by 32 and rounded to the nearest integer. Thus,

1,13885 × 32 = 36

0,27881 × 32 = 39

0,16213 × 32 = 35

The multiplicative factors are then scaled by the ratio of the DC and AC quantization factors and rounded appropriately.
The normalization defined for the DCT introduces another factor of 8 in the unquantized DC values. Therefore, in terms
of the quantized DC values, the predicted quantized AC coefficients are given by the equations below. Note that if (for
example) the DC values are scaled by a factor of 4, the AC predictions will have 2 fractional bits of precision relative to
the quantized DCT coefficients.

QAC01 = ( (Rd × Q01) + (36 × Q00 × (QDC4 – QDC6)))/(256 × Q01)
QAC10 = ( (Rd × Q10) + (36 × Q00 × (QDC2 – QDC8)))/(256 × Q10)
QAC20 = ( (Rd × Q20) + ( 9 × Q00 × (QDC2 + QDC8 – 2 × QDC5)))/(256 × Q20)
QAC11 = ( (Rd × Q11) + ( 5 × Q00 × ((QDC1 – QDC3) – (QDC7 – QDC9))))/(256 × Q11)
QAC02 = ( (Rd × Q02) + ( 9 × Q00 × (QDC4 + QDC6 – 2 × QDC5)))/(256 × Q02)

where QDCx and QACxy are the quantized and scaled DC and AC coefficient values. The constant Rd is added to get a
correct rounding in the division. Rd is 128 for positive numerators, and –128 for negative numerators.

Predicted values should not override coded values. Therefore, predicted values for coefficients which are already non-zero
should be set to zero. Predictions should be clamped if they exceed a value which would be quantized to a non-zero value
for the current precision in the successive approximation.

K.9 Modification of dequantization to improve displayed image quality

For a progression where the first stage successive approximation bit, Al, is set to 3, uniform quantization of the DCT gives
the following quantization and dequantization levels for a sequence of successive approximation scans, as shown in
Figure K.8:
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T0812990-93/d118

Al

Fi gur e K .8  –  I l l ust r at i on of  tw o r econst r uct ion  st r ategies

Quantized DCT coefficient value

Figure K.8 [D118] = 6 cm = 234 %

The column to the left labelled “Al” gives the bit position specified in the scan header. The quantized DCT coefficient
magnitudes are therefore divided by 2Al during that scan.
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Referring to the final scan (Al = 0), the points marked with “t” are the threshold values, while the points marked with “r”
are the reconstruction values. The unquantized output is obtained by multiplying the horizontal scale in Figure K.8 by the
quantization value.

The quantization interval for a coefficient value of zero is indicated by the depressed interval of the line. As the bit
position Al is increased, a “fat zero” quantization interval develops around the zero DCT coefficient value. In the limit
where the scaling factor is very large, the zero interval is twice as large as the rest of the quantization intervals.

Two different reconstruction strategies are shown. The points marked “r” are the reconstruction obtained using the normal
rounding rules for the DCT for the complete full precision output. This rule seems to give better image quality when high
bandwidth displays are used. The points marked “x” are an alternative reconstruction which tends to give better images on
lower bandwidth displays. “x” and “r” are the same for slice 0. The system designer must determine which strategy is best
for the display system being used.

K.10 Example of point transform

The difference between the arithmetic-shift-right by Pt and divide by 2Pt can be seen from the following:

After the level shift the DC has values from +127 to –128. Consider values near zero (after the level shift), and the case
where Pt = 1:

Before Before After After

level shift point transform divide by 2 shift-right-arithmetic 1

131 +3 +1 +1

130 +2 +1 +1

129 +1 +0 +0

128 +0 +0 +0

127 –1 +0 –1

126 –2 –1 –1

125 –3 –1 –2

124 –4 –2 –2

123 –5 –2 –3

The key difference is in the truncation of precision. The divide truncates the magnitude; the arithmetic shift truncates the
LSB. With a divide by 2 we would get non-uniform quantization of the DC values; therefore we use the shift-right-
arithmetic operation.

For positive values, the divide by 2 and the shift-right-arithmetic by 1 operations are the same. Therefore, the shift-right-
arithmetic by 1 operation effectively is a divide by 2 when the point transform is done before the level shift.
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Annex  L

Patents
(This annex does not form an integral part of this Recommendation | International Standard)

L.1 Introductory remarks

The user’s attention is called to the possibility that – for some of the coding processes specified in Annexes F, G, H, and J
– compliance with this Specification may require use of an invention covered by patent rights.

By publication of this Specification, no position is taken with respect to the validity of this claim or of any patent rights in
connection therewith. However, for each patent listed in this annex, the patent holder has filed with the Information
Technology Task Force (ITTF) and the Telecommunication Standardization Bureau (TSB) a statement of willingness to
grant a license under these rights on reasonable and non-discriminatory terms and conditions to applicants desiring to
obtain such a license.

The criteria for including patents in this annex are:

a) the patent has been identified by someone who is familiar with the technical fields relevant to this
Specification, and who believes use of the invention covered by the patent is required for implementation
of one or more of the coding processes specified in Annexes F, G, H, or J;

b) the patent-holder has written a letter to the ITTF and TSB, stating willingness to grant a license to an
unlimited number of applicants throughout the world under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

This list of patents shall be updated, if necessary, upon publication of any revisions to the Recommendation | International
Standard.

L.2 List of patents

The following patents may be required for implementation of any one of the processes specified in Annexes F, G, H, and J
which uses arithmetic coding:

US 4,633,490, December 30, 1986, IBM, MITCHELL (J.L.) and GOERTZEL (G.): Symmetrical Adaptive Data
Compression/Decompression System.

US 4,652,856, February 4, 1986, IBM, MOHIUDDIN (K.M.) and RISSANEN (J.J.): A Multiplication-free
Multi-Alphabet Arithmetic Code.

US 4,369,463, January 18, 1983, IBM, ANASTASSIOU (D.) and MITCHELL (J.L.): Grey Scale Image
Compression with Code Words a Function of Image History.
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No other patents required for implementation of any of the other processes specified in Annexes F, G, H, or J had been
identified at the time of publication of this Specification.

L.3 Contact addresses for patent information

Director, Telecommunication Standardization Bureau (formerly CCITT)
International Telecommunication Union
Place des Nations
CH-1211 Genève 20, Switzerland
Tel. +41 (22) 730 5111
Fax: +41 (22) 730 5853

Information Technology Task Force
International Organization for Standardization
1, rue de Varembé
CH-1211 Genève 20, Switzerland
Tel: +41 (22) 734 0150
Fax: +41 (22) 733 3843

Program Manager, Licensing
Intellectual Property and Licensing Services
IBM Corporation
208 Harbor Drive
P.O. Box 10501
Stamford, Connecticut 08904-2501, USA
Tel: +1 (203) 973 7935
Fax: +1 (203) 973 7981 or +1 (203) 973 7982

Mitsubishi Electric Corp.
Intellectual Property License Department
1-2-3 Morunouchi, Chiyoda-ku
Tokyo 100, Japan
Tel: +81 (3) 3218 3465
Fax: +81 (3) 3215 3842

AT&T Intellectual Property Division Manager
Room 3A21
10 Independence Blvd.
Warren, NJ 07059, USA
Tel: +1 (908) 580 5392
Fax: +1 (908) 580 6355

Senior General Manager
Corporate Intellectual Property and Legal Headquarters
Canon Inc.
30-2 Shimomaruko 3-chome
Ohta-ku Tokyo 146 Japan
Tel: +81 (3) 3758 2111
Fax: +81 (3) 3756 0947

Chief Executive Officer
Electronic Imagery, Inc.
1100 Park Central Boulevard South
Suite 3400
Pompano Beach, FL 33064, USA
Tel: +1 (305) 968 7100
Fax: +1 (305) 968 7319
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,PDJH &RPSUHVVLRQ DQG WKH 'LVFUHWH &RVLQH 7UDQVIRUP
.HQ &DEHHQ DQG 3HWHU *HQW

0DWK 78
&ROOHJH RI WKH 5HGZRRGV

$EVWUDFW1 7KH PDWKHPDWLFDO HTXDWLRQV RI WKH '&7 DQG LWV XVHV ZLWK LPDJH FRPSUHVVLRQ DUH H[SODLQHG1

,QWURGXFWLRQ
$V RXU XVH RI DQG UHOLDQFH RQ FRPSXWHUV FRQWLQXHV WR JURZ/ VR WRR GRHV RXU QHHG IRU

HIILFLHQW ZD\V RI VWRULQJ ODUJH DPRXQWV RI GDWD1 )RU H[DPSOH/ VRPHRQH ZLWK D ZHE SDJH RU
RQOLQH FDWDORJ ± WKDW XVHV GR]HQV RU SHUKDSV KXQGUHGV RI LPDJHV ± ZLOO PRUH WKDQ OLNHO\ QHHG
WR XVH VRPH IRUP RI LPDJH FRPSUHVVLRQ WR VWRUH WKRVH LPDJHV1 7KLV LV EHFDXVH WKH DPRXQW RI
VSDFH UHTXLUHG WR KROG XQDGXOWHUDWHG LPDJHV FDQ EH SURKLELWLYHO\ ODUJH LQ WHUPV RI FRVW1
)RUWXQDWHO\/ WKHUH DUH VHYHUDO PHWKRGV RI LPDJH FRPSUHVVLRQ DYDLODEOH WRGD\1 7KHVH IDOO LQWR
WZR JHQHUDO FDWHJRULHV= ORVVOHVV DQG ORVV\ LPDJH FRPSUHVVLRQ1 7KH -3(* SURFHVV LV D ZLGHO\
XVHG IRUP RI ORVV\ LPDJH FRPSUHVVLRQ WKDW FHQWHUV DURXQG WKH 'LVFUHWH &RVLQH 7UDQVIRUP1
7KH '&7 ZRUNV E\ VHSDUDWLQJ LPDJHV LQWR SDUWV RI GLIIHULQJ IUHTXHQFLHV1 'XULQJ D VWHS
FDOOHG TXDQWL]DWLRQ/ ZKHUH SDUW RI FRPSUHVVLRQ DFWXDOO\ RFFXUV/ WKH OHVV LPSRUWDQW
IUHTXHQFLHV DUH GLVFDUGHG/ KHQFH WKH XVH RI WKH WHUP ´ORVV\1´ 7KHQ/ RQO\ WKH PRVW LPSRUWDQW
IUHTXHQFLHV WKDW UHPDLQ DUH XVHG UHWULHYH WKH LPDJH LQ WKH GHFRPSUHVVLRQ SURFHVV1 $V D
UHVXOW/ UHFRQVWUXFWHG LPDJHV FRQWDLQ VRPH GLVWRUWLRQ> EXW DV ZH VKDOO VRRQ VHH/ WKHVH OHYHOV RI
GLVWRUWLRQ FDQ EH DGMXVWHG GXULQJ WKH FRPSUHVVLRQ VWDJH1 7KH -3(* PHWKRG LV XVHG IRU ERWK
FRORU DQG EODFN0DQG0ZKLWH LPDJHV/ EXW WKH IRFXV RI WKLV DUWLFOH ZLOO EH RQ FRPSUHVVLRQ RI WKH
ODWWHU1

7KH 3URFHVV
7KH IROORZLQJ LV D JHQHUDO RYHUYLHZ RI WKH -3(* SURFHVV1 /DWHU/ ZH ZLOO WDNH WKH UHDGHU

WKURXJK D GHWDLOHG WRXU RI -3(*¶V PHWKRG VR WKDW D PRUH FRPSUHKHQVLYH XQGHUVWDQGLQJ RI WKH
SURFHVV PD\ EH DFTXLUHG1
41 7KH LPDJH LV EURNHQ LQWR ;[; EORFNV RI SL[HOV1
51 :RUNLQJ IURP OHIW WR ULJKW/ WRS WR ERWWRP/ WKH '&7 LV DSSOLHG WR HDFK EORFN1
61 (DFK EORFN LV FRPSUHVVHG WKURXJK TXDQWL]DWLRQ1
71 7KH DUUD\ RI FRPSUHVVHG EORFNV WKDW FRQVWLWXWH WKH LPDJH LV VWRUHG LQ D GUDVWLFDOO\ UHGXFHG
DPRXQW RI VSDFH1

81 :KHQ GHVLUHG/ WKH LPDJH LV UHFRQVWUXFWHG WKURXJK GHFRPSUHVVLRQ/ D SURFHVV WKDW XVHV WKH
,QYHUVH 'LVFUHWH &RVLQH 7UDQVIRUP +,'&7,1

7KH '&7 (TXDWLRQ
7KH '&7 HTXDWLRQ +(T1 4, FRPSXWHV WKH L/MWK HQWU\ RI WKH '&7 RI DQ LPDJH1

'�L/ M  ã 4
51

&�L &�M !
[ã3

1"4

!
\ã3

1"4

S�[/\ FRV �5[ ò 4 L=
51 FRV �5\ ò 4 M=

51

&�X  ã
4
5
LI X ã 3

4 LI X â 3

4

5

4
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S�[/\  LV WKH [/\WK HOHPHQW RI WKH LPDJH UHSUHVHQWHG E\ WKH PDWUL[ S1 1 LV WKH VL]H RI WKH
EORFN WKDW WKH '&7 LV GRQH RQ1 7KH HTXDWLRQ FDOFXODWHV RQH HQWU\ +L/MWK, RI WKH WUDQVIRUPHG
LPDJH IURP WKH SL[HO YDOXHV RI WKH RULJLQDO LPDJH PDWUL[1 )RU WKH VWDQGDUG ;[; EORFN WKDW
-3(* FRPSUHVVLRQ XVHV/ 1 HTXDOV ; DQG [ DQG \ UDQJH IURP 3 WR :1 7KHUHIRUH '�L/ M  ZRXOG
EH DV LQ (TXDWLRQ +6,1

'�L/ M  ã 4
7 &�L &�M !

[ã3

:

!
\ã3

:

S�[/\ FRV �5[ ò 4 L=
49 FRV �5\ ò 4 M=

49 6

%HFDXVH WKH '&7 XVHV FRVLQH IXQFWLRQV/ WKH UHVXOWLQJ PDWUL[ GHSHQGV RQ WKH KRUL]RQWDO/
GLDJRQDO/ DQG YHUWLFDO IUHTXHQFLHV1 7KHUHIRUH DQ LPDJH EODFN ZLWK D ORW RI FKDQJH LQ
IUHTXHQF\ KDV D YHU\ UDQGRP ORRNLQJ UHVXOWLQJ PDWUL[/ ZKLOH DQ LPDJH PDWUL[ RI MXVW RQH
FRORU/ KDV D UHVXOWLQJ PDWUL[ RI D ODUJH YDOXH IRU WKH ILUVW HOHPHQW DQG ]HURHV IRU WKH RWKHU
HOHPHQWV1

7KH '&7 0DWUL[
7R JHW WKH PDWUL[ IRUP RI (TXDWLRQ +4,/ ZH ZLOO XVH WKH IROORZLQJ HTXDWLRQ

7L/M ã
4
1

LI L ã 3

5
1 FRV

�5Mò4 L=
51 LI L â 3

7

)RU DQ ;[; EORFN LW UHVXOWV LQ WKLV PDWUL[=

7 ã

16869 16869 16869 16869 16869 16869 16869 16869
17<37 1748: 15::; 13<:8 "13<:8 "15::; "1748: "17<37
1794< 14<46 "14<46 "1794< "1794< "14<46 14<46 1794<
1748: "13<:8 "17<37 "15::; 15::; 17<37 13<:8 "1748:
16869 "16869 "16869 16869 16869 "16869 "16869 16869
15::; "17<37 13<:8 1748: "1748: "13<:8 17<37 "15::;
14<46 "1794< 1794< "14<46 "14<46 1794< "1794< 14<46
13<:8 "15::; 1748: "17<37 17<37 "1748: 15::; "13<:8

7KH ILUVW URZ +L ã 4, RI WKH PDWUL[ KDV DOO WKH HQWULHV HTXDO WR 42 ; DV H[SHFWHG IURP
(TXDWLRQ +7,1

7KH FROXPQV RI 7 IRUP DQ RUWKRQRUPDO VHW/ VR 7 LV DQ RUWKRJRQDO PDWUL[1 :KHQ GRLQJ
WKH LQYHUVH '&7 WKH RUWKRJRQDOLW\ RI 7 LV LPSRUWDQW/ DV WKH LQYHUVH RI 7 LV 7U ZKLFK LV HDV\ WR
FDOFXODWH1

'RLQJ WKH '&7 RQ DQ å[å %ORFN
%HIRUH ZH EHJLQ/ LW VKRXOG EH QRWHG WKDW WKH SL[HO YDOXHV RI D EODFN0DQG0ZKLWH LPDJH

UDQJH IURP 3 WR 588 LQ VWHSV RI 4/ ZKHUH SXUH EODFN LV UHSUHVHQWHG E\ 3/ DQG SXUH ZKLWH E\
5881 7KXV LW FDQ EH VHHQ KRZ D SKRWR/ LOOXVWUDWLRQ/ HWF1 FDQ EH DFFXUDWHO\ UHSUHVHQWHG E\ WKHVH
589 VKDGHV RI JUD\1

6LQFH DQ LPDJH FRPSULVHV KXQGUHGV RU HYHQ WKRXVDQGV RI ;[; EORFNV RI SL[HOV/ WKH
IROORZLQJ GHVFULSWLRQ RI ZKDW KDSSHQV WR RQH ;[; EORFN LV D PLFURFRVP RI WKH -3(* SURFHVV>
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ZKDW LV GRQH WR RQH EORFN RI LPDJH SL[HOV LV GRQH WR DOO RI WKHP/ LQ WKH RUGHU HDUOLHU
VSHFLILHG1

1RZ/ OHW¶V VWDUW ZLWK D EORFN RI LPDJH0SL[HO YDOXHV1 7KLV SDUWLFXODU EORFN ZDV FKRVHQ
IURP WKH YHU\ XSSHU0 OHIW0KDQG FRUQHU RI DQ LPDJH1

2ULJLQDO ã

487 456 456 456 456 456 456 469
4<5 4;3 469 487 487 487 469 443
587 4<; 487 487 4;3 487 456 456
56< 4;3 469 4;3 4;3 499 456 456
4;3 487 469 49: 499 47< 469 469
45; 469 456 469 487 4;3 4<; 487
456 438 443 47< 469 469 4;3 499
443 469 456 456 456 469 487 469

%HFDXVH WKH '&7 LV GHVLJQHG WR ZRUN RQ SL[HO YDOXHV UDQJLQJ IURP 045; WR 45:/ WKH
RULJLQDO EORFN LV ´OHYHOHG RII´ E\ VXEWUDFWLQJ 45; IURP HDFK HQWU\1 7KLV UHVXOWV LQ WKH
IROORZLQJ PDWUL[1

0 ã

59 "8 "8 "8 "8 "8 "8 ;
97 85 ; 59 59 59 ; "4;
459 :3 59 59 85 59 "8 "8
444 85 ; 85 85 6; "8 "8
85 59 ; 6< 6; 54 ; ;
3 ; "8 ; 59 85 :3 59
"8 "56 "4; 54 ; ; 85 6;
"4; ; "8 "8 "8 ; 59 ;

:H DUH QRZ UHDG\ WR SHUIRUP WKH 'LVFUHWH &RVLQH 7UDQVIRUP/ ZKLFK LV DFFRPSOLVKHG E\
PDWUL[ PXOWLSOLFDWLRQ1

' ã 707 U 8

,Q (TXDWLRQ +8, PDWUL[ 0 LV ILUVW PXOWLSOLHG RQ WKH OHIW E\ WKH '&7 PDWUL[ 7 IURP WKH
SUHYLRXV VHFWLRQ> WKLV WUDQVIRUPV WKH URZV1 7KH FROXPQV DUH WKHQ WUDQVIRUPHG E\ PXOWLSO\LQJ
RQ WKH ULJKW E\ WKH WUDQVSRVH RI WKH '&7 PDWUL[1 7KLV \LHOGV WKH IROORZLQJ PDWUL[1
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' ã

49516 7319 5313 :516 6316 4518 "4<1: "4418
6318 43;17 4318 6516 5:1: "4818 4;17 "513
"<714 "9314 4516 "7617 "6416 914 "616 :14
"6;19 ";617 "817 "5515 "4618 4818 "416 618
"6416 4:1< "818 "4517 4716 "913 4418 "913
"31< "441; 451; 315 5;14 4519 ;17 51<
719 "517 4515 919 "4;1: "451; :1: 4513

"4313 4415 :1; "4916 5418 313 81< 431:

7KLV EORFN PDWUL[ QRZ FRQVLVWV RI 97 '&7 FRHIILFLHQWV/ FLM/ ZKHUH L DQG M UDQJH IURP 3 WR
:1 7KH WRS0OHIW FRHIILFLHQW/ F33/ FRUUHODWHV WR WKH ORZ IUHTXHQFLHV RI WKH RULJLQDO LPDJH EORFN1
$V ZH PRYH DZD\ IURP F33 LQ DOO GLUHFWLRQV/ WKH '&7 FRHIILFLHQWV FRUUHODWH WR KLJKHU DQG
KLJKHU IUHTXHQFLHV RI WKH LPDJH EORFN/ ZKHUH F:: FRUUHVSRQGV WR WKH KLJKHVW IUHTXHQF\1 ,W LV
LPSRUWDQW WR QRWH WKDW WKH KXPDQ H\H LV PRVW VHQVLWLYH WR ORZ IUHTXHQFLHV/ DQG UHVXOWV IURP
WKH TXDQWL]DWLRQ VWHS ZLOO UHIOHFW WKLV IDFW1

4XDQWL]DWLRQ
2XU ;[; EORFN RI '&7 FRHIILFLHQWV LV QRZ UHDG\ IRU FRPSUHVVLRQ E\ TXDQWL]DWLRQ1 $

UHPDUNDEOH DQG KLJKO\ XVHIXO IHDWXUH RI WKH -3(* SURFHVV LV WKDW LQ WKLV VWHS/ YDU\LQJ OHYHOV
RI LPDJH FRPSUHVVLRQ DQG TXDOLW\ DUH REWDLQDEOH WKURXJK VHOHFWLRQ RI VSHFLILF TXDQWL]DWLRQ
PDWULFHV1 7KLV HQDEOHV WKH XVHU WR GHFLGH RQ TXDOLW\ OHYHOV UDQJLQJ IURP 4 WR 433/ ZKHUH 4
JLYHV WKH SRRUHVW LPDJH TXDOLW\ DQG KLJKHVW FRPSUHVVLRQ/ ZKLOH 433 JLYHV WKH EHVW TXDOLW\
DQG ORZHVW FRPSUHVVLRQ1 $V D UHVXOW/ WKH TXDOLW\2FRPSUHVVLRQ UDWLR FDQ EH WDLORUHG WR VXLW
GLIIHUHQW QHHGV1

6XEMHFWLYH H[SHULPHQWV LQYROYLQJ WKH KXPDQ YLVXDO V\VWHP KDYH UHVXOWHG LQ WKH -3(*
VWDQGDUG TXDQWL]DWLRQ PDWUL[1 :LWK D TXDOLW\ OHYHO RI 83/ WKLV PDWUL[ UHQGHUV ERWK KLJK
FRPSUHVVLRQ DQG H[FHOOHQW GHFRPSUHVVHG LPDJH TXDOLW\1

483 ã

49 44 43 49 57 73 84 94
45 45 47 4< 59 8; 93 88
47 46 49 57 73 8: 9< 89
47 4: 55 5< 84 ;: ;3 95
4; 55 6: 89 9; 43< 436 ::
57 68 88 97 ;4 437 446 <5
7< 97 :; ;: 436 454 453 434
:5 <5 <8 <; 445 433 436 <<

,I/ KRZHYHU/ DQRWKHU OHYHO RI TXDOLW\ DQG FRPSUHVVLRQ LV GHVLUHG/ VFDODU PXOWLSOHV RI WKH
-3(* VWDQGDUG TXDQWL]DWLRQ PDWUL[ PD\ EH XVHG1 )RU D TXDOLW\ OHYHO JUHDWHU WKDQ 83 +OHVV
FRPSUHVVLRQ/ KLJKHU LPDJH TXDOLW\,/ WKH VWDQGDUG TXDQWL]DWLRQ PDWUL[ LV PXOWLSOLHG E\
+4330TXDOLW\ OHYHO,2831 )RU D TXDOLW\ OHYHO OHVV WKDQ 83 +PRUH FRPSUHVVLRQ/ ORZHU LPDJH
TXDOLW\,/ WKH VWDQGDUG TXDQWL]DWLRQ PDWUL[ LV PXOWLSOLHG E\ 832TXDOLW\ OHYHO1 7KH VFDOHG

APPENDIX G

Microsoft Corp.   Exhibit 1005



TXDQWL]DWLRQ PDWUL[ LV WKHQ URXQGHG DQG FOLSSHG WR KDYH SRVLWLYH LQWHJHU YDOXHV UDQJLQJ IURP
4 WR 5881 )RU H[DPSOH/ WKH IROORZLQJ TXDQWL]DWLRQ PDWULFHV \LHOG TXDOLW\ OHYHOV RI 43 DQG <31

443 ã

;3 93 83 ;3 453 533 588 588
88 93 :3 <8 463 588 588 588
:3 98 ;3 453 533 588 588 588
:3 ;8 443 478 588 588 588 588
<3 443 4;8 588 588 588 588 588
453 4:8 588 588 588 588 588 588
578 588 588 588 588 588 588 588
588 588 588 588 588 588 588 588

4<3 ã

6 5 5 6 8 ; 43 45
5 5 6 7 8 45 45 44
6 6 6 8 ; 44 47 44
6 6 7 9 43 4: 49 45
7 7 : 44 47 55 54 48
8 : 44 46 49 45 56 4;
43 46 49 4: 54 57 57 54
47 4; 4< 53 55 53 53 53

4XDQWL]DWLRQ LV DFKLHYHG E\ GLYLGLQJ HDFK HOHPHQW LQ WKH WUDQVIRUPHG LPDJH PDWUL[ ' E\
WKH FRUUHVSRQGLQJ HOHPHQW LQ WKH TXDQWL]DWLRQ PDWUL[/ DQG WKHQ URXQGLQJ WR WKH QHDUHVW
LQWHJHU YDOXH1 )RU WKH IROORZLQJ VWHS/ TXDQWL]DWLRQ PDWUL[ 483 LV XVHG1

&L/ M ã URXQG
'L/ M
4L/ M

9

& ã

43 7 5 8 4 3 3 3
6 < 4 5 4 3 3 3
": "8 4 "5 "4 3 3 3
"6 "8 3 "4 3 3 3 3
"5 4 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

5HFDOO WKDW WKH FRHIILFLHQWV VLWXDWHG QHDU WKH XSSHU0OHIW FRUQHU FRUUHVSRQG WR WKH ORZHU
IUHTXHQFLHV ± WR ZKLFK WKH KXPDQ H\H LV PRVW VHQVLWLYH ± RI WKH LPDJH EORFN1 ,Q DGGLWLRQ/ WKH
]HURV UHSUHVHQW WKH OHVV LPSRUWDQW/ KLJKHU IUHTXHQFLHV WKDW KDYH EHHQ GLVFDUGHG/ JLYLQJ ULVH WR
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WKH ORVV\ SDUW RI FRPSUHVVLRQ1 $V PHQWLRQHG HDUOLHU/ RQO\ WKH UHPDLQLQJ QRQ]HUR FRHIILFLHQWV
ZLOO EH XVHG WR UHFRQVWUXFW WKH LPDJH1 ,W LV DOVR LQWHUHVWLQJ WR QRWH WKH HIIHFW RI GLIIHUHQW
TXDQWL]DWLRQ PDWULFHV> XVH RI 443 ZRXOG JLYH & VLJQLILFDQWO\ PRUH ]HURV/ ZKLOH 4<3 ZRXOG
UHVXOW LQ YHU\ IHZ ]HURV1

&RGLQJ
7KH TXDQWL]HG PDWUL[ & LV QRZ UHDG\ IRU WKH ILQDO VWHS RI FRPSUHVVLRQ1 %HIRUH VWRUDJH/

DOO FRHIILFLHQWV RI & DUH FRQYHUWHG E\ DQ HQFRGHU WR D VWUHDP RI ELQDU\ GDWD +34434344111,1
,Q0GHSWK FRYHUDJH RI WKH FRGLQJ SURFHVV LV EH\RQG WKH VFRSH RI WKLV DUWLFOH1 +RZHYHU/ ZH FDQ
SRLQW RXW RQH NH\ DVSHFW WKDW WKH UHDGHU LV VXUH WR DSSUHFLDWH1 $IWHU TXDQWL]DWLRQ/ LW LV TXLWH
FRPPRQ IRU PRVW RI WKH FRHIILFLHQWV WR HTXDO ]HUR1 -3(* WDNHV DGYDQWDJH RI WKLV E\
HQFRGLQJ TXDQWL]HG FRHIILFLHQWV LQ WKH ]LJ0]DJ VHTXHQFH VKRZQ LQ )LJXUH 41 7KH DGYDQWDJH
OLHV LQ WKH FRQVROLGDWLRQ RI UHODWLYHO\ ODUJH UXQV RI ]HURV/ ZKLFK FRPSUHVV YHU\ ZHOO1 7KH
VHTXHQFH LQ )LJXUH 4 +7[7, FRQWLQXHV IRU WKH HQWLUH ;[; EORFN1

)LJXUH 4

'HFRPSUHVVLRQ
5HFRQVWUXFWLRQ RI RXU LPDJH EHJLQV E\ GHFRGLQJ WKH ELW VWUHDP UHSUHVHQWLQJ WKH

TXDQWL]HG PDWUL[ &1 (DFK HOHPHQW RI & LV WKHQ PXOWLSOLHG E\ WKH FRUUHVSRQGLQJ HOHPHQW RI
WKH TXDQWL]DWLRQ PDWUL[ RULJLQDOO\ XVHG1

5L/ M ã 4L/ M � &L/ M :
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5 ã

493 77 53 ;3 57 3 3 3
69 43; 47 6; 59 3 3 3
"<; "98 49 "7; "73 3 3 3
"75 ";8 3 "5< 3 3 3 3
"69 55 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

7KH ,'&7 LV QH[W DSSOLHG WR PDWUL[ 5/ ZKLFK LV URXQGHG WR WKH QHDUHVW LQWHJHU1 )LQDOO\/
45; LV DGGHG WR HDFK HOHPHQW RI WKDW UHVXOW/ JLYLQJ XV WKH GHFRPSUHVVHG -3(* YHUVLRQ 1 RI
RXU RULJLQDO ;[; LPDJH EORFN 01

1 ã URXQG�7 U 5 7  ò 45; ;

&RPSDULVRQ RI 0DWULFHV
/HW XV QRZ VHH KRZ WKH -3(* YHUVLRQ RI RXU RULJLQDO SL[HO EORFN FRPSDUHV1

2ULJLQDO ã

487 456 456 456 456 456 456 469
4<5 4;3 469 487 487 487 469 443
587 4<; 487 487 4;3 487 456 456
56< 4;3 469 4;3 4;3 499 456 456
4;3 487 469 49: 499 47< 469 469
45; 469 456 469 487 4;3 4<; 487
456 438 443 47< 469 469 4;3 499
443 469 456 456 456 469 487 469

'HFRPSUHVVHG ã

47< 467 44< 449 454 459 45: 45;
537 49; 473 477 488 483 468 458
586 4<8 488 499 4;6 498 464 444
578 4;8 47; 499 4;7 493 457 43:
4;; 47< 465 488 4:5 48< 474 469
465 456 458 476 493 499 49; 4:4
43< 44< 459 45; 46< 48; 49; 499
444 45: 45: 447 44; 474 47: 468

7KLV LV D UHPDUNDEOH UHVXOW/ FRQVLGHULQJ WKDW QHDUO\ :3( RI WKH '&7 FRHIILFLHQWV ZHUH
GLVFDUGHG SULRU WR LPDJH EORFN GHFRPSUHVVLRQ2UHFRQVWUXFWLRQ1 *LYHQ WKDW VLPLODU UHVXOWV ZLOO
RFFXU ZLWK WKH UHVW RI WKH EORFNV WKDW FRQVWLWXWH WKH HQWLUH LPDJH/ LW VKRXOG EH QR VXUSULVH WKDW
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WKH -3(* LPDJH ZLOO EH VFDUFHO\ GLVWLQJXLVKDEOH IURP WKH RULJLQDO1 5HPHPEHU/ WKHUH DUH 589
SRVVLEOH VKDGHV RI JUD\ LQ D EODFN0DQG0ZKLWH SLFWXUH/ DQG D GLIIHUHQFH RI/ VD\/ 43/ LV EDUHO\
QRWLFHDEOH WR WKH KXPDQ H\H1

3HSSHU ([DPSOH
:H FDQ GR WKH '&7 DQG TXDQWL]DWLRQ SURFHVV RQ WKH SHSSHUV LPDJH1

)LJXUH 5 ± 3HSSHUV

(DFK HLJKW E\ HLJKW EORFN LV KLW ZLWK WKH '&7/ UHVXOWLQJ LQ WKH LPDJH VKRZQ LQ )LJXUH 61

)LJXUH 6 ± '&7 RI 3HSSHUV

(DFK HOHPHQW LQ HDFK EORFN RI WKH LPDJH LV WKHQ TXDQWL]HG XVLQJ D TXDQWL]DWLRQ PDWUL[ RI
TXDOLW\ OHYHO 831 $W WKLV SRLQW PDQ\ RI WKH HOHPHQWV EHFRPH ]HURHG RXW/ DQG WKH LPDJH WDNHV
XS PXFK OHVV VSDFH WR VWRUH1
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)LJXUH 7 ± 4XDQWL]HG '&7 RI 3HSSHUV

7KH LPDJH FDQ QRZ EH GHFRPSUHVVHG XVLQJ WKH LQYHUVH GLVFUHWH FRVLQH WUDQVIRUP1 $W TXDOLW\
OHYHO 83 WKHUH LV DOPRVW QR YLVLEOH ORVV LQ WKLV LPDJH/ EXW WKHUH LV KLJK FRPSUHVVLRQ1 $W ORZHU
TXDOLW\ OHYHOV/ WKH TXDOLW\ JRHV GRZQ E\ D ORW/ EXW WKH FRPSUHVVLRQ GRHV QRW LQFUHDVH YHU\
PXFK1

)LJXUH 8 ± 2ULJLQDO 3HSSHUV )LJXUH 9 ± 4XDOLW\ 83 ± ;7( =HURV
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)LJXUH : ± 4XDOLW\ 53 ± <4( =HURV )LJXUH ; ± 4XDOLW\ 43 ± <7( =HURV

0RUH ([DPSOHV
:H FDQ VHH ZKDW WKH FRPSUHVVLRQ GRHV WR RWKHU LPDJHV1 +LJK FRQWUDVW LPDJHV/ RU LPDJHV

ZLWK D ORW RI KLJK IUHTXHQFLHV GR QRW FRPSUHVV DV ZHOO DV VPRRWK/ ORZ IUHTXHQF\ LPDJHV1

)LJXUH < ± 2ULJLQDO )LJXUH 43 ± 4XDOLW\ 48 ± <3( =HURV
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)LJXUH 44 ± 2ULJLQDO )LJXUH 45 ± 4XDOLW\ 48 ± ;;( =HURV

%LEOLRJUDSK\

S .HVDYDQ/ +DUHHVK1 &KRRVLQJ D '&7 4XDQWL]DWLRQ 0DWUL[ IRU -3(* (QFRGLQJ1:HE SDJH1
KWWS=22ZZZ0LVH16WDQIRUG1('82FODVV2HH6<5F2GHPRV2NHVDYDQ2

S 0F*RZDQ/ -RKQ1 7KH 'LVFUHWH &RVLQH 7UDQVIRUP1:HE SDJH1
KWWS=22ZZZ1UDKXO1QHW2MIP2GFW1KWPO

S :DOODFH/ *UHJRU\ .1 7KH -3(* 6WLOO 3LFWXUH &RPSUHVVLRQ 6WDQGDUG1 3DSHU VXEPLWWHG LQ
'HFHPEHU 4<<4 IRU SXEOLFDWLRQ LQ ,((( 7UDQVDFWLRQV RQ &RQVXPHU (OHFWURQLFV1

S :ROIJDQJ/ 5D\1 -3(* 7XWRULDO1:HE SDJH1
KWWS=22ZZZ1LPDJLQJ1RUJ2WXWRULDO2MSHJWXW41KWPO

S 2XU VSHFLDO WKDQNV WR 'DYLG $UQROG/ PDWK LQVWUXFWRU H[WUDRUGLQDLUH1
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Image Coding Using Wavelet Transform 
Marc Antonini, Michel Barlaud, Member, IEEE, Pierre Mathieu, and Ingrid Daubechies, Member, IEEE 

Abstract-Image compression is now essential for applica- 
tions such as transmission and storage in data bases. This paper 
proposes a new scheme for image compression taking into ac- 
count psychovisual features both in the space and frequency 
domains; this new method involves two steps. First, we use a 
wavelet transform in order to obtain a set of biorthogonal sub- 
classes of images; the original image is decomposed at  different 
scales using a pyramidal algorithm architecture. The decom- 
position is along the vertical and horizontal directions and 
maintains constant the number of pixels required to describe 
the image. Second, according to Shannon’s rate distortion the- 
ory, the wavelet coefficients a r e  vector quantized using a multi- 
resolution codebook. Furthermore, to  encode the wavelet coef- 
ficients, we propose a noise shaping bit allocation procedure 
which assumes that details a t  high resolution a re  less visible to  
the human eye. Finally, in order to allow the receiver to rec- 
ognize a picture as quickly as  possible a t  minimum cost, we 
present a progressive transmission scheme. It is shown that the 
wavelet transform is particularly well adapted to progressive 
transmission. 

Keywords-Wavelet, biorthogonal wavelet, multiscale py- 
ramidal algorithm, vector quantization, noise shaping, pro- 
gressive transmission. 

I .  INTRODUCTION 
N many different fields, digitized images are replacing I conventional analog images as photograph or x-rays. 

The volume of data required to describe such images 
greatly slow transmission and makes storage prohibitively 
costly. The information contained in the images must, 
therefore, be compressed by extracting only the visible 
elements, which are then encoded. The quantity of data 
involved is thus reduced substantially. 

A fundamental goal of data compression is to reduce 
the bit rate for transmission or storage while maintaining 
an acceptable fidelity or image quality. Compression can 
be achieved by transforming the data, projecting it on a 
basis of functions, and then encoding this transform. Be- 
cause of the nature of the image signal and the mecha- 
nisms of human vision, the transform used must accept 
nonstationarity and be well localized in both the space and 
frequency domains. To avoid redundancy, which hinders 
compression, the transform must be at least biorthogonal 
and lastly, in order to save CPU time, the corresponding 
algorithm must be fast. The two-dimensional wavelet 
transform defined by Meyer and Lemari<[3 11, [24], [25] ,  
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together with its implementation as described by Mallat 
[27], satisfies each of these conditions. 

The compression method we have developed associates 
a wavelet transform and a vector quantization coding 
scheme. The wavelet coefficients are coded considering a 
noise shaping bit allocation procedure. This technique ex- 
ploits the psychovisual as well as statistical redundancies 
in the image data, enabling bit rate reduction. 

Section I1 describes the wavelet transforms used in this 
paper. After a quick review of wavelets in general, we 
explain in more detail the properties and construction of 
regular biorthogonal wavelet bases. We then extend this 
one-dimensional construction to a two-dimensional 
scheme with separable filters. The new coding scheme is 
next presented in Section 111. We focus particularly in this 
section on the statistical properties of wavelet coeffi- 
cients, on the asymptotic coding gain that can be achieved 
using vector quantization in the subimages, and on the 
optimal allocation across the subimages. Experimental re- 
sults are given in Section IV for images taken within and 
outside of the training set. 

11. WAVELETS 
A. A Short Review of Wavelet Analysis 

tion + by dilations and translations 
Wavelets are functions generated from one single func- 

(For this introduction we assume t is a one-dimen- 
sional variable). The mother wavelet $ has to satisfy 
j d x  +(x) = 0,  which implies at least some oscillations. 
(Technically speaking, the condition on + should be 
S dw I \k (w) / ’  I w (  - I  < 03, where \k is the Fourier trans- 
form of +; if +(t) decays faster than I t 1 - ’  for t + 03, then 
this condition is equivalent to the one above). The defi- 
nition of wavelets as dilates of one function means that 
high frequency wavelets correspond to a < 1 or narrow 
width, while low frequency wavelets have a > 1 or wider 
width. 

The basic idea of the wavelet transform is to represent 
any arbitrary function f as a superposition of wavelets. 
Any such superposition decomposes f into different scale 
levels, where each level is then further decomposed with 
a resolution adapted to the level. One way to achieve such 
a decomposition writes f as an integral over a and b of 
q,h with appropriate weighting coefficients [22]. In prac- 
tice, one prefers to writefas a discrete superposition (sum 
rather than integral). Therefore, one introduces a discre- 

1057-7149192$3.00 0 1992 IEEE 

APPENDIX H

Microsoft Corp.   Exhibit 1005



206 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. I ,  NO. 2 ,  APRIL 1992 

tization, a = a;, b = nboa$, with m ,  n E Z, and a. > 1 ,  
bo > 0 fixed. The wavelet decomposition is then 

(1) 
with $,,,(t) = $":3"bou:((t) = ai"/2$(a&"'t - nbO). De- 
compositions of this type were studied in [ 141, [ 151. For 
a. = 2, bo = 1 there exist very special choices of $ such 
that the qm,,  constitute an orthonormal basis, so that 

f = C c m , n ( f )  $m,n 

cm,n(f> = ( 1 C / m , n , f )  = j' dx $m.n(x>f(x) 

in this case. Different bases of this nature were con- 
structed by Stromberg [36], Meyer [31], LemariC [24], 
Battle [7], and Daubechies [16]. All these examples cor- 
respond to a multiresolution analysis, a mathematical tool 
invented by Mallat [27], which is particularly well adapted 
to the use of wavelet bases in image analysis, and which 
gives rise to a fast computation algorithm. 

In a multiresolution analysis, one really has two func- 
tions: the mother wavelet $ and a scalingfinction 4.  One 
also introduces dilated and translated versions of the scal- 
ing function, C#Im,,(x) = 2-"/2C#I(2-mx - n ) .  For fixed m ,  
the 4,,, are orthonormal. We denote by Vm the space 
spanned by the 4,,,; these spaces Vm describe successive 
approximationspaces, . V2 C VI C V0 C V P 1  C VP2 
. . * , each with resolution 2". For each m, the $,,, span 
a space Wm which is exactly the orthogonal complement 
in V, - of V,; the coefficients ( $ m , n ,  f ), therefore, de- 
scribe the information lost when going from an ap- 
proximation of f  with resolution 2" to the coarser ap- 
proximation with resolution 2". All this is translated 
into the following algorithm for the computation of the 
Cm, n (f) = ($",,, f > (for more details, see [27]): 

c m , n ( f )  = g2n - k a m  - I , k ( f )  

where g, = (-  l) 'h-/  + I and h, = 2'/2 j d x  $(x - n )  4 4 2 ~ ) .  
In fact the am, ,( f ) are coefficients characterizing the pro- 
jection of f onto V,. If the function f is given in sampled 
form, then one can take these samples for the highest or- 
der resolution approximation coefficients ao,,, and (2) de- 
scribes a subband coding algorithm on these sampled val- 
ues, with low-pass filter h and high-pass filter g. Because 
of their association with orthonormal wavelet bases, these 
filters give exact reconstruction, i.e.: 

am- I , l ( f >  = C [h2n-lam,n(f) + g 2 n - [ ~ m , n ( f ) l .  (3) 

Most of the orthonormal wavelet base; have infinitely 
supported $, corresponding to filters h and g with infi- 
nitely many taps. The construction in [16] gives $ with 
finite support, and therefore, corresponds to FIR filters. 
It follows that the orthonormal bases in [16] correspond 
to a subband coding scheme with exact reconstruction 

for decomposition. Such filters are well known since the 
work of Smith and Barnwell [35] and of Vetterli [37]. The 
extra ingredient in the orthonormal wavelet decomposi- 
tion is that it writes the signal to be decomposed as a su- 
perposition of reasonably smooth elementary building 
blocks. The filters must satisfy the additional condition: 

m 

n H ( 2 - k # 9  
k =  1 

decay faster than C( 1 + I C; 
E > 0, where 

as I C; I -+ 03, for some 

H(4) = 2-II2 c h,e-JnE. 
n 

This extra regularity requirement is usually not satisfied 
by the exact reconstruction filters in the ASSP literature. 

B. Applications of Wavelet Bases to Image Analysis 
1)  Biorthogonal Wavelet Bases: Since images are 

mostly smooth (except for occasional edges) it seems ap- 
propriate that an exact reconstruction subband coding 
scheme for image analysis should correspond to an or- 
thonormal basis with a reasonably smooth mother wave- 
let. In order to have fast computation, the filters should 
be short (short filters lead to less smoothness, however, 
so they cannot be too short). On the other hand it is de- 
sirable that the FIR filters used be linear phase, since such 
filters can be easily cascaded in pyramidal filter structures 
without the need for phase compensation. Unfortunately, 
there are no nontrivial orthonormal linear phase FIR fil- 
ters with the exact reconstruction property [35], regard- 
less of any regularity considerations. The only symmetric 
exact reconstruction filters are those corresponding to the 
Haar basis, i.e., h0 = hl = 21 /2  and go = -gl  = 2Ii2, 
with all other h,, g, = 0.  

One can preserve linear phase (corresponding to sym- 
metry for the wavelet) by relaxing the orthonormality re- 
quirement, and using biorthogonal bases. It is then still 
possible to construct examples where the mother wavelets 
have arbitrarily high regularity. 

In such a scheme, we still decompose as in (2), but 
reconstruction becomes 

am- I./(f> = [h;n-/am,n(f)  + g2n-l~rn.n(f)1 (4) 

where the filters L, g may be different from h ,  g .  In order 
to have exact reconstruction, we impose: 

So far, we have not performed anything differently from 
the usual exact reconstruction subband coding schemes 
with synthesis filters different from the decomposition fil- 
ters. If the filters satisfy the additional condition that: 

m m 

n fi(2-k$) and n H(2?C;) (64 property, using the same FIR filters for reconstruction as k =  1 k =  1 
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decay fasterthan C(1 + I ( 
E > 0, where 

as I (  I + 03, for some 

fi(() = 2-112 C k r l e - ~ n E  H(E) = 2-1P h e - inE 
n n 

(6b) 
then we can give the following interpretation to ( 2 )  and 
(4). Define functions 6 and 4 by 

4(x) = c hn4(2x  - n )  and $(x) = hn$(2x - n) .  

Their Fourier transforms are exactly the infinite products 
(6a), and they are, therefore, well-defined square inte- 

n n 

grable functions, compactly supported 
h are FIR. Define also 

$(x) = c gt,q5(2x - n)  and $(x) = 

Then, the a , , , ( f )  and c, , ,( f)  in ( 2  

n 

as : 

f the filters h and 

c &$(2x - n). 
I 1  

can be rewritten 

The filter bank structure with the associating wavelets 
and scaling functions is depicted on the following sub- 
band coding scheme (Fig. 1 ) .  

If the infinite products in (6a) decay even faster than 
imposed above, then 4 and 4 and consequently $ and $ 
will be reasonably smooth. Note that (7) is very similar 
to the orthonormal decomposition described in Section 
11-A; the only difference is that the expansion o f f  with 
respect to the basis $,,,,, uses coefficients computed via 
the dual basis $m,,, with $ different from $. This interpre- 
tation is not possible for all exact reconstruction subband 
coding schemes; in particular, convergence of the infinite 
products (6a) is only possible if 

C h,, = 2'1' and h,, = 2 ' f 2 .  
I 1  n 

Moreover, (7) can only hold if 

c ( - l ) " h ,  = 0 and ( - l )nhn  = 0. 
n n 

Most exact reconstruction subband coding schemes do 
not satisfy these conditions. 

Biorthogonal bases of wavelets have rgcently been con- 
structed, with regularity simultaneously but indepen- 
dently, by Cohen, Daubechies and Feauveau [12] and by 
Herley and Vetterli [38]. Reference [12] contains a de- 
tailed mathematical study, with proofs that, under the 
conditions stated above, the wavelets do indeed constitute 
numerically stable bases (Riesz bases) and a discussion of 
necessary and sufficient conditions for regularity. In [ 181 

@ 4j 

x{-F ;TF 
G(W 

w v 
Fig. I ,  Filter bank structure and the associating wavelets 

Feauveau explores the construction from the point of view 
of multiresolution spaces rather than from the filters. Bas- 
ically one has two hierarchies of spaces in the bior- 
thogonal case, each corresponding to one pair of filters. 

It is shown in [12] that arbitrarily high regularity can 
be achieved by both $ and $, provided one chooses suf- 
ficiently long filters. In particular, if the functions $ and 
$ are, respectively, ( k  - 1) and ( k  - 1 )  times continu- 
ously differentiable, then the trigonometric polynomials 
H( ( )  and e(() have to be divisible by ( 1  + e P J o k  and 
( 1  + respectively, so that the length of the corre- 
sponding filters h ,  h has to exceed k ,  k. 

By ( 5 ) ,  divisibility of A(( )  by ( 1  + means that $ 
will have k consecutive moments zero: 

dx x'$(x) = 0 ,  for 1 = 0,  1, . . . , k -  1 .  s 
For more details concerning this discussion, see [ 121. 
It is well known (and it can easily be checked by using 

Taylor expansions) that if $ has E moments zero, then the 
coefficients ( $rn, ,,, f ) will represent functions f, which 
are f times differentiable, with a high compression poten- 
tial (many coefficients will be negligibly small). 

Many examples of biorthogonal wavelet bases with rea- 
sonably regular $ and $ can be constructed; for our ap- 
plications, - the regularity of the elementary building blocks 
$ m , n ,  which is linked to the number of zero moments of 
$, is more important than the regularity of the $,,,,,, or the 
number of zero moments of $. Within the limits imposed 
by the support widths, we will, therefore, try to choose 
k as large as possible. 

In terms of trigonometric polynomials H(( )  and A(() .  
the exact reconstruction requirement condition on h and 
6 given in ( 5 )  reduces to (for symmetric filters) 

(8) H(()A(( )  + H(( + 7r)A(( + 7r) = 1. 

Together with divisibility of H and A, respectively, by 
(1 + and ( 1  + this leads to (see [ 121) 

where R ( ( )  is an odd polynomial in cos ((), and where 
21 = k + k (symmetry of h and h forces k + k t o  be even). 
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TABLE I 
FILTER COEFFICIENTS FOR THE SPLINE FILTERS WITH I = 3, k = 4, L = 2 

n 0 * I  + 2  k 3  k4 

Many examples are possible. We have studied in par- 
ticular the following three examples, which belong to 

2) Spline Filters: One can choose, e.g., R = 0, with 
I?($) = cos (E/2)ke- ’KE/2  where K = 0 if l i s  even, K = 1 
if k is odd. This corresponds to the filters called “spline 
filters” in [12] (because the corresponding function 6 is 
a B-spline function) or “binomial filters” in [38] (because 
the h“ are simply binomial coefficients). It then follows 
that: 

‘ 

. three different families. 

H(E> = cos ( t / 2 ) 2 1 - ‘ e ~ K t / 2  

We have looked at one example from this family; it 
corresponds to 1 = 3, E = 2 .  The coefficients hn and h;, 
are listed in Table I; the corresponding scaling functions 
and wavelets are plotted in Fig. 2 .  

It is clear that the two filters in the first example have 
very uneven length. This is typical for all the examples in 
this family of “spline filters.” 

3) A Spline Variant with Less Dissimilar Lengths: This 
family still uses R = 0 in (9), but factorizes the right- 
hand side of (9), breaking up the polynomial of degree 
1 - 1 in sin ( E / 2 )  into a product of two polynomials in 
sin ( ( / 2 )  with real coefficients, one to be allocated to H ,  
the other to H ,  so as to make the lengths of h and 6 as 
close as possible. 

The example presented here is the “smallest” one in 
this family (shortest h and 6 ) ;  it corresponds to 1 = 4 and 
k = 4. The filter coefficients are listed in Table 11; the 
corresponding scaling functions and wavelets are plotted 
in Fig. 3. 

Note that, unlike examples 1 and 3 where the 2 - 1 / 2 h , ,  
2 - 1 / 2 6 n  are rational, the entries in Table 11 are truncated 
decimal expansions of irrational numbers. The functions 
4 in examples 1 and 2 look very similar (compare Figs. 
2(a) and 3(a)); a more detailed analysis shows that the one 
in example 2 is more regular, however. Both correspond 
to 4 vanishing moments for 4. 

4) Filters Close to Orthonormal Filters: Finally, there 
exist many examples for which R # 0. In particular there 
exists a special choice of R for which th.e two filters are 
very close to each other, and both very close to an or- 
thonormal wavelet filter. 

-4 -3 -2 -1 0 1 2 3 4 

(a) 

3 1 

-1‘ I 
- 4 - 3 - 2 - 1  0 1 2  3 4 5 

(d) 
Fig. 2. Scaling functions 6, 6 and wavelets $, 4 for example 1 (spline 
filters with 1 = 3, k = 4, L = 2).  (a) Scaling function 6. (b) Scaling func- 
tion 4. (c) Wavelet $. (d) Wavelet $. 

Surprisingly, for the first example of this series, one 
of the two filters is a Laplacian pyramid filter pro- 
posed in [9]. It corresponds to 1 = 2, k = 2 and 
R(E) = 48 cos (t;)/175. The filter coefficients are listed 
in Table 111; the corresponding scaling functions and 

wavelets are plokted in Fig. 4. It is clear that the scaling 
functions and_+ are very similar, corresponding to very 
similar II, and II,. Note that in this case, the filter coeffi- 
cients are again rational. 
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TABLE 11 

LENGTHS. W I T H  I = 4 = k ,  K = 4 

n 0 + 1  +2 + 3  *4 

FILTER COEFFICIENTS FOR T H E  S P L I N E  V 4 R I A N T  WITH LFSS DISSIMIL4R 

2 - '  'h,, 0 602 949 0 266 864 -0 078 223 -0 016 864 0 026 749 
2 ' 'h;, 0 5.57 543 0 295 636 -0 028 772 -0 045 636 0 

7 

1 5 -  

1 -  

0 5 -  

- O f  - 1  7 r 

Fig. 3. Scaling functions 4,  4 and wavelets 6. 4 for example 2 (spline 
variant with less dissimilar lengths: I = 4 = k ,  E = 4) .  ( a )  Scaling function 
4.  (b) Scaling function 4 .  (c) Wavelet $. (d )  Wabelet 4 .  

TABLE 111 
FILTER COEFFICIENTS FOR EXAMPLE 3. THE ENTRIES A R E  R A T I O N A L ,  ~ Y D  

T H E  T W O  FILTERS ARE VERY C L O S E .  THE  FILTER COINCIDES WITH A 
LAPLACIAN P Y R A M I D  FILTER PROPOSED IN [ 9 ] .  I Y  THIS C A S E  

1 = 2  = k , F =  2 

n 0 i 1  + 2  * 3  i 4  

2 - ' " h n  0.6 0.2s  -0.05 0 0 
2 - l  'h,, 17/28 73/280 -3 /56  -3/280 0 

ist various extensions of the one-dimensional wavelet 
transform to higher dimensions. We follow Mallat [27] 
and use a two-dimensional wavelet transform in which 
horizontal and vertical orientations are considered pref- 
erential. 

In two-dimensional wavelet analysis one introduces. like 
in the one-dimensional case, a scaling function $(x, y )  
such that: 

The two biorthogonal filters in this example are both 
close to an orthonormal wavelet filter of length 6 con- 
structed in [17], where it was called a L'coiflet." Being 
an orthonormal wavelet filter, the coiflet is nonsymme- 
tric. The filters in  this example are shorter than in exam- 
ples 1 and 2, but k is also smaller. The next example in 
this family corresponds to k = 4 (and 1 = 4); the filters h 
and h then have length 9 and 15; they are both close to a 
coiflet of length 12. 

5) Extension to the Two-Dimensional Case: There ex- 

where $(x) is a one-dimensional scaling function. 
Let $(x) be the one-dimensional wavelet associated with 

the scaling function $(x). Then, the three two-dimen- 
sional wavelets are defined as: 
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Initial image 
corresponding to 
the resolution 
levelm-1 - 

-0 5' I 
-4 -3 -2 -1 0 1 2 3 4 

h 2 1  1 

g 11 2 

h 11 2 

-1.51 I 
-4 -3 -2 - 1  0 1 2 3 4 5 

-1 5 I 
- 4 - 3 - 2 - 1  0 1 2  3 4 5 

(d) 
Fig.  4 .  Scaling functions 4, 6 and wavelets $, $ for example 3 (bior- 
thogonal filters c lose to an orthonormal wav5let filter, 1 = 2 = k ,  = 2 ) .  
(a) Scaling function 6 .  (b) Scaling function 6. (c) Wavelet $. (d) Wavelet 
IJ 

Image conspanding 
to the low resoluhon 
level m 

'1 
Detail images 
corresponding to the 
information visible at the 
resolution level m-1 

Fig.  5 .  One stage in a multiscale image decomposition. 

Fig. 5 represents one stage in a multiscale pyramidal 
decomposition of an image: wavelet coefficients of the 
image are computed, as in the one-dimensional case (Sec- 
tions 11-A and 11-B. l ) ,  using a subband czding algorithm. 
The filters h and g are one-dimensional filters. This de- 
composition provides subimages corresponding to differ- 
ent resolution levels and orientations (see Fig. 6). The 
reconstruction scheme of the image is presented Fig. 7. 

To compare the three different filters presented in this 
paper, we have decomposed the image Lena (Fig. 16) with 
each of these filters. The results are presented in Fig. 8. 

In Fig. 8(a) we can see the normalized detail subimages 
at different resolution levels m = 1, m = 2, and m = 3 
(wavelet coefficients) and in Fig. 8(b) the low resolution 
level subimages. 

111. IMAGE CODING APPLICATION 
A.  Statistical Properties of Wavelet Coeflcients 

The performance of a coder used for a given resolution 
and direction can be determined by the statistics of the 
corresponding subimage, i.e., its probability density 
function (PDF). 
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m t 2  

Low resolution 
sub-image 

Resolution m=2 

Vertical 
onentation 
sub-image 

m=2 

Resolution m=2 

Horizontal 
orientation 
sub-image 

Resolution m=2 

Diagonal 
orientation 
sub-image 

Resolution m=l  

Vertical 
orientation sub-image 

m= 1 

Resolution m=l 

Horizontal 
orientation sub-image 

Resolution m=l  

Diagonal 
orientation sub-image 

I I 

Fig. 6 .  Image decomposition. 

COLUMNS ROWS 

I T 2  h Image corresponding 
to the low resolution 
level m 

l t 2  g 

Detail images 
resolution level m h E l f  2 

\ IT 2 g 

Convolve w t h  filter X 

Fl Put one column of rem 
between each mlumn 

Put one ligne of zem 
between each ligne 

Multiply by 2 

Fig. 7. One stage in a multiscale image reconstruction 

A typical PDF and different approximations are given 
in Fig. 9, where we plot the true PDF for resolution level 
m = 1 and direction d = vertical together with three model 
functions: a Gaussian, a Laplacian, and an intermediate 
function, the so-called generalized Gaussian [2]. 

This generalized Gaussian law is given explicitly by 

P m . d ( X )  = am.d exp ( - 1  bm.dX I r m , d )  

with 
P (- 3 

(13) 
where u m , d  is the standard deviation of the subimage 
(m, d ) ,  and r( ) is the usual Gamma function. 

The general formula (13) contains the other two ex- 
amples as particular cases: 

rm,d = 2 leads to the well-known Gaussian PDF; 
rm,d = 1 leads to a Laplacian PDF. 

The variance of this approximation model is set equal 
to the variance of the corresponding subimage. Thus the 
parameter rm,d is computed in order to match the real PDF 
using the well-known chi-squared test. In this case the 
optimum parameter was 0.7. Other experiments for other 
resolutions (except the lowest resolution) lead to very 
similar results. 

We can see in Fig. 9 that the real PDF (scale m = 1 
and vertical orientation) is closely approximated by a gen- 
eralized Gaussian law with parameter r l , ( ,  = 0.7. 

B. Encoding of Wavelet Coejicients Using Vector 
Quantization 

Different techniques involving vector or scalar quanti- 
zation can be used to encode wavelet coefficients. 

According to Shannon’s rate distortion theory, better 
results are always obtained when vectors rather than sca- 
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47 

m = 3  
32 x 32 pix 

43 

m = 3  
32 x 32 pix 

5 7  

5-7 

Fig. 8. Comparison among the different subimages. (a) Comparison among 
the normalized detail subimages. (b) Comparison among the low resolution 
level subimages. 

lars are encoded. Therefore, the present application uses 
vector quantization. 

1 .  Principle of Vector Quantization: Developed re- 
cently by Gersho and Gray (1980) [20], @ 13, vector quan- 
tization has proven to be a powerful tool for digital image 
compression [4], [29], [30], [32], [39]. The principle in- 
volves encoding a sequence of samples (vector) rather than 
encoding each sample individually. Encoding is per- 
formed by approximating the sequence to be coded by a 
vector belonging to a catalogue of shapes, usually known 
as a codebook. 

The codebook is created and optimized using the well- 
known Linde-Buzo-Gray (LBG) [26] classification al- 

gorithm with a mean squared error (MSE) criterion. This 
algorithm is designed to perform a classification based on 
a training set comprised of vectors belonging to different 
images; it converges iteratively toward a locally optimal 
codebook. 

Each of the vectors in the codebook is indexed. At the 
encoding stage, the index of the vector in the codebook 
most closely describing (in terms of MSE criterion) the 
sample set to be encoded is selected to represent this set. 
Of course, in order to reconstruct the sample set, the de- 
coder must have the same codebook as the coder. 

The encoding/decoding scheme depicted in Fig. 10 was 
proposed in [29] and [30] for orthonormal wavelets. 
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RECONSTRUCTION TRANSFORM 

WAVELEI VECTOR 
TRANSFORM - DECOMFOSLTIO 

Wavelet coefficients 
Fig. 9. Real PDF of subimage at scale m = I for vertical orientation, and 

its different approximations. 

wt 
W? 

Y' 

w,. 

CODER DECODER 

J 
WJ Mm dW,, W,) ..... 

Fig. 10. Encoding/decoding scheme 

2)  Comparative Performances of Vector Quantization 
(VQ) and Scalar Quantization (SQ): According to [3], 
[ 131, [ 191, [43], [30] the asymptotic lower bound distor- 
tion gain obtained when VQ, rather than SQ, is applied 
to a subimage is expressed as: 

2-' 
GLQd I 

(c  -k llA(krn,d, c)  

X 

[ [ P r n , d ( x ) l k " , . d / ( c + k , , , . d  

(14) 
for a subimage corresponding to resolution m and direc- 
tion d.  P r n , d ( X )  is the PDF of wavelet coefficients of the 
subimage with resolution m and direction d.  

Here, the MSE criterion is used as a distortion measure 
( c  = 2). The values of A(krn,d, 2) ussd are the upper 
bounds of the MSE computed and tabulated by Conway 
and Sloane for vector size km,d [13]. This formula gives 
an indication of the minimum theoretical gain that can be 
obtained. 

However, this approximation is valid only for small 
quantization errors, i .e.,  for a high bit rate Rrn,d. Thus the 
gain G,"Qd only gives here an asymptotic indication. 

In Fig. 11, the curves of GIQd are plotted as a function 
of the vector dimension krn,d for the Laplacian, Gaussian, 

(r = 0.5) 

I 
0 2 4 6 8 10 12 14 16 

Vector dimension k 
Fig. 11. Asymptotic lower bound distortion gain Gl:, = function (k,,, <,). 

and generalized Gaussian approximation laws, and for a 
subimage at scale m = 1 and vertical orientation. Exper- 
imental results are closely matched by the theoretical re- 
sults for a generalized Gaussian law with rnl,d = 0.7 ex- 
cept for the lower subband. Therefore, all computations 
based on this approximation law show that, in each sub- 
band, VQ outperforms SQ (see Fig. 11). 

In summary VQ performs better for coding wavelet 
coefficients. 

3) Generation of a Multiresolution Codebook: The 
preceding paragraph explained why VQ outperforms other 
methods. Nonetheless, major problems are encountered 
in the VQ of images. 

It is impossible to create a universal codebook (effi- 
cient for each image to be encoded). 
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The LBG algorithm smooths high frequencies (loss 
of resolution). 

There is a trade-off between low distortion and high 
compression rate (computational cost). 

It is not easy to take into account the properties of 
the human visual system [28], [33]. 

The use of the wavelet transform (i.e., multiresolution) 
is one way of overcoming these different problems. 

The wavelet decomposition of an image enables the 
generation of a codebook containing two-dimensional 
vectors for each resolution level and preferential direc- 
tion (horizontal, vertical, and diagonal). Each of these 
subcodebooks (see Fig. 12) is generated using the LBG 
algorithm. 

The training set is comprised of vectors belonging to 
different images corresponding to the resolution and ori- 
entation under consideration. 

The initial codebook is generated by splitting the 
centroid (center of gravity) of this training set [2 11. 

A multiresolution codebook can thus be obtained by as- 
sembling all of these resulting subcodebooks. Each sub- 
codebook has a low distortion level and contains few 
words, which clearly facilitates the search for the best 
coding vector; the coding computational load is reduced, 
because only the appropriate subcodebook (resolution di- 
rection) of the multiresolution codebook is checked for 
each input vector. In addition, the quality of the coded 
image is better. The multiresolution codebook is depicted 
in Fig. 12. 

Global codebook design has drawbacks in that it results 
in edge smoothing while the proposed method preserves 
edges. In fact, each subcodebook contains the shape of 
the wavelet coefficients which are most highly represen- 
tative in terms of the MSE criterion. 

Since the spatial and frequency aspects of the image are 
taken into account in the wavelet decomposition, the clas- 
sification and search during the encoding of a subimage 
vector can be achieved using a simple criterion such as 
least mean squares. This frees us from using distortion 
measurements such as weighted least mean squares or 
other measurements involving perceptual factors. These 
algorithms are indeed costly in computation time. 

C. Optimal Bit Allocation 
Multiresolution exploits the eye's masking effects, and 

therefore, enables us to refine and select the type of cod- 
ing according to the resolution level and the contour ori- 
entation. Although a flat noise shape minimizes the MSE 
criterion, it is generally not optimal for a subjective qual- 
ity of image. To apply noise shaping acrzss the VQ sub- 
images, we define a total weighted MSE distortion D f  (RT) 
(( 17)) for a total bit rate RT (( 18)). 

Let us define Dln ,d (R ln ,d )  the average distortion in the 
coding of the subimage (m ,  d )  for Rln,d bits per pixel: 

Dill,d(Rl,.d) = E(lx - q(x)I') = 4x7 q ( 4 )  c 2 1 

(15) 

orientahon 

Horuontal 
orientation 

Sub-codebook 

Vertical 
orientation 

onentation 
Sub-codebook 

Horuontal 
onentation 

Sub-codebook 

Vertml 
onentation 

Sub-codebook 

Dugonal 
onentation 

Sub-codebook 

// 

Fig. 12. Multiresolution codebook 

for all coefficients x belonging to the subimage, q(x) being 
the quantization of x. 

Total distortion of the image for a total rate of RT bits 
per pixel is then given by: 

l 3  M 1 
D T ( R T )  DLQ(R?) + 22" dzl D m , d ( R 1 n , d )  

(16) 
where DLQ(RZ)  corresponds to the distortion in the sub- 
image of lowest resolution M (texture subimage). 

The problem of finding an optimal bit assignment (in 
bits per pixel) for each subimage vector quantizer is then 
formulated as: 

1 
Min D f ( R T )  = ~ DLQ(RLQ) 

22M 
M 

R">.d I 
l 3  M 1 

subject to: RT = 2~ R F  + c 5 c Rm,d (18) 2 m = l  2 d = l  

where R F  corresponds to the bit allocation, in bits per 
pixel, of lowest resolution M subimage. 

Assignment of the weights is based on the fact that the 
human eye is not equally sensitive to signals at all spatial 
frequencies. On the basis of contrast sensitivity data col- 
lected by Campbell and Robson [ lo], and to obtain a con- 
trolled degree of noise shaping across the subimages, we 
consider a function Bln,d such that: 

(19) 
where oln, is the standard deviation corresponding to sub- 
image ( m ,  d )  and the values of y and Pl,l,d are chosen 
experimentally in order to match human vision. 

D f  (RT) is the total weighted encoding distortion func- 
tion, and M is the lowest resolution considered. 

The expression of D,ll,d(R,n,d) is given by [19] 

D in.  d (R,,,d) = 2-cR't1.1' x ( ~ , , ~ , ~ ( p ,  e ) ,  c 2 1 

Bl,l,d = y"' log (02""." I l l .  d 

with 

~ , . d ( P ,  c) = A(k,n,d, c )  
(c  + k,,,.,,) 

' d x ]  . 

(20) 
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This minimization problem can be solved by using La- 
grangian multipliers. Using this technique, we must solve 
the following equation: 

where h is a Lagrangian multiplier. 
Using (17) and (20), this equation becomes: 

(22) 
Taking the partial derivative with respect to Rm,d yields 

an expression for R,,., in terms of A: 

By substituting (23) into the constraint (18) of the min- 
imization problem we obtain an expression of the Lagran- 
gian multiplier h 

M 3  
= e in 2 ~ - c ( R T - ( I / ~ ~ ) R ~ P )  I m = l  d = l  

IV. EXPERIMENTAL RESULTS 
The images used are sampled 256 by 256 black and 

white images. The intensity of each pixel is coded on 256 
grey levels (8 bpp). 

The numerical evaluation of the coder's performance is 
achieved by computing the peak signal-to-noise ratio 
(PSNR) between the original image and the coded image. 

For each coded image, we can use a variable length 
code. We also give the corresponding a, if an optimal 
entropy coding was performed, defined as follows. 

* , L of the vector 
quantizer corresponds to L regions (clusters) of E', 
s,;; = 1, 2, * * - , L.  The jth region is defined by 

SJ = {x E IRk /Q(x)  = w J }  

and represents the subset of vectors of IRA which are well 
matched by the codeword w, of the codebook. 

Thus for each resolution and direction, we can intro- 
duce the average information of the codebook, called the 
entropy measure: 

To the L codewords wJ; j = 1, 2, 

l L  
km,(f J = I 

am,</ = - ~ x P(w,) log2 P(w,) bpp 

where p(w,) is the probability of selecting the source vec- 
tor wJ, belonging to the codebook at scale m and corre- 
sponding to the orientation d ,  during the coding of the 
image ( m ,  d). 

Then, as in (18), a T i s  the sum of the estimated entropy 
in each subimage as follows: 

The vector quantizer used is a fu l l  search quantizer, 
i .e.,  during the coding, all of the vectors in the subcode- 
book corresponding to the resolution and direction to be 
encoded are searched. The selection criterion used is the 
MSE criterion. 

(24) 

Finally, substituting h into (23) results in an expression 
of the optimal bit assignment Rm,d,,p, (in bits per pixel 
(bpp)) to the vector quantizer of subimage ( m ,  d ) :  

. 1% d (P 9 c)  B,,,, d 1 I /4"' 

This expression requires the knowledge of the sub- 

The optimal distortion of the quantizer, D?,,,,(RT), is 
image's PDF's. 

then computed by combining (25) and (17). We find: 

D;lp,(RT) - DLQ(R&Q) I 4M - 

A .  Comparison Between the Different Wavelets 
In the following, we present results obtained with the 

Lena image (image within the training set) for a real bit 
rate of 1 bpp and using the three different filters proposed 
in Section II-B. (Fig. 13 corresponds to filters 9-3 pre- 
sented in example 1, Fig. 14 corresponds to filters 9-7 
presented in example 2, and Fig. 15 corresponds to filters 
5-7 presented in example 3.) Here, the Lena image is 
taken as part of the training set in order to minimize the 
effects of quantization noise: this enables the influence of 
the filters to be taken into account. 

For a given set of filters, separate codebooks are trained 
for each resolution-orientation subimage, and bit alloca- 

1 2 - ~ ( 4 ~ ~ T  -R;~ ,Q, /~M- I 

22M 4M 
4M/4W- I 

m = I  d = l  

(26) 
Finally, bit allocation which is a function of the image 

will be transmitted as side information requiring only a 
few bits. 
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Fig.  13. Filters no .  1 9-3, PSNR = 31.82 dB, CR7 = 0.80 bpp 

Fig.  14. Filters no. 2, 9-7, PSNR = 32.10 dB, R7 = 0.78 bpp 

tion is carried out according to (25). For the Lena image, 
the bit assignment is represented in Fig. 17. Resolution 1 
(diagonal orientation) is discarded. Resolution 1 (hori- 
zontal and vertical orientations) and resolution 2 (diago- 
nal orientation) are coded using 256-vector codebooks 
(codeword size 4 by 4) resulting in a 0.5-b/pixel rate, 
while resolution 2 (horizontal and vertical orientations) is 
coded at a 2-b/pixel rate using 256-vector codebooks 

Fig.  15. Filters no. 3, 5-7, PSNR = 31.46 dB, RT = 0.80 bpp 

Fig.  16. Original 256 by 256 Lena, 8 bpp 

(codeword size 2 by 2). Finally, the lowest resolution is 
coded at 8 b/pixel. 

B. Results as a Function of Regularity and Vanishing 
Moments 

In Section 11-B, we mentioned our belief that both the 
regularity of the reconstruction wavelet $ and the number 
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increasing bit ra te  

m 2 2  m =  2 m =  I 

N = 256 
Size 2x2 (k=4) 

0.5 bpp 
N = 256 codewords 

scalar 
auantization 

bpp I 0.5 bPp I Size4x4 (k=16) 
N = 256 N = 256 

I 0.5 bpp 
N = 256 codewords 

Size 4x4 (k=16) 

I VQ 
0 bPP 

Fig. 17. Subimages bit rate allocation: example of a bit allocation for a 
total bit rate of 1 bpp and for the 256 by 256 Lena image. 

of vanishing moments of the analyzing wavelet $ are im- 
portant in applications. To illustrate this we carried out 
the following experiments. For a given pair, h, h, we ana- 
lyzed the same image twice: once as described above, and 
a second time after exchanging the roles of the filters h 
and 6. 

The filter pairs in example 2 both have the same number 
of vanishing moments, k = k = 4. However, $ is con- 
siderably more regular than $ (see Fig. 3). With this filter 
pair, our experiment on the Lena image led to a PSNR of 
32.10 dB in the first case, and to a PSNR of 31.51 dB if 
the roles of h and h are inverted. The case where the re- 
construction wavelet has the highest regularity, therefore, 
performs best. 

In example 1 the functions $ and $ have comparable 
regularity: both are continuous and neither has a contin- 
uous derivative. In fact 4 is a bit more regular than +: $ 
is differentiable almost everywhere, and is Holder contin- 
uous with exponent 1, while $ is Holder continuous with 
the exponent only at 0.83. On the other hand, $ has 2 
vanishing moments, while $ has 4 (k  = 4,  k = 2). The 
same experiment, again with the Lena image, now leads 
to a PSNR of 3 1.82 dB if h ,  h are taken as in Table I, and 
to a PSNR of 3 1.13 dB when the roles of h and 6 are 
reversed. The situation where $ is most regular but $ has 
fewer vanishing moments, therefore, performs better (gain 
of 0.69 dB) than the case where $ has more vanishing 
moments but $ is less regular. This seems to suggest that 
the regularity of $ has a larger effect than the number of 
vanishing moments of $. However, in this example the 
difference in overall regularity, as measured by the dif- 
ferences between Holder exponents, is much smaller here 

than in example 2 (0.17 as compared to 0.63 in example 
2), and it seems hard to explain how this smaller differ- 
ence in Holder exponent could account for a comparable 
gain in PSNR. In fact, the Holder exponent is not a very 
good measure for the regularity of $ in this case: it is 
completely determined by the discontinuity of the deriv- 
ative of $ in only a few points, and it is insensitive to the 
fact that 1c/ is infinitely differentiable in all other points. If 
this is taken into account, then $ looks much more regular 
than $ (the Holder exponent of which is determined by its 
behavior near a dense set of points), which might explain 
the gain in PSNR. 

We conclude from all this that: 1) for the same number 
of vanishing moments for +, the scheme with most reg- 
ular $ is likely to perform best; and 2) increasing the reg- 
ularity of $, even at the expense of the number of vanish- 
ing moments for +, may lead to better results. 

Based on theoretical arguments (Taylor expansions) and 
results from numerical analysis [8], we also expect: 3) for 
comparable regularity of $, the scheme with largest van- 
ishing moments for $ is likely to perform best. 

C. Comparison with Other Coders 
If the PSNR is chosen as a criterion of comparison, 

these results are close to those obtained by Woods and 
O’Neil [42] and Westerink er al. [40]. However, in their 
subband coding algorithm, they use 32-taps Johnston fil- 
ters, while only 9 or 7 taps are necessary for our method. 
According to Westerink’s results in [41], the PSNR de- 
creases by about 2 dB when using 8-taps Johnston filters. 
However, some others new QMF designs can also lead to 
good results with about 9 taps for image coding [ 11. 

In this section, we present both numerical and qualita- 
tive comparison between our coding scheme and other 
previously published results. Since the most popular im- 
age in the recent literature has been the 512 by 512 Lena 
image, the comparison is made using this image taken 
outside the training set. 

Among the different methods published, we consider 
the three following well-known methods: Ho and Gersho 
obtained a 30.93-dB PSNR at 0.36 bpp, result using 
“variable-rate multi stage VQ” [23]. Riskin and Gray 
improved on the full search VQ (PSNR = 29.29 dB, 0.32 
bpp) using pruned tree structured VQ (PSNR = 30.92 dB, 
0.32 bpp) [34]. High PSNR values were obtained by 
Woods and Cohen using entropy coded and predictive VQ 
(PSNR = 32.5 dB, 0.45 bpp) [ 111. 

Our aim is not to optimize the PSNR but rather a 
weighted function of the MSE in order to match human 
vision. We give two examples at low bit rate using 
wavelet VQ. 

Our initial result at 0.37 bpp presented Fig. 18 with a 
30.85-dB PSNR is very close to those of Ho and Gersho 
[23] and Riskin et al. [34]. The perceptual quality of our 
coded images is better than indicated by the PSNR value 
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wavelet theory using full search VQ can be improved by 
any of the three above-mentioned methods. 

In fact the LBG clustering algorithm is a very simple 
algorithm but not optimal for variable length code. The 
PSNR of the method could be improved by about 3 dB, 
for example, using ECVQ [34] but CPU time becomes 
prohibitively expensive. 

D. Progressive Transmission Scheme 
The main objective of progressive transmission is to 

allow the receiver to recognize a picture as quickly as pos- 
sible at minimum cost, by sending a low resolution level 
picture first. Then, it can be decided to receiver further 
picture details or to abort the transmission. Further details 
of the picture are obtained by sequentially receiving the 
encoded wavelet coefficients at different resolution levels 
and directions. 

Following the example of [40], we will display each 
picture level during the progressive transmission with a 
size that matches the resolution of that particular level. 

To test the efficiency of the vector quantizer, the image 
to be coded is taken outside the training set. 

Fig. 20 represents 5 stages in  the progressive transmis- 
sion of a 256 by 256 image using filters 9-7 given in ex- 
ample 2. According to the bit allocation procedure (Sec- 
tion 111-C) with a generalized Gaussian PDF 
approximation law, only the wavelet coefficients corre- 
sponding to the m = 1 and m = 2 high resolution levels 
are vector quantized, while the low level subimages 
( m  I 2) are scalar quantized. 

Fig. 18. 512 by 512 Lena image. Filters no. 2 9-7, PSNR = 30.85 dB, 
(R, = 0.37 bpp. 

Fig. 19. 512 by 512 Lena image. Filters no. 2 9-7, PSNR = 29.11 dB, 
6, = 0.21 bpp. 

mainly due to the regularity of the wavelet and the bit 
allocation. These images do not suffer from the blocking 
effects obtained when using VQ in the spafial domain. No 
ringing effects can be observed. 

The second result at 0.21 bpp presented in Fig. 19 with 
a 29.11-dB PSNR shows that a very low bit rate can be 
achieved with our method, without severe degradation. 

Our method using a new class of filters derived from 

V. CONCLUSION 
This paper describes a new image coding scheme com- 

bining the wavelet transform and VQ. 
A new family of filters has been derived from the 

wavelet theory. We have shown the importance of regu- 
larity and vanishing moments for image coding. Further- 
more, these filters require few taps, unlike standard QMF 
methods. 

The wavelet transform used here attempts to exploit the 
masking effect of the human eye, yielding encouraging 
results. Indeed, the proposed method enables high 
compression bit rates while maintaining good visual qual- 
ity through the use of bit allocation in the subimages. The 
blocking effects seen when spatial VQ is performed are ’ 
avoided. 

This method is well adapted to progressive transmis- 
sion as well as very low bit rate compression. Further- 
more, using a simple full-search VQ provides good re- 
sults, comparable to the best results published currently. 

Further research should include some new derivation 
such as entropy constraint and predictive VQ. We would 
improve this coding scheme, if we accept a heavier com- 
putational load. 
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Fig. 20. Progressive transmission-filters no. 2 9-7 

REFERENCES [2] M. Abramowitz, I .  A. Stegun, Handbook of Mathernotical Functions. 
New York: Dover, 1965. 

[3] V. R.  Algazi, “Useful approximation to optimum quantization,” 
IEEE Trans. Cornrnun.. vol. COM-14, pp. 297-301, June 1966. 

[4] M. Antonini, M .  Barlaud, P. Mathieu. and I. Daubechies, “Image 

[ I ]  E. H .  Adelson and E.  Simoncelli, “Non-separable extensions of 
quadrature mirror filters to multiple dimensions,” Proc. IEEE, vol. 
7 8 ,  Apr. 1990. 

APPENDIX H

Microsoft Corp.   Exhibit 1005



220 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 1 .  NO. 2. APRIL 1992 

coding using vector quantization in the wavelet transform domain,” 
in Proc.  IEEE ICASSP, April 1990, pp. 2297-2300. 

[5] M. Barlaud, L. Blanc-Feraud, P. Mathieu, J .  Menez, and M. Anton- 
ini, “2D linear predictive image coding with vector quantization,” 
in Proc.  EUSIPCO, Grenoble, France, Sept. 5-8, 1988, pp. 1637- 
1640. 

[6] M. Barlaud, P. Mathieu, and M. Antonini, “Wavelet transform im- 
age coding using vector quantization,” presented at 6th Workshop on 
MDSP, Monterey, CA, Sept. 1989. 

[7] G.  Battle, “A block spin construction of wavelets. Part I Lemarie 
functions,” Comm. Math. Phys . ,  vol. 110, pp. 601-615, 1987. 

[8] G.  Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms 
and numerical analysis. I ,” to be published. 

[9] P. Burt and E. Adelson, “The Laplacian pyramid as a compact image 
code,” IEEE Trans. Commun., vol. 31, pp. 482-540, 1983. 

[ lo] F. W. Campbell and J .  G. Robson, “Application of Fourier analysis 
to the visibility of gratings,” J .  Phys . ,  vol. 197, pp. 551-566, 1968. 

[ I l l  R. A. Cohen and J. W. Woods, “Sliding block entropy coding of 
images,” in Proc.  IEEE ICASSP, Glasgow, Scotland, May 23-26, 

(121 A. Cohen, I. Daubechies, and J .  C. Feauveau, “Biorthogonal bases 
of compactly supported wavelets,” AT&T Bell Lab., Tech. Rep., 

[13] J .  H. Conway and N. J .  A. Sloane, “A lower bound on the average 

1989, pp. 1731-1733. 

TM 11217-900529-07, 1990. 

error of vector quantizers,” IEEE Trans. Inform. Theory, vol. IT-31, 
pp. 106-109, Jan. 1985. 
I .  Daubechies, A. Grossman, and Y. Meyer, “Painless nonor- 
thogonal expansions,” J .  Math. Phys . ,  vol. 27, pp. 1271-1283, 1986. 
I .  Daubechies, “The wavelet transform, time-frequency localization 
and signal analysis,” to be published. 
-, “Orthonormal bases of compactly supported wavelets,” Comm. 
Pure Appl. Math . ,  vol. 41, pp. 909-996, 1988. 
-, “Orthonormal bases of compactly supported wavelets. 11. Var- 
iations on a theme,” AT&T Bell Lab., Tech. Rep. TM 11217-891 116- 
17, 1990. 

[ 181 J .  C. Feauveau, “Analyse multiresolution par ondelettes non orthog- 
onales et bancs de filtres numiriques,” Ph.D. dissertation, Univ. 

1231 

Paris Sud, France, Jan. 1990. 
A. Gersho, “Asymptotically optimal block quantization,” IEEE 
Trans. Inform. Theory, vol. IT-25, July 1979. 
-, “On the structure of vector quantizers,” IEEE Trans. Inform. 
Theory, vol. IT-28, Mar. 1982. 
R. M. Gray, “Vector quantization,” IEEE ASSP M a g . ,  pp. 4-29, 
Apr. 1984. 
A. Grossman and J .  Morlet, “Decomposition of hardy functions into 
square integrable wavelets of constant shape,” SIAM J .  Math Anal . ,  

Y. Ho and A. Gersho, “Variable-rate multi-stage vector quantization 
vol. 15, pp. 723-736, 1984. 

[36] J .  0. Stromberg, “A modified haar system and higher order spline 
systems,” in ConJ in Harmonic Analysis in Honor of Antoni Zyg- 
mund. Vol. 11, pp. 475-493. 

[37] M. Vetterli, “Splitting a signal into subsampled channels allowing 
perfect reconstruction,” in Proc.  IASTED Con$ Appl. Signal Pro-  
cessing Digital Filtering, Paris, France, June 1985. 

1381 M. Vetterli and C.  Herley, “Wavelets and filter banks: Relationships 
and new results,” in Proc.  IEEE ICASSP, Albuquerque, Apr. 1990. 

[39] P. H. Westerink, D. E. Boekee, J .  Biemond, and J .  W. Woods, 
“Subband coding of image using vector quantization,” IEEE Trans. 
Commun., vo. 36, pp. 713-719, 1988. 

[40] P. H. Westerink, J .  Biemond, and D. E. Boekee, “Progressive trans- 
mission of images using subband coding,” in Proc.  IEEE ICASSP, 

[41] P. H. Westerink, “Subband coding of images,” Ph.D. dissertation 
Delft Univ., 1989. 

[42] J .  W. Woods and S.  D. O’Neil, “Subband coding of images,” IEEE 
Trans. Acoust . ,  Speech, Signal P r o c . ,  vol. ASSP-34, Oct. 1986. 

[43] P. Zador, “Asymptotic quantization error of continuous signals and 
their quantization dimension,” IEEE Trans. Inform. Theory, vol. IT- 
28, pp. 139-149, 1982. 

1 9 8 9 , ~ ~ .  1811-1814. 

Marc Antonini was born in France on August 29, 
1965. He received the DEA degree in  signal pro- 
cessing in 1988 from the University of Nice-So- 
phia Antipolis, France, and the Ph.D. degree from 
the Laboratory of Signaux et Systkmes, URA 13s. 
CNRS and the University of Nice-Sophia Anti- 
polis in 1991. 

His research interests include multidimensional 
image processing, wavelet analysis, and image 
coding. 

Michel Barlaud (M’88) was born in France on 
November 24, 1945. He received the “Doctorat 
d’Etat” degree from University of Paris XII. 

He is currently a Professor and a member of the 
Laboratory of Signaux et Systkmes, URA 13s both 
from CNRS and University of Nice-Sophia Anti- 
polis. After some work on non-stationary signal 
processing, his research interests move towards 
multidimensional image processing, wavelet anal- 
ysis, image coding, inverse problems, image res- 

for image coding,” in Proc.  IEEE ICASSP, New York, Apr. 1988. 

Pures et App l . ,  vol. 67, pp. 227-238, 1988. 

Rev. Mat .  Iberoarnericana. vol. 2,  pp. 1-18, 1986. 

toration, and edge detection. 
[24] P. G.  LemariC, “Une nouvelle base d’ondelettes de L2(IR),” J .  Math. 

[25] P. G. LemariC and Y .  Meyer, “Ondelettes et bases hilbertiennes,” 

Dr. Barlaud is member of the IEEE-ASSP MDSP committee 

1301 

.. 
Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quan- 
tizer design,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, Jan. 
1980. 
S .  Mallat, “A theory for multiresolution signal decomposition: The 
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intel.,  
vol. 11, July 89. 
D. Marr, Vision. 
P. Mathieu, M. Barlaud, and M. Antonini, “Compression d’Images 
par transformie en ondelette,” 12iSme colloque GRETSI, Juan les 
Pins,  June 12-16, 1989. 
P. Mathieu, M. Barlaud, and M. Antonini, “Compression d’Image 
par transformLe en ondelette et quantification vectorielle,” Traite- 
ment du Signal, vol. 7,  no. 2. 1990. 
Y. Meyer, “Principe d’incertitude, bases hilbertiennes et algkbres 
d’opkrateurs,” Seminuire Bourbaki, no. 662, 1%5-1986. 
N. M. Nasrabadi and R. A. King, “Image coding using vector quan- 
tization: A review,” IEEE Trans. Commun., vol. 36, Aug. 1988. 
W. K. Pratt, Digital Image Processing. 
E. Riskin, E. M. Daly, and R. M. Gray, “Pruned tree-structured 
vector quantization in image coding,” in Proc.  IEEE ICASSP, Glas- 
gow, Scotland, May 1989, pp. 1735-1738. 
M. J .  Smith and D. P. Barnwell, “Exact reconstruction for tree-struc- 
tured subband coders,” IEEE Trans. Acoust . ,  Speech, Signal Proc . ,  

New York: Freeman, 1982. 

New York: Wiley, 1978. 

vol. ASSP-34, pp. 434-441, 1986. 

Pierre Mathieu was born in  Alger on May 10, 
1956. He received the Ingenieur ENSEEIHT and 
Ph.D. degrees from INP Toulouse. 

He is currently Maitre de Conferences in  the 
Laboratory of Signaux et Systkmes, URA 13s both 
from CNRS and University of Nice-Sophia Anti- 
polis. His research interests include multidimen- 
sional image processing, wavelet analysis, image 
coding, and image restoration. 

Ingrid Daubechies (M’89) received the B.S. and 
Ph.D. degrees from the Vrje Universiteit Brussel, 
Belgium in 1975 and 1980, both in  physics. 

She is currently a Member of Technical Staff in  
the Mathematics Center of AT&T Bell Laborato- 
ries, Murray Hill, NJ. Her current research inter- 
ests include mathematical problems in connection 
with signal analysis, in particular applications of 
time-frequency representations. 

APPENDIX H

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



APPENDIX I

Microsoft Corp.   Exhibit 1005



(12) United States Patent 
Yap et al. 

(54) APPARATUS AND METHOD FOR 
REALTIME VISUALIZATION USING 
USER-DEFINED DYNAMIC, MULTI
FOVEATED IMAGES 

(75) Inventors: Chee K. Yap; Ee-Chien Chang, both 
of New York, NY (US); Ting-Jen Yen, 
Jersey City, NJ (US) 

(73) Assignee: New York University, New York, NY 
(US) 

( *) Notice: Under 35 U.S.C. 154(b), the term of this 
patent shall be extended for 0 days. 

(21) Appl. No.: 09/005,174 

(22) Filed: Jan. 9, 1998 

(51) Int. Cl? ...................................................... G06F 15/16 
(52) U.S. Cl. ............................................. 709/203; 709/246 
(58) Field of Search ..................................... 709/217, 219, 

709/246, 247, 203; 707 /10; 382/103, 233, 
235, 232, 240, 302 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,622,632 11/1986 Tanimoto . 
5,341,466 8/1994 Perlin. 
5,481,622 * 1!1996 Gerhardt et a!. ..................... 382/103 
5,568,598 * 10/1996 Mack et a!. ...................... 382/302 X 
5,710,835 * 1!1998 Bradley ................................ 382/233 
5,724,070 * 3/1998 Denninghoff eta!. ........... 382/235 X 
5,861,920 * 1!1999 Mead et a!. ...................... 382/232 X 
5,880,856 * 3/1999 Ferriere ............................ 382/240 X 
5,920,865 * 7/1999 Ariga ..................................... 707/10 

01HER PUBLICATIONS 

Tams Frajka et al., Progressive Image Coding with Spatially 
Variable Resolution, IEEE, Proceedings International Con
ference on Image Processing 1997, Oct. 1997, vol. 1, pp. 
53-56.* 

111111 1111111111111111111111111111111111111111111111111111111111111 
US006182114Bl 

(10) Patent No.: US 6,182,114 B1 
Jan.30,2001 (45) Date of Patent: 

E. C. Chang et al., "Realtime Visualization of Large ... " 
Mar. 31, 11997,pp. 1-9, Courant Institute of Mathematical 
Sciences, New York University, N.Y. U.S.A 

E. C. Chang et al., "A Wavelet Approach to Foveating 
Images", Jan. 10, 1997,pp. 1-11, Courant Institute of Math
ematical Sciences, New York University, N.Y. U.S.A 

S.G. Mallat, "A Theory for Multiresolutional Signal Decom
position ... ", IEEE Transactions on Pattern Analysis and 
Machine Intelligence,pp. 3-23, Jul. 1989, vol. 11, No. 7, 
IEEE Computer Society. 

News Release, "Wavelet Image Features",Summus'Wavelet 
Image Compression,Summus 14 pages. 

R.L. White et al., "Compression and Progressive Transmis
sion of Astronomical Images", SPIE Technical Conference 
2199, 1994. 

(List continued on next page.) 

Primary Examiner-Zarni Maung 
Assistant Examiner-Patrice Winder 
(74) Attorney, Agent, or Firm-Baker Botts, L.L.P. 

(57) ABSTRACT 

A client apparatus which enables a realtime visualization of 
at least one image. The client apparatus includes a storage 
device which stores first data corresponding to a multifove
ated representation of an original image, and a user input 
device which providing second data corresponding to at 
least one visualization command of at least one user. In 
addition, the client apparatus includes a processing arrange
ment which generates third data corresponding to a multi
foveated image using the first data, the second data and a 
foveation operator. 

8 Claims, 6 Drawing Sheets 

CONVERT USER INPUT /18 (FOVEAL REGION) TO 
(MUL Tl RESOLUTION) 

REQUEST FOR 
COEFFICIENTS 

I ~ 
SEND {MULTI DETERMINE FOVEAL 

RESOLUTION) REQUEST REGION FROM USER 

rj 
TO SERVER FOR INPUT 
COEFFICIENTS 

1 1 
UPDATE DISPLAY 

II<ECEIVE COEFFICIENTS 
WINDOWS 

(PROGRESSIVELY) 
FROM SERVER BASED ON PYRAMID 

I REPRESENTATION 

r l ';a 
I w~~~~~~~~~~~~~~M 

ON COEFFICIENTS 
(IF NECESSARY) 

AND STORE 
(PROGRESSIVELY) IN 

PYAAMID 

~ 
19 

APPENDIX J

Microsoft Corp.   Exhibit 1005



US 6,182,114 Bl 
Page 2 

01HER PUBLICATIONS 

E.L. Schwartz, "The Development of Specific Visual ... " 
Journal of Theoretical Biology, 69:655-685, 1977. 
F.S. Hill Jr. et al.,"Interactive Image Query ... " Computer 
Graphics, 17(3), 1983. 
T.H. Reeves et al., "Adaptive Foveation of MPEG Video", 
Proceedings of the 4th ACM International Multimedia Con
ference, 1996. 
R.S. Wallace et al., "Space-variant image processing". Int'l. 
J. of Computer Vision, 13:1(1994) 71-90. 

E.L. Schwartz A quantitative model of the functional archi
tecture: Biological cybernetics, 37(1980) 63-76. 

P. Kortum et al., "Implementation of a Foveated Image ... 
" Human Vision and Electronic Imagining, SPIE Proceed
ings vol. 2657, 350-360, 1996. 

M.H. Grosset al., "Efficient triangular surface ... ", IEEE 
Trans on Visualization and Computer Graphics, 2(2) 1996. 

* cited by examiner 

APPENDIX J

Microsoft Corp.   Exhibit 1005



U.S. Patent Jan.30,2001 Sheet 1 of 6 US 6,182,114 B1 

[OJ 

( 16 

1 
4 

FIG. 1 

APPENDIX J

Microsoft Corp.   Exhibit 1005



U.S. Patent Jan.30,2001 Sheet 2 of 6 US 6,182,114 B1 

N --------------~------------~ 

a b 
17 

/ 

c d 

1ir 

N/2 
L '" 

-+ N/2 
~ 

8 (a+ b + c +d) (a+ b- c- d) 1 
\,.__ a' = b'= 
~ 2 2 v-

0 

.. 
·~ ~ 

9 11 
\,.__ 
~ ~~ 

v 

c' = 
(a- b + c- d) 

d'= 
(a - b - c + d) 

2 2 

N/2 --------------. N/2 

FIG. 2A 

APPENDIX J

Microsoft Corp.   Exhibit 1005



U.S. Patent Jan.30,2001 Sheet 3 of 6 US 6,182,114 B1 

a' + b' + c' + d' 
b= 

a' + b' - c' - d' 
8= 

2 2 

l---)7 

a' - b' + ci - d' 
d= 

a' - b' - c' + d' 
C= 

2 2 

71\ 

8 (a+ b + c +d) 
b' = (a + b - c- d) 

~ ~ a' = 
2 2 

10 

~ v 9 11 

c' = (a - b + c -d) 
d' = (a-b-c+ d) 

2 2 

FIG. 28 

APPENDIX J

Microsoft Corp.   Exhibit 1005



U.S. Patent Jan.30,2001 Sheet 4 of 6 US 6,182,114 B1 

I LET l=O t 
j 

LET N = NUMBER OF ROWS AND COLUMNS OF PIXELS IN THE (SQUARE) IMAGE 

~ 
LET X = THE NEXT OF THE THREE COLOR COMPONENTS OF THE IMAGE (R, G OR B) 

~ 
LET ML (X) = BE THE NxN MATRIX WHOSE COEFFICIENTS EQUAL THE NUMERIC 
VALUE OF THE X COMPONENT OF THE CORRESPONDING PIXEL OF THE IMAGE 

j 
LET ML+l(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE -"AVERAGE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR COEFFICIENTS IN ML(X) 

~ 

LET HL+l(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE 
"HORIZONTAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR 

COEFFICIENTS IN ML{X) 

~ 
LET VL+ 1(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE 

"VERTICAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR 

COEFFICIENTS IN ML(X) 

l 
LET DL+ 1{X) =BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE 

"DIAGONAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR 

COEFFICIENTS iN ML{X) 

~ l STORE HL+1(X), VL+1(X), DL+1(X) I 
j._ 

1 L~l+1 I • I N~N/2 I 

~NO . 

s 
I STORE ML (X) I 

ARE THERE YES 
MORE COLOR COMPONENT(S) 

LEFT? 

F I G. 3 NO 

I END I 

APPENDIX J

Microsoft Corp.   Exhibit 1005



U.S. Patent Jan.30,2001 Sheet 5 of 6 US 6,182,114 B1 

CONVERT USER INPUT v18 
(FOVEAL REGION) TO 
(MUL Tl RESOLUTION) 

REQUEST FOR 
COEFFICIENTS 

SEND (MULTI 
RESOLUTION) REQUEST 

TO SERVER FOR 
COEFFICIENTS 

HECEIVE COEFFICIENTS 
FROM SERVER 

PERFORM INVERSE 
WAVELET TRANSFORM 

ON COEFFICIENTS 
(IF NECESSARY) 

AND STORE 
(PROGRESSIVELY) IN 

PYRAMID 

~ 
19 

FIG. 4 

DETERMINE FOVEAL 
REGION FROM USER ~ 

INPUT 

UPDATE DISPLAY 
WINDOWS 

(PROGRESSIVELY) I

BASED ON PYRAMID 
REPRESENTATION 

'\ 
20 

APPENDIX J

Microsoft Corp.   Exhibit 1005



U.S. Patent Jan.30,2001 Sheet 6 of 6 US 6,182,114 B1 

LET l = LEVEL OF RESOLUTION SUCH 
THAT THE SIZE OF IMAGE ML IS 128 x128 

MATRIX. THE LOWEST LEVEL OF 
RESOLUTION SUPPORTED 

200 

HAVE THE 
COEFFICIENTS 

OF ML(R), MdG) AND 
ML(B) CORRESPONDING 

TO THE PIXELS 
IN THE FOVEAL 
REGION BEEN 
REQUESTED 

REQUEST THE 
COEFFICIENTS 

ACCORDING TO THE 
MASK 

240 

260 
HAVETHE / 

HORIZONTAL, 
VERTICAL AND 

DIAGONAL DIFFERENCE 
COEFFICIENTS NECESSARY 

TO RECONSTRUCT THE 
COEFFICIENTS IN ML(R),ML(G) 
ANDML(B) CORRESPONDING 

TO THE PIXELS IN 
THE FOVEAL 

REGION BEEN 
REQUESTED? 

REQUEST THE 
DIFFERENCE 

COEFFICIENTS 
ACCORDING TO THE 

MASK 

280 

YES 

RETURN TO 250 

270 

MANAGER THREAD 

FIG. 5 

APPENDIX J

Microsoft Corp.   Exhibit 1005



US 6,182,114 Bl 
1 

APPARATUS AND METHOD FOR 
REALTIME VISUALIZATION USING USER

DEFINED DYNAMIC, MULTI-FOVEATED 
IMAGES 

2 
Technical Conference 2199, 1994, describes a progressive 
transmission technique based on bit planes that is effective 
for astronomical data. 

However, utilizing progressive transmission barely begins 

FIELD OF THE INVENTION 

The present invention relates to a method and apparatus 
for serving images, even very large images, over a "thin
wire" (e.g., over the Internet or any other network or 
application having bandwidth limitations). 

5 to solve the "thinwire" problem. A viewer zooming or 
panning over a large image (e.g., map) desires realtime 
response. This of course is not achieved if the viewer must 
wait for display of the desired resolution of a new quadrant 
or view of the map each time a zoom and pan is initiated. 

BACKGROUND INFORMATION 

10 Progressive transmission does not achieve this realtime 
response when it is the higher resolution versions of the 
image which are desired or needed, as these are transmitted 
later. 

The Internet, including the World Wide Web, has gained 
in popularity in recent years. The Internet enables clients/ 15 

users to access information in ways never before possible 
over existing communications lines. 

Often, a client/viewer desires to view and have access to 
relatively large images. For example, a client/viewer may 
wish to explore a map of a particular geographic location. 20 

The whole map, at highest (full) level of resolution will 
likely require a pixel representation beyond the size of the 
viewer screen in highest resolution mode. 

The problem could be effectively solved, if, in addition to 
variable resolution over time (i.e, progressive transmission), 
resolution is also varied over the physical extent of the 
image. 

Specifically, using foveation techniques, high resolution 
data is transmitted at the user's gaze point but with lower 
resolution as one moves away from that point. The very 
simple rationale underlying these foveation techniques is 
that the human field of vision (centered at the gaze point) is 
limited. Most of the pixels rendered at uniform resolution 
are wasted for visualization purposes. In fact, it has been One response to this restriction is for an Internet server to 

pre-compute many smaller images of the original image. 
The smaller images may be lower resolution (zoomed-out) 
views and/or portions of the original image. Most image 
archives use this approach. Clearly this is a sub-optimal 
approach since no preselected set of views can anticipate the 
needs of all users. 

25 shown that the spatial resolution of the human eye decreases 
exponentially away from the center gaze point. E. L. 
Schwartz, "The Development of Specific Visual Projections 
in the Monkey and the Goldfish: Outline of a Geometric 
Theory of Receptotopic Structure," Journal of Theoretical 

30 Biology, 69:655-685, 1977 
The key then is to mimic the movements and spatial 

resolution of the eye. If the user's gaze point can be tracked 
in realtime and a truly multi-foveated image transmitted 
(i.e., a variable resolution image mimicking the spatial 

Some map servers (see, e.g., URLs http:// 
www.mapquest.com and http://www.MapOnUs.com) use an 
improved approach in which the user may zoom and pan 
over a large image. However, transmission over the Internet 
involves significant bandwidth limitations (i.e transmission 
is relatively slow). Accordingly, such map servers suffer 
from at least three problems: 

35 resolution of the user's eye from the gaze point), all data 
necessary or useful to the user would be sent, and nothing 
more. In this way, the "thinwire" model is optimized, 
whatever the associated transmission capabilities and band-

Since a brand new image is served up for each zoom or 
pan request, visual discontinuities in the zooming and 40 
panning result. Another reason for this is the discrete 
nature of the zoom/pan interface controls. 

Significantly less than realtime response. 
The necessarily small fixed size of the viewing window 

(typically about 3"x4.5"). This does not allow much of 45 

a perspective. 

width limitations. 
In practice, in part because eye tracking is imperfect, 

using multi-foveated images is superior to atempting display 
of an image portion of uniform resolution at the gaze point. 

There have in fact been attempts to achieve multifoveated 
images in a "thinwire" environment. 

F. S. Hill Jr., Sheldon Walker Jr. and Fuwen Gao, "Inter-
active Image Query System Using Progressive 
Transmission," Computer Graphics, 17(3), 1983, describes 
progressive transmission and a form of foveation for a 
browser of images in an archive. The realtime requirement 

To generalize, what is needed is an apparatus and method 
which allows realtime visualization of large scale images 
over a "thinwire" model of computation. To put it another 
way, it is desirable to optimize the model which comprises 
an image server and a client viewer connected by a low 
bandwidth line. 

50 does not appear to be a concern. 

One approach to the problem is by means of progressive 
transmission. Progressive transmission involves sending a 
relatively low resolution version of an image and then 55 

successively transmitting better resolution versions. 
Because the first, low resolution version of the image 
requires far less data than the full resolution version, it can 
be viewed quickly upon transmission. In this way, the viewer 

T. H. Reeves and J. A. Robinson, "Adaptive Foveation of 
MPEG Video," Proceedings of the 4'h ACM International 
Multimedia Conference, 1996, gives a method to foveate 
MPEG-standard video in a thin-wire environment. MPEG-
standard could provide a few levels of resolution but they 
consider only a 2-level foveation. The client/viewer can 
interactively specify the region of interest to the server/ 
sender. 

R. S. Wallace and P. W. Ong and B. B. Bederson and E. 
L. Schwartz, "Space-variant image processing". Intl. J. Of 
Computer Vision, 13:1 (1994) 71-90 discusses space
variant images in computer vision. "Space-Variant" may be 
regarded as synonymous with the term "multifoveated" used 
above. A biological motivation for such images is the 

is allowed to see lower resolution versions of the image 60 

while waiting for the desired resolution version. This gives 
the transmission the appearance of continuity. In addition, in 
some instances, the lower resolution version may be suffi
cient or may in any event exhaust the display capabilities of 
the viewer display device (e.g., monitor). 65 complex logmap model of the transformation from the retina 

to the visual cortex (E. L. Schwartz, "A quantitative model 
of the functional architecture of human striate cortex with 

Thus, R. L. White and J. W. Percival, "Compression and 
Progressive Transmission of Astronomical Images," SPIE 
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application to visual illusion and cortical texture analysis", 
Biological Cybernetics, 37(1980) 63-76). 

Philip Kortum and WilsonS. Geisler, "Implementation of 

4 

a Foveated Image Coding System For Image Bandwidth 
Reduction," Human Vision and Electronic Imaging, SPIE 5 

Proceedings Vol. 2657, 350-360, 1996, implement a real 
time system for foveation-based visualization. They also 
noted the possibility of using foveated images to reduce 
bandwidth of transmission. 

An additional advantage is that the invention demon
strates a new standard of performance that can be achieved 
by large-scale image servers on the World Wide Web at 
current bandwidth or even in the near future. 

Note also, the invention has advantages over the tradi-
tional notion of progressive transmission, which has no 
interactivity. Instead, the progressive transmission of an 
image has been traditionally predetermined when the image 
file is prepared. The invention's use of dynamic (constantly 

M. H. Gross, 0. G. Staadt and R. Gatti, "Efficient trian
gular surface approximations using wavelets and quadtree 
data structures", IEEE Trans, On Visualization and Com
puter Graphics, 2(2), 1996, uses wavelets to produce mul
tifoveated images. 

Unfortunately, each of the above attempts are essentially 
based upon fixed super-pixel geometries, which amount to 
partitioning the visual field into regions of varying (pre
determined) sizes called super-pixels, and assigning the 
average value of the color in the region to the super-pixel. 
The smaller pixels (higher resolution) are of course intended 
to be at the gaze point, with progressively larger super-pixels 
(lower resolution) about the gaze point. 

10 
changing in realtime based on the user's input) multifove
ated images allows the user to determine how the data are 
progressively transmitted. 

Other advantages of the invention include that it allows 
the creation of the first dynamic and a more general class of 

15 
multifoveated images. The present invention can use wave
let technology. The flexibility of the foveation approach 
based on wavelets allows one to easily modify the following 
parameters of a multifoveated image: the position and shape 
of the basic foveal region(s), the maximum resolution at the 

20 
foveal region(s), and the rate at which the resolution falls 
away. Wavelets can be replaced by any multi resolution 
pyramid schemes. But it seems that wavelet-based 
approaches are preferred as they are more flexible and have 
the best compression properties. 

However, effective real-time visulization over a "thin 
wire" requires precision and flexibility. This cannot be 
achieved with a geometry of predetermined pixel size. What 25 

is needed is a flexible foveation technique which allows one 

Another advantage is the present invention's use of 
dynamic data structures and associated algorithms. This 
helps optimize the "effective real time behavior" of the 
system. The dynamic data structures allow the use of "partial 
information" effectively. Here information is partial in the 

to modify the position and shape of the basic foveal regions, 
the maximum resolution at the foveal region and the rate at 
which the resolution falls away. This will allow the "thin
wire" model to be optimized. 

In addition, none of the above noted references addresses 
the issue of providing multifoveated images that can be 
dynamically (incrementally) updated as a function of user 
input. This property is crucial to the solution of the thinwire 
problem, since it is essential that information be "streamed" 
at a rate that optimally matches the bandwidth of the 
network with the human capacity to absorb the visual 
information. 

SUMMARY OF THE INVENTION 

The present invention overcomes the disadvantages of the 
prior art by utilizing means for tracking or approximating 
the user's gaze point in realtime and, based on the 
approximation, transmitting dynamic multifoveated image 
(s) (i.e., a variable resolution image over its physical extent 
mimicking the spatial resolution of the user's eye about the 
approximated gaze point) updated in realtime. 

"Dynamic" means that the image resolution is also vary
ing over time. The user interface component of the present 
invention may provide a variety of means for the user to 
direct this multifoveation process in real time. 

Thus, the invention addresses the model which comprises 

30 sense that the resolution at each pixel is only partially 
known. But as additional information is streamed in, the 
partial information can be augmented. Of course, this prin
ciple is a corollary to progressive transmission. 

Another advantage is that the dynamic data structures 

35 may be well exploited by the special architecture of the 
client program. For example, the client program may be 
multi-threaded with one thread (the "manager thread") 
designed to manage resources (especially bandwidth 
resources). This manager is able to assess network 

40 congestion, and other relevant parameters, and translate any 
literal user request into the appropriate level of demand for 
the network. For example, when the user's gaze point is 
focused on a region of an image, this may be translated into 
requesting a certain amount, say, X bytes of data. But the 

45 manager can reduce this to a request over the network of 
(say) X/2 bytes of data if the traffic is congested, or if the 
user is panning very quickly. 

Another advantage of the present invention is that the 
server need send only that information which has not yet 

50 been served. This has the advantage of reducing communi
cation traffic. 

an image server and a client viewer connected by a low 
bandwidth line. In effect, the invention reduces the band- 55 
width from server to client, in exchange for a very modest 
increase of bandwidth from the client to the server 

Further objects and advantages of the invention will 
become apparent from a consideration of the drawings and 
ensuing description. 

BRIEF DESRIPTION OF DRAWINGS 

FIG. 1 shows an embodiment of the present invention 
including a server, and client(s) as well as their respective 
components. 

Another object of the invention is that it allows realtime 
visualization of large scale images over a "thinwire" model 
of computation. 60 

An additional advantage is the new degree of user control 
provided for realtime, active, visualization of images 
(mainly by way of foveation techniques). The invention 
allows the user to determine and change in realtime, via 
input means (for example, without limitation, a mouse 65 

pointer or eye tracking technology), the variable resolution 
over the space of the served up image(s). 

FIG. 2a illustrates one level of a particular wavelet 
transform, the Haar wavelet transform, which the server may 
execute in one embodiment of the present invention. 

FIG. 2b illustrates one level of the Haar inverse wavelet 
transform. 

FIG. 3 is a flowchart showing an algorithm the server may 
execute to perform a Haar wavelet transform in one embodi
ment of the present invention. 
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FIG. 4 shows Manager, Display and Network threads, 
which the client(s) may execute in one embodiment of the 
present invention. 

6 
can be implemented as, for example, a keyboard, mouse, 
scanner or eye-tracking device. 

The client 2 also includes a processing device 4 with 
network protocol processing element 12 and inverse wavelet FIG. 5 is a more detailed illustration of a portion of the 

Manager thread depicted in FIG. 4. 

DETAILED DESCRIPTION OF 1HE 
INVENTION 

FIG. 1 depicts an overview of the components in an 
exemplary embodiment of the present invention. A server 1 
is comprised of a storage device 3, a memory device 7 and 
a computer processing device 4. The storage device 3 can be 
implemented as, for example, an internal hard disk, Tape 
Cartridge, or CD-ROM. The faster access and greater stor
age capacity the storage device 3 provides, the more pref
erable the embodiment of the present invention. The 
memory device 7 can be implemented as, for example, a 
collection of RAM chips. 

5 transform element means 14 running off it. The processing 
device 4 can be implemented as, for example, a single 
microprocessor chip (such as an Intel Pentium chip), printed 
circuit board, several boards or other device. Again, the 
faster the run time of the processing device 4, the more 

10 preferable the embodiment. The network protocol process
ing element 12 again can be implemented as a separate 
"software" (i.e., a program, sub-process) whose instructions 
are executed by the processing device 4. Again, TCP!IP 
processing may be used to implement the network protocol 

15 processing element 12. The inverse wavelet transform ele
ment 14 also may be implemented as separate "software." 
Also running off the processing device 4 is a user input 
conversion mechanism 16, which also can be implemented 
as "software." The processing device 4 on the server 1 has network 

protocol processing element 12 and wavelet transform ele- 20 

ment 13 running off it. The processing device 4 can be 
implemented with a single microprocessor chip (such as an 
Intel Pentium chip), printed circuit board, several boards or 
other device. Again, the faster the speed of the processing 
device 4, the more preferable the embodiment. The network 25 

protocol processing element 12 can be implemented as a 
separate "software" (i.e., a program, sub-process) whose 
instructions are executed by the processing device 4. Typical 
examples of such protocols include TCP/IP (the Internet 
Protocol) or UDP (User Datagram Protocol). The wavelet 30 

transform element 13 can also be implemented as separate 
"software" (i.e., a program, sub-process) whose instructions 
are executed by the processing device 4. 

As with the server 1, according to the common design of 
modern computer systems, the most common embodiments 
of the present invention will also include an operating 
system running off the processing device 4 of the client(s) 2. 

In addition, if the server 1 is connected to the client(s) 2 
via a telephone system line or other systems/lines not 
carrying digital pulses, the server 1 and client(s) 2 both also 
include a communications converter device 15. A commu
nications converter device 15 can be implemented as, for 
example, a modem. The communications converter device 
15 converts digital pulses into the frequency/signals carried 
by the line and also converts the frequency/signals back into 
digital pulses, allowing digital communication. 

In the operation of the present invention, the extent of 

35 
computational resources (e.g., storage capacity, speed) is a 
more important consideration for the server 1, which is 
generally shared by more than one client 2, than for the 
client(s) 2. 

In a preferred embodiment of the present invention, the 
server 1 is a standard workstation or Pentium class system. 
Also, TCP/IP processing may be used to implement the 
network protocol processing element 12 because it reduces 
complexity of implementation. Although a TCP/IP imple
mentation is simplest, it is possible to use the UDP protocol 

40 
subject to some basic design changes. The relative advan
tage of using TCP/IP as against UDP is to be determined 
empirically. An additional advantage of using modern, stan
dard network protocols is that the server 1 can be con
structed without knowing anything about the construction of 

45 
its client(s) 2. 

According to the common design of modern computer 
systems, the most common embodiments of the present 
invention will also include an operating system running off 
the processing means device 4 of the server 1. Examples of 50 
operating systems include, without limitation, Windows 95, 
Unix and Windows NT. However, there is no reason a 
processing device 4 could not provide the functions of an 
"operating system" itself. 

The server 1 is connected to a client(s) 2 in a network. 55 

Typical examples of such servers 1 include image archive 
servers and map servers on the World Wide Web. 

The client(s) 2 is comprised of a storage device 3, 
memory device 7, display 5, user input device 6 and pro
cessing device 4. The storage device 3 can be implemented 60 

as, for example, an internal hard disks, Tape Cartridge, or 
CD-ROM. The faster access and greater storage capacity the 
storage device 3 provides, the more preferable the embodi
ment of the present invention. The memory device 7 can be 
implemented as, for example, a collection of RAM chips. 65 

The display 5 can be implemented as, for example, any 
monitor, whether analog or digital. The user input device 6 

In typical practice of the present invention, the storage 
device 3 of the server 1 holds an image file, even a very large 
image file. A number of client 2 users will want to view the 
image. 

Prior to any communication in this regard between the 
server 1 and client(s) 2, the wavelet transform element 13 on 
the server 1 obtains a wavelet transform on the image and 
stores it in the storage device 3. 

There has been extensive research in the area of wavelet 
theory. However, briefly, to illustrate, "wavelets" are defined 
by a group of basis functions which, together with coeffi
cients dependant on an input function, can be used to 
approximate that function over varying scales, as well as 
represent the function exactly in the limit. Accordingly, 
wavelet coefficients can be categorized as "average" or 
"approximating coefficients" (which approximate the 
function) and "difference coefficients" (which can be used to 
reconstruct the original function exactly). The particular 
approximation used as well as the scale of approximation 
depend upon the wavelet bases chosen. Once a group of 
basis functions is chosen, the process of obtaining the 
relevant wavelet coefficients is called a wavelet transform. 

In the preferred embodiment, the Haar wavelet basis 
functions are used. Accordingly, in the preferred 
embodiment, the wavelet transform element 13 on the server 
1 performs a Haar wavelet transform on a file representation 
of the image stored in the storage device 3, and then stores 
the transform on the storage device 3. However, it is readily 
apparent to anyone skilled in the art that any of the wavelet 
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family of transforms may be chosen to implement the 
present invention. 

Note that once the wavelet transform is stored, the origi
nal image file need not be kept, as it can be reconstructed 
exactly from the transform. 

FIG. 2 illustrates one step of the Haar wavelet transform. 
Start with an n by n matrix of coefficients 17 whose entries 
correspond to the numeric value of a color component (say, 
Red, Green or Blue) of a square screen image of n by n 
pixels. Divide the original matrix 17 into 2 by 2 blocks of 
four coefficients, and for each 2x2 block, label the coeffi
cient in the first column, first row "a,"; second column, first 
row "b"; second row, first column "c"; and second row, 
second column "d." 

Then one step of the Haar wavelet transform creates four 
n/2 by n/2 matrices. The first is an n/2 by n/2 approximation 
matrix 8 whose entries equal the "average" of the corre
sponding 2 by 2 block of four coefficients in the original 
matrix 17. As is illustrated in FIG. 2, the coefficient entries 
in the approximation matrix 8 are not necessarily equal to 
the average of the corresponding four coefficients a, b, c and 
d (i.e., a'=(a+b+c+d)/4) in the original matrix 17. Instead, 
here, the "average" is defined as (a+b+c+d)/2. 

The second is an n/2 by n/2 horizontal difference matrix 
10 whose entries equal b'=(a+b-c-d)/2, where a, b, c and d 
are, respectively, the corresponding 2x2 block of four coef
ficients in the original matrix 17. The third is an n/2 by n/2 
vertical difference matrix 9 whose entries equal c'=(a-b+c
d)/2, where a, b, c and dare, respectively, the corresponding 
2x2 block of four coefficients in the original matrix 17. The 
fourth is an n/2 by n/2 diagonal difference matrix 11 whose 
entries equal d'=(a-b-c+d)/2, where a, b, c and d are, 
respectively, the corresponding 2x2 block of four coeffi
cients in the original matrix 17. 

A few notes are worthy of consideration. First, the entries 
a', b', c', d' are the wavelet coefficients. The approximation 
matrix 8 is an approximation of the original matrix 17 (using 
the "average" of each 2x2 group of 4 pixels) and is one 
fourth the size of the original matrix 17. 

Second, each of the 2x2 blocks of four entries in the 
original matrix 17 has one corresponding entry in each of the 
four n/2 by n/2 matrices. Accordingly, it can readily be seen 
from FIG. 2 that each of the 2x2 blocks of four entries in the 
original matrix 17 can be reconstructed exactly, and the 
transformation is invertible. Therefore, the original matrix 
17 representation of an image can be discarded during 
processing once the transform is obtained. 

8 
matrix 17 image representation. (However, the number of 
bits in all the coefficients may differ from the number of bits 
in the pixels. Applying data compression to coefficients turns 
out to be generally more effective on coefficients.) If we 

5 assume the image is very large, the transform matrices must 
be further decomposed into blocks when stored on the 
storage means 3. 

FIG. 3 is a flowchart showing one possible implementa
tion of the wavelet transform element 13 which performs a 

10 wavelet transform on each color component of the original 
image. As can be seen from the flowchart, the transform is 
halted when the size of the approximation matrix is 256x 
256, as this may be considered the lowest useful level of 

15 
resolution. 

Once the wavelet transform element 13 stores a transform 
of the image(s) in the storage means 3 of the server 1, the 
server 1 is ready to communicate with client(s) 2. 

In typical practice of the invention the client 2 user 

20 
initiates a session with an image server 1 and indicates an 
image the user wishes to view via user input means 6. The 
client 2 initiates a request for the 256 by 256 approximation 
matrix 8 for each color component of the image and sends 
the request to the server 1 via network protocol processing 

25 
element 12. The server 1 receives and processes the request 
via network protocol processing element 12. The server 1 
sends the 256 by 256 approximation matrices 8 for each 
color component of the image, which the client 2 receives in 
similar fashion. The processing device 4 of the client 2 stores 

30 
the matrices in the storage device 3 and causes a display of 
the 256 by 256 version of the image on the display 5. It 
should be appreciated that the this low level of resolution 
requires little data and can be displayed quickly. In a map 
server application, the 256 by 256, coarse resolution version 

35 
of the image may be useful in a navigation window of the 
display 5, as it can provide the user with a position indicator 
with respect to the overall image. 

A more detailed understanding of the operation of the 
client 2 will become apparent from the discussion of the 

40 further, continuous operation of the client 2 below. 
Continuous operation of the client(s) 2 is depicted in FIG. 

4. In the preferred embodiment, the client(s) 2 processing 
device may be constructed using three "threads," the Man
ager thread 18, the Network Thread 19 and the Display 

45 Thread 20. Thread programming technology is a common 
feature of modern computers and is supported by a variety 
of platforms. Briefly, "threads" are processes that may share 
a common data space. In this way, the processing means can 
perform more than one task at a time. Thus, once a session 

50 is initiated, the Manager Thread 18, Network Thread 19 and 
Display Thread 20 run simultaneously, independently and 
continually until the session is terminated. However, while 
"thread technology" is preferred, it is unnecessary to imple
ment the client(s) 2 of the present invention. 

Third, the transform can be repeated, each time starting 
with the last approximation matrix 8 obtained, and then 
discarding that approximation matrix 8 (which can be 
reconstructed) once the next wavelet step is obtained. Each 
step of the transform results in approximation and difference 
matrices Y2 the size of the approximation matrix 8 of the 
prior step. 55 The Display Thread 20 can be based on any modern 

windowing system running off the processing device 4. One 
function of the Display Thread 20 is to continuously monitor 
user input device 6. In the preferred embodiment, the user 
input device 6 consists of a mouse or an eye-tracking device, 

Retracing each step to synthesize the original matrix 17 is 
called the inverse wavelet transform, one step of which is 
depicted in FIG. 2b. 

Finally, it can readily be seen that the approximation 
matrix 8 at varying levels of the wavelet transform can be 
used as a representation of the relevant color component of 
the image at varying levels of resolution. 

Conceptually then, the wavelet transform is a series of 
approximation and difference matrices at various levels (or 
resolutions). The number of coefficients stored in a wavelet 
transform is equal to the number of pixels in the original 

60 though there are other possible implementations. In a typical 
embodiment, as the user moves the mouse position, the 
current position of the mouse pointer on the display 5 
determines the foveal region. In other words, it is presumed 
the user gaze point follows the mouse pointer, since it is the 

65 user that is directing the mouse pointer. Accordingly, the 
display thread 20 continuously monitors the position of the 
mouse pointer. 
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In one possible implementation, the Display Thread 20 greater or equal to zero (Step 240). If that is the case, the 
places user input requests (i.e., foveal regions determined process loops back to step 260. Otherwise, the control is 
from user input device 6) as they are obtained in a request returned to the Manager Thread 18 (Step 250). 
queue. Queue's are data structures with first-in-first-out The Network Thread 19 includes the network protocol 
characteristics that are generally known in the art. 5 processing element 12. The Network Thread obtains the 

The Manager Thread 18 can be thought of as the brain of (next) multi-resolution request for coefficients correspond-
the client 2. The Manager Thread 18 converts the user input ing to the foveal region from request queue and processes 
request in the request queue into requests in the manager and sends the request to the server 1 via network protocol 
request queue, to be processed by the Network Thread 19. processing element 12. 
The user input conversion mechanism 16 converts the user 10 Notice that the data requested is "local" because it rep-
determined request into a request for coefficients. resents visual information in the neighborhood of the indi-

A possible implementation of user input conversion cated part of the image. The data is incremental because it 
mechanism 16 is depicted in the flow chart in FIG. 5. represents only the additional information necessary to 
Essentially, the user input conversion mechanism 16 increase the resolution of the local visual information. 
requests all the coefficient entries corresponding to the 15 (Information already available locally is masked out). 
foveal region in the horizontal difference 10 matrices, ver- The server 1 receives and processes the request via 
tical difference 9 matrices, diagonal difference matrices 11 network protocol processing element 12, and sends the 
and approximation matrix 8 of the wavelet transform of the coefficients requested. When the coefficients are sent, they 
image at each level of resolution. (Recall that only the last are masked out. The mask is maintained to determine which 
level approximation matrix 8 needs to be stored by the server 20 coefficients have been sent and for deciding which blocks of 
1.) That is, wavelet coefficients are requested such that it is data can be released from main memory. Thus, an identical 
possible to reconstruct the coefficients in the original matrix version of the mask is maintained on both the client 2 side 
17 corresponding to the foveal region. and server 1 side. 

As the coefficients are included in the request, they are 
25 

The Network Thread 19 of the client 2 receives and 
masked out. The use of a mask is commonly understood in processes the coefficients. The Network Thread 19 also 
the art. The mask is maintained to determine which coeffi- includes inverse wavelet transform element 14. The inverse 
cients have been requested so they are not requested again. 
Each mask can be represented by an array of linked lists (one 
linked list for each row of the image at each level of 

30 
resolution). 

wavelet transform element 14 performs an inverse wavelet 
transform on the received coefficients and stores the result
ing portion of an approximation matrix 8 each time one is 
obtained (i.e., at each level of resolution) in the storage 
device 3 of the client 2. The sub-image is stored at each 
(progressively higher, larger and less course) level of its 
resolution. 

35 
Note that as the client 2 knows nothing about the image 

until it is gradually filled in as coefficients are requested. 
Thus, sparse matrices (sparse, dynamic data structures) and 
associated algorithms can be used to store parts of the image 
received from the server 1. Sparse matrices are known in the 

As shown in FIG. 5, the input conversion mechanism 16 
determines the current level of resolution ("L") of an image 
("ML") such that the image ML is, e.g., 128x128 pixel matrix 
(for example, the lowest supported resolution), as shown in 
Step 200. Then, the input conversion mechanism 16 deter
mines if the current level L is the lowest resolution level 
(Step 210). If so, it is determined if the three color coeffi
cients (i.e., ML(R), ML(G), and ML(B)) correspond to the 
foveal region that has been requested (Step 220). If that is 
the case, then the input conversion mechanism 16 confirms 
that the current region L is indeed the lowest resolution 
region (Step 240), and returns the control to the Manager 
Thread 18 (Step 250). If, in Step 220, it is determined that 
the three color coefficients have not been requested, these 45 
coefficients are requested using the mask described above, 
and the process continues to Step 240, and the control is 
returned to the Manager Thread 18 (Step 250). 

If, in Step 210, it is determined that the current level Lis 
not the lowest resolution level, then the input conversion 
mechanism 16 determines whether the horizontal, vertical 
and diagonal difference coefficients (which are necessary to 
reconstruct the three color coefficients) have been requested 
(Step 260). If so, then the input conversion mechanism 16 
skips to Step 280 to decrease the current level L by 1. 
Otherwise a set of difference coefficients may be requested. 
This set depends on the mask and the foveal parameters 
(e.g., a shape of the foveal region, a maximum resolution, a 
rate of decay of the resolution, etc.). The user may select 
"formal" values for these foveal parameters, but the Man
ager Thread 18 may, at this point, select the "effective" 
values for these parameters to ensure a trade-off between (1) 
achieving a reasonable response time over the estimated 
current network bandwidth, and (2) achieving a maximum 
throughput in the transmission of data. The process then 
continues to Step 280. Thereafter, the input conversion 
mechanism 16 determines whether the current level L is 

40 
art and behave like normal matrices except that the memory 
space of the matrix are not allocated all at once. Instead the 
memory is allocated in blocks of sub-matrices. This is 
reasonable as the whole image may require a considerable 
amount of space. 

Simultaneously, the Display thread 20 (which can be 
implemented using any modern operating system or win
dowing system) updates the display 5 based on the pyramid 
representation stored in the storage device 3. 

Of course, the Display thread 20 continues its monitoring 

50 of the user input device 6 and the whole of client 2 
processing continues until the session is terminated. 

A few points are worthy of mention. Notice that since 
lower, coarser resolution images will be stored on the client 
2 first, they are displayed first Also, the use of foveated 

55 images ensures that the incremental data to update the view 
is small, and the requested data can arrive within the round 
trip time of a few messages using, for example, the TCP/IP 
protocol. 

Also notice, that a wavelet coefficient at a relatively 
60 coarser level of resolution corresponding to the foveal 

region affects a proportionately larger part of the viewer's 
screen than a coefficient at a relatively finer level of reso
lution corresponding to the foveal region (in fact, the reso
lution on the display 5 exponentially away from the mouse 

65 pointer). Also notice the invention takes advantage of pro
gressive transmission, which gives the image perceptual 
continuity. But unlike the traditional notion of progressive 
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transm1sswn, 1t 1s the client 2 user that is determining 
transmission ordering, which is not pre-computed because 
the server 1 doesn't know what the client(s) 2 next request 
will be. Thus, as noted in the objects and advantages section, 
the "thinwire" model is optimized. 5 

12 
What is claimed is: 
1. A client apparatus for enabling a realtime visualization 

of at least one image, the client apparatus comprising: 

a storage device storing first data corresponding to a 
multifoveated representation of an original image, 

a user input device providing second data corresponding 
to at least one visualization command of at least one 
user; and 

a processing arrangement generating third data corre
sponding to a multifoveated image using the first data, 
the second data and a foveation operator. 

Note that in the event the thread technology is utilized to 
implement the present invention, semaphores data structures 
are useful if the threads share the same data structures (e.g., 
the request queue). Semaphores are well known in the art 
and ensure that only one simultaneous process (or "thread") 10 

can access and modify a shared data structure at one time. 
Semaphores are supported by modern operating systems. 

CONCLUSION 

2. The client apparatus of claim 1, further comprising a 
network protocol processing element which provides the 

15 
third data using a TCP/IP protocol. 

3. The client apparatus of claim 1, wherein the processing 
element transmits the third data to the at least one client via 

It is apparent that various useful modifications can be 
made to the above description while remaining within the 
scope of the invention. 

For example, without limitation, the user can be provided 
with two modes for display: to always fill the pixels to the 20 

highest resolution that is currently available locally or to fill 
them up to some user specified level. The client 2 display 5 
may include a re-sizable viewing window with minimal 
penalty on the realtime performance of the system. This is 
not true of previous approaches. There also may be an 25 

auxiliary navigation window (which can be re-sized but is 
best kept fairly small because it displays the entire image at 
a low resolution). The main purpose of such a navigation 
window would be to let the viewer know the size and 
position of the viewing window in relation to the whole 30 

image. 

It is readily seen that further modifications within the 
scope of the invention provide further advantages to the user. 
For example, without limitation, the invention may have the 

35 
following capabilities: continuous realtime panning, con
tinuous realtime zooming, foveating, varying the foveal 
resolution and modification of the shape and size of the 
foveal region. A variable resolution feature may also allow 
the server 1 to dynamically adjust the amount of transmitted 
data to match the effective bandwidth of the network. 

40 

While the above description contains many specificities, 
these should not be construed as limitations on the scope of 
the invention, but rather as an exemplification of one pre
ferred embodiment thereof. Many other variations are pos- 45 
sible. Accordingly, the scope of the invention should be 
determined not by the embodiment(s) illustrated, but by the 
appended claims and their legal equivalents. 

the Internet. 
4. The client apparatus of claim 1, wherein the user input 

device includes a mouse device. 
5. The client apparatus of claim 1, wherein the user input 

device includes at least one of an eye-tracking device and a 
keyboard. 

6. The client apparatus of claim 1, wherein the foveation 
operator is specified using parameters that include at least 
one of: 

a set of foveation points, 
a shape of a foveated region, 
a maximum resolution of the foveated region, and 
a rate at which a maximum resolution of the foveal region 

decays. 
7. The client apparatus of claim 1, 
wherein the processing arrangement receives the original 

image from a server, and 
wherein the memory arrangement stores a data structure 

representing the multifoveated image, the data structure 
that is optimized for the client apparatus being inde
pendent of an image representation provided by a 
server. 

8. The client apparatus of claim 1, wherein the third data 
corresponding to the multifoveated image is generated for at 
least one of 

a first arbitrary-shaped foveal region, 
a second arbitrarily-fine foveal region, and 
an arbitrary union of the first and second foveal regions. 

* * * * * 
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Pyramidal Parametrics 

Lance Williams 

Computer Graphics Laboratory 
New York Institute of Technology 

Old Westbury, New York 

Abstract 

The mapping of images onto surfaces 
may substantially increase the realism and 
information content of computer-generated 
imagery. The projection of a flat source 
image onto a curved surface may involve 
sampling difficulties, however, which are 
compounded as the view of the surface 
changes. As the projected scale of the 
surface increases, interpolation between 
the original samples of the source image 
is necessary; as the scale is reduced, 
approximation of multiple samples in the 
source is required. Thus a constantly 
changing sampling window of view-dependent 
shape must traverse the source image. 

To reduce the computation implied by 
these requirements, a set of prefiltered 
source images may be created. This 
approach can be applied to particular 
advantage in animation, where a large 
number of frames using the same source 
image must be generated. This paper 
advances a "pyramidal parametric" pre- 
filtering and sampling geometry which 
minimizes aliasing effects and assures 
continuity within and between target 
images. 

Although the mapping of texture onto 
surfaces is an excellent example of the 
process and provided the original motiva- 
tion for its development, pyramidal 
parametric data structures admit of wider 
application. The aliasing of not only 
surface texture, but also highlights and 
even the surface representations them- 
selves, may be minimized by pyramidal 
parametric means. 

General Terms: Algorithms. 

Keywords and Phrases: Antialiasing, 
Illumination Models, Modeling, Pyramidal 
Data Structures, Reflectance Mapping, Tex- 
ture Mapping, Visible Surface Algorithms. 

C R Categories: 1.3.3 [Computer Graphics]: 
Picture/Image Generation--~ algo- 
rithms; 1.3.5 [Computer Graphlc~: Compu- 
tational Geometry and Object Modeling-- 
curve, surface, solid and object represen- 
tations, geometric algorithms, languages 
and systems; 1.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism-- 
color, shading, shadowing, and texture. 

Permission to copy without ~e all or part of this material is granted 
provided that the copies are not made or distributed ~ r  direct 
commercial advantage, the ACM copyright notice and the title of the 

~. Pyramidal Data Structures 

Pyramidal data structures may be 
based on various subdivisions: binary 
trees, quad trees, oct trees, or n- 
dimensional hierarchies [17]. The common 
feature of these structures is a succes- 
sion of levels which vary the resolution 
at which the data is represented. 

The decomposition of an image by 
two-dimensional binary subdivision was a 
pioneering strategy in computer graphics 
for visible surface determination [15]. 
The approach was essentially a synthesis- 
by-analysis: the image plane was subdi- 
vided into quadrants recursively until 
analysis of a subsection showed that sur- 
face ordering was sufficiently simple to 
permit rendering. Such subdivision and 
analysis has been subsequently adopted to 
generate spatial data structures [5], 
which have been used to represent images 
[9] both for pattern recognition [13] and 
for transmission [i0], [14]. In the field 
of computer graphics, such data structures 
have been adopted for texture mapping [4], 
[16], and generalized to represent objects 
in space [Ii]. 

The application of pyramidal data to 
image storage and transmission may permit 
significant compression of the data to be 
stored or transmitted. This is so because 
highly detailed features may be localized 
within an otherwise low-frequency image, 
permitting the sampling rate to be reduced 
for large sections of the image. Besides 
permitting bandwidth compression, the 
representation orders data in such a way 
that the general character of images may 
be recalled or transmitted before the 
specific details. 

Pattern recognition and classifica- 
tion often require the comparison of a 
candidate image against a set of canonical 
patterns. This is an operation the 
expense of which increases as the square 
of the resolution at which it is per- 
formed. The use of pyramidal data struc- 
tures in pattern recognition and classifi- 
cation permits the comparison of the gross 
features of two-dimensional functions 
preliminary to the minute particulars; a 
good general reference on this application 
is [12]. 
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permission of the Association for Computing Machinery. To copy 
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In computer graphics, pyramidal tex- 
ture maps may be used to perform arbitrary 
mappings of a function with minimal alias- 
ing artifacts and reduced computation. 
Once again, images may be represented at 
different spatial bandwidths. The concern 
is that inappropriate resolution 
misrepresents the data; that is, sampling 
high-resolution data at larger sample 
intervals invites aliasing. 

2. Parametric Interpolation 

By a pyramidal parametric data struc- 
ture, we will mean simply a pyramidal 
structure with both intra- and inter-level 
interpolation. Consider the case of an 
image represented as a two-dimensional 
array of samples. Interpolation is neces- 
sary to produce a continuous function of 
two parameters, U and V. If, in addition, 
a third parameter (call it D) moves us up 
and down a hierarchy of corresponding 
two-dimensional functions, with interpola- 
tion between (or among) the levels of the 
pyramid providing continuity, the struc- 
ture is pyramidal parametric. 

~he practical distinction between 
such a structure and an ordinary interpo- 
lant over an n-dimensional array of sam- 
ples is that the number of samples 
representing each level of the pyramid may 
be different. 

~. Mip Mapping 

"Mip" mapping is a particular format 
for two-dimensional parametric functions, 
which, along with its associated address- 
ing scheme, has been used successfully to 
bandlimit texture mapping at New York 
Institute of Technology since 1979. The 
acronym "mip" is from the Latin phrase 
"multum in parvo," meaning "many things in 
a small place." Mip mapping supplements 
bilinear interpolation of pixel values in 
the texture map (which may be used to 
smoothly translate and magnify the tex- 
ture) with interpolation between prefil- 
tered versions of the map (which may be 
used to compress many pixels into a small 
place). In this latter capacity, mip 
offers much greater speed than texturing 
algorithms which perform explicit convolu- 
tion over an area in the texture map for 
each pixel rendered [I], [6]. 

Mip owes its speed in compressing 
texture to two factors. First, a fair 
amount of filtering of the original tex- 
ture takes place when the mip map is first 
created. Second, subsequent filtering is 
approximated by blending different levels 
of the mip map. This means that all 
filters are approximated by linearly 
interpolating a set of square box filters, 
the sides of which are powers-of-two pix- 
els in length. Thus, mapping entails a 
fixed overhead, which is independent of 
the area filtered to compute a sample. 

G 

Figure (i) 
Structure of a Color Mip Map 

Smaller and smaller images diminish into 
the upper left corner of the map. Each of 
the images is averaged down from its 
larger predecessor. 

(Below:) 
Mip maps are indexed by three coordinates: 
U, V, and D. U and V are spatial coordi- 
nates of the map; D is the variable used 
to index, and interpolate between, th~ 
different levels of the pyramid. 

V 

~ L L  

V 

V 

Figure (I) illustrates the memory 
organization of a color mip map. The 
image is separated into its red, green, 
and blue components (R, G, and B in the 
diagram). Successively filtered and down- 
sampled versions of each component are 
instanced above and to the left of the 
originals, in a series of smaller and 
smaller images, each half the linear 
dimension (and a quarter the number of 
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samples) of its parent. Successive divi- 
sions by four partition the frame buffer 
equally among the three components, with a 
single unused pixel remaining in the upper 
left-hand corner. 

The concept behind this memory organ- 
ization is that corresponding points in 
different prefiltered maps can be 
addressed simply by a binary shift of an I 
input U, V coordinate pair. Since the 
filtering and sampling are performed at 
scales which are powers of two, indexing 
the maps is possible with inexpensive 
binary scaling. In a hardware implementa- 
tion, the addresses in all the correspond- 
ing maps (now separate memories) would be 
instantly and simultaneously available 
from the U, V input. 

The routines for creating and access- 
ing mip maps at NYIT are based on simple 
box (Fourier) window prefiltering, bil- 
inear interpolation of pixels within each 
map instance, and linear interpolation 
between two maps for each value of D (the 
pyramid's vertical coordinate). For each 
of the three components of a color mip 
map, this requires 8 pixel reads and 7 
multiplications. This choice of filters 
is strictly for the sake of speed. Note 
that the bilinear interpolation of pixel 
values at the extreme edges of each map 
instance must be performed with pixels 
from the opposite edge(s) of that map, for 
texture which is periodic. For non- 
periodic texture, scaling or clipping of 
the U, V coordinates prevents the intru- 
sion of an inappropriate map or color com- 
ponent into the interpolation. 

The box (Fourier) window used to 
create the mip maps illustrated here, and 
the tent (Bartlett) window used to inter- 
polate them, are far from ideal; yet prob- 
ably the most severe compromise made by 
mip filtering is that it is symmetrical. 
Each of the prefiltered levels of the map 
is filtered equally in X and Y. Choosing 
a value of D trades off aliasing against 
blurring, which becomes a tricky proposi- 
tion as a pixel's projection in the tex- 
ture map deviates from symmetry. Heckbert 
[8] suggests: 

d = max Ou 2+ v 2 _ //~u~2+/av~2~ 

where D is proportional to the "diameter" 
of the area in the texture to be filtered, 
and the partials of U and V (the texture- 
map coordinates) with respect to X and Y 
(the screen coordinates) can be calculated 
from the surface projection. 

Illustrations of mapping performed by 
the mip technique are the subject of Fig- 
ures (2) through (i0). The NYIT Test Frog 
in Figure (2) is magnified by simple point 
sampling in (3), and by interpolation in 
(4). The hapless amphibian is similarly 

Figure (2) 
Mip map of the flexible NYIT Test Frog. 

compressed by point sampling in (5) and by 
mipping in (6). 

The more general and interesting case 
-- continuously variable upsampling and 
downsampling of the original texture -- is 
illustrated in (7) on a variety of sur- 
faces. Since the symmetry of mip filter- 
ing would be expected to show up badly 
when texture is compressed in only one 
dimension, figures (8) through (i0) are of 
especial interest. These pictures, 
created by Ed Emshwiller at NYIT for his 
videotape, "Sunstone," were mapped using 
Alvy Ray Smith's TEXAS animation program, 
which in turn used MIP to antialias tex- 
ture. As the panels rotate edge-on, the 
texture collapses to a line smoothly and 
without apparent artifacts. 

Figure (7) 

General mapping: interpolation and 

pyramidal compression. 
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Figure (3) 
Upsampling the frog: magnification by 

point samplinq. 

Figure (4) 
Upsampling the frog: magnification by 

bilinear interpolation. 

Figure (5) 
Downsampling the frog= compression by point sampling (detail, right). 

Figure (6) 
Downsampling: compression by pyramidal interpolation (detail, right). 

4 
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Figures (8)-(9) 
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith 
Pyramidal parametric texture mapping on polygons. 
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Figures (i0)-(ii) 
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith 
Pyramidal parametric texture mapping on polygons. 
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4. Hi@blight Antialiasin@ 

As small or highly curved objects 
move across a raster, their surface nor- 
mals may beat erratically with the sam- 
pling grid. This causes the shading 
values to flash annoyingly in motion 
sequences, a symptom of illumination 
aliasing. The surface normals essentially 
point-sample the illumination function. 

Figure (12) illustrates samples of 
the surface normals of a set of parallel 
cylinders. The cylinders in the diagram 
are depicted as if from the edge of the 
image plane; the regularly-spaced vertical 
line segments are the samples along a sin- 
gle axis. The arrows at the sample points 
indicate the directions of the surface 
normals. Depending on the shading formula 
invoked, there may be very high contrast 
between samples where the normal is nearly 
parallel to the sample axis, and samples 
where the normal points directly at the 
observer's eye. 

Figure (12) 

4) 

The shading function depends not only 
on the shape of the surface, but its light 
reflection properties (characterized by 
the shading formula), the position of the 
light source, and the position of the 
observer's eye. Hanrahan [7] expresses it 
in honest Greek: 

Ixly~(E,N,L) ~(u,v)0(x,y) dxdy 

where the normal, N, the light sources, L, 
and the eye, E, are vectors which may each 
be functions of U and V, and the limits of 
integration are the X, Y boundaries of the 
pixel. 

Figure (13) illustrates highlight 
aliasing on a perfectly flat surface. The 
viewing conventions of the diagram are the 
same as in Figure (12). "L" is the direc- 
tion vector of the light source; the sur- 
face is a polygon at an angle to the image 
plane; the dotted bump is a graph of the 
reflected light, characteristic of a 

Figure (13) 

Figure (14) 

.-",.. 

: i ' .  
i s  
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specular surface reflection function. The 
highlight indicated by the bump falls 
entirely between the samples. (Note that 
this is only possible on a flat surface if 
either the eye or the light is local, a 
point in space rather than simply a direc- 
tion vector. Some boring shading formulae 
exclude the possibility of highlight 
aliasing on polygons by requiring all flat 
surfaces to be flat in shading.) 

A first attempt to overcome the limi- 
tations of point-sampling the illumination 
function is to integrate the function over 
the projected area represented by each 
sample point. This approach is illus- 
trated in Figure (14). The brackets at 
each sample represent the area of the sur- 
face over which the illumination function 
is integrated. This procedure is analo- 
gous to area-averaging of sampled edges or 
texture [3]. 

In order to generalize this approach 
to curved surfaces, the "sample interval" 
over which illumination is integrated must 
be modified according to the local curva- 
ture of the surface at a sample. In Fig- 
ure (15), the area of a surface 
represented by a pixel has been projected 
onto a curved surface. The solid angle 
over which illumination must be integrated 
is approximated by the volume enclosed by 
the normals at the pixel corners. The 
distribution of light within this volume 
will sum to an estimate of the diffuse 
reflection over the pixel. If the surface 
exhibits undulations at the pixel level, 
however, aliasing will result. 

Figure (15) 
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Figure (16) 
Michael Chou (right) poses with an ima- 
ginary companion. Reflectance maps can 
enhance the realism of synthetic shading. 

Figure (17) 
A pyramidal parametric reflectance map, 
containing 9 light sources. The region 
outside the "sDhere" is unused. 

We might divide the surface up into 
regions of relatively low curvature (as is 
done in some patch rendering algorithms), 
and rely on "edge antialiasing" to 
integrate the different surfaces within a 
pixel. Alternatively, we may develop some 
mechanism for limiting the local curvature 
of surfaces before rendering. This possi- 
bility is explored in the next section. 

If we represent the illumination of a 
scene as a two-dimensional map, highlights 
can be effectively antialiased in much the 
same way as textures. Blinn and Newell 
[I] demonstrated specular reflection using 
an illumination map. The map was an image 
of the environment (a spherical projection 
of the scene, indexed by the X and Y com- 
ponents of the surface normals) which 
could be used to cast reflections onto 
specular surfaces. The impression of mir- 
rored facets and chrome objects which can 
be achieved with this method is striking; 
Figure (16) provides an illustration. 
Reflectance mapping is not, however, accu- 
rate for local reflections. To achieve 
similar results with three dimensional 
accuracy requires ray-tracing. 

A pyramidal parametric illumination 
map permits convenient antialiasing of 
highlights as long as a good measure of 
local surface curvature is available. The 
value of "D" used to index the map is pro- 
portional to t~e solid angle subtended by 
the surface over the pixel being computed; 
this may be estimated by the same formula 
used to compute D for ordinary texture 
mapping. Nine light sources of varying 
brightness glint raggedly from the test 
object in Figure (18); the reflectance map 
in Figure (17) provided the illumination. 
In Figure (19), convincing highllght 
antialiasing results from the full pyrami- 
dal parametric treatment. 

Figure (18) Before Figure (19) After 
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32 x 32 

64 x 64 

Figures (20-23) Different resolution meshes. 

5. Levels of Detail in Surface Represen- 
tation 

In addition to bandlimiting texture 
and illumination functions for mapping 
onto a surface, pyramidal parametrics may 
be used to limit the level of detail with 
which the surface itself is represented. 
The goal is to represent an object for 
graphic display as economically as its 
projection on the image plane permits, 
without boiling and sparkling aliasing 
artifacts as the projection changes. 

The expense of computing and shading 
each pixel dominates the cost of many 
algorithms for rendering higher-order sur- 
faces. For meshes of polygons or patch 
control points which project onto a small 
portion of the image, however, the vertex 
(or control-point) expense dominates. In 
these situations it is desirable to reduce 
the number of points used to represent the 
object. 

A pyramidal parametric data structure 
the components of which are spatial coor- 
dinates (the X-Y-Z of the vertices of a 
rectangular mesh, for example, as opposed 
to the R-G-B of a texture or illumination 
map) provides a continuously-variable fil- 
tered instance of the surface for sampling 
at any desired degree of resolution. 

Figures (20) through (23) illustrate 
a simple surface based on a human face 
model developed by Fred Parke at the 
University of Utah. As the sampling den- 
sity varies, so does the filtering of the 
surface. These faces are filtered and 
sampled by the same methods previously 
discussed for texture and reflectance 
maps. Pyramidal parametric representa- 
tions such as these appear promising for 
reducing aliasing effects as well as sys- 
tematically sampling very large data bases 
over a wide range of scales and viewing 
angles. 
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6. Conclusions 

Pyramidal data structures are of pro- 
ven value in image analysis and have 
interesting application to image bandwidth 
compression and transmission. "Pyramidal 
parametrics," pyramidal data structures 
with intra- and inter-level interpolation, 
are here proposed for use in image syn- 
thesis. By continuously varying the 
detail with which data are resolved, 
pyramidal parametrics provide economical 
approximate solutions to filtering prob- 
lems in mapping texture and illumination 
onto surfaces, and preliminary experiments 
suggest they may provide flexible surface 
representations as well. 
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Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture 
Minification

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, 
LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of a mipmap. A mipmap 
is an ordered set of arrays representing the same image; each array has a resolution lower than the 
previous one. If the texture has dimensions , then there are  mipmap arrays. 
The first array is the original texture with dimensions . Each subsequent array has 

dimensions  where  are the dimensions of the previous array. This is the case 

as long as both k>0 and l>0. Once either k=0 or l=0, each subsequent array has dimension 

or , respectively, until the last array is reached with dimension . 

Each array in a mipmap is transmitted to the GL using TexImage2D  or TexImage1D ; the array 
being set is indicated with the level-of-detail argument. Level-of-detail numbers proceed from 0 for 
the original texture array through  with each unit increase indicating an array of half 
the dimensions of the previous one as already described. If texturing is enabled (and 
TEXTURE_MIN_FILTER is one that requires a mipmap) at the time a primitive is rasterized and if the set 
of arrays 0 through p is incomplete, based on the dimensions of array 0, then it is as if texture 
mapping were disabled. The set of arrays 0 through p is incomplete if the internal formats of all the 
mipmap arrays were not specified with the same symbolic constant, or if the border widths of the 
mipmap arrays are not the same, or if the dimensions of the mipmap arrays do not follow the 
sequence described above. Arrays indexed greater than p are insignificant. 

The mipmap is used in conjunction with the level of detail to approximate the application of an 
appropriately filtered texture to a fragment. Let  and let c be the value of  at which 
the transition from minification to magnification occurs (since this discussion pertains to minification, 
we are concerned only with values of  where ). For NEAREST_MIPMAP_NEAREST, if 

 then the mipmap array with level-of-detail of 0 is selected. Otherwise, the dth mipmap 

array is selected when  as long as . If , then the pth 
mipmap array is selected. The rules for NEAREST are then applied to the selected array. 

The same mipmap array selection rules apply for LINEAR_MIPMAP_NEAREST as for 
NEAREST_MIPMAP_NEAREST, but the rules for LINEAR are applied to the selected array. 

For NEAREST_MIPMAP_LINEAR, the level d-1 and the level d mipmap arrays are selected, where 
, unless , in which case the pth mipmap array is used for both arrays. The rules 

Page 1 of 2Mipmapping

4/22/2015https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html
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for NEAREST are then applied to each of these arrays, yielding two corresponding texture values 
and . The final texture value is then found as 

LINEAR_MIPMAP_LINEAR has the same effect as NEAREST_MIPMAP_LINEAR except that the rules for 
LINEAR are applied for each of the two mipmap arrays to generate  and . 

Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture 
Minification

David Blythe 
Sat Mar 29 02:23:21 PST 1997 
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Progressive Meshes

Hugues Hoppe
Microsoft Research

ABSTRACT

Highly detailed geometric models are rapidly becoming common-
place in computer graphics. These models, often represented as
complex triangle meshes, challenge rendering performance, trans-
mission bandwidth, and storage capacities. This paper introduces
the progressive mesh (PM) representation, a new scheme for storing
and transmitting arbitrary triangle meshes. This efficient, loss-
less, continuous-resolution representation addresses several practi-
cal problems in graphics: smooth geomorphing of level-of-detail
approximations, progressive transmission, mesh compression, and
selective refinement.

In addition, we present a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh. The goal
of this optimization procedure is to preserve not just the geometry
of the original mesh, but more importantly its overall appearance
as defined by its discrete and scalar appearance attributes such as
material identifiers, color values, normals, and texture coordinates.
We demonstrate construction of the PM representation and its ap-
plications using several practical models.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations.

Additional Keywords: mesh simplification, level of detail, shape interpo-
lation, progressive transmission, geometry compression.

1 INTRODUCTION

Highly detailed geometric models are necessary to satisfy a grow-
ing expectation for realism in computer graphics. Within traditional
modeling systems, detailed models are created by applying ver-
satile modeling operations (such as extrusion, constructive solid
geometry, and freeform deformations) to a vast array of geometric
primitives. For efficient display, these models must usually be tes-
sellated into polygonal approximations—meshes. Detailed meshes
are also obtained by scanning physical objects using range scanning
systems [5]. In either case, the resulting complex meshes are ex-
pensive to store, transmit, and render, thus motivating a number of
practical problems:

Email: hhoppe@microsoft.com
Web: http://www.research.microsoft.com/research/graphics/hoppe/

� Mesh simplification: The meshes created by modeling and scan-
ning systems are seldom optimized for rendering efficiency, and
can frequently be replaced by nearly indistinguishable approx-
imations with far fewer faces. At present, this process often
requires significant user intervention. Mesh simplification tools
can hope to automate this painstaking task, and permit the port-
ing of a single model to platforms of varying performance.

� Level-of-detail (LOD) approximation: To further improve ren-
dering performance, it is common to define several versions of a
model at various levels of detail [3, 8]. A detailed mesh is used
when the object is close to the viewer, and coarser approxima-
tions are substituted as the object recedes. Since instantaneous
switching between LOD meshes may lead to perceptible “pop-
ping”, one would like to construct smooth visual transitions,
geomorphs, between meshes at different resolutions.

� Progressive transmission: When a mesh is transmitted over a
communication line, one would like to show progressively better
approximations to the model as data is incrementally received.
One approach is to transmit successive LOD approximations,
but this requires additional transmission time.

� Mesh compression: The problem of minimizing the storage
space for a model can be addressed in two orthogonal ways.
One is to use mesh simplification to reduce the number of faces.
The other is mesh compression: minimizing the space taken to
store a particular mesh.

� Selective refinement: Each mesh in a LOD representation cap-
tures the model at a uniform (view-independent) level of detail.
Sometimes it is desirable to adapt the level of refinement in se-
lected regions. For instance, as a user flies over a terrain, the
terrain mesh need be fully detailed only near the viewer, and
only within the field of view.

In addressing these problems, this paper makes two major con-
tributions. First, it introduces the progressive mesh (PM) repre-
sentation. In PM form, an arbitrary mesh M̂ is stored as a much
coarser mesh M0 together with a sequence of n detail records that
indicate how to incrementally refine M0 exactly back into the orig-
inal mesh M̂ = Mn. Each of these records stores the information
associated with a vertex split, an elementary mesh transformation
that adds an additional vertex to the mesh. The PM representation
of M̂ thus defines a continuous sequence of meshes M0

;M1
; : : : ;Mn

of increasing accuracy, from which LOD approximations of any de-
sired complexity can be efficiently retrieved. Moreover, geomorphs
can be efficiently constructed between any two such meshes. In
addition, we show that the PM representation naturally supports
progressive transmission, offers a concise encoding of M̂ itself, and
permits selective refinement. In short, progressive meshes offer an
efficient, lossless, continuous-resolution representation.

The other contribution of this paper is a new simplification pro-
cedure for constructing a PM representation from a given mesh
M̂. Unlike previous simplification methods, our procedure seeks
to preserve not just the geometry of the mesh surface, but more
importantly its overall appearance, as defined by the discrete and
scalar attributes associated with its surface.

Permission to make digital or hard copies of part or all of this work or 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page.  To copy otherwise, to 
republish, to post on servers, or to redistribute to lists, requires prior 
specific permission and/or a fee. 
© 1996 ACM-0-89791-746-4/96/008...$3.50 
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2 MESHES IN COMPUTER GRAPHICS

Models in computer graphics are often represented using triangle
meshes.1 Geometrically, a triangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K;V), where K is a simplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = fv1; : : : ;vmg is the set of vertex positions defining
the shape of the mesh in R3. More precisely (cf. [9]), we construct
a parametric domain jKj � R

m by identifying each vertex of K with
a canonical basis vector of Rm, and define the mesh as the image
�V(jKj) where �V : Rm ! R

3 is a linear map.

Often, surface appearance attributes other than geometry are also
associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, a trivial shader function may involve simple look-up within
a specified texture map.

Many scalar attributes are often associated with a mesh, including
diffuse color (r; g; b), normal (nx; ny; nz), and texture coordinates
(u; v). More generally, these attributes specify the local parameters
of shader functions defined on the mesh faces. In simple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuities in the scalar fields, and because adjacent
faces may have different shading functions, it is common to associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v; f ) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

We express a mesh as a tuple M = (K;V;D; S) where V specifies
its geometry, D is the set of discrete attributes df associated with
the faces f = fj; k; lg 2 K, and S is the set of scalar attributes s(v;f )

associated with the corners (v; f ) of K.

The attributes D and S give rise to discontinuities in the visual
appearance of the mesh. An edge fvj; vkg of the mesh is said to be
sharp if either (1) it is a boundary edge, or (2) its two adjacent faces
fl and fr have different discrete attributes (i.e. dfl 6= dfr ), or (3) its
adjacent corners have different scalar attributes (i.e. s(vj;fl) 6= s(vj;fr)

or s(vk;fl) 6= s(vk;fr)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION

3.1 Overview
Hoppe et al. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M̂ by a much simpler one.
Their optimization algorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations: edge collapse, edge split, and edge swap.

We have discovered that in fact a single one of those transforma-
tions, edge collapse, is sufficient for effectively simplifying meshes.
As shown in Figure 1, an edge collapse transformation ecol(fvs; vtg)

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.
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Figure 1: Illustration of the edge collapse transformation.
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Figure 2: (a) Sequence of edge collapses; (b) Resulting vertex
correspondence.

unifies 2 adjacent vertices vs and vt into a single vertex vs. The ver-
tex vt and the two adjacent faces fvs; vt; vlg and fvt; vs; vrg vanish
in the process. A position vs is specified for the new unified vertex.

Thus, an initial mesh M̂ = Mn can be simplified into a coarser
mesh M0 by applying a sequence of n successive edge collapse
transformations:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0
:

The particular sequence of edge collapse transformations must be
chosen carefully, since it determines the quality of the approximating
meshes Mi

; i < n. A scheme for choosing these edge collapses is
presented in Section 4.

Let m0 be the number of vertices in M0 , and let us label the vertices
of mesh Mi as Vi = fv1; : : : ; vm0+ig, so that edge fvsi ; vm0+i+1g is
collapsed by ecoli as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj in Mi as vi

j.

A key observation is that an edge collapse transformation is in-
vertible. Let us call that inverse transformation a vertex split, shown
as vsplit in Figure 1. A vertex split transformation vsplit(s; l; r; t;A)
adds near vertex vs a new vertex vt and two new faces fvs; vt; vlg and
fvt; vs; vrg. (If the edge fvs; vtg is a boundary edge, we let vr = 0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions vs

and vt of the two affected vertices, the discrete attributes dfvs;vt;vlg

and dfvt;vs;vrg of the two new faces, and the scalar attributes of the
affected corners (s(vs;�), s(vt;�), s(vl;fvs;vt;vlg), and s(vr;fvt;vs;vrg)).

Because edge collapse transformations are invertible, we can
therefore represent an arbitrary triangle mesh M̂ as a simple mesh
M0 together with a sequence of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

where each record is parametrized as vspliti(si; li; ri;Ai). We call
(M0

; fvsplit0; : : : ; vsplitn�1g) a progressive mesh (PM) representa-
tion of M̂.

As an example, the mesh M̂ of Figure 5d (13,546 faces) was
simplified down to the coarse mesh M0 of Figure 5a (150 faces) using
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6,698 edge collapse transformations. Thus its PM representation
consists of M0 together with a sequence of n = 6698 vsplit records.
From this PM representation, one can extract approximating meshes
with any desired number of faces (actually, within �1) by applying
to M0 a prefix of the vsplit sequence. For example, Figure 5 shows
approximating meshes with 150, 500, and 1000 faces.

3.2 Geomorphs
A nice property of the vertex split transformation (and its inverse,
edge collapse) is that a smooth visual transition (a geomorph) can be
created between the two meshes Mi and Mi+1 in Mi vspliti

�! Mi+1. For
the moment let us assume that the meshes contain no attributes other
than vertex positions. With this assumption the vertex split record
is encoded as vspliti(si; li; ri;Ai = (vi+1

si ;v
i+1
m0+i+1)). We construct a

geomorph MG(�) with blend parameter 0���1 such that MG(0)
looks like Mi and MG(1) looks like Mi+1—in fact MG(1)=Mi+1—by
defining a mesh

MG(�) = (Ki+1
;VG(�))

whose connectivity is that of Mi+1 and whose vertex positions lin-
early interpolate from vsi 2Mi to the split vertices vsi ;vm0+i+12Mi+1:

v
G
j (�) =

�
(�)vi+1

j + (1��)vi
si ; j 2 fsi;m0 +i+1g

v
i+1
j = vi

j ; j =2 fsi;m0 +i+1g

Using such geomorphs, an application can smoothly transition from
a mesh Mi to meshes Mi+1 or Mi�1 without any visible “snapping”
of the meshes.

Moreover, since individual ecol transformations can be transi-
tioned smoothly, so can the composition of any sequence of them.
Geomorphs can therefore be constructed between any two meshes
of a PM representation. Indeed, given a finer mesh Mf and a coarser
mesh Mc, 0 � c < f � n, there exists a natural correspondence
between their vertices: each vertex of Mf is related to a unique an-
cestor vertex of Mc by a surjective map Ac obtained by composing a
sequence of ecol transformations (Figure 2b). More precisely, each
vertex vj of Mf corresponds with the vertex vAc(j) in Mc where

Ac(j) =

�
j ; j � m0 + c

Ac(sj�m0�1) ; j > m0 + c :

(In practice, this ancestor information Ac is gathered in a forward
fashion as the mesh is refined.) This correspondence allows us to
define a geomorph MG(�) such that MG(0) looks like Mc and MG(1)
equals Mf . We simply define MG(�) = (Kf

; VG(�)) to have the
connectivity of Mf and the vertex positions

v
G
j (�) = (�)vf

j + (1��)vc
Ac(j) :

So far we have outlined the construction of geomorphs between
PM meshes containing only position attributes. We can in fact
construct geomorphs for meshes containing both discrete and scalar
attributes.

Discrete attributes by their nature cannot be smoothly interpo-
lated. Fortunately, these discrete attributes are associated with
faces of the mesh, and the “geometric” geomorphs described above
smoothly introduce faces. In particular, observe that the faces of
Mc are a proper subset of the faces of Mf , and that those faces of
Mf missing from Mc are invisible in MG(0) because they have been
collapsed to degenerate (zero area) triangles. Other geomorphing
schemes [10, 11, 17] define well-behaved (invertible) parametriza-
tions between meshes at different levels of detail, but these do not
permit the construction of geomorphs between meshes with differ-
ent discrete attributes.

Scalar attributes defined on corners can be smoothly interpolated
much like the vertex positions. There is a slight complication in
that a corner (v; f ) in a mesh M is not naturally associated with

any “ancestor corner” in a coarser mesh Mc if f is not a face of
Mc. We can still attempt to infer what attribute value (v; f ) would
have in Mc as follows. We examine the mesh Mi+1 in which f is
first introduced, locate a neighboring corner (v; f 0) in Mi+1 whose
attribute value is the same, and recursively backtrack from it to a
corner in Mc. If there is no neighboring corner in Mi+1 with an
identical attribute value, then the corner (v; f ) has no equivalent in
Mc and we therefore keep its attribute value constant through the
geomorph.

The interpolating function on the scalar attributes need not be
linear; for instance, normals are best interpolated over the unit
sphere, and colors may be interpolated in a color space other than
RGB.

Figure 6 demonstrates a geomorph between two meshes M175 (500
faces) and M425 (1000 faces) retrieved from the PM representation
of the mesh in Figure 5d.

3.3 Progressive transmission
Progressive meshes are a natural representation for progressive
transmission. The compact mesh M0 is transmitted first (using
a conventional uni-resolution format), followed by the stream of
vspliti records. The receiving process incrementally rebuilds M̂ as
the records arrive, and animates the changing mesh. The changes
to the mesh can be geomorphed to avoid visual discontinuities. The
original mesh M̂ is recovered exactly after all n records are received,
since PM is a lossless representation.

The computation of the receiving process should be balanced
between the reconstruction of M̂ and interactive display. With a
slow communication line, a simple strategy is to display the current
mesh whenever the input buffer is found to be empty. With a
fast communication line, we find that a good strategy is to display
meshes whose complexities increase exponentially. (Similar issues
arise in the display of images transmitted using progressive JPEG.)

3.4 Mesh compression
Even though the PM representation encodes both M̂ and a continu-
ous family of approximations, it is surprisingly space-efficient, for
two reasons. First, the locations of the vertex split transformations
can be encoded concisely. Instead of storing all three vertex indices
(si; li; ri) of vspliti, one need only store si and approximately 5 bits
to select the remaining two vertices among those adjacent to vsi .

2

Second, because a vertex split has local effect, one can expect signif-
icant coherence in mesh attributes through each transformation. For
instance, when vertex vi

si is split into vi+1
si and vi+1

m0+i+1, we can predict
the positions vi+1

si and vi+1
m0+i+1 from v

i
si , and use delta-encoding to

reduce storage. Scalar attributes of corners in Mi+1 can similarly be
predicted from those in Mi. Finally, the material identifiers dfvs;vt;vlg

and dfvt;vs;vrg of the new faces in mesh Mi+1 can often be predicted
from those of adjacent faces in Mi using only a few control bits.

As a result, the size of a carefully designed PM representation
should be competitive with that obtained from methods for com-
pressing uni-resolution meshes. Our current prototype implementa-
tion was not designed with this goal in mind. However, we analyze
the compression of the connectivity K, and report results on the com-
pression of the geometry V . In the following analysis, we assume
for simplicity that m0 = 0 since typically m0 � n.

A common representation for the mesh connectivity K is to list
the three vertex indices for each face. Since the number of vertices
is n and the number of faces approximately 2n, such a list requires
6dlog2(n)en bits of storage. Using a buffer of 2 vertices, gener-
alized triangle strip representations reduce this number to about

2On average, vsi has 6 neighbors, and the number of permutations P6
2 =30

can be encoded in dlog2(P6
2)e=5 bits.
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(dlog2(n)e+2k)n bits, where vertices are back-referenced once on
average and k ' 2 bits capture the vertex replacement codes [6].
By increasing the vertex buffer size to 16, Deering’s generalized
triangle mesh representation [6] further reduces storage to about
( 1

8dlog2(n)e+8)n bits. Turan [16] shows that planar graphs (and
hence the connectivity of closed genus 0 meshes) can be encoded
in 12n bits. Recent work by Taubin and Rossignac [15] addresses
more general meshes. With the PM representation, each vspliti re-
quires specification of si and its two neighbors, for a total storage of
about (dlog2(n)e+5)n bits. Although not as concise as [6, 15], this
is comparable to generalized triangle strips.

A traditional representation of the mesh geometry V requires
storage of 3n coordinates, or 96n bits with IEEE single-precision
floating point. Like Deering [6], we assume that these coordinates
can be quantized to 16-bit fixed precision values without significant
loss of visual quality, thus reducing storage to 48n bits. Deering is
able to further compress this storage by delta-encoding the quantized
coordinates and Huffman compressing the variable-length deltas.
For 16-bit quantization, he reports storage of 35:8n bits, which
includes both the deltas and the Huffman codes. Using a similar
approach with the PM representation, we encode V in 31n to 50n bits
as shown in Table 1. To obtain these results, we exploit a property
of our optimization algorithm (Section 4.3): when considering the
collapse of an edge fvs; vtg, it considers three starting points for
the resulting vertex position vn: fvs;vt;

vs+vt
2 g. Depending on the

starting point chosen, we delta-encode either fvs�vn;vt�vng or
fvs+vt

2 �vn;
vt�vs

2 g, and use separate Huffman tables for all four
quantities.

To further improve compression, we could alter the construction
algorithm to forego optimization and let vn 2 fvs;vt;

vs+vt
2 g. This

would degrade the accuracy of the approximating meshes some-
what, but allows encoding of V in 30n to 37n bits in our examples.
Arithmetic coding [19] of delta lengths does not improve results
significantly, reflecting the fact that the Huffman trees are well bal-
anced. Further compression improvements may be achievable by
adapting both the quantization level and the delta length models
as functions of the vsplit record index i, since the magnitude of
successive changes tends to decrease.

3.5 Selective refinement
The PM representation also supports selective refinement, whereby
detail is added to the model only in desired areas. Let the application
supply a callback function REFINE(v) that returns a Boolean value
indicating whether the neighborhood of the mesh about v should
be further refined. An initial mesh Mc is selectively refined by
iterating through the list fvsplitc; : : : ; vsplitn�1g as before, but only
performing vspliti(si; li; ri;Ai) if

(1) all three vertices fvsi ; vli ; vrig are present in the mesh, and

(2) REFINE(vsi ) evaluates to TRUE.

(A vertex vj is absent from the mesh if the prior vertex split that
would have introduced it, vsplitj�m0�1, was not performed due to
the above conditions.)

As an example, to obtain selective refinement of the model within
a view frustum, REFINE(v) is defined to be TRUE if either v or any
of its neighbors lies within the frustum. As seen in Figure 7a,
condition (1) described above is suboptimal. The problem is that a
vertex vsi within the frustum may fail to be split because its expected
neighbor vli lies just outside the frustum and was not previously
created. The problem is remedied by using a less stringent version
of condition (1). Let us define the closest living ancestor of a vertex
vj to be the vertex with index

A0(j) =

�
j ; if vj exists in the mesh

A0(sj�m0�1) ; otherwise

The new condition becomes:

(1’) vsi is present in the mesh (i.e. A0(si) = si) and the vertices vA0 (li)

and vA0 (ri) are both adjacent to vsi .

As when constructing the geomorphs, the ancestor information A0

is carried efficiently as the vsplit records are parsed. If conditions
(1’) and (2) are satisfied, vsplit(si;A0(li);A0(ri);Ai) is applied to the
mesh. A mesh selectively refined with this new strategy is shown in
Figure 7b. This same strategy was also used for Figure 10. Note that
it is still possible to create geomorphs between Mc and selectively
refined meshes thus created.

An interesting application of selective refinement is the transmis-
sion of view-dependent models over low-bandwidth communication
lines. As the receiver’s view changes over time, the sending process
need only transmit those vsplit records for which REFINE evaluates
to TRUE, and of those only the ones not previously transmitted.

4 PROGRESSIVE MESH CONSTRUCTION

The PM representation of an arbitrary mesh M̂ requires a sequence
of edge collapses transforming M̂ = Mn into a base mesh M0.
The quality of the intermediate approximations Mi

; i < n depends
largely on the algorithm for selecting which edges to collapse and
what attributes to assign to the affected neighborhoods, for instance
the positions vi

si .

There are many possible PM construction algorithms with vary-
ing trade-offs of speed and accuracy. At one extreme, a crude and
fast scheme for selecting edge collapses is to choose them com-
pletely at random. (Some local conditions must be satisfied for an
edge collapse to be legal, i.e. manifold preserving [9].) More so-
phisticated schemes can use heuristics to improve the edge selection
strategy, for example the “distance to plane” metric of Schroeder
et al. [14]. At the other extreme, one can attempt to find approx-
imating meshes that are optimal with respect to some appearance
metric, for instance the Edist geometric metric of Hoppe et al. [9].

Since PM construction is a preprocess that can be performed off-
line, we chose to design a simplification procedure that invests some
time in the selection of edge collapses. Our procedure is similar to
the mesh optimization method introduced by Hoppe et al. [9], which
is outlined briefly in Section 4.1. Section 4.2 presents an overview
of our procedure, and Sections 4.3–4.6 present the details of our
optimization scheme for preserving both the shape of the mesh and
the scalar and discrete attributes which define its appearance.

4.1 Background: mesh optimization
The goal of mesh optimization [9] is to find a mesh M = (K;V)
that both accurately fits a set X of points xi 2 R

3 and has a small
number of vertices. This problem is cast as minimization of an
energy function

E(M) = Edist(M) + Erep(M) + Espring(M) :

The first two terms correspond to the two goals of accuracy and
conciseness: the distance energy term

Edist(M) =
X

i

d2(xi; �V (jKj))

measures the total squared distance of the points from the mesh,
and the representation energy term Erep(M) = crepm penalizes the
number m of vertices in M. The third term, the spring energy
Espring(M) is introduced to regularize the optimization problem. It
corresponds to placing on each edge of the mesh a spring of rest
length zero and tension �:

Espring(M) =
X

fj;kg2K

�kvj � vkk
2
:
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Figure 3: Illustration of the paths taken by mesh optimization using
three different settings of crep.

The energy function E(M) is minimized using a nested optimiza-
tion method:

� Outer loop: The algorithm optimizes over K, the connectivity
of the mesh, by randomly attempting a set of three possible
mesh transformations: edge collapse, edge split, and edge swap.
This set of transformations is complete, in the sense that any
simplicial complex K of the same topological type as K̂ can
be reached through a sequence of these transformations. For
each candidate mesh transformation, K ! K0, the continuous
optimization described below computes EK0 , the minimum of
E subject to the new connectivity K0. If �E = EK0 � EK is
found to be negative, the mesh transformation is applied (akin to
a zero-temperature simulated annealing method).

� Inner loop: For each candidate mesh transformation, the algo-
rithm computes EK0 = minV Edist(V) + Espring(V) by optimizing
over the vertex positions V . For the sake of efficiency, the algo-
rithm in fact optimizes only one vertex positionvs, and considers
only the subset of points X that project onto the neighborhood
affected by K ! K0. To avoid surface self-intersections, the
edge collapse is disallowed if the maximum dihedral angle of
edges in the resulting neighborhood exceeds some threshold.

Hoppe et al. [9] find that the regularizing spring energy term
Espring(M) is most important in the early stages of the optimization,
and achieve best results by repeatedly invoking the nested optimiza-
tion method described above with a schedule of decreasing spring
constants �.

Mesh optimization is demonstrated to be an effective tool for mesh
simplification. Given an initial mesh M̂ to approximate, a dense set
of points X is sampled both at the vertices of M̂ and randomly over
its faces. The optimization algorithm is then invoked with M̂ as the
starting mesh. Varying the setting of the representation constant crep

results in optimized meshes with different trade-offs of accuracy and
size. The paths taken by these optimizations are shown illustratively
in Figure 3.

4.2 Overview of the simplification algorithm
As in mesh optimization [9], we also define an explicit energy metric
E(M) to measure the accuracy of simplified meshes M = (K;V;D; S)
with respect to the original M̂, and we also modify the mesh M
starting from M̂ while minimizing E(M).

Our energy metric has the following form:

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M) :

The first two terms, Edist(M) and Espring(M) are identical to those
in [9]. The next two terms of E(M) are added to preserve attributes
associated with M: Escalar(M) measures the accuracy of its scalar
attributes (Section 4.4), and Edisc(M) measures the geometric ac-
curacy of its discontinuity curves (Section 4.5). (To achieve scale
invariance of the terms, the mesh is uniformly scaled to fit in a unit
cube.)

size (# vertices)

accuracy
Edist

M0

M

poor

perfect

0 n

ideal

PM
representation

space of meshes

Figure 4: Illustration of the path taken by the new mesh simplifica-
tion procedure in a graph plotting accuracy vs. mesh size.

Our scheme for optimizing over the connectivity K of the mesh
is rather different from [9]. We have discovered that a mesh can
be effectively simplified using edge collapse transformations alone.
The edge swap and edge split transformations, useful in the context
of surface reconstruction (which motivated [9]), are not essential
for simplification. Although in principle our simplification algo-
rithm can no longer traverse the entire space of meshes considered
by mesh optimization, we find that the meshes generated by our
algorithm are just as good. In fact, because of the priority queue
approach described below, our meshes are usually better. Moreover,
considering only edge collapses simplifies the implementation, im-
proves performance, and most importantly, gives rise to the PM
representation (Section 3).

Rather than randomly attempting mesh transformations as in [9],
we place all (legal) candidate edge collapse transformations into
a priority queue, where the priority of each transformation is its
estimated energy cost �E. In each iteration, we perform the trans-
formation at the front of the priority queue (with lowest �E), and
recompute the priorities of edges in the neighborhood of this trans-
formation. As a consequence, we eliminate the need for the awk-
ward parameter crep as well as the energy term Erep(M). Instead, we
can explicitly specify the number of faces desired in an optimized
mesh. Also, a single run of the optimization can generate several
such meshes. Indeed, it generates a continuous-resolution family of
meshes, namely the PM representation of M̂ (Figure 4).

For each edge collapse K ! K0, we compute its cost �E =
EK0 � EK by solving a continuous optimization

EK0 = min
V;S

Edist(V) + Espring(V) + Escalar(V; S) + Edisc(V)

over both the vertex positions V and the scalar attributes S of the
mesh with connectivity K0. This minimization is discussed in the
next three sections.

4.3 Preserving surface geometry (Edist +Espring)
As in [9], we “record” the geometry of the original mesh M̂ by
sampling from it a set of points X. At a minimum, we sample a
point at each vertex of M̂. If requested by the user, additional points
are sampled randomly over the surface of M̂. The energy terms
Edist(M) and Espring(M) are defined as in Section 4.1.

For a mesh of fixed connectivity, our method for optimizing the
vertex positions to minimize Edist(V)+Espring(V) closely follows that
of [9]. Evaluating Edist(V) involves computing the distance of each
point xi to the mesh. Each of these distances is itself a minimization
problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k
2 (1)

where the unknown bi is the parametrization of the projection of
xi on the mesh. The nonlinear minimization of Edist(V) + Espring(V)
is performed using an iterative procedure alternating between two
steps:
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1. For fixed vertex positions V , compute the optimal parametriza-
tions B = fb1; : : : ;bjXjg by projecting the points X onto the
mesh.

2. For fixed parametrizations B, compute the optimal vertex posi-
tions V by solving a sparse linear least-squares problem.

As in [9], when considering ecol(fvs; vtg), we optimize only one
vertex position, vi

s. We perform three different optimizations with
different starting points, vi

s = (1��)vi+1
s +(�)vi+1

t for � = f0; 1
2 ; 1g,

and accept the best one.

Instead of defining a global spring constant � for Espring as in [9],
we adapt � each time an edge collapse transformation is considered.
Intuitively, the spring energy is most important when few points
project onto a neighborhood of faces, since in this case finding the
vertex positions minimizing Edist(V) may be an under-constrained
problem. Thus, for each edge collapse transformation considered,
we set � as a function of the ratio of the number of points to the
number of faces in the neighborhood.3 With this adaptive scheme,
the influence of Espring(M) decreases gradually and adaptively as the
mesh is simplified, and we no longer require the expensive schedule
of decreasing spring constants.

4.4 Preserving scalar attributes (Escalar)
As described in Section 2, we represent piecewise continuous scalar
fields by defining scalar attributes S at the mesh corners. We now
present our scheme for preserving these scalar fields through the
simplification process. For exposition, we find it easier to first
present the case of continuous scalar fields, in which the corner
attributes at a vertex are identical. The generalization to piecewise
continuous fields is discussed shortly.

Optimizing scalar attributes at vertices Let the original
mesh M̂ have at each vertex vj not only a position vj 2 R

3 but
also a scalar attribute vj 2 R

d. To capture scalar attributes, we
sample at each point xi 2 X the attribute value xi 2 R

d . We would
then like to generalize the distance metric Edist to also measure the
deviation of the sampled attribute values X from those of M.

One natural way to achieve this is to redefine the distance metric
to measure distance in R3+d:

d2((xi xi);M(K;V;V)) = min
bi2jKj

k(xi xi) � (�V(bi) �V(bi))k
2
:

This new distance functional could be minimized using the iterative
approach of Section 4.3. However, it would be expensive since
finding the optimal parametrization bi of each point xi would re-
quire projection in R3+d, and would be non-intuitive since these
parametrizations would not be geometrically based.

Instead we opted to determine the parametrizations bi using only
geometry with equation (1), and to introduce a separate energy term
Escalar to measure attribute deviation based on these parametriza-
tions:

Escalar(V) = (cscalar)
2
X

i

kxi � �V(bi)k
2

where the constant cscalar assigns a relative weight between the scalar
attribute errors (Escalar) and the geometric errors (Edist).

Thus, to minimize E(V;V) = Edist(V) + Espring(V) + Escalar(V), our
algorithm first finds the vertex position vs minimizing Edist(V) +
Espring(V) by alternately projecting the points onto the mesh (ob-
taining the parametrizations bi) and solving a linear least-squares
problem (Section 4.1). Then, using those same parametrizations

3The neighborhood of an edge collapse transformation is the set of faces
shown in Figure 1. Using C notation, we set � = r < 4 ? 10�2 : r <

8 ? 10�4 : 10�8 where r is the ratio of the number of points to faces in the
neighborhood.

bi, it finds the vertex attribute vs minimizing Escalar by solving a
single linear least-squares problem. Hence introducing Escalar into
the optimization causes negligible performance overhead.

Since �Escalar contributes to the estimated cost �E of an edge
collapse, we obtain simplified meshes whose faces naturally adapt
to the attribute fields, as shown in Figures 8 and 11.

Optimizing scalar attributes at corners Our scheme for op-
timizing the scalar corner attributes S is a straightforward gener-
alization of the scheme just described. Instead of solving for a
single unknown attribute value vs, the algorithm partitions the cor-
ners around vs into continuous sets (based on equivalence of corner
attributes) and for each continuous set solves independently for its
optimal attribute value.

Range constraints Some scalar attributes have constrained
ranges. For instance, the components (r; g; b) of color are typically
constrained to lie between 0 and 1. Least-squares optimization may
yield color values outside this range. In these cases we clip the op-
timized values to the given range. For least-squares minimization
of a Euclidean norm at a single vertex, this is in fact optimal.

Normals Surface normals (nx; ny; nz) are typically constrained to
have unit length, and thus their domain is non-Cartesian. Optimizing
over normals would therefore require minimization of a nonlinear
functional with nonlinear constraints. We decided to instead simply
carry the normals through the simplification process. Specifically,
we compute the new normals at vertex vi

si by interpolating between
the normals at vertices vi+1

si and vi+1
m0+i+1 using the � value that re-

sulted in the best vertex position vi
si in Section 4.3. Fortunately,

the absolute directions of normals are less visually important than
their discontinuities, and we have a scheme for preserving such
discontinuities, as described in the next section.

4.5 Preserving discontinuity curves (Edisc)
Appearance attributes give rise to a set of discontinuity curves on the
mesh, both from differences between discrete face attributes (e.g.
material boundaries), and from differences between scalar corner
attributes (e.g. creases and shadow boundaries). As these discon-
tinuity curves form noticeable features, we have found it useful to
preserve them both topologically and geometrically.

We can detect when a candidate edge collapse would modify the
topology of the discontinuity curves using some simple tests on
the presence of sharp edges in its neighborhood. Let sharp(vj; vk)
denote that an edge fvj ; vkg is sharp, and let #sharp(vj) be the number
of sharp edges adjacent to a vertex vj. Then, referring to Figure 1,
ecol(fvs; vtg) modifies the topology of discontinuity curves if either:

� sharp(vs; vl) and sharp(vt; vl), or
� sharp(vs; vr) and sharp(vt; vr), or
� #sharp(vs) � 1 and #sharp(vt) � 1 and not sharp(vs; vt), or
� #sharp(vs) � 3 and #sharp(vt) � 3 and sharp(vs; vt), or
� sharp(vs; vt) and #sharp(vs) = 1 and #sharp(vt) 6= 2, or
� sharp(vs; vt) and #sharp(vt) = 1 and #sharp(vs) 6= 2.

If an edge collapse would modify the topology of discontinuity
curves, we either disallow it, or penalize it as discussed in Sec-
tion 4.6.

To preserve the geometry of the discontinuity curves, we sample
an additional set of points Xdisc from the sharp edges of M̂, and define
an additional energy term Edisc equal to the total squared distances
of each of these points to the discontinuity curve from which it was
sampled. Thus Edisc is defined just like Edist, except that the points
Xdisc are constrained to project onto a set of sharp edges in the mesh.
In effect, we are solving a curve fitting problem embedded within
the surface fitting problem. Since all boundaries of the surface are
defined to be discontinuity curves, our procedure preserves bound-
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ary geometry more accurately than [9]. Figure 9 demonstrates the
importance of using the Edisc energy term in preserving the material
boundaries of a mesh with discrete face attributes.

4.6 Permitting changes to topology of dis-
continuity curves

Some meshes contain numerous discontinuity curves, and these
curves may delimit features that are too small to be visible when
viewed from a distance. In such cases we have found that strictly
preserving the topology of the discontinuity curves unnecessarily
curtails simplification. We have therefore adopted a hybrid strat-
egy, which is to permit changes to the topology of the discontinu-
ity curves, but to penalize such changes. When a candidate edge
collapse ecol(fvs; vtg) changes the topology of the discontinuity
curves, we add to its cost �E the value jXdisc;fvs;vtgj � kvs � vtk

2

where jXdisc;fvs;vtgj is the number of points of Xdisc projecting onto
fvs; vtg. That simple strategy, although ad hoc, has proven very
effective. For example, it allows the dark gray window frames of
the “cessna” (visible in Figure 9) to vanish in the simplified meshes
(Figures 5a–c).

Table 1: Parameter settings and quantitative results.

Object Original ^M Base M0 User param. jXdiscj V Time
m0 + n #faces m0 #faces jXj�(m0+n) ccolor

bits
n mins

cessna 6,795 13,546 97 150 100,000 - 46,811 46 23
terrain 33,847 66,960 3 1 0 - 3,796 46 16
mandrill 40,000 79,202 3 1 0 0.1 4,776 31 19
radiosity 78,923 150,983 1,192 1,191 200,000 0.01 74,316 37 106
fandisk 6,475 12,946 27 50 10,000 - 5,924 50 19

5 RESULTS

Table 1 shows, for the meshes in Figures 5–12, the number of
vertices and faces in both M̂ and M0. In general, we let the simpli-
fication proceed until no more legal edge collapse transformations
are possible. For the “cessna”, we stopped at 150 faces to obtain a
visually aesthetic base mesh. As indicated, the only user-specified
parameters are the number of additional points (besides the m0 + n
vertices of M̂) sampled to increase fidelity, and the cscalar constants
relating the scalar attribute accuracies to the geometric accuracy.
The only scalar attribute we optimized is color, and its cscalar con-
stant is denoted as ccolor. The number jXdiscj of points sampled from
sharp edges is set automatically so that the densities of X and Xdisc

are proportional.4 Execution times were obtained on a 150MHz
Indigo2 with 128MB of memory.

Construction of the PM representation proceeds in three
steps. First, as the simplification algorithm applies a sequence
ecoln�1 : : : ecol0 of transformations to the original mesh, it writes
to a file the sequence vsplitn�1 : : : vsplit0 of corresponding in-
verse transformations. When finished, the algorithm also writes
the resulting base mesh M0. Next, we reverse the order of the
vsplit records. Finally, we renumber the vertices and faces of
(M0

; vsplit0 : : : vsplitn�1) to match the indexing scheme of Sec-
tion 3.1 in order to obtain a concise format.

Figure 6 shows a single geomorph between two meshes M175 and
M425 of a PM representation. For interactive LOD, it is useful to
select a sequence of meshes from the PM representation, and to
construct successive geomorphs between them. We have obtained

4We set jXdiscj such that jXdiscj=perim = c(jXj=area)
1
2 where perim is

the total length of all sharp edges in ^M, area is total area of all faces, and
the constant c = 4:0 is chosen empirically.

good results by selecting meshes whose complexities grow expo-
nentially, as in Figure 5. During execution, an application can adjust
the granularity of these geomorphs by sampling additional meshes
from the PM representation, or freeing some up.

In Figure 10, we selectively refined a terrain (grid of 181�187
vertices) using a new REFINE(v) function that keeps more detail
near silhouette edges and near the viewer. More precisely, for the
faces Fv adjacent to v, we compute the signed projected screen areas
faf : f 2 Fvg. We let REFINE(v) return TRUE if

(1) any face f 2 Fv lies within the view frustum, and either

(2a) the signs of af are not all equal (i.e. v lies near a silhouette
edge) or

(2b)
P

f2Fv
af > thresh for a screen area threshold thresh = 0:162

(where total screen area is 1).

6 RELATED WORK

Mesh simplification methods A number of schemes con-
struct a discrete sequence of approximating meshes by repeated
application of a simplification procedure. Turk [17] sprinkles a
set of points on a mesh, with density weighted by estimates of lo-
cal curvature, and then retriangulates based on those points. Both
Schroeder et al. [14] and Cohen et al. [4] iteratively remove vertices
from the mesh and retriangulate the resulting holes. Cohen et al. are
able to bound the maximum error of the approximation by restricting
it to lie between two offset surfaces. Hoppe et al. [9] find accurate
approximations through a general mesh optimization process (Sec-
tion 4.1). Rossignac and Borrel [12] merge vertices of a model
using spatial binning. A unique aspect of their approach is that the
topological type of the model may change in the process. Their
method is extremely fast, but since it ignores geometric qualities
like curvature, the resulting approximations can be far from opti-
mal. Some of the above methods [12, 17] permit the construction
of geomorphs between successive simplified meshes.

Multiresolution analysis (MRA) Lounsbery et al. [10, 11]
generalize the concept of multiresolution analysis to surfaces of
arbitrary topological type. Eck et al. [7] describe how MRA can
be applied to the approximation of an arbitrary mesh. Certain
et al. [2] extend MRA to capture color, and present a multireso-
lution Web viewer supporting progressive transmission. MRA has
many similarities with the PM scheme, since both store a simple base
mesh together with a stream of detail records, and both produce a
continuous-resolution representation. It is therefore worthwhile to
highlight their differences:

Advantages of PM over MRA:

� MRA requires that the detail terms (wavelets) lie on a domain
with subdivision connectivity, and as a result an arbitrary initial
mesh M̂ can only be recovered to within an � tolerance. In
contrast, the PM representation is lossless since Mn = M̂.

� Because the approximating meshes Mi
; i<n in a PM may have

arbitrary connectivity, they can be much better approximations
than their MRA counterparts (Figure 12).

� The MRA representation cannot deal effectively with surface
creases, unless those creases lie parametrically along edges of
the base mesh (Figure 12). PM’s can introduce surface creases
anywhere and at any level of detail.

� PM’s capture continuous, piecewise-continuous, and discrete ap-
pearance attributes. MRA schemes can represent discontinuous
functions using a piecewise-constant basis (such as the Haar ba-
sis as used in [2, 13]), but the resulting approximations have
too many discontinuities since none of the basis functions meet
continuously. Also, it is not clear how MRA could be extended
to capture discrete attributes.
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Advantages of MRA over PM:

� The MRA framework provides a parametrization between
meshes at various levels of detail, thus making possible multires-
olution surface editing. PM’s also offer such a parametrization,
but it is not smooth, and therefore multiresolution editing may
be non-intuitive.

� Eck et al. [7] construct MRA approximations with guaranteed
maximum error bounds to M̂. Our PM construction algorithm
does not provide such bounds, although one could envision using
simplification envelopes [4] to achieve this.

� MRA allows geometry and color to be compressed indepen-
dently [2].

Other related work There has been relatively little work in
simplifying arbitrary surfaces with functions defined over them.
One special instance is image compression, since an image can be
thought of as a set of scalar color functions defined on a quadrilat-
eral surface. Another instance is the framework of Schröder and
Sweldens [13] for simplifying functions defined over the sphere.
The PM representation, like the MRA representation, is a general-
ization in that it supports surfaces of arbitrary topological type.

7 SUMMARY AND FUTURE WORK

We have introduced the progressive mesh representation and shown
that it naturally supports geomorphs, progressive transmission, com-
pression, and selective refinement. In addition, as a PM construction
method, we have presented a new mesh simplification procedure de-
signed to preserve not just the geometry of the original mesh, but
also its overall appearance.

There are a number of avenues for future work, including:

� Development of an explicit metric and optimization scheme for
preserving surface normals.

� Experimentation with PM editing.

� Representation of articulated or animated models.

� Application of the work to progressive subdivision surfaces.

� Progressive representation of more general simplicial complexes
(not just 2-d manifolds).

� Addition of spatial data structures to permit efficient selective
refinement.

We envision many practical applications for the PM representa-
tion, including streaming of 3D geometry over the Web, efficient
storage formats, and continuous LOD in computer graphics appli-
cations. The representation may also have applications in finite
element methods, as it can be used to generate coarse meshes for
multigrid analysis.
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(a) Base mesh M0 (150 faces) (b) Mesh M175 (500 faces) (c) Mesh M425 (1,000 faces) (d) Original ^M =Mn (13,546 faces)
Figure 5: The PM representation of an arbitrary mesh ^M captures a continuous-resolution family of approximating meshes M0

: : :Mn = ^M.

(a) � = 0:00 (b) � = 0:25 (c) � = 0:50 (d) � = 0:75 (e) � = 1:00
Figure 6: Example of a geomorph MG(�) defined between MG(0)

:

=M175 (with 500 faces) and MG(1)=M425 (with 1,000 faces).

(a) Using conditions (1) and (2); 9,462 faces (b) Using conditions (1’) and (2); 12,169 faces
Figure 7: Example of selective refinement within the view frustum (indicated in orange).

(a) ^M (200�200 vertices) (b) Simplified mesh (400 vertices)
Figure 8: Demonstration of minimizing Escalar: simplification of a mesh with trivial geometry (a square) but complex scalar attribute field.
( ^M is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)
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Figure 9: (a) Simplification without Edisc Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

Figure 11: Simplification of a radiosity solution; left: original mesh (150,983 faces); right: simplified mesh (10,000 faces).

(a) ^M (12,946 faces) (b) M75 (200 faces) (c) M475 (1,000 faces)

(d) � = 9:0 (192 faces) (e) � = 2:75 (1,070 faces) (f) � = 0:1 (15,842 faces)
Figure 12: Approximations of a mesh ^M using (b–c) the PM representation, and (d–f) the MRA scheme of Eck et al. [7]. As demonstrated,
MRA cannot recover ^M exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.
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GRAPHICS RENDERING SYSTEM WITH 
RECONFIGURABLE PIPELINE SEQUENCE 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application is a continuation-in-part of 08/410.345 
filed Mar. 24, 1995, and claims priority from provisional 
60/008.803 filed Dec. 18. 1995. which is hereby incorpo
rated by reference. 

BACKGROUND AND SUMMARY OF THE 
INVENI'ION 

The present application relates to computer graphics and 
animation systems. and particularly to 3D graphics render
ing hardware. Background of the art and the prior 
embodiment, according to the parent application. is 
described below. Some of the distinctions of the presently 
preferred embodiment are particularly noted beginning on 
page 8. 

COMPUTER GRAPIDCS AND RENDERING 

Modern computer systems normally manipulate graphical 
objects as high-level entities. For example, a solid body may 
be described as a collection of triangles with specified 
vertices, or a straight line segment may be described by 
listing its two endpoints with three-dimensional or two
dimensional coordinates. Such high-level descriptions are a 
necessary basis for high-level geometric manipulations. and 
also have the advantage of providing a compact format 
which does not consume memory space unnecessarily. 

Such higher-level representations are very convenient for 
performing the many required computations. For example. 
ray-tracing or other lighting calculations may be performed, 
and a projective transformation can be used to reduce a 
three-dimensional scene to its two-dimensional appearance 
from a given viewpoint However. when an image contain
ing graphical objects is to be displayed, a very low-level 
description is needed. For example. in a conventional CRf 
display, a "flying spot" is moved across the screen (one line 
at a time). and the beam from each of three electron guns is 
switched to a desired level of intensity as the flying spot 
passes each pixel location. Thus at some point the image 
model must be translated into a data set which can be used 
by a conventional display. This operation is known as 
"rendering." 

The graphics-processing system typically interfaces to the 
display controller through a "frame store" or "frame buffer" 
of special two-port memory. which can be written to ran
domly by the graphics processing system, but also provides 
the synchronous data output needed by the video output 
driver. (Digital-to-analog conversion is also provided after 
the frame buffer.) Such a frame buffer is usually imple
mented using VRAM memory chips (or sometimes with 
DRAM: and special DRAM: controllers). This interface 
relieves the graphics processing system of most of the 
burden of synchronization for video output. Nevertheless. 
the amounts of data which must be moved around are very 
sizable. and the computational and data-transfer burden of 
placing the correct data into the frame buffer can still be very 
large. 

Even if the computational operations required are quite 
simple. they must be performed repeatedly on a large 
number of data points. For example. in a typical 1995 
high-end configuration. a display of 1280x1024 elements 
may need to be refreshed at 72 Hz, with a color resolution 

2 
of 24 bits per pixel. If blending is desired. additional bits 
(e.g. another 8 bits per pixel) will be required to store an 
"alpha" or transparency value for each pixel. This implies 
manipulation of more than 3 billion bits per second, without 

5 allowing for any of the actual computations being per
formed. Thus it may be seen that this is an environment with 
unique data manipulation requirements. 

If the display is unchanging. no demand is placed on the 
rendering operations. However. some common operations 

10 (such as zooming or rotation) will require every object in the 
image space to be re-rendered. Slow rendering will make the 
rotation or zoom appear jerky. This is highly undesirable. 
Thus efficient rendering is an essential step in translating an 
image representation into the correct pixel values. This is 

15 particularly true in animation applications. where newly 
rendered updates to a computer graphics display must be 
generated at regular intervals. 

The rendering requirements of three-dimensional graph
ics are particularly heavy. One reason for this is that. even 

20 after the three-dimensional model has been translated to a 
two-dimensional model. some computational tasks may be 
bequeathed to the rendering process. (For example, color 
values will need to be interpolated across a triangle or other 
primitive.) These computational tasks tend to burden the 

25 rendering process. Another reason is that since three
dimensional graphics are much more lifelike. users are more 
likely to demand a fully rendered image. (By contrast. in the 
two-dimensional images created e.g. by a GUI or simple 
game, users will learn not to expect all areas of the scene to 

30 be active or filled with information.) 
FIG. lA is a very high-level view of other processes 

performed in a 3D graphics computer system. A three 
dimensional image which is defined in some fixed 3D 
coordinate system (a ''world" coordinate system) is trans-

35 formed into a viewing volume (determined by a view 
position and direction). and the parts of the image which fall 
outside the viewing volume are discarded. The visible 
portion of the image volume is then projected onto a viewing 
plane, in accordance with the familiar rules of perspective. 

40 This produces a two-dimensional image, which is now 
mapped into device coordinates. It is important to under
stand that all of these operations occur prior to the operations 
performed by the rendering subsystem of the present inven
tion. FIG. lB is an expanded version of FIG. lA. and shows 

45 the flow of operations defined by the OpenGL standard. 
A vast amount of engineering effort has been invested in 

computer graphics systems. and this area is one of increasing 
activity and demands. Numerous books have discussed the 
requirements of this area; see. e.g .• ADVANCES IN COMPUIER 

50 GRAPHics (ed. Enderle 1990-); Chellappa and Sawchuk. 
DIGITAL IMAGE PROCESSING AND ANALYSIS (1985); COM
PUlER GRAPmcs HARDWARE (ed. Reghbati and Lee 1988); 
COMPUIER GRAPHics: IMAGE SYNIHESIS ( ed. Joy et al. ); 
Foley et al .• FuNDAMENTALS OF lNIERACTIVE CoMPU1ER 

55 GRAPmcs (2.ed. 1984); Foley. CoMPUTER GRAPmcs PRIN
ciPLES & PRACTICE (2.ed. 1990); Foley, INTRODUCTION TO 
COMPUIER GRAPIDCS (1994); Giloi, Interactive Computer 
Graphics (1978); Hearn and Baker. CoMPUIER GRAPmcs 
(2.ed. 1994); Hill. COMPUIER GRAPmcs (1990); Latham, 

60 DICTIONARY OF COMPU1ER GRAPJnCS (1991); Magnenat
Thalma, IMAGE SYNTIIESIS THEoRY & PRACTICE (1988); 
Newman and Sproull, PRINclPI..ES OF INTERACTIVE COM
PUTER GRAPIDCS (2.ed. 1979); PlcruRE ENGINEERING ( ed. Fu 
and Kunii 1982); PICTURE PROCESSING & DIGITAL FILTERING 

65 (2.ed. Huang 1979); Prosise. How COMPUIER GRAPIDCS 
WORK ( 1994 ); Rimmer, BIT MAPPED GRAPJDCS (2.ed. 1993); 
Salmon, COMPU1ER GRAPIDCS SYSTEMS & CONCEPTS 
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(1987); Schachter. CoMPUTER IMAGE GENERATION (1990); The OpenGL standard provides a complete library of 
Watt. THREE-DIMENSIONAL CoMPUTER GRAPmcs (2.ed. low-level graphics manipulation corrunands. which can be 
1994); Scott Whitman. MULTIPROCESSOR ME1Hons FOR used to implement three-dimensional graphics operations. 
CoMPUIER GRAPmcs RENDERING; the SIGGRAPH PRo- This standard was originally based on the proprietary stan-
CEEDINGS for the years 1980-1994; and the IEEE Computer 5 dards of Silicon Graphics, Inc .• but was later transformed 
Graphics and Applications magazine for the years into an open standard. It is now becoming extremely 
1990-1994. important. not only in high-end graphics-intensive 
Background: Graphics Animation workstations. but also in high-end PCs. OpenGL is sup-

In many areas of computer graphics a succession of ported by Windows NT™. which makes it accessible to 
slowly changing pictures are displayed rapidly one after the 10 many PC applications. 
other. to give the impression of smooth movement, in much The OpenGL specification provides some constraints on 
the same way as for cartoon animation. In general the higher the sequence of operations. For instance. the color DDA 
the speed of the animation, the smoother (and better) the operations must be performed before the texturing 
result. operations, which must be performed before the alpha 

When an application is generating animation images, it is 15 operations. (A "DDA'' or digital differential analyzer. is a 
normally necessary not only to draw each picture into the conventional piece of hardware used to produce linear 
frame buffer, but also to first clear down the frame buffer, gradation of color (or other) values over an image area.) 
and to dear down auxiliary buffers such as depth (Z) buffers, Other graphics interfaces (or "APis"), such as PHIGS or 
stencil buffers, alpha buffers and others. A good treatment of XGL. are also current as of 1995; but at the lowest level. 
the general principles may be found in Computer Graphics: 20 OpenGL is a superset of most of these. 
Principles and Practice. James D. Foley et al .. Reading The OpenGL standard is described in the OPENGL PRO-
Mass.: Addison-Wesley. A specific description of the various GRAMMING GUIDE (1993), the OPENGL REFERENCE 
auxiliary buffers may be found in The OpenGL Graphics MANUAL (1993), and a book by Segal and Akeley (of SGI) 
System: A Specification (Version 1.0), Mark Segal and Kurt entitled THE OPENGL GRAPmcs SYS1EM: A SPECIFICATION 
Akeley, SGL 25 (Version 1.0). 

In most applications the value written, when clearing any FIG. IBis an expanded version of FIG. IA. and shows the 
given buffer. is the same at every pixel location. though fiow of operations defined by the OpenGL standard. Note 
different values may be used in different auxiliary buffers. that the most basic model is carried in terms of vertices, and 
Thus the frame buffer is often cleared to the value which these vertices are then assembled into primitives (such as 
corresponds to black. while the depth (Z) buffer is typically 30 triangles. lines, etc.). After all manipulation of the primitives 
cleared to a value corresponding to infinity. has been completed, the rendering operations will translate 

The time taken to clear down the buffers is often a each primitive into a set of "fragments." (A fragment is the 
significant portion of the total time taken to draw a frame, so portion of a primitive which affects a single pixel.) Again. it 
it is important to minimize it. should be noted that all operations above the block marked 
Background: Parallelism in Graphics Processing 35 "Rasterization" would be performed by a host processor. or 

Due to the large number of at least partially independent possibly by a "geometry engine" (i.e. a dedicated processor 
operations which are performed in rendering, many propos- which performs rapid matrix multiplies and related data 
als have been made to use some form of parallel architecture manipulations), but would normally not be performed by a 
for graphics (and particularly for rendering). See. for dedicated rendering processor such as that of the presently 
example, the special issue of Computer Graphics on parallel 4<l preferred embodiment. 
rendering (September 1994). Other approaches may be One disadvantage of standards such as OpenGL is that 
found in earlier patent filings by the assignee of the present they require that texturing or other processor-intensive 
application and its predecessors, e.g. U.S. Pat. No. 5,195. operations be performed on data before pixel elimination 
186. and published PCT applications PCT/GB90/00987, tests, e.g. depth testing, is performed. which wastes proces-
PCT/GB90/01209, PCT/GB90/01210, PCT/GB90/01212. 45 sor time by performing costly texturing calculations on 
PCT/GB90/01213. PCT/GB90/01214. PCT/GB90/01215. pixels which will be eliminated later in the pipeline. When 
and PCf/GB90/01216. the OpenGL specification is not required or when the current 
Background: Pipelined Processing Generally OpenGI state vector cannot eliminate pixels as a result of the 

There are several general approaches to parallel process- alpha test, however. it would be much more efficient to 
ing. One of the basic approaches to achieving parallelism in 50 eliminate as many pixels as possible before doing these 
computer processing is a technique known as pipelining. In calculations. The present awlication discloses a method and 
this technique the individual processors are. in effect. con- device for reordering the processing steps in the rendering 
nected in series in an assembly-line configuration: one pipeline to either accommodate order-specific specifications 
processor performs a first set of operations on one chunk of such as OpenGL. or to provide for an optimized throughput 
data. and then passes that chunk along to another processor 55 by only performing processor-intensive operations on pixels 
which performs a second set of operations, while at the same which will actually be displayed. 
time the first processor performs the first set operations Background: Texturing 
again on another chunk of data. Such architectures are Texture patterns are commonly used as a way to apply 
generally discussed in Kogge. THE ARcHITECIURE OF PIPE- realistic visual detail at the sub-polygon level. See Foley et 
LINED COMPUTERS ( 1981). 60 al .. CoMPUIER GRAPIDCS: PRINCIPLES AND PRACTICE (2.ed. 
Background: The OpenGL™ Standard 1990. coer. 1995), especially at pages 741-744; Paul S. 

The "OpenGL" standard is a very important software Heckbert. "Fundamentals of Texture Mapping and Image 
standard for graphics applications. In any computer system Warping," Thesis submitted to Dept. of EE and Computer 
which supports this standard. the operating system(s) and Science. University of California. Berkeley. Jun. 17, 1994; 
application software programs can make calls according to 65 Heckbert. "Survey of Computer Graphics." IEEE Computer 
the OpenGL standards. without knowing exactly what the Graphics. November 1986. pp.56ff. Since the surfaces are 
hardware configuration of the system is. transformed (by the host or geometry engine) to produce a 
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FIG. 3B shows another sample graphics board 
implementation. which differs from the board of FIG. 3A in 
that more memory and an additional component is used to 
achieve higher performance. 

FIG. 3C shows another graphics board. in which the chip 
of FIG. 2B shares access to a common frame store with GUI 
accelerator chip. 

2D view. the textures will need to be similarly transformed 
by a linear transform (normally projective or "affine"). (In 
conventional terminology. the coordinates of the object 
surface, i.e. the primitive being rendered. are referred to as 
an (s.t) coordinate space. and the map of the stored texture 
is referred to a (u.v) coordinate space.) The transformation 
in the resulting mapping means that a horizontal line in the 
(x.y) display space is very likely to correspond to a slanted 
line in the (u.v) space of the texture map. and hence many 
page breaks will occur, due to the texturing operation, as 
rendering walks along a horizontal line of pixels. 

FIG. 3D shows another graphics board, in which the chip 
of FIG. 2B shares access to a common frame store with a 

10 video coprocessor (which may be used for video capture and 
playback functions. 

Innovative System and Methods FIG. 4A illustrates the definition of the dominant side and 
the subordinate sides of a triangle. 

FIG. 4B illustrates the sequence of rendering an Anti
aliased Line primitive. 

FIG. SA is a detailed view of the router unit of the 
presently preferred embodiment. 

The preferred embodiment discloses a pipelined graphics 
processor in which the sequence can be dynamically recon- 15 

figured (e.g. between primitives) in a rendering sequence. 
The pipeline sequence can be configured for compliance 
with specifications such as OpenGL. but may also be opti
mized by reconfiguring the pipeline sequence to eliminate 
unnecessary processing. In a preferred embodiment. pixel 
elimination sequences such as depth and stencil tests are 
performed before texturing calculations are performed. so 
that unneeded pixel data is discarded before said texturing 
calculations are performed. 

FIG. SB is a detailed view of the data path through the 
20 router unit of the presently preferred embodiment when 

operating in a first mode. 

25 It is noted that the texturing operations become more 
computation-intense. early elimination of unneeded pixels 
becomes even more valuable. For example. Phong shading 
and bump mapping both require many more operations than 
more common shading and texture mapping techniques, thus 
making the system of the present application even more 30 

valuable in real-time rendering systems. 
An overhead cost is that the reconfigurable portion of the 

pipeline must be flushed at each reconfiguration--but since 
reconfiguration is normally done only on a per-primitive 

35 
basis. or even less frequently. this is a relatively small cost. 

BRIEF DESCR1PTION OF THE DRAWING 

The disclosed inventions will be described with reference 
to the accompanying drawings. which show important 40 
sample embodiments of the invention and which are incor
porated in the specification hereof by reference, wherein: 

FIG. lA, described above, is an overview of key elements 
and processes in a 3D graphics computer system. 

FIG. lB is an expanded versionofFIG.lA. and shows the 45 

flow of operations defined by the OpenGL standard. 
FIG. 2A is an overview of the graphics rendering chip of 

the preferred embodiment of the parent case. 
FIG. 2B is an overview of the graphics rendering chip of 

the presently preferred embodiment. 50 

FIG. 2C is a more schematic view of the sequence of 
operations performed in the graphics rendering chip of FIG. 
2B. when operating in a first mode. 

FIG. 2D is a different view of the graphics rendering chip 
55 

of FIG. 2B. showing the connections of a readback bus 
which provides a diagnostic pathway. 

FIG. 2E is yet another view of the graphics rendering chip 
of FIG. 2B, showing how the functions of the core pipeline 
of FIG. 2C are combined with various external interface 60 
functions. 

FIG. SC is a detailed view of the data path through the 
router unit of the presently preferred embodiment when 
operating in a second mode. 

DErAILED DESCRIPITON OF THE 
PREFERRED EM:BODIMENTS 

The numerous innovative teachings of the present appli
cation will be described with particular reference to the 
presently preferred embodiment (by way of example. and 
not of limitation). The presently preferred embodiment is a 
GLINT™ 400TX™ 3D rendering chip. The Hardware Ref
erence Manual and Programmer's Reference Manual for this 
chip describe further details of this sample embodiment. 
Both are available, as of the effective filing date of this 
application, from 3Dlabs Inc. Ltd. 181 Metro Drive. Suite 
520. San Jose Calif. 95110. 

Definitions 

The following definitions may help in understanding the 
exact meaning of terms used in the text of this application: 
application: a computer program which uses graphics ani

mation. 
depth (Z) buffer: A memory buffer containing the depth 

component of a pixel. Used to, for example, eliminate 
hidden surfaces. 

blt double-buffering: A technique for achieving smooth 
animation. by rendering only to an undisplayed back 
buffer. and then copying the back buffer to the front once 
drawing is complete. 

Frame Count Planes: Used to allow higher animation rates by 
enabling DRAM local buffer pixel data, such as depth (Z), 
to be cleared down quickly. 

frame buffer: An area of memory containing the displayable 
color buffers (front, back, left, right, overlay. underlay). 
This memory is typically separate from the local buffer. 

local buffer: An area of memory which may be used to store 
non-displayable pixel information: depth(Z). stencil. 
FrameCount and GID planes. This memory is typically 
separate from the framebuffer. 

FIG. 2F is yet another view of the graphics rendering chip 
of FIG. 2B. showing how the details of FIFO depth and 
lookahead are implemented, in the presently preferred 
embodiment. 

pixel: Picture element. A pixel comprises the bits in all the 
buffers (whether stored in the local buffer or framebu1fer). 
corresponding to a particular location in the framebuffer. 

65 stencil buffer: A buffer used to store information about a 
FIG. 3A shows a sample graphics board which incorpo

rates the chip of FIG. 2B. 
pixel which controls how subsequent stencilled pixels at 
the same location may be combined with the current value 
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in the framebuffer. Typically used to mask complex 
two-dimensional shapes. 

Preferred Chip Embodiment-Overview 

8 
message is modified and passed on. The temptation is not to 
pass the message on when the test fails (because the pixel is 
not going to be updated), but other units downstream need 
to keep their local DDA units in step. 

(In the present application, the messages are being 
described in general terms so as not to be bogged down in 
detail at this stage. The details of what a 'new fragment' 
message actually specifies (i.e. coordinate. color 
information) is left till later. In general, the term "pixel" is 

The GLINT™ high performance graphics processors 5 

combine workstation class 3D graphics acceleration, and 
state-of-the-art 2D performance in a single chip. All 3D 
rendering operations are accelerated by GLINT, including 
Gouraud shading. texture mapping, depth buffering, anti
aliasing. and alpha blending. 10 

used to describe the picture element on the screen or in 
memory. The term "fragment" is used to describe the part of 
a polygon or other primitive which projects onto a pixel. 
Note that a fragment may only cover a part of a pixel.) When 
the Texture Read Unit (if enabled) gets a 'new fragment' 
message. it will calculate the texture map addresses. and will 

The scalable memory architecture of GLINT makes it 
ideal for a wide range of graphics products. from PC boards 
to high-end workstation accelerators. 

There will be several of the GLINT family of graphics 
processors: the GLINT 300SX™ is the embodiment of the 
parent case, and the GLINT 400TX™ is a presently pre
ferred embodiment which is which is described herein in 
great detail. The two devices are generally compatible, with 
the 40<YIX adding local texture storage and texel address 
generation for all texture modes. 

15 accordingly provide 1. 2, 4 or 8 texels to the next unit 
together with the appropriate number of interpolation coef
ficients. 

FlG. 2B is an overview of the graphics rendering chip of 
the presently preferred embodiment (i.e. the GLINT 
400'J'XTM). 

Each unit and the message passing are conceptually 
running asynchronous to all the others. However, in the 

20 presently preferred embodiment there is considerable syn
chrony because of the common clock. 

How does the host process send messages? The message 
data field is the 32 bit data written by the host, and the 
message tag is the bottom 9 bits of the address (excluding 

General Concept 
25 the byte resolution address lines). Writing to a specific 

address causes the message type associated with that address 
to be inserted into the message queue. Alternatively. the 
on-chip DMA controller may fetch the messages from the 

The overall architecture of the GLINT chip is best viewed 
using the software paradigm of a message passing system. In 
this system all the processing blocks are connected in a long 
pipeline with communication with the adjacent blocks being 
done through message passing. Between each block there is 30 
a small amount of buffering, the size being specific to the 
local communications requirements and speed of the two 
blocks. 

host's memory. 
The message throughput, in the presently preferred 

embodiment, is 50M messages per second and this gives a 
fragment throughput of up to 50M per second, depending on 
what is being rendered. Of course, this rate will predictably 
be further increased over time, with advances in process The message rate is variable and depends on the rendering 

mode. The messages do not propagate through the system at 
a fixed rate typical of a more traditional pipeline system. If 
the receiving block can not accept a message. because its 
input buffer is full, then the sending block stalls until space 

35 technology and clock rates. 
Linkage 

is available. 
The message structure is fundamental to the whole system 

The block diagram of FlG. 2A shows how the units are 
connected together in the GLINT 300SX embodiment, and 
the block diagram of FlG. 2B shows how the units are 

40 connected together in the presently preferred embodiment. 
as the messages are used to control, synchronize and inform 
each block about the processing it is to undertake. Each 
message has two fields-a 32 bit data field and a 9 bit tag 
field. (This is the minimum width guaranteed, but some local 
block to block connections may be wider to accommodate 

45 
more data) The data field will hold color information, 
coordinate information, local state information. etc. The tag 
field is used by each block to identify the message type so 
it knows how to act on it. 

Each block. on receiving a message, can do one of several 
50 

things: 
Not recognize the message so it just passes it on to the 

next block. 
Recognize it as updating some local state (to the block) so 

the local state is updated and the message terminated. 55 
i.e. not passed on to the next block. 

Recognize it as a processing action, and if appropriate to 
the unit, the processing work specific to the unit is 
done. This may entail sending out new messages such 
as Color and/or modifying the initial message before 60 

sending it on. Any new messages are injected into the 
message stream before the initial message is forwarded 
on. Some examples will clarify this. 

Some general points are: 
The following functionality is present in the 400IX, but 

missing from the 300SX: The Texture Address (TAddr) 
and Texture Read (TRd) Units are missing. Also, the 
router and multiplexer are missing from this section, so 
the unit ordering is Scissor/Stipple, Color DDA, Tex-
ture Fog Color, Alpha Test, LB Rd, etc. 

In the embodiment of FlG. 2B, the order of the units can 
be configured in two ways. The most general order 
(Router, Color DDA, Texture Unit, Alpha Test, LB Rd, 
GIDfZJStencil, LB Wr, Multiplexer) and will work in 
all modes of OpenGL. However, when the alpha test is 
disabled it is much better to do the Graphics ID. depth 
and stencil tests before the texture operations rather 
than after. This is because the texture operations have 
a high processing cost and this should not be spent on 
fragments which are later rejected because of window, 
depth or stencil tests. 

The loop back to the host at the bottom provides a simple 
synchronization mechanism. The host can insert a Sync 
command and when all the preceding rendering has 
finished the sync command will reach the bottom host 
interface which will notify the host the sync event has 
occurred. When the Depth Block receives a message 'new 

fragment', it will calculate the corresponding depth and do 
the depth test. If the test passes then the 'new fragment' 
message is passed to the next unit. If the test fails then the 

65 Benefits 
The very modular nature of this architecture gives great 

benefits. Each unit lives in isolation from all the others and 
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has a very well defined set of input and output messages. 
This allows the internal structure of a unit (or group of units) 
to be changed to make algorithmic/speed/gate count trade
otis. 

The isolation and well defined logical and behavioral 5 

interface to each unit allows much better testing and veri
fication of the correctness of a unit. 

The message passing paradigm is easy to simulate with 
software, and the hardware design is nicely partitioned. The 
architecture is self synchronizing for mode or primitive 10 

changes. 
The host can mimic any block in the chain by inserting 

messages which that block would normally generate. These 
message would pass through the earlier blocks to the mim
icked block unchanged and from then onwards to the rest of 15 
the blocks which cannot tell the message did not originate 
from the expected block. This allows for an easy work 
around mechanism to correct any flaws in the chip. It also 
allows other rasterization paradigms to be implemented 
outside of the chip, while still using the chip for the low level 20 

pixel operations. 
"A Day in the Life of a Triangle" 

Before we get too detailed in what each unit does it is 
worth while looking in general terms at how a primitive (e.g. 
triangle) passes through the pipeline, what messages are 25 

generated, and what happens in each unit. Some simplifi
cations have been made in the description to avoid detail 
which would otherwise complicate what is really a very 
simple process. The primitive we are going to look at is the 
familiar Gouraud shaded Z buffered triangle, with dithering. 30 

It is assumed any other state (i.e. depth compare mode) has 
been set up, but (for simplicity) such other states will be 
mentioned as they become relevant. 
The application generates the triangle vertex information 

and makes the necessary OpenGL calls to draw it. 35 

The OpenGL server/library gets the vertex information. 
transforms, clips and lights it. It calculates the initial 
values and derivatives for the values to interpolate (X/eft' 
Xrighr red, green. blue and depth) for unit change in dx 
and dxdy lefr All these values are in fixed point integer and 40 

have unique message tags. Some of the values (the depth 
derivatives) have more than 32 bits to cope with the 
dynamic range and resolution so are sent in two halves 
Finally. once the derivatives, start and end values have 
been sent to GLINT the 'render triangle' message is sent 45 

On GLINT: The derivative. start and end parameter mes
sages are received and filter down the message stream to 
the appropriate blocks. The depth parameters and deriva
tives to the Depth Unit; the RGB parameters and deriva
tive to the Color DDA Unit; the edge values and deriva- 50 

tives to the Rasterizer Unit. 
The 'render triangle' message is received by the rasterizer 

unit and all subsequent messages (from the host) are 
blocked until the triangle has been rasterized (but not 
necessarily written to the frame store). A 'prepare to 55 

render' message is passed on so any other blocks can 
prepare themselves. 

10 
message stream. The two groups are distinguished by a 
single bit in the message tag. The step messages (in either 
form) are always passed throughout the length of the 
message stream. and are used by all the DDA units to keep 
their interpolation values in step. The step message effec
tively identifies the fragment and any other messages 
pertaining to this fragment will always precede the step 
message in the message stream. 

The Scissor and Stipple Unit. This unit does 4 tests on the 
fragment (as embodied by the active step message). The 
screen scissor test takes the coordinates associated with 
the step message, converts them to be screen relative (if 
necessary) and compares them against the screen bound
aries. The other three tests (user scissor. line stipple and 
area stipple) are disabled for this example. If the enabled 
tests pass then the active step is forwarded onto the next 
unit, otherwise it is changed into a passive step and then 
forwarded. 

The Color DDA unit responds to an active step message by 
generating a Color message and sending this onto the next 
unit. The active step message is then forwarded to the next 
unit. The Color message holds. in the data field. the 
current RGBA value from the DDA. If the step message 
is passive then no Color message is generated After the 
Color message is sent (or would have been sent) the step 
message is acted on to increment the DDA in the correct 
direction, ready for the next pixel. 

Texturing. Fog and Alpha Tests Units are disabled so the 
messages just pass through these blocks. 

In general terms the Local Buffer Read Unit reads the 
Graphic ID. Stencil and Depth information from the Local 
Buffer and passes it onto the next unit. More specifically 
it does: 
1. If the step message is passive then no further action 

occurs. 
2. On an active step message it calculates the linear 

address in the local buffer of the required data. This is 
done using the (X, Y) position recorded in the step 
message and locally stored information on the 'screen 
width' and window base address. Separate read and 
write addresses are calculated. 

3. The addresses are passed to the Local Buffer Interface 
Unit and the identified local buffer location read. The 
write address is held for use later. 

4. Sometime later the local buffer data is returned and is 
formatted into a consistent internal format and inserted 
into a 'Local Buffer Data' message and passed on to the 
next unit. 
The message data field is made wider to accommodate 

the maximum Local Buffer width of 52 bits (32 
depth, 8 stencil. 4 graphic ID, 8 frame count) and this 
extra width just extends to the Local Buffer Write 
block. 

The actual data read from the local buffer can be in 
several formats to allow narrower width memories to 
be used in cost sensitive systems. The narrower data 
is formatted into a consistent internal format in this 
block. 

The Graphic ID. Stencil and Depth Unit just passes the 
The Rasterizer Unit walks the left and right edges of the 

triangle and fills in the spans between. As the walk 
progresses messages are send to indicate the direction of 
the next step: StepX or StepYDomEdge. The data field 
holds the current (x. y) coordinate. One message is sent 
per pixel within the triangle boundary. The step messages 
are duplicated into two groups: an active group and a 
passive group. The messages always start off in the active 
group but may be changed to the passive group if this 
pixel fails one of the tests (e.g. depth) on its path down the 

60 Color message through and stores the LBData message 
until the step message arrives. A passive step message 
would just pass straight through. When the active step 
message is received the internal Graphic ID. stencil and 
depth values are compared with the ones in the LBData 

65 message as specified by this unit's mode information. If 
the enabled tests pass then the new local buffer data is sent 
in the LBWriteData message to the next unit and the 
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active step message forwarded. If any of the enabled tests 
fail then an LBCancelWrite message is sent followed by 
the equivalent passive step message. The depth DDA is 
stepped to update the local depth value. 

The Local Buffer Write Unit performs any writes which are 5 
necessary. The LBWriteData message has its data format
ted into the external local buffer format and this is posted 
to the Local Buffer Interface Unit to be written into the 
memory (the write address is already waiting in the Local 
Buffer Interface Unit). The LBWriteCancel message just 

10 informs the Local Buffer Interface Unit that the pending 
write address is no longer needed and can be discarded. 
The step message is just passed through. 

In general terms the Framebuffer Read Unit reads the color 
information from the framebuffer and passes it onto the 
next unit. More specifically it does: 15 

1. H the step message is passive then no further action 
occurs. 

12 
remember that at any instant in time there are many frag
ments flowing down the message stream and the further 
down they reach the more processing has occurred. 
Interfacing Between Blocks FlG. 2B shows the FIFO buff
ering and lookahead connections which are used in the 
presently preferred embodiment. The FlFOs are used to 
provide an asynchronous interface between blocks. but are 
expensive in terms of gate count. Note that most of these 
FlFOs are only one stage deep (except where indicated). 
which reduces their area. To maintain performance. looka
head connections are used to accelerate the "startup" of the 
pipeline. For example. when the Local-Buffer-Read block 
issues a data request. the Texture/Fog/Color blocks also 
receive this, and begin to transfer data accordingly. Nor
mally a single-entry deep FIFO cannot be read and written 
in the same cycle. as the writing side doesn't know that the 
FlFO is going to be read in that cycle (and hence become 
eligible to be written). The look-ahead feature give the 
writing side this insight. so that single-cycle transfer can be 2. On an active step message it calculates the linear 

address in the framebuffer of the required data. This is 
done using the (X. Y) position recorded in the step 
message and locally stored information on the 'screen 
width' and window base address. Separate read and 
write addresses are calculated. 

20 achieved. This accelerates the throughput of the pipeline. 

Programming Model 

The following text describes the programming model for 
GLINT. 
GLINT as a Register file 

3. The addresses are passed to the Framebuffer Interface 25 
Unit and the identified framebuffer location read. The 
write address is held for use later. The simplest way to view the interface to GLINT is as a 

flat block of memory-mapped registers (i.e. a register file). 
This register file appears as part of Region 0 of the PCI 

30 
address map for GLINT. See the GLINT Hardware Refer
ence Manual for details of this address map. 

4. Sometime later the color data is returned and inserted 
into a 'Frame Buffer Data' message and passed on to 
the next unit. 
The actual data read from the framestore can be in 

several formats to allow narrower width memories to 
be used in cost sensitive systems. The formatting of 
the data is deferred until the Alpha Blend Unit as it 
is the only unit which needs to match it up with the 
internal formats. In this example no alpha blending 
or logical operations are taking place, so reads are 
disabled and hence no read address is sent to the 
Framebuffer Interface Unit. The Color and step mes
sages just pass through. 

The Alpha Blend Unit is disabled so just passes the messages 
through. 

The Dither Unit stores the Color message internally until an 
active step is received. On receiving this it uses the least 
significant bits of the (X, Y) coordinate information to 
dither the contents of the Color message. Part of the 
dithering process is to convert from the internal color 
format into the format of the framebuffer. The new color 
is inserted into the Color message and passed on, followed 
by the step message. 

The Logical Operations are disabled so the Color message is 
just converted into the FBWriteData message Gust the tag 
changes) and forwarded on to the next unit. The step 
message just passes through. 

35 

40 

When a GLINT host software driver is initialized it can 
map the register file into its address space. Each register has 
an associated address tag. giving its offset from the base of 
the register file (since all registers reside on a 64-bit 
boundary, the tag offset is measured in multiples of 8 bytes). 
The most straightforward way to load a value into a register 
is to write the data to its mapped address. In reality the chip 
interface comprises a 16 entry deep FIFO. and each write to 
a register causes the written value and the register's address 
tag to be written as a new entry in the FIFO. 

Programming GLINT to draw a primitive consists of 
writing initial values to the appropriate registers followed by 
a write to a command register. The last write triggers the 
start of rendering. 

45 GLINT has approximately 200 registers. All registers are 
32 bits wide and should be 32-bit addressed. Many registers 
are split into bit fields. and it should be noted that bit 0 is the 
least significant bit. 
Register Types 

50 GLINT has three main types of register: 

The Framebuffer Write Unit performs any writes which are 55 
necessary. 

Control Registers 
Command Registers 
Internal Registers 
Control Registers are updated only by the host-the chip 

effectively uses them as read-only registers. Examples of 
control registers are the Scissor Clip unit min and max 
registers. Once initialized by the host, the chip only reads 
these registers to determine the scissor clip extents. 

The FBWriteData message has its data posted to the 
Framebuffer Interface Unit to be written into the 
memory (the write address is already waiting in the 
Framebuffer Interface Unit). 

The step message is just passed through. 
The Host Out Unit is mainly concerned with synchroniza

tion with the host so for this example will just consume 
any messages which reach this point in the message 
stream. 
This description has concentrated on what happens as one 

fragment flows down the message stream. It is important to 

60 Command Registers are those which, when written to. 
typically cause the chip to start rendering (some command 
registers such as ResetPickResult or Sync do not initiate 
rendering). Normally. the host will initialize the appropriate 
control registers and then write to a command register to 

65 initiate drawing. There are two types of command registers: 
begin-draw and continue-draw. Begin-draw commands 
cause rendering to start with those values specified by the 
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control registers. Continue-draw commands cause drawing 
to continue with internal register values as they were when 
the previous drawing operation completed. Making use of 
continue-draw commands can significantly reduce the 
amount of data that has to be loaded into GLINT when 
drawing multiple connected objects such as polylines. 
Examples of command registers include the Render and 
ContinueNewLine registers. 

For convenience this application will usually refer to 
"sending a Render command to GLINT" rather than saying 
(more precisely) "the Render Command register is written 
to. which initiates drawing". 

Internal Registers are not accessible to host software. 
They are used internally by the chip to keep track of 
changing values. Some control registers have corresponding 
internal registers. When a begindraw command is sent and 
before rendering starts. the internal registers are updated 
with the values in the corresponding control registers. If a 
continue-draw command is sent then this update does not 
happen and drawing continues with the current values in the 
internal registers. For example. if a line is being drawn then 
the StartXDom and StartY control registers specify the (x. y) 
coordinates of the first point in the line. When a begin-draw 
command is sent these values are copied into internal 
registers. As the line drawing progresses these internal 
registers are updated to contain the (x. y) coordinates of the 
pixel being drawn. When drawing has completed the internal 
registers contain the (x. y) coordinates of the next point that 
would have been drawn. If a continue-draw command is 
now given these final (x. y) internal values are not modified 
and further drawing uses these values. If a begin-draw 
command had been used the internal registers would have 
been reloaded from the StartXDom and StartY registers. 

For the most part internal registers can be ignored. It is 
helpful to appreciate that they exist in order to understand 
the continue-draw commands. 
GLINT J/0 Interface 

There are a number of ways of loading GLINT registers 
for a given context: 

The host writes a value to the mapped address of the 
register 

The host writes address-tag/data pairs into a host memory 
buffer and uses the on-chip DMA to transfer this data 
to the FIFO. 

The host can perform a Block Command Transfer by 
writing address and data values to the FIFO interface 
registers. 

In all cases where the host writes data values directly to 
the chip (via the register file) it has to worry about FIFO 
overtlow. The InFIFOSpace register indicates how many 
free entries remain in the FIFO. Before writing to any 
register the host must ensure that there is enough space left 
in the FIFO. The values in this register can be read at any 
time. When using DMA. the DMA controller will automati
cally ensure that there is room in the FIFO before it performs 
further transfers. Thus a buffer of any size can be passed to 
the DMA controller. 

FIFO Control 
The description above considered the GLINT interface to 

be a register file. More precisely. when a data value is 
written to a register this value and the address tag for that 
register are combined and put into the FIFO as a new entry. 
The actual register is not updated until GLINT processes this 
entry. In the case where GLINT is busy performing a time 
consuming operation (e.g. drawing a large texture mapped 
polygon). and not draining the FIFO very quickly. it is 
possible for the FIFO to become full. If a write to a register 

14 
is performed when the FIFO is full no entry is put into the 
FIFO and that write is effectively lost. 

The input FIFO is 16 entries deep and each entry consists 
of a tag/data pair. The InFIFOSpace register can be read to 

5 determine how many entries are free. The value returned by 
this register will never be greater than 16. 

To check the status of the FIFO before every write is very 
inefficient. so it is preferably checked before loading the data 
for each rectangle. Since the FIFO is 16 entries deep. a 

10 further optimization is to wait for all 16 entries to be free 
after every second rectangle. Further optimizations can be 
made by moving dXDom. dXSub and dY outside the loop 
(as they are constant for each rectangle) and doing the FIFO 
wait after every third rectangle. 

15 The InFIFOSpace FIFO control register contains a count 
of the number of entries currently free in the FIFO. The chip 
increments this register for each entry it removes from the 
FIFO and decrements it every time the host puts an entry in 
the FIFO. 

20 The DMA Interface 
Loading registers directly via the FIFO is often an inef

ficient way to download data to GLINT. Given that the FIFO 
can accommodate only a small number of entries, GLINT 
has to be frequently interrogated to determine how much 

25 space is left. Also, consider the situation where a given API 
function requires a large amount of data to be sent to GLINT. 
If the FIFO is written directly then a return from this 
function is not possible until almost all the data has been 
consumed by GLINT. This may take some time depending 

30 on the types of primitives being drawn. 
To avoid these problems GLINT provides an on-chip 

DMA controller which can be used to load data from 
arbitrary sized (<64K 32-bit words) host buffers into the 
FIFO. In its simplest form the host software has to prepare 

35 a host buffer containing register address tag descriptions and 
data values. It then writes the base address of this buffer to 

the DMAAddress register and the count of the number of 
words to transfer to the DMACount register. Writing to the 
DMACount register starts the DMA transfer and the host can 

40 now perform other work. In general, if the complete set of 
rendering commands required by a given call to a driver 
function can be loaded into a single DMA buffer then the 
driver function can return. Meanwhile. in parallel. GLINT is 
reading data from the host buffer and loading it into its FIFO. 

45 FIFO overtlow never occurs since the DMA controller 
automatically waits until there is room in the FIFO before 
doing any transfers. 

The only restriction on the use of DMA control registers 
is that before attempting to reload the DMACount register 

50 the host software must wait until previous DMA has com
pleted. It is valid to load the DMAAddress register while the 
previous DMA is in progress since the address is latched 
internally at the start of the DMA transfer. 

Using DMA leaves the host free to return to the 
55 application. while in parallel. GLINT is performing the 

DMA and drawing. This can increase performance signifi
cantly over loading a FIFO directly. In addition, some 
algorithms require that data be loaded multiple times (e.g. 
drawing the same object across multiple clipping 

60 rectangles). Since the GLINT DMA only reads the buffer 
data. it can be downloaded many times simply by restarting 
the DMA. This can be very beneficial if composing the 
buffer data is a time consuming task. 

The host can use this hardware capability in various ways. 
65 For example, a further optional optimization is to use a 

double buffered mechanism with two DMA buffers. This 
allows the second buffer to be filled before waiting for the 
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previous DMA to complete. thus further improving the groups and within each group there are up to 16 tags. The 
parallelism between host and GLINT processing. Thus. this low-order 4 bits of a tag give its offset within the group. The 
optimization is dependent on the allocation of the host high-order 5 bits give the major group number. 
memory. If there is only one DMA host buffer then either it The following Register Table lists the individual registers 
is being filled or it is being emptied-it cannot be filled and 5 with their Major Group and Offset in the presently preferred 
emptied at the same time. since there is no way for the host embodiment: 
and DMA to interact once the DMA transfer has started. The Register Table 
host is at liberty to allocate as many DMA buffers as it The following table lists registers by group. giving their 
wants; two is the minimum to do double buffering. but tag values and indicating their type. The register groups may 
allocating many small buffers is generally better. as it gives 10 be used to improve data transfer rates to GLINT when using 
the benefits of double buffering together with low latency DMA. 
time, so GLINT is not idle while large buffer is being filled The following types of register are distinguished: 
up. However. use of many small buffers is of course more 
complicated 

In general the DMA buffer format consists of a 32-bit 15 Major Off-

address tag description word followed by one or more data Group set 

words. The DMA buffer consists of one or more sets of these Unit Register (hex) (hex) Type 

formats. The following paragraphs describe the different Rasterizer StartXDom 00 0 Con1rol 
types of tag description words that can be used. dXDom 00 1 Con1rol 

20 
StartXSub 00 2 Con1rol 

DMA Tag Description Format dXSub 00 3 Conttol 

There are 3 different tag addressing modes for DMA: StartY 00 4 Con1rol 
dY 00 5 Con1rol 

hold. increment and indexed. The different DMA modes are Couot 00 6 Con1rol 
provided to reduce the amount of data which needs to be Render 00 7 Command 
transferred. hence making better use of the available DMA ContinueNewLine 00 8 Command 

bandwidth. Each of these is described in the following 25 ContinueNewDom 00 9 Command 

sections. ContinueNewSub 00 A Command 

Hold Format Continue 00 B Command 
FlushSpan 00 c Command 

In this format the 32-bit tag description contains a tag BitMaskPattem 00 D Mixed 
value and a count specifying the number of data words Rasterizer Poinffable[G-3] 01 G-3 Con1rol 

following in the buffer. The DMA controller writes each of 30 RasterizerMode 01 4 Con1rol 

the data words to the same address tag. For example. this is Scissor ScissorMode 03 0 Con1rol 

useful for image download where pixel data is continuously Stipple 
ScissorMinXY 03 1 Con1rol 

written to the Color register. The bottom 9 bits specify the ScissorMaxXY 03 2 Con1rol 
register to which the data should be written; the high-order ScreenSize 03 3 Con1rol 

16 bits specify the number of data words (minus 1) which 35 AreaStipp!eMode 03 4 Con1rol 

follow in the buffer and which should be written to the LineStippleMode 03 5 Con1rol 

address tag (note that the 2 -bit mode field for this format is LoadLineStipple 03 6 Con1rol 
Couoters 

zero so a given tag value can simply be loaded into the low UpdateLineStipple 03 7 Command 
order 16 bits). Couoters 

A special case of this format is where the top 16 bits are 40 
SaveLineStipple 03 8 Command 

zero indicating that a single data value follows the tag (i.e. State 

the 32-bit tag description is simply the address tag value WmdowOrigin 03 9 Con1rol 

itself). This allows simple DMA buffers to be constructed Scissor AreaStipplePat- 04 0-F Conttol 
Stipple tern(G-31] 05 0-F 

which consist of tag/data pairs. Texture Texe10 oc 0 Con1rol 
Increment Format Color/Fog 

This format is similar to the hold format except that as 45 Texell oc 1 Con1rol 

each data value is loaded the address tag is incremented (the Texel2 oc 2 Con1rol 
Texe13 oc 3 Con1rol 

value in the DMA buffer is not changed; GLINT updates an Texe14 oc 4 Con1rol 
internal copy). Thus. this mode allows contiguous GLINT Texel5 oc 5 Conttol 
registers to be loaded by specifying a single 32-bit tag value Texel6 00 6 Con1rol 

followed by a data word for each register. The low-order 9 50 Texel7 oc 7 Con1rol 

bits specify the address tag of the first register to be loaded. InterpO oc 8 Con1rol 

The 2 bit mode field is set to 1 and the high-order 16 bits are Interp1 oc 9 Con1rol 
Interp2 oc A Con1rol 

set to the count (minus 1) of the number of registers to Interp3 oc B Con1rol 
update. To enable use of this format. the GLINT register file Interp4 oc c Con1rol 

has been organized so that registers which are frequently 55 TextureFilter oc D Con1rol 

loaded together have adjacent address tags. For example. the Texture/Fog TextureColor OD 0 Con1rol 

32 AreaStipplePattern registers can be loaded as follows: Color Mode 
TextureEnvColor OD 1 Con1rol 
FogMode OD 2 Con1rol 
FogColor OD 3 Con1rol 

AreaStipplePattemO, Count=31, Mode=1 
60 

FStart OD 4 Con1rol 
row 0 bits dFdx OD 5 Con1rol 
row 1 bits dFdyDom OD 6 Con1rol 

ColorDDA RStart OF 0 Con1rol 
row 31 bits dRdx OF 1 Control 

dRdyDom OF 2 Con1rol 
GStart OF 3 Con1rol 

Indexed Format 65 dGdx OF 4 Con1rol 
GLINT address tags are 9 bit values. For the purposes of dGdyDom OF 5 Con1rol 

the Indexed DMA Format they are organized into major 
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-continued DMA Buffer Addresses 

Major Off- Host software must generate the correct DMA buffer 
Group set address for the GLINT DMA controller. Normally. this 

Unit Register (hex) (hex) Type means that the address passed to GLINT must be the 
5 

BStart OF 6 Control physical address of the DMA buffer in host memory. The 
dBdx OF 7 Control buffer must also reside at contiguous physical addresses as 
dBdyDom OF 8 Control accessed by GLINT. On a system which uses virtual 
AStart OF 9 Control memory for the address space of a task. some method of 
dAdx OF A Control allocating contiguous physical memory. and mapping this dAdyDom OF B Control 10 
ColorDDAMode OF c Control into the address space of a task. must be used. 
ConstantColor OF D Control If the virtual memory buffer maps to non-contiguous 
Color OF E Mixed physical memory. then the buffer must be divided into sets Alpha Test AlphaTestMode 10 0 Control 
AntialiasMode 10 1 Control of contiguous physical memory pages and each of these sets 

Alpha Blend AlphaBiendMode 10 2 Control 15 transferred separately. In such a situation the whole DMA 
Dither Dither Mode 3 Control buffer cannot be transferred in one go; the host software 
Logical Ops FBSoftwareWrite 10 4 Control must wait for each set to be transferred. Often the best way Mask 

LogicalOpMode 10 5 Control to handle these fragmented transfers is via an interrupt 
FBWriteData 10 6 Control handler. 

LB Read LBReadMode 11 0 Control 
LBReadFormat 11 1 Control 20 

LBSoUICeOffset 11 2 Control 
DMA Interrupts 

LBStencil 11 5 Output GLINT provides interrupt support. as an alternative 
LBDepth 11 6 Output 
LBWmdowBase 11 7 Control means of determining when a DMA transfer is complete. If 

LB Write LBWriteMode 11 8 Control enabled. the interrupt is generated whenever the DMACount 
LBWriteFormat 11 9 Control 25 register changes from having a non-zero to having a zero 

GID/Stencill Wmdow 13 0 Control value. Since the DMACount register is decremented every 
Depth 

StencilMode 13 1 Control time a data item is transferred from the DMA buffer this 
Stenci!Data 13 2 Control happens when the last data item is transferred from the DMA 
Stencil 13 3 Mixed buffer. 
DepthMode 13 4 Control 30 To enable the DMA interrupt. the DMAinterruptEnable Depth 13 5 Mixed 
ZStartU 13 6 Control bit must be set in the IntEnable register. The interrupt 
ZStartL 13 7 Control handler should check the DMAFlag bit in the IntFlags 
dZdxU 13 8 Control register to determine that a DMA interrupt has actually 
dZdxL 13 9 Control 
dZdyDomU 13 A Control 35 

occurred. To clear the interrupt a word should be written to 
dZdyDomL 13 B Control the IntFiags register with the DMAFlag bit set to one. 
FastClearDepth 13 c Control This scheme frees the processor for other work while 

FB Read FBReadMode 15 0 Control 
FBSourceOffset 15 1 Control DMA is being completed. Since the overhead of handling an 
FBPixeiOffset 15 2 Control interrupt is often quite high for the host processor, the 
FBColor 15 3 Output scheme should be tuned to allow a period of polling before 
FBWmdowBase 15 6 Control 40 

FB Write FBWriteMode 15 7 Control 
sleeping on the interrupt 

FBHardwareWrite 15 8 Control 
Mask Output FIFO and Graphics Processor FIFO 
FBBiockColor 15 9 Control Interface 

Host Out FilterMode 18 0 Control 
StatisticMode 18 1 Control 45 To read data back from GLINT an output FIFO is pro-
MinRegion 18 2 Control vided. Each entry in this FIFO is 32-bits wide and it can hold 
MaxRegion 18 3 Control 

tag or data values. Thus its format is unlike the input FIFO ResetPickResult 18 4 Command 
MinHitRegion 18 5 Command whose entries are always tag/data pairs (we can think of each 
MaxHitRegion 18 6 Command entry in the input FIFO as being 41 bits wide: 9 bits for the 
PickResult 18 7 Command 50 tag and 32 bits for the data). The type of data written by 
Sync 18 8 Command 

GLINT to the output FIFO is controlled by the FilterMode 
register. This register allows filtering of output data in 

This format allows up to 16 registers within a group to be various categories including the following: 
loaded while still only specifying a single address tag 

55 
Depth: output in this category results from an image 

description word. upload of the Depth buffer. 

If the Mode of the address tag description word is set to Stencil: output in this category results from an image 
indexed mode. then the high-order 16 bits are used as a mask upload of the Stencil buffer. 
to indicate which registers within the group are to be used. Color: output in this category results from an image 
The bottom 4 bits of the address tag description word are 60 upload of the framebuffer. 
unused. The group is specified by bits 4 to 8. Each bit in the Synchronization: synchronization data is sent in response 
mask is used to represent a unique tag within the group. If to a Sync command. 
a bit is set then the corresponding register will be loaded. The data for the Filter Mode register consists of 2 bits per 
The number of bits set in the mask determines the number category. If the least significant of these two bits is set (Ox1) 
of data words that should be following the tag description 65 then output of the register tag for that category is enabled; 
word in the DMA buffer. The data is stored in order of if the most significant bit is set (0><2) then output of the data 
increasing corresponding address tag. for that category is enabled. Both tag and data output can be 
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enabled at the same time. In this case the tag is written first 
to the FIFO followed by the data. 

For example. to perform an image upload from the 
framebuffer. the FilterMode register should have data output 
enabled for the Color category. Then. the rectangular area to 5 

be uploaded should be described to the rasterizer. Each pixel 
that is read from the framebuffer will then be placed into the 
output FIFO. If the output FIFO becomes full. then GLINT 
will block internally until space becomes available. It is the 
programmer's responsibility to read all data from the output 10 

FIFO. For example. it is important to know how many pixels 
should result from an image upload and to read exactly this 
many from the FIFO. 

20 
Other Interrupts 

GLINT also provides interrupt facilities for the following: 
Sync: If a Sync command is sent and the Sync interrupt has 

been enabled then once all rendering has been completed, 
a data value is entered into the Host Out FIFO. and a Sync 
interrupt is generated when this value reaches the output 
end of the FIFO. Synchronization is described further in 
the next section. 

External: this provides the capability for external hardware 
on a GLINT board (such as an external video timing 
generator) to generate interrupts to the host processor. 

Error: if enabled the error interrupt will occur when GLINT 
detects certain error conditions . such as an attempt to 
write to a full FIFO. 

Vertical Retrace: if enabled a vertical retrace interrupt is 
generated at the start of the video blank period. 
Each of these are enabled and cleared in a similar way to 

the DMA interrupt. 
Synchronization 

To read data from the output FIFO the OutputFIFOWords 
register should first be read to determine the number of 15 
entries in the FIFO (reading from the FIFO when it is empty 
returns undefined data). Then this many 32-bit data items are 
read from the FIFO. This procedure is repeated until all the 
expected data or tag items have been read. The address of the There are three main cases where the host must synchro-

20 nize with GLINT: output FIFO is described below. 
Note that all expected data must be read back GLINT will 

block if the FIFO becomes full. Programmers must be 
careful to avoid the deadlock condition that will result if the 
host is waiting for space to become free in the input FIFO 
while GLINT is waiting for the host to read data from the 25 

output FIFO. 
Graphics Processor FIFO Interface 

GLINT has a sequence of 1Kx32 bit addresses in the PCI 
Region 0 address map called the Graphics Processor FIFO 

before reading back from registers 
before directly accessing the framebuffer or the local

buffer via the bypass mechanism 
framebuffer management tasks such as double buffering 
Synchronizing with GLINT implies waiting for any pend

ing DMA to complete and waiting for the chip to complete 
any processing currently being performed. The following 
pseudo-code shows the general scheme: 

Interface. To read from the output FIFO any address in this 30 --------------------
range can be read (normally a program will choose the first 
address and use this as the address for the output FIFO). All 
32-bit addresses in this region perform the same function: 
the range of addresses is provided for data transfer schemes 
which force the use of incrementing addresses. 

Writing to a location in this address range provides raw 
access to the input FIFO. Again, the first address is normally 
chosen. Thus the same address can be used for both input 
and output FlFOs. Reading gives access to the output FIFO; 

35 

writing gives access to the input FIFO. 40 

Writing to the input FIFO by this method is different from 
writing to the memory mapped register file. Since the 
register file has a unique address for each register. writing to 
this unique address allows GLINT to determine the register 
for which the write is intended This allows a tag/data pair 45 

to be constructed and inserted into the input FIFO. When 
writing to the raw FIFO address an address tag description 
must first be written followed by the associated data. In fact. 
the format of the tag descriptions and the data that follows 
is identical to that described above for DMA buffers. Instead 50 

of using the GLINT DMA it is possible to transfer data to 
GLINT by constructing a DMA-style buffer of data and then 
copying each item in this buffer to the raw input FIFO 
address. Based on the tag descriptions and data written 
GLINT constructs tag/data pairs to enter as real FIFO 55 
entries. The DMA mechanism can be thought of as an 
automatic way of writing to the raw input FIFO address. 

Note, that when writing to the raw FIFO address the FIFO 
full condition must still be checked by reading the 
InFIFOSpace register. However. writing tag descriptions 60 

does not cause any entries to be entered into the FIFO: such 
a write simply establishes a set of tags to be paired with the 
subsequent data. Thus. free space need be ensured only for 
actual data items that are written (not the tag values). For 
example. in the simplest case where each tag is followed by 65 

a single data item. assuming that the FIFO is empty. then 32 
writes are possible before checking again for free space. 

GLIN'IData data; 
II wait fur DMA to complete 
while (*DMACOWll != 0) { 

poll or wait for interrupt 
} 
while (*InFIFOSpa::e < 2) { 

; II wait for free space in tbe FIFO 
} 
II enable sync output and send the Sync command 
data. Word = 0; 
data.FilterMode.Synchronization = Oxl; 
FilterMode(data.Word); 
Sync(OxO); 
/* wait for tbe sync output clala */ 
do{ 

while (*OutFIFOWords = 0) 
; II poll waiting for data in output 

FIFO 
} while (*OutputFIFO != Sync_tag); 

Initially, we wait for DMA to complete as normal. We 
then have to wait for space to become free in the FIFO (since 
the DMA controller actually loads the FIFO). We need space 
for 2 registers: one to enable generation of an output sync 
value, and the Sync command itself. The enable flag can be 
set at initialization time. The output value will be generated 
only when a Sync command has actually been sent, and 
GLINT has then completed all processing. 

Rather than polling it is possible to use a Sync interrupt 
as mentioned in the previous section. As well as enabling the 
interrupt and setting the filter mode, the data sent in the Sync 
command must have the most significant bit set in order to 
generate the interrupt. The interrupt is generated when the 
tag or data reaches the output end of the Host Out FIFO. Use 
of the Sync interrupt has to be considered carefully as 
GLINT will generally empty the FIFO more quickly than it 
takes to set up and handle the interrupt. 

Host Framebuffer Bypass 
Normally. the host will access the framebuffer indirectly 

via commands sent to the GLINT FIFO interface. However. 
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GLINT does provide the whole framebuffer as part of its 
address space so that it can be memory mapped by an 
application. Access to the framebuffer via this memory 
mapped route is independent of the GLINT FIFO. 

22 
next. A further set of 3 bits (localbuffer width) in the 
LBMemoryControl register defines the number of valid bits 
per pixel. A typical localbuffer configuration might be 48 

Drivers may choose to use direct access to the framebuffer 5 

for algorithms which are not supported by GLINT. The 
framebuffer bypass supports big-endian, little-endian and 
GIB-endian formats. 

bits per pixel but in bypass mode the data for each pixel 
starts on a 64-bit boundary. In this case valid pixel data will 
be contained in bits 0 to 47. Software must set the LBRead-
Format register to tell GLINT how to interpret these valid 
bits. 

A driver making use of the framebuffer bypass mecha
nism should synchronize framebuffer accesses made 10 

through the FIFO with those made directly through the 
memory map. If data is written to the FIFO and then an 
access is made to the framebuffer, it is possible that the 
framebuffer access will occur before the commands in the 
FIFO have been fully processed. This lack of temporal 15 
ordering is generally not desirable. 

Host software must set the width in pixels of each scanline 
of the localbuffer in the LBReadMode FIFO register. The 
first 9 bits of this register define 3 partial products which 
determine the offset in pixels from one scanline to the next. 
As with the framebuffer partial products. these values will 
usually be worked out at initialization time and a copy kept 
in software. When this register needs to be modified the 
software copy is retrieved and any other bits modified before 

Framebuffer Dimensions and Depth 
At reset time the hardware stores the size of the frame

buffer in the FBMemoryControl register. This register can be 
read by software to determine the amount of VRAM on the 20 

display adapter. For a given amount of VRAM, software can 
configure different screen resolutions and off-screen 
memory regions. 

writing to the register. If the system is set up so that each 
pixel in the framebuffer has a corresponding pixel in the 
localbuffer then this width will be the same as that set for the 
framebuffer. 

The localbuffer is accessible via Regions 1 and 3 of the 
PCI address map for GLINT. The localbuffer bypass sup
ports big-endian and little-endian formats. These are 
described in a later section. 

Register Read Back 
Under some operating environments, multiple tasks will 

want access to the GLINT chip. Sometimes a server task or 
driver will want to arbitrate access to GLINT on behalf of 
multiple applications. In these circumstances. the state of the 

The framebuffer width must be set up in the FBReadMode 
register. The first 9 bits of this register define 3 partial 25 

products which determine the offset in pixels from one 
scanline to the next. Typically, these values will be worked 
out at initialization time and a copy kept in software. When 
this register needs to be modified the software copy is 
retrieved and any other bits modified before writing to the 
register. 

30 GLINT chip may need to be saved and restored on each 
context switch. To facilitate this, the GLINT control regis
ters can be read back. (However. internal and command 
registers cannot be read back.) 

Once the offset from one scanline to the next has been 
established, determining the visible screen width and height 
becomes a clipping issue. The visible screen width and 
height are set up in the ScreenSize register and enabled by 
setting the ScreenScissorEnable bit in the ScissorMode 
register. 

The framebuffer depth (8, 16 or 32-bit) is controlled by 
the FBModeSel register. This register provides a 2 bit field 
to control which of the three pixel depths is being used. The 
pixel depth can be changed at any time but this should not 
be attempted without first synchronizing with GLINT. The 
FBModeSel register is not a FIFO register and is updated 
immediately it is written. If GLINT is busy performing 
rendering operations. changing the pixel depth will corrupt 
that rendering. 

Normally. the pixel depth is set at initialization time. To 
optimize certain 2D rendering operations it may be desirable 
to change it at other times. For example. if the pixel depth 
is normally 8 (or 16) bits, changing the pixel depth to 32 bits 
for the duration of a bitblt can quadruple (or double) the blt 
speed, when the bit source and destination edges are aligned 
on 32 bit boundaries. Once such a blt sequence has been set 
up the host software must wait and synchronize with GLINT 
and then reset the pixel depth before continuing with further 
rendering. It is not possible to change the pixel depth via the 
FIFO, thus explicit synchronization must always be used. 

Host Localbuffer Bypass 
As with the framebuffer. the localbuffer can be mapped in 

and accessed directly. The host should synchronize with 
GLINT before making any direct access to the localbuffer. 

At reset time the hardware saves the size of the localbuffer 
in the LBMemoryControl register (localbuffer visible region 
size). In bypass mode the number of bits per pixel is either 
32 or 64. This information is also set in the LBMemory
Control register (localbuffer bypass packing). This pixel 
packing defines the memory offset between one pixel and the 

To perform a context switch the host must first synchro-
35 nize with GLINT. This means waiting for outstanding DMA 

to complete. sending a Sync command and waiting for the 
sync output data to appear in the output FIFO. After this the 
registers can be read back. 

To read a GLINT register the host reads the same address 
40 which would be used for a write, i.e. the base address of the 

register file plus the offset value for the register. 
Note that since internal registers cannot be read back care 

must be taken when context switching a task which is 
making use of continue-draw commands. Continue-draw 

45 commands rely on the internal registers maintaining previ
ous state. This state will be destroyed by any rendering work 
done by a new task. To prevent this, continue-draw com
mands should be performed via DMA since the context 
switch code has to wait for outstanding DMA to complete. 

50 Alternatively. continue-draw commands can be performed 
in a non-preemptable code segment. 

Normally, reading back individual registers should be 
avoided. The need to synchronize with the chip can 
adversely affect performance. It is usually more appropriate 

55 to keep a software copy of the register which is updated 
when the actual register is updated. 

Byte Swapping 
Internally GLINT operates in little-endian mode. 

However, GLINT is designed to work with both big- and 
60 little-endian host processors. Since the PCIBus specification 

defines that byte ordering is preserved regardless of the size 
of the transfer operation, GLINT provides facilities to 
handle byte swapping. Each of the Configuration Space, 
Control Space, Framebuffer Bypass and Localbuffer Bypass 

65 memory areas have both big and little endian mappings 
available. The mapping to use typically depends on the 
endian ordering of the host processor. 
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The Configuration Space may be set by a resistor in the 
board design to be either little endian or big endian. 

The Control Space in PCI address region 0. is 128K bytes 
in size. and consists of two MK sized spaces. The first MK 
provides little endian access to the control space registers; 5 
the second 64K provides big endian access to the same 
registers. 

The framebuffer bypass consists of two PCI address 
regions: Region 2 and Region 4. Each is independently 
configurable to by the ApertureO and Aperture 1 control 

10 registers respectively. to one of three modes: no byte swap. 
16-bit swap. full byte swap. Note that the 16 bit mode is 
needed for the following reason. If the framebuffer is 
configured for 16-bit pixels and the host is big-endian then 
simply byte swapping is not enough when a 32-bit access is 
made (to write two pixels). In this case. the required effect 15 

is that the bytes are swapped within each 16-bit word. but the 
two 16-bit halves of the 32-bit word are not swapped. This 
preserves the order of the pixels that are written as well as 
the byte ordering within each pixel. The 16 bit mode is 
referred to as Gffi-endian in the PCI Multimedia Design 20 

Guide, version 1.0. 
The localbuffer bypass consists of two PCI address 

regions: Region 1 and Region 3. Each is independently 
configurable to by the ApertureO and Aperture 1 control 
registers respectively. to one of two modes: no byte swap. 25 

full byte swap. 
To save on the size of the address space required for 

GLINT. board vendors may choose to turn off access to the 
big endian regions (3 and 4) by the use of resistors on the 
board. 30 

24 
The maximum width of the localbuffer is 48 bits. but this 

can be reduced by changing the external memory 
configuration, albeit at the expense of reducing the func
tionality or dynamic range of one or more of the fields. 

The localbuffer memory can be from 16 bits (assuming a 
depth buffer is always needed) to 48 bits wide in steps of 4 
bits. The four fields supported in the localbuffer. their 
allowed lengths and positions are shown in the following 
table: 

Field 

Depth 
SteDCil 
FrameCount 
GID 

Lengths 

16, 24, 32 
0, 4. 8 
0, 4, 8 
0, 4 

Start bit p<>Sitions 

0 
16, 20, 24, 28, 32 
16, 20, 24, 28, 32, 36, 40 
16, 20. 24, 28, 32, 36, 40, 44, 48 

The order of the fields is as shown with the depth field at 
the least significant end and GID field at the most significant 
end. The GID is at the most significant end so that various 
combinations of the Stencil and FrameCount field widths 
can be used on a per window basis without the position of 
the GID fields moving. If the GID field is in a different 
positions in different windows then the ownership tests 
become impossible to do. 

The GID, FrameCount, Stencil and Depth fields in the 
localbuffer are converted into the internal format by right 
justification if they are less than their internal widths, i.e. the 
unused bits are the most significant bits and they are set to 
0. 

The format of the localbuffer is specified in two places: 
the LBReadFormat register and the LBWriteFormat register. There is a bit available in the DMAControl control 

register to enable byte swapping of DMA data. Thus for 
big-endian hosts, this control bit would normally be enabled. 
Red and Blue Swapping 

For a given graphics board the RAMDAC and/or API will 
usually force a given interpretation for true color pixel 
values. For example. 32-bit pixels will be interpreted as 
either ARGB (alpha at byte 3. red at byte 2. green at byte 1 
and blue at byte 0) or ABGR (blue at byte 2 and red at byte 

It is still possible to part populate the localbuffer so other 
combinations of the field widths are possible (i.e. depth field 
width of 0). but this may give problems if texture maps are 

35 to be stored in the localbuffer as well. 

0). The byte position for red and blue may be important for 40 

software which has been written to expect one byte order or 
the other, in particular when handling image data stored in 
a file. 

GLINT provides two registers to specify the byte posi
tions of blue and red internally. In the Alpha Blend Unit the 45 

AlphaBlendMode register contains a 1-bit field called Col
orOrder. If this bit is set to zero then the byte ordering is 
ABGR; if the bit is set to one then the ordering is ARGB. As 
well as setting this bit in the Alpha Blend unit. it must also 
be set in the Color Formatting unit In this unit the Dither- 50 

Mode register contains a Color Order bit with the same 
interpretation. The order applies to all of the true color pixel 
formats. regardless of the pixel depth. 
Hardware Data Structures 

Some of the hardware data structure implementations 55 
used in the presently preferred embodiment will now be 
described in detail. Of course these examples are provided 
merely to illustrate the presently preferred embodiment in 
great detail, and do not necessarily delimit any of the 
claimed inventions. 60 

Localbuffer 
The localbuffer holds the per pixel information corre

sponding to each displayed pixel and any texture maps. The 
per pixel information held in the localbuffer are Graphic ID 
(GID). Depth. Stencil and Frame Count Planes (PCP). The 65 

possible formats for each of these fields. and their use are 
covered individually in the following sections. 

Any non-bypass read or write to the localbuffer always 
reads or writes all 48 bits simultaneously. 

GID field 
The 4 bit GID field is used for pixel ownership tests to 

allow per pixel window clipping. Each window using this 
facility is assigned one of the GID values, and the visible 
pixels in the window have their GID field set to this value. 
If the test is enabled the current GID (set to correspond with 
the current window) is compared with the GID in the 
localbuffer for each fragment. If they are equal this pixel 
belongs to the window so the localbuffer and framebuffer at 
this coordinate may be updated. 

Using the GID field for pixel ownership tests is optional 
and other methods of achieving the same result are: 
clip the primitive to the window's boundary (or rectangular 

tiles which make up the window's area) and render only 
the visible parts of the primitive 

use the scissor test to define the rectangular tiles which make 
up the window's visible area and render the primitive 
once per tile (This may be limited to only those tiles 
which the primitive intersects). 
Depth Field 
The depth field holds the depth (Z) value associated with 

a pixel and can be 16, 24 or 32 bits wide. 
Stencil Field 
The stencil field holds the stencil value associated with a 

pixel and can be 0. 4 or 8 bits wide. 
The width of the stencil buffer is also stored in the 

StencilMode register and is needed for clamping and mask
ing during the update methods. The stencil compare mask 
should be set up to exclude any absent bits from the stencil 
compare operation. 
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FrameCount Field 
The Frame Count Field holds the frame count value 

associated with a pixel and can be 0. 4 or 8 bits wide. It is 
used during animation to support a fast clear mech~nism to 
aid the rapid clearing of the depth and/or stencil fields 5 

needed at the start of each frame. 
In addition to the fast clear mechanism the extent of all 

updates to the localbuffer and framebuffer can be recorded 
(MinRegion and MaxRegion registers) and read back 
(MinHitRegion and MaxHitRegion commands) to give the 10 

bounding box of the smallest area to clear. For some 
applications this will be significantly smaller than the whole 
window or screen. and hence faster. 

The fast clear mechanism provides a method where the 
cost of clearing the depth and stencil buffers can be amor- 15 

tized over a number of clear operations issued by the 
application. This works as follows: 

The window is divided up into n regions. where n is the 
range of the frame counter (16 or 256 ). Every time the 
application issues a clear command the refer.e~ce frame 20 

counter is incremented (and allowed to roll over if It exceeds 
its maximum value) and the n'h region is cleared only. The 
clear updates the depth and/or stencil buffers to the new 
values and the frame count buffer with the reference value. 
This region is much smaller than the full window and hence 25 

takes less time to clear. 
When the localbuffer is subsequently read and the frame 

count is found to be the same as the reference frame count 
(held in the Window register) the localbuffer data is used 
directly. However. if the frame count is found to be di11erent 30 

from the reference frame count (held in the Window register) 
the data which would have been written. if the localbuffer 
had been cleared properly. is substituted for the stale data 
returned from the read. Any new writes to the localbuffer 
will set the frame count to the reference value so the next 35 

read on this pixel works normally without the substitution. 
The depth data to substitute is held in the FastClearDepth 
register and the stencil data to substitute is held in the 
StencilData register (along with other stencil information). 

The fast clear mechanism does not present a total solution 40 

as the user can elect to clear just the stencil planes or just the 
depth planes. or both. The situation where the stencil planes 
only are 'cleared' using the fast clear method, then some 
rendering is done and then the depth planes are 'cleared' 
using the fast clear will leave ambiguous pixels in the 45 

localbuffer. The driver software will need to catch this 
situation. and fall back to using a per pixel write to do the 
second clear. Which field(s) the frame count plane refers to 
is recorded in the Window register. 

When clear data is substituted for real memory data so 
(during normal rendering operations) the depth write mask 
and stencil write masks are ignored to mimic the OpenGL 
operation when a buffer is cleared. 

Localbuffer Coordinates 

26 
GUI systems (such as Windows. Windows Nf and X) 

usually have the origin of the coordinate system at the t?P 
left corner of the screen but this is not true for all graphics 
systems. For instance OpenGL uses the bottom left corner as 
its origin. The WindowOrigin bit in the LBRea~o~e 
register selects the top left ( 0) or bottom left ( 1) as the ong.n. 

The actual equations used to calculate the localbuffer 
address to read and write are: 

Bottom left origin: 
Destination address= LBWmdowBase- Y • W +X 
Source address = 

LBWmdowBase - Y*W + X + LBSourceOffset 
Top left origin: 

where: 

Destination address= LBWmdowBase + Y • W +X 
Source address = 

LBWindowBase + Y*W + X + LBSowceOffset 

x is the pixel's X coordinate. 
Y is the pixel's Y coordinate. 
LBWindowBase holds the base address in the localbuffer 

of the current window. 
LBSourceOffset is normally zero except during a copy 

operation where data is read from one address and 
written to another address. The offset between source 
and destination is held in the LBSourceOffset register. 

W is the screen width. Only a subset of widths are 
supported and these are encoded into the PPO. PPl and 
PP2 fields in the LBReadMode register. 

These address calculations translate a 2D address into a 
linear address. 

The Screen width is specified as the sum of selected 
partial products so a full multiply operation is not needed. 
The partial products are selected by the fields PPO. PPl and 
PP2 in the LBReadMode register. 

For arbitrary width screens. for instance bitmaps in 'off 
screen' memory. the next largest width from the table must 
be chosen. The di11erence between the table width and the 
bitmap width will be an unused strip of pixels down the right 
hand side of the bitmap. 

Note that such bitmaps can be copied to the screen only 
as a series of scanlines rather than as a rectangular block. 
However. often windowing systems store offscreen bitmaps 
in rectangular regions which use the same stride as the 
screen. In this case normal bitblts can be used. 

Texture Memory 
The localbuffer is used to hold textures in the GLlNf 

40aiX variant. In the GLlNf 300SX variant the texture 
information is supplied by the host. 
Framebuffer 

The framebuffer is a region of memory where the infor
mation produced during rasterization is written prior to 
being displayed. This information is not restricted to color 
but can include window control data for LUf management 
and double buffering. 

The coordinates generated by the rasterizer are 16 bit 2's 55 

complement numbers. and so have the range +32767 to 
-32768. The rasterizer will produce values in this range. but 
any which have a negative coordinate. or exceed the screen 
width or height (as programmed into the ScreenSize 
register) are discarded. 

Coordinates can be defined window relative or screen 
relative and this is only relevant when the coordinate gets 
converted to an actual physical address in the localbuffer. In 
general it is expected that the windowing system will use 
absolute coordinates and the graphics system will use rela- 65 

tive coordinates (to be independent of where the window 
really is). 

The framebuffer region can hold up to 32 MBytes and 
there are very few restrictions on the format and size of the 
individual buffers which make up the video stream. l)'pical 

60 buffers include: 
True color or color index main planes. 
Overlay planes. 
Underlay planes. 
Window ID planes for LUT and double buffer 

management. 
Cursor planes. 
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Any combination of these planes can be supported up to 
28 

partial products are selected by the fields PPO. PPl and PP2 
in the FBReadMode register. This is the same mechanism as 
is used to set the width of the localbuffer. but the widths may 
be set independently. 

a maximum of 32 MBytes. but usually it is the video level 
processing which is the limiting factor. The following text 
examines the options and choices available from GLINT for 
rendering. copying. etc. data to these buffers. 5 For arbitrary screen sizes. for instance when rendering to 

To access alternative buffers either the FBPixelOOset 
register can be loaded. or the base address of the window 
held in the FBWindow-Base register can be redefined. This 
is described in more detail below. 

'off screen' memory such as bitmaps the next largest width 
from the table must be chosen. The difference between the 
table width and the bitmap width will be an unused strip of 
pixels down the right hand side of the bitmap. 

Buffer Organization 
Each buffer resides at an address in the framebuffer 

memory map. For rendering and copying operations the 
actual buffer addresses can be on any pixel boundary. 
Display hardware will place some restrictions on this as it 
will need to access the multiple buffers in parallel to mix the 15 
buffers together depending on their relative priority. opacity 
and double buffer selection. For instance. visible buffers 
(rather than offscreen bitmaps) will typically need to be on 

Note that such bitmaps can be copied to the screen only 
10 as a series of scanlines rather than as a rectangular block. 

a page boundary. 
Consider the following highly configured example with a 20 

1280x1024 double buffered system with 32 bit main planes 
(RGBA). 8 bit overlay and 4 bits of window control infor
mation (WID). 

Combining the WID and overlay planes in the same 32 bit 
pixel has the advantage of reducing the amount of data to 25 
copy when a window moves. as only two copies are 
required-one for the main planes and one for the overlay 
and WID planes. 

Note the position of the overlay and WID planes. This was 
not an arbitrary choice but one imposed by the (presumed) 30 
desire to use the color processing capabilities of GLINT 
(dither and interpolation) in the overlay planes. The conver
sion of the internal color format to the external one stored in 
the framebuffer depends on the size and position of the 
component. Note that GLINT does not support all possible 35 
configurations. For example; if the overlay and WID bits 
were swapped, then eight bit color index starting at bit 4 
would be required to render to the overlay. but this is not 
supported. 

Framebuffer Coordinates 
Coordinate generation for the framebuffer is similar to 

that for the localbuffer. but there are some key differences. 

40 

As was mentioned before. the coordinates generated by 
the rasterizer are 16 bit 2's complement numbers. Coordi
nates can be defined as window relative or screen relative, 45 
though this is only relevant when the coordinate gets con
verted to an actual physical address in the framebuffer. The 
WindowOrigin bit in the FBReadMode register selects top 
left (0) or bottom left (1) as the origin for the framebuffer. 

The actual equations used to calculate the framebuffer 50 
address to read and write are: 

Bottom left origin: 

However. often windowing systems store offscreen bitmaps 
in rectangular regions which use the same stride as the 
screen. In this case normal bitblts can be used. 

Color Formats 
The contents of the framebuffer can be regarded in two 

ways: 
As a collection of fields of up to 32 bits with no meaning or 

assumed format as far as GLINT is concerned. Bit planes 
may be allocated to control cursor. LUT. multi-buffer 
visibility or priority functions. In this case GLINT will be 
used to set and clear bit planes quickly but not perform 
any color processing such as interpolation or dithering. 
All the color processing can be disabled so that raw reads 
and writes are done and the only operations are write 
masking and logical ops. This allows the control planes to 
be updated and modified as necessary. Obviously this 
technique can also be used for overlay buffers, etc. 
providing color processing is not required. 

As a collection of one or more color components. All the 
processing of color components. except for the final write 
mask and logical ops are done using the internal color 
format of 8 bits per red, green, blue and alpha color 
channels. The final stage before write mask and logical 
ops processing converts the internal color format to that 
required by the physical configuration of the framebuffer 
and video logic. The nomenclature n @m means this 
component is n bits wide and starts at bit position min the 
framebuffer. The least significant bit position is 0 and a 
dash in a column indicates that this component does not 
exist for this mode. The ColorOrder is specified by a bit 
in the DitherMode register. 
Some important points to note: 

The alpha channel is always associated with the RGB color 
channels rather than being a separate buffer. This allows 
it to be moved in parallel and to work correctly in 
multi-buffer updates and double buffering. H the frame-
buffer is not configured with an alpha channel (e.g. 24 bit 
framebuffer width with 8:8:8:8 RGB format) then some of 
the rendering modes whicq use the retained alpha buffer 
cannot be used. In these cases the NoAlphaBuffer bit in 
the AlphaBlendMode register should be set so that an 
alpha value of 255 is substituted. For the RGB modes 
where no alpha channel is present (e.g. 3:3:2) then this 
substitution is done automatically. Destination address = FBWmdowBase - Y*W + X + 

FBPixe!Olfset 
Source address= FBWmdowBase - Y*W +X+ 

FBPixe!Olfset + FBSowceOlfset 

55 For the Front and Back modes the data value is replicated 
into both buffers. 

Top left Origin: 
Destination address = FBWmdowBase + Y*W + X + 

FBPixe!Olfset 
Source address = FBWmdowBase + Y*W + X + 

FBPixe!Olfset + FBSowceOffset 

These address calculations translate a 2D address into a 
linear address. so non power of two framebuffer widths (i.e. 
1280) are economical in memory. 

The width is specified as the sum of selected partial 
products so a full multiply operation is not needed. The 

60 

65 

All writes to the framebuffer try to update all 32 bits 
irrespective of the color format This may not matter if the 
memory planes don't exist, but if they are being used (as 
overlay planes, for example) then the write masks 
(FBSoftware WriteMask or FBHardware WriteMask) must 
be set up to protect the alternative planes. 

When reading the framebuffer RGBA components are scaled 
to their internal width of 8 bits. if needed for alpha 
blending. 
CI values are left justified with the unused bits (if any) set 

to zero and are subsequently processed as the red compo-
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nent. The result is replicated into each of the streams G .B 
and A giving four copies for CIS and eight copies for CI4. 

The 4:4:4:4 Front and Back formats are designed to 
support 12 bit double buffering with 4 bit Alpha, in a 32 
bit system. 

The 3:3:2 Front and Back formats are designed to support 
8 bit double buffering in a 16 bit system. 

The 1:2: 1 Front and Back formats are designed to support 
4 bit double buffering in an 8 bit system. 

It is possible to have a color index buffer at other positions 
as long as reduced functionality is acceptable. For 
example a 4 bit CI buffer at bit position 16 can be 
achieved using write masking and 4:4:4:4 Front format 
with color interpolation. but dithering is lost. 

The format information needs to be stored in two places: 
the DitherMode register and the AlphaBlendMode register. 

lnlernal Color Channel 

Fonnat Name R G B A 

Color 0 8:8:8:8 8@0 8@8 8@16 8@24 
Order: 1 5:5:5:5 5@0 5@5 5@10 5@15 
RGB 2 4:4:4:4 4@0 4@4 4@8 4@12 

3 4:4:4:4 4@0 4@8 4®16 4@24 
Front 4@4 4@12 4@20 4@28 

4 4:4:4:4 4@0 4@8 4@16 4@24 
Back 4@4 4@12 4@20 4@28 

5 3:3:2 3@0 3@3 2@6 
Front 3@8 3@11 2@14 

6 3:3:2 3@0 3@3 2@6 
Back 3@8 3@11 2@14 

7 1:2:1 1@0 2@1 1@3 
Front 1@4 2@5 1@7 

8 1:2:1 1@0 2@1 1@3 
Back 1@4 2@5 1@7 

Color 0 8:8:8:8 8@16 8@8 8@0 8@24 
Order: 1 5:5:5:5 5@10 5@5 5@0 5@15 
BGR 2 4:4:4:4 4@8 4@4 4@0 4@12 

3 4:4:4:4 4@16 4@8 4@0 4@24 
Front 4@20 4@12 4@4 4@28 

4 4:4:4:4 4@16 4@8 4@0 4@24 
Back 4@20 4@12 4@4 4@28 

5 3:3:2 3@5 3@2 2@0 
Front 3@13 3@10 2@8 

6 3:3:2 3@5 3@2 2@0 
Back 3@13 3@10 2@8 

7 1:2:1 1@3 2@1 1@0 
Front 1@7 2@5 1@4 

8 1:2:1 1@3 2@1 1@0 
Back 1@7 2@5 1@4 

CI 14 CIS 8@0 0 0 0 
15 Cl4 4@0 0 0 0 
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30 
the GID based pixel ownership tests for one of the buffers 
but rely on the scissor clipping. or to install a second set of 
GID planes so each buffer has it's own set. GLINT allows 
either approach. 

If rendering operations to the main and overlay planes 
both need the depth or stencil buffers, and the windows in 
each overlap then each buffer will need its own exclusive 
depth and/or stencil buffers. This is easily achieved with 
GLINT by assigning different regions in the localbuffer to 
each of the buffers. Typically this would double the local
buffer memory requirements. 

One scenario where the above two considerations do not 
cause problems. is when the overlay planes are used exclu
sively by the GUI system. and the main planes are used for 
the 3D graphics. 

VRAM Modes 

High performance systems will typically use VRAM for 
the framebuffer and the extended functionality of VRAM 
over DRAM can be used to enhance performance for many 
rendering tasks. 
Hardware Write Masks. 

These allow write masking in the framebuffer without 
incurring a performance penalty. If hardware write masks 
are not available, GLINT must be programmed to read the 
memory, merge the value with the new value using the write 
mask, and write it back. 

To use hardware write masking. the required write mask 
is written to the FBHardwareWriteMask register. the 
FBSoftwareWriteMask register should be set to alii's, and 
the number of framebuffer reads is set to 0 (for normal 
rendering). This is achieved by clearing the ReadSource and 
ReadDestination enables in the FBReadMode register. 

To use software write masking. the required write mask is 
written to the FBSoftwareWriteMask register and the num_.. 
ber of framebuffer reads is set to 1 (for normal rendering). 
This is achieved by setting the ReadDestination enable in the 
FBReadMode register. 
Block Writes Block writes cause consecutive pixels in the 
framebuffer to be written simultaneously. This is useful 
when filling large areas but does have some restrictions: 

No pixel level clipping is available; 
No depth or stencil testing can be done; 
All the pixels must be written with the same value so no 

color interpolation, blending, dithering or logical ops 
can be done; and 

The area is defined in screen relative coordinates. 

Overlays and Underlays 
In a GUI system there are two possible relationships 

between the overlay planes (or underlay) and the main 
planes. 

Block writes are not restricted to rectangular areas and 

50 can be used for any trapezoid. Hardware write masking is 
available during block writes. 

The overlay planes are fixed to the main planes, so that if 
the window is moved then both the data in the main 55 

planes and overlay planes move together. 
The overlay planes are not fixed to the main planes but 

floating. so that moving a window only moves the 
associated main or overlay planes. 

In the fixed case both planes can share the same GID. The 60 

pixel offset is used to redirect the reads and writes between 
the main planes and the overlay (underlay) buffer. The pixel 
ownership tests using the GID field in the localbuffer work 
as expected. 

In the floating case different Gills are the best choice, 65 

because the same GID planes in the localbuffer can not be 
used for pixel ownership tests. The alternatives are not to use 

The following registers need to be set up before block fills 
can be used: 

FBBlockColor register with the value to write to each 
pixel; and 

FBWriteMode register with the block width field. 
Sending a Render command with the PrimitiveType field 

set to "trapezoid" and the FastFillEnable and FastFilllncre
ment fields set up will then cause block filling of the area. 
Note that during a block fill of a trapezoid any inappropriate 
state is ignored so even if color interpolation, depth testing 
and logical ops. for example, are enabled they have no effect. 

The block sizes supported are 8. 16 and 32 pixels. GLINT 
takes care of filling any partial blocks at the end of spans. 
Graphics Programming 

GLINT provides a rich variety of operations for 2D and 
3D graphics supported by its Pipelined architecture. 
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The Graphics Pipeline 
This section describes each of the units in the graphics 

Pipeline. FIG. 2C shows a schematic of the pipeline. In this 
diagram. the local buffer contains the pixel ownership values 
(known as Graphic IDs). the FrameCount Planes (FCP). 5 
Depth (Z) and Stencil buffer. The framebuffer contains the 
Red. Green. Blue and Alpha bitplanes. The operations in the 
Pipeline include: 

32 
A Gouraud Shaded Triangle 

We may now revisit the "day in the life of a triangle" 
example given above. and review the actions taken in greater 
detail. Again. the primitive being rendered will be a Gouraud 
shaded. depth buffered triangle. For this example assume 
that the triangle is to be drawn into a window which has its 
colormap set for RGB as opposed to color index operation. 
This means that all three color components; red. green and 
blue. must be handled. Also. assume the coordinate origin is Rasterizer scan converts the given primitive into a series of 

fragments for processing by the rest of the pipeline. 
Scissor Test clips out fragments that lie outside the bounds 

of a user defined scissor rectangle and also performs 
screen clipping to stop illegal access outside the screen 
memory. 

10 bottom left of the window and drawing will be from top to 
bottom. GLINT can draw from top to bottom or bottom to 
top. 

Consider a triangle with vertices. v 1• v 2 and v 3 where each 
vertex comprises X. Y and Z coordinates. Each vertex has a 

Stipple Test masks out certain fragments according to a 
specified pattern. Line and area stipples are available. 

Color DDA is responsible for generating the color informa
tion (frue Color RGBA or Color Index(CI)) associated 
with a fragment. 

15 different color made up of red. green and blue (R. G and B) 
components. The alpha component will be omitted for this 
example. 

Texture is concerned with mapping a portion of a specified 20 

image (texture) onto a fragment. The process involves 
filtering to calculate the texture color. and application 
which applies the texture color to the fragment color. 

Fog blends a fog color with a fragment's color according to 
a given fog factor. Fogging is used for depth cuing images 25 

and to simulate atmospheric fogging. 
Antialias Application combines the incoming fragment's 

alpha value with its coverage value when anti aliasing is 
enabled. 

Alpha Test conditionally discards a fragment based on the 30 

outcome of a comparison between the fragments alpha 
value and a reference alpha value. 

Pixel Ownership is concerned with ensuring that the location 
in the framebuffer for the current fragment is owned by 
the current visual. Comparison occurs between the given 35 

fragment and the Graphic ID value in the localbuffer, at 
the corresponding location, to determine whether the 
fragment should be discarded. 

Stencil Test conditionally discards a fragment based on the 
outcome of a test between the given fragment and the 40 

value in the stencil buffer at the corresponding location. 
The stencil buffer is updated dependent on the result of the 
stencil test and the depth test. 

Depth Test conditionally discards a fragment based on the 
outcome of a test between the depth value for the given 45 

fragment and the value in the depth buffer at the corre
sponding location. The result of the depth test can be used 
to control the updating of the stencil buffer. 

Alpha Blending combines the incoming fragment's color 
with the color in the framebuffer at the corresponding so 
location. 

Color Formatting converts the fragment's color into the 
format in which the color information is stored in the 
framebuffer. 
This may optionally involve dithering. 55 
The Pipeline structure of GLINT is very efficient at 

processing fragments. for example. texture mapping calcu
lations are not actually performed on fragments that get 
clipped out by scissor testing. This approach saves substan
tial computational effort. The pipelined nature does however 60 
mean that when programming GLINT one should be aware 
of what all the pipeline stages are doing at any time. For 
example. many operations require both a read and/or write 
to the localbuffer and framebuffer; in this case it is not 
sufficient to set a logical operation to XOR and enable 65 

logical operations. but it is also necessary to enable the 
reading/writing of data from/to the framebuffer. 

Initialization 
GLINT requires many of its registers to be initialized in 

a particular way. regardless of what is to be drawn. for 
instance. the screen size and appropriate clipping must be set 
up. Normally this only needs to be done once and for clarity 
this example assumes that all initialization has already been 
done. 

Other state will change occasionally, though not usually 
on a per primitive basis, for instance enabling Gouraud 
shading and depth buffering. 
Dominant and Subordinate Sides of a Triangle 

As shown in FIG. 4A, the dominant side of a triangle is 
that with the greatest range of Y values. The choice of 
dominant side is optional when the triangle is either fiat 
bottomed or fiat topped. 

GLINT always draws triangles starting from the dominant 
edge towards the subordinate edges. This simplifies the 
calculation of set up parameters as will be seen below. 

These values allow the color of each fragment in the 
triangle to be determined by linear interpolation. For 
example, the red component color value of a fragment at 
XN, Ym could be calculated by: 

adding dRdy 13, for each scanline between Y 1 and Y n• to 
R1. 

then adding dRdx for each fragment along scanline Y n 

from the left edge to xn. 
The example chosen has the 'knee,' i.e. vertex 2. on the 

right hand side. and drawing is from left to right. If the knee 
were on the left side (or drawing was from right to left). then 
the Y deltas for both the subordinate sides would be needed 
to interpolate the start values for each color component (and 
the depth value) on each scanline. For this reason GLINT 
always draws triangles starting from the dominant edge and 
towards the subordinate edges. For the example triangle. this 
means left to right. 
Register Set Up for Color Interpolation 

For the example triangle, the GLINT registers must be set 
as follows, for color interpolation. Note that the format for 
color values is 24 bit, fixed point 2's complement. 

II Load the color start and delta values to draw 
II a triangle 
RStart (R1) 

GStart (01 ) 

BStart (B1) 

dRdyDom (dRdy13) 
dGdyDom (dGdy13) 
dBdyDom (dBdy,,) 
dRdx (dRdx) 

II To walk up the dominant edge 

II To walk along the scanli.ne 
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dGdx(dGdx) 
dBdx (dBdx) 

33 
-continued dXDom=dX13 

dXSub=dX12 

34 

The start X.Y. the number of scanlines. and the above 
deltas give GLINT enough information to edge walk the top 

Calculating Depth Gradient Values 
To draw from left to right and top to bottom. the depth 

gradients or deltas) required for interpolation are: 

5 half of the triangle. However, to indicate that this is not a flat 
topped triangle (GLINT is designed to rasterize screen 
aligned trapezoids and flat topped triangles). the same start 
position in terms of X must be given twice as StartXDom 
and StartXSub. 

10 To edge walk the lower half of the triangle. selected 

And from the plane equation: 

dliU= { } - { } 15 

where 

The divisor. shown here as c. is the same as for color 20 

gradient values. The two deltas dZdyl13 and dZdx allow the 
Z value of each fragment in the triangle to be determined by 
linear interpolation. just as for the color interpolation. 
Register Set Up for Depth Testing 

Internally GL1NT uses fixed point arithmetic. Each depth 25 

value must be converted into a 2's complement 32.16 bit 
fixed point number and then loaded into the appropriate pair 
of 32 bit registers. The 'Upper' or 'U' registers store the 
integer portion. whilst the 'Lower' or 'L' registers store the 
16 fractional bits. left justified and zero filled. 

For the example triangle, GLINT would need its registers 
set up as follows: 

II Load the depth slart and delta values 
II to draw a triangle 
ZScartU (Zl_MS) 

30 

35 

additional information is required. The slope of the domi
nant edge remains unchanged, but the subordinate edge 
slope needs to be set to: 

dXSub=dX23 
Also the number of scanlines to be covered from Y 2 to Y 3 

needs to be given. Finally to avoid any rounding errors 
accumulated in edge walking to X2 (which can lead to pixel 
errors). StartXSub must be set to X2• 

Rasterizer Mode 

The GLINT rasterizer has a number of modes which have 
effect from the time they are set until they are modified and 
can thus affect many primitives. In the case of the Gouraud 
shaded triangle the default value for these modes are suit
able. 
Subpixel Correction 

GLINT can perform subpixel correction of all interpo
lated values when rendering aliased trapezoids. This correc
tion ensures that any parameter (color/depth/texture/fog) is 
correctly sampled at the center of a fragment Subpixel 
correction will generally always be enabled when rendering 
any trapezoid which is smooth shaded. textured. fogged or 
depth buffered. Control of subpixel correction is in the 
Render command register described in the next section, and 
is selectable on a per primitive basis. 
Rasterization 

ZStartL (Z1_LS) 
dZdyDomU (dZdy13_MS) 
dZdyDomL (dZdy13_LS) 
dZdxU (dZdx_MS) 
dZdxL (dZdx_LS) 

GLINT is almost ready to draw the triangle. Setting up the 
registers as described here and sending the Render command 

40 
will cause the top half of the example triangle to be drawn. 

For drawing the example triangle, all the bit fields within 
the Render command should be set to 0 except the Primi
tiveType which should be set to trapewid and the SubPix
elCorrectionEnable bit which should be set to TRUE. 

Calculating the Slopes for each Side 
GLINT draws filled shapes such as triangles as a series of 

spans with one span per scanline. Therefore it needs to know 45 

the start and end X coordinate of each span. These are 
determined by 'edge walking'. This process involves adding 
one delta value to the previous span's start X coordinate and 
another delta value to the previous span's end x coordinate 
to determine the X coordinates of the new span. These delta 50 
values are in effect the slopes of the triangle sides. To draw 
from left to right and top to bottom. the slopes of the three 
sides are calculated as: 

dXu 
X3-X1 

Y3-Y1 
55 

dXu 
x2-x, 

Y2- Yt 

II Draw triangle with knee 
II Set deltas 
StartXDom (X1«16) II Converted to 16.16 fixed 
point 
dXDom (((X3 - X 1)«16)/(Y3 - Y 1)) 

SlartXSub (X1«16) 
dXSub (((X2 - X 1)«16)/(Y2 - Y 1)) 

ScartY (Y1«16) 
dY (-1«16) 
Cowt (Y1 - Y2) 

If Set the render cOII1IIllllld mode 
render.PrimitiveType = GLINT_TRAPEZOIDJRIMITIVE 
render.SubPixeiCorrectionEnable = TRUE 
II Draw the top half of the triangle 
Render( render) 

dXn 
X3-X2 

Y3- Y2 
60 After the Render command has been issued. the registers 

This triangle will be drawn in two parts. top down to the 
'knee' (i.e. vertex 2). and then from there to the bottom. The 
dominant side is the left side so for the top half: 

in GLINT can immediately be altered to draw the lower half 
of the triangle. Note that only two registers need be loaded 
and the command ContinueNewSub sent. Once GLINT has 
received ContinueNewSub, drawing of this sub-triangle will 
begin. 
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II Setup the delta and start for the new edge 
StartXSub (X2«16) 
dXSub (((X3 - X2)<<16Y(Y3 - Y2)) 

II Draw sub-triangle 
ContinueNewSub (Y2 - Y3 ) II Draw lower half 

Rasterizer Unit 

5 

The rasterizer decomposes a given primitive into a series 
of fragments for processing by the rest of the Pipeline. 10 

GLINT can directly rasterize: 
aliased screen aligned trapezoids 
aliased single pixel wide lines 
aliased single pixel points 
antialiased screen aligned trapezoids 
antialiased circular points 
All other primitives are treated as one or more of the 

above. for example an antialiased line is drawn as a series of 
antialiased trapezoids. 
Trapezoids GLINT's basic area primitives are screen 
aligned trapezoids. These are characterized by having top 
and bottom edges parallel to the X axis. The side edges may 

15 

20 

be vertical (a rectangle). but in general will be diagonal. The 
top or bottom edges can degenerate into points in which case 25 

we are left with either flat topped or fiat bottomed triangles. 
Any polygon can be decomposed into screen aligned trap
ezoids or triangles. Usually. polygons are decomposed into 
triangles because the interpolation of values over non
triangular polygons is ill defined. The rasterizer does handle 30 

fiat topped and flat bottomed 'bow tie' polygons which are 
a special case of screen aligned trapezoids. 

To render a triangle. the approach adopted to determine 
which fragments are to be drawn is known as 'edge walk
ing'. Suppose the aliased triangle shown in FIG. 4A was to 35 

be rendered from top to bottom and the origin was bottom 
left of the window. Starting at (X1, Y1) then decrementing 
Y and using the slope equations for edges 1-2 and 1-3. the 
intersection of each edge on each scanline can be calculated. 
This results in a span of fragments per scanline for the top 40 

trapezoid. The same method can be used for the bottom 
trapezoid using slopes 2-3 and 1-3. 

It is usually required that adjacent triangles or polygons 
which share an edge or vertex are drawn such that pixels 
which make up the edge or vertex get drawn exactly once. 45 

This may be achieved by omitting the pixels down the left 

36 
Send the Render command. This starts the scan conver

sion of the first triangle. working from the dominant 
edge. This means that for triangles where the knee is on 
the left we are scanning right to left, and vice versa for 
triangles where the knee is on the right. 

Load the edge parameters and derivatives for the remain
ing subordinate edge in the second triangle. 

Send the ContinueNewSub command. This starts the scan 
conversion of the second triangle. 

Pseudocode for the above example is: 

II Set the rasterizer mode to the default 
RasterizerMode (0) 
II Setup the start values and the deltas. 
II Note that the X andY coordinates are converted 
II to 16.16 fonnat 
StartXDom (Xl«l6) 
dXDom (((X3- X1)«16:V(Y3- Y1)) 
StartXSub (Xl«l6) 
dXSub (((X2- X1)<<16Y(Y2- Yl)) 
StartY (Y1«16) 
dY (-1<16) II Down the screen 
Count (Yl - Y2) 
II Set the render mode to aliased primitive with 
II subpillel correction. 
render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE 
render.SubpilleiCorrectionEnable = GLINT_ TRUE 
render.AntialiasEnable = GLINL..DISABLE 
II Draw top half of the triangle 
Render( render) 
II Set the start and delta for the second half of 
II the triangle. 
StartXSub (X2«16) 
dXSub (((X3- X2)<<16:V(Y3- Y2)) 
II Draw lower half of triangle 
CootinueNewSub (abs(Y2 - Y3)) 

After the Render command has been sent. the registers in 
GLINT can immediately be altered to draw the second half 
of the triangle. For this. note that only two registers need be 
loaded and the command ContinueNewSub be sent. Once 
drawing of the first triangle is complete and GLINT has 
received the ContinueNewSub command, drawing of this 
sub-triangle will start. The ContinueNewSub command reg
ister is loaded with the remaining number of scanlines to be 
rendered. 
Lines 

Single pixel wide aliased lines are drawn using a DDA 
algorithm. so all GLINT needs by way of input data is 
StartX. StartY. dX. dY and length. 

For polylines. a ContinueNewLine command (analogous 
to the Continue command used at the knee of a triangle) is 
used at vertices. 

When a Continue command is issued some error will be 
propagated along the line. To minimize this. a choice of 
actions are available as to how the DDA units are restarted 
on the receipt of a Continue command. h is recommended 
that for OpenGLrendering the ContinueNewLine command 

or the right sides and the pixels along the top or lower sides. 
GLINT has adopted the convention of omitting the pixels 
down the right hand edge. Control of whether the pixels 
along the top or lower sides are omitted depends on the start 50 

Y value and the number of scanlines to be covered. With the 
example. if StartY =Y1 and the number of scanlines is set to 
Y1-Y2. the lower edge of the top half of the triangle will be 
excluded. This excluded edge will get drawn as part of the 
lower half of the triangle. 55 is not used and individual segments are rendered. 

Antialiased lines. of any width, are rendered as antialiased 
screen-aligned trapezoids. 
Points 

GLINT supports a single pixel aliased point primitive. For 

To minimize delta calculations. triangles may be scan 
converted from left to right or from right to left. The 
direction depends on the dominant edge, that is the edge 
which has the maximum range of Y values. Rendering 
always proceeds from the dominant edge towards the rel
evant subordinate edge. In the example above. the dominant 
edge is 1-3 so rendering will be from right to left. 

60 points larger than one pixel trapezoids should be used. In this 
case the PrimitiveType field in the Render command should 
be set to equal GLINT_POINT_PRIMITIVE. 

The sequence of actions required to render a triangle (with 
a 'knee') is: 

Load the edge parameters and derivatives for the domi- 65 

nant edge and the first subordinate edges in the first 
triangle. 

Anti aliasing 
GLINT uses a subpixel point sampling algorithm to 

antialias primitives. GLINT can directly rasterize antialiased 
trapezoids and points. Other primitives are composed from 
these base primitives. 
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The rasterizer associates a coverage value with each 
fragment produced when antialiasing. This value represents 
the percentage coverage of the pixel by the fragment. 
GLINT supports two levels of antialiasing quality: 

normal. which represents 4x4 pixel subsampling 
high. which represents 8x8 pixel subsampling. 
Selection between these two is made by the Antialias-

ingQuality bit within the Render command register. 

38 
To scan convert an antialiased point as a circle. GLINT 

traverses the boundary in sub scanline steps to calculate the 
coverage value. For this, the sub-scanline intersections are 
calculated incrementally using a small table. The table holds 

5 the change in X for a step in Y. Symmetry is used so the table 
only holds the delta values for one quadrant. 

StartXDom. StartXSub and StartY are set to the top or 
bottom of the circle and dY set to the subscanline step. In the 
case of an even diameter, the last of the required entries in 

10 the table is set to zero. 
When rendering antialiased primitives with GLINT the 

FlushSpan command is used to terminate rendering of a 
primitive. This is due to the nature of GLINT antialiasing. 
When a primitive is rendered which does not happen to 
complete on a scanline boundary. GLINT retains antialiasing 
information about the last sub-scanline(s) it has processed. 
but does not generate fragments for them unless a FlushSpan 

15 command is received. The commands ContinueNewSub. 
ContinueNewDom or Continue can then be used, as 
appropriate, to maintain continuity between adjacent trap
ezoids. This allows complex antialiased primitives to be 
built up from simple trapezoids or points. 

To illustrate this consider using screen aligned trapezoids 20 

to render an antialiased line. The line will in general consist 

Since the table is configurable. point shapes other than 
circles can be rendered. Also if the StartXDom and StartX
Sub values are not coincident then horizontal thick lines 
with rounded ends, can be rendered. 

Block Write Operation 

GLINT supports VRAM block writes with block sizes of 
8, 16 and 32 pixels. The block write method does have some 
restrictions: None of the per pixel clipping, stipple, or 
fragment operations are available with the exception of write 
masks. One subtle restriction is that the block coordinates 

of three screen aligned trapezoids as shown in FIG. 4B. This 
FIG. illustrates the sequence of rendering an Antialiased 
Line primitive. Note that the line has finite width. 

The procedure to render the line is as follows: 

If Setup the blend and coverage application l.Dlits 
If as appropriate - not shown 
II In this example only the edge deltas ale shown 
II loaded into registers for clarity. In reality 
II start X and Y values ale required 
II Render Thlpezoid A 
dY(1«16) 
dXDom(dXDom1 «16) 
dXSub(dXSub1«16) 
Count( count!) 
render.PrimitiveType = GLINT_TRAPEZOID 
remder.AntialiasEnable =GLINT_ TRUE 
render.AntialiasQuality = GLINT_MIN_ANTIALIAS 
render.CoverageEnable = GLINT_TRUE 
Render( render) 
II Render Trapezoid B 
dXSub(dXSub2«16) 
ContinueNewSub(count2) 
II Render Trapezoid C 
dXDom(dXDom2«16) 
ContinueNewDom(count3) 
If Now we have finished the primitive tlush out 
If the last scanline 
F1ushSpan( ) 

Note that when rendering antialiased primitives, any 
count values should be given in subscanlines, for example if 
the quality is 4x4 then any scanline count must be multiplied 
by 4 to convert it into a subscanline count. Similarly. any 
delta value must be divided by 4. 

will be interpreted as screen relative and not window relative 
when the pixel mask is calculated in the Frarnebuffer Units. 

Any screen aligned trapezoid can be filled using block 
25 writes. oot just rectangles. 

The use of block writes is enabled by setting the FastFil
lEnable and FastFilllncrement fields in the Render command 
register. The framebuffer write unit must also be configured. 

30 
Note only the Rasterizer. Framebuffer Read and Frame-

buffer Write units are involved in block filling. The other 
units will ignore block write fragments, so it is not necessary 
to disable them. 
Sub Pixel Precision and Correction 

35 As the rasterizer has 16 bits of fraction precision, and the 
screen width used is typically less than 216 wide a number 
of bits called subpixel precision bits, are available. Consider 
a screen width of 4096 pixels. This figure gives a subpixel 
precision of 4 bits ( 4096=212

). The extra bits are required for 

40 a number of reasons: 

45 

antialiasing (where vertex start positions can be supplied 
to subpixel precision) 

when using an accumulation buffer (where scans are 
rendered multiple times with jittered input vertices) 

for correct interpolation of parameters to give high quality 
shading as described below 

GLINT supports subpixel correction of interpolated val
ues when rendering aliased trapezoids. Subpixel correction 
ensures that all interpolated parameters associated with a 

50 fragment (color, depth. fog, texture) are correctly sampled at 
the fragment's center. This correction is required to ensure 
consistent shading of objects made from many primitives. It 
should generally be enabled for all aliased rendering which 

When rendering. AntialiasEnable must be set in the 
Antialias-Mode register to scale the fragments color by the 55 

coverage value. An appropriate blending function should 
also be enabled. 

uses interpolated parameters. 
Subpixel correction is not applied to antialiased primi

tives. 
Bitmaps 

Note. when rendering antialiased bow-ties. the coverage 
value on the cross-over scanline may be incorrect. 

GLINT can render small antialiased points. Antialiased 
points are treated as circles, with the coverage of the 
boundary fragments ranging from 0% to 100%. GLINT 
supports: 

point radii of 0.5 to 16.0 in steps of 0.25 for 4x4 
antialiasing 

point radii of 0.25 to 8.0 in steps of 0.125 for 8x8 
antialiasing 

A Bitmap primitive is a trapezoid or line of ones and zeros 
which control which fragments are generated by the raster-

60 izer. Only fragments where the corresponding Bitmap bit is 
set are submitted for drawing. The normal use for this is in 
drawing characters. although the mechanism is available for 
all primitives. The Bitmap data is packed contiguously into 
32 bit words so that rows are packed adjacent to each other. 

65 Bits in the mask word are by default used from the least 
significant end towards the most significant end and are 
applied to pixels in the order they are generated in. 
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The rasterizer scans through the bits in each word of the 
Bitmap data and increments the X. Y coordinates to trace out 
the rectangle of the given width and height. By default. any 

40 
Warning: During image upload, all the returned fragments 

must be read from the Host Out FIFO. otherwise the GLINT 
pipeline will stall. In addition it is strongly recommended 
that any units which can discard fragments (for instance the set bits (1) in the Bitmap cause a fragment to be generated. 

any reset bits (0) cause the fragment to be rejected. 
The selection of bits from the BitMas.kPattero register can 

be mirrored. that is. the pattern is traversed from MSB to 
LSB rather than LSB to MSB. Also. the sense of the test can 

5 following tests: bitrnask. alpha. user scissor. screen scissor. 
stipple. pixel ownership. depth. stencil). are disabled other
wise a shortfall in pixels returned may occur. also leading to 
deadlock. 

be reversed such that a set bit causes a fragment to be 
rejected and vice versa. This control is found in the Raster- 10 

izerMode register. 

Note that because the area of interest in copy/upload/ 
download operations is defined by the rasterizer. it is not 
limited to rectangular regions. When one Bitmap word has been exhausted and pixels in 

the rectangle still remain then rasterization is suspended 
until the next write to the BitMas.kPattero register. Any 
unused bits in the last Bitmap word are discarded. 
Image Copy/Upload/Download 

Color formatting can be used when performing image 
copies. uploads and downloads. This allows data to be 

15 formatted from, or to, any of the supported GLINT color 
formats. 

GLINT supports three "pixel rectangle" operations: copy, 
upload and download. These can apply to the Depth or 
Stencil Buffers (held within the localbuffer) or the frame
buffer. 

It should be emphasized that the GLINT copy operation 
moves RAW blocks of data around buffers. To zoom or 
re-format data, in the presently preferred embodiment, exter-
nal software must upload the data. process it and then 
download it again. 

To copy a rectangular area, the rasterizer would be 
configured to render the destination rectangle. thus gener
ating fragments for the area to be copied. GLINT copy 
works by adding a linear offset to the destination fragment's 
address to find the source fragment's address. 

Note that the offset is independent of the origin of the 
buffer or window, as it is added to the destination address. 
Care must be taken when the source and destination overlap 

20 

25 

30 

to choose the source scanning direction so that the overlap
ping area is not overwritten before it has been moved. This 35 

may be done by swapping the values written to the StartX
Dom and StartXSub. or by changing the sign of dY and 
setting StartY to be the opposite side of the rectangle. 

Localbuffer copy operations are correctly tested for pixel 
ownership. Note that this implies two reads of the 40 

localbuffer, one to collect the source data. and one to get the 
destination GID for the pixel ownership test. 

GLINT buffer upload/downloads are very similar to cop-
ies in that the region of interest is generated in the rasterizer. 
However, the localbuffer and framebuffer are generally 45 

configured to read or to write only, rather than both read and 
write. The exception is that an image load may use pixel 
ownership tests. in which case the localbuffer destination 
read must be enabled. 

Units which can generate fragment values, the color DDA 50 

unit for example, should generally be disabled for any 
copy/upload/download operations. 

Rasterizer Mode 

A number of long-term modes can be set using the 
Rasterizer-Mode register, these are: 

Mirror BitMask: This is a single bit flag which specifies the 
direction bits are checked in the BitMask register. If the 
bit is reset. the direction is from least significant to most 
significant (bit 0 to bit 31), if the bit is set, it is from most 
significant to least significant (from bit 31 to bit 0). 

Invert BitMask: This is a single bit which controls the sense 
of the accept/reject test when using a Bitmask. If the bit 
is reset then when the BitMask bit is set the fragment is 
accepted and when it is reset the fragment is rejected. 
When the bit is set the sense of the test is reversed. 

Fraction Adjust: These 2 bits control the action taken by the 
rasterizer on receiving a ContinueNewLine command. As 
GLINT uses a DDA algorithm to render lines, an error 
accumulates in the DDA value. GLINT provides for 
greater control of the error by doing one of the following: 
leaving the DDA running. which means errors will be 

propagated along a line. 
or setting the fraction bits to either zero, a half or almost 

a half (Ox7FFF). 
Bias Coordinates: Only the integer portion of the values in 

the DDAs are used to generate fragment addresses. Often 
the actual action required is a rounding of values, this can 
be achieved by setting the bias coordinate bit to true 
which will automatically add almost a half (Ox7FFF) to 
all input coordinates. 

Rasterizer Unit Registers 
Real coordinates with fractional parts are provided to the 

rasterizer in 2'scomplement 16 bit integer, 16 bit fraction 
format. The following Table lists the command registers 
which control the rasterizer unit: 

Register Name Description 

Render Starts the rasrerization process 
Continue New Dom Allows the rasterization to continue with a new dominant 

edge. 1be dominant edge DDA is reloaded with the new 
parameters. The subotdinate edge is canied on from the 
previous trapezoid. This allows any convex polygon to be 
broken down into a collection of trapezoids, with continuity 
maintained across boundaries. 
The data &ld holds the number of scanlines (or sub scan
lines) to fill. Note this count does not get loaded into the 
Co1mt register. 

ContinueNewSub Allows the rasterization to continue with a new subordinate 
edge. 1be subordinate DDA is reloaded with the new 
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-continued 

Register Name Description 

parameters. The dominant edge is carried on from the 
previous trapezoid. TI1is is useful when scan converting 
triangles with a 'knee' (i.e. two subon:linate edges). 
The data field holds the number of scanlines (or sub 
scanlines) to fill. Note tl1is cotmt does not get loaded into 
the CoWl! register. 

42 

Continue Allows the rasterization to continue after new delta value(s) 
have been loaded, but does not cause either of the 
trapezoid's edge DDAs to be reloaded. 
The data field holds the number of scanlines (or sub 
scanlines) to fill. Note this cotmt does not get loaded into 
the CoWlt register. 

ContinueNewLine Allows the rasterization to continue for the next segment in 
a polyline. The XY position is carried on from the 
previous line, but the fraction bits in the DDAs can be: 
kep~ set to zero, half, or nearly one half, under control of 
the RasterizerMode. 
The data field holds the number of scanlines to fill. Note 
this cotmt does not get loaded into the Count register. 
The use of ContinueNewLine is not recommended for 
OpenGL because the DDA units will start with a slight 
error as compared with the value they would have been 
loaded with for the second and subsequent segments. 

F1ushSpan Used when antialiasing to force the last span out when not 
all sub spans may be defined. 

The following Table shows the control registers of the 
rasterizer, in the presently preferred embodiment: 

RasterizerMod 
e Defines the long term mode of operation of the rasterizer. 

StartXDom Initial X value for the dominant edge in trapezoid filling, 
or initial X value in line drawing. 

dXDom Value added when moving from one scanline (or sub 
scanline) to the next for the dominant edge in trapezoid 
filling. 
Also holds the change in X when plotting Jines so for Y 
major Jines this will be some fraction (dx/dy), otherwise 
it is normally ± 1.0, depending on the required scanning 
direction. 

StartXSub Initial X value for the subonlinate edge. 
dXSub Value added when moving from one scanline (or sub 

scanline) to the next for the subordinate 
edge in trapezoid filling. 

StartY Initial scanline (or sub scanline) in trapezoid filling, 
or initial Y position for line drawing. 

dY Value added to Y to move from one scanline to the 
next. For X major lines this will be some fraction 
(dy/dx), otherwise it is nonnally ± 1.0, 
depending on the required scanning direction. 

Cotmt Number of pixels in a line. 
Number of scanlines in a trapezoid. 
Number of sub scanlines in an antialiased trapezoid. 
Diameter of a point in sub scanlines. 

BitMask:Pattem Value used to control the BitMask stipple operation (if 
enabled). 

PoiniTableO Antialias point data table. There are 4 words in the table 
PointTable 1 and the register tag is decoded to select a word. 
PoiniTable2 
PointTable3 

For efficiency. the Render command register has a number 

30 

35 

40 

45 

50 

55 

of bit fields that can be set or cleared per render operation, 
and which qualify other state information within GLINT. 
These bits are AreaStippleEnable. LineStippleEnable. 60 

ResetLineStipple. TextureEnable FogEnable. CoverageEn
able and SubpixelCorrection. 

One use of this feature can occur when a window is 
cleared to a background color. For normal 3D primitives. 
stippling and fog operations may have been enabled, but 65 

these are to be ignored for window clears. Initially the 
FogMode. AreaStippleMode and LineStippleMode registers 

are enabled through the UnitEnable bits. Now bits need only 
be set or cleared within the Render command to achieve the 
required result. removing the need for the FogMode. AreaSt
ippleMode and LineStippleMode registers to be loaded for 
every render operation. 

The bitfields of the Render command register. in the 
presently preferred embodiment, are detailed below: 
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Bit Name Description 

0 Area- This bit, when set, enables area stippling of the fragments 
Stipple- produced during rasterization. Note that area stipple in the 
Enable Stipple Unit must be enabled as well for stippling to occur. 

When this bit is reset no area stippling occurs irrespective of 
the setting of the area stipple enable bit in the Stipple Unit. 
This bit is useful to temporarily force no area stippling for this 
primitive. 

Line- This bit, when set, enables line stippling of the fragments 
Stipple- produced during rasterization in the Stipple Unit. Note that 
Enable line stipple in the Stipple Unit must be enabled as well for slip-

piing to occur. 
When this bit is reset no line stippling occurs irrespective of 
the setting if the line stipple enable bit in the Stipple Unit. 
This bit is useful to temporarily force no line stippling for this 
primitive. 

2 Reset- This bit, when set, causes the line stipple counters in the 
Line- Stipple Unit to be reset to zero, and would typically be used 
Stipple for the first segment in a polyline. This action is also qualified 

by the LineStippleEnable bit and also the stipple enable bits in 
the Stipple Unit. 
When this bit is reset the stipple counters carry on from where 
they left off (if line stippling is enabled) 

3 FastFillE This bit, when set, causes fast block filling of primitives. 
nable When this bit is reset the nonnal rasterization process occurs. 

4, 5 Fast-Fill- This two bit field selects the block size the frarnebuffer 
Incremen supports. The sizes supported and the corresponding codes 
I are: 

0 = 8 pixels 
1 = 16 pixels 
2 = 32 pixels 

6.,7 Primitive- This two bit field selects the primitive type to rasterize. The 
'JYpe primitives are: 

0 =Line 
1 = Trapezoid 
2 =Point 

8 Antialias- This bit, when set, causes the generation of sub scanline dala 
Enable and the coverage value to be calculated for each fragment. 

The number of sub pixel samples to use is conttolled by the 
AntialiasingQuality bit. 
When this bit is reset normal rasterization occurs. 

9 An- This bit, when set, sets the sub pixel resolution to be 8 x 8 
tialiasing- When this bit is reset the sub pixel resolution is 4 x 4. 
Quality 

10 UsePoint- When this bit and the AntialiasingEnable are set, the dx values 
Table used to remove from one scanline to the next are derived from 

the Point Table. 
11 SyncOn- This bit, when set, causes a number of actions: -

Bi!Mask The least significant bit or most significant bit ( depeiJdins oo 
the MirrorBitMask bit) in the Bit Mask register is extracted 
and optionally inverted (controlled by the lnvertMask bit). 
If this bit is 0 then the corresponding fragment is culled from 
being drawn. 
After every fragrant the Bit Mask register is rotated by one 
bit. 
If all the bits in the Bit Mask register have been used then 
rasterization is suspended wtil a oow BitMasld'attem is 
received. If any other register is written while the rasterization 
is suspended then the rasterization is aborted The register 
write which caused the abort is then processed as nonnal. 
Note the behavior is slightly different w ben the Syn-
cOnHostData bit is set to prevent a deadlock from occurring. 
In this case the rasterization ck>esn't suspend when all the bits 
have been used and if new BitMaskPattern data words are not 
received in a timely manner then the subsequent fragments will 
just reuse the bi1mask. 

12 Sync On When this bit is set a fragment is produced only when one of 
HostData the following registers has been written by the host: Depth, 

FBColor, Stencil or Color. If SyncOnBitMask is reset, then if 
any register other than one of these four is written to, the 
rasterization is aborted If SyncOnBitMask is set, then if any 
register other than one of these four, or BitMaskPattem, is 
written to, the rasterization is aborted. The register write 
which caused the abort is then processed as normal. Writing to 
the BitMaskPattem register doesn't cause any fragments to be 
generated, but just updates the BitMask register. 

l3 TextureE This bit, when set, enables texturing of the fragments produ::ed 
nable during rasterization. Note that the Texture Units must be 

suitably enabled as well for any texturing to occur. 
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-continued 

Description 

When this bit is reset no texturing occurs irrespective of the 
setting of the Texture Unit controls. 
This bit is useful to temporarily force no texturing for this 
primitive. 
This bit, When set, enables fogging of the fragments produced 
during rasterization. Note that the Fog Unit must be suitably 
enabled as well for any fogging to occur. 
When this bit is reset no fogging occurs irrespective of the 
setting of the Fog Unit controls. 
This bit is useful to temporarily force no fogging for this 
primitive. 

46 

15 Coverage- This bit, when set, enables the coverage value produced as part 
of the antialiasing to weight the alpha value in the alpha test 
unit Note that this unit must be suitably enabled as well. 
When this bit is reset no coverage application. occurs irrespec
tive of the setting of the AntialiasMode in the Alpha. Test unit 
This bit, when set enables the sub pixel correction of the color, 
depth, fog and texture values at the start of a scanline. When 
this bit is reset no correction is done at the start of a scanline. 
Sub pixel corrections are only applied to aliased trapezoids. 

Enable 

16 SubPixel-
Cor=-
tion 
Enable 

A number of long-term rasterizer modes are stored in the 
RasterizerMode register as shown below: 

Bit Name 

0 Mirror-
BitMask 

lnvertBit-
Mask 

2,3 Fraction-
Adjust 

4,5 BiasCoor
dinates 

Description 

When this bit is set the bitmask bits are conswned from 
the most significant end towards the least significant end. 
When this bit is reset the bitmask bits are consumed from 
the least significant end towards the most significant end. 
When this bit is set the bitmask is inverted first before 
being tested. 
These bits control the action of a ContinueNewLine com
mand and specify how the fraction bits in the Y and 
XDom DDAs are adjusted 
0: No adjustment is done 
1: Set the fraction bits to zero 
2: Set the fraction bits to half 
3: Set the fraction to nearly half, i.e. Ox7fff 
These bits control how much is added onto the 
StartXDom, StartXSub and StartY values, when they are 
loaded into the DDA units. The original registers are not 
affected: 
0: Z..ro is added 
1: Half is added 
2: Nearly half, i.e. Ox7fff is added 

Scissor Unit 

address selection can be controlled independently in the X 
and Y directions. In addition the bit pattern can be inverted 

25 or mirrored. Inverting the bit pattern has the effect of 
changing the sense of the accept/reject test. H the mirror bit 
is set the most significant bit of the pattern is towards the left 
of the window, the default is the converse. 

In some situations window relative stippling is required 
but coordinates are only available screen relative. To allow 

30 window relative stippling, an offset is available which is 
added to the coordinates before indexing the stipple table. X 
and Y offsets can be controlled independently. 
line Stippling 

In this test, fragments are conditionally rejected on the 
35 outcome of testing a linear stipple mask. H the bit is zero 

then the test fails, otherwise it passes. The line stipple 
pattern is 16 bits in length and is scaled by a repeat factor r 
(in the range 1 to 512 ). The stipple mask bit b which 
controls the acceptance or rejection of a fragment is deter-

40 mined using: 
b=(floor (s/r)) mod 16 

where s is the stipple counter which is incremented for every 
fragment (normally along the line). This counter may be 
reset at the start of a polyline, but between segments it 

45 continues as if there were no break. 
The stipple pattern can be optionally mirrored, that is the 

bit pattern is traversed from most significant to least sig
nificant bits, rather than the default, from least significant to 
most significant. 

Two scissor tests are provided in GLINT, the User Scissor 
test and the Screen Scissor test. The user scissor checks each 
fragment against a user supplied scissor region; the screen 
scissor checks that the fragment lies within the screen. 

This test may reject fragments if some part of a window 50 

has been moved off the screen. It will not reject fragments 

Color DDA Unit 
The color DDA unit is used to associate a color with a 

fragment produced by the rasterizer. This unit should be 
enabled for rendering operations and disabled for pixel 
rectangle operations (i.e. copies, uploads and downloads). 
Two color modes are supported by GLINT. true color RGBA 
and color index (CI). 

if part of a window is simply overlapped by another window 
(GID testing can be used to detect this). 

Stipple Unit 

Gouraud Shading 

Stippling is a process whereby each fragment is checked 55 

against a bit in a defined pattern, and is rejected or accepted 
depending on the result of the stipple test. H it is rejected it 
undergoes no further processing; otherwise it proceeds down 
the pipeline. GLINT supports two types of stippling, line and 

When in Gouraud shading mode, the color DDA unit 
performs linear interpolation given a set of start and incre-

60 ment values. Clamping is used to ensure that the interpolated 
value does not underflow or overflow the permitted color 

area. 
Area Stippling 

A 32><32 bit area stipple pattern can be applied to frag
ments. The least significant n bits of the fragment's (X.Y) 
coordinates, index into a 2D stipple pattern. If the selected 
bit in the pattern is set, then the fragment passes the test. 65 

otherwise it is rejected. The number of address bits used, 
allow regions of 1,2,4,8.16 and 32 pixels to be stippled. The 

range. 
For a Gouraud shaded trapezoid, GLINT interpolates 

from the dominant edge of a trapezoid to the subordinate 
edges. This means that two increment values are required 
per color component, one to move along the dominant edge 
and one to move across the span to the subordinate edge. 
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Note that jf one is rendering to multiple buffers and has 
initialized the start and increment values in the color DDA 
unit. then any subsequent Render command will cause the 
start values to be reloaded. 

If subpixel correction has been enabled for a primitive. 
then any correction required will be applied to the color 
components. 
Flat Shading 

In fiat shading mode. a constant color is associated with 
each fragment. This color is loaded into the ConstantColor 
register. 

Texture Unit 
The texture unit combines the incoming fragment's color 

(generated in the color DDA unit) with a value derived from 
interpolating texture map values (texels). 

Texture application consists of two stages; derivation of 
the texture color from the texels (a filtering process) and then 
application of the texture color to the fragment's color, 
which is dependent on the application mode (Decal. Blend 
or Modulate). 
GLINT 300SX compared with the GLINT 400TX 

Both the GLINT 300SX and GLINT 300TX support all 
the filtering and application modes described in this section. 
However. when using the GLINT 300SX. texel values. 
interpolants and texture filter selections are supplied by the 
host. This implies that texture coordinate interpolation and 
texel extraction are performed by the host using texture 
maps resident on the host. The recommended technique for 
performing texture mapping using the GLINT 300SX is to 
scan convert primitives on the host and render fragments as 
GLINT point primitives. 

The GLINT 400TX automatically generates all data 
required for texture application as textures are stored in the 
localbuffer and texture parameter interpolation with full 
perspective correction takes place within the processor. Thus 
the GLINT 400TX is the processor of choice when full 
texture mapping acceleration is desired. the GLINT 300SX 
is more suitable in applications where the performance of 
texture mapping is not critical. 

Texture Color Generation. 

Texture color generation supports all the filter modes of 
OpenGL. that is: 

Minification: 
Nearest 
Unear 
N earestMipMapN earest 
NearestMipMapLinear 
UnearMipMapNearest 
UnearMipMapLinear 

Magnification: 
Nearest 
Unear 

48 
Mip Mapping is a technique to allow the efficient filtering 

of texture maps when the projected area of the fragment 
covers more than one texel (ie. minification). A hierarchy of 
texture maps is held with each one being half the size (or one 

5 quarter the area) of the preceding one. A pair of maps are 
selected. based on the projected area of the texture. In terms 
of filtering this means that three filter operations are per
formed: one on the first map. one on the second map and one 
between the maps. The first filter name (Nearest or Linear) 

10 in the MipMap name specifies the filtering to do on the two 
maps. and the second filter name specifies the filtering to do 
between maps. So for instance. linear mapping between two 
maps. with linear interpolation between the results is sup
ported (LinearMipMapUnear). but linear interpolation on 

15 one map. nearest on the other map. and linear interpolation 
between the two is not supported. 

The filtering process takes a number of texels and 
interpolants. and with the current texture filter mode pro
duces a texture color. 

20 Fog Unit 
The fog unit is used to blend the incoming fragment's 

color (generated by the color DDA unit. and potentially 
modified by the texture unit) with a predefined fog color. 
Fogging can be used to simulate atmospheric fogging. and 

25 also to depth cue images. 
Fog application has two stages; derivation of the fog 

index for a fragment. and application of the fogging effect. 
The fog index is a value which is interpolated over the 
primitive using a DDA in the same way color and depth are 

30 interpolated. The fogging effect is applied to each fragment 
using one of the equations described below. 

Note that although the fog values are linearly interpolated 
over a primitive the fog values can be calculated on the host 
using a linear fog function (typically for simple fog effects 

35 and depth cuing) or a more complex function to model 
atmospheric attenuation. This would typically be an expo
nential function. 

Fog Index Calculation-The Fog DDA 
The fog DDA is used to interpolate the fog index (f) 

40 across a primitive. The mechanics are similar to those of the 
other DDA units. and horizontal scanning proceeds from 
dominant to subordinate edge as discussed above. 

The DDA has an internal range of approximately +511 to 
-512. so in some cases primitives may exceed these bounds. 

45 This problem typically occurs for very large polygons which 
span the whole depth of a scene. The correct solution is to 
tessellate the polygon until polygons lie within the accept
able range, but the visual effect is frequently negligible and 

50 

can often be ignored. 
The fog DDA calculates a fog index value which is 

clamped to lie in the range 0.0 to 1.0 before it is used in the 
appropriate fogging equation. (Fogging is applied differently 
depending on the color mode.) 

Minification is the name given to the filtering process 
used whereby multiple texels map to a fragment, while 55 

magnification is the name given to the filtering process 
whereby only a portion of a single texel maps to a single 
fragment. 

Antialias Application Unit 
Antialias application controls the combining of the cov

erage value generated by the rasterizer with the color gen
erated in the color DDA units. The application depends on 
the color mode. either RGBA or Color Index (Cl). 

Nearest is the simplest form of texture mapping where the 
nearest texel to the sample location is selected with no 60 

filtering applied. 

Antialias Application 
When antialiasing is enabled this unit is used to combine 

the coverage value calculated for each fragment with the 
fragment's alpha value. In RGBA mode the alpha value is 
multiplied by the coverage value calculated in the rasterizer 
(its range is 0% to 100%). The RGB values remain 

Unear is a more sophisticated algorithm which is depen
dent on the type of primitive. For lines (which are lD). it 
involves linear interpolation between the two nearest texels, 
for polygons and points which are considered to have finite 
area, linear is in fact bi-linear interpolation which interpo
lates between the nearest 4 texels. 

65 unchanged and these are modified later in the Alpha Blend 
unit which must be set up appropriately. In CI mode the 
coverage value is placed in the lower 4 bits of the color field. 
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The Color Look Up Table is assumed to be set up such that 
each color has 16 intensities associated with it, one per 
coverage entry. 
Polygon Antialiasing 

When using GLINT to render antialiased polygons. depth 
buffering cannot be used. This is because the order the 
fragments are combined in is critical in producing the 
correct final color. Polygons should therefore be depth 
sorted. and rendered front to back. using the alpha blend 
modes: SourceAlphaSaturate for the source blend function 
and One for the destination blend function. In this way the 
alpha component of a fragment represents the percentage 
pixel coverage. and the blend function accwnulates cover
age until the value in the alpha buffer equals one, at which 
point no further contributions can made to a pixel. 

For the antialiasing of general scenes. with no restrictions 
on rendering order. the accumulation buffer is the preferred 
choice. This is indirectly supported by GLINT via image 
uploading and downloading, with the accumulation buffer 
residing on the host. 

When antialiasing, interpolated parameters which are 
sampled within a fragment (color. fog and texture), will 
sometimes be unrepresentative of a continuous sampling of 
a surface, and care should be taken when rendering smooth 
shaded antialiased primitives. This problem does not occur 
in aliased rendering, as the sample point is consistently at the 
center of a pixel. 

Alpha Test Unit 
The alpha test compares a fragment's alpha value with a 

reference value. Alpha testing is not available in color index 
(CI) mode. The alpha test conditionally rejects a fragment 
based on the comparison between a reference alpha value 
and one associated with the fragment. 

Localbuffer Read/Write Unit 
The localbu:ffer holds the Graphic ID, FrameCount, Sten

cil and Depth data associated with a fragment. The local
buffer read/write unit controls the operation of GID testing, 
depth testing and stencil testing. 
Localbuffer Read 

The LBReadMode register can be configured to make 0, 
1 or 2 reads of the localbuffer. The following are the most 
common modes of access to the localbuffer: 

Normal rendering without depth, stencil or GID testing. 
This requires no localbuffer reads or writes. 

Normal rendering without depth or stencil testing and 
with GID testing. This requires a localbu:ffer read to get 
the GID from the localbuffer. 

Normal rendering with depth and/or stencil testing 
required which conditionally requires the localbuffer to 
be updated. This requires localbuffer reads and writes 
to be enabled. 

Copy operations. Operations which copy all or part of the 
localbuffer with or without GID testing. This requires 
reads and writes enabled. 

Image upload/download operations. Operations which 
download depth or stencil information to the local 
buffer or read depth, stencil fast clear or GID from the 
localbuffer. 

Localbuffer Write 

50 
Pixel Ownership Test 

The ownership of a pixel is established by testing the GID 
of the current window against the GID of a fragment's 
destination in the GID buffer. If the test passes. then a write 

5 can take place. otherwise the write is discarded. The sense 
of the test can be set to one of: always pass. always fail. pass 
if equal. or pass if not equal. Pass if equal is the normal 
mode. In GLINT the GID planes. if present, are 4 bits deep 
allowing 16 possible Graphic ID's. The current GID is 

10 established by setting the Window register. 
If the unit is disabled fragments pass through undisturbed. 
Stencil Test Unit 
The stencil test conditionally rejects fragments based on 

the outcome of a comparison between the value in the stencil 
15 buffer and a reference value. The stencil buffer is updated 

according to the current stencil update mode which depends 
on the result of the stencil test and the depth test. 
Stencil Test 

This test only occurs if all the preceding tests (bitmask. 
20 scissor, stipple, alpha, pixel ownership) have passed. The 

stencil test is controlled by the stencil function and the 
stencil operation. The stencil function controls the test 
between the reference stencil value and the value held in the 
stencil buffer. The stencil operation controls the updating of 

25 the stencil buffer, and is dependent on the result of the stencil 
and depth tests. 

If the stencil test is enabled then the stencil buffer will be 
updated depending on the outcome of both the stencil and 
the depth tests (if the depth test is not enabled the depth 

30 result is set to pass). 
In addition a comparison bit mask is supplied in the 

StencilData register. This is used to establish which bits of 
the source and reference value are used in the stencil 
function test. In addition it should normally be set to exclude 

35 the top four bits when the stencil width has been set to 4 bits 
in the StencilMode register. 

The source stencil value can be from a number of places 
as controlled by a field in the StencilMode register: 

40 

45 

LBWriteData 
Stencil 

Test logic 
Stencil 
register 

LBSourceData: 
(stencil 

50 value read 
from the 
localbuffer) 
SOUICe stencil 
value read 
from the 

55 localbuffer 

Use 

Ibis is the 110rmal mode. 
Ibis is used, for instance, in the OpenGL draw pixels 
function where the host supplies the stencil values in the 
Stencil register. 
Ibis is used wben a constant stencil values is needed, for 
example, wben clearing the stencil buffer when fast clear 
planes are not available. 
Ibis is used, for instance, in the OpenGL copy pixels 
function when the stencil planes are to be copied to the 
destination. The source is offset from the destination by 
the value in LBSourceOffset register. 

Ibis is used, for instance, in the OpenGL copy pixels 
function wben the stencil planes in the destination 
are not to be updated. The stencil data will come 
either from the localbuffer date, or the FCStencil 
register, depending on whether fast clear 
operations are enabled. 

Writes to the localbuffer must be enabled to allow any 
update of the localbuffer to take place. The LBWriteMode 60 

register is a single bit flag which controls updating of the 
buffer. 

Depth Test Unit 
The depth (Z) test, if enabled. compares a fragment's 

depth against the corresponding depth in the depth buffer. 
The result of the depth test can effect the updating of the 
stencil buffer if stencil testing is enabled. This test is only 
performed if all the preceding tests (bitmask. scissor. stipple, 
alpha. pixel ownership. stencil) have passed. The source 
value can be obtained from a number of places as controlled 
by a field in the DepthMode register: 

Pixel Ownership (GID) Test Unit 

Any fragment generated by the rasterizer may undergo a 65 

pixel ownership test. This test establishes the current frag
ment's write permission to the localbuffer and frame buffer. 
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Source Use 

52 
The data read from the framebuffer may be tagged either 

FBDefault (data which may be written back into the frame
buffer or used in some manner to modify the fragment color) 
or FBColor (data which will be uploaded to the host). The DDA (see 

below) 
Depth register 

This is used for normal Depth buffered 3D rendering. 

This is used, for instance, in the OpenGL draw pixels 
function where dte host supplies the depth values through 
the Depd1 register. 

5 table below summarizes the framebuffer read/write control 
for common rendering operations: 

Read-
Alternatively this is used when a constant depth value is 
needed, for example, when clearing the depth buffer 
(when fast clear planes are not available) or 2D 
rendering where the depth is held constant. 

10 Source 
ReadDes· 
tination Writes 

Read Data 
Type Rendering Operation 

LBSourceData: This is used, for instance, in the OpenGL copy pixels 
function when the depth plartes are to be copied 

Disabled Disabled Enabled 

Source depth 
value from the 
localbuffer 
Source Depth 

to the destination. 

This is used, for instance, in the OpenGL copy pixels 
function when the depth planes in the destination are 
not updated The depth data will COnte either from the 
localbuffer or the FCDepth register depending the state 
of the Fast Clear modes in operation. 

Disabled 
Disabled 

15 Enabled 

Disabled 
Enabled 
Disabled 

Enabled 
Disabled 
Enabled 

FBColor 
FBDefault 

Rendering with no logi
cal operations, software 
write masks or blending. 
Image cbwnload. 
Image upload. 
Image copy with 
hardware write masks. 
Rendering using logi
cal operations, soft
ware write masks 

Disabled Enabled Enabled FBDefault 

or blending. 

When using the depth DDA for normal depth buffered 
rendering operations the depth values required are similar to 
those required for the color values in the color DDA unit: 

20 Enabled Enabled Enabled FBDefault Image copy with 
software writemasks. 

ZStart=Start Z Value 
dZdYDom=lncrement along dominant edge. 
dZdX=Increment along the scan line. 

The dZdX value is not required for Z-buffered lines. 
The depth unit must be enabled to update the depth buffer. 

H it is disabled then the depth buffer will only be updated if 
ForceL-BUpdate is set in the Window register. 

25 

Framebuffer Write 

Framebuffer writes must be enabled to allow the frame
buffer to be updated. A single 1 bit flag controls this 
operation. 

Framebuffer Read/Write Unit 
Before rendering can take place GLINT must be config

ured to perform the correct framebuffer read and write 
operations. Framebuffer read and write modes effect the 
operation of alpha blending, logic ops, write masks, image 
upload/download operations and the updating of pixels in 

35 the framebuffer. 

The framebuffer write unit is also used to control the 
operation of fast block fills, if supported by the framebuffer. 

3° Fast fill rendering is enabled via the FastFillEnable bit in the 
Render command register, the framebuffer fast block size 
must be configured to the same value as the FastFilllncre
ment in the Render command register. The FBBlock:Color 
register holds the data written to the framebuffer during a 
block fill operation and should be formatted to the 'raw' 

Framebuffer Read 
The FBReadMode register allows GLINT to be config

ured to make 0, 1 or 2 reads of the framebuffer. The 
following are the most common modes of access to the 
framebuffer: Note that avoiding unnecessary additional 40 
reads will enhance performance. 

framebuffer format When using the framebuffer in 8 bit 
packed mode the data should be replicated into each byte. 
When using the framebuffer in packed 16 bit mode the data 
should be replicated into the top 16 bits. 

When uploading images the UpLoadData bit can be set to 
allow color formatting (which takes place in the Alpha 
Blend unit). 

It should be noted that the block write capability provided 

Rendering operations with no logical operations, software 
write-masking or alpha blending. In this case no read of 
the framebuffer is required and framebuffer writes should 
be enabled. 

Rendering operations which use logical ops, software write 
masks or alpha blending. In these cases the destination 
pixel must be read from the framebuffer and framebuffer 
writes must be enabled. 

45 by the chip of the presently preferred embodiment is itself 
believed to be novel. According to this new approach. a 
graphics system can do masked block writes of variable 
length (e.g. 8, 16, or 32 pixels, in the presently preferred 

Image copy operations. Here setup varies depending on 50 
whether hardware or software write masks are used. For 
software write masks. the framebuffer needs two reads, 
one for the source and one for the destination. When 
hardware write masks are used (or when the software 
write mask allows updating of all bits in a pixel) then only 
one read is required. 55 

Image upload. This requires reading of the destination 
framebuffer reads to be enabled and framebuffer writes to 
be disabled. 

Image download. In this case no framebuffer read is required 
(as long as software writemasking and logic ops are 60 

disabled) and the write must be enabled. 
For both the read and the write operations, an offset is 

added to the calculated address. The source offset 
(FBSourceOffset) is used for copy operations. The pixel 
offset (FBPixelOOset) can be used to allow multi-buffer 65 

updates. The offsets should be set to zero for normal 
rendering. 

embodiment). The rasterizer defines the limits of the block 
to be written, and hardware masking logic in the frame
buffer interface permits the block to be filled in, with a 
specified primitive. only up to the limits of the object being 
rendered. Thus the rasterizer can step by the Block Fill 
increment. This permits the block-write capabilities of the 
VRAM chips to be used optimally, to minimize the length 
which must be written by separate writes per pixel. 

Alpha Blend Unit 
Alpha blending combines a fragment's color with those of 

the corresponding pixel in the framebuffer. Blending is 
supported in RGBA mode only. 
Alpha Blending 

The alpha blend unit combines the fragment's color value 
with that stored in the frarnebuffer. using the blend equation: 

Co=CsS+Cfl 

where: C., is the output color; Cs is the source color 
(calculated internally); Cd is the destination color read from 
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the framebuffer; S is the source blending weight; and D is 
the destination blending weight. S and D are not limited to 
linear combinations; lookup functions can be used to imple
ment other combining relations. 

H the blend operations require any destination color 5 
components then the frarnebuffer read mode must be set 
appropriately. 
Image Formatting 

The alpha blend and color formatting units can be used to 
format image data into any of the supported GLINT frame-

10 
buffer formats. 

Consider the case where the frarnebuffer is in RGBA 
4:4:4:4 mode, and an area of the screen is to be uploaded and 
stored in an 8 bit RGB 3:3:2 format. The sequence of 

54 
Flat shaded aliased primitive 
No dithering required 
No logical ops 
No stencil. depth or GID testing required 
No alpha blending The following are available: 
Bit masking in the rasterizer 
Area and line stippling 
User and Screen Scissor test 

operations is: 
Set the rasterizer as appropriate 
Enable frarnebuffer reads 

H all the conditions are met then high speed rendering can 
be achieved by setting the FBWriteData register to hold the 
framebuffer data (formatted appropriately for the frame
buffer in use) and setting the UseConstantFBWriteData bit 
in the LogicalOpMode register. All unused units should be 

15 disabled. 

Disable frarnebuffer writes and set the UpLoadData bit in 
the FBWriteMode register 

Enable the alpha blend unit with a blend function which 
passes the destination value and ignores the source 
value (source blend Zero. destination blend One) and 
set the color mode to RGBA 4:4:4:4 

20 

Set the color formatting unit to format the color of 
incoming fragments to an 8 bit RGB 3:3:2 frarnebuffer 
format. 25 

The upload now proceeds as normal. This technique can 
be used to upload data in any supported format. 

The same technique can be used to download data which 
is in any supported framebuffer format. in this case the 
rasterizer is set to sync with FBColor, rather than Color. In 30 

this case framebuffer writes are enabled, and the UpLoad
Data bit cleared. 

Color Formatting Unit 
The color formatting unit converts from GLINT's internal 

color representation to a format suitable to be written into 35 

the framebuffer. This process may optionally include dith
ering of the color values for framebuffers with less than 8 
bits width per color component. H the unit is disabled then 
the color is not modified in any way. 

As noted above. the framebuffer may be configured to be 40 

RGBA or Color Index (Cl). 
Color Dithering 

GLINT uses an ordered dither algorithm to implement 
color dithering. Several types of dithering can be selected. 

H the color formatting unit is disabled. the color compo- 45 

nents RGBA are not modified and will be truncated when 
placed in the frarnebuffer. In Cl mode the value is rounded 
to the nearest integer. In both cases the result is clamped to 
a maximum value to prevent overflow. 

In some situations only screen coordinates are available, 50 

but window relative dithering is required. This can be 
implemented by adding an optional offset to the coordinates 
before indexing the dither tables. The offset is a two bit 
number which is supplied for each coordinate, X and Y. The 
XOffset. YOffset fields in the DitherMode register control 55 

this operation, if window relative coordinates are used they 
should be set to zero. 

Logical Op Unit 
The logical op unit performs two functions; logic opera

tions between the fragment color (source color) and a value 60 

from the framebuffer (destination color); and. optionally, 
control of a special GLINT mode which allows high per
formance flat shaded rendering. 
High Speed Flat Shaded Rendering 

A special GLINT rendering mode is available which 65 

allows high speed rendering of unshaded images. To use the 
mode the following constraints must be satisfied: 

This mode is most useful for 2D applications or for 
clearing the framebuffer when the memory does not support 
block writes. Note that FBWriteData register should be 
considered volatile when context switching. 

Logical Operations 

The logical operations supported by GLINT are: 

Mode Name Operation Mode Name Operation 

0 Clear 0 8 Nor --(S I D) 
I And S&D 9 Equivalent --(S. D) 
2 And Reverse S&-D 10 Invert -D 
3 Copy s 11 Or Reverse S 1-D 
4 And Inverted -S&D 12 Copy Invert -s 
5 Noop D 13 Or Invert -SID 
6 X or s 'D 14 Nand --(S & D) 
7 Or SID 15 Set 1 

Where: 
S=Source (fragment) Color, D=Destination (frarnebuffer) 

Color. 
For correct operation of this unit in a mode which takes 

the destination color. GLINT must be configured to allow 
reads from the framebuffer using the FBReadMode register. 

GLINT makes no distinction between RGBA and CI 
modes when performing logical operations. However, logi
cal operations are generally only used in Cl mode. 
Framebuffer Write Masks 

1\vo types of frarnebuffer write masking are supported by 
GLINT. software and hardware. Software write masking 
requires a read from the frarnebuffer to combine the frag
ment color with the frarnebuffer color. before checking the 
bits in the mask to see which planes are writeable. Hardware 
write masking is implemented using VRAM write masks 
and no framebuffer read is required. 
Software Write Masks 

Software write masking is controlled by the FBSoftware
WriteMask register. The data field has one bit per frame
buffer bit which when set. allows the corresponding frame
buffer bit to be updated. When reset it disables writing to that 
bit Software write masking is applied to all fragments and 
is not controlled by an enable/disable bit. However it may 
effectively be disabled by setting the mask to all 1' s. Note 
that the ReadDestination bit must be enabled in the FBRead
Mode register when using software write masks. in which 
some of the bits are zero. 
Hardware Write Masks 

Hardware write masks. if available. are controlled using 
the FBHardwareWriteMask register. H the framebuffer sup
ports hardware write masks, and they are to be used. then 
software write masking should be disabled (by setting all the 
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bits in the FBSoftwareWriteMask register). This will result 
in fewer framebuffer reads when no logical operations or 
alpha blending is needed. 

If the framebuffer is used in 8 bit packed mode. then an 
8 bit hardware write mask must be replicated to all 4 bytes 5 
of the FBHardwareWriteMask register. If the framebuffer is 
in 16 bit packed mode then the 16 bit hardware write mask 
must be replicated to both halves of the FBHardwareWrite
Mask register. 
Host Out Unit 

10 
Host Out Unit controls which registers are available at the 

output FIFO. gathering statistics about the rendering opera
tions (picking and extent testing) and the synchronization of 
GLINT via the Sync register. These three functions are as 
follows: 
Message filtering. This unit is the last unit in the core so any 15 

message not consumed by a preceding unit will end up 
here. These messages will fall in to three classifications: 
Rasterizer messages which are never consumed by the 
earlier units. messages associated with image uploads. 
and finally programmer mistakes where an invalid rues- 20 

sage was written to the input FIFO. Synchronization 
messages are a special category and are dealt with later. 
Any messages not filtered out are passed on the output 
FIFO. 

56 
In the presently preferred embodiment. the frame buffer 

interface of the GLINT chip contains additional simple 
interface logic. so that two chips can both access the same 
frame buffer memory. This permits the GLINT chip to be 
combined with an additional chip for management to the 
graphics produced by the graphical user interface. This 
provides a migration path for users and applications who 
need to take advantage of the existing software investment 
and device drivers for various other graphics chips. 

FIG. 3C shows another graphics board. in which the chip 
of FIG. 2B shares access to a common frame store with a 
GUI accelerator chip (such as an S3 chip). This provides a 
path for software migration. and also provides a way to 
separate 3D rendering tasks from 2D rendering. 

In this embodiment. a shared framebuffer is used to enable 
multiple devices to read or write data to the same physical 
framebuffer memory. Example applications using the 
GLINT 300SX: 

Using a video device as a coprocessor to GLINT. to grab 
live video into the framebuffer. for displaying video in 
a window or acquiring a video sequence; 

Using GLINT as a 3D coprocessor to a 2D GUl 
accelerator. preserving an existing investment in 2D 
driver software. 

Statistic Collection. Here the active step messages are used 
to record the extent of the rectangular region where 
rasterization has been occurring. or if rasterization has 
occurred inside a specific rectangular region. These facili
ties are useful for picking and debug activities. 

25 In a coprocessor system. the framebuffer is a shared 
resource. and so access to the resource needs to be arbitrated. 
There are also other aspects of sharing a framebuffer that 
need to be considered: 

30 
Memory refreshing; 

Synchronization. It is often useful for the controlling soft
ware to find out when some rendering activity has 
finished, to allow the timely swapping or sharing of 
buffers, reading back of state. etc. To achieve this the 
software would send a Sync message and when this 
reached this unit any preceding messages or their actions 35 

are guaranteed to have finished. On receiving the Sync 
message it is entered into the FIFO and optionally gen
erates an interrupt. 

Sample Board-Level Embodiment 

A sample board incorporating the GLINf chip may 
include simply: 

40 

Transfer of data from the memory cells into the shift 
registers of the VRAM; 

Control of writemasks and color registers. 
GLINf uses the S3 Shared Frame Buffer Interface (SFBI) to 
share a framebuffer. This interface is able to handle all of the 
above aspects for two devices sharing a frame buffer, with 
the GLINf acting as an arbitration master or slave. 

Timing Considerations in Shared Frame-Buffer 
Interface 

The Control Signals used in the Shared Framebuffer 
interface, in the presently preferred embodiment. are as 
follows: the GLINf chip itself. which incorporates a PCI interface; 

Video RAM (VRAM). to which the chip has read-write 
access through its frame buffer (FB) port; 

GLINT as Primary Controller 
45 

DRAM. which provides a local buffer then made for such 
purposes as Z buffering; and 

a RAMDAC. which provides analog color values in accor
dance with the color values read out from the VRAM. 
Thus one of the advantages of the chip of the presently 5{) 

preferred embodiment is that a minimal board implementa
tion is a trivial task. 

FIG. 3A shows a sample graphics board which incorpo
rates the chip of FIG. 2B. 

FIG. 3B shows another sample graphics board 55 

implementation. which differs from the board of FIG. 3A in 
that more memory and an additional component is used to 
achieve higher performance. 

FIG. 3C shows another graphics board. in which the chip 
of FIG. 2B shares access to a common frame store with GUl 60 

accelerator chip. 
FIG. 3D shows another graphics board. in which the chip 

of FIG. 2B shares access to a common frame store with a 
video coprocessor (which may be used for video capture and 
playback functions (e.g. frame grabbing). 
Alternative Board Embodiment with Additional Video Pro-
cess or 

65 

FBReqN is internally re-synchronized to System Clock. 
FBSelOEN remains negated. 
FBGntN is asserted an unspecified amount of time after 

FBReqN is asserted.-Framebuffer Address, Data and 
Control lines are tri-stated by GLINT (the control lines 
should be held high by external pull-up resistors). The 
secondary controller is now free to drive the Frame
buffer lines and access the memory. 

FBGntN remains asserted until GLINT requires a frame
buffer access. or a refresh or transfer cycle. 

FBReqN must remain asserted while FBGntN is asserted. 
When FBGntN is removed. the secondary controller must 

relinquish the address. data and control bus in a grace
ful manner i.e. RAS. CAS. WE and OE must all be 
driven high before being tri-stated. 

The secondary controller must relinquish the bus and 
negate FBReqN within 500 ns of FBGntN being 
negated. 

Once FBReqN has been negated. it must remain inactive 
for at least 2 system clocks (40 ns at 50 MHz). 

GLINT as a Secondary Controller 
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Framebuffer Refresh and VRAM transfer cycles by The memory systems (i.e. local buffer and framebuffer) are 
GLINT are turned off when GLINT is a secondary duplicated for each GLINT. Recall that the texture maps 
framebuffer controller. are stored in the local buffer. A single GLINT places very 

GLINT asserts FBReqN whenever is requires a frame- high demands on the memory systems. and it would be 
buffer access. s very difficult to share them between multiple GLINTs. In 

the presently preferred embodiment there are no provi-
FBGntN is internally re-synchronized to system clock. sions for sharing the local buffer. so if this is necessary it 
When FBGntN is asserted. GLINT drives FBselOEN to would have to be done behind GLINT's back and trans-

enable any external buffers used to drive the control parently. The framebuffer can be shared (since GLINT has 
signals, and then drives the framebuffer address. data a SFB interface). but this is likely to be a bottle neck if 

10 and control lines to perform the memory access. shared between GLINTs. 
FBReqN remains asserted while FBGntN is asserted. Broadcast. In some parallel systems each GLINT will get the 

When FBGntN is negated. GLINT finishes any outstand- same (or mostly the same) primitive data and just render 
ing memory cycles. drives the control lines inactive, those pixels assigned to it. It is very desirable that this data 
negates FBselOEN and then tri-states the address. data 

15 
is written by the host only once, or fetched from the host 

and control lines. then releases FBReqN. GLINT guar- address space once if DMA is being used. This presents 
antees to release FBReqN within 500 ns of FBGntN two issues: Firstly the PCI bus does not have any concept 
being negated of broadcasting to multiple devices. and secondly GLINT 

does not have a dedicated FIFO status signal pin an 
GLINT will not reassert FBReqN within 4 system clock external controller can use. Neither of these issues are 

cycles (80 ns@ 50 MHz). 20 insurmountable. but will require hardware to solve. 
Considerations for Board-Level Implementations However. if the application only uses a 'few' large texture 

The following are some points to be noted when imple- mapped primitives so repeatedly sending or fetching the 
menting a shared framebuffer design with a GLINT 300SX: parameters for each GLINT will not be a problem. 

Some 2D Gill Accelerators such as the S3 Vision964. and To avoid problems with Antialiasing. Bitmasks for 
GLINT use configuration resistors on the framebuffer 25 characters. or Line stipple, the area stipple table can be used 
databus at reset. In this case care should be taken with to reserve scanlines to a processor. 
the configuration setup where it effects read only reg- Parallel Configurations 
isters inside either device. If conflicts exist that can not This section looks at some of the common ways of 
be resolved by the board initialization software. then applying parallelism to the rendering operation. The list is 
the conflicts should be resolved by isolating the two 30 not exhaustive and an interested reader is directed to the 
devices from each other at reset so they can read the book by Whitman cited above. No one paradigm is best and 
correct configuration information. This isolation need the choice is very application or market dependent. 
only be done for the framebuffer databus lines that Frame Interleaving 
cause problems; Frame Interleaving is where a GLINT works on frame n. 

GLINT should be configured as the secondary controller 35 the next GLINT works on frame n+ 1. etc. Each GLINT does 
when used with an S3 GUI accelerator. as the S3 everything for its own frame and the video is sourced from 
devices can only be primary controllers; each GLINT's framebuffer in turn. This paradigm is perhaps 

GLINT cannot be used on the daughter card interface as the simplest one with very little hardware overhead and none 
described in the S3 documentation. because this gives of the above complications regarding antialiasing. block 
no access to the PCI bus. A suitable PO bridge should 40 copies, bitrnasks and line stipples. 
be used in a design with a PCI 2D GUI accelerator and This scheme only works when the image is double 
GLINT so they can both have access to the PO bus; buffered (normal for simulation systems) and where the 

The use of ribbon cable to carry the framebuffer signals increase in transport delay is acceptable. Transport delay is 
between two PCI boards is not recommended, because the time it takes for a user to see a visual change after new 
of noise problems and the extra buffering required 45 input stimulus to the system has occurred. With 4 GLINTs 
would impact performance; this will be 4 frame times attributable to the rendering 

The GLINT 300SX does not provide a way of sharing its system. plus whatever else the whole system adds. 
localbuffer. The cost of this method is also one of the highest. as ALL 

The 400TX also allows grabbing of live video into the the memory has to be duplicated. By contrast. the schemes 
localbuffer and real-time texture mapping of that video into so where the screen is divided up can save depth and color 
the framebuffer for video manipulation effects. buffer memory (but not texture memory). 

Sequential frames will usually have very similar amounts 
Alternative Board Embodiments with Multiple of rendering. unless there is a discontinuity in the viewing 

Rendering Accelerator Chips position and/or orientation. so load balancing is generally 
This technical note describes some system design issues 55 good. 

on how multiple GLINT devices can be used in parallel to Frame Merging or Primitive Parallelism 
achieve higher performance. The main driving force for Frame merging is a similar technique to frame interleav-
higher performance is the simulation market which. at the ing where each GLINT has a full local buffer and frame-
low end. demands somewhere between 25-30M texture buffer. In this case the primitives are distributed amongst the 
mapped pixels per second 60 GLINTs and the resultant partial images composited using 

There are some key points before we look at different the depth information to control which fragment from the 
parallel organizations: multiple buffers is displayed in each pixel position. 
To gain any benefit from running multiple GLINTs in GLINT has not been designed to share the local buffer 

parallel. the overall system must be rendering bound. If (where the depth information is held) so the compositing is 
the system is host bound or geometry bound. then adding 65 not readily supported. Also the composition frequently 
in more GLINTs will not improve the systems perfor- needs to be done at video rate so requires some fast 
mance. hardware. 
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Alpha blending and Antialiasing presents some problems 
but the bitmask. block copies and line stipple are easily 
accommodated. Good load balancing depends on even dis
tribution of primitives. Not all primitives will take the same 
amount of time to process so a round robin distribution 5 

scheme. or a heuristic one with takes into account the 
expected processing time for each primitive will be needed. 
Screen Subdivision-Blocks 

Router Unit Description 
The Router Unit allows the order of some of the units to 

be changed so that texturing can be done before or after the 
depth test. Any texture operations will cause a loss in 
performance over the same non-textured rendering. so it is 
a good idea only to texture those pixels which pass all the 
depth. stencil and GID tests. OpenGL defines the order in 
which operations are to be performed on fragments as 
texture. alpha test. stencil and then depth. It is very likely Here the screen is divided up into large contiguous 

regions and a GLINT looks after each region. Primitives 10 

which overlap between regions are sent to both regions and 
scissor clipping used. Primitives contained wholly in one 
region are ideally just sent to the one GLINT. 

that in a typical scene many textured fragments will get 
rejected by the depth test. say. which isn't the most effective 
use of the texturing capacity. If the alpha test is disabled (or 
cannot reject fragments) then OpenGL compatible semantics 
are still maintained if the order is rearranged to be stencil. 

The number of regions and the horizontal and/or vertical 
division of the screen can be chosen as appropriate. but 15 
horizontal bands are usually easier for the video hardware to 
cope with. Each GLINT only needs enough local buffer and 
frame buffer to cover the pixels in its own region. but texture 
maps are duplicated in full. Block copies are a problem 
when the block. or part block is moved between regions. Bit 20 
masking and line stipples can be solved with some careful 
clipping. 

depth. texture and then alpha test. 
The message stream can be re-configured into either of 

the two orders using the RouterMode message. The reset 
order is texture. then depth so a to be compatible with 
OpenGL. Changing the pipeline order is self synchronising 
so the user doesn't need to wait for the message stream to 
empty first. 
Implementation 

This unit is divided into two sub-units: a switcher and a 
multiplexer. FIG. SA shows how these are connected 
together. The basic operation is as follows: 

Load balancing is very poor in this paradigm. since most 
of the scene complexity can be concentrated into one region. 
Dynamically changing the size of the regions based on 25 

expected scene complexity (maybe measured from the pre
vious frame) can alleviate the poor load balancing to some 
extent. 

When the Switcher sub-unit receives a Router Mode mes
sage it makes a note of the new order, forwards the Rou
terMode message on and blocks all further messages until it 
receives a resume signal from the Multiplexer sub unit 
When the resume signal is asserted the Switcher Screen Subdivision-Interleaved Scanlines 

The interleave factor is every other n'h scanline where n 
is the number of GLINTs. Vertical interleaves are possible. 
but not supported by the GLINT rasterizer. Nearly all 
primitives will overlap multiple scanlines so are ideally 
broadcast to all GLINTs. Each GLINT will have different 
start values for the rasterization and interpolation param
eters. 

Each GLINT only needs enough local buffer and frame 
buffer to cover the pixels in its own region. but texture maps 
are duplicated in full. 

Some block copies are a problem when the block is 
moved between non nth scanlines. but horizontal moves are 
available with any alignment. Bit masking can be solved 
with some careful clipping. but line stipples have no easy 
solution. Antialiasing is not normally a problem but with 
GLINT 300SX there is no provision for sub scanline steps 
as well as nth scanline steps. Load balancing is excellent in 
this paradigm which is the main reason it features promi
nently in the literature. 

Thus the simplest and lowest risk method of using mul
tiple GLINTs is Frame Interleaving. but if this is not an 
option. e.g. because of the transport delay or the amount of 
memory needed. then the next best choice is the Interleaved 
Scanlin e. 
Linkage 

FIG. 2B shows how the units are connected together. 
Some general points are: 

The order of the units can be configured in two ways. The 
most general order (Router. Colour DDA. Texture Units. 
Fog Unit. Alpha Test. LB Rd. GID/ZJStencil, LB Wr, 
Multiplexer) and will work in all modes of OpenGL. 
However. when the alpha test is disabled it is much better to 
do the Graphics ID. depth and stencil tests before the texture 
operations rather than after. This is because the texture 
operations have a high processing cost and this should not be 
spent on fragments which are later rejected because of 
window. depth or stencil tests. 

30 re-configures the message paths according to the new order 
and un-blocks the message stream so it starts to flow again. 

When the Multiplexer sub-unit receives the RouterMode 
message it re-configures the message paths according to the 
new order and asserts the resume signal to the Switcher. The 

35 RouterMode message is consumed. The unit order is con
trolled using the RouterMode message. It uses the O-bit of 
the passed message to indicate if the processing order is: 

40 Bit 0=0 
BitO=l 

Texture Depth 
Depth Texture 

When the order is TextureDepth (the default after reset) the 
message routing is done according to FIG. SB. When the 

45 order is Depth Texture the message routing is done according 
to FIG. SC. 

Disclosed Embodiments 

Among the disclosed classes of preferred embodiments, 
50 there is provided: A method for processing graphics data 

through a data path comprising the steps of: (a) receiving a 
routing command from a data bus input; (b) stalling further 
input from said data bus input until previous data has exited 
said data path; (c) resuming said input from said data bus 

55 input; (d) if said routing command has a first value, then 
performing a first set of graphics processes on said data. and 
then performing a second set of graphics processes on said 
data; (e) if said routing command has a second value. 
thenperforming said second set of graphics processes on said 

6(1 data. and thenperforming said first set of graphics processes 
on said data. wherein some portion of said data may be 
eliminated by said first or second sets of graphics process 
according to the results of said processes; wherein steps (d) 
and (e) are repeated until a new routing command is 

65 received; wherein said first set of graphics processes 
requires a longer processing time than said second set of 
graphics processes. 
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Among the disclosed classes of preferred embodiments. 
there is also provided: A method for processing graphics 
data through a data path comprising the steps of: (a) receiv
ing a routing command from a data bus input; (b) stalling 
further input from said data bus input until previous data has 
exited said data path: (c) resuming said input from said data 
bus input; (d) if said routing command has a first value, 
then performing a set of texturing processes on said data, and 
thenperforming a set of pixel elimination processes on said 
data; (e) if said routing command has a second value. 
thenperforrning said set of pixel elimination processes on 
said data, and thenperforming said set of texturing processes 
on said data, wherein some portion of said data may be 
eliminated by said set of pixel elimination processes accord
ing to the results of said processes; wherein steps (d) and (e) 
are repeated until a new routing command is received; 
wherein said first set of graphics processes requires a longer 
processing time than said second set of graphics processes. 

62 
Among the disclosed classes of preferred embodiments, 

there is also provided: A pipelined graphics processing 
device, comprising:a switching device connected to a data 
bus input and configured to route graphics data received on 

5 said data bus according to instruction data received on said 
data bus; a multiplexing device connected to said switching 
device and to a data bus output; a first processing block 
connected and configured to receive said graphics data from 
said switching device and pass processed graphics data to 

10 said multiplexing device; anda second processing block 
connected and configured to receive said graphics data from 
said switching device and pass processed graphics data to 
said multiplexing device; wherein said switching device 
routes said graphics data according to a first data path, 

15 wherein said graphics data is processed by said first pro
cessing block and then by said second processing block, or 
a second data path. wherein said graphics data is processed 
by said second processing block before said first processing 

Among the disclosed classes of preferred embodiments, 
there is also provided: A method for rendering graphics data 20 
comprising the steps of: (a) receiving a routing command 
from a data bus input; (b) stalling further input from said 
data bus input until previous data has exited said data path; 

block. according to said instruction data. 
Among the disclosed classes of preferred embodiments. 

there is also provided: A pipelined graphics processing 
device, comprising: a routing device connected to a data bus 
input and data bus output and configured to route graphics 
data received on said data bus according to instruction data (c) resuming said input from said data bus input; (d) if said 

routing command has a first value, thenperforrning a set of 
texturing processes on said data, and thenperforming a set of 
pixel elimination processes on said data; (e) if said routing 
command has a second value, thenperforming said set of 
pixel elimination processes on said data, and thenperforrning 
said set of texturing processes on said data, wherein some 
portion of said data may be eliminated by said set of pixel 
elimination processes according to the results of said pro
cesses; (f) rendering said data and writing the results to a 
memory; (g) displaying the contents of said memory; 
wherein steps (d) and (e) are repeated until a new routing 
command is received;wherein said set of texturing processes 
requires a longer processing time than said set of pixel 
elimination processes. 

25 received on said data bus; a first processing block connected 
and configured to receive said graphics data from said 
routing device and pass processed graphics data back to said 
routing device; anda second processing block connected and 
configured to receive said graphics data from said routing 

30 device and pass processed graphics data back to said routing 
device; wherein said routing device routes data according to 
a first data path, wherein said graphics data is processed by 
said first processing block and then by said second process
ing block. or a second data path, wherein said graphics data 

35 is processed by said second processing block before said 
first processing block, according to said instruction data. 

Among the disclosed classes of preferred embodiments, 
there is also provided: A graphics processing subsystem., 
comprising: at least four functionally distinct processing 

40 units, each including hardware elements which are custom
ized to perform a rendering operation which is not per
formed by at least some others of said processing units; at 
least some ones of said processing units being connected to 
operate asynchronously to one another; a frame buffer. 

Among the disclosed classes of preferred embodiments, 
there is also provided: A method for processing graphics 
data through a data path comprising the steps of: (a) receiv
ing a routing command from a data bus input; (b) stalling 
further input from said data bus input until previous data has 
exited said data path; (c) resuming said input from said data 
bus input; (d) if said routing command has a first value, 
thenreading said graphics data from said data bus input; 
performing a color DDA process on said data;performing a 
texturing process on said data;performing an alpha test on 
said data; if the data has passed the previous test, then 
performing a graphics ID test on said data; if the data has 
passed the previous tests, then performing a stencil test on 
said data;if the data has passed the previous tests, then 
performing a depth test on said data; and if the data has 
passed the previous tests, then writing said data to a local 
bus; (e) if said routing command has a second value, 
thenreading said graphics data from said data bus input; 
performing a graphics ID test on said data;if the data has 
passed the previous test, then performing a stencil test on 
said data; if the data has passed the previous tests, then 
performing a depth test on said data; if the data has passed 60 
the previous tests, then performing a color DDA process on 
said data; if the data has passed the previous tests. then 
performing a texturing process on said data; if the data has 
passed the previous tests. then performing an alpha test on 
said data; if the data has passed the previous tests. then 65 
writing said data to a local bus; wherein steps (d) and (e) are 
repeated until a new routing command is received. 

45 connected to be accessed by at least one of said processing 
units;said processing units being mutually interconnected in 
a pipeline relationship. with at least some successive ones of 
said processing units being interconnected through a FIFO 
buffer; and wherein at least one said processing unit is 

50 connected to look downstream, in said pipeline relationship, 
past the immediately succeeding one of said processors; and 
wherein at least two of said processing units may be dynami
cally reordered in said pipeline relationship; whereby the 
duty cycle of said processors is increased while permitting 

55 use of a reduced depth for said FIFO. 

Modifications and Variations 

As will be recognized by those skilled in the art. the 
innovative concepts described in the present application can 
be modified and varied over a tremendous range of 
applications. and accordingly the scope of patented subject 
matter is not limited by any of the specific exemplary 
teachings given. 

The foregoing text has indicated a large number of 
alternative implementations. particularly at the higher 
levels, but these are merely a few examples of the huge 
range of possible variations. 
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For example. the preferred chip context can be combined 
with other functions. or distributed among other chips. as 
will be apparent to those of ordinary skill in the art 

For another example. the described graphics systems and 5 
subsystems can be used. in various adaptations. not only in 
high-end PC's. but also in workstations. arcade games. and 
high-end simulators. 

For another example, the described graphics systems and 
subsystems are not necessarily limited to color displays. but 10 

can be used with monochrome systems. 

For another example. the described graphics systems and 
subsystems are not necessarily limited to displays, but also 
can be used in printer drivers. 15 

What is claimed is: 
I. A method for processing graphics data through a data 

path comprising the steps of: 

(a) receiving a routing command from a data bus input; 20 

(b) stalling further input from said data bus input until 
previous data has exited said data path; 

(c) resuming said input from said data bus input; 
(d) if said routing command has a first value. then 

25 
performing a first set of graphics processes on said data. 

and then 
performing a second set of graphics processes on said 

data; 

(e) if said routing command has a second value, then 
performing said second set of graphics processes on 

said data. and then 

30 

performing said first set of graphics processes on said 
data. wherein some portion of said data is selectively 
eliminated by said first or second sets of graphics 35 
process according to the results of said processes; 

wherein steps (d) and (e) are repeated until a new routing 
command is received; 

wherein said first set of graphics processes requires a 
longer processing time than said second set of graphics 40 
processes. 

2. The method of claim I. wherein said first set of graphics 
processes comprises the steps of: 

reading said graphics data from said data bus input; 
performing a color DDA process on said data; 

performing a texturing process on said data; and 
performing an alpha test on said data. 

45 

3. The method of claim I. wherein said second set of 
graphics processes comprises the step of if the data has so 
passed all previous tests. then performing a graphics ID test 
on said data. 

4. The method of claim I. wherein said second set of 
graphics processes comprises the step of if the data has 
passed the previous tests. then performing a stencil test on 55 
said data. 

5. The method of claim I. wherein said second set of 
graphics processes comprises the steps of if the data has 
passed the previous tests. then performing a depth test on 
said data. 60 

6. The method of claim I. wherein step (d) comprises 
steps according to the OpenGL standard. 

7. The method of claim I. wherein step (b) is performed 
by a switcher connected at said data bus input. 

8. The method of claim I. wherein a multiplexer at an 65 
output of said data path indicates when said data path is clear 
and step (c) can begin. 

64 
9. A method for processing graphics data through a data 

path comprising the steps of: 
(a) receiving a routing command from a data bus input; 
(b) stalling further input from said data bus input until 

previous data has exited said data path; 
(c) resuming said input from said data bus input; 
(d) if said routing command has a first value. then 

performing a set of texturing processes on said data. 
and then 

performing a set of pixel elimination processes on said 
data; 

(e) if said routing command has a second value. then 
performing said set of pixel elimination processes on 

said data. and then 
performing said set of texturing processes on said data. 

wherein some portion of said data is selectively 
eliminated by said set of pixel elimination processes 
according to the results of said processes; 

wherein steps (d) and (e) are repeated until a new routing 
command is received; 

wherein said first set of graphics processes requires a 
longer processing time than said second set of graphics 
processes. 

IO. A method for rendering graphics data comprising the 
steps of: 

(a) receiving a routing command from a data bus input; 
(b) stalling further input from said data bus input until 

previous data has exited said data path; 
(c) resuming said input from said data bus input; 
(d) if said routing command has a first value. then 

performing a set of texturing processes on said data. 
and then 

performing a set of pixel elimination processes on said 
data; 

(e) if said routing command has a second value. then 
performing said set of pixel elimination processes on 

said data, and then 
performing said set of texturing processes on said data, 

wherein some portion of said data is selectively 
eliminated by said set of pixel elimination processes 
according to the results of said processes; 

(f) rendering said data and writing the results to a 
memory; 

(g) displaying the contents of said memory; 
wherein steps (d) and (e) are repeated until a new routing 

command is received; 
wherein said set of texturing processes requires a longer 

processing time than said set of pixel elimination 
processes. 

ll. A method for processing graphics data through a data 
path comprising the steps of: 

(a) receiving a routing command from a data bus input; 
(b) stalling further input from said data bus input until 

previous data has exited said data path; 
(c) resuming said input from said data bus input; 
(d) if said routing command has a first value. then 

reading said graphics data from said data bus input; 
performing a color DDA process on said data; 
performing a texturing process on said data; 
performing an alpha test on said data; 
if the data has passed the previous test. then performing 

a graphics ID test on said data; 
if the data has passed the previous tests. then perform

ing a stencil test on said data; 
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if the data has passed the previous tests. then perform
ing a depth test on said data; and 

if the data has passed the previous tests. then writing 
said data to a local bus; 

(e) if said routing command has a second value. then 
reading said graphics data from said data bus input; 
performing a graphics ID test on said data; 
if the data has passed the previous test. then performing 

a stencil test on said data; 

5 

66 
19. A pipelined graphics processing device. comprising: 

a routing device connected to a data bus input and data 
bus output and configured to route graphics data 
received on said data bus according to instruction data 
received on said data bus; 

if the data has passed the previous tests. then perform- IO 

ing a depth test on said data; 

a first processing block connected and configured to 
receive said graphics data from said routing device and 
pass processed graphics data back to said routing 
device; and 

a second processing block connected and configured to 
receive said graphics data from said routing device and 
pass processed graphics data back to said routing 
device; 

if the data has passed the previous tests. then perform
ing a color DDA process on said data; 

if the data has passed the previous tests. then perform
ing a texturing process on said data; 

if the data has passed the previous tests. then perform
ing an alpha test on said data; 

if the data has passed the previous tests. then writing 
said data to a local bus; 

15 wherein said routing device routes data according to a first 
data path. wherein said graphics data is processed by 
said first processing block and then by said second 
processing block. or a second data path. wherein said 

wherein steps (d) and (e) are repeated until a new routing 20 

command is received. 

graphics data is processed by said second processing 
block before said first processing block, according to 
said instruction data. 

12. The method of claim 1L wherein step (d) comprises 
steps according to the OpenGL standard 

20. A graphics processing subsystem. comprising: 

13. The method of claim 11. wherein step (b) is performed 
by a switcher connected at said data bus input. 25 

at least four functionally distinct processing units. each 
including hardware elements which are customized to 
perform a rendering operation which is not performed 
by at least some others of said processing units; at least 14. The method of claim 11. wherein a multiplexer at said 

local bus indicates when said data path is clear and step (c) 
can begin. 

15. A pipelined graphics processing device, comprising: 
a switching device connected to a data bus input and 

configured to route graphics data received on said data 
bus according to instruction data received on said data 
bus; 

30 

some ones of said processing units being connected to 
operate asynchronously to one another; 

a frame buffer. connected to be accessed by at least one of 
said processing units; 

a multiplexing device connected to said switching device 35 
and to a data bus output; 

said processing units being mutually interconnected in a 
pipeline relationship. with at least some successive 
ones of said processing units being interconnected 
through a FIFO buffer; 

and wherein at least one said processing unit is connected 
to look downstream, in said pipeline relationship, past 
the immediately succeeding one of said processors; 

and wherein at least two of said processing units are 
selectively dynamically reordered in said pipeline rela
tionship; 

a first processing block connected and configured to 
receive said graphics data from said switching device 
and pass processed graphics data to said multiplexing 
device; and 

a second processing block connected and configured to 
receive said graphics data from said switching device 
and pass processed graphics data to said multiplexing 
device; 

wherein said switching device routes said graphics data 
according to a first data path, wherein said graphics 
data is processed by said first processing block and then 
by said second processing block. or a second data path, 
wherein said graphics data is processed by said second 
processing block before said first processing block. 
according to said instruction data. 

16. The device of claim 15. wherein said first data path 
processes said graphics data according to the OpenGL 
standard 

17. The device of claim 15. wherein said switching device 
halts all input data until the current data path is clear before 
switching data paths. 

18. The device of claim 15. wherein said multiplexing 
device is configured to determine when the current data path 
is clear and to allow said switching device to switch data 
paths. 

40 

whereby the duty cycle of said processors is increased 
while permitting use of a reduced depth for said FIFO. 

21. The graphics processing subsystem of claim 20, 
45 wherein said processing units include a texturing unit. 

22. The graphics processing subsystem of claim 20. 
wherein said processing units include a scissoring unit. 

23. The graphics processing subsystem of claim 20. 
wherein said processing units include a memory access unit 

50 which reads and writes a local buffer memory. 
24. The graphics processing subsystem of claim 20. 

wherein at least some ones of said processing units include 
internally paralleled data paths. 

25. The graphics processing subsystem of claim 20. 
55 wherein all of said processing units are integrated into a 

single integrated circuit. 

60 

26. The graphics processing subsystem of claim 20. 
wherein all of said processing units, but not said frame 
buffer. are integrated into a single integrated circuit. 

* * * * * 
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Visualization of Large Terrains in Resource-Limited Computing

Environments

Boris Rabinovich Craig Gotsman

Computer Science Department
Technion - Israel Institute of Technology

Haifa 32000, Israel
[borisr|gotsman]@cs.technion.ac.il

Abstract

We describe a software system supporting interactive visualization
of large terrains in a resource-limited environment, i.e. a low-end
client computer accessing a large terrain database server through a
low-bandwidth network. By “large”, we mean that the size of the
terrain database is orders of magnitude larger than the computer
RAM. Superior performance is achieved by manipulating both ge-
ometric and texture data at a continuum of resolutions, and, at any
given moment, using the best resolution dictated by the CPU and
bandwidth constraints. The geometry is maintained as a Delaunay
triangulation of a dynamic subset of the terrain data points, and the
texture compressed by a progressive wavelet scheme.

A careful blend of algorithmic techniques enables our system
to achieve superior rendering performance on a low-end computer
by optimizing the number of polygons and texture pixels sent to
the graphics pipeline. It guarantees a frame rate depending only
on the size and quality of the rendered image, independent of the
viewing parameters and scene database size. An effic ent paging
scheme minimizes data I/O, thus enabling the use of our system in
a low-bandwidth client/server data-streaming scenario, such as on
the Internet.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; D.4.4 [Operating Systems]:
Communications Management—Network Communication.
Keywords: Terrain rendering, level-of-detail, interactive graphics

1 Introduction

Terrain visualization is an important component of many civilian
and military applications [10, 3]. The input to the terrain visualiza-
tion problem is usually a large Digital Terrain Map (DTM), consist-
ing of elevation data sampled on a regular grid, and corresponding
aerial and/or satellite texture data, which is mapped onto the recon-
structed terrain surface. The output is rendered images of the terrain
surface, usually as part of a “fly hrough” sequence.

The advent of the World-Wide-Web suggests the running of
this type of application over the Internet, in a client/server sce-
nario. The server is a very large remote database, accessed by the

client, usually a low-end computer, over a narrow-bandwidth line
(3 KByte/sec is typical for the contemporary Internet). The two
bottlenecks that have to be overcome are the bandwidth in deliver-
ing relevant terrain data from the server to the client, and the CPU
power required at the client for rendering this data.

The key to eff cient terrain rendering is eff cient online manipu-
lation of both the geometric and texture data, especially when the
scene database at the server is orders of magnitude larger that the
size of client system RAM. Naive terrain rendering algorithms con-
vert each DTM cell (bounded by four adjacent grid points) into two
3D triangles, and render (send through the graphics pipeline) all
such triangles in a region determined by the viewing frustum. They
also map the texture data at its highest resolution onto these poly-
gons. This is a very ineffic ent procedure, as for low pitch angles,
the number of these triangles and texture pixels (texels) may be ex-
tremely large. Each individual triangle projection to image space is
very small, and many texels may be condensed to one image pixel,
contributing negligibly to the image. One remedy to this prob-
lem, adopted in a number of works over the past few years (e.g.
[8]) is to maintain the scene data at a number of discrete levels-
of-detail. Since terrain areas at large viewing distances project to
small image areas, there is no point rendering them in full detail.
At any given moment during the animation, the appropriate level-
of-detail is used to render the image. To do this effectively, pieces
of the scene must be taken from multiple levels (foreground areas
from a high-detail version, and background areas from a low-detail
version), requiring methods to “stitch” together pieces of differ-
ent models in a continuous fashion, so that there are no holes or
breaks along the seams. This has proven to be a major problem
for the geometric data, since there usually is no topological corre-
lation between the different levels of detail. De Berg and Dobrint
[1], Cohen-Or and Levanoni [5], and Lindstrom et al. [12] have
provided partial solutions to the stitching problem.

In this paper we use a different approach to maintaining the
terrain geometry, proposed independently by Klein and Huttner
[11] and Delepine [6]. The geometry is treated in a continuous-
resolution fashion. We do not maintain multiple geometric models
(at different levels of detail), rather continuously update one model
online to represent in an optimal way the projection of the terrain
contained in the viewing frustum. As a result, the number of poly-
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gons in the approximation is more or less constant, independent of
the viewing parameters (for a f xed frame rate). For the texture,we
employ a progressive wavelet compression scheme [2], which en-
ables the extraction of texture at a continuum of resolutions from
arbitrary prefi es of the encoded bit stream.

Our ultimate goal is to render any terrain image in time propor-
tional to the image resolution (in pixels), and not to the scene com-
plexity, number of DTM points in the viewing frustrum, texture
resolution, etc. We are motivated by the (simple) observation that
an image of fi ed resolution can contain only a bounded amount
of information, therefore any algorithm rendering such an image
should not use more than a bounded number of polygons and tex-
els. Such algorithms are called output-sensitive. Most algorithms
are not output-sensitive, and in order that they be such, require care-
ful design. Our system contains a careful blend of techniques, some
borrowed from computational geometry, which together achieve a
high degree of output sensitivity, enabling adequate performance in
a limited-resource environment.

Since one server may be accessed simultaneously by a large
number of clients, is is crucial to minimize the amount of work the
server performs per client. If this load is minimized, the server will
be scalable, able to support a virtually unlimited number of clients.
We adhere to this principle throughout our implementation.

Using these methods, we have developed a client application
achieving terrain visualization at interactive rates on a low-end SGI
(O�)workstation, accessing a server database over a network with
bandwidth comparable to the Internet. This paper describes the ar-
chitecture and algorithms incorporated into our system.

2 System Overview

The large terrain scene resides on the server disk, partitioned into
geometry and texture tiles of f xed size. A raw geometry tile con-
tains a matrix of elevation heights, and a texture tile a matrix of
texels. Tiling schemes are standard in terrain visualization appli-
cations (e.g. [4]). The server processes requests for geometry and
texture data received from remote clients. In a preprocessing step
at the server, applied independently to each tile (thus enabling a
scene consisting of an unlimited number of tiles), the DTM points
are assigned “grades” related to their importance in approximating
the terrain surface. These grades are obtained from the simplifica-
tion algorithm of Heckbert and Garland [9]. Using these grades
as a third dimension, the DTM points in each tile are organized
into a 3D octree, which will enable effic ent answers to future geo-
metric queries. The client maintains online a geometry cache con-
taining DTM points from a small subset of the server’s geometry
tiles. Even from these tiles, only the relevant upper levels of the
corresponding octrees are imported to the client. Which levels are
relevant is determined on the f y by the client.

At any given moment, a subset of the geometry cache points are
maintained at the client in a dynamic Delaunay triangulation, our
primary geometric data structure. To maintain the triangulation, we
use the algorithms of Devillers, Meiser and Teillaud [7] for eff cient
insertion and deletion into a 2D Delaunay triangulation. Delaunay
triangulations are commonly considered to be suitable for terrain

visualization purposes. A DTM point deserves to be in the triangu-
lation if its grade is greater than a threshold, which is proportional
to the distance of the point from the viewpoint. Section 3 elaborates
on the details of how we handle the geometry.

The texture data is maintained at the server in tiles, compressed
using the progressive wavelet scheme of Buccigrossi and Simon-
celli [2]. This scheme compresses the data to approximately 30%
of its raw size with negligble loss, and, more important, allows the
decoding of the texture data from any prefi of the bit stream. Nat-
urally, using more bits will result in a higher quality result. Client
requests for texture data at a given resolution result in the streaming
of the prefi of minimal length suffic ng for the required resolution.
Section 4 describes our handling of the texture in more detail.

The client graphics pipeline, sometimes supported in hardware,
is fed relevant triangles and texels. This pipeline takes care of the
basic rendering operations, e.g. perspective projection, hidden sur-
face elimination, and texture mapping. The main issues we ad-
dress in our implementation are the minimization of data transmit-
ted from the server to the client caches and subsequently fed to the
graphics pipeline.

Typical triangulations and rendered images generated by our
client system are shown in Fig. 2.

3 Geometry Processing

3.1 Data Reduction

A typical DTM is supplied on a regular grid, and this data is usu-
ally highly redundant. If the surface is to be approximated by a
piecewise-linear 2D function (a collection of planar polygons), a
small number of large polygons suffic to approximate the surface
well in planar regions. On the other hand, terrain areas with high
curvature, such as ridges and ravines, require a large number of
small polygons to achieve a satisfactory approximation (see Fig.
2). By this argument, is it obvious that some DTM points are more
important than others. Heckbert and Garland [9] have described
a procedure which starts off with a small number of DTM points
(usually the four corners of the DTM coverage), and incremen-
tally adds points whose contribution to the surface approximation
is most significan . The contribution of a point to the approxima-
tion is quantif ed by its vertical distance from the piecewise-linear
approximation built with all previous points. The larger this dis-
tance - the more important the point is. The incremental procedure
is done effic ently using a priority queue mechanism.

We use the Heckbert and Garland procedure at the server as a
preprocessing operation on each tile to assign each DTM point a
numeric “grade” - precisely the vertical distance described in the
previous paragraph. This grade is stored with the point, and used
later to determine online whether the point is required for the ter-
rain approximation. This decision is based on the grade and the
point’s distance from the viewpoint. To facilitate eff cient decision-
making, we build a 3D octree of the DTM points, the grade serving
as the third dimension. The grid structure of the points in the XY
plane facilitates a f xed quadtree structure in this plane, which, in
turn, facilitates the organization of the data stored in the tile in a
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record of fi ed length. This hierarchical spatial data structure will
enable effic ent range reporting of points.

3.2 View Frustum Culling

The f rst step in frame generation is to determine which DTM tiles
are relevant to the current view. In principle, if the terrain surface
were planar, the intersection of the viewing frustum with the terrain
surface (the view footprint) would be a trapezoid, whose four vertex
positions could be easily computed (see Fig. 3). Since the terrain
surface is not planar, the footprint terrain is bounded by a region
which is the union of two trapezoids, formed on horizontal planes
whose elevations coincide with the minimal and maximal elevations
in the projection area, repectively.

The footprint is “scan-converted” by the client to determine
which DTM tiles intersect it, and what resolution data (which levels
of the octree) are required. This data is requested from the server.
For every tile received, the octree structure of its points enables
to eff ciently determine which tile points are actually contained in
the footprint. Effic ency is achieved by pruning off large sets of
the points corresponding to branches of the octree close to its root.
The remaining points are then tested, as described in Section 3.3,
to determine if they are required for the terrain approximation and
rendering.

3.3 Continuous Resolution

Each DTM point has a grade quantifying its importance in the ter-
rain approximation. This grade is traded off with distance from the
viewpoint. In other words, more distant points are considered less
significan . In practice, the client considers a virtual cone centered
at the viewpoint, and calculates which DTM points in the geome-
try cache have a grade positioning them inside the cone (see Fig.
3). We would like to be able to determine this set of points in time
proportional mainly to their number (and not to the total number of
points in the viewing frustum). In computational-geometric termi-
nology, this is called output-sensitive range reporting. We achieve
this again using the tile octree. The complexity of the range report-
ing procedure is O�

p
N � k�, where N is the number of points in

the viewing frustum, and k the number of points in the answer to
the query ([13], p.79). Using this virtual cone also implies that a
small change in the viewpoint induces a small change in the DTM
points used for the rendering, thus ensuring the temporal continuity
of the rendered images.

3.4 Caching

Portions of geometry tiles are imported from the server on demand
and stored in the client cache. Only the neccesary upper levels of
the tile octree are imported, possible due to the f xed structure of
the octree. Hence a typical snapshot of the client cache contents
would reveal a few (foreground) tiles from which almost the en-
tire data content has been read, and many (background) tiles with a
very sparse content. A prediction mechanism, based on the view-
point trajectory, enables the loading of tiles in advance, resulting in
smooth streaming of geometry from server to client.

3.5 Dynamic Delaunay Triangulation

The piecewise linear surface induced by the Delaunay triangulation
of the 2D projection of the DTM points is generally considered the
most suitable for surface approximation. This is because the mini-
mal angle in the triangulation is maximized, eliminating long “sliv-
ery” triangles. Hence, the client constantly maintains a Delaunay
triangulation of the DTM points contributing to the approximation
of the terrain in the footprint. Many O�n log n� time algorithms
exist for the Delaunay triangulation of n points, but not many are
able to effic ently support update of the triangulation upon insertion
or deletion of points. We use the algorithm of DeVillers et al [7],
which inserts points in O�log n� and deletes points in O�log log n�

average time using a hierarchical data structure. Care must be taken
to slightly perturb the spatial positions of the DTM points, other-
wise degeneracies in the Delaunay triangulation and unstable nu-
merics may occur.

At the client, points which were in the footprint corresponding
to the previous frame, and are no longer in the current footprint, are
removed from the triangulation - the main geometric data structure
maintained online by the client. New points which were previously
not in the footprint, and now are, are inserted into the triangulation.
The turnover of points in the triangulation depends on the viewpoint
velocity. Theoretically, very large velocities could cause successive
frames to see totally different regions of the terrain, requiring the
formation of an entirely different triangulation between frames. In
practice, however, this does not occur. Typically, 99% of the foot-
print areas overlap between successive frames.

Pseudo-code of the f ow of control in the client while rendering
a single frame appears in Fig. 1.

4 Texture Processing

The texture data must also be manipulated at multiple resolutions,
since image foreground pixels contain high resolution texels, and
image background pixels contain low resolution texels. The reso-
lution of the texels contributing to any given image pixel is essen-
tially a function of the viewing distance to that scene point. The
server texture database is also organized in tiles, storing the texels
compressed to approximately 30% of their original volume, using
a progressive wavelet scheme. This results in a bit stream sorted by
importance.

A typical low-end client computer contains a texture buffer of
limited capacity (e.g. 1024x1024 pixels) with a pyramid struc-
ture on top of it. By supplying appropriate texture coordinates for
the rendered triangle vertices, the graphics hardware/software maps
texels from the texture buffer to the image pixels in the interior of
the projected triangles. Each level of the texture pyramid contains
texels representing the same terrain area, at decreasing resolutions.
However, since not all texels, especially not at all resolutions, will
contribute to the terrain image (see Fig. 4), there is no need to
import them from the server. We optimize network bandwidth by
loading only those texture tiles which intersect the view footprint,
at the appropriate resolution, if they are not yet loaded. By this
we mean we calculate the number of encoded bits of the texture
stream required to reconstruct the texture tile at the appropriate res-
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olution (the lower the required resolution, the less bits required). In
any case, we use any bits available at rendering time, even though
there might be less than required (if the network temporarily slows
down). Which tiles are relevant can be easily determined from the
geometry of the footprint. Occasionally, it is neccesary to shift the
contents of the texture buffer, due to the movement of the view-
point.

5 Experimental Results

We have implemented the procedures described in Sections 2 - 4
as a prototype client/server system, the client running on a R5000
SGIO� , at 180MHz with 64MB RAM, based on the OpenGL API,
and an X/Motif GUI. This client accesses the scene database server
over a 3 KByte/sec network. The main parameters influenc ng the
overall performance of the system are the size of the visualization
window, i.e. the number of rendered image pixels, and the fl ght
velocity. This performance is measured in the client frame rate, and
the quality of the imagery delivered at that frame rate. There is an
obvious tradeoff between the two, which is controlled by two inde-
pendent “resolution” parameters, one for geometry, and one for tex-
ture. Increasing these parameters increases the number of triangles
and/or texture bytes used for the rendering process, thus increasing
the image quality, but decreasing the frame rate, due to higher ren-
dering and bandwidth overhead. There is, however, a point beyond
which the resolution parameter saturates, i.e. the marginal increase
in image quality is insignif cant.

The geometric resolution parameter, namely, the average number
of triangles rendered per image pixel, is controlled by the angle
of the cone used for culling DTM points, as described in Section
3.3. The smaller the angle, the narrower the cone, admitting less
DTM points into the Delaunay triangulation, in turn implying less
triangles for the same number of image pixels (see also Fig. 3).
The texture resolution is controlled by specifying the fraction of
the texture tile bit stream imported and decoded to texels for the
foreground image pixels. The resolution of the background image
pixels is derived from this.

Keeping the resolution parameters and velocity fi ed causes the
system to maintain a f xed frame rate. Increasing the velocity would
slow down the system, as the turnover of points in the Delaunay
triangulation and turnover of texture tiles in the texture buffer in-
creases, incurring more CPU and bandwidth overhead. By trial and
error, it seems that reasonable image quality is obtained at a geo-
metric resolution of 0.06 triangles and 0.5 texture bytes per output
image pixel. Any more than that imposes an unneccesary load on
the system, slowing it down, and any less than that results in poor
quality images (see Fig. 2). A telltale sign of insuff cient geometric
resolution (triangles per image pixel) is if there are “jumps” (also
known as “popping”) in the terrain surface during animation, due to
the triangles being too large and crude. A telltale sign of insuff cient
texture resolution (texels per image pixel) are blurred images.

Fig. 5 shows the speed/quality tradeoffs we are able to achieve
with our system at different “fl ght” velocity parameters, when
one of the geometric/texture resolution parameters is f xed, and
the other varied. Velocity is measured as the percentage of non-

overlapping area between footprints corresponding to successive
frames. The figu e shows that approximately 3 frames/sec are
achievable with reasonable quality, when the image size is f xed at
300x400 pixels, and fly ng at an average (3%) velocity. Higher ve-
locities result in a larger turnover of geometry and texture, slowing
down the system frame rate. Our system accesses a scene database
server covering the northern part of Israel, containing a total of ���

DTM points and ��
� texels. The client uses a geometry cache of

size 2MB RAM, and texture buffer of 1024x1024 texels.

6 Conclusion

In the long-term, our techniques will support client/server terrain
visualization applications over the Internet. A large scene database
resides at a central server site, and is accessed (perhaps simultane-
ously) by a number of low-end clients over the Internet for visual-
ization purposes. This application requires tight optimization of the
available network bandwidth and client rendering power.

The ever-increasing user appetite for larger and richer geomet-
ric scenes has forced computer graphics practitioners to develop
output-sensitive rendering algorithms whose computational com-
plexity is not sensitive to the complexity of the input scene, rather
to the complexity of the output image. We have implemented this
for the terrain visualization application by rendering at geometric
and texture level-of-detail which changes continuously along the
spatial and temporal dimensions. Our algorithm satisfie almost all
of the f ve requirements from such an algorithm, as formulated in
[12].

Use of other sophisticated data optimization techniques, such as
occlusion culling [14], in which large portions of the geometry in-
side the view frustrum are effic ently culled because they are invis-
ible, can further reduce the rendering load.

Temporal aliasing sometimes occurs in our implementation. The
use of morphing techniques to alleviate this, such as that of Cohen-
Or and Levanoni [5], are not directly applicable, again due to the
dynamic nature of our Delaunay triangulation. Alternatives are be-
ing investigated.
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1. Calculate view frustum and bound terrain footprint by rectangle.

2. Scan-convert the rectangle and for each geometry tile in it:

(a) If the tile is not in the footprint, but was in it in the previous
frame, then:

� Remove all its points from the Delaunay triangulation.

(b) If the tile is in the footprint, but was not in the previous frame,
then:

� Request tile from server at appropriate resolution.

� Search in tile octree for appropriate voxels.

� Insert the points from these voxels in Delaunay triangu-
lation.

(c) If tile is in the footprint and was also in the previous frame,
then:

� Search in tile octree for appropriate voxels.

� Find difference from previous frame.

� Insert (Delete) difference points in (from) Delaunay tri-
angulation.

3. For each texture tile in the bounding rectangle:

(a) If the texture tile is in the footprint, but was not in the previous
frame, then:

� Calculate required resolution.

� Request the appropriate bit stream pref x from the server.

(b) If texture tile is in the footprint, and was also in the previous
frame, then:

� Calculate its resolution.

� If this resolution is higher than that of the previous frame,
then request more of the bit stream from the server.

4. For every tenth frame check the actual performance (frames/sec)
against the required performance and adjust the geometric and/or tex-
ture resolution parameters to achieve that performance.

5. Render image.

Figure 1: Pseudo-code of the client algorithm.
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(a) (b)

Figure 2: Terrain meshes (Delaunay triangulated) and views rendered at different data resolutions. (a) High resolution: 0.08 triangles/pixel
and 1 texels/pixel. (b) Equivalent quality at lower resolution: 0.02 triangles and 0.8 texels/pixels. Note how more DTM points are used in
foreground areas or areas of high curvature.
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DTM point rendered at low resolution

DTM point rendered at high resolution

Figure 3: Determining the DTM points of the rendered Delaunay triangulation for a given view at different geometric resolutions. The
narrow cone represents a low-resolution view, and the wide one a high resolution. The “elevations” of the DTM points are their precalculated
grades. All points within the footprint with grade above the relevant cone are included in the triangulation. This range-reporting operation is
performed effic ently using an octree structure on the points in each tile. Note that more points are admitted in the view foreground than in
its background.

rendered image

level 1

texture pyramid

level 3 level 4
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Figure 4: The contribution of individual tiles in the texture buffer to the rendered image corresponding to the marked footprint. Those tiles
not contributing need not reside in the texture buffer at all, and are not streamed and decoded from the server.

APPENDIX R

Microsoft Corp.   Exhibit 1005



1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

frames/sec

tr
ia

ng
le

s/
pi

xe
l

1%

3%

5%

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

frames/sec

te
xt

ur
e 

by
te

s/
pi

xe
l

1%

3%

5%

(a) (b)

Figure 5: Speed/resolution tradeoff in our prototype visualization client while rendering 300x400 pixel images on a R5000 SGIO�, accessing
the scene database server over a 3 KByte/sec network. (a) Varying only geometric resolution. The texture resolution is f xed to 0.5 compressed
texture bytes per pixel. (b) Varying only texture resolution. The geometric resolution is f xed to 0.06 triangles/pixel. The individual curves
correspond to different fl ght velocities, which inf uence the turnover of data in system caches and bandwidth overhead.
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User Datagram Protocol (UDP) (Windows CE 5.0)

Send Feedback
UDP provides a connectionless, unreliable transport service. Connectionless means that a communication session between hosts is not established before exchanging data. UDP is often 
used for one-to-many communications that use broadcast or multicast IP datagrams. The UDP connectionless datagram delivery service is unreliable because it does not guarantee data 
packet delivery and no notification is sent if a packet is not delivered. Also, UDP does not guarantee that packets are delivered in the same order in which they were sent.

Because delivery of UDP datagrams is not guaranteed, applications using UDP must supply their own mechanisms for reliability, if needed. Although UDP appears to have some limitations, 
it is useful in certain situations. For example, Winsock IP multicasting is implemented with UDP datagram type sockets. UDP is very efficient because of low overhead. Microsoft networking 
uses UDP for logon, browsing, and name resolution. UDP can also be used to carry IP multicast streams for applications such as Microsoft® Windows Media®.

See Also
Core Protocol Stack for IPv4 | User Datagram Protocol (UDP) and Name Resolution for IPv4
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Feedback FAQs
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