
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

MICROSOFT CORPORATION,

Petitioner,

v.

BRADIUM TECHNOLOGIES LLC,

Patent Owner.

CASE: IPR2017-01817

Patent No. 9,635,136 B2

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW

OF U.S. PATENT NO. 9,635,136 B2

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

I hereby declare that all the statements made in this Declaration are of my

own knowledge and true; that all statements made on information and belief are

believed to be true; and further that these statements were made with the

knowledge that willful false statements and the like so made are punishable by fine

or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false

statements may jeopardize the validity of the application or any patent issued

thereon.

I declare under the penalty of perjury that all statements made in this

Declaration are true and correct.

Executed July 19, 2017 in Douglas, Massachusetts.

/William R. Michalson/
William R. Michalson

Microsoft Corp. Exhibit 1005

TABLE OF CONTENTS

Page

 -i-

LIST OF APPENDICES .. IV

I. INTRODUCTION .. 1

II. SUMMARY OF OPINIONS .. 4

III. QUALIFICATIONS AND EXPERIENCE .. 6

A. Education and Work Experience .. 6

B. Compensation ... 10

C. Documents and Other Materials Relied Upon 10

IV. STATEMENT OF LEGAL PRINCIPLES ... 11

A. Claim Construction .. 11

B. Anticipation .. 11

C. Obviousness .. 12

V. LEVEL OF ORDINARY SKILL IN THE ART .. 13

VI. TECHNOLOGY BACKGROUND OF THE ’136 PATENT 17

A. Data Communications Over the Internet .. 20

B. Data Communications in Wireless Mobile Systems 22

C. Image Tiles and Image Pyramids ... 24

D. Compression of Image Tiles .. 34

E. Progressive Image Resolution Enhancement 36

F. Three-Dimensional Graphics ... 37

1. Overview of 3D Computer Graphics principles 37

2. Texture ... 44

3. Virtual Reality Modeling Language (VRML) 48

G. Mip-Maps ... 49

H. Storage of image data ... 55

VII. OVERVIEW OF THE ’136 PATENT ... 57

Microsoft Corp. Exhibit 1005

TABLE OF CONTENTS
(continued)

Page

 -ii-

VIII. IDENTIFICATION OF THE PRIOR ART AND SUMMARY OF
OPINIONS .. 63

A. Reddy .. 63

B. Woods ... 65

C. Chiarabini ... 65

D. Fuller ... 68

IX. CLAIM CONSTRUCTION ... 69

A. “Wireless Portable Device” in Claims 1, 10, and 19 70

B. “Thereby Enabling Efficient Use of Network Bandwidth in
Conditions of Network Latency” in Claims 1, 10, and 19 71

C. “Configure[d][…] as a server to provide access to [the] at least
some image parcels received by the wireless portable device” in
claims 1, 10, and 19 .. 72

D. “Image Parcel” in Claims 1, 10, and 19 ... 75

E. All Remaining Claim Terms .. 77

X. UNPATENTABILITY OF CLAIMS 1-27 OF THE ’136 PATENT 78

A. Claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-26 are
Unpatentable as Obvious Over Reddy in View of Woods 78

1. Overview of Asserted References .. 79

2. A person of ordinary skill in the art would be motivated
to combine Reddy and Woods ... 98

3. Claim 1 ... 106

4. Claim 10 ... 146

5. Claim 19 ... 151

6. Claims 2, 11, and 20 .. 156

7. Claims 3, 12, and 21 .. 160

8. Claims 4, 13, and 22 .. 163

9. Claims 6, 15, and 24 .. 164

Microsoft Corp. Exhibit 1005

TABLE OF CONTENTS
(continued)

Page

 -iii-

10. Claims 7, 16, and 25 .. 169

11. Claims 8, 17, and 26 .. 171

B. Ground 2: Claims 5, 14, and 23 are unpatentable under 35
U.S.C. § 103(a) over Reddy in view of Woods and Chiarabini 174

1. The Reddy-Woods-Chiarabini Combination 174

2. Motivations to Combine .. 174

3. Claims 5, 14, and 23 are Obvious .. 176

C. Ground 2: Claims 9, 18, and 27 are unpatentable under 35
U.S.C. § 103(a) over Reddy in view of Woods and Fuller 183

1. The Reddy-Woods-Fuller Combination 183

2. A person of ordinary skill in the art would be motivated
to come by Reddy, Woods, and Fuller 185

3. Claims 9, 18, and 27 .. 186

XI. CONCLUSION ... 188

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

-iv-

LIST OF APPENDICES

Appendix A Curriculum Vitae of William R. Michalson

Appendix B Excerpt of Hanan Samet, The Design and Analysis of Spatial
Data Structures, University of Maryland (1989)

Appendix C U.S. Patent No. 5,263,136 (DeAguiar et al.)

Appendix D U.S. Patent No. 4,972,319 (Delorme)

Appendix F International Telegraph and Telephone Consultative Committee
(“CCITT”) Recommendation T.81, September 1992

Appendix G Ken Cabeen & Peter Gent, Image Compression and the
Discrete Cosine Transform

Appendix H M. Antonini, Image Coding Using Wavelet Transform , IEEE
Transactions on Image Processing, Vol. 1, No. 2, April 1992.

Appendix I U.S. Patent No. 5,321,520 (Inga et al)

Appendix J U.S. Patent No. 6,182,114 (Yap et al.)

Appendix K U.S. Patent No. 5,179,638 (Dawson et al.)

Appendix L Lance Williams, Pyramidal Parametrics, Computer Graphics,
vol. 17, no. 3, July 1983

Appendix M OpenGL Standard Version 1.1, March 1997, available:
https://www.opengl.org/documentation/specs/version1.1/glspec
1.1/node84.html#SECTION00681100000000000000

Appendix N H. Hoppe, Progressive Meshes, SIGGRAPH ’96: Proceedings
of the 23rd annual conference on computer graphics and
interactive techniques, pp. 99-108

Appendix O U.S. Patent No. 5,798,770 (Baldwin)

Appendix P U.S. Patent No. 5,987,256 (Wu et al.)

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

v

Appendix R Boris Rabinovich & Craig Gotsman, Visualization of Large
Terrains in Resource-Limited Computing Environments (1997)

Appendix S User Datagram Protocol (UDP) (Windows CE 5.0, Microsoft,
Available: https://msdn.microsoft.com/en-
us/library/ms885773.aspx [Accessed April 28, 2015]

Appendix T OpenGL Standard Version 1.2.1, April 1999, available:
https://www.opengl.org/documentation/specs/version1.2/opengl
1.2.1.pdf

Appendix X George H. Forman and John Zahorjan, “The challenges of
mobile computing,” Computer vol. 27, no. 4, pp. 38, 47 (April
1994)

Appendix Y K. Brown and S. Singh, A Network Architecture for Mobile
Computing, INFOCOM ’96, Fifteenth Annual Joint Conference
of the IEEE Computer Societies, Networking the Next
Generation, Proceedings IEEE vol. 3, pp. 1388-139

Appendix Z Kreller, B. et al “UMTS: a middleware architecture and mobile
API approach,” Personal Communications, IEEE, vol. 5, no. 2,
pp. 32-38 (April 1998)

Appendix AA Hansen, J. et al, “Real-time synthetic vision cockpit display for
general aviation,” AeroSense ’99, International Society for
Optics and Photonics, 1999

Appendix BB U.S. Patent No. 5,760,783 to Migdal et al. (“Migdal”)

Appendix EE Theresa-Marie Rhyne, A Commentary on GeoVRML: A Tool
for 3D Representation of GeoReferenced Data on the Web,
International Journal of Geographic Information Sciences, issue
4 of volume 13, 1999

Appendix GG GeoTIFF Format Specification Revision 1.0

Appendix HH TIFF Revision 6.0, dated June 3, 1992.

Appendix II FlashPix Format Specification v1.0, dated September 11, 1996

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

vi

Appendix KK The Virtual Reality Modeling Language ISO/IEC 14772-
1:1997

Appendix LL Marc H. Brown and Robert A. Shillner, “DeckScape: an
experimental Web browser,” Computer Networks and ISDN
Systems 27 (1995) 1097-1104

Appendix NN IPR2016-00448 and IPR2016-00449, transcript of April 18,
2017 hearing (non-confidential portions)

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

1

I. INTRODUCTION

1. My name is William R. Michalson. I am a professor of electrical and

computer engineering at Worcester Polytechnic Institute in Massachusetts.

2. I have been engaged by Microsoft Corporation (“Microsoft”) to

investigate and opine on certain issues relating to U.S. Patent No. 9,635,136 B2 5

(the “’136 Patent”) entitled “Optimized Image Delivery Over Limited Bandwidth

Communication Channels” in Microsoft’s Petition for Inter Partes Review of the

’136 Patent (“Microsoft IPR Petition”) which requests the Patent Trial and Appeal

Board (“PTAB”) to review and cancel all claims of the ’136 Patent—claims 1-27

(“Challenged Claims”). 10

3. I have also been engaged by Microsoft to investigate and opine on

certain issues relating to four other patents that are related to the ’136 Patent—U.S.

Patent Nos. 7,908,343 B2 (“the ’343 Patent”), 7,139,794 B2 (“the ’794 Patent”),

8,924,506 B2 (“the ’506 Patent”), and 9,253,239 B2 (“the ’239 Patent”) —in

additional petitions for inter partes review by Microsoft. I understand that 15

Bradium Technologies LLC (“Bradium”) is asserting all four patents against

Microsoft in an on-going patent infringement lawsuit, No. 1:15-cv-00031-RGA,

filed in the U.S. District Court for the District of Delaware on January 9, 2015 and

amended to add the ’239 Patent on March 14, 2016. I have provided opinions

regarding the invalidity of the Bradium patents in each of the following cases: 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

2

• 794 Patent: IPR2015-01432, instituted Dec. 23, 2015, Final Written

Decision issued Dec. 21, 2016

• ’343 Patent:

o IPR2015-01434, institution denied Dec. 23, 2015

o IPR2016-00448, instituted July 25, 2016 5

• ’506 Patent:

o IPR2015-01435, institution denied Dec. 23, 2015

o IPR2016-00449, instituted July 27, 2016

• ’239 Patent: IPR2016-01897, instituted April 5, 2017

• U.S. Patent No. 9,641,644: IPR2017-01616, filed June 22, 2017 10

I have also been engaged by Microsoft to analyze U.S. Patent No. 9,641,645.

4. I understand that the ’136 Patent has not yet been asserted in litigation

against Microsoft.

5. I understand that the ’136 Patent was purportedly assigned to

Bradium. Bradium is therefore referred to as the “Patent Owner” in this 15

declaration.

6. In this declaration, I will first discuss the technology background

related to the ’136 Patent and then provide my analyses and opinions regarding

claims 1-27 of the ’136 Patent. The discussion of the technology background

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

3

includes an overview of that technology as it was known before December 2000,

which I understand as the earliest priority date claimed by the ’136 Patent. This

overview provides some of the bases for my opinions with respect to the ’136

Patent.

7. This declaration is based on the information currently available to me. 5

To the extent that additional information becomes available, I reserve the right to

continue my investigation and study, which may include a review of documents

and information that may be produced, as well as testimony from depositions that

may not yet be taken.

8. In forming my opinions, I have relied on information and evidence 10

identified in this declaration, including the ’136 Patent, the prosecution history of

the ’136 Patent, and prior art references listed as Exhibits to the Microsoft IPR

Petition and listed as appendices of this declaration. The Appendices to this

declaration include a number of references known to those in the art to describe

technical concepts relevant to the subject matter of this declaration, and include 15

(for example) patents, technical publications, and industry standards. In my

opinion, an expert or a person of ordinary skill in the art in the subject matter

relevant to this declaration would consider each of the Appendices to this

declaration relevant to the subject matter of this declaration and would reasonably

rely on such materials to form an opinion as to the state of the art prior to 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

4

December 27, 2000, the interpretation of the prior art references relied upon in

Microsoft’s petition, and the obviousness of the claims challenged in the petition. I

have also relied on my own personal experience in the field of computer graphics,

which includes the design and development of computer graphic hardware,

software, and display systems. 5

II. SUMMARY OF OPINIONS

9. Claims 1-27 of the ’136 Patent relate to a system and method for

dynamic visualization of image data transferred through a communications

channel. For the reasons explained below, none of the features described in Claims

1-27 of the ’136 Patent were novel as of either October 1999 or December 2000,1 10

1 I understand that the inventors alleged during the prosecution of U.S. Patent No.

7,644,131 that “the herein invention was first defined in October 1999.” See, e.g.

IPR2016-00448, Ex. 2064. However, this statement related to a different

application and no corroboration was provided for the assertion of this date. I refer

to this date only because it is the earliest invention date which I am aware of

3DVU or Bradium having asserted. Nothing in this declaration should be taken as

an admission that the subject matter claimed in the ‘136 Patent was actually

invented on this date, and I reserve the right to offer rebuttal testimony if Bradium

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

5

nor does the ’136 Patent teach a novel and non-obvious way of combining these

known features.

10. Claims 1-27 of the ’136 Patent relate to well-known technologies in

the computer industry such as multi-resolution hierarchical maps, image

compression, packetized data transmission, and three-dimensional (3D) graphics 5

rendering. No element of Claims 1-27 is novel, and Claims 1-27 do not bring these

elements together in a way that brings any benefit beyond what a person of

ordinary skill in art would expect from the known functions of the individual

components. Claims 1-27 describe techniques that were well-known in the field,

and combine them in ways that would have been readily apparent to a person of 10

ordinary skill in the art with predictable results.

11. It is my opinion that each of Claims 1-27 is invalid under the

patentability standard of 35 U.S.C. § 103 as I understand it and as explained to me

by Microsoft’s counsel. Within this declaration I discuss specific grounds of

invalidity of Claims 1-27; however, my opinion that Claims 1-27 are invalid under 15

35 U.S.C. § 103 is not limited to these specific grounds, and indeed, it is my

opinion that Claims 1-27 would have been invalid in light of the general

seeks to argue or present evidence of an invention date prior to the effective filing

date for any claim.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

6

knowledge of a person of ordinary skill in the art at the time of the alleged

invention.

12. For purposes of my analyses in this declaration only, I provide my

proposed construction of certain terms in Claims 1-27 in detail in a later part of this

declaration. 5

13. The subsequent sections of this declaration will first provide my

qualifications and experience and then describe details of my analyses and

observations.

III. QUALIFICATIONS AND EXPERIENCE

A. Education and Work Experience 10

14. I received a Ph.D. degree in Electrical Engineering in 1989 and a

Master of Science degree in Electrical Engineering in 1985 from the Worcester

Polytechnic Institute. I received a Bachelor of Science degree in Electrical

Engineering from Syracuse University in 1981.

15. I have more than twenty years of experience in the fields of electrical 15

engineering, computer systems, navigation systems, and communications systems.

My experience includes the design, implementation and use of geographic

information systems (“GIS”), as well as the design, implementation and use of

navigation systems relying on GPS and other positioning system technologies. I

also have extensive experience in computer communication and data processing 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

7

systems as well as systems for the efficient transmission of digital images and

other data. Additionally, I have experience in the design and implementation of

hardware and software systems used to render image data for display.

16. I have published 16 papers in technical journals and 97 papers in

technical conferences. I hold eight U.S. patents in the fields of handheld GPS 5

(Global Positioning System), portable geolocation devices, and communication

networks. I have also authored one book chapter relating to optical interconnect

networks for massively parallel computers. I became a Senior Member of the

Institute of Electrical and Electronics Engineers (IEEE) in 2003.

17. My experience spans from product designs and R&D in industry, 10

teaching, research and development in an educational and research institution to

technology consulting to industry. I was an engineer at Raytheon Company for ten

years from 1981 to 1991. During this period, I worked on projects related to

computer display hardware for various applications, including air traffic control

applications. 15

18. After leaving Raytheon Company, I joined the Worcester Polytechnic

Institute and became a full-time faculty member there in 1991. My research at

WPI focuses on navigation systems and related technologies. I am the director of

WPI’s Robot Navigation and Control Laboratory.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

8

19. My research projects at WPI cover various technologies and include

(1) a system using tracking and communications technologies to track shipping

containers, (2) an automotive based system that combined GPS and map data in an

automotive environment, (3) a remote hazard detection system using GPS and

radio communications, and (4) a differential GPS system that combined GPS and 5

radio technologies to determine the precise path of vehicles operating off-road

during forest operations.

20. I have worked as a consultant in the navigation and communication

systems fields, e.g., in the context of space shuttle docking operations, transfer of

traffic information to GPS devices, combinations of GPS and cellular 10

communications for tracking purposes, and map-based handheld tracking devices.

21. I am familiar with numerous GIS and mapping products that existed

in the market since the late 1980s, including systems and software developed by

Etak, Microsoft, DeLorme, and others. In the conduct of my research and other

work, I have routinely used commercially available GIS and mapping products and 15

have developed mapping and visualization software for specialized applications.

Additionally, I have used and incorporated database systems such as Microsoft

Access, Borland Paradox, Oracle, SQL and others in my research and have

incorporated database systems into other hardware and software systems for use in

storing and retrieving GIS-related data. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

9

22. I have done extensive research work in communications and

networking system design, and have worked with all of the digital, analog and

software components needed to build communications and navigation systems.

My work with communications and networking protocols began in the mid-1980s

with TCP/IP over packet radio. I have used these and other communications and 5

networking protocols extensively in conducting my research. In addition, my work

on GPS and navigation systems involved implementing low-latency

communications to support differential techniques that allow a GPS receiver to

provide more accurate positioning information.

23. I have extensive experience with the development and maintenance of 10

server computers, including the installation and maintenance of web servers and

file servers, as well as the design, development, test, and maintenance of web

based applications. These applications typically employ C/C++, Java, JavaScript,

PHP, HTML, MySQL, and etc. I am also experienced with server-client systems

where the client computer exchanges navigation and/or geographical information 15

with server computer through a wired and/or wireless network.

24. My curriculum vitae, which provides a detailed summary of my

education, work experience, publication, teaching history, and etc. is attached to

this declaration as Appendix A.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

10

B. Compensation

25. I am being compensated for the services I am providing in this and

other Microsoft IPR petitions. The compensation is not contingent upon my

performance, the outcome of this inter partes review or any other proceedings, or

any issues involved in or related to this inter partes review or any other 5

proceedings.

C. Documents and Other Materials Relied Upon

26. The documents on which I rely for the opinions expressed in this

declaration are documents and materials identified in this declaration, including the

’136 Patent, patents related to the ’136 Patent, the prosecution history for the ’136 10

Patent and other patents related to the ’136 Patent, the prior art references and

information discussed in this declaration, including the references attached as

exhibits to the IPR Petition for the ’136 Patent: U.S. Patent No. 5,956,039 to

Woods et al (“Woods”) (Ex. 1003), TerraVision II: Visualizing Massive Terrain

Databases in VRML by M. Reddy et al., IEEE Computer Graphics and 15

Applications, March/April 1999 (“Reddy”) (Ex. 1004), U.S. Patent No. 7,324,228

B2 to Chiarabini et al (“Chiarabini”) (Ex. 1006), B. Fuller and I. Richer, The

MAGIC Project: From Vision to Reality, IEEE Network May/June 1996, pp. 15-25

(“Fuller”) (Ex. 1011), and any other references specifically identified in this

declaration, in their entirety, even if only portions of these documents are 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

11

discussed here in an exemplary fashion. I have also considered certain arguments

made by Bradium and its hired experts, including Dr. Peggy Agouris, in IPRs of

related patents, which do not change my opinion that the claims of the ’136 Patent

are obvious.2

IV. STATEMENT OF LEGAL PRINCIPLES 5

A. Claim Construction

27. Microsoft’s counsel has advised that, when construing claim terms of

an unexpired patent, a claim subject to inter partes review receives the “broadest

reasonable interpretation in light of the specification of the patent in which it

appears.” 10

B. Anticipation

28. Microsoft’s counsel has advised that in order for a patent claim to be

valid, the claimed invention must be novel. Microsoft’s counsel has further

advised that if each and every element of a claim is disclosed in a single prior art

2 I understand that Microsoft’s burden of proof for institution of an IPR does not

extend to rebutting every possible counter-argument, so I will not discuss every

argument previously made by Bradium or its expert in previous IPRs. However, I

reserve the right to offer testimony in rebuttal to any arguments or evidence

submitted by Bradium in this proceeding.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

12

reference, then the claimed invention is anticipated, and the invention is not

patentable according to pre-AIA 35 U.S.C. § 102 effective before March 16, 2013.

In order for an invention in a claim to be anticipated, all of the elements and

limitations of the claim must be shown in a single prior reference, arranged as in

the claim. A claim is anticipated only if each and every element as set forth in the 5

claim is found, either expressly or inherently described, in a single prior art

reference. In order for a reference to inherently disclose a claim limitation, that

claim limitation must necessarily be present in the reference.

C. Obviousness

29. Microsoft’s counsel has also advised me that obviousness under pre-10

AIA 35 U.S.C. § 103 effective before March 16, 2013 is a basis for invalidity. I

understand that where a prior art reference does not disclose all of the limitations

of a given patent claim, that patent claim is invalid if the differences between the

claimed subject matter and the prior art reference are such that the claimed subject

matter as a whole would have been obvious at the time the invention was made to a 15

person having ordinary skill in the relevant art. Obviousness can be based on a

single prior art reference or a combination of references that either expressly or

inherently disclose all limitations of the claimed invention. In an obviousness

analysis, it is not necessary to find precise teachings in the prior art directed to the

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

13

specific subject matter claimed because inferences and creative steps that a person

of ordinary skill in the art would employ can be taken into account.

30. I understand that obviousness is not driven by a rigid formula, but is a

flexible inquiry that reflects the fact that a person of ordinary skill in the art

exercising ordinary creativity may find a variety of reasons to combine the 5

teachings of different references. I understand that a non-exclusive list of possible

factors that may give a person of ordinary skill in the art a reason to combine

references includes combining elements according to known methods to yield

predictable results; simple substitution of known elements to obtain predictable

results; use of known techniques to improve similar devices in the same way; 10

applying known techniques to known devices ready for improvement to yield

predictable results; choosing from a finite number of identified, predictable

solutions, with a reasonable expectation of success; known work in one field of

endeavor prompting variations of it for use in the same field; and teaching in the

prior art that would have led one of ordinary skill to combine prior art reference 15

teachings to arrive at the claimed invention.

V. LEVEL OF ORDINARY SKILL IN THE ART

31. I understand from Microsoft’s counsel that the claims and

specification of a patent must be read and construed through the eyes of a person of

ordinary skill in the art at the time of the priority date of the claims. I have also 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

14

been advised that to determine the appropriate level of a person having ordinary

skill in the art, the following factors may be considered: (a) the types of problems

encountered by those working in the field and prior art solutions thereto; (b) the

sophistication of the technology in question, and the rapidity with which

innovations occur in the field; (c) the educational level of active workers in the 5

field; and (d) the educational level of the inventor.

32. The “Background” section of the ’136 Patent describes a “well

recognized problem” of how to reduce the latency for transmitting full resolution

images over the Internet on an “as needed” basis, particularly for “complex

images” such as “geographic, topographic, and other highly detailed maps.” Ex. 10

1001 at 1:61-2:2.

33. To solve this problem and to address some perceived issues in the

existing art, the ’136 Patent discloses a system capable of “optimally presenting

image data on client systems with potentially limited processing performance,

resources, and communications bandwidth.” Id. at 3:66-4:2. The ’136 Patent 15

states that the disclosed technology can achieve faster image transfer by (1)

dividing the source image into parcels/tiles, (2) processing the parcels/tiles into a

series of progressively lower resolution parcels/tiles, and (3) requesting and

transmitting the parcels/tiles needed for a particular viewpoint in a priority order,

generally lower-resolution tiles first. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

15

34. In light of the disclosed technology of the ’136 Patent, a person of

ordinary skill in the art for the ’136 Patent would need education or work

experience in computer network communications. Because a “common

application” of the ’136 Patent is to transmit “geographic, topographic, and other

highly detailed maps,” (id. at 1:64-66), a person of ordinary skill in the art would 5

require some knowledge and experience with geographic information systems

(“GIS”).

35. Based on the above considerations and factors, it is my opinion that a

person having ordinary skill in the art should have a Master of Science or

equivalent degree in electrical engineering or computer science, or alternatively a 10

Bachelor of Science or equivalent degree in electrical engineering or computer

science, with at least 5 years of experience in a technical field related to geographic

information system (“GIS”) or the transmission of image data over a computer

network. This description is approximate and additional educational experience

could make up for less work experience and vice versa. 15

36. I understand that in IPR proceedings involving related patents,

Bradium and its expert have offered a definition of the level of ordinary skill in the

art which differs from mine. See, e.g. IPR2016-00448, Paper 20 at 8 and Ex. 2003,

¶¶ 15-19. As I explained in those related proceedings, Bradium’s position

regarding the level of ordinary skill in the art was incorrect. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

16

37. For example, Bradium argued that my proposed level of ordinary skill

in the art was incorrect because one of the named inventors, Mr. Levanon, would

not have met my definition of the level of ordinary skill in the art. Bradium also

asserted that the other named inventor, Mr. Lavi, also would not qualify as a

person of ordinary skill in the art. I disagree. 5

38. First of all, I understand that a person of ordinary skill in the art is not

a specific individual, but a hypothetical individual at the time of the alleged

invention who is familiar with the relevant art in the field and is capable of making

reasonable inferences from that art, in addition to being a person of ordinary

creativity. If an alleged invention is not in fact novel but simply applies principles 10

that were well-known in the art with predictable results, as is the case with the ’136

Patent, it is certainly possible that the named inventors might have less education

and experience than a hypothetical person of ordinary skill in the art.

39. Additionally, based on my review of Mr. Levanon’s linkedin profile

(Ex. 1015), it does not appear as though Mr. Levanon would meet Bradium and Dr. 15

Agouris’ proposed definition of a person of ordinary skill in the art, because Mr.

Levanon does not have a four-year degree or equivalent in any of the fields of art

identified by Bradium. See also Ex. 1019 (Levanon Deposition Transcript) at

31:19-22.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

17

40. However, having considered the proposed level of ordinary skill

previously offered by Bradium and Dr. Agouris, the opinions that I offer in this

declaration would not change if Bradium’s proposed level of ordinary skill were

applied.

41. My conclusions would not change if the level of ordinary skill in the 5

art were assessed in October 1999, which was the earliest invention date asserted

by Bradium during the prosecution of related patents, or in December 2000, when

the earliest applications to which the ’136 Patent claims priority were filed.

VI. TECHNOLOGY BACKGROUND OF THE ’136 PATENT

42. It is my opinion that the ’136 Patent recites an obvious and predictable 10

combination of elements that were well-known in the art at the time the ’136

Patent was filed and at the time of alleged invention. In this section of my

declaration, I provide an overview of some general principles that were understood

in the art at the time of filing of the ’136 Patent, and therefore would be within the

knowledge of a person of ordinary skill in the art. I use certain references 15

(including both patents and non-patent literature) to illustrate the background

knowledge of a person of ordinary skill in the art, but the knowledge of a person of

ordinary skill in the art at the time regarding the claimed features would not have

been limited to these specific references.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

18

43. The ’136 Patent recites that the “preferred operational environment of

the present invention is generally shown in Fig. 1” and links a network server with

a client system “through a communications network, such as the Internet 14

generally and various tiers of Internet service providers (ISPs) including a wireless

connectivity provider.” Ex. 1001, 5:51-64; Fig. 1: 5

44. Based on my review of the entire specification of the ’136 Patent, it

appears to me that the inventors describe a system that relied on conventional

network connections, including conventional wireless networking methods, and

that the underlying means of transmitting data over the Internet or over a wireless 10

network are not emphasized as a point of novelty. In other words, in order to

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

19

implement the alleged invention in the ’136 Patent, a person of ordinary skill in the

art would have to rely on existing methods already known in the art of connecting

to the Internet and sending data over a wireless connection, since the ’136 Patent

does not provide any novel teachings about this aspect of the alleged system. This

fact is particularly relevant to certain claim limitations which relate to, e.g., the 5

bandwidth of the communications channel, whether the communications channel is

wireless, and the type of client device which operates the ’136 Patent’s user

software, because the ability to connect to the Internet, or connect to the Internet

via a wireless channel or on a “small” client device such as a PDA, is something

that the ’136 Patent assumes that a person of ordinary skill in the art would already 10

know how to do. I considered this relevant to my analysis later in this declaration

that these claim limitations are obvious over the references discussed and that a

person of ordinary skill in the art would, for example, have a reasonable

expectation of success implementing the system described by Reddy (which itself

describes a laptop computer) on portable devices or via a wireless connection. 15

45. I provide below a general description of the underlying technology of

transmitting data over the Internet and via wireless connections as it existed in

2000 and in before.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

20

A. Data Communications Over the Internet

46. The predominant computer networking technology and set of

communications protocols used for most online communications today and prior to

the filing of the application for the ’136 Patent is known as the Internet Protocol

(IP) suite including TCP/IP, named after its two main component protocols: the 5

Transmission Control Protocol and the Internet Protocol. While other protocols,

such as the User Datagram Protocol, or UDP, are also part of the IP suite of

protocols, the ’136 Patent teaches at 8:37-58 that its preferred embodiment uses

TCP/IP to send data packets. In this declaration I do not provide a detailed

description of all characteristics of the very well-known TCP/IP protocols, but 10

focus on a few specific aspects of TCP/IP that are pertinent to the claims at issue in

the ’136 Patent. TCP/IP transmits data between computers in a network using data

packets, which are formatted units of data carried by the network as suitably sized

blocks. Packets are composed of a header and a payload. The “payload” is the

information which the packet is actually intended to convey. The header refers to 15

supplemental data placed at the beginning of a block, and contains information in a

standard format such as the sender’s and recipient’s Internet Protocol addresses, a

sequence number indicating where in a sequence of packets being transmitted the

packet falls, an offset (how far into the data the payload begins) and the protocol

governing the format of the payload. The addresses are used to route the packet to 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

21

its destination, although unlike a circuit-switched connection, different packets

going between the same sender and recipient at the same time may take different

routes over the network (and therefore may not arrive in the same order that they

were originally sent). A rough analogy for data packets is that the header is the

“envelope” which contains the address used to deliver the packet, while the 5

payload is the contents of the envelope. The destination computer uses

information in the header to place the data packet in its proper place in order, from

which the original data contained in multiple packets can be reassembled. When

data segments arrive in the wrong order TCP/IP buffers the out-of-order data until

all data can be properly re-ordered and delivered to the application. 10

47. Before data is transmitted using TCP/IP, the sender and the

destination exchange a short series of messages confirming a connection (also

known as opening a “socket”). The connection in this case simply means that the

sender and the destination exchange messages to confirm that they are able to

exchange messages via the network. When the destination computer receives a 15

packet, it sends a short confirmation message to the sender that the packet has been

received. If the confirmation is not received within a certain time period, the

sender re-sends the packet. This method avoids losing data in transmission if the

transmission of a single packet fails.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

22

48. A common consideration in building online systems is how large to

make the data packets. Among other trade-offs, smaller packets may be more

likely to reach their destination without loss or error; however, because the header

size is similar for a large packet and a small packet, the amount of bandwidth taken

up by header overhead increases with the use of smaller packets. In general, there 5

are a variety of packet sizes that may be used in the transfer of a TCP/IP packet

from source to destination since lower-level network protocols may have

limitations on packet length based on the physical layer or other requirements.

Typically, the network protocols used at any given layer in a protocol stack set the

minimum and maximum packet lengths that may be transferred. 10

B. Data Communications in Wireless Mobile Systems

49. By the late 1990s, it was well-known in the art that digital data could

be transmitted by TCP/IP over wireless networks. For example, Appendix X, “The

challenges of mobile computing,” Computer vol. 27, no. 4, pp. 38, 47 (April 1994)

provides an overview of methods for implementing internet connections on mobile 15

devices as of 1994, noting that while wireless networks typically deliver lower

bandwidth than wired networks, cellular telephone products of the time could

already achieve transmission rates of 9-10 kilobits per second.

50. In another example in 1996, K. Brown and S. Singh, A Network

Architecture for Mobile Computing, INFOCOM ’96, Fifteenth Annual Joint 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

23

Conference of the IEEE Computer Societies, Networking the Next Generation,

Proceedings IEEE vol. 3, pp. 1388-1397 (Appendix Y) describes technologies that

integrate wireless or mobile networks with existing fixed data networks such as the

Internet. This integration was described by using mobile data protocols to interact

and be compatible with the TCP/IP structure of the Internet. This paper described 5

how the Universal Mobile Telecommunications System (UMTS) under

development in Europe was expected to offer average mobile data rates of between

1-2 megabytes per second (Mbps) per mobile user. Among other features, “Mobile

users will be able to access their data and other services such as… map services.”

App. Y at 2. 10

51. Appendix Z, Kreller, B. et al “UMTS: a middleware architecture and

mobile API approach,” Personal Communications, IEEE, vol. 5, no. 2, pp. 32-38

(April 1998) describes the development of third-generation (3G) mobile networks

offering “high-bit-rate data services, guaranteed on-demand bandwidth, and low

delays.” Id. at 32. To illustrate the development of frameworks to connect mobile 15

telephone networks with existing fixed networks, the authors use the example of a

mapping service called “City Guide,” which allows a mobile device to request and

download map imagery and other data from a server via hypertext transfer protocol

(HTTP) to “provide access to maps describing the current surroundings.” Id. at 33.

The CityGuide could use JPEG compression and decompression, and could 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

24

achieve bandwidth of up to 9.6 kbps using the then-existing Global System for

Mobile Communications (GSM) cellular data standard. Id. at 36, 37. Further, the

CityGuide system is an early example of the use of “[w]eb pages to allow instant

access to further information about a particular location” by using a browser on a

mobile device. Id. At 33. 5

C. Image Tiles and Image Pyramids

52. The ’136 Patent describes sub-dividing a high resolution source image

into a regular array of image parcels (a.k.a. image tiles), and pre-processing the

image into a series of derivative images of progressively lower resolutions. Ex.

1001 at 6:32-43; Fig. 2. Preferably, the resolution decreases by a factor of four for 10

each derivative image in the series. Id. at 6:43-47. Fig. 2 of the six provisional

applications to which the ’136 Patent claims priority (which is identical in all six

provisional applications) best illustrates this image tiling and image pyramid

scheme. Ex. 1021 at Fig. 2.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

25

53. This image processing scheme, however, had been developed and

widely used long before the ’136 Patent’s priority date. For example, Hanan

Samet’s book The Design and Analysis of Spatial Data Structures discloses

generating an image “pyramid” from a 2nx2n image array, where the pyramid is “a 5

sequence of arrays {A(i)} such that A(i-1) is a version of A(i) at half the scale of

A(i).” App. B, Hanan Samet, The Design and Analysis of Spatial Data Structures

at 12 (1989, Reprinted with corrections in January, 1994). Fig. 1.7 in the Samet

book is virtually the same as Fig. 2 of the ’136 Patent’s provisional application.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

26

54. In another example, U.S. Patent No. 5,263,136 (DeAguiar et al) filed

on April 30, 1991 and issued on November 16, 1993, entitled System for Managing

Tile Images using Multiple Resolutions, discloses an “image memory management

system for tiled images,” where “each source image is stored as a full resolution 5

image and a set of lower-resolution subimages.” App. C at Abstract; Figs. 1 and 2.

Suitable applications of the DeAguiar patent’s image tiling and image pyramid

scheme include “electrical schematics, topographical maps, satellite images,

heating/ventilating/air conditioning (HVAC) drawings, and the like.” Id. at col.

6:65-7:2. 10

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

27

55. U.S. Patent 4,972,319 to Delorme, filed on Sept. 25, 1987 and issued

on Nov. 20, 1990, also showed that image tiling and image pyramid can be used in

mapping applications. Specifically, the Delorme patent discloses a “global

mapping system which organizes mapping data into a hierarchy of successive 5

magnitudes or levels for presentation of the mapping data with variable resolution,

starting from a first or highest magnitude with lowest resolution and progressing to

a last or lowest magnitude with highest resolution.” App. D at Abstract. A

pyramid of successively lower resolution image tiles is shown in Fig. 8 of the

Delorme 319 patent. Id. at Fig. 8. 10

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

28

56. In yet another example, a 1996 article entitled “The MAGIC Project:

From Vision to Reality” by Barbara Fuller and Ira Richer (“Fuller”) also shows the

image tiling and image pyramid scheme for mapping applications. Ex. 1011 at

Fig. 3. 5

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

29

57. Microsoft itself used a multi-resolution tiling system in an online

mapping application, TerraServer, starting in the mid 1990s. See, e.g. Barclay et

al, “Microsoft TerraServer: A Spatial Data Warehouse,” Microsoft Technical

Report MS-TR-99-29, June 1999, Revised February 2000 (Ex. 1030) (“Barclay”).3 5

TerraServer stored “aerial, satellite, and topographic images of the earth in a SQL

database available via the Internet.” Barclay, Abstract. TerraServer stored image

data in the database in JPEG or GIF format in a “pyramid” of image tiles at

varying resolutions. Id., § 2.1. Source imagery is first cut into high-resolution tiles

using a “TerraCutter” program: 10

3 Also available online at https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/msr_tr_99_29_terraserver.pdf (accessed September 29,

2016).

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

30

58. Barclay, Fig. 7. Once the high-resolution tiles have been generated,

“[f]our higher resolution tiles are sub-sampled onto one lower resolution tile,” this

process is “repeated for the number of levels in the image hierarchy.” Id. § 2.1.

Tiles are requested using HTTP protocol by a “thin-client” graphical web browser. 5

Fig. 9 of Barclay shows how TerraServer down-samples image tiles into a

hierarchy or image pyramid of tiles at varying resolutions:

See also id., § 3.4.

59. I was personally familiar with the TerraServer system around the time 10

that it was released in 1998 because I personally used the system at the time and it

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

31

was widely discussed in the GIS community after it became very popular very

quickly. The description in Ex. 1030 is consistent with my own recollection at the

time of how the TerraServer operated. I have also considered a number of

additional contemporaneous documents describing TerraServer, including the

original 1999 version of Barclay (Ex. 1032), a version of Barclay that was 5

published in the proceedings of the ACM SIGMOD (Association for Computing

Machinery’s Special Interest Group on Management of Data) in 2000 (Ex. 1035),

an earlier 1998 Microsoft White Paper on Terra Server (Ex. 1034, with Cornell

University Library submission record as Ex. 1033), a 1998 Microsoft White Paper

on TerraServer (Ex. 1036) and several Internet Archive captures from the late 10

1990s and 2000 of the technical information on the TerraServer page (Exs. 1037-

1042). All of this information is consistent with and supports my understanding of

the operation of the TerraServer program which I discussed in regard to Ex. 1030.

Additionally, all of these documents were contemporaneously generated

descriptions of TerraServer that long pre-date the litigation in this case. Therefore, 15

it is my opinion that a reasonable person in the field of computer science, whether

an expert or a person of ordinary skill in the art, would rely on these exhibits as

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

32

indicative of what was known in the art of online Geographic Information Systems

prior to the alleged invention date and effective filing date of the ’136 Patent.4

60. Bradium also previously mischaracterized a portion of Ex. 1030 in

other IPRs relating to other Bradium patents. For example, in a “Motion for

Observations” on my deposition testimony in IPR2016-00448, Bradium quoted a 5

portion of Ex. 1030 saying that the solution described in Ex. 1030 “had not been

attempted before” and that “many people felt it was impossible without using an

object-oriented or object-relational system” as somehow relevant to Bradium’s

“argument that VRML is essentially a set of objects that are linked to one another.”

IPR2016-00448, Paper 44, Observation No. 3; see also Appendix NN at 52:1-12. 10

This argument is such a complete non sequitur that it is difficult to even make

sense of what Bradium was trying to argue. Simply put, the quoted portion of Ex.

1030 had nothing to do with VRML. Since Bradium’s position here was

incoherent, it is more straightforward for me to explain what the quoted portion of

Ex. 1030 actually said. Microsoft’s TerraServer project was originally developed 15

by a research group focused on “scaleable servers” who wanted to demonstrate a

4 Naturally, some of these exhibits were accessed from the Internet more recently

and contain additional markings reflective of when they were accessed, but the

documents themselves are much older than that.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

33

“large Internet server with a large database and heavy web traffic,” and in order to

generate such traffic they “needed to build an application that would be interesting

to millions of web users.” One of the reasons that the authors describe for utlizing

a large scale geographic database as the test case is that:

The solution as we defined it - a wide-area, client/server 5

imagery database application stored in a commercially

available SQL database system - had not been attempted

before. Indeed, many people felt it was impossible

without using an object-oriented or object-relational

system. 10

Ex. 1030 at 2-3.

61. Read in context, this portion of Ex. 1030 is discussing how creating a

large-scale commercially available application based on commonly used SQL

databases made TerraServer a good application for demonstrating scalable server

concepts. This has nothing to do with VRML. Of course, it is also true that 15

VRML at the time was capable of using mip-mapped textures, including

geographically linked images (indeed, this is a key teaching of Reddy, which is

illustrated in Figures 1 and 3, for example), but that is not specifically what Ex.

1030 was discussing. To the extent that Bradium may raise similar arguments in

this proceeding, particularly if it does so in a more coherent manner, I may choose 20

to respond in more detail.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

34

D. Compression of Image Tiles

62. The ’136 Patent discusses that the image tiles can preferably be

compressed, e.g., for a fixed compression ratio of 4:1. Ex. 1001 at 6:48-53.

Numerous methods existed, however, long before the ’136 Patent’s priority date, to

compress images for either a variable or fixed ratio. 5

63. One widely used method of digital image compression is JPEG

compression, which is based on the Discrete Cosine Transform (“DCT”), and is

described in the International Telegraph and Telephone Consultative Committee

(“CCITT”) Recommendation T.81 published in September 1992 (App. F). JPEG

compression includes the following main steps: “1. The image is broken into 8x8 10

blocks of pixels. 2. Working from left to right, top to bottom, the DCT is applied to

each block. 3. Each block is compressed through quantization. 4. The array of

compressed blocks that constitute the image is stored in a drastically reduced

amount of space. 5. When desired, the image is reconstructed through

decompression, a process that uses the Inverse Discrete Cosine Transform 15

(IDCT).” App. G at 1, Ken Cabeen & Peter Gent, Image Compression and the

Discrete Cosine Transform.

64. Another widely used method of digital image compression is based on

the wavelet transform. For example, Marc Antonini et al.’s 1992 paper Image

Coding Using Wavelet Transform discloses a scheme for image compression using 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

35

the wavelet transform. See generally App. H. In addition, the Antonini paper

shows that image compression using wavelet transform not only achieves a good

image quality (id. at 217-18), but is also suitable for a progressive transmission

scheme to “allow the receiver to recognize a picture as quickly as possible at

minimum cost.” Id. at 218-19.5 5

65. The JPEG 2000 image compression standard, which was designed as

the next version of the JPEG Standard to address its identified problems, uses

discrete wavelet transform.

5 I understand that Bradium has mischaracterized my discussion of the use of

wavelet transformation in previous IPRs as somehow teaching away from the use

of progressive resolution enhancement (a term which does not appear in the claims

of the ’136 patent) by transmitting successive resolution levels. Simply put, this is

wrong because the two things have little or nothing to do with each other. Many

forms of compression were well known prior to the alleged invention and effective

filing dates of the ’136 Patent which could be used either to compress individual

images or “tiles,” or to progressively send differential images to form a complete

image, and neither taught away from the other.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

36

E. Progressive Image Resolution Enhancement

66. The progressive image resolution enhancement technique described

and claimed in the ’136 Patent is one of the “conventional” solutions that have

been used to reduce the latency of transmitting complex images over a

communications network, as admitted in the “Background of the Invention” 5

section of the ’136 Patent. Ex. 1001 at 2:11-21 (“Different conventional systems

have been proposed to reduce the latency affect by transmitting the image in highly

compressed formats that support progressive resolution build-up of the image

within the current client field of view. . . . Progressive image resolution

transmission, typically using a differential resolution method, permits an 10

approximate image to be quickly presented with image details being continuously

added over time.”) (emphasis added).

67. For example, U.S. Patent No. 5,321,520 to Inga et al., filed July 20,

1992 and issued June 14, 1994, discloses a “Progressive Image Enhancement”

(“PIE”) method, where a “‘crude’ image is presented to the subscriber” first and 15

then the method “progressively enhance[s] the quality of the presented image” over

time. App. I at col. 12:65-13:1. “The longer the user observes a selected image,

the ‘better’ the image becomes in the sense of pixel resolution and quantity of gray

levels.” Id. at col. 13:1-3.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

37

68. U.S. Patent No. 6,182,114 to Yap et al. was filed January 9, 1998 and

issued January 30, 2001. The “Background of the Invention” section of the ’136

Patent mentions Yap. The Yap Patent recognizes that “progressive transmission”

is an existing approach to solve the problem of “realtime visualization of large

scale images over a ‘thinwire’ model of computation,” i.e., over a “low bandwidth 5

line.” App. J at col. 1:47-65. In addition to the traditional progressive

transmission method, where the higher resolution of the entire image will be

eventually transmitted, the Yap Patent discloses an improved version of

progressive transmission, where “resolution is also varied over the physical extent

of the image.” Id. at col. 2:4-17. Specifically, the Yap Patent discloses that “high 10

resolution data is transmitted at the user’s gaze point but with lower resolution as

one moves away from that point.” Id. at 2:18-20. The same scheme is used in the

’136 Patent.

F. Three-Dimensional Graphics

1. Overview of 3D Computer Graphics principles 15

69. The “field” section of the ’136 Patent notes that the claimed invention

is designed “to support presentation of high-resolution images subject to dynamic

viewing frustums.” Ex. 1001, 1:52-57. The term “frustum” is used in computer

graphics to refer to the field of view of a three-dimensional image, and is

analogous to the view through a viewfinder of a real-world camera, except that the 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

38

“camera” is notional and is simply the basis for the calculations that the computer

does to render the image. In order to understand this aspect of the ’136 Patent and

how the prior art relates to it, I discuss below certain concepts in the field of

computer graphics. Computer graphics is the art and science of drawing pictures

on a display screen using a computer. A picture generated using computer 5

graphics is created from numerical data describing the objects to be drawn.

Computer graphics is generally divided into 2D ("two-dimensional") graphics that

only depict images in two dimensions and 3D ("three-dimensional") graphics that

depict images in three dimensions, although by way of representing them on a 2D

screen. 10

70. An image that shows up on a computer display typically corresponds

to a large, rectangular, two-dimensional array of values in a computer memory

called a frame buffer. An individual location in the frame buffer can hold a color

value corresponding to one "dot" or picture element, or pixel for short, on the

display screen. In the simple example shown below, the values in the frame buffer 15

at each pixel are either 0 or 1, which get displayed as black and white, respectively,

on the screen.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

39

71. In display systems, color values at each pixel are usually either

represented by a single number representing shades of gray, or by 3 numbers, R, G,

and B, corresponding to red, green, and blue intensity values, for each location on

the screen. The computer display is generated by repeatedly "scanning out" the 5

array of numerical pixel values from the frame buffer memory in successive rows

(at a rate, for example, of 60 frames/second), which produces the actual colors seen

at each location on the screen.

72. When the computer changes an image displayed on the screen, it

updates the corresponding values in the frame buffer. Simply writing a new 10

number into the frame buffer at a given location results in a new color appearing at

that position on the screen starting with the next refresh cycle.

73. Creating an image of a 3D scene involves taking a mathematical

description of the objects in a scene, looking at it from a given point of view, and

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

40

figuring out what colors to draw at all the pixel locations in the frame buffer to

create the corresponding image on the screen, as shown in the following example

of a 3D house being drawn on a 2D display. All 3D points in the scene are mapped

to the corresponding pixels on the screen by projecting along lines of sight, as

though the scene was being photographed by a camera onto film. The “projection 5

plane” below is another term for the “viewing frustum” as the term is used in the

’136 Patent.

74. The mathematical description of the scene is known as a 3D model.

Each 3D object in the 3D model is typically represented using a collection of 10

geometric “primitives” such as points, lines, and polygons (usually triangles) that

make up the object surfaces. In the simple example above, the house might be

modeled using 4 polygons for the walls and 4 more polygons for the roof. Each

polygon is defined by its vertices or corners. Typically, each vertex is specified

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

41

using 3D numerical coordinates, X, Y, and Z, for its location in 3D space and R, G,

and B values for its color. A mathematical process called rendering is used to

model a virtual "camera" looking at the 3D scene from a particular point of view,

mathematically project all the 3D polygons into the corresponding 2D pixels in the

display, and assign the appropriate colors to them in the frame buffer. 5

75. Various 3D computer graphics systems are built around the concept of

a graphics pipeline. Acting like an assembly line, the graphics pipeline takes in the

"raw materials" consisting of the data for the underlying 3D model and processes

these through a series of computational steps to produce the image displayed on the

2D screen. In its simplest form, a graphics pipeline is described as having a series 10

of three general phases, geometry, rasterization, and display, as shown in the

diagram below:

76. In the above diagram, the 3D model represents the X, Y, Z

coordinates and R, G, B color values for all the 3D polygons that make up the 15

objects in the desired scene, along with certain other information such as the

location of the camera, light sources, display boundaries, etc. Geometry refers to

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

42

the calculations performed to mathematically transform the 3D coordinates of all

the polygons in the 3D model into corresponding screen coordinates given the

location and orientation of the imaginary camera viewing the scene. Rasterization

refers to the computations that determine all of the 2D pixel locations that will be

visible within each 3D polygon and the colors those pixels should have. Display is 5

then the process of writing the 2D pixel color values into the frame buffer and

thereby causing the corresponding image to be displayed on the screen.

77. Rasterizing a polygon generally involves three main tasks:

determining which pixels fall within the polygon (scan conversion), determining

which of these pixels are visible on the screen (visible-surface determination), and 10

determining what color to assign each visible pixel (shading).

78. The process of determining which pixels within the scan converted

polygons will actually be visible on the screen is known as visible-surface

determination. Depending on the direction from which the scene is viewed by the

virtual camera, certain polygons (or portions thereof) may be occluded by other 15

polygons and not visible on the screen, such as the back wall of the house in the

example shown above. One common way to solve the visible surface problem is to

write the RGB value for a pixel into the frame buffer only if its 3D position is

closer to the camera than what may have been previously written into that same

location by another polygon, much as an oil painting is painted in layers from back 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

43

to front. This involves what is known in the art as depth buffering or z-buffering,

that is, keeping track of the depth or "Z" value (distance from the viewer's eye)

currently residing at each pixel.

79. Once the scan conversion and rasterization processes are complete,

the graphics program must assign colors to each visible pixel, a process that has 5

evolved substantially over the history of computer graphics and depends on the

level of realism desired in the resulting image. In the simple example below, only

the scan converted pixels that make up the edges of each polygon are drawn with

black pixels.

 10

Example of a Wireframe Image

80. The resulting collection of polygons approximating the three-

dimensional object is sometimes referred to as a “mesh” or “polygon mesh.” The

use of meshes, including foundational work performed by Microsoft to represent

three-dimensional objects at varying levels of detail, is described in detail in 15

Hughes Hoppe’s 1996 paper “Progressive Meshes,” (App. N), which was

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

44

published in the SIGGRAPH ’96: Proceedings of the 23rd annual conference on

computer graphics and interactive techniques, pp. 99-108, and is also available

online at http://research.microsoft.com/en-us/um/people/hoppe/pm.pdf.

2. Texture

81. In 1974, “texture mapping” was developed as a further improvement 5

in adding detail to objects or images. Texture mapping involves applying a 2D

image or function approximating some real-world material like wood, bricks,

fabric, marble, or a checkerboard, to the surface of polygons (i.e, the mesh) as in

the image shown below. The "pixels" of a texture map are often referred to as

texture elements or texels to distinguish them from the pixels of the resulting 10

image. Texture mapping is like applying wallpaper or a decal to a surface. It is

possible to construct a brick wall by carefully drawing many 3D bricks, which

takes a lot of work, or one can simply paste a photograph of a brick wall onto an

otherwise flat wall, which is easier and looks like a brick wall if you don't look too

close. Texture mapping has become standard in 3D graphics systems to use 15

texture mapping to quickly fill in realistic detail for many of the objects in a 3D

scene, especially floors, walls, sky, and other background areas. Textures can be

either color images, or can be monochrome images used to modulate the

untextured color of the polygon.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

45

82. Some textures may be generic- for example, a 3D graphics rendering

program might re-use a “wood” texture for all objects represented as wood. In this

scenario, the texture is essentially “wallpaper” with a repeating pattern applied to

certain objects or surfaces within the field of view.

83. Textures may also be unique, or specific to a particular surface or 5

object. This is often the case when photographs are used as textures. For example,

when satellite or aerial photographs are used in a 3D rendering of a landscape, the

specific portions of the imagery that correspond to a particular location are mapped

onto the terrain at that location. For example, U.S. Patent No. 5,179,638 to

Dawson et al., assigned to Honeywell, Inc., (App. K) illustrates how an aerial 10

photograph can be used as “texture data” and mapped onto co-located digital

elevation data, as shown in Fig. 2:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

46

84. This technique of using aerial imagery as a texture applied to a three-

dimensional model of terrain is also known as a “synthetic view.” Synthetic view

technology can be used in aviation to provide a pilot operating at night or bad

weather with a synthesized view of the terrain around them based on actual 5

position (e.g. derived from GPS). Appendix AA, Hansen, J. et al, “Real-time

synthetic vision cockpit display for general aviation,” AeroSense ’99, International

Society for Optics and Photonics, 1999, describes such a system. In the figure

below, the bottom portion of the figure shows a wire-frame diagram illustrating the

three-dimensional model of terrain, while the top image shows the synthetic view 10

created by rendering satellite imagery on the terrain model:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

47

85. Microsoft used a similar technique with its popular Flight Simulator

series of computer games, starting with Flight Simulator 1995. Flight Simulator

utilized a real-time 3D rendering of terrain features with textures generated from a

variety of sources, including satellite imagery. The figure below illustrates a 3D 5

perspective view generated in Flight Simulator 2000, which was actually released

in late 1999:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

48

3. Virtual Reality Modeling Language (VRML)

86. VRML was a well-known industry standard that defined a file format

for describing interactive 3D objects and worlds (App. KK). The 1997 release

version of the VRML standard, commonly known as VRML97, specified a file 5

format by which visual information, e.g., the texture and 3D modeling discussed

herein, can be stored on a computer and viewed.

87. A user wishing to view visual information stored in the VRML format

could typically use a VRML viewer program, a VRML browser or a plug-in that

worked with an off-the-shelf web browser. Because VRML was designed to 10

operate in a client-server system, e.g., conveying visual information via web pages,

a typical network-based VRML application would rely on an underlying Internet

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

49

mechanism of hypertext data requests to fetch VRML data from a server to a user

computer. One advantage of VRML file format was that it allowed for

hyperlinking to other media such as text and images, and thus provided a

mechanism by which a user could navigate through a visual scene being viewed,

while in the background, the VRML application would fetch and/or render 5

additional data.

G. Mip-Maps

88. The provisional applications that the ’136 Patent claims priority to

described the use of “mip-maps” as “surface textures when rendering a two-

dimensional representation of a three-dimensional scene.” See, e.g., Ex. 1010 at 7-10

9. This mip-mapping technology, however, has been used for rendering surface

textures since 1979, more than two decades before the filing date of the provisional

applications to which the ’136 Patent claims priority. App. L at 2, Lance Williams,

Pyramidal Parametrics, Computer Graphics, vol. 17, no. 3, July 1983.

89. The term “mip” derives from the Latin phrase “multum in parvo” 15

meaning “many things in a small place.” The term was adopted by Lance

Williams in his 1983 paper, which indicated that “the mip-mapping technology has

been used successfully to bandlimit texture mapping . . . since 1979.” Id. Mip-

mapping has been adopted in several versions of the OpenGL Standard prior to the

filing date of the ’136 Patent, including OpenGL 1.1 released in March 1997 and 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

50

OpenGL 1.2.1 released in April 1999. App. M, “Mipmapping” section of the

OpenGL 1.1 Standard;6 App. T at 129-131. OpenGL (GL stands for “graphics

library”) is a 3D graphics standard originally designed and released by Silicon

Graphics, Inc. of Mountain View, CA. As defined in OpenGL 1.1, a mipmap is

“an ordered set of arrays representing the same image; each array has a resolution 5

lower than the previous one. If the texture has dimensions , then there are

mipmap arrays. The first array is the original texture with

dimensions . Each subsequent array has dimensions where

are the dimensions of the previous array.” Id.

90. An illustration of the mipmap pyramid is shown below. See 10

Photospector Blog, http://photospector.com/gigapixels/.

6 Available online at

https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html#S

ECTION00681100000000000000

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

51

91. By the late 1990s, mipmaps were commonly used in 3D graphics

applications, among other purposes, to render object textures at varying levels of

detail based on the proximity of the object to the simulated viewpoint. For

example, it would ordinarily be preferable to display an object in close proximity 5

to the viewpoint at a high level of detail where the display is capable of showing a

high level of texture detail, whereas for more distant objects a lower level of

resolution is preferable because the display screen is unlikely to be capable of

displaying the highest-resolution texture at a great distance, and because lower-

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

52

resolution textures require far less system resources and bandwidth to retrieve, load

and render. U.S. Patent No. 5,760,783 to Migdal et al (“Migdal,” App. BB) is a

patent from Silicon Graphics which describes how mipmaps may be used to render

textures- including satellite or aerial photographs used as terrain textures for large

maps, such as a flight simulator application. App. BB, 9:5-17, 10:14-19. Migdal 5

illustrates how mipmaps at higher levels of detail may be used for points closer to

the viewpoint and lower levels of detail for more distant objects. For example, Fig.

4C of Migdal illustrates a perspective view of regions of three different level of

detail maps aligned with a center line from an eyesight location:

 10

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

53

92. Migdal teaches that Fig. 4C illustrates that the clip-map “contains

sufficient texel data to cover larger minified areas in the background of a display

where coarser texture detail is appropriate.” Id. at 10:3-5. In my opinion, this

teaching of Migdal is representative of what was already well-known in the art

long before the earliest priority date claimed by the ’136 Patent: that 3D graphics 5

applications could use “mipmaps” or similar level-of-detail pyramids, to render

objects closer to the viewpoint at a higher resolution and objects more distant from

the viewpoint at a lower resolution.

93. Fuller (Ex. 1011) also illustrates this principle of using mipmaps to

display closer objects at higher resolution and more distant objects at lower 10

resolution. Fuller describes an online system for 2D and 3D visualization of map

data, which creates a 3D perspective representation of a landscape using a digital

elevation model (DEM), then uses mipmaps of aerial images as the textures. Ex.

1002, Fig. 4:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

54

94. Fig. 3 of Fuller shows that higher resolution images are mapped onto

portions of the terrain nearest the viewer, while lower resolution images are

mapped onto more distant portions of the terrain:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

55

H. Storage of image data

95. In practical systems, the visual information in the form of image tiles,

image pyramids, mip-maps, 3D graphics, meshes, and so on, is stored on a

computer from which users can access the visual information. 5

96. The ’136 Patent describes that a network image server system stores

the source image data. Ex. 1001 at 6:16-30. The source image data is typically a

high-resolution bit-map raster map and/or satellite imagery of geographic regions.

Id. The ’136 Patent describes that this source image data is pre-processed to obtain

a series of derivative images, and is also subdivided into a regular array such that 10

each resulting image parcel has a same resolution. The ’136 Patent then describes

that each image parcel is “preferably” stored in a file such that any image parcel

can be located by specification of a KD, X and Y value.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

56

97. Many formats for storing images, and the trade-offs for storage and

retrieval efficiency, were well-known for several years before the filing of the ’136

Patent. The formats and trade-offs related to the color space used for image

representation, the tile size used in case of multi-resolution images, whether

different portions of an image are stored in one file or multiple files, the number 5

and details of headers used to indicate information about the image, and so on.

98. For example, GeoTIFF is a file format (Appendix GG) for storing

geographical image files using the well-known Tagged Image File Format (TIFF).

The GeoTIFF spec defines a set of TIFF tags provided to describe all

"Cartographic" information associated with TIFF imagery that originates from 10

satellite imaging systems, scanned aerial photography, scanned maps, digital

elevation models, or as a result of geographic analyses. Its aim is to allow means

for tying a raster image to a known model space or map projection, and for

describing those projections. The 1.0 release version of the GeoTIFF file format

builds upon the then available revision 6.0 of TIFF. 15

99. TIFF (Appendix HH) defines a file format for storing image data. In

particular, TIFF 6.0 provides for storage of multiple images in a single TIFF file,

each image corresponding to a subfile. These images could be, e. g., a full

resolution image and its reduced resolution representations.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

57

100. FlashPix by Kodak was another well-known format for storing images

(Appendix II). A FlashPix file stored image data in a hierarchy of resolutions from

the highest available for an image, down to the lowest defined format (§2.1).

Thus, a FlashPix file could contain either a single resolution image or an entire

multi-resolution hierarchy (§2.2, FIG. 2.3). For convenient access, each resolution 5

image was organized in tiles, which represented rectangular pixel arrays of the

image. (§2.3. FIG. 2.4).

101. These techniques, and other obvious variations, for storing image

data, including multiple resolution versions of an image, provided multiple

implementation choices. Depending on design criteria such as the amount of 10

storage available, tolerance to header overhead, transmission latency when the

images are to be transferred over a network, portability and compatibility with

client viewing programs, a person of ordinary skill in the art designing such a

system would be able to select a storage method for storing images in a single file,

with each tile in its separate file, or with all tiles of one resolution in a single file, 15

and so on.

VII. OVERVIEW OF THE ’136 PATENT

102. The ’136 Patent describes a system in which “[l]arge-scale images are

retrieved over network communications channels for display on a client device by

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

58

selecting an update image parcel relative to an operator controlled image viewpoint

to display via the client device.” Ex. 1001 at Abstract.

103. The “Background” section of the ’136 Patent describes a “well

recognized problem” of how to reduce the latency for transmitting full resolution

images over the Internet on an “as needed” basis, particularly for “complex 5

images” such as “geographic, topographic, and other highly detailed maps.” Ex.

1001 at 1:61-2:11. The ’136 Patent states that solutions already in existence

included “transmitting the image in highly compressed formats that support

progressive resolution build-up of the image within the current client field of

view.” Id. at 2:11-15. The ’136 Patent also states that such “conventional” 10

solutions, like the ones described in U.S. Pat. Nos. 4,698,689 (Tzou) and 6,182,114

(Yap), usually “presume that client systems have an excess of computing

performance, memory and storage” and are “generally unworkable for smaller,

often dedicated or embedded” clients. Id. at 2:22-3:33. According to the ’136

Patent, the conventional solutions do not work well under “limited network 15

bandwidth” situations. Id. at 3:33-62.

104. To address these perceived issues in the existing art, the ’136 Patent

discloses a system purportedly capable of “optimally presenting image data on

client systems with potentially limited processing performance, resources, and

communications bandwidth.” Id. at 3:67-4:3. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

59

105. Specifically, the ’136 Patent describes an image distribution system

having a network image server and a client system, where a client can input

navigational commands to adjust a 3D viewing frustum for the image displayed on

the client system. Id. at 5:51-6:15. High-resolution source image data is pre-

processed by the image server into a series K1-N of derivative images of 5

progressively lower image resolution. Id. at 6:31-37, Fig. 2:

106. The source image is also subdivided into a regular array of 64 by 64

pixel resolution image parcels (a.k.a. image tiles), and each image parcel may be

compressed to fit into a single TCP/IP packet for faster transmission. Id. at 6:31-10

53; 8:37-58.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

60

107. The client system in the ’136 Patent has a “parcel request” subsystem

to request image parcels from the server, a “control block” that directs the transfer

of received image parcels and overlay data to a local parcel data store. Id. at 7:35-

57. The control block also decompresses the image parcels and directs a

“rendering engine” to render them. Id. at 7:58-60; Fig. 3. 5

108. When the viewing point is changed in response to a user navigation

command, the control block “determines the ordered priority of image parcels to be

requested from the server . . . to support the progressive rendering of the displayed

image.” Id. at 8:17-20. A number of image parcel requests are then placed in a

request queue, to be issued by the parcel request subsystem according to each 10

request’s assigned request priority. Id. at 8:17-25; 9:33-45. Although various

factors may affect the priority assigned to a parcel request, e.g., the “resolution of

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

61

the client display” (10:2-13) or whether the image parcel is “outside of the viewing

frustum” (10:35-37), generally speaking, “image parcels with lower resolution

levels will accumulate greater priority values,” so “a complete image of at least

low resolution will be available for rendering” in a fast manner (11:17-29). In

addition, the control parameter for calculating the priority can be set in a way that 5

gives “higher priority for parcels covering areas near the focal point of the viewer”

to make sure that image parcels are requested “based on the relative contribution of

the image parcel data to the total display quality of the image.” Id. at 11:30-48.

The ’136 Patent acknowledges that storing and retrieving image tiles in a manner

that facilitated retrieving them based on their position and resolution level was 10

known in the art, e.g. in Yap. Ex. 1001 at 2:28-54. The ’136 Patent also

acknowledges that zoom and pan functions for user image navigation were well

known (id. at 1:60-65) as the Tzou Patent taught selective transmission of low

resolution image data and subsequent updating of the prior transmission with

succeeding refined images (id. at 2:12-17), the Yap Patent suggested updated 15

transmission of image data parcels based on the user gaze point as the user-

controlled image viewpoint (id. at 2:38-54). Woods further discloses using URLs

to request VRML resources (e.g., textures) which are prioritized based on criteria

such as the position and orientation of the viewpoint. Ex.1003 at 7:27-36, 7:66-

8:8. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

62

109. In the ’136 Patent, after the needed parcels are requested and received,

an algorithm is used to select the image parcel for rendering and display. Id. at

9:46-51. Overlay data may also be added to the display if its image coordinates

matches the current image parcel location. Id. at 9:55-58. The ’136 Patent

discloses that two-dimensional image parcels are displayed in a three-dimensional 5

space using projection transform. Id. at 6:5-15; 8:7-15; 9:46-51; 11:30-42; 12:1-

10. In my opinion, there is no disclosure in the specification of the ’136 Patent that

teaches or suggests that the images displayed are mapped onto an elevation model.

The ’136 Patent does not mention an elevation model or surface model or any

other surface geometry data onto which the imagery would be texture mapped. 10

The ’136 Patent specification suggests that an overlay may include 3D objects (id.

at 6:25-30), but a person of ordinary skill in the art would understand such

“overlays” to be displayed on top of the imagery like other overlays such as “icons,

buildings, and landmark names.” The specification of the ’136 Patent effectively

discloses a view that is “three-dimensional” in the sense that it generates a viewing 15

perspective that contains position, rotation, and height components, but operating

over a flat plane of terrain imagery. Id. at 6:5-15.

110. The ’136 Patent states that its disclosed technology can achieve faster

image transfer by (1) dividing the source image into parcels/tiles, (id. at 6:31-47),

(2) processing the parcels/tiles into a series of progressively lower resolution 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

63

parcels/tiles, (id.) and (3) requesting and transmitting the parcels/tiles needed for a

particular viewpoint in a priority order, generally lower-resolution tiles first. Id.

3:66-5:2.

VIII. IDENTIFICATION OF THE PRIOR ART AND SUMMARY OF
OPINIONS 5

111. As explained below, it is my opinion that the prior art references cited

in this Declaration disclose all technical features in Claims 1-27 of the ’136 Patent,

thus rendering them unpatentable.

112. Based on my review of the prior art references, claims 1-27 of the

’136 Patent are obvious for the following reasons: 10

• Claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-26 are obvious over Reddy

in view of Woods

• Claims 5, 14, and 23 are obvious over Reddy in view of Woods and

Chiarabini

• Claims 9, 18, and 27 are obvious over Reddy in view of Woods and 15

Fuller.

113. I discuss these references individually below:

A. Reddy

114. “TerraVision II: Visualizing Massive Terrain Databases in VRML” by

Martin Reddy et al. (“Reddy”) (Ex. 1004) was published in the March/April 1999 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

64

issue of IEEE Computer Graphics and Applications. From my 25+ year

experience as an IEEE member, I am very familiar with the IEEE, which is the

world’s largest association of technical professionals and publishes a number of

well-respected peer-reviewed periodical journals. The IEEE Computer Graphics

and Applications was a well-known publication. In my opinion, persons of 5

ordinary skill in the art in the field of computer graphics would be familiar with the

IEEE and its publications, consider IEEE publications to be established, reliable

sources of information accessible to those of skill in the art, and would rely on the

publication and copyright dates indicated on the face of an article in an IEEE

publication as a reliable indication of the actual publication date of the article. 10

Reddy bears such publication dates on each page and a 1999 copyright date on the

first page of the article (page 30 of the journal). In my opinion, the publication

dates indicated on the face of Reddy are a type of information that persons in the

field of computer graphics would reasonably rely upon. Reddy includes a footnote

“0272-1716/99/$10.00 © 1999 IEEE.” Based on my experience, this footnote 15

means that Reddy was published sometime in the year 1999. Further, it was

common practice to release IEEE journals to the public in the beginning of the

stated period of the journal, For example, based on my experience receiving

numerous IEEE journals over the past 25 years, the March-April 1999 issue would

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

65

have been sent to subscribers in late February or early March 1999. Therefore,

Reddy was published more than one year prior to December 27, 2000.

B. Woods

115. U.S. Patent No. 5,956,039 is a patent issued on September 21, 1999.

Therefore, because Woods was issued more than one year prior to the earliest 5

claimed priority date of the ’136 Patent, Woods is prior art as the law has been

explained to me.

C. Chiarabini

116. U.S. Patent No. 7,324,228 B2 is a patent that issued from an

application filed on August 24, 2001. Therefore, Chiarabini was filed before the 10

earliest non-provisional application to which the ’136 Patent claims priority, which

was filed on December 24, 2001. I discuss Chiarabini below as prior art against

Claims 5, 14, and 23, which recite that the number of parallel requests is

determined based on network response latency and available system resources. I

have been informed that the mere fact that the ’136 Patent claims priority to earlier 15

provisional applications filed in 2000 does not necessarily mean that the claims are

automatically entitled to that priority date. I have further been informed that a

claim is not entitled to a priority date from an earlier application unless the

disclosure in that earlier application, and every other application in the chain of

priority, supports every element of the claim. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

66

117. In my opinion, none of the provisional applications to which the ’136

patent claims priority (Exs. 1066-1071) contains any support for determining the

number of parallel requests based on network response latency and available

system resources as recited by claims 5, 14, and 23. None of the provisional

applications mentions “latency” or “system resources.” Nor is there any 5

description of this subject matter using different terms.

118. For example, Provisional Application No. 60/258,465 (Ex. 1066)

states at page 8 lines 22 through 25 that “[d]ownloading is asynchronous; the

renderer maintains a priority queue of download requests, and separate threads are

downloading images. Whenever a download is complete, another download is 10

initiated immediately, based on the highest-priority request.”

119. In my opinion, while this disclosure does mention “separate threads,”

it says nothing about how many threads or requests are active at one time, nor

about adjusting the number of threads or requests that are used based on network

latency and available system resources. Having reviewed the entirety of the 15

provisional applications, I found no other disclosures that are even vaguely related

to this claim limitation.

120. Therefore, it is my opinion that the December 2000 provisional

applications to which the ’136 Patent claims priority do not support claims 5, 14,

and 23. Therefore, Chiarabini is prior art against these claims. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

67

121. In addition, it is my opinion that if claims 5, 14, and 23 are construed

to require a runtime determination of the number of parallel requests, then they

should not receive a priority date earlier than November 3, 2016 when the ’136

Patent was filed. While it is true that the statement that “[t]he number of pool

threads is determined as a balance between the available system resources and the 5

network response latency” (Ex. 1001 at 9:6-9) was included in the nonprovisional

application filed on Dec. 24, 2001, a person of ordinary skill in the art would

understand this statement to describe a design-time decision made by the system

designer(s). This is clear from the preceding statement that “a pool of four

network request threads” is used “[i]n the preferred embodiments” (id. at 9:4-6), 10

and also the subsequent suggestion that the number four was determined based on

“[e]mpirical[]” data suggesting it works well “for many wireless devices” (id. at

8:67-9:3). If the thread pool was adjusted automatically at runtime, there would

not be a preferred pool size or a need to resort on empirical data to determine an

appropriate pool size. Furthermore, there is no discussion in the ’136 Patent of 15

actually adjusting the number of request threads at runtime or any indication as to

what “available system resources” would warrant adjusting the number of request

threads at runtime.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

68

D. Fuller

122. “The MAGIC Project: From Vision to Reality,” by Barbara Fuller and

Ira Richer (“Fuller”) (Ex. 1011) was published in the May/June 1996 issue of IEEE

Network. I explained my familiarity with IEEE and its publications, as well as the

widespread knowledge in the art of IEEE publications, above in regard to Reddy, 5

and in my opinion the same analysis would apply to Fuller.

123. In my opinion, persons of ordinary skill in the art in the field of

computer graphics would be familiar with the IEEE and its publications, consider

IEEE publications to be established, reliable sources of information accessible to

those of skill in the art, and would rely on the publication and copyright dates 10

indicated on the face of an article in an IEEE publication as a reliable indication of

the actual publication date of the article. Fuller bears such publication dates

(“IEEE Network * May/June 1996”) on each page and a 1996 copyright date on

the first page of the article (page 15 of the journal). In my opinion, the publication

dates indicated on the face of Fuller are a type of information that persons in the 15

field of computer graphics would reasonably rely upon. In my experience, the

publication dates indicated in Fuller indicates that Fuller was published sometime

in 1996. Further, it was common practice to release IEEE journals to the public in

the beginning of the stated period of the journal, For example, based on my

experience receiving numerous IEEE journals over the past 25 years, the May/June 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

69

1996 issue would have been sent to subscribers in late April or early May 1996.

Therefore, Fuller was published more than one year prior to December 27, 2000.

IX. CLAIM CONSTRUCTION

124. In conducting my analyses of the asserted claims of the ’136 Patent, I

have applied the legal understandings I set out below regarding claim constructions 5

consistent with the “broadest reasonable interpretation” (BRI) standard described

above, and offer them only for this Inter Partes Review. The claim constructions

do not necessary reflect the appropriate claim constructions to be used in litigation

proceedings, such as litigation in a district court, where a different standard

applies. For example, I have been informed that if Bradium argues for a narrow 10

claim construction or otherwise relies on a narrow interpretation of a particular

term in an IPR, Bradium may be precluded from relying on a broader interpretation

or construction in litigation.

125. I understand that, under the BRI claim construction, claim terms are

given their ordinary and customary meaning as would be understood by one of 15

ordinary skill in the art in the context of the entire disclosure. An inventor may

rebut that presumption by providing a definition of the term in the specification

with reasonable clarity, deliberateness, and precision. In the absence of such a

definition, limitations are not to be read from the specification into the claims.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

70

A. “Wireless Portable Device” in Claims 1, 10, and 19

126. In my opinion, this term does not require further construction and

should be given its plain and ordinary meaning. “Wireless” is a common, well-

understood term, as is “portable.” Therefore, in my opinion, a “wireless portable

device” is simply a device that is wireless and portable. The term “wireless 5

portable device” does not specifically appear in the specification of the ’136 patent,

and having reviewed the specification, I did not see any evidence that the inventors

acted to specifically define a “wireless portable device” as anything other than its

ordinary meeting.

127. 114. I understand that in IPR2016-01897, Bradium proposed that the 10

term “mobile device” in the related ’239 Patent be construed as “a portable small

client such as a mobile phone, smart phone, or personal digital assistant (PDA) that

is constrained to limited bandwidth.” I further understand that in its Decision to

institute IPR of the ’239 Patent, the Board rejected Bradium’s proposed limiting

construction of “mobile device” and determined that the term needed no further 15

construction. IPR2016-01897, Paper 17 at 9-10 (April 5, 2017). In general,

Bradium’s prior arguments have attempted to conflate the size, mobility,

processing power, type of network connection, and bandwidth features described

in the specification of the Bradium patents, in my view erroneously because these

are different things. For example, while the specification of the ’136 Patent gives 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

71

various examples of a “small client” (see e.g. Ex. 1001 at 3:11-18), “small client”

is not the claim language, nor is it appropriate in my view to limit the construction

of the term based solely on representative examples.

B. “Thereby Enabling Efficient Use of Network Bandwidth in
Conditions of Network Latency” in Claims 1, 10, and 19 5

128. In my opinion, this phrase of the independent claims of the ’136

patent should be construed to have no limiting effect. I have been informed by

counsel that “[a] ‘whereby’ clause that merely states the result of the limitations in

the claim adds nothing to the patentability or substance of the claim” and that

merely “laudatory” descriptions of the results of a process step are not given 10

patentable weight when such a description “simply expresses the intended result of

a process step positively recited.” In my opinion, the term “efficient,” is vague in

this context and could have a wide variety of meanings depending on the specific

application. Therefore, in my opinion, a person of ordinary skill in the art would

understand this phrase only as stating the general goal for more efficient use of 15

bandwidth, rather than a clear defining statement of the scope of the claims. As

such, the “thereby” phrase in the independent claims does nothing more than state

a “laudatory” description of the preceding language, e.g. “the first wireless

portable device handles download operations of at least the first image parcel and

the second image parcel in parallel.” Nevertheless, it is my opinion that this claim 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

72

language is taught by the prior art references discussed in this declaration even if it

is construed to have a limiting effect, as I discuss further below.

C. “Configure[d][…] as a server to provide access to [the] at least
some image parcels received by the wireless portable device” in
claims 1, 10, and 19 5

129. In my opinion, under the broadest reasonable interpretation, this term

includes simply that the local store may provide parcels needed for display.

Neither this claim language nor anything like it appears in the specification of the

’136 Patent. The ’136 Patent refers to a local parcel data store 46 (Ex. 1001 at

7:46-51, 9:19-32, 10:16-19, Fig. 3) and refers to a network server 12 (e.g., Fig. 2). 10

However, the ’136 Patent never describes the local parcel store as a server or

describes configuring the local parcel store as a server. For example, nothing in

the specification of the ’136 Patent describes local parcel store acting as either an

HTTP server or a database server, nor is there any indication that the local parcel

store on a client is used to serve data parcels to other client devices in a network. I 15

have reviewed the specification of the ’136 Patent and I have found no other

teaching in the ’136 Patent that a person of ordinary skill in the art would

understand to support this claim language.

130. Nonetheless, in view of the specification, a person of ordinary skill in

the art would understand the “configured ... as a server to provide access to” as 20

referring to the local parcel store’s ability to satisfy needs for certain image

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

73

parcels, namely those that have already been downloaded and stored in the local

parcel store. It would be obvious to a person of ordinary skill that a cache like the

local parcel store described in the ’136 Patent would be implemented as a software

module with APIs for storing items to the cache and for retrieving items from the

cache. The local parcel store is the closest thing in the ’136 Patent to a “server” 5

because it provides parcels that are needed by the client, such as the parcel request

client 42.

131. The cache of the Mozilla open source browser illustrates my point that

a simple cache acts as a server. I use Mozilla as an example because it was a well-

known open source web browser in the mid to late 1990s. While Mozilla’s source 10

code was and is still available for download from Mozilla, I examined a version of

the source code packaged with a 1999 book titled “Netscape Mozilla Source Code

Guide.” (Ex. 1060.) This source code on the CD-ROM is packaged with the

name “mozilla-source-m8” which corresponds to the M8 release on July 16, 1999.7

The source code folders and files on the CD-ROM have modified dates that are 15

7 See, e.g., https://www-archive.mozilla.org/releases/history.html (Mozilla release

history).

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

74

from July 15, 1999 or earlier:

132. The Mozilla cache included APIs to request resources from the

cache. For example, the “GetObj” API allowed the caller to provide a URL to

retrieve the associated content from the cache. Ex. 1061 (nsCacheManager.h) at 5

line 79. The Mozilla cache similarly provided APIs (“AddObject”) for adding an

object to the cache. (Ex. 1062 (nsMemModule.h) at line 57; Ex. 1063

(nsDiskModule.h) at line 41. In my opinion, the Mozilla browser cache is

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

75

conventional in these respects and is consistent with how persons of ordinary skill

in the art would have understood and expected caches to operate.

133. Because conventional client-side caches could provide locally stored

content for a specified URL, a person of ordinary skill in the art would understand

a conventional cache to be configured as a server in the context of the ’136 Patent. 5

D. “Image Parcel” in Claims 1, 10, and 19

134. In my opinion, this term does not require construction, or alternatively

should be given its plain and ordinary meaning, that is, “a parcel of image data.” I

understand that in IPR2015-01432, the IPR of the ’794 Patent, the Board construed

this term as “an element of an image array, with the image parcel being specified 10

by the X and Y position in the image array coordinates and an image set resolution

index.” The Board cited claim language appearing at 6:22-26 of the ’794 Patent

(and at 6:48-57 of the ’136 Patent) stating that “[t]he image parcels are preferably

stored in a file of defined configuration such that any image parcel can be located

by specification of a KD, X, Y value representing the image set resolution index D 15

and the corresponding image array coordinate” (emphasis added). In my opinion,

this language in the specification describes a particular embodiment, rather than

defining the term “image parcel.” In fact, when Bradium wanted to claim that

particular identification scheme, it did so explicitly in the claims. See, e.g.,

U.S. Patent No. 7,908,343 at claim 1 (“storing each data parcel on the remote 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

76

computer in a file of defined configuration such that a data parcel can be located by

specification of a KD, X, Y value”); U.S. Patent No. 8,924,506 at claim 7.

Therefore, in my opinion, it would be incorrect to read this more detailed claim

language into the simple term “image parcel.”

135. It is also my opinion that a person of ordinary skill in the art would 5

not interpret the plain and ordinary meaning of the term “image parcel” to require a

particular method of identifying such image parcels. There are a number of

different identification schemes that could be used to uniquely identify a particular

image parcel within an image pyramid. For example, U.S. Patent No. 4,972,319,

issued in 1990, depicts and describes two different identification schemes for 10

image parcels in the same kinds of image pyramids:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

77

136. Ex. 1065 (Delorme ’319 Patent) at 11:61-14:24 (describing scheme

shown in Fig. 8) and 14:25-22:34 (describing scheme shown in Fig. 13).

Therefore, in my opinion, a person of ordinary skill in the art would not understand

the term “image parcel” to require any particular preferred identification scheme.

137. It is also my opinion that Bradium has taken positions in the related 5

litigation which are inconsistent with a narrow construction of “image parcel.” For

example, Bradium’s litigation infringement contentions with respect to the ’343

Patent (Ex. 1072) appeared to suggest that the “tiles” in accused Microsoft

products are the claimed “image parcels.” Yet the Bing maps tile system uses a

“quad key” system which interpolates X and Y values to create a single string 10

identifying the tile, and does not include a separate variable for level of detail. Ex.

1073 at 4-6.

138. However, as I will discuss further in this declaration, it is my opinion

that the challenged claims of the ’136 Patent are obvious over the prior art

references cited in this declaration even under the narrower construction of “image 15

parcel” previously applied by the Board.

E. All Remaining Claim Terms

139. In my opinion, all other claim terms of the ‘’136 Patent should be

given their plain and ordinary meaning. If Bradium or the Board proposes any

different claim construction for any term, I reserve the right to offer responsive 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

78

testimony regarding the proper construction of the term and how the claims are

obvious under the proposed constructions.

X. UNPATENTABILITY OF CLAIMS 1-27 OF THE ’136 PATENT

A. Claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-26 are Unpatentable
as Obvious Over Reddy in View of Woods 5

140. In my opinion, each of claims 1-4, 6-8, 10-13, 15-17, 19-22, and 24-

26 are disclosed and rendered obvious by Reddy (Ex. 1004) in view of Woods (Ex.

1003). These references collectively teach all features of claims 1-4, 6-8, 10-13,

15-17, 19-22, and 24-26, and a person of ordinary skill in the art would be

motivated to combine the teachings of the references for the reasons discussed 10

below.

141. Reddy and Woods provide related, contemporary teachings about the

state of the art in 2D and 3D visualization of large image data sets such as maps

that give examples of reasons why the claims of the ’136 Patent cover technology

that was already well-known to those of skill in the art. Reddy describes in detail a 15

versatile software system for retrieving geographic information over the Internet or

WWW and displaying it to a user in a dynamic, three-dimensional manner using

well-known level-of-detail management techniques to optimize the use of limited

bandwidth to retrieve geographic data.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

79

142. Reddy teaches a system for disseminating and viewing massive terrain

databases and 3D maps over the Web using a VRML browser or a customized

browser or a plug-in to a web browser such as Netscape Navigator or Internet

Explorer. The 3D map images are stored in a hierarchical data structure made up

of a multiresolution hierarchy of images in which an original image and its 5

downsampled versions at multiple resolutions are stored. Reddy teaches priority-

related features such as a “coarse-to-fine” algorithm to enhance resolution and

“pre-fetching” tiles based on an expected flightpath. However, Reddy does not

explicitly use the word “priority.” Woods is in a closely related field to Reddy

because it also describes using VRML to access 3-D scenes over the Internet. 10

Woods teaches how browsing in such scenes may be enhanced by prioritizing

elements of the scene based on the proximity to the user viewpoint, as well as

using a queue of browser fetch requests to retrieve elements of the scene. I will

discuss each of these references in more detail below.

1. Overview of Asserted References 15

a. Reddy

143. Reddy is an IEEE publication that was published in the March/April

1999 issue of IEEE Computer Graphics and Applications journal. The authors

worked at SRI International, where they developed a system called TerraVision II

for visualization of massive terrain databases using the VRML language. Ex. 1004 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

80

at Title. TerraVision II was designed to allow users to access large terrain

databases via a network connection such as the World Wide Web or the Internet.

Id. at ¶ 1.

144. The TerraVision II system built on earlier work over several years by

SRI on an earlier version of the TerraVision system, which was designed to 5

operate in connection with a project called MAGIC (“Multidimensional

Applications and Gigabit Internetwork Consortium”) for the visualization of large

amounts of three-dimensional data over a high-speed ATM network. I discussed a

1996 paper regarding earlier work on the MAGIC project, Fuller et al. (Ex. 1011)

previously in this declaration. TerraVision, MAGIC, and TerraVision II were all 10

funded partially by Defense Advanced Research Projects Agency (DARPA). See

Ex. 1004, p. 37 (Acknowledgements).

145. As Reddy and his co-authors describe, TerraVision II extends the

work performed in connection with TerraVision and MAGIC to a software

program that could access data over a conventional WWW connection (not just a 15

high-speed connection) and could operate on a variety of devices such as PCs and

laptops, by working in connection with standard Internet browsers.

146. Reddy discloses that there was an increasing interest and need for

researchers, including geographers, cartographers, geologists, and computer

scientists, to access 3D maps and spatial data over the World Wide Web or even 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

81

28.8K modem connections. Id. at inset on p. 30. Reddy notes that, however,

traditional single-resolution VRML images did not scale well for such use. Id. at ¶

1. For example, Reddy notes that some terrain models could run into hundreds of

gigabytes in size. Id. at ¶ 2.

147. To allow user access to map details, e.g., being able to view a 5

particular building in a particular city starting from a satellite image of the earth

Reddy discloses a technique in which data is progressively downloaded to the user

as the user performs rotations and zooms. Id. at ¶ 3. In the TerraVision II system,

the progressive downloading functionality was implemented on user devices in

multiple ways including a VRML browser, a VRML plug-in to a web browser such 10

as Netscape Communicator or Microsoft Internet Explorer or a custom TerraVision

II browser. Id. at ¶ 31.

148. A key feature of Reddy involved generating a pyramid of multi-

resolution images of an original image. Id. at ¶ 15. For example, if the original

image is 1024 x 1024 pixels, then the pyramid might contain the original image 15

along with down-sampled versions different levels of detail (LOD) at resolutions

of 512 x 512 pixels, 256 x 256 pixels, 128 x 128 pixels, and so on. Id. at ¶ 15.

149. As Figure 1a shows, each pyramid image is then segmented into

rectangular tiles, where all tiles have the same pixel dimensions.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

82

150. Because each tile has the same pixel dimensions, the resolution and

the number of tiles is reduced by a factor of two at each down-sampled level. The

following chart summarizes the example disclosed by Reddy in Fig. 1 and the

accompanying text at ¶¶15-17 (referring to the “source” layer as level 0): 5

Layer Total
dimensions of
layer (pixels)

Tiles in layer Tile
dimensions
(pixels per
tile)

Each pixel at
this layer
corresponds
to ____ pixels
in the source
layer

0 (source) 1024x1024 8x8 128x128 1
1 512x512 4x4 128x128 4 (2x2)
2 256x256 2x2 128x128 16 (4x4)
3 128x128 1 128x128 64 (8x8)

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

83

151. Using Figure 1b, Reddy further gives an example of how the multi-

resolution pyramid can be used to download tiles at the appropriate resolutions to

render a perspective view. Id. at ¶¶ 15-17. Reddy describes this as follows:

“Figure 1b shows the lower-right corner in high resolution with the surrounding

regions displayed in progressively lower resolution. Assuming a tile size of 128 x 5

128 pixels, this example requires downloading and rendering only 491 Kbytes (10

tiles) instead of the entire 3.1-Mbyte high-resolution image.8 If the user’s location

8 The definitions of “kilobyte” and “megabyte” can be confusing because of an

informal custom that has become prevalent in the computer industry. According to

the standard definition, the terms “kilobyte” and “megabyte” refer to 1,000 and

1,000,000 bytes, respectively. However, because 210 bytes is 1024 bytes, which is

very nearly 1000, and 220 bytes is 1,048,576 byes, which is very nearly 1,000,000,

it has become commonplace in the computer industry to refer to 1024 bytes and

1,048,576 bytes as 1 kilobyte and 1 megabyte, respectively, and in fact this

alternative interpretation has become incorporated in some standards such as the

JEDEC family of memory standards. The reasons for the distinction are described

in a National Institute of Standards and Technology webpage available at

http://physics.nist.gov/cuu/Units/binary.html. I note the difference for purposes of

this analysis because the figures given in Reddy for tile sizes suggest that Reddy

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

84

is the bottom-right corner, then distant imagery is rendered at lower resolution than

near imagery and we have achieved distance-based LOD.” Id. at ¶ 16.9

uses the standard decimal (1000 bytes/kilobyte) notation while the ’136 Patent uses

the binary (1024 bytes/kilobyte) notation.

9 The numbers in this example work as follows. The original image has a size of

1,024 x 1,024 pixels, at 24 bits per pixel (e.g., 8 bits for each color GB). This adds

up to 1024 x 1024 pixels x 24 bits/pixel = 25165824 bits = 3145728 bytes =

3.145728 MB (assuming 1Mbyte = 1 million bytes). Similarly, 10 tiles at `18 x 128

resolution each add up to 128 x 128 x 24 bits/pixel x 10 = 3932160 bits = 491420

bytes = 491.42 KB (assuming 1 KB = 1,000 bytes).

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

85

152. The graphic below, based on Fig. 1 of Reddy, illustrates how ten of

the tiles from the different levels in Fig. 1(a) correspond to Fig. 1(b), which shows

the tiles that would be used to render a perspective view:

153. Another important aspect of Reddy is that the image data is 5

downloaded from the image database based on a user’s viewpoint. Id. at ¶ 3. For

example, if a user’s location is the bottom-right corner, then distant imagery is

rendered at lower resolution than near imagery and we have achieved distance-

based LOD. Id. at ¶ 16. Thus, Reddy’s technique only needs to fetch and display

data for the region that the user is viewing and only at a sufficient resolution for 10

the user’s viewpoint. Id. at ¶ 17. As the user zooms into an image, the program

downloads imagery at higher and higher resolutions. Id. at ¶ 3.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

86

154. During prior proceedings involving the related ’343 and ’506 Patents,

Patent Owner Bradium and its expert mischaracterized Reddy in numerous ways,

which I will discuss briefly in this Declaration. However, I reserve the right to

offer further rebuttal to any arguments made or arguments submitted by Bradium

in this proceeding. 5

155. For example, Bradium previously characterized Reddy as “directed to

a specialized client workstation image viewing software operating on conventional,

fixed site computer system over a high bandwidth Internet connection.” IPR2016-

00448, Paper 20 at 19-20; Ex. 2003, ¶ 64. In my opinion, this characterization

overlooks a substantial purpose of the teachings of the Reddy reference, which 10

should be readily apparent to a person of ordinary skill in the art.

156. The work described on Reddy built on previous work funded by the

DARPA Multidimensional Applications Gigabit Internet Consortium (MAGIC)

project, which had previously resulted in the development of the original

TerraVision system, which was partially described in 1996 in B. Fuller and I. 15

Richer, The MAGIC Project: From Vision to Reality, IEEE Network May/June

1996 pp.15-25, Ex. 1011. The original TerraVision system was designed to

operate over a high speed ATM network. However, the later work described in

Reddy, including its description of the TerraVision II software and VRML

browsing techniques, focused on extending the concepts developed in the earlier 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

87

research performed by SRI to a wider variety of networks and devices, not just the

high speed networks used in the original iteration of TerraVision.

157. To that end, Reddy states several times that a purpose of the teachings

discussed therein is to develop a system that can be accessed over the Internet

using a standard, generic browser on any device, not just a specialized system 5

operating on a high and workstation on a specialized high speed network. For

example, Reddy refers several times to the desire to disseminate maps and spatial

data over the “World Wide Web” (Ex. 1004, ¶¶ 1, 9, 48), using standard browser

software and java scripts (Id., ¶¶ 3, 7, 9, 11, 31, 32, 39, 42, 47-49). In my opinion,

it is readily apparent from reading Reddy as a whole that a significant purpose of 10

Reddy’s teaching is to enable a wide variety of users to access geographic data

over the Internet using standard browsing techniques and standard browser

software that can be implemented on a wide variety of devices including small

clients.

158. In my opinion, the characterization of Reddy previously provided by 15

Bradium cherry-picks particular citations that relate to specific embodiments

operating on a high-bandwidth network, and ignores both the additional teachings

of Reddy that relate to applying the same principles either on more limited devices

or more limited networks, as well as the broader teachings that a person of ordinary

skill in the art would glean or infer from Reddy. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

88

159. For example, Reddy teaches that its system can be implemented on a

PC connected to the Internet and that a standard VRML browser can be used to

browse the same data, which makes the system particularly well-suited to “military

mission planning and battle damage assessments, emergency relief efforts, and

other distributed time-critical environments.” Ex. 1004, ¶ 48. 5

160. Bradium and Dr. Agouris both submitted arguments at some point

during IPR2016-00448 which argued that the teachings in Reddy regarding

military and emergency scenarios were intended for use with offline data saved on

the laptop or with the basic functionality of VRML only (not TerraVision). The

Board previously correctly rejected this argument as an improper reading of Reddy 10

(IPR2016-00448, Paper 9 at 23-24). Likewise, Dr. Agouris admitted during her

deposition that Reddy taught that a laptop computer could be used for online

browsing. Ex. 1018 at 157:4-158:12.

161. Bradium and its expert previously repeatedly attempted to distinguish

between different embodiments taught in Reddy, such as the TerraVision II 15

software and a standard VRML browser. I understand that a person of ordinary

skill in the art would read Reddy as a whole for all that it teaches or suggests, and

not simply for specific embodiments as Bradium reads it. Nevertheless, such

distinctions are incorrect.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

89

162. For example, Bradium previously cited Ex. 1014 (SRI Digital Earth

Paper) which is a web posting by SRI at approximately the same time that Reddy

was published describing the various facets of its terrain visualization system.

While Bradium cited this exhibit in order to attempt to argue that the capability of

a standard VRML browser would have been much more limited than TerraVision, 5

this exhibit actually contains numerous teachings which showed that a person of

ordinary skill in the art would have recognized the ability to apply the relevant

teachings of Reddy to various devices. For example, page 1 of Ex. 1014 explains

that SRI’s digital earth proposal is to extend TerraVision functionality to

“commercial, off-the-shelf” software (id. at 1), enable “open solutions” for a “wide 10

cross-section of users” and integrate VRML support “directly with Internet

browser software” (id. at 2-3). And while Bradium cited pp. 4-5 of Ex. 1014 as

“contrasting TerraVision running on fast graphics workstation with accessing the

data only via a standard browser” (IPR2016-00448, Paper 20 at 22), the same

section also clearly states that it is “feasible” that some of the features provided by 15

TerraVision “could be implemented for a standard VRML browser through the use

of various Java scripts embedded in the scene, or running externally to the

browser.” Ex. 1014 at 4. This evidence supports my opinion that a person of

ordinary skill in the art would be motivated to consider all of the pertinent

teachings of Reddy to be applicable to generic browsers that could execute on a 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

90

standard computer, including one connected to a limited bandwidth

communications channel, or a mobile device.

163. Bradium also previously confused the types of data that the

embodiments described in Reddy can display. Reddy teaches a flexible system

which allows browser software to locate and display several types of 5

geographically linked data, including imagery such as satellite or aerial

photography, as well as elevation data (based on digital elevation models such as

the USGS digital elevation model), and features such as annotations or objects that

exist on the terrain. Ex. 1004, ¶¶ 3, 12-18, 22-26. The imagery is divided into

pyramids, just like the preferred embodiments described in the ’136 Patent. See, 10

e.g. Ex. 1004, Fig. 1; Ex. 1001, Fig. 2. It is my opinion that a person of ordinary

skill in the art would recognize that satellite and aerial images are, by nature,

specific to particular coordinates since they depict a specific portion of the earth.

While Reddy also teaches the ability to display digital elevation data as 3D

polygons and drape imagery as textures over those 3D polygons, Reddy’s 15

teachings are not limited to such preferred embodiments, and a person of ordinary

skill in the art would recognize that Reddy’s teachings relating to displaying large

sets of two-dimensional imagery utilizing a perspective viewpoint (see, e.g. Fig. 1)

would apply whether or not elevation data was also used. This distinction is

important because Bradium’s previous arguments (see, e.g. IPR2016-00448, Paper 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

91

20 at 37-38) conflated the three-dimensional polygonal models used to model

elevation in Reddy with the two-dimensional texture imagery. The ’136 Patent

itself does not describe any form of elevation modeling, but the claims do not

exclude it either. It is my understanding that 3DVU developed an elevation

modeling scheme several years after the applications to which the ’136 Patent 5

claims priority were filed. In effect, the ’136 Patent effectively describes a later-

developed, less sophisticated example of the teachings of Reddy, just without

elevation.

164. I also have been informed by counsel that Bradium’s counsel argued

at the oral hearing in IPR2016-00448 that the teaching of an “image pyramid” in 10

Fig. 1 of Reddy should be disregarded because it is just a “concept,” and further

implied that the “image pyramid” was not actually used in implementation of

Reddy. Appendix NN at 46:22-48:5. This argument is wrong. Reddy teaches in

numerous places that the systems described even in preferred embodiments include

two-dimensional imagery, such as satellite and aerial photographs of particular 15

geographic regions. See, e.g. Ex. 1004, ¶¶ 2-3, 6, 15-18, 23-24. Indeed, ¶ 23

specifically states that an “image pyramid” like those shown in Fig. 1 is

incorporated into the model. Fig. 3 and the accompanying text at ¶¶ 19-21

describe how such image pyramids can be linked to other forms of data contained

within the embodiments described in Reddy using a “geotile” structure. Therefore, 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

92

even if the Board chooses to only read Reddy for the specific embodiments it

describes and not for all that it teaches, the image pyramid of Fig. 1 of Reddy is

very much a part of those embodiments. Moreover, it is my understanding that

even if the image pyramid in Reddy were only taught as a “concept,” and it is

much more than that, such teachings would still be considered by a person of 5

ordinary skill in the art to determine the obviousness of later patents claiming the

same technology because a prior art reference must be considered for all that it

teaches or suggests.

b. Woods

165. Woods teaches methods for “increasing the performance associated 10

with creating simulated 3D worlds from a network” by using a priority scheme

which sorts the priority of graphic objects (or “assets”) in the 3D scene based on,

inter alia, their proximity to a viewpoint. Ex. 1003 at Abstract. The priority

scheme is “used to determine the fetching, pre-fetching, and caching of URLs.” Id.

In a preferred embodiment, Woods teaches prioritization methods to retrieve 15

graphic objects over the Internet in VRML. Id. at 4:62-5:4. Woods teaches that

constraints in viewing 3D images online include “the bandwidth of the Internet

connection and the limited resources and processing power of the local computer

system. Id. at 2:61-34. For example, Woods teaches examples of Internet

connections used to retrieve VRML data ranging from 28 KBps (kilobits per 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

93

second) modems to 144 KBps ISDN lines, but that “bottleneck problems due to

limited bandwidth” can arise even for faster connections. Id. at 3:17-27.

166. Woods proposes to address such problems and “increase[]

performance by the efficient use of limited resources” by “fetching objects in order

of their importance.” Id. at 3:50-56. Accordingly, “a priority scheme is used to 5

determine the fetching, pre-fetching, and caching of data assets.” Id. at 3:56-58.

Although the system taught by Woods is flexible and may incorporate multiple

factors to determine priority, the proximity to the camera is typically a key factor

in the priority determination. For example, as shown in Fig. 5A, regions are

prioritized based on the camera position and direction, with the region directly in 10

front of the camera receiving the highest priority:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

94

Id. at 9:19-10:64 (describing Fig. 5A).

167. Woods further teaches that the priority calculation may also take into

account the movement of the camera; for example, more distant regions in the

direction that the camera is moving may acquire more importance as the camera

moves faster. Id. at 10:1-17. 5

168. Although Woods teaches that its prioritization scheme may be used to

retrieve a variety of geographically linked “assets” including, for example,

buildings, moving objects, and sounds, Woods specifically teaches that its

prioritization scheme may be used to retrieve textures, which are used to “apply

texture to geometric shapes after they are rendered.” Such textures may be 10

identified by “URLs from which textures can be obtained.” Id. at 6:42-49. Woods

further teaches viewing VRML data at a variety of levels of detail (“LOD”) using

hierarchically-organized data. Id. at 6:24-35.

169. Woods prioritizes objects to be retrieved by first placing them in an

“asset database table” which tracks (inter alia) the priorities of objects in the table. 15

Id. at 11:66-12:5. Woods teaches that “[i]n a preferred embodiment, asset fetching

is performed in an execution thread that is separate from the browser’s runtime

thread.” Id. at 12:56-58. This fetching thread can support a “configurable queue

of fetch elements comprising a number of ‘active’ fetches,” so that “multiple assets

can be fetched at the same time.” Id. at 12:58-62. Although the number of 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

95

simultaneous fetches may be configured “based on various hardware and software

parameters” which are “apparent to those skilled in the relevant art(s),” Woods

teaches a preferred embodiment featuring a fetch queue with four active fetch

requests and one waiting fetch request, which becomes an active request when a

previous active request is completed, as shown in Fig. 8: 5

Id. at 12:56-13:47.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

96

170. Woods teaches that a computer system suitable for performing the

methods taught therein may include a communications interface 724, which may

be a PCMCIA slot and which can carry signals over a cellular phone or RF link.

Id. at 15:36-50. From my experience in the industry, I am aware that PCMCIA

(Personal Computer Memory Card International Association) cards were a 5

standardized format designed specifically to enable designers to adapt peripheral

devices to laptop computers. The larger ISA expansion slots typically used in

desktop computers were impractical for laptop computers because of their size.

Additionally, for memory applications, traditional storage devices such as floppy

disk drives and hard disks consumed too much power for laptop computers of the 10

time, in addition to being too large. PCMCIA was designed to address these

problems for laptops.

171. The PCMCIA organization was founded in 1989 and its membership

throughout the 1990s included most major well known computer companies such

as Fujitsu, Intel, Mitsubishi, IBM, Lotus, and Microsoft. This organization 15

developed a series of standards for PCMCIA cards that could fit in laptops

throughout the 1990s. These specifications defined the physical sizes and

connection protocols for “PC card” peripheral devices that could fit into a laptop

connection port. For example, a Type I PCMCIA card had a thickness of 3.3 mm,

while a Type III card had a thickness of 10.5 mm. The figure below, from an 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

97

Internet Archive capture of the PCMCIA organization website from the late 1990s,

shows the dimensions of a typical PCMCIA card which could fit into a laptop:

172. According to the PCMCIA, “the power and versatility of PC cards

quickly made them standard equipment in mobile computers.” Such devices were 5

used not only for memory, but for features such as wireless networks, modems,

and other functions in notebook, laptop, palm-top, and other portable computers.

The figure below, which is consistent with my recollection of the common

appearance of PCMCIA devices in the 1990s from my own experience, shows a

typical PCMCIA card device inserted into the slot on a laptop computer: 10

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

98

173. Because PCMCIA cards were specifically associated with and

designed for laptop and other portable computers, it is my opinion that a person of

ordinary skill in the art would therefore interpret the disclosure in Woods of

PCMCIA cards to suggest use of a laptop or other portable computer. 5

2. A person of ordinary skill in the art would be motivated to
combine Reddy and Woods

174. In my opinion, a person of ordinary skill in the art would combine

Reddy and Woods for several reasons. First of all, both references are in the same

field or closely analogous art. Reddy and Woods both relate to the retrieval of 10

image data over the Internet in order to display an interactive, three-dimensional

view of a world. Even more specifically, both references relate to browsing such

data using VRML. In my opinion, a person of ordinary skill in the art familiar with

the teaching of one VRML reference such as Reddy to access the image data over

the Internet would naturally look to the teachings of other VRML references such 15

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

99

as Woods for potential improvements to such a system. Additionally, Reddy and

Woods are both directed to similar problems because each reference relates to

accessing portions of large image data sets over a network and retrieving the

portions of the data set needed to display a particular view while optimizing the

use of bandwidth. Since the teachings of Woods are designed to optimize the use 5

of limited bandwidth, such teachings would logically commend themselves to the

attention of a person of ordinary skill in the art designing a system for routing

geographic data over the Internet as taught in Reddy.

175. In particular, a person of ordinary skill in the art would recognize that

one challenge faced by Reddy is optimizing the use of limited bandwidth and 10

limited computing resources on a client device when accessing a large geographic

database. For example, Reddy teaches in ¶48 that the software may be

implemented on a PC or a laptop in a “distributed, time-critical” environment such

as military mission planning, battle damage assessments, and emergency relief

efforts. In my opinion, a person of ordinary skill in the art would recognize that 15

mobility and portable access to a network, like that provided by a wireless modem,

would be extremely desirable in such circumstances. Additionally, Reddy

specifically teaches that its system can be used on a PC (personal computer) or a

laptop computer, which indicates that a primary purpose of the TerraVision II

system is to expand on the previous TerraVision system by expanding it to be 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

100

operable on a wide range of devices, including the type of devices suitable for

mobile or field use in the scenarios described in Reddy. These teachings of Reddy

would motivate a person of ordinary skill in the art to consider teachings relevant

to how to (1) make the software operate effectively in on a portable device capable

of operating in an environment such as emergency relief, and (2) access data 5

remotely in a mobile context. In my opinion, based on my review of Reddy and

Woods as well as my knowledge of the art of computer graphics and networking, it

is my opinion that a person of ordinary skill in the art would consider Woods

relevant to both questions.

176. In particular, although Reddy teaches situations in which a wireless 10

connection would be extremely desirable as discussed above, it does not explicitly

teach a wireless connection. Woods, however, explicitly teaches methods of

accessing data over the Internet using a wireless connection that are readily

applicable to laptop devices like those taught by Reddy. Specifically, Woods

teaches that the communications interface to access VRML data over the Internet 15

may be a wireless link such as a cellular phone or RF link, implemented in a

communications interface such as a PCMCIA card commonly used in laptop

computers. Ex. 1003 at 15:36-50. As I discussed above, wireless connections

using a PCMCIA card were extremely well known by the late 1990s and using

such a connection to browse VRML data from a laptop as taught by Reddy would 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

101

be a simple matter of using-the-shelf, already available technology in a manner

consistent with its intended use. Accordingly, it is my opinion that a person of

ordinary skill in the art would have virtually no difficulty making this modification

and therefore would have a reasonable chance of success.

177. It is my understanding that prior art references should be considered 5

for all that they teach and not merely for their preferred embodiments. In my

opinion, a person of ordinary skill in the art would understand that Reddy teaches

broadly applicable methods of accessing and viewing geographic information over

a network, not just the specific embodiments discussed as examples of these

teachings. Even if the Board looks only at the separate TerraVision II and VRML 10

browser embodiments, it would still be obvious to a person of ordinary skill in the

art that both of these embodiments could be used on either a laptop computer or a

tablet computer (PDA) and that the relevant features taught by Reddy could be

used in connection with a VRML browser on either type of device. Reddy teaches

that TerraVision II can be operated on a “PC connected to the Internet.” In my 15

opinion, a person of ordinary skill in the art would understand this teaching to

mean that TerraVision II is software that can be operated on any appropriate

common consumer computer hardware, whether that computer takes the form of a

desktop computer, laptop computer, or tablet computer.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

102

178. At the time of the alleged invention and the priority filing of the ’136

Patent, processors for mobile devices (e.g. laptops) had been developed that

offered similar processing power (e.g. clock speeds) to the processors used in most

commonly known PCs. I reviewed Ex. 1031, which is a summary published by

Intel of the key statistics of Intel processors over time, which confirms my 5

recollection that this is the case.10 For example, as of October 1999, Intel had

released a mobile processor with a 1GHz maximum clock speed. Ex. 1031 at 32-

33 (showing 1 GHz and 1.13 GHz Pentium III Notebook Processors).

179. Additionally, at the time of the alleged invention, the operating

systems that were commonly used on laptop computers (such as various versions 10

of Windows, particularly Windows 95, Windows 98, Windows NT, and Windows

2000) were exactly the same as the most common operating systems used on

desktop PCs. I personally installed Windows NT on laptop computers in the mid

to late 1990s. Additionally, Microsoft offered a version of Windows (Windows

CE) for even smaller portable devices which was based on Windows NT and could 15

10 In my opinion, a person of ordinary skill in the art would reasonably rely on such

summaries published by Intel in order to evaluate the capabilities of processors at

the time, and such summaries are generally reflective of the state of the art over

time due to Intel’s dominant market position.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

103

operate software based on similar coding languages, so that software written for

Windows on a PC could be easily “ported” to a mobile computing device using

techniques that would have been well-known to a person of ordinary skill in the

art. For example, operating systems (including the various versions of Windows)

would offer an Application Programmer Interface (API) to guide developers in 5

writing software that can interact with the features of the operating system and its

host computer through calls to those functions, so transposing software to a

different operating system is generally a matter of updating the software calls to

relate to the API for the new operating system. This was a very routine task in the

software field. Indeed, Ex. 1014 itself notes specifically at p. 2 that “we have 10

engineered TerraVision to be easily portable to other platforms and we have

recently performed a port to Microsoft’s Windows NT platform.” Therefore, a

person of ordinary skill in the art at the time (indeed, even an ordinary user who

was not even a person of ordinary skill in the art) could have run and installed

TerraVision II on a laptop computer with no modification. Therefore, a person of 15

ordinary skill in the art would have every reason to expect that Reddy’s teachings,

including but not limited to TerraVision II itself, would operate on a suitable

laptop or other mobile/portable computing device.

180. In my opinion, a person of ordinary skill in the art would further

recognize that Reddy’s use of commonly known Web browsers for accessing map 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

104

information over the Internet would enable any device that is connected to the

Internet, and which uses one of these known browsers, to access map data

regardless of whether the connection is a wired connection or a mobile connection,

and regardless of the speed at which that Internet connection operates. This is so

because, as I discussed previously in section VI.A, the TCP/IP protocol provides a 5

layer of abstraction for the data being sent; in other words, as long as there is a

means to transport TCP/IP packets, any type of digital data can be sent using

TCP/IP packets – the TCP/IP protocol makes no assumptions about the type of

data contained in the data packets, in merely facilitates the transfer of those

packets. 10

181. Therefore, applying the teachings of Reddy on a portable wireless

device (e.g., a laptop with a PCMCIA card connected to a wireless network, as

taught by Woods) would require no more than the application of a known

technique (a wireless network to access the Internet) with predictable results, and

achieving the benefits of both references, because wireless connections allowed 15

users to retrieve the same data from Internet as any other Internet connection.

Additionally, there were at the time a finite number of known ways for a laptop

computer to access the Internet (e.g. Ethernet plug, dial-up modem connection,

internal or external modem), of which wireless PCMCIA cards were one very well-

known method. Therefore, a person of ordinary skill in the art seeking to use a 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

105

laptop to access geographic data over the internet would know that a wireless

connection such as a wireless PCMCIA card was one of the known, finite ways to

do that.

182. Additionally, Reddy teaches that tiles requested and downloaded from

a server are prioritized using a “coarse-to-fine” algorithm to retrieve lower-5

resolution tiles first (Ex. 1004 at ¶¶ 21, 44) and by “prefetching” tiles along the

user’s predicted flight path (id. at ¶ 46). However, Reddy does not explain specific

technical details regarding how such tile requests are prioritized. Woods, however,

explains in detail how tiles are prioritized for download to optimize use of

bandwidth. Specifically, Woods teaches that the objects within a scene may be 10

assigned priorities based on their distance from the viewpoint, as well as based on

the motion of the viewpoint. Ex. 1003 at Abstract, 10:1-17. In my opinion, a

person of ordinary skill in the art would recognize that the prioritization features of

Woods would meet the goals taught by Reddy of retrieving needed data based on

proximity to a viewpoint and projected flightpath, while improving the utilization 15

of limited bandwidth to retrieve data, which is likewise a goal of Reddy. In other

words, the priority weighing and priority queue of Woods would predictably

improve fetching of imagery in Reddy (by first using bandwidth to retrieve the data

that contributes the most to a scene) in the same manner as it improves fetching of

imagery in Woods. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

106

183. In my opinion, the teachings of the prioritization features of Woods

are readily applicable to retrieve imagery tiles as taught by Reddy. For example,

Woods teaches that the “assets” prioritized for retrieval using its priority scheme

include inline nodes and textures. Ex. 1003 at 6:16-23, 6:42-49. Fig. 5A of

Woods shows an exemplary prioritization of inline and texture assets. Id. at 9:19-5

10:64, Fig. 5A. Reddy’s hierarchical VRML data set relies on inlining and the

terrain tiles include satellite or aerial imagery. Ex. 1004 at ¶¶ 3, 18, 19-21, 24. A

person of ordinary skill in the art would know that the satellite or aerial imagery

tiles taught by Reddy are simply textures applied to the surface of the earth.

Therefore, in my opinion such tiles could be retrieved just as readily using the 10

priority fetching features of Woods as the building tiles taught in the preferred

embodiment of Woods.

3. Claim 1

184. In my opinion, all limitations of claim 1 are taught or suggested by

Reddy in view of Woods. 15

Preamble: A method of communicating images for display to a plurality of
wireless portable devices, the method comprising steps of:

185. In my opinion, Reddy in view of Woods teaches the preamble of

claim 1, to the extent that it is found limiting. Reddy teaches a method for

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

107

communicating images for display to a portable computing device, while Woods

teaches that such devices may be wireless.

186. Reddy teaches a system for retrieving “massive” terrain data sets

including satellite and aerial imagery (which are typically very large-scale images,

as Reddy teaches in ¶1, which suggests that photorealistic terrain models may be 5

on the order of “hundreds of gigabytes”) over the Internet or World Wide Web

(“WWW”) (network communications channels). See, e.g. Ex. 1004 at p. 30

(subtitle), ¶¶1, 5, 9, 10, 12, 31. Reddy teaches a system that can be implemented as

a plug-in in connection with a standard web browser (Ex. 1004 at ¶¶ 31, 32), and

that the system may be implemented on, for example, a PC connected to the 10

Internet or a laptop machine (limited communication bandwidth computer device),

which makes the system particularly useful in “military mission planning…

emergency relief efforts, and other distributed time-critical conditions.” Id., ¶48.

The benefits of using a portable device (such as a laptop) in a military or

emergency response scenario (where users of the system might be, for example, 15

operating out of a mobile or field expedient command center with similarly field

expedient network connections) should be readily apparent to the user. Reddy

further teaches that the tiling employed by its system enables a user to visualize a

scene utilizing a much smaller amount of downloaded data than the full-resolution

underlying image. Id., ¶16. A person of ordinary skill in the art would recognize 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

108

that a goal of Reddy is enabling access to large databases of mapping information

under conditions of limited bandwidth, like those that would be encountered in a

military or emergency response scenario.

187. Reddy further teaches displaying the retrieved image data on a client

device. For example, Fig. 1(b) shows a how the image displayed on the screen of 5

the user device is segmented into tiles of different resolutions which have been

retrieved from the server. Fig. 2 shows how the image displayed on the screen of

the user computing device uses a tiled pyramid structure to display terrain closer to

the viewpoint at a higher resolution than more distant terrain. Fig. 5 shows a

screenshot of a screen on the client device, showing a 3D perspective view of Fort 10

Irwin, California. Id., ¶¶ 16-18, 38; see also Fig. 4 and ¶ 26.

188. In my opinion, a person of ordinary skill in the art would further

recognize that Reddy’s use of commonly known web browsers for accessing map

information over the Internet would enable any device that is connected to the

Internet, and which uses one of these known browsers, to access map data 15

regardless of the speed at which that Internet connection operates. This is so

because, as I discussed previously in section Error! Reference source not found.,

the TCP/IP protocol provides a layer of abstraction for the data being sent; in other

words, as long as there is a means to transport TCP/IP packets, virtually any type

of digital data can be sent using TCP/IP packets. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

109

189. It is also my opinion that a person of ordinary skill in the art would

recognize the need to reduce bandwidth consumption in situations where multiple

users need to share the use of a common communications channel. In my opinion,

the military and disaster relief scenarios taught by Reddy are exemplary of

situations where a person of ordinary skill in the art could expect a large group of 5

users (e.g. the staff of a command center) to have to share access to a common

network connection under field expedient conditions. Under such conditions, a

person of ordinary skill in the art would recognize that the bandwidth available to

each user would be limited by the need to share the connection, as well as the need

to minimize each user’s use of bandwidth to avoid adversely impacting others. 10

Similar constraints could arise even in typical consumer or office use scenarios,

e.g. when a large number of users of an Internet gateway approach the bandwidth

limits of the gateway.

190. In my opinion, it was well known to persons of ordinary skill in the

art by the late 1990s that laptop computers were “portable” computers. Indeed, 15

portability is the primary purpose of a laptop computer. For example, the 1999

Microsoft Computer Dictionary specifically lists laptop computers as an example

of a “portable computer.” Ex. 1045 at 349-350 (table).

191. While Reddy does not specifically identify a wireless connection, it

would have been well known in the art, as well as specifically described by 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

110

Woods, that laptop computers like those discussed in Reddy could connect to the

Internet wirelessly. I note here there is nothing whatsoever in Reddy that teaches

away from using a wireless connection; Reddy simply describes methods that can

be used in a computer connected to the Internet by any suitable method. Wireless

computer modems for laptop computers were such a suitable method. 5

192. The PCMCIA card and wireless interface described by Woods are a

good example of such wireless connections. Woods discloses that clients may

communicate wirelessly with the servers. Ex. 1003 at 15:36-50 (channel 728 may

be a “cellular phone link” or “RF link”). Woods also discloses that the

communications interface of the client computing device may be a “PCMCIA slot 10

and card.” Id. at 15:39-42. PCMCIA (or PC Card) refers to a card-based interface

for peripheral devices that was developed for laptops and other portable computing

devices. See, e.g., Ex. 1045 (MSFT Dictionary) at 336 (noting that PCMCIA

standard was “primarily [for] laptop, palmtop, and other portable computers”).

PCMCIA cards having wireless capabilities, as discussed in Woods, were widely 15

available prior to the alleged invention and filing date of the ’136 Patent

193. For example, by 1999, Proxim, Inc. offered a RangeLAN2 PC Card

designed to provide high speed wireless internet connections to “mobile users who

require continuous LAN connectivity.” Ex. 1051 at 1. This device, which was

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

111

designed for “Windows CE Handheld PCs,” offered a 1.6 Mbps data rate and is

shown below:

Id.

194. As another example, by 2000, Cisco’s Aironet 340 series of products 5

included a PC Card wireless adapter for laptop computers, which supported data

rates up to 11 Mbps. Ex. 1052. Such devices allowed a laptop computer to

connect to a wireless router using a PC card in the laptop, as shown in the

following diagram:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

112

195. The Cisco Aironet products could use the IEEE 802.11 wireless

internet or “wi-fi” standard, which is specifically mentioned in Ex. 1052.

196. More generally, it was well known by 2000 that portable laptop

computers could connect wirelessly to networks and the Internet. By that time, 5

IBM was touting the wireless capabilities of its ThinkPad laptops. See, e.g., Ex.

1050 (Thinkpad X press release). For example, IBM advertised that its Thinkpad

X series Ultraportable computer offered “for wireless LAN connectivity, an

optional industry-standard 802.11b LAN PC Card” as well as Bluetooth wireless

technology options, including a PC card. 10

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

113

197. Likewise, by 1999 Apple Computer, Inc. had also released its

“AirPort” family of wireless connection products based on the IEEE 802.11 family

of wireless connection standards. Ex. 1048, 1049. Among other products, the 11-

Mbps AirPort card was available for Macintosh computers including the

PowerBook, which was well known as an Apple marketing name for notebook 5

computers:

Ex. 1049 at 3.

198. I personally recall being aware as of 1999 and 2000 that similar

wireless access devices on PC Cards were available, and the exhibits discussed 10

above are consistent with my recollection.

199. Therefore, in my opinion a person of ordinary skill in the art would

recognize that preamble of claim 1, including a “wireless portable device,” is

taught or suggested by the combination of Reddy and Woods through Reddy’s

teaching of a laptop and Woods’ teaching of wireless connections suitable for 15

laptops. In my opinion, a person of ordinary skill in the art would also recognize

that using such a wireless connection as taught by Woods on a laptop as taught by

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

114

Reddy could be accomplished using methods well-known in the art with

predictable results.

200. It is also my opinion that a “plurality” of wireless portable devices as

claimed is also obvious over Reddy in view of Woods. It is noteworthy that the

’136 Patent itself does not contain any specific teaching of plural users. Therefore, 5

in my opinion, the only way that the claimed “plurality” of wireless portable

devices could be supported at all by the specification is if one assumes that a

person of ordinary skill in the art would already know that a server providing

access to data over a network such as the Internet could respond to requests from

multiple client devices. This is exactly the case with both Reddy and Woods. 10

Because both references teach servers that provide data in response to requests

received from client devices over the Internet to provide data for display, and are

not limited to a single client, in my opinion, a person of ordinary skill in the art

would recognize that the servers taught by both references would be operable to

provide such data to a plurality of devices. Both references repeatedly refer to 15

plural “users.” Ex. 1004 at ¶¶ 7, 10, 31-37, 46, 49, 51; Ex. 1003 at 2:48-51, 3:39-

44.

201. Reddy further teaches specifically that its teachings are “particularly

useful in military mission planning and battle damage assessment, emergency

relief efforts, and other distributed time-critical operations.” Ex. 1004, ¶ 48. In my 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

115

opinion, a person of ordinary skill in the art would recognize that these are

situations in which it is desirable for multiple users to have access to the same data.

In fact, Reddy specifically refers to “multiple users” at ¶ 51. Therefore, in my

opinion, the “plurality of wireless portable devices” limitation is obvious.

1.A: pre-processing a source image to obtain a series (K0, K1 . . . KN) of related 5
images of progressively lower image resolution,

202. In my opinion, Reddy teaches this element because it teaches that the

server systems for providing imagery may process source image data into a grid of

tiles organized into a hierarchy of different resolution levels. As to the

“processing” on the server, Reddy discloses teaches two alternatives. First, the 10

required terrain data may be pre-computed offline. Ex. 1004, ¶52. Second, terrain

data may be generated “on the fly” by parsing the URL path name, using a script

on the server, to generate the necessary VRML data. Id. In other words, in this

second alternative, if processed data is not already available (which is a situation

that might come up in a time-critical scenario, e.g. military or disaster response, 15

where new imagery is being made available for a first time) the script can parse the

URL request, decide what data needs to be made available, and then conduct the

necessary processing in order to make that data available.

203. I understand the phrase “series K1-N of derivative images of

progressively lower resolution” to mean that there is a source image, followed by a 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

116

series of layers of tiles in which the source image has been divided into a

derivative layer of tiles at lower resolution. For example, at layer KN+1, there will

be 1/4 as many tiles as there are at layer KN, each tile having half the resolution of

layer KN. In other words, layer KN+1 is a derivative of layer KN in which every tile

in layer KN+1 is the result of combining an array of four adjacent KN tiles at lower 5

resolution. This system corresponds with the teachings of Reddy, as illustrated by

Fig. 1:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

117

204. In my opinion, a person of ordinary skill in the art would understand

the teaching of Reddy to mean that a server generates the series of derivative

images.

205. While Woods does not describe processing the source image data, it

does discuss levels of detail organized as a hierarchy such that an application can 5

automatically select appropriate levels of detail for rendering based on the distance

between the camera and the relevant area. Ex. 1003 at 6:23-35. In my opinion, a

person of ordinary skill in the art would recognize that such level of detail

hierarchies are in most cases the result of processing a source image into a mip-

map. 10

1.B: wherein each related image of the series (K0, K1 . . . KN) comprises pixel
data and is subdivided into a regular array of image parcels, and each image
parcel of each regular array of the image parcels forms a discrete portion of
the source image;

206. In my opinion, Reddy clearly states that each image within the 15

“pyramid” of images comprises pixel data. Ex. 1004 at ¶¶ 15-16. Reddy teaches

that each layer of the pyramid, including the highest resolution layer (K0) is

“segmented into” an array of tiles, so that each tile at a given level maps onto four

tiles at the next higher level. Ex. 1004, ¶¶12-16, Fig. 1. For example, in Fig. 1, the

bottom layer is an 8x8 array of tiles. The rest of the “image pyramid” contains 20

four different resolutions of the original image, each formed into an array ranging

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

118

from 8x8 tiles at the highest resolution to a single tile at the lowest, with 4x4 and

2x2 arrays in between. This teaching is substantially identical to the ’136 Patent’s

disclosure in Fig. 2 and at 6:3147 of the division of source image data into

derivative images of progressively lower image resolution, as shown by a

comparison of Fig. 1 of Reddy and Fig. 2 of the ’136 Patent: 5

207. It is also my opinion that each tile in the image pyramid shown above

corresponds to a specific geographic area and a discrete portion of the source

image; that is, the portion of the image covered by the tile at that particular level of

detail. Reddy teaches that such tiles are retrieved for a particular view based on 10

their position in relation to the viewpoint and their resolution. Ex. 1004 at ¶¶ 16-

17.

208. I understand that in IPR2015-01432 relating to the ’794 Patent, the

Board construed the term “image parcel” as “an element of an image array, with

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

119

the image parcel being specified by the X and Y position in the image array

coordinates and an image set resolution index.” As I discussed above in § IX.D, I

do not believe that the term “image parcel” should be limited to this embodiment.

In my opinion, even if the Board were to adopt this construction, the Board’s

previous construction is met by the tiles of Reddy. For example, Reddy teaches in 5

¶¶ 16-17 that tiles are retrieved for a particular view based on their position in

relation to the viewpoint and their resolution. In my opinion, it would be obvious

to a person of ordinary skill in the art that the browser taught by Reddy would need

to specify the location and resolution level within the “pyramid” of tiles within the

view. The resolution level within the pyramid corresponds to the “resolution 10

index” within the “image parcel,” if the term is construed this way. For example,

to compose the view shown in Fig. 1(b) of Reddy, the browser would need to

retrieve the image tiles shown at a specified location (x, y) and resolution. For

example, among other image tiles, the browser would need to retrieve the tile

shown in red from the lower right-hand corner of the pyramid at the highest 15

resolution and the tile shown in blue from the upper left-hand corner of the

pyramid at a resolution two steps lower:

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

120

209. A person of ordinary skill in the art would readily appreciate that the

image parcels that make up any layer within Reddy’s image pyramid form a two

dimensional array. The standard way to identify an element of a two-dimensional

array is to use an index for each dimension. An exemplary discussion of this is 5

found in Foundations of C++ and Object-Oriented Programming by Namir C.

Shammas (1998). Shammas explains, for example, that an element in a

multidimensional array is accessed using the following syntax

“arrayName[IndexOfDimension1][IndexOfDimension2]...” Ex. 1043 at 369. In

my opinion, Shammas’ discussion of multidimensional arrays is consistent with 10

what a person of ordinary skill in the art would have learned in an introductory

programming class by the late 1990s. I would also note that Woods uses this

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

121

convention to identify particular grid regions which are similarly organized as an

“array of grid elements” (Ex. 1003 at 8:46-52). The upper right corner grid region

in Figs. 5A-5D is denoted “1, 6” because it is in the sixth position (X position) of

the first row (Y position).

210. A person of ordinary skill in the art would further recognize that 5

Reddy’s image pyramid is a three-dimensional array of image parcels (or an array

of two dimensional arrays) since there are several layers in the pyramid. The

layers within the pyramid are a third dimension. And the standard way of

accessing an element of a three-dimensional array would be to use yet another

index corresponding to the third dimension. See, e.g., Ex. 1043 (Shammas) at 369; 10

id. at 378 (example of three-dimensional array “fXMat” with three indices). The

’136 Patent’s preferred identification scheme which uses an X and Y position and

an image set resolution index (which merely identifies the layer in the pyramid) is

not inventive. It simply relies on an index for each dimension of a multi-

dimensional array and is an obvious, perhaps the most obvious, way of identifying 15

image parcels within Reddy’s image pyramid.

211. Reddy further teaches that the methods of locating and retrieving tiles

taught therein can be used to retrieve data expressed in a variety of geocentric or

local coordinate systems. See, e.g. Ex. 1004, ¶¶ 27, 29-30 and sidebar (“What

shape is the earth?”) The sidebar on p. 35 of Reddy discusses a well-known 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

122

problem of how to accurately represent the surface of the earth. While the simplest

way to represent the surface of the earth is as a sphere, the earth is not in fact a

perfect sphere. For example, the radius of the earth from the center to the equator

is larger than the radius from the center to the north and south poles, which means

that the earth is described in geometric terms as an “oblate spheroid” or ellipsoid. 5

The actual mean sea level of the earth also varies by approximately 100m due to

local variations relating to the earth’s gravitational field. As p. 35 of Reddy

explains, the earth’s surface can be modeled as a surface called a Geoid:

212. Since 1984, the standard geoid surface used by the Department of 10

Defense (and most other U.S. government agencies) is defined by the World

Geodetic System 1984, or WGS84.

213. While the shape of the earth presented a challenge in computer-aided

mapping, it would have been known to a person of ordinary skill in the art, as well

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

123

as specifically taught in Reddy, that solutions to these problems, such as the

WGS84 datum, had been identified well before the earliest claimed priority date of

the ’136 Patent. Reddy further teaches in ¶¶ 27 and 29-30 that the geocentric

coordinate system described therein could be used to display data from a wide

variety of coordinate systems, including Lambert Conformal Conic, Universal 5

Transverse Mercator (UTM), or systems representing “small-scale regions” by

converting into the specific VRML geocentric system used in the preferred

embodiment of Reddy. In my opinion, such conversions would have been well

within the ability of a person of ordinary skill in the art as of December 2000, and

many of these systems represented coordinates at least in part using simple x, y 10

coordinates.

214. For example, UTM, which is specifically referenced in Reddy, ¶ 27,

and the closely related Military Grid Reference System (MGRS) based on UTM,

first divide the earth into a series of latitude and longitude bands, then represent

coordinates within those bands using a coordinate system that represents the 15

position as an “easting” and a “northing” representing the distance in meters that

one would have to travel east and north from a reference point within that band.

Therefore, one of the reference systems explicitly referenced as supported by

Reddy does rely on the use of x, y coordinates at a local level. Conversion from

UTM to an X, Y tile address was already known in the art, and was used by 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

124

Microsoft in the TerraServer system that I discussed previously, as described by

Barclay (Ex. 1030), § 2.3.

215. Additionally, the issue of viewing data on a worldwide scale involves

more complex problems than viewing data on a local scale. The ’136 Patent itself

does not, in my opinion, contain any discussion relating to solving problems of 5

viewing data on a worldwide coordinate system. In my opinion, while Reddy

certainly teaches solutions to complex solutions of displaying data on a worldwide

coordinate system, there is no reason that a person of ordinary skill in the art would

view its teachings as limited to these scenarios, and in my opinion, a person of

ordinary skill in the art would certainly understand that the principles taught by 10

Reddy could be applied in a more simple local coordinate system using only x and

y coordinates and level of detail.

1.C: storing the image parcels of the series for serving by one or more servers;

216. As I discussed above in regard to Claim 1, preamble, Reddy teaches a

system that is implemented in conjunction with a web browser and operates by 15

sending requests for tiles and other geographic data.

217. The conventional web browsers taught by Reddy are used to access

web pages. Fundamental to the operation of the World Wide Web is the notion of

a browser making hypertext transfer protocol, or HTTP, requests to an HTTP

server. A POSITA would understand that by convention, these world wide web 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

125

requests are made by sending requests for content to an HTTP server computer on

TCP/IP port 80 (normal http requests) or on TCP/IP port 443 (secure https

requests). Requests from an HTTP client application, such as a known web

browser such as those cited by Reddy and Woods, are then responded to by the

HTTP server, again using TCP/IP on ports 80 or 443.11 5

218. Therefore, in my opinion, a person of ordinary skill in the art would

understand these teachings of Reddy, in view of the knowledge of a person of

ordinary skill in the art and the background art of web browser software and the

VRML, to teach that the geographic browser of Reddy sends requests to a server

(remote computer) to retrieve geotiles containing links to imagery files, which are 10

then requested by URL.

219. These teachings are analogous to the ’136 Patent’s use of HTML

requests. Ex. 1001, 7:40-44. In my opinion, it is both disclosed and obvious in

view of Reddy’s discussion of retrieving image data over the internet that a server

receives and responds to requests sent by a client. Indeed, this is how a browser 15

accessing data over the internet works- the browser sends a request that is routed to

11 While it is possible to use other TCP/IP ports to perform these transactions, by

1994 ports 80 and 443 had been adopted for http and https respectively. See

RFC1700 pages 20 and 34 respectively.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

126

a server, the server receives the request and responds to it. In my opinion, a person

of ordinary skill in the art would clearly understand in view of Reddy’s discussion

of a geographic browser that downloads specified geographic information that such

a browser would receive that data from a server that receives requests for specific

information (e.g. by URLs, as taught by Reddy at ¶¶ 19 and 21) and responds to 5

those requests for information by sending responsive data stored on the server or

another connected server. Because the claim language recites “one or more

servers,” not a single server, there is no requirement in the claims, in my opinion,

that the image parcels are stored on the same computer that receives requests.

Therefore, in my opinion, Reddy teaches “storing the image parcels of the series 10

for serving by one or more servers” as claimed. The tiles of Reddy are “image

parcels” under any construction for the reasons that I explained previously.

220. Additionally, the ’136 Patent itself does not contain a particularly

detailed description of the server architecture. The server discussed in the ’136

Patent is mentioned only briefly, and most of the discussion relates to operations 15

on the client side and the format of data received by the client. The ’136 Patent

effectively assumes that a person of ordinary skill in the art would already know

how to design a server that can respond to requests from a client and provide

responsive data. Therefore, in my opinion, the teachings of Reddy disclose and

enable a server to the same extent as the ’136 Patent. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

127

221. Additionally, Woods specifically teaches a server to store and provide

VRML data such as textures. Ex. 1003 at Fig. 1, 5:15-38.

1.D: providing client software to a wireless portable device;

222. In my opinion, this element is taught by and obvious in view of Reddy

and Woods. As an initial matter, the ’136 Patent does not clearly state or provide 5

any amplifying information in the specification as to how client is software is

“provided” to a client device. The closest disclosure in the ’136 Patent is its

teaching that the client software “is preferably implemented by software plug-in or

application executed by the client system . . . that utilizes basic software and

hardware services provided by the client system.” Ex. 1001 at 7:37-40. Nothing in 10

this teaching specifies whether software is “provided” to a client device prior to

runtime, at runtime, or how it is loaded onto the client device, such as whether the

server sends the software to the client or whether the software is provided by some

other means. The claim itself also does not say what client software is provided to

the wireless portable device, because none of the other claim elements or 15

dependent claims refer back to the client software. However, it is my opinion that

Reddy and Woods disclose providing client software to a wireless portable device

to at least the same extent, if not more, that the term is supported by the

specification of the ’136 Patent.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

128

223. For example, Reddy teaches that it utilizes Java scripts and applets in

connection with a browser plug-in to enable users to view data. Ex. 1004 at ¶¶ 10,

26, 32-33. Browser plug-ins were typically software designed to extend the

functionality of an existing browser, and so would be installed in addition to the

browser that was already installed. A person of ordinary skill in the art as of 1999 5

or 2000 would also be familiar with both Java scripts and applets. Java scripts and

applets were typically small applications that would be downloaded from a server

to a client when the client device viewed a web page. Moreover, it was standard

practice by the late 1990s for web sites that used plug-ins to provide the plug-ins

for download or at least to provide links to where the plug-ins could be 10

downloaded.

224. Woods further teaches that computer programs enabling the computer

system “to perform the features of the present invention” may be received via the

communications interface. Ex. 1003 at 15:58-16:8. Therefore, in my opinion, a

person of ordinary skill in the art would understand that both Reddy and Woods 15

teach or suggest providing client software to the user device, which may be a

wireless portable device, from a server.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

129

1.E: receiving a first request at the one or more servers from the first wireless
portable device over a network communication channel,

225. As I discussed above in regard to claim element 1.C, in my opinion, a

person of ordinary skill in the art would understand in view of the teachings of

Reddy that the geographic image server receives requests from a browser on a 5

client device to retrieve geotiles containing URL links to imagery files, which are

in turn retrieved by requests for the URLs. Ex. 1004 at ¶¶ 19, 21.

226. Woods likewise teaches that elements of the scene, such as textures,

may be retrieved (“fetched”) by requests for assets at particular URLs. Ex. 1003 at

Abstract, 6:42-49, 7:27-35, 13:21-34. Therefore, in my opinion, a person of 10

ordinary skill in the art would understand that both Reddy and Woods teach

systems in which servers receive fetch requests based on URLs. Additionally,

because the system of fetch queues taught by Woods simply sorts requests for

particular data identified by the URL, a person of ordinary skill in the art would

understand that in typical VRML browser implementation, these fetch requests 15

would consist of HTTP “get” requests for the URL. Because Reddy also teaches

that tiles of imagery are located by URLs, the fetch requests of Woods are readily

suited to issue get requests for URLs of image tiles as described by Reddy, and a

person of ordinary skill in the art would have a reasonable expectation of success

in making this modification. It is therefore taught or suggested by Reddy and 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

130

Woods that the server receives requests identifying URLs. I previously discussed

how Reddy and Woods teach a “wireless portable device” and a “network

communication channel” in regard to the preamble of claim 1, and in my opinion

the same teachings apply to this claim element.

1.F: wherein the network communication channel is at least in part wireless, 5

227. In my opinion, this claim element is taught by Woods and further

obvious over the combination of Reddy and Woods. Woods teaches that the

communications interface 724 may connect to a channel 728 which may connect to

a network and can include, among other communications channels, a cellular

phone link or RF link. Ex. 1003 at 15:36-50. 10

228. A person of ordinary skill in the art would know that such wireless

links, particularly in view of the wireless networking standards in existence at the

time, could be used to carry conventional Internet traffic such as HTTP “get”

messages (alternatively referred to as “fetch” requests”) from a client to a server,

and packetized data sent in response. Because Reddy teaches that its methods may 15

be implemented on a “PC connected to the Internet,” a person of ordinary skill in

the art would understand that the same network traffic needed to implement

Reddy’s methods, i.e. the requests and responses discussed above, could be

implemented using a wireless connection as discussed by Woods. In my opinion,

such wireless communications links would meet the need for mobility suggested in 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

131

the military and emergency response scenarios described by Reddy. Ex. 1004 at ¶

48.

1.G: the first request being for a first image parcel of the series, wherein the
first image parcel is selected based on a first user-controlled image viewpoint
on the first wireless portable device relative to the source image; 5

229. In my opinion, Reddy teaches this element. Reddy teaches a system

designed to enable a user to view geographic information or imagery downloaded

over the web using a 2D pan-and-zoom display or three-dimensional simulated

viewpoint chosen or navigated to by the user/operator. Ex. 1004, ¶¶ 2-3, 13-17,

21, 38, 42, Fig. 5. Terrain tiles include the image data that gets texture mapped 10

onto the elevation model. Id. at ¶ 18. Tiles are selected based on the user’s

proximity to the tile in question. Id., ¶¶ 12-17, 19-22, 29, 42-46, Fig. 1, 4, 5. For

example, Fig. 1(b) and accompanying text describe how higher resolution tiles are

downloaded for the area nearest the user’s viewpoint, while paragraph 21 teaches

that “when the user approaches a region of terrain, more detail is progressively 15

loaded and displayed in a coarse-to-fine fashion. In my opinion, a person of

ordinary skill in the art would recognize these teachings to disclose that the update

data parcel (terrain tiles) are selected based on an operator controlled image

viewpoint (user perspective) relative to a predetermined image (the source

imagery/map data that the user is viewing). Ex. 1004, ¶3. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

132

230. When a user zooms into a target region, progressively higher

resolution data is downloaded and displayed. Ex. 1004 at ¶ 3. In Reddy, the

system need only fetch and display data for the region that the user is viewing. Ex.

1004 at ¶ 17. Therefore, Reddy teaches that the user’s computer issues requests for

specified data from a server for the appropriate resolution and location based on 5

the user’s viewpoint, in the form of image tiles corresponding to an element of the

image array. Reddy teaches that updated tiles are requested in response to changes

in user-controlled image viewpoints. Ex. 1004 at ¶ 37.

231. In my opinion, Woods also describes a server that receives requests

for image parcels based on a user viewpoint. Woods describes how clients 10

download VRML data files from a “web server” over a network. Ex. 1003 at 5:15-

48, Fig. 1. Woods describes the use of URLs to fetch VRML objects including

textures. Id. at 3:27-47, 6:42-49, 13:20-30. Woods also describes prioritized

downloading of VRML data files based on a first user-controlled viewpoint. Ex.

1003 at 7:66-8:8 (prioritized list of downloads is responsive to user movement of 15

the camera).

1.H: sending the first image parcel from the one or more servers to the first
wireless portable device over the network communication channel, in
response to the first request;

232. As I previously discussed in regard to the preamble of claim 1 and 20

claim element 1.E, Reddy teaches a system for browsing geographic data over the

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

133

Internet (which is a network communications channel), which means that image

tiles (update data parcels) are sent by one or more servers in response to requests

from the client. In a typical client-server interaction using HTTP requests, the

sequence of actions is that the client device sends the request for an object, which

is received by the server, which obtains the requested object and sends it to the 5

client device, which then receives it. Therefore, the server performs the step of

sending data (in this case, the update data parcel) in response to the client requests.

As I discussed in regard to claim element 1.E, a person of ordinary skill in the art

would understand that the geographic browsing methods taught by Reddy are

driven by requests from the client side. Therefore, in my opinion, it would be 10

obvious to a person of ordinary skill in the art that the servers supporting the

system of Reddy would transmit update data parcels in response to client requests,

and therefore the step of sending the update data parcel is performed in response to

the first request.

233. Woods similarly describes the fetching of VRML resources from a 15

web server using URLs. Ex. 1003 at 2:31-37, 3:30-35, 5:14-25, 5:39-48. In my

opinion, because a person of ordinary skill in the art would understand that the

typical operation of an HTML-based server was that the server would receive “get”

requests for a particular URLs, and send the requested data in response to those get

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

134

requests, that this teaching means that Woods describes the servers which send

data in response to client requests.

1.I: receiving a second request at the one or more servers from the first
wireless portable device over the network communication channel,

234. This claim element differs from claim element 1.E only in that it 5

describes a second request instead of a first request. In my opinion, a person of

ordinary skill in the art would recognize that subsequent requests for tiles in the

system of Reddy would be retrieved in the same manner as the first request.

235. For example, Reddy discusses how a user would navigate through a

scene, such as by zooming in or “flying” over an image, which in my opinion 10

would result in requests for imagery for the appropriate location and zoom level.

See, e.g. Ex. 1004, ¶¶ 3, 36-38. In addition, Reddy teaches (and it would also be

obvious to a person of ordinary skill in the art) that more detailed, higher-

resolution tiles are requested by the client program as a user approaches a

particular region of the map. Id., ¶ 21. 15

1.J: the second request being for a second image parcel of the series, wherein
the second image parcel is selected based on the first user-controlled image
viewpoint on the first wireless portable device relative to the source image,

236. In my opinion, Reddy and Woods both teach or suggest this element.

For example, Fig. 1(b) of Reddy shows a viewpoint-dependent perspective which 20

would require requesting (and therefore the server receiving requests for) multiple

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

135

tiles based on the same viewpoint. Reddy further teaches that data is progressively

loaded in a “coarse-to-fine” fashion so that lower-resolution tiles may be displayed

while higher-resolution tiles are still being downloaded. Ex. 1004 at ¶¶ 21, 44.

Therefore, it would be obvious in view of Reddy to retrieve and request a second

tile (e.g., a higher-resolution tile, or another tile forming a different portion of the 5

same scene) based on the same viewpoint as the first tile.

237. Woods also discloses downloading multiple resources in a priority

order for the same viewpoint. For example, Woods describes and shows via Fig.

5A an example wherein based on the camera position and direction one grid region

is designated priority 1, eight others are designated priority 2, and twelve others are 10

designated priority 3. Ex. 1003 at 8:55-10:64. In my opinion, a person of ordinary

skill in the art would understand from these teachings of Woods that multiple

assets (including textures) would be retrieved in a priority sequence based on the

same viewpoint. Because more needed resources are loaded into the priority queue

first, Woods teaches that subsequent fetch requests for data based on the same 15

viewpoint would be issued after a first request. For example, because resources are

downloaded in a priority order (id. at 13:5-20), requests associated with a priority 1

grid region would be received before those associated with the priority 2 and 3 grid

regions.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

136

238. It is also my opinion that such a priority scheme would provide

substantially the same benefits to implement the coarse-to-fine prioritization taught

by Reddy. In Woods, textures that are needed sooner are loaded sooner. For

example, the outside textures of a building are loaded before the inside textures of

the building. Reddy teaches that coarse tiles are needed before higher resolution 5

tiles as the user approaches them. Therefore, it would make sense to load coarse

tiles before higher resolution tiles using the prioritization scheme of words in the

same manner.

1.K: the step of receiving the second request being performed after the step of
receiving the first request; 10

239. In my opinion, this claim element would be obvious to a person of

ordinary skill in the art over Reddy and Woods in view of the teachings that I

discussed above regarding claim element 1.J. For example, Reddy teaches that

lower resolution tiles are retrieved (that is, that requests for those tiles are sent by

the client and received by the server) before higher resolution tiles. Woods further 15

teaches the use of a priority queue which (in a preferred embodiment) retrieves

four “assets” simultaneously and then retrieves additional assets first from a

“waiting” queue and then from a list of assets to be retrieved. Ex. 1003, Fig. 8,

12:56-13:47. In my opinion, a person of ordinary skill in the art would recognize

that in the priority queue of Woods, a later “fetch” request would naturally be 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

137

received by the server after an earlier “fetch” request. For example, a fetch request

in the waiting queue at a time would be sent and received after a fetch request that

was in an active queue the same time.

240. As I discussed above, it is also my opinion that a person of ordinary

skill in the art would recognize that the priority setting scheme of Woods would be 5

readily applied to retrieve image tiles in a coarse to fine manner as taught by

Reddy simply by retreating geographic texture tiles using the woods fetching

scheme this combination would result in later requests for tiles from the same

viewpoint being received after earlier requests for the tiles from that viewpoint.

1.L: sending the second image parcel from the one or more servers to the first 10
wireless portable device over the network communication channel, in
response to the second request; wherein:

241. In my opinion, Reddy and Woods disclose this claim element. This

claim element is nearly identical to claim element 1.H, except that it relates to the

second image parcel rather than the first. In my opinion, it would be obvious that 15

subsequent tiles requested would be sent in the same manner as the “first” tile (that

is, the server would receive the request for the tile and then send the tile in

response to the request) and therefore my discussion above regarding claim

elements 1.H applies.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

138

1.M: the first wireless portable device renders at least a portion of the first
image parcel before finishing receiving the second image parcel;

242. In my opinion, Reddy teaches this element. For example, in addition

to its disclosure that imagery is downloaded from “coarse to fine,” Reddy notes

that “[m]ost VRML browsers perform nonblocking network reads so that the user 5

can still interact with the scene while higher resolution imagery and elevation

loads.” Ex. 1004, ¶¶ 21, 44. A person of ordinary skill in the art would understand

that “non-blocking reads” means that the network reads (that is, the requests for

data over the network) do not occupy (that is, “block”) the processor the entire

time that they are being executed. This allows other functions, such as rendering 10

the scene with the data that is received, to be performed while data is still being

downloaded from the network. In my opinion, a person of ordinary skill in the art

would understand this disclosure to confirm that imagery is rendered while

additional imagery is received. This is necessarily the case because unless some

imagery was rendered while other imagery was being downloaded for a particular 15

scene, there would be nothing for a user to “interact” with.

243. Reddy discloses other scenarios which make it clear that some

imagery is rendered while other imagery is still being downloaded. For example,

Reddy discloses “walk” and “fly” navigation modes. These modes would have to

allow for tiles to be displayed while other tiles are still being requested and 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

139

received, because the needed tiles would be identified while the viewpoint is

moving as the viewpoint is controlled by the user. Reddy also discloses pre-

fetching of the tiles identified by predicting the user’s path of movement. Ex.

1004, ¶ 46. The pre-fetched tiles “are immediately available for rendering.” Id.

244. In my opinion, Woods also teaches or suggests this element because 5

Woods repeatedly refers to which assets are needed first for display. Indeed,

retrieving assets first needed for display so that those assets can be displayed while

lower-priority objects are being retrieved is the central purpose of Woods. See,

e.g., Ex. 1003, 4:56-59 (invention prioritizes “that data which is most likely

perceived”); 7:36-55 (describing prioritization of objects that “user will be able to 10

interact with” to avoid spending time “fetching images which are not immediately

rendered because they are not visible to the user”). A person of ordinary skill in

the art would understand from these teachings that earlier retrieved, higher priority

objects are rendered while later, lower priority objects are still be requested.

Woods also teaches that “asset fetching is performed in an execution thread that is 15

separate from the browser’s runtime thread.” Ex. 1003, 12:56-6. A person of

ordinary skill in the art would understand from this teaching that rendering of

imagery retrieved by the browser would be performed by the browser’s runtime

thread, since asset fetching is the only function separated into a distinct thread.

The purpose of such multi-threading a is to enable different functions to be 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

140

performed simultaneously (if multiple processors are used, or very nearly

simultaneously, to an extent imperceptible to a human user, if a single processor is

used) without the processor needing to switch between different processes. In my

opinion, a person of ordinary skill in the art would recognize that this feature

would enable a user to interact with earlier downloaded objects which are rendered 5

by the browser runtime thread while other objects are being fetched by the asset

fetching execution thread.

245. In my opinion, this element is also obvious because it merely recites a

conventional and well-known feature of Web browsers at the time of the alleged

invention and of the earliest asserted priority date. By 1999 and 2000, many 10

common web browsers, such as Netscape, downloaded images and rendered them

one at a time as they were downloaded, without waiting for the remaining images

to be downloaded before rendering. See, e.g.,. Ex. 1054 (Brown, Using Netscape

2) at 95, 443 (showing “Display Images: While Loading” setting). Woods notes

that VRML browsers operate similarly to web browsers. Ex. 1003, 2:34-47. A 15

person of ordinary skill in the art would read this teaching of Woods in view of the

common knowledge in the art that web browsers typically rendered and retrieved

data simultaneously.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

141

1.N: the first wireless portable device issues the first request and the second
request according to a priority order;

246. In my opinion, Wood teaches this element. Woods teaches that

objects to be downloaded are assigned a priority, after which the highest priority

objects are placed in the fetch queue to retrieve objects in order of their priority. 5

Ex. 1003, Abstract, Fig. 8, 3:50-58, 11:66-12:5, 12:56-13:47. Therefore, Woods

teaches that different fetch requests are issued in a priority order.

1.O: priority of the second request in the priority order is not higher than
priority of the first request in the priority order;

247. In my opinion, Woods teaches this element because it teaches that the 10

highest priority assets are requested first. Ex. 1003, Fig. 8 step 802, 12:47-50,

13:5-9. I previously discussed the “second request” in regard to claim elements

1.I-1.K, and in my opinion it would be obvious that because the requests with

highest priority are issued first, a later request would not have a higher priority

than an earlier request. 15

1.P: the first wireless portable device stores the first image parcel and the
second image parcel in a local parcel storage at the first wireless portable
device;

248. Reddy and Woods both teach this element. Reddy teaches the use of a

tile cache to “eliminate[] the need to reload and parse data for terrain regions that 20

the user has recently browsed.” Ex. 1004, ¶ 45. Woods likewise teaches that the

client device includes main and secondary memory assets such as textures may be

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

142

stored in a cache on the client device. Ex. 1003, Fig. 7, 3:5-7, 3:14-15, 4:59-61,

12:2-12, 14:19-60. Such caches correspond to the claimed “local parcel storage” at

the client device which can store terrain imagery or texture tiles (first and second

image parcels).

1.Q: before issuing the first request, the first wireless portable device 5
determines that a third image parcel is usable for the first user-controlled
image viewpoint and the third image parcel is already stored in the local
parcel storage, and the first wireless portable device renders the third image
parcel before issuing the first request without requesting the third image
parcel over the network communication channel; 10

249. In my opinion, this claim element is taught by and obvious in view of

both Reddy and Woods. Despite the length of the claim element, what it claims is

actually very simple. This claim element basically says, in layman’s terms, that the

client checks to see if it already has a particular image parcel before sending a

request for it. This function is roughly analogous to looking in the refrigerator to 15

see if there is already milk in the refrigerator before going to the grocery store to

buy more. Reddy and Woods both teach this claim element because both

references use caches which can be used to store data that has already been

downloaded so that the client does not need to request that data again. I discussed

the tile caches of both Reddy and Woods above in regard to claim element 1.P, and 20

I will explain in more detail how those caches meet the specific language of this

claim.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

143

250. Reddy teaches that tile caching eliminates the need to request the

same data again. Ex. 1004, ¶ 45. Additionally, Reddy teaches using and

displaying lower-resolution data available in the cache while higher-resolution tiles

have yet to arrive. Id., ¶ 44. Both of these teachings mean that the client software

determines whether a needed tile is stored in memory and if so, using that tile 5

instead of making an unnecessary and duplicative request for the same tile.

251. In addition to the tile caching features of Woods that I discussed

above regarding claim element 1.P, Woods further teaches that the asset database

table used to assign priorities includes a “cache status” field that indicates whether

an asset is in local storage, and that assets in the table may be “checked for their 10

current state to determine whether or not they have been fetched.” Ex. 1003, 12:6-

12, 12:52-55. For example, a cache status of 1 indicates that an asset is “in

memory.” Id. at 12:10-12. Therefore, according to this operation of Woods, the

cache status field is first checked, and if an asset is already available in local

storage (“in memory”), the asset does not need to be requested through the priority 15

queue. This corresponds to the claim element. It is also my opinion that Woods’

method of tracking the cache status of tiles would also advantageously meet the

functional goal taught by Reddy (as discussed immediately above) of using and

rendering locally stored tiles when such tiles are available, in order to avoid

wasting bandwidth through unnecessary tile requests. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

144

1.R: the first wireless portable device handles download operations of at least
the first image parcel and the second image parcel in parallel, thereby
enabling efficient use of network bandwidth in conditions of network latency;

252. In my opinion, Woods teaches this element. Woods teaches that

assets may be fetched by the active request queue “simultaneously,” i.e., in 5

parallel. Ex. 1003, Fig. 8, 13:20-34. It would be obvious to apply this method to

retrieve tiles, or “image parcels” as described by Reddy (that is, textures for the

surface of the earth) for the same reasons that I discussed previously.

253. As I discussed above in section IX.B, it is my opinion that the phrase

“thereby enabling efficient use of network bandwidth in conditions of network 10

latency” is not limiting (as the law has been explained to me) because it simply

explains a laudatory intended effect of the preceding language rather than further

defining the claims. However, it is my opinion that even if this phrase is construed

as a limitation, it is taught by Woods.

254. Woods teaches that one of the “limited resources” it is intended to 15

address is the “access time” for resources, i.e., “the amount of time it takes to

retrieve the data from the limited resource and send it to the appropriate place to be

presented to the user.” Ex. 1003, 3:5-12. Network resources have the “greatest

access time” and can create “bottleneck problems due to limited bandwidth.” Id.,

3:15-27. In my opinion, a person of ordinary skill in the art would understand that 20

this description of the access time over a network would be understood as network

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

145

latency. For example, Web Performance Tuning by Patrick Killelea (1998)

describes “latency” as “the time between making a request and beginning to see a

result.” Ex. 1044 at 43.12 Therefore, a person of ordinary skill in the art would

understand that “conditions of network latency” refer to such conditions where

access time is increased, whether due to bottleneck problems associated with 5

limited bandwidth (which can in turn create network latency, much like a lane

closure on a freeway causes individual cars to move more slowly) or other

problems. Woods further teaches that its teachings of prioritization and parallel

downloads are intended to “increase performance by the efficient use of limited

resources.” Ex. 1003, 3:50-54. Therefore, in my opinion, a person of ordinary 10

skill in the art would understand that Woods teaches the “thereby” clause

following this claim element even if it is construed as limiting.

1.S: the local parcel store is configured as a server to provide access to the at
least some image parcels received by the first wireless portable device.

255. For the reasons that I previously discussed in section IX.C, the 15

specification of the ’136 Patent does not provide any support for this term other

than a cursory mention of a local parcel store that the browser, e.g. the parcel

12 Killelea is an O’Reilly reference book focused on techniques for improving web

site performance. In my opinion, Killelea is well within the level of ordinary skill

in the art.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

146

request client 42, may gain access to. This element cannot be interpreted to be any

narrower than this without going far beyond the actual support in the specification.

I discussed above in regard to claim elements 1.P and 1.Q how Reddy and Woods

disclose client-side caches which provide access to tiles previously downloaded.

See, e.g. Ex. 1004, ¶¶ 21, 45; Ex. 1003, 3:56-60, 14:18-27. In my opinion, the 5

client-side caches in both Reddy and Woods can be accessed by the browser so

that the browser can access and display image parcels (described as tiles in Reddy

and textures in Woods). It is also my opinion that Reddy and Woods support and

enable this element at least to the same extent as the minimal disclosure in the

specification of the ’136 Patent. 10

4. Claim 10

256. In my opinion, claim 10 is obvious over Reddy and Woods for

substantially the same reasons and based on the same teachings that I previously

discussed in regard to claim 1. Claim 1 and claim 10 contain mostly the same

claim elements as each other. The primary difference is that claim 1 is worded to 15

recite a method which is primarily performed by a server, while claim 10 recites a

computer system comprising servers which are configured to perform the same

method steps. In my opinion, this difference in the wording of the claims is not

material to the patentability of claim 10 because both claims recite essentially the

same technical features and the teachings of Reddy and Woods relating to those 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

147

technical features would invalidate the claims for a method performed on a server

or a server configured to perform the method in the same manner. For example,

the preamble of claim 10 is obvious in view of the teachings that I previously

discussed above in regard to the preamble of claim 1 (“wireless portable devices”)

as well as claim elements 1.C (“one or more servers”), 1.E (“ network 5

communication channel”), and 1.F (“network communication channel is at least in

part wireless”). Nevertheless, for the sake of completeness, I discussed below the

related teachings of claim 1 which also teach the elements of claim 10.

Claim 10, Preamble: A computing system comprising one or more servers,
wherein the one or more servers are coupled to a wireless portable device by a 10
network communication channel, the network communication channel being
at least in part wireless, the one or more servers being configured to:

257. In my opinion, the preamble of claim 10 is obvious in view of the

teachings that I previously discussed above in regard to the preamble of claim 1

(“wireless portable devices”) as well as claim elements 1.C (“one or more 15

servers”), 1.E (“ network communication channel”), and 1.F (“network

communication channel is at least in part wireless”).

10.A: pre-process a source image to obtain a series (K0, K1 . . . KN) of related
images of progressively lower image resolution,

258. In my opinion, this claim element is obvious in view of the teachings 20

that I previously discussed in regard to claim element 1.A.

10.B: wherein each related image of the series (K0, K1 . . . KN) comprises pixel

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

148

data and is subdivided into a regular array of image parcels, and each image
parcel of each regular array of the image parcels forms a discrete portion of
the source image;

259. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.B. 5

10.C: store the image parcels of the series for serving by the one or more
servers;

260. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.C.

10.D: provide client software to the wireless portable device; 10

261. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.D.

10.E: receive a first request from the wireless portable device over the
network communication channel,

262. In my opinion, this claim element is obvious in view of the teachings 15

that I previously discussed in regard to claim element 1.E.

10.F: the first request being for a first image parcel of the series, wherein the
first image parcel is selected based on a first user-controlled image viewpoint
on the wireless portable device relative to the source image;

263. In my opinion, this claim element is obvious in view of the teachings 20

that I previously discussed in regard to claim element 1.G.

10.G: send the first image parcel from the one or more servers to the wireless
portable device over the network communication channel, in response to the
first request;

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

149

264. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.H.

10.H: receive a second request from the wireless portable device over the
network communication channel,

265. In my opinion, this claim element is obvious in view of the teachings 5

that I previously discussed in regard to claim element 1.I.

10.I: the second request being for a second image parcel of the series, wherein
the second image parcel is selected based on the first user-controlled image
viewpoint on the wireless portable device relative to the source image,

266. In my opinion, this claim element is obvious in view of the teachings 10

that I previously discussed in regard to claim element 1.J.

10.J: the second request being received by the one or more servers after the
first request is received by the one or more servers; and

267. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.K. 15

10.K: send the second image parcel from the one or more servers to the
wireless portable device over the network communication channel, in
response to the second request; wherein:

268. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.L. 20

10.L: the wireless portable device renders at least a portion of the first image
parcel before finishing receiving the second image parcel;

269. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.M.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

150

10.M: the wireless portable device issues the first request and the second
request according to a priority order;

270. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.N.

10.N: priority of the second request in the priority order is not higher than 5
priority of the first request in the priority order;

271. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.O.

10.O: the wireless portable device stores the first image parcel and the second
image parcel in a local parcel storage at the first wireless portable device; 10

272. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.P.

10.P: before issuing the first request, the first wireless portable device
determines that a third image parcel is usable for the first user-controlled
image viewpoint and that the third image parcel is already stored in the local 15
parcel storage, and the wireless portable device renders the third image parcel
before issuing the first request without requesting the third image parcel over
the network communication channel;

273. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.Q. 20

10.Q: the wireless portable device handles download operations of at least the
first image parcel and the second image parcel in parallel, thereby enabling
efficient use of network bandwidth in conditions of network latency; and

274. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.R. 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

151

10.R: the local parcel store is configured as a server to provide access to the at
least some image parcels received by the wireless portable device.

275. In my opinion, this claim element is obvious in view of the teachings

that I previously discussed in regard to claim element 1.S.

5. Claim 19 5

276. In my opinion, claim 19 is obvious over Reddy and Woods based on

the same and teachings that I discussed above in regard to claim 1. The primary

difference between claim 19 and claim 1 is that claim 19 focuses on the operation

of the client device and therefore uses a “wherein” clause to describe the operation

of the server and describes the requests and data exchanged between the client and 10

the server from the perspective of the client (“wireless portable device”) instead of

the server. Conversely, claim 1 describes client-server interaction from the

perspective of the server and uses “wherein” clauses to describe the operation of

the client. However, in my opinion, both of these claims describe its actually the

same client-server interaction, and therefore the same teachings of Reddy and 15

Woods are applicable.

277. For example, claim 1 recites “receiving a first request at the one or

more servers from the first wireless portable device . . .” while claim 19 recites that

the wireless portable device is configured to “send a first request for the first image

parcel of the series to the one or more servers over the network communications 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

152

channel.” Yet both of these claim elements refer to the same interaction: a client

device sends a request, over a network communications channel, which is received

by a server. Likewise, the elements of claims 1 and 19 that refer to data (e.g. image

parcels) being sent from the server to the client device are describing the same

client-server interaction whether they are phrased based on “sending” the data from 5

the server or “receiving” the data at the client. For the sake of completeness, I will

describe below where I previously discussed the relevant teachings of Reddy and

Woods for each element of claim 19.

Preamble: A wireless portable device, wherein:

278. In my opinion, the preamble of claim 19 is obvious over the same 10

teachings of Reddy and Woods that I previously discussed in regard to the

preamble of claim 1.

19.A: the wireless portable device is coupled to one or more servers over a
network communication channel, the network communication channel being
at least in part wireless, 15

279. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to the preamble of claim

1 (wireless portable device coupled to one or more servers) and claim element 1.F

(network communication channel being at least in part wireless).

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

153

19.B: the one or more servers storing a series (K0, K1 . . . KN) of related images
of progressively lower image resolution,

280. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim elements 1.A

(series of related images of progressively lower image resolution) and 1.C (servers 5

store image parcels).

19.C: each related image of the series (K0, K1 . . . KN) comprising pixel data
and being subdivided into a regular array of image parcels, each image parcel
of each regular array of the image parcel of the series forming a discrete
portion of a source image, 10

281. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.B.

19.D: the series being obtained by processing the source image, the one or
more servers being configured to serve the related images of the series;

282. In my opinion, this claim element is obvious over the same teachings 15

of Reddy and Woods that I previously discussed in regard to claim element 1.A.

the wireless portable device is configured to:

19.E: determine a first image parcel of the series based on a first user-
controlled image viewpoint on the wireless portable device relative to the
source image; 20

283. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.G.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

154

19.F: send a first request for the first image parcel of the series to the one or
more servers over the network communication channel;

284. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim elements 1.E

(one or more servers receives request send from wireless portable device) and 1.G 5

(request is for a first image parcel of the series).

19.G: receive the first image parcel from the one or more servers over the
network communication channel, in response to the first request;

285. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.H. 10

19.H: determine a second image parcel based on the first user-controlled
image viewpoint on the wireless portable device relative to the source image;

286. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.J.

19.I: send a second request for the second image parcel to the one or more 15
servers, the second request being sent after the first request; and

287. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim elements 1.I

(server receives second request sent from the wireless portable device) and 1.K

(second request is sent after the first request). 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

155

19.J: receive the second image parcel from the one or more servers to the
wireless portable device over the network communication channel, in
response to the second request;

288. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.L. 5

19.K: render at least a portion of the first image parcel before finishing
receiving the second image parcel;

289. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.M.

19.L: store the first image parcel and the second image parcel in a local parcel 10
storage at the first wireless portable device;

290. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.P.

19.M: before sending the first request, determine that a third image parcel is
usable for the first user-controlled image viewpoint and the third image parcel 15
is already stored in the local parcel storage, and render the third image parcel
without requesting the third image parcel over the network communications
channel;

291. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.Q. 20

19.N: handle download operations of at least the first image parcel and the
second image parcel in parallel, thereby enabling efficient use of network
bandwidths in conditions of network latency;

292. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.R. 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

156

19.O: configure the local parcel store as a server to provide access to at least
some image parcels received by the wireless portable device;

293. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.S.

19.P: the first request and the second request are issued according to a 5
priority order;

294. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.N.

19.Q: priority of the second request in the priority order is not higher than
priority of the first request in the priority order. 10

295. In my opinion, this claim element is obvious over the same teachings

of Reddy and Woods that I previously discussed in regard to claim element 1.O.

6. Claims 2, 11, and 20

Claim 2: The method of claim 1, wherein the first user-controlled image
viewpoint is determined based on a navigational input of the first wireless 15
portable device

Claim 11: The computing system of claim 10, wherein the first user-controlled
image viewpoint is determined based on a navigational input of the wireless
portable device

Claim 20: The wireless portable device of claim 19, further configured to 20
determine the first user-controlled image viewpoint based on a navigational
input of the wireless portable device

296. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will

discuss these claims together. 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

157

297. As I previously discussed in regard to claim element 1.G, Reddy

teaches that a user may select an image viewpoint, for example, by “flying” and

zooming into an area of interest. For example, in ¶ 3, Reddy describes the scenario

as follows (emphasis added):

The following scenario indicates the capabilities 5

required. Say a user wants to find a particular building in

a particular city. Her journey begins with a 3D model of

the earth viewed from space. This model is texture

mapped with satellite imagery of 100 kilometers

resolution— that is, each pixel in the texture map 10

represents a region on the planet’s surface covering 100

km2. To find the city, the user first rotates the earth to

view the target region in more detail. As she zooms into

the region, higher resolution data, such as elevation and

imagery, are progressively downloaded and displayed 15

until she is “flying” over mountains with imagery down

to one-meter resolution. Over certain parts of the terrain,

alternative imageries are available, such as aerial

photographs; the user can select any image to view on

top of the terrain geometry. As she approaches a built 20

up area, 3D models of buildings come into view. When

the user clicks on a building, information about it is

displayed in a separate frame on the browser. Using this

method, the user locates the target building. Throughout

the navigation, the user’s location is displayed via an 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

158

active map interface that provides a context for the

landscape being viewed.

298. In my opinion, it would be clear to a person of ordinary skill in the art

in view of this teaching that the navigation system taught by Reddy would require

navigational inputs on the user computing device to determine a viewpoint. Reddy 5

teaches an alternative form of navigational input for determining a viewpoint in

Fig. 5 and the accompanying text at paragraph 37 (emphasis added):

Active maps. When flying over terrain, it’s often difficult

for users to maintain a global context for their position. 10

We thus employ a map display, managed by a Java

applet. Through the EAI, we can obtain the user location

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

159

in the geographic environment. We might do this, for

example, using the position_changed eventOut of a

ProximitySensor placed around the entire scene. We can

then project this 3D geocentric coordinate onto the map

display so users can easily ascertain their location in the 5

world. Users can also click over the map and then

move the viewpoint directly to that location. We do

this by updating and binding a Viewpoint node in the

VRML scene graph.

299. In my opinion, this teaching of Reddy also satisfies this claim 10

element.

300. Woods similarly discloses that VRML allows users to navigate spaces

(e.g., “the streets of a city”) by controlling the viewpoint of a virtual camera using

an input device. Ex. 1003, 2:39-43 (“3D rendering is performed from the

viewpoint of a virtual camera that has the ability to move and tilt in any direction 15

in response to user input, via a mouse, keyboard or other input device.”); 2:48-56

(describing navigation through “three dimensional worlds”). Woods further

discloses prioritizing the download of VRML resources based on the user-

controlled camera position / viewpoint. Ex. 1003, 7:66-8:8, 8:55-59, 11:62-65. In

my opinion, these teachings of Woods also disclose that a viewpoint is determined 20

in response to a navigational input (e.g. via the input devices described).

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

160

7. Claims 3, 12, and 21

Claim 3: The method of claim 2 wherein the navigational input comprises
three-dimensional positional coordinate data and rotational positional data.

Claim 12: The computing system of claim 11, wherein the navigational input
comprises three-dimensional positional coordinate data and rotational 5
positional data.

Claim 21: the wireless portable device of claim 19, wherein the navigational
input comprises three-dimensional positional coordinate data and rotational
positional data.

301. In my opinion, these claim limitations are substantially similar to each 10

other, other than depending from different independent claims. Therefore, I will

discuss these claims together.

302. In my opinion, it would be obvious to a person of ordinary skill in the

art that displaying a perspective view from a viewpoint, which I previously

discussed in regard to claim element 1.G, would require at least x, y, and z (altitude 15

or height) coordinates, as well as the direction of view (rotational position data,

although the specification of the ’136 patent never uses this term). For example, a

person of ordinary skill in the art would readily recognize that Figures 3, 4, and 5

of Reddy all depict perspective views of a scene from a defined viewpoint (with x,

y, and z coordinates) in a particular direction. Paragraph 37 of Reddy further 20

explains how a user can use a map display (shown in a separate window from the

perspective view, to move directly to a particular location). For example, in Fig. 5

of Reddy, the perspective view in the center of the image corresponds to the map

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

161

shown on the left. The green square in the map shows the area of interest, and the

blue wedge shows the view direction (east-northeast in the example, which is

rotational position data) from the viewpoint:

303. Additionally, the scene shown in Fig. 5 of Reddy also requires an 5

altitude (the “z” coordinate under the most commonly used convention, although

the naming of the axes is arbitrary) in order to create a three-dimensional

perspective. I previously discussed in regard to claim 2 how Reddy utilizes

navigational inputs to define a viewpoint.

304. Woods also teaches a three-dimensional viewpoint including three-10

dimensional coordinates and rotation data. Woods discloses that users can “move

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

162

and tilt” the camera / viewpoint “in any direction.” Ex. 1003, 2:39-43; see also id.,

3:41-42 (“Users are free to move in any direction, change viewing angles, and

movement speeds.”). “Viewing angles” (i.e. the direction that the camera is

looking) are another way of describing the rotational data for a camera. Woods

also discloses that VRML uses a three-dimensional coordinate system and that the 5

default camera position “is located at (0,0,10) and looks along the negative z-axis.”

Id., 6:13-15. In my opinion, a person of ordinary skill in the art would understand

“(0,0,10)” to be three-dimensional positional coordinate data. Using the

conventional (x,y,z) coordinate notation, the coordinates (0,0,10) would denote a

position at the origin of the x and y axes (i.e. the X and Y axes are 0) and 10 units 10

along the Z axis, while “look[ing] along the negative z-axis” means that the camera

is looking from this position toward the origin (0,0,0) of the coordinate system. In

layman’s terms, this describes a camera above the x, y plane looking down. The

view of the camera (looking down) is rotational positional data. Woods also

discloses that prioritization may take into account “camera position, orientation, 15

speed and direction.” Id., 9:61-63, Abstract (referencing “position, orientation, and

velocity of the camera”). In my opinion, these disclosures are analogous to the

’136 specification’s high level description of navigation controls. Ex. 1001, 6:5-

12, 8:7-13.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

163

8. Claims 4, 13, and 22

Claim 4: The method of claim 2, wherein the first wireless portable device
stores requests for image parcels to be downloaded from the one or more
servers in a priority queue, and wherein responsive to a change in the
navigational input, a request is removed from the priority queue. 5

Claim 13: The computing system of claim 11, wherein the wireless portable
device stores requests for the image parcels of the series to be downloaded
from the one or more servers in a priority queue, and wherein responsive to a
change in the navigational input, a request is removed from the priority queue.

Claim 22: The wireless portable device of claim 20, further configured to store 10
requests for image parcels to be downloaded from the one or more servers in
a priority queue, and, responsive to a change in the navigational input, to
remove a request from the priority queue.

305. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will 15

discuss these claims together.

306. In my opinion, Woods teaches this limitation. Woods teaches a

priority queue comprising “configurable queue of fetch elements comprising a

number of ‘active’ fetches” and one waiting fetch, which are used to retrieve the

highest priority assets. Ex. 1003, Fig. 8, 12:56-13:47. Woods further teaches 20

removing requests from the priority in response to a navigational input. Woods

teaches that when asset priorities change, waiting or even active fetch requests may

be aborted, i.e., removed from the priority queue. Id., 13:62-14:17. Woods further

teaches that assets are “prioritized based on the position of the camera” (id., 7:66-

8:8), and that priorities can be updated when the camera crosses a region boundary 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

164

(id., 12:35-36). In my opinion, a person of ordinary skill in the art would

understand from these teachings that in certain scenarios a fetch request may be

removed from the priority queue in response to a navigational input. For example,

if the camera position changes (that is, a change in a navigational input) so that

other assets gain a higher priority than assets in the active or waiting slots in the 5

request queue, those requests previously in the queue may be aborted, that is,

removed from the queue.

9. Claims 6, 15, and 24

Claim 6: The method of claim 1, further comprising sending overlay data by
the one or more servers to the first wireless portable device over the network 10
communication channel.

Claim 15: The computing system of claim 10, wherein the one or more servers
are further configured to send overlay data to the wireless portable device
over the network communication channel.

Claim 24: The wireless portable device of claim 19, further configured to 15
receive overlay data sent by the one or more servers to the wireless portable
device over the network communication channel, and to render the overlay
data when rendering parcel images of the series.

307. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will 20

discuss these claims together.

308. In my opinion, Reddy teaches this claim. Reddy teaches that terrain

tile files are linked to “feature files,” which may contain information such as

cultural features, roads, and terrain or other annotations (Ex. 1004, ¶¶ 22-26), while

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

165

example in the introduction describes a user viewing 3D buildings and information

about the buildings (Id., ¶ 3). Such information may be overlaid on the image in

order to show the information in its correct position on the map. For example, Fig.

4 shows roads and buildings in Ft. Benning overlaid on the aerial view:

 5

309. In my opinion, all of these features in the “feature files” of Reddy

satisfy the claimed “overlay data” in this claim. It is also my opinion that a person

of ordinary skill in the art would recognize that many of the types of data discussed

in Reddy, particularly in ¶ 25, would typically and preferably be displayed as

overlay data. For example, the data contained in feature files may include features 10

such as weather data, e.g. wind vectors, and the system may be used in military

mission planning (id., ¶ 48). A “wind vector” is a graphical icon that shows the

direction and speed of the wind in a particular direction. For example, the figure

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

166

below from an FAA aviation weather report shows the wind vector graphical

icons:13

310. In my opinion, it would be obvious to a person of ordinary skill in the

art that the most likely use of such information is to overlay it on a map in order to 5

provide the most relevant information at a user, as shown in the example above.

13 Although this illustrative example is recent, a person of ordinary skill in the art

would recognize that similar figures have been used in official weather reports for

decades.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

167

311. In my opinion, Reddy’s teaching of military mission planning uses

would also lead a person of ordinary skill in the art to incorporate military

operational graphics, which are graphical icons widely used in military planning

and operations to depict military units in a concise, standardized manner. For

example, the symbol below depicts an armored cavalry or reconnaissance 5

battalion:14

14 See Army Field Manual (FM) 1-02/Marine Corps Reference Publication (MCRP)

5-12A, available online at

http://www1.udel.edu/armyrotc/current_cadets/cadet_resources/manuals_regulatio

ns_files/FM%201-02%20-%20Operational%20Terms%20&%20Graphics.pdf

(accessed September 28, 2016). Although this is the current version of the manual,

in my experience working on defense contracts the concept of using operation

icons to depict military units would have been well-known by 1999 or 2000.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

168

312. In my opinion, and based on my experience working on military and

defense-related projects, the ubiquitous use of such operational symbols in military

maps would provide a strong motivation for a person of ordinary skill in the art to

utilize such graphical icons in the system of Reddy, based on Reddy’s suggestion

of using the system for military mission planning. Further, one of the most 5

common uses of such icons is to display them on a map as an overlay in order to

conveniently depict their locations. For example, even before the modern

computer era it was common military practice to display such information on

literal “overlays,” which were sheets of transparent material (such as acetate)

marked with reference lines in order to enable the overlay to be lined up with an 10

underlying map so that geographically referenced information can be shown on its

correct place without marking the underlying map:15

15 See, e.g. Army Field Manual (FM) 3-25.26, Chapter 7 (“Overlays”). Available

online at https://fas.org/irp/doddir/army/fm3-25-26.pdf.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

169

313. In the modern computer era, including prior to the effective filing date

of the ’136 Patent, the same function may be accomplished electronically by

providing annotations such as geographically-referenced operational symbols as an

electronic “overlay” so that the data can be displayed on top of a base map. This is 5

precisely what Reddy describes in regard to “feature files.” Therefore, in my

opinion, it would be obvious to a person of ordinary skill in the art that Reddy

teaches overlay data.

10. Claims 7, 16, and 25

Claim 7: The method according to claim 6, wherein the overlay data 10
comprises text annotations relating to at least one item selected from the
group consisting of: one or more street names, one or more building names,
and one or more landmarks.

Claim 16: The computing system of claim 15, wherein the overlay data
comprises text annotations relating to at least one item selected from the 15
group consisting of: one or more street names, one or more building names,

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

170

and one or more landmarks.

Claim 25: The wireless portable device of claim 24, wherein the overlay data
comprises text annotations relating to at least one item selected from the
group consisting of: one or more street names, one or more building names,
and one or more landmarks. 5

314. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will

discuss these claims together.

315. Reddy teaches that the feature files include information such as

annotations, Ex. 1004, ¶¶ 6, 22, 25-26, and that the user in the example case in the 10

introduction can access annotations about a target building, id., ¶ 3. In my opinion,

it would be obvious to a person of ordinary skill in the art that since (1) a purpose

of Reddy is to visualize and understand geographic information and (2) the system

supports annotations, particularly through its use of “feature files,” text annotations

such as street or building names and landmarks would be a likely use for the 15

system in order to provide usable information to a user in addition to visualizing

the terrain. For example, a user who wanted to see roads displayed on a map (See,

e.g. Fig. 4 of Reddy) would naturally want to see the names of roads, and it would

be reasonable to expect that the information about the target building discussed in

the scenario in ¶ 3 would include the name of the building, which satisfies the 20

claim element.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

171

11. Claims 8, 17, and 26

Claim 8: The method of claim 1, wherein the wireless portable device issues
the first request and the second request according to a priority order based at
least in part on viewable areas corresponding to the first user-controlled
image viewpoint. 5

Claim 17: The computing system of claim 10, wherein the wireless portable
device issues the first request and the second request according to a priority
order based at least in part on viewable areas corresponding to the first user-
controlled image viewpoint.

Claim 26: The wireless portable device of claim 19, further configured to send 10
the first request and the second request according to a priority order based at
least in part on viewable areas corresponding to the first user-controlled
image viewpoint.

316. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will 15

discuss these claims together.

317. In my opinion, Woods teaches this element. The term “viewable

areas” is not used in the specification of the ’136 Patent or discussed in the file

history, and in my opinion this term does not require construction. I do note that

the term “viewable” is used several times in the specification to simply refer to 20

tiles that are viewable. See, e.g. Ex. 1001, Fig. 5 item 82 (“determine viewable

parcels for update”), 9:20-22 (“ in order to make optimal use of the available

memory, only currently viewable image parcels are subject to download”); 10:60-

64 (“ the argument P vertices sent to S represent the position of the vertices

composing each of the polygons, after being clipping [sic] to the viewing frustum, 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

172

viewable within the display space having the fixed resolution [xRes, yRes]”); 11:9-

14 (“ thus, the accumulated priority for any image parcel pending download is the

sum of the values returned by the function S for each of the viewable polygons that

require some part of the image parcel as the source data for texture map rendering

of the polygon”). Therefore, in my opinion, the term “viewable areas” includes at 5

least prioritizing areas that are viewable over areas that are not.

318. Woods describes a priority scheme to ensure “the most important data

is fetched first (i.e., that data which is most likely perceived).” Ex. 1003, 4:56-61.

Woods also suggests it is wasteful to prioritize the downloading of VRML data

that will not be rendered right away because it would not be visible to the user. Id., 10

7:37-47. Woods further describes prioritizing VRML assets based on the user-

controlled camera position and direction. In Fig. 5A, for example, the grid region

in front of the camera (region 3,4) is designated priority 1, surrounding grid

regions are designated priority 2, and still further grid regions are designated

priority 3. Id., 9:40-10:64. 15

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

173

319. Thus, in the Reddy–Woods combination, the tiles in front of the

camera close to the gaze or focus point (that is, those in the area that is viewable

from the camera) be prioritized over those that are further away (e.g., grid region

3,5 in Fig. 5A) or off-screen entirely (e.g., grid region 3,2 in Fig. 5A, which is 5

behind the camera).

320. It is also my opinion that it would be obvious as a matter of simple

common sense that all else equal, VRML assets (such as textures or geography

tiles as taught by Reddy) closer to the camera would take up more screen space

than assets further away. Therefore, because of the correlation between distance 10

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

174

and screen size, prioritization by distance also prioritizes assets “at least in part”

based on viewable areas.

B. Ground 2: Claims 5, 14, and 23 are unpatentable under 35 U.S.C.
§ 103(a) over Reddy in view of Woods and Chiarabini

1. The Reddy-Woods-Chiarabini Combination 5

321. In my opinion, Claims 5, 14, and 23 are unpatentable over Reddy in

view of Woods and further in view of Chiarabini. Chiarabini is a Hewlett-Packard

patent that discloses “methods and systems that enable faster and more reliable

downloading of data received from an external content source.” Ex. 1006 at 1:19-

23. Chiarabini describes a system in which a client downloads large images from a 10

server over the Internet by downloading segments of the image in parallel. Id. at

2:43-51, 3:27-43. Chiarabini further teaches that the number of parallel download

threads can be adjusted in order to download the image data more efficiently. Id.

at 3:27-43, 9:46-10:15.

2. Motivations to Combine 15

322. A person of ordinary skill in the art would be motivated to combine

the teachings of Chiarabini with those of Reddy and Woods. Similar to Reddy and

Woods, Chiarabini describes downloading segments of image data corresponding

to “a big image file.” Ex. 1006 at 8:63-67. Like Reddy and Woods, Chiarabini

describes client-side browsers that download image data from servers over the 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

175

Internet. Id. at 5:59-66. Similar to Woods, Chiarabini describes downloading

multiple image segments in parallel for improved downloading efficiency. Id. at

3:27-43. Additionally, Reddy teaches the use of multi-threaded browsing. Ex.

1004 at ¶ 41. A person of ordinary skill would have easily recognized that

Chiarabini’s improved downloading technique was applicable to the type of image 5

downloading described in Reddy and Woods. Indeed, Reddy’s image tiles are

segments of an original image just like the image segments described in

Chiarabini.

323. Woods provides express motivation to combine in noting that the

number of active and waiting fetches in a given implementation depends on 10

various parameters that will be apparent to persons of ordinary skill in the art. Ex.

1003 at 12:67-13:4. Chiarabini provides specific and complementary teachings

regarding how the number of parallel download requests can be optimized to more

efficiently use available network bandwidth.

324. While Chiarabini discusses using its parallel downloading scheme in a 15

system that downloads images for printing, it discloses that, alternatively, the

downloaded image data could be displayed or simply stored for later use. Ex. 1006

at 6:21-26. A person of ordinary skill in the art would appreciate that Chiarabini’s

teachings are not limited to printing-related systems but are also applicable to

image display applications like those described in Reddy and Woods. Indeed, 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

176

Chiarabini discloses on HTTP GET commands. Id. at 9:20-26. A person of

ordinary skill in the art would understand that VRML applications like most

Internet-based applications use HTTP commands to download resources. See Ex.

1003 at 2:34-47 (VRML browsers operate like web browsers).

3. Claims 5, 14, and 23 are Obvious 5

The method of claim 1, wherein number of parallel image parcel download
operations by the first wireless portable device for image parcels of the series
is determined based at least in part on network response latency and available
system resources.

The computing system of claim 10, wherein number of parallel image parcel 10
download operations by the wireless portable device for the image parcels of
the series is determined based at least in part on network response latency and
available system resources.

The wireless portable device of claim 19, wherein number of parallel image
parcel download operations by the wireless portable device for image parcels 15
of the series is determined based at least in part on network response latency
and available system resources.

325. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will

discuss these claims together. 20

326. Chiarabini discloses determining the number of parallel image

requests based at least in part on network latency. Chiarabini describes adjusting

the number of parallel requests for imagery data based on network performance.

Ex. 1006 at 3:33-43. Chiarabini notes that this approach “optimi[zes] the capacity

of the line” (id. at 3:33-43), which a person of ordinary skill in the art would 25

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

177

understand as meaning it makes efficient use of available bandwidth to more

quickly download the image data. Chiarabini discloses checking the download

speed of the executing download threads. Id. at 9:9:46-51. If any of the active

download threads is achieving a transfer speed at or above a predetermined

threshold (e.g., 20 Kb/s), this indicates that the connection is not yet “saturated,” 5

and an additional download thread is spawned. Id. at 9:51-53.

327. However, Chiarabini discloses that if none of the executing download

threads is achieving good speed, no additional download thread will be spawned

until one of the executing threads achieves good speed or no other download thread

is executing. Id. at 9:46-51. This would result in a decrease of the number of 10

parallel downloads if a network began to exhibit increased latency. To illustrate,

imagine five threads are downloading but none at a rate greater than 10 Kb/s.

When one of the five download threads finishes its download, the number of

concurrent threads is reduced to four. A new fifth thread will only be spawned if

the speed of one of the four executing threads reaches the threshold (e.g., 20 Kb/s). 15

The same would occur when the next thread completes and there are only 3

executing threads. The only time a new thread would be spawned notwithstanding

poor network performance (or high latency) would be when there are no threads

running. Id. at 9:46-51. Therefore, Chiarabini’s approach adjusts the number of

threads up or down based on network performance. 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

178

328. A person of ordinary skill would have understood the relationship

between latency and download speed. For example, Killelea describes “latency” as

“the time between making a request and beginning to see a result.” Ex. 1044 at 43.

To determine the number of parallel download requests based on download speed

as disclosed in Chiarabini is to do so based at least in part on network response 5

latency as claimed. Chiarabini also discloses that a client can determine transfer

speed by pinging the server. Ex. 1003 at 8:16-19, Fig. 4 (steps 240, 242). A

person of ordinary skill would have been familiar with using the ping utility to test

network latency. Killelea discusses using ping to measure the latency between a

first computer and a remote computer over a network. Ex. 1044 at 45-46. 10

329. Chiarabini also discloses capping the number of threads that can be

spawned “so that the line is not overloaded.” Ex. 1003 at 9:54-60. Chiarabini

suggests a maximum of eight for a 128 Kb/s connection and a maximum of four

for slower connections. Id. at 9:53-60. This limit also promotes efficient use of

network bandwidth. 15

330. It also would have been obvious to a POSITA that the number of

parallel image parcel requests be determined based at least in part on available

system resources. Woods discloses a multi-threaded implementation with a

“fetching process thread” that is separate from the browser’s main “runtime

thread.” Ex. 1003 at 12:56-59. Woods describes an example that allows for four 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

179

parallel, “active fetches.” Ex. 1003 at 12:56-67. This is similar to the ’136

patent’s suggestion that four download threads are used in the preferred

embodiments. Ex. 1001 at 9:4-6.

331. Woods also points out that “the number of active fetches and waiting

fetches used in a specific implementation of the present invention depends on 5

various hardware and software parameters, and will be apparent to those skilled in

the relevant art(s).” Ex. 1003 at 12:67-13:4 (emphasis added).16 A person of

ordinary skill would have understood Woods to be alluding to the obvious

relationship between multithreading and system resources such as operating system

support, number and speed of the processors, and memory. A person of ordinary 10

skill would have understood Woods to be alluding to the obvious relationship

between multithreading and system resources (e.g., operating system support,

number and speed of the processors, memory). It was well understood that more

16 While Bradium may argue that this disclosure is vague, I would note that

the ’136 Patent itself says nothing about which “available system resources”

should impact the number of parallel requests or how or about how the “network

response latency” should impact the number of parallel requests. Thus, the ’136

Patent suggests that persons of skill in the art would have understood how to

determine the appropriate number of parallel requests.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

180

powerful computers could support a larger number of threads. For example,

Programming Microsoft Visual Basic 6.0 by Francesco Balena (1999) notes that

“you can increase the size of the thread pool when you deploy your application on

a more powerful system.” Ex. 1064 at 877.

332. Although many operating systems did support multi-threading by the 5

late 1990s, not all operating systems did. For example, Operating Systems

Concepts by Abraham Silberschatz and Peter Baeer Galvin (1998) noted that “new

operating systems” were providing thread support. Ex. 1055 at 192. (In my

opinion, Silberschatz is representative of textbooks undergraduate students would

have used in operating systems courses in the late 1990s.) The Palm operating 10

system, for example, did not support multithreaded applications as discussed in

Palm Database Programming by Eric Giguere (1999). 1059 (Giguere) at 15-16.

As a result, a person of ordinary skill in the art would have known it would be

more challenging to try to implement parallel download requests in an application

for a Palm device. See, e.g., id. at 15-16, 102-105 (describing techniques for 15

breaking up long operations into small chunks “to avoid the appearance of hanging

the device”). By comparison, it would be easier to implement because Windows

CE supported multithreaded applications as discussed for example in

Programming Microsoft Windows CE by Douglas Boling (1998). Ex. 1058 at 493-

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

181

507 (comparing multithreading in Windows CE with Windows NT and Windows

98).

333. It was also well known that computers with multiple processors could

support a greater number of threads than single processor devices. Programming

with Threads by Steve Kleiman et al. (1996), provides exemplary guidance on this 5

point:

You may wish to experiment with different strategies for

choosing the right number of threads; your experiments

need to consider both the number of processors

available and the amount of work required for reach 10

thread (sometimes called the grain size). Allocating a

few more threads than the number of processors is a

good starting point.

Ex. 1057 at 285 (emphasis added). Kleiman’s book was known in the art as a

practical guide to multithreaded programming. Single processor computers must 15

perform context switches to execute instructions associated with different threads.

See, e.g., Ex. 1058 (Boling) at 493. Furthermore, there is overhead associated with

the context switches that must occur for a processor to switch between threads.

Win32 Multithreaded Programming by Aaron Cohen and Mike Woodring (1998)

is an O’Reilly reference book discusses this in its introductory chapter. Ex. 1056 20

at 5-6. Because CPU cycles are lost during context switches, a faster processor

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

182

would better be able to handle the increased number of context switches for a

larger number of threads. See, e.g., id. at 335-336 (stressing importance of capping

the number of threads to avoid overwhelming the system). Threads also require

memory (e.g., a stack and program counter) and thus the number of threads is also

constrained by available memory. See, e.g., Ex. 1055 (Silberschatz) at 103; Ex. 5

1058 (Boling) at 499.

334. This claim element is also inherently disclosed because both Woods

and Chiarabini disclose using four parallel download requests which is the same

number used in the preferred (and only) embodiments described in the ’136 Patent.

Ex. 1003 at 12:65-67; Ex. 1006 at 9:53-60. The ’136 Patent suggests that four 10

parallel requests strikes the right “balance between the available system resources

and the network response latency, given the available bandwidth of the network

connection.” Ex. 1001 at 9:4-6.

335. Finally, Woods also discloses that a particular system resource—

cache space—can impact the number of parallel requests. A simple example 15

illustrates this. Assume that the next four VRML resources to be downloaded, call

them resources A-D, have the following priorities:

Resource Priority
A 5
B 6
C 7

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

183

D 8

Woods describes an exemplary client that supports four simultaneous fetches. Ex.

1003 at 12:65-67. Woods also discloses that it may be desirable to avoid

downloading resources with priority 7 or lower if the cache is already full. Id. at

14:45-47. In the above example, therefore, if the cache is full, only two assets, A

and B, would be downloaded, and they would be downloaded in parallel. However, 5

if the cache is not full, all four assets would be downloaded in parallel.

C. Ground 2: Claims 9, 18, and 27 are unpatentable under 35 U.S.C.
§ 103(a) over Reddy in view of Woods and Fuller

1. The Reddy-Woods-Fuller Combination

336. In my opinion, claims 9, 18, and 27 are unpatentable over Reddy in 10

view of Woods and further in view of Fuller. Fuller, which was published

approximately three years before Reddy, describes an earlier version of the

TerraVision application used with the MAGIC (“Multidimensional Applications

and Gigabit Internetwork Consortium”) project. Ex. 1011 at 15. Like Reddy,

Fuller teaches how a user may “view and navigate through (i.e. ‘fly over’) a 15

representation of a landscape created from aerial or satellite imagery.” Id. at 17.

Such imagery is processed into a series of “tiles” at resolutions varying by factors

of two at each level, so that “[l]ow-resolution tiles are required for terrain that is

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

184

distant from the viewpoint, whereas high-resolution tiles are required for close-in

terrain.” Id. at 17, Fig. 3:

Cf. Ex. 1004, Fig. 1.

337. Fuller further teaches prioritizing tile retrieval in order to address 5

problems caused by network congestion resulting in late delivery of the tiles.

Requests to the server for tiles “assign[] one of three levels of priority to each tile

requested,” so that coarser tiles are likely to be retrieved first. Ex. 1011 at 19.

Among the reasons for which coarser tiles are downloaded first are that “the

rendering algorithm needs the coarse tiles before it needs the next-higher- 10

resolution tiles” and that “there are fewer tiles at the coarser resolutions, so it is

less likely that they will be delayed.” Id. Therefore, the priority order of first and

second tiles (e.g., a higher-resolution tile and a lower-resolution tile) is issued

based on the resolution of the two tiles as claimed.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

185

338. Fuller further teaches that planned future work included delivering

data to “end users with a range of communications speeds, link qualities,

computational powers, and display capabilities” as well as providing data to

mobile users. Id. at 19.

2. A person of ordinary skill in the art would be motivated to 5
come by Reddy, Woods, and Fuller

339. In my opinion, Fuller is analogous art to Reddy and Woods such that a

person of ordinary skill in the art addressing issues relating to retrieving data to

display imagery in three dimensions would naturally look to Fuller. Like Reddy

and Woods, Fuller refers to retrieving data over a network to display in three 10

dimensions. In fact, Fuller describes an earlier embodiment of the TerraVision

projects described in Reddy, although in my opinion a person of ordinary skill in

the art would recognize that the teachings of Fuller are not limited to these specific

preferred embodiments described in Fuller.

340. In my opinion, Reddy and Woods teach a common goal of optimizing 15

bandwidth usage by prioritizing retrieval of the most needed elements of a three-

dimensional scene, including geographic imagery. For example, Reddy teaches

that it is desirable to load tiles in a “coarse-to-fine” manner (Ex. 1004, ¶¶ 21, 44).

Fuller teaches that assigning higher priority to lower resolution tiles is one means

of accomplishing this goal. Ex. 1011 at 19. In my opinion, a person of ordinary 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

186

skill in the art would recognize that assigning higher priorities to lower-and

resolution tiles is compatible with the prioritized fetching scheme of Woods.

Indeed, because Woods teaches that a variety of factors may be incorporated into a

priority calculation, prioritizing lower resolution tiles as taught by Fuller is simply

adding another variable into the existing algorithm. Incorporating priority based on 5

resolution as taught by Fuller into the efficient data request of Woods would

achieve the goal (prioritizing lower resolution tiles) taught by Reddy and Fuller

with predictable results.

3. Claims 9, 18, and 27

Claim 9: The method of claim 1, wherein the first wireless portable device 10
issues the first request and the second request according to a priority order
based at least in part on resolution of the first image parcel and resolution of
the second image parcel.

Claim 18: The computing system of claim 10, wherein the wireless portable
device issues the first request and the second request according to a priority 15
order based at least in part on resolution of the first image parcel and
resolution of the second parcel.

Claim 27: The wireless portable device of claim 19, further configured to send
the first request and the second request according to a priority order based at
least in part on resolution of the first image parcel and resolution of the 20
second image parcel.

341. In my opinion, these claim limitations are substantially similar to each

other, other than depending from different independent claims. Therefore, I will

discuss these claims together.

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

187

342. In my opinion, the combination of Reddy, Woods, and Fuller render

these limitations obvious. As noted above, Fuller describes prioritized

downloading of map tiles. Fuller teaches that requests to the server for tiles

“assign[] one of three levels of priority to each tile requested,” so that coarser tiles

are likely to be retrieved first. Id. Therefore, the priority order of first and second 5

tiles (e.g., a higher-resolution tile and a lower-resolution tile) is issued based at

least in part on the resolution of the two tiles as claimed.

343. While Fuller teaches a preferred embodiment designed to operate on a

high-speed ATM network, it is my opinion that the use of this preferred

embodiment does not teach away from this combination. The only feature of Fuller 10

that needs to be used in the combination to meet the claim limitation is the

prioritization of lower-resolution tiles over higher-resolution tiles. In my opinion, a

person of ordinary skill in the art would recognize that this feature would provide

substantially the same benefit regardless of the speed or type of network over

which the client device requests tiles from the server, including dial-up-15

connections common and in the late 1990s, and the wireless connections described

by Woods which could reach several megabits per second. Additionally, while

Fuller teaches an example of network demand based on obtaining maximum

performance from the system, such as a full screen display, 30 frames per second,

and uncompressed tiles (see Ex. 1011 at 21), a person of ordinary skill in the art 20

Microsoft Corp. Exhibit 1005

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF IPR PETITION OF U.S. PATENT NO. 9,635,136 B2

PTAB CASE NO. IPR2017-01817

188

would recognize that the teachings of Fuller are not limited to systems requiring

such performance. For example, simply adjusting factors such as utilizing

compression for tiles, the frame rate (indeed, 3DVU’s own car navigation products

which Bradium relied on as evidence of secondary indicia of non-obviousness

barely managed one frame per second despite the fact that they did not even 5

request data over a network), and a smaller viewing window would reduce the data

requirements by several orders of magnitude and would have been well within the

capabilities of common wireless network connections at the time the ’136 Patent

was filed.

XI. CONCLUSION 10

344. It is my opinion that the Challenged Claims of the ’136 Patent are

invalid as obvious.

345. This is the END of my declaration.

Microsoft Corp. Exhibit 1005

 Page 1 of 35

Curriculum Vitae for
William R. Michalson

Research Associates, LLC

26 West Main Street, STE 2
Dudley, MA 01571

Email: wrm@wmichalson.com
Tel: (508) 461-6242
Cell: (508) 331-4134

1. Personal:

1.1 Education
Ph.D. in Electrical Engineering, 1989, Worcester Polytechnic Institute, Worcester,
Massachusetts.

Dissertation: A Parallel Computer Architecture for Real-Time Decision Making. The
dissertation develops a hierarchical, multiple processor, computer
architecture for executing artificial intelligence programs in real-time.
Dissertation Directors: Dr. Peter E. Green and Dr. R. James Duckworth.

Minor Areas: Minor sequences completed in Mathematics and Physics.

Specialties: Area examinations passed in the fields of Computer Architecture,

Probabilistic Systems Analysis, and State Space Analysis.

M.S. in Electrical Engineering, 1985, Worcester Polytechnic Institute, Worcester, Massachusetts.

Specialties: The courses taken stressed Computer Architecture, Communications
Systems, and Solid-State Physics.

B.S. in Electrical Engineering, 1981, Syracuse University, Syracuse, New York.

APPENDIX A

Microsoft Corp. Exhibit 1005

mailto:wrm@wmichalson.com

 Page 2 of 35

1.2 Work experiences - Academic.
1991-Present Worcester Polytechnic Institute

Professor of Electrical and Computer Engineering; Professor of Computer
Science.

 Effective July 1, 2005 Promoted to the rank of Full Professor (Professor of
Electrical and Professor of Computer Science)

 November 17, 2004 Appointed dual professorship, adding the title of
Associate Professor of Computer Science.

 July 1, 1998 Granted tenure and promoted to the rank of Associate
Professor.

 August 1, 1992 Assistant Professor of Electrical Engineering (tenure-
track).

 August 1, 1991 Visiting Assistant Professor of Electrical Engineering.
 January 1, 1990 Adjunct Assistant Professor of Electrical Engineering.

1.3 Work experiences other than teaching (chronological).
2012-2014 Grid Roots, LLC

Grid Roots, LLC is a company which was formed in 2012 for the purpose of commercializing a
navigation and tracking device for use by children and the elderly to allow caregivers to non-
intrusively monitor their activities. The system under development integrates GPS, inertial and
beacon-based navigation technologies to develop a system for users to track deployed devices.
My responsibilities within Grid Roots, LLC relate to hardware and software engineering, as well
as the development of IP related to tracking individuals.

1995-Present Research Associates, LLC

Research Associates, LLC is a company I formed in which I perform engineering and consulting
in the areas of computer systems, communications and navigation. All of my litigation-related
and other consulting activities are performed through Research Associates, LLC.

1988-1991 Raytheon Company

Subsequent to receiving my Ph. D., I returned to the Equipment Division of the Raytheon
Company. Shortly after I returned, I was promoted to a title of Engineer, Design and
Development which was the highest title I could hold based on my level of education and years
of experience. Within a year, I was selected to sit on the engineering staff of a newly formed
System Engineering Department of the Division’s Computer and Displays Laboratory. In this
department I acted primarily as a consultant to other departments within the laboratory. My
responsibilities ranged from leading the hardware/software development of supercomputer-class
computer systems to performing applied research into the exploitation of new technology. My
role was similar to that of a Principle Investigator in an academic setting as I was responsible for
securing funding and personnel, leading research efforts, interacting with the research sponsor,
and reporting results. At the time of my departure I was involved with the following projects:

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 3 of 35

Fault-Tolerant Multiprocessor

The development of a highly fault tolerant, highly reliable, real-time computer system
intended for long-duration spaceborne applications. This system is designed to produce
in excess of one gigaoperation per second of raw processing power.

Optimal Task Allocation
A program of applied research into the use of Genetic Algorithms for deriving optimal
mappings of software tasks to the hardware processing elements in distributed systems.

Performance Modeling and Scaling
This project focused on the development of simulation models for characterizing the
performance of a large scale multiple processor system. These models formed a basis for
predicting system performance for several different hardware configurations to ensure
compliance with system specifications.

High Clutter Signal Detection

A program of applied research into the use of Neural Networks to detect the presence of
targets in extremely high clutter environments.

Power Efficient Computing

A program of applied research into an Integrated Optical computer structure that is
designed to maximize the number of computations that can be performed per unit of
power.

1985-1988 Raytheon Company (Leave of Absence)

In 1985 I became one of two people in the Equipment Division to receive Aldo Miccioli
Fellowships. This Fellowship was awarded to allow me to pursue full-time study towards the
Ph.D. degree. I returned to Raytheon during the summer of 1986, but otherwise remained on
leave of absence to dedicate my time to my studies.

1982-1985 Raytheon Company

Engineer in the VLSI Design Department of the Computer and Displays Laboratory within
Raytheon's Equipment Division. I was lead engineer for the design of several semi-custom VLSI
circuits for both signal and data processing applications.

1981-1982 Raytheon Company

Engineer in the Cursive Displays Department of the Computer and Displays Laboratory. I
designed and debugged circuit assemblies which were used in vector displays for air traffic
control applications.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 4 of 35

1.4 Consulting experiences.

1.4.1 Law-Related

Locata LBS LLC v. YellowPages.com LLC,
Retained by Baker Botts on behalf of defendant YellowPages.com. Case before the Central
District of California (2:13-cv-07664). See also IPR2015-00151. Retained 9/14 to present.

M/A-COM Technology Solutions Holdings, Inc. v. Laird Technologies, Inc.
Retained by Erise IP on behalf of Laird Technologies, Inc., for invalidity consulting regarding
U.S. Patent No. 6,272,349. Retained 6/14 to present.

Certusview Technologies, LLC v. S&N Locating Services, LLC and S&N Communications,
Inc.,
Retained by Baker &McKenzie on behalf of defendant S&N. Patents-in-suit are U.S. Patents
8,265,344, 8,290,204, 8,340,359, 8,407,001, and 8,532,341. Case before the Eastern District of
Virginia, (2:13-cv-346). Deposed 11/8/14; Retained 6/14 to present.

adidas AG and adidas America, Inc. v. Under Armour, Inc. and MapMyFitness, Inc.
Retained by Kilpatrick Townsend on behalf of plaintiff adidas. Case before the District of
Delaware, (1:14-cv-00130). Retained 5/14 to present.

GeoTag, Inc., v. AT&T Mobility LLC and AT&T Services, Inc.,
Retained by Baker Botts as an expert on behalf of defendant AT&T. Patent-in-suit is U.S. Patent
5,930,474. Case before the Northern District of Texas, Dallas Division, (3:13-cv-00169).
Deposed 5/29/14; Retained 1/14 to 9/14. Matter settled.

Nokia Corp v. HTC Corp.
Retained by Quinn Emanuel as an expert on behalf of defendant HTC. Case being litigated in
Germany. Patent number EP0766811B1. Retained 12/13 to 2/14. Matter settled.

Porto Technology, Co., Ltd. et al. v. Cellco Partnership d/b/a Verizon Wireless
Retained by Wiley-Rein as an expert on behalf of defendant Verizon. Case before the United
States District Court for the Eastern District of Virginia (Case No. 3:13-cv-00265). Retained
10/13 to 2/14. Matter dismissed.

Nokia Corp v. HTC Corp.
Retained by McDermott Will and Emery and White & Case as an expert on behalf of defendant
HTC. Case before the United States District Court for the District of Delaware (Case No. Case
No. 1:12-cv-00550-UNA and Case No. 1:12-cv-551-UNA. Retained 6/13 to 2/14. Matter
settled.

NXP B.V. v. Research In Motion, Ltd., et al.
Retained by Fish and Richardson as an expert on behalf of defendant Research In Motion.
Patent-in-suit is U.S. Patent 6,501,420. Case before the United States District Court for the

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 5 of 35

Middle District of Florida (Case No. 6:12-cv-00498). Deposed 9/18/13; Testified in Court:
4/1/14 and 4/2/14; Retained 5/13 to 4/14.

Vehicle IP LLC v. Wal-Mart Stores Inc., et al.
Retained by Polsinelli-Shugart, as an expert on behalf of defendant Werner Enterprises. Patent-
in-suit is U.S. Patent 5,694,322. Case before the United States District Court for the District of
Delaware (Case No. 1:10-cv-00503). Deposed 7/15/13 and 9/20/13; Testified in Court: 9/27/13
and 9/30/13; Retained 4/13 to 9/13.

TracBeam, LLC v. Google Inc.
Retained by Quinn-Emanuel as an expert on behalf of defendant Google. Patents-in-suit are U.S.
Patents 7,764,231 and 7,525,484. Case before the United States District Court for the Eastern
District of Texas (6:11-cv-00093). Deposed 2/5/14; Retained 3/13 to 6/14.

Microsoft Corporation and Google Inc., v. GeoTag, Inc.
Retained by Perkins-Coie as an expert on behalf of plaintiff Microsoft Corporation. Patent-in-
suit is U.S. Patents 5,930,474. Case before the United States District Court for the District of
Delaware (1:11-cv-00175). Retained 1/13 to present.

GeoTag, Inc., v. Frontier Communications Corp., et al.,
Retained by multiple firms as an expert on behalf of defendants. Patent-in-suit is U.S. Patents
5,930,474. Case before the Eastern District of Texas, Marshall Division, (2:10-cv-00265; other
defendants are listed in case numbers 2:10-cv-00265, 2:10-cv-00272, 2:10-cv-00437, 2:10-cv-
00569, 2:10-cv-00570, 2:10-cv-00571, 2:10-cv-00572, 2:10-cv-00573, 2:10-cv-00574, 2:10-cv-
00575, 2:10-cv-00587, 2:11-cv-00175, 2:11-cv-00404, 2:11-cv-00421, 2:11-cv-00424, 2:11-cv-
00425, 2:11-cv-00570, 2:12-cv-00043, 2:12-cv-00051, 2:12-cv-00436, 2:12-cv-00438, 2:12-cv-
00439, 2:12-cv-00441, 2:12-cv-00442, 2:12-cv-00444, 2:12-cv-00445, 2:12-cv-00446, 2:12-cv-
00447, 2:12-cv-00448, 2:12-cv-00449, 2:12-cv-00450, 2:12-cv-00452, 2:12-cv-00454, 2:12-cv-
00456, 2:12-cv-00459, 2:12-cv-00460, 2:12-cv-00462, 2:12-cv-00464, 2:12-cv-00466, 2:12-cv-
00468, 2:12-cv-00469, 2:12-cv-00470, 2:12-cv-00471, 2:12-cv-00473, 2:12-cv-00474, 2:12-cv-
00475, 2:12-cv-00476, 2:12-cv-00476, 2:12-cv-00477, 2:12-cv-00480, 2:12-cv-00481, 2:12-cv-
00482, 2:12-cv-00482, 2:12-cv-00483, 2:12-cv-00486, 2:12-cv-00487, 2:12-cv-00520, 2:12-cv-
00521, 2:12-cv-00523, 2:12-cv-00524, 2:12-cv-00525, 2:12-cv-00527, 2:12-cv-00528, 2:12-cv-
00530, 2:12-cv-00532, 2:12-cv-00534, 2:12-cv-00535, 2:12-cv-00536, 2:12-cv-00537, 2:12-cv-
00542, 2:12-cv-00543, 2:12-cv-00545, 2:12-cv-00547, 2:12-cv-00548, 2:12-cv-00549, 2:12-cv-
00550, 2:12-cv-00551, 2:12-cv-00552, 2:12-cv-00555, 2:12-cv-00556, 2:12-cv-00570, 2:12-cv-
00572, 2:12-cv-00573, 2:12-cv-00575, 2:12-cv-00587, 3:13-cv-00217). Deposed 5/29/14;
Retained 1/13 to 9/14.

MOSAID Technologies Inc., v. Realtek Semiconductor Corporation
Retained by Sidley Austin, LLP as an expert on behalf of defendant Realtek Semiconductor
Corporation. Patents-in-suit are U.S. Patents 5,131,006; 5,151,920; 5,422,887; 5,706,428;
6,563,786; and 6,992,972. Case before the United States District Court for the Eastern District
of Texas (Tyler Division) (Case No. 2:11-cv-00179). Retained 12/12 to 12/12. Matter settled.

Hoyt A. Flemming v. Cobra Electronics Corporation

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 6 of 35

Retained by Sidley Austin, LLP as an expert on behalf of defendant Cobra Electronics
Corporation. Patents-in-suit are U.S. Patents RE39038, RE40653 and RE41905. Case before the
United States District Court for the District of Idaho (Case No. 1:12-cv-00392). Retained 11/12
to 06/13. Matter settled.

LBS Innovations LLC v. Aaron Bros., Inc., et al.
Retained as an expert on behalf of defendants Whole Foods Marketplace, Comerica, Hotels.com,
Academy, Ltd., and Homestyle Dining. Patent-in-suit is U.S. Patent 6,091,956. Case before the
Eastern District of Texas, Marshall Division, (Case No. 2:11-cv-00142-MHS-CMC. Deposed
10/5/12; Retained 7/12 to 12/12. Plaintiff moved to dismiss.

Advanced Media Networks, L.L.C. v. Gogo LLC et al.
Retained by Sidley Austin, LLP as an expert on behalf of defendant Gogo. Patent-in-suit is U.S.
Patent 5,960,074. Case before the United States District Court for the Central District of
California (Case No. 11-cv-10474). Deposed 2/6/13. Retained 7/12 to 8/13.

Walker Digital, LLC v. Google Inc.
Retained by O’Melveny & Meyers, LLP as an expert on behalf of defendant Google Inc.
Patents-in-suit are U.S. Patents 6,199,014. Case before the United States District Court for the
District of Delaware (Case No. 1:11-cv-00309-SLR). Deposed 2/27/13 - 2/28/13. Retained 6/12
to present (case stayed as of 8/13).

Silver State Intellectual Technologies, Inc. v. Garmin International, Inc., et al.
Retained by Erise IP, P.A. as an expert on behalf of defendants Garmin International, Inc. and
Garmin USA, Inc. Patents-in-suit are U.S. Patents 6,525,768; 6,529,824; 6,542,812; 7,343,165;
7,522,992; 7,593,812; 7,650,234; 7,702,455 and 7,739,039. Case before the United States
District Court for the District of Nevada (Case No. 2:11-cv-1578). Deposed 2/19/14; Retained
4/12 to present.

Beacon Navigation GmbH v. Toyota Motor Corporation, et al.
Retained by Kirkland & Ellis, LLP on behalf of defendants Toyota Motor Corporation; Toyota
Motor North America, Inc.; Toyota Motor Sales, U.S.A. Inc.; Toyota Motor Engineering &
Manufacturing North America, Inc.; Toyota Motor Manufacturing, Indiana, Inc.; Toyota Motor
Manufacturing, Kentucky, Inc.; Toyota Motor Manufacturing Mississippi, Inc.; Mazda Motor
Corporation; Mazda Motor of America, Inc.; Fuji Heavy Industries, Ltd.; Fuji Heavy Industries
U.S.A. Inc.; Subaru of America, Inc.; Jaguar Land Rover North America, LLC; Jaguar Cars
Limited; Land Rover; Volvo Car Corporation; and Volvo Cars of North America, LLC; Adduci
Mastriani & Schaumberg, LLP on behalf of defendants Suzuki and Garmin; Crowell-Moring on
behalf of General Motors; Dickstein Shapiro on behalf og Chrysler Group, LLC; Finnegan,
Henderson, Farabow, Garrett & Dunner on behalf of Bayerische Motoren Werke AG, BMW of
North America, LLC, and BMW Manufacturing Co. LLC; Fish & Richardson on behalf of
Honda Motor Co., Ltd., Honda North America, Inc., American Honda Motor Co., Inc., Honda
Manufacturing of Alabama, LLC, Honda Manufacturing of Indiana, LLC, and Honda of
America, Mfg., Inc.; Frommer Lawrence and Haug, LLP on behalf of Dr. Ing. h.c.F. Porsche AG
and Porsche Cars North America, Inc.; Hogan Lovells on behalf of Daimler AG, Mercedes-Benz
USA, LLC, or Mercedes-Benz U.S. International, Inc.; Quinn-Emanuel on behalf of Nissan and

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 7 of 35

Ford. Case before the US International Trade Commission, Washington D.C., in the matter of:
“Certain Automotive Navigation Systems, Components Thereof, and Products Containing Same,
Inv. No. 337-TA-814. Case withdrawn by Plaintiff. Retained 1/12 – 4/12.

Beacon Navigation GmbH v. Toyota Motor Corporation, et al.
Retained by Kirkland & Ellis, LLP on behalf of defendants Toyota Motor Corporation; Toyota
Motor North America, Inc.; Toyota Motor Sales, U.S.A. Inc.; Toyota Motor Engineering &
Manufacturing North America, Inc.; Toyota Motor Manufacturing, Indiana, Inc.; Toyota Motor
Manufacturing, Kentucky, Inc.; Toyota Motor Manufacturing Mississippi, Inc.; Mazda Motor
Corporation; Mazda Motor of America, Inc.; Fuji Heavy Industries, Ltd.; Fuji Heavy Industries
U.S.A. Inc.; Subaru of America, Inc.; Jaguar Land Rover North America, LLC; Jaguar Cars
Limited; Land Rover; Volvo Car Corporation; and Volvo Cars of North America, LLC. Multiple
cases before the United States District Court for the District of Delaware. Case numbers 1:11-
cv-00942-UNA, 1:11-cv-00941-UNA, 1:11-cv-00951-UNA, 1:11-cv-00952-UNA, 1:11-cv-
00936-UNA, 1:11-cv-00937-UNA, 1:11-cv-00955-UNA, 1:11-cv-00959-UNA, and 1:11-cv-
00960-UNA. Currently stayed. Retained 1/12 to Present.

Beacon Wireless Solutions, Inc., et al., v. Garmin International, Inc., et al.
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of defendant Garmin. Matter
involves alleged trade secret misappropriation. Case before the United States District Court for
the Western District of Virginia, Harrisonburg Division (Case No. 5:11-cv-00025). Testified in
Court: 5/25/12. Retained 12/11 to 5/25/12.

Tramontane IP, LLC v. Garmin Int'l, Inc., et al.
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of defendant Garmin. Patents-
in-suit are U.S. Patents 6,526,268 and 7,133,775. Case before the United States District Court
for the Eastern District of Virginia (Case No. 1:2011-cv-00918). Case Settled. Retained 11/11
to 12/11.

Sourceprose, Inc. v. AT&T, Inc., MetroPCS Communications, Inc., et al.
Retained by Kilpatrick Townsend as an expert on behalf of defendant AT&T. Patents-in-suit are
US Patent Nos. 7,142,217 and 7,161,604. Case before the United States District Court for the
Western District of Texas, Austin Division. Case number 1:11-cv-00117. Retained 11/11 to
present.

Furuno Electric Co., Ltd. and Furuno U.S.A., Inc. v. Honeywell International, Inc.
Retained by Quinn-Emanuel as an expert on behalf of complainant Furuno. Case before the US
International Trade Commission, Washington D.C., in the matter of: “Certain GPS Navigation
Products, Components Thereof, and Related Software,” Investigation number 337-TA-810.
Patents-in-suit are U.S. Patent Nos. 6,084,565; 7,095,367; 7,089,094; and 7,161,561. Case
settled. Retained 8/11 – 12/11.

Honeywell International, Inc. v. Furuno Electric Co., Ltd. and Furuno U.S.A., Inc.
Retained by Quinn-Emanuel as an expert on behalf of respondent Furuno. Case before the US
International Trade Commission, Washington D.C., in the matter of: “Certain GPS Navigation

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 8 of 35

Products, Components Thereof, and Related Software,” Investigation number 337-TA-783.
Patents-in-suit are U.S. Patent Nos. 7,209,070; 6,865,452; 5,461,388; and 6,088,653. Case
Settled. Retained 8/11 – 12/11.

Triangle Software, Inc. v. Garmin International, Inc.
Retained by Weil, Gotshal & Manges, LLP., as an expert on behalf of defendant Garmin.
Patents-in-suit are US Patents 7,557,730, 7,221,287, 7,375,649, 7,508,321 and 7,702,452. Case
before the United States District Court, Eastern District of Virginia, Case No. 1:10-cv-1457
CMH/TCB. Deposed 7/28/11; Testified in Court: 11/3/11 (jury trial). Retained 4/11 to 11/11.

Garmin International, Inc. v. Pioneer Corporation and Pioneer Electronics (USA), Inc.
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of plaintiff Garmin. Patents-
in-suit are U.S. Patents 5,365,448; 5,424,951; and 6,122,592. Case before the United States
District Court for the District of Kansas. Case No. 10-CV-2080 JWL/GLR. Declarative
Judgment action stayed. Retained 3/11 to 11/11.

Visteon Global Technologies, Inc. And Visteon Technologies, LLC v. Garmin
International, Inc.
Retained by Shook, Hardy and Bacon as an expert on behalf of defendant Garmin. Patents-in-
suit are US Patents 5,544,060, 5,654,892, 5,832,408, 5,987,375 and 6,097,316. Case before the
United States District Court, Eastern District of Michigan, Case No. 2:10-cv-10578--PDB-
MAR. Deposed 10/9/12; Retained 12/10 to present.

Thomson Licensing SAS and Thomson Licensing, LLC. v. Realtek Semiconductor
Corporation
Retained by Sidley-Austin as an expert on behalf of respondent Realtek Semiconductor. Case
before the US International Trade Commission, Washington D.C., in the matter of: “Certain
Liquid Crystal Display Devices, Including Monitors, Televisions, Modules, And Components
Thereof,” Investigation number 337-TA-741. Patent-in-suit is US Patent 6,121,941. Deposed
6/29/11; Testified in Court: 9/15/11 and 9/16/11. Retained 11/10 – 9/11.

Ambato Media, LLC. v. Clarion Co., LTD., et al.
Retained by Traurig-Greenberg as an expert on behalf of defendant Garmin. Patent-in-suit is US
Patent 5,432,542. Case before the United States District Court for the Eastern District Of Texas,
Marshall Division. Case number 2:09-CV-242. Deposed 4/26/12 and 5/10/12; Testified in
Court: 7/11/12. Retained 10/10 to present.

Gabriel Technologies Corporation and Trace Technologies, LLC, v. Qualcomm
Incorporated, Snaptrack, Inc. and Norman Krasner
Retained by Cooley-Godward as an expert on behalf of defendants Qualcomm, Snaptrack, and
Krasner. Trade secret misappropriation case related to US Patents 6,377,209, 6,583,757,
6,661,372, 6,799,050, 6,861,980, 6,895,249, 7,254,402, 7,289,786, 7,319,876, 7,421,277,
7,446,655, 7,570,958, 7,574,195, and 7,660,588. Case before the Southern District of California
San Diego Division, Case No. 08-cv-1992 MMA POR. Retained 6/10 to 7/12.

SiRF/CSR v. Global Locate/Broadcom Corporation

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 9 of 35

Retained by Wilmer-Hale as an expert on behalf of defendant Global Locate / Broadcom.
Patents-in-suit are US Patents 5,663,735, 6,480,150, 6,519,466, 6,650,879, 6,882,827, 6,934,322,
7,412,157, 7,236,883, and 7,573,422. Case before the Central District of California, Case No.
8:06-cv-01216 and Case No. 8:10-cv-01281. Retained 9/10 to 1/11.

Pioneer Electronics v. Garmin Corporation
Retained by Shook, Hardy and Bacon, LLP as an expert on behalf of respondent Garmin In the
matter of Certain Multimedia Display and Navigation Devices and Systems, Components
Thereof, and Products Containing Same; Inv. No. 337-TA-694. Patents-in-suit are U.S. Patents
5,365,448; 5,424,951; and 6,122,592. Case before the U.S. International Trade Commission.
Deposed on 7/29/10; Testified at technology tutorial (8/27/20) and in the evidentiary hearing
(9/20/10). Retained 4/10 to 9/10.

EMSAT Advanced Geo-Location Technology, LLC and Location Based Services LLC, v.
AT&T Mobility, LLC
Retained by Baker-Botts as an expert on behalf of defendant AT&T Mobility, LLC. Patents-in-
suit are U.S. Patents 7,289,763; 5,946,611; 6,324,404; and 6,847,822. Case before the U.S.
District Court for the Northern District of Ohio, Eastern Division, Civil Action No. 4:08 CV 822.
Deposed 5/4/10; Testified in Court: 5/10/10 (Markman hearing). Retained 12/09 to 3/11.

Tendler Cellular of Texas, LLC v. AT&T Mobility, LLC, et al.
Retained by Baker-Botts as an expert on behalf of defendants AT&T Mobility, LLC, et al.
Patents-in-suit are U.S. Patents 7,447,508; 7,305,243; 7,050,818; and 6,519,463. Case before the
U.S. District Court for the Eastern District of Texas (Tyler), Civil Action No. 6:09-CV-00115.
Retained 8/09 to 7/10.

Ambit Corporation v. Delta Air Lines, Inc., and Aircell LLC.
Retained by Sidley Austin, LLP., as an expert on behalf of defendants Delta Airlines, Inc., and
Aircell, LLC. Patent-in-suit is US patent 7,400,858. Case before the US District Court, District
of Massachusetts, Boston, Civil Action No. 1:09-CV-10217-WGY. Deposed 12/4/09; Testified
in Court: 12/7/09 (evidentiary hearing), 7/10 (jury trial). Retained 8/09 to 7/10.

GPS Industries, Inc. and Optimal I.P. Holdings, L.P. v. Altex Corporation, et. al.
Retained by Hitchcock-Evert as an expert on behalf of defendants Altex Corporation, Deca
International Corporation, Golflogix, Inc. and L1 Technologies. Patent-in-suit is US patent
5,364,093. Case before the US District Court, Northern District of Texas, Dallas Division, Civil
Action No. 3-07-CV0831-K. Deposed 6/30/09. Retained 5/08 through 7/09.

Satellite Tracking of People, LLC v. Omnilink Systems, Inc.
Retained by DLA Piper as an expert on behalf of defendant Omnilink Systems, Inc.. Patent-in-
suit is US patent RE39,909. Case before the US District Court, Eastern District of Texas,
Marshall Division, Civil Action No. 2-08CV-116. 12/08 – 1/11.

SiRF Technology, Inc. v. Global Locate, Inc.
Retained by DLA Piper/WilmerHale as an expert on behalf of Global Locate. Patents-in-suit
include US patents 6,304,216; 6,417,801; 6,606,346; 6,651,000; 6,704,651; 6,937,187;

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 10 of 35

7,043,363; 7,091,904; 7,132,980 and 7,158,080. Case before the US International Trade
Commission, Washington D.C., in the matters of: “Certain GPS Devices and Products
Containing Same,” Investigation number 337-TA-602 (Global Locate, plaintiff) and “Certain
GPS Chips, Associated Software and Systems, and Products Containing Same,” Investigation
number 337-TA-596 (SiRF Technologies, plaintiff). My work focused on the 7,043,363 and
7,091,904 patents in defense of Global Locate/Broadcom from June 2007 through March 2008.
Deposed 1/18-1/19/08; testified at trial 3/18-3/19/08.

Intellectual Science and Technology
Retained Dykema Gossett, PLCC as a technical expert on patent infringement issues related to
“suspend-to-RAM” technologies in personal computers. Pre-litigation work.

Intellectual Science and Technology, Inc., v. Sony, JVC and Panasonic
Retained Dykema Gossett, PLCC as a technical expert on patent infringement issues related to
US Patent 5,748,575, US Patent 6,222,799, US Patent 6,785,198, US Patent 6,662,239 and US
Patent 6,717,890. Sony Electronics Inc., case number 2:06-CV-10406, JVC Americas Corp.,
case number 2:06-CV-10409 and Panasonic Corporation of North America case number 2:06-
CV-10412. Cases heard in United States District Court, Eastern District of Michigan, Southern
Division. Expert for Intellectual Science and Technology, Inc. Dec 2006 – 2008..

Kirsch Technologies v. Xerox, Canon
Retained Dykema Gossett, PLCC as an Expert Witness on patent infringement issues related to
US Patent 4,816,911, Canon case number CA 00-72775, Xerox case number CA 00-72778, cases
heard in United States District Court, Eastern District of Michigan, Southern Division. Expert
for Kirsch Technologies. Nov 2006 – 2008..

American Video Graphics v. ATI Technologies
Retained by Sidley, Austin, Brown & Wood, Dallas, TX as a technical expert on patent
infringement issues related to US Patents 5,132,670, 5,109,520, 5,084,830, 4,761,642, 4,742,474,
4,734,690, 4,730,185 and 4,694,286. Hewlett-Packard Co., et al., defendants, case number CA
6:04-CV-379-LED and Sony Corporation of America et al., defendants, case number CA 6:04-
CV-399-LED. Cases heard in United States District Court, Eastern District of Texas, Tyler
Division. Expert for ATI Technologies, intervener. Jan 2005 – Sep 2005.

Microsoft v. EMC
Dewey Ballantine, LLP, Washington, D.C., as a technical expert on patent infringement issues
related to US Patents 5,588,147; 5,689,700; 6,393,466; 6,424,151; 6,490,594; and 6,632,248.
Wrote a declaration on behalf of Microsoft. Oct 2004 – Jan 2005.

Optimum Return v. Meier Brothers
Retained by Sidley, Austin, Brown & Wood, Dallas, TX as a technical expert on Copyright
infringement allegations related to software owned by Optimum Return, LLC. Cyberkatz
Consulting, Inc., Handsquare, LLC, Meier Brothers, et al., defendants, case number CA 3-
03CV1064-D. Case heard in United States District Court, Northern District of Texas, Dallas
Division. Expert for Meier Brothers. July 2004.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 11 of 35

Parental Guide of Texas, Inc. v. Funai Corp., et. al.
Technical expert for defendants JVC and Panasonic in their dispute over non-infringement of US
Patent number 4,605,964.

Elonex I.P. Holdings, LTD. and Elonex PLC, Phase II
Expert witness for defendants Chuntex, Acer, Tatung, Lite-On, Daewoo and Envision in their
dispute with Elonex non-infringement and validity for US Patent numbers 5,389,952; 5,648,799;
and 5,880,719.

Storage Computer Corporation vs. Veritas Software
Technical expert for the plaintiff in matters involving Patents US 5,257,367; US 5,893,919; and
US 6,098,128.

Storage Computer Corporation vs. Seagate Technology LLC
Technical expert for the defendant in matters involving US Patent RE 34,100.

Elonex I.P. Holdings, LTD. and Elonex PLC, vs. Packard Bell et. al., CA 98-689-GMS
Expert witness for defendants ViewSonic Corp., Dell Computer Corporation, MAG Technology
USA, Princeton Graphic Systems, Inc., Micron Electronics, Sony Electronics and Capetronic
Computer USA in their dispute with Elonex non-infringement and validity for US Patent
numbers 5,389,952; 5,648,799; and 5,880,719.

1.4.2 Engineering Consulting

Offspring Media Inc.
Technical consultant for the development of real-time auralization algorithms for integration into
a consumer electronics product. Sep 2004.

Raytheon Company, Sudbury, MA
Development of techniques and requirements for implementing a fault tolerant computer system
using software implemented fault tolerance (SIFT) techniques on commercial off-the-shelf
processing hardware. The resultant system is to be used for highly reliable radar data and signal
processing.

TVM Techno Venture Management
Provided consulting services to assist in assessing the technical claims of a company pursuing
venture capital investment for a hardware implemented RAID 5 system .

Keyhold Engineering Inc., Northboro, MA.
Development of a prototype system for automatically calibrating multiple channel audio systems.

American Navigation Systems Inc., Milbury, MA.
Consulting on the development of the hand-held personal navigation and mapping system.

Lincoln Laboratory, Bedford, MA.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 12 of 35

Simulated, tested and evaluated a GPS integrity monitoring algorithm developed at Lincoln
Laboratories.

1.5 Licenses and Certifications

1.5.1 Commercial
General Radiotelephone Operator License
Ship RADAR endorsement

1.5.2 Amateur
Amateur Extra class radio operator license.

2. Courses Taught at WPI

2.1 Course Descriptions
Short descriptions of the courses taught are as follows:

EE572N Advanced System Architecture

This course focuses on the architectural techniques used to achieve high-performance in
SISD and SIMD computer systems. In this course the interaction between the software
application and hardware architecture and the effect of this interaction on achievable
performance is stressed. The course begins by covering the basic architectural tricks used to
enhance system performance and ends with a series of case studies that analyze specific
architectures such as the CRAY and CDC vector supercomputers, the MasPar, the Connection
Machine, the ICL DAP, and others.

ECE505 Computer Architecture

This course is an introductory graduate course in computer architecture. Most aspects of
CPU architecture are covered using a combined hardware/software approach. Specific topics
include datapath design, memory systems, microprogramming, memory management, operating
systems, and instruction set design.

ECE579M Real-Time System Design

This course focuses on the design of computer systems for which the timeliness of producing
results is a critical factor for establishing the correctness of the system design. Topics covered
include hardware specification, real-time operating systems and programming, scheduling,
communications, and validation/verification. Issues and choices arising for single processor and
distributed systems are also covered. Both hard and soft real-time system issues and the
interactions between real applications and real systems is stressed.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 13 of 35

ECE2010 Introduction to Electrical and Computer Engineering.

The objective of this course is to introduce students to the broad field of electrical and
computer engineering within the context of real world applications. This course is designed for
first-year students who are considering ECE as a possible major or for non-ECE students
fulfilling an out-of-major degree requirement. The course will introduce basic electrical circuit
theory as well as analog and digital signal processing methods currently used to solve a variety
of engineering design problems in areas such as entertainment and networking media, robotics,
renewable energy and biomedical applications. Laboratory experiments based on these
applications are used to reinforce basic concepts and develop laboratory skills, as well as to
provide system-level understanding. Circuit and system simulation analysis tools are also
introduced and emphasized.

ECE2022 Introduction to Digital Circuits and Computer Engineering.

The objective of this course is to expose students (including first year students) to basic
electrical and mathematical concepts that underlie computer engineering while continuing an
introduction to basic concepts of circuits and systems in a hands-on environment. Experiments
representing practical devices introduce basic electrical engineering concepts and skills which
typify the study and practice of electrical and computer engineering. In the laboratory, the
students construct, troubleshoot, and test analog and digital circuits that they have designed.
They will also be introduced to the nature of the interface between hardware and software in a
typical microprocessor based computer.

ECE2801 Foundations of Embedded Systems

This course teaches the principles of programming microprocessors and microcontrollers for
real-time applications. Students are introduced to software engineering principles and are taught
how to translate product specifications into engineering solutions.

ECE2799 ECE Design

This is a new course added to the curriculum that teaches sophomore Electrical Engineering
students the basic principles of design. Topics are covered which range from project planning
and management through manufacturing and implementation. Students are exposed to external
factors influencing design such as safety, liability, cost, and other constraints.

ECE3801 Logic Circuits

This is an introductory course in logic circuit design. Topics covered include Boolean Logic,
Algebraic minimization of logic equations, Karnaugh Maps, sequential machine design and
timing analysis.

ECE3803 Introduction to Microprocessor Systems

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 14 of 35

This is an undergraduate-level first-course in microprocessor design. Topics covered include

timing analysis, address decoding, memory system design, assembly language programming,
programmed I/O, and digital/analog interfacing. Experiments are run using ISA-bus interfaces to
standard PCs.

ECE3810 Advanced Digital System Design

 This course addresses the design of advanced digital logic systems using VHDL to design,
synthesize and model digital circuits, and to implement these circuits using Xilinx FPGA
devices. The course emphasizes understanding functional design, designing for speed and power
objectives, and testing. The course ends with students designing moderately complicated
“system on a chip” (SOC) based systems

ECE4815 Computer Architecture (crosslisted as CS4515)

A first course in computer architecture. Essential aspects of CPU architecture are covered
using a combined hardware/software approach. Students learn how a CPU interprets and
processes instructions. Issues associated with interfacing hardware with software are covered in
detail as are the hardware/software tradeoffs associated with performance optimization.

ECE4801 Microprocessor System Design

Microprocessor System Design is the second course in the microprocessor sequence. In this
course, students learn the advanced concepts used in modern microprocessor systems. Topics
such as system organization, dynamic and cache memory systems, communications, mixed
language programming, and device driver design are covered.

ECE430X Fundamentals of Navigation Systems

This course introduces students to the fundamentals of navigation using electronic systems.
The course covers types of navigation systems, how to interpret sensor data and sources of
navigation system error. Topics include: types of navigation systems (dead reckoning, inertial,
radio based systems), sensors and error sources, coordinate frames and transformations, system
dynamics and measurement processing. Case studies explore the use of accelerometers,
gyroscopes, GPS (including, differential and assisted GPS) as well as other types of navigation
systems.

RBE 3001 Unified Robotics III

Third of a four-course sequence introducing foundational theory and practice of robotics
engineering from the fields of computer science, electrical engineering and mechanical
engineering. The focus of this course is actuator design, embedded computing and complex
response processes. Concepts of dynamic response as relates to vibration and motion planning
will be presented. The principles of operation and interface methods various actuators will be
discussed, including pneumatic, magnetic, piezoelectric, linear, stepper, etc. Complex feedback

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 15 of 35

mechanisms will be implemented using software executing in an embedded system. The
necessary concepts for real-time processor programming, re-entrant code and interrupt signaling
will be introduced. Laboratory sessions will culminate in the construction of a multi-module
robotic system that exemplifies methods introduced during this course.

RBE 3002 Unified Robotics IV

Fourth of a four-course sequence introducing foundational theory and practice of robotics
engineering from the fields of computer science, electrical engineering and mechanical
engineering. The focus of this course is navigation, position estimation and communications.
Concepts of dead reckoning, landmark updates, inertial sensors, vision and radio location will be
explored. Control systems as applied to navigation will be presented. Communication, remote
control and remote sensing for mobile robots and tele-robotic systems will be introduced.
Wireless communications including wireless networks and typical local and wide area
networking protocols will be discussed. Considerations will be discussed regarding operation in
difficult environments such as underwater, aerospace, hazardous, etc. Laboratory sessions will be
directed towards the solution of an open-ended problem over the course of the entire term.

RBE 400x Robot System Engineering and Design

The designers of robotic systems start with a system requirement to define the mechanical,

electrical and software systems which must work together to achieve the system
goals. Typically, parallel teams of engineers will work concurrently to create the requirements
document as well as model various aspects of the system to verify operational capabilities and
the ability to meet time and budget constraints. For complex systems, the development of such
teams can itself be a complex problem since the project has to be organized in such a way that
parallel teams can work independently, yet have excellent communication channels and
information passing to insure project success.

This course explores the tools and techniques used to develop complex systems. The topics
covered include: requirements development; system architecture and partitioning; requirements
flowdown; functional and interface specifications; trade studies; system modeling and
simulation; system integration; as well as design verification and validation.

RBE500 Foundations of Robotics

Foundations and principles of processing sensor information in robotic systems. Topics
include an introduction to probabilistic concepts related to sensors, sensor signal processing,
multi-sensor control systems and optimal estimation. The material presented will focus on the
types of control problems encountered when a robot must operate in an environment where
sensor noise and/or tracking errors are significant. Techniques for assessing the stability,
controllability and expected accuracy of multi-sensor control and tracking systems will be
presented. Lab projects will involve processing live and synthetic data, robot simulation and
projects involving the control of robot platforms.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 16 of 35

3. List of Publications:

3.1 Journal Papers
[1] T. Padir, W.R. Michalson, et. al., “Implementation of an Undergraduate Robotics

Engineering Curriculum,” Computers in Education Journal, vol. I, no. 3, pp. 92-101,
2010.

[2] W. R. Michalson, A. Navalekar and H. Parikh, “Error mechanisms in indoor positioning
systems without support from GNSS,” The Journal of Navigation, Cambridge University
Press, vol. 62, no. 2, pp. 239-49, 2009.

[3] H.K. Parikh and W. R. Michalson, “Impulse Radio - UWB or Multicarrier UWB for
Non-GPS based Indoor Precise Positioning Systems,” NAVIGATION J. Inst. Nav., Vol.
55, no. 1, 2008.

[4] I. F. Progri, W. R. Michalson, J. Wang and M.C. Bromberg, “Indoor Geolocation Using
FCDMA Pseudolites: Signal Structure and Performance Analysis”, NAVIGATION J. Inst.
Nav., Vol. 54, No. 3, Fall 2007.

[5] I. F. Progri, M. C. Bromberg and W. R. Michalson, “Maximum-Likelihood GPS
Parameter Estimation”, NAVIGATION J. Inst. Nav., vol. 52, no. 4, pp. 229-238, Winter,
2005-2006.

[6] I.F. Progri, W.R. Michalson, and D. Cyganski, "An OFDM/FDMA Indoor Geolocation
System," NAVIGATION J. Inst. Nav., vol. 51, no. 2, pp. 133-142, Summer, 2004.

[7] I.F. Progri, G. Bogdanov, V.C. Ramanna, and W.R. Michalson, "An Investigation Of A
GPS Adaptive Temporal Selective Attenuator," NAVIGATION J. Inst. Nav., Vol. 49 No.
3, pp. 137-147, 2002.

[8] G. Bogdanov, W. R. Michalson, and R. Ludwig, “A new apparatus for non-destructive
evaluation of green-state powder metal compacts using the electrical resistivity method,”
Measurement Science and Technology, IOP Publishing, vol. 11, pp. 157-166, January
2000.

[9] B. Findlen, E. Reuter, R. Campbell, and W. R. Michalson, “Effects of time domain
response on the sonic characteristics of microphones,” Journal of the Acoustical Society
of America, vol. 104, no. 3, pt. 2 pp. 1764, September 1998.

[10] J. Sedgwick, W. R. Michalson, and R. Ludwig, “Design of a Digital Gauss Meter for
Precision Magnetic Field Measurements,” IEEE Transactions on Instrumentation and
Measurement, vol. 47, no. 4, pp. 972-977, August 1998.

[11] J. Stander, J Plunkett, W. Michalson, J. McNeill, and R. Ludwig, “A Novel Multi-Probe
Resistivity Approach to Inspect Green-State Powdered Metallurgy Compacts,” Journal of
Non-Destructive Evaluation, vol. 16, no. 4, pp. 205-214, 1997.

[12] Woltereck, R. Ludwig, and W. Michalson, "A Quantitative Analysis of the Separation of
Aluminum Cans Out of a Waste Stream Based on Eddy Current Induced Levitation,"
IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 772-781, January 1997.

[13] W. R. Michalson, “Auralization on a Laptop PC,” abstract appears in The Journal of the
Acoustical Society of America , vol. 100 No. 4, Pt 2, pp. 2608, October 1996.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 17 of 35

[14] R. H. Campbell, S. K. Martin, I. Schneider, and W. R. Michalson, “Analysis of Mosquito
Wingbeat Sound,” The Journal of the Acoustical Society of America vol. 100 No. 4, Pt 2,
pp. 2710, October 1996.

[15] W. R. Michalson, "Ensuring GPS Navigation Integrity using Receiver Autonomous
Integrity Monitoring," IEEE Aerospace and Electronic Systems Magazine. vol. 10, no.
10, pp. 31-34, October 1995.

[16] S. Clayton, R. J. Duckworth, W. Michalson, A. Wilson, "Determining Update Latency
Bounds in Galactica Net," Concurrency: Practice, and Experience, vol. 7, no. 7, pp. 595-
611, October 1994.

3.2 Conference Papers

[1] K.C. Seals, W.R. Michalson, R.J. Hartnett and P.F. Swaszek, “Using Both GPS L1 C/A
and L1C: Strategies to Improve Acquisition Sensitivity,” Proc. 26th International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS
2013), Sep. 16-20, 2013.

[2] K.C. Seals, W.R. Michalson, R.J. Hartnett and P.F. Swaszek, “Semi-Coherent and
Differentially Coherent Integration for L1C Acquisition,” Proc. 2013 International
Technical Meeting of the Institute of Navigation (ION ITM 2013), Honolulu, HI, Apr.
22-25, 2013.

[3] J.M. Barrett, M.G. Gennert, W. R. Michalson, et. al., “Development of a Low-Cost, Self-
Contained, Combined Vision and Inertial Navigation System,” 2013 International
Conference on Technologies for Practical Robotic Applications, Boston, MA Apr. 22-23,
2012.

[4] K.C. Seals, W.R. Michalson, R.J. Hartnett and P.F. Swaszek, “Analysis of L1C
Acquisition by Combining Pilot and Data Components Over Multiple Code Periods,”
Proc. 2013 International Technical Meeting of the Institute of Navigation (ION ITM
2013), San Diego, CA, Jan. 28-30, 2013.

[5] K.C. Seals, W.R. Michalson, R.J. Hartnett and P.F. Swaszek, “Analysis of Coherent
Combining for L1C Acquisition,” Proc. 25th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS 2012), pp.384-393,
Nashville, TN, Sep. 17-21, 2012.

[6] J.M. Barrett, M.G. Gennert, W. R. Michalson and J.L. Center, “Analyzing and Modeling
an IMU for Use in a Low-Cost Combined Vision and Inertial Navigation System,” 2012
International Conference on Technologies for Practical Robotic Applications, Boston,
MA Apr. 23-24, 2012.

[7] G. Fischer, W. R. Michalson, T. Padir and G. Pollice,”Development of a Laboratory Kit
for Robotics Engineering Education” AAAI 2010 Spring Symposium on Educational
Robotics and Beyond: Design and Evaluation, Mar. 22-24, Palo Alto, CA, 2010.

[8] W.R. Michalson, and F. J. Looft, “Designing Robotic Systems: Preparation for an
Interdisciplinary Capstone Experience,” American Society of Engineering Educators
2010 Annual Conference, Louisville, KY, Jun 20-23, 2010.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 18 of 35

[9] W.R. Michalson, S.J. Bitar and R.C.Labonte, “The Technical, Process, and Business
Considerations For Engineering Design – A 10 Year Retrospective,” American Society of
Engineering Educators 2010 Annual Conference, Louisville, KY, Jun 20-23, 2010.

[10] M. Gennert, M. Demietrio and W. R. Michalson, “A Robotics Engineering M.S. Degree,”
American Society of Engineering Educators 2010 Annual Conference, Louisville, KY,
Jun 20-23, 2010.

[11] R. Beach, W. R. Michalson, et. al., “Robotics Innovations Competition and Conference
(RICC): Building Community Between Academia and Industry Through a University-
Level Student Competition,” American Society of Engineering Educators 2010 Annual
Conference, Louisville, KY, Jun 20-23, 2010.

[12] G. Tryggvason, W.R. Michalson, et. al., Teaching Multidisciplinary Design to
Engineering Students: Robotics Capstone,” American Society of Engineering Educators
2010 Annual Conference, Louisville, KY, Jun 20-23, 2010.

[13] A.C.Navalekar, W.R. Michalson, “Asymmetric throughput problem due to Push-to-talk
(PTT) delays in CSMA/CA based heterogeneous Land Mobile Radio (LMR) networks”,
accepted for publication, Milcom 2009.

[14] A. Navalekar and W.R. Michalson, "Effects of Unintentional Denial of Service (DOS)
due to PTT delays on performance of CSMA/CA based Adhoc Land Mobile Radio
(LMR) networks", accepted for publication, ICST Adhocnet 2009.

[15] W. R. Michalson, et. al., “Unified Robotics: Balancing Breadth and Depth in Engineering
Education”, American Society of Engineering Educators 2009 Annual Conference, AC
2009-1681, Austin, TX, Jun 14-17, 2009.

[16] G. Tryggvason, W.R. Michalson, et. al., “Robotics Engineering: A New Discipline for a
New Century”, American Society of Engineering Educators 2009 Annual Conference,
AC 2009-997, Austin, TX, Jun 14-17, 2009.

[17] M. DiBlasi, W. R. Michalson, et. al., “Social Networking in the FIRST Robotics
Competition Community,” ASEE Northeast Section Conference, University of
Bridgeport, Apr 3-4, Bridgeport, CT, 2009.

[18] A. Navalekar, H.K Parikh and William R. Michalson,"Error Mechanisms in Indoor
Positioning Systems without Support from GNSS", RIN NAV 08.

[19] A. Navelekar, W.R. Michalson, et. al., “Effects of Push-To-Talk (PTT) delays on
Throughput Performance of CSMA/CA based Distributed Digital Radios (DDR) for Land
Mobile Radio (LMR) Networks,” 37th International Conference on Parallel Processing
(ICPP-08), Portland, OR, Sep. 8-12, 2008.

[20] M. Ciraldi, W. Michalson, et. al., “The New Robotics Engineering BS Program at WPI,”
American Society of Engineering Educators 2008 Annual Conference, AC 2008-1048,
Pittsburgh, PA, Jun 22-25, 2008.

[21] A.C.Navalekar, W.R. Michalson, “A New Approach to Improve BER Performance of a
High Peak-to-Average Ratio (PAR) OFDM signal over FM based Land Mobile Radios
(LMR)”, IEEE WTS 08, Pomona, CA.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 19 of 35

[22] A. Navelekar and W.R. Michalson, “Effects of Push-To-Talk (PTT) delays on CSMA
based Capacity Limited Land Mobile Radio (LMR) Networks,” Proc. IEEE Intl. Symp.
Wireless Pervasive Computing 2008 (ISWPC08), Santorini, Greece, May 7-9, 2008.

[23] H.K. Parikh and W.R. Michalson, “Error Mechanisms In An Rf-Based Indoor Positioning
System,” Proc. 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’08), Las Vegas, NV Mar 30 – Apr 4, 2008.

[24] B. Woodacre, W. Michalson, et. al., “WPI Precision Personnel Locator System -
Automatic Antenna Geometry Estimation,” to appear, Proc. ION-NTM 2008, San Diego,
CA, Jan 27-29, 2008.

[25] H.K. Parikh, A. Navelekar and W.R. Michalson, “Issues in Achieving Precise Positioning
Indoors Without Support from GNSS,” Proc. ION-NTM 2008, San Diego, CA, Jan 27-29,
2008.

[26] D. Cyganski, W. Michalson, et. al., “WPI Precision Personnel Locator System -
Evaluation by First Responders,” Proc. Institute of Navigation GNSS 2007, Fort Worth,
TX, September 25-28, 2007.

[27] I.F. Progri, W. R. Michalson, et. al., “Maximum Likelihood OFDMA Parameter
Estimation,” Proc. Institute of Navigation GNSS 2007, Fort Worth, TX, September 25-
28, 2007.

[28] C.W. Kelley, W. R. Michalson, et. al., “Discrete vs. Continuous Carrier Tracking Loop
Theory, Implementation, and Testing with Large BnT,” Proc. Institute of Navigation
GNSS 2007, Fort Worth, TX, September 25-28, 2007.

[29] W. R. Michalson and J. W. Matthews, "Distributed Digital Radios and WLAN
Interoperability,” 2007 IEEE Conference on Technologies for Homeland Security, May
16-17, Woburn, MA, 2007.

[30] I.F. Progri, W.R. Michalson, J. Wang, M.C. Bromberg, and R.J. Duckworth,
“Requirements of a C-CDMA Pseudolite Indoor Geolocation System,” Proc. ION-AM
2007, Cambridge, MA, pp. 654-658, Apr. 2007.

[31] D. Cyganski, R. J. Duckworth, S. Makarov, W. R. Michalson, et.al., “WPI Precision
Personnel Locator System,” Proc. Institute of Navigation National Technical Meeting
(NTM 2007), Catamaran Resort Hotel, San Diego, CA, January 22-24, 2007.

[32] I.F. Progri, M.C. Bromberg, W.R. Michalson, and J. Wang, “A Theoretical Survey of the
New GPS Signals (L1C, L2C, and L5),” Proc. Institute of Navigation National Technical
Meeting (NTM 2007), Catamaran Resort Hotel, San Diego, CA, January 22-24, 2007.

[33] I.F. Progri, M.C. Bromberg, W.R. Michalson, and J. Wang, “Field Measurement Data on
Support of a Unified Indoor Geolocation Channel Model,” Proc. Institute of Navigation
National Technical Meeting (NTM 2007), Catamaran Resort Hotel, San Diego, CA,
January 22-24, 2007.

[34] I. F. Progri, J. Maynard, W.R. Michalson, and J. Wang, “The Performance and
Simulation of a C-CDMA Pseudolite Indoor Geolocation System,” Proc. Institute of
Navigation GNSS 2006, Fort Worth, TX, September 26-29, 2006.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 20 of 35

[35] I. F. Progri, W. Ortiz, W.R. Michalson, and J. Wang, “The Performance and Simulation
of an OFDMA Pseudolite Indoor Geolocation System,” Proc. Institute of Navigation
GNSS 2006, Fort Worth, TX, September 26-29, 2006.

[36] J.W. Coyne, R. J. Duckworth, W. R. Michalson and H.K. Parikh, “2-D Radio Navigation
System Using MC-UWB,” Proc. NAV 2005 – Pushing the boundaries, Royal Institute of
Navigation, London, Nov 1-3, 2005.

[37] H.K. Parikh, W.R. Michalson and R.J. Duckworth,, “MC-UWB Precise Positioning
System –Field Tests, Results and Effect of Multipath,” Proc. Institute of Navigation
GNSS 2005, Long Beach Convention Center, Long Beach, CA, September, 2005.

[38] R.J. Duckworth, H.K. Parikh and W.R. Michalson, “Radio Design and Performance
Analysis of a Multi-carrier Ultrawideband (MC-UWB) Positioning System,” Proc.
Institute of Navigation National Technical Meeting (NTM 2005), Catamaran Resort
Hotel, San Diego, CA, January 24-26, 2005.

[39] H.K. Parikh and W.R. Michalson, “Performance Evaluation of the Receiver RF Front-
End of a Precision Positioning System,” Proc. Institute of Navigation GNSS 2004, Long
Beach Convention Center, Long Beach, CA, September 21-24, 2004.

[40] W.R. Michalson and H. Ahlehagh, “A 3D Location Discovery Algorithm for Ad Hoc
Networks,” ICWN-04, 2004 International Conference on Wireless Networks, Las Vegas,
pp. 567-572, Jun 21-24, 2004.

[41] I.F. Progri, W.R. Michalson and M.C. Bromberg, “Accurate Synchronization Using a
Full Duplex DSSS Channel,” Proc. IEEE PLANS 2004, Monterrey, CA, pp. 220-226,
Apr 26-29, 2004.

[42] I.F. Progri and W.R. Michalson, “An Investigation of a DSSS-OFDM-CDMA-FDMA
Indoor Geolocation SYSTEM,” Proc. IEEE PLANS 2004, 2004, Monterrey, CA, pp. 662-
670, Apr 26-29, 2004.

[43] D. Cyganski, J.A. Orr, W.R. Michalson, “Performance of a Precision Indoor Positioning
System Using a Multi-Carrier Approach,” Proc. Institute of Navigation 2004 National
Technical Meeting, San Diego, CA, pp. 175-180, Jan 26-28, 2004.

[44] I.F. Progri, W.R. Michalson and M.C. Bromberg, “An Enhanced Acquisition Process of a
Maximum Likelihood GPS Receiver,” Proc. Institute of Navigation 2004 National
Technical Meeting, San Diego, CA, pp. 390-398, Jan 26-28, 2004.

[45] D. Cyganski, J. Orr, W. Michalson, “A Multi-Carrier Technique for Precision
Geolocation for Indoor/Multipath Environments”, Proc. Institute of Navigation GPS
2003, Portland, OR, pp. 1069-1073, Sep 9-12, 2003.

[46] I.F. Progri, M.C. Bromberg and W.R. Michalson, “The Acquisition Process of a
Maximum Likelihood GPS Receiver,” Proc. Institute of Navigation GPS 2003, Portland,
OR, pp. 2533-2542, Sep 9-12, 2003.

[47] W.R. Michalson, H. Ahlehagh and I.F. Progri, “Dynamic Node Location in an Ad Hoc
Indoor Communications and Positioning Network,” Proc. Institute of Navigation GPS
2003, Portland, OR, pp. 1185-1191, Sep 9-12, 2003.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 21 of 35

[48] J. DeChiaro, C. Strus and W.R. Michalson, “A Personal Navigation Test Platform Based
on Low-Cost Inertial Components,” Proc. Institute of Navigation GPS 2003, Portland,
OR, pp. 2869-2877, Sep 9-12, 2003.

[49] H. AhleHagh, W. R. Michalson and D. Finkel, “Statistical Characteristics of Wireless
Network Traffic and its Impact on Ad Hoc Network Performance,” Proc. Applied
Telecommunication Symposium2003 Advancec Simulation Technologies Conference,
Orlando, FL, pp. 66-71, Mar 30 – Apr 3, 2003.

[50] I.F. Progri, W.R. Michalson and D. Cyganski, “An OFDM/FDMA Indoor Geolocation
System,” Proc. ION National Technical Meeting, Anaheim, CA, pp. 272-281, Jan 22-24,
2003.

[51] I.F. Progri and W.R. Michalson, "Synchronization of Measurements of Power System
Harmonics By Means of the Global Positioning System," Proc. ION Annual Meeting,
Albuquerque, NM, pp. 372-382, Jun 24-26, 2002.

[52] I.F. Progri, W.R. Michalson, and M.C. Bromberg, "A recursive solution to the
generalized eigenvalue problem," Proc. ION Annual Meeting, Albuquerque, NM, pp.
154-162, Jun 24-26, 2002.

[53] I.F. Progri and W.R. Michalson, “A Combined GPS Satellite/Pseudolite System for
Category III Precision Landing,” Proc. IEEE PLANS, pp. 212-218, Apr 15-17, 2002.

[54] I.F. Progri, W.R. Michalson and M. Bromberg, “A Comparison Between the Recursive
Cholesky and MGSO Algorithms,” Proc. Institute of Navigation 2002 National Technical
Meeting, San Diego, CA, pp. 655-665, Jan 28-30, 2002.

[55] I.F. Progri, W.R. Michalson and M. Bromberg, “A Study of a Blind Adaptive Algorithm
in the Time and Frequency Domain,” Proc. Institute of Navigation 2002 National
Technical Meeting, San Diego, CA, pp. 439-447, Jan 28-30, 2002.

[56] L. Polizzotto and W. R. Michalson, “The Technical, Process, and Business
Considerations for Engineering Design,” Frontiers in Education 2001, Reno, NV, pp.
F1G-19-F1G-24, Oct 10-13, 2001.

[57] I.F. Progri and W.R. Michalson, “An Improved Adaptive Spatial Temporal Selective
Attenuator,” Proc. Institute of Navigation GPS 2001, Salt Lake City, UT, pp. 932-938,
Sep 11-14, 2001.

[58] I.F. Progri and W.R. Michalson, “An Alternative Approach to Multipath and the Near-
Far Problem for Indoor Geolocation Systems,” Proc. Institute of Navigation GPS 2001,
Salt Lake City, UT, pp. 1434-143, Sep 11-14, 2001.

[59] W.R. Michalson and I.F. Progri, “An Investigation of the Adaptive Spatial Temporal
Selective Attenuator,” Institute of Navigation GPS 2001, Salt Lake City, UT, pp 1985-
1996, Sep 11-14, 2001.

[60] I.F. Progri and W.R. Michalson, “The Impact of Proposed Pseudolite’s Signal Structure
on the Receiver’s Phase and Code Error,” Proc. ION Annual Meeting, Albuquerque, NM,
pp. 414-422, Jun 11-13, 2001.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 22 of 35

[61] I.F. Progri, J.M. Hill and W.R. Michalson, “An Investigation of the Pseudolite’s Signal
Structure for Indoor Positioning,” Proc. ION Annual Meeting, Albuquerque, NM, pp.
453-462, Jun 11-13, 2001.

[62] J. M. Hill and W. R. Michalson, “Real Time Verification of Bit-Cell Alignment for C/A
Code Only Receivers,” Proc. ION Annual Meeting, pp. 463-468, Jun 11-13, 2001.

[63] I. Progri , J. M. Hill and W. R. Michalson, “The Impact of the Proposed Pseudolite’s
Signal Structure on the Receiver’s Phase and Code Error,” Proc. ION Annual Meeting,
pp. 414-422, Jun 11-13, 2001.

[64] I.F. Progri, W.R. Michalson and R. Chassaing “Fast and efficient filter design and
implementation on the TMS320C6711 digital signal processor,” Proc. Student Forum
ICASSP, Salt Lake City UT, May 2001.

[65] I. Progri and W. R. Michalson, “An Innovative Navigation Algorithm Using a System of
Fixed Pseudolites,” Institute of Navigation National Technical Meeting, pp. 619-627,
Long Beach, CA, Jan 22-24, 2001.

[66] I. Progri, J.M. Hill and W. R. Michalson, “A Doppler-based navigation algorithm,”
Institute of Navigation National Technical Meeting, pp. 482-490, Long Beach, CA, Jan
22-24, 2001.

[67] I. Progri , J. M. Hill and W. R. Michalson, “Assessing the Accuracy of Navigation
Algorithms Using a Combined System of GPS Satellites and Pseudolites,” Institute of
Navigation National Technical Meeting, Long Beach, CA, pp 473-481, Jan 22-24, 2001.

[68] J. M. Hill and W. R. Michalson, “Design of a Stable Discrete Time Costas Loop,”
Institute of Navigation National Technical Meeting, pp. 228-234, Jan 22-24, 2001.

[69] J. M. Hill and W. R. Michalson, “Techniques for Reducing the Near-Far Problem in
Indoor Geolocation Systems,” Institute of Navigation National Technical Meeting, pp.
860-865, Jan 22-24, 2001.

[70] I. Progri and W. R. Michalson, “Adaptive Spatial and Temporal Selective Attenuator in
the Presence of Mutual Coupling and Channel Errors,” Institute of Navigation GPS 2000,
Salt Lake City, UT, pp. 462-470, Sep 19-22, 2000.

[71] W. R. Michalson, J. A. Orr and D. Cyganski, “A System for Tracking and Locating
Emergency Personnel Inside Buildings,” Institute of Navigation GPS 2000, Salt Lake
City, UT, pp. 560-568, Sep 19-22, 2000.

[72] W. R. Michalson and I. Progri, “Assessing the Accuracy of Underground Positioning
Using Pseudolites,” Institute of Navigation GPS 2000, Salt Lake City, UT, pp. 1007-
1015, Sep 19-22, 2000.

[73] I. Progri and W. R. Michalson, “Performance Evaluation of Category III Precision
Landing Using Airport Pseudolites,” IEEE Conf. Position, Location, and Navigations
Systems (PLANS), Mar, pp. 262-269, 2000.

[74] R. Ludwig, G. Bogdanov, W. Michalson, and D. Apelian, “Instrumentation Development
for Crack Detection of Surface and Subsurface Defects in Green-State P/M Compacts
through Multi-Probe Electric Resistivity Testing,” Review of Progress in NDE, Snowbird
Ski and Summer Resort, Snowbird UT, Jul 19-24, 1998.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 23 of 35

[75] W. R. Michalson, W. Cidela, et. al., “A GPS-Based Hazard Detection and Warning
System,” in review, " ION GPS-96, 9th International Meeting of the Satellite Division of
the Institute of Navigation, pp. 167-175, Kansas City, MO, Sep 17-20, 1996.

[76] W. R. Michalson and R. L. Labonte, "Capstone Design in the ECE Curriculum:
Assessing the Quality of Undergraduate Projects at WPI," American Society of
Engineering Educators 1996 Annual Conference (CD-ROM), session 1232 Washington,
D.C., Jun, 1996.

[77] W. R. Michalson, J. Single, M. Spadazzi, and M. Wehr, “A Real-Time GPS System for
Monitoring Forestry Operations,” Sixth Biennial Forest Service Remote Sensing
Applications Conference, pp. 264-269, Denver, CO, May 1-3, 1996.

[78] W. R. Michalson and D. Nicoletti, “Computers in Introductory and Upper-Level ECE
Courses,” American Society of Engineering Educators 1995 Annual Conference,
Anaheim, CA, Jun 25-28, 1995, pp. 2795-99.

[79] W. R. Michalson, D. B. Cox, and H. Hua, "GPS Carrier-Phase RAIM," ION GPS-95, 8th
International Meeting of the Satellite Division of the Institute of Navigation, Palm
Springs, CA., pp. 1975-1984, Sep 12-15, 1995.

[80] J. Bernick and W. R. Michalson, "UDSRAIM: An Innovative Approach to Increasing
RAIM Availability," ION GPS-95, 8th International Meeting of the Satellite Division of
the Institute of Navigation, Sep 12-15, Palm Springs, CA., pp. 1965-1973, 1995.

[81] C. Easton and W. R. Michalson, "Effects of Worst Case Geometries on RAIM Testing,"
ION GPS-95, 8th International Meeting of the Satellite Division of the Institute of
Navigation, Sep 12-15, Palm Springs, CA., pp. 2015-2022, 1995.

[82] D. B. Cox and W. R. Michalson, "Use of Uncorrected GPS Carrier Phase Measurements
for Incremental RAIM with WAAS," ION 51st Annual Meeting, Jun 5-7, Colorado
Springs, CO., pp. 515-520, 1995.

[83] W. Michalson, et. al., "RAIM Availability for Augmented GPS-Based Navigation
Systems," ION GPS-94, 7th International Meeting of the Satellite Division of the Institute
of Navigation, pp. 587-95, Sep 20-23, 1994.

[84] V. G. Virball, W. Michalson, et. al., "A GPS Integrity Channel Based Fault Detection and
Exclusion Algorithm Using Maximum Solution Separation," Proceedings of the 1994
IEEE Position Location and Navigation Symposium (PLANS-94), pp. 747-54, Las Vegas,
Apr 11-15, 1994.

[85] W. Michalson and C. Easton, "Experiences Implementing the Supplemental MOPS Off-
Line Test Procedure," ION GPS-93, 6th International Meeting of the Satellite Division of
the Institute of Navigation, pp. 519-27, Sep 22-24, 1993.

[86] D. Beatovic, P.L. Levin, A. Meroth, M. Spasojevic, W. R. Michalson, A. Unstundag,
"Iterative Matrix Solvers for Large Full Systems," Eighth International Symposium on
High Voltage Engineering, Aug 23-27, Yokohama, Japan, 1993.

[87] E. Schnieder, W. R. Michalson, "A Comparison of Large Guided-Wave Interconnection
Networks for Optical Computation Systems," SPIE Conf. on Optoelectronic
Interconnects OE/LASE 93.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 24 of 35

[88] E. Schnieder, W. R. Michalson, "Integrated Guided-Wave Crossbar Interconnection of
SEED Arrays," SPIE Conf. on Optoelectronic Interconnects OE/LASE 93.

[89] W. R. Michalson, "The Application of Neural Networks to Nonlinear Filtering," Proc.
SPIE Cooperative Intelligent Robotics in Space III, pp. 219-228, Boston, 1992.

[90] W. R. Michalson and C. S. Tocci, "Exploiting Programmable Devices in High-
Performance System Design: Current Trends," Proc. Electro 92, vol 2, pp. 104-109, May
12-14, 1992.

[91] S. Clayton, R. J. Duckworth, W. Michalson, A. Wilson, "Determining Update Latency
Bounds in Galactica Net," Proc. IEEE Conf. on High-Performance Distributed
Computing, pp. 104-111, Sep 9-11, 1992.

[92] R. J. Duckworth, J. E. Lavallee, W. R. Michalson, L. Becker, and P. Green, "The
Development of Intelligent Real-Time Systems Using Ada," 12th IEEE Symposium on
Real-Time Systems, Dec 3-6, 1991.

[93] W. Jessop, W. Michalson, and R. Some, "Fault Injection for Verifying Fault Tolerant
System Behavior," Workshop on Experimental Evaluation, El Segundo, CA, May 1-3,
1990.

[94] W. R. Michalson and P. Heldt, "A Hybrid Architecture for the ART 2 Neural Model,"
Proc. International Joint Conference on Neural Networks, pp. 167-70, Washington D.C.,
Jan 15-19, 1990.

[95] W. R. Michalson, "A Review of the Current State of Logic Synthesis," 2nd Annual IEEE
ASIC Seminar and Exhibit, Rochester, NY, Sep 25- 28, 1989.

[96] P. E. Green and W. R. Michalson, "Real-Time Evidential Reasoning and Network Based
Processing," Proc. IEEE 1st International Conference on Neural Networks, pp. 359-365,
San Diego, CA, Jun 21-24, 1987.

[97] P. E. Green, R. J. Juels, and W. R. Michalson, "Real Time Artificial Intelligence
Architecture," Proc. Workshop on Future Directions in Computer Architecture and
Software, pp. 328-330, Charleston, SC, May 5-7, 1986.

3.3 Book Chapters
[1] W. Michalson and E. Schnieder, "An Approach for Implementing a Reconfigurable

Optical Interconnection Network for Massively Parallel Computers," in Optical
Interconnection - Foundations and Approaches, C. Tocci and H. J. Caulfield Eds., Artech
House, proposed release January 1994.

3.4 Patents

Precision location methods and systems
United States Patent 8,928,459, Issued January 6, 2015

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 25 of 35

The invention describes systems and methods for determining the location of a transmitter by
jointly and collectively processing the full sampled signal data from a plurality of receivers to
form a single solution.

Apparatus and methods for addressable communication using voice-grade radios
United States Patent 8,284,711, Issued 9 October 2012
The invention relates to methods and apparatus for conducting directed communication using
voice-grade radios. The methods and apparatus can be used to form a packet-switched wireless
network using legacy analog transceivers, providing, e.g., both data and voice-over-Internet
Protocol communication.

Multi-channel electrophysiologic signal data acquisition system on an integrated circuit.
United States Patent 7896807, issued 3 March 2011.
A physiologic data acquisition system includes an analog input, a sigma-delta front end signal
conditioning circuit adapted to subtract out DC and low frequency interfering signals from and
amplify the analog input before analog to digital conversion. The system can be programmed to
acquire a selected physiologic signal, e.g., a physiologic signal characteristic of or originating
from a particular biological tissue. The physiologic data acquisition system may include a
network interface modulating a plurality of subcarriers with respective portions of an acquired
physiologic signal. A receiver coupled to the network interface can receive physiologic data
from, and send control signals and provide power to the physiologic data acquisition system over
a single pair of wires. The network interface can modulate an RF carrier with the plurality of
modulated subcarriers and transmit the resulting signal to the receiver across a wireless network.
An integrated circuit may include the physiologic data acquisition system. Also included are
methods for acquiring physiologic data comprising the step of selectively controlling an
acquisition circuit to acquire the physiologic signal.

Methods and apparatus for high resolution positioning. United States Patent 7292189. The
invention relates to a method of signal analysis that determines the location of a transmitter and
to devices that implement the method. The method includes receiving by at least three receivers,
from a transmitter, a first continuous-time signal having a first channel. The first channel
includes a first plurality of signal carriers having known relative initial phases and having known
frequencies which are periodically spaced and which are orthogonal to one another within a first
frequency range. The signal analysis method also includes determining the phase shifts of the
carriers of the first channel resulting from the distance the carriers traveled in reaching the first
receiver. Analysis of the phase shifts yields time difference of arrival information amongst the
receivers, which is further processed to determine the location of the transmitter. 6 Nov 2007.

A Reconfigurable Indoor Geolocation System, US Patent Number 7,079,025. A portable
reconfigurable geolocation system is provided. The system includes a portable user node and one
or more portable pseudolite nodes in communication one another and with the user node. Each of
the user nodes and pseudolite nodes includes a transmitter that generates a signal on one or more
carrier frequencies. Each signal is modulated with digital signals necessary to establish distances
between the nodes and to convey data between the nodes. Each node also includes a receiver for
receiving and demodulating the signals transmitted between the nodes, and a processor for
receiving the demodulated signals, extracting data values and derived values from the

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 26 of 35

demodulated signals and determining a three-dimensional position of each node in the system.
Issued 18 Jul 2006.

Auto-Calibrating Surround System, United States Patent 7158643. A multi-channel surround
sound system and method is described that allows automatic and independent calibration and
adjustment of the frequency, amplitude and time response of each channel of the surround sound
system. The disclosed auto-calibrating surround sound (ACSS) system includes a processor that
generates a test signal represented by a temporal maximum length sequence (MLS) and supplies
the test signal as part of an electric input signal to a loudspeaker. A microphone coupled to the
processor receives the signal in a listening environment. The processor correlates the received
sound signal with the test signal in the time domain and determines from the correlated signals a
whitened response of the audio channel in the listening environment. Issued 2 Jan 2007.

Hand-held GPS-mapping device, US. Patent Number 5,987,380. A hand-held navigation,
mapping and positioning device contains a GPS receiver, a database capable of storing vector or
bit mapped graphics, a viewing port, an embedded processor, a simplified user interface, a data
compression algorithm, and other supporting electronics, The viewport is configured such that
the data presented in the viewport if clearly visible in any ambient light condition. The database
stores compressed image data which might include topographical map data, user annotations,
building plans, or any other image. The system includes an interface to a personal computer
which may be used to annotate or edit graphic information externally to the device for later
upload. In addition, the device contains a simple menu-driven user interface which allows
panning and zooming the image data, marking locations of interest, and other such functions.
The device may be operated from an internal rechargeable battery, or powered externally. ,
Issued 16 Nov 1999.

Hand-held GPS-mapping device, US. Patent Number 5,902,347. A hand-held navigation,
mapping and positioning device contains a GPS receiver, a database capable of storing vector or
bit mapped graphics, a viewing port, an embedded processor, a simplified user interface, a data
compression algorithm, and other supporting electronics. The viewpoint is configured such that
the data presented in the viewport is clearly visible in any ambient light condition. The database
stores compressed image data which might include topographical map data, user annotations,
building plans, or any other image. The system includes an interface to a personal computer
which may be used to annotate or edit graphic information externally to the device for later
upload. In addition, the device contains a simple menu-driven user interface which allows
panning and zooming the image data, marking locations of interest, and other such functions.
The device may be operated from an internal rechargeable battery, or powered externally. Issued
11 May 19/99.

3.5 Professional Presentations

American Ambulance Association Annual Meeting: Low-cost VHF/UHF Interoperability for
digital telemetry, Las Vegas, NV, Dec. 2005.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 27 of 35

California Ambulance Association, Keynote address: Alternatives to solving interoperability
problems in Land Mobile Radios, Lake Tahoe, NV, July 2005.

Museum of Science Lecture Series: The Next Generation of Information and Communications
Technologies-What does the Future Hold?, William R. Michalson and Brian King, January 14,
2004.

Agilent Wireless Technology Summit: Dynamic Node Location in an Ad Hoc Indoor
Communications and Positioning Network, William R. Michalson, January 27, 2004

Security & Technology Online (SATO) Security Leadership Council. Panel discussion on Smart
Surveillance, Command and Control, Oct 28-29, 2004.

“Worcester Polytechnic Institute Barcelona Summit: The Future of Information Technology,”
delivered presentation entitled “Personal Navigation in the Information Age,” Apr 2001.

4. Projects advised (undergraduate).

4.1 Major Qualifying Projects (current)
[1] Voice Release System, B. Waldron, WZM-MQP-1M10, in process.

4.2 Major Qualifying Projects (completed)
[2] Aeacus, N. Anderson, D. Praetorius and C. Roddy, co-advised with S. Nestinger, 2011.

[3] Realization of Performance Advancements for WPI’s UGV-Prometheus, M. Akmanalp,
R. Doherty, J. Gorges, P. Kalauskas, E. Peterson and F. Polido, co-advised with T. Padir,
S. Nestinger, M. Ciraldi, K. Stafford, 2011.

[4] Autonomous Underwater Vehicle, J. Baker, C. Frumento, J. Grzyb and T. North, co-
advised w/I. Hussein, 2011.

[1] Tactical Vest, V. Brisian, J. Fernando, A. Khandaker and J. Zorrilla DeLos Santos, 2011.

[2] Marsupial AUV, N. Smith, B. Berard and C. Pietre, Lincoln Laboratory Project Center,
co-advised with G. Heiniman, 2010.

[3] Voice Release System, J. Low, WZM-MQP-1M10, 2010.

[4] Design and Realization of an Intelligent Unmanned Ground Vehicle, J. Barrett, B. Roy
and D. Sacco, Co-Advised w/T. Padir, 2010.

[5] Accurate Real-Time Audio Circuit Simulation, B. Gleason, WZM-MB09, 2010.

[6] Optimization and Control Design of an Autonomous Underwater Vehicle, D. Moussette,
A. Palooparambil, and J. Raymond, AE- IIH-0003, co-advised w/I. Hussein, 2010.

[7] Design of Autonomous Underwater Vehicle and Optimization of Hydrodynamic
Properties and Control, R. David, WZM-3A08, 2009.

[8] Robotic Bass Player, B. Kosherick, M. Brown, and A. Teti, WZM-RB08, 2008.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 28 of 35

[9] Public Safety Radio System, P. Lucia, I. Levin and M. Barone, WZM-1A08, 2008.

[10] Aircraft Lasercom Terminal Compact Optical Module, B. Scoville and S. Rose, Lincoln
Laboratory Project Center, WZM-2A08, 2008.

[11] GPS Attitude Determination System, J.P. Salmon, Michael LaBossiere and Mark
Minotaur, 2005.

[12] FPGA-Based VHF Modem With Integrated Testability, Andrew Dupont and Jack Coyne,
2005.

[13] TMR Computer System, Maulin Patel, Omar Moussa and Matthew Kwiatkowski, 2005.

[14] GPS Signal Generator, Tim Coffey, 2005.

[15] Dipole Antenna Placement in a Falcon-20 Aircraft, Emily Anesta and David Plourde,
Lincoln Laboratories Project Center, A-Term, 2004.

[16] GPS Attitude Determination System, Joshua Holwell, Himanshu Agrawal and Andrew
Coonradt, 2004.

[17] TMR Computer System, Ryan Angilly, Mitch Lauer and Dan Debiasio, 2004.

[18] Personal Inertial Navigation System, Jason DeChiaro and Christopher Strus, 2003.

[19] WZM-MQP-4A02: PC I/O in High Stress Environments, John Niesz and James Kent,
2003.

[20] WZM-MQP-2A02: Vacuum Tube Amplifier, Joseph Kambourakis and Gregory Molnar,
2003.

[21] Container Tracking System, Victoria Chaplick, 2003.

[22] WZM-MQP-2A03: Heat Management System for PCs, Ernest Cardin, Kevin Candiloro
and Stephen Leavey, 2002.

[23] WZM-MQP-1313: Digital Image Enhancement, Julie Bolduc, Joeseph Perry, Wei Fu,
2002.

[24] WZM-MQP-2A01: Synchronized Audio Sample Looper, Joel Gottshalk, Robert Conrad
and Sanford Freedman, 2002.

[25] WZM-MQP-1A01: Springboard Digital Multimeter, Pavel Loven and Andrew Young,
2002.

[26] Ballistic Missile Defense Analysis Toolkit, Winfield Peterson, Doug Tilkin and Benjamin
Wilson, Lincoln Laboratories Project Center, 2002.

[27] HU-FB-CS01, C Sound Synthesizer, Peter W. DeBonte (co-advised).

[28] WZM-MQP-1A00: StrongArm-Based Computer System, Bradford Snow, 2001.

[29] WZM-MQP-1C01: PC Controlled Laser Light Show Device, Joel Smith, 2001.

[30] WZM-MQP-1E00: PIC-based MIDI Sequencer Malcolm Beaulieu, 2001.

[31] WZM-MQP-2A00: Automotive PC Development Platform Travis Pouliot and David
Philips, 2001.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 29 of 35

[32] The RoadCom Automotive Computing System, Benjamin Kennedy and John Pong, 2000.

[33] WZM-MQP-1A99: Compressed Sample Wavetable Synthesizer, Justin Brzozoski, 2000.

[34] WZM-MQP-3499, Automatically Equalizing Monitor, Fernando Braghin, Tenzin Lama,
Rahul Bhan and Dion Soetadi, 2000.

[35] 99D163M: Railroad Communication, Benjamin Richards, 2000.

[36] CS-MXC-IE00: PIC Real-Time Sequencer, Alexander Goodrich, 2000.

[37] 99D514M: Design of a Microphone Preamplifier, Eric Reuter, 2000.

[38] WZM-MQP-1A99, MPEG Audio Deck, Justin Brzozoski, 2000.

[39] Digital Image Enhancement, Julie Bolduc, Wei Fu and Joseph Perry, 2000.

[40] WZM-MQP-4A98, Railroad Communications System, Matthew Lug, 1999.

[41] 99D078M: Modular Effects Processor II, Erik Neyland, 1999.

[42] 99D176M: Portable Digital Audio Recorder Eric Toledo and Duc Truong, 1999.

[43] EE-WZM-1A97, C Sound Synthesizer, Ross E. Borgeson, Michael W. Hamel and
Matthew S. Walsh, 1998.

[44] EE-WZM-4A97, Firewire Audio Device, Daniel R. Stutzbach, 1998.

[45] EE-WZM-2A97, Modular Effects Processor, Michael J. Dellisanti, 1998.

[46] EE-WZM-3A97, GPS Personal Navigation, Jeffery A. Alderson and Helder Machado,
1998.

[47] HU-FB-CS01, C Sound Synthesizer, Peter W. DeBonte (co-advised).

[48] EE-WZM-1E97, PM Measurement System, Yevgeniy Bogdanov.

[49] EE-REL-C008, Design and Development of a Microprocessor-Based Gaussmeter, David
M. Burnham.

[50] EE-WZM-RC01, Acoustic Guitar Amplifier, Christopher Thomas.

[51] EE-WZM-GSD1, Guitar Sustaining Device, Paul D’Ambra.

[52] EE-RXV-5260, Audio Feedback Elimination System, Ross D. Pease and John R.
Pelliccio.

[53] EE-RJD-M963, Embedded Systems Design, Christopher A. Briggs and Anthony J.
Viapiano.

[54] EE-WHE-9601, GPS Hazard Detector, Michael Roberts, William Cidela, and Chris
Mangiarelli.

[55] EE-WZM-2C96, Flexible Synthesis, Noah T. Vawter and Luke Demoracski.

[56] EE-WZM-1A96, Tap Dancer MIDI Interface, Thomas Trela and William Dowell.

[57] EE-WZM-2A96, GPS Hazard Detector II, Will Brothers, Jon Day, and John Zaghi.

[58] EE-WZM-3A96, Loudspeaker Data Acquisition System, Adam Gross.

[59] EE-WZM-4A96, Audio Morphing Processor, William Butterfield and Ted Phipps.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 30 of 35

[60] EE-WZM-5A96, Acoustic Modeling, Peter DeBonte.

[61] EE-WZM-1B96, Distributed Audio Controller, Stephen S. Richardson.

[62] EE-WZM-1A95, Acoustic Hazard Meter, Ronald D. Slack.

[63] EE-WZM-2A95, Forest Service DGPS, Joshua J. Single and Michael T. Spadazzi.

[64] EE-WZM-1C95, Audio to MIDI Converter, Jennifer R. Principe.

[65] EE-WZM-1D95, Low Cost Auralizer, Jason R. Hills and Mark R. Paulson.

[66] EE-WZM-3A95, Passive Radiator Design, Kevin R. Weldon.

[67] EE-WZM-1C94, Char Model Generation, Colin J. Florendo.

[68] EE-WZM-1D94, Wide Area DGPS Simulator, Daniel Cohen and Robert Schroter.

[69] EE-WZM-2D94, Digital Soundcard, Timothy Alsberg (Russian Project Center).

[70] EE-WZM-3D94, Digital Univibe, Andrew Willis and Daniel Toohey.

[71] EE-WZM-1A94, DSP Based Real-Time Audio Feedback Eliminator, Kevin M. Eddy.

[72] EE-WZM-2A94, Digital LCD Oscilloscope, William F. Brown and John F. Ebersole.

[73] 93D236M, MIDI Mapper, Jonathan Kemble and Brian Candiloro.

[74] EE-WZM-1C93, Fault-Tolerant Computer, Frederick N. Parmenter.

[75] EE-WZM-1A93, Wireless MIDI Controller, Sanjay Raja, Charles Cimalore, Ty
Panagoplos.

[76] EE-WZM-2A93, Multiple Pitch Detector, Jeanne A. Sawtelle.

[77] EE-WZM-3A93, Multiprocessor Cache Coherence, Lauren C. Lind and Norman E.
Rhodes.

[78] EE-WZM-1C92, A Simulation of the DLX Architecture, Lisa Harlow.

[79] EE-WZM-2C92, A New Microprocessor Development System, Gregory B. Burlingame,
David J. Fortin, Kevin S. Pearson.

[80] EE-WZM-1A92, Digital Audio Sampler, Roger D. Gagnon and James M. Lach.

[81] EE-WZM-2A92, Intelligent Harmonizer, Prabhjot S. Anand and Aftab M. Yusuf.

[82] EE-WZM-3A92, Computerized Audio Mixer, Richard J. Wood.

[83] EE-WZM-1B92, Real-Time Harmonizer, Mohiuddin M. Kahn.

[84] EE-WZM-1A91, Residue Number System Processor, Ravdeep S. Anand and Christine A.
Easton.

[85] EE-WZM-2A91, SCSI Bus Analyzer, Brian Costello, George Delouriero, Matthew
Maguire, and Keith Nevins.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 31 of 35

4.3 Graduate Theses Advised and Co-Advised

4.3.1 MS Theses (current)
[1] No Current MS Students

4.3.2 MS Theses (completed)
[1] Morin, Russell, “A Novel Localization System For Experimental Autonomous

Underwater Vehicles,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 2010.

[2] Navalekar, Abhijit, “Design of an OFDM-Based VHF Modem,” MS Thesis, primary
advisor, Worcester Polytechnic Institute.

[3] Ahlehagh, Hasti, “Techniques for Communications and Geolocation Using Wireless Ad
Hoc Networks,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 2004.

[4] Sebastian, Dalys, “Development of a Field-Deployable Ultrasound Scanner System,” MS
Thesis, co-advisor, Worcester Polytechnic Institute, 2004.

[5] Tobgay, Sonam, “Novel Concepts for RF Surface Coils with Integrated Receivers,” MS
Thesis, co-advisor, Worcester Polytechnic Institute, 2004.

[6] Breen, Daniel, “Characterization of Multi-Carrier Locator Performance,” MS Thesis, co-
advisor, 2004.

[7] Aghogho, Obi, “A Novel Radio Frequency Coil Design for Breast Cancer Screening in a
Magnetic Resonance Imaging System,” MS Thesis, co-advisor, Worcester Polytechnic
Institute, 2003.

[8] Fei, Ming, “Electromagnetic Detection, Infrared Visualization and Image Processing
Techniques for Non-Metallic Inclusions in Molten Aluminum,” MS Thesis, co-advisor,
2002.

[9] Lavoie, Bruce, “Design and Implementation of an N-Channel Self Calibrating Audio
System,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 2000.

[10] Bogdonov, Gene, “Theoretical and Practical Implementation of Electrical Impedance
Material Inspection of Powder Metallurgy Compacts,” MS Thesis, co-advisor, Worcester
Polytechnic Institute, 1999.

[11] Messier, Andrew, “Modeling the Effects of Terrain Masking on GPS Accuracy and
Integrity,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1998.

[12] Antonescu, Bogdan, “Elliptic Curve Cryptosystems on Embedded Microprocessors,”
Bogdan Antonescu, MS Thesis, co-advisor, Worcester Polytechnic Institute, 1998.

[13] Lai, Qiang, “Ground-Penetrating Radar Data Processing System,” MS Thesis, co-advisor,
Worcester Polytechnic Institute, 1998.

[14] Soria-Rodríguez, Pedro, “Multicast-Based Interactive-Group Object-Replication For
Fault Tolerance,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1998.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 32 of 35

[15] Hoy, William, “Audio Signal Denoising Using Wavelets,” MS Thesis, primary advisor,
Worcester Polytechnic Institute, 1997.

[16] Progri, Ilir, “Harmonic Flow Monitoring by means of Global Positioning System,” MS
Thesis, primary advisor, Worcester Polytechnic Institute, 1997.

[17] Bretchko, Pavel, “Pulsed Hysteresis Graph System,” MS Thesis, co-advisor, Worcester
Polytechnic Institute, 1997.

[18] Repkin, Dmitry V., “A Hierarchical Neural Network Based Data Processing System for
Ground Penetrating Radar,” MS Thesis, co-advisor, Worcester Polytechnic Institute,
1997.

[19] Metsis, Sophocles, “Design of a Real-Time Capable, Fault-Tolerant, Distributed
System,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1996.

[20] Hill, Jonathan, “Efficient Implementation of Mesh Generation and FDTD Simulation of
Electromagnetic Fields,” MS Thesis, primary advisor, Worcester Polytechnic Institute,
1996.

[21] Dunkelberg, John, “FEM Mesh Mapping to a SIMD Machine Using Genetic
Algorithms,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1996.

[22] Leuenberger, Georg, “Design and Development of a Microprocessor Based Gauss
Meter,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1995.

[23] Valentino, Ralph, “DISC: A Dynamic Instruction Set Coprocessor,” MS Thesis, primary
advisor, Worcester Polytechnic Institute, 1995.

[24] Muley, Aalok, “A Fault Tolerant Network for a Real-Time Environment,” MS Thesis,
primary advisor, Worcester Polytechnic Institute, 1994.

[25] Mohan, Surrender, “Automatic Surface Mesh Generation for 3D Solid Models Using
Delaunay Algorithm,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1994.

[26] Petrangelo, John, “Experimental Preconditioners for Large Dense Systems,” MS Thesis,
co-advisor, Worcester Polytechnic Institute, 1994.

[27] Schneider, Eric, “Design, Simulation, and Analysis of a 3D Integrated Optical
Computer,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1993.

[28] Palmer, Bradley, “A Comparison of Three Protocols Supporting Time-Dependent and
Time-Independent Communications,” MS Thesis, primary advisor, Worcester
Polytechnic Institute, 1992.

[29] Clayton, Shawn, “An Analysis of the Real-Time Behavior of Galactica Net,” MS Thesis,
primary advisor, Worcester Polytechnic Institute, 1992.

[30] Levergood, Thomas, “An Experimental Evaluation of Split User/Supervisor Cache
Memories,” MS Thesis, primary advisor, Worcester Polytechnic Institute, 1992.

[31] Lavalee, James, “The Design and Development of Real-Time Systems Using Ada and the
Activation Framework,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1992.

[32] Velazques, Javier, “The Development of a Real-Time Environment Using the Activation
Framework,” MS Thesis, co-advisor, Worcester Polytechnic Institute, 1992.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 33 of 35

4.3.3 Ph. D. Dissertations (current)
[1] Jitesh, “Ad-Hoc Networking for Bandwith Limited LMR Systems,” primary advisor.

4.3.4 Ph. D. Dissertations (completed)
[1] Iyer, Vishwanath, “Broadband Impedance Matching of Antenna Radiators,” Ph.D.

Dissertation, co-advisor, Worcester Polytechnic Institute, 2010.

[2] Navalekar, Abhijit, “Distributed Digital Radios For Land Mobile Radio Applications,”
Ph.D. Dissertation, primary advisor, Worcester Polytechnic Institute, 2009.

[3] Parikh, Hemish, “Design of an OFDM Transmitter and Receiver for Precision Personnel
Location,” primary advisor.

[4] Progri, Ilir, “An Assessment of Indoor Geolocation Systems,” Ph.D. Dissertation,
primary advisor, Worcester Polytechnic Institute, 2003.

[5] Li, Xinrong, “Super-Resolution TOA Estimation with Diversity Techniques for Indoor
Applications,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2003.

[6] Leuenberger, Gerog H. W., “Electrostatic Density Measurements in Green-State PM
Parts,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2003.

[7] Bogdanov, Gene, “Radio-Frequency Coil Design for High Field Magnetic Resonance
Imaging,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2002.

[8] Elbirt, Adam J., “Reconfigurable Computing for Symmetric-Key Algorithms,” Ph.D.
Dissertation, co-advisor, Worcester Polytechnic Institute, 2002.

[9] Bretchko, Pavel, “Design and Development of Ultra-wideband DC-Coupled Amplifier,”
Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute, 2001.

[10] Hill, Jonathan, “Development of an Experimental Global Positioning System (GPS)
Receiver Platform for Navigation Algorithm Evaluation,” Ph.D. Dissertation, primary
advisor, 2001.

[11] Spasojević, Mirko, “Creation of Sparse Boundary Element Matricies for 2-D and Axi-
symmetric Electrostatic Problems Using a Bi-orthogonal Wavelet,” Ph.D. Dissertation,
co-advisor, Worcester Polytechnic Institute, 1997.

[12] Shi, Funan, “Optimal Designs of Gradient and RF Coils for Magnetic Resonance Imaging
(MRI) Instrument,” Ph.D. Dissertation, co-advisor, Worcester Polytechnic Institute,
1996.

5. Proposals and Funding (past 5 years):

5.1 In Review
$ 199,996 A National Model Robotics Curriculum, NSF (PI: Dr. M. Gennert, Co-PIs: Drs.

T. Padir, W.R. Michalson, G. Fischer and C. Demetry), May 2009.

$ 199,052 A National Model Robotics Capstone, NSF (PI: Dr. W.R. Michalson, Co-PIs:

Drs.T. Padir, C. Demetry, G. Tryggvason and F. Looft), May 2009.

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 34 of 35

$ 399,791 Modular System for Teaching Robotics Engineering (MySTRE), NSF (PI: Dr. G.
Fischer, Co-PIs: Drs. W.R. Michalson and T. Padir), March 2009.

5.2 Funding Received
$ 50,524 PCGO Broadband Modem, Powerwave Technologies, Inc., (PI: Dr. W.R.

Michalson), May 2009.

$ 1,245,000 Real-Time Troop Status Monitoring System, US Army Telemedicine and
Advanced Technology Research Center. (PI: Dr. Peder Pedersen, Co-PIs: Drs.
William R. Michalson and Yitzhak Mendelson). Third year of funding. Projected
funding period: Oct 1, 2004 to Sep 30, 2005.

$ 148,422 Precision Personnel Locator System, National Institute of Justice (PI: Dr. John
Orr, Co-PIs: Drs. David Cyganski and William R. Michalson). Second year of
funding. Projected funding period: Sep 1, 2004 to Oct 31, 2005. Grant code
219240.

$ 74,048 High-Speed VHF Modem, US Army Telemedicine and Advanced Technology
Research Center (PI: Dr. William R. Michalson). Funding period: Mar 1, 2004 to
Dec 31, 2004. Grant code 214370.

$ 81,499 WPI Nanosat Program, Air Force Office of Scientific Research (PI: Dr. Fred
Looft, Co-PIs: Drs. William R. Michalson and Diran Apelian). Funding period:
Apr 1, 2003 to Mar 31, 2005. Grant code 214400.

$ 996,000 Precision Personnel Locator System, National Institute of Justice (PI: Dr. David
Cyganski, Co-PIs: Drs. William R. Michalson and John Orr). Second year of
funding. Projected funding period: Sep 1, 2004 to Aug 31, 2005. Grant code
219240.

$ 813,141 Real-Time Troop Status Monitoring System, US Army Telemedicine and
Advanced Technology Research Center, (PI: Dr. William R. Michalson, Co-PIs:
Drs. Peder Pedersen and Yitzhak Mendelson). Second year of funding. Funding
period Oct 1, 2003 to Sep 30, 2004. Grant code 214370.

6. Honors, Awards, and Recognitions:

Elected Senior Member of the IEEE.

Joseph Samuel Satin Distinguished Fellowship awarded for the 1994-1995 academic year.

Aldo Miccioli Fellowship recipient from Raytheon Equipment Division.

ION Best Paper Award - GPS-96 for W. R. Michalson, W. Cidela, et. al., “A GPS-Based Hazard
Detection and Warning System,” in review, " ION GPS-96, 9th International Meeting of the
Satellite Division of the Institute of Navigation, pp. 167-175, Kansas City, MO, Sep 17-20, 1996

APPENDIX A

Microsoft Corp. Exhibit 1005

 Page 35 of 35

2nd Place - 2004 ECE Department MQP Award / Provost’s MQP Award for GPS-Based Orbit
and Attitude Determination System for PANSAT, Joshua Holwell, Andrew Coonradt and
Himanshu Agrawal.
1st Place - 2003 ECE Department MQP Award / Provost’s MQP Award for Personal Inertial
Navigation System, Jason DeChiaro and Chris Struus.
1st Place - 2002 ECE Department MQP Award / Provost’s MQP Award for Handspring Digital
Voltmeter, Andrew Young and Pavel Loven.

3rd Place - 1998 ECE Department MQP Award / Provost’s MQP Award for Design of a
Personal Handheld GPS Receiver, Jeffery Alderson and Helder Machado.

2nd Place - 1997 ECE Department MQP Award / Provost’s MQP Award for Distributed Audio
Controller, EE-WZM-1B96, Stephen S. Richardson.
3rd Place - 1997 ECE Department MQP Award / Provost’s MQP Award for GPS Hazard
Detector II, EE-WZM-2A96, Will Brothers, Jon Day, and John Zaghi.
1st Place - 1996 ECE Department MQP Award / Provost’s MQP Award for GPS Hazard
Detector, EE-WHE-9601, Michael Roberts, William Cidela, and Chris Mangiarelli.

6.1 Memberships and offices held in professional society

Institute of Electrical and Electronic Engineers, Senior Member

Institute of Navigation

Royal Institute of Navigation

American Society of Engineering Educators

6.2 Professional Service
Massachusetts Board of Bar Overseers Hearing Committee Member, 2010-Present.

Steering Committee – 2009 First Annual Robotics Innovations Competition and Conference
(RICC ’09), Nov 7-8, Worcester, MA, 2009.

Conference Technical Co-Chair – 2009 IEEE International Conference on Technologies of
Practical Robot Applications (TePRA 2009), Nov. 9-11, Woburn, MA, 2009.

Reviewer – Proposal number CRDPJ 379622-08, Natural Sciences and Engineering Research
Council of Canada (NSERC), Mar. 2009

Co-Chair – Urban and Indoor Geolocation, Institute of Navigation International Technical
Meeting (ITM2009), Anaheim CA, Jan. 2009.

Reviewer – Proposal number CRDPJ 379622-08, Natural Sciences and Engineering Research
Council of Canada (NSERC), Mar. 2009

APPENDIX A

Microsoft Corp. Exhibit 1005

The Design and
Analysis of
Spatial Data
Structures

APPENDIX B

Microsoft Corp. Exhibit 1005

The Design and
Analysis of
Spatial Data
Structures

Hanan Samet
UNIVERSITY OF MARYLAND

I \ ., 'i

ADDISON- WESLEY PUBLISHING COMPANY, INC.
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

APPENDIX B

Microsoft Corp. Exhibit 1005

This book is in the Addison-Wesley Series in Computer Science
Michael A. Harrison: Consulting Editor

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value.
They have been tested with care, but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations, nor does it accept any liabilities with respect to the programs or
applications.

Library of Congress Cataloging-in-Publication Data

Samet, Hanan.
The Design and analysis of spatial data structures/by Hanan Samet.

p. em.
Bibliography: p.
Includes index.
ISBN 0-201-50255-0
1. Data structures (Computer science) 2. Computer graphics.

I. Title.
QA76.9.D35S26 1989
005.7'3-dc19

Reprinted with corrections January, 1994

Copyright© 1990 by Addison-Wesley Publishing Company, Inc.

89-30382
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmit
ted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of America. Published simultane
ously in Canada.

45 6 7 8 910111213 14-MA-97 96 95 94

Credits:
Thor Bestul created the cover art.

Gyuri Fekete generated Figure 1.16; Daniel DeMenthon, Figures 1.20, 1.21, and 1.23; Jiang-Hsing
Chu, Figures 2.48 and 2.52; and Walid Aref, Figures 4.38 through 4.40.

Figures 1.1, 4.9, and 4.10 are from H. Samet and R. E. Webber, On encoding boundaries with quad
trees, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 3 (May 1984), 365-369. © 1984
IEEE. Reprinted by permission of IEEE.

Figures 1.2, 1.3, 1.5 through 1.10, 1.12, 1.14, 1.25, 1.26, 2.3, 2.4, 2.18, 2.20, 2.30, 2.32, 2.53, 2.54,
2.57, 2.58, 3.20, 3.21, 4.1 through 4.5, 4.7, 4.8, 4.11, and 5.2 are from H. Samet, The quadtree and related
hierarchical data structures, ACM Computing Surveys 16, 2 (June 1984), 187-260. Reprinted by permission
ofACM.

Figures 1.4 and 5.6 are from H. Samet and R. E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part I. Fundamentals, IEEE Computer Graphics and Applications 8, 3 (May 1988),
48-68. © 1988 IEEE. Reprinted by permission of IEEE.

Figure 1.30 is from M. Li, W. I. Grosky, and R. Jain, Normalized quadtrees with respect to transla
tions, Computer Graphics and Image Processing 20, 1 (September 1982), 72-81. Reprinted by permission
of Academic Press.

Figures 2.7 and 2.10 through 2.15 are from H. Samet, Deletion in two-dimensional quad trees, Com
municatiC!ns of the ACM 23, 12 (December 1980), 703-710. Reprinted by permission of ACM.

. Figures 2.26 and 2.27 are from D. T. Lee and C. K. Wong, Worst-case analysis for region and partial
reg10~ searches in !ll~ltidimensional '>inary search trees and quad trees, Acta Informatica 9, 1 (1977), 23-29.
Repnnted by permission of Springer Verlag.
Continued on p. 493

APPENDIX B

Microsoft Corp. Exhibit 1005

To my parents, Julius and Lotte

APPENDIX B

Microsoft Corp. Exhibit 1005

PREFACE

Spatial data consist of points, lines, rectangles, regions, surfaces, and volumes. The
representation of such data is becoming increasingly important in applications in
computer graphics, computer vision, database management systems, computer-aided
design, solid modeling, robotics, geographic information systems (GIS), image pro
cessing, computational geometry, pattern recognition, and other areas. Once an appli
cation has been specified, it is common for the spatial data types to be more precise.
For example, consider a geographic information system (GIS). In such a case, line
data are differentiated on the basis of whether the lines are isolated (e.g., earthquake
faults), elements of tree-like structures (e.g., rivers and their tributaries), or elements
of networks (e.g., rail and highway systems). Similarly region data are often in the
form of polygons that are isolated (e.g., lakes), adjacent (e.g., nations), or nested (e.g.,
contours). Clearly the variations are large.

Many of the data structures currently used to represent spatial data are hierarchi
cal. They are based on the principle of recursive decomposition (similar to divide and
conquer methods [Aho74]). One such data structure is the quadtree (octree in three
dimensions). As we shall see, the term quadtree has taken on a generic meaning. In
this book, it is my goal to show how a number of hierarchical data structures used in
different domains are related to each other and to q~adtrees. My presentation concen
trates on these different representations and illustrates how a number of basic opera
tions that use them are performed.

Hierarchical data structures are useful because of their ability to focus on the
interesting subsets of the data. This focusing results in an efficient representation and
in improved execution times. Thus they are particularly convenient for performing set
operations. Many of the operations described can often be performed as efficiently, or
more so, with other data structures. Nevertheless hierarchical data structures are
attractive because of their conceptual clarity and ease of implementation. In addition,
the use of some of them provides a spatial index. This is very useful in applications
involving spatial databases.

APPENDIX B

Microsoft Corp. Exhibit 1005

viii II PREFACE

As an example of the type of problems to which the techniques described in this
book are applicable, consider a cartographic database consisting of a number of maps
and some typical queries. The database contains a contour map, say at 50-foot eleva
tion intervals, and a land use map classifying areas according to crop growth. Our
goal is to determine all regions between 400- and 600-foot elevation levels where
wheat is grown. This will require an intersection operation on the two maps. Such an
analysis could be rather costly, depending on the way the maps are represented. For
example, since areas where com is grown are of no interest, we wish to spend a
minimal amount of effort searching such regions. Yet traditional region representa
tions such as the boundary code [Free7 4] are very local in application, making it
difficult to avoid examining a com-growing area that meets the desired elevation
criterion. In contrast, hierarchical representations such as the region quadtree are
more global in nature and enable the elimination of larger areas from consideration.

Another query might be to determine whether two roads intersect within a given
area. We could check them point by point; however, a more efficient method of
analysis would be to represent them by a hierarchical sequence of enclosing rectangles
and to discover whether in fact the rectangles do overlap. If they do not, the search is
terminated. If an intersection is possible, more work may have to be done, depending
on which method of representation is used.

A similar query can be constructed for point data- for example, to determine
all cities within 50 miles of St. Louis that have a population in excess of 20,000.
Again we could check each city individually. However, using a representation that
decomposes the United States into square areas having sides of length 100 miles
would mean that at most four squares need to be examined. Thus California and its
adjacent states can be safely ignored.

Finally, suppose we wish to integrate our queries over a database containing
many different types of data (e.g., points, lines, areas). A typical query might be,
"Find all cities with a population in excess of 5,000 people in wheat-growing regions
within 20 miles of the Mississippi River." In this book we will present a number of
different ways of representing data so that such queries and other operations can be
efficiently processed.

This book is organized as follows. There is one chapter for each spatial data
type, in which I present a number of different data structures. The aim is to gain the
ability to evaluate them and to determine their applicability. Two problems are treated
in great detail: the rectangle intersection problem, discussed in the context of the
representation of collections of small rectangles (Chapter 3), and the point location
problem, discussed in the context of the representation of curvilinear data (Chapter 4).
A comprehensive treatment of the use of quadtrees and octrees in other applications in
computer graphics, image processing, and geographic information systems (GIS) can
be found in [Same90b].

Chapter 1 gives a general introduction to the principle of recursive decomposi
tion with a concentration on two-dimensional regions. Key properties, as well as a
historical overview, are presented.

APPENDIX B

Microsoft Corp. Exhibit 1005

PREFACE II ix

Chapter 2 discusses hierarchical representations of multidimensional point data.
These data structures are particularly useful in applications in database management
systems because they are designed to facilitate responses to search queries.

Chapter 3 examines the hierarchical representation of collections of small rec
tangles. Such data arise in applications in computational geometry, very large-scale
integrations (VLSI), cartography, and database management. Examples from these
fields (e.g., the rectangle intersection problem) are used to illustrate their differences.
Many of the representations are closely related to those used for point data. This
chapter is an expansion of [Same88a].

Chapter 4 treats the hierarchical representation of curvilinear data. The primary
focus is on the representation of polygonal maps. The goal is to be able to solve the
point location problem. Quadtree-like solutions are compared with those from com
putational geometry such as the K-structure [Kirk83] and the layered dag [Edel86a].

Chapter 5 looks at the representation of three-dimensional region data. In this
case, a number of octree variants are examined, as well as constructive solid geometry
(CSG) and the boundary model (BRep). Algorithms are discussed for converting
between some of these representations. The representation of surfaces (i.e., 2.5-
dimensional data) is also briefly discussed in this chapter.

There are a number of topics for which justice requires a considerably more
detailed treatment. However, due to space limitations, I have omitted a detailed dis
cussion of them and instead refer interested readers to the appropriate literature. For
example, surface representations are discussed briefly with three-dimensional data in
Chapter 5 (also see Chapter 7 of [Same90b]). The notion of a pyramid is presented
only at a cursory level in Chapter 1 so that it can be contrasted with the quadtree. In
particular, the pyramid is a multiresolution representation, whereas the quadtree is a
variable resolution representation. Readers are referred to Tanimoto and Klinger
[Tani80] and the collection of papers edited by Rosenfeld [Rose83a] for a more
comprehensive exposition on pyramids.

Results from computational geometry, although related to many of the topics
covered in this book, are discussed only in the context of representations for collec
tions of small rectangles (Chapter 3) and curvilinear data (Chapter 4). For more
details on early work involving some of these and related topics, interested readers
should consult the surveys by Bentley and Friedman [Bent79b], Overmars [Over88a],
Edelsbrunner [Edel84], Nagy and Wagle [Nagy79], Peuquet [Peuq84], Requicha
[Requ80], Srihari [Srih81], Samet and Rosenfeld [Same80d], Samet [Same84b,
Same88a], Samet and Webber [Same88c, Same88d], and Toussaint [Tous80].

There are also a number of excellent texts containing material related to the
topics that I cover. Rosenfeld and Kak [Rose82a] should be consulted for an ency
clopedic treatment of image processing. MantyUi [Mant87] has written a comprehen
sive introduction to solid modeling. Burrough [Burr86] provides a survey of geo
graphic information systems (GIS). Overmars [Over83] has produced a particularly
good treatment of multidimensional point data. In a similar vein, see Mehlhorn's
[Mehl84] unified treatment of multidimensional searching and computational
geometry. For thorough introductions to computational geometry, see Preparata and

APPENDIX B

Microsoft Corp. Exhibit 1005

PREFACE II XIII

K-structure and the layered dag in Section 4.3 are relevant to computational geometry.
Bucket methods such as linear hashing, spiral hashing, grid file. and EXCELL. in Sec
tion 2.8, and R-trees in Section 3.5.3 are important in the study of database manage
ment systems. Methods for multidimensional searching that are discussed include k-d
trees in Section 2.4, range trees and priority search trees in Section 2.5, and point
based rectangle representations in Section 3.4. The discussions of the representation
of two-dimensional regions in Chapter 1, polygonal representations in Chapter 4, and
use of point methods for focussing the Hough Transform are relevant to image pro
cessing. Finally the rectangle-representation methods and plane-sweep methods of
Chapter 3 are important in the field of VLSI design.

The natural home for courses that use this book is in a computer science depart
ment, but the book could also be used in a curriculum in geographic information
systems (GIS). Such a course is offered in geography departments. The emphasis for
a course in this area would be on the use of quadtree-like methods for representing
spatial data.

APPENDIX B

Microsoft Corp. Exhibit 1005

X II PREFACE

Shamos [Prep85] and Edelsbrunner [Edel87] (also see [Prep83, 0Rou88]). A broader
view of the literature can be found in related bibliographies such as the ongoing col
lective effort coordinated by Edelsbrunner [Edel83c, Edel88], and Rosenfeld's annual
collection of references in the journal Computer Vision, Graphics, and Image Pro
cessing (e.g., [Rose88]).

Nevertheless, given the broad and rapidly expanding nature of the field, I am
bound to have omitted significant concepts and references. In addition at times I
devote a disproportionate amount of attention to some concepts at the expense of oth
ers. This is principally for expository purposes; I feel that it is better to understand
some structures well rather than to give readers a quick runthrough of buzzwords. For
these indiscretions, I beg your pardon and hope you nevertheless bear with me.

My approach is an algorithmic one. Whenever possible, I have tried to motivate
critical steps in the algorithms by a liberal use of examples. I feel that it is of
paramount importance for readers to see the ease with which the representations can
be implemented and used. In each chapter, except for the introduction (Chapter I), I
give at least one detailed algorithm using pseudo-code so that readers can see how the
ideas can be applied. The pseudo-code is a variant of the ALGOL [Naur60] program
ming language that has a data structuring facility incorporating pointers and record
structures. Recursion is used heavily. This language has similarities to c [Kern78],
PASCAL [Jens74], SAIL [Reis76], and ALGOL w [Baue68]. Its basic features are
described in the Appendix. However, the actual code is not crucial to understanding
the techniques, and it may be skipped on a first reading. The index indicates the page
numbers where the code for each algorithm is found.

In many cases I also give an analysis of the space and time requirements of dif
ferent data structures and algorithms. The analysis is usually of an asymptotic nature
and is in terms of big 0 and .Q notation [Knut76]. The big 0 notation denotes an
upper bound. For example, if an algorithm takes O(log2N) time, then its worst-case
behavior is never any worse than log2N. The .Q notation denotes a lower bound. As
an example of its use, consider the problem of sorting N numbers. When we say that
sorting is Q(N·log2N) we mean that given any algorithm for sorting, there is some set
of N input values for which the algorithm will require at least this much time.

At times I also describe implementations of some of the data structures for the
purpose of comparison. In such cases counts, such as the number of fields in a record,
are often given. These numbers are meant only to amplify the discussion. They are
not to be taken literally, as improvements are always possible once a specific applica
tion is analyzed more carefully.

Each chapter contains a substantial number of exercises. Many of the exercises
develop further the material in the text as a means of testing the reader's understand
ing, as well as suggesting future directions. When the exercise or its solution is not
my own, I have preceded it with the name of its originator. The exercises have not
been graded by difficulty. They rarely require any mathematical skills beyond the
undergraduate level for their solution. However, while some of the exercises are quite
straightforward, others require some ingenuity. Solutions, or references to papers that

APPENDIX B

Microsoft Corp. Exhibit 1005

PREFACE II Xi

contain the solution, are provided for a substantial number of the exercises that do nor
require programming. Readers are cautioned to try to solve the exercises before turn
ing to the solutions. It is my belief that much can be learned this way (for the studem
and, even more so, for the author). The motivation for undertaking this task was my
wonderful experience on my first encounter with the rich work on data structures by
Knuth [Knut73a, Knut73b].

An extensive bibliography is provided. It contains entries for both this book and
the companion text [Same90b]. Not all of the references that appear in the bibliogra
phy are cited in the two texts. They are retained for the purpose of giving readers the
ability to access the entire body of literature relevant to the topics discussed in them.
Each reference is annotated with a key word(s) and a list of the numbers of the sec
tions in which it is cited in either of the texts (including exercises and solutions). In
addition, a name and credit index is provided that indicates the page numbers in thb
book on which each author's work is cited or a credit is made.

ACKNOWLEDGMENTS

Over the years I have received help from many people, and I am extremely
grateful to them. In particular Robert E. Webber, Markku Tamminen, and Michael B.
Dillencourt have generously given me much of their time and have gone over critical
parts of the book. I have drawn heavily on their knowledge of some of the topics
covered here. I have also been extremely fortunate to work with Azriel Rosenfeld
over the past ten years. His dedication and scholarship have been a true inspiration to
me. I deeply cherish our association.

I was introduced to the field of spatial data structures by Gary D. Knott who
asked "how to delete in point quadtrees." Azriel Rosenfeld and Charles R. Dyer pro
vided much interaction in the initial phase of my research. Those discussions led to
the discovery of the neighbor-finding principle. It is during that time that many of the
basic conversion algorithms between quadtrees and other image representations wer~
developed as well. I learned much about image processing and computer vision frof11
them. Robert E. Webber taught me computer graphics, Markku Tarnminen taught m~
solid modeling and representations for multiattribute data, and Michael B. Dillencourt
taught me about computational geometry.

During the time that this book was written, my research was supported, in part.
by the National Science Foundation, the Defense Mapping Agency, the Harr:1
Diamond Laboratory, and the Bureau of the Census. In particular I would like 1"

thank Richard Antony, Y. T. Chien, Su-shing Chen, Hank Cook, Phil Emmerman, Jr•"

Rastatter, Alan Saalfeld, and Larry Tokarcik. I am appreciative of their support.
Many people helped me in the process of preparing the book for publicatior

Acknowledgments are due to Rene McDonald for coordinating the day-to-day matter'

APPENDIX B

Microsoft Corp. Exhibit 1005

XII II PREFACE

of getting the book out and copyediting; to Scott Carson, Emery Jou, and Jim Purtilo
for TROFF assistance beyond the call of duty; to Marisa Antoy and Sergio Antoy for
designing and implementing the algorithm formatter used to typeset the algorithms; to
Barbara Burnett, Michael B. Dillencourt, and Sandra German for help with the index;
to Jay Weber for setting up the TROFF macrofiles so that I can keep track of symbolic
names and thus be able to move text around without worrying about the numbering of
exercises, sections, and chapters; to Liz Allen for early TROFF help; to Nono Kusuma,
Mark Stanley, and Joan Wright Hamilton for drawing the figures; to Richard Muntz
and Gerald Estrin for providing temporary office space and computer access at UCLA;

to Sandy German, Gwen Nelson, and Janet Salzman for help in initial typing of the
manuscript; to S. S. Iyengar, Duane Marble, George Nagy, and Terry Smith who
reviewed the book; and to Peter Gordon, John Remington, and Keith Wollman at
Addison-Wesley Publishing Company for their encouragement and confidence in this
project.

Aside from the individuals named above, I have also benefited from discussions
with many other people over the past years. They have commented on various parts
of the book and include Chuan-Heng Ang, Walid Aref, James Arvo, Harvey H. Atkin
son, Thor Bestul, Sharat Chandran, Chiun-Hong Chien, Jiang-Hsing Chu, Leila De
Floriani, Roger Eastman, Herbert Edelsbrunner, Claudio Esperanca, Christos Falout
sos, George (Gyuri) Fekete, Kikuo Fujimura, John Gannon, John Goldak, Erik Hoel,
Liuqing Huang, Frederik W. Jansen, Ajay Kela, David Kirk, Per Ake Larson, Dani
Lischinski, Don Meagher, David Mount, Randal C. Nelson, Glenn Pearson, Ron
Sacks-Davis, Timos Sellis, Clifford A. Shaffer, Deepak Sherlekar, Li Tong, Brian
Von Herzen, Peter Widmayer, and David Wise. I deeply appreciate their help.

A GUIDE TO THE INSTRUCTOR

This book can be used in a second data structures course, one with emphasis on
the representation of spatial data. The focus is on the use of the principle of divide
and-conquer for which hierarchical data structures provide a good demonstration.
Throughout the book both worst-case optimal methods and methods that work well in
practice are emphasized in conformance with my view that the well-rounded computer
scientist should be conversant with both types of algorithms. This material is more
than can be covered in one semester; but the instructor can reduce it as necessary. For
example, the detailed examples can be skipped or used as a basis of a term project or
programming assignments.

The book can also be used to organize a course to be prerequisite to courses in
computer graphics and solid modeling, computational geometry, database manage
ment systems, multidimensional searching, image processing, and VLSI design. The
discussions of the representations of two-dimensional regions in Chapter 1, polygonal
representations in Chapter 4, and most of Chapter 5 are relevant to computer graphics
and solid modeling. The discussions of plane-sweep methods and their associated
data structures such as segment trees, interval trees, and priority search trees in Sec
rions 3.2 and 3.3 and point location and associated data structures such as the

APPENDIX B

Microsoft Corp. Exhibit 1005

CONTENTS

Preface vii

1 INTRODUCTION 1
1.1 Basic Definitions 1
1.2 Overview of Quadtrees and Octrees 2
1.3 History of the Use of Quadtrees and Octrees 10
1.4 Space Decomposition Methods 16

1.4.1 Polygonal Tilings 17
1.4.2 Nonpolygonal Tilings 26

1.5 Space Requirements 32

2 POINT DATA 43
2.1 Introduction 44
2.2 Nonhierarchical Data Structures 46
2.3 Point Quadtrees 48

2.3.1 Insertion 49
2.3.2 Deletion 54
2.3.3 Search 64

2.4 k-d Trees 66
2.4.1 Insertion 68
2.4.2 Deletion 73
2.4.3 Search 77
2.4.4 Comparison with Point Quadtrees 80

2.5 Range Trees and Priority Search Trees 80
2.6 Region-based Quadtrees 85

2.6.1 MX Quadtrees 86
2.6.2 PR Quadtrees 92

APPENDIX B

Microsoft Corp. Exhibit 1005

XVI II CONTENTS

2.6.3 Comparison of Point and Region-based Quadtrees 104
2.7 Bit Interleaving 105
2.8 Bucket Methods 110

2.8.1 Hierarchical Bucket Methods 111
2.8.2 Nonhierarchical Bucket Methods 116

2.8.2.1 Linear Hashing 117
2.8.2.2 Spiral Hashing 125
2.8.2.3 Grid File 135
2.8.2.4 EX CELL 141

2.9 Conclusion 147

3 COLLECTIONS OF SMALL RECTANGLES 153
3.1 Introduction 155
3.2 Plane-Sweep Methods and the Rectangle Intersection Problem 158

3.2.1 Segment Trees 160
3.2.2 Interval Trees 165
3.2.3 Priority Search Trees 171
3.2.4 Alternative Solutions and Related Problems 174

3.3 Plane-Sweep Methods and the Measure Problem 178
3.4 Point-based Methods 186
3.5 Area-based Methods 199

3.5.1 MX -CIF Quad trees 200
3.5.1.1 Insertion 202
3.5.1.2 Deletion 206
3.5.1.3 Search 209

3.5.2 Multiple Quadtree Block Representations 213
3.5.3 R-trees 219

4 CURVILINEAR DATA 227
4.1 Strip Trees. Arc Trees, and BSPR 228
4.2 Methods Based on the Region Quadtree 235

4.2.1 Edge Quadtrees 235
4.2.2 Line Quadtrees 237
4.2.3 PM Quadtrees 239

4.2.3.1 The PM 1 Quad tree 240
4.2.3.2 The PM2 Quadtree 257
4.2.3.3 The PM3 Quadtree 261
4.2.3.4 PMR Quadtrees 264
4.2.3.5 Fragments 269
4.2.3.6 Maintaining Labels of Regions 275

4.2.4 Empirical Comparisons of the Different
Representations 278

4.3 Methods Rooted in Computational Geometry 286
4.3.1 The K -structure 287

APPENDIX B

Microsoft Corp. Exhibit 1005

4.3.2 Separating Chains and Layered Dags
4.3.3 Comparison with PM Quadtrees

4.4 Conclusion

5 VOLUMEDATA
5.1 Solid Modeling
5.2 Region Octrees
5.3 PM Octrees
5.4 Boundary Model (BRep)
5.5 Constructive Solid Geometry (CSG)

5.5.1 CSG Evaluation by Bintree Conversion
5.5 .1.1 Algorithm for a Single Half space
5.5.1.2 Algorithm for a CSG Tree

CONTENTS II xvii

293
306
312

5.5 .1.3 Incorporation of the Time Dimension

315
316
318
326
331
338
340
341
346
355
360
365
370
374

5.5.2 PM-CSG Trees
5.6 Surface-based Object Representations
5.7 Prism Trees
5.8 Cone Trees

Solutions to Exercises
Appendix: Description of Pseudo-Code Language
References
Name and Credit Index
Subject Index

377
411
415
465
477

APPENDIX B

Microsoft Corp. Exhibit 1005

INTRODUCTION 1

There are numerous hierarchical data structuring techniques in use for representing
spatial data. One commonly used technique is the quadtree, which has evolved from
work in different fields. Thus it is natural that a number of adaptations of it exist for
each spatial data type. Its development has been motivated to a large extent by a
desire to save storage by aggregating data having identical or similar values. We will
see, however, that this is not always the case. In fact, the savings in execution time
that arise from this aggregation are often of equal or greater importance.

In this chapter we start with a historical overview of quadtrees, including
definitions. Since the primary focus in this book is on the representation of regions,
what follows is a discussion of region representation in the context of different space
decomposition methods. This is done by examining polygonal and nonpolygonal til
ings of the plane. The emphasis is on justifying the use of a decomposition into
squares. We conclude with a detailed analysis of the space requirements of the quad
tree representation.

Most of the presentation in this chapter is in the context of two-dimensional
regions. The extension of the topics in this chapter, and remaining chapters, to three
dimensional region data, and higher, is straightforward and, aside from definitions, is
often left to the exercises. Nevertheless, the concept of an octree, a quadtree-like
representation of three-dimensional regions, is defined and a brief explanation is given
of how some of the results described here are applicable to higher-dimensional data.

1.1 BASIC DEFINITIONS

First, we define a few terms with respect to two-dimensional data. Assume the
existence of an array of picture elements (termed pixels) in two dimensions. We use
the term image to refer to the original array of pixels. If its elements are black or

APPENDIX B

Microsoft Corp. Exhibit 1005

2 II 1 INTRODUCTION

white, then it is said to be binary. If shades of gray are possible (i.e., gray levels), the
image is said to be a gray -scale image. In the discussion, we are primarily concerned
with binary images. Assume that the image is on an infinite background of white pix
els. The border of the image is the outer boundary of the square corresponding to the
array.

Two pixels are said to be 4-adjacent if they are adjacent to each other in the
horizontal or vertical direction. If the concept of adjacency also includes adjacency at
a corner (i.e., diagonal adjacencies), then the pixels are said to be 8-adjacent. A sets
is said to be four-connected (eight-connected) if for any pixels p, q ins there exists a
sequence of pixels p = p 0 , p 1, • • • , Pn = q in s, such that Pi+I is 4-adjacent (8-
adjacent) to Pi• 0 ~ i < n.

A black region, or black four-connected component, is a maximal four
connected set of black pixels. The process of assigning the same label to all 4-
adjacent black pixels is called connected component labeling (see Chapter 5 of
[Same90b]). A white region is a maximal eight-connected set of white pixels defined
analogously. The complement of a black region consists of a union of eight
connected white regions. Exactly one of these white regions contains the infinite
background of white pixels. All the other white regions, if any, are called holes in the
black region. The black region, say R, is surrounded by the infinite white region and R

surrounds the other white regions, if any.
A pixel is said to have four edges, each of which is of unit length. The bound

my of a black region consists of the set of edges of its constituent pixels that also
serve as edges of white pixels. Similar definitions can be formulated in terms of rec
tangular blocks, all of whose pixels are identically colored. For example, two disjoint
blocks, P and Q, are said to be 4-adjacent if there exists a pixel p in P and a pixel q in Q

such that p and q are 4-adjacent. Eight-adjacency for blocks (as well as connected
component labeling) is defined analogously.

1.2 OVERVIEW OF QUADTREES AND OCTREES

The term quadtree is used to describe a class of hierarchical data structures whose
common property is that they are based on the principle of recursive decomposition of
space. They can be differentiated on the following bases:

1. The type of data they are used to represent
2. The principle guiding the decomposition process
3. The resolution (variable or not)

Currently they are used for point data, areas, curves, surfaces, and volumes.
The decomposition may be into equal parts on each level (i.e., regular polygons and
termed a regular decomposition), or it may be governed by the input. In computer
graphics this distinction is often phrased in terms of image-space hierarchies versus
object-space hierarchies, respectively [Suth74]. The resolution of the decomposition

APPENDIX B

Microsoft Corp. Exhibit 1005

1.2 OVERVIEW OF QUADTREES AND OCTREES II 3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 I I I I
0 0 0 0 I I I I
0 0 0 I I I I I
0 0 I I I I I I 0 0 0 I I I I 0 0
0 0 I I I 0 0 0

a b

A
Level 3---------------

NW

Level 2 --

Level I--------

Leve I 0 - --- - - - - - - - - -- - - -

d
7 8 9 10

2 3

6

II

c

15 16 17 18

Figure 1.1 An example of (a) a region, (b) its binary array,
(c) its maximal blocks (blocks in the region are shaded), and
(d) the corresponding quadtree

(i.e., the number of times that the decomposition process is applied) may be fixed
beforehand, or it may be governed by properties of the input data. For some applica
tions we can also differentiate the data structures on the basis of whether they specify
the boundaries of regions (e.g., curves and surfaces) or organize their interiors (e.g.,
areas and volumes).

The first example of a quadtree representation of data is concerned with the
representation of two-dimensional binary region data. The most studied quadtree
approach to region representation, called a region quadtree (but often termed a quad
tree in the rest of this chapter), is based on the successive subdivision of a bounded
image array into four equal-sized quadrants. If the·array does not consist entirely of
ls or entirely of Os (i.e., the region does not cover the entire array), then it is subdi
vided into quadrants, subquadrants, and so on, until blocks are obtained that consist
entirely of 1 s or entirely of Os; that is, each block is entirely contained in the region or
entirely disjoint from it. The region quadtree can be characterized as a variable reso
lution data structure.

As an example of the region quad tree, consider the region shown in Figure 1.1 a
represented by the 23 x 23 binary array in Figure 1.1 b. Observe that the 1 s correspond
to picture elements (i.e., pixels) in the region, and the Os correspond to picture ele
ments outside the region. The resulting blocks for the array of Figure 1.1 b are shown
in Figure 1.1c. This process is represented by a tree of degree 4 (i.e., each nonleaf
node has four sons).

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

1.2 OVERVIEW OF QUADTREES AND OCTREES ii 3

Level 3 - - - — - — — _ _ _ _ _ . _ _

Level 2 --

Level | - - - — — — ——
2 3 4 5 11 I2 13 14

Level 0 - - — — ~ — — _ _ _ _ _ _ _ _ __
789I0 l5l6|7le

d

Figure 1.1 An example of (a) a region, (b) its binary array,

(0) its maximal blocks (blocks in the region are shaded), and

(d) the corresponding quadtree

(i.e., the number of times that the decomposition process is applied) may be fixed

beforehand, or it may be governed by properties of the input data. For some applica-

tions we can also differentiate the data structures on the basis of whether they specify

the boundaries of regions (e.g., curves and surfaces) or organize their interiors (e.g.,

areas and volumes).

The first example of a quadtree representation of data is concerned with the

representation of two-dimensional binary region data. The most studied quadtree

approach to region representation, called a region quadtree (but often termed a quad—

tree in the rest of this chapter), is based on the successive subdivision of a bounded

image array into four equal-sized quadrants. If the‘array does not consist entirely of

1s or entirely of 0s (i.e., the region does not cover the entire array), then it is subdi-

vided into quadrants, subquadrants, and so on, until blocks are obtained that consist

entirely of 1s or entirely of OS; that is, each block is entirely contained in the region or

entirely disjoint from it. The region quadtree can be characterized as a variable reso-
lution data structure.

As an example of the region quadtree, consider the region shown in Figure 1.1a

represented by the 23 x 23 binary array in Figure l.1b. Observe that the 1s correspond

to picture elements (i.e., pixels) in the region, and the 0s correspond to picture ele-

ments outside the region. The resulting blocks for the array of Figure 1.1b are shown

in Figure l.1c. This process is represented by a tree of degree 4 (i.e., each nonleaf

node has four sons).

Microsoft Corp. Exhibit 1005

4 II 1 INTRODUCTION

In the tree representation, the root node corresponds to the entire array. Each
son of a node represents a quadrant (labeled in order NW, NE, sw, SE) of the region
represented by that node. The leaf nodes of the tree correspond to those blocks for
which no further subdivision is necessary. A leaf node is said to be black or white
depending on whether its corresponding block is entirely inside (it contains only 1 s) or
entirely outside the represented region (it contains no ls). All nonleaf nodes are said
to be gray (i.e., its block contains Os and 1 s). Given a 211 x 211 image, the root node is
said to be at level n while a node at level 0 corresponds to a single pixel in the image. 1

The region quad tree representation for Figure 1.1 c is shown in Figure 1.1 d. The leaf
nodes are labeled with numbers, while the nonleaf nodes are labeled with letters. The
levels of the tree are also marked.

Our definition of the region quadtree implies that it is constructed by a top-down
process. In practice, the process is bottom-up, and one usually uses one of two
approaches. The first approach [Same80b] is applicable when the image array is not
too large. In such a case, the elements of the array are inspected in the order given by
the labels on the array in Figure 1.2 (which corresponds to the image of Figure l.la).
This order is also known as a Morton order [Mort66] (discussed in Section 1.3). By
using such a method, a leaf node is never created until it is known to be maximal. An
equivalent statement is that the situation does not arise in which four leaf nodes of the
same color necessitate the changing of the color of their parent from gray to black or
white as is appropriate. (For more details, see Section 4.1 of [Same90b].)

The second approach [Same81a] is applicable to large images. In this case, the
elements of the image are processed one row at a time-for example, in the order
given by the labels on the array in Figure 1.3 (which corresponds to the image of Fig
ure l.la). This order is also known as a row or raster-scan order (discussed in Section
1.3). A quadtree is built by adding pixel-sized nodes one by one in the order in which
they appear in the file. (For more details, see Section 4.2.1 of [Same90b].) This pro
cess can be time-consuming due to the many merging and node insertion operations
that need to take place.

The above method has been improved by using a predictive method [Shaf86a,
Shaf87a], which only makes a single insertion for each node in the final quadtree and
performs no merge operations. It is based on processing the image in row order (top
to bottom, left to right), always inserting the largest node (i.e., block) for which the
current pixel is the first (upper leftmost) pixel. Such a policy avoids the necessity of
merging since the upper leftmost pixel of any block is inserted before any other pixel
of that block. Therefore it is impossible for four sibling nodes to be of the same color.
This method makes use of an auxiliary array of size 0(2 11

) for a 211 x 211 image. (For
more details, see Section 4.2.3 of [Same90b].)

The region quadtree is easily extended to represent three-dimensional binary
region data and the resulting data structure is called a region octrcc (termed an octrcc

1 Alternatively we can say that the root node is at depth 0 while a node at depth 11 corresponds to a single
pixel in the image. In this book both concepts of level and depth are used to describe the relative position of
nodes. The one that is chosen is context dependent.

APPENDIX B

Microsoft Corp. Exhibit 1005

1.2 OVERVIEW OF QUADTREES AND OCTREES II 5

I 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24
9 10 13 14 25 26 29 3C
II 12 15 16 2 rz8 31 32
33 3"1 37~8 49 50 53 5<1
35 36 3~~ 51 52 55 ~
41142 41: [46 5758 61~2
43 ~ 4 [48 5960 63 [64

Figure 1.2 Morton order for the pixels of Figure 1. 1

in the rest of this chapter). We start with a 2n x 2n x 2n object array of unit cubes
(termed voxels or obels). The octree is based on the successive subdivision of an
object array into octants. If the array does not consist entirely of 1 s or entirely of Os, it
is subdivided into octants, suboctants, and so on until cubes (possibly single voxels)
are obtained that consist of 1 s or of Os; that is, they are entirely contained in the region
or entirely disjoint from it.

This subdivision process is represented by a tree of degree 8 in which the root
node represents the entire object and the leaf nodes correspond to those cubes of the
array for which no further subdivision is necessary. Leaf nodes are said to be black or
white (alternatively, full or void) depending on whether their corresponding cubes are
entirely within or outside the object, respectively. All nonleaf nodes are said to be
gray. Figure 1.4a is an example of a simple three-dimensional object, in the form of a
staircase, whose octree block decomposition is given in Figure 1.4b and whose tree
representation is given in Figure 1.4c.

The region quadtree is a member of a class of representations characterized as
being a collection of maximal (according to an appropriate definition) blocks, each of
which is contained in a given region and whose union is the entire region. The sim
plest such representation is the runlength code, where the blocks are restricted to
1 x m rectangles [Ruto68]. A more general representation treats the region as a union
of maximal square blocks (or blocks of any other desired shape) that may possibly
overlap. Usually the blocks are specified by their centers and radii. This representa
tion is called the medial axis transformation (MAT) [Blum67, Rose66]. Of course,
other approaches are also possible (e.g., rectangular coding [Kim83, Kim86], TID
[Scot85, Scot86]).

I 2 3 4 5 6 7 8
9 10 II 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 2728 2930 31 32
3334 35 36 3738 3940
41 42 143 44 45 46 47 41:
49 50 51 52 6'3 54 5556
57 58 5960 61 62 63[64

. Figure 1.3 Raster-scan order for the pixels of Figure 1. 1

APPENDIX B

Microsoft Corp. Exhibit 1005

6 II 1 INTRODUCTION

7 5 11 9 8 6 12 10

a b c

Figure 1.4 (a) Example three-dimensional object; (b) its
octree block decomposition; (c) its tree representation

The region quadtree is a variant on the maximal block representation. It
requires the blocks to be disjoint and to have standard sizes (i.e., sides of lengths that
are powers of two) and standard locations. The motivation for its development is a
desire to obtain a systematic way to represent homogeneous parts of an image. Thus
to transform the data into a region quadtree, a criterion must be chosen for deciding
that an image is homogeneous (i.e., uniform).

One such criterion is that the standard deviation of its gray levels is below a
given threshold t. Using this criterion, the image array is successively subdivided into
quadrants, subquadrants, and so on until homogeneous blocks are obtained. This pro
cess leads to a regular decomposition. If one associates with each leaf node the mean
gray level of its block, the resulting region quadtree will then completely specify a
piecewise approximation to the image where each homogeneous block is represented
by its mean. The case where t = 0 (i.e., a block is not homogeneous unless its gray
level is constant) is of particular interest since it permits an exact reconstruction of the
image from its quadtree.

Note that the blocks of the region quadtree do not necessarily correspond to
maximal homogeneous regions in the image. Most likely there exist unions of the
blocks that are still homogeneous. To obtain a segmentation of the image into maxi
mal homogeneous regions, we must allow merging of adjacent blocks (or unions of
blocks) as long as the resulting region remains homogeneous. This is achieved by a
'split-and-merge' algorithm [Horo76]. However, the resulting partition will no longer
be represented by a quadtree; instead the final representation is in the form of an adja
cency graph. Thus the region quadtree is used as an initial step in the segmentation
process.

For example, Figure 1.5b-d demonstrates the results of the application, in
sequence, of merging. splitting, and grouping .to the initial image decomposition of
Figure 1.5a. In this case. the image is initially decomposed into 16 equal-sized square
blocks. Next the 'merge' step attempts to form larger blocks by recursively merging
groups of four homogeneous 'brothers' (the four blocks in the NW and SE quad
rants of Figure 1.5b). The ·split" step recursively decomposes blocks that are not
homogeneous (the NE and sw quadrants of Figure 1.5c) until a particular homo
geneity criterion is satisfied or a given level is encountered. Finally the ·grouping'
step aggregates all homogeneous 4-adjacent black blocks into one region apiece;

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

6 ll 1 INTRODUCTION

B

3114 421513

75119661210

a

C

Figure 1.4 (3) Example three-dimensional object; (b) its

octree block decomposition; (0) its tree representation

The region quadtree is a variant on the maximal block representation. It

requires the blocks to be disjoint and to have standard sizes (i.e., sides of lengths that

are powers of two) and standard locations. The motivation for its development is a

desire to obtain a systematic way to represent homogeneous parts of an image. Thus

to transform the data into a region quadtree, a criterion must be chosen for deciding

that an image is homogeneous (i.e., uniform).

One such criterion is that the standard deviation of its gray levels is below a

given threshold t. Using this criterion. the image array is successively subdivided into

quadrants, subquadrants, and so on until homogeneous blocks are obtained. This pro-

cess leads to a regular decomposition. If one associates with each leaf node the mean

gray level of its block. the resulting region quadtree will then completely specify a

piecewise approximation to the image where each homogeneous block is represented

by its mean. The case where t=0 (i.e., a block is not homogeneous unless its gray

level is constant) is of particular interest since it permits an exact reconstruction of the

image from its quadtree.

Note that the blocks of the region quadtree do not necessarily correspond to

maximal homogeneous regions in the image. Most likely there exist unions of the

blocks that are still homogeneous. To obtain a segmentation of the image into maxi—

mal homogeneous regions. we must allow merging of adjacent blocks (or unions of

blocks) as long as the resulting region remains homogeneous. This is achieved by a

‘split-and-merge‘ algorithm [Horo76]. However, the resulting partition will no longer

be represented by a quadtree; instead the final representation is in the form of an adja—

cency graph. Thus the region quadtree is used as an initial step in the Segmentation

process.

For example. Figure 1.5b—d demonstrates the results of the application, in

sequence. of merging. splitting. and grouping .to the initial image decomposition of

Figure 1.5a. In this case. the image is initially decomposed into 16 equal—sized square

blocks. Next the ‘merge‘ step attempts to form larger blocks by recursively merging

groups of four homogeneous ‘brothers‘ (the four blocks in the NW and SE quad—

rants of Figure 1.5b). The ‘split‘ step recursively decomposes blocks that are not

homogeneous (the NE and SW quadrants of Figure 1.5c) until a particular homo-

geneity criterion is satisfied or a given level is encountered. Finally the ‘grouping‘

step aggregates all homogeneous 4-adjacent black blocks into one region apiece;

Microsoft Corp. Exhibit 1005

1.2 OVERVIEW OF QUADTREES AND OCTREES II 7

a b

c d

Figure 1.5 Example illustrating the 'split-and-merge'
segmentation procedure: (a) start, (b) merge, (c) split,
(d) grouping

the 8-adjacent white blocks are similarly aggregated into white regions (Figure l.5d).
An alternative to the region quadtree representation is to use a decomposition

method that is not regular (i.e., rectangles of arbitrary size rather than squares). This
alternative has the potential of requiring less space. Its drawback is that the determi
nation of optimal partition points may be computationally expensive (see Exercise
1.1 0). A closely related problem, decomposing a region into a minimum number of
rectangles, is known to be NP-complete2 [Gare79] if the region is permitted to contain
holes [Ling82].

The homogeneity criterion ultimately chosen to guide the subdivision process
depends on the type of region data represented. In the remainder of this chapter we
shall assume that the domain is a 2n x 2n binary image with 1, or black, corresponding
to foreground and 0, or white, corresponding to background (e.g., Figure l.l).

2 A problem is in NP if it can be solved nondetenninistically in polynomial time. A nondetenninistic
solution process proceeds by 'guessing' a solution and then verifying that the solution is correct. Assume
that n is the size of the problem (e.g., for sorting, n is the number of records to be sorted). Intuitively. then.
a problem is in NP if there is a polynomial P (n) such that if one guesses a solution. it can be n~ritied in
0 (P (n)) time, whether the guess is indeed a correct solution. Thus the verification process is the 1-.t·y to
detennining whether a problem is in NP, not the actual solution of the problem.

A problem is NP-complete if it is 'at least as hard' as any other problem in NP. Some\\ lt:tt 111on:

fonnally. a problem P 1 in NP is NP-complete if the following property holds: for all other problems ;• in Nl'. if
P1 can be solved detenninistically in 0 (j (n)) time, then P; can be solved in 0 (P (j (n))) time i11r ~~~tile~

polynomial P. It has been conjectured that no NP-complete problem can be solved detenttinisticall\ 111

polynomial time. but this is not known for sure. The theory of NP-completene~s is discussed in dctatl 111

[Gare79].

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

1.2 OVERVIEW OF QUADTREES AND OCTREES 11 7

Figure 1.5 Example illustrating the ‘split-and-merge’

segmentation procedure: (a) start, (b) merge, (c) split,

(d) grouping

the 8-adjacent white blocks are similarly aggregated into white regions (Figure 1.5d).

An alternative to the region quadtree representation is to use a decomposition

method that is not regular (i.e., rectangles of arbitrary size rather than squares). This

alternative has the potential of requiring less space. Its drawback is that the determi-

nation of optimal partition points may be computationally expensive (see Exercise

1.10). A closely related problem, decomposing a region into a minimum number of

rectangles, is known to be NP-complete2 [Gare79] if the region is permitted to contain

holes [Ling82].

The homogeneity criterion ultimately chosen to guide the subdivision process

depends on the type of region data represented. In the remainder of this chapter we

shall assume that the domain is a 2" x 2" binary image with 1, or black, corresponding

to foreground and 0, or white, corresponding to background (e.g., Figure 1.1).

2 A problem is in NP if it can be solved nondeterministically in polynomial time. A nondeterministie

solution process proceeds by ‘guessing’ a solution and then verifying that the solution is correct. Assume

that n is the size of the problem (e.g., for sorting, n is the number of records to be sorted). Intuitively. then.

a problem is in NP if there is a polynomial P(n) such that if one guesses a solution. it can be verified in

0(P(n)) time, whether the guess is indeed a correct solution. Thus the verification process is the key In

determining whether a problem is in NP, not the actual solution of the problem.

A problem is NP~Complete if it is ‘at least as hard’ as any other problem in NP. Somewhat more

formally, a problem P. in NP is NP-complete if the following property holds: for all other problems in NI'. il'

P1 can be solved deterministically in 0(f(n)) time, then P, can be solved in 0(P(f(n))) time for sunk?

polynomial P. It has been conjectured that no NP-complete problem can be solved deterministically In

polynomial time. but this is not known for sure. The theory of NP-completeness is discussed in detail "I
[Gare79].

Microsoft Corp. Exhibit 1005

8 II 1 INTRODUCTION

Nevertheless the quadtree and octree can be used to represent multicolored data (e.g.,
a landuse class map associating colors with crops [Same87a]).

It is interesting to note that Kawaguchi, Endo, and Matsunaga [Kawa83] use a
sequence of m binary-valued quadtrees to encode image data of 2111 gray levels, where
the various gray levels are encoded by use of Gray codes (see, e.g., [McC165]). This
should lead to compaction (i.e., larger-sized blocks) since the Gray code guarantees
that the binary representation of the codes of adjacent gray level values differ by only
one binary digit.3 Note, though, that if the primary interest is in image compression,
there exist even better methods (see, e.g., [Prat78]); however, they are beyond the
scope of this book (but see Chapter 8 of [Same90b]). In another context, Kawaguchi,
Endo, and Yokota [Kawa80b] point out that a sequence of related images (e.g., in an
animation application) can be stored compactly as a sequence of quadtrees such that
the i'11 element is the result of exclusive oring the first i images (see Exercise l. 7).

Unfortunately the term quadtree has taken on more than one meaning. The
region quadtree, as described earlier, is a partition of space into a set of squares whose
sides are all a power of two long. This formulation is due to Klinger [Klin71] and
Klinger and Dyer, who used the term Q-tree [Klin76], whereas Hunter [Hunt78] was
the first to use the term quadtree in such a context. Actually a more precise term
would be quadtrie, as it is really a trie structure [Fred60] in two dimensions.4 A simi
lar partition of space into rectangular quadrants, also termed a quadtree, was used by
Finkel and Bentley [Fink74]. It is an adaptation of the binary search tree [Knut73b] to
two dimensions (which can be easily extended to an arbitrary number of dimensions).
It is primarily used to represent multidimensional point data, and we shall refer to it as
a point quadtree where confusion with a region quadtree is possible.

As an example of a point quadtree, consider Figure 1.6, which is built for the
sequence Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami5

3 The Gray code is motivated by a desire to reduce errors in transitions between successive gray level
values. Its one bit difference guarantee is achieved by the following encoding. Consider the binary
representation of the integers from 0 to 2111

- I, This representation can be obtained by constructing a binary
tree, say T. of height m where each left branch is labeled 0 while each right branch is labeled I. Each leaf
node, say P. is given the label formed by concatenating the labels of the branches taken by the path from the
root to P. Enumerating the leaf nodes from left to right yields the binary integers 0 to 2111

- I. The Gray
codes of the integers are obtained by constructing a new binary tree, say T', such that the labels of some of
the branches in T' are the reverse of what they were in T. The algorithm is as follows. Initially. T' is a copy
ofT. Next, traverse Tin preorder (i.e .. visit the root node, followed by the left and right subtrees). For each
branch in T labeled I. exchange the labels of the two descendant branches of its corresponding branch in T'.

No action is taken for descendants of branches in T labeled 0. Enumerating the leaf nodes in r' from left to
right yields the Gray codes of the integers 0 to 2111

- I. For example. for 8 gray levels (i.e .. m = 3). we have
OOO.OOI,Oll.OIO.IIO.lll.IOI.IOO,
4 In a one-dimensional trie structure. each data item or key is treated as a sequence of characters where each
character has M possible values. A node at depth i in the trie represents an M-way branch depending on the
i

111
character. The data are stored in the leaf nodes, and the shape of the trie is independent of the order in

which the data are processed. Such a structure is also known as a digital tree [Knut73b],
5 The correspondence between coordinate values and city names is not geographically correct. This liberty
has been taken so that the ~ame example can be used throughout the text to illustrate a variety of concepts.

APPENDIX B

Microsoft Corp. Exhibit 1005

1.2 OVERVIEW OF OUADTREES AND OCTREES II 9

(0,100) (100,100)

(60, 75)
TORONTO

(80,65)
BUFFALO

(5,45) f
y

DENVER (35, 40)
CHICAGO

(25,35)
OMAHA

(85,15)

(50,10) ATLANTA

MOBILE

!90 51 L
MIAMIJ

(0,0) (100,0)

x---

CHICAGO

~
DENVER TORONTO OMAHA MOBILE

~ ~ ~!
BUFFALO ATLANTA MIAMI

~ ~~
Figure 1.6 A point quadtree and the records it represents

in the order in which they are listed here. 6 Its shape is highly dependent on the order
in which the points are added to it. Of course, trie-based point representations also
exist (see Sections 2.6.1 and 2.6.2).

Exercises
1.1. The region quadtree is an alternative to an image representation that is based on the use

of an array or even a list. Each of these image representations may be biased in favor of
the computation of a particular adjacency relation. Discuss these biases for the array, list,
and quadtree representations.

1.2. Given the array representation of a binary image, write an algorithm to construct the
corresponding region quadtree.

6 Refer to Figure 2,5 to see how the point quadtree is constructed in an incremental fashion for Chicago,
Mobile, Toronto, and Buffalo.

APPENDIX B

Microsoft Corp. Exhibit 1005

10 II 1 INTRODUCTION

1.3. Given an image represented by a region quadtree with 8 black and w white nodes, how
many additional nodes are necessary for the nonleaf nodes?

1.4. Given an image represented by a region octree with 8 black and w white nodes, how
many additional nodes are necessary for the nonleaf nodes?

1.5. Suppose that an octree is used to represent a collection of disjoint spheres. What would
you use as a leaf criterion?

1.6. The quadtree can be generalized to represent data in arbitrary dimensions. As we saw,
the octree is its three-dimensional analog. The renowned artist Escher [Coxe86] is noted
for etchings of unusual interpretations of geometric objects such as staircases. How
would you represent one of Escher's staircases?

1.7. Let E8 denote an exclusive or operation. Given a sequence of related images,
<P11 , P11 _ 1, • • ·, P0>, define another sequence <Q11 , Q11 _ 1, • • • ,Q0> such that Q0 =Po and
Q; = P; E8 Q;_ 1 fori > 0. Show that when the sequences P and Q are represented as quad
trees, replacing sequence P by sequence Q results in fewer nodes.

1.8. Prove that in Exercise 1.7 the sequence P can be reconstructed from the sequence Q. In
particular, given Q; and Q;_ 1, determine P;.

1.9. Write an algorithm to construct the Gray codes of the integers 0 to 2111 -1.
1.10. Find a polynomial-time algorithm to decompose a region optimally so that its quadtree

representation uses a minimum amount of space (i.e., a minimum number of nodes). In
this case, you can assume that the decomposition lines can be placed in arbitrary posi
tions so that the space requirement is reduced. In other words, the decomposition lines
need not split the space into four squares of equal size. Thus the decomposition is similar

to that induced by a point quadtree.

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES

The origin of the principle of recursive decomposition, upon which all quadtrees are
based, is difficult to ascertain. Below, to give some indication of the uses of the
region quadtree, some of its applications to geometric data are traced briefly. Most
likely it was first seen as a way of aggregating blocks of zeros in sparse matrices.
Indeed Hoare [Hoar72] attributes a one-level decomposition of a matrix into square
blocks to Dijkstra. Morton [Mort66] used it as a means of indexing into a geographic
database (i.e., it acts as a spatial index).

Warnock, in a pair of reports that serve as landmarks in computer graphics
[Warn68, Warn69b], described the implementation of hidden-line and hidden-surface
elimination algorithms using a recursive decomposition of the picture area. The pic
ture area is repeatedly subdivided into rectangles that are successively smaller while
searching for areas that are sufficiently simple to be displayed. Klinger [Klin71] and
Klinger and Dyer [Klin76] applied these ideas to pattern recognition and image pro
cessing, while Hunter [Hunt78] used them for an animation application.

The SRI robot project [Nils69] used a three-level decomposition of space to
represent a map of the robot's world. Eastman [East70] observes that recursive
decomposition might be used for space planning in an architectural context and
presents a simplified version of the SRI robot representation. A quadtree-like represen
tation in the form of production rules called OF-expressions (denoting 'depth-first') is
discussed by Kawaguchi and Endo [Kawa80a] and Kawaguchi, Endo, and Yokota

APPENDIX B

Microsoft Corp. Exhibit 1005

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES II 11

[Kawa80b] (see also Section 1.5). Tucker [Tuck84a] uses quadtree refinement as a
control strategy for an expert vision system.

The three-dimensional variant of the region quadtree-the octree-was
developed independently by a number of researchers. Hunter [Hunt78] mentioned it
as a natural extension of the quad tree. Reddy and Rubin [Redd78] proposed the
octree as one of three representations for solid objects. The second is a three
dimensional generalization of the point quad tree of Finkel and Bentley [Fink7 4]-that
is, a decomposition into rectangular parallelepipeds (as opposed to cubes) with planes
perpendicular to the x, y, and z axes. The third breaks the object into rectangular
parallelepipeds that are not necessarily aligned with an axis. The parallelepipeds are
of arbitrary sizes and orientations. Each parallelepiped is recursively subdivided into
parallelepipeds in the coordinate space of the enclosing parallelepiped. Reddy and
Rubin prefer the third approach for its ease of display.

Situated somewhere between the second and third approaches of Reddy and
Rubin is the method of Brooks and Lozano-Perez [Broo83] (see also [Loza81]), who
use a recursive decomposition of space into an arbitrary number of rectangular paral
lelepipeds, with planes perpendicular to the x, y, and z axes, to model space in solving
the findpath or piano movers problem [Schw88] in robotics. This problem arises
when planning the motion of a robot in an environment containing known obstacles
and the desired solution is a collision-free path obtained by use of a search. Faverjon
[Fave84] discusses an approach to this problem that uses an octree, as do Samet and
Tamminen [Same85g] and Fujimura and Samet [Fuji89].

Jackins and Tanimoto [Jack80] adapted Hunter and Steiglitz's quadtree transla
tion algorithm [Hunt78, Hunt79b] to objects represented by octrees. Meagher
[Meag82a] developed numerous algorithms for performing solid modeling operations
in an environment where the octree is the underlying representation. Yau and Srihari
[Yau83] extended the octree to arbitrary dimensions in the process of developing
algorithms to handle medical images.

Both quadtrees and octrees are frequently used in the construction of meshes for
finite element analysis. The use of recursive decomposition for meshes was initially
suggested by Rheinboldt and Mesztenyi [Rhei80]. Yerry and Shephard [Yerr83]
adapted the quadtree and octree to generate meshes automatically for three
dimensional solids represented by a superquadric surface-based modeler. This has
been extended by Kela, Voelcker, and Goldak [Kela84b] (see also [Kela86]) to mesh
boundary regions directly, rather than through discrete approximations, and to facili
tate incremental adaptive analysis by exploiting the spatial index nature of the quad
tree and octree.

Parallel to the development of the quadtree and octree data structures, there has
been related work by researchers in the field of image understanding. Kelly [Kell71]
introduced the concept of a plan, which is a small picture whose pixels represent
gray-scale averages over 8x8 blocks of a larger picture. Needless effort in edge detec
tion is avoided by first determining edges in the plan and then using these edges to
search selectively for edges in the larger picture. Generalizations of this idea
motivated the development of multiresolution image representations-for example,

APPENDIX B

Microsoft Corp. Exhibit 1005

12 II 1 INTRODUCTION

0

E8

Figure 1. 7 Structure of a pyramid having three levels

the recognition cone of Uhr [Uhr72], the preprocessing cone of Riseman and Arbib
[Rise77], and the pyramid of Tanimoto and Pavlidis [Tani75]. Of these representa
tions, the pyramid is the closest relative of the region quadtree.

Given a 211 x 211 image array, say A(n), a pyramid is a sequence of arrays {A(i)}
such that A(i -1) is a version of A(i) at half the scale of A(i). A(O) is a single pixel. Fig
ure 1.7 shows the structure of a pyramid having three levels. It should be clear that a
pyramid can also be defined in a more general way by permitting finer scales of reso
lution than the power of two scale.

At times, it is more convenient to define a pyramid in the form of a tree. Again,
assuming a 211 x 211 image, a recursive decomposition into quadrants is performed, just
as in quadtree construction, except that we keep subdividing until we reach the indi
vidual pixels. The leaf nodes of the resulting tree represent the pixels, while the nodes
immediately above the leaf nodes correspond to the array A(n -1), which is of size
211

-
1 x 211

-
1

• The nonleaf nodes are assigned a value that is a function of the nodes
below them (i.e., their sons) such as the average gray level. Thus we see that a
pyramid is a multiresolution representation, whereas the region quadtree is a variable

I 2 3 4 5 6 7 8

9 10 II 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 1.8 Example pyramid A(3)

A B c D

E F G H

I J K L

M N 0 p

Figure 1.9 A(2) corresponding to Figure 1.8

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

12 II 1 INTRODUCTION

C]

EB

E
Figure 1. 7 Structure of a pyramid having three levels

the recognition cone of Uhr [Uhr72], the preprocessing cone of Riseman and Arbib

[Rise77], and the pyramid of Tanimoto and Pavlidis [Tani75]. Of these representa-

tions, the pyramid is the closest relative of the region quadtree.

Given a 2" X 2” image array, say A(n), a pyramid is a sequence of arrays {A(i)}

such thatA(i—l) is a version 0fA(i) at half the scale 0fA(i). A(0) is a single pixel. Fig-

ure 1.7 shows the structure of a pyramid having three levels. It should be clear that a

pyramid can also be defined in a more general way by permitting finer scales of reso-

lution than the power of two scale.

At times, it is more convenient to define a pyramid in the form of a tree. Again,

assuming a 2" X 2" image, a recursive decomposition into quadrants is performed, just

as in quadtree construction, except that we keep subdividing until we reach the indi—

vidual pixels. The leaf nodes of the resulting tree represent the pixels, while the nodes

immediately above the leaf nodes correspond to the array A(n—l), which is of size

2’“1 X 2"‘1. The nonleaf nodes are assigned a value that is a function of the nodes

below them (i.e., their sons) such as the average gray level. Thus we see that a

pyramid is a multiresolution representation, whereas the region quadtree is a variable

nan
mum

nmmmanaa
aaaaamma

aEEEEEEEEE Bi
mmmnana
EEEEEEE
arena

62

Figure 1.8 Example pyramid A(3)

Figure 1.9 A(2) corresponding to Figure 1.8

Microsoft Corp. Exhibit 1005

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES II 13

I 2 3 4 5 6 7 8

9 10 II 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 1. 10 The overlapping blocks in which pixel 28
participates

resolution representation. Another analogy is that the pyramid is a complete quadtree
[Knut73a].

The above definition of a pyramid is based on nonoverlapping 2 x 2 blocks of
pixels. An alternative definition, termed an overlapping pyramid, uses overlapping
blocks of pixels. One of the simplest schemes makes use of 4 x 4 blocks that overlap
by 50% in both the horizontal and vertical directions [Burt81]. For example, Figure
1.8 is a 23 x 23 array, say A(3), whose pixels are labeled 1-64. Figure 1.9 is A(2)
corresponding to Figure 1.8 with elements labeled A-P. The 4 x 4 neighborhood
corresponding to element Fin Figure 1.9 consists of pixels 10--13, 18-21, 26-29, and
34-37. This method implies that each block at a given level participates in four
blocks at the immediately higher level. Thus the containment relations between
blocks no longer form a tree. For example, pixel28 participates in blocks F, G, J, and K

in the next higher level (see Figure 1.10 where the four neighborhoods corresponding
to F, G, J, and K are drawn as squares).

To avoid treating border cases differently, each level in the overlapped pyramid
is assumed to be cyclically closed (i.e., the top row at each level is adjacent to the bot
tom row and similarly for the columns at the extreme left and right of each level).
Once again we say that the value of a node is the average of the values of the nodes in
its block on the immediately lower level. The overlapped pyramid may be compared
with the Quadtree Medial Axis Transform (see Section 9.3.1 of [Same90b]) in the
sense that both may result in nondisjoint decompositions of space.

Pyramids have been applied to the problems of feature detection and extraction
since they can be used to limit the scope of the search. Once a piece of information of
interest is found at a coarse level, the finer resolution levels can be searched. This
approach was followed by Davis and Roussopoulos [Davi80] in approximate pattern
matching. Pyramids can also be used for encoding information about edges, lines, and
curves in an image [Shne81c, Krop86]. One note of caution: the reduction of resolu
tion has an effect on the visual appearance of edges and small objects [Tani76]. In
particular, at a coarser level of resolution, edges tend to get smeared, and region
separation may disappear. Pyramids have also been used as the starting point for a
'split-and-merge' segmentation algorithm [Piet82].

Quadtree-like decompositions are useful as space-ordering methods. The pur
pose is to optimize the storage and processing sequences for two-dimensional data by
mapping them into one dimension (i.e., linearizing them). This mapping should pre-

APPENDIX B

Microsoft Corp. Exhibit 1005

14 II 1 INTRODUCTION

a b

c d

It-~ ~ +
'+ I• ~ t
~r+ t!" ...

e

Figure 1. 11 The result of applying a number of different
space-ordering methods to an 8 x 8 image whose first ele
ment is in the upper left corner of the image: {a) row order,
(b) row-prime order, (c) Morton order, (d) Peano-Hilbert
order, {e) Cantor-diagonal order, (f) spiral order

serve the spatial locality of the original two-dimensional image in one dimension. The
result of the mapping is also known as a space-filling curve [Gold81, Witt83] because
it passes through every point in the image.

Goodchild and Grandfield [Good83] discuss a number of space-ordering
methods, some of which are illustrated in Figure 1.11. Each has different characteris
tics. The row (Figure l.lla), also known as raster-scan, and row-prime orders (Figure
l.llb) are similar in the same way as are the Morton [Mort66, Pean90] (Figure l.llc)
and the Peano-Hilbert [Hilb91] (Figure l.ll d) orders. The primary difference is that
in both the row-prime and Peano-Hilbert orders every element is a 4-adjacent neigh
bor of the previous element in the sequence, and thus they have a slightly higher
degree of locality than the row and Morton orders, respectively. Both the Morton and
Peano-Hilbert orders exhaust a quadrant or subquadrant of a square image before exit
ing it. They are both related to quadtrees; however, as we saw above, the Morton
order does not traverse the image in a spatially contiguous manner (the result has the
shape of the letter 'N' or 'z' and is also known as N order [Whit82] and z order
[Oren84]).

For both the Morton and Peano-Hilbert orders, there is no need to know the
maximum values of the coordinates. The Morton order is symmetric, while the
Peano-Hilbert order is not. One advantage of the Morton order is that the position of
each element in the ordering (termed its key) can be determined by interleaving the

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

14 II 1 INTRODUCTION

 unuacaua

annauarn L

Figure 1.11 The result of applying a number of different

space—ordering methods to an 8 x 8 image whose first ele—

ment is in the upper left corner of the image: (a) row order,

(b) row-prime order, (0) Morton order, (d) Peano-Hilbert

order, (e) Cantor—diagonal order, (f) spiral order

serve the spatial locality of the original two-dimensional image in one dimension. The

result of the mapping is also known as a space-filling curve [Gold81, Witt83] because

it passes through every point in the image.

Goodchild and Grandfield [Good83] discuss a number of space-ordering

methods, some of which are illustrated in Figure 1.11. Each has different characteris-

tics. The row (Figure 1.11a), also known as raster-scan, and row-prime orders (Figure

1.11b) are similar in the same way as are the Morton [Mort66, Pean90] (Figure 1.11c)

and the Peano-Hilbert [Hilb91] (Figure 1.11d) orders. The primary difference is that

in both the row-prime and Peano-Hilbert orders every element is a 4-adjacent neigh-

bor of the previous element in the sequence, and thus they have a slightly higher

degree of locality than the row and Morton orders, respectively. Both the Morton and

Peano-Hilbert orders exhaust a quadrant or subquadrant of a square image before exit-

ing it. They are both related to quadtrees; however, as we saw above, the Morton

order does not traverse the image in a spatially contiguous manner (the result has the

Shape of the letter ‘N’ or ‘Z’ and is also known as N order [Whit82] and Z order

[Oren84]),

. For both the Morton and Peano-Hilbert orders, there is no need to know the
maxm‘um values of the coordinates. The Morton order is symmetric, while the

Pfiano'Hilbert order is not. One advantage of the Morton order is that the position of
eaCh Element in the ordering (termed its key) can be determined by interleaving the

Microsoft Corp. Exhibit 1005

1.3 HISTORY OF THE USE OF OUADTREES AND OCTREES II 15

bits of the x and y coordinates of the element; this is not easy for the Peano-Hilben
order. Another advantage of the Morton order is that the recursion necessary for its
generation is quite easy to specify.

Other orders are the Cantor-diagonal order (Figure 1.11 e) and the spiral order
(Figure 1.11 f). The Cantor-diagonal order proceeds outward from the origin and visits
the elements in an order similar to row-prime with the difference that elements are
visited in order of their increasing 'Manhattan' (or 'city block') distance.? Thus it is
good for ordering a space that is unbounded in the two directions emanating from the
origin which has been relocated to the center of the image. On the other hand, the
spiral order is attractive when ordering a space that is unbounded in the four directions
emanating from the origin.

The most interesting orders, as far as we are concerned, are the Morton and
Peano-Hilbert orders since they can also be used to order a space that has been aggre
gated into squares. Of these two orderings, the Morton order is by far the more fre
quently used as a result of the simplicity of the conversion process between the key
and its corresponding element in the multidimensional space. In this book we are pri
marily interested in Morton orderings. (For further discussion of some of the proper
ties of these two orderings, see [Patr68, Butz71, Alex79, Alex80, Laur85].)

Exercises
1.11. Write an algorithm to extract the x andy coordinates from a Peano-Hilbert order key.
1.12. Write an algorithm to construct the Peano-Hilbert key for a given point (x,y). Try to

make it optimal.
1.13. Suppose that you are given a 2" x 2" array of points such that the horizontal and vertical

distances between 4-adjacent points are 1. What is the average distance between succes
sive points when the points are ordered according to the orders illustrated in Figure 1.11?
What about a random order?

1.14. Suppose that you are given a 2" x 2" image. Assume that the image is stored on disk in
pages of size 2m x 2m where n is much larger than m. What is the average cost of retriev
ing a pixel and its 4-adjacent neighbors when the image is ordered according to the orders
illustrated in Figure 1.11?

1.15. The traveling salesman problem [Lawl85] is one where a set of points is given and it is
desired to find the path of minimum distance such that each point is visited only once.
This is an NP-complete problem [Gare79] and thus there is a considerable amount of work
in formulating approximate solutions to it [Bent82]. For example, consider the following
approximate solution. Assume that the points are uniformly distributed in the unit
square. Let d be the expected Euclidean distance between two independent points. Now,
sort the points using the row order and the Morton order. Laurini [Laur85] simulated the
average Euclidean distance between successive points in these orders and found it to be
d/2 for the row order and d/3 for the Morton order. Can you derive these averages
analytically? What are the average values for the other orders illustrated in Figure 1.11?
What about a random order?

7 The Manhattan distance between points (x 1, y 1) and (x 2 , y 2) is 1 x 1 - x 2 1 + 1 y 1 - Y2 1 (for more details, see
Section 9.1 of [Same90b]).

APPENDIX B

Microsoft Corp. Exhibit 1005

16 II 1 INTRODUCTION

1.16. Suppose that the traveling salesman problem is solved using a traversal of the points in
Morton order as discussed in Exercise 1.15. In particular, assume that the set of points is
decomposed in such a way that each square block contains just one point. This yields a
point representation that is analogous to the region quadtree (termed a PR quadtree and
discussed in Section 2.6.2). How close does such a solution come to optimality?

1.4 SPACE DECOMPOSITION METHODS

In general, any planar decomposition used as a basis for an Image representation
should possess the following two properties:

1. The partition should be an infinitely repetitive pattern so that it can be used
for images of any size.

2. The partition should be infinitely decomposable into increasingly finer pat
terns (i.e., higher resolution).

In this section, the discussion is restricted to two-dimensional data. Thus we are
dealing with planar space decompositions. Space decompositions can be classified
into two categories, depending on the nature of the pattern. The pattern can consist of
polygonal shapes or nonpolygonal shapes. The polygonal shapes are generally com
putationally simpler since their sides can be expressed in terms of linear relations
(e.g., equations of lines). They are good for approximating the interior of a region.
The nonpolygonal shapes are more flexible since they provide good approximations,
in terms of measures, of the boundaries (e.g., perimeter) of regions as well as their
interiors (e.g., area). 8

Moreover, the normals to the boundaries of nonpolygonal shapes are not re
stricted to a fixed set of directions. For example, in the case of rectangular tiles, there
is a 90 degree discontinuity between the normals to boundaries of adjacent tiles. This
lack of continuity is a drawback in applications in fields such as computer graphics
where such tasks as shading make use of the directions of the surface. However,
working with nonpolygonal shapes generally requires use of floating point arithmetic,
and hence it is usually more complex.

The remainder of this section expands on a number of polygonal decomposi
tions and compares them. It also contains a brief discussion of one nonpolygonal
decomposition that consists of a collection of sector-like objects whose arcs are not
necessarily part of a circle. This method is based on polar coordinates where the arc
joining two distinct points is formed by linear interpolation. The term sector tree is
used to describe it. This discussion is of an advanced nature and can be skipped on an
initial reading.

x Recall the statement in Section 1.2 that hierarchical data structures are often differentiated on the basis of
whether they specify the boundaries of regions or organize their interiors.

APPENDIX B

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 17

1.4.1 Polygonal Tilings

Bell, Diaz, Holroyd, and Jackson [Bell83] discuss a number of polygonal tilings of the
plane (i.e., tessellations) that satisfy property I. Figure 1.12 illustrates some of these
tessellations. They also present a taxonomy of criteria to distinguish between the vari
ous tilings. The tilings, consisting of polygonal tiles, are described by use of a nota
tion based on the degree of each vertex as the edges (i.e., sides) of the 'atomic' tile are
visited in order, forming a cycle. For example, the tiling described by [4.82] (Figure
1.12c) has the shape of a triangle where the first vertex has degree four while the
remaining two vertices have degree eight apiece.

A tiling is said to be regular if the atomic tiles are composed of regular
polygons (i.e., all sides are of equal length as are the interior angles). A molecular tile
is an aggregation of atomic tiles to form a hierarchy. It is not necessarily constrained
to have the same shape as the atomic tile. When a tile at level k (for all k >0) has the
same shape as a tile at level 0 (i.e., it is a scaled image of a tile at level 0), then the til
ing is said to be similar.

Bell et al. focus on the isohedral tilings where a tiling is said to be isohedral if
all the tiles are equivalent under the symmetry group of the tiling. A more intuitive

a b

c d

e

Figure 1.12 Sample tessellations: (a) [441 square;
(b) [631 equilateral triangle; (c) [4.821 isoceles triangle;
(d) {4.6.121 30-60 right triangle; (e) [3 61 hexagon

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

1.4 SPACE DECOMPOSITION METHODS ll 17

1.4.1 Polygonal Tilings

Bell, Diaz, Holroyd, and Jackson [Be1183] discuss a number of polygonal tilings of the

plane (i.e., tessellations) that satisfy property 1. Figure 1.12 illustrates some of these

tessellations. They also present a taxonomy of criteria to distinguish between the vari-

ous tilings. The tilings, consisting of polygonal tiles, are described by use of a nota-

tion based on the degree of each vertex as the edges (i.e., sides) of the ‘atomic’ tile are

visited in order, forming a cycle. For example, the tiling described by [4.82] (Figure

1.12c) has the shape of a triangle where the first vertex has degree four while the

remaining two vertices have degree eight apiece.

A tiling is said to be regular if the atomic tiles are composed of regular

polygons (i.e., all sides are of equal length as are the interior angles). A molecular tile

is an aggregation of atomic tiles to form a hierarchy. It is not necessarily constrained

to have the same shape as the atomic tile. When a tile at level k (for all k >0) has the

same shape as a tile at level 0 (i.e., it is a scaled image of a tile at level 0), then the til-

ing is said to be similar.

Bell et al. focus on the isohedral tilings where a tiling is said to be isohedral if

all the tiles are equivalent under the symmetry group of the tiling. A more intuitive

6

Figure 1.12 Sample tessellations.‘ (a) [4"] square;

(b) [63] equilateral triangle; (0) [4.82] isoceles triangle;

(d) [4.6. 12] 30—60 right triangle; (e) [36] hexagon

Microsoft Corp. Exhibit 1005

18 II 1 INTRODUCTION

a b

Figure 1.13 Examples of (a) isohedral and
(b) nonisohedral tilings

way to conceptualize this definition is to assume the position of an observer who
stands in the center of a tile having a given orientation and scans the surroundings. If
the view is independent of the tile, the tiling is isohedral. For example, consider the
two tilings in Figure 1.13 consisting of triangles (Figure 1.13a) and trapezoids (Figure
1.13b). The triangles are isohedral, whereas the trapezoids are not, as can be seen by
the view from tiles A and B.

In the case of the trapezoidal tiling, the viewer from A is surrounded by an
infinite number of concentric hexagons, whereas this is not the case for B. In other
words, the trapezoidal tiling is not periodic. Also note that all of the tiles in Figure
1.13a are described by [63], while those in Figure 1.13b are either [32 .4 2], [32 .62

], or
[3.4.62] (i.e., tiles labeled 1, 2, and 3, respectively, in Figure 1.13b). When the
isohedral tilings are classified by the action of their symmetry group, there are 81 dif
ferent types [Grtin77, Grtin87]. When they are classified by their adjacency structure,
as done here, there are 11 types.

The most relevant criterion to the discussion is the distinction between limited
and unlimited hierarchies of tilings. A limited tiling is not similar. A tiling that
satisfies property 2 is said to be unlimited. Equivalently, in a limited tiling, no change
of scale lower than the limit tiling can be made without great difficulty. An alternative
characterization of an unlimited tiling is that each edge of a tile lies on an infinite
straight line composed entirely of edges. Interestingly the hexagonal tiling [3 6] is lim
ited. Bell et al. claim that only four tilings are unlimited. These are the tilings given
in Figure 1.12a-d. Of these, [44

], consisting of square atomic tiles (Figure 1.12a), and
[63], consisting of equilateral triangle atomic tiles (Figure 1.12b), are well-known reg
ular tessellations [Ahuj83]. For these two tilings we consider only the molecular tiles
given in Figures 1.14a and 1.14b.

The tilings [44
] and [63

] can generate an infinite number of different molecular
tiles where each molecular tile at the first level consists of n 2 atomic tiles (n > 1).
The remaining nonregular unlimited triangular tilings, [4.82

] (Figure 1.12c) and
[4.6.12] (Figure 1.12d), are less well understood. One way of generating [4.82] and
[4.6.12] is to join the centroids of the tiles of [44] and [63], respectively, to both their
vertices and midpoints of their edges. Each of the tilings [4.82

] and [4.6.12] has two

APPENDIX B

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 19

I
~-!·-+-· ----

: I

: !-1 -t--t----+----t
: I

a b

c d

e

Figure 1.14 Examples illustrating unlimited tilings: (a) [4 4
}

hierarchy, (b) [6 3] hierarchy, (c) ordinary [4.82
] hierarchy,

(d) ordinary [4.6.12] hierarchy, (e) rotation [4.82] hierarchy,
(f) reflection [4.6. 12] hierarchy

types of hierarchy. [4.82] has an ordinary (Figure 1.14c) and a rotation hierarchy
(Figure 1.14e) requiring a rotation of 135 degrees between levels. [4.6.12] has an
ordinary (Figure 1.14d) and a reflection hierarchy (Figure 1.14t), which requires a
reflection of the basic tile between levels.

The distinction between the two types of hierarchies for [4.82
] and [4.6.12] is

necessary because the tiling is not similar without a rotation or a reflection when the
hierarchy is not ordinary. This can be seen by observing the use of dots in Figure 1.14
to delimit the atomic tiles in the first molecular tile. Similarly broken lines are used to
delimit the components of tiles at the second level (assuming atomic tiles are at level
0). For the ordinary [4.82] and [4.6.12] hierarchies, each molecular tile at the first
level consists of n 2 (n > 1) atomic tiles. In the reflection hierarchy of [4.6.12], each
molecular tile at the first level consists of 3 · n 2 (n > 1) atomic tiles, while for the
rotation hierarchy of [4.82], 2 . n 2 (n > 1) atomic tiles comprise a molecular tile at the
first level.

To represent data in the Euclidean plane, any of the unlimited tilings could have
been chosen. For a regular decomposition, the tilings [4.82

] and [4.6.12] are ruled out.
Comparing 'square' [44] and 'triangular' [63] quadtrees, we find that they differ in
terms of adjacency and orientation. Let us say that two tiles are neighbors if they are

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

14 SPACEDECOMPOSWKNJMETHODS H 19

 BIKINI
IRENE!
BIKINI
“I!!!

Figure 1.14 Examples illustrating unlimited tilings: (a) [4“]
hierarchy, (b) [63] hierarchy, (c) ordinary [4.82] hierarchy,
(d) ordinary [4.6.12] hierarchy, (e) rotation [4.82] hierarchy,
(f) reflection [4.6.12] hierarchy

types of hierarchy. [4.82] has an ordinary (Figure 1.14c) and a rotation hierarchy

(Figure 1.14e) requiring a rotation of 135 degrees between levels. [4.6.12] has an

ordinary (Figure 1.14d) and a reflection hierarchy (Figure 1.140, which requires a
reflection of the basic tile between levels.

The distinction between the two types of hierarchies for [4.82] and [4.6.12] is
necessary because the tiling is not similar without a rotation or a reflection when the

hierarchy is not ordinary. This can be seen by observing the use of dots in Figure 1.14

to delimit the atomic tiles in the first molecular tile. Similarly broken lines are used to

delimit the components of tiles at the second level (assuming atomic tiles are at level

0). For the ordinary [4.82] and [4.6.12] hierarchies, each molecular tile at the first
level consists of n2 (n > 1) atomic tiles. In the reflection hierarchy of [4.6.12], each

molecular tile at the first level consists of 3 ~212 (n > 1) atomic tiles, while for the

rotation hierarchy of [4.82], 2 - n2 (n > 1) atomic tiles comprise a molecular tile at the
first level.

To represent data in the Euclidean plane, any of the unlimited tilings could have

been chosen. For a regular decomposition, the tilings [4.82] and [4.6.12] are ruled out.
Comparing ‘square’ [44] and ‘triangular’ [63] quadtrees, we find that they differ in

terms of adjacency and orientation. Let us say that two tiles are neighbors if they are

Microsoft Corp. Exhibit 1005

20 II 1 INTRODUCTION

adjacent either along an edge or at a vertex. A tiling is uniformly adjacent if the dis
tances between the centroid of one tile and the centroids of all its neighbors are the
same. The adjacency number of a tiling is the number of different intercentroid dis
tances between any one tile and its neighbors. In the case of [44

], there are only two
adjacency distances, whereas for [63

] there are three adjacency distances.
A tiling is said to have uniform orientation if all tiles with the same orientation

can be mapped into each other by translations of the plane that do not involve rotation
or reflection. Tiling [44

] displays uniform orientation, while [63
] does not. Under the

assumption that uniform orientation and a minimal adjacency distance is preferable,
we say that [44

] is more useful than [63
]. It is also very easy to implement. Neverthe

less, [63] ·has its uses. For example, Yamaguchi, Kunii, Fujimura, and Toriya
[Yama84] use a triangular quadtree to generate an isometric view from an octree
representation of an object (see Section 7 .1.4 of [Same90b]).

Of the limited tilings, many types of hierarchies may be generated [Bell83];
however, in general, they cannot be decomposed beyond the atomic tiling without
changing the basic tile shape. This is a serious deficiency of the hexagonal tessella
tion [36

] (Figure 1.12e) since the atomic hexagon can be decomposed only into tri
angles. Nevertheless the hexagonal tessellation is of considerable interest. It is regu
lar, has a uniform orientation, and, most important, displays a uniform adjacency (i.e.,
each neighbor of a tile is at the same distance from it).

There are a number of different hexagonal hierarchies distinguished by classify
ing the shape of the first-level molecular tile on the basis of the number of hexagons
that it contains. Three of these tiling hierarchies are given in Figure 1.15 and are
called n-shapes where n denotes the number of atomic tiles in the first-level molecular
tile. Of course, these n-shapes are not unique.

a b

c

Figure 1. 15 Three different hexagonal tiling hierarchies:
(a) 4-shape, (b) 7-shape, (c) 9-shape

APPENDIX B

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 21

The 4-shape and the 9-shape have an unusual adjacency property in the sense
that no matter how large the molecular tile becomes, contact with two of the tiles (i.e.,
the one above and the one below) is along only one edge of a hexagonal atomic tile,
while contact with the remaining four molecular tiles is along nearly one-quarter of
the perimeter of the corresponding molecular tile. The hexagonal pattern of the 4-
shape and 9-shape molecular tiles has the shape of a rhombus. In contrast, a 7-shape
molecular tile has a uniform contact with its six neighboring molecular tiles.

The type of quadtree used often depends on the grid formed by the image sam
pling process. Square quadtrees are appropriate for square grids and triangular quad
trees for triangular grids. In the case of a hexagonal grid [Burt80], the 7-shape hierar
chy is frequently used since the shape of its molecular tile is more like a hexagon. It
is usually described as rosette-like (i.e., a septree). Note that septrees have jagged
edges as they are merged to form larger units (e.g., Figure 1.15b). The septree is used
by Gibson and Lucas [Gibs82] (who call it a generalized balanced ternary or GBT for
short) in the development of algorithms analogous to those existing for quadtrees.

Although the septree can be built up to yield large septrees, the smallest resolu
tion in the septree must be decided upon in advance since its primitive components
(i.e., hexagons) cannot later be decomposed into septrees. Therefore the septree
yields only a partial hierarchical decomposition in the sense that the components can
always be merged into larger units, but they cannot always be broken down. For
region data, a pixel is generally an indivisible unit, and thus unlimited decomposition
is not absolutely necessary. However, in the case of other data types such as points
(see Chapter 2) and lines (see Chapter 4), we will see that the decomposition rules of
some representations require that two entities be separated, which may lead to a level
of decomposition not known in advance (e.g., a decomposition rule that restricts each
square to contain at most one point). In this book the discussion is limited to square
quadtrees and their variants.

When the data are spherical, a number of researchers have proposed the use of a
representation based on an icosahedron (a 20-faced polyhedron whose faces are regu
lar triangles) [Dutt84, Feke84]. The icosahedron is attractive because, in terms of the
number of faces, it is the largest possible regular polyhedron. Each of the triangular
faces can be further decomposed in a recursive manner into n 2 (n > 1) spherical tri
angles (the [63] tiling).

Fekete and Davis [Feke84] let n = 2, which means that at each level of decom
position, three new vertices are generated by halving each side of the triangle; con
necting them together yields four triangles. They use the term property sphere to
describe their representation. The property sphere has been used in object recogni
tion; it is also of potential use in mapping the globe because it can enable accurate
modeling of regions around the poles. For example, see Figure 1.16, which is a prop
erty sphere representation of some spherical data. In contrast, planar quadtrees are
less attractive the farther we get from the equator due to distortions in planarity caused
by the earth's curvature. Of course, for true applicability for mapping, we need a
closer approximation to a sphere than is provided by the 20 triangles of the
icosahedron. Moreover, we want a way to distinguish between different elevations.

APPENDIX B

Microsoft Corp. Exhibit 1005

22 II 1 INTRODUCTION

a b

c

Figure 1. 16 Property sphere representation of some
spherical data: (a) data, (b) decomposition on a sphere,
(c) decomposition on a plane

Dutton [Dutt84] lets n = -13, which means that at each level of decomposition,
one new vertex is created by connecting the centroid of the triangle to its vertices.
The result is an alternating sequence of triangles so that each level is fully contained
in the level that was created two steps previously and has nine times as many triangles
as that level. Dutton uses the term triacon to describe the resulting hierarchy. As an
example, consider Figure 1.17, which illustrates four levels of a triacon decomposi
tion. The initial and odd-numbered decompositions are shown with heavy lines, and
the even-numbered decompositions are shown with broken and thin lines.

Figure 1. 17 Example of a triacon hierarchy

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

22 II 1 INTRODUCTION

AAAAA

QVVVV
C

Figure 1.16 Property sphere representation of some

spherical data: (a) data, (b) decomposition on a sphere,

(c) decomposition on a plane

Dutton [Dutt84] lets n = \/—3‘, which means that at each level of decomposition,

one new vertex is created by connecting the centroid of the triangle to its vertices.

The result is an alternating sequence of triangles so that each level is fully contained

in the level that was created two steps previously and has nine times as many triangles

as that level. Dutton uses the term triacon to describe the resulting hierarchy. As an

example, consider Figure 1.17, which illustrates four levels of a triacon decomposi-

tion. The initial and odd-numbered decompositions are shown with heavy lines, and

the even-numbered decompositions are shown with broken and thin lines.

Figure 1.17 Example of a triacon hierarchy

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 23

The icosahedron is not the only regular polyhedron that can be used to model
spherical data. Others include the tetrahedron. hexahedron, octahedron, and dodeca
hedron, which have 4, 6, 8, and 12 faces, respectively. Collectively these five
polyhedra are known as the Platonic solids [Peuq84]. The faces of the tetrahedron
and octahedron are equilateral triangles, while the faces of the hexahedron and do
decahedron are squares and regular pentagons, respectively.

The dodecahedron is not an appropriate primitive because the pentagonal faces
cannot be further decomposed into pentagons or other similar shapes. The tetrahedron
and hexahedron (the basis of the octree) have internal angles that are too small to
model a sphere properly, thereby leading to shape distortions.

Dutton [Dutt84] points out that the octahedron is attractive for modeling spheri
cal data such as the globe because it can be aligned so that the poles are at opposite
vertices and the prime meridian and the equator intersect at another vertex. In addi
tion, one subdivision line of each face is parallel to the equator. Of course, for all of
the Platonic solids, only the vertices of the solids touch the sphere; the facets of the
solids are interior to the sphere.

Other decompositions for spherical data are also possible. Tobler and Chen
lTobl86] point out the desirability of a close relationship to the commonly used sys
tem of latitude and longitude coordinates. In particular, any decomposition that is
chosen should enable the use of meridians and parallels to refer to the data. An addi
tional important goal is for the partition to be into units of equal area, which rules out
the use of equally spaced lines of latitude (of course, the lines of longitude are equally
spaced). In this case, the sphere is projected into a plane using Lambert's cylindrical
projection [Adam49], which is locally area preserving. Authalic coordinates
[Adam49], which partition the projection into rectangles of equal area, are then
derived. (For more details, see [Tobl86].)

The quadtree decomposition has the property that at each subdivision stage, the
image is subdivided into four equal-sized parts. When the original image is a square,
the result is a collection of squares, each of which has a side whose length is a power
of 2. The binary image tree (termed bintree) [Know80, Tamm84a, Same88b] is an
alternative decomposition defined in a manner analogous to the region quadtree except
that at each subdivision stage we subdivide the image into two equal-sized parts. In
two dimensions, at odd stages. we partition along the x coordinate, and at even stages,
along the y coordinate. The bintree is equivalent to the region quadtree if we replace
all leaf nodes at odd stages of subdivision by two identically colored sons.

The bintree is related to the region quadtree in the same way as the k-d tree
[Bent75b] (see Section 2.4) is related to the point quadtree [Fink74]. The difference is
that region quadtrees and bintrees are used to represent region data with fixed subdivi
sion points, while point quadtrees and k-d trees are used to represent point data where
the values of the points determine the subdivision. For example. Figure 1.18 is the
bintree representation corresponding to the image of Figure 1. 1. We assume that for
the x (y) partition, the left subtree corresponds to the west (south) half 0+ the image
and the right subtree corresponds to the east (north) half. Once again, as in Figure 1.1,
all leaf nodes are labeled with numbers, and the non leaf nodes are labeled with letters.

APPENDIX B

Microsoft Corp. Exhibit 1005

24 II 1 INTRODUCTION

A

14 16

a

3 4 8 9

b

Figure 1. 18 Bintree representation corresponding to Fig
ure 1. 1: (a) block decomposition, (b) bin tree representation
of blocks in (a)

The quadtree and bintree decompose a region into equal-sized parts. Kanatani
[Kana85] suggests using splitting rules based on the Fibonacci sequence of numbers.
The Fibonacci numbers consist of the sequence of numbers /; that satisfy the relation
/; = /; _1 + /; _2, with f 0 = 1 and f 1 = 1. We can try to devise both quad tree and bintree
splitting rules based on such a sequence. Generally for a decomposition scheme to be
useful in geometric applications, it must have pixel-sized squares (i.e., 1 x 1) as the
primitive tiles. At first glance, it appears that the Fibonacci sequence gives quite a bit
of leeway in deciding on a splitting sequence and on the sizes of the regions
corresponding to the subtrees and the primitive tiles.

One possible quadtree splitting rule is to restrict all shapes to squares with sides
whose lengths are Fibonacci numbers. Clearly not all the shapes can be squares since
we cannot aggregate these squares into larger squares that obey this rule. Another
possibility is to restrict the shapes to rectangles the length of whose sides are either
equal Fibonacci numbers or are successive Fibonacci numbers (see Exercise 1.26).
We term this condition the 2-d Fibonacci condition.

In this discussion, we have assumed splitting rules that ensure that vertical sub
division lines at the same level are colinear as well as for horizontal lines at the same
level. For example, when using a quadtree splitting rule, the vertical lines that subdi
vide the NW and sw quadrants are colinear, as well as for the horizontal lines that sub
divide the NW and NE quadrants. An alternative is to relax the colinearity restriction;
however, the sides of the shapes must still satisfy the 2-d Fibonacci condition (see
Exercise 1.27).

As can be seen in Exercises 1.26 and 1.27, neither a quadtree nor a bintree can

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

24 II 1 INTRODUCTION

SOUTH NORTH SOUTH.

ll 12

13 l4 l5 [6

Figure 1.18 Bintree representation corresponding to Fig-
ure 1.1: (a) block decomposition, (b) bintree representation

ofb/ocks in (a)

The quadtree and bintree decompose a region into equal-sized parts. Kanatani

[Kana85] suggests using splitting rules based on the Fibonacci sequence of numbers.

The Fibonacci numbers consist of the sequence of numbers)2 that satisfy the relation

)2 =fH +fi_2, with f0 = 1 and f1 = 1. We can try to devise both quadtree and bintree

splitting rules based on such a sequence. Generally for a decomposition scheme to be

useful in geometric applications, it must have pixel—sized squares (i.e., 1 x 1) as the

primitive tiles. At first glance, it appears that the Fibonacci sequence gives quite a bit

of leeway in deciding on a splitting sequence and on the sizes of the regions

corresponding to the subtrees and the primitive tiles.

‘ One possible quadtree splitting rule is to restrict all shapes to squares with sides

whose lengths are Fibonacci numbers. Clearly not all the shapes can be squares since

we cannot aggregate these squares into larger squares that obey this rule. Another

possibility is to restrict the shapes to rectangles the length of whose sides are either

equal Fibonacci numbers or are successive Fibonacci numbers (see Exercise 1.26).
We term this condition the Z-d Fibonacci condition.

In this discussion, we have assumed splitting rules that ensure that vertical sub—

division lines at the same level are colinear as well as for horizontal lines at the same

level. For example, when using a quadtree splitting rule, the vertical lines that subdi-

vide the NW and SW quadrants are colinear, as well as for the horizontal lines that sub-

divide the NW and NE quadrants. An alternative is to relax the colinearity restriction;

however, the sides of the shapes must still satisfy the 2-d Fibonacci condition (see

Exercise 1.27).

As can be seen in Exercises 1.26 and 1.27, neither a quadtree nor a bintree can

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 25

a

B

2 3

b

4 5

Figure 1.19 {a) An arbitrary space decomposition and
(b) its BSP tree. The arrows indicate the direction of the
positive halfspaces.

be used by itself as a basis for Fibonacci-based space decomposition; however, a com
bination of the two structures could be used. When the lengths of the sides of a rec
tangle are equal, the rectangle is split into four rectangles such that the lengths of the
sides satisfy the 2-d Fibonacci condition. When the lengths of the sides of a rectangle
are not equal, the rectangle is split into two rectangles with the split along a line (an
axis) parallel to the shorter (longer) of the two sides. Interestingly the dimensions of
the A-series of European paper are based on a Fibonacci sequence-that is, the ele
ments of the series are of dimension/; x fi_ 1 multiplied by an appropriate scale factor.

Another variation on the bintree idea, termed adaptive hierarchical coding
(AHC), is proposed by Cohen, Landy, and Pavel [Cohe85b]. In this case, the image is
again split into two equal-sized parts at each stage, but there is no need to alternate
between the x andy coordinates. The decision as to the coordinate on which to parti
tion depends on the image. This technique may require some work to get the optimal
partition from the point of view of a minimum number of nodes (see Exercise 1.29).

An even more general variation on the bintree is the BSP tree of Fuchs, Kedem,
and Naylor [Fuch80, Fuch83]. Its variants are used in some hidden-surface elimina
tion algorithms (see Section 7.1.5 of [Same90b]) and in some implementations of
beam tracing (see Section 7.3 of [Same90b]). It is applicable to data of arbitrary
dimension, although here it is explained in the context of two-dimensional data. At
each subdivision stage, the image is subdivided into two parts of arbitrary size. Note
that successive subdivision lines need be neither orthogonal nor parallel. Therefore
the resulting decomposition consists of arbitrarily shaped convex polygons.

The BSP tree is a binary tree. To be able to assign regions to the left and right
subtrees, we associate a direction with each subdivision line. In particular, the sub
division lines are treated as separators between two halfspaces.9 Let the line have the

d
9 A (linear) halfspace in d-space is defined by the inequality L, a; ·X; ;:: 0 on the d + l homogeneous

J=O

coordinates (x 0 = l). The half space is represented by a column vector a. In vector notation, the inequality is
written as a · x;:: 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to
note that halfspaces are volume, not boundary, elements.

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

1.4 SPACEDECOMPOSITION METHODS II 25

a b

Figure 1.19 (a) An arbitrary space decomposition and

(b) its BSP tree. The arrows indicate the direction of the

positive halfspaces.

be used by itself as a basis for Fibonacci-based space decomposition; however, a com~

bination of the two structures could be used. When the lengths of the sides of a rec~

tangle are equal, the rectangle is split into four rectangles such that the lengths of the

sides satisfy the 2-d Fibonacci condition. When the lengths of the sides of a rectangle

are not equal, the rectangle is split into two rectangles with the split along a line (an

axis) parallel to the shorter (longer) of the two sides. Interestingly the dimensions of

the A-series of European paper are based on a Fibonacci sequence—that is, the ele-

ments of the series are of dimension f,- x f,-_. multiplied by an appropriate scale factor.

Another variation on the bintree idea, termed adaptive hierarchical coding

(AHC), is proposed by Cohen, Landy, and Pavel [Cohe85b]. In this case, the image is

again split into two equal—sized parts at each stage, but there is no need to alternate

between the x and y coordinates. The decision as to the coordinate on which to parti~

tion depends on the image. This technique may require some work to get the optimal

partition from the point of view of a minimum number of nodes (see Exercise 1.29).

An even more general variation on the bintree is the BSP tree of Fuchs, Kedem,

and Naylor [Fuch80, Fuch83]. Its variants are used in some hidden-surface elimina-

tion algorithms (see Section 7.1.5 of [Same90b]) and in some implementations of

beam tracing (see Section 7.3 of [Same90b]). It is applicable to data of arbitrary

dimension, although here it is explained in the context of two-dimensional data. At

each subdivision stage, the image is subdivided into two parts of arbitrary size. Note

that successive subdivision lines need be neither orthogonal nor parallel. Therefore

the resulting decomposition consists of arbitrarily shaped convex polygons.

The BSP tree is a binary tree. To be able to assign regions to the left and right

subtrees, we associate a direction with each subdivision line. In particular, the sub-

division lines are treated as separators between two halfspaces.9 Let the line have the

d

9 A (linear) halfspace in d-space is defined by the inequality Elm-1,20 on the d +1 homogeneousI=0

coordinates (x0 = l). The halfspace is represented by a column vector a. In vector notation, the inequality is

written as a -x Z 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to

note that halfspaces are volume, not boundary, elements.

Microsoft Corp. Exhibit 1005

26 II INTRODUCTION

equation ,, . .r + h · y + c = 0. We say that the right subtree is the 'positive' side and
contains all subdivision lines formed by separators that satisfy a · x + h · y + c ~ 0.
Sintilarly we say that the left subtree is 'negative' and contains all subdivision lines

for111ed by separators that satisfy a · x + b · y + c < 0. As an example, consider Fig

ure 1.19a, which is an arbitrary space decomposition whose BSP tree is given in Figure
1.19b. Notice the use of arrows to indicate the direction of the positive halfspaces.

Exercises
1.17. Given a [63] tiling such that each side of an atomic tile has a unit length, compute the

three adjacency distances from the centroid of an atomic tile.
1.18. Repeat Exercise 1.17 for [36

] and [44
], again assuming that each side of an atomic tile has

a unit length.
1.19. Suppose that you are given an image in the form of a binary array of pixels. The result is

a square grid. How can you view this grid as a hexagonal grid?
1.20. Show how the property sphere data structure can be used to model the earth. In particu

lar, discuss how to represent landmass features, such as mountain ranges and crevices.
1.21 Suppose that you use an icosahedron to model spherical data. Initially there are 20 faces.

How many faces are there after the first level of decomposition when 11 = 2? 11 = -13?
1.22. What is the ratio of leaf nodes to nonleaf nodes in a bintree for ad-dimensional image?
1.23. What is a lower bound on the ratio of leaf nodes in a bintree to that in a quadtree for ad

dimensional image? What is an upper bound? What is the average?
1.24. Is it true that the total number of nodes in a bintree is always less than that in the

corresponding quadtree?
1.25. The Fibonacci numbers are defined by the relation /,, = /,,_ 1 + f,,_ 2 • Devise a two

dimensional analog of this relation to correspond to a splitting rule that would have to be
satisfied in a Fibonacci-based space decomposition that yields four parts. Generalize this
result to 11 dimensions.

1.26. Give a counterexample to the use of a quadtree splitting rule in a Fibonacci-based space
decomposition.

1.27. Give a counterexample to the use of a bintree splitting rule in a Fibonacci-based space
decomposition.

1.28. Suppose that you use the combination quadtree-bintree approach to a Fibonacci-based
space decomposition. Prove that any image such that the lengths of its sides satisfy the
2-d Fibonacci condition can be decomposed into subimages whose sides obey this pro
perty and with a primitive tile of size I x I.

1.29. Suppose that you use the AHC method. How many different rectangles and positions must

be examined in building such a structure for a 2" >< 2" image?

1.4.2 Nonpolygonal Tilings

In the previous section we focused on space decompositions based on polygonal tiles.

This is the prevalent method in use today. For certain applications, however, the use
of polygonal tiles can lead to problems. For example, suppose that we have a decom
position based on square tiles. In this case, as the resolution is increased, the area of
the appro, imated region approaches the true value of the area; however, this is not

APPENDIX B

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 27

true for a boundary measure such as the perimeter. To see this, consider a quadtree
approximation of an isosceles right triangle where the ratio of the approximated per
imeter to the true perimeter is 4/ (2 + -J2) (see Exercise 1.30). Other problems include
the discontinuity of the normals to the boundaries of adjacent tiles.

There are a number of ways of attempting to overcome these problems. The
hierarchical probe model of Chen l Chen85b] is an approach based on treating space
as a polar plane and recursively decomposing it into sectors. We say that each sector
consists of an origin, two sides (labeled 1 and 2 corresponding to the order in which
they are encountered when proceeding in a counterclockwise direction), and an arc.
The points at which the sides of the sector intersect (or touch) the object are called
contact points. (p,8) denotes a point in the polar plane. Let (pi, 8i) be the contact
point with the maximum value of p in direction 8i. Each sector represents a region
bounded by the points (0,0), (p 1,81), and (p2,82), where 81 =2krt/211 and
82 = 8 1 + 2rt/211 such that k and n are nonnegative integers (k < 211

). The arc between
the two nonorigin contact points (p 1, 8 1) and (p2 , 82) of a sector is approximated by
the linear parametric equations (0 ~ t ~ 1):

Note that the interpolation curves are arcs of spirals due to the linear relation between
p and 8.

The sector tree is a binary tree that represents the result of recursively subdivid
ing sectors in the polar plane into two sectors of equal angular intervals. Thus the
recursive decomposition is only with respect to 8, not p. The decomposition stops
whenever the approximation of a part of an object by a sector is deemed to be ade
quate. The computation of the stopping condition is implementation dependent. For
example, it can be the max~mum deviation in the value of p between a point on the
boundary and the corresponding point (i.e., at the same value of 8) on the approximat
ing arc. Initially the universe is the interval [0,2rt).

In the presentation, we assume that the origin of the polar plane is contained
within the object. See Exercise 1.36 for a discussion of how to represent an object
that does not contain the origin of the polar plane. The simplest case arises when the
object is convex. The result is a binary tree where each leaf node represents a sector
and contains the contact points of its corresponding arc. For example, consider the
object in Figure 1.20. The construction of its sector tree approximation is shown in

Figure 1.20 Example convex object

APPENDIX B

Microsoft Corp. Exhibit 1005

28 II INTRODUCTION

8
a b

c d

Figure 1.21 Successive sector tree approximations for the
object of Figure 1.20: (a) rr intervals, (b) rr/2 intervals, (c) rr/4
intervals, (d) rr/8 intervals

Figures 1.21a-d. The final binary tree is given in Figure 1.22 with interval endpoints
labeled according to Figure 1.21 d.

The situation is more complex when the object is not convex. This means that
each side of a sector may intersect the boundary of the object at an arbitrary, and pos
sibly different, number of contact points. In the following, each sector will be seen to
consist of a set of alternating regions within and outside the object. These regions are
three-sided or four-sided and have at least one side that is colinear with a side of the
sector. The discussion is illustrated with the object of Figure 1.23a whose sector tree
decomposition is given in Figure 1.23b. The final binary tree is given in Figure 1.24.
A better indication of the quality of the approximation can be seen by examining Fig
ure 1.23c, which contains an overlay of Figures 1.23a and 1.23b.

When the boundary of the object intersects a sector at two successive contact
points, say P and Q, that lie on the same side, say s, of the sector, then the region

[,./4,3,./8)
(2,3)

[0,2,.)

[Q,,.)

[3,./8,,./2)
(3,4)

Figure 1.22 Binary tree representation of the sector tree
of Figure 1.20

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

28 II 1 INTRODUCTION

@@
a b

4

~
Figure 1.21 Successive sector tree approximations for the

object of Figure 1.20: (a) 1: intervals, (b) n/2 intervals, (c) n/4

intervals, (d) n/8 intervals

Figures 1.21a—d. The final binary tree is given in Figure 1.22 with interval endpoints

labeled according to Figure 1.21d.

The situation is more complex when the object is not convex. This means that

each side of a sector may intersect the boundary of the object at an arbitrary, and pos—

sibly different, number of contact points. In the following, each sector will be seen to

consist of a set of alternating regions within and outside the object. These regions are
three-sided or four—sided and have at least one side that is colinear with a side of the

sector. The discussion is illustrated with the object of Figure 1.23a whose sector tree

decomposition is given in Figure 1.23b. The final binary tree is given in Figure 1.24.

A better indication of the quality of the approximation can be seen by examining Fig—

ure 1.23c, which contains an overlay of Figures 1.23a and 1.23b.

When the boundary of the object intersects a sector at two successive contact

points, say P and Q, that lie on the same side, say S, of the sector, then the region

[021!)

(SJ)

[om/2)

 [O.1r/4)/[1r/4.1r/2) (1251/4) [Sn/4.1:)

(L2) (4.5) (5,6)

[1r/4,31r/8) [SW/BJIIZ)
(2,3) (3.4)

Figure 1.22 Binary tree representation of the sector tree

of Figure 1.20

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 29

a b c

Figure 1.23 (a) Example object, (b) its sector tree descrip
tion, and (c) a comparison of the sector tree approximation
(thin lines) with the original object (thick lines). Note the
creation of a hole corresponding to the region formed by
points A, 8, 6, 7, C, 0, and 5

bounded by s and PQ must be approximated. Without loss of generality, assume that
the region is inside the object. There are two choices. An inner approximation
ignores the region by treating the segment of s between P and Q as part of the approxi
mated boundary (e.g., the region between points 9 and 10 in sector [9rr/8, 5rr/4) in
Figure 1.23b).

An outer approximation inserts two identical contact points, say R and T, on the
other side of the sector and then approximates the region by the three-sided region
formed by the segment of s between P and Q and the spiral arc approximations of PR

and QT. The value of R (and hence T) is equal to the average of the value of p at P and
Q. For example, the region between points 4 and 5 in sector [57t/ 4, 3rr/2) in Figure
1.23b is approximated by the region formed with points c and D.

Of course, the same approximation process is applied to the part of the region
outside the object. In Figure 1.23b, we have an inner approximation for the region
between points 7 and 8 in sector [3rr/2, 27t), and an outer approximation for the region
between points 5 and 6 in sector [97t/ 8, 57t/ 4), by virtue of the introduction of points A

and B.

One of the problems with the sector tree is that its use can lead to the creation of
holes that do not exist in the original object. This situation arises when the decompo
sition is not carried out to a level of sufficient depth. For example, consider Figure
1.23b, which has a hole bounded by the arcs formed by points A, B, 6, 7, c, D, and 5.
This is a result of the inner approximation for the region between points 7 and 8 in
sector [37t/2, 27t) and an outer approximation for the region between points 4 and 5 in
sector [57t/ 4, 3rr/2). This situation can be resolved by further decomposition in either
or both of sectors [3rr/2, 27t) and [57t/ 4, 3rr/2).

The result of the approximation process is that each sector consists of a collec
tion of three-sided and four-sided regions that approximate the part of the object con
tained in the sector. This collection is stored in the leaf node of the sector tree as a list
of pairs of points in the polar plane. It is interesting to observe that the boundaries of
the interpolated regions are not stored explicitly in the tree. Instead each pair of points
corresponds to the boundary of a region. Since the origin of the polar plane is within
the object, an odd number of pairs of points is associated with each leaf node. For

APPENDIX B

Microsoft Corp. Exhibit 1005

30 II INTRODUCTION

[0,7T}
(1,2)

(6,7) [57T/4,37T/2}
(5,C)
(4,0)
(9,8)
(10,11)

[7T,97T/8} (8,6) [97T/8,57T/4}
(2,3) (A,5)

(3,4)

Figure 1.24 Binary tree representation of the sector tree
of Figure 1.23

example, consider the leaf node in Figure 1.24 corresponding to the sector
[Srr/4, 3:-::/2). The first pair, together with the origin, defines the first region (e.g.,
(6,7)). The :1ext two pairs of points define the second region (e.g., (5,c) and (4,D)),
with each successive two pairs of points defining the remaining regions.

The sector tree is a partial polar decomposition, as the subdivision process is
based only on the value of 8. A total polar decomposition would partition the polar
plane on the basis of both p and 8. The result is analogous to a quadtree, and it is
termed a polar quadtree. There are a number of possible rules for the decomposition
process (see Exercise 1.42). For example, consider a decomposition that recursively
halves both p and 8 at each level. In general, the polar quadtree is a variant of a maxi
mal block representation. As in the sector tree, the blocks are disjoint. Unlike the
sector tree, blocks in the polar quadtree do have standard sizes. In particular, all
blocks in the polar quadtree are either three sided (i.e., sectors) or four sided (i.e.,
quadrilaterals, two of whose sides are arcs). Thus the sides of polar quadtree blocks
are not based on interpolation.

The primary motivation for presenting the sector tree is to show that space
decompositions could also be based on nonpolygonal tiles. In the rest of this book the
primary concern is with space decompositions based on rectangles (especially
squares) and showing how a number of operations can be performed when they serve
as the underlying representation. The techniques are quite general and can be applied
to most space decomposition methods. Thus the sector tree is not discussed further
except in the context of its adaptation to the representation of three-dimensional data
(see Section 5.6). Nevertheless, Lhe following contains a brief mention of some of the
operations to which the sector tree lends itself.

Set operations such as union and intersection are straightforward. Scaling is
trivial as the sector tree need not be modified; all values of p are interpreted as scaled

APPENDIX B

Microsoft Corp. Exhibit 1005

1.4 SPACE DECOMPOSITION METHODS II 31

by the appropriate scale factor. The number of nodes in a sector tree is dependent on
its orientation-that is, on the points chosen as the origin and the contact point chosen
to serve as (p,O). Rotation is not so simple; it cannot be implemented by simply rear
ranging pointers (but see Exercise 1.40). Translation is computationally expensive
since the change in the relative position of the object with respect to the origin means
that the entire sector tree must be reconstructed.

Exercises
1.30. Prove that for an isosceles right triangle represented by a region quadtree, the ratio of the

approximated perimeter to the true perimeter is 4/(2 + {2).
1.31. Repeat Exercise 1.30 for a circle (i.e., find the ratio).
1.32. When the objects have linear sides, polygonal tiles are superior. How would you use the

sector tree decomposition method with polygonal tiles?
1.33. In the discussion of the situation arising when the boundary of the object intersects a sec

tor at two successive contact points, say P and Q, that lie on the same side, say s, of the
sector, we assumed that the region bounded by s and PQ was inside the object. Suppose
that this region is outside the object. How does this affect the inner and outer approxima
tions?

1.34. Can you traverse the boundary of an object represented by a sector tree by visiting each
leaf node just once?

1.35. When using a sector tree, how would you handle the situation that the boundary of the
object just touches the side of a sector without crossing it (i.e., a tangent if the boundary
is differentiable)?

1.36. How would you use a sector tree to represent an object that does not contain the origin of
the polar plane?

1.37. The outer approximation used in building a sector tree always yields a three-sided region.
Two of the sides are arcs of spirals with respect to a common origin. This implies a sharp
discontinuity of the derivative at the point at which they meet. Can you devise a way to
smoothe this discontinuity?

1.38. Does the inner approximation used in building a sector tree always underestimate the
area? Similarly does the outer approximation always overestimate the area?

1.39. Compare the inner and outer approximations used in building a sector tree. Is there ever
a reason for the outer approximation to be preferred over the inner approximations (or
vice-versa)?

1.40. Define a complete sector tree in an analogous manner to a complete binary tree-that is,
all leaf nodes are at the same level, say n. Prove that a complete sector tree is invariant
under rotation in multiples of 2rt/2".

1.41. Write an algorithm to trace the boundary of an object represented by a sector tree.
1.42. Suppose that it is desired to decompose space into nonpolygonal shapes. Develop a

quadtree-like data structure based on polar coordinates (i.e., p and 8). Investigate dif
ferent splitting rules for polar quadtrees. In particular, you do not need to alternate the
splits-that is, you could split on p several times in a row, and so on. This technique is
used in the adaptive k-d tree [Frie77] (see Section 2.4.1) by decomposing the quartering
process into two splitting operations-one for the x coordinate and one for they coordi
nate. What are the possible shapes for the quadrants of such trees (e.g., a torus,
doughnut, wheels with spokes)?

APPENDIX B

Microsoft Corp. Exhibit 1005

32 II INTRODUCTION

1.5 SPACE REQUIREMENTS

The primary motivation for the development of the quadtree was the desire to reduce
the amount of space necessary to store data through the use of aggregation of homo
geneous blocks. As we will see in subsequent chapters, an important by-product of
this aggregation is the reduction of the execution time of a number of operations (e.g.,
connected component labeling, component counting). However, a quadtree imple
mentation does have overhead in terms of the nonleaf nodes. For an image with B and
w black and white blocks. respectively, 4 · (B + W)/3 nodes are required. In contrast, a
binary array representation of a 2n x 211 image requires only 2211 bits; however, this
quantity grows quite quickly. Furthermore, if the amount of aggregation is minimal
(e.g., a checkerboard image), the quadtree is not very efficient.

The overhead for the nonleaf nodes can be reduced at times by using a pointer
less representation. Pointer-less representations can be grouped into two categories.
The first, termed a DF-eJ.pression, represents the quadtree as a traversal of its consti
tuent nodes [Kawa80a]. For example, letting 'B', 'w', and 'G' correspond to black,
white, and gray nodes, respectively, and assuming a traversal in the order NW, NE, sw,
and SE, the quadtree of Figure 1.1 would be represented by GWGWWBBGWGW

BBBWBGBBGBBBWW.

The second approach treats the quadtree as a collection of the leaf nodes
comprising it. Each node is represented by a pair of numbers [Garg82c]. The first
number is the level of the tree at which the node is located. The second number is
termed a /ocational code. It is formed by a concatenation of base 4 digits correspond
ing to directional codes that locate the node along a path from the root of the quadtree.
The directional codes take on the values 0, 1, 2, 3 corresponding to quadrants NW, NE,

sw, SE, respectively. For example, node 15 in Figure 1.1 is represented by the pair of
numbers (0,320), which is decoded as follows. The base 4 locational code is 320.
The pair denotes a node at level 0 that is reached by a sequence of transitions, SE, sw,
and NW, starting at the root. A quadtree representation based on the use of locational
codes is called linear quadtree by Gargantini [Garg82a, Garg82c] (because the
addresses are keys in a linear list of nodes). Pointer-less representations are discussed
in greater detail in Chapter 2 of [Same90b].

The worst case for a quadtree of a given depth in terms of storage requirements
occurs when the region corresponds to a checkerboard pattern as in Figure 1.25. The
amount of space required is obviously a function of the resolution (i.e., the number of
levels in the quadtree). the size of the image (i.e., its perimeter), and its positioning in
the grid within which it is embedded. As a simple example, Dyer [Dyer82] has shown
that arbitrarily placing a square of size 2m x 2m at any position in a 211 x 211 image
requires an average of 0 (2m+l + n -m) quad tree nodes. An alternative characteriza
tion of this result is that the average amount of space necessary is 0 (p +n) where p is
the perimeter (in pixel widths) of the block.

Dyer's 0 (p +n) result for a square image is merely an instance of the earlier
work of Hunter and Steiglitz [Hunt78, Hunt79a] who proved some fundamental
theorems on the space requirements of images represented by quadtrees. In their

APPENDIX B

Microsoft Corp. Exhibit 1005

1.5 SPACE REQUIREMENTS II 33

A

I 3 5 7 9 II 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Figure 1.25 A checkerboard and its quadtree

studies, Hunter and Steiglitz used simple polygons (polygons with nonintersecting
edges and without holes); however, these theorems have been observed to hold in
arbitrary images (see [Rose82b] for empirical results in a cartographic environment).

In Hunter and Steiglitz's formulation, a polygon is represented by a three-color
variant of the quadtree. In essence, there are three types of nodes: interior, boundary,
and exterior. A node is said to be of type boundary if an edge of the polygon passes
through it. Interior and exterior nodes correspond to areas within, and outside,
respectively, the polygon and can be merged to yield larger nodes. The resulting
quadtree is analogous to the MX quadtree representation of point data described below
(for more details, see Section 2.6.1), and this term will be used to describe it. In par
ticular, boundary nodes are analogous to black nodes, while interior and exterior
nodes are analogous to white nodes.

Figure 1.26 illustrates a sample polygon and its MX quadtree. One disadvantage
of the MX quadtree representation for polygonal lines is that a width is associated with
them, whereas in a purely technical sense these lines have a width of zero. Also shift
ing operations may result in information loss. (For more appropriate representations
of polygonal lines, see Chapter 4.)

An upper bound on the number of nodes in such a representation of a polygon
can be obtained in the following manner. First, we observe that a curve of length
d + E (E > 0) can intersect at most six squares of side width d. Now consider a
polygon, say G, having perimeter p, that is embedded in a grid of squares each of side
width d. Mark the points at which G enters and exits each square. Choose one of
these points, say P, as a starting point for a decomposition of G into a sequence of
curves. Define the first curve in G to be the one extending from P until six squares
have been intersected and a crossing is made into a different seventh square. This is
the starting point for another curve in G that intersects six new squares, not counting
those intersected by any previous curve.

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

1.5 SPACEREQUIREMENTS II 33

F G H 1 J K L M N o p Q R s T U

.- u. n. nu .. u. n. a. n. .. .u .-
I 3 5 1 9 II I3 l5 I1 I9 2| 23 25 27 Z9 3! 33 35 37 39 4| 43 45 41 49 5| 53 55 51 59 GI 63

2 4 6 8 ID l2 I4 IS IS 20 22 24 26 28 so 32 34 36 3B 40 42 44 46 4B 50 52 54 56 58 60 62 64

Figure 1.25 A checkerboard and its quadtree

studies, Hunter and Steiglitz used simple polygons (polygons with nonintersecting

edges and without holes); however, these theorems have been observed to hold in

arbitrary images (see [Rose82b] for empirical results in a cartographic environment).

In Hunter and Steiglitz’s formulation, a polygon is represented by a three-color

variant of the quadtree. In essence, there are three types of nodes: interior, boundary,

and exterior. A node is said to be of type boundary if an edge of the polygon passes

through it. Interior and exterior nodes correspond to areas within, and outside,

respectively, the polygon and can be merged to yield larger nodes. The resulting

quadtree is analogous to the MX quadtree representation of point data described below

(for more details, see Section 2.6.1), and this term will be used to describe it. In par-

ticular, boundary nodes are analogous to black nodes, while interior and exterior

nodes are analogous to white nodes.

Figure 1.26 illustrates a sample polygon and its MX quadtree. One disadvantage

of the MX quadtree representation for polygonal lines is that a width is associated with

them, whereas in a purely technical sense these lines have a width of zero. Also shift-

ing operations may result in information loss. (For more appropriate representations

of polygonal lines, see Chapter 4.)

An upper bound on the number of nodes in such a representation of a polygon

can be obtained in the following manner. First, we observe that a curve of length

d+8(8 > O) can intersect at most six squares of side width d. Now consider a

polygon, say G, having perimeter p, that is embedded in a grid of squares each of side

width d. Mark the points at which G enters and exits each square. Choose one of

these points, say P, as a starting point for a decomposition of G into a sequence of

curves. Define the first curve in G to be the one extending from P until six squares

have been intersected and a crossing is made into a different seventh square. This is

the starting point for another curve in G that intersects six new squares, not counting

those intersected by any previous curve.

Microsoft Corp. Exhibit 1005

34 II INTRODUCTION

Nt I
I rst'

-~
M-

11

Figure 1.26 Hunter and Steiglitz's quadtree representa
tion of a polygon

We now decompose G into a series of such curves. Since each curve adds at
most six new squares and has length of at least d, we see that a polygon with perimeter
p cannot intersect more than 6 ·I pi dl squares. Given a quadtree with a root at level11
(i.e., the grid of squares is of width 211

), at level i each square is of width i. Therefore
polygon G cannot intersect more than B (i) = 6 ·I p!il quadrants at level i. Recall that
our goal is to derive an upper bound on the total number of nodes. This bound is
attained when each boundary node at level i has three brother nodes that are not inter
sected. Of course, only boundary nodes can have sons, and thus no more than
B (i) nodes at level i have sons. Since each node at level i is a son of a node at level
i + 1, there are at most 4 · B (i + 1) nodes at level i. Summing up over 11 levels
(accounting for a root node at level 11 and four sons), we find that the total number of
nodes in the tree is bounded by

n-2

1 +4+ L4 ·B(i+1)
i=O

n-2

~ 5 + 24 · ~ I __L_ l
,(..; 2t+l
i=O

n-2 1
~ 5 + 24 · (11-1) + 24 · p · L----;-:;:!

i=O 2

~ 24 . 11 - 19 + 24 . p.

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

34 II 1 INTRODUCTION

.Qfillll-MQEEII
Ea. EiQ-I

Figure 1.26 Hunter and Steig/itz’s quadtree representa-

tion of a polygon

We now decompose G into a series of such curves. Since each curve adds at

most six new squares and has length of at least d, we see that a polygon with perimeter

p cannot intersect more than 6 - ip/dl squares. Given a quadtree with a root at level n

(i.e., the grid of squares is of width 2"), at level i each square is of width 2‘. Therefore
polygon G cannot intersect more than B (i) = 6 - lp/Zil quadrants at level i. Recall that

our goal is to derive an upper bound on the total number of nodes. This bound is

attained when each boundary node at level i has three brother nodes that are not inter-

sected. Of course. only boundary nodes can have sons, and thus no more than

B (i) nodes at level i have sons. Since each node at level i is a son of a node at level

i+ 1, there are at most 4 -B(i+ 1) nodes at level i. Summing up over 11 levels

(accounting for a root node at level n and four sons), we find that the total number of

nodes in the tree is bounded by

n —2

1+4+ 24-3041)
i=0

n —2

ss+24.2i {ill
[:0 2

n —2

ss+24.2(1+ Pl)
[=0 21+

_’3

M .. 1

$5+24-(n—1)+24-p-22’.+1i=0

SZ4-n—l9+24-p.

Microsoft Corp. Exhibit 1005

1.5 SPACE REQUIREMENTS II 35

Therefore, we have proved:

Theorem 1 .1 The quadtree corresponding to a polygon with perimeter
p embedded in a 211 x 2" image has a maximum of 24 · n - 19 + 24 · p
(i.e., o(p +n)) nodes. D

The proof of Theorem 1.1 is based on a decomposition of the polygon into a
sequence of curves, each of which intersects at most six squares. This bound can be
tightened by examining patterns of squares to obtain minimum lengths and
corresponding ratios of possible squares per unit length. For example, observe that
once a curve intersects six squares, the next curve of length d in the sequence can
intersect at most two new squares. In contrast, it is easy to construct a sequence of
curves of length d + E (E > 0) such that almost each curve intersects two squares of
side length d. Such a construction leads to an upper bound of the form
a . n + b + 8 · p where a and b are constants (see Exercise 1.48). Hunter and Steiglitz
use a slightly different construction to obtain a bound of 16 · n - 11 + 16 · p (see Exer
cise 1.49).

Nevertheless, the bound of Theorem 1.1 is attainable as demonstrated by the fol
lowing examples. First, consider a square of side width 2 that consists of the central
four squares in a 2" x 2" image (see Figure 1.27). Its quadtree has 16 · n - 11 nodes
(see Exercise 1.50). Second, consider a curve that follows a vertical line through the
center of a 211 x 2" image. Now, make it a bit longer by making it intersect all of the
pixels on either side of the vertical line (see Figure 1.28). As n increases, the total
number of nodes in the quadtree approaches 8 · p where p = 2" (see Exercise 1.51). A
polygon having a number of nodes approaching 8 · p can be constructed in a similar
manner by approximating a square in the center of the image whose side is one-fourth
the side of the image (see Exercise 1.52). In fact, it has been shown by Hunter
[Hunt78] that 0 (p +n) is a least upper bound on the number of nodes in a quadtree
corresponding to a polygon (see Exercise 1.53).

I::::: I
l:::::f:ill

I

Figure 1.27 Example quadtree with 16 . n- 11 nodes

APPENDIX B

Microsoft Corp. Exhibit 1005

36 II INTRODUCTION

Figure 1.28 Example quadtree with approximately 8 · p
nodes

Theorem 1.1 can be recast by measuring the perimeter p in terms of the length
of a side of the image in which the polygon is embedded-i.e., for a 2n x 2n image
p = p' · 2n. Thus the value of the perimeter no longer depends on the resolution of
the image. Restating Theorem 1.1 in terms of p' results in a quadtree having
0 (p' · 2n + n) nodes. This leads to the following important corollary:

Corollary 1 .1 The maximum number of nodes in a quadtree
corresponding to an image is directly proportional to the resolution of the
Image. 0

The significance of Corollary 1.1 is that when using quadtrees, increasing the
image resolution leads to a linear growth in the number of nodes. This is in contrast to
the binary array representation where doubling the resolution leads to a quadrupling of
the number of pixels.

Since in most practical cases the perimeter, p, dominates the resolution, n, the
results of Theorem 1.1 are usually interpreted as stating that the number of nodes in a
quhdtree is proportional to the perimeter of the regions contained therein. 10 Meagher
[Meag80] has shown that this theorem also holds for three-dimensional data (i.e., for
polyhedra represented by octrees) when the perimeter is replaced by the surface area.
The perimeter and the surface area correspond to the size of the boundary of the
polygon and polyhedron-that is, in two and three dimensions, respectively. In d
dimensions this result can be stated as follows:

Theorem 1 .2: The size of a d-dimensional quadtree of a d-dimensional
polyhedron is proportional to the sum of the resolution and the size of the
boundary of the object. 0

10 Of course, the storage used by runlength codes is also proportional to the perimeter of the regions.
However, runlength codes do not facilitate access to different parts of the regions (i.e., they have poor spatial
indexing properties).

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

36 II 1 INTRODUCTION

.I:§=I-I:§:I

.IE%§:I-113%:-

.I:§§=I.IEEEEI

.IEEEI-IE§§:I

Figure 1.28 Example quadtree with approximately 8 - p
nodes

Theorem 1.1 can be recast by measuring the perimeter p in terms of the length

of a side of the image in which the polygon is embedded—i.e., for a 2" X 2" image

p =p’ - 2". Thus the value of the perimeter no longer depends on the resolution of

the image. Restating Theorem 1.1 in terms of p’ results in a quadtree having

0 (p’ - 2" + n) nodes. This leads to the following important corollary:

Corollary 1.1 The maximum number of nodes in a quadtree

corresponding to an image is directly proportional to the resolution of the

image. El

The significance of Corollary 1.1 is that when using quadtrees, increasing the

image resolution leads to a linear growth in the number of nodes. This is in contrast to

the binary array representation where doubling the resolution leads to a quadrupling of

the number of pixels.

Since in most practical cases the perimeter, p, dominates the resolution, It, the

results of Theorem 1.1 are usually interpreted as stating that the number of nodes in a

quadtree is proportional to the perimeter of the regions contained therein.10 Meagher

[Meag80] has shown that this theorem also holds for three-dimensional data (i.e., for

polyhedra represented by octrees) when the perimeter is replaced by the surface area.

The perimeter and the surface area correspond to the size of the boundary of the

polygon and polyhedron—that is, in two and three dimensions, respectively. In d
dimensions this result can be stated as follows:

Theorem 1.2: The size of a d-dimensional quadtree of a d-dimensional

polyhedron is proportional to the sum of the resolution and the size of the

boundary of the object. [:1

'0 Of course, the storage used by runlength codes is also proportional to the perimeter of the regions.
However, runlength codes do not facilitate access to different parts of the regions (i.e., they have poor spatial
indexing properties).

Microsoft Corp. Exhibit 1005

1.5 SPACE REQUIREMENTS II 37

Aside from their implications on the storage requirements, Theorems 1.1 and 1.2
also directly affect the analysis of the execution time of algorithms. In particular,
most algorithms that execute on a quadtree representation of an image instead of an
array representation have an execution time proportional to the number of blocks in
the image rather than the number of pixels. In its most general case, this means that
the application of a quadtree algorithm to a problem in d-dimensional space executes
in time proportional to the analogous array-based algorithm in the (d -1)-dimensional
space of the surface of the original d-dimensional image. Thus quadtrees are some
what like dimension-reducing devices.

Theorem 1.2 assumes that the image consists of a polyhedron. Walsh [Wals85]
lifts this restriction and obtains a weaker complexity bound. Assuming an image of
resolution nand measuring the perimeter, say p, in terms of the number of border pix
els, he proves that the total number of nodes in a d-dimensional quadtree is less than
or equal to 4 · n · p. Furthermore he shows that the number of black nodes is less than
or equal to (2d- 1) · n · pld.

The complexity measures discussed above do not explicitly reflect the fact that
the amount of space occupied by a quadtree corresponding to a region is extremely
sensitive to its orientation (i.e., where it is partitioned). For example, in Dyer's exper
iment, the number of nodes required for the arbitrary placement of a square of size
2m x 2m at any position in a 211 x 211 image ranged between 4 · (n -m) + 1 and
4·p+16·(n-m)-27, with the average being O(p+n-m). Clearly shifting the
image within the space in which it is embedded can reduce the total number of nodes.
The problem of finding the optimal position for a quadtree can be decomposed into
two parts. First, we must determine the optimal grid resolution and, second, the
partition points.

Grosky and Jain [Gros83] have shown that for a region such that w is the max
imum of its horizontal and vertical extent (measured in pixel widths) and
211

-
1 < w ~ 211

, the optimal grid resolution is either n or n + 1. In other words embed
ding the region in a larger area than 211 +1 x 211 +1 and shifting it around will not result
in fewer nodes. Using similar reasoning, it can be shown that translating a region by
2k pixels in any direction does not change the number of black or white blocks of size
less than 2k x 2k [Li82].

Armed with the above results, Li, Grosky, and Jain [Li82] developed the follow
ing algorithm that treats the image as a binary array and finds the configuration of the
region in the image so that its quadtree requires a minimum number of nodes. First,
enlarge the image to be 211 +1 x 211 +1

, and place the region within it so that the region's
northernmost and westernmost pixels are adjacent to the northern and western bord
ers, respectively, of the image. Next apply successive translations to the image of
magnitude power of two in the vertical, horizontal, and comer directions and keep
count of the number of leaf nodes required. Initially 2211 +2 leaf nodes are necessary.
The following is a more precise statement of the algorithm:

1. Attempt to translate the image by (x,y) where x and y correspond to unit
translations in the horizontal and vertical directions, respectively. Each of
x andy takes on the values 0 or 1.

APPENDIX B

Microsoft Corp. Exhibit 1005

38 II INTRODUCTION

2. For the result of each translation in step 1, construct a new array at one-half
the resolution. Each entry in the new array corresponds to a 2 x 2 block in
the translated array. For each entry in the new array that corresponds to a
single color (not gray) 2 x 2 block in the translated array, decrement the
leaf node count by 3.

3. Recursively apply steps 1 and 2 to each result of steps 1 and 2. This pro
cess stops when no single-color 2 x 2 block is found in step 2 (i.e., they are
all gray) or if the new array is a 1 x 1 block. Record the total translation
and the minimum leaf node count.

Step 2 makes use of the property that for a translation of 2k, there is a need to
check only if single-color blocks of size 2k x 2k or more are formed. In fact, because
of the recursion, at each step we check only for the formation of blocks of size
2k+i x 2k+i. Note that the algorithm tries every possible translation since any integer
can be decomposed into a summation of powers of two (i.e., use its binary representa
tion). In fact this is why a translation of (0,0) is part of step l. Although the algo
rithm computes the positioning of the quadtree with the minimum number of leaf
nodes, it is also the positioning of the quadtree with the minimum total number of
nodes since the number of nonleaf nodes in a quad tree ofT leaf nodes is (T -1)/3.

As an example of the algorithm, consider the region given in Figure 1.29a
whose block decomposition is shown in Figure 1.29b. Its quadtree requires 52 leaf
nodes. The first step is to enlarge the image, place the region in the upper left comer,
and form the array (Figure 1.30). The optimal positioning is such that Figure 1.30 is
shifted 7 units in the horizontal direction and 3 units in the vertical direction. This
corresponds to a sequence of translations (1,1), (1,1), and (I ,0). The intermediate
translated arrays are shown in Figure 1.31. All gray nodes in the translated arrays are
labeled with a 'G' while black nodes are shaded. The optimal quadtree contains 46
leaf nodes and is given in Figure 1.32.

Now let us trace the algorithm as it applies the optimal sequence of translations,
in more detail. Initially the leaf node count is 256. A translation of (1,1) leads to Fig
ure 1.31 a where 58 of the array entries correspond to single-color 2 x 2 blocks in the
translated array. The leaf node count is decremented by 58 · 3 = 174, resulting in

a b

Figure 1.29 Example (a) image and (b) its block decom
position used to demonstrate the optimal positioning
process

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

38 II 1 INTRODUCTION

2. For the result of each translation in step 1, construct a new array at one-half

the resolution. Each entry in the new array corresponds to a 2 X 2 block in

the translated array. For each entry in the new array that corresponds to a

single Color (not gray) 2 X 2 block in the translated array. decrement the

leaf node count by 3.

3. Recursively apply steps 1 and 2 to each result of steps 1 and 2. This pro-

cess stops when no single-color 2 X 2 block is found in step 2 (i.e., they are

all gray) or if the new array is a l X 1 block. Record the total translation
and the minimum leaf node count.

Step 2 makes use of the property that for a translation of 2", there is a need to
check only if single-color blocks of size 2" X 2" or more are formed. In fact, because
of the recursion, at each step we check only for the formation of blocks of size

2“1 X 2"“. Note that the algorithm tries every possible translation since any integer
can be decomposed into a summation of powers of two (i.e., use its binary representa-

tion). In fact this is why a translation of (0,0) is part of step 1. Although the algo—

rithm computes the positioning of the quadtree with the minimum number of leaf

nodes, it is also the positioning of the quadtree with the minimum total number of

nodes since the number of nonleaf nodes in a quadtree of T leaf nodes is (T—l)/3.

As an example of the algorithm, consider the region given in Figure 12%

whose block decomposition is shown in Figure 12%. Its quadtree requires 52 leaf

nodes. The first step is to enlarge the image, place the region in the upper left comer,

and form the array (Figure 1.30). The optimal positioning is such that Figure 1.30 is
shifted 7 units in the horizontal direction and 3 units in the vertical direction. This

corresponds to a sequence of translations (1,1), (1,1), and (1,0). The intermediate

translated arrays are shown in Figure 1.31. All gray nodes in the translated arrays are

labeled with a ‘G’ while black nodes are shaded. The optimal quadtree contains 46

leaf nodes and is given in Figure 1.32.

Now let us trace the algorithm as it applies the optimal sequence of translations,

in more detail. Initially the leaf node count is 256. A translation of (1,1) leads to Fig-

ure 1.31a where 58 of the array entries correspond to single-color 2 X 2 blocks in the

translated array. The leaf node count is decremented by 58 -3= 174, resulting in

a

Figure 1.29 Example (a) image and (b) its block decom—

position used to demonstrate the optimal positioning
process

Microsoft Corp. Exhibit 1005

1.5 SPACE REQUIREMENTS II 39

~ .

mm Wt~
f-1M -

.

.

m; mr; lill
llli ~#

1m il

Figure 1.30 The array corresponding to the image in Fig
ure 1.29 prior to the start of the optimal positioning process

82. The next translation of (1,1) leads to Figure 1.31 b, where 11 of the array entries
correspond to single-color 2 x 2 blocks. Therefore 11 · 3 = 33 is subtracted from 82,
and the leaf node count is now 49. The final translation of (1 ,0) leads to Figure 1.31 c,
where only one of the array entries corresponds to a single-color 2 x 2 block in the
translated array. Decrementing the leaf node count results in 46 nodes, and the pro
cess terminates. Of course, we have failed to describe the remaining 4n - 3 transla
tions that were also attempted.

Despite trying all possible translations, the algorithm is quite efficient. The key
is that for each translation, only the blocks whose motion can lead to space saving
need to be considered. This is a direct consequence of the property that a translation
of 2k does not change the number of blocks of size less than 2k x 2k. For an image
that has been enlarged to fit in a 2n+i x 2n+i array, the algorithm will have a maximum
depth of recursion of n. Since at each level of recursion we need an array at half the
resolution of the previous level, the total amount of space required is (4/3). 22n+2 .

G G

G G •
G

G till
c

lliiJ G

b

a

Figure 1.31 The successive translated arrays at half
resolution after application of (a) (1, 1) and (b) (1, 1), and
(c) (1,0) to the original image array of Figure 1.30

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

1.5 SPACEREQUIREMENTS II 39

Figure 1.30 The array corresponding to the image in Fig-

ure 1.29 prior to the start of the optimal positioning process

82. The next translation of (1,1) leads to Figure 1.31b, where 11 of the array entries

correspond to single-color 2 X 2 blocks. Therefore 11 - 3 = 33 is subtracted from 82,

and the leaf node count is now 49. The final translation of (1,0) leads to Figure 1.31c,

where only one of the array entries corresponds to a single-color 2 X 2 block in the

translated array. Decrementing the leaf node count results in 46 nodes, and the pro-

cess terminates. Of course, we have failed to describe the remaining 4” — 3 transla-

tions that were also attempted.

Despite trying all possible translations, the algorithm is quite efficient. The key

is that for each translation, only the blocks whose motion can lead to space saving

need to be considered. This is a direct consequence of the property that a translation

of 2" does not change the number of blocks of size less than 2" X 2". For an image
that has been enlarged to fit in a 2”“ X 2”“ array, the algorithm will have a maximum

depth of recursion of 21. Since at each level of recursion we need an array at half the

resolution of the previous level, the total amount of space required is (4/3) - 22””.

Figure 1.31 The successive translated arrays at half-

resolution after application of (a) (1,1) and (b) (1,1), and

(c) (1,0) to the original image array of Figure 1.30

Microsoft Corp. Exhibit 1005

40 II INTRODUCTION

Figure 1.32 Optimal positioning of the quadtree of Figure
1.29

The basic computational task of the algorithm is to count 2 x 2 blocks of a single
color. It can be shown that 4 · n · 22

n+
2 array elements are examined in this process

(see Exercise 1.63). Thus the algorithm uses 0 (22n) space and takes 0 (n · 22n) time.
Nevertheless experiments with typical images show that the algorithm has little effect
(e.g., [Same84c]).

Exercises
1.43. Consider the arbitrary placement of a square of size 2m x 2m at any position in a 2" x 2"

image. Prove that in the best case 4 · (n -m) + 1 nodes are required, while the worst case
requires 4 · p + 16 · (n -m)- 27 nodes. How many of these nodes are black and white,
assuming that the square is black? Prove that on the average, the number of nodes that is
required is 0 (p +n -m).

1.44. What are the worst-case storage requirements of storing an arbitrary rectangle in a quad
tree corresponding to a 2" x 2" image? Give an example of the worst case and the
number of nodes it requires.

1.45 Assume that the probability of a particular pixel's being black is one-half and likewise for
being white. Given a 2" x 2" image represented by a quadtree, what is the expected
number of nodes, say E (n), in the quad tree? Also compute the expected number of black,
white, and gray nodes.

1.46 Suppose that instead of knowing the probability a particular pixel is black or white, we
know the percentage of the total pixels in the image that are black. Given a 2" x 2"
image represented by a quadtree, what is the expected number of nodes in the quadtree?

1.47. The proof of Theorem 1.1 and the subsequent discussion raise the question of how N

squares should be arranged so that each is intersected by a curve of minimum length
extending to the outside of the squares on each end. Such a configuration leads to a
minimal curve in the sense that it has a maximal ratio of squares to length. For which
value of N is this ratio the smallest?

1.48. Try to prove that the upper bound of Theorem 1.1 can be tightened to be a · n + b + 8 · p
where a and b are constants.

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX B

40 II 1 INTRODUCTION

Figure 1.32 Optimal positioning of the quadtree of Figure
1.29

The basic computational task of the algorithm is to count 2 X 2 blocks of a single

color. It can be shown that 4 - n - 22’”2 array elements are examined in this process
(see Exercise 1.63). Thus the algorithm uses 0 (22”) space and takes 0 (n - 22”) time.

Nevertheless experiments with typical images show that the algorithm has little effect

(e.g., [Same84c]).

Exercises

1.43. Consider the arbitrary placement of a square of size 2m x 2"’ at any position in a 2" x 2"

image. Prove that in the best case 4 - (n —-m) + 1 nodes are required, while the worst case

requires 4 - p + 16 - (n —-m)—- 27 nodes. How many of these nodes are black and white,

assuming that the square is black? Prove that on the average, the number of nodes that is

required is 0 (p+n —m).

1.44. What are the worst-case storage requirements of storing an arbitrary rectangle in a quad—

tree corresponding to a 2” x2” image? Give an example of the worst case and the

number of nodes it requires.

1.45 Assume that the probability of a particular pixel’s being black is one—half and likewise for

being white. Given a 2” x2” image represented by a quadtree, what is the expected

number of nodes, say E(n), in the quadtree? Also compute the expected number of black,

white, and gray nodes.

1.46 Suppose that instead of knowing the probability a particular pixel is black or white, we

know the percentage of the total pixels in the image that are black. Given a 2" x 2"

image represented by a quadtree, what is the expected number of nodes in the quadtree?

1.47. The proof of Theorem 1.1 and the subsequent discussion raise the question of how N

squares should be arranged so that each is intersected by a curve of minimum length

extending to the outside of the squares on each end. Such a configuration leads to a

minimal curve in the sense that it has a maximal ratio of squares to length. For which
value ofN is this ratio the smallest?

1.48. Try to prove that the upper bound of Theorem 1.1 can be tightened to be a - n + b + 8 - p
where a and b are constants.

Microsoft Corp. Exhibit 1005

1.5 SPACE REQUIREMENTS II 41

1.49. Decompose the polygon used in the proof of Theorem 1.1 into a sequence of curves in
the following manner. Mark the points where G enters and exits each square of side
width d. Choose one of these points, say P, and define the first curve in G as extending
from P until four squares have been intersected and a crossing is made into a different
fifth square. This is the starting point for another curve in c that intersects four new
squares, not counting those intersected by any previous curve. Prove that all of the
curves, except for the last one, must be at least of length d. Using this result, prove that
the upper bound on the number of nodes in the quad tree is 16 · n - 11 + 16 · p.

1.50. Prove that the quadtree corresponding to a square of side width 2 consisting of the central
four squares in a 2" x 2" image has 16 · n - 11 nodes (see Figure 1.27).

1.51. Take a curve that follows a vertical line through the center of a 2" x 2" image and
lengthen it slightly by making it intersect all of the pixels on either side of the vertical
line (see Figure 1.28). Prove that as n increases, the total number of nodes in the quad
tree approaches 8 · p where p = 2".

1.52. Using a technique analogous to that used in Exercise 1.51, construct a polygon of perime
ter p by approximating a square in the center of the image whose side is one-fourth the
side of the image. Prove that its quadtree has approximately 8 · p nodes.

1.53. Prove that 0 (p +n) is a least upper bound on the number of nodes in a quad tree
corresponding to a polygon. Assume that p ::; 22

" (i.e., the number of pixels in the
image). Equivalently the polygon boundary can touch all of the pixels in the most trivial
way but can be no longer. Decompose your proof into two parts depending on whether p
is greater than 4 · n.

1.54. Can you prove that for an arbitrary quadtree (not necessarily a polygon), the number of
nodes doubles as the resolution is doubled?

1.55. Derive a result analogous to Theorem 1.1 for a three-dimensional polyhedron represented
as an octree. In this case the perimeter corresponds to the surface area.

1.56. Prove Theorem 1.2.
1.57. Assuming an image of resolution n and measuring the perimeter, say p, in terms of the

number of border pixels, prove that the total number of nodes in a d-dimensional quad
tree is less than or equal to 4 · n · p.

1.58. Assuming an image of resolution n and measuring the perimeter, say p, in terms of the
number of border pixels, prove that the total number of black nodes in a d-dimensiona1
quad tree is less than or equal to (2d - 1) · n ·pI d.

1.59. How tight are the bounds obtained in Exercises 1.57 and 1.58 for the number of nodes in
ad-dimensional quadtree for an arbitrary region? Are they realizable?

1.60. Prove that for a region such that w is the maximum of its horizontal and vertical extent
(measured in pixel widths) and 2"-1 < w ::; 2n, the optimal grid resolution is either n or
n+!.

1.61. Prove that translating a region by 2k pixels in any direction does not change the number
of black or white blocks of size less than 2k x 2k.

1.62. Can you formally prove that the method described in the text does indeed yield the
optimal quadtree?

1.63. Prove that 4 · n · 2~"+2 array elements are examined in the process of constructing the
optimal quadtree.

1.64. How would you find the optimal bintree?

APPENDIX B

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

||||||IIIIIIIIIllII

. g U8005263136A
Umted States Patent [19] [11] Patent Number: 5,263,136

DeAguiar et a1. [45] Date of Patent: Nov. 16, 1993

[54] SYSTEM FOR MANAGING TILED IMAGES 5,020,003 5/1991 Moshenberg 395/164
USING MULTIPLE RESOLUTIONS 5,150,462 9/1992 Takeda et a1. .. 395/166

[75] Inventors: John R. DeAguiar, Sebastopol; Ross Prima’y Examme’—Dale M- Shaw .
M_ lag-kin, Rollings Hills, both of Assistant Examiner—lice M. Tung
Calif. Attorney, Agent. or Finn—Knobbe, Martens, Olson &

Bear
[73] Assignee: Optigraphics Corporation San

Diego, Calif. ’ [57] ABSTRACT

[21] AWL No; 694,416 An image memory management system for tiled images.
i I The system defines an address space for a virtual mem-

[22] filed: AP“ 309 1991 ory that includes an image data cache and a disk. An

[51] Int. Cl.5 GOGF 15/20 image 51301‘ for €301! source image is Stored as a {"11
[52] U.S. Cl. 395/164; 345/201 TCSOIUtion image and 3 53‘ 0f lower'l'esomtion “him
[58] Field at Search 395/162, 164, 166, 128—130; ases- Each tile of an image may exist in one or more of

340/793, 799; 353/452, 455 five different states as follows: uncompressed and resi-
dent in the image data cache, compressed and resident

[56] References Cited in the image data cache, uncompressed and resident on
U.S. PATENT DOCUMENTS disk, compressed and resident on disk and not loaded

Re. 31,200 4/1983 Sukonick et al. 395/162 0‘" “icrea‘able “Sing data m“ higher'mmmm
4,878,183 10/1989 Ewart 395/128X Image “1e5-
4,920,504 4/1990 Sawada et al. 395/166
4,951,230 8/1990 Dalrymple et a1. 395/166 17 Claims, 39 Drawing Sheets

i i 1'50

I ‘ iII ‘72 I 114 I
I GRAPHICS I
I 015110 I
I CONTROLLER l
I I
I I82 I70}

: KEYBOAKDAND umx . IMAGE l/OBUS '
moczssonz FLOPI’Y DISK COMPATIBLE I 1110015551110 INTERFACE I

I OE 5mm , $135001ng AND I

I I
I I
l |
I I

. 1's.

I__ _______________________________ ___I
150 158 I652 104

mm 14,0 HARD

MONITOR MOUSE -I<EYBOAKD DISK DISK ETHERNET
DRIVE

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 1 of 39 5,263,136

SUBIMAGE

lHDEX¢ FULL RESOLUTION IMAGE

I “Ch

SUBII’IAGE

INDEX 1 -—J HALF RESOLUTION IMAGE

I04

SUBIMAGE

INDEX 2 QUARTER RESOLUTION IMAGE

Hoc I00)

IIod
SUBII’IAGE

INDEX 5 EIGHTH RESOLUTION IMAGE

I08

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 2 of 39 AP|§|32§5§6

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

Sheet 3 of 39 5,263,136Nov. 16, 1993US. Patent

-

m>§om>3555%:V2V235$;$8:$220:
w.mQ.92:3.:5:

grim.»1111111[mfnLeilelni_IIIII3._Nm_.:-....+_man3209.:82u_MES__EEO:__$2.2:__§§=§....--__e:5.55%_EEGmo«349.28__Saga.22.59:$3.328vaais:«$892.18M88922__M92._52:05528%;1.52_“o:02N”.u“gagsfijoEs“£9.285:228_525:;$592:.z:822%:52_n8233u____EH._“
Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 4 of 39 5,263,136

222a ZZZb / I94

LON ADDRESS

222

COMPRESSED 1155

(VARIABLE SIZE)

222d

2228

ZZZF

RESERVE

(UNUSED MEMORY)
224 (1

224b

UNCOMPRESSED

TILES

(FIXED SIZE)

2240

224d

224

HIGH ADDRESS

2’50

254 2% f 2“)

NOT LOADED

(LON-RES SUBIMAGES ONLY)

272

£46

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 5 of 39 5,263,136

F]? 9,4 DocumenI Informah’on SITIICIure f 300

SELF~REFERENCETO 302 'OVERVIENS INVALID" m CACHE IMAGE 1953
DOCUMENT NANOLE —' FLAG COMPRESSION ALGORITHM

IMAGE COLOR fl BITS PER 19 TILE SIZE 21;,
TYPE IMAOE PIXEL INFORMATION

NUMBER OF SL4 INPUT FILE INFO 316; OUTPUT FILE INFO jig

SUBIMAGES IN DOC

2QLIST OE SUBIMAGE HEADERS

Fig. 9B

POINTER T0 :fi. POINTER TO m SUBIMAGE NIDTH _3_Z_é
TILE HEADERS TILE DIRECTORY AND HEIGHT

NUMBER OF TILE RONS 12g IMAGE STACK INDEX m PIXEL RESOLUTION _§_5_z_
& COLS IN SUBIMAGE OF THIS SUBU‘IAGE OF THIS SUBIMAGE

IO Ti Ie Header

/550

POINTER T0 DOCUMENT fl INDEX DE SUDII’TAGE fl RON AND COLDI‘IN fl
CONTAINING THIS TILE CONTAINING THIS TILE INDICES OF TILE

STATUS INFORMATION fl PRESERVE COUNT 3_é_C_>

LOCATION OF UNCOMPRESSED fl LOCATION OF COMPRESSED id

IMAGE DATA IN CACHE MEMORY IMAGE DATA IN CACHE MEMORY

LOCATION OF UNCOMPRESSED QQQ LOCATION OF COMPRESSED 14g}
IMAGE DATA ON DISK IMAGE DATA ON DISK

LINK TO NEXT LESS 219 LINK TO NEXT MORE 22
RECENTLY USED TILE RECENTLY USED TILE

576;NUMBER OF BYTES OF EXPANDED 171 NUMBER OF BYTES OF __
DATA IN TILE ’ COMPRESSED DATA IN TILE

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

Sheet 6 of 39 5,263,136Nov. 16, 1993US. Patent

:.mxux
a:N3

,Eggnogav3.52.25

Ev

w; “$829855Egg—E.
Egg3N2“3v2:.\

omvwvw23333vvvex.aesfiiéga:N3gggE §g8v3“.3—.

fisgifi

esésggwEgg?
v~v

2v$30322;2552::£23225E33$N;2?N:

SEEEEEE
2;

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 7 of 39 5,263,136

470 Main 402
f

404

472 410

mm CHAUZE 0‘ EMA‘W’EK LOAD TILED BEGIN UHDOABLE
RASTEK IMAGES RASTER OPERATION

m (iFwRITmGTOIMAG

CREME IMAGE ACCESS MT

474 LOO? 476

FORKONS/COLS READ/WRITE

IN REGION KONS/COLS

418

CLOSE WAGE ACCESS CONTEXT 420 478
mm PREWOUS UNLOAD

RASTER crewman KASTER IMAGE

QUIT CACHE

MANAGER 422

480 I

END

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

E APPENDIX C
US. Patent Nov. 16, 1993 Sheet 8 of 39 5,263,136

404 Im’rCache Manager 13
K

490

498

492

494

4%

Memorg Block Siaie Diagram I4

510

YES 518

LOCK COUNT

LOCK HANDLE OEOKEMENEED TO ZERO?

LOCKED (MEMORY ALLOCATED 5’6
AND CURRENTLY IN use) UNLOCK HANDLE

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16,1993 Sheet 9 of 39 Apgflgfig

InII Image Access I5A

4IZ 550

1

VALIDATE INPUT PARAMETERS

LOCK DOC HANDLE

54

INITIALIZE ACCESS

NITH ROTATION

552 534
ERROR

NON

ORTHOGONAL

ROTATION _

'IIO

ALLOCATE I’IEI’IORY

FOR ACCESS_CONTEXT

STRUCT URE

544 54c,

SUBIMAGE LO“ RES SELECT APPROI’RIATE REDUCED
CHOICE? RESOLUITON SUBIMAGE

545-

SELECT FULL REs ADJUST TRANSFORMATION

SUBII‘IAGE MATRIX SCALE FACTORS

COMPUTE PIXEL + T ILE 552
LIMITS OF AFFECTED

IMAGE REGION

542

TO STATE 554 IN FIG. I55

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 10 of 39 5,263, 36

FROM STATE 552 '
m FIG. ISA ’53

CREATE TEMPORARY 554
O‘RECTOKY OF “LES

m AFFECTED REGION

INITlAUZE WME 556
5CAUNG FUHCNOHS

558

560

YES INIT POLYGONAL
CLIPPING FUNCTIONS

 POLYGOHAL

CLIPPING REG’D

?

'NO

ALLOCATEBUFFERSFOR 5"?-
SCALING \F NEEDED

564

SAVE _ Y E5 4 26

FOR 7mm) SAVE REGION FORUNDO

568 570

UPDATE ‘

YES SET "UPDATE

SUBlfiggEgDUR'NG OVERVIEN" FLAG
no

"PRESERVE" AFFECTED TILES 572
m AFFECTED SUBIMAGES

TO STATE 574

IN HG. 15C

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 11 of 39 AP§%I,)i§6

FROM STATE 572 ‘

m FIGJSB [5C

"LOCK" THE FIRST RON 0R COLUMN 574

Of TILES IN THE REGION

YES

ERROR?

I‘IO

IHITIALIZE THE RON/

COLUMN ACCESS FUNCTIONS

INVALIDATE AFFECTED SUBIMAGE TILES

IF NRITIIIG TO FILL RES SUBIMAGE ONLY

RETURN. I’OINTER T0 HEN ACCESS_COHTEXT

575

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

Sheet 12 of 39 5,263,136Nov. 16, 1993US. Patent

3::29222825:2322233222221: $2222232::«.2«E522E§$52“2220322322282%5:«E25S21:32882z.5:5%.2£225220:LoM222«82.2%248429.3%.m5;828..>.Fzm§§oI] 20.0.“;wmmuu<z.98\I 1.52m::72Emurc"62:38aZoxN3a£53BF"5$5222c3beautosMES):amidI: 2052252I: 7652$822202$322as“52263:826222382:2:«3223°:22222%:ll Dmmmmou<mm9.2238\l >MSmeoHF[85...0353BEE—x87:SS$6%30¢MOS):CG:2%:98“S.M525;mgomwmuumZooz:9.13.2.2zoF<Z¢ou_z_oz_._<unZoF<ZMEEszEd

20058E.$22.8
£2222222::

«was.E22.8.lvnd.8.22.2:389222M22..$823.2???5825.523mmmuu<ck«PE—0L
I) 232828%125.65Mob«3was.EtaEEO«222$6«228a:2"a5%85%1|A32ES:222a15.2§E222ohwe12:“.22SH.86522onc39}”.20:53.5322595sq22>225235.2%BE?2:$22282528E:382%22a.1 29%an85223223,9.Nla0552.8

NMME295252:me3289:2Eh;

+628$894

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16,1993 Sheet 13 of 39 APEEEPT§6

4261 SaveReg'Ion ForUndo. fig. 17/!

START 680
682 684 686 688

CLIP REGION RE8ION H0 UNLOCK
LOCK DOC T0 IMAGE OVERLAPS Doc HANDLE

HANDLE DDIINDARIEs IMAGE?
690

MAKE LINDD ALLOC MEM EDR ALLoc MEM EDR END
TILE . DNDD REDIDN UNDD REDIDN

DIRECTORY TILE HEADERS HEADER

98 7 LOOP 700 LOOP 702
EDR EACH FOR EACH 00 YES
TILE RON TILE cDLUMN TILE LOADED

IN REGION IN REGION 4 ?

758 704

LINK NEN IINDo DOC MARK

HEADER INTo TILE BLANK LINDo TILE

LINDo REDIDN LIsT 7 "LOADED"

74o 708 “0 7I2

UNLDEK Doc HANDLE MARK MARK DNDD COMP no
742 LINDD TILE TILE N0T DOCTILE

' I "BLANK" " DLANK" 0N DISK?

END

COPY COMP TILE DIsK

LDC AND SIZE ERDM

DOC TILE T0 DNDD TILE

COPY UNCOMI’ TILE DNcoMR

DISK LOC AND SIZE DOC TILE

ERDM 00c TILE To 0N DISK?

LINDD TILE NO

FROM STATE 7% III FIG. I75 TO STATE 720 III FIG. I75

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 14 of 39 , 5,263,136

TO STATE 700 IN FIGUA FROM STATE 7I6 [H FIG.l7A

‘IZO ‘

722 724 726

LOCK com? VERSION - YES UNLOCK Doc

0F Doc FILE ERROR? HANDLE END

725 ALLOC &LOCK CACHE
MEM FOR ONOO cow

0F COMP DATA

 750

ERROR?

732 “0'

COPY COMP DATA FROM

DOC TILE T0 UNOO TILE

734

UNLOCK COMP VERSION

OF DOC TILE

736

UNLOCK COMP VERSION

OF UHDO TILE

5y. I75

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16,1993 Sheet 15 of 39 5,263, 36

LoadTiff 1:19. I8
750

 READ fULL RES SUBIMAGE mFOKMATION

(IMAGE mom, HElGHT,Tl LE 512E, cmmfssmn,
KESOLUHON, ETC.)

LOAD TIFF

FOK REMAlNIHC-S YES SUBIMAGELOWER-RESOLUTION TILE mm
SUbIMA6E6 mm TILE

HEADERS

756

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

U.S. Patent Nov. 16, 1993 Sheet 16 of 39 APPf§E£l§6

LoadTiffTilesS’Td £17.19

780

START I424

782

READ NUMBER OF TILES IN SUBIMAGE

784

ALLOCATE TEMP BUFFERS FOR TILE MOOE, ERROR
OFFSET AHD bYTE COUNT mm

788

READ TLLE OFFSET AND BYTE COUNT

mFO FROM FTLE INTO BUFFERS

790

FILL IN TILE STORAGE MOOE LIST

(BLANK, COMP, UNCOMP)

42

STORE INFO IH SUBIMAGE
TILE HEADERS

TOO

END

’5

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 17 of 39 APPSEEIEJfiSIS

LoadSubImDiskCache 20
800 '

I425

804
802

ERROR
LOCK DOC HANDLE

6
832

HUM TILES III

FILE MATCHES

INTERNAL COUNT?

 SET

"LDADED"

FLAG

YES LOOP

FOR EACH FOR EACH SET "BLANK" FLAG

TILE RON TILE COLUMN AS AI’PROI’RIATE

834 LOOP 8L4
STORE FILE OFFSET

UNLOCK DOC HANDLE & BYTE COUNT IH

COMP TILE HANDLE

8

STORE mm m

UHCOMPTILE HAIIOLE

8

CREATE AN ALL '
FOREGROUHD TILE

82

TILE DATA

COMPRESSED?

HO 5

TILE DATA

UHCOMPRESSED?

H0 8

TILE ALL

FOREGROUHD?

no a

TILE ALL

BACKGROUND?

“0 830

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 ’ Sheet 18 of 39 Apfl'gifigé

'BeginUndoableRasOp 2]
840

START

LOOP 844

FOR EACH UNDO FREE MEMORY ASSOCIATED

REG‘ON IN LIST NITH UHDO REGION

END

842

8%

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16,1993 Sheet 19 of 39 Ap'flg’ifiga

850 Read RowTo Row fig. 22A

55g 554 ’r
REGION YES REPORT

OVE§RUH ERROR
' no ‘

858
OLD

RESULTS CARRIED

(NER T0 NEH

STRIP?

NO

864

COMPUTENUM BLANK LINES

YES TO GENERATE BEFORE NEXT

NON-BLANK LINE

NO

HKITE BLANK LINES T0 GJTFUT STRIP BUFFEK

870

FROM STATE

8% OUTPUT

H6 2 STKIF BUFFER
. 25 8% I

EN

.872 874 D
SET SCALER " FLU SH

BUFFER" FLAG

876 878

OUTSIDE IMAGE SUBSTITUTE BLANK TO STATE 894
OOUNDARIES LINE FOR INPUT IN FIG. ZZB

' ?

NO

TO STATE 880

IN FIG. 225

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

U.S.’ Patent Nov. 16, 1993 Sheet 20 of 39 5,263,136

ELTON STATE 87C IN FIG.ZZA Fig. 225
450

. a
RON 8° UNI’KESERVE 4‘28

coNTAINED IN No AND UNLUCK LUCK NEXT
CURRENTLY LOCKED CURRENTLY TILE RON

TILE RON LOCKED (EXPANDED FORM)

882

YES

884

SUBSTITUTE

POINTER T0

COMMON

BLANK TILE

COPY PIXELS FROM

IMAGE TILES TO

INPUT RON BUFFER

LOO?

890

7
mom STATES 7 DONE FOR EACH COPY PIXELS FROM IMASE
WIG- ZZA CLIP PAIR TILES T0 INPUT RON BUFFER

RUN INPUT RON 894
THROUGH SCALER

IF NECESSARY

8%

COPY SCALED

PIXELS To OUTPUT TO STATE 870
STRIP BUFFER IN FIS. 22A

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPE |

US. Patent Nov. 16, 1993 Sheet 21 of 39 5,£|&,)i§6

NriieRowTo Row 25A
900

fl

902

man Yes REPORT
OVEKRUN ? ERROR

H0
908 9|0

FOR EACH INPUT SCALE INPUT [NA

RON IN 1/0 BUFFER TOTEM? BUFFER

12940 9

cm
RON PR700UCED

YES

954,
9'4 FROM STATE 938

FOR acncowor "me-255
SCALED Row T0 anE

LOO?

916:

920 -
DESTINATI !

UNPRESERVEAHD Rowmmx OUTSIDE

mom OLD TILERDN CU? BOgMDkKIES

9'8 10 STATE 930
IN FIG.255

055T
Row M CURREHTL

LOCKED TiLE

'N ?

 YES

Unrnrsewe
LON RES TILES

NO LONGER NEEDED
LOCK HEN

“LE ROW

72 8 906

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov.16,1993 Sheet 22 of 39 APPEEIEE‘ISG

FROM STATE 918, 928 'TH H6. 25A

930

POLYGONAL

CLIP?PIN6 932
COMPUTE CLIP POTNTS

FOR CURRENT RON

938

COFY YTXELS FROM

SEALER OUTPUT SUFFEK

TO TMAGE RON

934

FOR EACH PAIR

OF CLIP POINTS

COPY T’TXELS FROM

SCALEK OUTPUT BUFFER

TO IMAGE RON BETWEEN

CUP POINTS

LOOP

 TO STATE 914

TH FTG.Z3A

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 23 of 39 5,263, 36

End ImageAccess 129.24
418 1 950

START

952

CLEAN~UP AFTER RON/COL '
ACCESS FUNCTIONS

954

"UNLOCK" LAST RON/COL

OF TILES ACCESSED

956

"UNPRESERVE" ANY TlLES

IN REGION THAT

ARE STlLL PRESERVED

958

CLEAN-UP AFTER FOLYEONAL

CLIPPING ROUTINES IF NECESSARY

960

FREE SEALER EUEFERS,

TEMP TILE DTRECTORY, ETC.

‘ u I, 962
UNLOCK DOC HANDLE

964
FREE MEMORY USED FOR

ACCESS__CONTEXT lTSELF

END 7%

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 24 of 39 5,263,136

UndoPreviousRDSOP 25A

970 [420.
972

UNDO no ' 974
REGIONS ENDmm -

YES ‘ 978
FROM

_ 980

STATE 1016 FOR EACH 01100 LOCK AFFECTED SAVE CURRENT DOC

F1G.ZSA REGION 111 1151 D06 11111101: 10501019 mA“uADD-DADD“

986 LOOP 904 982'

FOR EACH TILE . FOR EACH 111E 111VAL1DATE AfFECTEDTHES
COLIN 1001011 00101111001011 111 101150-1153 SUBIMAGES

LOOP

988 1014

DISCARD Docmt UNLOCK DOC

lMAGEDATA HANDLE

990 1010
MAR 01100 FREE MEM

1115mm T1LE LOADED ASSOCIATED

LOADED" 7 111111 00100

YES 994 HEADER

MARK DOC

1111:“100010'

FROM sTATE973,1002,1000, 10511015990 1050115 970

1:16.255 1010,1012 110.255 F1G.ZSA

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

. i APPENDIX C
US. Patent Nov. 16,1993 Sheet 25 of 39 5,263,136

fig.255

mm STATE 774 TOSTATE986
macs. 25A m FIG.25A

UNDO

TILE BLANK

UNDO

TILE COMP DATA

ON DISK ?

COPY COMP DATA DISK

LOC AND SIZE INFO

TO DOC TILE

I006

COPY UIICOM? DATA

DISK LOC AND SIZE

INTO TO DOC TILE

STORE POINTER T0 unoo

UNCDMI’ DATA IN Doc

TILE HEADER

TILE UNCOMT’ MTA

III CACHE ?

STOKE POINTER T0

UNDO COM? DATA IN

DOC 'flLE HEADER

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 26 of 39 5,263,136

End Cache Manager fig. 26
1020

IOZZ

COMPRESSION

BUFFER

[024

IOZé

FREE

TILE CACHE

MEMORY

1028

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

US. Patent Nov. 16, 1993 Sheet 27 of 39 5,263,136

EpriIeLock [LL/.27
I040

 I044 LOOP

[042 L00?

FOR EACH TILE

RDNTO BE

LOCKED

FOR EACH

TILE COLUMN TO

BE LOCKED

434
 N0

ACTION LOCK

UNCONPRESSED

VERSION OF TILE

ERROR ?

, YES

UNLOCK PREVIOUSLY

LOCKED TILES

450

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

' N

US. Patent Nov. 16, 1993 Sheet 28 of 39 5,263,136

Lock Epoandle 28
1060

1062 436 10%

_ TILE no CREATETILEfKOMLogDED" HIGHER-RES TILES
E5 ' noY

 l070

uncoM-

FRESSED VERSION

OF TILE IN

CACHE

YES

YES

READ UH COMP

FROM 015K

440

CREATE ma FROM

m4 COMPRESSEDVERSION

ERROR? YES

l080

UNCOMP no ‘

VERSIOPJR VALID
YES ' I082 m4 9ng

INCREMENT UHCOMP LOCKED rm YES STATUSFIAB
LOCK COUNT wmmo ?

‘ NO INVALIDATE
DlSK‘KESlDENT

UNCOM? VERSION

\092

MOVE TO fKONT 0F UHCOMP

“LEMOST KHle USED LIST

I090

INVALIDATEE. FREE

COMPRESSED VERSION

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

P

US. Patent Nov. 16, 1993 Sheet 29 of 39 5,263, 36

~ExpTileUnlock 29

“00 [450
“OZ LOOP “04 LOO? 452

WK EACH, RUN FOR EACH TILE UNLOCK UHCUHPRESSED

T0 UNBLOCK COLUMN TO UHBLOCK VERSION OF TILE
“08

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

‘ APPENDIX C

US. Patent Nov.16, 1993 Sheet 30 of 39 5,263,136

Unlock Epoand\e _ 50

mo X452
m2

 UHCOMP

VERS|0H7L0CKED
YES

‘ DECREMEHT

LOCK coum

“,8 uzo

UPDATE YES UPDATE CORRESPONDING

OVERYPIENS- LON-RES TILES I
H22 “24

TILE “

Locmyflbo YES CLEAR CACHE COLLECTIONDELAY ELAG"

H0

H0

FREE

UHCOMP YES

TILE

VERSION

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent

IISZ

ALLOCATE I’EHIRY

EOK IMCONP

LON-RESTILE

RESOLUTION SUB-

IMAGEIPEXISTS

 LOCATE THE FOUR

HIGHER'RES TILES

THAT RBUCE TOTHIS TILE

EOREACH OF FOUR COI’Y.HI'KES TIIE

HI-KES TILES TO LON'KES TILE

APPENDIX C

Nov. 16, 1993 Sheet 31 of 39 5,263,136

LoadSubImTiIe figs:
“40

HIGHER

 CREATEHI-RES

TILE FROM

HIGHER-RES

TILES

(RECURSIOH)

CREATE CCNI’KESSED LON-RES

TILE DIRECTLY TRON (MPKESSED

HI‘KES TILES

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 32 of 39 APPE52§EIS6

AIIocEpoandIe £9.32

 EREECACHE

 UNCOMPRESSED YES

CACHE USAGE LIMIT MEQEEFI‘NGDY
EXCEEDED? . UNCOMP TILES

 UNCOMPRESSED

CACHE USAGE LIMIT STILL

EXCEEDED?

YES

YES

SET "CACHE PRINT

COLLECTION NARNING

DELAY ELAG“ MESSAGE

I200

AVAILABLE IN CACHE “95
RESERVE LIST

?

MEMORY

AVAILABLE IN CACHE

RESERgE LIST

COLLECT EREE CACHE

MEMORY BY EREEING

COMPRESSED AND

UNCOMP TILES

N0

EIND EREE BLOCK UHLIIIK EREE GLOEK INITIALIZE PRINT "CACHE

NITH HIGHEST EROM LINKED LIST EREE BLOCK TO OVERELOATERROR

MEMORY ADDRESS ALL ZEROS MESSAGE

IZIG IZI4

STORE MEMORY UPDATE TOTAL MOVE TO fRONT OF

ADDRESS IN UNCOMP CACHE "MOST RECENTLY

TILE HEADER MEMORY USAGE USED“ BLOCK

1204

Microsoft Corp. Exhibit 1005'

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 33 of 39 Apgafigfi§6

ExpandTile 35

IZZO ’7'440

{224

 UMD

COMPRESSED no COMPRESSED
VERSION m CACHE VERSION

? FROM DISK
MO

mso

~ LOCK THE COMPRESSED

TOEOOOEOMO

ALLOEME a LOER CACHE MEMORY FOR

THE UHCOMPKESSED OLE DATA

[234

UNLOCK COMPRESSED

TILE WA

UNCOMFRESS THE TILE

WA INTO THE NEWLY

ALLOCATED MEMORY BLOCK

|Z44

UNLOCK COMPRESSEDAND

UNCOMPRESSED “LE DATA

1242

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

C

US. Patent Nov. 16, 1993 Sheet 34 of 39 5,263,136

Comp CopgToOvieuJ 34
1250 [44.7.

LOOP

LOOP

'EOR EACH OE FOUR UNLOCK COMP

Hl—RES TILES VERSiON OF THE

IZGO

ALLOCATE & LOCK SPACE FOR

COMPRESSED LON~RES TlLE VERS|ON

1265

I270

COPY COMPRESSED DATA TO

ALLOCATED SPACE

I272

UNLOCK COMPRESSED

VERSION OF LON'RES OLE

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 35 of 39 5,263, 36

Copg IiIeTo Oview Fig. 55

I260

1444
I284 1282 ,

YES LOCK UNCOMP VERSION

 NO

UNLOEK LAST

LON-RES TILE

I286

DONE

 EOR NUMBER OF SUDIMAGE

LEVELS TO UPDATE

DETERMINE TILE INDEX AT THIS

SUBIMAGE LEVEL TO BE UPDATED

I292

LO-RES

TILE LOADED ?

YES

LOCK UNEOHP VERSION

OF LON'RE'S TILE

' SCALE MODIFIED REGION

[286 EROM III—RES TO LON-RES TILE

UNLOCK

I-II-RES TILE

I304

LO- RES TILE DECOMES III-RES

TILE FOR NEXT ITERATION

Microsoft Corp. Exhibit 1005

INVALIDATE ALL LONER-

RESOLUTION TILES

AFFECTED BY

MODIFICATION

END

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent - Nov. 16, 1993 Sheet 36 of 39 APW5§6

CoIIecI Free Cache E36A

mo

ISIZ

4%
/

 YES COLLECTION

IN PROGRESS

I TO STATE

I358camw I
NEMOLOCKLARGE I IN Hews

mousmosmsw I326 I
REQUEST? REDUCE TOTAL I

no I334 CACHE USAGE I
I _____ _ _..J

FREE UNLOCKED UNCONP

BLANK TILES

I356 TO STATE I342

REQUEST IN FIG. 365

SATISFIED

?

N0 I338 N0
I340

FREE UNLOCKED UNI’RESERVED UNCONI’RESSEO REQUEST

SATI3EIEDTILES THAT HAVE VALID COMPRESSED VERSIONS IN

CACHEOR ON DISK OR VALID UNCONP VERSION ONOISK

YES

END

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 V Sheet 37 of 39 Apgafi'fifi

FROM STATE l340 Il‘l FI6.36A [79.363
1542 B44

COMPRESSJHEN FREE UNLOCKED,

UHPRESERVED moon? TTEEs THAT YES
non'T HAVE VAUDCOMF VERSTONS '

B48

FREE UNLOCKED, PRESERVED UHCOMP REQUEST
TTTEs THAT HAVE VALID COMPRESSED SATISFIED 7

, or< DISK-BASED UNCOMP cums '

I352 '

COMPRESS, TUEn FREE UNLOCKED REQUEST
PRESERVED unconv TUEs THAT 5mm?
UUTTTTUVE VALID con? VERSIONS -

mom STATE T528 '35"

m FIG. 56A YES REDUCE
TOTALCACHE

B58 USAGE?
fREE & COMPRESSED TTLEs TH
CACHE THAT HAVE VALID DISK-

RESIDENT COPIES.

I360

REQUEST

SATISFIED?

1562

PRINT ERROR MESSAGE

END

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16,1993 Sheet 38 of 39 APPEB§§§§6

Free EpoandIe 37
I580

4481‘

I384

RRLHT

WARNING

MESSAGE

IIIICMP

VERSION STILL

LOCKED 7

UHLOI’IP.

ALREADY fREEO

?

N I390O

UHLII‘IK FROM MOST-RECENTLY-

USEO LIST

I592

UPDATE TOTAL UNCOMP

MEMORY USAGE COUNTER

MOVE MEMORY BLOCK TO

UNCOMI’KESSED EREE LIST

SORTED bY OECREASING ADDRESS

SET POINTER m TILE HEADER

To "HULL" RAD RESET UIICOMP

TILE STATUS FLAGS

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

US. Patent Nov. 16, 1993 Sheet 39 of 39 Appbfygfi§6

CompressTiIe fig.38

I400

x450

I402 I404

I406

unconv Ho LOAD unconp YES

TILEDAIAIIICACIIE DATA I‘ROM DISK ERROR? .

HIO
LOCK UNCOMP

TILE DATA

I4I4 m4,- I4I8

COMPRESS IMAGE DATA ERROR? UNLOCK UNCOHP
INTO COMMON BUFFER ' TILE

I420

ALLOCATE & LOCK

CACHE SPACE FOR

COMP TILE DATA

COPY COMP DATA

fRDM COMMON BUFFER

T0 HEN CACHE HEM BLOCK

UNLOCK COMP &UNCOMP

TILE DATA

EI’ID

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
1

SYSTEM FOR MANAGING TILED IMAGES USING
MULTIPLE RESOLUTIONS

MICROFICHE APPENDIX

A microfiche appendix containing computer source
code is attached. The microfiche appendix comprises
one (1) sheet of microfiche having 74 frames.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to memory manage-
ment systems and, more particularly, to the memory
management of large digital images.

2. Description of the Prior Art
The present invention comprises a memory manage-

ment system for large digital images. These digital, or
raster, images are made up of a matrix of individually
addressable pixels, which are ultimately represented
inside of a computer as bit-maps. Large digital images,
such as those associated with engineering drawings,
topographic maps, satellite images, and the like, are
often manipulated by a computer for the purpose of
viewing or editing by a user. The size of, such images
are often on the order of tens and even hundreds of

Megabytes. .Given the current cost of semiconductor
memory it is economically impracticable to dedicate a
random access memory (RAM) to storing even a single
large digital image (hereinafter just referred to as a
“digital image”). Thus, the image is usually stored on a
slower, secondary storage medium such as a magnetic
disk, and only the sections being used are copied into
main memory (also called RAM memory).

However, as is well known by users of computer
aided design (“CAD”) systems, a simplistic memory
transfer scheme will cause degraded performance dur-
ing many typical operations, including zooming or pan-
ning. Essentially, during such operations, the computer
cannot transfer data between disk and main memory
fast enough so that the user must wait for a video dis-
play to be refreshed. Clearly, these periods of waiting
on memory transfers are wasteful of engineering time.

Presently, to enhance main memory storage of only
relevant sections of a digital image, the image is logi-
cally segmented into rectangular regions called “tiles”.
Two currently preferred standards for segmenting an
image into tiles are promulgated by the Computer
Aided Logistics Support (CALS) organization of the
United States government (termed the “CALS stan-
dard” herein) and by Aldus Corporation of Seattle,
Washington, as defined in the Tagged Image Format
File (TIFF) definition (e.g., “TIFF Specification, Revi-
sion 5.0, Appendix L). Among other tile sizes, both
standards define a square tile having dimensions of
512x 512 pixels. Thus, if each pixel requires one byte of
storage, the storage of one such tile would require a
minimum of 256 kilobytes of memory.

Others, such as Thayer, et al. (US. Pat. No.
4,965,751) and Sawada, et al. (US. Pat. No. 4,920,504)
have discussed tiling or blocking a memory. However,
such computer hardware is generally associated with a
graphics board for improving the speed of pixel trans-
fers between a frame buffer and a video display by
addressing a group of pixels simultaneously. These sys-
tems have no relationship to tiling of the image itself
and thus do not require knowledge of image size. Tiling
has also been used to refer to polygon filling as in Dal-

10

15

20

25

30

35

40

45

50

55

60

65

2

rymple, et al. (US. Pat. No. 4,951,230), which is unre-
lated to the notion of tiling discussed herein.

The patent to Ewart (US Pat. No. 4,878,183) dis-
cusses interlaced cells, each cell containing one or more
pixels, for storing continuous tone images such as pho-
tographs. The variable size cells are used to vary the
resolution of an image according to a distance which is
to be perceived by a user. However, the Ewart disclo-
sure does not discuss rasterized binary images contain-
ing line drawings, nor does Ewart discuss virtual mem-
ory management for modifying or editing images, as
will be more fully discussed below.

Even when stored in a mass storage system, an image
library, containing a number of digital images, will con-
sume disk space very quickly. Furthermore, “raw”
digital images are generally too large to transfer from
mass storage to portable floppy disks, or between com-
puter systems (by telephone, for example), in a timely
and inexpensive manner unless some means is used to
reduce the size of the image. Hence, users of binary
images employ image compression techniques to im-
prove storage and transfer efficiencies. One existing
compression standard applicable to facsimile transmis-
sion, CCITT Group IV, or T6 compression, is now
being used for digital images. Like many other compres-
sion techniques, however, the CCITT standard uses
statistical techniques to compress data and, hence, it
does not always produce a compressed image that is
smaller than the original, uncompressed image. That
means that image libraries will often contain a mix of
compressed and uncompressed binary images. Similar
compression standards exist for color and gray-scale
images such as those promulgated by the JPEG (Joint
Photog. Exp. Group) Standards Committee of the
CCITT as SGV III Draft Standard.

At the present time, digital images are typically
viewed and modified with an image editor using an
off-the-shelf computer workstation. These workstations
usually come with a sophisticated operating system,
such as UNIX, that employs a virtual memory to effec-
tively manage memory accesses in secondary and main
memories. In an operating system having virtual mem-
ory, the data that represents the executable instructions
for a program or the variables used by that program do
not need to reside entirely in main memory. Instead, the
operating system brings portions of the program into
main memory only as needed. (The data that is not
stored in main memory being stored on magnetic disk or
other like nonvolatile memory.) The address space that
is available to any one application program is generally
managed in blocks ofconvenient sizes called “pages” or
“segments”.

In general, a virtual memory system allows applica-
tion programs to be written and executed without con-
cern for the management of virtual memory carried out
by the operating system. Thus, independence of the size
of main memory is achieved by creating a “virtua ”
address space for the program. The operating system
translates virtual addresses into physical addresses (in a
main or cache memory) with the aid of an “address
translation table”. This table contains one entry per
virtual memory segment of status information. For in-
stance, segment status will commonly include informa-
tion about whether a segment is currently in main mem-
ory, when a segment was last used, a disk address at
which the disk copy of the segment resides, and a RAM
address at which the segment resides (only valid if the
segment is currently loaded in main memory).

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
3

When the program attempts to access data in a seg-
ment that is not currently resident in main memory, the
operating system reads the segment from disk into main
memory. The operating system may need to discard
another segment to make room for the new one (by
overwriting the area of main memory occupied by the
old segment), so some method of determining which
segment to discard is required. Usually the method is to
discard the least recently used segment. If the discarded
segment was modified then it must be written back to
disk. The operating system completes the “swap” oper-
ation by updating the address translation table entries of
the new and discarded segments.

In summary, the conventional memory management
schemes consider data to be in one of two states: resi-

dent or not resident in main memory. Which segments
are stored in main memory at any given time is gener-
ally determined only by past usage, with no way of
predicting future memory demands. For instance, just
because a segment is the least recently used does not
mean that it will not be used at the very next memory
access.

However, the management of virtual memory for
images departs significantly from conventional virtual
memory schemes because images and computer pro-
grams are accessed in very different ways. Computer
programs tend to access one small neighborhood of
virtual address, and then jump to some distant, essen-
tially random, location. However, during normal image
processing operations an image is accessed in one of a
finite set of predictable patterns. It is not Surprising then
that conventional memory management systems can
significantly degrade performance when used in image
processing applications by applying inappropriate, mem-
ory management rules. Rules which should be abided
by a memory management system for large digital im-
ages are the following:

1. Image memory must be managed as rectangular
image regions (called “tiles”), not as linear memory
address ranges.

2. An image tile can exist in five forms: uncompressed
memory-resident, compressed memory-resident, un-
compressed disk-resident, compressed disk-resident and
“can be derived from other available image tiles”, in
contrast to the two basic forms of memory-resident and
disk-resident available in conventional virtual memory
schemes.

3. The image region that will be affected by a particu-
lar image processing operation is known before the
operation begins, and that information can be conveyed
to the memory manager.

4. An image memory manager must be tunable to
different system capabilities and image types. For exam-
ple, many computers can decompress a tile of binary
data much faster that they can retrieve the uncom-
pressed version of the same tile from disk. On the other
hand, some images cannot be compressed at all.

5. An image memory management system should
support the capability to “undo” editing operations
which is built into the memory manager for optimal
performance and ease of use. Thus, the memory man-
ager could easily save copies of the compressed tiles in
the afi'ected region, and quickly restore the image to the
original state by simply modifying the tile directory
entries to point to the old version.

Reader, et a1., (“Address Generation and Memory
Management for Memory Centered Image Processing
Systems”, SPIE, Vol. 757, Methods for Handling and

10

15

20

25

3O

35

45

50

55

65

4

Processing Imagery, 1987) discuss a primitive memory
management system for images. However, in that sys-
tem, image tiles are only stored in memory and not on
disk. Furthermore, in the Reader, et al., system, there is
no capability to handle images in compressed form, nor
is there any discussion of “undoing” editing operations.

Consequently, a need exists for an image memory
management system that provides: linkages with a ras-
ter image editor which includes modify and undo opera-
tions, true virtual memory for large images specifying
locations on disk and in memory, simultaneous handling
of compressed and uncompressed images, and a method
for rapidly constructing reduced resolution views of the
image for display. The latter need is particularly impor-
tant when viewing a large image reduced to fit on a
video display.

SUMMARY OF THE INVENTION

The above-mentioned needs are satisfied by the pres-
ent invention which includes a memory management
system for tiled images. The memory management sys-
tem includes a tile manager for maintaining a virtual
memory comprising a main memory and a secondary
memory such as a disk. The tiled images may include
tiles in compressed or uncompressed form.

The tile manager selects the form of image tile that
most appropriately matches a request. Each tile of an
image may exist in one or more of five different forms,
or states, as follows: uncompressed and resident in the
image data cache, compressed and resident in the image
data cache, uncompressed and resident on disk, com-
pressed and resident on disk and not loaded but re-creat-
able using data from higher-resolution image tiles.

An image stack having successively lower-resolution
subimages is constructed from a full resolution source
image. The lower-resolution images in the image stack
may be used to enhance such standard image accesses as
zooming and panning where high speed image reduc-
tion is advantageous.

The image memory management system provides
linkages with image processing applications that facili-
tate image modifications. The tile manager need only
store compressed tiles that relate to so-called undoable
operations.

These and other objects and features of the present
invention will become more fully apparent from the
following description and appended claims taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an image stack com-
prising full, half, quarter and eighth resolution tiled
images;

FIG. 2 is a full resolution image of a mechanical part;
FIG. 3 is a half resolution image of the mechanical

part shown in FIG. 2; '
FIG. 4 is a quarter resolution image of the mechanical

part shown in FIG. 2;
FIG. 5 is an eighth resolution image of the mechani-

cal part shown in FIG. 2;
FIG. 6 is a block diagram showing one preferred

embodiment of a computer system that includes the
present invention;

FIG. 7 is a memory map showing the general ar-
rangement of cache memory according to the present
invention;

Microsoft Corp. Exhibit 1005'

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
5

FIG. 8 is a state diagram defining the flow of tile data
between different storage states according to the pres-
ent invention;

FIGS. 9A and B are a diagram of one preferred data
structure defining document information according to
the present invention;

FIG. 10 is a diagram of one preferred data structure
defining a tile header for maintaining the status of com-
pressed or uncompressed tiles;

FIG. 11 is a diagram of a partial calling hierarchy for
the various functions of the presently preferred embodi-
ment of the tile manager of the present invention;

FIG. 12 is a flow diagram of one preferred embodi~
ment of the tile manager;

FIG. 13 is a flow diagram defining the "initialize
cache manager” function referred to in the flow dia-
gram of FIG. 12;

FIG. 14 is a state diagram of the locking and unlock

10

15

ing of a memory, state, according to the present inven- .
tion;

FIGS. 15A, 15B, and ISC are a flow diagram defining
the “create image access context” function referred to
in FIG. 12;

FIG. 16 is a diagram, of a data structure defining the
access context referred to in FIGS. 15A,B;

FIGS. 17A and 17B are a flow diagram defining the
“save region for undo” function referred to in FIG.
153;

FIG. 18 is a flow diagram defining the “load tiled
raster image” function referred to in FIG. 12;

FIG. 19 is a flow diagram defining the “load TIFF
subimage tile information into tile headers” function
referred to in FIG. 18;

FIG. 20 is a flow diagram defining a “store tile info in
tile headers” function referred to in FIG. 12;

FIG. 21 is a flow diagram defining the “begin undoa-
ble raster operation” function referred to in FIG. 12;

FIGS. 22A and 22B are a flow diagram defining the
“read rows from region” function referred to in FIG.
12;

FIGS. 23A and 23B are a flow diagram defining the
“write rows to region" function referred to in FIG. 12;

FIG. 24 is a flow diagram defining the “close image
access context” function referred to in FIG. 12;

FIGS. 25A and 25B are a flow diagram defining the
“undo previous raster operations” function referred to
in FIG. 12;

FIG. 26 is a flow diagram defining the “quit cache
manager” function referred to in FIG. 12;

FIG. 27 is a flow diagram defining the “lock ex-
panded image tile group" function referred to in FIG.
22A;

FIG. 28 is a flow diagram defining the “lock ex-
panded tile” function referred to in FIG. 27; .

FIG. 29 is a flow diagram defining the “unlock ex-
panded image tile group” function referred to in FIG.
27;

FIG. 30 is a flow diagram defining the “unlock ex-
panded tile” function referred to in FIG. 29;

FIG. 31 is a flow diagram defining the “create tile
from higher-resolution tiles” function referred to in
FIG. 28;

FIG. 32 is a flow diagram defining the “allocate space
for uncompressed version of tile” function referred to in
FIG. 28;

FIG. 33 is a flow diagram defining the “create un-
compressed version of tile from compressed version”
function referred to in FIG. 28; ‘

20

25

30

35

45

50

55

6

’ FIG. 34 is a flow diagram defining the “create com-
pressed low resolution tile from compressed higher-
resolution tiles” function referred to in FIG. 31;

FIG. 35 is a flow diagram defining the “capy uncom-
pressed high resolution tile to uncompressed low reso-
lution tiles” function referred to in FIG. 31;

FIGS. 36A and 36B are a flow diagram defining the
“collect freeable cache memory” function referred to in
FIG. 32;.

FIG. 37 is a flow diagram defining the “free uncom-
pressed version of tile” function referred to in FIGS.
36A,B; and

FIG. 38 is a flow diagram defining the “create com-
pressed version of tile from uncompressed version”
functionreferred to in FIG. 17B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference is now made to the drawings wherein like
parts are designated with like numerals throughout.

FIG. 1 illustrates an image stack, generally indicated
at 100. The design of the image stack 100 is based on the
idea that image memory can be managed as small square
regions, called tiles, that are mostly independent of one
another. In general, a tile may be either uncompressed
(also termed expanded) or compressed. While the basic
uncompressed tile size could be a variable, it is presently
preferred to be fixed at 32 kilobytes, or 512 pixels by 512
pixels to conform with the Computer Aided Logistics
Support (CALS) raster file format standard for binary
images. (Note that the present invention allows binary
and color images to coexist in a common image memory
management system.)

In order to compensate for lower performance ex-
pected with a virtual memory management system for
images, particularly when reducing large portions (by
combining pixels) of the image for display, the present
invention automatically maintains a series of reduced
resolution copies, called subimages, of the full resolu-
tion image. Preferably, the resolution (i.e., pixels per
inch) of each subimage is reduced by exactly half rela-
tive to the next higher-resolution subimage. Thus, the
image stack 100 can be visualizing as an inverted
pyramid, wherein the images can be stacked beginning
with a full resolution subimage (or image) 102 at the
top, followed by a half resolution subimage 104, then a
quarter resolution subimage 106, and an eighth resolu-
tion subimage 108. (In FIG. 1, the subimages 102—108
are outlined by bolded lines.)

The subimages 102, 104, 106, 108 are superimposed
on a set of tiled subimages 110a, 110b, 110e, 1100’, re-
spectively, defining sets of tiles. The extent of the image
stack 100 ends at the resolution that allows the entire

subimage to be stored within a single tile 108 (prefera-
bly 512x512 pixels square). Each lower-resolution
subimage 104—108 is a faithful representation of the full
resolution subimage 102 at all times, with the exception
of certain times during operations that modify the ap-
pearance of the full resolution subimage 102.

FIG. 2 illustrates an 8i">< 11", A-size mechanical

drawing (to scale) as the full resolution subimage 102
showing a mechanical part 120a. Ofcourse, other larger
drawings such as, for example, D-size and E-size may be
used by the present invention. Also, other image pro-
cessing applications besides mechanical drawings may
be used with the present invention including electrical
schematics, topographical maps, satellite images, hea-

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
7

ting/ventilating/air conditioning (HVAC) drawings,
and the like.

FIG. 3 illustrates the corresponding half resolution
subimage 104 showing the half resolution part 12%.
FIG. 4 illustrates the corresponding quarter resolution
subimage 106 showing the quarter resolution part 120v.
Lastly, FIG. 5 illustrates an eighth resolution subimage
108 showing the eighth resolution part 120d. In the
preferred embodiment, reduced resolution subimages
can be used any time that a reduction factor of 2:1 or
higher would be used to scale a region of interest in the
full resolution subimage 102 for display, plotting or
copying-

The subimages 102-108 can be loaded from a source
image file, if they exist, or they can be created on de-
mand by the image memory management system of the
present invention. The present invention includes edit-
ing capabilities that allow a user to trade off between
“quick flas ” pan/zoom performance and file size as
measured by the number of reduced resolution subim-
ages stored with each image. Depending on the applica-
tion, the user will normally opt to store one or more
reduced resolution subimages with each source image
file.

The lower-resolution subimages, for example, subim-
ages 104—108, are utilized by the image memory man-
agement system to produce the illusion of instant access
to any region of the image at any scale factor (not just
the scale factor of the overview subimage). Increasing
the number of lower-resolution subimages gives a
higher quality “first flash” image during panning and
zooming and reduces the time to get the final version of
the image to the screen.

FIG. 6 illustrates a computer workstation generally
indicated at 150 which is representative of the type of
computer that is used with the present invention. The
workstation 150 comprises a computer 152, a color
monitor 154, a mouse 156, a keyboard 158, a floppy disk
drive 160, a hard disk drive 162 and an Ethernet com-

munications port 164. The computer 152 includes a
motherboard bus 166 and an I/O bus 168. The I/O bus

168, in one preferred embodiment, is an IBM PC/AT ®
bus, also known as an Industry Standard Architecture
(ISA) bus. The two buses 166, 168 are electrically con-
nected by an I/O bus interface and controller 170.

The I/O bus 168 provides an electromechanical com-
munication path for a number of I/O circuits. For exam-
ple, a graphics display controller 172 connects the mon-
itor 154 to the I/O bus 168. In the presently preferred
embodiment, the monitor 154 is a 19-inch color monitor

having a 1,024x 768 pixel resolution. A serial communi-
cations controller 174 connects the mouse 156 to the

I/O bus 168. The mouse 156 is used to “pick” an image
entity displayed on the monitor 154.

The I/O bus 168 also supports the hard disk drive
162, and the Ethernet communications port 164. A hard
disk controller 176 connects the hard disk drive 162 to

the I/O bus 168. The hard disk drive 162, in one possible
configuration of the workstation generally indicated at
150, stores 60 megabytes of data. An Ethernet commu-
nications controller 178 connects an Ethernet communi-

cations port 164 with the I/O bus 168. The Ethernet
communications controller 178 supports the industry
standard communications protocol TCP/IP which in-
cludes FTP and Telnet functions. The Ethernet com-

munications port 164 of the preferred embodiment al-
lows the Workstation 150 to be connected to a network

10

15

20

25

30

35

4s

50

55

65

8

which may include, among other things, a document
scanner (not shown) and a print server (not shown).

The motherboard bus 166 also supports certain basic
I/O peripherals. For example, the motherboard bus 166
is connected to a keyboard and floppy disk controller
180 which supports the keyboard 158 and the floppy
disk drive 160. The floppy disk drive 160, in one present
configuration, can access floppy disks which store up to
1.2 megabytes of data.

The fundamental processing components of the com-
puter 152 are a microprocessor 182 such as, for example,
an 80386 microprocessor manufactured by Intel, a math
coprocessor 184 such as, for example, a 80387 math
coprocessor also manufactured by Intel and a main
memory generally indicated at 186 comprising, for ex-
ample, 4 megabytes of random access memory (RAM).
The main memory 186 is used to store certain computer
software including a Unix compatible operating system
188 such as, for example, SCO Xenix licensed by Santa
Cruz Operation of Santa Cruz, California, a subsidiary
of Microsoft Corporation, an image processing applica-
tion 190, a tile manager 192, and an image data cache
194. The image processing application 190 includes
editing functions such as zoom and pan.

Another presently preferred computer workstation
150 having somewhat different processing components
from those just described is available from Sun Mi-
crosystems, Inc. of Mountain View, California, under
the tradename “SPARCstation 1”. In such an embodi-

ment, the UNIX compatible operating system would be
licensed directly from Sun.

Although a representative workstation has been
shown and described, one skilled in the applicable tech-
nology will understand that many other computer and
workstation configurations are available to support the
present invention.

FIG. 7 illustrates a representative configuration of
the image data cache 194 some time after the tile man-
ager 192 (FIG. 6) begins operation. A set of compressed
tiles 222 are kept at the low addresses of the image data
cache 194, and a set ofuncompressed (or expanded) tiles
224 at the high addresses of the image data cache 194.
The terms expanded or uncompressed are used inter-
changeably. In between the two sets of tiles 222, 224 is
a reserved area 226 (free cache memory). As the opera-
tion of the tile manager 192 continues, the image data
cache 194 becomes more unordered. As the cache re-

quirement for compressed or uncompressed tiles in-
creases, each set of tiles 222, 224 approach the reserve
area 226 from each end. In fact, the reserve area 226 can
become completely exhausted.

Since the memory management schemes that apply to
compressed data allocation are very different from that
of uncompressed data, it is desirable to keep the two sets
of tiles 222, 224 separate. Compressed tiles are variable
sized tiles (blocks of memory) 222a, b, c,d,e,fwhereas the
uncompressed tiles are all fixed sized tiles 224a,b,c,d and
therefore the locations of the fixed sized tiles 224 are

interchangeable. Linked lists of allocated memory are
kept sorted according to size and address for com-
pressed tiles. The number of linked lists is a variable
number but presently there are about 64 different size
categories for compressed tiles and only one size cate-
gory for uncompressed tiles (for binary images).

To use the image data cache 194, the memory man-
agement functions begin by determining how much fast
memory (RAM) and slow memory (disk or host mem-
ory) is available for image memory uses. When an image

Microsoft Corp. (Exhibit 1005'

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
9

is loaded, the system allocates memory for, image infor-
mation and related tile directory structures. Cache man-
agement parameters are modified as necessary to bal-
ance the requirements for expanded tile and compressed
tile cache memory. The expanded tile cache memory
pool and the compressed tile cache memory pool allow
tiles from different images to intermingle. Expanded
and compressed tiles are kept in separate areas as much
as possible so that memory allocation can be optimized
for each of two different situations (i.e., fixed allocation
block size versus variable size). However, the storage
ranges of compressed and expanded tiles are allowed to
mingle so as to maximize the flexibility of the cache
usage.

FIG. 8 is a state diagram illustrating the flow ofimage
data or tiles between different storage states 250. A tile
can contain data in one or more of five states or forms

as illustrated by ovals in FIG. 8. The possible forms are:
uncompressed and resident in cache memory (state
252); compressed and resident in cache memory (state
256); uncompressed and resident on disk (state 268);
compressed and resident on disk (state 262); “not
loaded” but re-creatable using information from higher-
resolution image tiles (state 272).

For most image access operations, the image data
must be uncompressed and resident in cache memory
252. HoweVer, that form consumes the most cache
memory of any of the five forms. Therefore, a primary
function of the tile manager 192 is to transform image
tile data between state 252 and the other states which

consume less (in the case of state 256) or no cache mem-
ory whatsoever (in the cases of states 268, 262 and 272).

The eight transformation operations, shown in square
boxes in FIG. 8, constitute the main computational
operations associated with managing image memory.
The operation. “load compressed tile image data from
disk into cache memory” 264 is typically the first opera—
tion performed on a tile because most pre-scanned im-
ages are stored in compressed form in disk files. (A
discussion of this “virtual loading” is provided herein-
below.) The load operation 264 is performed by the
Load CompFromDisk function which simply copies
data from the disk into cache memory. The disk loca-
tion and number of bytes to read is stored in the tile
header fields 368 and 376 shown in FIG. 10.

The function LoadCompFromDisk is normally used
by the function LockCompHandle when the tile man-
ager 192 needs to access the compressed form of data
associated with a tile. LockCompHandle is analogous to
LockEpoandle, described in FIG. 28. The LockCom-
pI-Iandle function is also included in source code form in
the Microfiche Appendix, in the file tilealloc.c.

Compressed data in cache 256 can be written back to
the disk by the operation 260. This is the reverse of the
LoadCompFromDisk function. The present embodi~
ment is capable of writing to disk in a wide variety of
file formats. One skilled in the art can easily create a
function to perform this task.

Compressed data in cache can be uncompressed (also
termed “expanded") into another region of cache mem-
ory by the expand operation 258. The expand operation
258 is controlled by the “Expand Tile” function 440
which is described with respect to FIG. 33. The method
of image compression varies according to image type
(e.g. binary, 8-bit color, 24-bit color). Commonly used
compression techniques include CCITT T.6 for binary
images and CCITT SGVIII (draft standard) for color
and gray-scale images. The ExpandTile function 440

10

15

20

25

30

35

45

50

55

65

10

selects the appropriate compression algorithm by refer-
ring to field 306 ofthe Document Information Structure
shown in FIG. 9.

Uncompressed data in cache 252 can be compressed
and written to a separate region of cache memory by
the compress operation 254. The compress operation
254 is controlled by the CompressTile function 450
described with respect to FIG. 38. Like ExpandTile,
the CompressTile function 450 uses an image compres-
sion algorithm appropriate to the image type.

Uncompressed data on disk 268 can also be read di-
rectly into cache memory by the load operation 270.
The load operation 270 is performed by the LoadEx-
pFromDisk function, which appears in source code
form in the Microfiche Appendix, in file diskcach.c.
The 1.0adEprromDisk function is analogous to Load-
CompFromDisk. The MadEprromDisk function re-
fers to the fields 362 and 374 of the tile header 350

shown in FIG. 10, for the location and number of bytes
of the expanded file data on the disk.

Uncompressed data in cache 252 can be written back
to the disk by the save to disk operation 266. This opera- .
tion is analogous to the save to disk operation 260 which
operates on compressed data. The present embodiment
can write compressed or uncompressed tile data to disk
in a variety of formats. One skilled in the art can easily
implement an equivalent function.

Image data for tiles in the “not loaded” state 272 must
be constructed by resampling higher-resolution tiles.
(During normal operation, only lower-resolution tiles
can exist in this state—the full resolution subimage tiles
are always “loaded”.) The present embodiment pro-
vides two operations from the “not loaded" state 272 to
the “loaded” state 252, 256. Uncompressed higher-reso—
lution tile data is resampled to create uncompressed
data in cache 252 by the resample Operation 274. Simi-
larly, in the resample operation 276, compressed data in
cache 256 can be created from compressed higher-reso-
lution tile data.

In both resampling operations, extensive advantage is
taken of the fact that the resolutions of adjacent subim-
ages in the subimage stack are related by a power of 2.
This greatly simplifies and speeds the resampling opera-
tion. Basic resampling techniques are well-known (See,
for example, A. Rosenfeld and A. C. Kab, Digital Pic-
ture Processing, Academic Press, 1976). The resampling
operation 274 and 276 are controlled by the function
LoadSubImTile 436 described with respect to FIG. 31.

In summary, FIG. 8 shows that a great part of the tile
manager’s utility derives from its ability to coordinate a
variety of forms of image data in the course of complex
image processing operations.

Generally, the way data starts out on the disk 162 is
by loading a tiled image file into an application 190 via
the tile manager 192. An image file, like a Tagged
Image File Format (TIFF) or CALS tiled image file,
for example, can be loaded instantaneously, in a virtual
sense. In the tiled formats, there are tiled image data
that is stored in the image file and at the beginning of
the file there is a directory with entries that locate the
tiles (for example, the disk file version of tile 0 in subim-
age 0, (0,0), is located at one address in the file and the
disk file version of tile 1, subimage 0 (0,1) is located at
another address in the file). When an image file is
loaded, the tile manager 192 gets the tile offsets and
stores them in the tile directory and does nothing else.
Hence, the image file is basically loaded without copy-
ing any data from the disk 162 into the image data cache

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C
5,263,136

11

194, and a directory is created that maps the tiles in the
virtual image memory space onto the disk 162.

FIG. 9A illustrates a document information structure

300. Each image, or document, in the system is associ-
ated with (and described by) a document information
structure (called “docinfo”, defined in FIG. 9). The
docinfo structure contains information about the image
as a whole, such as color and pixel organization, etc. It
also contains a list of subimages contained in the image.
Each subimage entry in the docinfo structure contains
information about that subimage, such as width and
height, etc. The intention is to make this data visible
only to cache management functions and low-level
access functions. The overall docinfo data structure 300

contains the following information:
302 Self-reference to document handle. Handle value

assigned to this document by the host procedure
which created the document. This value is unique
over the entire system.

304 “Overviews Invalid” flag. This flag is true if the
document is in the middle of a write operation.

306 Cache image compression algorithm. Compres-
sion algorithm used by the memory manager for
this image.

308 Image color type. How the image is displayed.
310 Bits per image pixel. Number of bits per image

pixel. '
312 Tile size information. Size of expanded tile in

pixels. The tiles are assumed to be square.
314 Number of subimages in doc. Number of subim-

ages maintained in this document. The minimum
value is one (the full resolution subimage).

316 Input file info. Input raster file information.
318 Output file info. Output raster file information.
320 List of subimage headers. Array of pointers to

subimage header structures 321. The first entry in
the array is always the full resolution image. Each
position thereafter corresponds to a 2X resolution
reduction from the previous subimage.

The subimage header structure 321 is illustrated in
FIG. 9B. Each subimage has its own entry with each
field as follows:

312 Pointer to tile headers.

314 Pointer to tile directory. Pointer to array of
pointers to tile header records. This two-dimen-
sional table provides an easy way to access individ-
ual tile headers on a (row,col) basis.

326 Subimage width and height. The width (x extent)
and height (y extent) of the document measured in
pixels.

328 Number of tile rows & cols in subimage. Number
of tile rows in the image and the number of tile
columns (i.e., the number of tiles needed to span the
height and width of the image).

330 Image stack index of this subimage. This is the
position of the subimage in the docinfo structure
subimage list. It can also be used to determine the
factor by which the subimage resolution is reduced
relative to the full resolution subimage.

332 Pixel resolution of this subimage. Scan resolution
in pixels per millimeter.

FIG. 10 illustrates the tile header 350. The tile man-

ager’s analog to the conventional address translation
table is the tile directory. The tile directory is a two-di-
mensional array of entries corresponding to the two-di-
mensional array of tiles that form the image. Each full
and reduced resolution image has its own tile directory.
The tile directory record contains a list of pointers to

10

15

20

25

30

35

45

50

55

65

12
lists of individual tile headers. The list in the tile direc-

tory record has one entry for each row of tiles. Each of
those entries points to a tile header record list with as
many elements as tile columns. Thus, there is one tile
directory record per subimage and one tile header re-
cord per tile. The tile header record defines the current
state of the tile and contains information used by the
cache management functions. The tile header contains
the following information:

352 Pointer to document containing this tile. Pointer
to the document to which this tile belongs.

354 Index of subimage containing this tile. Index of
the subimage (i.e., image stack layer) that contains
this tile.

356 Row and column indices of tile. Tile row and

column position of this tile within the subimage.
358 Status information. Defines the current state of

the tile. This includes lock counts for expanded and
compressed tiles.

360 Preserve count. Value greater than zero means
the tile is desired for future operation, so the tile
should be preserved in cache if possible.

362 Location of uncompressed image data in cache
memory. Location of uncompressed (expanded)
image data for this tile (if it exists). Status flag
“ExpCached” will be true to indicate that the data
is currently in expanded tile cache memory.

364 Location of compressed image data in cache
memory. Location of compressed image data for
this tile (if it exists). 'Status flag “CompCached”
will be true to indicate that the data is currently in
compressed tile cache memory.

366 Location of uncompressed image data on disk.
Location of uncompressed (expanded) image data
for this tile (if it exists). Status flag “ExpOnDisk”
will be true to indicate that the data is currently on
disk.

368 Location of compressed image data on disk. Lo-
cation of compressed image data for this tile (if it
exists). Status flag “CompOnDisk” will be true to
indicate that the data is currently on disk.

370 Link to next less recently used tile. Pointer to
next older (less recently used) tile, not necessarily a
tile in this image.

372 Link to next more recently used tile. Pointer to
next newer (more recently used) tile, not necessar-
ily a tile in this image.

374 Number of bytes of expanded data in tile.
376 Number of bytes of compressed data in tile.
FIG. 11 illustrates a calling hierarchy 400 for the

constituent functions. Further discussions relating to
flow diagrams, herein, will include names which corre-
spond to source code modules written in the “C” pro-
gramming language. The object code is presently gen-
erated from the source code using a “C” compiler li-
censed by Sun Microsystems, Inc. However, one skilled
in the technology will recognize that the steps of the
accompanying flow diagrams can be implemented by
using a number of different compilers and/or program-
ming languages.

The top level in the program hierarchy is Main 402.
Main initiates the functions calls to the lower level

functions. Main embodies the top level control flow of
the present invention.

The first function called by Main is Initialize Cache
Manager 404 (InitCacheManager). InitCacheManager
allocates the RAM and disk swap space needed for a

Microsoft Corp. Exhibit 1005 -

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
13

particular raster image. It must be called before at-
tempting to load any image tiles into memory.

The next function Main may call is Load Tiled Raster
Image 408 (LoadTIFF). LoadTIFF manages the load-
ing of tiled images. This is the process where an existing
image file on disk is mapped into memory.

Main will then call the function Begin Undoable
Raster Operation 410 (BeginUndoableRasOp). Begi-
nUndoableRasOp marks the beginning of a distinct,
“undoable” raster image operation. This function does
not save any region of image memory but only creates
a new entry on the undo stack. The current version of
the tiles in the affected region are saved by InitIma-
geAccess.

The following function called by Main is Create
Image Access Context 412 (InitImageAccess). InitIma-
geAccess prepares the tile cache manager for upcoming
accesses to a particular region of the specified image.

10

15

This function creates a data structure called an “access -

context” (defined in FIG. 16) that is used by the sequen-
tial access functions.

Main optionally calls the function Read Rows From
Region 414 (ReadRowToRow) next according to the
operation performed by the user. ReadRowToRow
causes one input/output buffer row or strip to be read
and transformed from tiled image memory as specified
in the associated InitImageAccess call and the resulting
access context.

The next optional function called by Main is Write
Rows To Region 416 (WriteRowToRow), again ac-
cording to the operation performed by the user. Write-
RowToRow causes one input/output buffer row or
strip to be transformed and written to tiled image mem-
ory as specified in the associated InitImageAccess call
and the resulting access context.

It should be understood that other access functions,

such as random pixel accesses, may optionally be called
by Main.

Main then calls the function Close Image Access
Context 418 (EndlmageAccess). EndlmageAccess ter-
minates and discards an image access context. The
memory allocated for the access context structure is
freed. The tile manager is informed that the specified
region of image memory is no longer needed by this
operator.

The next function, Undo Previous Raster Operations
420 (UndoPreviousRasOp), is optionally called by
Main. UndoPreviousRasOp restores the specified re-
gion to its original state using information from the
undo stack.

The last function Main calls is Quit Cache Manager
422 (EndCacheManager). EndCacheManager frees the
RAM and disk swap space. This function basically re-
verses what InitCacheManager does.

The second level of functions on the calling hierar-
chy 400 is shown starting with Load TIFF Subimage
Tile Information into Tile Headers 424 (LoadTiff-
TilesStd) which is called by function LoadTIFF 408.
LoadTiffTilesStd manages the loading of TIFF images
with strip structure.

The LoadTifiTilesStd function 424 calls a function

Store Tile Information in Tile Headers 425 (Load-
SubImDiskCache). LoadSublmDiskCache loads the
tile directory of the specified subimage with informa-
tion about the location, size and format of individual

image tiles contained in a disk-resident tiled image file.
It is the low-level interface for the “indirect file load”

20

25

30

35

45

50

55

65

14

capability. The tile headers are assumed to be com-
pletely zeroed when this function is called.

The InitImageAccess function 412 calls a function
Save Region For Undo 426 (SaveRegionForUndo).
SaveRegionForUndo saves the specified region on the
undo stack. It is called from within InitImageAccess if
the SaveForUndo flag is true. It can also be used for
low level operations that do not go through InitIma-
geAccess. SaveRegionForUndo can then be called mul-
tiple times for different documents and different regions
within a document so that arbitrarily complex editing
operations can be easily undone.

The ReadRowToRow function 414 calls a function

Lock Expanded Image Tile Group 428 (ExpTileLock).
ExpTileLock “locks” memory handles referring to
expanded image tiles. (The notion of locking and un-
locking memory blocks is further discussed below with
reference to FIG. 14.) It also updates the associated tile
header structure as appropriate for the operating sys-
tem.

The ReadRowToRow function 414 also calls a func-

tion Unlock Expanded Image Tile Group,430 (Exp-
TileUnlock). ExpTileUnlock unlocks memory handles
referring to expanded image tiles. It also updates the
associated tile header structure as appropriate for the
operating system.

The function ExpTileUnlock 430 calls a function
Unlock Expanded Tile 432 (UnlockEpr-Iandle). Un-
lockExpl-landle unlocks an individual expanded tile
handle. The lock count is decremented as appropriate.
The tile is not actually swapped out of cache at this
point but it becomes a candidate for swapping.

The function ExpTileLock 428 calls a function Lock
Expanded Tile 434 (LockEpoandle). LockEpoandle
locks an individual expanded tile handle. The lock
count is incremented and the status flags are set as ap-
propriate.

The LockExpl-Iandle function calls a function Create
Tile From Higher-Resolution Tiles 436 (LoadSubIm-
Tile). LoadSubImTile creates a valid expanded version
of the specified tile by scaling down from the next high-
er-resolution subimage. This function is called recur-
sively as necessary to get to a higher-resolution subim-
age where there is valid data. (Note: the tiles in the
full-resolution subimage are always valid and loaded
although not necessarily present in the cache memory.)

The function LockEpoandle 434 next calls a func-
tion Allocate Space for Uncompressed Version of Tile
438 (AllocEpoandle). AllocEpoandle allocates
space in cache memory for a single expanded tile.

The function LockEpoandle 434 also calls a func-
tion Create Uncompressed Version of Tile From Com—
pressed Version 440 (ExpandTile). ExpandTile uses a
tile that exists in compressed form but not expanded
form, allocates space for an expanded tile and decom-
presses the image data into that space.

The function LoadSubImTile 436 calls a function

Create Compressed Lower-Resolution Tile From Com-
pressed Higher-Resolution Tiles 442 (Comp-
CopyToOview). CompCopyToOview creates a valid
compressed version of the specified tile by sealing down
from compressed or expanded version of the given
higher-resolution subimage tiles. The function Load-
SubImTile 436 also calls a function Copy Uncom-
pressed High-Resolution Tiles to Uncompressed Low-
Resolution Tile 444 (CopyTileToOview).
CopyTileToOview updates the region of the next low-

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
15

er-resolution overview corresponding to the specified
tile.

The Function CompCopyToOview 442 calls a func-
tion Collect Freeable Cache Memory 446 (CollectFre-
eCache). CollectFreeCache collects freed memory
states or enlarges the cache file and adds the new mem-
ory capacity to the reserve list. This function is called
when the cache manager usage exceeds preset limits.
Therefore it makes sense to take time to free up as much
memory as is convenient at this opportunity.

The function CollectFreeCache calls a function Free

Uncompressed Version of Tile 448 (FreeEpoandle).
FreeEpoandle frees space used for storage of ex-
panded image tiles.

The function CollectFreeCache 446 also calls a func-

tion Create Compressed Version of Tile From Uncom-
pressed Version 450 (CompressTile). CompressTile
uses a tile that exists in expanded form but not com-
pressed form, allocates space for a compressed tile and
compresses the image data into that space.

FIG. 12 is the top-level control flow for the tile man-
ager 192 (also called “Main”). The tile manager 192 can
be executed on a number of operating systems or with-
out an operating system. However, the workstation 150
(FIG. 6) preferably includes the Unix compatible oper-
ating system 188. Another preferred operating system is
Microsoft MS-DOS running with or without Microsoft
Windows 3.0.

Moving from a start state 470 to an initialization State

10

15

20

25

404, the tile manager 192 performs an initialization of 30
the image data cache 194 to determine the available
memory space, or the amount of physical RAM and
disk space available for a cache “file”. At this point, the
cache appears to the tile manager 192 as one contiguous
range of physical addresses in memory. If the tile cache
has already been initialized, this step is skipped. The
possibility of multiple image access contexts (discussed
below) allows multiple simultaneous requests.

The tile manager 192 has another parameter which is
called the fast memory portion of the image data cache
194. This parameter is particularly relevant when work-
ing on top of another virtual operating system such as
Unix. The fast memory limit specifies approximately
how much of the image cache file is actually kept in
RAM memory at any moment by the native operating
system (e.g., Unix). The balance of data (the less re-
cently used portion) is likely to have been swapped out
to the disk. The tile manager attempts to limit the
amount of cache space used to store expanded tiles to
less than the fast memory limit, but the limit can be
exceeded if necessary with some degradation in perfor-
mance. However, the total cache size limit is never
exceeded. In operating systems without virtual memory
capabilities built in (e.g., MS-DOS), the fast memory
limit is the same as the total cache size limit.

Then the tile manager 192 moves to a function 472
wherein the tile manager 192 loads a tiled raster image
file. The function 472 (comprising the function 408, for
example) loads any type of image file, and preferably a
tiled image, into the memory address space configured
by the tile manager 192. If the image to be modified is
already loaded, this step is skipped. Then the tile man-
ager 192 moves to a function 410 where the tile manager
192 marks the beginning of an undoable raster operation
if the tile manager 192 is writing to the image. The
function 410 is an optional state and it is only used if the
user wants to be able to undo the operation that modi-
fies the image.

35

4O

45

50

55

60

65

16

Any time that a region of the image needs to be ac-
cessed (for reading or writing) an image access context
is created. This image access context is used to define
the region for use by the tile manager. The creation is
performed automatically by the file manager without
effort by the user. For example, an image access context
is created when the user draws a line in a region of the
image.

Referring back to FIG. 12, the tile manager 192 tran-
sitions to a function 412 to create the image access con-
text. The image access context contains all of the state
information about the access operation. It is possible to
have multiple access contexts opened simultaneously
with each access having stored state information con-
tained in the access context. Thus, the tile manager 192
is re-entered and re-used by interleaved operations
without confusion due to the unique access contexts of
each image operation;

The tile manager 192 proceeds to a loop state 474
wherein the tile manager 192 begins a FOR-loop for all
of the rows or columns in the region. The FOR-loop is
executed multiple times if the operation specified by the
user is a row or column strip oriented access. Strips are
composed of one or more rows or one or more columns
of data. For each of the strips, the tile manager 192
reads or writes the rows or columns of data in the strip
in a function 476. The function 476 actually comprises a
set of functions including ReadRowtoRow 414 (FIG.
11) and WriteRowtoRow 416.

When the tile manager 192 has processed all the row
and columns in the region, the tile manager 192 moves
to a function (EndImageAccess) 418 where the tile
manager 192 closes the image access context which
frees all of the temporary buffers that were allocated for
the image access context.

The tile manager 192 transitions to an undo previous
raster operation function (UndoPreviousRasOp) 420.
This causes a modified image to revert to its previous
state. The image tiles that had been modified are re-
placed by their original versions. This again is an op-
tional step that the user initiates, if a mistake is made.

If the raster image is required for future operations,
the tile manager moves to state 422. Otherwise, moving
to a state 478, the tile manager 192 unloads the raster
image. Unloading the raster image simply frees the
memory that had been associated with that particular
raster image. This is not a save raster image operation
which would be slightly more complicated, but a save
operation could be executed here. Of course, the image
processing application 190 supports loading and saving
raster images.

Ifmore operations will be performed the tile manager
moves to state 480. Otherwise, from state 478, tile man-
ager 192 moves to a quit cache manager function (End-
CacheManager) 422. Herein, the tile manager 192 frees
the image data cache 194 (FIG. 6). Presumably, all of
the images have been unloaded as in the state 478 so that
this operation frees the image data cache memory and
prepares the system for shut down. Lastly, the tile man-
ager 192 terminates at an end state 480.

FIG. 13 illustrates the initializing of the cache man-
ager function 404. The function 404 is entered by the
task manager 192 at a state 488. Then, moving to a state
490, the task manager 192 initializes the cache usage
variables. Of course, in the beginning, all of the cache
space is available for use, in what is called the free-mem-
ory reserve list. That is, no cache memory is being used
for expanded or compressed image data.

Microsoft Corp. Exhibit 1005’

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
17

At state 492, the task manager 192 allocates tile cache
memory by requesting a portion of the address space
fromthe memory space owned by the operating system.
In a virtual memory system such as Unix, the request is
handled by memory mapping a large file. The operating
system does not allocate any memory, but it reserves an
address space. Moving to a state 494, the task manager
192 allocates a common blank tile. When dealing with
binary images, space is reserved for one blank tile,
which is kept around at all times for common usage by
any number of operations, or access contexts.

At state 496 a compression buffer is allocated to be
used as a scratch buffer when compressing data since, in
general, the size of the resulting compressed data is
unknown before a tile of image data is compressed.
Hence, compressed data blocks will be variable sized.
The tile manager 192 then exits the InitCacheManager
function 404 at an end state 498.

FIG. 14 illustrates a general memory state diagram
with reference to a block of memory being “locked” or
“unlocked”. In the diagram, ovals are states and rectan-
gular blocks are operations.

The state diagram is entered at a start state 502 by a
new memory block. There are three basics states.
“FREE” is a state 504 where there is no memory allo-
cated. Actually, a block of memory is considered free if
it is in one of the memory free lists, i.e., the “reserve free
list”, the “compressed free list” or the “expanded tile
free list”. It should be understood that the free list for

the compressed tiles are actually composed of many
lists based on the varying sizes of memory blocks.

Within a tile header (FIG. 10) the tile manager 192
controls a memory handle which is a structure that has
a pointer to (or location of) image data in the cache and
a lock count (not shown) for both compressed and ex-
panded versions of a tile.

A memory block transitions from the free state to
unlocked, but allocated is through a state 506 for allo-
cating the memory handle, which moves the block out
of the free list and into use by a tile. As opposed to free,
unlocked means that the memory block containsvalid
data and that it is associated with a tile but not currently
being accessed. That is, the block is not being read or
written at the time.

Now, the tile is unlocked at a state 508 but it contains

valid data. Therefore, the next step is to lock the block,
or lock the memory handle at a state 512 and then it
becomes a locked memory state at a state 514. That
means it contains valid data and it is currently in use.
The block can be locked more than once, each time just
incrementing the lock count.

The lock count may be incremented multiple times,
for example, when two access contexts (operations) are
accessing the same region of memory. Hence, both
contexts lock the block of memory or tile by increment-
ing the lock count. When the first access context is done
it decrements the lock count. But the tile manager 192
knows that that tile is. still in use by an access because
the locked count is still non-zero.

The inverse operation is to unlock the handle at a
state 516 and as long as the lock count is not decre-
mented to zero at state 518, it stays locked. Once the
lock count is decremented to zero, it becomes unlocked

again at the state 508. '
An unlocked tile is fair game for the tile manager 192

when the memory manager needs to find some space to
lock a new tile. Therefore, when the tile manager 192 is

10

15

20

25

30

35

45

50

55

65

18

looking for space, unlocked memory blocks may be
freed and returned to the free memory lists.

The way to go from the unlocked state 508 to the free
state 504 is by freeing the handle in which case the
memory block is moved onto the free memory list.

Referring now to FIG. 15, the flow diagram for the
InitImageAccess function 412 shows the operation
where the tile manager 192 creates the image access
context starting at a state 530. At a state 532 the input
parameters are validated. If there is an error with the
input parameters, the function ends immediately at an
end state 534.

Input parameters include a document handle indicat-
ing which image that the user wants to read or write
from. Thus, the document handle must be validated.
Another parameter is whether the user wants to read or
write to the image. A transformation matrix, also input,
basically directs how to scale, rotate, shear, etc., the
image data.

If the input parameters are valid, the tile manager 192
locks the document handle at a state 536. The document

handle locks and unlocks just like other structures and
resources in the tile manager and it prevents one user of
a particular document or image from modifying or
deleting that image while another operation or another
access context is still using that document.

Then, at a state 538, the tile manager 192 tests
whether a non-orthogonal rotation has been specified.
For example, a rotation of 30° causes the tile manager
192 go into a special operation that initializes the access
with rotation. That also creates an access context but

after a more involved process. Then the tile manager
192 ends the function 412 at a state 534 with a valid
access context for rotations.

If an orthogonal rotation is specified then the tile
manager 192, allocates a conventional access context at
a state 542. Then the tile manager 192 continues to a
decision state 544 wherein the subimage selection crite-
rion is specified. For instance, the user may request the
“low resolution” option which selects the lowest reso-
lution subimage in the document’s image stack. (In the
context of an image editor, this may be the best solution
during zooming or panning.) The user may also specify
“most available”—i.e., whatever subimage has tiles
currently in cache memory, regardless of the resolution.
In either case, the tile manager 192 proceeds to a state
546 to select the reduced resolution subimage that is
appropriate to that particular choice, i.e., either the one
that has the resolution just greater than what was re-
quested or a subimage whose tiles covering the access
region are currently in cache. Now, at a state 548, the
tile manager 192 adjusts the transformation matrix so as
to now refer to the reduced resolution subimage rather
than the full resolution subimage by adjusting scale
factors.

Alternatively, if the state 544 determines that the full
resolution subimage is selected then the transformation
matrix is unchanged. Proceeding to a state 552, the pixel
and tile limits of the affected image region are calcu-
lated. Knowing these limits, in a state 554, the tile man-
ager 192 creates a temporary directory for the tiles in
that region. This directory is a two-dimensional array
that references the tiles that contains the affected pixels.
Later on the tile manager 192 refers to the region tile
directory because it is specific to tiles that are inside the
affected region.

The tile manager 192 then initializes the image scaling
functions in a state 556. Such scaling functions presently

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

5,263,136
19

used are the subject of applicant’s concurrent applica-
tion entitled “Process for High Speed Rescaling of
Binary Images” (U.S. Ser. No. 08/014,085, filed Feb. 4,
1993, which is a continuation of Ser. No. 07/949,761

filed Sep. 23,1992, now abandoned, which is a continua-
tion of Ser. No. 07/693,010 filed Apr. 30, 1991 now
abandoned.

Moving on, the tile manager 192 tests whether polyg-
onal clipping is required at a state 558. For example, a
request may be made to only read from within a specific
polygonal region. If that is the case, the tile manager
192 initializes the polygonal region clipping functions in
the tile manager 192 by passing in the boundary lists.
The polygonal clipping function translates the bound-
ary lists into edge lists that are used to very efficiently
read out the rows or columns of data.

For example, suppose a “flood” request is made to
turn all of the pixels black within an octagonal region.
One way to accomplish the operation is to specify the
points of the corners of the octagon in image coordi-
nates and pass that in with the initialization of access
context request, which would pass those vertices of the
polygon into the polygonal clipping function set up
function.

Then the tile manager 192 comes to a state 562, where
the tile manager 192 allocates buffers for sealing, if
necessary. This is the situation where intermediate cop-
ies of the rows or columns of data may need to be kept
during the process of scaling. Then the tile manager 192
tests whether the user specified that the region needed
to be saved for undoing, at a decision state 564.

An important feature of the present invention is an
“undo” operation that is integrated with the image
memory management so that only compressed tiles
need to be saved after an undoable edit operation. In
this way, a user can easily and quickly retract an edit
operation that is no longer desired. For example, in
mapping applications, e.g., USGS Quadrangle maps,
the impression of a very large map is desired, but it is
really composed of smaller map quadrants that were
separately scanned, trimmed, adjusted and fit together.
The smaller maps can be visually and logically joined
into a single, large image. Using the present invention, a
user can add a feature, such as a new sub-division, town,

or road, that crosses a map boundary, specifying that
the feature is undoable. Later, the user can remove the

feature modification to the image by Specifying the
undo operation.

Now at a decision state 568, the question is whether
to update the subimages during the operation. If this is
a write operation the tile manager 192 always writes
into the full resolution subimage and the changes
“trickle down” into the low resolution subimages. But
the tile manager 192 has an option as to whether the
lower-resolution tiles are updated during the modifica-
tion operation or later when the tiles are requested for
viewing operations. There are advantages in doing
them both ways.

For example, if the affected region is small, it is more
efficient to update the subimages while progressing
through the operation. In this mode, when the tile is
unlocked, the manager 192 immediately copies the data
down into the next lower subimage tile but only one of
the corners of the tile is affected. Thus, only portions of
the low resolution subimage tiles need to be modified.

If, however, the subimages are not updated during
the operation, then as soon as the image access context
is created all of the subimage tiles that overlap the af-

10

15

20

25

30

35

45

50

55

65

APPENDIX C

20

fected region are invalidated (they become “not
loaded”). Hence, when the memory manager goes to
access them again at some later time, it has to recon-
struct them from the higher-resolution tiles. The advan-
tage of that is that the memory requirement at any one
moment is half of that of if the tile manager 192 was
updating all of the tiles simultaneously. In this way, the
tile manager 192 sets a flag at a state 570.

In state 572 the tile manager 192 “preserves” the
affected tiles in the affected subimages. Again, it relates
to whether the tile manager 192 is updating subimages
or not. If the tile manager 192 is reading, then it pre-
serves only the tiles in the region of the subimage that
will be accessed.

The ability to “preserve”, or preferentially retain tiles
that will be accessed in the course of the operation, is an
important feature of the present invention that can yield
significantly higher performance in certain situations
where memory capacity limitations are encountered.
When a tile is “preserved” for a particular access opera-
tion, it’s preserve count 360 is incremented. The cache
manager treats tiles with non-zero preserve counts dif-
ferently from tiles with zero preserve count. The cache
manager will discard unlocked unpreserved tiles before
discarding older preserved tiles. (The cache manager
normally discards older or less recently used tiles before
discarding newer or more recently used tiles.)

Then, within the creation of the access context, the
tile manager 192 actually locks down the first row or
column of tiles in the region to establish the cache mem-
ory requirement for this operation, at a state 574. If this
succeeds, then the caller is assured that there will be
sufficient cache space for the entire operation.

The tile manager 192 can perform row or column
accesses. However, the following discussion only refers
to a row access.

Then, at a decision state 576, if the tile manager 192
cannot satisfy the request to lock down that first row of
tiles, the function 412 terminates at the end state 578.
Otherwise, at state 580 the tile manager 192 initializes
the row access functions.

Now, once the tile manager 192 has initialized the
row access function in state 580 the tile manager 192
invalidates the affected subimage tiles if the tile man-
ager 192 is writing to the full resolution subimage at a
state 582. Finally, in a state 584 the tile manager 192
returns the handle or a pointer to this access context to
the user. From then on the user just uses this pointer to
the access context and pointers to input and output
buffers to get the next row or column of data.

FIG. 16 illustrates the access context structure 600.

The structure 600 operates on a high level to hide the
low level operation from the user and contains book-
keeping information along with some memory manage-
ment information. The access context 600 contains the

following information:
602 Pointer to affected doc. Pointer to the document

being accessed.
604 “Subimage Choice” option value. Specifies how

to choose which of the subimages will be read from
or written to.

606 Index of affected subimage. Index of the specific
subimage directly affected by this access context.

608 Access quantum. Specifies “granularity” of
image access.

610 Read/write option. Specifies what type of image
memory accesses to prepare for (e.g., read or
write).

Microsoft Corp. Exhibit 1005 '

APPENDIX C

Microsoft Corp. Exhibit 1005

5,263,136
21

612 Basic orthogonal rotation value. Specifies the
image rotation in terms of how the bits in each
buffer row are read from or written to the image
(e.g., write buffer row to image column with in-
creasing “y” coordinate).

614 Pixel combination operation. Specifies the pixel
operation performed when combining the buffer
contents and image contents. The results of the
operation are stored in the output buffer when

» reading. The results go into image memory when
writing.

616 Sealer type operation. Specifies the type of scaler
preferred. In other embodiments, this may include
fast low-accuracy scaling and line width-preserv-
ing scaling.

618 “Update overviews” flag. True flag indicates
overview subimages should be updated in the
course of this modification of the full resolution

image. This causes the overviews to be correct
when the access is complete.

620 [/0 buffer width & height. Width (i.e., row
length), total number of rows to process and pitch
in pixels of the input/output bitmap.

622 1/0 buffer pitch (bytes/row). Pitch of the input-
/output buffer in bytes used for multi-row accesses.
The input/output buffer is assumed to be a contigu-
ous memory bitmap at least as large as the access
quanta. It is always read or written in the natural
order (by rows, low address to high). Flipping and

rotation is always done on the image memory side.
624 1/0 buffer bit offset to start of run. Indicates

where the buffer’s x=0 pixel lies within the first
long word of the buffer’s storage space. It must be
between 0 and 31 inclusive. This parameter allows
the caller to match up with arbitrary bit align-
ments.

626 Rows per strip (for AQ_STRIP access quan-
tum). When operating in the AQ._STRIP mode,
this specifies the maximum number of rows per
input/output strip. Fewer rows may be written into
the last strip if the end of the access region is hit
before the strip is filled. ~

628 Number of I/O buffer rows yet to be processed.
This variable is used in the access routines to keep
track of the number of input/output rows remain-
ing for the access operation.

630 Pointer to access function used in “Seq~
BuflmageAccess”. Pointer to the image access
function that is tailored to the specific access mode
requested.

632 Stepping directions for image row and column
indices. The stepping increment each time the in-
put/output buffer is advanced one row and one
pixel. The allowed values are +1, 0, and — l.

634 Pointer to polygon clipping information. Refers
to an edge table structure for controlling polygonal
boundary clipping.

636 Pointer to raster scaling information. Tile level
access information used by lower level modules in
the course of the operation.

638 Pointer to uncompressed data in currently locked
tiles. Pointer to an array of pointers directly into
expanded tile image data. This list is used to accel-
erate sequential access into image memory. As
each new tile row or column is encountered in a

sequential access, this array is set to point directly
into the affected tiles, which have been brought
into cache memory and locked down. In other

10

15

20

25

30

35

45

50

55

65

APPENDIX C

22

embodiments this could also be used to point to
compressed tiles.

640 Pointer to region tile directory. Pointer to a 2-
dimensional array of pointers to the tiles in the
affected region of the subimage.

642 Next image row & column to be accessed. The
index of the next image row and column to be
accessed in sequential row and column operations.

644 Terminal row & column of access region. Stop-
ping values for sequential row and column opera-
tions.

646 Unclipped extent of access region. Defines the
image region that will be accessed over the course
of the operation.

648 Clipped extent of access region. Defines the por-
tion of the requested image region that actually
falls within the boundaries of the image. Pixels
outside of this rectangle are treated as background
pixels.

650 Clipped image buffer bit offset and length. These
values specify where, in the intermediate image
row or column buffer, the first bit from the clipped
image region is located and how many bits are to be
read from or written to tiled image memory.

652 Number of tile rows & cols in access region.
Number of tile columns and rows in the affected

region.
654 Row & column of currently locked tiles. Column

and/or row index of the currently locked tile or
tiles.

656 Image row & col at origin of first tile in access
region. Pixel coordinates of the upper-left pixel in
the upper-left tile of the affected region.

658 Number of I/O buffer rows held over for next

strip. Number of rows ofoutput data that did not fit
into the previous row and must be returned in the
next and subsequent rows when expanding while
reading image data.

660 Pointer to image tiling/untiling buffer. Points to
a temporary buffer to hold data extracted from
tiled memory prior to scaling when reading from
image memory.

662 Number of bytes in tiling/untiling buffer. Size of
buffer in bytes.

664 Bit offset for tiling/untiling buffer. Bit offset to
the first valid pixel in tiling/untiling buffer.

666 Access transformation matrix. The transforma-

tion matrix mapping input/output buffer pixels
onto the pixels of this subimage.

FIG. 17 illustrates the flow diagram for the “Save
Region for Undo” function 426 as referenced in FIG.
15. The tile manager 192 starts at a state 680, moves to
682 where the tile manager 192 looks the document
handle of the affected document that contains the re-

gion to save for undo. The tile manager 192 can save
multiple regions from multiple documents sequentially
and then undo them all in one operation later. Thus, the
application programmer is allowed to easily undo multi-
ple.region operations with a single undo call at a. later
point.

Moving to a state 684, the tile manager 192 clips the
modified region to the image boundaries since there is
no information to save outside of the image. Then the
tile manager 192 moves to a decision state 686 wherein
the tile manager 192 tests whether the affected region
overlaps the image. If there is no overlap, that is to say,
there is no image data to save, then the tile manager 192
moves to a state 688 where the tile manager 192 unlocks

Microsoft Corp. Exhibit 100-5

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
23

the document handle and terminates the function 426 at
an end state 690.

If, however at state 686, the modified region does
overlap the image, the tile manager 192 moves to a state
692 wherein the tile manager 192 allocate memory for
an “undo region header". The undo region header is
similar to a document header, but reduced compara-
tively in the amount of data conveyed therein. The
undo region header will be associated with tile header
information, etc.

The tile manager 192 then moves to a state 694 where
the tile manager 192 allocates memory for “undo region
tile headers”. These tile headers will be used to store

copies of the original versions of the tiles in the affected
region. The tile manager 192 then proceeds to a state
696 wherein the tile manager 192 makes an “undo tile
directory”.

Then the tile manager 192 moves to a loop state 698
where the tile manager 192 loops for each tile row in the
region. The tile manager 192 then transitions to a loop
state 700 wherein the tile manager 192 loops again for
each tile column in the region (Thus, there is a two-di-
mensional loop.)

The tile manager 192 moves from the state 700 to a
decision state 702 where the tile manager 192 checks to
see if that particular tile in the document is loaded in the
image cache memory. If the tile is not loaded, the tile
manager 192 skips to the next tile in the region by re-
turning to the loop state 700. OtherWise, if the tile is
loaded, the tile manager 192 marks the undo copy of the
tile as loaded in a state 704.

Note that there are two tiles. One is the original ver-
sion of the tile that is still associated with the document

and the second is the copy that the tile manager 192 is
going to make and associate with the undo region
header.

At a decision state 706, a test determines whether the
document tile is blank. If the tile is blank (i.e., all back-
ground color), then the tile manager 192 moves to a
state 708 and simply marks the undo tile as “blank” and
returns to the FOR-loop at 700. If the document tile is
not blank, then the tile manager 192 moves to a state 710
and the tile manager 192 marks the undo tile as “not
blank” and moves to a state 712 Wherein the tile man-

ager 192 tests whether the document tile has a valid
copy of compressed data on the disk.

If a valid copy of compressed data does reside on
disk, the tile manager 192 moves to a state 714 and
simply copies the compressed tile disk location and size
information from the document tile header to the undo

tile header. Note that it is possible for a particular tile to
have multiple representations of the same data. That is,
a compressed version and an expanded version of the
tile may exist in cache simultaneously. And a tile may
have a compressed version in cache as well as on the
disk. For undo, the strategy is to store the most compact
version possible. The most compact version with regard
to cache memory usage is to have a copy of the com-
pressed tile on the disk.

If there is no compressed copy of the tile on the disk,
the tile manager 192 proceeds to a decision state 716
wherein the tile manager 192 determines whether an
uncompressed copy of the document tile resides on the
disk. If the test succeeds, the tile manager 192 enters a
state 718 and copies the uncompressed tile disk location
and size information from the document tile to the undo

tile and then returns to the inner FOR-loop at a loop
state 700.

10

15

20

25

30

35

45

SO

55

65

24

If, at state 716, there is no uncompressed tile informa-
tion on the disk, the tile manager 192 continues execu-
tion to a state 720 in FIG. 178 wherein the tile manager
l9210cks the compressed version of the document tile.
This locking of the compressed version of the document
tile may cause an expanded version of the document tile
to be compressed and a compressed version created.
Therefore, there is a possibility of an error and that is
checked at the decision state 722.

If there is an error than the tile manager 192 unlocks
the document handle at a state 724 and terminates with
an error condition at the end state 726. If there was no

error in locking the compressed version of the tile then
the tile manager 192 moves from the state 722 to a state
728 wherein the tile manager 192 allocates and locks
down cache memory for a copy of the compressed data
to be associated with the undo header. There is another

error possibility at this point and the tile manager 192
checks for an error at a decision state 730. If there is an

error then the tile manager 192 returns to a state 724 and
thereafter terminates the function 426.

If there was no error in locking cache memory at the
state 730, the tile manager 192 m0ves to a state 732 and
copies the compressed data from the document tile to
the undo tile. The tile manager 192 actually copies the
data that is stored within the tile—i.e., the compressed
image data is copied from the document version to the
undo version. Then the tile manager 192 moves to a
state 734 and unlocks the compressed version of the
document tile. Now, at a state 736, the tile manager 192
unlocks the compressed version of the undo tile and the
tile manager 192 returns to the inner FOR-loop at state
700 on FIG. 17A where the tile manager 192 loops back
to continue the loop for all of the tiles in the affected
region.

When the tile manager 192 is done with all of the tiles
in the affected region, the tile manager 192 moves to a
state 738 where the tile manager 192 links the new undo
header into the undo region list. Thus, multiple regions
can be saved in the undo list and then in one operation,
by calling undo previous raster operation, all of the
operations that had been accumulated, can be undone.
Then the tile manager 192 moves to a state 742 wherein
the tile manager 192 unlocks the document handle and
terminates the function 426 normally.

FIG. 18 shows the load tile to raster image function
(LoadTifi). FIG. 18 is a flow diagram for the part of
LoadTiff that loads tiled images only. In reference to
FIG. 18, the overall process may be understood
whereby an existing file on the disk, i.e., an image file on
disk, is mapped into memory. As described below, the
overall process permits loading large images in a short
time period relative to how long it would take to actu-
ally copy all of the image data into the computer’s mem-
ory. In accordance with the present invention, the pro-
cess shown in FIG. 18 is called the indirect loading
capability. As shown in FIG. 18, the tile manager 192
begins the LoadTIFF function 408 at a start state 750
and moves to a state 752 where the tile manager 192
opens the input file that is on the disk. If there is an error
on the disk, the tile manager 192 prints an error message
at a state 754 and terminates at an end state 756. If no

error exists, then the tile manager 192 moves to a state
758 and checks for the TIFF header structure that iden-

tifies that the input file is in fact a TIFF file. While the
disclosure below discusses a TIFF file, it is to be under-
stood that the process shown in FIG. 18 may be per-

Microsoft Corp. Exhibit 1005’

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
25

formed on all types of tiled files, such as a MIL-R~
28002A Type II file or an IBM IOCA tiled file.

Still referring to FIG. 18, if the tile manager 192 finds
something other than TIFF header structure at state
758, the tile manager 192 moves to state 754 to indicate
an error, and then exits at the end state 756. If the tile
manager 192 finds a TIFF header structure while at
state 758, the tile manager 192 move to a state 760,
wherein the tile manager 192 counts the number of
subimages in the TIFF file, one or more of which may
exist in a TIFF file.

Next, the tile manager 192 moves to a state 762 and
reads the full resolution subimage information which
constitutes the basic information about the image, e.g.,
the image width and height, the size of the tiles, the
compression format that is used, and the resolution. If
the basic image information is not present and in proper
form, the tile manager 192 moves to the state 754 to
indicate an error. 0n the other hand, if no error is indi-
cated at state 762, the tile manager 192 moves to state
764, wherein the tile manager 192 creates a skeleton
document and locks that document. The skeleton docu-

ment at this point contains no cache memory but only
tile directory and tile headers that represent in a virtual
sense the tiles that compose the image.

The tile manager 192 next moves to a state 766 where
the TIFF full resolution subimage tile information is
loaded into the tile headers for the full resolution subim-

age, as more fully disclosed below in reference to FIG.
19. Next, the tile manager 192 moves to a loop state 768
where there is a loop for each of the remaining lower
resolution subimages. While in this loop, the tile man-
ager 192 accesses a decision state 770, wherein the tile
manager 192 determines whether

fr/Ir= 2n (1)

where

fr is the full resolution subimage resolution in pixels
per inch; and .

lr is the particular low resolution subimage resolution
in pixels per inch.

If the ratio of fr to lr is a power of two, then a success-
ful test is indicated, and the tile manager 192 moves to
a function 424 and loads the TIFF subimage tile infor-
mation into the tile headers for that particular subimage
level. On the other hand, if the ratio of fr to lr is not a
power of two, as indicated at the decision state 770, then
the tile manager 192 ignores the particular subimage
under test and returns to the state 768 until all of the

subimages in the file are processed. When all subimages
have been processed, the tile manager 192 moves to a
state 772 and unlocks the document handle of the newly
created document and terminates normally at an end
state 756.

Now referring to FIG. 19, the function 424 whereby
the tile manager 192 loads the TIFF subimage tile infor-
mation into tile headers is shown. More particularly, the
tile manager 192 begins at a start state 780 and moves to
a state 782 wherein the tile manager 192 reads the num-
ber of tiles in the subimage. Then the tile manager 192
moves to a state 784 wherein the tile manager 192 allo-
cates temporary buffers for the tile mode offset and byte
count lists. These three lists have one entry each per tile
in the subimage. If the tile manager 192 cannot properly
allocate the temporary buffers, then the tile manager
192 exits with an error condition at an end state 786.

Upon successful allocation of the buffers, the tile
manager 192 moves to a state 788 where the tile man-

10

15

20

25

30

35

40

45

50

55

65

26

ager 192 reads the tile offset and byte count information
from the disk file into the allocated buffers. In the TIFF

file standard, all tiles are stored in the same mode (e.g.,
compressed). However, other tiled file formats (e.g.,
MIL-R-28002A Type II) specify the storage mode for
each tile. The tile mode simply states whether a particu-
lar tile is stored in compressed form, in uncompressed
form, or whether the tile is all foreground or back-
ground color. The tile manager 192 next moves to a
state 790 where the tile manager 192 fills in the tile
storage mode list. At state 790, the tile manager 192
synthesizes the tile mode information that the TIFF file
does not contain itself. Then the tile manager 192 moves
to the function 425 wherein the tile manager 192 stores
the information in the subimage tile headers (FIG. 10),
and terminates at an end state 786.

Now referring to FIG. 20, the function 425 whereby
the tile manager 192 stores file information in tile head-
ers is shown. The tile manager 192 begins this process at
a start state 800 and moves to a state 802 where the tile

manager 192 locks the document handle of the docu-
ment for which the tile manager 192 is loading the
subimage for. This function is performed once per
subimage in the file and there may be multiple subim-
ages in the file. Consequently, the locking of the docu-
ment handle function can be performed several times in
the process of loading a single document.

As shown in FIG. 20, in the event that an error oc-
curs in locking the document handle the tile manager
192 terminates at an end state 804. On the other hand, if
the tile manager 192 successfully locks the document
handle at state 802, the tile manager 192 moves to a state
806 where the tile manager 192 determines whether the
number of tiles in the file matches the number of tiles

expected for the particular subimage in the particular
file or document. If a mismatch exists between the ac-

tual and expected number of tiles, the tile manager 192
moves to a state 808 to print an error message and then
terminates at the end state 804. On the other hand, in the
event that the number of actual tiles matches the num-

ber of expected tiles, the tile manager 192 moves to a
loop state 810 where the tile manager 192 enters the first
part of a FOR-loop for each tile row. Still referring to
FIG. 20, the tile manager 192 moves from state 810 to
state 812 for each tile column. Accordingly, it will be
understood that the tile manager 192 is processing a
two-dimensional array at the states 810, 812.

In accordance with the present invention, the tile
manager 192 processes, at states 810, 812, all of the tiles
required to cover the particular subimage. Next, the tile
manager 192 moves to a decision state 814 wherein the
tile manager checks the value in the tile mode entry to
determine whether the tile data is compressed. If the tile
data is compressed, the tile manager 192 moves to a
state 816 and stores the file offset and byte count in the
compressed tile handle. The compressed tile handle is a
part of the tile header structure, and the file offset is the
location of the compressed data for the particular tile
within the file as measured by a byte offset from the
start of the file. The byte count represents the number of
bytes of compressed data associated with the particular
file starting at the offset that is provided at the tile.
From state 816, the tile manager moves to state 828,
wherein the tile manager sets a flag to indicate that the
particular tile is not blank.

In the event that the tile manager determines at state
814 that the tile data is not compressed, the tile manager

Microsoft Corp. Exhibit 100-5

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
27

192 moves to a decision state 818 where the tile man-

ager 192 checks to see if the data is uncompressed. If the
data is uncompressed on the disk, the tile manager 192
stores the file offset byte count information in the un-
compressed tile handle in state 820. From state 818, the
tile manager moves to state 828, wherein the tile man-
ager sets a flag to indicate that the particular tile is not
blank.

If the tile manager 192 determines at state 818 that the
tile data is not uncompressed, then the tile manager 192
moves to state 822, wherein the tile manager 192 checks
to see whether the tile is all foreground at a state 822.
For example, in a black and white drawing engineering
document, foreground color is black, so the tile man-
ager 192 treats a foreground as a black tile. If the tile is
determined to be a foreground tile, the tile manager 192
proceeds to state 824, wherein the tile manager 192
creates an all foreground tile, and then sets the flag as
not blank at state 828. As an example, if the image being
processed is a color image, the tile manager 192 could
fill the tile with the foreground color at the state 824.

On the other hand, if the tile is not all foreground, the
tile manager proceeds to state 826 to determine whether
the tile is all background. As discussed above, binary
images usually have background pixels which are white
or zero value. If a particular tile is blank, the tile man-
ager 192 moves to a state 828 where the tile manager
192 sets the blank flag to indicate that the tile is indeed
a blank tile. If at the state 826 the tile manager 192
determines that the tile is not all background, the tile
manager 192 terminates with an error at an end state
830. In other words, having determined at state 822 that
the particular tile was not all foreground, the only possi-
bility left at state 826 is that the tile is all background.
Consequently, a determination at state 826 that the tile
is not all background indicates an error.

From state 828, the tile manager 192 moves to a state
832 and sets the loaded flag to true indicating that a
valid image information set has been associated with the
particular tile. The tile manager 192 completes the loop
described above for each tile. After having processed
each tile in the particular image, the tile manager 192
exits the two FOR-loops and moves to a state 834 where
the tile manager 192 unlocks the document handle and
then terminates normally at the end state 830.

Now referring to FIG. 21, the tile manager 192 per-
forms a function which for purposes of the present
invention will be termed “Undoable Raster Operation”.
The function shown in FIG. 21 is performed by the tile
master 192 in the function “Begin Undoable Ras-Op”,
and is a relatively simple function, the purpose of which
is to clear the undo region list. More particularly, in the
process shown in FIG. 21, the tile manager 192 frees all
of the undo regions associated with the previous opera-
tion to prepare for a new undo operation. Indeed, the
present invention could be configured to have multiple
level undo, i.e., the system of the present invention
could undo two or three or more operations going into
the past and also to be able toredo all of those opera-
tions at the user’s choice. For example, the last three
operations could be undone and then the oldest of those
operations redone.

In specific reference to FIG. 21, the tile manager 192
begins at a start state 840 and then proceeds to loop state
842, in which the tile manager 192 executes a FOR-loop
for each undo region in the current list. The tile man-
ager 192 loops to a state 844 where the tile manager 192
frees all of the memory associated with that undo re-

10

15

20

25

30

35

45

50

55

65

28

gion. This may include freeing compressed data that is
stored in cache or expanded data that is stored in cache
and associated with the undo region. When the tile
manager 192 finishes all of the regions, the tile manager
192 terminates at an end state 846.

Now referring to FIGS. 22A and 22B, there is shown
the control flow for the ReadRowToRow function 414

which produces one or more rows of scaled image data
each time it is performed. It is one of the basic image
access functions. It should be understood that the tile

manager 192 can also read columns of an image, etc., so
as to produce a rotated output.

The tile manager 192 enters the function 414 by mov-
ing to a start state 850 and proceeds to a decision state
852 where the tile manager 192 checks for a region
overrun. In other words, when the access context is

created, the region that is going to be read in the course
of the overall operation is specified, and in the event
that the read row to row subfunction is accessed too

many times, the region will be overrun. Any such over-
run is detected by the tile manager 192 at state 852 and
reported at state 854. In the event of an overrun, the tile
manager 192 terminates at an end state 856.

If, on the other hand, no region overrun has oc-
curred, the tile manager 192 moves to a decision state
858 where the tile manager 192 checks to see whether
old results are carried over to the new strip. Such a
carryover could occur when, for example, raster data is
being enlarged by expanding one or more lines from the
image. For example, when raster data is being enlarged
by 4X, each line of input generates four (4) lines of
output. Accordingly, three (3) output rows could be
carried over for later strips. With this eventuality in
mind, the tile manager 192 ascertains whether any data
is being carried over and if so, the tile manager 192 uses
the carried-over data before generating a new row.
Consequently, if there is new data carried over, the tile
manager 192 moves to a state 860 where new rows are
generated from the carried over data.

Next, the tile manager 192 moves to a state 862 where
the tile manager 192 checks to see if a particular strip is
full. For purposes of the present invention, a strip is a
collection of rows, i.e., a set of numbers arranged in
rows As indicated at state 862, if the strip is full, then
the tile manager 192 ends at the end state 856.

If the strip is not full and the tile manager 192 has
used up all the carried over data, then the tile manager
192 moves to a decision state 864 where the tile man-

ager 192 checks for ghosting, i.e., the skipping of some
rows of data in order to produce a low quality image
while panning or zooming. If ghosting is in effect, the
tile manager 192 moves to state 866, wherein the tile
manager 192 calculates the number of blank lines to
create. The system then moves to a state 868 where the
tile manager 192 writes the blank lines to the output
strip buffer.

From state 864, if no ghosting was detected, or state
868, if ghosting is not in effect, the system moves to
state 870 where the tile manager 192 again checks to see
if the strip buffer is full. If it is, the tile manager 192 exits
at the end state 856. If it is not, the tile manager 192
checks to see that there are still input rows to read in a
decision state 872. If there aren’t, the tile manager 192
has reached the end of the specified image region, and
proceeds to state 874 to obtain another row of output
data by flushing the sealer buffers. In accordance with
the present invention, in the state 874 the tile manager
192 sets a flag that is subsequently passed down to the

Microsoft Corp. Exhibit 1005‘

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C
5,263,136

29
sealer functions to flush intermediate results from the

sealer functions. This is the case when for reducing
data, i.e., if a plurality of rows is being combined into
one output row. That is how the last output row is
produced.

From state 874, the system moves to state 894, shown
in FIG. 228. On the other hand, in the event that there
are no unread image rows at state 872, the system moves
to decision state 876, where the system determines
whether the row is outside of the valid image bound-
aries. If yes, the system moves to a state 878, where the
tile manager 192 substitutes blank lines for the input.
The tile manager proceeds from state 878 to a state 894,
shown in FIG. 22B. If the answer to the decision at state

876 is no, the, system moves to a decision state 880,
shown in FIG. 223, to check whether the row is con-
tained in the currently locked tile row.

At state 880, the tile manager 192 moves down the
image, and the system sequentially passes through sue-
cessive tile rows. Each tile contains, e.g., 512 rows, so
when a particular tile row is locked it stays locked until
all 512 image rows in that tile row have been read. Each
time the system arrives at a new row it tests to see that
the row is contained in the currently locked tile row. If
it is not, the system moves to the state 430 (function
ExpTileUnlock) to unlock the old tile row and lock
down the new tile row (at state 428). In addition, the tile
manager 192 has to unpreserve the row of tiles that was
just unlocked. Unpreserving them tells the memory
manager that those tiles are no longer needed for this
access operation and it can do what it wishes with them.

Next, the system proceeds to a decision state 882 to
determine whether any tiles are blank. If they are, the
tile manager 192 substitutes a reference to a “common
blank tile” and that common blank tile is used, as indi-

cated at state 884. All tiles that are blank are mapped
onto this common blank tile. Consequently, the tile
manager 192 uses less image memory.

From state 884, 882, or 880, as appropriate, tile man-
ager 192 proceeds to a decision state 886 to check for
polygonal clipping. If the tile manager 192 is doing
polygonal clipping then each input row of data is
clipped as appropriate for that polygon in states 888 and
890. The loop allows multiple clipped regions within
each row. If there is no clipping, then the tile manager
192 simply copies the entire input row from the image
into the input row buffer in a state 892. Then the tile
manager 192 move to a state 894 where the tile manager
192 passes these input rows through the sealer if the tile
manager 192 is scaling the data. Finally, the tile man-
ager 192 takes the results of the sealers and copies that
information to the output strip buffer if necessary at a
state 896. The tile manager 192 then returns to the state
870 (shown in FIG. 22A) where the tile manager 192
continues the process of retrieving input rows and seal-
ing them until the tile manager 192 has filled the output
strip buffer. The system then moves to the termination
condition at the end state 856.

Now referring to FIG. 23A, a process which will be
referred to as “Write Rows to Region” will be de-
scribed. The tile manager 192 starts at state 900 and
moves to state 902 where the tile manager 192 tests for
region overrun. Region overrun can occur when the
calling function attempts to write more rows to the

image than was specified when the access context was
created. If the region was Overrun, the tile manager 192
reports an error at state 904 and terminates with an
error at state 906. If there is no region overrun, the tile

10

15

20

25

30

35

45

50

55

65

30

manager 192 moves to the FOR-loop in state 908 where
the tile manager 192 loops for each input row in the
input buffer, which is the buffer that is passed in by the
calling function. It contains the data that is to be pro-
cessed and written to the image. The loop is executed
for each row and moves to state 910 where the input
data is passed through the sealer functions and put into
a temporary buffer. If the sealer does not always pro-
duce an output row, as is the case when reducing the
resolution, a plurality of input rows may have to be
combined to produce a single output row. So, at the
state 912, the tile manager 192 determines whether an
output row was produced after the input row is scaled.
Ifnot, the tile manager 192 goes back to the loop at state
908 and continues the process as described. On the
other hand, when the tile manager determines at state
912 that an output row was produced, the tile manager
192 moves to state 914 which is a FOR-loop for each
copy of the scale row to write to the image. It may be
the case that more than one copy of the scaled row
needs to be written into image memory. This is the case
when the tile manager 192 is expanding the input image
data. It may be that one input row is replicated four
times to get a 4X expansion factor.

Next, the tile manager 192 moves to state 916 where
the tile manager 192 checks to see if the destination row
index is outside of the image’s clipping boundaries. If so,
the tile manager 192 simply ignores it and moves back
to state 914. If it is within the clip boundaries the tile
manager 192 moves to state 918 where the tile manager
192 determines whether the destination row is in the

currently locked tile row. If it is not, the tile manager
192 moves to state 920 where the tile manager 192 un-
preserves and unlocks the old tile row that is currently
locked. The tile manager 192 then moves to state 922 to
determine whether the update overview flag is true.
This is an option that is specified in the 10 access context
and it determines how lower-resolution tiles are up-
dated when the full resolution subimage is modified. If
the update overview flag is true, then the tile manager
192 moves to state 924 where the tile manager 192 un-
preserves the low resolution tiles that will no longer be
needed.

After the system has unpreserved the low resolution
tiles that are no longer needed at state 924, the system
moves to state 926 and locks down the new tile row.

Only the full resolution tile row is locked at this level.
The low resolution tiles are actually updated when the
call to unlock the old tile row is made.

Next, the tile manager 192 moves to state 928 to de-
termine whether an error was detected when the new

tile row was locked. If so, the system terminates with an
error condition at state 906. If there is no error or if in

state 918 the tile manager 192 finds that the destination
row is currently in the locked tile row, the tile manager
192 moves to state 930 in FIG. 233. At state 930, the tile
manager 192 determines whether polygonal clipping is
activated. If it is, the tile manager 192 computes the clip
points for the current image row, as indicated at state
932, which results in a list of clip point pairs.

The tile manager 192 then moves to state 934,
wherein the tile manager 192 conducts a FOR-loop for
each of the clip point pairs that the tile manager 192
computed in state 930. As shown in FIG. 23B, the tile
manager 192 loops to state 936 where the tile manager
192 copies pixels from a sealer output buffer to the
image row between each pair of clip points. When that
loop terminates, the tile manager 192 returns to state

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
. 31

914 in FIG. 22A. 0n the other hand, if the tile manager
determines at state 930 that polygonal clipping is not
active, the tile manager 192 moves to state 938, wherein
the tile manager 192 copies the sealer output buffer
pixels to the image row without clipping. The tile man-
ager 192 then proceeds to state 914.

Now referring to FIG. 24, the tile manager starts at
state 950 in the end access function shown in FIG. 24

and proceeds to state 952. At state 952, the system
cleans up after row or column access functions by free-
ing buffers used by the row or column access functions.

Next, at state 954, the tile manager 192 unlocks the
last row or column of tiles accessed. Then, the system
moves to state 956 where the tile manager 192 un-
preserves any tiles in the region that are still preserved.
The system may perform the functions at states 954, 956
when an operation was aborted in mid-progress and it
cleans up after those partially completed operations.

At state 958, the tile manager 192 cleans up after the
polygonal clipping function. If there was polygonal
clipping involved in this access context the tile manager
192 has to free the buffers that contain the polygon edge
information.

Next, the system moves to state 960, where the tile
manager 192 frees scaler buffers, the temporary tile
directory, etc.. From state 960, the system moves to
state 962, wherein the tile manager 192 unlocks the
document handle to indicate to the memory manager
that the access context no longer is referring to the
particular document associated with the document han-
die.

The tile manager 192 next moves to state 964 where
the memory that was used to store the data for the
access context is freed. Then, the system ends the clean
up function at state 966.

Referring now to FIGS. 25A,B, a function is shown
which, for purposes of the present invention, will be
termed the “Undo Previous Raster Operations”. The
tile manager 192 starts at state 970 and moves to state
972, wherein the tile manager determines whether any
undo regions exist in the list or if the list is empty. If no
regions exist then the tile manager 192 moves to end
state 974 and terminates normally.

If the tile manager 192 determines at state 972 that
“undo” regions do exist, the tile manager 192 moves to
state 976, where the tile manager 192 enters a loop for
each undo region in the list. In this loop, the tile man-
ager 192 moves to state 978 where the tile manager 192
locks the affected document handle. The document
handle that is locked is the one that was stored in the

undo region header that tells where that particular undo
region came from. The tile manager 192 moves from
state 978 to state 980 where the tile manager 192 saves
the current document region to support redo (i.e. an
“undo” operation following by another “undo” opera-
tion). Then the tile manager 192 moves to state 982 to
invalidate the affected tiles in, the lower-resolution
subimages. The strategy represented by states 980, 982
in FIG. 25A is to save the minimum amount of informa-

tion that is needed to reconstruct the image, which
means the tile manager 192 saves only the affected tiles
in the full res subimage.

Next, the system moves to a loop indicated by the
states 984, 986. In this loop, for each tile, the tile man-
ager 192 moves to state 988, discarding the document
tile image data. Then the tile manager 192 moves to
state 990 to determine whether the undo tile is loaded. If

it is not loaded, the tile manager 192 moves to state 992

10

IS

20

25

30

35

45

50

55

65

32

where the tile manager 192 marks the document tile as
“not loaded”. If the tile is determined to be loaded at

state 990, the tile manager 192 moves to state 994 to
mark the document tile as “loaded”. From state 994, the

system moves to state 996 in FIG. 25B.
At state 996, shown in FIG. 25B, the tile manager 192

determines whether the undo tile is marked as blank. If

it is, the tile manager 192 moves to state 998, wherein
the tile manager marks the document tile as blank, and
then the system loops back to state 986. If the undo tile
is determined to be not blank at state 996, the tile man-

ager 192 move to state 1000. At state 1000, the tile man-
ager 192 checks to see if the undo tile points to com-
pressed data on the disk. If it does, the tile manager 192
moves to state 1002 and copies the disk location and size
information about the compressed data into the docu-
ment tile header and loops back around. If there is no
compressed data on the disk, then the tile manager 192
moves from state 1000 to state 1004, wherein the tile

manager 192 determines whether uncompressed data
exists on the disk associated with the undo tile.

If so,the tile manager 192 moves to state 1006,
wherein the file manager 192 copies the disk location
and size information about the uncompressed data into
the document tile header and loops back to state 986. If
the system determines at state 1004 that there is no
uncompressed data on the disk, the tile manager 192
proceeds to state 1008, wherein the tile manager 192
determines whether the undo tile “points” to uncom-
pressed data in cache memory. If it does, the tile man-
ager 192 moves to state 1010, wherein the tile manager
192 copies the pointer to the uncompressed data from
the undo header to the document tile header.

From state 1010, the system returns to state 986. If no
uncompressed data exists in the cache, however, as
determined in state 1008, the tile manager 192 stores a
pointer to the compressed data in cache in the docu-
ment tile header and returns to state 986.

Referring back to FIG. 25A, when the tile manager
192 has completed the loop described above, the system
moves to state 1014, unlocking the document handle.
From state 1014, the tile manager 192 proceeds to state
1016, wherein the tile manager 192 frees the memory
associated with the undo header. The tile manager 192
then moves to state 976. Thus, the system returns to
state 976 for each undo region in the list. As intended by
the present invention, the tile manager 192 continues
the loop for all of the regions in the list. The undo re-
gions are restored in “last-in-first-out” order. At the
completion of the looping process described above, the
system moves to state 974.

Now referring to FIG. 26, when the tile manager 192
ends the cache management, the tile manager 192 starts
the process shown in FIG. 26 at state 1020 and proceeds
to state 1022 wherein the system frees the compression
buffer. From state 1022, the system proceeds to state
1024, wherein the system frees the common blank tile.
Next, the system moves to state 1026 to free the tile
cache memory. The system then ends the process
shown in FIG. 26 at state 1028.

FIG. 27 provides an explanation of the function exp
tile lock. The tile manager 192 starts at state 1040 and
moves to state 1042 where the tile manager 192 enters a
FOR-loop for each tile row to be locked. In accordance
with the present invention, the system in the exp tile
lock function is capable of locking down all the tiles in
a two dimensional region.

Microsoft Corp. Exhibit 1005 '

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
33

For each tile in the specified region, the system
moves to state 1046, wherein the tile manager 192 deter-
mines whether the particular tile is blank. To make this
determination, the system examines flags in the tile
header itself or checks the image data for that tile to
determine if there are any non-background pixels. If it is
not a blank tile, the tile manager 192 move to state 434
where the tile manager 192 locks the uncompressed
version of the tile. Then the tile manager 192 proceeds
to state 1050, wherein the tile manager 192 determines
whether an error had occurred in the process of creat-
ing the uncompressed version of the tile. If no error is
found at state 1050, the tile manager 192 continues to
loop to the next tile in the region by returning to state
1044. If an error did occur, as determined at state 1050,
the system proceeds to state 430 to unlock previously
locked tiles, and then ends at state 1056.

In the event that the tile manager 192 at state 1046
detected that the particular tile was a virtual blank tile,
i.e., a tile that exists only by virtue of the fact that there
is a tile directory entry for that tile, the tile manager 192
take no action, other than to loop back to state 1044 for
further processing.

FIG. 28 illustrates the control flow for the “lock

expanded tile” function 434 wherein the tile manager
192 takes a single tile and locks the expanded version of
the tile in the image data cache 194. The tile manager
192 enters the function 434 at a start state 1060, and
proceeds to a decision state 1062 wherein the tile man-
ager 192 tests whether the tile is marked as “loaded”. As
already mentioned, a loaded tile is one that either con.
tains or references valid image data, is either uncom-
pressed or compressed image data, and it either resides
in cache memory or on the disk. If the tile is not loaded,
the tile manager 192 moves to a function 436 wherein
the tile must be created from higher resolution tiles
which are loaded. Afterwards, the tile manager 192
determines if there was an error in a decision state 1066.

If there was an error, the tile manager 192 terminates
the function 434 at an end state 1068 and reports the
error condition. Otherwise, if there was no error in

creating the tile, the tile manager 192 continues, moving
from the state 1066 to a decision state 1070.

The tile to be locked is now loaded so the tile man-

ager 192 tests whether the uncompressed version of the
tile is in cache memory. The objective of the function
434 is to guarantee that there is an uncompressed ver-
sion of the tile in cache memory. Now, if the uncom-
pressed version is not in the cache, the tile manager 192
proceeds to a decision state 1072 to determine whether
the selected tile is a blank tile.

If the tile is blank, the tile manager 192 proceeds to a
state 438 to create a blank tile. Note here that the func-

tion ExpTileLock 428 (FIG. 27) will detect a blank tile
before calling the function 434 if it can take advantage
of using a common blank tile at a higher level. In other
words, if the tiles are locked for reading only, i.e., the
image data will not be modified in any way, then all
blank tiles can refer to the same section of blank mem-

ory. However, if the tiles are locked for writing, all tiles
must have their own memory because different image
data can be written to the different tiles.

At this point, state 438, memory has presumably been
allocated for a blank tile. Moving to a state 1074, the tile
manager 192 tests whether there was an error and
moves to the end state 1068 if there was an error.

Returning in the discussion to the decision state 1072,
if the tile is not blank, then the tile manager 192 transi-

10

15

20

25

30

35

45

50

55

65

34
tions to a decision state 1076 and tests whether there is

a uncompressed version of that tile on the disk. If the
uncompressed version is on disk, then the tile manager
192 reads that uncompressed version from the disk into
cache memory at a state 1078. Then the tile manager
192 moves to the state 1074 to test for errors.

If, at the state 1076, there is not an uncompressed
version on the disk, the tile manager 192 moves to the
function 440 so as to create the tile from the compressed
version. The compressed version can be either in cache
memory or on the disk, and this is handled by the func-
tion 440. Again, the tile manager 192 checks for an error
at the state 1074.

Now, assuming that there was no error found at the
state 1074, the result is that the tile manager 192 has an
uncompressed version of the tile in cache. Therefore,
the tile manager 192 proceeds to a decision state 1080 to
verify that the uncompressed version is valid. It is some-
times the case that the uncompressed version of a tile is
locked by one access context and then for come reason
it is invalidated by another access context. This happens
when the first access context is reading an uncom-
pressed version of a tile from a lower resolution image,
and another access context is actively modifying the full
resolution subimage with a particular setting ofparame-
ters. If the tile not valid, the function 434 is terminated
at the end state 1068.

Alternatively, a valid tile that was determined at the
state 1080 causes the tile manager 192 to increment the
uncompressed data lock count for that tile at a state
1082. The lock count starts out at zero for an unlocked

tile and can increment as high as necessary. However,
the lock count will be decremented once for each un-

locking operation. It is important to match the number
of times a tile is locked with the number of times the tile

is unlocked. Otherwise, the tile would end up in a per-
manently allocated (unfreeable), locked state.

Proceeding to a decision state 1084, the tile manager
192 tests whether the tile is locked for writing or for
reading. If the tile manager 192 locked the tile for writ-
ing, the execution of the function 434 continues to a
state 1086 wherein the “blank” status flag is invalidated.
The blank status flag is actually a combination of two
flags. One that says that the tile is blank or not blank and
the second flag that says if the first flag is valid or not.
The reason for two flags is that the way to detect that a
tile is blank is by searching through all the pixels in that
tile. To do so every time the file is accessed would be
wasteful so occasionally, truly blank tiles won't be han-
dled as blank tiles. Hence, there is a second flag that is
set, in the state 1086, when the first flag is invalid. The
second flag indicates that the tile must later be examined
to determine whether it is still blank.

The tile manager 192 next moves to a state 1088 to
invalidate the disk-resident, uncompressed version of
the tile, if one exists. This is because the tile manager
192 will modify the cache-resident version of the tile.
To synchronize the cache-resident and disk-resident
versions, the disk-resident version is invalidated. Then,
at a state 1090, the tile manager 192 invalidates and frees
the compressed versions if they exist.

A compressed version of the tile may be in cache or
on the disk and, at the state 1090, the tile manager 192
cleans both out of memory. Thus, at the end of the
“lock for writing” operation, the only valid version of
the tile is the expanded version in cache, which at this
point is locked. Then the tile manager 192 continues to
a state 1092 to move the newly locked, expanded ver-

Microsoft Corp. Exhibit 100.5

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
35

sion of the tile to the front of the “most recently used
(MRU)” list of uncompressed tiles.

The MRU list is a doubly-linked list wherein, starting
at the beginning, the tile is found that was most recently
used, then the next most recently used, and so on, the
last tile was used the longest time ago. That list is used
by the cache manager to determine which tiles are least
likely to be used again as a second level of criteria.

Finally, the tile manager 192 terminates the LockEx-
pHandle at the end state 1068.

FIG. 29 illustrates the control flow for the “unlock-

ing expanded image tile group” function 430. The func—
tion 430 is just the reverse of lock expanded image tile
group. In other words, there is a region of locked tiles
which must be unlocked because the access to the tiles

is complete. Generally, the two functions, ExpTileLock
and ExpTileUnlock are called for a row or column of
image data rather than a region but an entire region
lock/unlock is possible.

The tile manager 192 enters the function 430 at a start
state 1110. The loop states 1102 and 1104 represent the
beginning of nested FOR-loops. That is, the outer loop,
beginning at the state 1102, unlocks a row of tiles, and
the inner loop, beginning at the state 1104 unlocks a
column of tiles. Moving from the state 1102, to the state
1104, and then to the function 432, the tile manager 192
unlocks the uncompressed version of the tile. When all
the tiles in the region are unlocked, the tile manager 192
terminates the function 430 at an end state 1108.

Now referring to FIG. 30, the tile manager 192 enters
the UnlockEpoandle function 432, referred to in FIG.
29, at a start state 1110. The tile manager 192 proceeds
to a decision state 1112 to test whether the uncom-

pressed version of the currently selected tile is in fact
locked, i.e., whether the lock count is non-zero. If the

tile is not locked, the tile manager 192 exits the function
432 at an end state 1114.

If, at the state 1112, the tile is found to be locked, the
tile manager 192 moves to a state 1116 to decrement the
lock count. Thereafter, the execution continues to a

decision state 1118 wherein the tile manager 192 tests
whether the “update overview” flag is set true. If the
flag is set, the tile manager 192 moves to a state 1120 to
update the corresponding lower-resolution tiles. In the
process of modifying tiles, the tile manager 192 locks a
tile down in the image data cache to write to it. When
the tile is unlocked, that is a signal to the memory man-
ager to update the lower resolution tiles that correspond
to the higher resolution tile. Thus, the image data in the
high resolution tile being unlocked is copied down into
the lower resolution tiles, all the way down to the bot-
tom of the image stack. '

Once the lower resolution images are modified, or if
the overviews are not being updated, the tile manager
192 proceeds to a decision state 1122 to test whether the
lock count is exactly zero. If the lock count is not zero,
the tile manager 192 terminates the function 432 at the
end state 1114.

Otherwise, the tile manager 192 moves to a state 1124
to clear the "cache" collection delay” flag. The cache
collection delay flag is set by the tile manager after
unsuccessfully trying to reduce the expanded memory
usage of the cache file. It is cleared in the function 432
because there is now the possibility of freeing the tile
that was just unlocked. In other words, the tile can be
removed from the cache to create some space. This flag
prevents the’tile manager or the cache manager from
making repeated, unsuccessful attempts to create space.

10

15

20

25

30

35

45

50

55

65

36

After the tile manager 192 clears the flag, execution
proceeds to a decision state 1126 to determine whether
the uncompressed version of the tile is invalid. As ex-
plained hereinabove, it is possible for one access context
to have the expanded version of the tile locked down
and another access context to invalidate the data in that

tile. The tile must remain in memory until the first ac-
cess context unlocks the tile. Once it is unlocked and the

lock count is decremented to zero, if the tile is invalid,

the tile manager 192 moves to a state 1128 to free the
uncompressed tile version, or remove the tile from the
image data cache. In either case, the tile manager 192
terminates the function 432 at the end state 1114.

FIG. 31 illustrates the control flow for the “create tile

from higher-resolution tiles” function 436 referred to in
FIG. 28. The tile manager 192 begins the function 436 at
a start state 1140 and proceeds to a decision state 1142 to
determine whether the tile is in fact already loaded, in
which case no further processing is needed and the tile
manager 192 terminates the function 436 at an end state
1144. Assuming that the tile is not loaded, the tile man-
ager 192 moves to a decision state 1146 to test whether
a higher resolution subimage exists.

This function is called only for lower resolution
subimages where the tile manager 192 can create the
lower-resolution tiles from higher-resolution tiles.
Hence, higher-resolution subimages must exist for the
function to succeed. If no higher-resolution subimages
exist, the tile manager 192 reports the error and tenni-
nates the function 436 at the end state 1144.

If the higher-resolution subimage does exist, the tile
manager 192 proceeds to a state 1150 to calculate the
indices of, or locate, the four higher-resolution tiles that
reduce to this tile. There are four tiles involved because

the preferred resolution step between subimage levels is
two in the presently preferred embodiment. Thus, since
there are two dimensions, four higher-resolution tiles
are required to produce each next lower resolution tile.

Thereafter, the tile manager 192 enters a FOR-loop at
a loop state 1152. For each of the four higher-resolution
tiles, the tile manager 192 tests whether the tile is loaded
in the image data cache, at a decision state 1154. If the
tile is not loaded, then the tile manager 192 moves to a
state 1156 wherein a recursive call is made to the “load

subimage tile” function to create the corresponding
higher-resolution tile from yet higher-resolution tiles.
This case occurs if a the tile is a few layers down in the
image stack and the tiles in all but the full resolution
subimage had been invalidated. Therefore, the function
436 invokes itself to work all the way back up to the top
level, recreate the higher-resolution tiles and then work
back down to the tile of interest. Only higher-resolution
tiles that map to the particular lower-resolution tile
need be loaded

Assuming that all the higher-resolution tiles have
been loaded, the FOR-loop terminates and the tile man-
ager 192 proceeds to test whether all of the higher-reso-
lution tiles are blank. If all four of the high resolution
tiles mapped to this low resolution are blank, the tile
manager 192 transitions to a state 1160 to mark the low
resolution tile as blank. The tile manager 192 does not
create any image data for the blank, lower-resolution
tile. The tile manager 192 and terminates the function
436 at the end state 1144.

If, however, one or more of the higher-resolution
tiles is not blank, the tile manager 192 moves to a state
1162 to make a determination as to whether it is faster to

create the lower-resolution tile by scaling the com-

Microsoft Corp. Exhibit 1005'

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C

5,263,136
37

pressed version of the higher-resolution tiles or the
expanded version of the higher-resolution tiles. An al-
gorithm is used at the state 1162 to decide which is
faster and depends on the machine that the program is
running on, and other considerations. If it is faster to
scale the compressed data the tile manager 192 moves to
the function 442 to create the compressed, lower-reso-
lution tile directly from the compressed higher-resolu-
tion tiles. ,

Now, if it is determined that it is faster to scale the

expanded version of the data, the tile manager 192
moves from the state 1162 to a state 1166 to allocate

memory for the uncompressed version of the lower-
resolution tile. From the state 1166, the tile manager 192
moves to the beginning of a FOR-loop at a loop state
1168 wherein for each of the higher-resolution tiles the
tile manager 192 scales the expanded version of the
higher-resolution tile directly into the proper position in
the lower-resolution tile using the function 444. When
the tile manager 192 has scaled each of the four high
resolution tiles, the tile manager 192 has completed the
creation of the expanded version of the low resolution
tile.

The tile manager 192 then proceeds, from either of
the states 1168 or 442 to a decision state 256 wherein the

tile manager 192 determines if an error was incurred in
that process. If there was an error, the tile manager 192
moves to a state 1172 to report the error. From either of
the states 1170 (if no error) or 1172, the tile manager
terminates the function 436 at the end state 1144.

FIG. 32 contains the flow diagram for the “allocate
space for uncompressed version of tile" function 438
referred to in FIG. 28. The tile manager 192 enters the
function 438 at a start state 1180 and moves to a decision

state 1182 to test whether the “soft” uncompressed
cache usage limit is exceeded. The soft uncompressed
cache limit is a number that is cast into the tile manager
192 during initialization and it basically sets a guideline
for how much of the image data cache is to be devoted
to uncompressed image data. If the cache manager gets
a request for uncompressed cache space and finds that
this soft limit has been exceeded, it attempts to reduce
the amount of expanded image data that is held in cache
either by compressing expanded tiles or by discarding
expanded tiles that have valid compressed versions or
some other way to recreate them.

If the tile manager 192 finds that the soft limit is ex-
ceeded, the tile manager 192 moves to a state 1184 to
first check whether the “cache collection delay” flag is
set. This flag is set after an unsuccessful attempt to
reduce cache memory usage and prevents repeated
unsuccessful calls to collect free cache at a state 1186.

Thus, the tile manager 192 will not try to reduce the
expanded memory usage until the flag is cleared in the
“unlock expanded tile handle” function 432 (FIG. 30).

If the cache collection delay flag is not set, the tile
manager moves to a state 1186 to collect free cache
memory by freeing uncompressed tiles. After that, the
tile manager 192 moves to a decision state 1188 to test
whether the soft uncompressed cache usage limit is still
exceeded after an attempt to reduce the memory usage.
If the usage is still exceeded, the tile manager 192 prints
a warning message on the video display 154 (FIG. 6) at
a state 1190 and then sets the cache collection delay flag
at a state 1192.

Returning in the discussion to the state 1182, if the
soft limit was not exceeded, or if it was not exceeded at
the state 1188, the tile manager 192 moves to a decision

10

l5

20

25

30

35

4s

50

55

65

38

state 1194 to determine whether there is memory avail-
able in the uncompressed tile free list. If there is not
memory available in the uncompressed tile free list, then
the tile manager 192 moves to a decision state 1196 to
determine whether there is memory available in the
cache reserve list. If there is no memory available there,
the tile manager 192 moves to a state 329 wherein the
tile manager 192 again tries to collect free cache space
by unlocking or freeing both uncompressed and com-
pressed tiles. At this point, the tile manager 192 must
free space in order to allocate space for this uncom-
pressed tile. The tile manager 192 moves to a state 1200
to determine whether memory is now available in the
cache reserve list. In the state 1198, when the cache

memory space is freed, it is placed into the cache re-
serve list. If memory is not available, then the tile man-
ager 192 moves to a state 1202 and prints a “cache
overflow” error message and terminates the function
438 with an error condition at the end state 1204.

Now, taking an alternate path from the states 1194,
1196 and 1200, if the tile manager 192 can successfully
get space for the uncompressed tile data, then the tile
manager 192 moves to a state 1206 where the tile man-
ager 192 finds the free block with the highest memory
address. If there is a choice between two or more free

memory blocks, the tile manager 192 chooses the one
with the highest address to try to keep all of the ex-
panded image data at the high address end of the cache
file. Once the tile manager 192 finds the highest address
block, it moves to a state 1208 to unlink the free block
from the free memory link list.

There are actually two possibilities for the free mem-
ory link list when the tile manager 192 is looking for
expanded memory. One is the uncompressed tile free
list and the other is the cache reserve list. In either case,

the tile manager 192 unlinks the block of memory that
the tile manager 192 is interested in from the free list
and relinks the remaining memory blocks of the affected
free list.

The tile manager 192 then transitions to a state 1210
to initialize the newly allocated block to all background
color. Then the tile manager 192 moves to a state 1212
to move the description of the memory block (a pointer
to the tile header) to the front of the most recently used
tile list. Moving to a state 1214, the tile manager 192
updates the soft uncompressed cache memory usage
counter that was checked at the state 1182. The tile

manager 192 continues to a state 1216 to store the mem-
ory address in the tile header. The memory block that
the tile manager 192 has just allocated is a pointer that
is stored in the tile header data structure. That is how

the memory block is associated with the tile. Then the
tile manager 192 terminates normally from the function
438 at the end state 1204.

FIG. 33 illustrates the process by which the present
invention expands the compressed version of a tile to
create an uncompressed version. Specifically, as shown
in FIG. 33, the tile manager 192 starts at a start state
1220 and moves to a test functiOn at state 1222, where

the tile manager 192 determines whether the com-
pressed version of the tile, or the compressed tile data,
is in cache memory. If it is not, then the tile manager 192
moves to state 1224, wherein the system loads the nec-
essary data from the disk. If there is an error detected at
state 1224, the tile manager 192 moves to state 1228 to
terminate the process.

From state 1226, if compressed data was successfully
loaded from the disk or from state 1222 if it was in cache

Microsoft Corp. Exhibit 100-5

APPENDIX C

Microsoft Corp. Exhibit 1005

APPENDIX C
5,263,136

39

to begin with, the tile manager 192 moves to state 1230,
wherein the tile manager 192 locks the compressed tile
image data. This step simply increments the lock count
on the compressed memory state. From state 1230, the
system moves to state 1232, wherein the tile manager
192 allocates and locks the uncompressed tile memory
block. The system then moves to state 1234 to deter-
mine whether an error occurred at state 1232. If so, the

tile manager 192 moves to state 1236 and unlocks the
compressed tile data. From state 1236, the system
moves to state 1238 to report the error. The system then
terminates at end state 1228.

On the other hand, if no error existed as determined

at state 1234, the system moves to state 1240, wherein
the tile manager 192 uncompresses the compressed data.
Next, the tile manager 192 moves to state 1242 to deter-
mine whether an error occurred at state 1240. If an

error occurred at state 1240, the tile manager 192 moves
to state 1236 and functions as described previously.
Otherwise, the tile manager 192 moves to stat 1244 to
unlock the compressed and uncompressed data, and
then terminates at end state 1228.

FIG. 34 illustrates a process for creating compressed
low resolution tiles from compressed higher resolution
tiles. The tile manager 192 starts at start state 1250 and
proceeds to state 1252, wherein the system enters a loop
which is followed by the system for each of the four
high resolution tiles required to produce a single low
resolution tile. More specifically, at state 1252 the tile
manager 192 locks the compressed version of the high
resolution tile. The system then proceeds to state 1256,
wherein the tile manager 192 determines whether an
error occurred at state 1254. In the event that an error

occurred, the tile manager proceeds to end state 1258
and terminates. If no error occurred, the tile manager
192 returns to state 1252 and continues the loop de-
scribed above for each of the four high resolution tiles.

After processing all four high resolution tiles as de-
scribed, the system proceeds to state 1260 where the tile
manager 192 scales the compressed data to half resolu-
tion. The process performed at state 1260 results in a
compressed version of the low resolution tile. Then the
tile manager 192 moves to a loop represented by states
1262, 1264, wherein for each of the high resolution tiles
the tile manage 192 unlocks the compressed version of
the tile.

Next, the tile manager 192 moves to state 1266 where
the tile manager 192 allocates and locks memory for the
compressed version of the low resolution tile. At state
1266, the tile manager 192 actually puts the compressed
version of the low resolution tile in a general, common
buffer that is large enough to hold the maximum possi-
ble size of the compressed results. The actual valid data
is usually much less than that than the maximum possi-
ble size, so the tile manager 192 only saves the valid
amount of data.

From state 1266, the system moves to state 1268 to
determine whether an error occurred at state 1266. If an

error occurred, the system moves to end state 1258 and
terminates. Otherwise, the system moves to state 1270
where the tile manager 192 copies the compressed data
out of the temporary compressed data buffer into the
newly allocated space in the cache. Then the tile man-
ager 192 moves to state 1272 where the tile manager 192
unlocks the compressed version of the low resolution
tile that now contains valid data. The system then termi-
nates normally at state 1258.

10

15

20

25

30

35

4s

50

55

65

40

Now referring to FIG. 35, a process is shown
whereby the system resamples uncompressed high reso-
lution tiles to an uncompressed low resolution tile. The
tile manager 192 starts at start state 1280 and moves to
state 1282, wherein the tile manager 192 locks the un-
compressed version of a single high resolution tile. This
function scales a single high resolution tile to update
one quarter of a tile in the half-resolution subimage.
That quarter tile is rescaled to update one-sixteenth of a
tile in the quarter-resolution subimage. This continues
to the lowest resolution subimage. Next, the tile man-
ager 192 proceeds to state 1284 to determine whether an
error occurred in locking the uncompressed version of
the high resolution tile. If there Was an error, then the
tile manager 192 proceeds to state 1286 and terminates
with an error condition. Otherwise, the tile manager
192 moves to state 1288 where the tile manager 192
determines how many levels of the subimage are to be
updated. This function can be used to update a subset of
subimages or the entire image stack in the case where a
single tile is modified in the full resolution subimage. It
will propagate that change all the way down to the
lowest-resolution subimage in the image stack.

Next, the tile manager 192 proceeds to state 1290
where the tile manage 192 determines the tile index that
is to be updated. In accordance with the present inven-
tion, when a change is propagated from the higher
resolution down to the low resolution of tiles, the sys-
tem calculates which tile corresponds to the affected
area. Then the tile manager 192 moves to state 1290
where the tile manager 192 determines whether the low
resolution tile that the tile manager 192 is about to up-
date is marked as loaded or not. This step is intended for
the situation in which not all of the low resolution sub-

states are populated during the loading of a raster im-
age.

If the system determines that one or more low resolu-
tion tiles are not loaded, the system proceeds to state
1294, wherein the tile manager 192 invalidates all of the
low resolution tiles that would otherwise be affected by
the change. The system then exits normally at end state
1286. If the low resolution tile is about to be modified is

loaded, as determined at state 1292, the tile manager 192
moves to state 1296, wherein the system locks the un-
compressed version of the low resolution tile. The tile
manager 192 then moves to state 1298 to determine
whether an error occurred at state 1296 and, if so, the
system moves to end state 1286 to terminate. Otherwise,
the system moves to state 1300. wherein the tile man-
ager 192 scales the raster data from the high resolution
tile down to the low resolution tile. Then the tile man-

ager 192 moves to state 1302 where the tile manager 192
unlocks the high resolution tile.

Next, the system moves to state 1304, wherein the tile
manager 192 recursively modifies the loop variables
such that the low resolution tiles that the tile manager
192 just finished updating become the high resolution
tiles for the next succeeding iteration. Once all the
subimages have been updated as described, the system
exits at end state 1286.

Now referring to FIGS. 36A and 36B, a process to
collect free cache is shown. This process can be called
from several other processes. The tile manager 192
begins at start state 1310 in FIG. 36A and moves to state
1312 to determine whether a cache collection operation
is in process. If so, the system exits at end state 1314.
This prevents recursive calls to collect free cache
which might otherwise occur. If the system at state

Microsoft Corp. Exhibit 1005-

APPENDIX C

Microsoft Corp. Exhibit 1005

41

1312 determines that no collection is in progress, then
the tile manager 192 moves to state 1316 where the tile
manager 192 sets a flag indicating that a collection is in
progress.

From state 1316, the system moves to state 1320,
where the tile manager 192 estimates the number of
memory blocks to free in this operation. The reason for
freeing a number ofblocks instead ofjust one block is to
reduce the computational overhead associated with the
cache collection operations. The tile manager 192 typi-
cally estimates the amount of memory required to equal
the number of tiles in a single row of the full resolution
subimage of the document associated with the most
recently used tile.

Once this estimate has been made, the system pro-
ceeds to state 1322 wherein the tile manager 192 con-
siders the options that the tile manager 192 passed into
this function. There are three options. One, as indicated
at state 1324, is to reduce the uncompressed cache usage ‘
only while not affecting the compressed data that is
currently held in cache. The second option, indicated at
state 1328, is to reduce the compressed cache memory
usage only. The third option, indicated at state 1326, is
to reduce the total cache memory usage including both
compressed and uncompressed data.

From state 1324 or state 1326, the tile manager 192
moves to state 1330, where the tile manager 192 stores
all of the free states currently in the uncompressed free
list into the cache reserve list. As the tile manager 192
performs the process in state 1330, the tile manager 192
attempts to consolidate the memory blocks. That is, if
there are two free blocks that are adjacent to one an-
other, the system automatically turns them into a single,
larger contiguous block. From state 1328, on theother
hand, the system moves to state 1358, shown in FIG.
36B and discussed below.

From state 1330, the tile manager 192 moves to state
1332, wherein the tile manager 192 determines whether
the tile manager 192 has created a memory block large
enough to satisfy the initial request. If so, the tile man-
ager 192 terminates normally at end state 1314. Other-
wise, the tile manager 192 moves to state 1334 where
the tile manager 192 frees any unlocked, uncompressed
tiles which are blank. The tile manager 192 then moves
to state 1336 where the tile manager 192 determines
whether the tile manager 192 has free sufficient mem-
ory. If so, the tile manager 192 exits at end state 1314.
Otherwise, the tile manager 192 moves to state 1338
where the tile manager 192 frees unlocked, unpreserved
uncompressed tiles that have valid compressed versions
in cache or are on a disk, or that have valid, uncom-

pressed versions on the disk beginning with the least
recently used tile. After having freed that particular
class of tiles, if the tile manager 192 determines, at state
1340, that the memory request has been satisfied, the tile
manager 192 moves to state 1314 and terminates. Other-
wise, the tile manager 192 moves to state 1342, shown in
FIG. 3613. .

Now referring to FIG. 36B, the tile manager 192
begins at state 1342, wherein the tile manager 192 com-
presses the free unlocked, unpreserved uncompressed
tiles that don’t have a valid compressed version or other
source from which the tile can be recreated. To do this

the tile manager 192 processes expanded tile data
through a compression algorithm. The tile manager 192
then creates a compressed version of that tile so that the
uncompressed version of the tile can be discarded.

5,263,136

5

10

15

20

25

30

35

45

55

65

APPENDIX C

42

Next, the tile manager 192 moves to state 1344,
wherein the system determines whether the request
made at state 1342 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1348, wherein the tile manager 192 frees
unlocked, but preserved uncompressed tiles that have
valid compressed or uncompressed copies. The tile
manager 192 preferentially frees the oldest such tiles.

From the state 1348, the tile manager 192 proceeds to
a decision state 1350 to test whether the request made at
the state 1348 was satisfied. If so, the function 446 is
terminated at the end state 1346. Otherwise, the tile

manager 192 moves to a state 1352 to compress and then
free unlocked, but preserved, uncompressed tiles that
do not have valid compressed versions.

Next, the tile manager 192 moves to state 1354,
wherein the system determines whether the request
made at state 1352 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1356, wherein the tile manager 192 deter-
mines whether to free data memory blocks. If not, the
system terminates at state 1346. Otherwise, the system
moves to state 1358, to free unlocked preserved, uncom-
pressed tiles that don’t have valid compressed versions
already.

The system next moves to state 1360 to determine
whether the request has been satisfied. If so, the system
terminates at state 1346. Otherwise, the system moves to
state 1362 to print an error message, and then terminate
at state 1346.

Now referring to FIG. 37, the tile manager 192 starts
at state 1380 and moves to state 1382 where the tile

manager 192 determines whether the uncompressed
version is in fact still locked—that is if the lock count

for uncompressed version of that tile is non-zero. If the
tile is still locked then the tile manager 192 moves to
state 1384 and prints a warning message. Then the tile
manager 192 terminates at end state 1386.

If, at state 1382, the system determined that the un-
compressed version is not locked, then the tile manager
192 moves to state 1388 where the tile manager 192
determines whether the uncompressed data has already
been freed. If it has then the tile manager 192 terminates
at end state 1386. Otherwise, the tile manager 192
moves to state 1390 where the tile manager 192 unlinks
the uncompressed memory state from the most recently
used list.

From state 1390, the tile manager 192 moves to state
1392 where the tile manager 192 updates and decre-
ments the total uncompressed memory usage counter
by the appropriate amount. The tile manager 192 then
moves to state 1394 where the tile manager 192 moves
the memory block to the uncompressed memory free
list. In accordance with the present invention, the tile
manager 192 keeps the list sorted by decreasing address.
Consequently, when the tile manager 192 allocates ex-
panded memory blocks, the tile manager 192 tends to
choose the preferred blocks that have higher addresses
because they are at the front of the free list.

Next, the tile manager 192 moves to state 1396,
wherein the tile manager 192 sets a pointer in the tile
header to null and the tile manager 192 sets the uncom-
pressed tile status flags. This ensures that the tile header
reflects the fact that it no longer has an uncompressed
data associated with it. Then the tile manager 192 termi-
nates at end state 1386.

Now referring to FIG. 38, a process by which the
system compresses a tile is shown. The system begins at

Microsoft Corp. Exhibit 1005

APPENDIX C

Microsoft Corp. Exhibit 1005

,APPENDIX C

5,263,136
43

start state 1400, and moves to state 1402, wherein the

tile manager 192 determines whether the uncompressed
tile data is in cache memory. If it is not, the tile manager
192 moves to state 1404 and loads the uncompressed
data into cache memory from the disk. The system then
moves to state 1406, to determine whether an error
occurred at state 1404. If so, the system terminates at
end state 1408. Otherwise, the system proceeds to state
1410.

At state 1410, the tile manager 192 locks the uncom-
pressed tile data, and then moves to state 1412, to deter-
mine whether an error occurred at state 1410. If an

error occurred, the system terminates at end state 1408.
Otherwise, the system moves to state 1414, wherein the
tile manager 192 compresses the image data into a com-
mon buffer. For binary images of text and line draw-
ings, the tile manager 192 uses a CCITT group 4 encod-
ing.

From state 1414, the tile manager 192 moves to state
1416 to determine whether an error occurred at state

1414. If an error indeed occurred, the system moves to»
state 1418 to unlock the uncompressed tiles, and then
exits at end state 1408. Otherwise, the system proceeds
to state 1420, wherein the tile manager 192 allocates and
locks cache memory space for the compressed tile data.

From state 1420, the system proceeds to state 1422 to
determine whether an error occurred at state 1420. If an

error occurred, the system moves to state 1418 and

proceeds as described above. Otherwise, the system
moves to state 1424, wherein the tile manager 192 cop-
ies the compressed data from the common buffer into
the newly allocated cache memory state. The system
moves from state 1424 to state 1426, wherein the tile

manager 192 unlocks the compressed and uncom-
pressed tile data and then terminates at end state 1408.

While the above detailed description has shown, de-
scribed and pointed out the fundamental novel features
of the invention as applied to various embodiments, it
will be understood that various omissions and substitu-

tions and changes in the form and details of the device
illustrated may be made by those skilled in the art, with-
out departing from the spirit of the invention.

What is claimed is:

1. An image memory management system, compris-
mg:

a computer having a processor and an image mem-
ory, the image memory comprising a main memory
and a secondary memory;

an image stack, located in the image memory, com-
prising a plurality of similar digital images, each
digital image having a plurality of pixels grouped
into at least one tile, and each digital image having
a resolution different from the other digital images;

means for accessing a selected one of the tiles in the
image stack;

first means for transferring a selected one of the tiles
from the secondary memory to the main memory
when the tile is accessed by the accessing means
and the tile is absent from the main memory; and

second means for transferring a selected one of the
tiles from the main memory to the secondary mem-
ory when the main memory is full.

2. The system defined in claim 1, additionally com-
prising means for modifying a selected one of the tiles.

10

15

20

25

30

35

45

50

55

65

44

3. The system defined in claim 2, wherein the second
transferring means only transfer tiles that have been
modified by the modifying means.

4. The system defined in claim 1, wherein the main
memory is semiconductor memory.

5. The system defined in claim 1, wherein the second-
ary memory is a magnetic disk.

6. The system defined in claim 1, wherein each tile is
square.

7. The system defined in claim 1, wherein a lowest
resolution digital image comprises one tile.

8. The system defined in claim 1, wherein a prese-
lected digital image in the image stack is resampled to
obtain another digital image in the image stack.

9. The system defined in claim 1, wherein at least one
of the digital images is compressed.

10. The system defined in claim 1, wherein the access-
ing means is responsive to an image access operation
selected by a user.

11. The system defined in claim 10, wherein the
image access operation is zooming or panning the im-
age.

12. The system defined in claim 10, wherein the
image access operation is reversible.

13. A method of managing images in a computer
having a processor and an image memory comprising a
slower access memory and a faster access memory,
comprising the steps of:

creating a digital image;
resampling the digital image so as to form an image

stack comprising the digital image and one or more
lower resolution digital images;

dividing each image into equal sized, rectangular
tiles; and

evaluating a location in the image memory of tiles in
each digital image of the image stack in a given
region of interest.

14. The method defined in claim 13, additionally
comprising updating modified regions of all images
when an edit operation is completed.

15. The method defined in claim 13, wherein the
evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the faster access memory in compressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higher resolution tiles.
16. The method defined in claim 13, wherein the

evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higher resolution tiles.
17. The method defined in claim 13, wherein the

evaluating step includes selecting the digital image with
the lowest resolution higher than a requested resolution
at a given view scale.. t t t #

Microsoft Corp. Exhibit 1005‘

APPENDIX D

Microsoft Corp. Exhibit 1005

United States Patent [19]

Delorme

[54] ELECTRONIC GLOBAL MAP GENERATING
SYSTEM

[76] Inventor: David M. Delorme, 356 Range Rd.,
Cumberland, Me. 04021

[21] Appl. No.: 101,315

[22] Filed: Sep. 25, 1987

[51] Int. Cl.5 60913 29/00
[52] US. Cl. 364/419; 434/150;

340/990

[58] Field of Search 364/419, 449; 434/150,
434/130; 340/990

[56] References Cited

U.S. PATENT DOCUMENTS
400,642 4/1889 Beaumont 283/34

751,226 10/1899 Van Der Grintcn . 283/34
752,957 2/1904 Colas 283/34

1,050,596 1/1913 Bacon 283/34
1,610,413 12/1924 Balch
2,094,543 9/1937 Lackey ct .
2,354,785 8/1944 Von Rohl
2,431,847 12/1947 Dusen

283/34
353/11

.. 434/150
.. 353/11

2,650,517 9/1953 Falk 355/77
3,248,806 5/1966 Schrader 434/150
3,724,079 4/1973 Jasperson et a1. 33/15 B
4,315,747 2/1982 McBryde 434/150
4,673,197 6/1987 Stipelman et al. 434/150
4,689,747 .8/1987 Krouse et al. 364/449
4,737,927 4/1988 Hanabusa et a1. 340/990

OTHER PUBLICATIONS

“Equal—Area Projections for World Statistical Maps",

|fim

APPENDIX D

[11] Patent Number:

[45] Date of Patent:

4,972,319

Nov. 20, 1990

McBryde and Thomas, US Dept. of Commerce, Coast
and Geodetic Survey, Spec. Pub. 245, 1949.
“The Quadtree and Related Hierarchical Data Struc-
tures”, Hanan Samet, Computer Surveys, vol. 16, No. 2,
Jun. 1984.

Primary Examiner—Jerry Smith
Assistant Examiner—Kim T. Bui

Attorney, Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak & Seas

[57] ABSTRACT

A global mapping system which organizes mapping
data into a hierarchy of successive magnitudes or levels
for presentation of the mapping data with variable reso-
lution, starting from a first or highest magnitude with
lowest resolution and progressing to a last or lowest
magnitude with highest resolution. The idea of this
hierarchical structure can be likened to a pyramid with
fewer stones or “tiles” at the top, and where each suc-
cessive descending horizontal level or magnitude con-
tains four times as many “tiles” as the level or magni-
tude directly above it. The top or first level of the
pyramid contains 4 tiles, the second levle contains 16
tiles, the third contains 64 tiles and so on, such that the
base of a 16 magnitude or level pyramid would contain
4 to the 16th power or 4,294,967,296 tiles. This total
includes “hyperspace” which is later clipped or ig-
nored. Digital data corresponding to each of the sepa-
rate data base tiles is stored in the database under a

unique filename.

33 Claims, 9 Drawing Sheets

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

US. Patent Nov. 20, 1990 Sheet 1 of9 4,972,319

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

V APPENDIX ‘D

US. Patent Nov.20, 1990 Sheet 2 of 9 4,972,319,

FIG.3A ' FIG.38

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

APPENDIX D

Microsoft Corp. Exhibit 1005

INTERNATIONAL TELECOMMUNICATION UNION

CCITT T.81
THE INTERNATIONAL (09/92)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

TERMINAL EQUIPMENT AND PROTOCOLS
FOR TELEMATIC SERVICES

INFORMATION TECHNOLOGY –
DIGITAL COMPRESSION AND CODING
OF CONTINUOUS-TONE STILL IMAGES –
REQUIREMENTS AND GUIDELINES

Recommendation T.81

APPENDIX F

Microsoft Corp. Exhibit 1005

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent
organ of the ITU. Some 166 member countries, 68 telecom operating entities, 163 scientific and industrial organizations
and 39 international organizations participate in CCITT which is the body which sets world telecommunications
standards (Recommendations).

The approval of Recommendations by the members of CCITT is covered by the procedure laid down in CCITT Resolution
No. 2 (Melbourne, 1988). In addition, the Plenary Assembly of CCITT, which meets every four years, approves
Recommendations submitted to it and establishes the study programme for the following period.

In some areas of information technology, which fall within CCITT’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of CCITT Recommendation T.81 was approved on 18th September 1992.
The identical text is also published as ISO/IEC International Standard 10918-1.

CCITT NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized private operating agency.

 ITU 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

APPENDIX F

Microsoft Corp. Exhibit 1005

Contents

Page

Introduction.. iii

1 Scope.. 1

2 Normative references... 1

3 Definitions, abbreviations and symbols... 1

4 General... 12

5 Interchange format requirements... 23

6 Encoder requirements ... 23

7 Decoder requirements ... 23

Annex A – Mathematical definitions.. 24

Annex B – Compressed data formats.. 31

Annex C – Huffman table specification.. 50

Annex D – Arithmetic coding .. 54

Annex E – Encoder and decoder control procedures.. 77

Annex F – Sequential DCT-based mode of operation... 87

Annex G – Progressive DCT-based mode of operation... 119

Annex H – Lossless mode of operation.. 132

Annex J – Hierarchical mode of operation.. 137

Annex K – Examples and guidelines.. 143

Annex L – Patents.. 179

Annex M – Bibliography.. 181

CCITT Rec. T.81 (1992 E) i

APPENDIX F

Microsoft Corp. Exhibit 1005

Introduction

This CCITT Recommendation | ISO/IEC International Standard was prepared by CCITT Study Group VIII and the Joint
Photographic Experts Group (JPEG) of ISO/IEC JTC 1/SC 29/WG 10. This Experts Group was formed in 1986 to
establish a standard for the sequential progressive encoding of continuous tone grayscale and colour images.

Digital Compression and Coding of Continuous-tone Still images, is published in two parts:

– Requirements and guidelines;

– Compliance testing.

This part, Part 1, sets out requirements and implementation guidelines for continuous-tone still image encoding and
decoding processes, and for the coded representation of compressed image data for interchange between applications.
These processes and representations are intended to be generic, that is, to be applicable to a broad range of applications for
colour and grayscale still images within communications and computer systems. Part 2, sets out tests for determining
whether implementations comply with the requirments for the various encoding and decoding processes specified in Part
1.

The user’s attention is called to the possibility that – for some of the coding processes specified herein – compliance with
this Recommendation | International Standard may require use of an invention covered by patent rights. See Annex L for
further information.

The requirements which these processes must satisfy to be useful for specific image communications applications such as
facsimile, Videotex and audiographic conferencing are defined in CCITT Recommendation T.80. The intent is that the
generic processes of Recommendation T.80 will be incorporated into the various CCITT Recommendations for terminal
equipment for these applications.

In addition to the applications addressed by the CCITT and ISO/IEC, the JPEG committee has developped a compression
standard to meet the needs of other applications as well, including desktop publishing, graphic arts, medical imaging and
scientific imaging.

Annexes A, B, C, D, E, F, G, H and J are normative, and thus form an integral part of this Specification. Annexes K, L
and M are informative and thus do not form an integral part of this Specification.

This Specification aims to follow the guidelines of CCITT and ISO/IEC JTC 1 on Rules for presentation of CCITT |
ISO/IEC common text.

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

INTERNATIONAL STANDARD
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

CCITT RECOMMENDATION

INFORMATION TECHNOLOGY – DIGITAL COMPRESSION
AND CODING OF CONTINUOUS-TONE STILL IMAGES –

REQUIREMENTS AND GUIDELINES

1 Scope

This CCITT Recommendation | International Standard is applicable to continuous-tone – grayscale or colour – digital still
image data. It is applicable to a wide range of applications which require use of compressed images. It is not applicable to
bi-level image data.

This Specification

– specifies processes for converting source image data to compressed image data;

– specifies processes for converting compressed image data to reconstructed image data;

– gives guidance on how to implement these processes in practice;

– specifies coded representations for compressed image data.

NOTE – This Specification does not specify a complete coded image representation. Such representations may include
certain parameters, such as aspect ratio, component sample registration, and colour space designation, which are application-
dependent.

2 Normative references

The following CCITT Recommendations and International Standards contain provisions which, through reference in this
text, constitute provisions of this CCITT Recommendation | International Standard. At the time of publication, the
editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements
based on this CCITT Recommendation | International Standard are encouraged to investigate the possibility of applying
the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers
of currently valid International Standards. The CCITT Secretariat maintains a list of currently valid CCITT
Recommendations.

– CCITT Recommendation T.80 (1992), Common components for image compression and communication –
Basic principles.

3 Definitions, abbreviations and symbols

3.1 Definitions and abbreviations

For the purposes of this Specification, the following definitions apply.

3.1.1 abbreviated format: A representation of compressed image data which is missing some or all of the table
specifications required for decoding, or a representation of table-specification data without frame headers, scan headers,
and entropy-coded segments.

3.1.2 AC coefficient: Any DCT coefficient for which the frequency is not zero in at least one dimension.

3.1.3 (adaptive) (binary) arithmetic decoding: An entropy decoding procedure which recovers the sequence of
symbols from the sequence of bits produced by the arithmetic encoder.

3.1.4 (adaptive) (binary) arithmetic encoding: An entropy encoding procedure which codes by means of a recursive
subdivision of the probability of the sequence of symbols coded up to that point.

3.1.5 application environment: The standards for data representation, communication, or storage which have been
established for a particular application.

CCITT Rec. T.81 (1992 E) 1

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

3.1.6 arithmetic decoder: An embodiment of arithmetic decoding procedure.

3.1.7 arithmetic encoder: An embodiment of arithmetic encoding procedure.

3.1.8 baseline (sequential): A particular sequential DCT-based encoding and decoding process specified in this
Specification, and which is required for all DCT-based decoding processes.

3.1.9 binary decision: Choice between two alternatives.

3.1.10 bit stream: Partially encoded or decoded sequence of bits comprising an entropy-coded segment.

3.1.11 block: An 8 × 8 array of samples or an 8 × 8 array of DCT coefficient values of one component.

3.1.12 block-row: A sequence of eight contiguous component lines which are partitioned into 8 × 8 blocks.

3.1.13 byte: A group of 8 bits.

3.1.14 byte stuffing: A procedure in which either the Huffman coder or the arithmetic coder inserts a zero byte into
the entropy-coded segment following the generation of an encoded hexadecimal X’FF’ byte.

3.1.15 carry bit: A bit in the arithmetic encoder code register which is set if a carry-over in the code register overflows
the eight bits reserved for the output byte.

3.1.16 ceiling function: The mathematical procedure in which the greatest integer value of a real number is obtained
by selecting the smallest integer value which is greater than or equal to the real number.

3.1.17 class (of coding process): Lossy or lossless coding processes.

3.1.18 code register: The arithmetic encoder register containing the least significant bits of the partially completed
entropy-coded segment. Alternatively, the arithmetic decoder register containing the most significant bits of a partially
decoded entropy-coded segment.

3.1.19 coder: An embodiment of a coding process.

3.1.20 coding: Encoding or decoding.

3.1.21 coding model: A procedure used to convert input data into symbols to be coded.

3.1.22 (coding) process: A general term for referring to an encoding process, a decoding process, or both.

3.1.23 colour image: A continuous-tone image that has more than one component.

3.1.24 columns: Samples per line in a component.

3.1.25 component: One of the two-dimensional arrays which comprise an image.

3.1.26 compressed data: Either compressed image data or table specification data or both.

3.1.27 compressed image data: A coded representation of an image, as specified in this Specification.

3.1.28 compression: Reduction in the number of bits used to represent source image data.

3.1.29 conditional exchange: The interchange of MPS and LPS probability intervals whenever the size of the LPS
interval is greater than the size of the MPS interval (in arithmetic coding).

3.1.30 (conditional) probability estimate: The probability value assigned to the LPS by the probability estimation
state machine (in arithmetic coding).

3.1.31 conditioning table: The set of parameters which select one of the defined relationships between prior coding
decisions and the conditional probability estimates used in arithmetic coding.

3.1.32 context: The set of previously coded binary decisions which is used to create the index to the probability
estimation state machine (in arithmetic coding).

3.1.33 continuous-tone image: An image whose components have more than one bit per sample.

3.1.34 data unit: An 8 × 8 block of samples of one component in DCT-based processes; a sample in lossless processes.

2 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

3.1.35 DC coefficient: The DCT coefficient for which the frequency is zero in both dimensions.

3.1.36 DC prediction: The procedure used by DCT-based encoders whereby the quantized DC coefficient from the
previously encoded 8 × 8 block of the same component is subtracted from the current quantized DC coefficient.

3.1.37 (DCT) coefficient: The amplitude of a specific cosine basis function – may refer to an original DCT coefficient,
to a quantized DCT coefficient, or to a dequantized DCT coefficient.

3.1.38 decoder: An embodiment of a decoding process.

3.1.39 decoding process: A process which takes as its input compressed image data and outputs a continuous-tone
image.

3.1.40 default conditioning: The values defined for the arithmetic coding conditioning tables at the beginning of
coding of an image.

3.1.41 dequantization: The inverse procedure to quantization by which the decoder recovers a representation of the
DCT coefficients.

3.1.42 differential component: The difference between an input component derived from the source image and the
corresponding reference component derived from the preceding frame for that component (in hierarchical mode coding).

3.1.43 differential frame: A frame in a hierarchical process in which differential components are either encoded or
decoded.

3.1.44 (digital) reconstructed image (data): A continuous-tone image which is the output of any decoder defined in
this Specification.

3.1.45 (digital) source image (data): A continuous-tone image used as input to any encoder defined in this
Specification.

3.1.46 (digital) (still) image: A set of two-dimensional arrays of integer data.

3.1.47 discrete cosine transform; DCT: Either the forward discrete cosine transform or the inverse discrete cosine
transform.

3.1.48 downsampling (filter): A procedure by which the spatial resolution of an image is reduced (in hierarchical
mode coding).

3.1.49 encoder: An embodiment of an encoding process.

3.1.50 encoding process: A process which takes as its input a continuous-tone image and outputs compressed image
data.

3.1.51 entropy-coded (data) segment: An independently decodable sequence of entropy encoded bytes of compressed
image data.

3.1.52 (entropy-coded segment) pointer: The variable which points to the most recently placed (or fetched) byte in
the entropy encoded segment.

3.1.53 entropy decoder: An embodiment of an entropy decoding procedure.

3.1.54 entropy decoding: A lossless procedure which recovers the sequence of symbols from the sequence of bits
produced by the entropy encoder.

3.1.55 entropy encoder: An embodiment of an entropy encoding procedure.

3.1.56 entropy encoding: A lossless procedure which converts a sequence of input symbols into a sequence of bits
such that the average number of bits per symbol approaches the entropy of the input symbols.

3.1.57 extended (DCT-based) process: A descriptive term for DCT-based encoding and decoding processes in which
additional capabilities are added to the baseline sequential process.

3.1.58 forward discrete cosine transform; FDCT: A mathematical transformation using cosine basis functions which
converts a block of samples into a corresponding block of original DCT coefficients.

CCITT Rec. T.81 (1992 E) 3

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

3.1.59 frame: A group of one or more scans (all using the same DCT-based or lossless process) through the data of one
or more of the components in an image.

3.1.60 frame header: A marker segment that contains a start-of-frame marker and associated frame parameters that are
coded at the beginning of a frame.

3.1.61 frequency: A two-dimensional index into the two-dimensional array of DCT coefficients.

3.1.62 (frequency) band: A contiguous group of coefficients from the zig-zag sequence (in progressive mode coding).

3.1.63 full progression: A process which uses both spectral selection and successive approximation (in progressive
mode coding).

3.1.64 grayscale image: A continuous-tone image that has only one component.

3.1.65 hierarchical: A mode of operation for coding an image in which the first frame for a given component is
followed by frames which code the differences between the source data and the reconstructed data from the previous
frame for that component. Resolution changes are allowed between frames.

3.1.66 hierarchical decoder: A sequence of decoder processes in which the first frame for each component is followed
by frames which decode an array of differences for each component and adds it to the reconstructed data from the
preceding frame for that component.

3.1.67 hierarchical encoder: The mode of operation in which the first frame for each component is followed by frames
which encode the array of differences between the source data and the reconstructed data from the preceding frame for
that component.

3.1.68 horizontal sampling factor: The relative number of horizontal data units of a particular component with respect
to the number of horizontal data units in the other components.

3.1.69 Huffman decoder: An embodiment of a Huffman decoding procedure.

3.1.70 Huffman decoding: An entropy decoding procedure which recovers the symbol from each variable length code
produced by the Huffman encoder.

3.1.71 Huffman encoder: An embodiment of a Huffman encoding procedure.

3.1.72 Huffman encoding: An entropy encoding procedure which assigns a variable length code to each input symbol.

3.1.73 Huffman table: The set of variable length codes required in a Huffman encoder and Huffman decoder.

3.1.74 image data: Either source image data or reconstructed image data.

3.1.75 interchange format: The representation of compressed image data for exchange between application
environments.

3.1.76 interleaved: The descriptive term applied to the repetitive multiplexing of small groups of data units from each
component in a scan in a specific order.

3.1.77 inverse discrete cosine transform; IDCT: A mathematical transformation using cosine basis functions which
converts a block of dequantized DCT coefficients into a corresponding block of samples.

3.1.78 Joint Photographic Experts Group; JPEG: The informal name of the committee which created this
Specification. The “joint” comes from the CCITT and ISO/IEC collaboration.

3.1.79 latent output: Output of the arithmetic encoder which is held, pending resolution of carry-over (in arithmetic
coding).

3.1.80 less probable symbol; LPS: For a binary decision, the decision value which has the smaller probability.

3.1.81 level shift: A procedure used by DCT-based encoders and decoders whereby each input sample is either
converted from an unsigned representation to a two’s complement representation or from a two’s complement
representation to an unsigned representation.

4 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

3.1.82 lossless: A descriptive term for encoding and decoding processes and procedures in which the output of the
decoding procedure(s) is identical to the input to the encoding procedure(s).

3.1.83 lossless coding: The mode of operation which refers to any one of the coding processes defined in this
Specification in which all of the procedures are lossless (see Annex H).

3.1.84 lossy: A descriptive term for encoding and decoding processes which are not lossless.

3.1.85 marker: A two-byte code in which the first byte is hexadecimal FF (X’FF’) and the second byte is a value
between 1 and hexadecimal FE (X’FE’).

3.1.86 marker segment: A marker and associated set of parameters.

3.1.87 MCU-row: The smallest sequence of MCU which contains at least one line of samples or one block-row from
every component in the scan.

3.1.88 minimum coded unit; MCU: The smallest group of data units that is coded.

3.1.89 modes (of operation): The four main categories of image coding processes defined in this Specification.

3.1.90 more probable symbol; MPS: For a binary decision, the decision value which has the larger probability.

3.1.91 non-differential frame: The first frame for any components in a hierarchical encoder or decoder. The
components are encoded or decoded without subtraction from reference components. The term refers also to any frame in
modes other than the hierarchical mode.

3.1.92 non-interleaved: The descriptive term applied to the data unit processing sequence when the scan has only one
component.

3.1.93 parameters: Fixed length integers 4, 8 or 16 bits in length, used in the compressed data formats.

3.1.94 point transform: Scaling of a sample or DCT coefficient.

3.1.95 precision: Number of bits allocated to a particular sample or DCT coefficient.

3.1.96 predictor: A linear combination of previously reconstructed values (in lossless mode coding).

3.1.97 probability estimation state machine: An interlinked table of probability values and indices which is used to
estimate the probability of the LPS (in arithmetic coding).

3.1.98 probability interval: The probability of a particular sequence of binary decisions within the ordered set of all
possible sequences (in arithmetic coding).

3.1.99 (probability) sub-interval: A portion of a probability interval allocated to either of the two possible binary
decision values (in arithmetic coding).

3.1.100 procedure: A set of steps which accomplishes one of the tasks which comprise an encoding or decoding
process.

3.1.101 process: See coding process.

3.1.102 progressive (coding): One of the DCT-based processes defined in this Specification in which each scan
typically improves the quality of the reconstructed image.

3.1.103 progressive DCT-based: The mode of operation which refers to any one of the processes defined in Annex G.

3.1.104 quantization table: The set of 64 quantization values used to quantize the DCT coefficients.

3.1.105 quantization value: An integer value used in the quantization procedure.

3.1.106 quantize: The act of performing the quantization procedure for a DCT coefficient.

3.1.107 reference (reconstructed) component: Reconstructed component data which is used in a subsequent frame of a
hierarchical encoder or decoder process (in hierarchical mode coding).

CCITT Rec. T.81 (1992 E) 5

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

3.1.108 renormalization: The doubling of the probability interval and the code register value until the probability
interval exceeds a fixed minimum value (in arithmetic coding).

3.1.109 restart interval: The integer number of MCUs processed as an independent sequence within a scan.

3.1.110 restart marker: The marker that separates two restart intervals in a scan.

3.1.111 run (length): Number of consecutive symbols of the same value.

3.1.112 sample: One element in the two-dimensional array which comprises a component.

3.1.113 sample-interleaved: The descriptive term applied to the repetitive multiplexing of small groups of samples from
each component in a scan in a specific order.

3.1.114 scan: A single pass through the data for one or more of the components in an image.

3.1.115 scan header: A marker segment that contains a start-of-scan marker and associated scan parameters that are
coded at the beginning of a scan.

3.1.116 sequential (coding): One of the lossless or DCT-based coding processes defined in this Specification in which
each component of the image is encoded within a single scan.

3.1.117 sequential DCT-based: The mode of operation which refers to any one of the processes defined in Annex F.

3.1.118 spectral selection: A progressive coding process in which the zig-zag sequence is divided into bands of one or
more contiguous coefficients, and each band is coded in one scan.

3.1.119 stack counter: The count of X’FF’ bytes which are held, pending resolution of carry-over in the arithmetic
encoder.

3.1.120 statistical conditioning: The selection, based on prior coding decisions, of one estimate out of a set of
conditional probability estimates (in arithmetic coding).

3.1.121 statistical model: The assignment of a particular conditional probability estimate to each of the binary
arithmetic coding decisions.

3.1.122 statistics area: The array of statistics bins required for a coding process which uses arithmetic coding.

3.1.123 statistics bin: The storage location where an index is stored which identifies the value of the conditional
probability estimate used for a particular arithmetic coding binary decision.

3.1.124 successive approximation: A progressive coding process in which the coefficients are coded with reduced
precision in the first scan, and precision is increased by one bit with each succeeding scan.

3.1.125 table specification data: The coded representation from which the tables used in the encoder and decoder are
generated and their destinations specified.

3.1.126 transcoder: A procedure for converting compressed image data of one encoder process to compressed image
data of another encoder process.

3.1.127 (uniform) quantization: The procedure by which DCT coefficients are linearly scaled in order to achieve
compression.

3.1.128 upsampling (filter): A procedure by which the spatial resolution of an image is increased (in hierarchical mode
coding).

3.1.129 vertical sampling factor: The relative number of vertical data units of a particular component with respect to
the number of vertical data units in the other components in the frame.

3.1.130 zero byte: The X’00’ byte.

3.1.131 zig-zag sequence: A specific sequential ordering of the DCT coefficients from (approximately) lowest spatial
frequency to highest.

3.1.132 3-sample predictor: A linear combination of the three nearest neighbor reconstructed samples to the left and
above (in lossless mode coding).

6 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

3.2 Symbols

The symbols used in this Specification are listed below.

A probability interval

AC AC DCT coefficient

ACji AC coefficient predicted from DC values

Ah successive approximation bit position, high

Al successive approximation bit position, low

Api ith 8-bit parameter in APPn segment

APPn marker reserved for application segments

B current byte in compressed data

B2 next byte in compressed data when B = X’FF’

BE counter for buffered correction bits for Huffman coding in the successive approximation
process

BITS 16-byte list containing number of Huffman codes of each length

BP pointer to compressed data

BPST pointer to byte before start of entropy-coded segment

BR counter for buffered correction bits for Huffman coding in the successive approximation
process

Bx byte modified by a carry-over

C value of bit stream in code register

Ci component identifier for frame

Cu horizontal frequency dependent scaling factor in DCT

Cv vertical frequency dependent scaling factor in DCT

CE conditional exchange

C-low low order 16 bits of the arithmetic decoder code register

Cmi ith 8-bit parameter in COM segment

CNT bit counter in NEXTBYTE procedure

CODE Huffman code value

CODESIZE(V) code size for symbol V

COM comment marker

Cs conditioning table value

Csi component identifier for scan

CT renormalization shift counter

Cx high order 16 bits of arithmetic decoder code register

CX conditional exchange

dji data unit from horizontal position i, vertical position j

djik dji for component k

D decision decoded

CCITT Rec. T.81 (1992 E) 7

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Da in DC coding, the DC difference coded for the previous block from the same component;
in lossless coding, the difference coded for the sample immediately to the left

DAC define-arithmetic-coding-conditioning marker

Db the difference coded for the sample immediately above

DC DC DCT coefficient

DCi DC coefficient for ith block in component

DCk kth DC value used in prediction of AC coefficients

DHP define hierarchical progression marker

DHT define-Huffman-tables marker

DIFF difference between quantized DC and prediction

DNL define-number-of-lines marker

DQT define-quantization-tables marker

DRI define restart interval marker

E exponent in magnitude category upper bound

EC event counter

ECS entropy-coded segment

ECSi ith entropy-coded segment

Eh horizontal expansion parameter in EXP segment

EHUFCO Huffman code table for encoder

EHUFSI encoder table of Huffman code sizes

EOB end-of-block for sequential; end-of-band for progressive

EOBn run length category for EOB runs

EOBx position of EOB in previous successive approximation scan

EOB0, EOB1, ..., EOB14 run length categories for EOB runs

EOI end-of-image marker

Ev vertical expansion parameter in EXP segment

EXP expand reference components marker

FREQ(V) frequency of occurrence of symbol V

Hi horizontal sampling factor for ith component

Hmax largest horizontal sampling factor

HUFFCODE list of Huffman codes corresponding to lengths in HUFFSIZE

HUFFSIZE list of code lengths

HUFFVAL list of values assigned to each Huffman code

i subscript index

I integer variable

Index(S) index to probability estimation state machine table for context index S

j subscript index

J integer variable

8 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

JPG marker reserved for JPEG extensions

JPGn marker reserved for JPEG extensions

k subscript index

K integer variable

Kmin index of 1st AC coefficient in band (1 for sequential DCT)

Kx conditioning parameter for AC arithmetic coding model

L DC and lossless coding conditioning lower bound parameter

Li element in BITS list in DHT segment

Li(t) element in BITS list in the DHT segment for Huffman table t

La length of parameters in APPn segment

LASTK largest value of K

Lc length of parameters in COM segment

Ld length of parameters in DNL segment

Le length of parameters in EXP segment

Lf length of frame header parameters

Lh length of parameters in DHT segment

Lp length of parameters in DAC segment

LPS less probable symbol (in arithmetic coding)

Lq length of parameters in DQT segment

Lr length of parameters in DRI segment

Ls length of scan header parameters

LSB least significant bit

m modulo 8 counter for RSTm marker

mt number of Vi,j parameters for Huffman table t

M bit mask used in coding magnitude of V

Mn nth statistics bin for coding magnitude bit pattern category

MAXCODE table with maximum value of Huffman code for each code length

MCU minimum coded unit

MCUi ith MCU

MCUR number of MCU required to make up one MCU-row

MINCODE table with minimum value of Huffman code for each code length

MPS more probable symbol (in arithmetic coding)

MPS(S) more probable symbol for context-index S

MSB most significant bit

M2, M3, M4, ... , M15 designation of context-indices for coding of magnitude bits in the arithmetic coding
models

n integer variable

N data unit counter for MCU coding

N/A not applicable

CCITT Rec. T.81 (1992 E) 9

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Nb number of data units in MCU

Next_Index_LPS new value of Index(S) after a LPS renormalization

Next_Index_MPS new value of Index(S) after a MPS renormalization

Nf number of components in frame

NL number of lines defined in DNL segment

Ns number of components in scan

OTHERS(V) index to next symbol in chain

P sample precision

Pq quantizer precision parameter in DQT segment

Pq(t) quantizer precision parameter in DQT segment for quantization table t

PRED quantized DC coefficient from the most recently coded block of the component

Pt point transform parameter

Px calculated value of sample

Qji quantizer value for coefficient ACji

Qvu quantization value for DCT coefficient Svu

Q00 quantizer value for DC coefficient

QACji quantized AC coefficient predicted from DC values

QDCk kth quantized DC value used in prediction of AC coefficients

Qe LPS probability estimate

Qe(S) LPS probability estimate for context index S

Qk kth element of 64 quantization elements in DQT segment

rvu reconstructed image sample

R length of run of zero amplitude AC coefficients

Rvu dequantized DCT coefficient

Ra reconstructed sample value

Rb reconstructed sample value

Rc reconstructed sample value

Rd rounding in prediction calculation

RES reserved markers

Ri restart interval in DRI segment

RRRR 4-bit value of run length of zero AC coefficients

RS composite value used in Huffman coding of AC coefficients

RSTm restart marker number m

syx reconstructed value from IDCT

S context index

Svu DCT coefficient at horizontal frequency u, vertical frequency v

10 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

SC context-index for coding of correction bit in successive approximation coding

Se end of spectral selection band in zig-zag sequence

SE context-index for coding of end-of-block or end-of-band

SI Huffman code size

SIGN 1 if decoded sense of sign is negative and 0 if decoded sense of sign is positive

SIZE length of a Huffman code

SLL shift left logical operation

SLL α β logical shift left of α by β bits

SN context-index for coding of first magnitude category when V is negative

SOF0 baseline DCT process frame marker

SOF1 extended sequential DCT frame marker, Huffman coding

SOF2 progressive DCT frame marker, Huffman coding

SOF3 lossless process frame marker, Huffman coding

SOF5 differential sequential DCT frame marker, Huffman coding

SOF6 differential progressive DCT frame marker, Huffman coding

SOF7 differential lossless process frame marker, Huffman coding

SOF9 sequential DCT frame marker, arithmetic coding

SOF10 progressive DCT frame marker, arithmetic coding

SOF11 lossless process frame marker, arithmetic coding

SOF13 differential sequential DCT frame marker, arithmetic coding

SOF14 differential progressive DCT frame marker, arithmetic coding

SOF15 differential lossless process frame marker, arithmetic coding

SOI start-of-image marker

SOS start-of-scan marker

SP context-index for coding of first magnitude category when V is positive

Sqvu quantized DCT coefficient

SRL shift right logical operation

SRL α β logical shift right of α by β bits

Ss start of spectral selection band in zig-zag sequence

SS context-index for coding of sign decision

SSSS 4-bit size category of DC difference or AC coefficient amplitude

ST stack counter

Switch_MPS parameter controlling inversion of sense of MPS

Sz parameter used in coding magnitude of V

S0 context-index for coding of V = 0 decision

t summation index for parameter limits computation

T temporary variable

CCITT Rec. T.81 (1992 E) 11

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Taj AC entropy table destination selector for jth component in scan

Tb arithmetic conditioning table destination identifier

Tc Huffman coding or arithmetic coding table class

Tdj DC entropy table destination selector for jth component in scan

TEM temporary marker

Th Huffman table destination identifier in DHT segment

Tq quantization table destination identifier in DQT segment

Tqi quantization table destination selector for ith component in frame

U DC and lossless coding conditioning upper bound parameter

V symbol or value being either encoded or decoded

Vi vertical sampling factor for ith component

Vi,j jth value for length i in HUFFVAL

Vmax largest vertical sampling factor

Vt temporary variable

VALPTR list of indices for first value in HUFFVAL for each code length

V1 symbol value

V2 symbol value

xi number of columns in ith component

X number of samples per line in component with largest horizontal dimension

Xi ith statistics bin for coding magnitude category decision

X1, X2, X3, ... , X15 designation of context-indices for coding of magnitude categories in the arithmetic coding
models

XHUFCO extended Huffman code table

XHUFSI table of sizes of extended Huffman codes

X’values’ values within the quotes are hexadecimal

yi number of lines in ith component

Y number of lines in component with largest vertical dimension

ZRL value in HUFFVAL assigned to run of 16 zero coefficients

ZZ(K) Kth element in zig-zag sequence of quantized DCT coefficients

ZZ(0) quantized DC coefficient in zig-zag sequence order

4 General

The purpose of this clause is to give an informative overview of the elements specified in this Specification. Another
purpose is to introduce many of the terms which are defined in clause 3. These terms are printed in italics upon first usage
in this clause.

12 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

4.1 Elements specified in this Specification

There are three elements specified in this Specification:

a) An encoder is an embodiment of an encoding process. As shown in Figure 1, an encoder takes as input
digital source image data and table specifications, and by means of a specified set of procedures generates
as output compressed image data.

b) A decoder is an embodiment of a decoding process. As shown in Figure 2, a decoder takes as input
compressed image data and table specifications, and by means of a specified set of procedures generates as
output digital reconstructed image data.

c) The interchange format, shown in Figure 3, is a compressed image data representation which includes all
table specifications used in the encoding process. The interchange format is for exchange between
application environments.

TISO0650-93/d001

Encoder

Table
specifications

Source
image data

Compressed
image data

Figure 1 – Encoder

FIGURE 1 [D01] 5 cm = 195%

TISO0660-93/d002

Decoder

Table
specifications

Compressed
image data

Reconstructed
image data

Figure 2 – Decoder

FIGURE 2 [D02] 6 cm 234%

Figures 1 and 2 illustrate the general case for which the continuous-tone source and reconstructed image data consist of
multiple components. (A colour image consists of multiple components; a grayscale image consists only of a single
component.) A significant portion of this Specification is concerned with how to handle multiple-component images in a
flexible, application-independent way.

CCITT Rec. T.81 (1992 E) 13

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO0670-93/d003

Application environment
A

Compressed image data, including table specifications

Application environment
B

Figure 3 – Interchange format for compressed image data

FIGURE 3 [D03] 9,5cm = 371 %

These figures are also meant to show that the same tables specified for an encoder to use to compress a particular image
must be provided to a decoder to reconstruct that image. However, this Specification does not specify how applications
should associate tables with compressed image data, nor how they should represent source image data generally within
their specific environments.

Consequently, this Specification also specifies the interchange format shown in Figure 3, in which table specifications are
included within compressed image data. An image compressed with a specified encoding process within
one application environment, A, is passed to a different environment, B, by means of the interchange format.
The interchange format does not specify a complete coded image representation. Application-dependent information,
e.g. colour space, is outside the scope of this Specification.

4.2 Lossy and lossless compression

This Specification specifies two classes of encoding and decoding processes, lossy and lossless processes. Those based on
the discrete cosine transform (DCT) are lossy, thereby allowing substantial compression to be achieved while producing a
reconstructed image with high visual fidelity to the encoder’s source image.

The simplest DCT-based coding process is referred to as the baseline sequential process. It provides a capability which is
sufficient for many applications. There are additional DCT-based processes which extend the baseline sequential process
to a broader range of applications. In any decoder using extended DCT-based decoding processes, the baseline decoding
process is required to be present in order to provide a default decoding capability.

The second class of coding processes is not based upon the DCT and is provided to meet the needs of applications
requiring lossless compression. These lossless encoding and decoding processes are used independently of any of the
DCT-based processes.

A table summarizing the relationship among these lossy and lossless coding processes is included in 4.11.

The amount of compression provided by any of the various processes is dependent on the characteristics of the particular
image being compressed, as well as on the picture quality desired by the application and the desired speed of compression
and decompression.

14 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

4.3 DCT-based coding

Figure 4 shows the main procedures for all encoding processes based on the DCT. It illustrates the special case of a single-
component image; this is an appropriate simplification for overview purposes, because all processes specified in this
Specification operate on each image component independently.

TISO0680-93/d004

DCT-based encoder8 × 8 blocks

FDCT Quantizer Entropy
encoder

Table
specifications

Table
specifications

Source
image data

Compressed
image data

Figure 4 – DCT-based encoder simplified diagram

FIGURE 4 [D04] 7 cm = 273 %

In the encoding process the input component’s samples are grouped into 8 × 8 blocks, and each block is transformed by
the forward DCT (FDCT) into a set of 64 values referred to as DCT coefficients. One of these values is referred to as the
DC coefficient and the other 63 as the AC coefficients.

Each of the 64 coefficients is then quantized using one of 64 corresponding values from a quantization table (determined
by one of the table specifications shown in Figure 4). No default values for quantization tables are specified in this
Specification; applications may specify values which customize picture quality for their particular image characteristics,
display devices, and viewing conditions.

After quantization, the DC coefficient and the 63 AC coefficients are prepared for entropy encoding, as shown in Figure
5. The previous quantized DC coefficient is used to predict the current quantized DC coefficient, and the difference is
encoded. The 63 quantized AC coefficients undergo no such differential encoding, but are converted into a one-
dimensional zig-zag sequence, as shown in Figure 5.

The quantized coefficients are then passed to an entropy encoding procedure which compresses the data further. One of
two entropy coding procedures can be used, as described in 4.6. If Huffman encoding is used, Huffman table
specifications must be provided to the encoder. If arithmetic encoding is used, arithmetic coding conditioning table
specifications may be provided, otherwise the default conditioning table specifications shall be used.

Figure 6 shows the main procedures for all DCT-based decoding processes. Each step shown performs essentially the
inverse of its corresponding main procedure within the encoder. The entropy decoder decodes the zig-zag sequence of
quantized DCT coefficients. After dequantization the DCT coefficients are transformed to an 8 × 8 block of samples by
the inverse DCT (IDCT).

4.4 Lossless coding

Figure 7 shows the main procedures for the lossless encoding processes. A predictor combines the reconstructed values of
up to three neighbourhood samples at positions a, b, and c to form a prediction of the sample at position x as shown in
Figure 8. This prediction is then subtracted from the actual value of the sample at position x, and the difference is
losslessly entropy-coded by either Huffman or arithmetic coding.

CCITT Rec. T.81 (1992 E) 15

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO0690-93/d005

DC

DC DC

Block Block

AC AC

AC AC

i - 1i

01 07

70 77

i - 1 i

i - 1 i

DIFF = DC - DC

Differential DC encoding Zig-zag order

Figure 5 – Preparation of quantized coefficients for entropy encoding

FIGURE 5 [D05] 8 cm = 313 %

TISO0700-93/d006

DCT-based decoder

Table
specifications

Table
specifications

Dequantizer IDCTEntropy
decoder

Compressed
image data

Reconstructed
image data

Figure 6 – DCT-based decoder simplified diagram

FIGURE 6 [D06] 6,5 cm = 254 %

TISO0710-93/d007

Predictor

Table
specifications

Lossless encoder

Entropy
encoder

Source
image data

Compressed
image data

Figure 7 – Lossless encoder simplified diagram

FIGURE 7 [D07] 6,5 cm = 254 %

16 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO0720-93/d008

c b

a x

Figure 8 – 3-sample prediction neighbourhood

FIGURE 8 [D08] 5 cm = 195 %

This encoding process may also be used in a slightly modified way, whereby the precision of the input samples is reduced
by one or more bits prior to the lossless coding. This achieves higher compression than the lossless process (but lower
compression than the DCT-based processes for equivalent visual fidelity), and limits the reconstructed image’s worst-case
sample error to the amount of input precision reduction.

4.5 Modes of operation

There are four distinct modes of operation under which the various coding processes are defined: sequential
DCT-based, progressive DCT-based, lossless, and hierarchical. (Implementations are not required to provide all of
these.) The lossless mode of operation was described in 4.4. The other modes of operation are compared as follows.

For the sequential DCT-based mode, 8 × 8 sample blocks are typically input block by block from left to right, and block-
row by block-row from top to bottom. After a block has been transformed by the forward DCT, quantized and prepared for
entropy encoding, all 64 of its quantized DCT coefficients can be immediately entropy encoded and output as part of the
compressed image data (as was described in 4.3), thereby minimizing coefficient storage requirements.

For the progressive DCT-based mode, 8 × 8 blocks are also typically encoded in the same order, but in multiple scans
through the image. This is accomplished by adding an image-sized coefficient memory buffer (not shown in Figure 4)
between the quantizer and the entropy encoder. As each block is transformed by the forward DCT and quantized, its
coefficients are stored in the buffer. The DCT coefficients in the buffer are then partially encoded in each of multiple
scans. The typical sequence of image presentation at the output of the decoder for sequential versus progressive modes of
operation is shown in Figure 9.

There are two procedures by which the quantized coefficients in the buffer may be partially encoded within a scan. First,
only a specified band of coefficients from the zig-zag sequence need be encoded. This procedure is called spectral
selection, because each band typically contains coefficients which occupy a lower or higher part of the frequency spectrum
for that 8 × 8 block. Secondly, the coefficients within the current band need not be encoded to their full (quantized)
accuracy within each scan. Upon a coefficient’s first encoding, a specified number of most significant bits is encoded first.
In subsequent scans, the less significant bits are then encoded. This procedure is called successive approximation. Either
procedure may be used separately, or they may be mixed in flexible combinations.

In hierarchical mode, an image is encoded as a sequence of frames. These frames provide reference reconstructed
components which are usually needed for prediction in subsequent frames. Except for the first frame for a given
component, differential frames encode the difference between source components and reference reconstructed
components. The coding of the differences may be done using only DCT-based processes, only lossless processes, or
DCT-based processes with a final lossless process for each component. Downsampling and upsampling filters may be
used to provide a pyramid of spatial resolutions as shown in Figure 10. Alternatively, the hierarchical mode can be used to
improve the quality of the reconstructed components at a given spatial resolution.

Hierarchical mode offers a progressive presentation similar to the progressive DCT-based mode but is useful in
environments which have multi-resolution requirements. Hierarchical mode also offers the capability of progressive
coding to a final lossless stage.

CCITT Rec. T.81 (1992 E) 17

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA

TISO0730-93/d009

Progressive

Sequential

Figure 9 – Progressive versus sequential presentation

FIGURE 9 [D09] 9,5 cm = 371 %

TISO0740-93/d010

Figure 10 – Hierarchical multi-resolution encoding

FIGURE 10 [D10] 9.5 cm = 374 %

4.6 Entropy coding alternatives

Two alternative entropy coding procedures are specified: Huffman coding and arithmetic coding. Huffman coding
procedures use Huffman tables, determined by one of the table specifications shown in Figures 1 and 2. Arithmetic coding
procedures use arithmetic coding conditioning tables, which may also be determined by a table specification. No default
values for Huffman tables are specified, so that applications may choose tables appropriate for their own environments.
Default tables are defined for the arithmetic coding conditioning.

18 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The baseline sequential process uses Huffman coding, while the extended DCT-based and lossless processes may use
either Huffman or arithmetic coding.

4.7 Sample precision

For DCT-based processes, two alternative sample precisions are specified: either 8 bits or 12 bits per sample. Applications
which use samples with other precisions can use either 8-bit or 12-bit precision by shifting their source image samples
appropriately. The baseline process uses only 8-bit precision. DCT-based implementations which handle 12-bit source
image samples are likely to need greater computational resources than those which handle only
8-bit source images. Consequently in this Specification separate normative requirements are defined for 8-bit and
12-bit DCT-based processes.

For lossless processes the sample precision is specified to be from 2 to 16 bits.

4.8 Multiple-component control

Subclauses 4.3 and 4.4 give an overview of one major part of the encoding and decoding processes – those which operate
on the sample values in order to achieve compression. There is another major part as well – the procedures which control
the order in which the image data from multiple components are processed to create the compressed data, and which
ensure that the proper set of table data is applied to the proper data units in the image. (A data unit is a sample for lossless
processes and an 8 × 8 block of samples for DCT-based processes.)

4.8.1 Interleaving multiple components

Figure 11 shows an example of how an encoding process selects between multiple source image components as well as
multiple sets of table data, when performing its encoding procedures. The source image in this example consists of the
three components A, B and C, and there are two sets of table specifications. (This simplified view does not distinguish
between the quantization tables and entropy coding tables.)

TISO0750-93/d011

A

B

C

Encoding
process

Source
image data Table speci-

fication 1
Table speci-

fication 2

Compressed
image data

Figure 11 – Component-interleave and table-switching control

FIGURE 11 [D11] 7 cm = 273 %

In sequential mode, encoding is non-interleaved if the encoder compresses all image data units in component A before
beginning component B, and then in turn all of B before C. Encoding is interleaved if the encoder compresses a data unit
from A, a data unit from B, a data unit from C, then back to A, etc. These alternatives are illustrated in Figure 12, which
shows a case in which all three image components have identical dimensions: X columns by Y lines, for a total of n data
units each.

CCITT Rec. T.81 (1992 E) 19

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

A 1 A

A

2

n

X

Y

1 2

n

X

Y

1 2

n

X

Y

B B

B

C C

C

TISO0760-93/d012

A , A ,A ,1 2 n B , B ,B , C , C ,C 1 2 n 1 2 n

Scan 1 Scan 2 Scan 3

Data unit encoding order, non-interleaved

A , B , C , A , B , C ,A , B , C21 1 1 2 2 n n n

Scan 1

Data unit encoding order, interleaved

Figure 12 – Interleaved versus non-interleaved encoding order

FIGURE 12 [D12] 9,5 cm = 371 %

These control procedures are also able to handle cases in which the source image components have different dimensions.
Figure 13 shows a case in which two of the components, B and C, have half the number of horizontal samples relative to
component A. In this case, two data units from A are interleaved with one each from B and C. Cases in which components
of an image have more complex relationships, such as different horizontal and vertical dimensions, can be handled as
well. (See Annex A.)

A1 A

A

2

n

X

Y

1 2

Y

B B

n/2B

1 2

Y

n/2

C C

C

TISO0770-93/d013

X/2 X/2

A , A , B , C , A , A , B , C ,A , A , B , C23 4 n-1 n1 2 1 1 2 n/2 n/2

Scan 1
Data unit encoding order, interleaved

Figure 13 – Interleaved order for components with different dimensions

FIGURE 13 [D13] 8 cm = 313 %

20 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

4.8.2 Minimum coded unit

Related to the concepts of multiple-component interleave is the minimum coded unit (MCU). If the compressed image
data is non-interleaved, the MCU is defined to be one data unit. For example, in Figure 12 the MCU for the non-
interleaved case is a single data unit. If the compressed data is interleaved, the MCU contains one or more data units from
each component. For the interleaved case in Figure 12, the (first) MCU consists of the three interleaved data units A1, B1,
C1. In the example of Figure 13, the (first) MCU consists of the four data units A1, A2 , B1, C1.

4.9 Structure of compressed data

Figures 1, 2, and 3 all illustrate slightly different views of compressed image data. Figure 1 shows this data as the output
of an encoding process, Figure 2 shows it as the input to a decoding process, and Figure 3 shows compressed image data
in the interchange format, at the interface between applications.

Compressed image data are described by a uniform structure and set of parameters for both classes of encoding processes
(lossy or lossless), and for all modes of operation (sequential, progressive, lossless, and hierarchical). The various parts of
the compressed image data are identified by special two-byte codes called markers. Some markers are followed by
particular sequences of parameters, as in the case of table specifications, frame header, or scan header. Others are used
without parameters for functions such as marking the start-of-image and end-of-image. When a marker is associated with a
particular sequence of parameters, the marker and its parameters comprise a marker segment.

The data created by the entropy encoder are also segmented, and one particular marker – the restart marker – is used to
isolate entropy-coded data segments. The encoder outputs the restart markers, intermixed with the entropy-coded data, at
regular restart intervals of the source image data. Restart markers can be identified without having to decode the
compressed data to find them. Because they can be independently decoded, they have application-specific uses, such as
parallel encoding or decoding, isolation of data corruptions, and semi-random access of entropy-coded segments.

There are three compressed data formats:

a) the interchange format;

b) the abbreviated format for compressed image data;

c) the abbreviated format for table-specification data.

4.9.1 Interchange format

In addition to certain required marker segments and the entropy-coded segments, the interchange format shall include the
marker segments for all quantization and entropy-coding table specifications needed by the decoding process. This
guarantees that a compressed image can cross the boundary between application environments, regardless of how each
environment internally associates tables with compressed image data.

4.9.2 Abbreviated format for compressed image data

The abbreviated format for compressed image data is identical to the interchange format, except that it does not include all
tables required for decoding. (It may include some of them.) This format is intended for use within applications where
alternative mechanisms are available for supplying some or all of the table-specification data needed for decoding.

4.9.3 Abbreviated format for table-specification data

This format contains only table-specification data. It is a means by which the application may install in the decoder the
tables required to subsequently reconstruct one or more images.

4.10 Image, frame, and scan

Compressed image data consists of only one image. An image contains only one frame in the cases of sequential and
progressive coding processes; an image contains multiple frames for the hierarchical mode.

A frame contains one or more scans. For sequential processes, a scan contains a complete encoding of one or more image
components. In Figures 12 and 13, the frame consists of three scans when non-interleaved, and one scan if all three
components are interleaved together. The frame could also consist of two scans: one with a non-interleaved component,
the other with two components interleaved.

CCITT Rec. T.81 (1992 E) 21

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

For progressive processes, a scan contains a partial encoding of all data units from one or more image components.
Components shall not be interleaved in progressive mode, except for the DC coefficients in the first scan for each
component of a progressive frame.

4.11 Summary of coding processes

Table 1 provides a summary of the essential characteristics of the various coding processes specified in this Specification.
The full specification of these processes is contained in Annexes F, G, H, and J.

Table 1 – Summary: Essential characteristics of coding processes

Baseline process (required for all DCT-based decoders)

• DCT-based process
• Source image: 8-bit samples within each component
• Sequential
• Huffman coding: 2 AC and 2 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Extended DCT-based processes

• DCT-based process
• Source image: 8-bit or 12-bit samples
• Sequential or progressive
• Huffman or arithmetic coding: 4 AC and 4 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Lossless processes

• Predictive process (not DCT-based)
• Source image: P-bit samples (2 ≤ P ≤ 16)
• Sequential
• Huffman or arithmetic coding: 4 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Hierarchical processes

• Multiple frames (non-differential and differential)
• Uses extended DCT-based or lossless processes
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

22 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

5 Interchange format requirements

The interchange format is the coded representation of compressed image data for exchange between application
environments.

The interchange format requirements are that any compressed image data represented in interchange format shall comply
with the syntax and code assignments appropriate for the decoding process selected, as specified in Annex B.

Tests for whether compressed image data comply with these requirements are specified in Part 2 of this Specification.

6 Encoder requirements

An encoding process converts source image data to compressed image data. Each of Annexes F, G, H, and J specifies a
number of distinct encoding processes for its particular mode of operation.

An encoder is an embodiment of one (or more) of the encoding processes specified in Annexes F, G, H, or J. In order to
comply with this Specification, an encoder shall satisfy at least one of the following two requirements.

An encoder shall

a) with appropriate accuracy, convert source image data to compressed image data which comply with the
interchange format syntax specified in Annex B for the encoding process(es) embodied by the encoder;

b) with appropriate accuracy, convert source image data to compressed image data which comply with the
abbreviated format for compressed image data syntax specified in Annex B for the encoding process(es)
embodied by the encoder.

For each of the encoding processes specified in Annexes F, G, H, and J, the compliance tests for the above requirements
are specified in Part 2 of this Specification.

NOTE – There is no requirement in this Specification that any encoder which embodies one of the encoding processes
specified in Annexes F, G, H, or J shall be able to operate for all ranges of the parameters which are allowed for that process. An
encoder is only required to meet the compliance tests specified in Part 2, and to generate the compressed data format according to
Annex B for those parameter values which it does use.

7 Decoder requirements

A decoding process converts compressed image data to reconstructed image data. Each of Annexes F, G, H, and J
specifies a number of distinct decoding processes for its particular mode of operation.

A decoder is an embodiment of one (or more) of the decoding processes specified in Annexes F, G, H, or J. In order to
comply with this Specification, a decoder shall satisfy all three of the following requirements.

A decoder shall

a) with appropriate accuracy, convert to reconstructed image data any compressed image data with parameters
within the range supported by the application, and which comply with the interchange format syntax
specified in Annex B for the decoding process(es) embodied by the decoder;

b) accept and properly store any table-specification data which comply with the abbreviated format for table-
specification data syntax specified in Annex B for the decoding process(es) embodied by the decoder;

c) with appropriate accuracy, convert to reconstructed image data any compressed image data which comply
with the abbreviated format for compressed image data syntax specified in Annex B for the decoding
process(es) embodied by the decoder, provided that the table-specification data required for decoding the
compressed image data has previously been installed into the decoder.

Additionally, any DCT-based decoder, if it embodies any DCT-based decoding process other than baseline sequential,
shall also embody the baseline sequential decoding process.

For each of the decoding processes specified in Annexes F, G, H, and J, the compliance tests for the above requirements
are specified in Part 2 of this Specification.

CCITT Rec. T.81 (1992 E) 23

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex A

Mathematical definitions

(This annex forms an integral part of this Recommendation | International Standard)

A.1 Source image

Source images to which the encoding processes specified in this Specification can be applied are defined in this annex.

A.1.1 Dimensions and sampling factors

As shown in Figure A.1, a source image is defined to consist of Nf components. Each component, with unique identifier
Ci, is defined to consist of a rectangular array of samples of xi columns by yi lines. The component dimensions are derived
from two parameters, X and Y, where X is the maximum of the xi values and Y is the maximum of the yi values for all
components in the frame. For each component, sampling factors Hi and Vi are defined relating component dimensions xi
and yi to maximum dimensions X and Y, according to the following expressions:

x X
H

H
y Y

V
Vi

i

max
i

i

max
= ×L

M
M

O

P
P ×L

M
M

O

P
Pand ,

where Hmax and V max are the maximum sampling factors for all components in the frame, and is the ceiling function.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and 512 samples per line,
and with the following sampling factors:

Component
Component 1
Component 2 2

0 4 1
2 2
1 1

0 0

1 1

2

H V
H V
H V

= =
= =
= =

,
,
,

Then X = 512, Y = 512, Hmax = 4, Vmax = 2, and xi and yi for each component are

Component 0
Component
Component

x y
x y
x y

0 0

1 1

2 2

512 256
1 256 512
2 128 256

= =
= =
= =

,
,
,

NOTE – The X, Y, Hi , and Vi parameters are contained in the frame header of the compressed image data (see B.2.2),
whereas the individual component dimensions xi and yi are derived by the decoder. Source images with xi and yi dimensions which do
not satisfy the expressions above cannot be properly reconstructed.

A.1.2 Sample precision

A sample is an integer with precision P bits, with any value in the range 0 through 2P – 1. All samples of all components
within an image shall have the same precision P. Restrictions on the value of P depend on the mode of operation, as
specified in B.2 to B.7.

A.1.3 Data unit

A data unit is a sample in lossless processes and an 8 × 8 block of contiguous samples in DCT-based processes. The left-
most 8 samples of each of the top-most 8 rows in the component shall always be the top-left-most block. With this top-left-
most block as the reference, the component is partitioned into contiguous data units to the right and to the bottom (as
shown in Figure A.4).

A.1.4 Orientation

Figure A.1 indicates the orientation of an image component by the terms top, bottom, left, and right. The order by which
the data units of an image component are input to the compression encoding procedures is defined to be left-to-right and
top-to-bottom within the component. (This ordering is precisely defined in A.2.) Applications determine which edges of a
source image are defined as top, bottom, left, and right.

24 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

x i

y i

C

TISO0780-93/d014

Nf

CNf-1

Ci

C
C

2

1

Samples Line

Left

Top

Right

Bottom

a) Source image with multiple components b) Characteristics of an image component

Figure A.1 – Source image characteristics

FIGURE A-1 [D14] 8 cm = 313 %

A.2 Order of source image data encoding

The scan header (see B.2.3) specifies the order by which source image data units shall be encoded and placed within the
compressed image data. For a given scan, if the scan header parameter Ns = 1, then data from only one source component
– the component specified by parameter Cs1 – shall be present within the scan. This data is non-interleaved by definition.
If Ns > 1, then data from the Ns components Cs1 through CsNs shall be present within the scan. This data shall always be
interleaved. The order of components in a scan shall be according to the order specified in the frame header.

The ordering of data units and the construction of minimum coded units (MCU) is defined as follows.

A.2.1 Minimum coded unit (MCU)

For non-interleaved data the MCU is one data unit. For interleaved data the MCU is the sequence of data units defined by
the sampling factors of the components in the scan.

A.2.2 Non-interleaved order (Ns == 1)

When Ns = 1 (where Ns is the number of components in a scan), the order of data units within a scan shall be left-to-right
and top-to-bottom, as shown in Figure A.2. This ordering applies whenever Ns = 1, regardless of the values of
H1 and V1.

TISO0790-93/d015

Left Right

Top

Bottom

Figure A.2 – Non-interleaved data ordering

FIGURE A.2 [D15] 3,5 cm = 136 %

CCITT Rec. T.81 (1992 E) 25

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

A.2.3 Interleaved order (Ns > 1)

When Ns > 1, each scan component Csi is partitioned into small rectangular arrays of Hk horizontal data units by Vk
vertical data units. The subscripts k indicate that Hk and Vk are from the position in the frame header component-
specification for which Ck = Csi. Within each Hk by Vk array, data units are ordered from left-to-right and top-to-bottom.
The arrays in turn are ordered from left-to-right and top-to-bottom within each component.

As shown in the example of Figure A.3, Ns = 4, and MCU1 consists of data units taken first from the top-left-most region
of Cs1, followed by data units from the corresponding region of Cs2, then from Cs3 and then from Cs4. MCU2 follows the
same ordering for data taken from the next region to the right for the four components.

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

0

1

0 1 2

0

1

2

3

0 1 2

0

1

TISO0800-93/d016

Cs : H = 2, V = 2 Cs : H = 2, V = 1 Cs : H = 1, V = 2 Cs : H = 1, V = 1

1

1 1 1 2 2 2 3 3 3 4 4 4

MCU = d d d d d d d d d ,
MCU = d d d d d d d d d ,
MCU = d d d d d d d d d ,
MCU = d d d d d d d d d ,

00 01 10 11

02 03 12 13

04 05 14 15

20 21 30 31

01

10

11

02

03

1204 05

20 30

00 01 00 10 00

2

3

4

01

02

02

11 10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

Cs data units Cs Cs Cs1 2 3 4

Figure A.3 – Interleaved data ordering example

FIGURE A.3 [D16] 7,5 cm = 293 %

A.2.4 Completion of partial MCU

For DCT-based processes the data unit is a block. If xi is not a multiple of 8, the encoding process shall extend the number
of columns to complete the right-most sample blocks. If the component is to be interleaved, the encoding process shall also
extend the number of samples by one or more additional blocks, if necessary, so that the number of blocks is an integer
multiple of Hi. Similarly, if yi is not a multiple of 8, the encoding process shall extend the number of lines to complete the
bottom-most block-row. If the component is to be interleaved, the encoding process shall also extend the number of lines
by one or more additional block-rows, if necessary, so that the number of block-rows is an integer multiple of Vi.

NOTE – It is recommended that any incomplete MCUs be completed by replication of the right-most column and the bottom
line of each component.

For lossless processes the data unit is a sample. If the component is to be interleaved, the encoding process shall extend
the number of samples, if necessary, so that the number is a multiple of Hi. Similarly, the encoding process shall extend
the number of lines, if necessary, so that the number of lines is a multiple of Vi.

Any sample added by an encoding process to complete partial MCUs shall be removed by the decoding process.

A.3 DCT compression

A.3.1 Level shift

Before a non-differential frame encoding process computes the FDCT for a block of source image samples, the samples
shall be level shifted to a signed representation by subtracting 2P – 1, where P is the precision parameter specified in B.2.2.
Thus, when P = 8, the level shift is by 128; when P = 12, the level shift is by 2048.

26 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

After a non-differential frame decoding process computes the IDCT and produces a block of reconstructed image samples,
an inverse level shift shall restore the samples to the unsigned representation by adding 2P – 1 and clamping the results to
the range 0 to 2P – 1.

A.3.2 Orientation of samples for FDCT computation

Figure A.4 shows an image component which has been partitioned into 8 × 8 blocks for the FDCT computations. Figure
A.4 also defines the orientation of the samples within a block by showing the indices used in the FDCT equation of A.3.3.

The definitions of block partitioning and sample orientation also apply to any DCT decoding process and the output
reconstructed image. Any sample added by an encoding process to complete partial MCUs shall be removed by the
decoding process.

C i
00s s

ss

ss

s

s

s

01

10 11

70 71 77

17

07

TISO0810-93/d017

Top

Left Right

Bottom

Figure A.4 – Partition and orientation of 8 x 8 sample blocks

FIGURE A.4 [D17] 6 cm = 234 %

A.3.3 FDCT and IDCT (informative)

The following equations specify the ideal functional definition of the FDCT and the IDCT.

NOTE – These equations contain terms which cannot be represented with perfect accuracy by any real implementation. The
accuracy requirements for the combined FDCT and quantization procedures are specified in Part 2 of this Specification. The accuracy
requirements for the combined dequantization and IDCT procedures are also specified in Part 2 of this Specification.

FDCT:

IDCT:

S C C s
x u y v

s C C S
x u y v

vu u v
x y

yx

yx
u v

u v vu

= ∑ ∑
+ +

= ∑ ∑
+ +

= =

= =

1
4

2 1
16

2 1
16

1
4

2 1
16

2 1
16

0

7

0

7

0

7

0

7

cos
()

cos
()

cos
()

cos
()

π π

π π

where

C C u vu v, = =1 2 0for ,

C Cu v, = 1 otherwise

otherwise.

A.3.4 DCT coefficient quantization (informative) and dequantization (normative)

After the FDCT is computed for a block, each of the 64 resulting DCT coefficients is quantized by a uniform quantizer.
The quantizer step size for each coefficient Svu is the value of the corresponding element Qvu from the quantization table
specified by the frame parameter Tqi (see B.2.2).

CCITT Rec. T.81 (1992 E) 27

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The uniform quantizer is defined by the following equation. Rounding is to the nearest integer:

Sq round
S
Qvu

vu

vu
= F

HG
I
KJ

Sqvu is the quantized DCT coefficient, normalized by the quantizer step size.

NOTE – This equation contains a term which may not be represented with perfect accuracy by any real implementation. The
accuracy requirements for the combined FDCT and quantization procedures are specified in Part 2 of this Specification.

At the decoder, this normalization is removed by the following equation, which defines dequantization:

R Sq Qvu vu vu= ×

NOTE – Depending on the rounding used in quantization, it is possible that the dequantized coefficient may be outside the
expected range.

The relationship among samples, DCT coefficients, and quantization is illustrated in Figure A.5.

A.3.5 Differential DC encoding

After quantization, and in preparation for entropy encoding, the quantized DC coefficient Sq00 is treated separately from
the 63 quantized AC coefficients. The value that shall be encoded is the difference (DIFF) between the quantized DC
coefficient of the current block (DCi which is also designated as Sq00) and that of the previous block of the same
component (PRED):

DIFF DC PREDi= −

A.3.6 Zig-zag sequence

After quantization, and in preparation for entropy encoding, the quantized AC coefficients are converted to the zig-zag
sequence. The quantized DC coefficient (coefficient zero in the array) is treated separately, as defined in A.3.5. The zig-
zag sequence is specified in Figure A.6.

A.4 Point transform

For various procedures data may be optionally divided by a power of 2 by a point transform prior to coding. There are
three processes which require a point transform: lossless coding, lossless differential frame coding in the hierarchical
mode, and successive approximation coding in the progressive DCT mode.

In the lossless mode of operation the point transform is applied to the input samples. In the difference coding of the
hierarchical mode of operation the point transform is applied to the difference between the input component samples and
the reference component samples. In both cases the point transform is an integer divide by 2Pt, where Pt is the value of the
point transform parameter (see B.2.3).

In successive approximation coding the point transform for the AC coefficients is an integer divide by 2Al, where Al is the
successive approximation bit position, low (see B.2.3). The point transform for the DC coefficients is an arithmetic-shift-
right by Al bits. This is equivalent to dividing by 2Pt before the level shift (see A.3.1).

The output of the decoder is rescaled by multiplying by 2Pt. An example of the point transform is given in K.10.

28 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

00 01

10 11

70 71 77

17

0700S S

SS

SS

S

S

S

01

10 11

70 71 77

17

0700 01

10 11

70 71 77

17

07

FDCT

s s

s

s

s

s s

s

s

Sq Sq

Sq Sq

Sq

Sq

SqSqSq

00 01

10 11

70 71 77

17

07Q Q

Q Q

Q Q

Q

Q

Q

00 01

10 11

70 71 77

17

0700 01

10 11

70 71 77

17

0700 01

10 11

70 71 77

17

07 Sq Sq

Sq Sq

Sq

Sq

SqSqSq

r r

r r

r

r

r r r

R R

R R

R

R

R R R

IDCT
TISO0820-93/d018

Quantize

Quantization table

Transmission

Left Right

Top

Bottom

Left Right

Top

Bottom

Source image samples
(after level shift)

DCT coefficients Quantized DCT coefficients

Dequantize
Reconstructed image samples

(before level shift)
Dequantized DCT coefficients Received quantized DCT coefficients

R = Sq × Qvu vu vu

Svu

Qvu vuround = Sq()

Figure A.5 – Relationship between 8 × 8-block samples and DCT coefficients

FIGURE A.5 [D18] 21 cm = 821 %

CCITT Rec. T.81 (1992 E) 29

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

10 11 15 16 14 15 27 28

12 14 17 13 16 26 29 42

13 18 12 17 25 30 41 43

19 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure A.6 – Zig-zag sequence of quantized DCT coefficients

A.5 Arithmetic procedures in lossless and hierarchical modes of operation

In the lossless mode of operation predictions are calculated with full precision and without clamping of either overflow or
underflow beyond the range of values allowed by the precision of the input. However, the division by two which is part of
some of the prediction calculations shall be approximated by an arithmetic-shift-right by one bit.

The two’s complement differences which are coded in either the lossless mode of operation or the differential frame
coding in the hierarchical mode of operation are calculated modulo 65 536, thereby restricting the precision of these
differences to a maximum of 16 bits. The modulo values are calculated by performing the logical AND operation of the
two’s complement difference with X’FFFF’. For purposes of coding, the result is still interpreted as a 16 bit two’s
complement difference. Modulo 65 536 arithmetic is also used in the decoder in calculating the output from the sum of
the prediction and this two’s complement difference.

30 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1 1993(E)

ISO/IEC 10918-1 : 1 1993(E)

CCITT Rec. T.81 (1992 E)

Annex B

Compressed data formats

(This annex forms an integral part of this Recommendation | International Standard)
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

This annex specifies three compressed data formats:

a) the interchange format, specified in B.2 and B.3;
b) the abbreviated format for compressed image data, specified in B.4;
c) the abbreviated format for table-specification data, specified in B.5.

B.1 describes the constituent parts of these formats. B.1.3 and B.1.4 give the conventions for symbols and figures used in
the format specifications.

B.1 General aspects of the compressed data format specifications

Structurally, the compressed data formats consist of an ordered collection of parameters, markers, and entropy-coded data
segments. Parameters and markers in turn are often organized into marker segments. Because all of these constituent parts
are represented with byte-aligned codes, each compressed data format consists of an ordered sequence of 8-bit bytes. For
each byte, a most significant bit (MSB) and a least significant bit (LSB) are defined.

B.1.1 Constituent parts

This subclause gives a general description of each of the constituent parts of the compressed data format.

B.1.1.1 Parameters

Parameters are integers, with values specific to the encoding process, source image characteristics, and other features
selectable by the application. Parameters are assigned either 4-bit, 1-byte, or 2-byte codes. Except for certain optional
groups of parameters, parameters encode critical information without which the decoding process cannot properly
reconstruct the image.

The code assignment for a parameter shall be an unsigned integer of the specified length in bits with the particular value
of the parameter.

For parameters which are 2 bytes (16 bits) in length, the most significant byte shall come first in the compressed data’s
ordered sequence of bytes. Parameters which are 4 bits in length always come in pairs, and the pair shall always be
encoded in a single byte. The first 4-bit parameter of the pair shall occupy the most significant 4 bits of the byte. Within
any 16-, 8-, or 4-bit parameter, the MSB shall come first and LSB shall come last.

B.1.1.2 Markers

Markers serve to identify the various structural parts of the compressed data formats. Most markers start marker segments
containing a related group of parameters; some markers stand alone. All markers are assigned two-byte codes: an X’FF’
byte followed by a byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may optionally be preceded by any
number of fill bytes, which are bytes assigned code X’FF’.

NOTE – Because of this special code-assignment structure, markers make it possible for a decoder to parse the compressed
data and locate its various parts without having to decode other segments of image data.

B.1.1.3 Marker assignments

All markers shall be assigned two-byte codes: a X’FF’ byte followed by a second byte which is not equal to 0 or X’FF’.
The second byte is specified in Table B.1 for each defined marker. An asterisk (*) indicates a marker which stands alone,
that is, which is not the start of a marker segment.

CCITT Rec. T.81 (1992 E) 31

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table B.1 – Marker code assignments

Code Assignment Symbol Description

Start Of Frame markers, non-differential, Huffman coding

X’FFC0’
X’FFC1’
X’FFC2’
X’FFC3’

SOF0
SOF1
SOF2
SOF3

Baseline DCT
Extended sequential DCT
Progressive DCT
Lossless (sequential)

Start Of Frame markers, differential, Huffman coding

X’FFC5’
X’FFC6’
X’FFC7’

SOF5
SOF6
SOF7

Differential sequential DCT
Differential progressive DCT
Differential lossless (sequential)

Start Of Frame markers, non-differential, arithmetic coding

X’FFC8’
X’FFC9’
X’FFCA’
X’FFCB’

JPG
SOF9
SOF10
SOF11

Reserved for JPEG extensions
Extended sequential DCT
Progressive DCT
Lossless (sequential)

Start Of Frame markers, differential, arithmetic coding

X’FFCD’
X’FFCE’
X’FFCF’

SOF13
SOF14
SOF15

Differential sequential DCT
Differential progressive DCT
Differential lossless (sequential)

Huffman table specification

X’FFC4’ DHT Define Huffman table(s)

Arithmetic coding conditioning specification

X’FFCC’ DAC Define arithmetic coding conditioning(s)

Restart interval termination

X’FFD0’ through X’FFD7’ RSTm* Restart with modulo 8 count “m”

Other markers

X’FFD8’
X’FFD9’
X’FFDA’
X’FFDB’
X’FFDC’
X’FFDD’
X’FFDE’
X’FFDF’
X’FFE0’ through X’FFEF’
X’FFF0’ through X’FFFD’
X’FFFE’

SOI*
EOI*
SOS
DQT
DNL
DRI
DHP
EXP
APPn
JPGn
COM

Start of image
End of image
Start of scan
Define quantization table(s)
Define number of lines
Define restart interval
Define hierarchical progression
Expand reference component(s)
Reserved for application segments
Reserved for JPEG extensions
Comment

Reserved markers

X’FF01’
X’FF02’ through X’FFBF’

TEM*
RES

For temporary private use in arithmetic coding
Reserved

32 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.1.1.4 Marker segments

A marker segment consists of a marker followed by a sequence of related parameters. The first parameter in a marker
segment is the two-byte length parameter. This length parameter encodes the number of bytes in the marker segment,
including the length parameter and excluding the two-byte marker. The marker segments identified by the SOF and SOS
marker codes are referred to as headers: the frame header and the scan header respectively.

B.1.1.5 Entropy-coded data segments

An entropy-coded data segment contains the output of an entropy-coding procedure. It consists of an integer number of
bytes, whether the entropy-coding procedure used is Huffman or arithmetic.

NOTES

1 Making entropy-coded segments an integer number of bytes is performed as follows: for Huffman coding, 1-bits are
used, if necessary, to pad the end of the compressed data to complete the final byte of a segment. For arithmetic coding, byte alignment
is performed in the procedure which terminates the entropy-coded segment (see D.1.8).

2 In order to ensure that a marker does not occur within an entropy-coded segment, any X’FF’ byte generated by either a
Huffman or arithmetic encoder, or an X’FF’ byte that was generated by the padding of 1-bits described in NOTE 1 above, is followed
by a “stuffed” zero byte (see D.1.6 and F.1.2.3).

B.1.2 Syntax

In B.2 and B.3 the interchange format syntax is specified. For the purposes of this Specification, the syntax specification
consists of:

– the required ordering of markers, parameters, and entropy-coded segments;
– identification of optional or conditional constituent parts;
– the name, symbol, and definition of each marker and parameter;
– the allowed values of each parameter;
– any restrictions on the above which are specific to the various coding processes.

The ordering of constituent parts and the identification of which are optional or conditional is specified by the syntax
figures in B.2 and B.3. Names, symbols, definitions, allowed values, conditions, and restrictions are specified immediately
below each syntax figure.

B.1.3 Conventions for syntax figures

The syntax figures in B.2 and B.3 are a part of the interchange format specification. The following conventions, illustrated
in Figure B.1, apply to these figures:

– parameter/marker indicator: A thin-lined box encloses either a marker or a single parameter;

– segment indicator: A thick-lined box encloses either a marker segment, an entropy-coded data segment,
or combinations of these;

– parameter length indicator: The width of a thin-lined box is proportional to the parameter length (4, 8,
or 16 bits, shown as E, B, and D respectively in Figure B.1) of the marker or parameter it encloses; the
width of thick-lined boxes is not meaningful;

– optional/conditional indicator: Square brackets indicate that a marker or marker segment is only
optionally or conditionally present in the compressed image data;

– ordering: In the interchange format a parameter or marker shown in a figure precedes all of those shown
to its right, and follows all of those shown to its left;

– entropy-coded data indicator: Angled brackets indicate that the entity enclosed has been entropy
encoded.

TISO0830-93/d019

D E F[B]Segment
Optional
segment

[[

Figure B.1 – Syntax notation conventions

Figure B.1 [D19], = 3 cm = 118%

CCITT Rec. T.81 (1992 E) 33

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.1.4 Conventions for symbols, code lengths, and values

Following each syntax figure in B.2 and B.3, the symbol, name, and definition for each marker and parameter shown in
the figure are specified. For each parameter, the length and allowed values are also specified in tabular form.

The following conventions apply to symbols for markers and parameters:

– all marker symbols have three upper-case letters, and some also have a subscript. Examples: SOI, SOFn;

– all parameter symbols have one upper-case letter; some also have one lower-case letter and some have
subscripts. Examples: Y, Nf, Hi, Tqi.

B.2 General sequential and progressive syntax

This clause specifies the interchange format syntax which applies to all coding processes for sequential DCT-based,
progressive DCT-based, and lossless modes of operation.

B.2.1 High-level syntax

Figure B.2 specifies the order of the high-level constituent parts of the interchange format for all non-hierarchical
encoding processes specified in this Specification.

TISO0840-93/d020

Compressed image data

SOI Frame EOI

Tables/
misc. [[Frame header DNL

segment Scan2

[[[[Scan 1

[[Scan last

Tables/
misc.[[

Scan header [ECS0

Scan

Frame

ECS last-1 ECS lastRST last-1]

Entropy-coded segment 0 Entropy-coded segment last

<MCU >, <MCU >, · · · <MCU >1 2 Ri <MCU >, <MCU >, · · · <MCU >n n + 1 last

Figure B.2 – Syntax for sequential DCT-based, progressive DCT-based,
and lossless modes of operation

RST0

Figure B.2 [D20], = 10 cm = 391.%

The three markers shown in Figure B.2 are defined as follows:

SOI: Start of image marker – Marks the start of a compressed image represented in the interchange format or
abbreviated format.

EOI: End of image marker – Marks the end of a compressed image represented in the interchange format or
abbreviated format.

RSTm: Restart marker – A conditional marker which is placed between entropy-coded segments only if restart
is enabled. There are 8 unique restart markers (m = 0 - 7) which repeat in sequence from 0 to 7, starting with
zero for each scan, to provide a modulo 8 restart interval count.

The top level of Figure B.2 specifies that the non-hierarchical interchange format shall begin with an SOI marker, shall
contain one frame, and shall end with an EOI marker.

34 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The second level of Figure B.2 specifies that a frame shall begin with a frame header and shall contain one or more scans.
A frame header may be preceded by one or more table-specification or miscellaneous marker segments as specified in
B.2.4. If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan.

For sequential DCT-based and lossless processes each scan shall contain from one to four image components. If two to
four components are contained within a scan, they shall be interleaved within the scan. For progressive DCT-based
processes each image component is only partially contained within any one scan. Only the first scan(s) for the components
(which contain only DC coefficient data) may be interleaved.

The third level of Figure B.2 specifies that a scan shall begin with a scan header and shall contain one or more entropy-
coded data segments. Each scan header may be preceded by one or more table-specification or miscellaneous marker
segments. If restart is not enabled, there shall be only one entropy-coded segment (the one labeled “last”), and no restart
markers shall be present. If restart is enabled, the number of entropy-coded segments is defined by the size of the image
and the defined restart interval. In this case, a restart marker shall follow each entropy-coded segment except the last one.

The fourth level of Figure B.2 specifies that each entropy-coded segment is comprised of a sequence of entropy-
coded MCUs. If restart is enabled and the restart interval is defined to be Ri, each entropy-coded segment except the last
one shall contain Ri MCUs. The last one shall contain whatever number of MCUs completes the scan.

Figure B.2 specifies the locations where table-specification segments may be present. However, this Specification hereby
specifies that the interchange format shall contain all table-specification data necessary for decoding the compressed
image. Consequently, the required table-specification data shall be present at one or more of the allowed locations.

B.2.2 Frame header syntax

Figure B.3 specifies the frame header which shall be present at the start of a frame. This header specifies the source image
characteristics (see A.1), the components in the frame, and the sampling factors for each component, and specifies the
destinations from which the quantized tables to be used with each component are retrieved.

C1 1 1 1 C C

SOF PLf Y X Nf

H V Tq 2 2 V2H Tq 2 Nf Nf Nf NfH V Tq

n

TISO0850-93/d021

Frame header

Frame component-specification parameters

Component-specification
parameters

Figure B.3 – Frame header syntax

Figure B.3 [D21], = 5.5 cm = 215.%

The markers and parameters shown in Figure B.3 are defined below. The size and allowed values of each parameter are
given in Table B.2. In Table B.2 (and similar tables which follow), value choices are separated by commas (e.g. 8, 12) and
inclusive bounds are separated by dashes (e.g. 0 - 3).

SOFn: Start of frame marker – Marks the beginning of the frame parameters. The subscript n identifies whether
the encoding process is baseline sequential, extended sequential, progressive, or lossless, as well as which
entropy encoding procedure is used.

SOF0: Baseline DCT

SOF1: Extended sequential DCT, Huffman coding

SOF2: Progressive DCT, Huffman coding

CCITT Rec. T.81 (1992 E) 35

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

SOF3: Lossless (sequential), Huffman coding

SOF9: Extended sequential DCT, arithmetic coding

SOF10: Progressive DCT, arithmetic coding

SOF11: Lossless (sequential), arithmetic coding

Lf: Frame header length – Specifies the length of the frame header shown in Figure B.3 (see B.1.1.4).

P: Sample precision – Specifies the precision in bits for the samples of the components in the frame.

Y: Number of lines – Specifies the maximum number of lines in the source image. This shall be equal to the
number of lines in the component with the maximum number of vertical samples (see A.1.1). Value 0 indicates
that the number of lines shall be defined by the DNL marker and parameters at the end of the first scan (see
B.2.5).

X: Number of samples per line – Specifies the maximum number of samples per line in the source image. This
shall be equal to the number of samples per line in the component with the maximum number of horizontal
samples (see A.1.1).

Nf: Number of image components in frame – Specifies the number of source image components in the frame.
The value of Nf shall be equal to the number of sets of frame component specification parameters (Ci, Hi, Vi,
and Tqi) present in the frame header.

Ci: Component identifier – Assigns a unique label to the ith component in the sequence of frame component
specification parameters. These values shall be used in the scan headers to identify the components in the scan.
The value of Ci shall be different from the values of C1 through Ci − 1.

Hi: Horizontal sampling factor – Specifies the relationship between the component horizontal dimension
and maximum image dimension X (see A.1.1); also specifies the number of horizontal data units of component
Ci in each MCU, when more than one component is encoded in a scan.

Vi: Vertical sampling factor – Specifies the relationship between the component vertical dimension and
maximum image dimension Y (see A.1.1); also specifies the number of vertical data units of component Ci in
each MCU, when more than one component is encoded in a scan.

Tqi: Quantization table destination selector – Specifies one of four possible quantization table destinations
from which the quantization table to use for dequantization of DCT coefficients of component Ci is retrieved. If
the decoding process uses the dequantization procedure, this table shall have been installed in this destination
by the time the decoder is ready to decode the scan(s) containing component Ci. The destination shall not be re-
specified, or its contents changed, until all scans containing Ci have been completed.

Table B.2 – Frame header parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lf 16 8 + 3 × Nf

P 18 8-255 8, 12 8, 12 2-165

Y 16 0-65 535

X 16 1-65 535

Nf 18 1-255 1-255 1-4 1-255

Ci 18 0-25535

Hi 14 1-43550

Vi 14 1-43550

Tqi 18 0-312 0-355 0-3 0-125

36 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.2.3 Scan header syntax

Figure B.4 specifies the scan header which shall be present at the start of a scan. This header specifies which
component(s) are contained in the scan, specifies the destinations from which the entropy tables to be used with each
component are retrieved, and (for the progressive DCT) which part of the DCT quantized coefficient data is contained in
the scan. For lossless processes the scan parameters specify the predictor and the point transform.

NOTE – If there is only one image component present in a scan, that component is, by definition, non-interleaved. If there is
more than one image component present in a scan, the components present are, by definition, interleaved.

2 2 2

NsTd NsTa

NsCs

SOS Ls Ns Ss Se Ah Al

Cs1 Td1 Ta1 Cs Td Ta

TISO0860-93/d022

Scan header

Component-specification
parameters

Scan component-specification parameters

Figure B.4 – Scan header syntax

Figure B.4 [D22], = 5.5 cm = 215.%

The marker and parameters shown in Figure B.4 are defined below. The size and allowed values of each parameter are
given in Table B.3.

SOS: Start of scan marker – Marks the beginning of the scan parameters.

Ls: Scan header length – Specifies the length of the scan header shown in Figure B.4 (see B.1.1.4).

Ns: Number of image components in scan – Specifies the number of source image components in the scan. The
value of Ns shall be equal to the number of sets of scan component specification parameters (Csj, Tdj, and Taj)
present in the scan header.

Csj: Scan component selector – Selects which of the Nf image components specified in the frame parameters
shall be the jth component in the scan. Each Csj shall match one of the Ci values specified in the frame header,
and the ordering in the scan header shall follow the ordering in the frame header. If Ns > 1, the order of
interleaved components in the MCU is Cs1 first, Cs2 second, etc. If Ns > 1, the following restriction shall be
placed on the image components contained in the scan:

j

N

j j

s
H V

=
∑ × ≤

1
10,

where Hj and Vj are the horizontal and vertical sampling factors for scan component j. These sampling factors
are specified in the frame header for component i, where i is the frame component specification index for which
frame component identifier Ci matches scan component selector Csj.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and
512 samples per line, and with the following sampling factors:

Component

Component 1

Component 2 2

0 4 1

1 2

2 2

0 0

1 1

2

H V

H V

H V

= =
= =
= =

,

,

Then the summation of Hj × Vj is (4 × 1) + (1 × 2) + (2 × 2) = 10.

The value of Csj shall be different from the values of Cs1 to Csj – 1.

CCITT Rec. T.81 (1992 E) 37

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Tdj: DC entropy coding table destination selector – Specifies one of four possible DC entropy coding table
destinations from which the entropy table needed for decoding of the DC coefficients of component Csj is
retrieved. The DC entropy table shall have been installed in this destination (see B.2.4.2 and B.2.4.3) by the
time the decoder is ready to decode the current scan. This parameter specifies the entropy coding table
destination for the lossless processes.

Taj: AC entropy coding table destination selector – Specifies one of four possible AC entropy coding table
destinations from which the entropy table needed for decoding of the AC coefficients of component Csj is
retrieved. The AC entropy table selected shall have been installed in this destination (see B.2.4.2 and B.2.4.3)
by the time the decoder is ready to decode the current scan. This parameter is zero for the lossless processes.

Ss: Start of spectral or predictor selection – In the DCT modes of operation, this parameter specifies the first
DCT coefficient in each block in zig-zag order which shall be coded in the scan. This parameter shall be set to
zero for the sequential DCT processes. In the lossless mode of operations this parameter is used to select the
predictor.

Se: End of spectral selection – Specifies the last DCT coefficient in each block in zig-zag order which shall be
coded in the scan. This parameter shall be set to 63 for the sequential DCT processes. In the lossless mode of
operations this parameter has no meaning. It shall be set to zero.

Ah: Successive approximation bit position high – This parameter specifies the point transform used in the
preceding scan (i.e. successive approximation bit position low in the preceding scan) for the band of coefficients
specified by Ss and Se. This parameter shall be set to zero for the first scan of each band of coefficients. In the
lossless mode of operations this parameter has no meaning. It shall be set to zero.

Al: Successive approximation bit position low or point transform – In the DCT modes of operation this
parameter specifies the point transform, i.e. bit position low, used before coding the band of coefficients
specified by Ss and Se. This parameter shall be set to zero for the sequential DCT processes. In the lossless
mode of operations, this parameter specifies the point transform, Pt.

The entropy coding table destination selectors, Tdj and Taj, specify either Huffman tables (in frames using Huffman
coding) or arithmetic coding tables (in frames using arithmetic coding). In the latter case the entropy coding table
destination selector specifies both an arithmetic coding conditioning table destination and an associated statistics area.

Table B.3 – Scan header parameter size and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Ls 16 6 + 2 × Ns

Ns 18 1-4

Csj 18 0-255a)

Tdj 14 0-1 0-3 0-3 0-3

Taj 14 0-1 0-3 0-3 0

Ss 18 0-1 0-1 0-63 1-7b)

Se 18 63- 63- Ss-63c) 0

Ah 14 0-1 0-1 0-13 0

Al 14 0-1 0-1 0-13 0-15

a) Csj shall be a member of the set of Ci specified in the frame header.

b) 0 for lossless differential frames in the hierarchical mode (see B.3).

c) 0 if Ss equals zero.

38 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.2.4 Table-specification and miscellaneous marker segment syntax

Figure B.5 specifies that, at the places indicated in Figure B.2, any of the table-specification segments or miscellaneous
marker segments specified in B.2.4.1 through B.2.4.6 may be present in any order and with no limit on the number of
segments.

If any table specification for a particular destination occurs in the compressed image data, it shall replace any previous
table specified for this destination, and shall be used whenever this destination is specified in the remaining scans in the
frame or subsequent images represented in the abbreviated format for compressed image data. If a table specification for a
given destination occurs more than once in the compressed image data, each specification shall replace the previous
specification. The quantization table specification shall not be altered between progressive DCT scans of a given
component.

TISO0870-93/d023

Tables or miscellaneous marker segment

Marker
segment1

[]
Marker

segment 2
[]

Marker
segment last

[]

Marker segment

Quantization table-specification
or

Huffman table-specification
or

Arithmetic conditioning table-specification
or

Restart interval definition
or

Comment
or

Application data

Figure B.5 – Tables/miscellaneous marker segment syntax

Figure B.5 [D23], = 7.5 cm = 293.%

B.2.4.1 Quantization table-specification syntax

Figure B.6 specifies the marker segment which defines one or more quantization tables.

Q
1

Q Q
0 63

Lq Pq Tq

TISO0880-93/d024

DQT

Define quantization table segment

Multiple (t = 1, ..., n)

Figure B.6 – Quantization table syntax

Figure B.6 [D24], = 3.5 cm = 136.%

The marker and parameters shown in Figure B.6 are defined below. The size and allowed values of each parameter are
given in Table B.4.

DQT: Define quantization table marker – Marks the beginning of quantization table-specification parameters.

Lq: Quantization table definition length – Specifies the length of all quantization table parameters shown in
Figure B.6 (see B.1.1.4).

CCITT Rec. T.81 (1992 E) 39

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Pq: Quantization table element precision – Specifies the precision of the Qk values. Value 0 indicates 8-bit Qk
values; value 1 indicates 16-bit Qk values. Pq shall be zero for 8 bit sample precision P (see B.2.2).

Tq: Quantization table destination identifier – Specifies one of four possible destinations at the decoder into
which the quantization table shall be installed.

Qk: Quantization table element – Specifies the kth element out of 64 elements, where k is the index in the zig-
zag ordering of the DCT coefficients. The quantization elements shall be specified in zig-zag scan order.

Table B.4 – Quantization table-specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lq 16 16 2 65 64
1

+ ∑ + ×
=t

n

Pq t()b g Undefined

Pq 14 16 0 0, 1 0, 1 Undefined

Tq 14 16 0-3 Undefined

Qk 18, 16 1-255, 1-65 535 Undefined

The value n in Table B.4 is the number of quantization tables specified in the DQT marker segment.

Once a quantization table has been defined for a particular destination, it replaces the previous tables stored in that
destination and shall be used, when referenced, in the remaining scans of the current image and in subsequent images
represented in the abbreviated format for compressed image data. If a table has never been defined for a particular
destination, then when this destination is specified in a frame header, the results are unpredictable.

An 8-bit DCT-based process shall not use a 16-bit precision quantization table.

B.2.4.2 Huffman table-specification syntax

Figure B.7 specifies the marker segment which defines one or more Huffman table specifications.

TISO0890-93/d025

DHT Lh Tc Th L 1 L 2 L 16

Define Huffman table segment

Symbol-length
assignment

Multiple (t = 1, ..., n)

Symbol-length assignment parameters

Figure B.7 – Huffman table syntax

V1,1 V1,2 V1,L1
V2,1 V2,2 V2,L2

V16,1 V16,2 V16,L16

Figure B.7 [D25], = 5.5 cm = 215.%

40 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The marker and parameters shown in Figure B.7 are defined below. The size and allowed values of each parameter are
given in Table B.5.

DHT: Define Huffman table marker – Marks the beginning of Huffman table definition parameters.

Lh: Huffman table definition length – Specifies the length of all Huffman table parameters shown in Figure B.7
(see B.1.1.4).

Tc: Table class – 0 = DC table or lossless table, 1 = AC table.

Th: Huffman table destination identifier – Specifies one of four possible destinations at the decoder into which
the Huffman table shall be installed.

L i: Number of Huffman codes of length i – Specifies the number of Huffman codes for each of the 16 possible
lengths allowed by this Specification. Li’s are the elements of the list BITS.

Vi,j : Value associated with each Huffman code – Specifies, for each i, the value associated with each Huffman
code of length i. The meaning of each value is determined by the Huffman coding model. The Vi,j’s are the
elements of the list HUFFVAL.

Table B.5 – Huffman table specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lh 16 2 17
1

+ ∑ +
=t

n

tmc h

Tc 14 0, 1 0

Th 14 0, 1 0-3

Li 18 0-255

Vi, j 18 0-255

The value n in Table B.5 is the number of Huffman tables specified in the DHT marker segment. The value mt is the
number of parameters which follow the 16 Li(t) parameters for Huffman table t, and is given by:

m Lt
i

i= ∑
=1

16

In general, mt is different for each table.

Once a Huffman table has been defined for a particular destination, it replaces the previous tables stored in that
destination and shall be used when referenced, in the remaining scans of the current image and in subsequent images
represented in the abbreviated format for compressed image data. If a table has never been defined for a particular
destination, then when this destination is specified in a scan header, the results are unpredictable.

CCITT Rec. T.81 (1992 E) 41

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.2.4.3 Arithmetic conditioning table-specification syntax

Figure B.8 specifies the marker segment which defines one or more arithmetic coding conditioning table specifications.
These replace the default arithmetic coding conditioning tables established by the SOI marker for arithmetic coding
processes. (See F.1.4.4.1.4 and F.1.4.4.2.1.)

TcDAC La Tb Cs

TISO0900-93/d026

Define arithmetic conditioning segment

Multiple (t = 1, ..., n)

Figure B.8 – Arithmetic conditioning table-specification syntax

Figure B.8 [D26], = 3 cm = 117.%

The marker and parameters shown in Figure B.8 are defined below. The size and allowed values of each parameter are
given in Table B.6.

DAC: Define arithmetic coding conditioning marker – Marks the beginning of the definition of arithmetic
coding conditioning parameters.

La: Arithmetic coding conditioning definition length – Specifies the length of all arithmetic coding
conditioning parameters shown in Figure B.8 (see B.1.1.4).

Tc: Table class – 0 = DC table or lossless table, 1 = AC table.

Tb: Arithmetic coding conditioning table destination identifier – Specifies one of four possible destinations at
the decoder into which the arithmetic coding conditioning table shall be installed.

Cs: Conditioning table value – Value in either the AC or the DC (and lossless) conditioning table. A single
value of Cs shall follow each value of Tb. For AC conditioning tables Tc shall be one and Cs shall contain a
value of Kx in the range 1 ≤ Kx ≤ 63. For DC (and lossless) conditioning tables Tc shall be zero and Cs shall
contain two 4-bit parameters, U and L. U and L shall be in the range 0 ≤ L ≤ U ≤ 15 and the value of Cs shall be
L + 16 × U.

The value n in Table B.6 is the number of arithmetic coding conditioning tables specified in the DAC marker segment.
The parameters L and U are the lower and upper conditioning bounds used in the arithmetic coding procedures defined
for DC coefficient coding and lossless coding. The separate value range 1-63 listed for DCT coding is the Kx conditioning
used in AC coefficient coding.

Table B.6 – Arithmetic coding conditioning table-specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

La 16 Undefined 2 + 2 × n

Tc 14 Undefined 0, 1 0-255

Tb 14 Undefined 0-3

Cs 18 Undefined 0-255 (Tc = 0), 1-63 (Tc = 1) 0-255

42 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.2.4.4 Restart interval definition syntax

Figure B.9 specifies the marker segment which defines the restart interval.

DRI Ri

TISO0910-93/d027

Lr

Define restart interval segment

Figure B.9 – Restart interval definition syntax

Figure B.9 [D27], = 2.5 cm = 98.%

The marker and parameters shown in Figure B.9 are defined below. The size and allowed values of each parameter are
given in Table B.7.

DRI: Define restart interval marker – Marks the beginning of the parameters which define the restart interval.

Lr: Define restart interval segment length – Specifies the length of the parameters in the DRI segment shown in
Figure B.9 (see B.1.1.4).

Ri: Restart interval – Specifies the number of MCU in the restart interval.

In Table B.7 the value n is the number of rows of MCU in the restart interval. The value MCUR is the number of MCU
required to make up one line of samples of each component in the scan. The SOI marker disables the restart intervals. A
DRI marker segment with Ri nonzero shall be present to enable restart interval processing for the following scans. A DRI
marker segment with Ri equal to zero shall disable restart intervals for the following scans.

Table B.7 – Define restart interval segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lr 16 4

Ri 16 0-65 535 n × MCUR

B.2.4.5 Comment syntax

Figure B.10 specifies the marker segment structure for a comment segment.

COM Lc

TISO00920-93/d028

Cm
1

. . . Cm
Lc-2

Comment segment

Figure B.10 – Comment segment syntax

Figure B.10 [D28], = 2.8cm = 98.%

CCITT Rec. T.81 (1992 E) 43

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The marker and parameters shown in Figure B.10 are defined below. The size and allowed values of each parameter are
given in Table B.8.

COM: Comment marker – Marks the beginning of a comment.

Lc: Comment segment length – Specifies the length of the comment segment shown in Figure B.10
(see B.1.1.4).

Cmi: Comment byte – The interpretation is left to the application.

Table B.8 – Comment segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lc 16 2-65 535

Cmi 18 0-25522

B.2.4.6 Application data syntax

Figure B.11 specifies the marker segment structure for an application data segment.

1 . . .APP n Lp Ap Ap Lp-2

TISO0930-93/d029

Application data segment

Figure B.11 – Application data syntax

Figure B.11 [D29], = 2.8 cm = 98.%

The marker and parameters shown in Figure B.11 are defined below. The size and allowed values of each parameter are
given in Table B.9.

APPn: Application data marker – Marks the beginning of an application data segment.

Lp: Application data segment length – Specifies the length of the application data segment shown in
Figure B.11 (see B.1.1.4).

Api: Application data byte – The interpretation is left to the application.

The APPn (Application) segments are reserved for application use. Since these segments may be defined differently for
different applications, they should be removed when the data are exchanged between application environments.

Table B.9 – Application data segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lp 16 2-65 535

Api 18 0-25522

44 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

B.2.5 Define number of lines syntax

Figure B.12 specifies the marker segment for defining the number of lines. The DNL (Define Number of Lines) segment
provides a mechanism for defining or redefining the number of lines in the frame (the Y parameter in the frame header) at
the end of the first scan. The value specified shall be consistent with the number of MCU-rows encoded in the first scan.
This segment, if used, shall only occur at the end of the first scan, and only after coding of an integer number of MCU-
rows. This marker segment is mandatory if the number of lines (Y) specified in the frame header has the value zero.

DNL Ld NL

TISO0940-93/d030

Define number of lines segment

Figure B.12 – Define number of lines syntax

Figure B.12 [D30], = 2.8 cm = 98.%

The marker and parameters shown in Figure B.12 are defined below. The size and allowed values of each parameter are
given in Table B.10.

DNL: Define number of lines marker – Marks the beginning of the define number of lines segment.

Ld: Define number of lines segment length – Specifies the length of the define number of lines segment shown
in Figure B.12 (see B.1.1.4).

NL: Number of lines – Specifies the number of lines in the frame (see definition of Y in B.2.2).

Table B.10 – Define number of lines segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Ld 16 4-65535a)

NL 16 1-65 535a)

a) The value specified shall be consistent with the number of lines coded at the point where the DNL segment
terminates the compressed data segment.

B.3 Hierarchical syntax

B.3.1 High level hierarchical mode syntax

Figure B.13 specifies the order of the high level constituent parts of the interchange format for hierarchical encoding
processes.

CCITT Rec. T.81 (1992 E) 45

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

SOI EOI

TISO0950-93/d031

Compressed image data

[Tables/misc.] DHP segment Frame 1 Framelast

Figure B.13 – Syntax for the hierarchical mode of operation

Figure B.13 [D31], = 3 cm = 117.%

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. The
hierarchical mode compressed image data may include EXP marker segments and differential frames which shall follow
the initial non-differential frame. The frame structure in hierarchical mode is identical to the frame structure in non-
hierarchical mode.

The non-differential frames in the hierarchical sequence shall use one of the coding processes specified for SOFn markers:
SOF0, SOF1, SOF2, SOF3, SOF9, SOF10 and SOF11. The differential frames shall use one of the processes specified for
SOF5, SOF6, SOF7, SOF13, SOF14 and SOF15. The allowed combinations of SOF markers within one hierarchical
sequence are specified in Annex J.

The sample precision (P) shall be constant for all frames and have the identical value as that coded in the DHP marker
segment. The number of samples per line (X) for all frames shall not exceed the value coded in the DHP marker segment.
If the number of lines (Y) is non-zero in the DHP marker segment, then the number of lines for all frames shall not exceed
the value in the DHP marker segment.

B.3.2 DHP segment syntax

The DHP segment defines the image components, size, and sampling factors for the completed hierarchical sequence of
frames. The DHP segment shall precede the first frame; a single DHP segment shall occur in the compressed image data.

The DHP segment structure is identical to the frame header syntax, except that the DHP marker is used instead of the
SOFn marker. The figures and description of B.2.2 then apply, except that the quantization table destination selector
parameter shall be set to zero in the DHP segment.

B.3.3 EXP segment syntax

Figure B.14 specifies the marker segment structure for the EXP segment. The EXP segment shall be present if (and only
if) expansion of the reference components is required either horizontally or vertically. The EXP segment parameters apply
only to the next frame (which shall be a differential frame) in the image. If required, the EXP segment shall be one of the
table-specification segments or miscellaneous marker segments preceding the frame header; the EXP segment shall not be
one of the table-specification segments or miscellaneous marker segments preceding a scan header or a DHP marker
segment.

TISO0960-93/d032

EXP Le Eh Ev

Expand segment

Figure B.14 – Syntax of the expand segment

Figure B.14 [D32], = 2.5 cm = 98.%

46 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The marker and parameters shown in Figure B.14 are defined below. The size and allowed values of each parameter are
given in Table B.11.

EXP: Expand reference components marker – Marks the beginning of the expand reference components
segment.

Le: Expand reference components segment length – Specifies the length of the expand reference components
segment (see B.1.1.4).

Eh: Expand horizontally – If one, the reference components shall be expanded horizontally by a factor of two.
If horizontal expansion is not required, the value shall be zero.

Ev: Expand vertically – If one, the reference components shall be expanded vertically by a factor of two.
If vertical expansion is not required, the value shall be zero.

Both Eh and Ev shall be one if expansion is required both horizontally and vertically.

Table B.11 – Expand segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Le 16 3,1

Eh 14 0, 1

Ev 14 0, 1

B.4 Abbreviated format for compressed image data

Figure B.2 shows the high-level constituent parts of the interchange format. This format includes all table specifications
required for decoding. If an application environment provides methods for table specification other than by means of the
compressed image data, some or all of the table specifications may be omitted. Compressed image data which is missing
any table specification data required for decoding has the abbreviated format.

B.5 Abbreviated format for table-specification data

Figure B.2 shows the high-level constituent parts of the interchange format. If no frames are present in the compressed
image data, the only purpose of the compressed image data is to convey table specifications or miscellaneous marker
segments defined in B.2.4.1, B.2.4.2, B.2.4.5, and B.2.4.6. In this case the compressed image data has the abbreviated
format for table specification data (see Figure B.15).

TISO0970-93/d033

SOI EOI

Compressed image data

[Tables/misc.]

Figure B.15 – Abbreviated format for table-specification data syntax

Figure B.15 [D33], = 3 cm = 117.% dim. à 100

B.6 Summary

The order of the constituent parts of interchange format and all marker segment structures is summarized in Figures B.16
and B.17. Note that in Figure B.16 double-lined boxes enclose marker segments. In Figures B.16 and B.17 thick-lined
boxes enclose only markers.

The EXP segment can be mixed with the other tables/miscellaneous marker segments preceding the frame header but not
with the tables/miscellaneous marker segments preceding the DHP segment or the scan header.

CCITT Rec. T.81 (1992 E) 47

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

T
IS

O
09

8
0-

93
/d

03
4

E
O

I
S

O
I

D
H

P

E
X

P

E
C

S
i

D
N

L

A
bb

re
vi

at
ed

 fo
rm

at
 fo

r
ta

bl
e-

sp
ec

ifi
ca

tio
n

da
ta

H
ie

ra
rc

hi
ca

l m
od

e

T
ab

le
s/

m
is

ce
lla

-
ne

ou
s

S
O

F
n

N
on

-e
xp

an
si

on
of

 re
fe

re
nc

e
co

m
po

ne
nt

s
S

O
S

M
ul

ti-
fr

am
e

M
ul

ti-
sc

an

Fr
om

 s
ec

on
d

sc
an

 to
 la

st
,

fir
st

 s
ca

n
w

he
n

nu
m

be
r o

f l
in

es
de

fin
ed

 c
or

re
ct

ly
in

 fr
am

e
he

ad
er

E
C

S
la

st
R

es
ta

rt
 n

ot
 e

na
bl

ed

i=
0

to
 la

st
-1

R
es

ta
rt

 e
na

bl
ed

R
S

T
i(m

od
ul

o
8)

N
on

-h
ie

ra
rc

hi
ca

l m
od

e

Fi
gu

re
 B

.1
6

–
F

lo
w

 o
f c

om
pr

es
se

d
da

ta
 s

yn
ta

x

T
ab

le
s/

m
is

ce
lla

-
ne

ou
s

T
ab

le
s/

m
is

ce
lla

-
ne

ou
s

Figure à l'italienne B.16 [D34], = 21 cm = 821.%

48 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

S
O

F
Lf

P
Y

X
N

f
C

i
i

i
H

i
V

T
q

Lf
P

Y
X

N
f

C
i

i
i

H
i

V
T

q

S
O

S
Ls

N
s

i
C

s
i

T
d

T
ai

S
s

S
e

A
h

A
l

Ld
N

L

D
H

P

D
N

L

E
X

P
Le

E
h

E
v

(=
0)

D
Q

T
Lq

P
q

T
q

Q
Q

1
0

Q
63

V
D

H
T

Lh
T

c
T

h
L

1
L

1
6

1,
1

16
,L

16
V

D
A

C
La

T
c

T
b

C
s

D
R

I
Lr

R
i

Lc
C

O
M

1
C

m

. .
 .

. C
m

Lc
-2

Lp
1

A
p

 .
 .

. .
 A

p
Lp

-2

TI
S

O
09

90
-9

3/
d0

35

A
P

P
n

n

i

Fi
g

ur
e

B
.1

7
–

Fl
ow

 o
f m

ar
ke

r s
eg

m
en

t

i=
1

to
 N

f

i=
1

to
 N

f

(F
ra

m
e

he
ad

er
)

(S
ca

n
he

ad
er

)

(D
H

P
 s

eg
m

en
t)

(D
N

L
se

gm
en

t)

(E
X

P
 s

eg
m

en
t)

(T
ab

le
s/

m
is

ce
lla

ne
ou

s)

i=
1

to
 N

s

M
ul

tip
le

 (n
 ti

m
es

)

M
ul

tip
le

 (n
 ti

m
es

)

M
ul

tip
le

 (n
 ti

m
es

)

Q
ua

nt
iz

at
io

n
ta

bl
e(

s)

H
uf

fm
an

 c
od

in
g

ta
bl

e(
s)

A
rit

hm
et

ic
 c

od
in

g
ta

bl
e(

s)

R
es

ta
rt

in
te

rv
al

C
om

m
en

t

A
pp

lic
at

io
n

A
bb

re
vi

at
ed

 fo
rm

at
 o

r s
om

e
ta

bl
es

 n
ot

 in
 th

is
 p

os
iti

on

D
ef

au
lt

co
nd

iti
on

Figure à l'italienne B.17 [D35], = 21 cm = 821.%

CCITT Rec. T.81 (1992 E) 49

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex C

Huffman table specification

(This annex forms an integral part of this Recommendation | International Standard)

A Huffman coding procedure may be used for entropy coding in any of the coding processes. Coding models for
Huffman encoding are defined in Annexes F, G, and H. In this Annex, the Huffman table specification is defined.

Huffman tables are specified in terms of a 16-byte list (BITS) giving the number of codes for each code length from
1 to 16. This is followed by a list of the 8-bit symbol values (HUFFVAL), each of which is assigned a Huffman code. The
symbol values are placed in the list in order of increasing code length. Code lengths greater than 16 bits are not allowed.
In addition, the codes shall be generated such that the all-1-bits code word of any length is reserved as a prefix for longer
code words.

NOTE – The order of the symbol values within HUFFVAL is determined only by code length. Within a given code length
the ordering of the symbol values is arbitrary.

This annex specifies the procedure by which the Huffman tables (of Huffman code words and their corresponding 8-bit
symbol values) are derived from the two lists (BITS and HUFFVAL) in the interchange format. However, the way in
which these lists are generated is not specified. The lists should be generated in a manner which is consistent with the
rules for Huffman coding, and it shall observe the constraints discussed in the previous paragraph. Annex K contains an
example of a procedure for generating lists of Huffman code lengths and values which are in accord with these rules.

NOTE – There is no requirement in this Specification that any encoder or decoder shall implement the procedures in
precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function
specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it
satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in
Part 2.

C.1 Marker segments for Huffman table specification

The DHT marker identifies the start of Huffman table definitions within the compressed image data. B.2.4.2 specifies the
syntax for Huffman table specification.

C.2 Conversion of Huffman table specifications to tables of codes and code lengths

Conversion of Huffman table specifications to tables of codes and code lengths uses three procedures. The first procedure
(Figure C.1) generates a table of Huffman code sizes. The second procedure (Figure C.2) generates the Huffman codes
from the table built in Figure C.1. The third procedure (Figure C.3) generates the Huffman codes in symbol value order.

Given a list BITS (1 to 16) containing the number of codes of each size, and a list HUFFVAL containing the symbol
values to be associated with those codes as described above, two tables are generated. The HUFFSIZE table contains a list
of code lengths; the HUFFCODE table contains the Huffman codes corresponding to those lengths.

Note that the variable LASTK is set to the index of the last entry in the table.

50 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1000-93/d036

Generate_size_table

K = 0
I = 1
J = 1

No

Yes

HUFFSIZE(K) = I
K = K + 1
J = J + 1

J > BITS(I)
?

I = I + 1
J = 1

No I > 16
?

Yes

HUFFSIZE(K) = 0
LASTK = K

Done

Figure C.1 – Generation of table of Huffman code sizes

Figure C.1 [D36], = 16 cm = 625 %

CCITT Rec. T.81 (1992 E) 51

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

A Huffman code table, HUFFCODE, containing a code for each size in HUFFSIZE is generated by the procedure in
Figure C.2. The notation “SLL CODE 1” in Figure C.2 indicates a shift-left-logical of CODE by one bit position.

TISO1010-93/d037

Generate_code_table

K = 0
CODE = 0
SI = HUFFSIZE(0)

HUFFCODE(K) = CODE
CODE = CODE + 1
K = K + 1

Yes

No

HUFFSIZE(K) = SI
?

Yes

No

HUFFSIZE(K) = 0
?

Done

NoYes

CODE = SLL CODE 1
SI = SI + 1

HUFFSIZE(K) = SI
?

Figure C.2 – Generation of table of Huffman codes

Figure C.2 [D37], = 16.5 cm = 645.%

Two tables, HUFFCODE and HUFFSIZE, have now been generated. The entries in the tables are ordered according to
increasing Huffman code numeric value and length.

The encoding procedure code tables, EHUFCO and EHUFSI, are created by reordering the codes specified by
HUFFCODE and HUFFSIZE according to the symbol values assigned to each code in HUFFVAL.

52 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Figure C.3 illustrates this ordering procedure.

TISO1020-93/d038

Order_codes

K = 0

Yes

No

K < LASTK
?

Done

I = HUFFVAL(K)
EHUFCO(I) = HUFFCODE(K)
EHUFSI(I) = HUFFSIZE(K)
K = K + 1

Figure C.3 – Ordering procedure for encoding procedure code tables

Figure C.3 [D38], = 11.5 cm = 449.%

C.3 Bit ordering within bytes

The root of a Huffman code is placed toward the MSB (most-significant-bit) of the byte, and successive bits are placed in
the direction MSB to LSB (least-significant-bit) of the byte. Remaining bits, if any, go into the next byte following the
same rules.

Integers associated with Huffman codes are appended with the MSB adjacent to the LSB of the preceding Huffman code.

CCITT Rec. T.81 (1992 E) 53

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex D

Arithmetic coding
(This annex forms an integral part of this Recommendation | International Standard)

An adaptive binary arithmetic coding procedure may be used for entropy coding in any of the coding processes except
the baseline sequential process. Coding models for adaptive binary arithmetic coding are defined in Annexes F, G,
and H. In this annex the arithmetic encoding and decoding procedures used in those models are defined.

In K.4 a simple test example is given which should be helpful in determining if a given implementation is correct.

NOTE – There is no requirement in this Specification that any encoder or decoder shall implement the procedures in
precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function
specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it
satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in
Part 2.

D.1 Arithmetic encoding procedures

Four arithmetic encoding procedures are required in a system with arithmetic coding (see Table D.1).

Table D.1 – Procedures for binary arithmetic encoding

Procedure Purpose

Code_0(S) Code a “0” binary decision with context-index S

Code_1(S) Code a “1” binary decision with context-index S

Initenc Initialize the encoder

Flush Terminate entropy-coded segment

The “Code_0(S)”and “Code_1(S)” procedures code the 0-decision and 1-decision respectively; S is a context-index
which identifies a particular conditional probability estimate used in coding the binary decision. The “Initenc” procedure
initializes the arithmetic coding entropy encoder. The “Flush” procedure terminates the entropy-coded segment in
preparation for the marker which follows.

D.1.1 Binary arithmetic encoding principles

The arithmetic coder encodes a series of binary symbols, zeros and ones, each symbol representing one possible result of a
binary decision.

Each “binary decision” provides a choice between two alternatives. The binary decision might be between positive and
negative signs, a magnitude being zero or nonzero, or a particular bit in a sequence of binary digits being zero or one.

The output bit stream (entropy-coded data segment) represents a binary fraction which increases in precision as bytes are
appended by the encoding process.

D.1.1.1 Recursive interval subdivision

Recursive probability interval subdivision is the basis for the binary arithmetic encoding procedures. With each binary
decision the current probability interval is subdivided into two sub-intervals, and the bit stream is modified (if necessary)
so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol which occurred.

In the partitioning of the current probability interval into two sub-intervals, the sub-interval for the less probable symbol
(LPS) and the sub-interval for the more probable symbol (MPS) are ordered such that usually the MPS sub-interval is
closer to zero. Therefore, when the LPS is coded, the MPS sub-interval size is added to the bit stream. This coding
convention requires that symbols be recognized as either MPS or LPS rather than 0 or 1. Consequently, the size of the
LPS sub-interval and the sense of the MPS for each decision must be known in order to encode that decision.

54 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The subdivision of the current probability interval would ideally require a multiplication of the interval by the probability
estimate for the LPS. Because this subdivision is done approximately, it is possible for the LPS sub-interval to be larger
than the MPS sub-interval. When that happens a “conditional exchange” interchanges the assignment of the sub-intervals
such that the MPS is given the larger sub-interval.

Since the encoding procedure involves addition of binary fractions rather than concatenation of integer code words, the
more probable binary decisions can sometimes be coded at a cost of much less than one bit per decision.

D.1.1.2 Conditioning of probability estimates

An adaptive binary arithmetic coder requires a statistical model – a model for selecting conditional probability estimates to
be used in the coding of each binary decision. When a given binary decision probability estimate is dependent on a
particular feature or features (the context) already coded, it is “conditioned” on that feature. The conditioning of
probability estimates on previously coded decisions must be identical in encoder and decoder, and therefore can use only
information known to both.

Each conditional probability estimate required by the statistical model is kept in a separate storage location or “bin”
identified by a unique context-index S. The arithmetic coder is adaptive, which means that the probability estimates at
each context-index are developed and maintained by the arithmetic coding system on the basis of prior coding decisions
for that context-index.

D.1.2 Encoding conventions and approximations

The encoding procedures use fixed precision integer arithmetic and an integer representation of fractional values in which
X’8000’ can be regarded as the decimal value 0.75. The probability interval, A, is kept in the integer
range X’8000’ ≤ A < X’10000’ by doubling it whenever its integer value falls below X’8000’. This is equivalent to
keeping A in the decimal range 0.75 ≤ A < 1.5. This doubling procedure is called renormalization.

The code register, C, contains the trailing bits of the bit stream. C is also doubled each time A is doubled. Periodically
– to keep C from overflowing – a byte of data is removed from the high order bits of the C-register and placed in the
entropy-coded segment.

Carry-over into the entropy-coded segment is limited by delaying X’FF’ output bytes until the carry-over is resolved. Zero
bytes are stuffed after each X’FF’ byte in the entropy-coded segment in order to avoid the accidental generation of
markers in the entropy-coded segment.

Keeping A in the range 0.75 ≤ A < 1.5 allows a simple arithmetic approximation to be used in the probability interval
subdivision. Normally, if the current estimate of the LPS probability for context-index S is Qe(S), precise calculation of
the sub-intervals would require:

Qe(S) × A Probability sub-interval for the LPS;
A – (Qe(S) × A) Probability sub-interval for the MPS.

Because the decimal value of A is of order unity, these can be approximated by

Qe(S) Probability sub-interval for the LPS;
A – Qe(S) Probability sub-interval for the MPS.

Whenever the LPS is coded, the value of A – Qe(S) is added to the code register and the probability interval is reduced to
Qe(S). Whenever the MPS is coded, the code register is left unchanged and the interval is reduced to A – Qe(S). The
precision range required for A is then restored, if necessary, by renormalization of both A and C.

With the procedure described above, the approximations in the probability interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe(S) is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling gives one-third of the probability interval to the MPS and two-
thirds to the LPS. To avoid this size inversion, conditional exchange is used. The probability interval is subdivided using
the simple approximation, but the MPS and LPS sub-interval assignments are exchanged whenever the LPS sub-interval is
larger than the MPS sub-interval. This MPS/LPS conditional exchange can only occur when a renormalization will be
needed.

Each binary decision uses a context. A context is the set of prior coding decisions which determine the context-index, S,
identifying the probability estimate used in coding the decision.

Whenever a renormalization occurs, a probability estimation procedure is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding of LPS and MPS provide, by means of a table-based probability estimation
state machine, a direct estimate of the probabilities.

CCITT Rec. T.81 (1992 E) 55

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

D.1.3 Encoder code register conventions

The flow charts in this annex assume the register structures for the encoder as shown in Table D.2.

Table D.2 – Encoder register connections

MSB LSB

C-register 0000cbbb, bbbbbsss, xxxxxxxx, xxxxxxxx

A-register 00000000, 00000000, aaaaaaaa, aaaaaaaa

The “a” bits are the fractional bits in the A-register (the current probability interval value) and the “x” bits are the
fractional bits in the code register. The “s” bits are optional spacer bits which provide useful constraints on carry-over, and
the “b” bits indicate the bit positions from which the completed bytes of data are removed from the C-register. The “c” bit
is a carry bit. Except at the time of initialization, bit 15 of the A-register is always set and bit 16 is always clear (the LSB
is bit 0).

These register conventions illustrate one possible implementation. However, any register conventions which allow
resolution of carry-over in the encoder and which produce the same entropy-coded segment may be used. The handling of
carry-over and the byte stuffing following X’FF’ will be described in a later part of this annex.

D.1.4 Code_1(S) and Code_0(S) procedures

When a given binary decision is coded, one of two possibilities occurs – either a 1-decision or a 0-decision is coded.
Code_1(S) and Code_0(S) are shown in Figures D.1 and D.2. The Code_1(S) and Code_0(S) procedures use probability
estimates with a context-index S. The context-index S is determined by the statistical model and is, in general, a function
of the previous coding decisions; each value of S identifies a particular conditional probability estimate which is used in
encoding the binary decision.

TISO1800-93/d039

Code_1(S)

No YesMPS(S) = 1
?

Code_LPS(S) Code_MPS(S)

Done

Figure D.1 – Code_1(S) procedure

Figure D.1 [D39], = 9 cm = 352.%

56 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1030-93/d040

Code_0(S)

MSP(S) = 0
?

No Yes

Code_LPS(S) Code_MPS(S)

Done

Figure D.2 – Code_0(S) procedure

Figure D.2 [D40], = 9 cm = 352 %

The context-index S selects a storage location which contains Index(S), an index to the tables which make up the
probability estimation state machine. When coding a binary decision, the symbol being coded is either the more probable
symbol or the less probable symbol. Therefore, additional information is stored at each context-index identifying the sense
of the more probable symbol, MPS(S).

For simplicity, the flow charts in this subclause assume that the context storage for each context-index S has an additional
storage field for Qe(S) containing the value of Qe(Index(S)). If only the value of Index(S) and MPS(S) are stored, all
references to Qe(S) should be replaced by Qe(Index(S)).

The Code_LPS(S) procedure normally consists of the addition of the MPS sub-interval A – Qe(S) to the bit stream and a
scaling of the interval to the sub-interval, Qe(S). It is always followed by the procedures for obtaining a new LPS
probability estimate (Estimate_Qe(S)_after_LPS) and renormalization (Renorm_e) (see Figure D.3).

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPS sub-interval is coded.

The Code_MPS(S) procedure normally reduces the size of the probability interval to the MPS sub-interval. However, if
the LPS sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is
coded instead. Note that conditional exchange cannot occur unless the procedures for obtaining a new LPS probability
estimate (Estimate_Qe(S)_after_MPS) and renormalization (Renorm_e) are required after the coding of the symbol (see
Figure D.4).

CCITT Rec. T.81 (1992 E) 57

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1040-93/d041

Code_LPS(S)

A = A – Qe(S)

Yes

No

A < Qe(S)
?

C = C + A
A = Qe(S)

Estimate_Qe(S)_after_LPS
Renorm_e

Done

Figure D.3 – Code_LPS(S) procedure with conditional MPS/LPS exchange

Figure D.3 [D41], = 13.5 cm = 528.%

58 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1050-93/d042

Code_MPS(S)

A = A – Qe(S)

No

No

Yes

Yes

A < X’8000’
?

A < Qe(S)
?

C = C + A
A = Qe(S)

Estimate_Qe(S)_after_MPS
Renorm_e

Done

Figure D.4 – Code_MPS(S) procedure with conditional MPS/LPS exchange

Figure D.4 [D42], = 16.5 cm = 645.%

D.1.5 Probability estimation in the encoder

D.1.5.1 Probability estimation state machine

The probability estimation state machine consists of a number of sequences of probability estimates. These sequences are
interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the
arithmetic coder renormalization. Some of these sequences are used during the initial “learning” stages of probability
estimation; the rest are used for “steady state” estimation.

Each entry in the probability estimation state machine is assigned an index, and each index has associated with it a
Qe value and two Next_Index values. The Next_Index_MPS gives the index to the new probability estimate after an MPS
renormalization; the Next_Index_LPS gives the index to the new probability estimate after an LPS renormalization. Note
that both the index to the estimation state machine and the sense of the MPS are kept for each context-index S. The sense
of the MPS is changed whenever the entry in the Switch_MPS is one.

The probability estimation state machine is given in Table D.3. Initialization of the arithmetic coder is always with
an MPS sense of zero and a Qe index of zero in Table D.3.

The Qe values listed in Table D.3 are expressed as hexadecimal integers. To approximately convert the 15-bit integer
representation of Qe to a decimal probability, divide the Qe values by (4/3) × (X’8000’).

CCITT Rec. T.81 (1992 E) 59

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table D.3 – Qe values and probability estimation state machine

Index Qe Next_ Index Switch Index Qe Next_ Index Switch

_Value _LPS _MPS _MPS _Value _LPS _MPS _MPS

10 X’5A1D’ 11 11 1 157 X’01A4’ 155 158 0
11 X’2586’ 14 12 0 158 X’0160’ 156 159 0
12 X’1114’ 16 13 0 159 X’0125’ 157 160 0
13 X’080B’ 18 14 0 160 X’00F6’ 158 161 0
14 X’03D8’ 20 15 0 161 X’00CB’ 159 162 0
15 X’01DA’ 23 16 0 162 X’00AB’ 161 163 0
16 X’00E5’ 25 17 0 163 X’008F’ 161 132 0
17 X’006F’ 28 18 0 164 X’5B12’ 165 165 1
18 X’0036’ 30 19 0 165 X’4D04’ 180 166 0
19 X’001A’ 33 10 0 166 X’412C’ 181 167 0
10 X’000D’ 35 11 0 167 X’37D8’ 182 168 0
11 X’0006’ 19 12 0 168 X’2FE8’ 183 169 0
12 X’0003’ 10 13 0 169 X’293C’ 184 170 0
13 X’0001’ 12 13 0 170 X’2379’ 186 171 0
14 X’5A7F’ 15 15 1 171 X’1EDF’ 187 172 0
15 X’3F25’ 36 16 0 172 X’1AA9’ 187 173 0
16 X’2CF2’ 38 17 0 173 X’174E’ 172 174 0
17 X’207C’ 39 18 0 174 X’1424’ 172 175 0
18 X’17B9’ 40 19 0 175 X’119C’ 174 176 0
19 X’1182’ 42 20 0 176 X’0F6B’ 174 177 0
20 X’0CEF’ 43 21 0 177 X’0D51’ 175 178 0
21 X’09A1’ 45 22 0 178 X’0BB6’ 177 179 0
22 X’072F’ 46 23 0 179 X’0A40’ 177 148 0
23 X’055C’ 48 24 0 180 X’5832’ 180 181 1
24 X’0406’ 49 25 0 181 X’4D1C’ 188 182 0
25 X’0303’ 51 26 0 182 X’438E’ 189 183 0
26 X’0240’ 52 27 0 183 X’3BDD’ 190 184 0
27 X’01B1’ 54 28 0 184 X’34EE’ 191 185 0
28 X’0144’ 56 29 0 185 X’2EAE’ 192 186 0
29 X’00F5’ 57 30 0 186 X’299A’ 193 187 0
30 X’00B7’ 59 31 0 187 X’2516’ 186 171 0
31 X’008A’ 60 32 0 188 X’5570’ 188 189 1
32 X’0068’ 62 33 0 189 X’4CA9’ 195 190 0
33 X’004E’ 63 34 0 190 X’44D9’ 196 191 0
34 X’003B’ 32 35 0 191 X’3E22’ 197 192 0
35 X’002C’ 33 19 0 192 X’3824’ 199 193 0
36 X’5AE1’ 37 37 1 193 X’32B4’ 199 194 0
37 X’484C’ 64 38 0 194 X’2E17’ 193 186 0
38 X’3A0D’ 65 39 0 195 X’56A8’ 195 196 1
39 X’2EF1’ 67 40 0 196 X’4F46’ 101 197 0
40 X’261F’ 68 41 0 197 X’47E5’ 102 198 0
41 X’1F33’ 69 42 0 198 X’41CF’ 103 199 0
42 X’19A8’ 70 43 0 199 X’3C3D’ 104 100 0
43 X’1518’ 72 44 0 100 X’375E’ 199 193 0
44 X’1177’ 73 45 0 101 X’5231’ 105 102 0
45 X’0E74’ 74 46 0 102 X’4C0F’ 106 103 0
46 X’0BFB’ 75 47 0 103 X’4639’ 107 104 0
47 X’09F8’ 77 48 0 104 X’415E’ 103 199 0
48 X’0861’ 78 49 0 105 X’5627’ 105 106 1
49 X’0706’ 79 50 0 106 X’50E7’ 108 107 0
50 X’05CD’ 48 51 0 107 X’4B85’ 109 103 0
51 X’04DE’ 50 52 0 108 X’5597’ 110 109 0
52 X’040F’ 50 53 0 109 X’504F’ 111 107 0
53 X’0363’ 51 54 0 110 X’5A10’ 110 111 1
54 X’02D4’ 52 55 0 111 X’5522’ 112 109 0
55 X’025C’ 53 56 0 112 X’59EB’ 112 111 1
56 X’01F8’ 54 57 0

60 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

D.1.5.2 Renormalization driven estimation

The change in state in Table D.3 occurs only when the arithmetic coder interval register is renormalized. This must always
be done after coding an LPS, and whenever the probability interval register is less than X'8000' (0.75 in decimal notation)
after coding an MPS.

When the LPS renormalization is required, Next_Index_LPS gives the new index for the LPS probability estimate. When
the MPS renormalization is required, Next_Index_MPS gives the new index for the LPS probability estimate. If
Switch_MPS is 1 for the old index, the MPS symbol sense must be inverted after an LPS.

D.1.5.3 Estimation following renormalization after MPS

The procedure for estimating the probability on the MPS renormalization path is given in Figure D.5. Index(S) is part of
the information stored for context-index S. The new value of Index(S) is obtained from Table D.3 from the column labeled
Next_Index_MPS, as that is the next index after an MPS renormalization. This next index is stored as the new value of
Index(S) in the context storage at context-index S, and the value of Qe at this new Index(S) becomes the new Qe(S).
MPS(S) does not change.

TISO1060-93/d043

Figure D.5 – Probability estimation on MPS renormalization path

Estimate_Qe(S)_
 after_MPS

I = Index(S)
I = Next_Index_MPS(I)
Index(S) = I
Qe(S) = Qe_Value(I)

Done

Figure D.5 [D43], = 7 cm = 273.%

CCITT Rec. T.81 (1992 E) 61

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

D.1.5.4 Estimation following renormalization after LPS

The procedure for estimating the probability on the LPS renormalization path is shown in Figure D.6. The procedure is
similar to that of Figure D.5 except that when Switch_MPS(I) is 1, the sense of MPS(S) must be inverted.

TISO1070-93/d044

Figure D.6 – Probability estimation on LPS renormalization path

Estimate_Qe(S)_
 after_LPS

I = Index(S)

No YesSwitch_MPS(I) = 1
?

I = Next_Index_LPS(I)
Index(S) = I
Qe(S) = Qe_Value(I)

MPS(S) = 1 – MPS(S)

Done

Figure D.6 [D44], = 14 cm = 547.%

D.1.6 Renormalization in the encoder

The Renorm_e procedure for the encoder renormalization is shown in Figure D.7. Both the probability interval register A
and the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT; when CT is zero,
a byte of compressed data is removed from C by the procedure Byte_out and CT is reset to 8. Renormalization continues
until A is no longer less than X’8000’.

62 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1080-93/d045

Renorm_e

A = SLL A 1
C = SLL C 1
CT = CT – 1

No

Yes

Done

CT = 8

Byte_out

No

Yes

A < X’8000’
?

CT = 0
?

Figure D.7 – Encoder renormalization procedure

Figure D.7 [D45], = 16.5 cm = 645.%

The Byte_out procedure used in Renorm_e is shown in Figure D.8. This procedure uses byte-stuffing procedures which
prevent accidental generation of markers by the arithmetic encoding procedures. It also includes an example of a
procedure for resolving carry-over. For simplicity of exposition, the buffer holding the entropy-coded segment is assumed
to be large enough to contain the entire segment.

In Figure D.8 BP is the entropy-coded segment pointer and B is the compressed data byte pointed to by BP. T in Byte_out
is a temporary variable which is used to hold the output byte and carry bit. ST is the stack counter which is used to count
X’FF’ output bytes until any carry-over through the X’FF’ sequence has been resolved. The value of ST rarely exceeds 3.
However, since the upper limit for the value of ST is bounded only by the total entropy-coded segment size, a precision of
32 bits is recommended for ST.

Since large values of ST represent a latent output of compressed data, the following procedure may be needed in high
speed synchronous encoding systems for handling the burst of output data which occurs when the carry is resolved.

CCITT Rec. T.81 (1992 E) 63

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1090-93/d046

Byte_out

T = SRL C 19

Yes

No

B = B + 1

Stuff_0

ST = ST + 1

Yes No

Output_stacked_
 zeros

BP = BP + 1
B = T

BP = BP + 1
B = T

C = C AND X’7FFFF’

Done

Output_stacked_
 X’FF’s

T > X’FF’
?

T = X’FF’
?

Figure D.8 – Byte_out procedure for encoder

Figure D.8 [D46], = 18 cm = 704.%

When the stack count reaches an upper bound determined by output channel capacity, the stack is emptied and the stacked
X’FF’ bytes (and stuffed zero bytes) are added to the compressed data before the carry-over is resolved. If a carry-over
then occurs, the carry is added to the final stuffed zero, thereby converting the final X’FF00’ sequence to the X’FF01’
temporary private marker. The entropy-coded segment must then be post-processed to resolve the carry-over and remove
the temporary marker code. For any reasonable bound on ST this post processing is very unlikely.

Referring to Figure D.8, the shift of the code register by 19 bits aligns the output bits with the low order bits of T. The
first test then determines if a carry-over has occurred. If so, the carry must be added to the previous output byte before
advancing the segment pointer BP. The Stuff_0 procedure stuffs a zero byte whenever the addition of the carry to the data
already in the entropy-coded segments creates a X’FF’ byte. Any stacked output bytes – converted to zeros by the carry-
over – are then placed in the entropy-coded segment. Note that when the output byte is later transferred from T to the
entropy-coded segment (to byte B), the carry bit is ignored if it is set.

64 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

If a carry has not occurred, the output byte is tested to see if it is X’FF’. If so, the stack count ST is incremented, as the
output must be delayed until the carry-over is resolved. If not, the carry-over has been resolved, and any stacked X’FF’
bytes must then be placed in the entropy-coded segment. Note that a zero byte is stuffed following each X’FF’.

The procedures used by Byte_out are defined in Figures D.9 through D.11.

TISO1810-93/d047

Yes

No

Done
BP = BP + 1
B = 0
ST = ST – 1

Output_stacked_
 zeros

ST = 0
?

Figure D.9 – Output_stacked_zeros procedure for encoder

Figure D.9 [D47], = 8.5 cm = 332.%

TISO1100-93/d048

Output_stacked_
 X’FF’s

Yes

No

Done
BP = BP + 1
B = X’FF’
BP = BP + 1
B = 0
ST = ST – 1

ST = 0
?

Figure D.10 – Output_stacked_X’FF’s procedure for encoder

Figure D.10 [D48], = 8.5 cm = 332.%

CCITT Rec. T.81 (1992 E) 65

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1110-93/d049

Stuff_0

No

Yes

Done

BP = BP + 1
B = 0

B = X’FF’
?

Figure D.11 – Stuff_0 procedure for encoder

Figure D.11 [D49], = 10 cm = 391.%

D.1.7 Initialization of the encoder

The Initenc procedure is used to start the arithmetic coder. The basic steps are shown in Figure D.12.

TISO1120-93/d050

Initenc

Done

Initialize statistics areas
ST = 0
A = X’10000’
A = (see Note below)
C = 0
CT = 11
BP = BPST – 1

Figure D.12 – Initialization of the encoder

Figure D.12 [D50], = 9 cm = 352.%

66 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The probability estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a
Qe index of zero as defined by Table D.3. The stack count (ST) is cleared, the code register (C) is cleared, and the interval
register is set to X’10000’. The counter (CT) is set to 11, reflecting the fact that when A is initialized to X’10000’ three
spacer bits plus eight output bits in C must be filled before the first byte is removed. Note that BP is initialized to point to
the byte before the start of the entropy-coded segment (which is at BPST). Note also that the statistics areas are initialized
for all values of context-index S to MPS(S) = 0 and Index(S) = 0.

NOTE – Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized to
zero.

D.1.8 Termination of encoding

The Flush procedure is used to terminate the arithmetic encoding procedures and prepare the entropy-coded segment for
the addition of the X’FF’ prefix of the marker which follows the arithmetically coded data. Figure D.13 shows this flush
procedure. The first step in the procedure is to set as many low order bits of the code register to zero as possible without
pointing outside of the final interval. Then, the output byte is aligned by shifting it left by CT bits; Byte_out then removes
it from C. C is then shifted left by 8 bits to align the second output byte and Byte_out is used a second time. The
remaining low order bits in C are guaranteed to be zero, and these trailing zero bits shall not be written to the entropy-
coded segment.

TISO1130-93/d051

Flush

Done

Byte_out

C = SLL C 8

C = SLL C CT

Clear_final_bits

Byte_out
Discard_final_zeros

Figure D.13 – Flush procedure

Figure D.13 [D51], = 15.5 cm = 606.%

CCITT Rec. T.81 (1992 E) 67

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Any trailing zero bytes already written to the entropy-coded segment and not preceded by a X’FF’ may, optionally, be
discarded. This is done in the Discard_final_zeros procedure. Stuffed zero bytes shall not be discarded.

Entropy coded segments are always followed by a marker. For this reason, the final zero bits needed to complete decoding
shall not be included in the entropy coded segment. Instead, when the decoder encounters a marker, zero bits shall be
supplied to the decoding procedure until decoding is complete. This convention guarantees that when a DNL marker is
used, the decoder will intercept it in time to correctly terminate the decoding procedure.

TISO1140-93/d052

Clear_final_bits

No

Yes

C = T

T = T + X’8000’

Done

T = C + A – 1
T = T AND
T = X’FFFF0000’

T < C
?

Figure D.14 – Clear_final_bits procedure in Flush

Figure D.14 [D52], = 14 cm = 547.%

68 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1150-93/d053

BP = BP – 1

BP = BP + 1

Done

Discard_final_zeros

Yes

Yes

Yes

No

No

No

BP < BPST
?

B = 0
?

B = X’FF’
?

Figure D.15 – Discard_final_zeros procedure in Flush

Figure D.15 [D53], = 12.5cm = 489.%

D.2 Arithmetic decoding procedures

Two arithmetic decoding procedures are used for arithmetic decoding (see Table D.4).

The “Decode(S)” procedure decodes the binary decision for a given context-index S and returns a value of either 0 or 1. It
is the inverse of the “Code_0(S)” and “Code_1(S)” procedures described in D.1. “Initdec” initializes the arithmetic
coding entropy decoder.

Table D.4 – Procedures for binary arithmetic decoding

Procedure Purpose

Decode(S) Decode a binary decision with context-index S

Initdec Initialize the decoder

CCITT Rec. T.81 (1992 E) 69

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

D.2.1 Binary arithmetic decoding principles

The probability interval subdivision and sub-interval ordering defined for the arithmetic encoding procedures also apply to
the arithmetic decoding procedures.

Since the bit stream always points within the current probability interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the bit stream. This is done recursively, using the same probability
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts from the bit stream
any interval the encoder added to the bit stream. Therefore, the code register in the decoder is a pointer into the current
probability interval relative to the base of the interval.

If the size of the sub-interval allocated to the LPS is larger than the sub-interval allocated to the MPS, the encoder invokes
the conditional exchange procedure. When the interval sizes are inverted in the decoder, the sense of the symbol decoded
must be inverted.

D.2.2 Decoding conventions and approximations

The approximations and integer arithmetic defined for the probability interval subdivision in the encoder must also be
used in the decoder. However, where the encoder would have added to the code register, the decoder subtracts from the
code register.

D.2.3 Decoder code register conventions

The flow charts given in this section assume the register structures for the decoder as shown in Table D.5:

Table D.5 – Decoder register conventions

MSB LSB

Cx register xxxxxxxx, xxxxxxxx

C-low bbbbbbbb, 00000000

A-register aaaaaaaa, aaaaaaaa

Cx and C-low can be regarded as one 32-bit C-register, in that renormalization of C shifts a bit of new data from bit 15 of
C-low to bit 0 of Cx. However, the decoding comparisons use Cx alone. New data are inserted into the “b” bits of C-low
one byte at a time.

NOTE – The comparisons shown in the various procedures use arithmetic comparisons, and therefore assume precisions
greater than 16 bits for the variables. Unsigned (logical) comparisons should be used in 16-bit precision implementations.

D.2.4 The decode procedure

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the code register that the encoder added. The amount left in the code register is the offset from the base of the current
probability interval to the sub-interval allocated to the binary decisions not yet decoded. In the first test in the decode
procedure shown in Figure D.16 the code register is compared to the size of the MPS sub-interval. Unless a conditional
exchange is needed, this test determines whether the MPS or LPS for context-index S is decoded. Note that the LPS for
context-index S is given by 1 – MPS(S).

70 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

When a renormalization is needed, the MPS/LPS conditional exchange may also be needed. For the LPS path, the
conditional exchange procedure is shown in Figure D.17. Note that the probability estimation in the decoder is identical
to the probability estimation in the encoder (Figures D.5 and D.6).

TISO1160-93/d054

Decode(S)

A = A – Qe(S)

A < X’8000’

D = MPS(S)

Return D

Yes No

Yes

No

Di=iCond_MPS_exchange(S)
Renorm_d

D = Cond_LPS_exchange(S)
Renorm_d

Cx < A
?

Figure D.16 – Decode(S) procedure

Figure D.16 [D54], = 13.5 cm = 528.%

For the MPS path of the decoder the conditional exchange procedure is given in Figure D.18.

CCITT Rec. T.81 (1992 E) 71

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1170-93/d055

Yes No

Return D

D = MPS(S)
Cx = Cx – A
A = Qe(S)

D = 1 – MPS(S)
Cx = Cx – A
A = Qe(S)

Estimate_Qe(S)_
 after_MPS

Estimate_Qe(S)_
 after_LPS

Figure D.17 – Decoder LPS path conditional exchange procedure

A < Qe(S)
?

Cond_LPS_
exchange(S)

Figure D.17 [D55], = 12 cm = 469.%

TISO1180-93/d056

Yes No

D = 1 – MPS(S) D = MPS(S)

Return D

Estimate_Qe(S)_
 after_LPS

Estimate_Qe(S)_
 after_MPS

Cond_MPS_
 exchange(S)

A < Qe(S)
?

Figure D.18 – Decoder MPS path conditional exchange procedure

Figure D.18 [D56], = 12 cm = 469.%

72 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

D.2.5 Probability estimation in the decoder

The procedures defined for obtaining a new LPS probability estimate in the encoder are also used in the decoder.

D.2.6 Renormalization in the decoder

The Renorm_d procedure for the decoder renormalization is shown in Figure D.19. CT is a counter which keeps track of
the number of compressed bits in the C-low section of the C-register. When CT is zero, a new byte is inserted into C-low
by the procedure Byte_in and CT is reset to 8.

Both the probability interval register A and the code register C are shifted, one bit at a time, until A is no longer less than
X’8000’.

TISO1190-93/d057

Renorm_d

Yes

No

Byte_in

CT = 8

Done

Yes

No

A = SLL A 1
C = SLL C 1
CT = CT – 1

CT = 0
?

A < X’8000’
?

Figure D.19 – Decoder renormalization procedure

Figure D.19 [D57], = 16.5 cm = 645.%

CCITT Rec. T.81 (1992 E) 73

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The Byte_in procedure used in Renorm_d is shown in Figure D.20. This procedure fetches one byte of data,
compensating for the stuffed zero byte which follows any X’FF’ byte. It also detects the marker which must follow the
entropy-coded segment. The C-register in this procedure is the concatenation of the Cx and C-low registers. For simplicity
of exposition, the buffer holding the entropy-coded segment is assumed to be large enough to contain the entire segment.

B is the byte pointed to by the entropy-coded segment pointer BP. BP is first incremented. If the new value of B is not a
X’FF’, it is inserted into the high order 8 bits of C-low.

TISO1200-93/d058

Byte_in

BP = BP + 1

Yes No

Unstuff_0 C = C + SLL B 8

Done

B = X’FF’
?

Figure D.20 – Byte_in procedure for decoder

Figure D.20 [D58], = 12 cm = 469.%

74 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The Unstuff_0 procedure is shown in Figure D.21. If the new value of B is X’FF’, BP is incremented to point to the next
byte and this next B is tested to see if it is zero. If so, B contains a stuffed byte which must be skipped. The zero B is
ignored, and the X’FF’ B value which preceded it is inserted in the C-register.

If the value of B after a X’FF’ byte is not zero, then a marker has been detected. The marker is interpreted as required and
the entropy-coded segment pointer is adjusted (“Adjust BP” in Figure D.21) so that 0-bytes will be fed to the decoder
until decoding is complete. One way of accomplishing this is to point BP to the byte preceding the marker which follows
the entropy-coded segment.

TISO1210-93/d059

Unstuff_0

BP = BP + 1

Yes No

C = C OR X’FF00’

Done

Interpret_marker
Adjust BP

B = 0
?

Figure D.21 – Unstuff_0 procedure for decoder

Figure D.21 [D59], = 12 cm = 469.%

CCITT Rec. T.81 (1992 E) 75

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

D.2.7 Initialization of the decoder

The Initdec procedure is used to start the arithmetic decoder. The basic steps are shown in Figure D.22.

TISO1220-93/d060

Initdec

Byte_in

C = SLL C 8

Done

Byte_in

Initialize statistics areas
BP = BPST – 1
A = X’0000’
A = (see Note below)
C = 0

C = SLL C 8
CT = 0

Figure D.22 – Initialization of the decoder

Figure D.22 [D60], = 16 cm = 625.%

The estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a Qe index of
zero as defined by Table D.3. BP, the pointer to the entropy-coded segment, is then initialized to point to the byte before
the start of the entropy-coded segment at BPST, and the interval register is set to the same starting value as in the encoder.
The first byte of compressed data is fetched and shifted into Cx. The second byte is then fetched and shifted into Cx. The
count is set to zero, so that a new byte of data will be fetched by Renorm_d.

NOTE – Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized to
zero.

D.3 Bit ordering within bytes

The arithmetically encoded entropy-coded segment is an integer of variable length. Therefore, the ordering of bytes and
the bit ordering within bytes is the same as for parameters (see B.1.1.1).

76 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex E

Encoder and decoder control procedures

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the encoder and decoder control procedures for the sequential, progressive, and lossless modes of
operation.

The encoding and decoding control procedures for the hierarchical processes are specified in Annex J.

NOTES

1 There is no requirement in this Specification that any encoder or decoder shall implement the procedures in precisely
the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function specified
in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it satisfy the
requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in Part 2.

2 Implementation-specific setup steps are not indicated in this annex and may be necessary.

E.1 Encoder control procedures

E.1.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shown in Figure E.1.

TISO1230-93/d061

Encode_image

Append SOI marker

Encode_frame

Append EOI marker

Done

Figure E.1 – Control procedure for encoding an image

Figure E.1 [D61], = 11.5 cm = 449.%

CCITT Rec. T.81 (1992 E) 77

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

E.1.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed data, optional X’FF’ fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scans in the frame. The frame header is first appended,
and then the scans are coded. Table specifications and other marker segments may precede the SOFn marker, as indicated
by [tables/miscellaneous] in Figure E.2.

Figure E.2 shows the encoding process frame control procedure.

TISO1240-93/d062

Encode_frame

Encode_scan

Yes

No

Done

[Append DNL
segment]

Yes

No

[Append tables/miscellaneous]
Append SOF marker and rest
 of frame header

First scan
?

More scans
?

Figure E.2 – Control procedure for encoding a frame

n

Figure E.2 [D62], = 14 cm = 547.%

E.1.3 Control procedure for encoding a scan

A scan consists of a single pass through the data of each component in the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one component is coded in the scan, the data are interleaved. If
restart is enabled, the data are segmented into restart intervals. If restart is enabled, a RSTm marker is placed in the coded
data between restart intervals. If restart is disabled, the control procedure is the same, except that the entire scan contains a
single restart interval. The compressed image data generated by a scan is always followed by a marker, either the EOI
marker or the marker of the next marker segment.

78 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Figure E.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the number of restart intervals which make up the scan. “m” is the restart interval modulo counter needed for the
RSTm marker. The modulo arithmetic for this counter is shown after the “Append RSTm marker” procedure.

TISO1250-93/d063

Encode_scan

Done

Yes

No

Encode_restart_
 interval

[Append tables/miscellaneous]
Append SOS marker and rest of

scan header
m = 0

Append RST marker
m = (m + 1) AND 7

More intervals
?

Figure E.3 – Control procedure for encoding a scan

m

Figure E.3 [D63], = 13 cm = 508.%

CCITT Rec. T.81 (1992 E) 79

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

E.1.4 Control procedure for encoding a restart interval

Figure E.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU) in the restart interval or when it has completed
the image scan.

TISO1260-93/d064

Reset_encoder

Encode_MCU

Prepare_for_marker

Done

Yes

No

Encode_restart_
interval

More MCU
?

Figure E.4 – Control procedure for encoding a restart interval

Figure E.4 [D64], = 12 cm = 469.%

The “Reset_encoder” procedure consists at least of the following:

a) if arithmetic coding is used, initialize the arithmetic encoder using the “Initenc” procedure described
in D.1.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.1.1.5.1);

c) for lossless processes, reset the prediction to a default value for all components in the scan (see H.1.1);

d) do all other implementation-dependent setups that may be necessary.

The procedure “Prepare_for_marker” terminates the entropy-coded segment by:

a) padding a Huffman entropy-coded segment with 1-bits to complete the final byte (and if needed stuffing a
zero byte) (see F.1.2.3); or

b) invoking the procedure “Flush” (see D.1.8) to terminate an arithmetic entropy-coded segment.

NOTE – The number of minimum coded units (MCU) in the final restart interval must be adjusted to match the number
of MCU in the scan. The number of MCU is calculated from the frame and scan parameters. (See Annex B.)

80 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

E.1.5 Control procedure for encoding a minimum coded unit (MCU)

The minimum coded unit is defined in A.2. Within a given MCU the data units are coded in the order in which they occur
in the MCU. The control procedure for encoding a MCU is shown in Figure E.5.

TISO1270-93/d065

Encode_MCU

N = 0

Done

Yes

No

N = N + 1
Encode data unit

N = Nb
?

Figure E.5 – Control procedure for encoding a minimum coded unit (MCU)

Figure E.5 [D65], = 12 cm = 469.%

In Figure E.5, Nb refers to the number of data units in the MCU. The order in which data units occur in the MCU is
defined in A.2. The data unit is an 8 × 8 block for DCT-based processes, and a single sample for lossless processes.

The procedures for encoding a data unit are specified in Annexes F, G, and H.

E.2 Decoder control procedures

E.2.1 Control procedure for decoding compressed image data

Figure E.6 shows the decoding process control for compressed image data.

Decoding control centers around identification of various markers. The first marker must be the SOI (Start Of Image)
marker. The “Decoder_setup” procedure resets the restart interval (Ri = 0) and, if the decoder has arithmetic decoding
capabilities, sets the conditioning tables for the arithmetic coding to their default values. (See F.1.4.4.1.4 and F.1.4.4.2.1.)
The next marker is normally a SOFn (Start Of Frame) marker; if this is not found, one of the marker segments listed in
Table E.1 has been received.

CCITT Rec. T.81 (1992 E) 81

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1280-93/d066

Decode_image

No

Yes

ErrorDecoder_setup

Interpret markers

Decode_frame

Done

No

Yes

SOI marker
?

SOF marker
?

n

Figure E.6 – Control procedure for decoding compressed image data

Figure E.6 [D66], = 14 cm = 547 %

Table E.1 – Markers recognized by “Interpret markers”

Marker Purpose

DHT Define Huffman Tables

DAC Define Arithmetic Conditioning

DQT Define Quantization Tables

DRI Define Restart Interval

APPn Application defined marker

COM Comment

Note that optional X’FF’ fill bytes which may precede any marker shall be discarded before determining which marker is
present.

82 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The additional logic to interpret these various markers is contained in the box labeled “Interpret markers”. DHT markers
shall be interpreted by processes using Huffman coding. DAC markers shall be interpreted by processes using arithmetic
coding. DQT markers shall be interpreted by DCT-based decoders. DRI markers shall be interpreted by all decoders.
APPn and COM markers shall be interpreted only to the extent that they do not interfere with the decoding.

By definition, the procedures in “Interpret markers” leave the system at the next marker. Note that if the expected SOI
marker is missing at the start of the compressed image data, an error condition has occurred. The techniques for detecting
and managing error conditions can be as elaborate or as simple as desired.

E.2.2 Control procedure for decoding a frame

Figure E.7 shows the control procedure for the decoding of a frame.

TISO1290-93/d067

Decode_frame

Interpret markers

Decode_scan

Done

Yes

No

Yes

No

Interpret frame header

SOS marker
?

EOI marker
?

Figure E.7 – Control procedure for decoding a frame

Figure E.7 [D67], = 13.5 cm = 528.%

The loop is terminated if the EOI marker is found at the end of the scan.

The markers recognized by “Interpret markers” are listed in Table E.1. Subclause E.2.1 describes the extent to which the
various markers shall be interpreted.

CCITT Rec. T.81 (1992 E) 83

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

E.2.3 Control procedure for decoding a scan

Figure E.8 shows the decoding of a scan.

The loop is terminated when the expected number of restart intervals has been decoded.

TISO1300-93/d068

Decode_scan

Done

Yes

No

Interpret scan header
m = 0

Decode_restart_
 interval

More intervals
?

Figure E.8 – Control procedure for decoding a scan

Figure E.8 [D68], = 11.5cm = 449.%

84 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

E.2.4 Control procedure for decoding a restart interval

The procedure for decoding a restart interval is shown in Figure E.9. The “Reset_decoder” procedure consists at least of
the following:

a) if arithmetic coding is used, initialize the arithmetic decoder using the “Initdec” procedure described
in D.2.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.2.1.3.1);

c) for lossless process, reset the prediction to a default value for all components in the scan (see H.2.1);

d) do all other implementation-dependent setups that may be necessary.

TISO1310-93/d069

Reset_decoder

Decode_MCU

Find marker

Done

Yes

No

Decode_restart_
interval

More MCU
?

Figure E.9 – Control procedure for decoding a restart interval

Figure E.9 [D69], = 12 cm = 469.%

At the end of the restart interval, the next marker is located. If a problem is detected in locating this marker, error handling
procedures may be invoked. While such procedures are optional, the decoder shall be able to correctly recognize restart
markers in the compressed data and reset the decoder when they are encountered. The decoder shall also be able to
recognize the DNL marker, set the number of lines defined in the DNL segment, and end the “Decode_restart_interval”
procedure.

NOTE – The final restart interval may be smaller than the size specified by the DRI marker segment, as it includes only the
number of MCUs remaining in the scan.

CCITT Rec. T.81 (1992 E) 85

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

E.2.5 Control procedure for decoding a minimum coded unit (MCU)

The procedure for decoding a minimum coded unit (MCU) is shown in Figure E.10.

In Figure E.10 Nb is the number of data units in a MCU.

The procedures for decoding a data unit are specified in Annexes F, G, and H.

TISO1320-93/d070

Decode_MCU

N = 0

Done

Yes

No

N = N + 1
Decode_data_unit

N = Nb
?

Figure E.10 – Control procedure for decoding a minimum coded unit (MCU)

Figure E.106 [D70], = 11.5 cm = 449.%

86 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex F

Sequential DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

This annex provides a functional specification of the following coding processes for the sequential DCT-based mode of
operation:

1) baseline sequential;

2) extended sequential, Huffman coding, 8-bit sample precision;

3) extended sequential, arithmetic coding, 8-bit sample precision;

4) extended sequential, Huffman coding, 12-bit sample precision;

5) extended sequential, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in F.1, and the decoding process is specified in F.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

F.1 Sequential DCT-based encoding processes

F.1.1 Sequential DCT-based control procedures and coding models

F.1.1.1 Control procedures for sequential DCT-based encoders

The control procedures for encoding an image and its constituent parts – the frame, scan, restart interval and
MCU – are given in Figures E.1 to E.5. The procedure for encoding a MCU (see Figure E.5) repetitively calls the
procedure for encoding a data unit. For DCT-based encoders the data unit is an 8 × 8 block of samples.

F.1.1.2 Procedure for encoding an 8 ×× 8 block data unit

For the sequential DCT-based processes encoding an 8 × 8 block data unit consists of the following procedures:

a) level shift, calculate forward 8 × 8 DCT and quantize the resulting coefficients using table destination
specified in frame header;

b) encode DC coefficient for 8 × 8 block using DC table destination specified in scan header;

c) encode AC coefficients for 8 × 8 block using AC table destination specified in scan header.

F.1.1.3 Level shift and forward DCT (FDCT)

The mathematical definition of the FDCT is given in A.3.3.

Prior to computing the FDCT the input data are level shifted to a signed two’s complement representation as described in
A.3.1. For 8-bit input precision the level shift is achieved by subtracting 128. For 12-bit input precision the level shift is
achieved by subtracting 2048.

F.1.1.4 Quantization of the FDCT

The uniform quantization procedure described in Annex A is used to quantize the DCT coefficients. One of four
quantization tables may be used by the encoder. No default quantization tables are specified in this Specification.
However, some typical quantization tables are given in Annex K.

The quantized DCT coefficient values are signed, two’s complement integers with 11-bit precision for 8-bit input
precision and 15-bit precision for 12-bit input precision.

CCITT Rec. T.81 (1992 E) 87

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.1.1.5 Encoding models for the sequential DCT procedures

The two dimensional array of quantized DCT coefficients is rearranged in a zig-zag sequence order defined in A.3.6. The
zig-zag order coefficients are denoted ZZ (0) through ZZ(63) with:

ZZ(0) = Sq
00

,ZZ(1) = Sq
01

,ZZ(2) = Sq
10,•,•,•,ZZ(63) = Sq

77

Sqvu are defined in Figure A.6.

Two coding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)..ZZ(63).
The coefficients are encoded in the order in which they occur in zig-zag sequence order, starting with the DC coefficient.
The coefficients are represented as two’s complement integers.

F.1.1.5.1 Encoding model for DC coefficients

The DC coefficients are coded differentially, using a one-dimensional predictor, PRED, which is the quantized DC value
from the most recently coded 8 × 8 block from the same component. The difference, DIFF, is obtained from

DIFF = ZZ(0) – PRED

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient prediction
is initialized to 0. (Recall that the input data have been level shifted to two’s complement representation.)

F.1.1.5.2 Encoding model for AC coefficients

Since many coefficients are zero, runs of zeros are identified and coded efficiently. In addition, if the remaining
coefficients in the zig-zag sequence order are all zero, this is coded explicitly as an end-of-block (EOB).

F.1.2 Baseline Huffman encoding procedures

The baseline encoding procedure is for 8-bit sample precision. The encoder may employ up to two DC and two AC
Huffman tables within one scan.

F.1.2.1 Huffman encoding of DC coefficients

F.1.2.1.1 Structure of DC code table

The DC code table consists of a set of Huffman codes (maximum length 16 bits) and appended additional bits (in most
cases) which can code any possible value of DIFF, the difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way that no code consists entirely of 1-bits
(X’FF’ prefix marker code avoided).

The two’s complement difference magnitudes are grouped into 12 categories, SSSS, and a Huffman code is created for
each of the 12 difference magnitude categories (see Table F.1).

For each category, except SSSS = 0, an additional bits field is appended to the code word to uniquely identify which
difference in that category actually occurred. The number of extra bits is given by SSSS; the extra bits are appended to the
LSB of the preceding Huffman code, most significant bit first. When DIFF is positive, the SSSS low order bits of DIFF
are appended. When DIFF is negative, the SSSS low order bits of (DIFF – 1) are appended. Note that the most significant
bit of the appended bit sequence is 0 for negative differences and 1 for positive differences.

F.1.2.1.2 Defining Huffman tables for the DC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C. No more than two Huffman tables may be defined for coding of DC coefficients.
Two examples of Huffman tables for coding of DC coefficients are provided in Annex K.

88 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table F.1 – Difference magnitude categories for DC coding

SSSS DIFF values

10 0

11 –1,1

12 –3,–2,2,3

13 –7..–4,4..7

14 –15..–8,8..15

15 –31..–16,16..31

16 –63..–32,32..63

17 –127..–64,64..127

18 –255..–128,128..255

19 –511..–256,256..511

10 –1 023..–512,512..1 023

11 –2 047..–1 024,1 024..2 047

F.1.2.1.3 Huffman encoding procedures for DC coefficients

The encoding procedure is defined in terms of a set of extended tables, XHUFCO and XHUFSI, which contain the
complete set of Huffman codes and sizes for all possible difference values. For full 12-bit precision the tables are relatively
large. For the baseline system, however, the precision of the differences may be small enough to make this description
practical.

XHUFCO and XHUFSI are generated from the encoder tables EHUFCO and EHUFSI (see Annex C) by appending to the
Huffman codes for each difference category the additional bits that completely define the difference. By definition,
XHUFCO and XHUFSI have entries for each possible difference value. XHUFCO contains the concatenated bit pattern of
the Huffman code and the additional bits field; XHUFSI contains the total length in bits of this concatenated bit pattern.
Both are indexed by DIFF, the difference between the DC coefficient and the prediction.

The Huffman encoding procedure for the DC difference, DIFF, is:

SIZE = XHUFSI(DIFF)

CODE = XHUFCO(DIFF)

code SIZE bits of CODE

where DC is the quantized DC coefficient value and PRED is the predicted quantized DC value. The Huffman code
(CODE) (including any additional bits) is obtained from XHUFCO and SIZE (length of the code including additional
bits) is obtained from XHUFSI, using DIFF as the index to the two tables.

F.1.2.2 Huffman encoding of AC coefficients

F.1.2.2.1 Structure of AC code table

Each non-zero AC coefficient in ZZ is described by a composite 8-bit value, RS, of the form

RS = binary ’RRRRSSSS’

CCITT Rec. T.81 (1992 E) 89

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The 4 least significant bits, ’SSSS’, define a category for the amplitude of the next non-zero coefficient in ZZ, and the 4
most significant bits, ’RRRR’, give the position of the coefficient in ZZ relative to the previous non-zero coefficient (i.e.
the run-length of zero coefficients between non-zero coefficients). Since the run length of zero coefficients may exceed
15, the value ’RRRRSSSS’ = X’F0’ is defined to represent a run length of 15 zero coefficients followed by a coefficient
of zero amplitude. (This can be interpreted as a run length of 16 zero coefficients.) In addition, a special value
’RRRRSSSS’ = ’00000000’ is used to code the end-of-block (EOB), when all remaining coefficients in the block are
zero.

The general structure of the code table is illustrated in Figure F.1. The entries marked “N/A” are undefined for the
baseline procedure.

0 1 2 109

0
.
.
.

15

EOB
N/A
N/A
N/A
ZRL

. . .

RRRR

SSSS

TISO1330-93/d071

COMPOSITE VALUES

Figure F.1 – Two-dimensional value array for Huffman coding

Figure F.1 [D71] =4 cm = 156 %

The magnitude ranges assigned to each value of SSSS are defined in Table F.2.

Table F.2 – Categories assigned to coefficient values

SSSS AC coefficients

11 –1,1

12 –3,–2,2,3

13 –7..–4,4..7

14 –15..–8,8..15

15 –31..–16,16..31

16 –63..–32,32..63

17 –127..–64,64..127

18 –255..–128,128..255

19 –511..–256,256..511

10 –1 023..–512,512..1 023

The composite value, RRRRSSSS, is Huffman coded and each Huffman code is followed by additional bits which specify
the sign and exact amplitude of the coefficient.

The AC code table consists of one Huffman code (maximum length 16 bits, not including additional bits) for each
possible composite value. The Huffman codes for the 8-bit composite values are generated in such a way that no code
consists entirely of 1-bits.

90 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The format for the additional bits is the same as in the coding of the DC coefficients. The value of SSSS gives the number
of additional bits required to specify the sign and precise amplitude of the coefficient. The additional bits are either the
low-order SSSS bits of ZZ(K) when ZZ(K) is positive or the low-order SSSS bits of ZZ(K) – 1 when ZZ(K) is negative.
ZZ(K) is the Kth coefficient in the zig-zag sequence of coefficients being coded.

F.1.2.2.2 Defining Huffman tables for the AC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C.

In the baseline system no more than two Huffman tables may be defined for coding of AC coefficients. Two examples of
Huffman tables for coding of AC coefficients are provided in Annex K.

F.1.2.2.3 Huffman encoding procedures for AC coefficients

As defined in Annex C, the Huffman code table is assumed to be available as a pair of tables, EHUFCO (containing the
code bits) and EHUFSI (containing the length of each code in bits), both indexed by the composite value defined above.

The procedure for encoding the AC coefficients in a block is shown in Figures F.2 and F.3. In Figure F.2, K is the index
to the zig-zag scan position and R is the run length of zero coefficients.

The procedure “Append EHUFSI(X’F0’) bits of EHUFCO(X’F0’)” codes a run of 16 zero coefficients (ZRL code of
Figure F.1). The procedure “Code EHUFSI(0) bits of EHUFCO(0)” codes the end-of-block (EOB code). If the last
coefficient (K = 63) is not zero, the EOB code is bypassed.

CSIZE is a procedure which maps an AC coefficient to the SSSS value as defined in Table F.2.

F.1.2.3 Byte stuffing

In order to provide code space for marker codes which can be located in the compressed image data without decoding,
byte stuffing is used.

Whenever, in the course of normal encoding, the byte value X’FF’ is created in the code string, a X’00’ byte is stuffed
into the code string.

If a X’00’ byte is detected after a X’FF’ byte, the decoder must discard it. If the byte is not zero, a marker has been
detected, and shall be interpreted to the extent needed to complete the decoding of the scan.

Byte alignment of markers is achieved by padding incomplete bytes with 1-bits. If padding with 1-bits creates a X’FF’
value, a zero byte is stuffed before adding the marker.

F.1.3 Extended sequential DCT-based Huffman encoding process for 8-bit sample precision

This process is identical to the Baseline encoding process described in F.1.2, with the exception that the number of sets of
Huffman table destinations which may be used within the same scan is increased to four. Four DC and four AC Huffman
table destinations is the maximum allowed by this Specification.

F.1.4 Extended sequential DCT-based arithmetic encoding process for 8-bit sample precision

This subclause describes the use of arithmetic coding procedures in the sequential DCT-based encoding process.

NOTE – The arithmetic coding procedures in this Specification are defined for the maximum precision to encourage
interchangeability.

The arithmetic coding extensions have the same DCT model as the Baseline DCT encoder. Therefore, Annex F.1.1 also
applies to arithmetic coding. As with the Huffman coding technique, the binary arithmetic coding technique is lossless. It
is possible to transcode between the two systems without either FDCT or IDCT computations, and without modification of
the reconstructed image.

The basic principles of adaptive binary arithmetic coding are described in Annex D. Up to four DC and four AC
conditioning table destinations and associated statistics areas may be used within one scan.

The arithmetic encoding procedures for encoding binary decisions, initializing the statistics area, initializing the encoder,
terminating the code string, and adding restart markers are listed in Table D.1 of Annex D.

CCITT Rec. T.81 (1992 E) 91

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1340-93/d072

Encode_AC_
coefficients

K = 0
R = 0

K = K + 1

ZZ(K) = 0
?

Yes

YesNo

No

R = R + 1

K = 63
?

Append EHUFSI(X’F0’) bits
 of EHUFCO(X’F0’)
R = R – 16

Append EHUFSI(X’00’) bits
of EHUFCO(X’00’)

Yes R > 15
?

No

Encode_R,ZZ(K)

R = 0

K = 63
?

No Yes

Done

Figure F.2 – Procedure for sequential encoding of AC coefficients with Huffman coding

Figure F.2 [D72] = 21 cm = 821 %

92 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1350-93/d073

Encode_R,ZZ(K)

SSSS = CSIZE(ZZ(K))
RS = (16 × R) + SSSS
Append EHUFSI(RS) bits
 of EHUFCO(RS)

ZZ(K) < 0
?

Yes

No

ZZ(K) = ZZ(K) – 1

Append SSSS
low order bits of ZZ(K)

Done

Figure F.3 – Sequential encoding of a non-zero AC coefficient

Figure F.3 [D73] 14 cm = 547 %

Some of the procedures in Table D.1 are used in the higher level control structure for scans and restart intervals described
in Annex E. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic coder are reset
to the standard initial value as part of the Initenc procedure which restarts the arithmetic coder. At the end of scans and
restart intervals, the Flush procedure is invoked to empty the code register before the next marker is appended.

F.1.4.1 Arithmetic encoding of DC coefficients

The basic structure of the decision sequence for encoding a DC difference value, DIFF, is shown in Figure F.4.

The context-index S0 and other context-indices used in the DC coding procedures are defined in Table F.4
(see F.1.4.4.1.3). A 0-decision is coded if the difference value is zero and a 1-decision is coded if the difference is not
zero. If the difference is not zero, the sign and magnitude are coded using the procedure Encode_V(S0), which is
described in F.1.4.3.1.

F.1.4.2 Arithmetic encoding of AC coefficients

The AC coefficients are coded in the order in which they occur in the zig-zag sequence ZZ(1,...,63). An end-of-block
(EOB) binary decision is coded before coding the first AC coefficient in ZZ, and after each non-zero coefficient. If the
EOB occurs, all remaining coefficients in ZZ are zero. Figure F.5 illustrates the decision sequence. The equivalent
procedure for the Huffman coder is found in Figure F.2.

CCITT Rec. T.81 (1992 E) 93

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1360-93/d074

Encode_DC_DIFF

V = DIFF

V = 0
?

No Yes

Code_1(S0)
Encode_V(S0)

Code_0(S0)

Done

Figure F.4 – Coding model for arithmetic coding of DC difference

Figure F.4 [D74] = 11.5 cm = 449 %

The context-indices SE and S0 used in the AC coding procedures are defined in Table F.5 (see F.1.4.4.2). In Figure F.5,
K is the index to the zig-zag sequence position. For the sequential scan, Kmin is 1 and Se is 63. The V = 0 decision is part
of a loop which codes runs of zero coefficients. Whenever the coefficient is non-zero, “Encode_V(S0)” codes the sign and
magnitude of the coefficient. Each time a non-zero coefficient is coded, it is followed by an EOB decision. If the EOB
occurs, a 1-decision is coded to indicate that the coding of the block is complete. If the coefficient for K = Se is not zero,
the EOB decision is skipped.

F.1.4.3 Encoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement integer values. The
decomposition of these signed integer values into a binary decision tree is done in the same way for both the DC and AC
coding models.

Although the binary decision trees for this section of the DC and AC coding models are the same, the statistical models
for assigning statistics bins to the binary decisions in the tree are quite different.

F.1.4.3.1 Structure of the encoding decision sequence

The encoding sequence can be separated into three procedures, a procedure which encodes the sign, a second procedure
which identifies the magnitude category, and a third procedure which identifies precisely which magnitude occurred
within the category identified in the second procedure.

At the point where the binary decision sequence in Encode_V(S0) starts, the coefficient or difference has already been
determined to be non-zero. That determination was made in the procedures in Figures F.4 and F.5.

Denoting either DC differences (DIFF) or AC coefficients as V, the non-zero signed integer value of V is encoded by the
sequence shown in Figure F.6. This sequence first codes the sign of V. It then (after converting V to a magnitude and
decrementing it by 1 to give Sz) codes the magnitude category of Sz (code_log2_Sz), and then codes the low order
magnitude bits (code_Sz_bits) to identify the exact magnitude value.

94 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

There are two significant differences between this sequence and the similar set of operations described in F.1.2 for
Huffman coding. First, the sign is encoded before the magnitude category is identified, and second, the magnitude is
decremented by 1 before the magnitude category is identified.

TISO1370-93/d075

Encode_AC_
Coefficients

K = Kmin

K = EOB
?

Yes

No

Code_1(SE)

Code_0(SE)

K = K + 1 K = K + 1

V = ZZ(K)

V = 0
?

Yes

No

Code_0(S0)

Code_1(S0)
Encode_V(S0)

K = Se
?

YesNo

Done

Figure F.5 – AC coding model for arithmetic coding

Figure F.5 [D75] = 21 cm = 821 %

CCITT Rec. T.81 (1992 E) 95

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1380-93/d076

Encode_V(S)

Encode_sign_of_V

Sz = | V | – 1

Encode_log2_Sz

Encode_Sz_bits

Done

Figure F.6 – Sequence of procedures in encoding non-zero values of V

Figure F.6 [D76] = 13.5 cm = 528 %

F.1.4.3.1.1 Encoding the sign

The sign is encoded by coding a 0-decision when the sign is positive and a 1-decision when the sign is negative
(see Figure F.7).

The context-indices SS, SN and SP are defined for DC coding in Table F.4 and for AC coding in Table F.5. After the sign
is coded, the context-index S is set to either SN or SP, establishing an initial value for Encode_log2_Sz.

F.1.4.3.1.2 Encoding the magnitude category

The magnitude category is determined by a sequence of binary decisions which compares Sz against an exponentially
increasing bound (which is a power of 2) in order to determine the position of the leading 1-bit. This establishes the
magnitude category in much the same way that the Huffman encoder generates a code for the value associated with the
difference category. The flow chart for this procedure is shown in Figure F.8.

The starting value of the context-index S is determined in Encode_sign_of_V, and the context-index values X1 and X2
are defined for DC coding in Table F.4 and for AC coding in Table F.5. In Figure F.8, M is the exclusive upper bound for
the magnitude and the abbreviations “SLL” and “SRL” refer to the shift-left-logical and shift-right-logical operations – in
this case by one bit position. The SRL operation at the completion of the procedure aligns M with the most significant bit
of Sz (see Table F.3).

The highest precision allowed for the DCT is 15 bits. Therefore, the highest precision required for the coding decision
tree is 16 bits for the DC coefficient difference and 15 bits for the AC coefficients, including the sign bit.

96 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1390-93/d077

Encode_sign_of_V

V < 0
?

Yes No

Code_1(SS) Code_0(SS)

S = SN S = SP

Done

Figure F.7 – Encoding the sign of V

Figure F.7 [D77] = 11 cm = 430 %

Table F.3 – Categories for each maximum bound

Exclusive upper
bound (M)

Sz range Number of low order
magnitude bits

11111 0 10

11112 1 10

11114 2,3 11

11118 4,...,7 12

11116 8,...,15 13

32332 16,...,31 14

66464 32,...,63 15

12128 64,...,127 16

25256 128,...,255 17

15512 256,...,511 18

11 024 512,...,1 023 19

22 048 1 024,...,2 047 10

14 096 2 048,...,4 095 11

18 192 4 096,...,8 191 12

16 384 8 192,...,16 383 13

32 768 16 384,...,32 767 14

CCITT Rec. T.81 (1992 E) 97

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1400-93/d078

Encode_log2_Sz

M = 1

Sz < M
?

Yes

No

Code_1(S)

M = 2
S = X1

Sz < M
?

Yes

No

Code_1(S)

M = 4
S = X2

Sz < M
?

Yes

No

Code_1(S) Code_0(S)

M = SLL M 1
S = S + 1

M = SRL M 1

Done

Figure F.8 – Decision sequence to establish the magnitude category

98 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.1.4.3.1.3 Encoding the exact value of the magnitude

After the magnitude category is encoded, the low order magnitude bits are encoded. These bits are encoded in order of
decreasing bit significance. The procedure is shown in Figure F.9. The abbreviation “SRL” indicates the shift-right-
logical operation, and M is the exclusive bound established in Figure F.8. Note that M has only one bit set – shifting M
right converts it into a bit mask for the logical “AND” operation.

The starting value of the context-index S is determined in Encode_log2_Sz. The increment of S by 14 at the beginning of
this procedure sets the context-index to the value required in Tables F.4 and F.5.

TISO1410-93/d079

Encode_Sz-bits

S = S + 14

M = SRL M 1

M = 0
?

Yes

No

T = M AND Sz

T = 0
?

NoYes

Code_0(S) Code_1(S)

Figure F.9 – Decision sequence to code the magnitude bit pattern

Done

Figure F.9 [D79] = 16.5 cm = 645 %

CCITT Rec. T.81 (1992 E) 99

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.1.4.4 Statistical models

An adaptive binary arithmetic coder requires a statistical model. The statistical model defines the contexts which are used
to select the conditional probability estimates used in the encoding and decoding procedures.

Each decision in the binary decision trees is associated with one or more contexts. These contexts identify the sense of the
MPS and the index in Table D.3 of the conditional probability estimate Qe which is used to encode and decode the binary
decision.

The arithmetic coder is adaptive, which means that the probability estimates for each context are developed and
maintained by the arithmetic coding system on the basis of prior coding decisions for that context.

F.1.4.4.1 Statistical model for coding DC prediction differences

The statistical model for coding the DC difference conditions some of the probability estimates for the binary decisions on
previous DC coding decisions.

F.1.4.4.1.1 Statistical conditioning on sign

In coding the DC coefficients, four separate statistics bins (probability estimates) are used in coding the zero/not-zero (V =
0) decision, the sign decision and the first magnitude category decision. Two of these bins are used to code the V = 0
decision and the sign decision. The other two bins are used in coding the first magnitude decision, Sz < 1; one of these
bins is used when the sign is positive, and the other is used when the sign is negative. Thus, the first magnitude decision
probability estimate is conditioned on the sign of V.

F.1.4.4.1.2 Statistical conditioning on DC difference in previous block

The probability estimates for these first three decisions are also conditioned on Da, the difference value coded for the
previous DCT block of the same component. The differences are classified into five groups: zero, small positive, small
negative, large positive and large negative. The relationship between the default classification and the quantization scale is
shown in Figure F.10.

–5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5

0

TISO1420-93/d080

.

– large – small + small + large

DC difference

Classification

Figure F.10 – Conditioning classification of difference values

Figure F.10 [D80] = 3 cm = 117 %

The bounds for the “small” difference category determine the classification. Defining L and U as integers in the range 0 to
15 inclusive, the lower bound (exclusive) for difference magnitudes classified as “small” is zero for L = 0, and is 2L–1 for
L > 0.

The upper bound (inclusive) for difference magnitudes classified as “small” is 2U.

L shall be less than or equal to U.

These bounds for the conditioning category provide a segmentation which is identical to that listed in Table F.3.

F.1.4.4.1.3 Assignment of statistical bins to the DC binary decision tree

As shown in Table F.4, each statistics area for DC coding consists of a set of 49 statistics bins. In the following
explanation, it is assumed that the bins are contiguous. The first 20 bins consist of five sets of four bins selected by a
context-index S0. The value of S0 is given by DC_Context(Da), which provides a value of 0, 4, 8, 12 or 16, depending on
the difference classification of Da (see F.1.4.4.1.2). The remaining 29 bins, X1,...,X15,M2,...,M15, are used to code
magnitude category decisions and magnitude bits.

100 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table F.4 – Statistical model for DC coefficient coding

Context-index Value Coding decision

S0 DC_Context(Da) V = 0
SS S0 + 1 Sign of V

SP S0 + 2 Sz < 1 if V > 0

SN S0 + 3 Sz < 1 if V < 0

X1 20 Sz < 2

X2 X1 + 1 Sz < 4

X3 X1 + 2 Sz < 8

. . .

. . .

X15 X1 + 14 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

F.1.4.4.1.4 Default conditioning for DC statistical model

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define Arithmetic coding Conditioning) marker segment, as described in Annex B.

F.1.4.4.1.5 Initial conditions for DC statistical model

At the start of a scan and at the beginning of each restart interval, the difference for the previous DC value is defined to be
zero in determining the conditioning state.

F.1.4.4.2 Statistical model for coding the AC coefficients

As shown in Table F.5, each statistics area for AC coding consists of a contiguous set of 245 statistics bins. Three bins are
used for each value of the zig-zag index K, and two sets of 28 additional bins X2,...,X15,M2,...,M15 are used for coding
the magnitude category and magnitude bits.

The value of SE (and also S0, SP and SN) is determined by the zig-zag index K. Since K is in the range 1 to 63, the
lowest value for SE is 0 and the largest value for SP is 188. SS is not assigned a value in AC coefficient coding, as the
signs of the coefficients are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

The value of X2 is given by AC_Context(K). This gives X2 = 189 when K ≤ Kx and X2 = 217 when K > Kx, where Kx is
defined using the DAC marker segment (see B.2.4.3).

Note that a X1 statistics bin is not used in this sequence. Instead, the 63 × 1 array of statistics bins for the magnitude
category is used for two decisions. Once the magnitude bound has been determined – at statistics bin Xn, for example – a
single statistics bin, Mn, is used to code the magnitude bit sequence for that bound.

F.1.4.4.2.1 Default conditioning for AC coefficient coding

The default value of Kx is 5. This may be modified using the DAC marker segment, as described in Annex B.

F.1.4.4.2.2 Initial conditions for AC statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D.

CCITT Rec. T.81 (1992 E) 101

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table F.5 – Statistical model for AC coefficient coding

Context-index Value Coding decision

SE 3 × (K – 1) K = EOB

S0 SE + 1 V = 0

SS Fixed estimate Sign of V

SN,SP S0 + 1 Sz < 1

X1 S0 + 1 Sz < 2

X2 AC_Context(K) Sz < 4

X3 X2 + 1 Sz < 8

. . .

. . .

X15 X2 + 13 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

F.1.5 Extended sequential DCT-based Huffman encoding process for 12-bit sample precision

This process is identical to the sequential DCT process for 8-bit precision extended to four Huffman table destinations as
documented in F.1.3, with the following changes.

F.1.5.1 Structure of DC code table for 12-bit sample precision

The two’s complement difference magnitudes are grouped into 16 categories, SSSS, and a Huffman code is created for
each of the 16 difference magnitude categories.

The Huffman table for DC coding (see Table F.1) is extended as shown in Table F.6.

Table F.6 – Difference magnitude categories for DC coding

SSSS Difference values

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

15 –32 767..–16 384,16 384..32 767

F.1.5.2 Structure of AC code table for 12-bit sample precision

The general structure of the code table is extended as illustrated in Figure F.11. The Huffman table for AC coding is
extended as shown in Table F.7.

102 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

0 1 2

0
.
.
.

15

EOB
N/A
N/A
N/A
ZRL

. . .

RRRR

SSSS

TISO1430-93/d081

13 14

COMPOSITE VALUES

Figure F.11 – Two-dimensional value array for Huffman coding

Figure F.11 {D81] = 4.5 cm = 176 %

Table F.7 – Values assigned to coefficient amplitude ranges

SSSS AC coefficients

11 –2 047..–1 024,1 024..2 047

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

F.1.6 Extended sequential DCT-based arithmetic encoding process for 12-bit sample precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the FDCT
computation.

The structure of the encoding procedure is identical to that specified in F.1.4 which was already defined for a 12-bit
sample precision.

F.2 Sequential DCT-based decoding processes

F.2.1 Sequential DCT-based control procedures and coding models

F.2.1.1 Control procedures for sequential DCT-based decoders

The control procedures for decoding compressed image data and its constituent parts – the frame, scan, restart interval and
MCU – are given in Figures E.6 to E.10. The procedure for decoding a MCU (Figure E.10) repetitively calls the
procedure for decoding a data unit. For DCT-based decoders the data unit is an 8 × 8 block of samples.

F.2.1.2 Procedure for decoding an 8 ×× 8 block data unit

In the sequential DCT-based decoding process, decoding an 8 × 8 block data unit consists of the following procedures:

a) decode DC coefficient for 8 × 8 block using the DC table destination specified in the scan header;

b) decode AC coefficients for 8 × 8 block using the AC table destination specified in the scan header;

c) dequantize using table destination specified in the frame header and calculate the inverse 8 × 8 DCT.

F.2.1.3 Decoding models for the sequential DCT procedures

Two decoding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)...ZZ(63).
The coefficients are decoded in the order in which they occur in the zig-zag sequence order, starting with the DC
coefficient. The coefficients are represented as two’s complement integers.

CCITT Rec. T.81 (1992 E) 103

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.2.1.3.1 Decoding model for DC coefficients

The decoded difference, DIFF, is added to PRED, the DC value from the most recently decoded 8 × 8 block from the
same component. Thus ZZ(0) = PRED + DIFF.

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient is
initialized to zero.

F.2.1.3.2 Decoding model for AC coefficients

The AC coefficients are decoded in the order in which they occur in ZZ. When the EOB is decoded, all remaining
coefficients in ZZ are initialized to zero.

F.2.1.4 Dequantization of the quantized DCT coefficients

The dequantization of the quantized DCT coefficients as described in Annex A, is accomplished by multiplying each
quantized coefficient value by the quantization table value for that coefficient. The decoder shall be able to use up to four
quantization table destinations.

F.2.1.5 Inverse DCT (IDCT)

The mathematical definition of the IDCT is given in A.3.3.

After computation of the IDCT, the signed output samples are level-shifted, as described in Annex A, converting the
output to an unsigned representation. For 8-bit precision the level shift is performed by adding 128. For 12-bit precision
the level shift is performed by adding 2 048. If necessary, the output samples shall be clamped to stay within the range
appropriate for the precision (0 to 255 for 8-bit precision and 0 to 4 095 for 12-bit precision).

F.2.2 Baseline Huffman Decoding procedures

The baseline decoding procedure is for 8-bit sample precision. The decoder shall be capable of using up to two DC and
two AC Huffman tables within one scan.

F.2.2.1 Huffman decoding of DC coefficients

The decoding procedure for the DC difference, DIFF, is:

T = DECODE

DIFF = RECEIVE(T)

DIFF = EXTEND(DIFF,T)

where DECODE is a procedure which returns the 8-bit value associated with the next Huffman code in the compressed
image data (see F.2.2.3) and RECEIVE(T) is a procedure which places the next T bits of the serial bit string into the low
order bits of DIFF, MSB first. If T is zero, DIFF is set to zero. EXTEND is a procedure which converts the partially
decoded DIFF value of precision T to the full precision difference. EXTEND is shown in Figure F.12.

104 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1440-93/d082

EXTEND(V,T)

V = 2 t
T –1

V < V
?

t Yes

No

V = (SLL –1 T) + 1
V = V + V

t

t

Return V

Figure F.12 – Extending the sign bit of a decoded value in V

Figure F.12 [D82] = 11 cm = 430 %

F.2.2.2 Decoding procedure for AC coefficients

The decoding procedure for AC coefficients is shown in Figures F.13 and F.14.

CCITT Rec. T.81 (1992 E) 105

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1450-93/d083

Decode_AC_
coefficients

K = 1
ZZ(1,...,63) = 0

K = K + 1 K = K + 16

RS = DECODE

SSSS = RS modulo 16
RRRR = SRL RS 4
R = RRRR

SSSS = 0
?

Yes

No

K = K + R

Decode_ZZ(K)

K = 63
?

R = 15
?

No

Yes

Yes

No

Done

Figure F.13 – Huffman decoding procedure for AC coefficients

Figure F.13 [D83] = 21 cm = 821 %

106 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1460-93/d084

Decode_ZZ(K)

ZZ(K) = RECEIVE(SSSS)
ZZ(K) = EXTEND(ZZ(K),SSSS)

Done

Figure F.14 – Decoding a non-zero AC coefficient

Figure F.14 [D84] = 7 cm = 273 %

The decoding of the amplitude and sign of the non-zero coefficient is done in the procedure “Decode_ZZ(K)”, shown in
Figure F.14.

DECODE is a procedure which returns the value, RS, associated with the next Huffman code in the code stream
(see F.2.2.3). The values SSSS and R are derived from RS. The value of SSSS is the four low order bits of the composite
value and R contains the value of RRRR (the four high order bits of the composite value). The interpretation of these
values is described in F.1.2.2. EXTEND is shown in Figure F.12.

F.2.2.3 The DECODE procedure

The DECODE procedure decodes an 8-bit value which, for the DC coefficient, determines the difference magnitude
category. For the AC coefficient this 8-bit value determines the zero run length and non-zero coefficient category.

Three tables, HUFFVAL, HUFFCODE, and HUFFSIZE, have been defined in Annex C. This particular implementation
of DECODE makes use of the ordering of the Huffman codes in HUFFCODE according to both value and code size.
Many other implementations of DECODE are possible.

NOTE – The values in HUFFVAL are assigned to each code in HUFFCODE and HUFFSIZE in sequence. There are no
ordering requirements for the values in HUFFVAL which have assigned codes of the same length.

The implementation of DECODE described in this subclause uses three tables, MINCODE, MAXCODE and VALPTR,
to decode a pointer to the HUFFVAL table. MINCODE, MAXCODE and VALPTR each have 16 entries, one for each
possible code size. MINCODE(I) contains the smallest code value for a given length I, MAXCODE(I) contains the largest
code value for a given length I, and VALPTR(I) contains the index to the start of the list of values in HUFFVAL which
are decoded by code words of length I. The values in MINCODE and MAXCODE are signed 16-bit integers; therefore, a
value of –1 sets all of the bits.

The procedure for generating these tables is shown in Figure F.15. The procedure for DECODE is shown in Figure F.16.
Note that the 8-bit “VALUE” is returned to the procedure which invokes DECODE.

CCITT Rec. T.81 (1992 E) 107

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1470-93/d085

Figure F.15 – Decoder table generation

Decoder_tables

I = 0
J = 0

MAXCODE(I) = –1 I = I + 1

I > 16
?

Yes

No

BITS(I) = 0
?

No

Yes

Done

VALPTR(I) = J
MINCODE(I) = HUFFCODE(J)
J = J + BITS(I) – 1
MAXCODE(I) = HUFFCODE(J)
J = J + 1

Figure F.15 [D85] = 14.5 cm = 567 %

108 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1480-93/d086

DECODE

I = 1
CODE = NEXTBIT

I = I + 1
CODE = (SLL CODE 1) + NEXTBIT

CODE > MAXCODE(I)
?

Yes

No

J = VALPTR(I)
J = J + CODE – MINCODE(I)
VALUE = HUFFVAL(J)

Return VALUE

Figure F.16 – Procedure for DECODE

Figure F.16 [D86] = 14 cm = 547 %

CCITT Rec. T.81 (1992 E) 109

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.2.2.4 The RECEIVE procedure

RECEIVE(SSSS) is a procedure which places the next SSSS bits of the entropy-coded segment into the low order bits of
DIFF, MSB first. It calls NEXTBIT and it returns the value of DIFF to the calling procedure (see Figure F.17).

TISO1490-93/d087

RECEIVE(SSSS)

I = 0
V = 0

I = I + 1
V = (SLL V 1) + NEXTBIT

I = SSSS
?

Yes

No

Return V

F igur e F.17 – Pr ocedur e for R EC E I V E (SSSS)

Figure F.17 [D87] = 11.5 cm = 449 %

F.2.2.5 The NEXTBIT procedure

NEXTBIT reads the next bit of compressed data and passes it to higher level routines. It also intercepts and removes stuff
bytes and detects markers. NEXTBIT reads the bits of a byte starting with the MSB (see Figure F.18).

Before starting the decoding of a scan, and after processing a RST marker, CNT is cleared. The compressed data are read
one byte at a time, using the procedure NEXTBYTE. Each time a byte, B, is read, CNT is set to 8.

The only valid marker which may occur within the Huffman coded data is the RSTm marker. Other than the EOI or
markers which may occur at or before the start of a scan, the only marker which can occur at the end of the scan is the
DNL (define-number-of-lines).

Normally, the decoder will terminate the decoding at the end of the final restart interval before the terminating marker is
intercepted. If the DNL marker is encountered, the current line count is set to the value specified by that marker. Since the
DNL marker can only be used at the end of the first scan, the scan decode procedure must be terminated when it is
encountered.

110 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1500-93/d088

NEXTBIT

CNT = 0
?

Yes

No

B = NEXTBYTE
CNT = 8

B = X’FF’
?

Yes

No

B2 = NEXTBYTE

B2 = 0
?

Yes

Yes

No

No

B2 = DNL
?

BIT = SRL B 7
CNT = CNT – 1
B = SLL B 1

Process DNL marker

Return BIT Error Terminate scan

Figure F.18 – Procedure for fetching the next bit of compressed data

Figure F.18 [D88] = 17 cm = 665 %

F.2.3 Sequential DCT decoding process with 8-bit precision extended to four sets of Huffman tables

This process is identical to the Baseline decoding process described in F.2.2, with the exception that the decoder shall be
capable of using up to four DC and four AC Huffman tables within one scan. Four DC and four AC Huffman tables is the
maximum allowed by this Specification.

F.2.4 Sequential DCT decoding process with arithmetic coding

This subclause describes the sequential DCT decoding process with arithmetic decoding.

The arithmetic decoding procedures for decoding binary decisions, initializing the statistical model, initializing the
decoder, and resynchronizing the decoder are listed in Table D.4 of Annex D.

Some of the procedures in Table D.4 are used in the higher level control structure for scans and restart intervals described
in F.2. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic decoder are reset to
the standard initial value as part of the Initdec procedure which restarts the arithmetic coder.

CCITT Rec. T.81 (1992 E) 111

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The statistical models defined in F.1.4.4 also apply to this decoding process.

The decoder shall be capable of using up to four DC and four AC conditioning tables and associated statistics areas within
one scan.

F.2.4.1 Arithmetic decoding of DC coefficients

The basic structure of the decision sequence for decoding a DC difference value, DIFF, is shown in Figure F.19. The
equivalent structure for the encoder is found in Figure F.4.

TISO1510-93/d089

Decode_DC_DIFF

D = Decode(S0)

D = 0
?

No Yes

Decode_V(S0) DIFF = 0

DIFF = V

Done

Figure F.19 – Arithmetic decoding of DC difference

Figure F.19 [D89] = 13 cm = 508 %

The context-indices used in the DC decoding procedures are defined in Table F.4 (see F.1.4.4.1.3).

The “Decode” procedure returns the value “D” of the binary decision. If the value is not zero, the sign and magnitude of
the non-zero DIFF must be decoded by the procedure “Decode_V(S0)”.

F.2.4.2 Arithmetic Decoding of AC coefficients

The AC coefficients are decoded in the order that they occur in ZZ(1,...,63). The encoder procedure for the coding process
is found in Figure F.5. Figure F.20 illustrates the decoding sequence.

112 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1520-93/d090

Decode_AC_
coefficients

K = Kmin

D = Decode(SE)

D = 1
?

Yes

No

K = K + 1 K = K + 1

D = Decode(S0)

D = 0
?

Yes

No

Decode_V(S0)

ZZ(K) = V

K = Se
?

YesNo

Done

Figure F.20 – Procedure for decoding the AC coefficients

Figure F.20 [D90] = 21 cm = 821 % presque pleine...

The context-indices used in the AC decoding procedures are defined in Table F.5 (see F.1.4.4.2).

CCITT Rec. T.81 (1992 E) 113

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

In Figure F.20, K is the index to the zig-zag sequence position. For the sequential scan, Kmin = 1 and Se = 63. The
decision at the top of the loop is the EOB decision. If the EOB occurs (D = 1), the remaining coefficients in the block are
set to zero. The inner loop just below the EOB decoding decodes runs of zero coefficients. Whenever the coefficient is
non-zero, “Decode_V” decodes the sign and magnitude of the coefficient. After each non-zero coefficient is decoded, the
EOB decision is again decoded unless K = Se.

F.2.4.3 Decoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement 16-bit integer values. The
decoding decision tree for these signed integer values is the same for both the DC and AC coding models. Note, however,
that the statistical models are not the same.

F.2.4.3.1 Arithmetic decoding of non-zero values

Denoting either DC differences or AC coefficients as V, the non-zero signed integer value of V is decoded by the
sequence shown in Figure F.21. This sequence first decodes the sign of V. It then decodes the magnitude category of V
(Decode_log2_Sz), and then decodes the low order magnitude bits (Decode_Sz_bits). Note that the value decoded for Sz
must be incremented by 1 to get the actual coefficient magnitude.

TISO1530-93/d091

Decode_V(S)

Decode_sign_of_V

Decode_log2_Sz

Decode_Sz_bits

V = Sz + 1

SIGN = 1
?

Yes
V = –V

Done

Figure F.21 – Sequence of procedures in decoding non-zero values of V

No

Figure F.21 [D91] = 15.5 cm = 606 %

114 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.2.4.3.1.1 Decoding the sign

The sign is decoded by the procedure shown in Figure F.22.

The context-indices are defined for DC decoding in Table F.4 and AC decoding in Table F.5.

If SIGN = 0, the sign of the coefficient is positive; if SIGN = 1, the sign of the coefficient is negative.

TISO1540-93/d092

Decode_sign_of_V

SIGN = Decode(SS)

SIGN = 1
?

Yes No

S = SN S = SP

Done

Figure F.22 – Decoding the sign of V

Figure F.22 [D92] = 11 cm = 430 %

F.2.4.3.1.2 Decoding the magnitude category

The context-index S is set in Decode_sign_of_V and the context-index values X1 and X2 are defined for DC coding in
Table F.4 and for AC coding in Table F.5.

In Figure F.23, M is set to the upper bound for the magnitude and shifted left until the decoded decision is zero. It is then
shifted right by 1 to become the leading bit of the magnitude of Sz.

CCITT Rec. T.81 (1992 E) 115

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1550-93/d093

Decode_log2_Sz

M = 1

D = Decode(S)

D = 0
?

Yes

No

M = 2
S = X1

M = 4
S = X2

D = Decode(S)

D = Decode(S)

D = 0
?

YesD = 0
?

Yes

No

No

M = SLL M 1
S = S + 1

M = SRL M 1
Sz = M

Done

Figure F.23 – Decoding procedure to establish the magnitude category

116 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

F.2.4.3.1.3 Decoding the exact value of the magnitude

After the magnitude category is decoded, the low order magnitude bits are decoded. These bits are decoded in order of
decreasing bit significance. The procedure is shown in Figure F.24.

The context-index S is set in Decode_log2_Sz.

TISO1560-93/d094

Decode_Sz_bits

S = S + 14

M = SRL M 1

M = 0
?

Yes

No

D = Decode(S) Done

D = 0
?

Yes

No

Sz = M OR Sz

Figure F.24 – Decision sequence to decode the magnitude bit pattern

Figure F.24 [D94] = 16 cm = 625 %

F.2.4.4 Decoder restart

The RSTm markers which are added to the compressed data between each restart interval have a two byte value which
cannot be generated by the coding procedures. These two byte sequences can be located without decoding, and can
therefore be used to resynchronize the decoder. RSTm markers can therefore be used for error recovery.

CCITT Rec. T.81 (1992 E) 117

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Before error recovery procedures can be invoked, the error condition must first be detected. Errors during decoding can
show up in two places:

a) The decoder fails to find the expected marker at the point where it is expecting resynchronization.

b) Physically impossible data are decoded. For example, decoding a magnitude beyond the range of values
allowed by the model is quite likely when the compressed data are corrupted by errors. For arithmetic
decoders this error condition is extremely important to detect, as otherwise the decoder may reach a
condition where it uses the compressed data very slowly.

NOTE – Some errors will not cause the decoder to lose synchronization. In addition, recovery is not
possible for all errors; for example, errors in the headers are likely to be catastrophic. The two error
conditions listed above, however, almost always cause the decoder to lose synchronization in a way which
permits recovery.

In regaining synchronization, the decoder can make use of the modulo 8 coding restart interval number in the low order
bits of the RSTm marker. By comparing the expected restart interval number to the value in the next RSTm marker in the
compressed image data, the decoder can usually recover synchronization. It then fills in missing lines in the output data by
replication or some other suitable procedure, and continues decoding. Of course, the reconstructed image will usually be
highly corrupted for at least a part of the restart interval where the error occurred.

F.2.5 Sequential DCT decoding process with Huffman coding and 12-bit precision

This process is identical to the sequential DCT process defined for 8-bit sample precision and extended to four Huffman
tables, as documented in F.2.3, but with the following changes.

F.2.5.1 Structure of DC Huffman decode table

The general structure of the DC Huffman decode table is extended as described in F.1.5.1.

F.2.5.2 Structure of AC Huffman decode table

The general structure of the AC Huffman decode table is extended as described in F.1.5.2.

F.2.6 Sequential DCT decoding process with arithmetic coding and 12-bit precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the IDCT
computation.

The structure of the decoding procedure in F.2.4 is already defined for a 12-bit input precision.

118 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex G

Progressive DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the following coding processes for the progressive DCT-based mode
of operation:

1) spectral selection only, Huffman coding, 8-bit sample precision;

2) spectral selection only, arithmetic coding, 8-bit sample precision;

3) full progression, Huffman coding, 8-bit sample precision;

4) full progression, arithmetic coding, 8-bit sample precision;

5) spectral selection only, Huffman coding, 12-bit sample precision;

6) spectral selection only, arithmetic coding, 12-bit sample precision;

7) full progression, Huffman coding, 12-bit sample precision;

8) full progression, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in G.1, and the decoding process is specified in G.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

The number of Huffman or arithmetic conditioning tables which may be used within the same scan is four.

Two complementary progressive procedures are defined, spectral selection and successive approximation.

In spectral selection the DCT coefficients of each block are segmented into frequency bands. The bands are coded in
separate scans.

In successive approximation the DCT coefficients are divided by a power of two before coding. In the decoder the
coefficients are multiplied by that same power of two before computing the IDCT. In the succeeding scans the precision of
the coefficients is increased by one bit in each scan until full precision is reached.

An encoder or decoder implementing a full progression uses spectral selection within successive approximation. An
allowed subset is spectral selection alone.

Figure G.1 illustrates the spectral selection and successive approximation progressive processes.

G.1 Progressive DCT-based encoding processes

G.1.1 Control procedures and coding models for progressive DCT-based procedures

G.1.1.1 Control procedures for progressive DCT-based encoders

The control procedures for encoding an image and its constituent parts – the frame, scan, restart interval and MCU – are
given in Figures E.1 through E.5.

The control structure for encoding a frame is the same as for the sequential procedures. However, it is convenient to
calculate the FDCT for the entire set of components in a frame before starting the scans. A buffer which is large enough to
store all of the DCT coefficients may be used for this progressive mode of operation.

The number of scans is determined by the progression defined; the number of scans may be much larger than the number
of components in the frame.

CCITT Rec. T.81 (1992 E) 119

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

7 0

7 6 5 4

0

3

61
62
63

3
4
5

1
2

0

1
2

63
62

MSB

TISO1570-93/d095

0

0
1

62
63

1
2

7 6 1 0
MSB LSB

Blocks

Sending

Sending

DCT
coefficients

a) Image component
a) as quantized
a) DCT coefficients

b) Sequential encoding

1st scan
1st scan

Sending

2nd scan

2nd scan

Sending

Sending

3rd scan

3rd scan

Sending Sending

Sending

nth scan

6th scan
(LSB)

c) Progressive encoding –
a) Spectral selection

d) Progressive encoding –
a) Successive approximation

Figure G.1 – Spectral selection and successive approximation progressive processes

120 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The procedure for encoding a MCU (see Figure E.5) repetitively invokes the procedure for coding a data unit. For
DCT-based encoders the data unit is an 8 × 8 block of samples.

Only a portion of each 8 × 8 block is coded in each scan, the portion being determined by the scan header parameters Ss,
Se, Ah, and Al (see B.2.3). The procedures used to code portions of each 8 × 8 block are described in this annex. Note,
however, that where these procedures are identical to those used in the sequential DCT-based mode of operation, the
sequential procedures are simply referenced.

G.1.1.1.1 Spectral selection control

In spectral selection the zig-zag sequence of DCT coefficients is segmented into bands. A band is defined in the scan
header by specifying the starting and ending indices in the zig-zag sequence. One band is coded in a given scan of the
progression. DC coefficients are always coded separately from AC coefficients, and only scans which code DC
coefficients may have interleaved blocks from more than one component. All other scans shall have only one component.
With the exception of the first DC scans for the components, the sequence of bands defined in the scans need not follow
the zig-zag ordering. For each component, a first DC scan shall precede any AC scans.

G.1.1.1.2 Successive approximation control

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). The successive approximation bit position parameter Al specifies the actual point
transform, and the high four bits (Ah) – if there are preceding scans for the band – contain the value of the point transform
used in those preceding scans. If there are no preceding scans for the band, Ah is zero.

Each scan which follows the first scan for a given band progressively improves the precision of the coefficients by one bit,
until full precision is reached.

G.1.1.2 Coding models for progressive DCT-based encoders

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). These models also apply to the progressive DCT-based encoders, but with the
following changes.

G.1.1.2.1 Progressive encoding model for DC coefficients

If Al is not zero, the point transform for DC coefficients shall be used to reduce the precision of the DC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded, using the procedure described in Annex
F. If Ah is not zero, the least significant bit of the point transformed DC coefficients shall be coded, using the procedures
described in this annex.

G.1.1.2.2 Progressive encoding model for AC coefficients

If Al is not zero, the point transform for AC coefficients shall be used to reduce the precision of the AC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded using modifications of the procedures
described in Annex F. These modifications are described in this annex. If Ah is not zero, the precision of the coefficients
shall be improved using the procedures described in this annex.

G.1.2 Progressive encoding procedures with Huffman coding

G.1.2.1 Progressive encoding of DC coefficients with Huffman coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.2.1. If
the successive approximation bit position parameter Al is not zero, the coefficient values shall be reduced in precision by
the point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits are appended to the compressed bit stream
without compression or modification (see G.1.2.3), except for byte stuffing.

G.1.2.2 Progressive encoding of AC coefficients with Huffman coding

In spectral selection and in the first scan of successive approximation for a component, the AC coefficient coding model is
similar to that used by the sequential procedures. However, the Huffman code tables are extended to include coding of
runs of End-Of-Bands (EOBs). See Table G.1.

CCITT Rec. T.81 (1992 E) 121

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table G.1 – EOBn code run length extensions

EOBn code Run length

EOB0 1

EOB1 2,3

EOB2 4..7

EOB3 8..15

EOB4 16..31

EOB5 32..63

EOB6 64..127

EOB7 128..255

EOB8 256..511

EOB9 512..1 023

EOB10 1 024..2 047

EOB11 2 048..4 095

EOB12 4 096..8 191

EOB13 8 192..16 383

EOB14 16 384..32 767

The end-of-band run structure allows efficient coding of blocks which have only zero coefficients. An EOB run of length
5 means that the current block and the next four blocks have an end-of-band with no intervening non-zero coefficients.
The EOB run length is limited only by the restart interval.

The extension of the code table is illustrated in Figure G.2.

0 1 2 . . .

RRRR

SSSS

13 14

EOB0
EOB1

.

.

.
EOB14

ZRL

0
1
.
.
.

14
15

TISO1580-93/d096

COMPOSITE VALUES

Figure G.2 – Two-dimensional value array for Huffman coding

Figure G.2 [D96] = 4.5 cm = 176 %

The EOBn code sequence is defined as follows. Each EOBn code is followed by an extension field similar to the
extension field for the coefficient amplitudes (but with positive numbers only). The number of bits appended to the EOBn
code is the minimum number required to specify the run length.

If an EOB run is greater than 32 767, it is coded as a sequence of EOB runs of length 32 767 followed by a final EOB run
sufficient to complete the run.

At the beginning of each restart interval the EOB run count, EOBRUN, is set to zero. At the end of each restart interval
any remaining EOB run is coded.

The Huffman encoding procedure for AC coefficients in spectral selection and in the first scan of successive
approximation is illustrated in Figures G.3, G.4, G.5, and G.6.

122 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1590-93/d097

Encode_AC_
coefficients_SS

K = Ss – 1
R = 0

K = K + 1

ZZ(K) = 0
?

No

Encode_EOBRUN R = R + 1

R < 16
?

K = Se
?Yes

Yes

No

Encode_ZRL

EOBRUN =
EOBRUN + 1

No

Yes

EOBRUN = X’7FFF’
?

Encode_R_ZZ(K)

Encode_EOBRUN

K = Se
?

Done

No Yes

Figure G.3 – Procedure for progressive encoding of AC coefficients with Huffman coding

YesNo

Figure G.3[D97] = Pleine page

CCITT Rec. T.81 (1992 E) 123

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

In Figure G.3, Ss is the start of spectral selection, Se is the end of spectral selection, K is the index into the list of
coefficients stored in the zig-zag sequence ZZ, R is the run length of zero coefficients, and EOBRUN is the run length of
EOBs. EOBRUN is set to zero at the start of each restart interval.

If the scan header parameter Al (successive approximation bit position low) is not zero, the DCT coefficient values ZZ(K)
in Figure G.3 and figures which follow in this annex, including those in the arithmetic coding section, shall be replaced
by the point transformed values ZZ’(K), where ZZ’(K) is defined by:

ZZ’(K) =
ZZ(K)x

2Al

EOBSIZE is a procedure which returns the size of the EOB extension field given the EOB run length as input. CSIZE is a
procedure which maps an AC coefficient to the SSSS value defined in the subclauses on sequential encoding (see F.1.1
and F.1.3).

TISO1600-93/d098

Encode_EOBRUN

EOBRUN = 0
?

Yes

No

SSSS = EOBSIZE(EOBRUN)
I = SSSS × 16
Append EHUFSI(I)
 bits of EHUFCO(I)
Append SSSS low order
 bits of EOBRUN
EOBRUN = 0

Done

Figure G.4 – Progressive encoding of a non-zero AC coefficient

Figure G.4 [98] = 11 cm = 430 %

TISO1610-93/d099

Encode_ZRL

Append EHUFSI(X’F0’)
 bits of EHUFCO(X’F0’)
R = R – 16

Done

Figure G.5 – Encoding of the run of zero coefficients

124 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Figure G.5 [99] = 7 cm = 273 %

TISO1620-93/d100

Encode_R_ZZ(K)

SSSS = CSIZE(ZZ(K))
I = (16 × R) + SSSS
Append EHUFSI(I)
 bits of EHUFCO(I)

ZZ(K) < 0
?

Yes

No ZZ(K) = ZZ(K) – 1

Append SSSS low order
 bits of ZZ(K)
R = 0

Done

Figure G.6 – Encoding of the zero run and non-zero coefficient

Figure G.6 [D100] = 12.5 cm = 489 %

G.1.2.3 Coding model for subsequent scans of successive approximation

The Huffman coding structure of the subsequent scans of successive approximation for a given component is similar to the
coding structure of the first scan of that component.

The structure of the AC code table is identical to the structure described in G.1.2.2. Each non-zero point transformed
coefficient that has a zero history (i.e. that has a value ± 1, and therefore has not been coded in a previous scan) is defined
by a composite 8-bit run length-magnitude value of the form:

RRRRSSSS

The four most significant bits, RRRR, give the number of zero coefficients that are between the current coefficient and the
previously coded coefficient (or the start of band). Coefficients with non-zero history (a non-zero value coded in a
previous scan) are skipped over when counting the zero coefficients. The four least significant bits, SSSS, provide the
magnitude category of the non-zero coefficient; for a given component the value of SSSS can only be one.

The run length-magnitude composite value is Huffman coded and each Huffman code is followed by additional bits:

a) One bit codes the sign of the newly non-zero coefficient. A 0-bit codes a negative sign; a 1-bit codes a
positive sign.

b) For each coefficient with a non-zero history, one bit is used to code the correction. A 0-bit means no
correction and a 1-bit means that one shall be added to the (scaled) decoded magnitude of the coefficient.

CCITT Rec. T.81 (1992 E) 125

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Non-zero coefficients with zero history are coded with a composite code of the form:

HUFFCO(RRRRSSSS) + additional bit (rule a) + correction bits (rule b)

In addition whenever zero runs are coded with ZRL or EOBn codes, correction bits for those coefficients with non-zero
history contained within the zero run are appended according to rule b above.

For the Huffman coding version of Encode_AC_Coefficients_SA the EOB is defined to be the position of the last point
transformed coefficient of magnitude 1 in the band. If there are no coefficients of magnitude 1, the EOB is defined to be
zero.

NOTE – The definition of EOB is different for Huffman and arithmetic coding procedures.

In Figures G.7 and G.8 BE is the count of buffered correction bits at the start of coding of the block. BE is initialized to
zero at the start of each restart interval. At the end of each restart interval any remaining buffered bits are appended to the
bit stream following the last EOBn Huffman code and associated appended bits.

In Figures G.7 and G.9, BR is the count of buffered correction bits which are appended to the bit stream according to rule
b. BR is set to zero at the beginning of each Encode_AC_Coefficients_SA. At the end of each restart interval any
remaining buffered bits are appended to the bit stream following the last Huffman code and associated appended bits.

G.1.3 Progressive encoding procedures with arithmetic coding

G.1.3.1 Progressive encoding of DC coefficients with arithmetic coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.4.1. If
the successive approximation bit position parameter is not zero, the coefficient values shall be reduced in precision by the
point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits shall be coded as binary decisions using a
fixed probability estimate of 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.2 Progressive encoding of AC coefficients with arithmetic coding

Except for the point transform scaling of the DCT coefficients and the grouping of the coefficients into bands, the first
scan(s) of successive approximation is identical to the sequential encoding procedure described in F.1.4. If Kmin is
equated to Ss, the index of the first AC coefficient index in the band, the flow chart shown in Figure F.5 applies. The
EOB decision in that figure refers to the “end-of-band” rather than the “end-of-block”. For the arithmetic coding version
of Encode_AC_Coefficients_SA (and all other AC coefficient coding procedures) the EOB is defined to be the position
following the last non-zero coefficient in the band.

NOTE - The definition of EOB is different for Huffman and arithmetic coding procedures.

The statistical model described in F.1.4 also holds. For this model the default value of Kx is 5. Other values of Kx may be
specified using the DAC marker code (Annex B). The following calculation for Kx has proven to give good results for 8-
bit precision samples:

Kx = Kmin + SRL (8 + Se – Kmin) 4

This expression reduces to the default of Kx = 5 when the band is from index 1 to index 63.

126 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1630-93/d101

Encode_AC_
coefficients_SA

K = Ss – 1
R = 0
BR = 0

K = K + 1

ZZ(K) = 0
?

No Yes

R > 15
?

Yes

No K ≥ EOB
?

Yes

No

|ZZ(K)| = 1
?

Yes

No

Encode_EOBRUN
Append_BE_bits
Encode_ZRL
Append_BR_bits

Append LSB of ZZ(K)
 to buffered bits
BR = BR + 1Encode_EOBRUN

Append_BE_bits
Encode_R_ZZ(K)
Append_BR_bits

K = Se
?

No

Yes

Yes

NoK = Se
?

EOBRUN =
 EOBRUN + 1
BE = BE + BR

EOBRUN = X’7FFF’
?

Yes

No

Encode_EOBRUN
Append_BE_bits

Done

R = R + 1

Figure G.7 – Successive approximation coding of AC coefficients using Huffman coding

CCITT Rec. T.81 (1992 E) 127

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1640-93/d102

Append_BE_bits

BE = 0
?

Yes

No

Append BE buffered bits
 to bit stream
BE = 0

Done

Figure G.8 – Transferring BE buffered bits from buffer to bit stream

Figure G.8 [D102] = 9.5 cm = 371 %

TISO1650-93/d103

Append_BR_bits

BR = 0
?

Yes

No

Append BR buffered bits
 to bit stream
BR = 0

Done

Figure G.9 – Transferring BR buffered bits from buffer to bit stream

Figaure G.9 [D103] = 9.5 cm = 371 %

128 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

G.1.3.3 Coding model for subsequent scans of successive approximation

The procedure “Encode_AC_Coefficient_SA” shown in Figure G.10 increases the precision of the AC coefficient values
in the band by one bit.

As in the first scan of successive approximation for a component, an EOB decision is coded at the start of the band and
after each non-zero coefficient.

However, since the end-of-band index of the previous successive approximation scan for a given component, EOBx, is
known from the data coded in the prior scan of that component, this decision is bypassed whenever the current index, K,
is less than EOBx. As in the first scan(s), the EOB decision is also bypassed whenever the last coefficient in the band is
not zero. The decision ZZ(K) = 0 decodes runs of zero coefficients. If the decoder is at this step of the procedure, at least
one non-zero coefficient remains in the band of the block being coded. If ZZ(K) is not zero, the procedure in Figure G.11
is followed to code the value.

The context-indices in Figures G.10 and G.11 are defined in Table G.2 (see G.1.3.3.1). The signs of coefficients with
magnitude of one are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.3.1 Statistical model for subsequent successive approximation scans

As shown in Table G.2, each statistics area for subsequent successive approximation scans of AC coefficients consists of a
contiguous set of 189 statistics bins. The signs of coefficients with magnitude of one are coded with a fixed probability
value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.2 Progressive decoding of the DCT

The description of the computation of the IDCT and the dequantization procedure contained in A.3.3 and A.3.4 apply to
the progressive operation.

Progressive decoding processes must be able to decompress compressed image data which requires up to four sets of
Huffman or arithmetic coder conditioning tables within a scan.

In order to avoid repetition, detailed flow diagrams of progressive decoder operation are not included. Decoder operation
is defined by reversing the function of each step described in the encoder flow charts, and performing the steps in reverse
order.

CCITT Rec. T.81 (1992 E) 129

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1660-93/d104

Encode_AC_
coefficients_SA

K = Kmin

K < EOBx
?

Yes

No

K = EOB
?

Yes

No

Code_1(SE)

Code_0(SE)

K = K + 1 K = K + 1

ZZ(K) = 0
?

Yes

No

Code_0(S0)

CodeSA_ZZ(K)

K = Se
?

YesNo

Done

Figure G.10 – Subsequent successive approximation scans for coding
of AC coefficients using arithmetic coding

Figure G.10 [D104] = PLEINE

130 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1670-93/d105

CodeSA_ZZ(K)

T = LSB ZZ(K)
Yes No| ZZ(K) | > 1

? Code_1(S0)

T = 1
?

YesNo ZZ(K) > 0
?

No Yes

Code_0(SC) Code_1(SC) Code_1(SS) Code_0(SS)

Done

Figure G.11 – Coding non-zero coefficients for subsequent successive approximation scans

Figure G.11 [D105] = 11 cm = 430 %

Table G.2 – Statistical model for subsequent scans of successive
approximation coding of AC coefficient

Context-index AC coding Coding decision

SE 3 × (K–1) K = EOB

S0 SE + 1 V = 0

SS Fixed estimate Sign

SC S0 + 1 LSB ZZ(K) = 1

CCITT Rec. T.81 (1992 E) 131

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex H

Lossless mode of operation

(This annex forms an integral part of this Recommendation | International Standard)
ISO/IEC 10918-1 : 1993(E)

CCITT Rec. T.81 (1992 E)

This annex provides a functional specification of the following coding processes for the lossless mode of operation:

1) lossless processes with Huffman coding;

2) lossless processes with arithmetic coding.

For each of these, the encoding process is specified in H.1, and the decoding process is specified in H.2. The functional
specification is presented by means of specific procedures which comprise these coding processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified in this annex. It is necessary only that an encoder or decoder
implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this
Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the
compliance tests specified in Part 2.

The processes which provide for sequential lossless encoding and decoding are not based on the DCT. The processes used
are spatial processes based on the coding model developed for the DC coefficients of the DCT. However, the model is
extended by incorporating a set of selectable one- and two-dimensional predictors, and for interleaved data the ordering of
samples for the one-dimensional predictor can be different from that used in the DCT-based processes.

Either Huffman coding or arithmetic coding entropy coding may be employed for these lossless encoding and decoding
processes. The Huffman code table structure is extended to allow up to 16-bit precision for the input data. The arithmetic
coder statistical model is extended to a two-dimensional form.

H.1 Lossless encoder processes

H.1.1 Lossless encoder control procedures

Subclause E.1 contains the encoder control procedures. In applying these procedures to the lossless encoder, the data unit
is one sample.

Input data precision may be from 2 to 16 bits/sample. If the input data path has different precision from the input data, the
data shall be aligned with the least significant bits of the input data path. Input data is represented as unsigned integers
and is not level shifted prior to coding.

When the encoder is reset in the restart interval control procedure (see E.1.4), the prediction is reset to a default value. If
arithmetic coding is used, the statistics are also reset.

For the lossless processes the restart interval shall be an integer multiple of the number of MCU in an MCU-row.

H.1.2 Coding model for lossless encoding

The coding model developed for encoding the DC coefficients of the DCT is extended to allow a selection from a set of
seven one-dimensional and two-dimensional predictors. The predictor is selected in the scan header (see Annex B). The
same predictor is used for all components of the scan. Each component in the scan is modeled independently, using
predictions derived from neighbouring samples of that component.

H.1.2.1 Prediction

Figure H.1 shows the relationship between the positions (a, b, c) of the reconstructed neighboring samples used for
prediction and the position of x, the sample being coded.

132 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

c b

xa

TISO1680-93/d106

Figure H.1 – Relationship between sample and prediction samples

Figure H.1 [D106] = 4.5 cm = 176 %

Define Px to be the prediction and Ra, Rb, and Rc to be the reconstructed samples immediately to the left, immediately
above, and diagonally to the left of the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table H.1.

Table H.1 – Predictors for lossless coding

Selection-value Prediction

0 No prediction (See Annex J)

1 Px = Ra

2 Px = Rb

3 Px = Rc

4 Px = Ra + Rb – Rc

5 Px = Ra + ((Rb – Rc)/2)a)

6 Px = Rb + ((Ra – Rc)/2)a)

7 Px = (Ra + Rb)/2

a) Shift right arithmetic operation

Selection-value 0 shall only be used for differential coding in the hierarchical mode of operation. Selections 1, 2 and 3 are
one-dimensional predictors and selections 4, 5, 6, and 7 are two-dimensional predictors.

The one-dimensional horizontal predictor (prediction sample Ra) is used for the first line of samples at the start of the scan
and at the beginning of each restart interval. The selected predictor is used for all other lines. The sample from the line
above (prediction sample Rb) is used at the start of each line, except for the first line. At the beginning of the first line and
at the beginning of each restart interval the prediction value of 2P – 1 is used, where P is the input precision.

If the point transformation parameter (see A.4) is non-zero, the prediction value at the beginning of the first lines and the
beginning of each restart interval is 2P – Pt – 1, where Pt is the value of the point transformation parameter.

Each prediction is calculated with full integer arithmetic precision, and without clamping of either underflow or overflow
beyond the input precision bounds. For example, if Ra and Rb are both 16-bit integers, the sum is a 17-bit integer. After
dividing the sum by 2 (predictor 7), the prediction is a 16-bit integer.

CCITT Rec. T.81 (1992 E) 133

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

For simplicity of implementation, the divide by 2 in the prediction selections 5 and 6 of Table H.1 is done by an
arithmetic-right-shift of the integer values.

The difference between the prediction value and the input is calculated modulo 216. In the decoder the difference is
decoded and added, modulo 216, to the prediction.

H.1.2.2 Huffman coding of the modulo difference

The Huffman coding procedures defined in Annex F for coding the DC coefficients are used to code the modulo 216

differences. The table for DC coding contained in Tables F.1 and F.6 is extended by one additional entry. No extra bits
are appended after SSSS = 16 is encoded. See Table H.2.

Table H.2 – Difference categories for lossless Huffman coding

SSSS Difference values

10 0

11 –1,1

12 –3,–2,2,3

13 –7..–4,4..7

14 –15..–8,8..15

15 –31..–16,16..31

16 –63..–32,32..63

17 –127..–64,64..127

18 –255..–128,128..255

19 –511..–256,256..511

10 –1 023..–512,512..1 023

11 –2 047..–1 024,1 024..2 047

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

15 –32 767..–16 384,16 384..32 767

16 32 768

H.1.2.3 Arithmetic coding of the modulo difference

The statistical model defined for the DC coefficient arithmetic coding model (see F.1.4.4.1) is generalized to a two-
dimensional form in which differences coded for the sample to the left and for the line above are used for conditioning.

H.1.2.3.1 Two-dimensional statistical model

The binary decisions are conditioned on the differences coded for the neighbouring samples immediately above and
immediately to the left from the same component. As in the coding of the DC coefficients, the differences are classified
into 5 categories: zero(0), small positive (+S), small negative (–S), large positive (+L), and large negative (–L). The two
independent difference categories combine to give 25 different conditioning states. Figure H.2 shows the two-dimensional
array of conditioning indices. For each of the 25 conditioning states probability estimates for four binary decisions are
kept.

At the beginning of the scan and each restart interval the conditioning derived from the line above is set to zero for the
first line of each component. At the start of each line, the difference to the left is set to zero for the purposes of calculating
the conditioning.

134 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

0

0 0 4 8 12 16

+S +L

+S

–S

+L

–L

20 24 28 32 36

40 44 48 52 56

60 64 68 72 76

80 84 88 92 96

TISO1690-93/d107

–S –L

Difference to left
(position a)

Difference above (position b)

Figure H.2 – 5 × 5 Conditioning array for two-dimensional statistical model

Figure H.2 [D107] = 7 cm = 273 %

H.1.2.3.2 Assignment of statistical bins to the DC binary decision tree

Each statistics area for lossless coding consists of a contiguous set of 158 statistics bins. The first 100 bins consist of
25 sets of four bins selected by a context-index S0. The value of S0 is given by L_Context(Da,Db), which provides a
value of 0, 4,..., 92 or 96, depending on the difference classifications of Da and Db (see H.1.2.3.1). The value for S0
provided by L_Context(Da,Db) is from the array in Figure H.2.

The remaining 58 bins consist of two sets of 29 bins, X1, ..., X15, M2, ..., M15, which are used to code magnitude
category decisions and magnitude bits. The value of X1 is given by X1_Context(Db), which provides a value of 100 when
Db is in the zero, small positive or small negative categories and a value of 129 when Db is in the large positive or large
negative categories.

The assignment of statistical bins to the binary decision tree used for coding the difference is given in Table H.3.

Table H.3 – Statistical model for lossless coding

Context-index Value Coding decision

S0 L_Context(Da,Db) V = 0

SS S0 + 1 Sign

SP S0 + 2 Sz < 1 if V > 0

SN S0 + 3 Sz < 1 if V < 0

X1 X1_Context(Db) Sz < 2

X2 X1 + 1 Sz < 4

X3 X1 + 2 Sz < 8

. . .

. . .

X15 X1 + 14 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

CCITT Rec. T.81 (1992 E) 135

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

H.1.2.3.3 Default conditioning bounds

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define-Arithmetic-Conditioning) marker segment, as described in Annex B.

H.1.2.3.4 Initial conditions for statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D.

H.2 Lossless decoder processes

Lossless decoders may employ either Huffman decoding or arithmetic decoding. They shall be capable of using up to four
tables in a scan. Lossless decoders shall be able to decode encoded image source data with any input precision from 2 to
16 bits per sample.

H.2.1 Lossless decoder control procedures

Subclause E.2 contains the decoder control procedures. In applying these procedures to the lossless decoder the data unit
is one sample.

When the decoder is reset in the restart interval control procedure (see E.2.4) the prediction is reset to the same value
used in the encoder (see H.1.2.1). If arithmetic coding is used, the statistics are also reset.

Restrictions on the restart interval are specified in H.1.1.

H.2.2 Coding model for lossless decoding

The predictor calculations defined in H.1.2 also apply to the lossless decoder processes.

The lossless decoders, decode the differences and add them, modulo 216, to the predictions to create the output. The
lossless decoders shall be able to interpret the point transform parameter, and if non-zero, multiply the output of the
lossless decoder by 2Pt.

In order to avoid repetition, detailed flow charts of the lossless decoding procedures are omitted.

136 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex J

Hierarchical mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the coding processes for the hierarchical mode of operation.

In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame. Such frames may
be followed by a sequence of differential frames. A non-differential frame shall be encoded or decoded using the
procedures defined in Annexes F, G and H. Differential frame procedures are defined in this annex.

The coding process for a hierarchical encoding containing DCT-based processes is defined as the highest numbered
process listed in Table J.1 which is used to code any non-differential DCT-based or differential DCT-based frame in the
compressed image data format. The coding process for a hierarchical encoding containing only lossless processes is
defined to be the process used for the non-differential frames.

Table J.1 – Coding processes for hierarchical mode

Process Non-differential frame specification

11 Extended sequential DCT, Huffman, 8-bit Annex F, process 2

12 Extended sequential DCT, arithmetic, 8-bit Annex F, process 3

13 Extended sequential DCT, Huffman, 12-bit Annex F, process 4

14 Extended sequential DCT, arithmetic, 12-bit Annex F, process 5

15 Spectral selection only, Huffman, 8-bit Annex G, process 1

16 Spectral selection only, arithmetic, 8-bit Annex G, process 2

17 Full progression, Huffman, 8-bit Annex G, process 3

18 Full progression, arithmetic, 8-bit Annex G, process 4

19 Spectral selection only, Huffman, 12-bit Annex G, process 5

10 Spectral selection only, arithmetic, 12-bit Annex G, process 6

11 Full progression, Huffman, 12-bit Annex G, process 7

12 Full progression, arithmetic, 12-bit Annex G, process 8

13 Lossless, Huffman, 2 through 16 bits Annex H, process 1

14 Lossless, arithmetic, 2 through 16 bits Annex H, process 2

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. It may
include EXP marker segments and differential frames which shall follow the initial non-differential frame. The frame
structure in hierarchical mode is identical to the frame structure in non-hierarchical mode.

Either all non-differential frames within an image shall be coded with DCT-based processes, or all non-differential frames
shall be coded with lossless processes. All frames within an image must use the same entropy coding procedure, either
Huffman or arithmetic, with the exception that non-differential frames coded with the baseline process may occur in the
same image with frames coded with arithmetic coding processes.

If the non-differential frames use DCT-based processes, all differential frames except the final frame for a component shall
use DCT-based processes. The final differential frame for each component may use a differential lossless process.

If the non-differential frames use lossless processes, all differential frames shall use differential lossless processes.

For each of the processes listed in Table J.1, the encoding processes are specified in J.1, and decoding processes are
specified in J.2.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the
above-named processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is
necessary only that an encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder
to be considered in compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for
decoders), as determined by the compliance tests specified in Part 2.

CCITT Rec. T.81 (1992 E) 137

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame followed by a
sequence of differential frames. A non-differential frame shall use the procedures defined in Annexes F, G, and H.
Differential frame procedures are defined in this annex.

J.1 Hierarchical encoding

J.1.1 Hierarchical control procedure for encoding an image

The control structure for encoding of an image using the hierarchical mode is given in Figure J.1.

TISO1700-93/d108

Encode_image

Encode_frame

Append EOI marker

Done

Yes

No

YesNo

[Generate down-sampled images]
Append SOI marker
[Append tables/miscellaneous]
Append DHP marker segment

Reconstruct components
using matching

decoder process

[Upsample reference components and
 append EXP marker segment]
Generate differential components
Encode_differential_frame
Reconstruct differential components
Reconstruct components

Differential frame
?

More frames
?

Figure J.1 – Hierarchical control procedure for encoding an image

Figure J.1 [D108] = 18 cm = 704 %

In Figure J.1 procedures in brackets shall be performed whenever the particular hierarchical encoding sequence being
followed requires them.

138 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

In the hierarchical mode the define-hierarchical-progression (DHP) marker segment shall be placed in the compressed
image data before the first start-of-frame. The DHP segment is used to signal the size of the image components of the
completed image. The syntax of the DHP segment is specified in Annex B.

The first frame for each component or group of components in a hierarchical process shall be encoded by a
non-differential frame. Differential frames shall then be used to encode the two’s complement differences between source
input components (possibly downsampled) and the reference components (possibly upsampled). The reference
components are reconstructed components created by previous frames in the hierarchical process. For either differential or
non-differential frames, reconstructions of the components shall be generated if needed as reference components for a
subsequent frame in the hierarchical process.

Resolution changes may occur between hierarchical frames in a hierarchical process. These changes occur if
downsampling filters are used to reduce the spatial resolution of some or all of the components of the source image. When
the resolution of a reference component does not match the resolution of the component input to a differential frame, an
upsampling filter shall be used to increase the spatial resolution of the reference component. The EXP marker segment
shall be added to the compressed image data before the start-of-frame whenever upsampling of a reference component is
required. No more than one EXP marker segment shall precede a given frame.

Any of the marker segments allowed before a start-of-frame for the encoding process selected may be used before either
non-differential or differential frames.

For 16-bit input precision (lossless encoder), the differential components which are input to a differential frame are
calculated modulo 216. The reconstructed components calculated from the reconstructed differential components are also
calculated modulo 216.

If a hierarchical encoding process uses a DCT encoding process for the first frame, all frames in the hierarchical process
except for the final frame for each component shall use the DCT encoding processes defined in either Annex F or Annex
G, or the modified DCT encoding processes defined in this annex. The final frame may use a modified lossless process
defined in this annex.

If a hierarchical encoding process uses a lossless encoding process for the first frame, all frames in the hierarchical process
shall use a lossless encoding process defined in Annex H, or a modified lossless process defined in this annex.

J.1.1.1 Downsampling filter

The downsampled components are generated using a downsampling filter that is not specified in this Specification. This
filter should, however, be consistent with the upsampling filter. An example of a downsampling filter is provided in K.5.

J.1.1.2 Upsampling filter

The upsampling filter increases the spatial resolution by a factor of two horizontally, vertically, or both. Bi-linear
interpolation is used for the upsampling filter, as illustrated in Figure J.2.

a x b a

x

b

TISO1710-93/d109

Figure J.2 – Diagram of sample positions for upsampling rules

Figure J.2 [D109] = 4 cm = 156 %

CCITT Rec. T.81 (1992 E) 139

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The rule for calculating the interpolated value is:

P (Ra Rb) / 2x = +

where Ra and Rb are sample values from adjacent positions a and b of the lower resolution image and Px is the
interpolated value. The division indicates truncation, not rounding. The left-most column of the upsampled image matches
the left-most column of the lower resolution image. The top line of the upsampled image matches the top line of the lower
resolution image. The right column and the bottom line of the lower resolution image are replicated to provide the values
required for the right column edge and bottom line interpolations. The upsampling process always doubles the line length
or the number of lines.

If both horizontal and vertical expansions are signalled, they are done in sequence – first the horizontal expansion and
then the vertical.

J.1.2 Control procedure for encoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the encoding of differential
frames, and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frames
differ from the frames of Annexes F, G, and H only at the coding model level.

J.1.3 Encoder coding models for differential frames

The coding models defined in Annexes F, G, and H are modified to allow them to be used for coding of two’s complement
differences.

J.1.3.1 Modifications to encoder DCT encoding models for differential frames

Two modifications are made to the DCT coding models to allow them to be used in differential frames. First, the FDCT of
the differential input is calculated without the level shift. Second, the DC coefficient of the DCT is coded directly –
without prediction.

J.1.3.2 Modifications to lossless encoding models for differential frames

One modification is made to the lossless coding models. The difference is coded directly – without prediction. The
prediction selection parameter in the scan header shall be set to zero. The point transform which may be applied to the
differential inputs is defined in Annex A.

J.1.4 Modifications to the entropy encoders for differential frames

The coding of two’s complement differences requires one extra bit of precision for the Huffman coding of AC coefficients.
The extension to Tables F.1 and F.7 is given in Table J.2.

Table J.2 – Modifications to table
of AC coefficient amplitude ranges

SSSS AC coefficients

15 –32 767..–16 384, 16 384..32 767

The arithmetic coding models are already defined for the precision needed in differential frames.

140 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

J.2 Hierarchical decoding

J.2.1 Hierarchical control procedure for decoding an image

The control structure for decoding an image using the hierarchical mode is given in Figure J.3.

TISO1720-93/d110

Decode_image

ErrorInterpret markers

Done

Decode_frame

Non-Hierarchical mode

No

Yes

Yes

No

Yes

Yes

No

No

[Upsample reference components]
Decode_differential_frame
Reconstruct_components

SOI marker
?

EOI marker
?

Hierarchical
?

Differential frame
?

Figure J.3 – Hierarchical control procedure for decoding an image

Figure J.3 [D110] = 18 cm = 704 %

CCITT Rec. T.81 (1992 E) 141

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The Interpret markers procedure shall decode the markers which may precede the SOF marker, continuing this decoding
until either a SOF or EOI marker is found. If the DHP marker is encountered before the first frame, a flag is set which
selects the hierarchical decoder at the “hierarchical?” decision point. In addition to the DHP marker (which shall precede
any SOF) and the EXP marker (which shall precede any differential SOF requiring resolution changes in the reference
components), any other markers which may precede a SOF shall be interpreted to the extent required for decoding of the
compressed image data.

If a differential SOF marker is found, the differential frame path is followed. If the EXP was encountered in the Interpret
markers procedure, the reference components for the frame shall be upsampled as required by the parameters in the EXP
segment. The upsampling procedure described in J.1.1.2 shall be followed.

The Decode_differential_frame procedure generates a set of differential components. These differential components shall
be added, modulo 216, to the upsampled reference components in the Reconstruct_components procedure. This creates a
new set of reference components which shall be used when required in subsequent frames of the hierarchical process.

J.2.2 Control procedure for decoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the decoding of differential
frames and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frame
differs from the frames of Annexes F, G, and H only at the decoder coding model level.

J.2.3 Decoder coding models for differential frames

The decoding models described in Annexes F, G, and H are modified to allow them to be used for decoding of two’s
complement differential components.

J.2.3.1 Modifications to the differential frame decoder DCT coding model

Two modifications are made to the decoder DCT coding models to allow them to code differential frames. First, the IDCT
of the differential output is calculated without the level shift. Second, the DC coefficient of the DCT is decoded directly –
without prediction.

J.2.3.2 Modifications to the differential frame decoder lossless coding model

One modification is made to the lossless decoder coding model. The difference is decoded directly – without prediction. If
the point transformation parameter in the scan header is not zero, the point transform, defined in Annex A, shall be
applied to the differential output.

J.2.4 Modifications to the entropy decoders for differential frames

The decoding of two’s complement differences requires one extra bit of precision in the Huffman code table. This is
described in J.1.4. The arithmetic coding models are already defined for the precision needed in differential frames.

142 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex K

Examples and guidelines

(This annex does not form an integral part of this Recommendation | International Standard)

This annex provides examples of various tables, procedures, and other guidelines.

K.1 Quantization tables for luminance and chrominance components

Two examples of quantization tables are given in Tables K.1 and K.2. These are based on psychovisual thresholding and
are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as
examples only and are not necessarily suitable for any particular application. These quantization values have been used
with good results on 8-bit per sample luminance and chrominance images of the format illustrated in Figure 13. Note that
these quantization values are appropriate for the DCT normalization defined in A.3.3.

If these quantization values are divided by 2, the resulting reconstructed image is usually nearly indistinguishable from the
source image.

Table K.1 – Luminance quantization table

16 11 10 16 124 140 151 161

12 12 14 19 126 158 160 155

14 13 16 24 140 157 169 156

14 17 22 29 151 187 180 162

18 22 37 56 168 109 103 177

24 35 55 64 181 104 113 192

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 199

Table K.2 – Chrominance quantization table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

CCITT Rec. T.81 (1992 E) 143

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

K.2 A procedure for generating the lists which specify a Huffman code table

A Huffman table is generated from a collection of statistics in two steps. The first step is the generation of the list of
lengths and values which are in accord with the rules for generating the Huffman code tables. The second step is the
generation of the Huffman code table from the list of lengths and values.

The first step, the topic of this section, is needed only for custom Huffman table generation and is done only in the
encoder. In this step the statistics are used to create a table associating each value to be coded with the size (in bits) of the
corresponding Huffman code. This table is sorted by code size.

A procedure for creating a Huffman table for a set of up to 256 symbols is shown in Figure K.1. Three vectors are defined
for this procedure:

FREQ(V) Frequency of occurrence of symbol V
CODESIZE(V) Code size of symbol V
OTHERS(V) Index to next symbol in chain of all symbols in current branch of code tree

where V goes from 0 to 256.

Before starting the procedure, the values of FREQ are collected for V = 0 to 255 and the FREQ value for V = 256 is set to
1 to reserve one code point. FREQ values for unused symbols are defined to be zero. In addition, the entries in
CODESIZE are all set to 0, and the indices in OTHERS are set to –1, the value which terminates a chain of indices.
Reserving one code point guarantees that no code word can ever be all “1” bits.

The search for the entry with the least value of FREQ(V) selects the largest value of V with the least value of FREQ(V)
greater than zero.

The procedure “Find V1 for least value of FREQ(V1) > 0” always selects the value with the largest value of V1 when
more than one V1 with the same frequency occurs. The reserved code point is then guaranteed to be in the longest code
word category.

144 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1730-93/d111

Code_size

Done

V1 = OTHERS(V1)

V2 = OTHERS(V2)

OTHERS(V1) = V2

YesNo

No

Yes

No

Yes

CODESIZE(V1) =
CODESIZE(V1) + 1

CODESIZE(V2) =
CODESIZE(V2) + 1

Find V1 for least value of
 FREQ(V1) > 0
Find V2 for next least value
 of FREQ(V2) > 0

FREQ(V1) =
 FREQ(V1) +
 FREQ(V2)
FREQ(V2) = 0

V2 exists
?

OTHERS(V1) = –1
?

OTHERS(V2) = –1
?

Figure K.1 – Procedure to find Huffman code sizes

Figure K.1 [D111] = 21 cm = 821 % (PAGE PLEINE)

CCITT Rec. T.81 (1992 E) 145

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Once the code lengths for each symbol have been obtained, the number of codes of each length is obtained using the
procedure in Figure K.2. The count for each size is contained in the list, BITS. The counts in BITS are zero at the start of
the procedure. The procedure assumes that the probabilities are large enough that code lengths greater than 32 bits never
occur. Note that until the final Adjust_BITS procedure is complete, BITS may have more than the 16 entries required in
the table specification (see Annex C).

TISO1740-93/d112

Count_BITS

I = 0

I = I + 1

Adjust_BITS

Done

Yes

No

Yes

No

I = 257

BITS(CODESIZE(I)) =
BITS(CODESIZE(I)) + 1

CODESIZE(I) = 0
?

Figure K.2 – Procedure to find the number of codes of each size

Figure K.2 [D112] = 16 cm = 625 %

146 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Figure K.3 gives the procedure for adjusting the BITS list so that no code is longer than 16 bits. Since symbols are paired
for the longest Huffman code, the symbols are removed from this length category two at a time. The prefix for the pair
(which is one bit shorter) is allocated to one of the pair; then (skipping the BITS entry for that prefix length) a code word
from the next shortest non-zero BITS entry is converted into a prefix for two code words one bit longer. After the BITS
list is reduced to a maximum code length of 16 bits, the last step removes the reserved code point from the code length
count.

TISO1750-93/d113

Adjust_BITS

I = 32

Yes

No

J = I – 1 I = I – 1

J = J – 1

I = I – 1

Done

Yes No

No

No

Yes

Yes

BITS(I) = BITS(I) – 1

BITS(I) = BITS(I) – 2
BITS(I – 1) = BITS(I – 1) + 1
BITS(J + 1) = BITS(J + 1) + 2
BITS(J) = BITS (J) – 1

BITS(I) > 0
?

BITS(J) > 0
?

BITS(I) = 0
?

I = 16
?

Figure K.3 – Procedure for limiting code lengths to 16 bits

Figure K.3 [D113] = 20 cm = 782 %

CCITT Rec. T.81 (1992 E) 147

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

The input values are sorted according to code size as shown in Figure K.4. HUFFVAL is the list containing the input
values associated with each code word, in order of increasing code length.

At this point, the list of code lengths (BITS) and the list of values (HUFFVAL) can be used to generate the code tables.
These procedures are described in Annex C.

TISO1760-93/d114

Sort_input

J = 0

J = J + 1

I = I + 1

Done

Yes

No

Yes

No

No

Yes

HUFFVAL(K) = J
K = K + 1

I = 1
K = 0

CODESIZE(J) = I
?

J > 255
?

I > 32
?

Figure K.4 – Sorting of input values according to code size

Figure K.4 [D114] = 20.5 cm = 801 %

K.3 Typical Huffman tables for 8-bit precision luminance and chrominance

Huffman table-specification syntax is specified in B.2.4.2.

148 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

K.3.1 Typical Huffman tables for the DC coefficient differences

Tables K.3 and K.4 give Huffman tables for the DC coefficient differences which have been developed from the average
statistics of a large set of video images with 8-bit precision. Table K.3 is appropriate for luminance components and Table
K.4 is appropriate for chrominance components. Although there are no default tables, these tables may prove to be useful
for many applications.

Table K.3 – Table for luminance DC coefficient differences

Category Code length Code word

10 2 000

11 3 010

12 3 011

13 3 100

14 3 101

15 3 110

16 4 1110

17 5 11110

18 6 111110

19 7 1111110

10 8 11111110

11 9 111111110

Table K.4 – Table for chrominance DC coefficient differences

Category Code length Code word

10 12 000

11 12 01

12 12 10

13 13 110

14 14 1110

15 15 11110

16 16 111110

17 17 1111110

18 18 11111110

19 19 111111110

10 10 1111111110

11 11 11111111110

K.3.2 Typical Huffman tables for the AC coefficients

Tables K.5 and K.6 give Huffman tables for the AC coefficients which have been developed from the average statistics of
a large set of images with 8-bit precision. Table K.5 is appropriate for luminance components and Table K.6 is appropriate
for chrominance components. Although there are no default tables, these tables may prove to be useful for many
applications.

CCITT Rec. T.81 (1992 E) 149

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.5 – Table for luminance AC coefficients (sheet 1 of 4)

Run/Size Code length Code word

0/0 (EOB) 14 1010

0/1 12 00

0/2 12 01

0/3 13 100

0/4 14 1011

0/5 15 11010

0/6 17 1111000

0/7 18 11111000

0/8 10 1111110110

0/9 16 1111111110000010

0/A 16 1111111110000011

1/1 14 1100

1/2 15 11011

1/3 17 1111001

1/4 19 111110110

1/5 11 11111110110

1/6 16 1111111110000100

1/7 16 1111111110000101

1/8 16 1111111110000110

1/9 16 1111111110000111

1/A 16 1111111110001000

2/1 15 11100

2/2 18 11111001

2/3 10 1111110111

2/4 12 111111110100

2/5 16 1111111110001001

2/6 16 1111111110001010

2/7 16 1111111110001011

2/8 16 1111111110001100

2/9 16 1111111110001101

2/A 16 1111111110001110

3/1 16 111010

3/2 19 111110111

3/3 12 111111110101

3/4 16 1111111110001111

3/5 16 1111111110010000

3/6 16 1111111110010001

3/7 16 1111111110010010

3/8 16 1111111110010011

3/9 16 1111111110010100

3/A 16 1111111110010101

150 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.5 (sheet 2 of 4)

Run/Size Code length Code word

4/1 16 111011

4/2 10 1111111000

4/3 16 1111111110010110

4/4 16 1111111110010111

4/5 16 1111111110011000

4/6 16 1111111110011001

4/7 16 1111111110011010

4/8 16 1111111110011011

4/9 16 1111111110011100

4/A 16 1111111110011101

5/1 17 1111010

5/2 11 11111110111

5/3 16 1111111110011110

5/4 16 1111111110011111

5/5 16 1111111110100000

5/6 16 1111111110100001

5/7 16 1111111110100010

5/8 16 1111111110100011

5/9 16 1111111110100100

5/A 16 1111111110100101

6/1 17 1111011

6/2 12 111111110110

6/3 16 1111111110100110

6/4 16 1111111110100111

6/5 16 1111111110101000

6/6 16 1111111110101001

6/7 16 1111111110101010

6/8 16 1111111110101011

6/9 16 1111111110101100

6/A 16 1111111110101101

7/1 18 11111010

7/2 12 111111110111

7/3 16 1111111110101110

7/4 16 1111111110101111

7/5 16 1111111110110000

7/6 16 1111111110110001

7/7 16 1111111110110010

7/8 16 1111111110110011

7/9 16 1111111110110100

7/A 16 1111111110110101

8/1 19 111111000

8/2 15 111111111000000

CCITT Rec. T.81 (1992 E) 151

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.5 (sheet 3 of 4)

Run/Size Code length Code word

8/3 16 1111111110110110

8/4 16 1111111110110111

8/5 16 1111111110111000

8/6 16 1111111110111001

8/7 16 1111111110111010

8/8 16 1111111110111011

8/9 16 1111111110111100

8/A 16 1111111110111101

9/1 19 111111001

9/2 16 1111111110111110

9/3 16 1111111110111111

9/4 16 1111111111000000

9/5 16 1111111111000001

9/6 16 1111111111000010

9/7 16 1111111111000011

9/8 16 1111111111000100

9/9 16 1111111111000101

9/A 16 1111111111000110

A/1 19 111111010

A/2 16 1111111111000111

A/3 16 1111111111001000

A/4 16 1111111111001001

A/5 16 1111111111001010

A/6 16 1111111111001011

A/7 16 1111111111001100

A/8 16 1111111111001101

A/9 16 1111111111001110

A/A 16 1111111111001111

B/1 10 1111111001

B/2 16 1111111111010000

B/3 16 1111111111010001

B/4 16 1111111111010010

B/5 16 1111111111010011

B/6 16 1111111111010100

B/7 16 1111111111010101

B/8 16 1111111111010110

B/9 16 1111111111010111

B/A 16 1111111111011000

C/1 10 1111111010

C/2 16 1111111111011001

C/3 16 1111111111011010

C/4 16 1111111111011011

152 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.5 (sheet 4 of 4)

Run/Size Code length Code word

C/5 16 1111111111011100

C/6 16 1111111111011101

C/7 16 1111111111011110

C/8 16 1111111111011111

C/9 16 1111111111100000

C/A 16 1111111111100001

D/1 11 11111111000

D/2 16 1111111111100010

D/3 16 1111111111100011

D/4 16 1111111111100100

D/5 16 1111111111100101

D/6 16 1111111111100110

D/7 16 1111111111100111

D/8 16 1111111111101000

D/9 16 1111111111101001

D/A 16 1111111111101010

E/1 16 1111111111101011

E/2 16 1111111111101100

E/3 16 1111111111101101

E/4 16 1111111111101110

E/5 16 1111111111101111

E/6 16 1111111111110000

E/7 16 1111111111110001

E/8 16 1111111111110010

E/9 16 1111111111110011

E/A 16 1111111111110100

F/0 (ZRL) 11 11111111001

F/1 16 1111111111110101

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110

CCITT Rec. T.81 (1992 E) 153

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.6 – Table for chrominance AC coefficients (sheet 1 of 4)

Run/Size Code length Code word

0/0 (EOB) 12 00

0/1 12 01

0/2 13 100

0/3 14 1010

0/4 15 11000

0/5 15 11001

0/6 16 111000

0/7 17 1111000

0/8 19 111110100

0/9 10 1111110110

0/A 12 111111110100

1/1 14 1011

1/2 16 111001

1/3 18 11110110

1/4 19 111110101

1/5 11 11111110110

1/6 12 111111110101

1/7 16 1111111110001000

1/8 16 1111111110001001

1/9 16 1111111110001010

1/A 16 1111111110001011

2/1 15 11010

2/2 18 11110111

2/3 10 1111110111

2/4 12 111111110110

2/5 15 111111111000010

2/6 16 1111111110001100

2/7 16 1111111110001101

2/8 16 1111111110001110

2/9 16 1111111110001111

2/A 16 1111111110010000

3/1 15 11011

3/2 18 11111000

3/3 10 1111111000

3/4 12 111111110111

3/5 16 1111111110010001

3/6 16 1111111110010010

3/7 16 1111111110010011

3/8 16 1111111110010100

3/9 16 1111111110010101

3/A 16 1111111110010110

4/1 16 111010

154 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.6 (sheet 2 of 4)

Run/Size Code length Code word

4/2 19 111110110

4/3 16 1111111110010111

4/4 16 1111111110011000

4/5 16 1111111110011001

4/6 16 1111111110011010

4/7 16 1111111110011011

4/8 16 1111111110011100

4/9 16 1111111110011101

4/A 16 1111111110011110

5/1 16 111011

5/2 10 1111111001

5/3 16 1111111110011111

5/4 16 1111111110100000

5/5 16 1111111110100001

5/6 16 1111111110100010

5/7 16 1111111110100011

5/8 16 1111111110100100

5/9 16 1111111110100101

5/A 16 1111111110100110

6/1 17 1111001

6/2 11 11111110111

6/3 16 1111111110100111

6/4 16 1111111110101000

6/5 16 1111111110101001

6/6 16 1111111110101010

6/7 16 1111111110101011

6/8 16 1111111110101100

6/9 16 1111111110101101

6/A 16 1111111110101110

7/1 17 1111010

7/2 11 11111111000

7/3 16 1111111110101111

7/4 16 1111111110110000

7/5 16 1111111110110001

7/6 16 1111111110110010

7/7 16 1111111110110011

7/8 16 1111111110110100

7/9 16 1111111110110101

7/A 16 1111111110110110

8/1 18 11111001

8/2 16 1111111110110111

8/3 16 1111111110111000

CCITT Rec. T.81 (1992 E) 155

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.6 (sheet 3 of 4)

Run/Size Code length Code word

8/4 16 1111111110111001

8/5 16 1111111110111010

8/6 16 1111111110111011

8/7 16 1111111110111100

8/8 16 1111111110111101

8/9 16 1111111110111110

8/A 16 1111111110111111

9/1 19 111110111

9/2 16 1111111111000000

9/3 16 1111111111000001

9/4 16 1111111111000010

9/5 16 1111111111000011

9/6 16 1111111111000100

9/7 16 1111111111000101

9/8 16 1111111111000110

9/9 16 1111111111000111

9/A 16 1111111111001000

A/1 19 111111000

A/2 16 1111111111001001

A/3 16 1111111111001010

A/4 16 1111111111001011

A/5 16 1111111111001100

A/6 16 1111111111001101

A/7 16 1111111111001110

A/8 16 1111111111001111

A/9 16 1111111111010000

A/A 16 1111111111010001

B/1 19 111111001

B/2 16 1111111111010010

B/3 16 1111111111010011

B/4 16 1111111111010100

B/5 16 1111111111010101

B/6 16 1111111111010110

B/7 16 1111111111010111

B/8 16 1111111111011000

B/9 16 1111111111011001

B/A 16 1111111111011010

C/1 19 111111010

C/2 16 1111111111011011

C/3 16 1111111111011100

C/4 16 1111111111011101

C/5 16 1111111111011110

156 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.6 (sheet 4 of 4)

Run/Size Code length Code word

C/6 16 1111111111011111

C/7 16 1111111111100000

C/8 16 1111111111100001

C/9 16 1111111111100010

C/A 16 1111111111100011

D/1 11 11111111001

D/2 16 1111111111100100

D/3 16 1111111111100101

D/4 16 1111111111100110

D/5 16 1111111111100111

D/6 16 1111111111101000

D/7 16 1111111111101001

D/8 16 1111111111101010

D/9 16 1111111111101011

D/A 16 1111111111101100

E/1 14 11111111100000

E/2 16 1111111111101101

E/3 16 1111111111101110

E/4 16 1111111111101111

E/5 16 1111111111110000

E/6 16 1111111111110001

E/7 16 1111111111110010

E/8 16 1111111111110011

E/9 16 1111111111110100

E/A 16 1111111111110101

F/0 (ZRL) 10 1111111010

F/1 15 111111111000011

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110

CCITT Rec. T.81 (1992 E) 157

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

K.3.3 Huffman table-specification examples

K.3.3.1 Specification of typical tables for DC difference coding

A set of typical tables for DC component coding is given in K.3.1. The specification of these tables is as follows:

For Table K.3 (for luminance DC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00’

The set of values following this list is

X’00 01 02 03 04 05 06 07 08 09 0A 0B’

For Table K.4 (for chrominance DC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 03 01 01 01 01 01 01 01 01 01 00 00 00 00 00’

The set of values following this list is

X’00 01 02 03 04 05 06 07 08 09 0A 0B’

K.3.3.2 Specification of typical tables for AC coefficient coding

A set of typical tables for AC component coding is given in K.3.2. The specification of these tables is as follows:

For Table K.5 (for luminance AC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 02 01 03 03 02 04 03 05 05 04 04 00 00 01 7D’

The set of values which follows this list is

X’01 02 03 00 04 11 05 12 21 31 41 06 13 51 61 07

X’ 22 71 14 32 81 91 A1 08 23 42 B1 C1 15 52 D1 F0

X’ 24 33 62 72 82 09 0A 16 17 18 19 1A 25 26 27 28

X’ 29 2A 34 35 36 37 38 39 3A 43 44 45 46 47 48 49

X’ 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67 68 69

X’ 6A 73 74 75 76 77 78 79 7A 83 84 85 86 87 88 89

X’ 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6 A7

X’ A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4 C5

X’ C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E1 E2

X’ E3 E4 E5 E6 E7 E8 E9 EA F1 F2 F3 F4 F5 F6 F7 F8

X’ F9 FA’

158 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

For Table K.6 (for chrominance AC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 02 01 02 04 04 03 04 07 05 04 04 00 01 02 77’

The set of values which follows this list is:

X’00 01 02 03 11 04 05 21 31 06 12 41 51 07 61 71

X’ 13 22 32 81 08 14 42 91 A1 B1 C1 09 23 33 52 F0

X'15 62 72 D1 0A 16 24 34 E1 25 F1 17 18 19 1A 26

X'27 28 29 2A 35 36 37 38 39 3A 43 44 45 46 47 48

X'49 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67 68

X'69 6A 73 74 75 76 77 78 79 7A 82 83 84 85 86 87

X'88 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5

X'A6 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3

X'C4 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA

X'E2 E3 E4 E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8

X'F9 FA’

K.4 Additional information on arithmetic coding

K.4.1 Test sequence for a small data set for the arithmetic coder

The following 256-bit test sequence (in hexadecimal form) is structured to test many of the encoder and decoder paths:

X’00020051 000000C0 0352872A AAAAAAAA 82C02000 FCD79EF6 74EAABF7 697EE74C’

Tables K.7 and K.8 provide a symbol-by-symbol list of the arithmetic encoder and decoder operation. In these tables the
event count, EC, is listed first, followed by the value of Qe used in encoding and decoding that event. The decision D to
be encoded (and decoded) is listed next. The column labeled MPS contains the sense of the MPS, and if it is followed by
a CE (in the “CX” column), the conditional MPS/LPS exchange occurs when encoding and decoding the decision (see
Figures D.3, D.4 and D.17). The contents of the A and C registers are the values before the event is encoded and decoded.
ST is the number of X’FF’ bytes stacked in the encoder waiting for a resolution of the carry-over. Note that the A register
is always greater than X’7FFF’. (The starting value has an implied value of X’10000’.)

In the encoder test, the code bytes (B) are listed if they were completed during the coding of the preceding event. If
additional bytes follow, they were also completed during the coding of the preceding event. If a byte is listed in the
Bx column, the preceding byte in column B was modified by a carry-over.

In the decoder the code bytes are listed if they were placed in the code register just prior to the event EC.

For this file the coded bit count is 240, including the overhead to flush the final data from the C register. When the
marker X’FFD9’ is appended, a total of 256 bits are output. The actual compressed data sequence for the encoder is (in
hexadecimal form)

X’655B5144 F7969D51 7855BFFF 00FC5184 C7CEF939 00287D46 708ECBC0 F6FFD900’

CCITT Rec. T.81 (1992 E) 159

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 1 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

11 0 0 5A1D 0000 00000000 11 0

12 0 0 CE 5A1D A5E3 00000000 11 0

13 0 0 2586 B43A 0000978C 10 0

14 0 0 2586 8EB4 0000978C 10 0

15 0 0 1114 D25C 00012F18 19 0

16 0 0 1114 C148 00012F18 19 0

17 0 0 1114 B034 00012F18 19 0

18 0 0 1114 9F20 00012F18 19 0

19 0 0 1114 8E0C 00012F18 19 0

10 0 0 080B F9F0 00025E30 18 0

11 0 0 080B F1E5 00025E30 18 0

12 0 0 080B E9DA 00025E30 18 0

13 0 0 080B E1CF 00025E30 18 0

14 0 0 080B D9C4 00025E30 18 0

15 1 0 080B D1B9 00025E30 18 0

16 0 0 17B9 80B0 00327DE0 14 0

17 0 0 1182 D1EE 0064FBC0 13 0

18 0 0 1182 C06C 0064FBC0 13 0

19 0 0 1182 AEEA 0064FBC0 13 0

20 0 0 1182 9D68 0064FBC0 13 0

21 0 0 1182 8BE6 0064FBC0 13 0

22 0 0 0CEF F4C8 00C9F780 12 0

23 0 0 0CEF E7D9 00C9F780 12 0

24 0 0 0CEF DAEA 00C9F780 12 0

25 0 0 0CEF CDFB 00C9F780 12 0

26 1 0 0CEF C10C 00C9F780 12 0

27 0 0 1518 CEF0 000AB9D0 16 0 65

28 1 0 1518 B9D8 000AB9D0 16 0

29 0 0 1AA9 A8C0 005AF480 13 0

30 0 0 1AA9 8E17 005AF480 13 0

31 0 0 174E E6DC 00B5E900 12 0

32 1 0 174E CF8E 00B5E900 12 0

33 0 0 1AA9 BA70 00050A00 17 0 5B

34 0 0 1AA9 9FC7 00050A00 17 0

35 0 0 1AA9 851E 00050A00 17 0

36 0 0 174E D4EA 000A1400 16 0

160 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 2 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

37 0 0 174E BD9C 000A1400 16 0

38 0 0 174E A64E 000A1400 16 0

39 0 0 174E 8F00 000A1400 16 0

40 0 0 1424 EF64 00142800 15 0

41 0 0 1424 DB40 00142800 5 0

42 0 0 1424 C71C 00142800 5 0

43 0 0 1424 B2F8 00142800 5 0

44 0 0 1424 9ED4 00142800 5 0

45 0 0 1424 8AB0 00142800 5 0

46 0 0 119C ED18 00285000 4 0

47 0 0 119C DB7C 00285000 4 0

48 0 0 119C C9E0 00285000 4 0

49 0 0 119C B844 00285000 4 0

50 0 0 119C A6A8 00285000 4 0

51 0 0 119C 950C 00285000 4 0

52 0 0 119C 8370 00285000 4 0

53 0 0 0F6B E3A8 0050A000 3 0

54 0 0 0F6B D43D 0050A000 3 0

55 0 0 0F6B C4D2 0050A000 3 0

56 0 0 0F6B B567 0050A000 3 0

57 1 0 0F6B A5FC 0050A000 3 0

58 1 0 1424 F6B0 00036910 7 0 51

59 0 0 1AA9 A120 00225CE0 4 0

60 0 0 1AA9 8677 00225CE0 4 0

61 0 0 174E D79C 0044B9C0 3 0

62 0 0 174E C04E 0044B9C0 3 0

63 0 0 174E A900 0044B9C0 3 0

64 0 0 174E 91B2 0044B9C0 3 0

65 0 0 1424 F4C8 00897380 2 0

66 0 0 1424 E0A4 00897380 2 0

67 0 0 1424 CC80 00897380 2 0

68 0 0 1424 B85C 00897380 2 0

69 0 0 1424 A438 00897380 2 0

70 0 0 1424 9014 00897380 2 0

71 1 0 119C F7E0 0112E700 1 0

72 1 0 1424 8CE0 001E6A20 6 0 44

73 0 0 1AA9 A120 00F716E0 3 0

CCITT Rec. T.81 (1992 E) 161

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 3 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

174 1 0 1AA9 8677 00F716E0 3 0

175 0 0 2516 D548 00041570 8 0 F7

176 1 0 2516 B032 00041570 8 0

177 0 0 299A 9458 00128230 6 0

178 0 0 2516 D57C 00250460 5 0

179 1 0 2516 B066 00250460 5 0

180 0 0 299A 9458 00963EC0 3 0

181 1 0 2516 D57C 012C7D80 2 0

182 0 0 299A 9458 0004B798 8 0 96

183 0 0 2516 D57C 00096F30 7 0

184 0 0 2516 B066 00096F30 7 0

185 0 0 2516 8B50 00096F30 7 0

186 1 0 1EDF CC74 0012DE60 6 0

187 1 0 2516 F6F8 009C5FA8 3 0

188 1 0 299A 9458 0274C628 1 0

189 0 0 32B4 A668 0004C398 7 0 9D

190 0 0 2E17 E768 00098730 6 0

191 1 0 2E17 B951 00098730 6 0

192 0 0 32B4 B85C 002849A8 4 0

193 1 0 32B4 85A8 002849A8 4 0

194 0 0 3C3D CAD0 00A27270 2 0

195 1 0 3C3D 8E93 00A27270 2 0

196 0 0 415E F0F4 00031318 8 0 51

197 1 0 415E AF96 00031318 8 0

198 0 0 CE 4639 82BC 000702A0 7 0

199 1 0 415E 8C72 000E7E46 6 0

100 0 0 CE 4639 82BC 001D92B4 5 0

101 1 0 415E 8C72 003B9E6E 4 0

102 0 0 CE 4639 82BC 0077D304 3 0

103 1 0 415E 8C72 00F01F0E 2 0

104 0 0 CE 4639 82BC 01E0D444 1 0

105 1 0 415E 8C72 0002218E 8 0 78

106 0 0 CE 4639 82BC 0004D944 7 0

107 1 0 415E 8C72 000A2B8E 6 0

108 0 0 CE 4639 82BC 0014ED44 5 0

109 1 0 415E 8C72 002A538E 4 0

110 0 0 CE 4639 82BC 00553D44 3 0

162 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 4 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

111 1 0 415E 8C72 00AAF38E 2 0

112 0 0 CE 4639 82BC 01567D44 1 0

113 1 0 415E 8C72 0005738E 8 0 55

114 0 0 CE 4639 82BC 000B7D44 7 0

115 1 0 415E 8C72 0017738E 6 0

116 0 0 CE 4639 82BC 002F7D44 5 0

117 1 0 415E 8C72 005F738E 4 0

118 0 0 CE 4639 82BC 00BF7D44 3 0

119 1 0 415E 8C72 017F738E 2 0

120 0 0 CE 4639 82BC 02FF7D44 1 0

121 1 0 415E 8C72 0007738E 8 0 BF

122 0 0 CE 4639 82BC 000F7D44 7 0

123 1 0 415E 8C72 001F738E 6 0

124 0 0 CE 4639 82BC 003F7D44 5 0

125 1 0 415E 8C72 007F738E 4 0

126 0 0 CE 4639 82BC 00FF7D44 3 0

127 1 0 415E 8C72 01FF738E 2 0

128 0 0 CE 4639 82BC 03FF7D44 1 0

129 1 0 415E 8C72 0007738E 8 1

130 0 0 CE 4639 82BC 000F7D44 7 1

131 0 0 415E 8C72 001F738E 6 1

132 0 0 3C3D 9628 003EE71C 5 1

133 0 0 375E B3D6 007DCE38 4 1

134 0 0 32B4 F8F0 00FB9C70 3 1

135 1 0 32B4 C63C 00FB9C70 3 1

136 0 0 3C3D CAD0 03F0BFE0 1 1

137 1 0 3C3D 8E93 03F0BFE0 1 1

138 1 0 415E F0F4 000448D8 7 0 FF00FC

139 0 0 CE 4639 82BC 0009F0DC 6 0

140 0 0 415E 8C72 00145ABE 5 0

141 0 0 3C3D 9628 0028B57C 4 0

142 0 0 375E B3D6 00516AF8 3 0

143 0 0 32B4 F8F0 00A2D5F0 2 0

144 0 0 32B4 C63C 00A2D5F0 2 0

145 0 0 32B4 9388 00A2D5F0 2 0

146 0 0 2E17 C1A8 0145ABE0 1 0

CCITT Rec. T.81 (1992 E) 163

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 5 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

147 1 0 2E17 9391 0145ABE0 1 0

148 0 0 32B4 B85C 00084568 7 0 51

149 0 0 32B4 85A8 00084568 7 0

150 0 0 2E17 A5E8 00108AD0 6 0

151 0 0 299A EFA2 002115A0 5 0

152 0 0 299A C608 002115A0 5 0

153 0 0 299A 9C6E 002115A0 5 0

154 0 0 2516 E5A8 00422B40 4 0

155 0 0 2516 C092 00422B40 4 0

156 0 0 2516 9B7C 00422B40 4 0

157 0 0 1EDF ECCC 00845680 3 0

158 0 0 1EDF CDED 00845680 3 0

159 0 0 1EDF AF0E 00845680 3 0

160 0 0 1EDF 902F 00845680 3 0

161 1 0 1AA9 E2A0 0108AD00 2 0

162 1 0 2516 D548 000BA7B8 7 0 84

163 1 0 299A 9458 00315FA8 5 0

164 1 0 32B4 A668 00C72998 3 0

165 1 0 3C3D CAD0 031E7530 1 0

166 1 0 415E F0F4 000C0F0C 7 0 C7

167 0 0 CE 4639 82BC 00197D44 6 0

168 0 0 415E 8C72 0033738E 5 0

169 1 0 3C3D 9628 0066E71C 4 0

170 1 0 415E F0F4 019D041C 2 0

171 0 0 CE 4639 82BC 033B6764 1 0

172 1 0 415E 8C72 000747CE 8 0 CE

173 0 0 CE 4639 82BC 000F25C4 7 0

174 1 0 415E 8C72 001EC48E 6 0

175 1 0 CE 4639 82BC 003E1F44 5 0

176 1 0 4B85 F20C 00F87D10 3 0

177 1 0 CE 504F 970A 01F2472E 2 0

178 0 0 CE 5522 8D76 03E48E5C 1 0

179 0 0 504F AA44 00018D60 8 0 F9

180 1 0 4B85 B3EA 00031AC0 7 0

181 1 0 CE 504F 970A 0007064A 6 0

182 1 0 CE 5522 8D76 000E0C94 5 0

183 1 0 59EB E150 00383250 3 0

164 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 6 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

184 0 1 59EB B3D6 0071736A 2 0

185 1 0 59EB B3D6 00E39AAA 1 0

186 1 1 59EB B3D6 0007E92A 8 0 38

187 1 1 5522 B3D6 000FD254 7 0

188 1 1 504F BD68 001FA4A8 6 0

189 0 1 4B85 DA32 003F4950 5 0

190 1 1 CE 504F 970A 007FAFFA 4 0

191 1 1 4B85 A09E 00FFED6A 3 0

192 0 1 4639 AA32 01FFDAD4 2 0

193 0 1 CE 4B85 8C72 04007D9A 1 0

194 1 1 CE 504F 81DA 0000FB34 8 0 39 00

195 1 1 4B85 A09E 0002597E 7 0

196 1 1 4639 AA32 0004B2FC 6 0

197 0 1 415E C7F2 000965F8 5 0

198 1 1 CE 4639 82BC 0013D918 4 0

199 0 1 415E 8C72 00282B36 3 0

200 0 1 CE 4639 82BC 0050EC94 2 0

201 1 1 4B85 F20C 0003B250 8 0 28

202 1 1 4B85 A687 0003B250 8 0

203 1 1 4639 B604 000764A0 7 0

204 0 1 415E DF96 000EC940 6 0

205 1 1 CE 4639 82BC 001ECEF0 5 0

206 0 1 415E 8C72 003E16E6 4 0

207 1 1 CE 4639 82BC 007CC3F4 3 0

208 0 1 415E 8C72 00FA00EE 2 0

209 1 1 CE 4639 82BC 01F49804 1 0

210 0 1 415E 8C72 0001A90E 8 0 7D

211 1 1 CE 4639 82BC 0003E844 7 0

212 0 1 415E 8C72 0008498E 6 0

213 1 1 CE 4639 82BC 00112944 5 0

214 0 1 415E 8C72 0022CB8E 4 0

215 1 1 CE 4639 82BC 00462D44 3 0

216 1 1 415E 8C72 008CD38E 2 0

217 1 1 3C3D 9628 0119A71C 1 0

218 1 1 375E B3D6 00034E38 8 0 46

219 1 1 32B4 F8F0 00069C70 7 0

220 1 1 32B4 C63C 00069C70 7 0

CCITT Rec. T.81 (1992 E) 165

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.7 – Encoder test sequence (sheet 7 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

221 0 1 32B4 9388 00069C70 7 0

222 1 1 3C3D CAD0 001BF510 5 0

223 1 1 3C3D 8E93 001BF510 5 0

224 1 1 375E A4AC 0037EA20 4 0

225 0 1 32B4 DA9C 006FD440 3 0

226 1 1 3C3D CAD0 01C1F0A0 1 0

227 1 1 3C3D 8E93 01C1F0A0 1 0

228 0 1 375E A4AC 0003E140 8 0 70

229 1 1 3C3D DD78 00113A38 6 0

230 0 1 3C3D A13B 00113A38 6 0

231 0 1 415E F0F4 00467CD8 4 0

232 1 1 CE 4639 82BC 008E58DC 3 0

233 0 1 415E 8C72 011D2ABE 2 0

234 1 1 CE 4639 82BC 023AEBA4 1 0

235 1 1 415E 8C72 0006504E 8 0 8E

236 1 1 3C3D 9628 000CA09C 7 0

237 1 1 375E B3D6 00194138 6 0

238 1 1 32B4 F8F0 00328270 5 0

239 1 1 32B4 C63C 00328270 5 0

240 0 1 32B4 9388 00328270 5 0

241 1 1 3C3D CAD0 00CB8D10 3 0

242 1 1 3C3D 8E93 00CB8D10 3 0

243 1 1 375E A4AC 01971A20 2 0

244 0 1 32B4 DA9C 032E3440 1 0

245 0 1 3C3D CAD0 000B70A0 7 0 CB

246 1 1 415E F0F4 002FFCCC 5 0

247 1 1 415E AF96 002FFCCC 5 0

248 1 1 3C3D DC70 005FF998 4 0

249 0 1 3C3D A033 005FF998 4 0

250 1 1 415E F0F4 01817638 2 0

251 0 1 415E AF96 01817638 2 0

252 0 1 CE 4639 82BC 0303C8E0 1 0

253 1 1 4B85 F20C 000F2380 7 0 C0

254 1 1 4B85 A687 000F2380 7 0

255 0 1 4639 B604 001E4700 6 0

256 0 1 CE 4B85 8C72 003D6D96 5 0

Flush: 81DA 007ADB2C 4 0 F6

FFD9

166 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 1 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

11 0 0 5A1D 0000 655B0000 0 65 5B

12 0 0 CE 5A1D A5E3 655B0000 0

13 0 0 2586 B43A 332AA200 7 51

14 0 0 2586 8EB4 332AA200 7

15 0 0 1114 D25C 66554400 6

16 0 0 1114 C148 66554400 6

17 0 0 1114 B034 66554400 6

18 0 0 1114 9F20 66554400 6

19 0 0 1114 8E0C 66554400 6

10 0 0 080B F9F0 CCAA8800 5

11 0 0 080B F1E5 CCAA8800 5

12 0 0 080B E9DA CCAA8800 5

13 0 0 080B E1CF CCAA8800 5

14 0 0 080B D9C4 CCAA8800 5

15 1 0 080B D1B9 CCAA8800 5

16 0 0 17B9 80B0 2FC88000 1

17 0 0 1182 D1EE 5F910000 0

18 0 0 1182 C06C 5F910000 0

19 0 0 1182 AEEA 5F910000 0

20 0 0 1182 9D68 5F910000 0

21 0 0 1182 8BE6 5F910000 0

22 0 0 0CEF F4C8 BF228800 7 44

23 0 0 0CEF E7D9 BF228800 7

24 0 0 0CEF DAEA BF228800 7

25 0 0 0CEF CDFB BF228800 7

26 1 0 0CEF C10C BF228800 7

27 0 0 1518 CEF0 B0588000 3

28 1 0 1518 B9D8 B0588000 3

29 0 0 1AA9 A8C0 5CC40000 0

30 0 0 1AA9 8E17 5CC40000 0

31 0 0 174E E6DC B989EE00 7 F7

32 1 0 174E CF8E B989EE00 7

33 0 0 1AA9 BA70 0A4F7000 4

34 0 0 1AA9 9FC7 0A4F7000 4

35 0 0 1AA9 851E 0A4F7000 4

36 0 0 174E D4EA 149EE000 3

37 0 0 174E BD9C 149EE000 3

38 0 0 174E A64E 149EE000 3

39 0 0 174E 8F00 149EE000 3

40 0 0 1424 EF64 293DC000 2

CCITT Rec. T.81 (1992 E) 167

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 2 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

41 0 0 1424 DB40 293DC000 2

42 0 0 1424 C71C 293DC000 2

43 0 0 1424 B2F8 293DC000 2

44 0 0 1424 9ED4 293DC000 2

45 0 0 1424 8AB0 293DC000 2

46 0 0 119C ED18 527B8000 1

47 0 0 119C DB7C 527B8000 1

48 0 0 119C C9E0 527B8000 1

49 0 0 119C B844 527B8000 1

50 0 0 119C A6A8 527B8000 1

51 0 0 119C 950C 527B8000 1

52 0 0 119C 8370 527B8000 1

53 0 0 0F6B E3A8 A4F70000 0

54 0 0 0F6B D43D A4F70000 0

55 0 0 0F6B C4D2 A4F70000 0

56 0 0 0F6B B567 A4F70000 0

57 1 0 0F6B A5FC A4F70000 0

58 1 0 1424 F6B0 E6696000 4 96

59 0 0 1AA9 A120 1EEB0000 1

60 0 0 1AA9 8677 1EEB0000 1

61 0 0 174E D79C 3DD60000 0

62 0 0 174E C04E 3DD60000 0

63 0 0 174E A900 3DD60000 0

64 0 0 174E 91B2 3DD60000 0

65 0 0 1424 F4C8 7BAD3A00 7 9D

66 0 0 1424 E0A4 7BAD3A00 7

67 0 0 1424 CC80 7BAD3A00 7

68 0 0 1424 B85C 7BAD3A00 7

69 0 0 1424 A438 7BAD3A00 7

70 0 0 1424 9014 7BAD3A00 7

71 1 0 119C F7E0 F75A7400 6

72 1 0 1424 8CE0 88B3A000 3

73 0 0 1AA9 A120 7FBD0000 0

74 1 0 1AA9 8677 7FBD0000 0

75 0 0 2516 D548 9F7A8800 5 51

76 1 0 2516 B032 9F7A8800 5

77 0 0 299A 9458 517A2000 3

78 0 0 2516 D57C A2F44000 2

79 1 0 2516 B066 A2F44000 2

80 0 0 299A 9458 5E910000 0

168 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 3 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

181 1 0 2516 D57C BD22F000 7 78
182 0 0 299A 9458 32F3C000 5
183 0 0 2516 D57C 65E78000 4
184 0 0 2516 B066 65E78000 4
185 0 0 2516 8B50 65E78000 4
186 1 0 1EDF CC74 CBCF0000 3
187 1 0 2516 F6F8 F1D00000 0
188 1 0 299A 9458 7FB95400 6 55
189 0 0 32B4 A668 53ED5000 4
190 0 0 2E17 E768 A7DAA000 3
191 1 0 2E17 B951 A7DAA000 3
192 0 0 32B4 B85C 72828000 1
193 1 0 32B4 85A8 72828000 1
194 0 0 3C3D CAD0 7E3B7E00 7 BF
195 1 0 3C3D 8E93 7E3B7E00 7
196 0 0 415E F0F4 AF95F800 5
197 1 0 415E AF96 AF95F800 5
198 0 0 CE 4639 82BC 82BBF000 4
199 1 0 415E 8C72 8C71E000 3
100 0 0 CE 4639 82BC 82BBC000 2
101 1 0 415E 8C72 8C718000 1
102 0 0 CE 4639 82BC 82BB0000 0
103 1 0 415E 8C72 8C71FE00 7 FF 00
104 0 0 CE 4639 82BC 82BBFC00 6
105 1 0 415E 8C72 8C71F800 5
106 0 0 CE 4639 82BC 82BBF000 4
107 1 0 415E 8C72 8C71E000 3
108 0 0 CE 4639 82BC 82BBC000 2
109 1 0 415E 8C72 8C718000 1
110 0 0 CE 4639 82BC 82BB0000 0
111 1 0 415E 8C72 8C71F800 7 FC
112 0 0 CE 4639 82BC 82BBF000 6
113 1 0 415E 8C72 8C71E000 5
114 0 0 CE 4639 82BC 82BBC000 4
115 1 0 415E 8C72 8C718000 3
116 0 0 CE 4639 82BC 82BB0000 2
117 1 0 415E 8C72 8C700000 1
118 0 0 CE 4639 82BC 82B80000 0
119 1 0 415E 8C72 8C6AA200 7 51

120 0 0 CE 4639 82BC 82AD4400 6

CCITT Rec. T.81 (1992 E) 169

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 4 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

121 1 0 415E 8C72 8C548800 5

122 0 0 CE 4639 82BC 82811000 4

123 1 0 415E 8C72 8BFC2000 3

124 0 0 CE 4639 82BC 81D04000 2

125 1 0 415E 8C72 8A9A8000 1

126 0 0 CE 4639 82BC 7F0D0000 0

127 1 0 415E 8C72 85150800 7 84

128 0 0 CE 4639 82BC 74021000 6

129 1 0 415E 8C72 6EFE2000 5

130 0 0 CE 4639 82BC 47D44000 4

131 0 0 415E 8C72 16A28000 3

132 0 0 3C3D 9628 2D450000 2

133 0 0 375E B3D6 5A8A0000 1

134 0 0 32B4 F8F0 B5140000 0

135 1 0 32B4 C63C B5140000 0

136 0 0 3C3D CAD0 86331C00 6 C7

137 1 0 3C3D 8E93 86331C00 6

138 1 0 415E F0F4 CF747000 4

139 0 0 CE 4639 82BC 3FBCE000 3

140 0 0 415E 8C72 0673C000 2

141 0 0 3C3D 9628 0CE78000 1

142 0 0 375E B3D6 19CF0000 0

143 0 0 32B4 F8F0 339F9C00 7 CE

144 0 0 32B4 C63C 339F9C00 7

145 0 0 32B4 9388 339F9C00 7

146 0 0 2E17 C1A8 673F3800 6

147 1 0 2E17 9391 673F3800 6

148 0 0 32B4 B85C 0714E000 4

149 0 0 32B4 85A8 0714E000 4

150 0 0 2E17 A5E8 0E29C000 3

151 0 0 299A EFA2 1C538000 2

152 0 0 299A C608 1C538000 2

153 0 0 299A 9C6E 1C538000 2

154 0 0 2516 E5A8 38A70000 1

155 0 0 2516 C092 38A70000 1

156 0 0 2516 9B7C 38A70000 1

157 0 0 1EDF ECCC 714E0000 0

158 0 0 1EDF CDED 714E0000 0

159 0 0 1EDF AF0E 714E0000 0

160 0 0 1EDF 902F 714E0000 0

170 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 5 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

161 1 0 1AA9 E2A0 E29DF200 7 F9

162 1 0 2516 D548 D5379000 4

163 1 0 299A 9458 94164000 2

164 1 0 32B4 A668 A5610000 0

165 1 0 3C3D CAD0 C6B4E400 6 39

166 1 0 415E F0F4 E0879000 4

167 0 0 CE 4639 82BC 61E32000 3

168 0 0 415E 8C72 4AC04000 2

169 1 0 3C3D 9628 95808000 1

170 1 0 415E F0F4 EE560000 7 00

171 0 0 CE 4639 82BC 7D800000 6

172 1 0 415E 8C72 81FA0000 5

173 0 0 CE 4639 82BC 6DCC0000 4

174 1 0 415E 8C72 62920000 3

175 1 0 CE 4639 82BC 2EFC0000 2

176 1 0 4B85 F20C BBF00000 0

177 1 0 CE 504F 970A 2AD25000 7 28

178 0 0 CE 5522 8D76 55A4A000 6

179 0 0 504F AA44 3AA14000 5

180 1 0 4B85 B3EA 75428000 4

181 1 0 CE 504F 970A 19BB0000 3

182 1 0 CE 5522 8D76 33760000 2

183 1 0 59EB E150 CDD80000 0

184 0 1 59EB B3D6 8CE6FA00 7 7D

185 1 0 59EB B3D6 65F7F400 6

186 1 1 59EB B3D6 1819E800 5

187 1 1 5522 B3D6 3033D000 4

188 1 1 504F BD68 6067A000 3

189 0 1 4B85 DA32 C0CF4000 2

190 1 1 CE 504F 970A 64448000 1

191 1 1 4B85 A09E 3B130000 0

192 0 1 4639 AA32 76268C00 7 46

193 0 1 CE 4B85 8C72 245B1800 6

194 1 1 CE 504F 81DA 48B63000 5

195 1 1 4B85 A09E 2E566000 4

196 1 1 4639 AA32 5CACC000 3

197 0 1 415E C7F2 B9598000 2

198 1 1 CE 4639 82BC 658B0000 1

199 0 1 415E 8C72 52100000 0

200 0 1 CE 4639 82BC 0DF8E000 7 70

CCITT Rec. T.81 (1992 E) 171

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 6 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

201 1 1 4B85 F20C 37E38000 5

202 1 1 4B85 A687 37E38000 5

203 1 1 4639 B604 6FC70000 4

204 0 1 415E DF96 DF8E0000 3

205 1 1 CE 4639 82BC 82AC0000 2

206 0 1 415E 8C72 8C520000 1

207 1 1 CE 4639 82BC 827C0000 0

208 0 1 415E 8C72 8BF31C00 7 8E

209 1 1 CE 4639 82BC 81BE3800 6

210 0 1 415E 8C72 8A767000 5

211 1 1 CE 4639 82BC 7EC4E000 4

212 0 1 415E 8C72 8483C000 3

213 1 1 CE 4639 82BC 72DF8000 2

214 0 1 415E 8C72 6CB90000 1

215 1 1 CE 4639 82BC 434A0000 0

216 1 1 415E 8C72 0D8F9600 7 CB

217 1 1 3C3D 9628 1B1F2C00 6

218 1 1 375E B3D6 363E5800 5

219 1 1 32B4 F8F0 6C7CB000 4

220 1 1 32B4 C63C 6C7CB000 4

221 0 1 32B4 9388 6C7CB000 4

222 1 1 3C3D CAD0 2EA2C000 2

223 1 1 3C3D 8E93 2EA2C000 2

224 1 1 375E A4AC 5D458000 1

225 0 1 32B4 DA9C BA8B0000 0

226 1 1 3C3D CAD0 4A8F0000 6 C0

227 1 1 3C3D 8E93 4A8F0000 6

228 0 1 375E A4AC 951E0000 5

229 1 1 3C3D DD78 9F400000 3

230 0 1 3C3D A13B 9F400000 3

231 0 1 415E F0F4 E9080000 1

232 1 1 CE 4639 82BC 72E40000 0

233 0 1 415E 8C72 6CC3EC00 7 F6

234 1 1 CE 4639 82BC 435FD800 6

235 1 1 415E 8C72 0DB9B000 5

236 1 1 3C3D 9628 1B736000 4

237 1 1 375E B3D6 36E6C000 3

238 1 1 32B4 F8F0 6DCD8000 2

239 1 1 32B4 C63C 6DCD8000 2

240 0 1 32B4 9388 6DCD8000 2

172 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 7 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

241 1 1 3C3D CAD0 33E60000 0

242 1 1 3C3D 8E93 33E60000 0

Marker detected: zero byte fed to decoder

243 1 1 375E A4AC 67CC0000 7

244 0 1 32B4 DA9C CF980000 6

245 0 1 3C3D CAD0 9EC00000 4

246 1 1 415E F0F4 40B40000 2

247 1 1 415E AF96 40B40000 2

248 1 1 3C3D DC70 81680000 1

249 0 1 3C3D A033 81680000 1

Marker detected: zero byte fed to decoder

250 1 1 415E F0F4 75C80000 7

251 0 1 415E AF96 75C80000 7

252 0 1 CE 4639 82BC 0F200000 6

253 1 1 4B85 F20C 3C800000 4

254 1 1 4B85 A687 3C800000 4

255 0 1 4639 B604 79000000 3

256 0 1 CE 4B85 8C72 126A0000 2

K.5 Low-pass downsampling filters for hierarchical coding

In this section simple examples are given of downsampling filters which are compatible with the upsampling filter defined
in J.1.1.2.

Figure K.5 shows the weighting of neighbouring samples for simple one-dimensional horizontal and vertical low-pass
filters. The output of the filter must be normalized by the sum of the neighbourhood weights.

1 2 1 1

2

1

TISO1770-93/d115

Figure K.5 – Low-pass filter example

Figure K.5 [D115] = 4 cm = 156 %

The centre sample in Figure K.5 should be aligned with the left column or top line of the high resolution image when
calculating the left column or top line of the low resolution image. Sample values which are situated outside of the image
boundary are replicated from the sample values at the boundary to provide missing edge values.

If the image being downsampled has an odd width or length, the odd dimension is increased by 1 by sample replication on
the right edge or bottom line before downsampling.

CCITT Rec. T.81 (1992 E) 173

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

K.6 Domain of applicability of DCT and spatial coding techniques

The DCT coder is intended for lossy coding in a range from quite visible loss to distortion well below the threshold for
visibility. However in general, DCT-based processes cannot be used for true lossless coding.

The lossless coder is intended for completely lossless coding. The lossless coding process is significantly less effective
than the DCT-based processes for distortions near and above the threshold of visibility.

The point transform of the input to the lossless coder permits a very restricted form of lossy coding with the “lossless”
coder. (The coder is still lossless after the input point transform.) Since the DCT is intended for lossy coding, there may
be some confusion about when this alternative lossy technique should be used.

Lossless coding with a point transformed input is intended for applications which cannot be addressed by DCT coding
techniques. Among these are

– true lossless coding to a specified precision;

– lossy coding with precisely defined error bounds;

– hierarchical progression to a truly lossless final stage.

If lossless coding with a point transformed input is used in applications which can be met effectively by DCT coding, the
results will be significantly less satisfactory. For example, distortion in the form of visible contours usually appears when
precision of the luminance component is reduced to about six bits. For normal image data, this occurs at bit rates well
above those for which the DCT gives outputs which are visually indistinguishable from the source.

K.7 Domain of applicability of the progressive coding modes of operation

Two very different progressive coding modes of operation have been defined, progressive coding of the DCT coefficients
and hierarchical progression. Progressive coding of the DCT coefficients has two complementary procedures, spectral
selection and successive approximation. Because of this diversity of choices, there may be some confusion as to which
method of progression to use for a given application.

K.7.1 Progressive coding of the DCT

In progressive coding of the DCT coefficients two complementary procedures are defined for decomposing the 8 × 8 DCT
coefficient array, spectral selection and successive approximation. Spectral selection partitions zig-zag array of DCT
coefficients into “bands”, one band being coded in each scan. Successive approximation codes the coefficients with
reduced precision in the first scan; in each subsequent scan the precision is increased by one bit.

A single forward DCT is calculated for these procedures. When all coefficients are coded to full precision, the DCT is the
same as in the sequential mode. Therefore, like the sequential DCT coding, progressive coding of DCT coefficients is
intended for applications which need very good compression for a given level of visual distortion.

The simplest progressive coding technique is spectral selection; indeed, because of this simplicity, some applications may
choose – despite the limited progression that can be achieved – to use only spectral selection. Note, however, that the
absence of high frequency bands typically leads – for a given bit rate – to a significantly lower image quality in the
intermediate stages than can be achieved with the more general progressions. The net coding efficiency at the completion
of the final stage is typically comparable to or slightly less than that achieved with the sequential DCT.

A much more flexible progressive system is attained at some increase in complexity when successive approximation is
added to the spectral selection progression. For a given bit rate, this system typically provides significantly better image
quality than spectral selection alone. The net coding efficiency at the completion of the final stage is typically comparable
to or slightly better than that achieved with the sequential DCT.

K.7.2 Hierarchical progression

Hierarchical progression permits a sequence of outputs of increasing spatial resolution, and also allows refinement of
image quality at a given spatial resolution. Both DCT and spatial versions of the hierarchical progression are allowed, and
progressive coding of DCT coefficients may be used in a frame of the DCT hierarchical progression.

The DCT hierarchical progression is intended for applications which need very good compression for a given level of
visual distortion; the spatial hierarchical progression is intended for applications which need a simple progression with a
truly lossless final stage. Figure K.6 illustrates examples of these two basic hierarchical progressions.

174 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

TISO1780-93/d116

DCT path

DCT (dif)

Lossless (dif)
+

Point transform

Bounded error on
reconstructed image

DCT (dif)

Lossless path

Predicted (dif)

No error on
reconstructed image

Predicted (dif)

Predicted (dif)

Figure K.6 – Sketch of the basic operations of the hierarchical mode

Figure K.6 [D116] = 14 cm = 547 %

K.7.2.1 DCT Hierarchical progression

If a DCT hierarchical progression uses reduced spatial resolution, the early stages of the progression can have better image
quality for a given bit rate than the early stages of non-hierarchical progressive coding of the DCT coefficients. However,
at the point where the distortion between source and output becomes indistinguishable, the coding efficiency achieved
with a DCT hierarchical progression is typically significantly lower than the coding efficiency achieved with a non-
hierarchical progressive coding of the DCT coefficients.

While the hierarchical DCT progression is intended for lossy progressive coding, a final spatial differential coding stage
can be used. When this final stage is used, the output can be almost lossless, limited only by the difference between the
encoder and decoder IDCT implementations. Since IDCT implementations can differ significantly, truly lossless coding
after a DCT hierarchical progression cannot be guaranteed. An important alternative, therefore, is to use the input point
transform of the final lossless differential coding stage to reduce the precision of the differential input. This allows a
bounding of the difference between source and output at a significantly lower cost in coded bits than coding of the full
precision spatial difference would require.

K.7.2.2 Spatial hierarchical progression

If lossless progression is required, a very simple hierarchical progression may be used in which the spatial lossless coder
with point transformed input is used as a first stage. This first stage is followed by one or more spatial differential coding
stages. The first stage should be nearly lossless, such that the low order bits which are truncated by the point transform are
essentially random – otherwise the compression efficiency will be degraded relative to non-progressive lossless coding.

CCITT Rec. T.81 (1992 E) 175

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

K.8 Suppression of block-to-block discontinuities in decoded images

A simple technique is available for suppressing the block-to-block discontinuities which can occur in images compressed
by DCT techniques.

The first few (five in this example) low frequency DCT coefficients are predicted from the nine DC values of the block
and the eight nearest-neighbour blocks, and the predicted values are used to suppress blocking artifacts in smooth areas of
the image.

The prediction equations for the first five AC coefficients in the zig-zag sequence are obtained as follows:

K.8.1 AC prediction

The sample field in a 3 by 3 array of blocks (each block containing an 8 × 8 array of samples) is modeled by a
two-dimensional second degree polynomial of the form:

P(x,y) = A1(x2y2) + A2(x2y) + A3(xy2) + A4(x2) + A5(xy) + A6(y2) + A7(x) + A8(y) + A9

The nine coefficients A1 through A9 are uniquely determined by imposing the constraint that the mean of P(x,y) over
each of the nine blocks must yield the correct DC-values.

Applying the DCT to the quadratic field predicting the samples in the central block gives a prediction of the low
frequency AC coefficients depicted in Figure K.7.

TISO1790-93/d117

x x

x x

x

DC

Figure K.7 – DCT array positions of predicted AC coefficients

Figure K.7 [D.117] = 8 cm = 313 %

The prediction equations derived in this manner are as follows:

For the two dimensional array of DC values shown

DC1 DC2 DC3
DC4 DC5 DC6
DC7 DC8 DC9

The unquantized prediction equations are

AC01 = 1,13885 (DC4 – DC6)
AC10 = 1,13885 (DC2 – DC8)
AC20 = 0,27881 (DC2 + DC8 – 2 × DC5)
AC11 = 0,16213 ((DC1 – DC3) – (DC7 – DC9))
AC02 = 0,27881 (DC4 + DC6 – 2 × DC5)

The scaling of the predicted AC coefficients is consistent with the DCT normalization defined in A.3.3.

176 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

K.8.2 Quantized AC prediction

The prediction equations can be mapped to a form which uses quantized values of the DC coefficients and which
computes quantized AC coefficients using integer arithmetic. The quantized DC coefficients need to be scaled, however,
such that the predicted coefficients have fractional bit precision.

First, the prediction equation coefficients are scaled by 32 and rounded to the nearest integer. Thus,

1,13885 × 32 = 36

0,27881 × 32 = 39

0,16213 × 32 = 35

The multiplicative factors are then scaled by the ratio of the DC and AC quantization factors and rounded appropriately.
The normalization defined for the DCT introduces another factor of 8 in the unquantized DC values. Therefore, in terms
of the quantized DC values, the predicted quantized AC coefficients are given by the equations below. Note that if (for
example) the DC values are scaled by a factor of 4, the AC predictions will have 2 fractional bits of precision relative to
the quantized DCT coefficients.

QAC01 = ((Rd × Q01) + (36 × Q00 × (QDC4 – QDC6)))/(256 × Q01)
QAC10 = ((Rd × Q10) + (36 × Q00 × (QDC2 – QDC8)))/(256 × Q10)
QAC20 = ((Rd × Q20) + (9 × Q00 × (QDC2 + QDC8 – 2 × QDC5)))/(256 × Q20)
QAC11 = ((Rd × Q11) + (5 × Q00 × ((QDC1 – QDC3) – (QDC7 – QDC9))))/(256 × Q11)
QAC02 = ((Rd × Q02) + (9 × Q00 × (QDC4 + QDC6 – 2 × QDC5)))/(256 × Q02)

where QDCx and QACxy are the quantized and scaled DC and AC coefficient values. The constant Rd is added to get a
correct rounding in the division. Rd is 128 for positive numerators, and –128 for negative numerators.

Predicted values should not override coded values. Therefore, predicted values for coefficients which are already non-zero
should be set to zero. Predictions should be clamped if they exceed a value which would be quantized to a non-zero value
for the current precision in the successive approximation.

K.9 Modification of dequantization to improve displayed image quality

For a progression where the first stage successive approximation bit, Al, is set to 3, uniform quantization of the DCT gives
the following quantization and dequantization levels for a sequence of successive approximation scans, as shown in
Figure K.8:

–8

r ¯ t ¯ r ¯ t ̄ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t _ r _ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r ¯ t ¯ r

–7 –6 –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5 +6 +7 +8

0

r ¯ t r ¯ t t ̄ r ¯ x1

2

r ¯ t r t ¯ r 3

 x ¯ r ¯ t x ¯ r ¯ t x ̄ r t ¯ r t ¯ r ¯ x t ¯ r ¯ x

r ¯ t x r ¯ t r t ¯ r t ¯ r x

T0812990-93/d118

Al

Fi gur e K .8 – I l l ust r at i on of tw o r econst r uct ion st r ategies

Quantized DCT coefficient value

Figure K.8 [D118] = 6 cm = 234 %

The column to the left labelled “Al” gives the bit position specified in the scan header. The quantized DCT coefficient
magnitudes are therefore divided by 2Al during that scan.

CCITT Rec. T.81 (1992 E) 177

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Referring to the final scan (Al = 0), the points marked with “t” are the threshold values, while the points marked with “r”
are the reconstruction values. The unquantized output is obtained by multiplying the horizontal scale in Figure K.8 by the
quantization value.

The quantization interval for a coefficient value of zero is indicated by the depressed interval of the line. As the bit
position Al is increased, a “fat zero” quantization interval develops around the zero DCT coefficient value. In the limit
where the scaling factor is very large, the zero interval is twice as large as the rest of the quantization intervals.

Two different reconstruction strategies are shown. The points marked “r” are the reconstruction obtained using the normal
rounding rules for the DCT for the complete full precision output. This rule seems to give better image quality when high
bandwidth displays are used. The points marked “x” are an alternative reconstruction which tends to give better images on
lower bandwidth displays. “x” and “r” are the same for slice 0. The system designer must determine which strategy is best
for the display system being used.

K.10 Example of point transform

The difference between the arithmetic-shift-right by Pt and divide by 2Pt can be seen from the following:

After the level shift the DC has values from +127 to –128. Consider values near zero (after the level shift), and the case
where Pt = 1:

Before Before After After

level shift point transform divide by 2 shift-right-arithmetic 1

131 +3 +1 +1

130 +2 +1 +1

129 +1 +0 +0

128 +0 +0 +0

127 –1 +0 –1

126 –2 –1 –1

125 –3 –1 –2

124 –4 –2 –2

123 –5 –2 –3

The key difference is in the truncation of precision. The divide truncates the magnitude; the arithmetic shift truncates the
LSB. With a divide by 2 we would get non-uniform quantization of the DC values; therefore we use the shift-right-
arithmetic operation.

For positive values, the divide by 2 and the shift-right-arithmetic by 1 operations are the same. Therefore, the shift-right-
arithmetic by 1 operation effectively is a divide by 2 when the point transform is done before the level shift.

178 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex L

Patents
(This annex does not form an integral part of this Recommendation | International Standard)

L.1 Introductory remarks

The user’s attention is called to the possibility that – for some of the coding processes specified in Annexes F, G, H, and J
– compliance with this Specification may require use of an invention covered by patent rights.

By publication of this Specification, no position is taken with respect to the validity of this claim or of any patent rights in
connection therewith. However, for each patent listed in this annex, the patent holder has filed with the Information
Technology Task Force (ITTF) and the Telecommunication Standardization Bureau (TSB) a statement of willingness to
grant a license under these rights on reasonable and non-discriminatory terms and conditions to applicants desiring to
obtain such a license.

The criteria for including patents in this annex are:

a) the patent has been identified by someone who is familiar with the technical fields relevant to this
Specification, and who believes use of the invention covered by the patent is required for implementation
of one or more of the coding processes specified in Annexes F, G, H, or J;

b) the patent-holder has written a letter to the ITTF and TSB, stating willingness to grant a license to an
unlimited number of applicants throughout the world under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

This list of patents shall be updated, if necessary, upon publication of any revisions to the Recommendation | International
Standard.

L.2 List of patents

The following patents may be required for implementation of any one of the processes specified in Annexes F, G, H, and J
which uses arithmetic coding:

US 4,633,490, December 30, 1986, IBM, MITCHELL (J.L.) and GOERTZEL (G.): Symmetrical Adaptive Data
Compression/Decompression System.

US 4,652,856, February 4, 1986, IBM, MOHIUDDIN (K.M.) and RISSANEN (J.J.): A Multiplication-free
Multi-Alphabet Arithmetic Code.

US 4,369,463, January 18, 1983, IBM, ANASTASSIOU (D.) and MITCHELL (J.L.): Grey Scale Image
Compression with Code Words a Function of Image History.

US 4,749,983, June 7, 1988, IBM, LANGDON (G.): Compression of Multilevel Signals.

US 4,935,882, June 19, 1990, IBM, PENNEBAKER (W.B.) and MITCHELL (J.L.): Probability Adaptation
for Arithmetic Coders.

US 4,905,297, February 27, 1990, IBM, LANGDON (G.G.), Jr., MITCHELL (J.L.), PENNEBAKER (W.B.),
and RISSANEN (J.J.): Arithmetic Coding Encoder and Decoder System.

US 4,973,961, November 27, 1990, AT&T, CHAMZAS (C.), DUTTWEILER (D.L.): Method and Apparatus
for Carry-over Control in Arithmetic Entropy Coding.

US 5,025,258, June 18, 1991, AT&T, DUTTWEILER (D.L): Adaptive Probability Estimator for Entropy
Encoding/Decoding.

US 5,099,440, March 24, 1992, IBM, PENNEBAKER (W.B.) and MITCHELL (J.L.): Probability Adaptation
for Arithmetic Coders.

Japanese Patent Application 2-46275, February 26, 1990, MEL ONO (F.), KIMURA (T.), YOSHIDA (M.), and
KINO (S.): Coding System.

The following patent may be required for implementation of any one of the hierarchical processes specified in Annex H
when used with a lossless final frame:

US 4,665,436, May 12, 1987, EI OSBORNE (J.A.) and SEIFFERT (C.): Narrow Bandwidth Signal
Transmission.

CCITT Rec. T.81 (1992 E) 179

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

No other patents required for implementation of any of the other processes specified in Annexes F, G, H, or J had been
identified at the time of publication of this Specification.

L.3 Contact addresses for patent information

Director, Telecommunication Standardization Bureau (formerly CCITT)
International Telecommunication Union
Place des Nations
CH-1211 Genève 20, Switzerland
Tel. +41 (22) 730 5111
Fax: +41 (22) 730 5853

Information Technology Task Force
International Organization for Standardization
1, rue de Varembé
CH-1211 Genève 20, Switzerland
Tel: +41 (22) 734 0150
Fax: +41 (22) 733 3843

Program Manager, Licensing
Intellectual Property and Licensing Services
IBM Corporation
208 Harbor Drive
P.O. Box 10501
Stamford, Connecticut 08904-2501, USA
Tel: +1 (203) 973 7935
Fax: +1 (203) 973 7981 or +1 (203) 973 7982

Mitsubishi Electric Corp.
Intellectual Property License Department
1-2-3 Morunouchi, Chiyoda-ku
Tokyo 100, Japan
Tel: +81 (3) 3218 3465
Fax: +81 (3) 3215 3842

AT&T Intellectual Property Division Manager
Room 3A21
10 Independence Blvd.
Warren, NJ 07059, USA
Tel: +1 (908) 580 5392
Fax: +1 (908) 580 6355

Senior General Manager
Corporate Intellectual Property and Legal Headquarters
Canon Inc.
30-2 Shimomaruko 3-chome
Ohta-ku Tokyo 146 Japan
Tel: +81 (3) 3758 2111
Fax: +81 (3) 3756 0947

Chief Executive Officer
Electronic Imagery, Inc.
1100 Park Central Boulevard South
Suite 3400
Pompano Beach, FL 33064, USA
Tel: +1 (305) 968 7100
Fax: +1 (305) 968 7319

180 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

Annex M

Bibliography

(This annex does not form an integral part of this Recommendation | International Standard)

M.1 General references

LEGER (A.), OMACHI (T.), and WALLACE (G.K.): JPEG Still Picture Compression Algorithm, Optical Engineering,
Vol. 30, No. 7, pp. 947-954, 1991.

RABBANI (M.) and JONES (P.): Digital Image Compression Techniques, Tutorial Texts in Optical Engineering,
Vol. TT7, SPIE Press, 1991.

HUDSON (G.), YASUDA (H.) and SEBESTYEN (I.): The International Standardization of a Still Picture Compression
Technique, Proc. of IEEE Global Telecommunications Conference, pp. 1016-1021, 1988.

LEGER (A.), MITCHELL (J.) and YAMAZAKI (Y.): Still Picture Compression Algorithm Evaluated for International
Standardization, Proc. of the IEEE Global Telecommunications Conference, pp. 1028-1032, 1988.

WALLACE (G.), VIVIAN (R.) and POULSEN (H.): Subjective Testing Results for Still Picture Compression Algorithms
for International Standardization, Proc. of the IEEE Global Telecommunications Conference, pp. 1022-1027, 1988.

MITCHELL (J.L.) and PENNEBAKER (W.B.): Evolving JPEG Colour Data Compression Standard, Standards for
Electronic Imaging Systems, M. Nier, M.E. Courtot, Editors, SPIE, Vol. CR37, pp. 68-97, 1991.

WALLACE (G.K.): The JPEG Still Picture Compression Standard, Communications of the ACM, Vol. 34, No. 4, pp. 31-
44, 1991.

NETRAVALI (A.N.) and HASKELL (B.G.): Digital Pictures: Representation and Compression, Plenum Press,
New York 1988.

PENNEBAKER (W.B.) and MITCHELL (J.L.): JPEG: Still Image Data Compression Standard, Van Nostrand
Reinhold, New York 1993.

M.2 DCT references

CHEN (W.), SMITH (C.H.) and FRALICK (S.C.): A Fast Computational Algorithm for the Discrete Cosine Transform,
IEEE Trans. on Communications, Vol. COM-25, pp. 1004-1009, 1977.

AHMED (N.), NATARAJAN (T.) and RAO (K.R.): Discrete Cosine Transform, IEEE Trans. on Computers, Vol. C-23,
pp. 90-93, 1974.

NARASINHA (N.J.) and PETERSON (A.M.): On the Computation of the Discrete Cosine Transform, IEEE Trans. on
Communications, Vol. COM-26, No. 6, pp. 966-968, 1978.

DUHAMEL (P.) and GUILLEMOT (C.): Polynomial Transform Computation of the 2-D DCT, Proc. IEEE ICASSP-90,
pp. 1515-1518, Albuquerque, New Mexico 1990.

FEIG (E.): A Fast Scaled DCT Algorithm, in Image Processing Algorithms and Techniques, Proc. SPIE, Vol. 1244, K.S.
Pennington and R. J. Moorhead II, Editors, pp. 2-13, Santa Clara, California, 1990.

HOU (H.S.): A Fast Recursive Algorithm for Computing the Discrete Cosine Transform, IEEE Trans. Acoust. Speech and
Signal Processing, Vol. ASSP-35, No. 10, pp. 1455-1461.

LEE (B.G.): A New Algorithm to Compute the Discrete Cosine Transform, IEEE Trans. on Acoust., Speech and Signal
Processing, Vol. ASSP-32, No. 6, pp. 1243-1245, 1984.

LINZER (E.N.) and FEIG (E.): New DCT and Scaled DCT Algorithms for Fused Multiply/Add Architectures, Proc.
IEEE ICASSP-91, pp. 2201-2204, Toronto, Canada, 1991.

VETTERLI (M.) and NUSSBAUMER (H.J.): Simple FFT and DCT Algorithms with Reduced Number of Operations,
Signal Processing, 1984.

CCITT Rec. T.81 (1992 E) 181

APPENDIX F

Microsoft Corp. Exhibit 1005

ISO/IEC 10918-1 : 1993(E)

VETTERLI (M.): Fast 2-D Discrete Cosine Transform, Proc. IEEE ICASSP-85, pp. 1538-1541, Tampa, Florida, 1985.

ARAI (Y.), AGUI (T.), and NAKAJIMA (M.): A Fast DCT-SQ Scheme for Images, Trans. of IEICE, Vol. E.71, No. 11,
pp. 1095-1097, 1988.

SUEHIRO (N.) and HATORI (M.): Fast Algorithms for the DFT and other Sinusoidal Transforms, IEEE Trans. on
Acoust., Speech and Signal Processing, Vol ASSP-34, No. 3, pp. 642-644, 1986.

M.3 Quantization and human visual model references

CHEN (W.H.) and PRATT (W.K.): Scene adaptive coder, IEEE Trans. on Communications, Vol. COM-32, pp. 225-232,
1984.

GRANRATH (D.J.): The role of human visual models in image processing, Proceedings of the IEEE, Vol. 67,
pp. 552-561, 1981.

LOHSCHELLER (H.): Vision adapted progressive image transmission, Proceedings of EUSIPCO, Vol. 83, pp. 191-194,
1983.

LOHSCHELLER (H.) and FRANKE (U.): Colour picture coding – Algorithm optimization and technical realization,
Frequenze, Vol. 41, pp. 291-299, 1987.

LOHSCHELLER (H.): A subjectively adapted image communication system, IEEE Trans. on Communications,
Vol. COM-32, pp. 1316-1322, 1984.

PETERSON (H.A.) et al: Quantization of colour image components in the DCT domain, SPIE/IS&T 1991 Symposium on
Electronic Imaging Science and Technology, 1991.

M.4 Arithmetic coding references

LANGDON (G.): An Introduction to Arithmetic Coding, IBM J. Res. Develop., Vol. 28, pp. 135-149, 1984.

PENNEBAKER (W.B.), MITCHELL (J.L.), LANGDON (G.) Jr., and ARPS (R.B.): An Overview of the Basic Principles
of the Q-Coder Binary Arithmetic Coder, IBM J. Res. Develop., Vol. 32, No. 6, pp. 717-726, 1988.

MITCHELL (J.L.) and PENNEBAKER (W.B.): Optimal Hardware and Software Arithmetic Coding Procedures for the
Q-Coder Binary Arithmetic Coder, IBM J. Res. Develop., Vol. 32, No. 6, pp. 727-736, 1988.

PENNEBAKER (W.B.) and MITCHELL (J.L.): Probability Estimation for the Q-Coder, IBM J. Res. Develop., Vol. 32,
No. 6, pp. 737-752, 1988.

MITCHELL (J.L.) and PENNEBAKER (W.B.): Software Implementations of the Q-Coder, IBM J. Res. Develop.,
Vol. 32, No. 6, pp. 753-774, 1988.

ARPS (R.B.), TRUONG (T.K.), LU (D.J.), PASCO (R.C.) and FRIEDMAN (T.D.): A Multi-Purpose VLSI Chip for
Adaptive Data Compression of Bilevel Images, IBM J. Res. Develop., Vol. 32, No. 6, pp. 775-795, 1988.

ONO (F.), YOSHIDA (M.), KIMURA (T.) and KINO (S.): Subtraction-type Arithmetic Coding with MPS/LPS
Conditional Exchange, Annual Spring Conference of IECED, Japan, D-288, 1990.

DUTTWEILER (D.) and CHAMZAS (C.): Probability Estimation in Arithmetic and Adaptive-Huffman Entropy Coders,
submitted to IEEE Trans. on Image Processing.

JONES (C.B.): An Efficient Coding System for Long Source Sequences, IEEE Trans. Inf. Theory,Vol. IT-27,
pp. 280-291, 1981.

LANGDON (G.): Method for Carry-over Control in a Fifo Arithmetic Code String, IBM Technical Disclosure Bulletin,
Vol. 23, No.1, pp. 310-312, 1980.

M.5 Huffman coding references

HUFFMAN (D.A.): A Method for the Construction of Minimum Redundancy codes, Proc. IRE, Vol. 40, pp. 1098-1101,
1952.

182 CCITT Rec. T.81 (1992 E)

APPENDIX F

Microsoft Corp. Exhibit 1005

,PDJH &RPSUHVVLRQ DQG WKH 'LVFUHWH &RVLQH 7UDQVIRUP
.HQ &DEHHQ DQG 3HWHU *HQW

0DWK 78
&ROOHJH RI WKH 5HGZRRGV

$EVWUDFW1 7KH PDWKHPDWLFDO HTXDWLRQV RI WKH '&7 DQG LWV XVHV ZLWK LPDJH FRPSUHVVLRQ DUH H[SODLQHG1

,QWURGXFWLRQ
$V RXU XVH RI DQG UHOLDQFH RQ FRPSXWHUV FRQWLQXHV WR JURZ/ VR WRR GRHV RXU QHHG IRU

HIILFLHQW ZD\V RI VWRULQJ ODUJH DPRXQWV RI GDWD1)RU H[DPSOH/ VRPHRQH ZLWK D ZHE SDJH RU
RQOLQH FDWDORJ ± WKDW XVHV GR]HQV RU SHUKDSV KXQGUHGV RI LPDJHV ± ZLOO PRUH WKDQ OLNHO\ QHHG
WR XVH VRPH IRUP RI LPDJH FRPSUHVVLRQ WR VWRUH WKRVH LPDJHV1 7KLV LV EHFDXVH WKH DPRXQW RI
VSDFH UHTXLUHG WR KROG XQDGXOWHUDWHG LPDJHV FDQ EH SURKLELWLYHO\ ODUJH LQ WHUPV RI FRVW1
)RUWXQDWHO\/ WKHUH DUH VHYHUDO PHWKRGV RI LPDJH FRPSUHVVLRQ DYDLODEOH WRGD\1 7KHVH IDOO LQWR
WZR JHQHUDO FDWHJRULHV= ORVVOHVV DQG ORVV\ LPDJH FRPSUHVVLRQ1 7KH -3(* SURFHVV LV D ZLGHO\
XVHG IRUP RI ORVV\ LPDJH FRPSUHVVLRQ WKDW FHQWHUV DURXQG WKH 'LVFUHWH &RVLQH 7UDQVIRUP1
7KH '&7 ZRUNV E\ VHSDUDWLQJ LPDJHV LQWR SDUWV RI GLIIHULQJ IUHTXHQFLHV1 'XULQJ D VWHS
FDOOHG TXDQWL]DWLRQ/ ZKHUH SDUW RI FRPSUHVVLRQ DFWXDOO\ RFFXUV/ WKH OHVV LPSRUWDQW
IUHTXHQFLHV DUH GLVFDUGHG/ KHQFH WKH XVH RI WKH WHUP ´ORVV\1´ 7KHQ/ RQO\ WKH PRVW LPSRUWDQW
IUHTXHQFLHV WKDW UHPDLQ DUH XVHG UHWULHYH WKH LPDJH LQ WKH GHFRPSUHVVLRQ SURFHVV1 $V D
UHVXOW/ UHFRQVWUXFWHG LPDJHV FRQWDLQ VRPH GLVWRUWLRQ> EXW DV ZH VKDOO VRRQ VHH/ WKHVH OHYHOV RI
GLVWRUWLRQ FDQ EH DGMXVWHG GXULQJ WKH FRPSUHVVLRQ VWDJH1 7KH -3(* PHWKRG LV XVHG IRU ERWK
FRORU DQG EODFN0DQG0ZKLWH LPDJHV/ EXW WKH IRFXV RI WKLV DUWLFOH ZLOO EH RQ FRPSUHVVLRQ RI WKH
ODWWHU1

7KH 3URFHVV
7KH IROORZLQJ LV D JHQHUDO RYHUYLHZ RI WKH -3(* SURFHVV1 /DWHU/ ZH ZLOO WDNH WKH UHDGHU

WKURXJK D GHWDLOHG WRXU RI -3(*¶V PHWKRG VR WKDW D PRUH FRPSUHKHQVLYH XQGHUVWDQGLQJ RI WKH
SURFHVV PD\ EH DFTXLUHG1
41 7KH LPDJH LV EURNHQ LQWR ;[; EORFNV RI SL[HOV1
51 :RUNLQJ IURP OHIW WR ULJKW/ WRS WR ERWWRP/ WKH '&7 LV DSSOLHG WR HDFK EORFN1
61 (DFK EORFN LV FRPSUHVVHG WKURXJK TXDQWL]DWLRQ1
71 7KH DUUD\ RI FRPSUHVVHG EORFNV WKDW FRQVWLWXWH WKH LPDJH LV VWRUHG LQ D GUDVWLFDOO\ UHGXFHG
DPRXQW RI VSDFH1

81 :KHQ GHVLUHG/ WKH LPDJH LV UHFRQVWUXFWHG WKURXJK GHFRPSUHVVLRQ/ D SURFHVV WKDW XVHV WKH
,QYHUVH 'LVFUHWH &RVLQH 7UDQVIRUP +,'&7,1

7KH '&7 (TXDWLRQ
7KH '&7 HTXDWLRQ +(T1 4, FRPSXWHV WKH L/MWK HQWU\ RI WKH '&7 RI DQ LPDJH1

'�L/ M ã 4
51

&�L &�M !
[ã3

1"4

!
\ã3

1"4

S�[/\ FRV �5[ò 4 L=
51 FRV �5\ ò 4 M=

51

&�X ã
4
5
LI X ã 3

4 LI X â 3

4

5

4

APPENDIX G

Microsoft Corp. Exhibit 1005

S�[/\ LV WKH [/\WK HOHPHQW RI WKH LPDJH UHSUHVHQWHG E\ WKH PDWUL[S1 1 LV WKH VL]H RI WKH
EORFN WKDW WKH '&7 LV GRQH RQ1 7KH HTXDWLRQ FDOFXODWHV RQH HQWU\ +L/MWK, RI WKH WUDQVIRUPHG
LPDJH IURP WKH SL[HO YDOXHV RI WKH RULJLQDO LPDJH PDWUL[1)RU WKH VWDQGDUG ;[; EORFN WKDW
-3(* FRPSUHVVLRQ XVHV/ 1 HTXDOV ; DQG [DQG \ UDQJH IURP 3 WR :1 7KHUHIRUH '�L/ M ZRXOG
EH DV LQ (TXDWLRQ +6,1

'�L/ M ã 4
7 &�L &�M !

[ã3

:

!
\ã3

:

S�[/\ FRV �5[ò 4 L=
49 FRV �5\ ò 4 M=

49 6

%HFDXVH WKH '&7 XVHV FRVLQH IXQFWLRQV/ WKH UHVXOWLQJ PDWUL[GHSHQGV RQ WKH KRUL]RQWDO/
GLDJRQDO/ DQG YHUWLFDO IUHTXHQFLHV1 7KHUHIRUH DQ LPDJH EODFN ZLWK D ORW RI FKDQJH LQ
IUHTXHQF\ KDV D YHU\ UDQGRP ORRNLQJ UHVXOWLQJ PDWUL[/ ZKLOH DQ LPDJH PDWUL[RI MXVW RQH
FRORU/ KDV D UHVXOWLQJ PDWUL[RI D ODUJH YDOXH IRU WKH ILUVW HOHPHQW DQG]HURHV IRU WKH RWKHU
HOHPHQWV1

7KH '&7 0DWUL[
7R JHW WKH PDWUL[IRUP RI (TXDWLRQ +4,/ ZH ZLOO XVH WKH IROORZLQJ HTXDWLRQ

7L/M ã
4
1

LI L ã 3

5
1 FRV

�5Mò4 L=
51 LI L â 3

7

)RU DQ ;[; EORFN LW UHVXOWV LQ WKLV PDWUL[=

7 ã

16869 16869 16869 16869 16869 16869 16869 16869
17<37 1748: 15::; 13<:8 "13<:8 "15::; "1748: "17<37
1794< 14<46 "14<46 "1794< "1794< "14<46 14<46 1794<
1748: "13<:8 "17<37 "15::; 15::; 17<37 13<:8 "1748:
16869 "16869 "16869 16869 16869 "16869 "16869 16869
15::; "17<37 13<:8 1748: "1748: "13<:8 17<37 "15::;
14<46 "1794< 1794< "14<46 "14<46 1794< "1794< 14<46
13<:8 "15::; 1748: "17<37 17<37 "1748: 15::; "13<:8

7KH ILUVW URZ +L ã 4, RI WKH PDWUL[KDV DOO WKH HQWULHV HTXDO WR 42 ; DV H[SHFWHG IURP
(TXDWLRQ +7,1

7KH FROXPQV RI 7 IRUP DQ RUWKRQRUPDO VHW/ VR 7 LV DQ RUWKRJRQDO PDWUL[1 :KHQ GRLQJ
WKH LQYHUVH '&7 WKH RUWKRJRQDOLW\ RI 7 LV LPSRUWDQW/ DV WKH LQYHUVH RI 7 LV 7U ZKLFK LV HDV\ WR
FDOFXODWH1

'RLQJ WKH '&7 RQ DQ å[å %ORFN
%HIRUH ZH EHJLQ/ LW VKRXOG EH QRWHG WKDW WKH SL[HO YDOXHV RI D EODFN0DQG0ZKLWH LPDJH

UDQJH IURP 3 WR 588 LQ VWHSV RI 4/ ZKHUH SXUH EODFN LV UHSUHVHQWHG E\ 3/ DQG SXUH ZKLWH E\
5881 7KXV LW FDQ EH VHHQ KRZ D SKRWR/ LOOXVWUDWLRQ/ HWF1 FDQ EH DFFXUDWHO\ UHSUHVHQWHG E\ WKHVH
589 VKDGHV RI JUD\1

6LQFH DQ LPDJH FRPSULVHV KXQGUHGV RU HYHQ WKRXVDQGV RI ;[; EORFNV RI SL[HOV/ WKH
IROORZLQJ GHVFULSWLRQ RI ZKDW KDSSHQV WR RQH ;[; EORFN LV D PLFURFRVP RI WKH -3(* SURFHVV>

APPENDIX G

Microsoft Corp. Exhibit 1005

ZKDW LV GRQH WR RQH EORFN RI LPDJH SL[HOV LV GRQH WR DOO RI WKHP/ LQ WKH RUGHU HDUOLHU
VSHFLILHG1

1RZ/ OHW¶V VWDUW ZLWK D EORFN RI LPDJH0SL[HO YDOXHV1 7KLV SDUWLFXODU EORFN ZDV FKRVHQ
IURP WKH YHU\ XSSHU0 OHIW0KDQG FRUQHU RI DQ LPDJH1

2ULJLQDO ã

487 456 456 456 456 456 456 469
4<5 4;3 469 487 487 487 469 443
587 4<; 487 487 4;3 487 456 456
56< 4;3 469 4;3 4;3 499 456 456
4;3 487 469 49: 499 47< 469 469
45; 469 456 469 487 4;3 4<; 487
456 438 443 47< 469 469 4;3 499
443 469 456 456 456 469 487 469

%HFDXVH WKH '&7 LV GHVLJQHG WR ZRUN RQ SL[HO YDOXHV UDQJLQJ IURP 045; WR 45:/ WKH
RULJLQDO EORFN LV ´OHYHOHG RII´ E\ VXEWUDFWLQJ 45; IURP HDFK HQWU\1 7KLV UHVXOWV LQ WKH
IROORZLQJ PDWUL[1

0 ã

59 "8 "8 "8 "8 "8 "8 ;
97 85 ; 59 59 59 ; "4;
459 :3 59 59 85 59 "8 "8
444 85 ; 85 85 6; "8 "8
85 59 ; 6< 6; 54 ; ;
3 ; "8 ; 59 85 :3 59
"8 "56 "4; 54 ; ; 85 6;
"4; ; "8 "8 "8 ; 59 ;

:H DUH QRZ UHDG\ WR SHUIRUP WKH 'LVFUHWH &RVLQH 7UDQVIRUP/ ZKLFK LV DFFRPSOLVKHG E\
PDWUL[PXOWLSOLFDWLRQ1

' ã 707 U 8

,Q (TXDWLRQ +8, PDWUL[0 LV ILUVW PXOWLSOLHG RQ WKH OHIW E\ WKH '&7 PDWUL[7 IURP WKH
SUHYLRXV VHFWLRQ> WKLV WUDQVIRUPV WKH URZV1 7KH FROXPQV DUH WKHQ WUDQVIRUPHG E\ PXOWLSO\LQJ
RQ WKH ULJKW E\ WKH WUDQVSRVH RI WKH '&7 PDWUL[1 7KLV \LHOGV WKH IROORZLQJ PDWUL[1

APPENDIX G

Microsoft Corp. Exhibit 1005

' ã

49516 7319 5313 :516 6316 4518 "4<1: "4418
6318 43;17 4318 6516 5:1: "4818 4;17 "513
"<714 "9314 4516 "7617 "6416 914 "616 :14
"6;19 ";617 "817 "5515 "4618 4818 "416 618
"6416 4:1< "818 "4517 4716 "913 4418 "913
"31< "441; 451; 315 5;14 4519 ;17 51<
719 "517 4515 919 "4;1: "451; :1: 4513

"4313 4415 :1; "4916 5418 313 81< 431:

7KLV EORFN PDWUL[QRZ FRQVLVWV RI 97 '&7 FRHIILFLHQWV/ FLM/ ZKHUH L DQG M UDQJH IURP 3 WR
:1 7KH WRS0OHIW FRHIILFLHQW/ F33/ FRUUHODWHV WR WKH ORZ IUHTXHQFLHV RI WKH RULJLQDO LPDJH EORFN1
$V ZH PRYH DZD\ IURP F33 LQ DOO GLUHFWLRQV/ WKH '&7 FRHIILFLHQWV FRUUHODWH WR KLJKHU DQG
KLJKHU IUHTXHQFLHV RI WKH LPDJH EORFN/ ZKHUH F:: FRUUHVSRQGV WR WKH KLJKHVW IUHTXHQF\1 ,W LV
LPSRUWDQW WR QRWH WKDW WKH KXPDQ H\H LV PRVW VHQVLWLYH WR ORZ IUHTXHQFLHV/ DQG UHVXOWV IURP
WKH TXDQWL]DWLRQ VWHS ZLOO UHIOHFW WKLV IDFW1

4XDQWL]DWLRQ
2XU ;[; EORFN RI '&7 FRHIILFLHQWV LV QRZ UHDG\ IRU FRPSUHVVLRQ E\ TXDQWL]DWLRQ1 $

UHPDUNDEOH DQG KLJKO\ XVHIXO IHDWXUH RI WKH -3(* SURFHVV LV WKDW LQ WKLV VWHS/ YDU\LQJ OHYHOV
RI LPDJH FRPSUHVVLRQ DQG TXDOLW\ DUH REWDLQDEOH WKURXJK VHOHFWLRQ RI VSHFLILF TXDQWL]DWLRQ
PDWULFHV1 7KLV HQDEOHV WKH XVHU WR GHFLGH RQ TXDOLW\ OHYHOV UDQJLQJ IURP 4 WR 433/ ZKHUH 4
JLYHV WKH SRRUHVW LPDJH TXDOLW\ DQG KLJKHVW FRPSUHVVLRQ/ ZKLOH 433 JLYHV WKH EHVW TXDOLW\
DQG ORZHVW FRPSUHVVLRQ1 $V D UHVXOW/ WKH TXDOLW\2FRPSUHVVLRQ UDWLR FDQ EH WDLORUHG WR VXLW
GLIIHUHQW QHHGV1

6XEMHFWLYH H[SHULPHQWV LQYROYLQJ WKH KXPDQ YLVXDO V\VWHP KDYH UHVXOWHG LQ WKH -3(*
VWDQGDUG TXDQWL]DWLRQ PDWUL[1 :LWK D TXDOLW\ OHYHO RI 83/ WKLV PDWUL[UHQGHUV ERWK KLJK
FRPSUHVVLRQ DQG H[FHOOHQW GHFRPSUHVVHG LPDJH TXDOLW\1

483 ã

49 44 43 49 57 73 84 94
45 45 47 4< 59 8; 93 88
47 46 49 57 73 8: 9< 89
47 4: 55 5< 84 ;: ;3 95
4; 55 6: 89 9; 43< 436 ::
57 68 88 97 ;4 437 446 <5
7< 97 :; ;: 436 454 453 434
:5 <5 <8 <; 445 433 436 <<

,I/ KRZHYHU/ DQRWKHU OHYHO RI TXDOLW\ DQG FRPSUHVVLRQ LV GHVLUHG/ VFDODU PXOWLSOHV RI WKH
-3(* VWDQGDUG TXDQWL]DWLRQ PDWUL[PD\ EH XVHG1)RU D TXDOLW\ OHYHO JUHDWHU WKDQ 83 +OHVV
FRPSUHVVLRQ/ KLJKHU LPDJH TXDOLW\,/ WKH VWDQGDUG TXDQWL]DWLRQ PDWUL[LV PXOWLSOLHG E\
+4330TXDOLW\ OHYHO,2831)RU D TXDOLW\ OHYHO OHVV WKDQ 83 +PRUH FRPSUHVVLRQ/ ORZHU LPDJH
TXDOLW\,/ WKH VWDQGDUG TXDQWL]DWLRQ PDWUL[LV PXOWLSOLHG E\ 832TXDOLW\ OHYHO1 7KH VFDOHG

APPENDIX G

Microsoft Corp. Exhibit 1005

TXDQWL]DWLRQ PDWUL[LV WKHQ URXQGHG DQG FOLSSHG WR KDYH SRVLWLYH LQWHJHU YDOXHV UDQJLQJ IURP
4 WR 5881)RU H[DPSOH/ WKH IROORZLQJ TXDQWL]DWLRQ PDWULFHV \LHOG TXDOLW\ OHYHOV RI 43 DQG <31

443 ã

;3 93 83 ;3 453 533 588 588
88 93 :3 <8 463 588 588 588
:3 98 ;3 453 533 588 588 588
:3 ;8 443 478 588 588 588 588
<3 443 4;8 588 588 588 588 588
453 4:8 588 588 588 588 588 588
578 588 588 588 588 588 588 588
588 588 588 588 588 588 588 588

4<3 ã

6 5 5 6 8 ; 43 45
5 5 6 7 8 45 45 44
6 6 6 8 ; 44 47 44
6 6 7 9 43 4: 49 45
7 7 : 44 47 55 54 48
8 : 44 46 49 45 56 4;
43 46 49 4: 54 57 57 54
47 4; 4< 53 55 53 53 53

4XDQWL]DWLRQ LV DFKLHYHG E\ GLYLGLQJ HDFK HOHPHQW LQ WKH WUDQVIRUPHG LPDJH PDWUL[' E\
WKH FRUUHVSRQGLQJ HOHPHQW LQ WKH TXDQWL]DWLRQ PDWUL[/ DQG WKHQ URXQGLQJ WR WKH QHDUHVW
LQWHJHU YDOXH1)RU WKH IROORZLQJ VWHS/ TXDQWL]DWLRQ PDWUL[483 LV XVHG1

&L/ M ã URXQG
'L/ M
4L/ M

9

& ã

43 7 5 8 4 3 3 3
6 < 4 5 4 3 3 3
": "8 4 "5 "4 3 3 3
"6 "8 3 "4 3 3 3 3
"5 4 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

5HFDOO WKDW WKH FRHIILFLHQWV VLWXDWHG QHDU WKH XSSHU0OHIW FRUQHU FRUUHVSRQG WR WKH ORZHU
IUHTXHQFLHV ± WR ZKLFK WKH KXPDQ H\H LV PRVW VHQVLWLYH ± RI WKH LPDJH EORFN1 ,Q DGGLWLRQ/ WKH
]HURV UHSUHVHQW WKH OHVV LPSRUWDQW/ KLJKHU IUHTXHQFLHV WKDW KDYH EHHQ GLVFDUGHG/ JLYLQJ ULVH WR

APPENDIX G

Microsoft Corp. Exhibit 1005

WKH ORVV\ SDUW RI FRPSUHVVLRQ1 $V PHQWLRQHG HDUOLHU/ RQO\ WKH UHPDLQLQJ QRQ]HUR FRHIILFLHQWV
ZLOO EH XVHG WR UHFRQVWUXFW WKH LPDJH1 ,W LV DOVR LQWHUHVWLQJ WR QRWH WKH HIIHFW RI GLIIHUHQW
TXDQWL]DWLRQ PDWULFHV> XVH RI 443 ZRXOG JLYH & VLJQLILFDQWO\ PRUH]HURV/ ZKLOH 4<3 ZRXOG
UHVXOW LQ YHU\ IHZ]HURV1

&RGLQJ
7KH TXDQWL]HG PDWUL[& LV QRZ UHDG\ IRU WKH ILQDO VWHS RI FRPSUHVVLRQ1 %HIRUH VWRUDJH/

DOO FRHIILFLHQWV RI & DUH FRQYHUWHG E\ DQ HQFRGHU WR D VWUHDP RI ELQDU\ GDWD +34434344111,1
,Q0GHSWK FRYHUDJH RI WKH FRGLQJ SURFHVV LV EH\RQG WKH VFRSH RI WKLV DUWLFOH1 +RZHYHU/ ZH FDQ
SRLQW RXW RQH NH\ DVSHFW WKDW WKH UHDGHU LV VXUH WR DSSUHFLDWH1 $IWHU TXDQWL]DWLRQ/ LW LV TXLWH
FRPPRQ IRU PRVW RI WKH FRHIILFLHQWV WR HTXDO]HUR1 -3(* WDNHV DGYDQWDJH RI WKLV E\
HQFRGLQJ TXDQWL]HG FRHIILFLHQWV LQ WKH]LJ0]DJ VHTXHQFH VKRZQ LQ)LJXUH 41 7KH DGYDQWDJH
OLHV LQ WKH FRQVROLGDWLRQ RI UHODWLYHO\ ODUJH UXQV RI]HURV/ ZKLFK FRPSUHVV YHU\ ZHOO1 7KH
VHTXHQFH LQ)LJXUH 4 +7[7, FRQWLQXHV IRU WKH HQWLUH ;[; EORFN1

)LJXUH 4

'HFRPSUHVVLRQ
5HFRQVWUXFWLRQ RI RXU LPDJH EHJLQV E\ GHFRGLQJ WKH ELW VWUHDP UHSUHVHQWLQJ WKH

TXDQWL]HG PDWUL[&1 (DFK HOHPHQW RI & LV WKHQ PXOWLSOLHG E\ WKH FRUUHVSRQGLQJ HOHPHQW RI
WKH TXDQWL]DWLRQ PDWUL[RULJLQDOO\ XVHG1

5L/ M ã 4L/ M � &L/ M :

APPENDIX G

Microsoft Corp. Exhibit 1005

5 ã

493 77 53 ;3 57 3 3 3
69 43; 47 6; 59 3 3 3
"<; "98 49 "7; "73 3 3 3
"75 ";8 3 "5< 3 3 3 3
"69 55 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

7KH ,'&7 LV QH[W DSSOLHG WR PDWUL[5/ ZKLFK LV URXQGHG WR WKH QHDUHVW LQWHJHU1)LQDOO\/
45; LV DGGHG WR HDFK HOHPHQW RI WKDW UHVXOW/ JLYLQJ XV WKH GHFRPSUHVVHG -3(* YHUVLRQ 1 RI
RXU RULJLQDO ;[; LPDJH EORFN 01

1 ã URXQG�7 U 5 7 ò 45; ;

&RPSDULVRQ RI 0DWULFHV
/HW XV QRZ VHH KRZ WKH -3(* YHUVLRQ RI RXU RULJLQDO SL[HO EORFN FRPSDUHV1

2ULJLQDO ã

487 456 456 456 456 456 456 469
4<5 4;3 469 487 487 487 469 443
587 4<; 487 487 4;3 487 456 456
56< 4;3 469 4;3 4;3 499 456 456
4;3 487 469 49: 499 47< 469 469
45; 469 456 469 487 4;3 4<; 487
456 438 443 47< 469 469 4;3 499
443 469 456 456 456 469 487 469

'HFRPSUHVVHG ã

47< 467 44< 449 454 459 45: 45;
537 49; 473 477 488 483 468 458
586 4<8 488 499 4;6 498 464 444
578 4;8 47; 499 4;7 493 457 43:
4;; 47< 465 488 4:5 48< 474 469
465 456 458 476 493 499 49; 4:4
43< 44< 459 45; 46< 48; 49; 499
444 45: 45: 447 44; 474 47: 468

7KLV LV D UHPDUNDEOH UHVXOW/ FRQVLGHULQJ WKDW QHDUO\ :3(RI WKH '&7 FRHIILFLHQWV ZHUH
GLVFDUGHG SULRU WR LPDJH EORFN GHFRPSUHVVLRQ2UHFRQVWUXFWLRQ1 *LYHQ WKDW VLPLODU UHVXOWV ZLOO
RFFXU ZLWK WKH UHVW RI WKH EORFNV WKDW FRQVWLWXWH WKH HQWLUH LPDJH/ LW VKRXOG EH QR VXUSULVH WKDW

APPENDIX G

Microsoft Corp. Exhibit 1005

WKH -3(* LPDJH ZLOO EH VFDUFHO\ GLVWLQJXLVKDEOH IURP WKH RULJLQDO1 5HPHPEHU/ WKHUH DUH 589
SRVVLEOH VKDGHV RI JUD\ LQ D EODFN0DQG0ZKLWH SLFWXUH/ DQG D GLIIHUHQFH RI/ VD\/ 43/ LV EDUHO\
QRWLFHDEOH WR WKH KXPDQ H\H1

3HSSHU ([DPSOH
:H FDQ GR WKH '&7 DQG TXDQWL]DWLRQ SURFHVV RQ WKH SHSSHUV LPDJH1

)LJXUH 5 ± 3HSSHUV

(DFK HLJKW E\ HLJKW EORFN LV KLW ZLWK WKH '&7/ UHVXOWLQJ LQ WKH LPDJH VKRZQ LQ)LJXUH 61

)LJXUH 6 ± '&7 RI 3HSSHUV

(DFK HOHPHQW LQ HDFK EORFN RI WKH LPDJH LV WKHQ TXDQWL]HG XVLQJ D TXDQWL]DWLRQ PDWUL[RI
TXDOLW\ OHYHO 831 $W WKLV SRLQW PDQ\ RI WKH HOHPHQWV EHFRPH]HURHG RXW/ DQG WKH LPDJH WDNHV
XS PXFK OHVV VSDFH WR VWRUH1

APPENDIX G

Microsoft Corp. Exhibit 1005

)LJXUH 7 ± 4XDQWL]HG '&7 RI 3HSSHUV

7KH LPDJH FDQ QRZ EH GHFRPSUHVVHG XVLQJ WKH LQYHUVH GLVFUHWH FRVLQH WUDQVIRUP1 $W TXDOLW\
OHYHO 83 WKHUH LV DOPRVW QR YLVLEOH ORVV LQ WKLV LPDJH/ EXW WKHUH LV KLJK FRPSUHVVLRQ1 $W ORZHU
TXDOLW\ OHYHOV/ WKH TXDOLW\ JRHV GRZQ E\ D ORW/ EXW WKH FRPSUHVVLRQ GRHV QRW LQFUHDVH YHU\
PXFK1

)LJXUH 8 ± 2ULJLQDO 3HSSHUV)LJXUH 9 ± 4XDOLW\ 83 ± ;7(=HURV

APPENDIX G

Microsoft Corp. Exhibit 1005

)LJXUH : ± 4XDOLW\ 53 ± <4(=HURV)LJXUH ; ± 4XDOLW\ 43 ± <7(=HURV

0RUH ([DPSOHV
:H FDQ VHH ZKDW WKH FRPSUHVVLRQ GRHV WR RWKHU LPDJHV1 +LJK FRQWUDVW LPDJHV/ RU LPDJHV

ZLWK D ORW RI KLJK IUHTXHQFLHV GR QRW FRPSUHVV DV ZHOO DV VPRRWK/ ORZ IUHTXHQF\ LPDJHV1

)LJXUH < ± 2ULJLQDO)LJXUH 43 ± 4XDOLW\ 48 ± <3(=HURV

APPENDIX G

Microsoft Corp. Exhibit 1005

)LJXUH 44 ± 2ULJLQDO)LJXUH 45 ± 4XDOLW\ 48 ± ;;(=HURV

%LEOLRJUDSK\

S .HVDYDQ/ +DUHHVK1 &KRRVLQJ D '&7 4XDQWL]DWLRQ 0DWUL[IRU -3(* (QFRGLQJ1:HE SDJH1
KWWS=22ZZZ0LVH16WDQIRUG1('82FODVV2HH6<5F2GHPRV2NHVDYDQ2

S 0F*RZDQ/ -RKQ1 7KH 'LVFUHWH &RVLQH 7UDQVIRUP1:HE SDJH1
KWWS=22ZZZ1UDKXO1QHW2MIP2GFW1KWPO

S :DOODFH/ *UHJRU\ .1 7KH -3(* 6WLOO 3LFWXUH &RPSUHVVLRQ 6WDQGDUG1 3DSHU VXEPLWWHG LQ
'HFHPEHU 4<<4 IRU SXEOLFDWLRQ LQ ,(((7UDQVDFWLRQV RQ &RQVXPHU (OHFWURQLFV1

S :ROIJDQJ/ 5D\1 -3(* 7XWRULDO1:HE SDJH1
KWWS=22ZZZ1LPDJLQJ1RUJ2WXWRULDO2MSHJWXW41KWPO

S 2XU VSHFLDO WKDQNV WR 'DYLG $UQROG/ PDWK LQVWUXFWRU H[WUDRUGLQDLUH1

APPENDIX G

Microsoft Corp. Exhibit 1005

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. I , NO 2. APRIL 1992 20s

Image Coding Using Wavelet Transform
Marc Antonini, Michel Barlaud, Member, IEEE, Pierre Mathieu, and Ingrid Daubechies, Member, IEEE

Abstract-Image compression is now essential for applica-
tions such as transmission and storage in data bases. This paper
proposes a new scheme for image compression taking into ac-
count psychovisual features both in the space and frequency
domains; this new method involves two steps. First, we use a
wavelet transform in order to obtain a set of biorthogonal sub-
classes of images; the original image is decomposed at different
scales using a pyramidal algorithm architecture. The decom-
position is along the vertical and horizontal directions and
maintains constant the number of pixels required to describe
the image. Second, according to Shannon’s rate distortion the-
ory, the wavelet coefficients a r e vector quantized using a multi-
resolution codebook. Furthermore, to encode the wavelet coef-
ficients, we propose a noise shaping bit allocation procedure
which assumes that details a t high resolution a re less visible to
the human eye. Finally, in order to allow the receiver to rec-
ognize a picture as quickly as possible a t minimum cost, we
present a progressive transmission scheme. It is shown that the
wavelet transform is particularly well adapted to progressive
transmission.

Keywords-Wavelet, biorthogonal wavelet, multiscale py-
ramidal algorithm, vector quantization, noise shaping, pro-
gressive transmission.

I . INTRODUCTION
N many different fields, digitized images are replacing I conventional analog images as photograph or x-rays.

The volume of data required to describe such images
greatly slow transmission and makes storage prohibitively
costly. The information contained in the images must,
therefore, be compressed by extracting only the visible
elements, which are then encoded. The quantity of data
involved is thus reduced substantially.

A fundamental goal of data compression is to reduce
the bit rate for transmission or storage while maintaining
an acceptable fidelity or image quality. Compression can
be achieved by transforming the data, projecting it on a
basis of functions, and then encoding this transform. Be-
cause of the nature of the image signal and the mecha-
nisms of human vision, the transform used must accept
nonstationarity and be well localized in both the space and
frequency domains. To avoid redundancy, which hinders
compression, the transform must be at least biorthogonal
and lastly, in order to save CPU time, the corresponding
algorithm must be fast. The two-dimensional wavelet
transform defined by Meyer and Lemari<[3 11, [24], [25] ,

Manuscript received February 7 , 1990: revised March 26, 1991.
M. Antonini, M. Barlaud, and P. Mathieu are with LASSY 13s CNRS.

I. Daubechies is with AT&T Bell Laboratories, Murray Hill, NJ 07974.
IEEE Log Number 9106073.

Universite de Nice-Sophia Antipolis, 06560 Valbonne. France.

together with its implementation as described by Mallat
[27], satisfies each of these conditions.

The compression method we have developed associates
a wavelet transform and a vector quantization coding
scheme. The wavelet coefficients are coded considering a
noise shaping bit allocation procedure. This technique ex-
ploits the psychovisual as well as statistical redundancies
in the image data, enabling bit rate reduction.

Section I1 describes the wavelet transforms used in this
paper. After a quick review of wavelets in general, we
explain in more detail the properties and construction of
regular biorthogonal wavelet bases. We then extend this
one-dimensional construction to a two-dimensional
scheme with separable filters. The new coding scheme is
next presented in Section 111. We focus particularly in this
section on the statistical properties of wavelet coeffi-
cients, on the asymptotic coding gain that can be achieved
using vector quantization in the subimages, and on the
optimal allocation across the subimages. Experimental re-
sults are given in Section IV for images taken within and
outside of the training set.

11. WAVELETS
A. A Short Review of Wavelet Analysis

tion + by dilations and translations
Wavelets are functions generated from one single func-

(For this introduction we assume t is a one-dimen-
sional variable). The mother wavelet $ has to satisfy
j d x +(x) = 0, which implies at least some oscillations.
(Technically speaking, the condition on + should be
S dw I \k (w) / ’ I w (- I < 03, where \k is the Fourier trans-
form of +; if +(t) decays faster than I t 1 - ’ for t + 03, then
this condition is equivalent to the one above). The defi-
nition of wavelets as dilates of one function means that
high frequency wavelets correspond to a < 1 or narrow
width, while low frequency wavelets have a > 1 or wider
width.

The basic idea of the wavelet transform is to represent
any arbitrary function f as a superposition of wavelets.
Any such superposition decomposes f into different scale
levels, where each level is then further decomposed with
a resolution adapted to the level. One way to achieve such
a decomposition writes f as an integral over a and b of
q,h with appropriate weighting coefficients [22]. In prac-
tice, one prefers to writefas a discrete superposition (sum
rather than integral). Therefore, one introduces a discre-

1057-7149192$3.00 0 1992 IEEE

APPENDIX H

Microsoft Corp. Exhibit 1005

206 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. I , NO. 2 , APRIL 1992

tization, a = a;, b = nboa$, with m , n E Z, and a. > 1 ,
bo > 0 fixed. The wavelet decomposition is then

(1)
with $,,,(t) = $":3"bou:((t) = ai"/2$(a&"'t - nbO). De-
compositions of this type were studied in [141, [151. For
a. = 2, bo = 1 there exist very special choices of $ such
that the qm,, constitute an orthonormal basis, so that

f = C c m , n (f) $m,n

cm,n(f> = (1 C / m , n , f) = j' dx $m.n(x>f(x)

in this case. Different bases of this nature were con-
structed by Stromberg [36], Meyer [31], LemariC [24],
Battle [7], and Daubechies [16]. All these examples cor-
respond to a multiresolution analysis, a mathematical tool
invented by Mallat [27], which is particularly well adapted
to the use of wavelet bases in image analysis, and which
gives rise to a fast computation algorithm.

In a multiresolution analysis, one really has two func-
tions: the mother wavelet $ and a scalingfinction 4. One
also introduces dilated and translated versions of the scal-
ing function, C#Im,,(x) = 2-"/2C#I(2-mx - n) . For fixed m ,
the 4,,, are orthonormal. We denote by Vm the space
spanned by the 4,,,; these spaces Vm describe successive
approximationspaces, . V2 C VI C V0 C V P 1 C VP2
. . * , each with resolution 2". For each m, the $,,, span
a space Wm which is exactly the orthogonal complement
in V, - of V,; the coefficients ($ m , n , f), therefore, de-
scribe the information lost when going from an ap-
proximation of f with resolution 2" to the coarser ap-
proximation with resolution 2". All this is translated
into the following algorithm for the computation of the
Cm, n (f) = ($",,, f > (for more details, see [27]):

c m , n (f) = g2n - k a m - I , k (f)

where g, = (- l) 'h-/ + I and h, = 2'/2 j d x $(x - n) 4 4 2 ~) .
In fact the am, ,(f) are coefficients characterizing the pro-
jection of f onto V,. If the function f is given in sampled
form, then one can take these samples for the highest or-
der resolution approximation coefficients ao,,, and (2) de-
scribes a subband coding algorithm on these sampled val-
ues, with low-pass filter h and high-pass filter g. Because
of their association with orthonormal wavelet bases, these
filters give exact reconstruction, i.e.:

am- I , l (f > = C [h2n-lam,n(f) + g 2 n - [~ m , n (f) l . (3)

Most of the orthonormal wavelet base; have infinitely
supported $, corresponding to filters h and g with infi-
nitely many taps. The construction in [16] gives $ with
finite support, and therefore, corresponds to FIR filters.
It follows that the orthonormal bases in [16] correspond
to a subband coding scheme with exact reconstruction

for decomposition. Such filters are well known since the
work of Smith and Barnwell [35] and of Vetterli [37]. The
extra ingredient in the orthonormal wavelet decomposi-
tion is that it writes the signal to be decomposed as a su-
perposition of reasonably smooth elementary building
blocks. The filters must satisfy the additional condition:

m

n H (2 - k # 9
k = 1

decay faster than C(1 + I C;
E > 0, where

as I C; I -+ 03, for some

H(4) = 2-II2 c h,e-JnE.
n

This extra regularity requirement is usually not satisfied
by the exact reconstruction filters in the ASSP literature.

B. Applications of Wavelet Bases to Image Analysis
1) Biorthogonal Wavelet Bases: Since images are

mostly smooth (except for occasional edges) it seems ap-
propriate that an exact reconstruction subband coding
scheme for image analysis should correspond to an or-
thonormal basis with a reasonably smooth mother wave-
let. In order to have fast computation, the filters should
be short (short filters lead to less smoothness, however,
so they cannot be too short). On the other hand it is de-
sirable that the FIR filters used be linear phase, since such
filters can be easily cascaded in pyramidal filter structures
without the need for phase compensation. Unfortunately,
there are no nontrivial orthonormal linear phase FIR fil-
ters with the exact reconstruction property [35], regard-
less of any regularity considerations. The only symmetric
exact reconstruction filters are those corresponding to the
Haar basis, i.e., h0 = hl = 21 /2 and go = -gl = 2Ii2,
with all other h,, g, = 0.

One can preserve linear phase (corresponding to sym-
metry for the wavelet) by relaxing the orthonormality re-
quirement, and using biorthogonal bases. It is then still
possible to construct examples where the mother wavelets
have arbitrarily high regularity.

In such a scheme, we still decompose as in (2), but
reconstruction becomes

am- I./(f> = [h;n-/am,n(f) + g2n-l~rn.n(f)1 (4)

where the filters L, g may be different from h , g . In order
to have exact reconstruction, we impose:

So far, we have not performed anything differently from
the usual exact reconstruction subband coding schemes
with synthesis filters different from the decomposition fil-
ters. If the filters satisfy the additional condition that:

m m

n fi(2-k$) and n H(2?C;) (64 property, using the same FIR filters for reconstruction as k = 1 k = 1

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI cr U / ' IMAGE CODING USING WAVELET TRANSFORM 207

decay fasterthan C(1 + I (
E > 0, where

as I (I + 03, for some

fi(() = 2-112 C k r l e - ~ n E H(E) = 2-1P h e - inE
n n

(6b)
then we can give the following interpretation to (2) and
(4). Define functions 6 and 4 by

4(x) = c hn4(2x - n) and $(x) = hn$(2x - n) .

Their Fourier transforms are exactly the infinite products
(6a), and they are, therefore, well-defined square inte-

n n

grable functions, compactly supported
h are FIR. Define also

$(x) = c gt,q5(2x - n) and $(x) =

Then, the a , , , (f) and c, , ,(f) in (2

n

as :

f the filters h and

c &$(2x - n).
I 1

can be rewritten

The filter bank structure with the associating wavelets
and scaling functions is depicted on the following sub-
band coding scheme (Fig. 1) .

If the infinite products in (6a) decay even faster than
imposed above, then 4 and 4 and consequently $ and $
will be reasonably smooth. Note that (7) is very similar
to the orthonormal decomposition described in Section
11-A; the only difference is that the expansion o f f with
respect to the basis $,,,,, uses coefficients computed via
the dual basis $m,,, with $ different from $. This interpre-
tation is not possible for all exact reconstruction subband
coding schemes; in particular, convergence of the infinite
products (6a) is only possible if

C h,, = 2'1' and h,, = 2 ' f 2 .
I 1 n

Moreover, (7) can only hold if

c (- l) " h , = 0 and (- l)nhn = 0.
n n

Most exact reconstruction subband coding schemes do
not satisfy these conditions.

Biorthogonal bases of wavelets have rgcently been con-
structed, with regularity simultaneously but indepen-
dently, by Cohen, Daubechies and Feauveau [12] and by
Herley and Vetterli [38]. Reference [12] contains a de-
tailed mathematical study, with proofs that, under the
conditions stated above, the wavelets do indeed constitute
numerically stable bases (Riesz bases) and a discussion of
necessary and sufficient conditions for regularity. In [181

@ 4j

x{-F ;TF
G(W

w v
Fig. I , Filter bank structure and the associating wavelets

Feauveau explores the construction from the point of view
of multiresolution spaces rather than from the filters. Bas-
ically one has two hierarchies of spaces in the bior-
thogonal case, each corresponding to one pair of filters.

It is shown in [12] that arbitrarily high regularity can
be achieved by both $ and $, provided one chooses suf-
ficiently long filters. In particular, if the functions $ and
$ are, respectively, (k - 1) and (k - 1) times continu-
ously differentiable, then the trigonometric polynomials
H(() and e(() have to be divisible by (1 + e P J o k and
(1 + respectively, so that the length of the corre-
sponding filters h , h has to exceed k , k.

By (5) , divisibility of A(() by (1 + means that $
will have k consecutive moments zero:

dx x'$(x) = 0 , for 1 = 0, 1, . . . , k - 1 . s
For more details concerning this discussion, see [121.
It is well known (and it can easily be checked by using

Taylor expansions) that if $ has E moments zero, then the
coefficients ($rn, ,,, f) will represent functions f, which
are f times differentiable, with a high compression poten-
tial (many coefficients will be negligibly small).

Many examples of biorthogonal wavelet bases with rea-
sonably regular $ and $ can be constructed; for our ap-
plications, - the regularity of the elementary building blocks
$ m , n , which is linked to the number of zero moments of
$, is more important than the regularity of the $,,,,,, or the
number of zero moments of $. Within the limits imposed
by the support widths, we will, therefore, try to choose
k as large as possible.

In terms of trigonometric polynomials H(() and A(() .
the exact reconstruction requirement condition on h and
6 given in (5) reduces to (for symmetric filters)

(8) H(()A(() + H((+ 7r)A((+ 7r) = 1.

Together with divisibility of H and A, respectively, by
(1 + and (1 + this leads to (see [121)

where R (() is an odd polynomial in cos ((), and where
21 = k + k (symmetry of h and h forces k + k t o be even).

APPENDIX H

Microsoft Corp. Exhibit 1005

208 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 1 , NO. 2 , APRIL 1992

TABLE I
FILTER COEFFICIENTS FOR THE SPLINE FILTERS WITH I = 3, k = 4, L = 2

n 0 * I + 2 k 3 k4

Many examples are possible. We have studied in par-
ticular the following three examples, which belong to

2) Spline Filters: One can choose, e.g., R = 0, with
I?($) = cos (E/2)ke- ’KE/2 where K = 0 if l i s even, K = 1
if k is odd. This corresponds to the filters called “spline
filters” in [12] (because the corresponding function 6 is
a B-spline function) or “binomial filters” in [38] (because
the h“ are simply binomial coefficients). It then follows
that:

‘

. three different families.

H(E> = cos (t / 2) 2 1 - ‘ e ~ K t / 2

We have looked at one example from this family; it
corresponds to 1 = 3, E = 2 . The coefficients hn and h;,
are listed in Table I; the corresponding scaling functions
and wavelets are plotted in Fig. 2 .

It is clear that the two filters in the first example have
very uneven length. This is typical for all the examples in
this family of “spline filters.”

3) A Spline Variant with Less Dissimilar Lengths: This
family still uses R = 0 in (9), but factorizes the right-
hand side of (9), breaking up the polynomial of degree
1 - 1 in sin (E / 2) into a product of two polynomials in
sin ((/ 2) with real coefficients, one to be allocated to H ,
the other to H , so as to make the lengths of h and 6 as
close as possible.

The example presented here is the “smallest” one in
this family (shortest h and 6) ; it corresponds to 1 = 4 and
k = 4. The filter coefficients are listed in Table 11; the
corresponding scaling functions and wavelets are plotted
in Fig. 3.

Note that, unlike examples 1 and 3 where the 2 - 1 / 2 h , ,
2 - 1 / 2 6 n are rational, the entries in Table 11 are truncated
decimal expansions of irrational numbers. The functions
4 in examples 1 and 2 look very similar (compare Figs.
2(a) and 3(a)); a more detailed analysis shows that the one
in example 2 is more regular, however. Both correspond
to 4 vanishing moments for 4.

4) Filters Close to Orthonormal Filters: Finally, there
exist many examples for which R # 0. In particular there
exists a special choice of R for which th.e two filters are
very close to each other, and both very close to an or-
thonormal wavelet filter.

-4 -3 -2 -1 0 1 2 3 4

(a)

3 1

-1‘ I
- 4 - 3 - 2 - 1 0 1 2 3 4 5

(d)
Fig. 2. Scaling functions 6, 6 and wavelets $, 4 for example 1 (spline
filters with 1 = 3, k = 4, L = 2). (a) Scaling function 6. (b) Scaling func-
tion 4. (c) Wavelet $. (d) Wavelet $.

Surprisingly, for the first example of this series, one
of the two filters is a Laplacian pyramid filter pro-
posed in [9]. It corresponds to 1 = 2, k = 2 and
R(E) = 48 cos (t;)/175. The filter coefficients are listed
in Table 111; the corresponding scaling functions and

wavelets are plokted in Fig. 4. It is clear that the scaling
functions and_+ are very similar, corresponding to very
similar II, and II,. Note that in this case, the filter coeffi-
cients are again rational.

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI er a1 : IMAGE CODING USING WAVELET TRANSFORM 209

TABLE 11

LENGTHS. W I T H I = 4 = k , K = 4

n 0 + 1 +2 + 3 *4

FILTER COEFFICIENTS FOR T H E S P L I N E V 4 R I A N T WITH LFSS DISSIMIL4R

2 - ' 'h,, 0 602 949 0 266 864 -0 078 223 -0 016 864 0 026 749
2 ' 'h;, 0 5.57 543 0 295 636 -0 028 772 -0 045 636 0

7

1 5 -

1 -

0 5 -

- O f - 1 7 r

Fig. 3. Scaling functions 4, 4 and wavelets 6. 4 for example 2 (spline
variant with less dissimilar lengths: I = 4 = k , E = 4) . (a) Scaling function
4. (b) Scaling function 4 . (c) Wavelet $. (d) Wabelet 4 .

TABLE 111
FILTER COEFFICIENTS FOR EXAMPLE 3. THE ENTRIES A R E R A T I O N A L , ~ Y D

T H E T W O FILTERS ARE VERY C L O S E . THE FILTER COINCIDES WITH A
LAPLACIAN P Y R A M I D FILTER PROPOSED IN [9] . I Y THIS C A S E

1 = 2 = k , F = 2

n 0 i 1 + 2 * 3 i 4

2 - ' " h n 0.6 0.2s -0.05 0 0
2 - l 'h,, 17/28 73/280 -3 /56 -3/280 0

ist various extensions of the one-dimensional wavelet
transform to higher dimensions. We follow Mallat [27]
and use a two-dimensional wavelet transform in which
horizontal and vertical orientations are considered pref-
erential.

In two-dimensional wavelet analysis one introduces. like
in the one-dimensional case, a scaling function $(x, y)
such that:

The two biorthogonal filters in this example are both
close to an orthonormal wavelet filter of length 6 con-
structed in [17], where it was called a L'coiflet." Being
an orthonormal wavelet filter, the coiflet is nonsymme-
tric. The filters in this example are shorter than in exam-
ples 1 and 2, but k is also smaller. The next example in
this family corresponds to k = 4 (and 1 = 4); the filters h
and h then have length 9 and 15; they are both close to a
coiflet of length 12.

5) Extension to the Two-Dimensional Case: There ex-

where $(x) is a one-dimensional scaling function.
Let $(x) be the one-dimensional wavelet associated with

the scaling function $(x). Then, the three two-dimen-
sional wavelets are defined as:

APPENDIX H

Microsoft Corp. Exhibit 1005

210 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. I , NO. 2, APRIL 1992

Initial image
corresponding to
the resolution
levelm-1 -

-0 5' I
-4 -3 -2 -1 0 1 2 3 4

h 2 1 1

g 11 2

h 11 2

-1.51 I
-4 -3 -2 - 1 0 1 2 3 4 5

-1 5 I
- 4 - 3 - 2 - 1 0 1 2 3 4 5

(d)
Fig. 4 . Scaling functions 4, 6 and wavelets $, $ for example 3 (bior-
thogonal filters c lose to an orthonormal wav5let filter, 1 = 2 = k , = 2) .
(a) Scaling function 6 . (b) Scaling function 6. (c) Wavelet $. (d) Wavelet
IJ

Image conspanding
to the low resoluhon
level m

'1
Detail images
corresponding to the
information visible at the
resolution level m-1

Fig. 5 . One stage in a multiscale image decomposition.

Fig. 5 represents one stage in a multiscale pyramidal
decomposition of an image: wavelet coefficients of the
image are computed, as in the one-dimensional case (Sec-
tions 11-A and 11-B. l) , using a subband czding algorithm.
The filters h and g are one-dimensional filters. This de-
composition provides subimages corresponding to differ-
ent resolution levels and orientations (see Fig. 6). The
reconstruction scheme of the image is presented Fig. 7.

To compare the three different filters presented in this
paper, we have decomposed the image Lena (Fig. 16) with
each of these filters. The results are presented in Fig. 8.

In Fig. 8(a) we can see the normalized detail subimages
at different resolution levels m = 1, m = 2, and m = 3
(wavelet coefficients) and in Fig. 8(b) the low resolution
level subimages.

111. IMAGE CODING APPLICATION
A. Statistical Properties of Wavelet Coeflcients

The performance of a coder used for a given resolution
and direction can be determined by the statistics of the
corresponding subimage, i.e., its probability density
function (PDF).

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI er al. : IMAGE CODING USING WAVELET TRANSFORM 211

m t 2

Low resolution
sub-image

Resolution m=2

Vertical
onentation
sub-image

m=2

Resolution m=2

Horizontal
orientation
sub-image

Resolution m=2

Diagonal
orientation
sub-image

Resolution m=l

Vertical
orientation sub-image

m= 1

Resolution m=l

Horizontal
orientation sub-image

Resolution m=l

Diagonal
orientation sub-image

I I

Fig. 6 . Image decomposition.

COLUMNS ROWS

I T 2 h Image corresponding
to the low resolution
level m

l t 2 g

Detail images
resolution level m h E l f 2

\ IT 2 g

Convolve w t h filter X

Fl Put one column of rem
between each mlumn

Put one ligne of zem
between each ligne

Multiply by 2

Fig. 7. One stage in a multiscale image reconstruction

A typical PDF and different approximations are given
in Fig. 9, where we plot the true PDF for resolution level
m = 1 and direction d = vertical together with three model
functions: a Gaussian, a Laplacian, and an intermediate
function, the so-called generalized Gaussian [2].

This generalized Gaussian law is given explicitly by

P m . d (X) = am.d exp (- 1 bm.dX I r m , d)

with
P (- 3

(13)
where u m , d is the standard deviation of the subimage
(m, d) , and r() is the usual Gamma function.

The general formula (13) contains the other two ex-
amples as particular cases:

rm,d = 2 leads to the well-known Gaussian PDF;
rm,d = 1 leads to a Laplacian PDF.

The variance of this approximation model is set equal
to the variance of the corresponding subimage. Thus the
parameter rm,d is computed in order to match the real PDF
using the well-known chi-squared test. In this case the
optimum parameter was 0.7. Other experiments for other
resolutions (except the lowest resolution) lead to very
similar results.

We can see in Fig. 9 that the real PDF (scale m = 1
and vertical orientation) is closely approximated by a gen-
eralized Gaussian law with parameter r l , (, = 0.7.

B. Encoding of Wavelet Coejicients Using Vector
Quantization

Different techniques involving vector or scalar quanti-
zation can be used to encode wavelet coefficients.

According to Shannon’s rate distortion theory, better
results are always obtained when vectors rather than sca-

APPENDIX H

Microsoft Corp. Exhibit 1005

212 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. I , NO. 2. APRIL 1992

47

m = 3
32 x 32 pix

43

m = 3
32 x 32 pix

5 7

5-7

Fig. 8. Comparison among the different subimages. (a) Comparison among
the normalized detail subimages. (b) Comparison among the low resolution
level subimages.

lars are encoded. Therefore, the present application uses
vector quantization.

1 . Principle of Vector Quantization: Developed re-
cently by Gersho and Gray (1980) [20], @ 13, vector quan-
tization has proven to be a powerful tool for digital image
compression [4], [29], [30], [32], [39]. The principle in-
volves encoding a sequence of samples (vector) rather than
encoding each sample individually. Encoding is per-
formed by approximating the sequence to be coded by a
vector belonging to a catalogue of shapes, usually known
as a codebook.

The codebook is created and optimized using the well-
known Linde-Buzo-Gray (LBG) [26] classification al-

gorithm with a mean squared error (MSE) criterion. This
algorithm is designed to perform a classification based on
a training set comprised of vectors belonging to different
images; it converges iteratively toward a locally optimal
codebook.

Each of the vectors in the codebook is indexed. At the
encoding stage, the index of the vector in the codebook
most closely describing (in terms of MSE criterion) the
sample set to be encoded is selected to represent this set.
Of course, in order to reconstruct the sample set, the de-
coder must have the same codebook as the coder.

The encoding/decoding scheme depicted in Fig. 10 was
proposed in [29] and [30] for orthonormal wavelets.

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI et al. ' IMAGE CODING USING WAVELET TRANSFORM

. 12

IMAGE -

213

RECONSTRUCTION TRANSFORM

WAVELEI VECTOR
TRANSFORM - DECOMFOSLTIO

Wavelet coefficients
Fig. 9. Real PDF of subimage at scale m = I for vertical orientation, and

its different approximations.

wt
W?

Y'

w,.

CODER DECODER

J
WJ Mm dW,, W,)

Fig. 10. Encoding/decoding scheme

2) Comparative Performances of Vector Quantization
(VQ) and Scalar Quantization (SQ): According to [3],
[131, [191, [43], [30] the asymptotic lower bound distor-
tion gain obtained when VQ, rather than SQ, is applied
to a subimage is expressed as:

2-'
GLQd I

(c -k llA(krn,d, c)

X

[[P r n , d (x) l k " , . d / (c + k , , , . d

(14)
for a subimage corresponding to resolution m and direc-
tion d. P r n , d (X) is the PDF of wavelet coefficients of the
subimage with resolution m and direction d.

Here, the MSE criterion is used as a distortion measure
(c = 2). The values of A(krn,d, 2) ussd are the upper
bounds of the MSE computed and tabulated by Conway
and Sloane for vector size km,d [13]. This formula gives
an indication of the minimum theoretical gain that can be
obtained.

However, this approximation is valid only for small
quantization errors, i .e., for a high bit rate Rrn,d. Thus the
gain G,"Qd only gives here an asymptotic indication.

In Fig. 11, the curves of GIQd are plotted as a function
of the vector dimension krn,d for the Laplacian, Gaussian,

(r = 0.5)

I
0 2 4 6 8 10 12 14 16

Vector dimension k
Fig. 11. Asymptotic lower bound distortion gain Gl:, = function (k,,, <,).

and generalized Gaussian approximation laws, and for a
subimage at scale m = 1 and vertical orientation. Exper-
imental results are closely matched by the theoretical re-
sults for a generalized Gaussian law with rnl,d = 0.7 ex-
cept for the lower subband. Therefore, all computations
based on this approximation law show that, in each sub-
band, VQ outperforms SQ (see Fig. 11).

In summary VQ performs better for coding wavelet
coefficients.

3) Generation of a Multiresolution Codebook: The
preceding paragraph explained why VQ outperforms other
methods. Nonetheless, major problems are encountered
in the VQ of images.

It is impossible to create a universal codebook (effi-
cient for each image to be encoded).

APPENDIX H

Microsoft Corp. Exhibit 1005

214 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL I . NO. 2 . APRIL 1992

The LBG algorithm smooths high frequencies (loss
of resolution).

There is a trade-off between low distortion and high
compression rate (computational cost).

It is not easy to take into account the properties of
the human visual system [28], [33].

The use of the wavelet transform (i.e., multiresolution)
is one way of overcoming these different problems.

The wavelet decomposition of an image enables the
generation of a codebook containing two-dimensional
vectors for each resolution level and preferential direc-
tion (horizontal, vertical, and diagonal). Each of these
subcodebooks (see Fig. 12) is generated using the LBG
algorithm.

The training set is comprised of vectors belonging to
different images corresponding to the resolution and ori-
entation under consideration.

The initial codebook is generated by splitting the
centroid (center of gravity) of this training set [2 11.

A multiresolution codebook can thus be obtained by as-
sembling all of these resulting subcodebooks. Each sub-
codebook has a low distortion level and contains few
words, which clearly facilitates the search for the best
coding vector; the coding computational load is reduced,
because only the appropriate subcodebook (resolution di-
rection) of the multiresolution codebook is checked for
each input vector. In addition, the quality of the coded
image is better. The multiresolution codebook is depicted
in Fig. 12.

Global codebook design has drawbacks in that it results
in edge smoothing while the proposed method preserves
edges. In fact, each subcodebook contains the shape of
the wavelet coefficients which are most highly represen-
tative in terms of the MSE criterion.

Since the spatial and frequency aspects of the image are
taken into account in the wavelet decomposition, the clas-
sification and search during the encoding of a subimage
vector can be achieved using a simple criterion such as
least mean squares. This frees us from using distortion
measurements such as weighted least mean squares or
other measurements involving perceptual factors. These
algorithms are indeed costly in computation time.

C. Optimal Bit Allocation
Multiresolution exploits the eye's masking effects, and

therefore, enables us to refine and select the type of cod-
ing according to the resolution level and the contour ori-
entation. Although a flat noise shape minimizes the MSE
criterion, it is generally not optimal for a subjective qual-
ity of image. To apply noise shaping acrzss the VQ sub-
images, we define a total weighted MSE distortion D f (RT)
((17)) for a total bit rate RT ((18)).

Let us define Dln ,d (R ln ,d) the average distortion in the
coding of the subimage (m , d) for Rln,d bits per pixel:

Dill,d(Rl,.d) = E(lx - q(x)I') = 4x7 q (4) c 2 1

(15)

orientahon

Horuontal
orientation

Sub-codebook

Vertical
orientation

onentation
Sub-codebook

Horuontal
onentation

Sub-codebook

Vertml
onentation

Sub-codebook

Dugonal
onentation

Sub-codebook

//

Fig. 12. Multiresolution codebook

for all coefficients x belonging to the subimage, q(x) being
the quantization of x.

Total distortion of the image for a total rate of RT bits
per pixel is then given by:

l 3 M 1
D T (R T) DLQ(R?) + 22" dzl D m , d (R 1 n , d)

(16)
where DLQ(RZ) corresponds to the distortion in the sub-
image of lowest resolution M (texture subimage).

The problem of finding an optimal bit assignment (in
bits per pixel) for each subimage vector quantizer is then
formulated as:

1
Min D f (R T) = ~ DLQ(RLQ)

22M
M

R">.d I
l 3 M 1

subject to: RT = 2~ R F + c 5 c Rm,d (18) 2 m = l 2 d = l

where R F corresponds to the bit allocation, in bits per
pixel, of lowest resolution M subimage.

Assignment of the weights is based on the fact that the
human eye is not equally sensitive to signals at all spatial
frequencies. On the basis of contrast sensitivity data col-
lected by Campbell and Robson [lo], and to obtain a con-
trolled degree of noise shaping across the subimages, we
consider a function Bln,d such that:

(19)
where oln, is the standard deviation corresponding to sub-
image (m , d) and the values of y and Pl,l,d are chosen
experimentally in order to match human vision.

D f (RT) is the total weighted encoding distortion func-
tion, and M is the lowest resolution considered.

The expression of D,ll,d(R,n,d) is given by [19]

D in. d (R,,,d) = 2-cR't1.1' x (~ , , ~ , ~ (p , e) , c 2 1

Bl,l,d = y"' log (02""." I l l . d

with

~ , . d (P , c) = A(k,n,d, c)
(c + k,,,.,,)

' d x] .

(20)

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI er u l . : IMAGE CODING USING WAVELET TRANSFORM 21s

This minimization problem can be solved by using La-
grangian multipliers. Using this technique, we must solve
the following equation:

where h is a Lagrangian multiplier.
Using (17) and (20), this equation becomes:

(22)
Taking the partial derivative with respect to Rm,d yields

an expression for R,,., in terms of A:

By substituting (23) into the constraint (18) of the min-
imization problem we obtain an expression of the Lagran-
gian multiplier h

M 3
= e in 2 ~ - c (R T - (I / ~ ~) R ~ P) I m = l d = l

IV. EXPERIMENTAL RESULTS
The images used are sampled 256 by 256 black and

white images. The intensity of each pixel is coded on 256
grey levels (8 bpp).

The numerical evaluation of the coder's performance is
achieved by computing the peak signal-to-noise ratio
(PSNR) between the original image and the coded image.

For each coded image, we can use a variable length
code. We also give the corresponding a, if an optimal
entropy coding was performed, defined as follows.

* , L of the vector
quantizer corresponds to L regions (clusters) of E',
s,;; = 1, 2, * * - , L. The jth region is defined by

SJ = {x E IRk /Q(x) = w J }

and represents the subset of vectors of IRA which are well
matched by the codeword w, of the codebook.

Thus for each resolution and direction, we can intro-
duce the average information of the codebook, called the
entropy measure:

To the L codewords wJ; j = 1, 2,

l L
km,(f J = I

am,</ = - ~ x P(w,) log2 P(w,) bpp

where p(w,) is the probability of selecting the source vec-
tor wJ, belonging to the codebook at scale m and corre-
sponding to the orientation d , during the coding of the
image (m , d).

Then, as in (18), a T i s the sum of the estimated entropy
in each subimage as follows:

The vector quantizer used is a fu l l search quantizer,
i .e., during the coding, all of the vectors in the subcode-
book corresponding to the resolution and direction to be
encoded are searched. The selection criterion used is the
MSE criterion.

(24)

Finally, substituting h into (23) results in an expression
of the optimal bit assignment Rm,d,,p, (in bits per pixel
(bpp)) to the vector quantizer of subimage (m , d) :

. 1% d (P 9 c) B,,,, d 1 I /4"'

This expression requires the knowledge of the sub-

The optimal distortion of the quantizer, D?,,,,(RT), is
image's PDF's.

then computed by combining (25) and (17). We find:

D;lp,(RT) - DLQ(R&Q) I 4M -

A . Comparison Between the Different Wavelets
In the following, we present results obtained with the

Lena image (image within the training set) for a real bit
rate of 1 bpp and using the three different filters proposed
in Section II-B. (Fig. 13 corresponds to filters 9-3 pre-
sented in example 1, Fig. 14 corresponds to filters 9-7
presented in example 2, and Fig. 15 corresponds to filters
5-7 presented in example 3.) Here, the Lena image is
taken as part of the training set in order to minimize the
effects of quantization noise: this enables the influence of
the filters to be taken into account.

For a given set of filters, separate codebooks are trained
for each resolution-orientation subimage, and bit alloca-

1 2 - ~ (4 ~ ~ T -R;~ ,Q, /~M- I

22M 4M
4M/4W- I

m = I d = l

(26)
Finally, bit allocation which is a function of the image

will be transmitted as side information requiring only a
few bits.

APPENDIX H

Microsoft Corp. Exhibit 1005

216 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 1 . NO. 2 . APRIL 1992

Fig. 13. Filters no . 1 9-3, PSNR = 31.82 dB, CR7 = 0.80 bpp

Fig. 14. Filters no. 2, 9-7, PSNR = 32.10 dB, R7 = 0.78 bpp

tion is carried out according to (25). For the Lena image,
the bit assignment is represented in Fig. 17. Resolution 1
(diagonal orientation) is discarded. Resolution 1 (hori-
zontal and vertical orientations) and resolution 2 (diago-
nal orientation) are coded using 256-vector codebooks
(codeword size 4 by 4) resulting in a 0.5-b/pixel rate,
while resolution 2 (horizontal and vertical orientations) is
coded at a 2-b/pixel rate using 256-vector codebooks

Fig. 15. Filters no. 3, 5-7, PSNR = 31.46 dB, RT = 0.80 bpp

Fig. 16. Original 256 by 256 Lena, 8 bpp

(codeword size 2 by 2). Finally, the lowest resolution is
coded at 8 b/pixel.

B. Results as a Function of Regularity and Vanishing
Moments

In Section 11-B, we mentioned our belief that both the
regularity of the reconstruction wavelet $ and the number

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI cl ul. : IMAGE CODING USING WAVELET TRANSFORM 217

increasing bit ra te

m 2 2 m = 2 m = I

N = 256
Size 2x2 (k=4)

0.5 bpp
N = 256 codewords

scalar
auantization

bpp I 0.5 bPp I Size4x4 (k=16)
N = 256 N = 256

I 0.5 bpp
N = 256 codewords

Size 4x4 (k=16)

I VQ
0 bPP

Fig. 17. Subimages bit rate allocation: example of a bit allocation for a
total bit rate of 1 bpp and for the 256 by 256 Lena image.

of vanishing moments of the analyzing wavelet $ are im-
portant in applications. To illustrate this we carried out
the following experiments. For a given pair, h, h, we ana-
lyzed the same image twice: once as described above, and
a second time after exchanging the roles of the filters h
and 6.

The filter pairs in example 2 both have the same number
of vanishing moments, k = k = 4. However, $ is con-
siderably more regular than $ (see Fig. 3). With this filter
pair, our experiment on the Lena image led to a PSNR of
32.10 dB in the first case, and to a PSNR of 31.51 dB if
the roles of h and h are inverted. The case where the re-
construction wavelet has the highest regularity, therefore,
performs best.

In example 1 the functions $ and $ have comparable
regularity: both are continuous and neither has a contin-
uous derivative. In fact 4 is a bit more regular than +: $
is differentiable almost everywhere, and is Holder contin-
uous with exponent 1, while $ is Holder continuous with
the exponent only at 0.83. On the other hand, $ has 2
vanishing moments, while $ has 4 (k = 4, k = 2). The
same experiment, again with the Lena image, now leads
to a PSNR of 3 1.82 dB if h , h are taken as in Table I, and
to a PSNR of 3 1.13 dB when the roles of h and 6 are
reversed. The situation where $ is most regular but $ has
fewer vanishing moments, therefore, performs better (gain
of 0.69 dB) than the case where $ has more vanishing
moments but $ is less regular. This seems to suggest that
the regularity of $ has a larger effect than the number of
vanishing moments of $. However, in this example the
difference in overall regularity, as measured by the dif-
ferences between Holder exponents, is much smaller here

than in example 2 (0.17 as compared to 0.63 in example
2), and it seems hard to explain how this smaller differ-
ence in Holder exponent could account for a comparable
gain in PSNR. In fact, the Holder exponent is not a very
good measure for the regularity of $ in this case: it is
completely determined by the discontinuity of the deriv-
ative of $ in only a few points, and it is insensitive to the
fact that 1c/ is infinitely differentiable in all other points. If
this is taken into account, then $ looks much more regular
than $ (the Holder exponent of which is determined by its
behavior near a dense set of points), which might explain
the gain in PSNR.

We conclude from all this that: 1) for the same number
of vanishing moments for +, the scheme with most reg-
ular $ is likely to perform best; and 2) increasing the reg-
ularity of $, even at the expense of the number of vanish-
ing moments for +, may lead to better results.

Based on theoretical arguments (Taylor expansions) and
results from numerical analysis [8], we also expect: 3) for
comparable regularity of $, the scheme with largest van-
ishing moments for $ is likely to perform best.

C. Comparison with Other Coders
If the PSNR is chosen as a criterion of comparison,

these results are close to those obtained by Woods and
O’Neil [42] and Westerink er al. [40]. However, in their
subband coding algorithm, they use 32-taps Johnston fil-
ters, while only 9 or 7 taps are necessary for our method.
According to Westerink’s results in [41], the PSNR de-
creases by about 2 dB when using 8-taps Johnston filters.
However, some others new QMF designs can also lead to
good results with about 9 taps for image coding [11.

In this section, we present both numerical and qualita-
tive comparison between our coding scheme and other
previously published results. Since the most popular im-
age in the recent literature has been the 512 by 512 Lena
image, the comparison is made using this image taken
outside the training set.

Among the different methods published, we consider
the three following well-known methods: Ho and Gersho
obtained a 30.93-dB PSNR at 0.36 bpp, result using
“variable-rate multi stage VQ” [23]. Riskin and Gray
improved on the full search VQ (PSNR = 29.29 dB, 0.32
bpp) using pruned tree structured VQ (PSNR = 30.92 dB,
0.32 bpp) [34]. High PSNR values were obtained by
Woods and Cohen using entropy coded and predictive VQ
(PSNR = 32.5 dB, 0.45 bpp) [111.

Our aim is not to optimize the PSNR but rather a
weighted function of the MSE in order to match human
vision. We give two examples at low bit rate using
wavelet VQ.

Our initial result at 0.37 bpp presented Fig. 18 with a
30.85-dB PSNR is very close to those of Ho and Gersho
[23] and Riskin et al. [34]. The perceptual quality of our
coded images is better than indicated by the PSNR value

APPENDIX H

Microsoft Corp. Exhibit 1005

218 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. I , NO. 2. APRIL 1992

wavelet theory using full search VQ can be improved by
any of the three above-mentioned methods.

In fact the LBG clustering algorithm is a very simple
algorithm but not optimal for variable length code. The
PSNR of the method could be improved by about 3 dB,
for example, using ECVQ [34] but CPU time becomes
prohibitively expensive.

D. Progressive Transmission Scheme
The main objective of progressive transmission is to

allow the receiver to recognize a picture as quickly as pos-
sible at minimum cost, by sending a low resolution level
picture first. Then, it can be decided to receiver further
picture details or to abort the transmission. Further details
of the picture are obtained by sequentially receiving the
encoded wavelet coefficients at different resolution levels
and directions.

Following the example of [40], we will display each
picture level during the progressive transmission with a
size that matches the resolution of that particular level.

To test the efficiency of the vector quantizer, the image
to be coded is taken outside the training set.

Fig. 20 represents 5 stages in the progressive transmis-
sion of a 256 by 256 image using filters 9-7 given in ex-
ample 2. According to the bit allocation procedure (Sec-
tion 111-C) with a generalized Gaussian PDF
approximation law, only the wavelet coefficients corre-
sponding to the m = 1 and m = 2 high resolution levels
are vector quantized, while the low level subimages
(m I 2) are scalar quantized.

Fig. 18. 512 by 512 Lena image. Filters no. 2 9-7, PSNR = 30.85 dB,
(R, = 0.37 bpp.

Fig. 19. 512 by 512 Lena image. Filters no. 2 9-7, PSNR = 29.11 dB,
6, = 0.21 bpp.

mainly due to the regularity of the wavelet and the bit
allocation. These images do not suffer from the blocking
effects obtained when using VQ in the spafial domain. No
ringing effects can be observed.

The second result at 0.21 bpp presented in Fig. 19 with
a 29.11-dB PSNR shows that a very low bit rate can be
achieved with our method, without severe degradation.

Our method using a new class of filters derived from

V. CONCLUSION
This paper describes a new image coding scheme com-

bining the wavelet transform and VQ.
A new family of filters has been derived from the

wavelet theory. We have shown the importance of regu-
larity and vanishing moments for image coding. Further-
more, these filters require few taps, unlike standard QMF
methods.

The wavelet transform used here attempts to exploit the
masking effect of the human eye, yielding encouraging
results. Indeed, the proposed method enables high
compression bit rates while maintaining good visual qual-
ity through the use of bit allocation in the subimages. The
blocking effects seen when spatial VQ is performed are ’
avoided.

This method is well adapted to progressive transmis-
sion as well as very low bit rate compression. Further-
more, using a simple full-search VQ provides good re-
sults, comparable to the best results published currently.

Further research should include some new derivation
such as entropy constraint and predictive VQ. We would
improve this coding scheme, if we accept a heavier com-
putational load.

APPENDIX H

Microsoft Corp. Exhibit 1005

ANTONINI et al.: IMAGE CODING USING WAVELET TRANSFORM 219

Fig. 20. Progressive transmission-filters no. 2 9-7

REFERENCES [2] M. Abramowitz, I . A. Stegun, Handbook of Mathernotical Functions.
New York: Dover, 1965.

[3] V. R. Algazi, “Useful approximation to optimum quantization,”
IEEE Trans. Cornrnun.. vol. COM-14, pp. 297-301, June 1966.

[4] M. Antonini, M . Barlaud, P. Mathieu. and I. Daubechies, “Image

[I] E. H . Adelson and E. Simoncelli, “Non-separable extensions of
quadrature mirror filters to multiple dimensions,” Proc. IEEE, vol.
7 8 , Apr. 1990.

APPENDIX H

Microsoft Corp. Exhibit 1005

220 IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 1 . NO. 2. APRIL 1992

coding using vector quantization in the wavelet transform domain,”
in Proc. IEEE ICASSP, April 1990, pp. 2297-2300.

[5] M. Barlaud, L. Blanc-Feraud, P. Mathieu, J . Menez, and M. Anton-
ini, “2D linear predictive image coding with vector quantization,”
in Proc. EUSIPCO, Grenoble, France, Sept. 5-8, 1988, pp. 1637-
1640.

[6] M. Barlaud, P. Mathieu, and M. Antonini, “Wavelet transform im-
age coding using vector quantization,” presented at 6th Workshop on
MDSP, Monterey, CA, Sept. 1989.

[7] G. Battle, “A block spin construction of wavelets. Part I Lemarie
functions,” Comm. Math. Phys . , vol. 110, pp. 601-615, 1987.

[8] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms
and numerical analysis. I ,” to be published.

[9] P. Burt and E. Adelson, “The Laplacian pyramid as a compact image
code,” IEEE Trans. Commun., vol. 31, pp. 482-540, 1983.

[lo] F. W. Campbell and J . G. Robson, “Application of Fourier analysis
to the visibility of gratings,” J . Phys . , vol. 197, pp. 551-566, 1968.

[I l l R. A. Cohen and J. W. Woods, “Sliding block entropy coding of
images,” in Proc. IEEE ICASSP, Glasgow, Scotland, May 23-26,

(121 A. Cohen, I. Daubechies, and J . C. Feauveau, “Biorthogonal bases
of compactly supported wavelets,” AT&T Bell Lab., Tech. Rep.,

[13] J . H. Conway and N. J . A. Sloane, “A lower bound on the average

1989, pp. 1731-1733.

TM 11217-900529-07, 1990.

error of vector quantizers,” IEEE Trans. Inform. Theory, vol. IT-31,
pp. 106-109, Jan. 1985.
I . Daubechies, A. Grossman, and Y. Meyer, “Painless nonor-
thogonal expansions,” J . Math. Phys . , vol. 27, pp. 1271-1283, 1986.
I . Daubechies, “The wavelet transform, time-frequency localization
and signal analysis,” to be published.
-, “Orthonormal bases of compactly supported wavelets,” Comm.
Pure Appl. Math . , vol. 41, pp. 909-996, 1988.
-, “Orthonormal bases of compactly supported wavelets. 11. Var-
iations on a theme,” AT&T Bell Lab., Tech. Rep. TM 11217-891 116-
17, 1990.

[181 J . C. Feauveau, “Analyse multiresolution par ondelettes non orthog-
onales et bancs de filtres numiriques,” Ph.D. dissertation, Univ.

1231

Paris Sud, France, Jan. 1990.
A. Gersho, “Asymptotically optimal block quantization,” IEEE
Trans. Inform. Theory, vol. IT-25, July 1979.
-, “On the structure of vector quantizers,” IEEE Trans. Inform.
Theory, vol. IT-28, Mar. 1982.
R. M. Gray, “Vector quantization,” IEEE ASSP M a g . , pp. 4-29,
Apr. 1984.
A. Grossman and J . Morlet, “Decomposition of hardy functions into
square integrable wavelets of constant shape,” SIAM J . Math Anal . ,

Y. Ho and A. Gersho, “Variable-rate multi-stage vector quantization
vol. 15, pp. 723-736, 1984.

[36] J . 0. Stromberg, “A modified haar system and higher order spline
systems,” in ConJ in Harmonic Analysis in Honor of Antoni Zyg-
mund. Vol. 11, pp. 475-493.

[37] M. Vetterli, “Splitting a signal into subsampled channels allowing
perfect reconstruction,” in Proc. IASTED Con$ Appl. Signal Pro-
cessing Digital Filtering, Paris, France, June 1985.

1381 M. Vetterli and C. Herley, “Wavelets and filter banks: Relationships
and new results,” in Proc. IEEE ICASSP, Albuquerque, Apr. 1990.

[39] P. H. Westerink, D. E. Boekee, J . Biemond, and J . W. Woods,
“Subband coding of image using vector quantization,” IEEE Trans.
Commun., vo. 36, pp. 713-719, 1988.

[40] P. H. Westerink, J . Biemond, and D. E. Boekee, “Progressive trans-
mission of images using subband coding,” in Proc. IEEE ICASSP,

[41] P. H. Westerink, “Subband coding of images,” Ph.D. dissertation
Delft Univ., 1989.

[42] J . W. Woods and S. D. O’Neil, “Subband coding of images,” IEEE
Trans. Acoust . , Speech, Signal P r o c . , vol. ASSP-34, Oct. 1986.

[43] P. Zador, “Asymptotic quantization error of continuous signals and
their quantization dimension,” IEEE Trans. Inform. Theory, vol. IT-
28, pp. 139-149, 1982.

1 9 8 9 , ~ ~ . 1811-1814.

Marc Antonini was born in France on August 29,
1965. He received the DEA degree in signal pro-
cessing in 1988 from the University of Nice-So-
phia Antipolis, France, and the Ph.D. degree from
the Laboratory of Signaux et Systkmes, URA 13s.
CNRS and the University of Nice-Sophia Anti-
polis in 1991.

His research interests include multidimensional
image processing, wavelet analysis, and image
coding.

Michel Barlaud (M’88) was born in France on
November 24, 1945. He received the “Doctorat
d’Etat” degree from University of Paris XII.

He is currently a Professor and a member of the
Laboratory of Signaux et Systkmes, URA 13s both
from CNRS and University of Nice-Sophia Anti-
polis. After some work on non-stationary signal
processing, his research interests move towards
multidimensional image processing, wavelet anal-
ysis, image coding, inverse problems, image res-

for image coding,” in Proc. IEEE ICASSP, New York, Apr. 1988.

Pures et App l . , vol. 67, pp. 227-238, 1988.

Rev. Mat . Iberoarnericana. vol. 2, pp. 1-18, 1986.

toration, and edge detection.
[24] P. G. LemariC, “Une nouvelle base d’ondelettes de L2(IR),” J . Math.

[25] P. G. LemariC and Y . Meyer, “Ondelettes et bases hilbertiennes,”

Dr. Barlaud is member of the IEEE-ASSP MDSP committee

1301

..
Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quan-
tizer design,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, Jan.
1980.
S . Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intel.,
vol. 11, July 89.
D. Marr, Vision.
P. Mathieu, M. Barlaud, and M. Antonini, “Compression d’Images
par transformie en ondelette,” 12iSme colloque GRETSI, Juan les
Pins, June 12-16, 1989.
P. Mathieu, M. Barlaud, and M. Antonini, “Compression d’Image
par transformLe en ondelette et quantification vectorielle,” Traite-
ment du Signal, vol. 7, no. 2. 1990.
Y. Meyer, “Principe d’incertitude, bases hilbertiennes et algkbres
d’opkrateurs,” Seminuire Bourbaki, no. 662, 1%5-1986.
N. M. Nasrabadi and R. A. King, “Image coding using vector quan-
tization: A review,” IEEE Trans. Commun., vol. 36, Aug. 1988.
W. K. Pratt, Digital Image Processing.
E. Riskin, E. M. Daly, and R. M. Gray, “Pruned tree-structured
vector quantization in image coding,” in Proc. IEEE ICASSP, Glas-
gow, Scotland, May 1989, pp. 1735-1738.
M. J . Smith and D. P. Barnwell, “Exact reconstruction for tree-struc-
tured subband coders,” IEEE Trans. Acoust . , Speech, Signal Proc . ,

New York: Freeman, 1982.

New York: Wiley, 1978.

vol. ASSP-34, pp. 434-441, 1986.

Pierre Mathieu was born in Alger on May 10,
1956. He received the Ingenieur ENSEEIHT and
Ph.D. degrees from INP Toulouse.

He is currently Maitre de Conferences in the
Laboratory of Signaux et Systkmes, URA 13s both
from CNRS and University of Nice-Sophia Anti-
polis. His research interests include multidimen-
sional image processing, wavelet analysis, image
coding, and image restoration.

Ingrid Daubechies (M’89) received the B.S. and
Ph.D. degrees from the Vrje Universiteit Brussel,
Belgium in 1975 and 1980, both in physics.

She is currently a Member of Technical Staff in
the Mathematics Center of AT&T Bell Laborato-
ries, Murray Hill, NJ. Her current research inter-
ests include mathematical problems in connection
with signal analysis, in particular applications of
time-frequency representations.

APPENDIX H

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

APPENDIX I

Microsoft Corp. Exhibit 1005

(12) United States Patent
Yap et al.

(54) APPARATUS AND METHOD FOR
REALTIME VISUALIZATION USING
USER-DEFINED DYNAMIC, MULTI
FOVEATED IMAGES

(75) Inventors: Chee K. Yap; Ee-Chien Chang, both
of New York, NY (US); Ting-Jen Yen,
Jersey City, NJ (US)

(73) Assignee: New York University, New York, NY
(US)

(*) Notice: Under 35 U.S.C. 154(b), the term of this
patent shall be extended for 0 days.

(21) Appl. No.: 09/005,174

(22) Filed: Jan. 9, 1998

(51) Int. Cl? .. G06F 15/16
(52) U.S. Cl. ... 709/203; 709/246
(58) Field of Search 709/217, 219,

709/246, 247, 203; 707 /10; 382/103, 233,
235, 232, 240, 302

(56) References Cited

U.S. PATENT DOCUMENTS

4,622,632 11/1986 Tanimoto .
5,341,466 8/1994 Perlin.
5,481,622 * 1!1996 Gerhardt et a!. 382/103
5,568,598 * 10/1996 Mack et a!. 382/302 X
5,710,835 * 1!1998 Bradley 382/233
5,724,070 * 3/1998 Denninghoff eta!. 382/235 X
5,861,920 * 1!1999 Mead et a!. 382/232 X
5,880,856 * 3/1999 Ferriere 382/240 X
5,920,865 * 7/1999 Ariga 707/10

01HER PUBLICATIONS

Tams Frajka et al., Progressive Image Coding with Spatially
Variable Resolution, IEEE, Proceedings International Con
ference on Image Processing 1997, Oct. 1997, vol. 1, pp.
53-56.*

111111 111
US006182114Bl

(10) Patent No.: US 6,182,114 B1
Jan.30,2001 (45) Date of Patent:

E. C. Chang et al., "Realtime Visualization of Large ... "
Mar. 31, 11997,pp. 1-9, Courant Institute of Mathematical
Sciences, New York University, N.Y. U.S.A

E. C. Chang et al., "A Wavelet Approach to Foveating
Images", Jan. 10, 1997,pp. 1-11, Courant Institute of Math
ematical Sciences, New York University, N.Y. U.S.A

S.G. Mallat, "A Theory for Multiresolutional Signal Decom
position ... ", IEEE Transactions on Pattern Analysis and
Machine Intelligence,pp. 3-23, Jul. 1989, vol. 11, No. 7,
IEEE Computer Society.

News Release, "Wavelet Image Features",Summus'Wavelet
Image Compression,Summus 14 pages.

R.L. White et al., "Compression and Progressive Transmis
sion of Astronomical Images", SPIE Technical Conference
2199, 1994.

(List continued on next page.)

Primary Examiner-Zarni Maung
Assistant Examiner-Patrice Winder
(74) Attorney, Agent, or Firm-Baker Botts, L.L.P.

(57) ABSTRACT

A client apparatus which enables a realtime visualization of
at least one image. The client apparatus includes a storage
device which stores first data corresponding to a multifove
ated representation of an original image, and a user input
device which providing second data corresponding to at
least one visualization command of at least one user. In
addition, the client apparatus includes a processing arrange
ment which generates third data corresponding to a multi
foveated image using the first data, the second data and a
foveation operator.

8 Claims, 6 Drawing Sheets

CONVERT USER INPUT /18 (FOVEAL REGION) TO
(MUL Tl RESOLUTION)

REQUEST FOR
COEFFICIENTS

I ~
SEND {MULTI DETERMINE FOVEAL

RESOLUTION) REQUEST REGION FROM USER

rj
TO SERVER FOR INPUT
COEFFICIENTS

1 1
UPDATE DISPLAY

II<ECEIVE COEFFICIENTS
WINDOWS

(PROGRESSIVELY)
FROM SERVER BASED ON PYRAMID

I REPRESENTATION

r l ';a
I w~~~~~~~~~~~~~~M

ON COEFFICIENTS
(IF NECESSARY)

AND STORE
(PROGRESSIVELY) IN

PYAAMID

~
19

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
Page 2

01HER PUBLICATIONS

E.L. Schwartz, "The Development of Specific Visual ... "
Journal of Theoretical Biology, 69:655-685, 1977.
F.S. Hill Jr. et al.,"Interactive Image Query ... " Computer
Graphics, 17(3), 1983.
T.H. Reeves et al., "Adaptive Foveation of MPEG Video",
Proceedings of the 4th ACM International Multimedia Con
ference, 1996.
R.S. Wallace et al., "Space-variant image processing". Int'l.
J. of Computer Vision, 13:1(1994) 71-90.

E.L. Schwartz A quantitative model of the functional archi
tecture: Biological cybernetics, 37(1980) 63-76.

P. Kortum et al., "Implementation of a Foveated Image ...
" Human Vision and Electronic Imagining, SPIE Proceed
ings vol. 2657, 350-360, 1996.

M.H. Grosset al., "Efficient triangular surface ... ", IEEE
Trans on Visualization and Computer Graphics, 2(2) 1996.

* cited by examiner

APPENDIX J

Microsoft Corp. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 1 of 6 US 6,182,114 B1

[OJ

(16

1
4

FIG. 1

APPENDIX J

Microsoft Corp. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 2 of 6 US 6,182,114 B1

N --------------~------------~

a b
17

/

c d

1ir

N/2
L '"

-+ N/2
~

8 (a+ b + c +d) (a+ b- c- d) 1
\,.__ a' = b'=
~ 2 2 v-

0

..
·~ ~

9 11
\,.__
~ ~~

v

c' =
(a- b + c- d)

d'=
(a - b - c + d)

2 2

N/2 --------------. N/2

FIG. 2A

APPENDIX J

Microsoft Corp. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 3 of 6 US 6,182,114 B1

a' + b' + c' + d'
b=

a' + b' - c' - d'
8=

2 2

l---)7

a' - b' + ci - d'
d=

a' - b' - c' + d'
C=

2 2

71\

8 (a+ b + c +d)
b' = (a + b - c- d)

~ ~ a' =
2 2

10

~ v 9 11

c' = (a - b + c -d)
d' = (a-b-c+ d)

2 2

FIG. 28

APPENDIX J

Microsoft Corp. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 4 of 6 US 6,182,114 B1

I LET l=O t
j

LET N = NUMBER OF ROWS AND COLUMNS OF PIXELS IN THE (SQUARE) IMAGE

~
LET X = THE NEXT OF THE THREE COLOR COMPONENTS OF THE IMAGE (R, G OR B)

~
LET ML (X) = BE THE NxN MATRIX WHOSE COEFFICIENTS EQUAL THE NUMERIC
VALUE OF THE X COMPONENT OF THE CORRESPONDING PIXEL OF THE IMAGE

j
LET ML+l(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE -"AVERAGE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR COEFFICIENTS IN ML(X)

~

LET HL+l(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE
"HORIZONTAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR

COEFFICIENTS IN ML{X)

~
LET VL+ 1(X) = BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE

"VERTICAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR

COEFFICIENTS IN ML(X)

l
LET DL+ 1{X) =BE THE N/2xN/2 MATRIX WHOSE COEFFICIENTS EQUAL THE

"DIAGONAL DIFFERENCE" OF THE CORRESPONDING 2x2 BLOCK OF FOUR

COEFFICIENTS iN ML{X)

~ l STORE HL+1(X), VL+1(X), DL+1(X) I
j._

1 L~l+1 I • I N~N/2 I

~NO .

s
I STORE ML (X) I

ARE THERE YES
MORE COLOR COMPONENT(S)

LEFT?

F I G. 3 NO

I END I

APPENDIX J

Microsoft Corp. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 5 of 6 US 6,182,114 B1

CONVERT USER INPUT v18
(FOVEAL REGION) TO
(MUL Tl RESOLUTION)

REQUEST FOR
COEFFICIENTS

SEND (MULTI
RESOLUTION) REQUEST

TO SERVER FOR
COEFFICIENTS

HECEIVE COEFFICIENTS
FROM SERVER

PERFORM INVERSE
WAVELET TRANSFORM

ON COEFFICIENTS
(IF NECESSARY)

AND STORE
(PROGRESSIVELY) IN

PYRAMID

~
19

FIG. 4

DETERMINE FOVEAL
REGION FROM USER ~

INPUT

UPDATE DISPLAY
WINDOWS

(PROGRESSIVELY) I

BASED ON PYRAMID
REPRESENTATION

'\
20

APPENDIX J

Microsoft Corp. Exhibit 1005

U.S. Patent Jan.30,2001 Sheet 6 of 6 US 6,182,114 B1

LET l = LEVEL OF RESOLUTION SUCH
THAT THE SIZE OF IMAGE ML IS 128 x128

MATRIX. THE LOWEST LEVEL OF
RESOLUTION SUPPORTED

200

HAVE THE
COEFFICIENTS

OF ML(R), MdG) AND
ML(B) CORRESPONDING

TO THE PIXELS
IN THE FOVEAL
REGION BEEN
REQUESTED

REQUEST THE
COEFFICIENTS

ACCORDING TO THE
MASK

240

260
HAVETHE /

HORIZONTAL,
VERTICAL AND

DIAGONAL DIFFERENCE
COEFFICIENTS NECESSARY

TO RECONSTRUCT THE
COEFFICIENTS IN ML(R),ML(G)
ANDML(B) CORRESPONDING

TO THE PIXELS IN
THE FOVEAL

REGION BEEN
REQUESTED?

REQUEST THE
DIFFERENCE

COEFFICIENTS
ACCORDING TO THE

MASK

280

YES

RETURN TO 250

270

MANAGER THREAD

FIG. 5

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
1

APPARATUS AND METHOD FOR
REALTIME VISUALIZATION USING USER

DEFINED DYNAMIC, MULTI-FOVEATED
IMAGES

2
Technical Conference 2199, 1994, describes a progressive
transmission technique based on bit planes that is effective
for astronomical data.

However, utilizing progressive transmission barely begins

FIELD OF THE INVENTION

The present invention relates to a method and apparatus
for serving images, even very large images, over a "thin
wire" (e.g., over the Internet or any other network or
application having bandwidth limitations).

5 to solve the "thinwire" problem. A viewer zooming or
panning over a large image (e.g., map) desires realtime
response. This of course is not achieved if the viewer must
wait for display of the desired resolution of a new quadrant
or view of the map each time a zoom and pan is initiated.

BACKGROUND INFORMATION

10 Progressive transmission does not achieve this realtime
response when it is the higher resolution versions of the
image which are desired or needed, as these are transmitted
later.

The Internet, including the World Wide Web, has gained
in popularity in recent years. The Internet enables clients/ 15

users to access information in ways never before possible
over existing communications lines.

Often, a client/viewer desires to view and have access to
relatively large images. For example, a client/viewer may
wish to explore a map of a particular geographic location. 20

The whole map, at highest (full) level of resolution will
likely require a pixel representation beyond the size of the
viewer screen in highest resolution mode.

The problem could be effectively solved, if, in addition to
variable resolution over time (i.e, progressive transmission),
resolution is also varied over the physical extent of the
image.

Specifically, using foveation techniques, high resolution
data is transmitted at the user's gaze point but with lower
resolution as one moves away from that point. The very
simple rationale underlying these foveation techniques is
that the human field of vision (centered at the gaze point) is
limited. Most of the pixels rendered at uniform resolution
are wasted for visualization purposes. In fact, it has been One response to this restriction is for an Internet server to

pre-compute many smaller images of the original image.
The smaller images may be lower resolution (zoomed-out)
views and/or portions of the original image. Most image
archives use this approach. Clearly this is a sub-optimal
approach since no preselected set of views can anticipate the
needs of all users.

25 shown that the spatial resolution of the human eye decreases
exponentially away from the center gaze point. E. L.
Schwartz, "The Development of Specific Visual Projections
in the Monkey and the Goldfish: Outline of a Geometric
Theory of Receptotopic Structure," Journal of Theoretical

30 Biology, 69:655-685, 1977
The key then is to mimic the movements and spatial

resolution of the eye. If the user's gaze point can be tracked
in realtime and a truly multi-foveated image transmitted
(i.e., a variable resolution image mimicking the spatial

Some map servers (see, e.g., URLs http://
www.mapquest.com and http://www.MapOnUs.com) use an
improved approach in which the user may zoom and pan
over a large image. However, transmission over the Internet
involves significant bandwidth limitations (i.e transmission
is relatively slow). Accordingly, such map servers suffer
from at least three problems:

35 resolution of the user's eye from the gaze point), all data
necessary or useful to the user would be sent, and nothing
more. In this way, the "thinwire" model is optimized,
whatever the associated transmission capabilities and band-

Since a brand new image is served up for each zoom or
pan request, visual discontinuities in the zooming and 40
panning result. Another reason for this is the discrete
nature of the zoom/pan interface controls.

Significantly less than realtime response.
The necessarily small fixed size of the viewing window

(typically about 3"x4.5"). This does not allow much of 45

a perspective.

width limitations.
In practice, in part because eye tracking is imperfect,

using multi-foveated images is superior to atempting display
of an image portion of uniform resolution at the gaze point.

There have in fact been attempts to achieve multifoveated
images in a "thinwire" environment.

F. S. Hill Jr., Sheldon Walker Jr. and Fuwen Gao, "Inter-
active Image Query System Using Progressive
Transmission," Computer Graphics, 17(3), 1983, describes
progressive transmission and a form of foveation for a
browser of images in an archive. The realtime requirement

To generalize, what is needed is an apparatus and method
which allows realtime visualization of large scale images
over a "thinwire" model of computation. To put it another
way, it is desirable to optimize the model which comprises
an image server and a client viewer connected by a low
bandwidth line.

50 does not appear to be a concern.

One approach to the problem is by means of progressive
transmission. Progressive transmission involves sending a
relatively low resolution version of an image and then 55

successively transmitting better resolution versions.
Because the first, low resolution version of the image
requires far less data than the full resolution version, it can
be viewed quickly upon transmission. In this way, the viewer

T. H. Reeves and J. A. Robinson, "Adaptive Foveation of
MPEG Video," Proceedings of the 4'h ACM International
Multimedia Conference, 1996, gives a method to foveate
MPEG-standard video in a thin-wire environment. MPEG-
standard could provide a few levels of resolution but they
consider only a 2-level foveation. The client/viewer can
interactively specify the region of interest to the server/
sender.

R. S. Wallace and P. W. Ong and B. B. Bederson and E.
L. Schwartz, "Space-variant image processing". Intl. J. Of
Computer Vision, 13:1 (1994) 71-90 discusses space
variant images in computer vision. "Space-Variant" may be
regarded as synonymous with the term "multifoveated" used
above. A biological motivation for such images is the

is allowed to see lower resolution versions of the image 60

while waiting for the desired resolution version. This gives
the transmission the appearance of continuity. In addition, in
some instances, the lower resolution version may be suffi
cient or may in any event exhaust the display capabilities of
the viewer display device (e.g., monitor). 65 complex logmap model of the transformation from the retina

to the visual cortex (E. L. Schwartz, "A quantitative model
of the functional architecture of human striate cortex with

Thus, R. L. White and J. W. Percival, "Compression and
Progressive Transmission of Astronomical Images," SPIE

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
3

application to visual illusion and cortical texture analysis",
Biological Cybernetics, 37(1980) 63-76).

Philip Kortum and WilsonS. Geisler, "Implementation of

4

a Foveated Image Coding System For Image Bandwidth
Reduction," Human Vision and Electronic Imaging, SPIE 5

Proceedings Vol. 2657, 350-360, 1996, implement a real
time system for foveation-based visualization. They also
noted the possibility of using foveated images to reduce
bandwidth of transmission.

An additional advantage is that the invention demon
strates a new standard of performance that can be achieved
by large-scale image servers on the World Wide Web at
current bandwidth or even in the near future.

Note also, the invention has advantages over the tradi-
tional notion of progressive transmission, which has no
interactivity. Instead, the progressive transmission of an
image has been traditionally predetermined when the image
file is prepared. The invention's use of dynamic (constantly

M. H. Gross, 0. G. Staadt and R. Gatti, "Efficient trian
gular surface approximations using wavelets and quadtree
data structures", IEEE Trans, On Visualization and Com
puter Graphics, 2(2), 1996, uses wavelets to produce mul
tifoveated images.

Unfortunately, each of the above attempts are essentially
based upon fixed super-pixel geometries, which amount to
partitioning the visual field into regions of varying (pre
determined) sizes called super-pixels, and assigning the
average value of the color in the region to the super-pixel.
The smaller pixels (higher resolution) are of course intended
to be at the gaze point, with progressively larger super-pixels
(lower resolution) about the gaze point.

10
changing in realtime based on the user's input) multifove
ated images allows the user to determine how the data are
progressively transmitted.

Other advantages of the invention include that it allows
the creation of the first dynamic and a more general class of

15
multifoveated images. The present invention can use wave
let technology. The flexibility of the foveation approach
based on wavelets allows one to easily modify the following
parameters of a multifoveated image: the position and shape
of the basic foveal region(s), the maximum resolution at the

20
foveal region(s), and the rate at which the resolution falls
away. Wavelets can be replaced by any multi resolution
pyramid schemes. But it seems that wavelet-based
approaches are preferred as they are more flexible and have
the best compression properties.

However, effective real-time visulization over a "thin
wire" requires precision and flexibility. This cannot be
achieved with a geometry of predetermined pixel size. What 25

is needed is a flexible foveation technique which allows one

Another advantage is the present invention's use of
dynamic data structures and associated algorithms. This
helps optimize the "effective real time behavior" of the
system. The dynamic data structures allow the use of "partial
information" effectively. Here information is partial in the

to modify the position and shape of the basic foveal regions,
the maximum resolution at the foveal region and the rate at
which the resolution falls away. This will allow the "thin
wire" model to be optimized.

In addition, none of the above noted references addresses
the issue of providing multifoveated images that can be
dynamically (incrementally) updated as a function of user
input. This property is crucial to the solution of the thinwire
problem, since it is essential that information be "streamed"
at a rate that optimally matches the bandwidth of the
network with the human capacity to absorb the visual
information.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages of the
prior art by utilizing means for tracking or approximating
the user's gaze point in realtime and, based on the
approximation, transmitting dynamic multifoveated image
(s) (i.e., a variable resolution image over its physical extent
mimicking the spatial resolution of the user's eye about the
approximated gaze point) updated in realtime.

"Dynamic" means that the image resolution is also vary
ing over time. The user interface component of the present
invention may provide a variety of means for the user to
direct this multifoveation process in real time.

Thus, the invention addresses the model which comprises

30 sense that the resolution at each pixel is only partially
known. But as additional information is streamed in, the
partial information can be augmented. Of course, this prin
ciple is a corollary to progressive transmission.

Another advantage is that the dynamic data structures

35 may be well exploited by the special architecture of the
client program. For example, the client program may be
multi-threaded with one thread (the "manager thread")
designed to manage resources (especially bandwidth
resources). This manager is able to assess network

40 congestion, and other relevant parameters, and translate any
literal user request into the appropriate level of demand for
the network. For example, when the user's gaze point is
focused on a region of an image, this may be translated into
requesting a certain amount, say, X bytes of data. But the

45 manager can reduce this to a request over the network of
(say) X/2 bytes of data if the traffic is congested, or if the
user is panning very quickly.

Another advantage of the present invention is that the
server need send only that information which has not yet

50 been served. This has the advantage of reducing communi
cation traffic.

an image server and a client viewer connected by a low
bandwidth line. In effect, the invention reduces the band- 55
width from server to client, in exchange for a very modest
increase of bandwidth from the client to the server

Further objects and advantages of the invention will
become apparent from a consideration of the drawings and
ensuing description.

BRIEF DESRIPTION OF DRAWINGS

FIG. 1 shows an embodiment of the present invention
including a server, and client(s) as well as their respective
components.

Another object of the invention is that it allows realtime
visualization of large scale images over a "thinwire" model
of computation. 60

An additional advantage is the new degree of user control
provided for realtime, active, visualization of images
(mainly by way of foveation techniques). The invention
allows the user to determine and change in realtime, via
input means (for example, without limitation, a mouse 65

pointer or eye tracking technology), the variable resolution
over the space of the served up image(s).

FIG. 2a illustrates one level of a particular wavelet
transform, the Haar wavelet transform, which the server may
execute in one embodiment of the present invention.

FIG. 2b illustrates one level of the Haar inverse wavelet
transform.

FIG. 3 is a flowchart showing an algorithm the server may
execute to perform a Haar wavelet transform in one embodi
ment of the present invention.

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
5

FIG. 4 shows Manager, Display and Network threads,
which the client(s) may execute in one embodiment of the
present invention.

6
can be implemented as, for example, a keyboard, mouse,
scanner or eye-tracking device.

The client 2 also includes a processing device 4 with
network protocol processing element 12 and inverse wavelet FIG. 5 is a more detailed illustration of a portion of the

Manager thread depicted in FIG. 4.

DETAILED DESCRIPTION OF 1HE
INVENTION

FIG. 1 depicts an overview of the components in an
exemplary embodiment of the present invention. A server 1
is comprised of a storage device 3, a memory device 7 and
a computer processing device 4. The storage device 3 can be
implemented as, for example, an internal hard disk, Tape
Cartridge, or CD-ROM. The faster access and greater stor
age capacity the storage device 3 provides, the more pref
erable the embodiment of the present invention. The
memory device 7 can be implemented as, for example, a
collection of RAM chips.

5 transform element means 14 running off it. The processing
device 4 can be implemented as, for example, a single
microprocessor chip (such as an Intel Pentium chip), printed
circuit board, several boards or other device. Again, the
faster the run time of the processing device 4, the more

10 preferable the embodiment. The network protocol process
ing element 12 again can be implemented as a separate
"software" (i.e., a program, sub-process) whose instructions
are executed by the processing device 4. Again, TCP!IP
processing may be used to implement the network protocol

15 processing element 12. The inverse wavelet transform ele
ment 14 also may be implemented as separate "software."
Also running off the processing device 4 is a user input
conversion mechanism 16, which also can be implemented
as "software." The processing device 4 on the server 1 has network

protocol processing element 12 and wavelet transform ele- 20

ment 13 running off it. The processing device 4 can be
implemented with a single microprocessor chip (such as an
Intel Pentium chip), printed circuit board, several boards or
other device. Again, the faster the speed of the processing
device 4, the more preferable the embodiment. The network 25

protocol processing element 12 can be implemented as a
separate "software" (i.e., a program, sub-process) whose
instructions are executed by the processing device 4. Typical
examples of such protocols include TCP/IP (the Internet
Protocol) or UDP (User Datagram Protocol). The wavelet 30

transform element 13 can also be implemented as separate
"software" (i.e., a program, sub-process) whose instructions
are executed by the processing device 4.

As with the server 1, according to the common design of
modern computer systems, the most common embodiments
of the present invention will also include an operating
system running off the processing device 4 of the client(s) 2.

In addition, if the server 1 is connected to the client(s) 2
via a telephone system line or other systems/lines not
carrying digital pulses, the server 1 and client(s) 2 both also
include a communications converter device 15. A commu
nications converter device 15 can be implemented as, for
example, a modem. The communications converter device
15 converts digital pulses into the frequency/signals carried
by the line and also converts the frequency/signals back into
digital pulses, allowing digital communication.

In the operation of the present invention, the extent of

35
computational resources (e.g., storage capacity, speed) is a
more important consideration for the server 1, which is
generally shared by more than one client 2, than for the
client(s) 2.

In a preferred embodiment of the present invention, the
server 1 is a standard workstation or Pentium class system.
Also, TCP/IP processing may be used to implement the
network protocol processing element 12 because it reduces
complexity of implementation. Although a TCP/IP imple
mentation is simplest, it is possible to use the UDP protocol

40
subject to some basic design changes. The relative advan
tage of using TCP/IP as against UDP is to be determined
empirically. An additional advantage of using modern, stan
dard network protocols is that the server 1 can be con
structed without knowing anything about the construction of

45
its client(s) 2.

According to the common design of modern computer
systems, the most common embodiments of the present
invention will also include an operating system running off
the processing means device 4 of the server 1. Examples of 50
operating systems include, without limitation, Windows 95,
Unix and Windows NT. However, there is no reason a
processing device 4 could not provide the functions of an
"operating system" itself.

The server 1 is connected to a client(s) 2 in a network. 55

Typical examples of such servers 1 include image archive
servers and map servers on the World Wide Web.

The client(s) 2 is comprised of a storage device 3,
memory device 7, display 5, user input device 6 and pro
cessing device 4. The storage device 3 can be implemented 60

as, for example, an internal hard disks, Tape Cartridge, or
CD-ROM. The faster access and greater storage capacity the
storage device 3 provides, the more preferable the embodi
ment of the present invention. The memory device 7 can be
implemented as, for example, a collection of RAM chips. 65

The display 5 can be implemented as, for example, any
monitor, whether analog or digital. The user input device 6

In typical practice of the present invention, the storage
device 3 of the server 1 holds an image file, even a very large
image file. A number of client 2 users will want to view the
image.

Prior to any communication in this regard between the
server 1 and client(s) 2, the wavelet transform element 13 on
the server 1 obtains a wavelet transform on the image and
stores it in the storage device 3.

There has been extensive research in the area of wavelet
theory. However, briefly, to illustrate, "wavelets" are defined
by a group of basis functions which, together with coeffi
cients dependant on an input function, can be used to
approximate that function over varying scales, as well as
represent the function exactly in the limit. Accordingly,
wavelet coefficients can be categorized as "average" or
"approximating coefficients" (which approximate the
function) and "difference coefficients" (which can be used to
reconstruct the original function exactly). The particular
approximation used as well as the scale of approximation
depend upon the wavelet bases chosen. Once a group of
basis functions is chosen, the process of obtaining the
relevant wavelet coefficients is called a wavelet transform.

In the preferred embodiment, the Haar wavelet basis
functions are used. Accordingly, in the preferred
embodiment, the wavelet transform element 13 on the server
1 performs a Haar wavelet transform on a file representation
of the image stored in the storage device 3, and then stores
the transform on the storage device 3. However, it is readily
apparent to anyone skilled in the art that any of the wavelet

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
7

family of transforms may be chosen to implement the
present invention.

Note that once the wavelet transform is stored, the origi
nal image file need not be kept, as it can be reconstructed
exactly from the transform.

FIG. 2 illustrates one step of the Haar wavelet transform.
Start with an n by n matrix of coefficients 17 whose entries
correspond to the numeric value of a color component (say,
Red, Green or Blue) of a square screen image of n by n
pixels. Divide the original matrix 17 into 2 by 2 blocks of
four coefficients, and for each 2x2 block, label the coeffi
cient in the first column, first row "a,"; second column, first
row "b"; second row, first column "c"; and second row,
second column "d."

Then one step of the Haar wavelet transform creates four
n/2 by n/2 matrices. The first is an n/2 by n/2 approximation
matrix 8 whose entries equal the "average" of the corre
sponding 2 by 2 block of four coefficients in the original
matrix 17. As is illustrated in FIG. 2, the coefficient entries
in the approximation matrix 8 are not necessarily equal to
the average of the corresponding four coefficients a, b, c and
d (i.e., a'=(a+b+c+d)/4) in the original matrix 17. Instead,
here, the "average" is defined as (a+b+c+d)/2.

The second is an n/2 by n/2 horizontal difference matrix
10 whose entries equal b'=(a+b-c-d)/2, where a, b, c and d
are, respectively, the corresponding 2x2 block of four coef
ficients in the original matrix 17. The third is an n/2 by n/2
vertical difference matrix 9 whose entries equal c'=(a-b+c
d)/2, where a, b, c and dare, respectively, the corresponding
2x2 block of four coefficients in the original matrix 17. The
fourth is an n/2 by n/2 diagonal difference matrix 11 whose
entries equal d'=(a-b-c+d)/2, where a, b, c and d are,
respectively, the corresponding 2x2 block of four coeffi
cients in the original matrix 17.

A few notes are worthy of consideration. First, the entries
a', b', c', d' are the wavelet coefficients. The approximation
matrix 8 is an approximation of the original matrix 17 (using
the "average" of each 2x2 group of 4 pixels) and is one
fourth the size of the original matrix 17.

Second, each of the 2x2 blocks of four entries in the
original matrix 17 has one corresponding entry in each of the
four n/2 by n/2 matrices. Accordingly, it can readily be seen
from FIG. 2 that each of the 2x2 blocks of four entries in the
original matrix 17 can be reconstructed exactly, and the
transformation is invertible. Therefore, the original matrix
17 representation of an image can be discarded during
processing once the transform is obtained.

8
matrix 17 image representation. (However, the number of
bits in all the coefficients may differ from the number of bits
in the pixels. Applying data compression to coefficients turns
out to be generally more effective on coefficients.) If we

5 assume the image is very large, the transform matrices must
be further decomposed into blocks when stored on the
storage means 3.

FIG. 3 is a flowchart showing one possible implementa
tion of the wavelet transform element 13 which performs a

10 wavelet transform on each color component of the original
image. As can be seen from the flowchart, the transform is
halted when the size of the approximation matrix is 256x
256, as this may be considered the lowest useful level of

15
resolution.

Once the wavelet transform element 13 stores a transform
of the image(s) in the storage means 3 of the server 1, the
server 1 is ready to communicate with client(s) 2.

In typical practice of the invention the client 2 user

20
initiates a session with an image server 1 and indicates an
image the user wishes to view via user input means 6. The
client 2 initiates a request for the 256 by 256 approximation
matrix 8 for each color component of the image and sends
the request to the server 1 via network protocol processing

25
element 12. The server 1 receives and processes the request
via network protocol processing element 12. The server 1
sends the 256 by 256 approximation matrices 8 for each
color component of the image, which the client 2 receives in
similar fashion. The processing device 4 of the client 2 stores

30
the matrices in the storage device 3 and causes a display of
the 256 by 256 version of the image on the display 5. It
should be appreciated that the this low level of resolution
requires little data and can be displayed quickly. In a map
server application, the 256 by 256, coarse resolution version

35
of the image may be useful in a navigation window of the
display 5, as it can provide the user with a position indicator
with respect to the overall image.

A more detailed understanding of the operation of the
client 2 will become apparent from the discussion of the

40 further, continuous operation of the client 2 below.
Continuous operation of the client(s) 2 is depicted in FIG.

4. In the preferred embodiment, the client(s) 2 processing
device may be constructed using three "threads," the Man
ager thread 18, the Network Thread 19 and the Display

45 Thread 20. Thread programming technology is a common
feature of modern computers and is supported by a variety
of platforms. Briefly, "threads" are processes that may share
a common data space. In this way, the processing means can
perform more than one task at a time. Thus, once a session

50 is initiated, the Manager Thread 18, Network Thread 19 and
Display Thread 20 run simultaneously, independently and
continually until the session is terminated. However, while
"thread technology" is preferred, it is unnecessary to imple
ment the client(s) 2 of the present invention.

Third, the transform can be repeated, each time starting
with the last approximation matrix 8 obtained, and then
discarding that approximation matrix 8 (which can be
reconstructed) once the next wavelet step is obtained. Each
step of the transform results in approximation and difference
matrices Y2 the size of the approximation matrix 8 of the
prior step. 55 The Display Thread 20 can be based on any modern

windowing system running off the processing device 4. One
function of the Display Thread 20 is to continuously monitor
user input device 6. In the preferred embodiment, the user
input device 6 consists of a mouse or an eye-tracking device,

Retracing each step to synthesize the original matrix 17 is
called the inverse wavelet transform, one step of which is
depicted in FIG. 2b.

Finally, it can readily be seen that the approximation
matrix 8 at varying levels of the wavelet transform can be
used as a representation of the relevant color component of
the image at varying levels of resolution.

Conceptually then, the wavelet transform is a series of
approximation and difference matrices at various levels (or
resolutions). The number of coefficients stored in a wavelet
transform is equal to the number of pixels in the original

60 though there are other possible implementations. In a typical
embodiment, as the user moves the mouse position, the
current position of the mouse pointer on the display 5
determines the foveal region. In other words, it is presumed
the user gaze point follows the mouse pointer, since it is the

65 user that is directing the mouse pointer. Accordingly, the
display thread 20 continuously monitors the position of the
mouse pointer.

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
9 10

In one possible implementation, the Display Thread 20 greater or equal to zero (Step 240). If that is the case, the
places user input requests (i.e., foveal regions determined process loops back to step 260. Otherwise, the control is
from user input device 6) as they are obtained in a request returned to the Manager Thread 18 (Step 250).
queue. Queue's are data structures with first-in-first-out The Network Thread 19 includes the network protocol
characteristics that are generally known in the art. 5 processing element 12. The Network Thread obtains the

The Manager Thread 18 can be thought of as the brain of (next) multi-resolution request for coefficients correspond-
the client 2. The Manager Thread 18 converts the user input ing to the foveal region from request queue and processes
request in the request queue into requests in the manager and sends the request to the server 1 via network protocol
request queue, to be processed by the Network Thread 19. processing element 12.
The user input conversion mechanism 16 converts the user 10 Notice that the data requested is "local" because it rep-
determined request into a request for coefficients. resents visual information in the neighborhood of the indi-

A possible implementation of user input conversion cated part of the image. The data is incremental because it
mechanism 16 is depicted in the flow chart in FIG. 5. represents only the additional information necessary to
Essentially, the user input conversion mechanism 16 increase the resolution of the local visual information.
requests all the coefficient entries corresponding to the 15 (Information already available locally is masked out).
foveal region in the horizontal difference 10 matrices, ver- The server 1 receives and processes the request via
tical difference 9 matrices, diagonal difference matrices 11 network protocol processing element 12, and sends the
and approximation matrix 8 of the wavelet transform of the coefficients requested. When the coefficients are sent, they
image at each level of resolution. (Recall that only the last are masked out. The mask is maintained to determine which
level approximation matrix 8 needs to be stored by the server 20 coefficients have been sent and for deciding which blocks of
1.) That is, wavelet coefficients are requested such that it is data can be released from main memory. Thus, an identical
possible to reconstruct the coefficients in the original matrix version of the mask is maintained on both the client 2 side
17 corresponding to the foveal region. and server 1 side.

As the coefficients are included in the request, they are
25

The Network Thread 19 of the client 2 receives and
masked out. The use of a mask is commonly understood in processes the coefficients. The Network Thread 19 also
the art. The mask is maintained to determine which coeffi- includes inverse wavelet transform element 14. The inverse
cients have been requested so they are not requested again.
Each mask can be represented by an array of linked lists (one
linked list for each row of the image at each level of

30
resolution).

wavelet transform element 14 performs an inverse wavelet
transform on the received coefficients and stores the result
ing portion of an approximation matrix 8 each time one is
obtained (i.e., at each level of resolution) in the storage
device 3 of the client 2. The sub-image is stored at each
(progressively higher, larger and less course) level of its
resolution.

35
Note that as the client 2 knows nothing about the image

until it is gradually filled in as coefficients are requested.
Thus, sparse matrices (sparse, dynamic data structures) and
associated algorithms can be used to store parts of the image
received from the server 1. Sparse matrices are known in the

As shown in FIG. 5, the input conversion mechanism 16
determines the current level of resolution ("L") of an image
("ML") such that the image ML is, e.g., 128x128 pixel matrix
(for example, the lowest supported resolution), as shown in
Step 200. Then, the input conversion mechanism 16 deter
mines if the current level L is the lowest resolution level
(Step 210). If so, it is determined if the three color coeffi
cients (i.e., ML(R), ML(G), and ML(B)) correspond to the
foveal region that has been requested (Step 220). If that is
the case, then the input conversion mechanism 16 confirms
that the current region L is indeed the lowest resolution
region (Step 240), and returns the control to the Manager
Thread 18 (Step 250). If, in Step 220, it is determined that
the three color coefficients have not been requested, these 45
coefficients are requested using the mask described above,
and the process continues to Step 240, and the control is
returned to the Manager Thread 18 (Step 250).

If, in Step 210, it is determined that the current level Lis
not the lowest resolution level, then the input conversion
mechanism 16 determines whether the horizontal, vertical
and diagonal difference coefficients (which are necessary to
reconstruct the three color coefficients) have been requested
(Step 260). If so, then the input conversion mechanism 16
skips to Step 280 to decrease the current level L by 1.
Otherwise a set of difference coefficients may be requested.
This set depends on the mask and the foveal parameters
(e.g., a shape of the foveal region, a maximum resolution, a
rate of decay of the resolution, etc.). The user may select
"formal" values for these foveal parameters, but the Man
ager Thread 18 may, at this point, select the "effective"
values for these parameters to ensure a trade-off between (1)
achieving a reasonable response time over the estimated
current network bandwidth, and (2) achieving a maximum
throughput in the transmission of data. The process then
continues to Step 280. Thereafter, the input conversion
mechanism 16 determines whether the current level L is

40
art and behave like normal matrices except that the memory
space of the matrix are not allocated all at once. Instead the
memory is allocated in blocks of sub-matrices. This is
reasonable as the whole image may require a considerable
amount of space.

Simultaneously, the Display thread 20 (which can be
implemented using any modern operating system or win
dowing system) updates the display 5 based on the pyramid
representation stored in the storage device 3.

Of course, the Display thread 20 continues its monitoring

50 of the user input device 6 and the whole of client 2
processing continues until the session is terminated.

A few points are worthy of mention. Notice that since
lower, coarser resolution images will be stored on the client
2 first, they are displayed first Also, the use of foveated

55 images ensures that the incremental data to update the view
is small, and the requested data can arrive within the round
trip time of a few messages using, for example, the TCP/IP
protocol.

Also notice, that a wavelet coefficient at a relatively
60 coarser level of resolution corresponding to the foveal

region affects a proportionately larger part of the viewer's
screen than a coefficient at a relatively finer level of reso
lution corresponding to the foveal region (in fact, the reso
lution on the display 5 exponentially away from the mouse

65 pointer). Also notice the invention takes advantage of pro
gressive transmission, which gives the image perceptual
continuity. But unlike the traditional notion of progressive

APPENDIX J

Microsoft Corp. Exhibit 1005

US 6,182,114 Bl
11

transm1sswn, 1t 1s the client 2 user that is determining
transmission ordering, which is not pre-computed because
the server 1 doesn't know what the client(s) 2 next request
will be. Thus, as noted in the objects and advantages section,
the "thinwire" model is optimized. 5

12
What is claimed is:
1. A client apparatus for enabling a realtime visualization

of at least one image, the client apparatus comprising:

a storage device storing first data corresponding to a
multifoveated representation of an original image,

a user input device providing second data corresponding
to at least one visualization command of at least one
user; and

a processing arrangement generating third data corre
sponding to a multifoveated image using the first data,
the second data and a foveation operator.

Note that in the event the thread technology is utilized to
implement the present invention, semaphores data structures
are useful if the threads share the same data structures (e.g.,
the request queue). Semaphores are well known in the art
and ensure that only one simultaneous process (or "thread") 10

can access and modify a shared data structure at one time.
Semaphores are supported by modern operating systems.

CONCLUSION

2. The client apparatus of claim 1, further comprising a
network protocol processing element which provides the

15
third data using a TCP/IP protocol.

3. The client apparatus of claim 1, wherein the processing
element transmits the third data to the at least one client via

It is apparent that various useful modifications can be
made to the above description while remaining within the
scope of the invention.

For example, without limitation, the user can be provided
with two modes for display: to always fill the pixels to the 20

highest resolution that is currently available locally or to fill
them up to some user specified level. The client 2 display 5
may include a re-sizable viewing window with minimal
penalty on the realtime performance of the system. This is
not true of previous approaches. There also may be an 25

auxiliary navigation window (which can be re-sized but is
best kept fairly small because it displays the entire image at
a low resolution). The main purpose of such a navigation
window would be to let the viewer know the size and
position of the viewing window in relation to the whole 30

image.

It is readily seen that further modifications within the
scope of the invention provide further advantages to the user.
For example, without limitation, the invention may have the

35
following capabilities: continuous realtime panning, con
tinuous realtime zooming, foveating, varying the foveal
resolution and modification of the shape and size of the
foveal region. A variable resolution feature may also allow
the server 1 to dynamically adjust the amount of transmitted
data to match the effective bandwidth of the network.

40

While the above description contains many specificities,
these should not be construed as limitations on the scope of
the invention, but rather as an exemplification of one pre
ferred embodiment thereof. Many other variations are pos- 45
sible. Accordingly, the scope of the invention should be
determined not by the embodiment(s) illustrated, but by the
appended claims and their legal equivalents.

the Internet.
4. The client apparatus of claim 1, wherein the user input

device includes a mouse device.
5. The client apparatus of claim 1, wherein the user input

device includes at least one of an eye-tracking device and a
keyboard.

6. The client apparatus of claim 1, wherein the foveation
operator is specified using parameters that include at least
one of:

a set of foveation points,
a shape of a foveated region,
a maximum resolution of the foveated region, and
a rate at which a maximum resolution of the foveal region

decays.
7. The client apparatus of claim 1,
wherein the processing arrangement receives the original

image from a server, and
wherein the memory arrangement stores a data structure

representing the multifoveated image, the data structure
that is optimized for the client apparatus being inde
pendent of an image representation provided by a
server.

8. The client apparatus of claim 1, wherein the third data
corresponding to the multifoveated image is generated for at
least one of

a first arbitrary-shaped foveal region,
a second arbitrarily-fine foveal region, and
an arbitrary union of the first and second foveal regions.

* * * * *

APPENDIX J

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

APPENDIX K

Microsoft Corp. Exhibit 1005

Pyramidal Parametrics

Lance Williams

Computer Graphics Laboratory
New York Institute of Technology

Old Westbury, New York

Abstract

The mapping of images onto surfaces
may substantially increase the realism and
information content of computer-generated
imagery. The projection of a flat source
image onto a curved surface may involve
sampling difficulties, however, which are
compounded as the view of the surface
changes. As the projected scale of the
surface increases, interpolation between
the original samples of the source image
is necessary; as the scale is reduced,
approximation of multiple samples in the
source is required. Thus a constantly
changing sampling window of view-dependent
shape must traverse the source image.

To reduce the computation implied by
these requirements, a set of prefiltered
source images may be created. This
approach can be applied to particular
advantage in animation, where a large
number of frames using the same source
image must be generated. This paper
advances a "pyramidal parametric" pre-
filtering and sampling geometry which
minimizes aliasing effects and assures
continuity within and between target
images.

Although the mapping of texture onto
surfaces is an excellent example of the
process and provided the original motiva-
tion for its development, pyramidal
parametric data structures admit of wider
application. The aliasing of not only
surface texture, but also highlights and
even the surface representations them-
selves, may be minimized by pyramidal
parametric means.

General Terms: Algorithms.

Keywords and Phrases: Antialiasing,
Illumination Models, Modeling, Pyramidal
Data Structures, Reflectance Mapping, Tex-
ture Mapping, Visible Surface Algorithms.

C R Categories: 1.3.3 [Computer Graphics]:
Picture/Image Generation--~ algo-
rithms; 1.3.5 [Computer Graphlc~: Compu-
tational Geometry and Object Modeling--
curve, surface, solid and object represen-
tations, geometric algorithms, languages
and systems; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism--
color, shading, shadowing, and texture.

Permission to copy without ~e all or part of this material is granted
provided that the copies are not made or distributed ~ r direct
commercial advantage, the ACM copyright notice and the title of the

~. Pyramidal Data Structures

Pyramidal data structures may be
based on various subdivisions: binary
trees, quad trees, oct trees, or n-
dimensional hierarchies [17]. The common
feature of these structures is a succes-
sion of levels which vary the resolution
at which the data is represented.

The decomposition of an image by
two-dimensional binary subdivision was a
pioneering strategy in computer graphics
for visible surface determination [15].
The approach was essentially a synthesis-
by-analysis: the image plane was subdi-
vided into quadrants recursively until
analysis of a subsection showed that sur-
face ordering was sufficiently simple to
permit rendering. Such subdivision and
analysis has been subsequently adopted to
generate spatial data structures [5],
which have been used to represent images
[9] both for pattern recognition [13] and
for transmission [i0], [14]. In the field
of computer graphics, such data structures
have been adopted for texture mapping [4],
[16], and generalized to represent objects
in space [Ii].

The application of pyramidal data to
image storage and transmission may permit
significant compression of the data to be
stored or transmitted. This is so because
highly detailed features may be localized
within an otherwise low-frequency image,
permitting the sampling rate to be reduced
for large sections of the image. Besides
permitting bandwidth compression, the
representation orders data in such a way
that the general character of images may
be recalled or transmitted before the
specific details.

Pattern recognition and classifica-
tion often require the comparison of a
candidate image against a set of canonical
patterns. This is an operation the
expense of which increases as the square
of the resolution at which it is per-
formed. The use of pyramidal data struc-
tures in pattern recognition and classifi-
cation permits the comparison of the gross
features of two-dimensional functions
preliminary to the minute particulars; a
good general reference on this application
is [12].

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0001 $00.75

APPENDIX L

Microsoft Corp. Exhibit 1005

In computer graphics, pyramidal tex-
ture maps may be used to perform arbitrary
mappings of a function with minimal alias-
ing artifacts and reduced computation.
Once again, images may be represented at
different spatial bandwidths. The concern
is that inappropriate resolution
misrepresents the data; that is, sampling
high-resolution data at larger sample
intervals invites aliasing.

2. Parametric Interpolation

By a pyramidal parametric data struc-
ture, we will mean simply a pyramidal
structure with both intra- and inter-level
interpolation. Consider the case of an
image represented as a two-dimensional
array of samples. Interpolation is neces-
sary to produce a continuous function of
two parameters, U and V. If, in addition,
a third parameter (call it D) moves us up
and down a hierarchy of corresponding
two-dimensional functions, with interpola-
tion between (or among) the levels of the
pyramid providing continuity, the struc-
ture is pyramidal parametric.

~he practical distinction between
such a structure and an ordinary interpo-
lant over an n-dimensional array of sam-
ples is that the number of samples
representing each level of the pyramid may
be different.

~. Mip Mapping

"Mip" mapping is a particular format
for two-dimensional parametric functions,
which, along with its associated address-
ing scheme, has been used successfully to
bandlimit texture mapping at New York
Institute of Technology since 1979. The
acronym "mip" is from the Latin phrase
"multum in parvo," meaning "many things in
a small place." Mip mapping supplements
bilinear interpolation of pixel values in
the texture map (which may be used to
smoothly translate and magnify the tex-
ture) with interpolation between prefil-
tered versions of the map (which may be
used to compress many pixels into a small
place). In this latter capacity, mip
offers much greater speed than texturing
algorithms which perform explicit convolu-
tion over an area in the texture map for
each pixel rendered [I], [6].

Mip owes its speed in compressing
texture to two factors. First, a fair
amount of filtering of the original tex-
ture takes place when the mip map is first
created. Second, subsequent filtering is
approximated by blending different levels
of the mip map. This means that all
filters are approximated by linearly
interpolating a set of square box filters,
the sides of which are powers-of-two pix-
els in length. Thus, mapping entails a
fixed overhead, which is independent of
the area filtered to compute a sample.

G

Figure (i)
Structure of a Color Mip Map

Smaller and smaller images diminish into
the upper left corner of the map. Each of
the images is averaged down from its
larger predecessor.

(Below:)
Mip maps are indexed by three coordinates:
U, V, and D. U and V are spatial coordi-
nates of the map; D is the variable used
to index, and interpolate between, th~
different levels of the pyramid.

V

~ L L

V

V

Figure (I) illustrates the memory
organization of a color mip map. The
image is separated into its red, green,
and blue components (R, G, and B in the
diagram). Successively filtered and down-
sampled versions of each component are
instanced above and to the left of the
originals, in a series of smaller and
smaller images, each half the linear
dimension (and a quarter the number of

APPENDIX L

Microsoft Corp. Exhibit 1005

samples) of its parent. Successive divi-
sions by four partition the frame buffer
equally among the three components, with a
single unused pixel remaining in the upper
left-hand corner.

The concept behind this memory organ-
ization is that corresponding points in
different prefiltered maps can be
addressed simply by a binary shift of an I
input U, V coordinate pair. Since the
filtering and sampling are performed at
scales which are powers of two, indexing
the maps is possible with inexpensive
binary scaling. In a hardware implementa-
tion, the addresses in all the correspond-
ing maps (now separate memories) would be
instantly and simultaneously available
from the U, V input.

The routines for creating and access-
ing mip maps at NYIT are based on simple
box (Fourier) window prefiltering, bil-
inear interpolation of pixels within each
map instance, and linear interpolation
between two maps for each value of D (the
pyramid's vertical coordinate). For each
of the three components of a color mip
map, this requires 8 pixel reads and 7
multiplications. This choice of filters
is strictly for the sake of speed. Note
that the bilinear interpolation of pixel
values at the extreme edges of each map
instance must be performed with pixels
from the opposite edge(s) of that map, for
texture which is periodic. For non-
periodic texture, scaling or clipping of
the U, V coordinates prevents the intru-
sion of an inappropriate map or color com-
ponent into the interpolation.

The box (Fourier) window used to
create the mip maps illustrated here, and
the tent (Bartlett) window used to inter-
polate them, are far from ideal; yet prob-
ably the most severe compromise made by
mip filtering is that it is symmetrical.
Each of the prefiltered levels of the map
is filtered equally in X and Y. Choosing
a value of D trades off aliasing against
blurring, which becomes a tricky proposi-
tion as a pixel's projection in the tex-
ture map deviates from symmetry. Heckbert
[8] suggests:

d = max Ou 2+ v 2 _ //~u~2+/av~2~

where D is proportional to the "diameter"
of the area in the texture to be filtered,
and the partials of U and V (the texture-
map coordinates) with respect to X and Y
(the screen coordinates) can be calculated
from the surface projection.

Illustrations of mapping performed by
the mip technique are the subject of Fig-
ures (2) through (i0). The NYIT Test Frog
in Figure (2) is magnified by simple point
sampling in (3), and by interpolation in
(4). The hapless amphibian is similarly

Figure (2)
Mip map of the flexible NYIT Test Frog.

compressed by point sampling in (5) and by
mipping in (6).

The more general and interesting case
-- continuously variable upsampling and
downsampling of the original texture -- is
illustrated in (7) on a variety of sur-
faces. Since the symmetry of mip filter-
ing would be expected to show up badly
when texture is compressed in only one
dimension, figures (8) through (i0) are of
especial interest. These pictures,
created by Ed Emshwiller at NYIT for his
videotape, "Sunstone," were mapped using
Alvy Ray Smith's TEXAS animation program,
which in turn used MIP to antialias tex-
ture. As the panels rotate edge-on, the
texture collapses to a line smoothly and
without apparent artifacts.

Figure (7)

General mapping: interpolation and

pyramidal compression.

APPENDIX L

Microsoft Corp. Exhibit 1005

Figure (3)
Upsampling the frog: magnification by

point samplinq.

Figure (4)
Upsampling the frog: magnification by

bilinear interpolation.

Figure (5)
Downsampling the frog= compression by point sampling (detail, right).

Figure (6)
Downsampling: compression by pyramidal interpolation (detail, right).

4

APPENDIX L

Microsoft Corp. Exhibit 1005

Figures (8)-(9)
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith
Pyramidal parametric texture mapping on polygons.

APPENDIX L

Microsoft Corp. Exhibit 1005

Figures (i0)-(ii)
"Sunstone" by Ed Emshwiller, segment animated by Alvy Ray Smith
Pyramidal parametric texture mapping on polygons.

APPENDIX L

Microsoft Corp. Exhibit 1005

4. Hi@blight Antialiasin@

As small or highly curved objects
move across a raster, their surface nor-
mals may beat erratically with the sam-
pling grid. This causes the shading
values to flash annoyingly in motion
sequences, a symptom of illumination
aliasing. The surface normals essentially
point-sample the illumination function.

Figure (12) illustrates samples of
the surface normals of a set of parallel
cylinders. The cylinders in the diagram
are depicted as if from the edge of the
image plane; the regularly-spaced vertical
line segments are the samples along a sin-
gle axis. The arrows at the sample points
indicate the directions of the surface
normals. Depending on the shading formula
invoked, there may be very high contrast
between samples where the normal is nearly
parallel to the sample axis, and samples
where the normal points directly at the
observer's eye.

Figure (12)

4)

The shading function depends not only
on the shape of the surface, but its light
reflection properties (characterized by
the shading formula), the position of the
light source, and the position of the
observer's eye. Hanrahan [7] expresses it
in honest Greek:

Ixly~(E,N,L) ~(u,v)0(x,y) dxdy

where the normal, N, the light sources, L,
and the eye, E, are vectors which may each
be functions of U and V, and the limits of
integration are the X, Y boundaries of the
pixel.

Figure (13) illustrates highlight
aliasing on a perfectly flat surface. The
viewing conventions of the diagram are the
same as in Figure (12). "L" is the direc-
tion vector of the light source; the sur-
face is a polygon at an angle to the image
plane; the dotted bump is a graph of the
reflected light, characteristic of a

Figure (13)

Figure (14)

.-",..

: i ' .
i s

/

:i •

' \ ! i~

specular surface reflection function. The
highlight indicated by the bump falls
entirely between the samples. (Note that
this is only possible on a flat surface if
either the eye or the light is local, a
point in space rather than simply a direc-
tion vector. Some boring shading formulae
exclude the possibility of highlight
aliasing on polygons by requiring all flat
surfaces to be flat in shading.)

A first attempt to overcome the limi-
tations of point-sampling the illumination
function is to integrate the function over
the projected area represented by each
sample point. This approach is illus-
trated in Figure (14). The brackets at
each sample represent the area of the sur-
face over which the illumination function
is integrated. This procedure is analo-
gous to area-averaging of sampled edges or
texture [3].

In order to generalize this approach
to curved surfaces, the "sample interval"
over which illumination is integrated must
be modified according to the local curva-
ture of the surface at a sample. In Fig-
ure (15), the area of a surface
represented by a pixel has been projected
onto a curved surface. The solid angle
over which illumination must be integrated
is approximated by the volume enclosed by
the normals at the pixel corners. The
distribution of light within this volume
will sum to an estimate of the diffuse
reflection over the pixel. If the surface
exhibits undulations at the pixel level,
however, aliasing will result.

Figure (15)

APPENDIX L

Microsoft Corp. Exhibit 1005

Figure (16)
Michael Chou (right) poses with an ima-
ginary companion. Reflectance maps can
enhance the realism of synthetic shading.

Figure (17)
A pyramidal parametric reflectance map,
containing 9 light sources. The region
outside the "sDhere" is unused.

We might divide the surface up into
regions of relatively low curvature (as is
done in some patch rendering algorithms),
and rely on "edge antialiasing" to
integrate the different surfaces within a
pixel. Alternatively, we may develop some
mechanism for limiting the local curvature
of surfaces before rendering. This possi-
bility is explored in the next section.

If we represent the illumination of a
scene as a two-dimensional map, highlights
can be effectively antialiased in much the
same way as textures. Blinn and Newell
[I] demonstrated specular reflection using
an illumination map. The map was an image
of the environment (a spherical projection
of the scene, indexed by the X and Y com-
ponents of the surface normals) which
could be used to cast reflections onto
specular surfaces. The impression of mir-
rored facets and chrome objects which can
be achieved with this method is striking;
Figure (16) provides an illustration.
Reflectance mapping is not, however, accu-
rate for local reflections. To achieve
similar results with three dimensional
accuracy requires ray-tracing.

A pyramidal parametric illumination
map permits convenient antialiasing of
highlights as long as a good measure of
local surface curvature is available. The
value of "D" used to index the map is pro-
portional to t~e solid angle subtended by
the surface over the pixel being computed;
this may be estimated by the same formula
used to compute D for ordinary texture
mapping. Nine light sources of varying
brightness glint raggedly from the test
object in Figure (18); the reflectance map
in Figure (17) provided the illumination.
In Figure (19), convincing highllght
antialiasing results from the full pyrami-
dal parametric treatment.

Figure (18) Before Figure (19) After

APPENDIX L

Microsoft Corp. Exhibit 1005

32 x 32

64 x 64

Figures (20-23) Different resolution meshes.

5. Levels of Detail in Surface Represen-
tation

In addition to bandlimiting texture
and illumination functions for mapping
onto a surface, pyramidal parametrics may
be used to limit the level of detail with
which the surface itself is represented.
The goal is to represent an object for
graphic display as economically as its
projection on the image plane permits,
without boiling and sparkling aliasing
artifacts as the projection changes.

The expense of computing and shading
each pixel dominates the cost of many
algorithms for rendering higher-order sur-
faces. For meshes of polygons or patch
control points which project onto a small
portion of the image, however, the vertex
(or control-point) expense dominates. In
these situations it is desirable to reduce
the number of points used to represent the
object.

A pyramidal parametric data structure
the components of which are spatial coor-
dinates (the X-Y-Z of the vertices of a
rectangular mesh, for example, as opposed
to the R-G-B of a texture or illumination
map) provides a continuously-variable fil-
tered instance of the surface for sampling
at any desired degree of resolution.

Figures (20) through (23) illustrate
a simple surface based on a human face
model developed by Fred Parke at the
University of Utah. As the sampling den-
sity varies, so does the filtering of the
surface. These faces are filtered and
sampled by the same methods previously
discussed for texture and reflectance
maps. Pyramidal parametric representa-
tions such as these appear promising for
reducing aliasing effects as well as sys-
tematically sampling very large data bases
over a wide range of scales and viewing
angles.

APPENDIX L

Microsoft Corp. Exhibit 1005

6. Conclusions

Pyramidal data structures are of pro-
ven value in image analysis and have
interesting application to image bandwidth
compression and transmission. "Pyramidal
parametrics," pyramidal data structures
with intra- and inter-level interpolation,
are here proposed for use in image syn-
thesis. By continuously varying the
detail with which data are resolved,
pyramidal parametrics provide economical
approximate solutions to filtering prob-
lems in mapping texture and illumination
onto surfaces, and preliminary experiments
suggest they may provide flexible surface
representations as well.

7. Acknowledgments

I would like to acknowledge Ed Cat-
mull, the first (to my knowledge) to apply
multiple prefiltered images to texture
mapping: the method was applied to the
bicubic patches in his thesis, although it
was not described. Credit is also due Tom
Duff, who wrote both recursive and scan-
order routines for creating mip maps which
preserved numerical precision over all map
instances; Dick Lundin, who wrote the
first assembly-coded mip map accessing
routines; Ephraim Cohen, who wrote the
second; Rick Ace, who translated Ephraim's
PDP-II versions for the VAX assembler;
Paul Heckbert, for refining and speeding
up both creation and accessing routines,
and investigating various estimates of
"D"; Michael Chou, for implementing
highlight antialiasing and high-resolution
reflectance mapping on quadric surfaces.

I owe special thanks to Jules
Bloomenthal, Michael Chou, Pat Hanrahan,
and Paul Heckbert for critical reading and
numerous helpful suggestions in the course
of preparing this text. Photographic sup-
port was provided by Michael Lehman.

10

APPENDIX L

Microsoft Corp. Exhibit 1005

8. References

[1] Blinn, J., and Newell, M., "Texture
and Reflection on Computer Generated
Images," CACM, Vol. 19, #i0, Oct.
1976, pp. 542-547.

Electrical and Systems Engineering
Dept., Rensselaer Polytechnic Insti-
tute, October 1980.

[2] Bui-Tuong Phong, "Illumination for
Computer Generated Pictures," PhD.
dissertation, Department of Computer
Science, University of Utah, December
1978.

[3] Crow, F.C., "The Aliasing Problem in
Computer Synthesized Shaded Images,"
PhD. dissertation, Department of Com-
puter Science, University of Utah,
Tech. Report UTEC-CSc-76-015, March
1976.

[4] Dungan, W., Stenger, A., and Sutty,
G., "Texture Tile Considerations for
Raster Graphics," SIGGRAPH 1978
Proceedings, Vol. 12, #3, August
1978.

[5] Eastman, Charles M., "Representations
for Space Planning," CACM, Vol. 13,
#4, April 1970.

[6] Feibush, E.A., Levoy, M., and Cook,
R.L., "Synthetic Texturing Using
Digital Filters," Computer Graphics,
Vol. 14, July, 1980.

[7] Hanrahan, Pat, private communication,
1983.

[8] Heckbert, Paul, "Texture Mapping
Polygons in Perspective," NYIT Com-
puter Graphics Lab Tech. Memo #13,
April, 1983.

[12] Tanimoto, S.L., and Klinger, A.,
Structured Computer Vision, Academic
Press, New York, 1980.

[13] Tanimoto, S.L., and Pavlidis, T., "A
Hierarchical Data Structure for Pic-
ture Processing," Computer Graphics
and Image Processing, Vol. 4, #2,
June 1975.

[14] Tanimoto, S.L., "Image Processing
with Gross Information First," Com-
puter Graphics and Image Processing
9, 1979.

[15] Warnock, J.E., "A Hidden-Line Algo-
rithm for Halftone Picture Represen-
tation," Department of Computer Sci-
ence, University of Utah, TR 4-15,
1969.

[16] Williams, L., "Pyramidal
Parametrics," SIGGRAPH tutorial
notes, "Advanced Image Synthesis,"
1981.

[17] Yau, M.M., and Srihari, S.N., "Recur-
sive Generation of Hierarchical Data
Structures for Multidimensional Digi-
tal Images," Proceedings of the IEEE
Computer Society Conference on Pat-
tern Recognition and Image Process-
ing, August 1981.

[9] Klinger, A., and Dyer, C.R., "Experi-
ments on Picture Representation Using
Regular Decomposition," Computer
Graphics and Image Processing, #5,
March, 1976.

[i0] Knowlton, K., "Progressive Transmis-
sion of Gray-Scale and Binary Pic-
tures by Simple, Efficient, and Loss-
less Encoding Schemes," Proceedings
of the IEEE, Vol. 68, #7, July 1980,
pp. 885-896.

[ii] Meagher, D., "Octree Encoding: A New
Technique for the Representation,
Manipulation, and Display of Arbi-
trary 3D Objects by Computer," IPL-
TR-80-111, Image Processing Lab,

11

APPENDIX L

Microsoft Corp. Exhibit 1005

Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture
Minification

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of a mipmap. A mipmap
is an ordered set of arrays representing the same image; each array has a resolution lower than the
previous one. If the texture has dimensions , then there are mipmap arrays.
The first array is the original texture with dimensions . Each subsequent array has

dimensions where are the dimensions of the previous array. This is the case

as long as both k>0 and l>0. Once either k=0 or l=0, each subsequent array has dimension

or , respectively, until the last array is reached with dimension .

Each array in a mipmap is transmitted to the GL using TexImage2D or TexImage1D ; the array
being set is indicated with the level-of-detail argument. Level-of-detail numbers proceed from 0 for
the original texture array through with each unit increase indicating an array of half
the dimensions of the previous one as already described. If texturing is enabled (and
TEXTURE_MIN_FILTER is one that requires a mipmap) at the time a primitive is rasterized and if the set
of arrays 0 through p is incomplete, based on the dimensions of array 0, then it is as if texture
mapping were disabled. The set of arrays 0 through p is incomplete if the internal formats of all the
mipmap arrays were not specified with the same symbolic constant, or if the border widths of the
mipmap arrays are not the same, or if the dimensions of the mipmap arrays do not follow the
sequence described above. Arrays indexed greater than p are insignificant.

The mipmap is used in conjunction with the level of detail to approximate the application of an
appropriately filtered texture to a fragment. Let and let c be the value of at which
the transition from minification to magnification occurs (since this discussion pertains to minification,
we are concerned only with values of where). For NEAREST_MIPMAP_NEAREST, if

 then the mipmap array with level-of-detail of 0 is selected. Otherwise, the dth mipmap

array is selected when as long as . If , then the pth
mipmap array is selected. The rules for NEAREST are then applied to the selected array.

The same mipmap array selection rules apply for LINEAR_MIPMAP_NEAREST as for
NEAREST_MIPMAP_NEAREST, but the rules for LINEAR are applied to the selected array.

For NEAREST_MIPMAP_LINEAR, the level d-1 and the level d mipmap arrays are selected, where
, unless , in which case the pth mipmap array is used for both arrays. The rules

Page 1 of 2Mipmapping

4/22/2015https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html

APPENDIX M

Microsoft Corp. Exhibit 1005

for NEAREST are then applied to each of these arrays, yielding two corresponding texture values
and . The final texture value is then found as

LINEAR_MIPMAP_LINEAR has the same effect as NEAREST_MIPMAP_LINEAR except that the rules for
LINEAR are applied for each of the two mipmap arrays to generate and .

Next: 3.8.2 Texture Magnification Up: 3.8.1 Texture Minification Previous: 3.8.1 Texture
Minification

David Blythe
Sat Mar 29 02:23:21 PST 1997

Page 2 of 2Mipmapping

4/22/2015https://www.opengl.org/documentation/specs/version1.1/glspec1.1/node84.html

APPENDIX M

Microsoft Corp. Exhibit 1005

Progressive Meshes

Hugues Hoppe
Microsoft Research

ABSTRACT

Highly detailed geometric models are rapidly becoming common-
place in computer graphics. These models, often represented as
complex triangle meshes, challenge rendering performance, trans-
mission bandwidth, and storage capacities. This paper introduces
the progressive mesh (PM) representation, a new scheme for storing
and transmitting arbitrary triangle meshes. This efficient, loss-
less, continuous-resolution representation addresses several practi-
cal problems in graphics: smooth geomorphing of level-of-detail
approximations, progressive transmission, mesh compression, and
selective refinement.

In addition, we present a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh. The goal
of this optimization procedure is to preserve not just the geometry
of the original mesh, but more importantly its overall appearance
as defined by its discrete and scalar appearance attributes such as
material identifiers, color values, normals, and texture coordinates.
We demonstrate construction of the PM representation and its ap-
plications using several practical models.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations.

Additional Keywords: mesh simplification, level of detail, shape interpo-
lation, progressive transmission, geometry compression.

1 INTRODUCTION

Highly detailed geometric models are necessary to satisfy a grow-
ing expectation for realism in computer graphics. Within traditional
modeling systems, detailed models are created by applying ver-
satile modeling operations (such as extrusion, constructive solid
geometry, and freeform deformations) to a vast array of geometric
primitives. For efficient display, these models must usually be tes-
sellated into polygonal approximations—meshes. Detailed meshes
are also obtained by scanning physical objects using range scanning
systems [5]. In either case, the resulting complex meshes are ex-
pensive to store, transmit, and render, thus motivating a number of
practical problems:

Email: hhoppe@microsoft.com
Web: http://www.research.microsoft.com/research/graphics/hoppe/

� Mesh simplification: The meshes created by modeling and scan-
ning systems are seldom optimized for rendering efficiency, and
can frequently be replaced by nearly indistinguishable approx-
imations with far fewer faces. At present, this process often
requires significant user intervention. Mesh simplification tools
can hope to automate this painstaking task, and permit the port-
ing of a single model to platforms of varying performance.

� Level-of-detail (LOD) approximation: To further improve ren-
dering performance, it is common to define several versions of a
model at various levels of detail [3, 8]. A detailed mesh is used
when the object is close to the viewer, and coarser approxima-
tions are substituted as the object recedes. Since instantaneous
switching between LOD meshes may lead to perceptible “pop-
ping”, one would like to construct smooth visual transitions,
geomorphs, between meshes at different resolutions.

� Progressive transmission: When a mesh is transmitted over a
communication line, one would like to show progressively better
approximations to the model as data is incrementally received.
One approach is to transmit successive LOD approximations,
but this requires additional transmission time.

� Mesh compression: The problem of minimizing the storage
space for a model can be addressed in two orthogonal ways.
One is to use mesh simplification to reduce the number of faces.
The other is mesh compression: minimizing the space taken to
store a particular mesh.

� Selective refinement: Each mesh in a LOD representation cap-
tures the model at a uniform (view-independent) level of detail.
Sometimes it is desirable to adapt the level of refinement in se-
lected regions. For instance, as a user flies over a terrain, the
terrain mesh need be fully detailed only near the viewer, and
only within the field of view.

In addressing these problems, this paper makes two major con-
tributions. First, it introduces the progressive mesh (PM) repre-
sentation. In PM form, an arbitrary mesh M̂ is stored as a much
coarser mesh M0 together with a sequence of n detail records that
indicate how to incrementally refine M0 exactly back into the orig-
inal mesh M̂ = Mn. Each of these records stores the information
associated with a vertex split, an elementary mesh transformation
that adds an additional vertex to the mesh. The PM representation
of M̂ thus defines a continuous sequence of meshes M0

;M1
; : : : ;Mn

of increasing accuracy, from which LOD approximations of any de-
sired complexity can be efficiently retrieved. Moreover, geomorphs
can be efficiently constructed between any two such meshes. In
addition, we show that the PM representation naturally supports
progressive transmission, offers a concise encoding of M̂ itself, and
permits selective refinement. In short, progressive meshes offer an
efficient, lossless, continuous-resolution representation.

The other contribution of this paper is a new simplification pro-
cedure for constructing a PM representation from a given mesh
M̂. Unlike previous simplification methods, our procedure seeks
to preserve not just the geometry of the mesh surface, but more
importantly its overall appearance, as defined by the discrete and
scalar attributes associated with its surface.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1996 ACM-0-89791-746-4/96/008...$3.50

99

APPENDIX N

Microsoft Corp. Exhibit 1005

2 MESHES IN COMPUTER GRAPHICS

Models in computer graphics are often represented using triangle
meshes.1 Geometrically, a triangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K;V), where K is a simplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = fv1; : : : ;vmg is the set of vertex positions defining
the shape of the mesh in R3. More precisely (cf. [9]), we construct
a parametric domain jKj � R

m by identifying each vertex of K with
a canonical basis vector of Rm, and define the mesh as the image
�V(jKj) where �V : Rm ! R

3 is a linear map.

Often, surface appearance attributes other than geometry are also
associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, a trivial shader function may involve simple look-up within
a specified texture map.

Many scalar attributes are often associated with a mesh, including
diffuse color (r; g; b), normal (nx; ny; nz), and texture coordinates
(u; v). More generally, these attributes specify the local parameters
of shader functions defined on the mesh faces. In simple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuities in the scalar fields, and because adjacent
faces may have different shading functions, it is common to associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v; f) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

We express a mesh as a tuple M = (K;V;D; S) where V specifies
its geometry, D is the set of discrete attributes df associated with
the faces f = fj; k; lg 2 K, and S is the set of scalar attributes s(v;f)

associated with the corners (v; f) of K.

The attributes D and S give rise to discontinuities in the visual
appearance of the mesh. An edge fvj; vkg of the mesh is said to be
sharp if either (1) it is a boundary edge, or (2) its two adjacent faces
fl and fr have different discrete attributes (i.e. dfl 6= dfr), or (3) its
adjacent corners have different scalar attributes (i.e. s(vj;fl) 6= s(vj;fr)

or s(vk;fl) 6= s(vk;fr)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION

3.1 Overview
Hoppe et al. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M̂ by a much simpler one.
Their optimization algorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations: edge collapse, edge split, and edge swap.

We have discovered that in fact a single one of those transforma-
tions, edge collapse, is sufficient for effectively simplifying meshes.
As shown in Figure 1, an edge collapse transformation ecol(fvs; vtg)

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.

v
t

vs

vl vr
vl vr

vs

ecol

vsplit

Figure 1: Illustration of the edge collapse transformation.

v
1

v
2

v
3

v
4

v5

v6

v
7

v
1

v
2

v
3

v
4

v5

v6

v
1

v
2

v
3

Mi+1 Mi

ecoli

M0

ecol0

m0=3

s
0
=2

s
i
=4

(i=3)

v
1

v
2

v
3

v
4

v5

v6

v
7

Mf

v
1

v
2

v
3

Mc

Ac

(a) (b)

Figure 2: (a) Sequence of edge collapses; (b) Resulting vertex
correspondence.

unifies 2 adjacent vertices vs and vt into a single vertex vs. The ver-
tex vt and the two adjacent faces fvs; vt; vlg and fvt; vs; vrg vanish
in the process. A position vs is specified for the new unified vertex.

Thus, an initial mesh M̂ = Mn can be simplified into a coarser
mesh M0 by applying a sequence of n successive edge collapse
transformations:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0
:

The particular sequence of edge collapse transformations must be
chosen carefully, since it determines the quality of the approximating
meshes Mi

; i < n. A scheme for choosing these edge collapses is
presented in Section 4.

Let m0 be the number of vertices in M0 , and let us label the vertices
of mesh Mi as Vi = fv1; : : : ; vm0+ig, so that edge fvsi ; vm0+i+1g is
collapsed by ecoli as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj in Mi as vi

j.

A key observation is that an edge collapse transformation is in-
vertible. Let us call that inverse transformation a vertex split, shown
as vsplit in Figure 1. A vertex split transformation vsplit(s; l; r; t;A)
adds near vertex vs a new vertex vt and two new faces fvs; vt; vlg and
fvt; vs; vrg. (If the edge fvs; vtg is a boundary edge, we let vr = 0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions vs

and vt of the two affected vertices, the discrete attributes dfvs;vt;vlg

and dfvt;vs;vrg of the two new faces, and the scalar attributes of the
affected corners (s(vs;�), s(vt;�), s(vl;fvs;vt;vlg), and s(vr;fvt;vs;vrg)).

Because edge collapse transformations are invertible, we can
therefore represent an arbitrary triangle mesh M̂ as a simple mesh
M0 together with a sequence of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

where each record is parametrized as vspliti(si; li; ri;Ai). We call
(M0

; fvsplit0; : : : ; vsplitn�1g) a progressive mesh (PM) representa-
tion of M̂.

As an example, the mesh M̂ of Figure 5d (13,546 faces) was
simplified down to the coarse mesh M0 of Figure 5a (150 faces) using

100

APPENDIX N

Microsoft Corp. Exhibit 1005

6,698 edge collapse transformations. Thus its PM representation
consists of M0 together with a sequence of n = 6698 vsplit records.
From this PM representation, one can extract approximating meshes
with any desired number of faces (actually, within �1) by applying
to M0 a prefix of the vsplit sequence. For example, Figure 5 shows
approximating meshes with 150, 500, and 1000 faces.

3.2 Geomorphs
A nice property of the vertex split transformation (and its inverse,
edge collapse) is that a smooth visual transition (a geomorph) can be
created between the two meshes Mi and Mi+1 in Mi vspliti

�! Mi+1. For
the moment let us assume that the meshes contain no attributes other
than vertex positions. With this assumption the vertex split record
is encoded as vspliti(si; li; ri;Ai = (vi+1

si ;v
i+1
m0+i+1)). We construct a

geomorph MG(�) with blend parameter 0���1 such that MG(0)
looks like Mi and MG(1) looks like Mi+1—in fact MG(1)=Mi+1—by
defining a mesh

MG(�) = (Ki+1
;VG(�))

whose connectivity is that of Mi+1 and whose vertex positions lin-
early interpolate from vsi 2Mi to the split vertices vsi ;vm0+i+12Mi+1:

v
G
j (�) =

�
(�)vi+1

j + (1��)vi
si ; j 2 fsi;m0 +i+1g

v
i+1
j = vi

j ; j =2 fsi;m0 +i+1g

Using such geomorphs, an application can smoothly transition from
a mesh Mi to meshes Mi+1 or Mi�1 without any visible “snapping”
of the meshes.

Moreover, since individual ecol transformations can be transi-
tioned smoothly, so can the composition of any sequence of them.
Geomorphs can therefore be constructed between any two meshes
of a PM representation. Indeed, given a finer mesh Mf and a coarser
mesh Mc, 0 � c < f � n, there exists a natural correspondence
between their vertices: each vertex of Mf is related to a unique an-
cestor vertex of Mc by a surjective map Ac obtained by composing a
sequence of ecol transformations (Figure 2b). More precisely, each
vertex vj of Mf corresponds with the vertex vAc(j) in Mc where

Ac(j) =

�
j ; j � m0 + c

Ac(sj�m0�1) ; j > m0 + c :

(In practice, this ancestor information Ac is gathered in a forward
fashion as the mesh is refined.) This correspondence allows us to
define a geomorph MG(�) such that MG(0) looks like Mc and MG(1)
equals Mf . We simply define MG(�) = (Kf

; VG(�)) to have the
connectivity of Mf and the vertex positions

v
G
j (�) = (�)vf

j + (1��)vc
Ac(j) :

So far we have outlined the construction of geomorphs between
PM meshes containing only position attributes. We can in fact
construct geomorphs for meshes containing both discrete and scalar
attributes.

Discrete attributes by their nature cannot be smoothly interpo-
lated. Fortunately, these discrete attributes are associated with
faces of the mesh, and the “geometric” geomorphs described above
smoothly introduce faces. In particular, observe that the faces of
Mc are a proper subset of the faces of Mf , and that those faces of
Mf missing from Mc are invisible in MG(0) because they have been
collapsed to degenerate (zero area) triangles. Other geomorphing
schemes [10, 11, 17] define well-behaved (invertible) parametriza-
tions between meshes at different levels of detail, but these do not
permit the construction of geomorphs between meshes with differ-
ent discrete attributes.

Scalar attributes defined on corners can be smoothly interpolated
much like the vertex positions. There is a slight complication in
that a corner (v; f) in a mesh M is not naturally associated with

any “ancestor corner” in a coarser mesh Mc if f is not a face of
Mc. We can still attempt to infer what attribute value (v; f) would
have in Mc as follows. We examine the mesh Mi+1 in which f is
first introduced, locate a neighboring corner (v; f 0) in Mi+1 whose
attribute value is the same, and recursively backtrack from it to a
corner in Mc. If there is no neighboring corner in Mi+1 with an
identical attribute value, then the corner (v; f) has no equivalent in
Mc and we therefore keep its attribute value constant through the
geomorph.

The interpolating function on the scalar attributes need not be
linear; for instance, normals are best interpolated over the unit
sphere, and colors may be interpolated in a color space other than
RGB.

Figure 6 demonstrates a geomorph between two meshes M175 (500
faces) and M425 (1000 faces) retrieved from the PM representation
of the mesh in Figure 5d.

3.3 Progressive transmission
Progressive meshes are a natural representation for progressive
transmission. The compact mesh M0 is transmitted first (using
a conventional uni-resolution format), followed by the stream of
vspliti records. The receiving process incrementally rebuilds M̂ as
the records arrive, and animates the changing mesh. The changes
to the mesh can be geomorphed to avoid visual discontinuities. The
original mesh M̂ is recovered exactly after all n records are received,
since PM is a lossless representation.

The computation of the receiving process should be balanced
between the reconstruction of M̂ and interactive display. With a
slow communication line, a simple strategy is to display the current
mesh whenever the input buffer is found to be empty. With a
fast communication line, we find that a good strategy is to display
meshes whose complexities increase exponentially. (Similar issues
arise in the display of images transmitted using progressive JPEG.)

3.4 Mesh compression
Even though the PM representation encodes both M̂ and a continu-
ous family of approximations, it is surprisingly space-efficient, for
two reasons. First, the locations of the vertex split transformations
can be encoded concisely. Instead of storing all three vertex indices
(si; li; ri) of vspliti, one need only store si and approximately 5 bits
to select the remaining two vertices among those adjacent to vsi .

2

Second, because a vertex split has local effect, one can expect signif-
icant coherence in mesh attributes through each transformation. For
instance, when vertex vi

si is split into vi+1
si and vi+1

m0+i+1, we can predict
the positions vi+1

si and vi+1
m0+i+1 from v

i
si , and use delta-encoding to

reduce storage. Scalar attributes of corners in Mi+1 can similarly be
predicted from those in Mi. Finally, the material identifiers dfvs;vt;vlg

and dfvt;vs;vrg of the new faces in mesh Mi+1 can often be predicted
from those of adjacent faces in Mi using only a few control bits.

As a result, the size of a carefully designed PM representation
should be competitive with that obtained from methods for com-
pressing uni-resolution meshes. Our current prototype implementa-
tion was not designed with this goal in mind. However, we analyze
the compression of the connectivity K, and report results on the com-
pression of the geometry V . In the following analysis, we assume
for simplicity that m0 = 0 since typically m0 � n.

A common representation for the mesh connectivity K is to list
the three vertex indices for each face. Since the number of vertices
is n and the number of faces approximately 2n, such a list requires
6dlog2(n)en bits of storage. Using a buffer of 2 vertices, gener-
alized triangle strip representations reduce this number to about

2On average, vsi has 6 neighbors, and the number of permutations P6
2 =30

can be encoded in dlog2(P6
2)e=5 bits.

101

APPENDIX N

Microsoft Corp. Exhibit 1005

(dlog2(n)e+2k)n bits, where vertices are back-referenced once on
average and k ' 2 bits capture the vertex replacement codes [6].
By increasing the vertex buffer size to 16, Deering’s generalized
triangle mesh representation [6] further reduces storage to about
(1

8dlog2(n)e+8)n bits. Turan [16] shows that planar graphs (and
hence the connectivity of closed genus 0 meshes) can be encoded
in 12n bits. Recent work by Taubin and Rossignac [15] addresses
more general meshes. With the PM representation, each vspliti re-
quires specification of si and its two neighbors, for a total storage of
about (dlog2(n)e+5)n bits. Although not as concise as [6, 15], this
is comparable to generalized triangle strips.

A traditional representation of the mesh geometry V requires
storage of 3n coordinates, or 96n bits with IEEE single-precision
floating point. Like Deering [6], we assume that these coordinates
can be quantized to 16-bit fixed precision values without significant
loss of visual quality, thus reducing storage to 48n bits. Deering is
able to further compress this storage by delta-encoding the quantized
coordinates and Huffman compressing the variable-length deltas.
For 16-bit quantization, he reports storage of 35:8n bits, which
includes both the deltas and the Huffman codes. Using a similar
approach with the PM representation, we encode V in 31n to 50n bits
as shown in Table 1. To obtain these results, we exploit a property
of our optimization algorithm (Section 4.3): when considering the
collapse of an edge fvs; vtg, it considers three starting points for
the resulting vertex position vn: fvs;vt;

vs+vt
2 g. Depending on the

starting point chosen, we delta-encode either fvs�vn;vt�vng or
fvs+vt

2 �vn;
vt�vs

2 g, and use separate Huffman tables for all four
quantities.

To further improve compression, we could alter the construction
algorithm to forego optimization and let vn 2 fvs;vt;

vs+vt
2 g. This

would degrade the accuracy of the approximating meshes some-
what, but allows encoding of V in 30n to 37n bits in our examples.
Arithmetic coding [19] of delta lengths does not improve results
significantly, reflecting the fact that the Huffman trees are well bal-
anced. Further compression improvements may be achievable by
adapting both the quantization level and the delta length models
as functions of the vsplit record index i, since the magnitude of
successive changes tends to decrease.

3.5 Selective refinement
The PM representation also supports selective refinement, whereby
detail is added to the model only in desired areas. Let the application
supply a callback function REFINE(v) that returns a Boolean value
indicating whether the neighborhood of the mesh about v should
be further refined. An initial mesh Mc is selectively refined by
iterating through the list fvsplitc; : : : ; vsplitn�1g as before, but only
performing vspliti(si; li; ri;Ai) if

(1) all three vertices fvsi ; vli ; vrig are present in the mesh, and

(2) REFINE(vsi) evaluates to TRUE.

(A vertex vj is absent from the mesh if the prior vertex split that
would have introduced it, vsplitj�m0�1, was not performed due to
the above conditions.)

As an example, to obtain selective refinement of the model within
a view frustum, REFINE(v) is defined to be TRUE if either v or any
of its neighbors lies within the frustum. As seen in Figure 7a,
condition (1) described above is suboptimal. The problem is that a
vertex vsi within the frustum may fail to be split because its expected
neighbor vli lies just outside the frustum and was not previously
created. The problem is remedied by using a less stringent version
of condition (1). Let us define the closest living ancestor of a vertex
vj to be the vertex with index

A0(j) =

�
j ; if vj exists in the mesh

A0(sj�m0�1) ; otherwise

The new condition becomes:

(1’) vsi is present in the mesh (i.e. A0(si) = si) and the vertices vA0 (li)

and vA0 (ri) are both adjacent to vsi .

As when constructing the geomorphs, the ancestor information A0

is carried efficiently as the vsplit records are parsed. If conditions
(1’) and (2) are satisfied, vsplit(si;A0(li);A0(ri);Ai) is applied to the
mesh. A mesh selectively refined with this new strategy is shown in
Figure 7b. This same strategy was also used for Figure 10. Note that
it is still possible to create geomorphs between Mc and selectively
refined meshes thus created.

An interesting application of selective refinement is the transmis-
sion of view-dependent models over low-bandwidth communication
lines. As the receiver’s view changes over time, the sending process
need only transmit those vsplit records for which REFINE evaluates
to TRUE, and of those only the ones not previously transmitted.

4 PROGRESSIVE MESH CONSTRUCTION

The PM representation of an arbitrary mesh M̂ requires a sequence
of edge collapses transforming M̂ = Mn into a base mesh M0.
The quality of the intermediate approximations Mi

; i < n depends
largely on the algorithm for selecting which edges to collapse and
what attributes to assign to the affected neighborhoods, for instance
the positions vi

si .

There are many possible PM construction algorithms with vary-
ing trade-offs of speed and accuracy. At one extreme, a crude and
fast scheme for selecting edge collapses is to choose them com-
pletely at random. (Some local conditions must be satisfied for an
edge collapse to be legal, i.e. manifold preserving [9].) More so-
phisticated schemes can use heuristics to improve the edge selection
strategy, for example the “distance to plane” metric of Schroeder
et al. [14]. At the other extreme, one can attempt to find approx-
imating meshes that are optimal with respect to some appearance
metric, for instance the Edist geometric metric of Hoppe et al. [9].

Since PM construction is a preprocess that can be performed off-
line, we chose to design a simplification procedure that invests some
time in the selection of edge collapses. Our procedure is similar to
the mesh optimization method introduced by Hoppe et al. [9], which
is outlined briefly in Section 4.1. Section 4.2 presents an overview
of our procedure, and Sections 4.3–4.6 present the details of our
optimization scheme for preserving both the shape of the mesh and
the scalar and discrete attributes which define its appearance.

4.1 Background: mesh optimization
The goal of mesh optimization [9] is to find a mesh M = (K;V)
that both accurately fits a set X of points xi 2 R

3 and has a small
number of vertices. This problem is cast as minimization of an
energy function

E(M) = Edist(M) + Erep(M) + Espring(M) :

The first two terms correspond to the two goals of accuracy and
conciseness: the distance energy term

Edist(M) =
X

i

d2(xi; �V (jKj))

measures the total squared distance of the points from the mesh,
and the representation energy term Erep(M) = crepm penalizes the
number m of vertices in M. The third term, the spring energy
Espring(M) is introduced to regularize the optimization problem. It
corresponds to placing on each edge of the mesh a spring of rest
length zero and tension �:

Espring(M) =
X

fj;kg2K

�kvj � vkk
2
:

102

APPENDIX N

Microsoft Corp. Exhibit 1005

size (# vertices)

accuracy
Edist

Mc

Mb

Ma

M

poor

perfect
0 n

ideal

space of meshes

Figure 3: Illustration of the paths taken by mesh optimization using
three different settings of crep.

The energy function E(M) is minimized using a nested optimiza-
tion method:

� Outer loop: The algorithm optimizes over K, the connectivity
of the mesh, by randomly attempting a set of three possible
mesh transformations: edge collapse, edge split, and edge swap.
This set of transformations is complete, in the sense that any
simplicial complex K of the same topological type as K̂ can
be reached through a sequence of these transformations. For
each candidate mesh transformation, K ! K0, the continuous
optimization described below computes EK0 , the minimum of
E subject to the new connectivity K0. If �E = EK0 � EK is
found to be negative, the mesh transformation is applied (akin to
a zero-temperature simulated annealing method).

� Inner loop: For each candidate mesh transformation, the algo-
rithm computes EK0 = minV Edist(V) + Espring(V) by optimizing
over the vertex positions V . For the sake of efficiency, the algo-
rithm in fact optimizes only one vertex positionvs, and considers
only the subset of points X that project onto the neighborhood
affected by K ! K0. To avoid surface self-intersections, the
edge collapse is disallowed if the maximum dihedral angle of
edges in the resulting neighborhood exceeds some threshold.

Hoppe et al. [9] find that the regularizing spring energy term
Espring(M) is most important in the early stages of the optimization,
and achieve best results by repeatedly invoking the nested optimiza-
tion method described above with a schedule of decreasing spring
constants �.

Mesh optimization is demonstrated to be an effective tool for mesh
simplification. Given an initial mesh M̂ to approximate, a dense set
of points X is sampled both at the vertices of M̂ and randomly over
its faces. The optimization algorithm is then invoked with M̂ as the
starting mesh. Varying the setting of the representation constant crep

results in optimized meshes with different trade-offs of accuracy and
size. The paths taken by these optimizations are shown illustratively
in Figure 3.

4.2 Overview of the simplification algorithm
As in mesh optimization [9], we also define an explicit energy metric
E(M) to measure the accuracy of simplified meshes M = (K;V;D; S)
with respect to the original M̂, and we also modify the mesh M
starting from M̂ while minimizing E(M).

Our energy metric has the following form:

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M) :

The first two terms, Edist(M) and Espring(M) are identical to those
in [9]. The next two terms of E(M) are added to preserve attributes
associated with M: Escalar(M) measures the accuracy of its scalar
attributes (Section 4.4), and Edisc(M) measures the geometric ac-
curacy of its discontinuity curves (Section 4.5). (To achieve scale
invariance of the terms, the mesh is uniformly scaled to fit in a unit
cube.)

size (# vertices)

accuracy
Edist

M0

M

poor

perfect

0 n

ideal

PM
representation

space of meshes

Figure 4: Illustration of the path taken by the new mesh simplifica-
tion procedure in a graph plotting accuracy vs. mesh size.

Our scheme for optimizing over the connectivity K of the mesh
is rather different from [9]. We have discovered that a mesh can
be effectively simplified using edge collapse transformations alone.
The edge swap and edge split transformations, useful in the context
of surface reconstruction (which motivated [9]), are not essential
for simplification. Although in principle our simplification algo-
rithm can no longer traverse the entire space of meshes considered
by mesh optimization, we find that the meshes generated by our
algorithm are just as good. In fact, because of the priority queue
approach described below, our meshes are usually better. Moreover,
considering only edge collapses simplifies the implementation, im-
proves performance, and most importantly, gives rise to the PM
representation (Section 3).

Rather than randomly attempting mesh transformations as in [9],
we place all (legal) candidate edge collapse transformations into
a priority queue, where the priority of each transformation is its
estimated energy cost �E. In each iteration, we perform the trans-
formation at the front of the priority queue (with lowest �E), and
recompute the priorities of edges in the neighborhood of this trans-
formation. As a consequence, we eliminate the need for the awk-
ward parameter crep as well as the energy term Erep(M). Instead, we
can explicitly specify the number of faces desired in an optimized
mesh. Also, a single run of the optimization can generate several
such meshes. Indeed, it generates a continuous-resolution family of
meshes, namely the PM representation of M̂ (Figure 4).

For each edge collapse K ! K0, we compute its cost �E =
EK0 � EK by solving a continuous optimization

EK0 = min
V;S

Edist(V) + Espring(V) + Escalar(V; S) + Edisc(V)

over both the vertex positions V and the scalar attributes S of the
mesh with connectivity K0. This minimization is discussed in the
next three sections.

4.3 Preserving surface geometry (Edist +Espring)
As in [9], we “record” the geometry of the original mesh M̂ by
sampling from it a set of points X. At a minimum, we sample a
point at each vertex of M̂. If requested by the user, additional points
are sampled randomly over the surface of M̂. The energy terms
Edist(M) and Espring(M) are defined as in Section 4.1.

For a mesh of fixed connectivity, our method for optimizing the
vertex positions to minimize Edist(V)+Espring(V) closely follows that
of [9]. Evaluating Edist(V) involves computing the distance of each
point xi to the mesh. Each of these distances is itself a minimization
problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k
2 (1)

where the unknown bi is the parametrization of the projection of
xi on the mesh. The nonlinear minimization of Edist(V) + Espring(V)
is performed using an iterative procedure alternating between two
steps:

103

APPENDIX N

Microsoft Corp. Exhibit 1005

1. For fixed vertex positions V , compute the optimal parametriza-
tions B = fb1; : : : ;bjXjg by projecting the points X onto the
mesh.

2. For fixed parametrizations B, compute the optimal vertex posi-
tions V by solving a sparse linear least-squares problem.

As in [9], when considering ecol(fvs; vtg), we optimize only one
vertex position, vi

s. We perform three different optimizations with
different starting points, vi

s = (1��)vi+1
s +(�)vi+1

t for � = f0; 1
2 ; 1g,

and accept the best one.

Instead of defining a global spring constant � for Espring as in [9],
we adapt � each time an edge collapse transformation is considered.
Intuitively, the spring energy is most important when few points
project onto a neighborhood of faces, since in this case finding the
vertex positions minimizing Edist(V) may be an under-constrained
problem. Thus, for each edge collapse transformation considered,
we set � as a function of the ratio of the number of points to the
number of faces in the neighborhood.3 With this adaptive scheme,
the influence of Espring(M) decreases gradually and adaptively as the
mesh is simplified, and we no longer require the expensive schedule
of decreasing spring constants.

4.4 Preserving scalar attributes (Escalar)
As described in Section 2, we represent piecewise continuous scalar
fields by defining scalar attributes S at the mesh corners. We now
present our scheme for preserving these scalar fields through the
simplification process. For exposition, we find it easier to first
present the case of continuous scalar fields, in which the corner
attributes at a vertex are identical. The generalization to piecewise
continuous fields is discussed shortly.

Optimizing scalar attributes at vertices Let the original
mesh M̂ have at each vertex vj not only a position vj 2 R

3 but
also a scalar attribute vj 2 R

d. To capture scalar attributes, we
sample at each point xi 2 X the attribute value xi 2 R

d . We would
then like to generalize the distance metric Edist to also measure the
deviation of the sampled attribute values X from those of M.

One natural way to achieve this is to redefine the distance metric
to measure distance in R3+d:

d2((xi xi);M(K;V;V)) = min
bi2jKj

k(xi xi) � (�V(bi) �V(bi))k
2
:

This new distance functional could be minimized using the iterative
approach of Section 4.3. However, it would be expensive since
finding the optimal parametrization bi of each point xi would re-
quire projection in R3+d, and would be non-intuitive since these
parametrizations would not be geometrically based.

Instead we opted to determine the parametrizations bi using only
geometry with equation (1), and to introduce a separate energy term
Escalar to measure attribute deviation based on these parametriza-
tions:

Escalar(V) = (cscalar)
2
X

i

kxi � �V(bi)k
2

where the constant cscalar assigns a relative weight between the scalar
attribute errors (Escalar) and the geometric errors (Edist).

Thus, to minimize E(V;V) = Edist(V) + Espring(V) + Escalar(V), our
algorithm first finds the vertex position vs minimizing Edist(V) +
Espring(V) by alternately projecting the points onto the mesh (ob-
taining the parametrizations bi) and solving a linear least-squares
problem (Section 4.1). Then, using those same parametrizations

3The neighborhood of an edge collapse transformation is the set of faces
shown in Figure 1. Using C notation, we set � = r < 4 ? 10�2 : r <

8 ? 10�4 : 10�8 where r is the ratio of the number of points to faces in the
neighborhood.

bi, it finds the vertex attribute vs minimizing Escalar by solving a
single linear least-squares problem. Hence introducing Escalar into
the optimization causes negligible performance overhead.

Since �Escalar contributes to the estimated cost �E of an edge
collapse, we obtain simplified meshes whose faces naturally adapt
to the attribute fields, as shown in Figures 8 and 11.

Optimizing scalar attributes at corners Our scheme for op-
timizing the scalar corner attributes S is a straightforward gener-
alization of the scheme just described. Instead of solving for a
single unknown attribute value vs, the algorithm partitions the cor-
ners around vs into continuous sets (based on equivalence of corner
attributes) and for each continuous set solves independently for its
optimal attribute value.

Range constraints Some scalar attributes have constrained
ranges. For instance, the components (r; g; b) of color are typically
constrained to lie between 0 and 1. Least-squares optimization may
yield color values outside this range. In these cases we clip the op-
timized values to the given range. For least-squares minimization
of a Euclidean norm at a single vertex, this is in fact optimal.

Normals Surface normals (nx; ny; nz) are typically constrained to
have unit length, and thus their domain is non-Cartesian. Optimizing
over normals would therefore require minimization of a nonlinear
functional with nonlinear constraints. We decided to instead simply
carry the normals through the simplification process. Specifically,
we compute the new normals at vertex vi

si by interpolating between
the normals at vertices vi+1

si and vi+1
m0+i+1 using the � value that re-

sulted in the best vertex position vi
si in Section 4.3. Fortunately,

the absolute directions of normals are less visually important than
their discontinuities, and we have a scheme for preserving such
discontinuities, as described in the next section.

4.5 Preserving discontinuity curves (Edisc)
Appearance attributes give rise to a set of discontinuity curves on the
mesh, both from differences between discrete face attributes (e.g.
material boundaries), and from differences between scalar corner
attributes (e.g. creases and shadow boundaries). As these discon-
tinuity curves form noticeable features, we have found it useful to
preserve them both topologically and geometrically.

We can detect when a candidate edge collapse would modify the
topology of the discontinuity curves using some simple tests on
the presence of sharp edges in its neighborhood. Let sharp(vj; vk)
denote that an edge fvj ; vkg is sharp, and let #sharp(vj) be the number
of sharp edges adjacent to a vertex vj. Then, referring to Figure 1,
ecol(fvs; vtg) modifies the topology of discontinuity curves if either:

� sharp(vs; vl) and sharp(vt; vl), or
� sharp(vs; vr) and sharp(vt; vr), or
� #sharp(vs) � 1 and #sharp(vt) � 1 and not sharp(vs; vt), or
� #sharp(vs) � 3 and #sharp(vt) � 3 and sharp(vs; vt), or
� sharp(vs; vt) and #sharp(vs) = 1 and #sharp(vt) 6= 2, or
� sharp(vs; vt) and #sharp(vt) = 1 and #sharp(vs) 6= 2.

If an edge collapse would modify the topology of discontinuity
curves, we either disallow it, or penalize it as discussed in Sec-
tion 4.6.

To preserve the geometry of the discontinuity curves, we sample
an additional set of points Xdisc from the sharp edges of M̂, and define
an additional energy term Edisc equal to the total squared distances
of each of these points to the discontinuity curve from which it was
sampled. Thus Edisc is defined just like Edist, except that the points
Xdisc are constrained to project onto a set of sharp edges in the mesh.
In effect, we are solving a curve fitting problem embedded within
the surface fitting problem. Since all boundaries of the surface are
defined to be discontinuity curves, our procedure preserves bound-

104

APPENDIX N

Microsoft Corp. Exhibit 1005

ary geometry more accurately than [9]. Figure 9 demonstrates the
importance of using the Edisc energy term in preserving the material
boundaries of a mesh with discrete face attributes.

4.6 Permitting changes to topology of dis-
continuity curves

Some meshes contain numerous discontinuity curves, and these
curves may delimit features that are too small to be visible when
viewed from a distance. In such cases we have found that strictly
preserving the topology of the discontinuity curves unnecessarily
curtails simplification. We have therefore adopted a hybrid strat-
egy, which is to permit changes to the topology of the discontinu-
ity curves, but to penalize such changes. When a candidate edge
collapse ecol(fvs; vtg) changes the topology of the discontinuity
curves, we add to its cost �E the value jXdisc;fvs;vtgj � kvs � vtk

2

where jXdisc;fvs;vtgj is the number of points of Xdisc projecting onto
fvs; vtg. That simple strategy, although ad hoc, has proven very
effective. For example, it allows the dark gray window frames of
the “cessna” (visible in Figure 9) to vanish in the simplified meshes
(Figures 5a–c).

Table 1: Parameter settings and quantitative results.

Object Original ^M Base M0 User param. jXdiscj V Time
m0 + n #faces m0 #faces jXj�(m0+n) ccolor

bits
n mins

cessna 6,795 13,546 97 150 100,000 - 46,811 46 23
terrain 33,847 66,960 3 1 0 - 3,796 46 16
mandrill 40,000 79,202 3 1 0 0.1 4,776 31 19
radiosity 78,923 150,983 1,192 1,191 200,000 0.01 74,316 37 106
fandisk 6,475 12,946 27 50 10,000 - 5,924 50 19

5 RESULTS

Table 1 shows, for the meshes in Figures 5–12, the number of
vertices and faces in both M̂ and M0. In general, we let the simpli-
fication proceed until no more legal edge collapse transformations
are possible. For the “cessna”, we stopped at 150 faces to obtain a
visually aesthetic base mesh. As indicated, the only user-specified
parameters are the number of additional points (besides the m0 + n
vertices of M̂) sampled to increase fidelity, and the cscalar constants
relating the scalar attribute accuracies to the geometric accuracy.
The only scalar attribute we optimized is color, and its cscalar con-
stant is denoted as ccolor. The number jXdiscj of points sampled from
sharp edges is set automatically so that the densities of X and Xdisc

are proportional.4 Execution times were obtained on a 150MHz
Indigo2 with 128MB of memory.

Construction of the PM representation proceeds in three
steps. First, as the simplification algorithm applies a sequence
ecoln�1 : : : ecol0 of transformations to the original mesh, it writes
to a file the sequence vsplitn�1 : : : vsplit0 of corresponding in-
verse transformations. When finished, the algorithm also writes
the resulting base mesh M0. Next, we reverse the order of the
vsplit records. Finally, we renumber the vertices and faces of
(M0

; vsplit0 : : : vsplitn�1) to match the indexing scheme of Sec-
tion 3.1 in order to obtain a concise format.

Figure 6 shows a single geomorph between two meshes M175 and
M425 of a PM representation. For interactive LOD, it is useful to
select a sequence of meshes from the PM representation, and to
construct successive geomorphs between them. We have obtained

4We set jXdiscj such that jXdiscj=perim = c(jXj=area)
1
2 where perim is

the total length of all sharp edges in ^M, area is total area of all faces, and
the constant c = 4:0 is chosen empirically.

good results by selecting meshes whose complexities grow expo-
nentially, as in Figure 5. During execution, an application can adjust
the granularity of these geomorphs by sampling additional meshes
from the PM representation, or freeing some up.

In Figure 10, we selectively refined a terrain (grid of 181�187
vertices) using a new REFINE(v) function that keeps more detail
near silhouette edges and near the viewer. More precisely, for the
faces Fv adjacent to v, we compute the signed projected screen areas
faf : f 2 Fvg. We let REFINE(v) return TRUE if

(1) any face f 2 Fv lies within the view frustum, and either

(2a) the signs of af are not all equal (i.e. v lies near a silhouette
edge) or

(2b)
P

f2Fv
af > thresh for a screen area threshold thresh = 0:162

(where total screen area is 1).

6 RELATED WORK

Mesh simplification methods A number of schemes con-
struct a discrete sequence of approximating meshes by repeated
application of a simplification procedure. Turk [17] sprinkles a
set of points on a mesh, with density weighted by estimates of lo-
cal curvature, and then retriangulates based on those points. Both
Schroeder et al. [14] and Cohen et al. [4] iteratively remove vertices
from the mesh and retriangulate the resulting holes. Cohen et al. are
able to bound the maximum error of the approximation by restricting
it to lie between two offset surfaces. Hoppe et al. [9] find accurate
approximations through a general mesh optimization process (Sec-
tion 4.1). Rossignac and Borrel [12] merge vertices of a model
using spatial binning. A unique aspect of their approach is that the
topological type of the model may change in the process. Their
method is extremely fast, but since it ignores geometric qualities
like curvature, the resulting approximations can be far from opti-
mal. Some of the above methods [12, 17] permit the construction
of geomorphs between successive simplified meshes.

Multiresolution analysis (MRA) Lounsbery et al. [10, 11]
generalize the concept of multiresolution analysis to surfaces of
arbitrary topological type. Eck et al. [7] describe how MRA can
be applied to the approximation of an arbitrary mesh. Certain
et al. [2] extend MRA to capture color, and present a multireso-
lution Web viewer supporting progressive transmission. MRA has
many similarities with the PM scheme, since both store a simple base
mesh together with a stream of detail records, and both produce a
continuous-resolution representation. It is therefore worthwhile to
highlight their differences:

Advantages of PM over MRA:

� MRA requires that the detail terms (wavelets) lie on a domain
with subdivision connectivity, and as a result an arbitrary initial
mesh M̂ can only be recovered to within an � tolerance. In
contrast, the PM representation is lossless since Mn = M̂.

� Because the approximating meshes Mi
; i<n in a PM may have

arbitrary connectivity, they can be much better approximations
than their MRA counterparts (Figure 12).

� The MRA representation cannot deal effectively with surface
creases, unless those creases lie parametrically along edges of
the base mesh (Figure 12). PM’s can introduce surface creases
anywhere and at any level of detail.

� PM’s capture continuous, piecewise-continuous, and discrete ap-
pearance attributes. MRA schemes can represent discontinuous
functions using a piecewise-constant basis (such as the Haar ba-
sis as used in [2, 13]), but the resulting approximations have
too many discontinuities since none of the basis functions meet
continuously. Also, it is not clear how MRA could be extended
to capture discrete attributes.

105

APPENDIX N

Microsoft Corp. Exhibit 1005

Advantages of MRA over PM:

� The MRA framework provides a parametrization between
meshes at various levels of detail, thus making possible multires-
olution surface editing. PM’s also offer such a parametrization,
but it is not smooth, and therefore multiresolution editing may
be non-intuitive.

� Eck et al. [7] construct MRA approximations with guaranteed
maximum error bounds to M̂. Our PM construction algorithm
does not provide such bounds, although one could envision using
simplification envelopes [4] to achieve this.

� MRA allows geometry and color to be compressed indepen-
dently [2].

Other related work There has been relatively little work in
simplifying arbitrary surfaces with functions defined over them.
One special instance is image compression, since an image can be
thought of as a set of scalar color functions defined on a quadrilat-
eral surface. Another instance is the framework of Schröder and
Sweldens [13] for simplifying functions defined over the sphere.
The PM representation, like the MRA representation, is a general-
ization in that it supports surfaces of arbitrary topological type.

7 SUMMARY AND FUTURE WORK

We have introduced the progressive mesh representation and shown
that it naturally supports geomorphs, progressive transmission, com-
pression, and selective refinement. In addition, as a PM construction
method, we have presented a new mesh simplification procedure de-
signed to preserve not just the geometry of the original mesh, but
also its overall appearance.

There are a number of avenues for future work, including:

� Development of an explicit metric and optimization scheme for
preserving surface normals.

� Experimentation with PM editing.

� Representation of articulated or animated models.

� Application of the work to progressive subdivision surfaces.

� Progressive representation of more general simplicial complexes
(not just 2-d manifolds).

� Addition of spatial data structures to permit efficient selective
refinement.

We envision many practical applications for the PM representa-
tion, including streaming of 3D geometry over the Web, efficient
storage formats, and continuous LOD in computer graphics appli-
cations. The representation may also have applications in finite
element methods, as it can be used to generate coarse meshes for
multigrid analysis.

ACKNOWLEDGMENTS

I wish to thank Viewpoint Datalabs for providing the “cessna” mesh,
Pratt & Whitney for the gas turbine engine component (“fandisk”),
Softimage for the “terrain” mesh, and especially Steve Drucker for
creating several radiosity models using Lightscape. Thanks also to
Michael Cohen, Steven “Shlomo” Gortler, and Jim Kajiya for their
enthusiastic support, and to Rick Szeliski for helpful comments on
the paper. Mark Kenworthy first coined the term “geomorph” in ’92
to distinguish them from image morphs.

REFERENCES
[1] Apple Computer, Inc. 3D graphics programming with

QuickDraw 3D. Addison Wesley, 1995.

[2] Certain, A., Popovic, J., Duchamp, T., Salesin,

D., Stuetzle, W., and DeRose, T. Interactive multi-
resolution surface viewing. Computer Graphics (SIGGRAPH
’96 Proceedings) (1996).

[3] Clark, J. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (Oct. 1976),
547–554.

[4] Cohen, J., Varshney, A., Manocha, D., Turk,

G., Weber, H., Agarwal, P., Brooks, F., and

Wright, W. Simplification envelopes. Computer Graphics
(SIGGRAPH ’96 Proceedings) (1996).

[5] Curless, B., and Levoy, M. A volumetric method
for building complex models from range images. Computer
Graphics (SIGGRAPH ’96 Proceedings) (1996).

[6] Deering, M. Geometry compression. Computer Graphics
(SIGGRAPH ’95 Proceedings) (1995), 13–20.

[7] Eck, M., DeRose, T., Duchamp, T., Hoppe, H.,

Lounsbery, M., and Stuetzle, W. Multiresolution
analysis of arbitrary meshes. Computer Graphics (SIGGRAPH
’95 Proceedings) (1995), 173–182.

[8] Funkhouser, T., and S�equin, C. Adaptive display al-
gorithm for interactive frame rates during visualization of com-
plex virtual environments. Computer Graphics (SIGGRAPH
’93 Proceedings) (1995), 247–254.

[9] Hoppe, H., DeRose, T., Duchamp, T., McDonald,

J., and Stuetzle, W. Mesh optimization. Computer
Graphics (SIGGRAPH ’93 Proceedings) (1993), 19–26.

[10] Lounsbery, J. M. Multiresolution analysis for surfaces
of arbitrary topological type. PhD thesis, Dept. of Computer
Science and Engineering, U. of Washington, 1994.

[11] Lounsbery, M., DeRose, T., and Warren, J. Mul-
tiresolution analysis for surfaces of arbitrary topological type.
Submitted for publication. (TR 93-10-05b, Dept. of Computer
Science and Engineering, U. of Washington, January 1994.).

[12] Rossignac, J., and Borrel, P. Multi-resolution 3D
approximations for rendering complex scenes. In Modeling
in Computer Graphics, B. Falcidieno and T. L. Kunii, Eds.
Springer-Verlag, 1993, pp. 455–465.

[13] Schr�oder, P., and Sweldens, W. Spherical wavelets:
Efficiently representing functions on the sphere. Computer
Graphics (SIGGRAPH ’95 Proceedings) (1995), 161–172.

[14] Schroeder, W., Zarge, J., and Lorensen, W. Dec-
imation of triangle meshes. Computer Graphics (SIGGRAPH
’92 Proceedings) 26, 2 (1992), 65–70.

[15] Taubin, G., and Rossignac, J. Geometry compres-
sion through topological surgery. Research Report RC-20340,
IBM, January 1996.

[16] Turan, G. Succinct representations of graphs. Discrete
Applied Mathematics 8 (1984), 289–294.

[17] Turk, G. Re-tiling polygonal surfaces. Computer Graphics
(SIGGRAPH ’92 Proceedings) 26, 2 (1992), 55–64.

[18] Upstill, S. The RenderMan Companion. Addison-Wesley,
1990.

[19] Witten, I., Neal, R., and Cleary, J. Arithmetic
coding for data compression. Communications of the ACM
30, 6 (June 1987), 520–540.

106

APPENDIX N

Microsoft Corp. Exhibit 1005

(a) Base mesh M0 (150 faces) (b) Mesh M175 (500 faces) (c) Mesh M425 (1,000 faces) (d) Original ^M =Mn (13,546 faces)
Figure 5: The PM representation of an arbitrary mesh ^M captures a continuous-resolution family of approximating meshes M0

: : :Mn = ^M.

(a) � = 0:00 (b) � = 0:25 (c) � = 0:50 (d) � = 0:75 (e) � = 1:00
Figure 6: Example of a geomorph MG(�) defined between MG(0)

:

=M175 (with 500 faces) and MG(1)=M425 (with 1,000 faces).

(a) Using conditions (1) and (2); 9,462 faces (b) Using conditions (1’) and (2); 12,169 faces
Figure 7: Example of selective refinement within the view frustum (indicated in orange).

(a) ^M (200�200 vertices) (b) Simplified mesh (400 vertices)
Figure 8: Demonstration of minimizing Escalar: simplification of a mesh with trivial geometry (a square) but complex scalar attribute field.
(^M is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)

107

APPENDIX N

Microsoft Corp. Exhibit 1005

Figure 9: (a) Simplification without Edisc Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

Figure 11: Simplification of a radiosity solution; left: original mesh (150,983 faces); right: simplified mesh (10,000 faces).

(a) ^M (12,946 faces) (b) M75 (200 faces) (c) M475 (1,000 faces)

(d) � = 9:0 (192 faces) (e) � = 2:75 (1,070 faces) (f) � = 0:1 (15,842 faces)
Figure 12: Approximations of a mesh ^M using (b–c) the PM representation, and (d–f) the MRA scheme of Eck et al. [7]. As demonstrated,
MRA cannot recover ^M exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.

108

APPENDIX N

Microsoft Corp. Exhibit 1005

United States Patent [19]

Baldwin

[54] GRAPHICS RENDERING SYSTEM WITH
RECONFIGURABLE PIPELINE SEQUENCE

[75] Inventor: David Robert Baldwin. Weybridge.
United Kingdom

[73] Assignee: 3DLabs Inc. Ltd •. Hamilton. Bermuda

[21] Appl. No.: 640,620

[22] Filed: May 1, 1996

Related U.S. Application Data

[60] Provisional application No. 601008,803 Dec. 18, 1995.

[63] Continuation-in-part of Ser. No. 410,345, Mar. 24, 1995.

[51] Int. Cl.6
... G06T 1/20

[52] U.S. Cl 345/506; 345/519; 345/509
[58] Field of Search 395/506. 502.

395/507. 509. 519. 122. 130. 132. 125.
503; 345/506. 507. 502. 509. 519. 422.

430-432. 425. 503

[56] References Cited

U.S. P~ DOCUMENTS

4,866,637 9/1989 Gonzalez-Lopez 395/506
5,392,391 211995 Caulk, Jr. et al 395/503

SCISSOR

111111 111
US005798770A

[111 Patent Number:

[451 Date of Patent:

5,798,770
Aug. 25, 1998

OTHER PUBLICATIONS

Foley et al .. "Computer Graphics. Principles and Practice".
2 ed in C.1996. Chapter 18. pp. 855-920.
Kogge. P.M .. "The Microprogramming of Pipelined Proces
sors". 1977. Proc. 4th Ann. Conf Parallel Procesing. IEEE.
March. pp. 63-69.
Computer Graphics. vol. 22. No. 4. "A display system for
the Stellar graphics Supercomputer Model GSlOOO". Brian
Apgar et al.. Aug. 1988.

Primary Examiner-Kee M. Tung
Attorney, Agent, or Firm-Robert Groover; Betty Formby;
Matthew S. Anderson

[57] ABSTRACT

The preferred embodiment discloses a pipelined graphics
processor in which the sequence can be dynamically recon
figured (e.g. between primitives) in a rendering sequence.
The pipeline sequence can be configured for compliance
with specifications such as OpenGL. but may also be opti
mized by reconfiguring the pipeline sequence to eliminate
unnecessary processing. In a preferred embodiment, pixel
elimination sequences such as depth and stencil tests are
performed before texturing calculations are performed. so
that unneeded pixel data is discarded before said texturing
calculations are performed.

26 Claims, 12 Drawing Sheets

RASTERIZER
TEST - STIPPLE COLOR DDA

~

ALPHA TEST ANTIAI.IAS I--- FOG TEXTURE APPLICATION

J_
LB PIXEL STENCIL DEPTH LB f-- OWNERSHIP f-- 1------ 1------READ (GID) TEST TEST WRITE

LOCALBUFFER

v~

,----- .-- '----

FB LOGICAL OP/ COLOR ALPHA FB
WRITE I-- FRAME BUFFER 1---- FORIJAT I-- BLEND I-- READ MASK (DITHER)

~~
FRAMEBUFFER

HOST
OUT

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 1 of 12 5,798,770

FIG. 1A

WORLD COO RDINATES (3D)

TRANSFORM {
TRANSFORM INTO VIEW

COORDINATES AND
CANONICAL VIEW VOLUME

VIEW COOR DINATES (3D)

CLIP CLIP AGAINST CANONICAL
VIEW VOLUME

VIEW COOR DINATES (3D)

PROJECT ON TO
VIEW PLANE

VIEW COOR DINATES (2D)

TRANSFORM MAP INTO VIEW PORT

NORMALIZED DEVICE COORDINATES

TRANSFORM TO PHYSICAL
DEVICE COORDINATES

PHYSICAL D EVICE COORDINATES

RENDER

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent

VERTICES

PRIMITIVES

• CURRENT
FRAGMENTS RASTER

POSITION

PIXELS

0

Aug. 25, 1998 Sheet 2 of 12 5,798,770

FIG. 1B
VERTEX

RASTERPOS NORMAL
COLOR
INDEX

+ ~
CURRENT CURRENT
NORMAL COLOR

1
MODEL VIEW

MATRIX

LIGHTING
AND COLORING

PRIMITIVE ASSEMBLY

~ t

TEXCOORD
l

CURRENT
TEXTURE

COORDINATES

•
TEXGEN

• TEXTURE
MATRIX

•
l

APPLICATION-SPECIFIC CLIPPING READPIXELS

+ DRAWPIXELS
PROJECTION TEXIMAGE

MATRIX

~ 1 , PIXEL
STORAGE

VIEW VOLUME CLIPPING MODES

• DIVIDE BY PIXEL
W; VIEWPORT TRANSFER

• MODES

f.+ RASTERIZATION

• l
PER-FRAGMENT OPERATIONS TEXTURE

f.--
MEMORY

•
FRAME BUFFER

APPENDIX O

Microsoft Corp. Exhibit 1005

F
IG

.
2

A

GR
AP

H

HO
ST

IN

TE
RF

AC
E

RA
ST

ER
IZ

ER
 f

-
SC

IS
SO

R
1

-
CO

LO
R

TE
XT

UR
E

1
-

1
-

FO
G

G
RA

PH
 IC

S
PR

OC
ES

SO
R

FI
FO

 (
OU

T)

HO
ST

IN

TE
RF

AC
E -

-

HO
ST

OU

T

R
 UN

LE
SS

 O
TH

ER
W

IS
E

w
 NO

TE
D)

-
ST

IP
PL

E
DD

A
CO

LO
R

FR
AM

E B
UF

FE
R

LO
GI

CA
L

-
-

-
-

W
RI

TE

OP
S

l !
W

RI
TE

DA

TA
 (

32
]

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

- ~

LO
CA

L
BU

FF
ER

IN

TE
RF

AC
E

UN
IT

RE

AD

W
RI

TE

RE
AD

W

RI
TE

AD

DR
ES

S
(2

4)

AD
DR

E$
S

(2
4)

DA

TA
 (

52
)

DA
TA

 (
52

)

:'1

t
I +

I

i
I

AL
PH

A
LO

CA
L

GI
D

LO
CA

L
1

-
BU

FF
ER

 -
1

-
ST

EN
CI

L
1

-
'I

-
BU

FF
ER

 -
--

TE
ST

f
-

-
RE

AD

DE
PT

H
W

RI
TE

DI
TH

ER

AL
PH

A
FR

AM
EB

UF
FE

R
~

-
1

-
BL

EN
D

-,
-

RE
AD

1
f
! I

t

I
~

!
RE

AD

W
RI

TE

RE
AD

DA

TA
 (

32
]

AD
DR

ES
S

[2
4]

AD

DR
ES

S
(2

4]

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

~

• r.n

• ~

.....
.

~
 =

.....
.

>
 =

~

N

V
I .. 1-
<

 ~ rJ
J

t:r
' l w

~

1-
<

N

 O
l

.... '"" \C

01
0

.... '"" '"" =
 APPENDIX O

Microsoft Corp. Exhibit 1005

F
IG

.
2

B

r-
--

--
--

-,

I
I

LO
CA

L
BU

FF
ER

~
~
-
-
+
-
-
~

LO
CA

L
I

:
BU

FF
ER

:

I I I I I I I I I I I
:I

:
I

~
:
:
c
l

-
-
lO

I

E
;
~
l

o
o

l

;
:
g
~
l

V
>

>
l

V
>

I

LO
CA

L
BU

FF
ER

IN

TE
RF

AC
E

BY
PA

SS

i r-
--

--
--

--
--

--
--

--
--

--
--

~-
--
--

~ ~
 ~P

t ~
--

--
--

__ o
r-

--
n-

-,

I
I

I
I

I
I

I

GR
AP

HI
CS

PR

OC
ES

SO
R

FI
FO

 (
IN

)

I
I

I
I

I
I

I
I

I
I

.-
-

G
!D

/Z
/

LB
 R

d
H

 S
TE

NC
IL

H

LB
 W

r
~--<

I
I

r
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-
,

I
I

;;
o

1

I
I

I
SC

IS
SO

R
g

1
I

RA
ST

ER
IZ

ER

ST
IP

PL
E

r;:1

CO
LO

R
1

TE
XT

UR
E

1

s:::

c '=t

~
h

fT
I

X

fT
I

;;
o

I
I

;;
o

TA

dd
r

TR
d

FO
G

I
I

DD
A

I
CO

LO
R

I
I

I
u

I
I

I
1

I
·

I
I

I
1

TE
XT

UR
E

UN
IT

I

I

AL
PH

A
_S

T
1

-
-

I
I

1
..

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.J

I

I
I

._
.

I
I

I
~

I
I

I
I

I
I

I
GR

AP
HI

CS

1
1

HO
ST

1

-
FB

 W

1
-

LO
GI

CA
L

DI
TH

ER

1
-

BL
EN

D
1

-
FB

Rd

1

PR
OC

ES
SO

R
1

OU
T

r
OP

S
1

I
I F

IF
O

(O
UT

)
I

I
I

I
:I

GR
AP

HI
CS

 C
OR

E
--

--
--

--
--

--
--
--
--
--
-~
--

_
_

_
_

_
_

_
 _

j
:

1
L

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0

A

D

FR

AM
E-

'
I

1
BU

FF
ER

I

FR
AM

EB
UF

FE
R

I
FR

AM
EB

UF
FE

R
IN

TE
RF

AC
E

I
:

BY
PA

SS

. :
I

I
I

HO
ST

IN

TE
RF

AC
E
J

L
-
-
-
-
-
-
-
-

GL
iN

T2

d • 00

• ~

'"""
"

~
 =

'"""
" >
 =

~

N

U
l

-.. - ~ \I
).

 =- a "" s, -N O
l

~

:a
\C

0

0

~

:a
.....

:a =

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 5 of 12 5,798,770

FIG. 2C

RASTERIZER SCISSOR STIPPLE COLOR DDA
TEST

~

ALPHA TEST ANTI ALIAS FOG TEXTURE
APPLICATION

LB PIXEL STENCIL DEPTH LB
READ OWNERSHIP TEST TEST WRITE (GID)

LOCALBUFFER

FB LOGICAL OP/ COLOR ALPHA FB
WRITE FRAMEBUFFER FORMAT BLEND READ MASK (DITHER)

FRAME BUFFER

HOST
OUT

APPENDIX O

Microsoft Corp. Exhibit 1005

r-
--

--
--

--
--

--
--

--
--

-,

MU
X

AN
D

MA
TC

H
TR

EE

I

1
I

I
I

F
IG

.
2D

I

I
I

I
I

I
..

--
I

LO
CA

L
GI

O
LO

CA
L

I
:,

_
_

BU

FF
ER

 '
--

-
-

ST
EN

CI
L

r-
'r

-
BU

FF
ER

 1
-

L..
.+.

-
r-

--
--

--
--

--
--

-,

I
RE

AD

DE
PT

H
W

RI
TE

I

1
MR

AS
TE

R
1

I
'

I
s:::

:
HO

ST

I
I

I
ML

OC
AL

BU
FF

ER

I
c

IN
TE

RF
AC

E
1

SC
IS

SO
R

I
:::

0
r:::

:t
0

L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

RA
ST

ER
IZ

ER
 -

ST
IP

PL
E

H
+

s
""

0
f-

1
-

I
I

r"
"1

r-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1

' r""1

I
I

:::
0

1
MT

EX
TU

RE

1
X

I
r"

"1

I
I

I
I

-
,

I
:::

0

I
MU

X
AN

D
MA

TC
H

TR
EE

I

I
TE

XT
UR

E
TE

XT
UR

E
CO

LO
R

TE
XT

UR
E

AL
PH

A
I

I
I

--
'-

1
-

FO
G

-'
r-

~

L
--

--
--

t-
--

--
--

J
-

:
AD

DR

RE
AD

DD

A
CO

LO
R

TE
ST

,

I

I
I

I
-

'
I
-

I
I

I
MU

X
AN

D
MA

TC
H

TR
EE

I

I
I

MU
X

L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

RE
AD

 BA
CK

AN

D
BU

S
MA

TC
H

r-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1

TR
EE

I

I
I

MU
X

AN
D

MA
TC

H
TR

EE

I
I

I
I

I
I

I
I

I
I

I
'

I
HO

ST

HO
ST

_

FR
AM

EB
UF

FE
R

_
LO

GI
CA

L
',

AL
PH

A
_

FR
AM

EB
UF

FE
R

OP
S

-
DI

TH
ER

 r
-,

BL

EN
D

1
-

'
,
~

IN
TE

RF
AC

E
I

OU
T

W
RI

TE

RE
AD

I

I
I

I L
_

_
_

_

M
FR

AM
EB

UF
FE

R
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

e • \J
).

• ~

~

.

~
 a >

c ~

N

tT
l

~
 1
-"

 ~ 0
0

::r

 ~ ~

s, 1
-"

N

 o-
.

~

.:1
\C

Q

e
~

.:1 "'
I

Q

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 7 of 12

EXPANSION
GLINT 400TX GRAPHICS PROCESSOR r+ ROM INTERFACE

...

PCJ
BUS

r-
LOCALBUFFER

BYPASS

1-
DMA

CONTROL

DATA
1-

FORMATTER

1- FRAMEBUFFER
BYPASS

VTG -
INTERFACE

'--

EXTERNAL VIDEO ...
LOGIC INTERFACE

LOCALBUFFER MEMORY INTERFACE j.-

INPUT _
FIFO

GRAPHICS SHARED

OUTPUT
CORE FRAMEBUFFER ~

FIFO - INTERFACE

t
FRAMEBUFFER MEMORY INTERFACE r-

t
VIDEO TIMING ...

GENERATOR

FIG. 2E

r.-

r.-

r.-

f+-

r.-

r.-

5,798,770

EPROM
CONTROLS

VIDEO
LOGIC
CONTROLS

LOCALBUFFER

SHARED
FRAME BUFFER
CONTROL
SIGNALS

FRAME BUFFER

TIMING
CONTROL
SIGNALS

APPENDIX O

Microsoft Corp. Exhibit 1005

KE
Y

LO
CA

L
BU

FF
ER

IN

TE
RF

AC
E

UN
IT

UN
LE

SS
 O

TH
ER

W
IS

E
-

ME
SS

AG
E

BU
S

(A
LT

ER
NA

TI
VE

 S
IZ

E)

AD
DR

ES
S

[2
4]

AD

DR
ES

S
[24

]
DA

TA
 [

52
]

DA
TA

 [
52

]

~ FI
FO

 (
1

DE
EP

-

ME
SS

AG
E

BU
S

(3
2

BI
TS

 D
AT

A,
 9

 B
IT

S
TA

G)

RE
AD

W

RI
TE

RE

AD

W
RI

TE

NO
TE

D)

-
-~
 FIF

O
FL

AG

'LO
OK

 A
HE

AD
'

SP
AN

4

8
8

4

GR
AP

HI
CS

PR

OC
ES

SO
R

FI
FO

(IN

)

HO
ST

IN

TE
RF

AC
E
~
1
-

RA
ST

ER
IZ

ER
 H

::}
-IS

CI
SS

O
R

ST
IP

PL
E

32
 1

GR
AP

HI
CS

PR

OC
ES

SO
R

FI
FO

(O

UT
)

2

--
--

--
--

--
--

~

--
--

--
--

--
LO

CA
L

GI
D

'L-0
...!.

-CA
.:...

.L
I

r
-
-
-
-
-
-
-
-
-
-
-
-
1

 BU
FF

ER

ST
EN

CI
L

BU
FF

ER

~r

RE
AD

RE

AD

e5l

AD
DR

ES
S

[2
4]

DA

TA
 [

52
)

~~

~

~

4
~

&
ss

,
">

SS
J

--
--

-;;

=-
-;
~

2

H
 T

EX
TU

RE

TE
XT

UR
E

CO
LO

R
AD

OR

~

RE
AD

t-

DD
A

2
'
-

EX
PA

ND
ED

 T
O

49

BI
TS

(4

0
BI

TS
 D

AT
A,

 9
 B

IT
S

TA
G)

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

"
'

M

r
-
-

RE
AD

DE

PT
H

W
RI

TE

EX
PA

ND
ED

 T
O

61

BI
TS

(5

2
BI

TS
 D

AT
A,

 9
 B

IT
S

TA
G)

--
--

--
--

--
--

·

2

TE
XT

UR
E

CO
LO

R
FO

G

M

,
-
-
-
-

AL
PH

A
TE

ST

L
l 3:

:
c I ~~

X

1"
'1

:::

0

~I

L
L

--
--

--
--

.-

-
-
-
-
-
-
-
-
-
"
'

,...,

HO
ST

IN

TE
RF

AC
E
11

t

I HO
ST

OU

T
FR

AM
EB

UF
FE

R
W

RI
TE

LO

GI
CA

L
OP

S
DI

TH
ER

AL

PH
A

H

BL
EN

D
'H

 FR
AM

EB
UF

FE
R
H

 ~
-
-
-
-
-
~

,
RE

AD

•

8
RE

DU
CE

D
TO

32

BI

TS

l
4

+

4
~

8
t

~
·
·
l

&
;!

£~

·,
•3

~

4
t

2

W
RI

TE

DA
TA

 [
32

]
F

IG
.

2
F

RE

AD

W
RI

TE

RE
AD

DA

TA
 [

32
]

AD
DR

ES
S

{2
4]

AD

DR
ES

S
[2

4)

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

FR
AM

EB
UF

FE
R

IN
TE

RF
AC

E
UN

IT

~

• 00

• ~

~

("t
> =

~

>
 =

~

N

~V
I

~

~

0
0

 g: f! 0
0

~

~

N
 0
1

._.

.:.)

\C

~

"'
...,

J
....

.:.)
 =

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent Aug. 25, 1998 Sheet 9 of 12 5,798,770

T CPU DOES HOS
GEOME TRY PROCESSING

\

HOST CPU

48 BITS WID~,
>=10 MBYTES

LOCAL
GEOMETRY

PROCESSOR

I

FIG. 3A

PLUG-IN CARD
32 BITS WIDE

vB MBYTES DRAM
LOCALBUFFER

4 MBYTES
/

GLINT VRAM LUT -DAC 400TX
1-~ -

I
PCI LOCAL BUS

FIG. 3B
PLUG-IN CARD

LOCALBUFFER 16 MBYTES
{1024x1280x32 BITS
DOUBLE BUFFERED)

I

GLINT
400TX

~---~ VRAM 1--- LUT-DAC

I
PCI-PCI
BRIDGE

PCI LOCAL BUS

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent

PCI
LOCAL
BUS

PCI
LOCAL
BUS

Aug. 25, 1998 Sheet 10 of 12 5,798,770

FIG. 3C

/e.g. S3 VISION964
GUI

ACCELERATOR

I
PCI-PCI GLINT FRAME BUFFER LUT -OAC BRIDGE

f--
400TX

~---~ 1-->--

I
LOCALBUFFER

PLUG-IN CARD

FIG. 3D

y FOR VIDEO CAPTURE
VIDEO AND PLAYBACK

COPROCESSOR

I
PCI-PCI GLINT -- FRAMEBUFFER ~---- LUT-DAC
BRIDGE

f--
400TX

I
LOCALBUFFER

PLUG-IN CARD

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent

SUBORDINATE""-
SIDE "

SUBORDINATE/
SIDE

count3

count2

count1

Aug. 25, 1998 Sheet 11 of 12 5,798,770

FIG. 4A

FIG. 4B

Trapezoid C

Knee1~ -------

APPENDIX O

Microsoft Corp. Exhibit 1005

U.S. Patent

FROM
SCISSOR/

STIPLE -
a::
w
:::c:
u
I--

3:
V)

Aug. 25, 1998 Sheet 12 of 12

LB READ, GSD AND
LB WRITE UNITS

COLOR DDA, TEXTURE AND
ALPHA TEST UNITS

ROUTER UNIT

FIG. 5A

LB READ, GSD AND
LB WRITE UNITS

5,798,770

a::
w
X
w TO __,
CL - FB READ
1--__,
:::::1
~

a::
w a::

u...J X
:::c w rn~ ro

---1
__,

f-+-u CL I--

~ i= __,
V) ::::>

SCISSOR/ FB READ
STIPLE

~

COLOR DDA, TEXTURE AND
ALPHA TEST UNITS

ROUTER UNIT

FIG. 5B

LB READ, GSD AND
LB WRITE UNITS

a::
a:: w
u...J X
:::c w

---1 u __, I-- CL

rn~ ro
SCISSOR/ FB READ

3:: 1--__,
V) :::::1

STIPLE
~

COLOR DDA, TEXTURE AND
ALPHA TEST UNITS

ROUTER UNIT

FIG. 5C

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
1

GRAPHICS RENDERING SYSTEM WITH
RECONFIGURABLE PIPELINE SEQUENCE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of 08/410.345
filed Mar. 24, 1995, and claims priority from provisional
60/008.803 filed Dec. 18. 1995. which is hereby incorpo
rated by reference.

BACKGROUND AND SUMMARY OF THE
INVENI'ION

The present application relates to computer graphics and
animation systems. and particularly to 3D graphics render
ing hardware. Background of the art and the prior
embodiment, according to the parent application. is
described below. Some of the distinctions of the presently
preferred embodiment are particularly noted beginning on
page 8.

COMPUTER GRAPIDCS AND RENDERING

Modern computer systems normally manipulate graphical
objects as high-level entities. For example, a solid body may
be described as a collection of triangles with specified
vertices, or a straight line segment may be described by
listing its two endpoints with three-dimensional or two
dimensional coordinates. Such high-level descriptions are a
necessary basis for high-level geometric manipulations. and
also have the advantage of providing a compact format
which does not consume memory space unnecessarily.

Such higher-level representations are very convenient for
performing the many required computations. For example.
ray-tracing or other lighting calculations may be performed,
and a projective transformation can be used to reduce a
three-dimensional scene to its two-dimensional appearance
from a given viewpoint However. when an image contain
ing graphical objects is to be displayed, a very low-level
description is needed. For example. in a conventional CRf
display, a "flying spot" is moved across the screen (one line
at a time). and the beam from each of three electron guns is
switched to a desired level of intensity as the flying spot
passes each pixel location. Thus at some point the image
model must be translated into a data set which can be used
by a conventional display. This operation is known as
"rendering."

The graphics-processing system typically interfaces to the
display controller through a "frame store" or "frame buffer"
of special two-port memory. which can be written to ran
domly by the graphics processing system, but also provides
the synchronous data output needed by the video output
driver. (Digital-to-analog conversion is also provided after
the frame buffer.) Such a frame buffer is usually imple
mented using VRAM memory chips (or sometimes with
DRAM: and special DRAM: controllers). This interface
relieves the graphics processing system of most of the
burden of synchronization for video output. Nevertheless.
the amounts of data which must be moved around are very
sizable. and the computational and data-transfer burden of
placing the correct data into the frame buffer can still be very
large.

Even if the computational operations required are quite
simple. they must be performed repeatedly on a large
number of data points. For example. in a typical 1995
high-end configuration. a display of 1280x1024 elements
may need to be refreshed at 72 Hz, with a color resolution

2
of 24 bits per pixel. If blending is desired. additional bits
(e.g. another 8 bits per pixel) will be required to store an
"alpha" or transparency value for each pixel. This implies
manipulation of more than 3 billion bits per second, without

5 allowing for any of the actual computations being per
formed. Thus it may be seen that this is an environment with
unique data manipulation requirements.

If the display is unchanging. no demand is placed on the
rendering operations. However. some common operations

10 (such as zooming or rotation) will require every object in the
image space to be re-rendered. Slow rendering will make the
rotation or zoom appear jerky. This is highly undesirable.
Thus efficient rendering is an essential step in translating an
image representation into the correct pixel values. This is

15 particularly true in animation applications. where newly
rendered updates to a computer graphics display must be
generated at regular intervals.

The rendering requirements of three-dimensional graph
ics are particularly heavy. One reason for this is that. even

20 after the three-dimensional model has been translated to a
two-dimensional model. some computational tasks may be
bequeathed to the rendering process. (For example, color
values will need to be interpolated across a triangle or other
primitive.) These computational tasks tend to burden the

25 rendering process. Another reason is that since three
dimensional graphics are much more lifelike. users are more
likely to demand a fully rendered image. (By contrast. in the
two-dimensional images created e.g. by a GUI or simple
game, users will learn not to expect all areas of the scene to

30 be active or filled with information.)
FIG. lA is a very high-level view of other processes

performed in a 3D graphics computer system. A three
dimensional image which is defined in some fixed 3D
coordinate system (a ''world" coordinate system) is trans-

35 formed into a viewing volume (determined by a view
position and direction). and the parts of the image which fall
outside the viewing volume are discarded. The visible
portion of the image volume is then projected onto a viewing
plane, in accordance with the familiar rules of perspective.

40 This produces a two-dimensional image, which is now
mapped into device coordinates. It is important to under
stand that all of these operations occur prior to the operations
performed by the rendering subsystem of the present inven
tion. FIG. lB is an expanded version of FIG. lA. and shows

45 the flow of operations defined by the OpenGL standard.
A vast amount of engineering effort has been invested in

computer graphics systems. and this area is one of increasing
activity and demands. Numerous books have discussed the
requirements of this area; see. e.g .• ADVANCES IN COMPUIER

50 GRAPHics (ed. Enderle 1990-); Chellappa and Sawchuk.
DIGITAL IMAGE PROCESSING AND ANALYSIS (1985); COM
PUlER GRAPmcs HARDWARE (ed. Reghbati and Lee 1988);
COMPUIER GRAPHics: IMAGE SYNIHESIS (ed. Joy et al.);
Foley et al .• FuNDAMENTALS OF lNIERACTIVE CoMPU1ER

55 GRAPmcs (2.ed. 1984); Foley. CoMPUTER GRAPmcs PRIN
ciPLES & PRACTICE (2.ed. 1990); Foley, INTRODUCTION TO
COMPUIER GRAPIDCS (1994); Giloi, Interactive Computer
Graphics (1978); Hearn and Baker. CoMPUIER GRAPmcs
(2.ed. 1994); Hill. COMPUIER GRAPmcs (1990); Latham,

60 DICTIONARY OF COMPU1ER GRAPJnCS (1991); Magnenat
Thalma, IMAGE SYNTIIESIS THEoRY & PRACTICE (1988);
Newman and Sproull, PRINclPI..ES OF INTERACTIVE COM
PUTER GRAPIDCS (2.ed. 1979); PlcruRE ENGINEERING (ed. Fu
and Kunii 1982); PICTURE PROCESSING & DIGITAL FILTERING

65 (2.ed. Huang 1979); Prosise. How COMPUIER GRAPIDCS
WORK (1994); Rimmer, BIT MAPPED GRAPJDCS (2.ed. 1993);
Salmon, COMPU1ER GRAPIDCS SYSTEMS & CONCEPTS

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
3 4

(1987); Schachter. CoMPUTER IMAGE GENERATION (1990); The OpenGL standard provides a complete library of
Watt. THREE-DIMENSIONAL CoMPUTER GRAPmcs (2.ed. low-level graphics manipulation corrunands. which can be
1994); Scott Whitman. MULTIPROCESSOR ME1Hons FOR used to implement three-dimensional graphics operations.
CoMPUIER GRAPmcs RENDERING; the SIGGRAPH PRo- This standard was originally based on the proprietary stan-
CEEDINGS for the years 1980-1994; and the IEEE Computer 5 dards of Silicon Graphics, Inc .• but was later transformed
Graphics and Applications magazine for the years into an open standard. It is now becoming extremely
1990-1994. important. not only in high-end graphics-intensive
Background: Graphics Animation workstations. but also in high-end PCs. OpenGL is sup-

In many areas of computer graphics a succession of ported by Windows NT™. which makes it accessible to
slowly changing pictures are displayed rapidly one after the 10 many PC applications.
other. to give the impression of smooth movement, in much The OpenGL specification provides some constraints on
the same way as for cartoon animation. In general the higher the sequence of operations. For instance. the color DDA
the speed of the animation, the smoother (and better) the operations must be performed before the texturing
result. operations, which must be performed before the alpha

When an application is generating animation images, it is 15 operations. (A "DDA'' or digital differential analyzer. is a
normally necessary not only to draw each picture into the conventional piece of hardware used to produce linear
frame buffer, but also to first clear down the frame buffer, gradation of color (or other) values over an image area.)
and to dear down auxiliary buffers such as depth (Z) buffers, Other graphics interfaces (or "APis"), such as PHIGS or
stencil buffers, alpha buffers and others. A good treatment of XGL. are also current as of 1995; but at the lowest level.
the general principles may be found in Computer Graphics: 20 OpenGL is a superset of most of these.
Principles and Practice. James D. Foley et al .. Reading The OpenGL standard is described in the OPENGL PRO-
Mass.: Addison-Wesley. A specific description of the various GRAMMING GUIDE (1993), the OPENGL REFERENCE
auxiliary buffers may be found in The OpenGL Graphics MANUAL (1993), and a book by Segal and Akeley (of SGI)
System: A Specification (Version 1.0), Mark Segal and Kurt entitled THE OPENGL GRAPmcs SYS1EM: A SPECIFICATION
Akeley, SGL 25 (Version 1.0).

In most applications the value written, when clearing any FIG. IBis an expanded version of FIG. IA. and shows the
given buffer. is the same at every pixel location. though fiow of operations defined by the OpenGL standard. Note
different values may be used in different auxiliary buffers. that the most basic model is carried in terms of vertices, and
Thus the frame buffer is often cleared to the value which these vertices are then assembled into primitives (such as
corresponds to black. while the depth (Z) buffer is typically 30 triangles. lines, etc.). After all manipulation of the primitives
cleared to a value corresponding to infinity. has been completed, the rendering operations will translate

The time taken to clear down the buffers is often a each primitive into a set of "fragments." (A fragment is the
significant portion of the total time taken to draw a frame, so portion of a primitive which affects a single pixel.) Again. it
it is important to minimize it. should be noted that all operations above the block marked
Background: Parallelism in Graphics Processing 35 "Rasterization" would be performed by a host processor. or

Due to the large number of at least partially independent possibly by a "geometry engine" (i.e. a dedicated processor
operations which are performed in rendering, many propos- which performs rapid matrix multiplies and related data
als have been made to use some form of parallel architecture manipulations), but would normally not be performed by a
for graphics (and particularly for rendering). See. for dedicated rendering processor such as that of the presently
example, the special issue of Computer Graphics on parallel 4<l preferred embodiment.
rendering (September 1994). Other approaches may be One disadvantage of standards such as OpenGL is that
found in earlier patent filings by the assignee of the present they require that texturing or other processor-intensive
application and its predecessors, e.g. U.S. Pat. No. 5,195. operations be performed on data before pixel elimination
186. and published PCT applications PCT/GB90/00987, tests, e.g. depth testing, is performed. which wastes proces-
PCT/GB90/01209, PCT/GB90/01210, PCT/GB90/01212. 45 sor time by performing costly texturing calculations on
PCT/GB90/01213. PCT/GB90/01214. PCT/GB90/01215. pixels which will be eliminated later in the pipeline. When
and PCf/GB90/01216. the OpenGL specification is not required or when the current
Background: Pipelined Processing Generally OpenGI state vector cannot eliminate pixels as a result of the

There are several general approaches to parallel process- alpha test, however. it would be much more efficient to
ing. One of the basic approaches to achieving parallelism in 50 eliminate as many pixels as possible before doing these
computer processing is a technique known as pipelining. In calculations. The present awlication discloses a method and
this technique the individual processors are. in effect. con- device for reordering the processing steps in the rendering
nected in series in an assembly-line configuration: one pipeline to either accommodate order-specific specifications
processor performs a first set of operations on one chunk of such as OpenGL. or to provide for an optimized throughput
data. and then passes that chunk along to another processor 55 by only performing processor-intensive operations on pixels
which performs a second set of operations, while at the same which will actually be displayed.
time the first processor performs the first set operations Background: Texturing
again on another chunk of data. Such architectures are Texture patterns are commonly used as a way to apply
generally discussed in Kogge. THE ARcHITECIURE OF PIPE- realistic visual detail at the sub-polygon level. See Foley et
LINED COMPUTERS (1981). 60 al .. CoMPUIER GRAPIDCS: PRINCIPLES AND PRACTICE (2.ed.
Background: The OpenGL™ Standard 1990. coer. 1995), especially at pages 741-744; Paul S.

The "OpenGL" standard is a very important software Heckbert. "Fundamentals of Texture Mapping and Image
standard for graphics applications. In any computer system Warping," Thesis submitted to Dept. of EE and Computer
which supports this standard. the operating system(s) and Science. University of California. Berkeley. Jun. 17, 1994;
application software programs can make calls according to 65 Heckbert. "Survey of Computer Graphics." IEEE Computer
the OpenGL standards. without knowing exactly what the Graphics. November 1986. pp.56ff. Since the surfaces are
hardware configuration of the system is. transformed (by the host or geometry engine) to produce a

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
5 6

FIG. 3B shows another sample graphics board
implementation. which differs from the board of FIG. 3A in
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with GUI
accelerator chip.

2D view. the textures will need to be similarly transformed
by a linear transform (normally projective or "affine"). (In
conventional terminology. the coordinates of the object
surface, i.e. the primitive being rendered. are referred to as
an (s.t) coordinate space. and the map of the stored texture
is referred to a (u.v) coordinate space.) The transformation
in the resulting mapping means that a horizontal line in the
(x.y) display space is very likely to correspond to a slanted
line in the (u.v) space of the texture map. and hence many
page breaks will occur, due to the texturing operation, as
rendering walks along a horizontal line of pixels.

FIG. 3D shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with a

10 video coprocessor (which may be used for video capture and
playback functions.

Innovative System and Methods FIG. 4A illustrates the definition of the dominant side and
the subordinate sides of a triangle.

FIG. 4B illustrates the sequence of rendering an Anti
aliased Line primitive.

FIG. SA is a detailed view of the router unit of the
presently preferred embodiment.

The preferred embodiment discloses a pipelined graphics
processor in which the sequence can be dynamically recon- 15

figured (e.g. between primitives) in a rendering sequence.
The pipeline sequence can be configured for compliance
with specifications such as OpenGL. but may also be opti
mized by reconfiguring the pipeline sequence to eliminate
unnecessary processing. In a preferred embodiment. pixel
elimination sequences such as depth and stencil tests are
performed before texturing calculations are performed. so
that unneeded pixel data is discarded before said texturing
calculations are performed.

FIG. SB is a detailed view of the data path through the
20 router unit of the presently preferred embodiment when

operating in a first mode.

25 It is noted that the texturing operations become more
computation-intense. early elimination of unneeded pixels
becomes even more valuable. For example. Phong shading
and bump mapping both require many more operations than
more common shading and texture mapping techniques, thus
making the system of the present application even more 30

valuable in real-time rendering systems.
An overhead cost is that the reconfigurable portion of the

pipeline must be flushed at each reconfiguration--but since
reconfiguration is normally done only on a per-primitive

35
basis. or even less frequently. this is a relatively small cost.

BRIEF DESCR1PTION OF THE DRAWING

The disclosed inventions will be described with reference
to the accompanying drawings. which show important 40
sample embodiments of the invention and which are incor
porated in the specification hereof by reference, wherein:

FIG. lA, described above, is an overview of key elements
and processes in a 3D graphics computer system.

FIG. lB is an expanded versionofFIG.lA. and shows the 45

flow of operations defined by the OpenGL standard.
FIG. 2A is an overview of the graphics rendering chip of

the preferred embodiment of the parent case.
FIG. 2B is an overview of the graphics rendering chip of

the presently preferred embodiment. 50

FIG. 2C is a more schematic view of the sequence of
operations performed in the graphics rendering chip of FIG.
2B. when operating in a first mode.

FIG. 2D is a different view of the graphics rendering chip
55

of FIG. 2B. showing the connections of a readback bus
which provides a diagnostic pathway.

FIG. 2E is yet another view of the graphics rendering chip
of FIG. 2B, showing how the functions of the core pipeline
of FIG. 2C are combined with various external interface 60
functions.

FIG. SC is a detailed view of the data path through the
router unit of the presently preferred embodiment when
operating in a second mode.

DErAILED DESCRIPITON OF THE
PREFERRED EM:BODIMENTS

The numerous innovative teachings of the present appli
cation will be described with particular reference to the
presently preferred embodiment (by way of example. and
not of limitation). The presently preferred embodiment is a
GLINT™ 400TX™ 3D rendering chip. The Hardware Ref
erence Manual and Programmer's Reference Manual for this
chip describe further details of this sample embodiment.
Both are available, as of the effective filing date of this
application, from 3Dlabs Inc. Ltd. 181 Metro Drive. Suite
520. San Jose Calif. 95110.

Definitions

The following definitions may help in understanding the
exact meaning of terms used in the text of this application:
application: a computer program which uses graphics ani

mation.
depth (Z) buffer: A memory buffer containing the depth

component of a pixel. Used to, for example, eliminate
hidden surfaces.

blt double-buffering: A technique for achieving smooth
animation. by rendering only to an undisplayed back
buffer. and then copying the back buffer to the front once
drawing is complete.

Frame Count Planes: Used to allow higher animation rates by
enabling DRAM local buffer pixel data, such as depth (Z),
to be cleared down quickly.

frame buffer: An area of memory containing the displayable
color buffers (front, back, left, right, overlay. underlay).
This memory is typically separate from the local buffer.

local buffer: An area of memory which may be used to store
non-displayable pixel information: depth(Z). stencil.
FrameCount and GID planes. This memory is typically
separate from the framebuffer.

FIG. 2F is yet another view of the graphics rendering chip
of FIG. 2B. showing how the details of FIFO depth and
lookahead are implemented, in the presently preferred
embodiment.

pixel: Picture element. A pixel comprises the bits in all the
buffers (whether stored in the local buffer or framebu1fer).
corresponding to a particular location in the framebuffer.

65 stencil buffer: A buffer used to store information about a
FIG. 3A shows a sample graphics board which incorpo

rates the chip of FIG. 2B.
pixel which controls how subsequent stencilled pixels at
the same location may be combined with the current value

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
7

in the framebuffer. Typically used to mask complex
two-dimensional shapes.

Preferred Chip Embodiment-Overview

8
message is modified and passed on. The temptation is not to
pass the message on when the test fails (because the pixel is
not going to be updated), but other units downstream need
to keep their local DDA units in step.

(In the present application, the messages are being
described in general terms so as not to be bogged down in
detail at this stage. The details of what a 'new fragment'
message actually specifies (i.e. coordinate. color
information) is left till later. In general, the term "pixel" is

The GLINT™ high performance graphics processors 5

combine workstation class 3D graphics acceleration, and
state-of-the-art 2D performance in a single chip. All 3D
rendering operations are accelerated by GLINT, including
Gouraud shading. texture mapping, depth buffering, anti
aliasing. and alpha blending. 10

used to describe the picture element on the screen or in
memory. The term "fragment" is used to describe the part of
a polygon or other primitive which projects onto a pixel.
Note that a fragment may only cover a part of a pixel.) When
the Texture Read Unit (if enabled) gets a 'new fragment'
message. it will calculate the texture map addresses. and will

The scalable memory architecture of GLINT makes it
ideal for a wide range of graphics products. from PC boards
to high-end workstation accelerators.

There will be several of the GLINT family of graphics
processors: the GLINT 300SX™ is the embodiment of the
parent case, and the GLINT 400TX™ is a presently pre
ferred embodiment which is which is described herein in
great detail. The two devices are generally compatible, with
the 40<YIX adding local texture storage and texel address
generation for all texture modes.

15 accordingly provide 1. 2, 4 or 8 texels to the next unit
together with the appropriate number of interpolation coef
ficients.

FlG. 2B is an overview of the graphics rendering chip of
the presently preferred embodiment (i.e. the GLINT
400'J'XTM).

Each unit and the message passing are conceptually
running asynchronous to all the others. However, in the

20 presently preferred embodiment there is considerable syn
chrony because of the common clock.

How does the host process send messages? The message
data field is the 32 bit data written by the host, and the
message tag is the bottom 9 bits of the address (excluding

General Concept
25 the byte resolution address lines). Writing to a specific

address causes the message type associated with that address
to be inserted into the message queue. Alternatively. the
on-chip DMA controller may fetch the messages from the

The overall architecture of the GLINT chip is best viewed
using the software paradigm of a message passing system. In
this system all the processing blocks are connected in a long
pipeline with communication with the adjacent blocks being
done through message passing. Between each block there is 30
a small amount of buffering, the size being specific to the
local communications requirements and speed of the two
blocks.

host's memory.
The message throughput, in the presently preferred

embodiment, is 50M messages per second and this gives a
fragment throughput of up to 50M per second, depending on
what is being rendered. Of course, this rate will predictably
be further increased over time, with advances in process The message rate is variable and depends on the rendering

mode. The messages do not propagate through the system at
a fixed rate typical of a more traditional pipeline system. If
the receiving block can not accept a message. because its
input buffer is full, then the sending block stalls until space

35 technology and clock rates.
Linkage

is available.
The message structure is fundamental to the whole system

The block diagram of FlG. 2A shows how the units are
connected together in the GLINT 300SX embodiment, and
the block diagram of FlG. 2B shows how the units are

40 connected together in the presently preferred embodiment.
as the messages are used to control, synchronize and inform
each block about the processing it is to undertake. Each
message has two fields-a 32 bit data field and a 9 bit tag
field. (This is the minimum width guaranteed, but some local
block to block connections may be wider to accommodate

45
more data) The data field will hold color information,
coordinate information, local state information. etc. The tag
field is used by each block to identify the message type so
it knows how to act on it.

Each block. on receiving a message, can do one of several
50

things:
Not recognize the message so it just passes it on to the

next block.
Recognize it as updating some local state (to the block) so

the local state is updated and the message terminated. 55
i.e. not passed on to the next block.

Recognize it as a processing action, and if appropriate to
the unit, the processing work specific to the unit is
done. This may entail sending out new messages such
as Color and/or modifying the initial message before 60

sending it on. Any new messages are injected into the
message stream before the initial message is forwarded
on. Some examples will clarify this.

Some general points are:
The following functionality is present in the 400IX, but

missing from the 300SX: The Texture Address (TAddr)
and Texture Read (TRd) Units are missing. Also, the
router and multiplexer are missing from this section, so
the unit ordering is Scissor/Stipple, Color DDA, Tex-
ture Fog Color, Alpha Test, LB Rd, etc.

In the embodiment of FlG. 2B, the order of the units can
be configured in two ways. The most general order
(Router, Color DDA, Texture Unit, Alpha Test, LB Rd,
GIDfZJStencil, LB Wr, Multiplexer) and will work in
all modes of OpenGL. However, when the alpha test is
disabled it is much better to do the Graphics ID. depth
and stencil tests before the texture operations rather
than after. This is because the texture operations have
a high processing cost and this should not be spent on
fragments which are later rejected because of window,
depth or stencil tests.

The loop back to the host at the bottom provides a simple
synchronization mechanism. The host can insert a Sync
command and when all the preceding rendering has
finished the sync command will reach the bottom host
interface which will notify the host the sync event has
occurred. When the Depth Block receives a message 'new

fragment', it will calculate the corresponding depth and do
the depth test. If the test passes then the 'new fragment'
message is passed to the next unit. If the test fails then the

65 Benefits
The very modular nature of this architecture gives great

benefits. Each unit lives in isolation from all the others and

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
9

has a very well defined set of input and output messages.
This allows the internal structure of a unit (or group of units)
to be changed to make algorithmic/speed/gate count trade
otis.

The isolation and well defined logical and behavioral 5

interface to each unit allows much better testing and veri
fication of the correctness of a unit.

The message passing paradigm is easy to simulate with
software, and the hardware design is nicely partitioned. The
architecture is self synchronizing for mode or primitive 10

changes.
The host can mimic any block in the chain by inserting

messages which that block would normally generate. These
message would pass through the earlier blocks to the mim
icked block unchanged and from then onwards to the rest of 15
the blocks which cannot tell the message did not originate
from the expected block. This allows for an easy work
around mechanism to correct any flaws in the chip. It also
allows other rasterization paradigms to be implemented
outside of the chip, while still using the chip for the low level 20

pixel operations.
"A Day in the Life of a Triangle"

Before we get too detailed in what each unit does it is
worth while looking in general terms at how a primitive (e.g.
triangle) passes through the pipeline, what messages are 25

generated, and what happens in each unit. Some simplifi
cations have been made in the description to avoid detail
which would otherwise complicate what is really a very
simple process. The primitive we are going to look at is the
familiar Gouraud shaded Z buffered triangle, with dithering. 30

It is assumed any other state (i.e. depth compare mode) has
been set up, but (for simplicity) such other states will be
mentioned as they become relevant.
The application generates the triangle vertex information

and makes the necessary OpenGL calls to draw it. 35

The OpenGL server/library gets the vertex information.
transforms, clips and lights it. It calculates the initial
values and derivatives for the values to interpolate (X/eft'
Xrighr red, green. blue and depth) for unit change in dx
and dxdy lefr All these values are in fixed point integer and 40

have unique message tags. Some of the values (the depth
derivatives) have more than 32 bits to cope with the
dynamic range and resolution so are sent in two halves
Finally. once the derivatives, start and end values have
been sent to GLINT the 'render triangle' message is sent 45

On GLINT: The derivative. start and end parameter mes
sages are received and filter down the message stream to
the appropriate blocks. The depth parameters and deriva
tives to the Depth Unit; the RGB parameters and deriva
tive to the Color DDA Unit; the edge values and deriva- 50

tives to the Rasterizer Unit.
The 'render triangle' message is received by the rasterizer

unit and all subsequent messages (from the host) are
blocked until the triangle has been rasterized (but not
necessarily written to the frame store). A 'prepare to 55

render' message is passed on so any other blocks can
prepare themselves.

10
message stream. The two groups are distinguished by a
single bit in the message tag. The step messages (in either
form) are always passed throughout the length of the
message stream. and are used by all the DDA units to keep
their interpolation values in step. The step message effec
tively identifies the fragment and any other messages
pertaining to this fragment will always precede the step
message in the message stream.

The Scissor and Stipple Unit. This unit does 4 tests on the
fragment (as embodied by the active step message). The
screen scissor test takes the coordinates associated with
the step message, converts them to be screen relative (if
necessary) and compares them against the screen bound
aries. The other three tests (user scissor. line stipple and
area stipple) are disabled for this example. If the enabled
tests pass then the active step is forwarded onto the next
unit, otherwise it is changed into a passive step and then
forwarded.

The Color DDA unit responds to an active step message by
generating a Color message and sending this onto the next
unit. The active step message is then forwarded to the next
unit. The Color message holds. in the data field. the
current RGBA value from the DDA. If the step message
is passive then no Color message is generated After the
Color message is sent (or would have been sent) the step
message is acted on to increment the DDA in the correct
direction, ready for the next pixel.

Texturing. Fog and Alpha Tests Units are disabled so the
messages just pass through these blocks.

In general terms the Local Buffer Read Unit reads the
Graphic ID. Stencil and Depth information from the Local
Buffer and passes it onto the next unit. More specifically
it does:
1. If the step message is passive then no further action

occurs.
2. On an active step message it calculates the linear

address in the local buffer of the required data. This is
done using the (X, Y) position recorded in the step
message and locally stored information on the 'screen
width' and window base address. Separate read and
write addresses are calculated.

3. The addresses are passed to the Local Buffer Interface
Unit and the identified local buffer location read. The
write address is held for use later.

4. Sometime later the local buffer data is returned and is
formatted into a consistent internal format and inserted
into a 'Local Buffer Data' message and passed on to the
next unit.
The message data field is made wider to accommodate

the maximum Local Buffer width of 52 bits (32
depth, 8 stencil. 4 graphic ID, 8 frame count) and this
extra width just extends to the Local Buffer Write
block.

The actual data read from the local buffer can be in
several formats to allow narrower width memories to
be used in cost sensitive systems. The narrower data
is formatted into a consistent internal format in this
block.

The Graphic ID. Stencil and Depth Unit just passes the
The Rasterizer Unit walks the left and right edges of the

triangle and fills in the spans between. As the walk
progresses messages are send to indicate the direction of
the next step: StepX or StepYDomEdge. The data field
holds the current (x. y) coordinate. One message is sent
per pixel within the triangle boundary. The step messages
are duplicated into two groups: an active group and a
passive group. The messages always start off in the active
group but may be changed to the passive group if this
pixel fails one of the tests (e.g. depth) on its path down the

60 Color message through and stores the LBData message
until the step message arrives. A passive step message
would just pass straight through. When the active step
message is received the internal Graphic ID. stencil and
depth values are compared with the ones in the LBData

65 message as specified by this unit's mode information. If
the enabled tests pass then the new local buffer data is sent
in the LBWriteData message to the next unit and the

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
11

active step message forwarded. If any of the enabled tests
fail then an LBCancelWrite message is sent followed by
the equivalent passive step message. The depth DDA is
stepped to update the local depth value.

The Local Buffer Write Unit performs any writes which are 5
necessary. The LBWriteData message has its data format
ted into the external local buffer format and this is posted
to the Local Buffer Interface Unit to be written into the
memory (the write address is already waiting in the Local
Buffer Interface Unit). The LBWriteCancel message just

10 informs the Local Buffer Interface Unit that the pending
write address is no longer needed and can be discarded.
The step message is just passed through.

In general terms the Framebuffer Read Unit reads the color
information from the framebuffer and passes it onto the
next unit. More specifically it does: 15

1. H the step message is passive then no further action
occurs.

12
remember that at any instant in time there are many frag
ments flowing down the message stream and the further
down they reach the more processing has occurred.
Interfacing Between Blocks FlG. 2B shows the FIFO buff
ering and lookahead connections which are used in the
presently preferred embodiment. The FlFOs are used to
provide an asynchronous interface between blocks. but are
expensive in terms of gate count. Note that most of these
FlFOs are only one stage deep (except where indicated).
which reduces their area. To maintain performance. looka
head connections are used to accelerate the "startup" of the
pipeline. For example. when the Local-Buffer-Read block
issues a data request. the Texture/Fog/Color blocks also
receive this, and begin to transfer data accordingly. Nor
mally a single-entry deep FIFO cannot be read and written
in the same cycle. as the writing side doesn't know that the
FlFO is going to be read in that cycle (and hence become
eligible to be written). The look-ahead feature give the
writing side this insight. so that single-cycle transfer can be 2. On an active step message it calculates the linear

address in the framebuffer of the required data. This is
done using the (X. Y) position recorded in the step
message and locally stored information on the 'screen
width' and window base address. Separate read and
write addresses are calculated.

20 achieved. This accelerates the throughput of the pipeline.

Programming Model

The following text describes the programming model for
GLINT.
GLINT as a Register file

3. The addresses are passed to the Framebuffer Interface 25
Unit and the identified framebuffer location read. The
write address is held for use later. The simplest way to view the interface to GLINT is as a

flat block of memory-mapped registers (i.e. a register file).
This register file appears as part of Region 0 of the PCI

30
address map for GLINT. See the GLINT Hardware Refer
ence Manual for details of this address map.

4. Sometime later the color data is returned and inserted
into a 'Frame Buffer Data' message and passed on to
the next unit.
The actual data read from the framestore can be in

several formats to allow narrower width memories to
be used in cost sensitive systems. The formatting of
the data is deferred until the Alpha Blend Unit as it
is the only unit which needs to match it up with the
internal formats. In this example no alpha blending
or logical operations are taking place, so reads are
disabled and hence no read address is sent to the
Framebuffer Interface Unit. The Color and step mes
sages just pass through.

The Alpha Blend Unit is disabled so just passes the messages
through.

The Dither Unit stores the Color message internally until an
active step is received. On receiving this it uses the least
significant bits of the (X, Y) coordinate information to
dither the contents of the Color message. Part of the
dithering process is to convert from the internal color
format into the format of the framebuffer. The new color
is inserted into the Color message and passed on, followed
by the step message.

The Logical Operations are disabled so the Color message is
just converted into the FBWriteData message Gust the tag
changes) and forwarded on to the next unit. The step
message just passes through.

35

40

When a GLINT host software driver is initialized it can
map the register file into its address space. Each register has
an associated address tag. giving its offset from the base of
the register file (since all registers reside on a 64-bit
boundary, the tag offset is measured in multiples of 8 bytes).
The most straightforward way to load a value into a register
is to write the data to its mapped address. In reality the chip
interface comprises a 16 entry deep FIFO. and each write to
a register causes the written value and the register's address
tag to be written as a new entry in the FIFO.

Programming GLINT to draw a primitive consists of
writing initial values to the appropriate registers followed by
a write to a command register. The last write triggers the
start of rendering.

45 GLINT has approximately 200 registers. All registers are
32 bits wide and should be 32-bit addressed. Many registers
are split into bit fields. and it should be noted that bit 0 is the
least significant bit.
Register Types

50 GLINT has three main types of register:

The Framebuffer Write Unit performs any writes which are 55
necessary.

Control Registers
Command Registers
Internal Registers
Control Registers are updated only by the host-the chip

effectively uses them as read-only registers. Examples of
control registers are the Scissor Clip unit min and max
registers. Once initialized by the host, the chip only reads
these registers to determine the scissor clip extents.

The FBWriteData message has its data posted to the
Framebuffer Interface Unit to be written into the
memory (the write address is already waiting in the
Framebuffer Interface Unit).

The step message is just passed through.
The Host Out Unit is mainly concerned with synchroniza

tion with the host so for this example will just consume
any messages which reach this point in the message
stream.
This description has concentrated on what happens as one

fragment flows down the message stream. It is important to

60 Command Registers are those which, when written to.
typically cause the chip to start rendering (some command
registers such as ResetPickResult or Sync do not initiate
rendering). Normally. the host will initialize the appropriate
control registers and then write to a command register to

65 initiate drawing. There are two types of command registers:
begin-draw and continue-draw. Begin-draw commands
cause rendering to start with those values specified by the

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
13

control registers. Continue-draw commands cause drawing
to continue with internal register values as they were when
the previous drawing operation completed. Making use of
continue-draw commands can significantly reduce the
amount of data that has to be loaded into GLINT when
drawing multiple connected objects such as polylines.
Examples of command registers include the Render and
ContinueNewLine registers.

For convenience this application will usually refer to
"sending a Render command to GLINT" rather than saying
(more precisely) "the Render Command register is written
to. which initiates drawing".

Internal Registers are not accessible to host software.
They are used internally by the chip to keep track of
changing values. Some control registers have corresponding
internal registers. When a begindraw command is sent and
before rendering starts. the internal registers are updated
with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not
happen and drawing continues with the current values in the
internal registers. For example. if a line is being drawn then
the StartXDom and StartY control registers specify the (x. y)
coordinates of the first point in the line. When a begin-draw
command is sent these values are copied into internal
registers. As the line drawing progresses these internal
registers are updated to contain the (x. y) coordinates of the
pixel being drawn. When drawing has completed the internal
registers contain the (x. y) coordinates of the next point that
would have been drawn. If a continue-draw command is
now given these final (x. y) internal values are not modified
and further drawing uses these values. If a begin-draw
command had been used the internal registers would have
been reloaded from the StartXDom and StartY registers.

For the most part internal registers can be ignored. It is
helpful to appreciate that they exist in order to understand
the continue-draw commands.
GLINT J/0 Interface

There are a number of ways of loading GLINT registers
for a given context:

The host writes a value to the mapped address of the
register

The host writes address-tag/data pairs into a host memory
buffer and uses the on-chip DMA to transfer this data
to the FIFO.

The host can perform a Block Command Transfer by
writing address and data values to the FIFO interface
registers.

In all cases where the host writes data values directly to
the chip (via the register file) it has to worry about FIFO
overtlow. The InFIFOSpace register indicates how many
free entries remain in the FIFO. Before writing to any
register the host must ensure that there is enough space left
in the FIFO. The values in this register can be read at any
time. When using DMA. the DMA controller will automati
cally ensure that there is room in the FIFO before it performs
further transfers. Thus a buffer of any size can be passed to
the DMA controller.

FIFO Control
The description above considered the GLINT interface to

be a register file. More precisely. when a data value is
written to a register this value and the address tag for that
register are combined and put into the FIFO as a new entry.
The actual register is not updated until GLINT processes this
entry. In the case where GLINT is busy performing a time
consuming operation (e.g. drawing a large texture mapped
polygon). and not draining the FIFO very quickly. it is
possible for the FIFO to become full. If a write to a register

14
is performed when the FIFO is full no entry is put into the
FIFO and that write is effectively lost.

The input FIFO is 16 entries deep and each entry consists
of a tag/data pair. The InFIFOSpace register can be read to

5 determine how many entries are free. The value returned by
this register will never be greater than 16.

To check the status of the FIFO before every write is very
inefficient. so it is preferably checked before loading the data
for each rectangle. Since the FIFO is 16 entries deep. a

10 further optimization is to wait for all 16 entries to be free
after every second rectangle. Further optimizations can be
made by moving dXDom. dXSub and dY outside the loop
(as they are constant for each rectangle) and doing the FIFO
wait after every third rectangle.

15 The InFIFOSpace FIFO control register contains a count
of the number of entries currently free in the FIFO. The chip
increments this register for each entry it removes from the
FIFO and decrements it every time the host puts an entry in
the FIFO.

20 The DMA Interface
Loading registers directly via the FIFO is often an inef

ficient way to download data to GLINT. Given that the FIFO
can accommodate only a small number of entries, GLINT
has to be frequently interrogated to determine how much

25 space is left. Also, consider the situation where a given API
function requires a large amount of data to be sent to GLINT.
If the FIFO is written directly then a return from this
function is not possible until almost all the data has been
consumed by GLINT. This may take some time depending

30 on the types of primitives being drawn.
To avoid these problems GLINT provides an on-chip

DMA controller which can be used to load data from
arbitrary sized (<64K 32-bit words) host buffers into the
FIFO. In its simplest form the host software has to prepare

35 a host buffer containing register address tag descriptions and
data values. It then writes the base address of this buffer to

the DMAAddress register and the count of the number of
words to transfer to the DMACount register. Writing to the
DMACount register starts the DMA transfer and the host can

40 now perform other work. In general, if the complete set of
rendering commands required by a given call to a driver
function can be loaded into a single DMA buffer then the
driver function can return. Meanwhile. in parallel. GLINT is
reading data from the host buffer and loading it into its FIFO.

45 FIFO overtlow never occurs since the DMA controller
automatically waits until there is room in the FIFO before
doing any transfers.

The only restriction on the use of DMA control registers
is that before attempting to reload the DMACount register

50 the host software must wait until previous DMA has com
pleted. It is valid to load the DMAAddress register while the
previous DMA is in progress since the address is latched
internally at the start of the DMA transfer.

Using DMA leaves the host free to return to the
55 application. while in parallel. GLINT is performing the

DMA and drawing. This can increase performance signifi
cantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g.
drawing the same object across multiple clipping

60 rectangles). Since the GLINT DMA only reads the buffer
data. it can be downloaded many times simply by restarting
the DMA. This can be very beneficial if composing the
buffer data is a time consuming task.

The host can use this hardware capability in various ways.
65 For example, a further optional optimization is to use a

double buffered mechanism with two DMA buffers. This
allows the second buffer to be filled before waiting for the

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
15 16

previous DMA to complete. thus further improving the groups and within each group there are up to 16 tags. The
parallelism between host and GLINT processing. Thus. this low-order 4 bits of a tag give its offset within the group. The
optimization is dependent on the allocation of the host high-order 5 bits give the major group number.
memory. If there is only one DMA host buffer then either it The following Register Table lists the individual registers
is being filled or it is being emptied-it cannot be filled and 5 with their Major Group and Offset in the presently preferred
emptied at the same time. since there is no way for the host embodiment:
and DMA to interact once the DMA transfer has started. The Register Table
host is at liberty to allocate as many DMA buffers as it The following table lists registers by group. giving their
wants; two is the minimum to do double buffering. but tag values and indicating their type. The register groups may
allocating many small buffers is generally better. as it gives 10 be used to improve data transfer rates to GLINT when using
the benefits of double buffering together with low latency DMA.
time, so GLINT is not idle while large buffer is being filled The following types of register are distinguished:
up. However. use of many small buffers is of course more
complicated

In general the DMA buffer format consists of a 32-bit 15 Major Off-

address tag description word followed by one or more data Group set

words. The DMA buffer consists of one or more sets of these Unit Register (hex) (hex) Type

formats. The following paragraphs describe the different Rasterizer StartXDom 00 0 Con1rol
types of tag description words that can be used. dXDom 00 1 Con1rol

20
StartXSub 00 2 Con1rol

DMA Tag Description Format dXSub 00 3 Conttol

There are 3 different tag addressing modes for DMA: StartY 00 4 Con1rol
dY 00 5 Con1rol

hold. increment and indexed. The different DMA modes are Couot 00 6 Con1rol
provided to reduce the amount of data which needs to be Render 00 7 Command
transferred. hence making better use of the available DMA ContinueNewLine 00 8 Command

bandwidth. Each of these is described in the following 25 ContinueNewDom 00 9 Command

sections. ContinueNewSub 00 A Command

Hold Format Continue 00 B Command
FlushSpan 00 c Command

In this format the 32-bit tag description contains a tag BitMaskPattem 00 D Mixed
value and a count specifying the number of data words Rasterizer Poinffable[G-3] 01 G-3 Con1rol

following in the buffer. The DMA controller writes each of 30 RasterizerMode 01 4 Con1rol

the data words to the same address tag. For example. this is Scissor ScissorMode 03 0 Con1rol

useful for image download where pixel data is continuously Stipple
ScissorMinXY 03 1 Con1rol

written to the Color register. The bottom 9 bits specify the ScissorMaxXY 03 2 Con1rol
register to which the data should be written; the high-order ScreenSize 03 3 Con1rol

16 bits specify the number of data words (minus 1) which 35 AreaStipp!eMode 03 4 Con1rol

follow in the buffer and which should be written to the LineStippleMode 03 5 Con1rol

address tag (note that the 2 -bit mode field for this format is LoadLineStipple 03 6 Con1rol
Couoters

zero so a given tag value can simply be loaded into the low UpdateLineStipple 03 7 Command
order 16 bits). Couoters

A special case of this format is where the top 16 bits are 40
SaveLineStipple 03 8 Command

zero indicating that a single data value follows the tag (i.e. State

the 32-bit tag description is simply the address tag value WmdowOrigin 03 9 Con1rol

itself). This allows simple DMA buffers to be constructed Scissor AreaStipplePat- 04 0-F Conttol
Stipple tern(G-31] 05 0-F

which consist of tag/data pairs. Texture Texe10 oc 0 Con1rol
Increment Format Color/Fog

This format is similar to the hold format except that as 45 Texell oc 1 Con1rol

each data value is loaded the address tag is incremented (the Texel2 oc 2 Con1rol
Texe13 oc 3 Con1rol

value in the DMA buffer is not changed; GLINT updates an Texe14 oc 4 Con1rol
internal copy). Thus. this mode allows contiguous GLINT Texel5 oc 5 Conttol
registers to be loaded by specifying a single 32-bit tag value Texel6 00 6 Con1rol

followed by a data word for each register. The low-order 9 50 Texel7 oc 7 Con1rol

bits specify the address tag of the first register to be loaded. InterpO oc 8 Con1rol

The 2 bit mode field is set to 1 and the high-order 16 bits are Interp1 oc 9 Con1rol
Interp2 oc A Con1rol

set to the count (minus 1) of the number of registers to Interp3 oc B Con1rol
update. To enable use of this format. the GLINT register file Interp4 oc c Con1rol

has been organized so that registers which are frequently 55 TextureFilter oc D Con1rol

loaded together have adjacent address tags. For example. the Texture/Fog TextureColor OD 0 Con1rol

32 AreaStipplePattern registers can be loaded as follows: Color Mode
TextureEnvColor OD 1 Con1rol
FogMode OD 2 Con1rol
FogColor OD 3 Con1rol

AreaStipplePattemO, Count=31, Mode=1
60

FStart OD 4 Con1rol
row 0 bits dFdx OD 5 Con1rol
row 1 bits dFdyDom OD 6 Con1rol

ColorDDA RStart OF 0 Con1rol
row 31 bits dRdx OF 1 Control

dRdyDom OF 2 Con1rol
GStart OF 3 Con1rol

Indexed Format 65 dGdx OF 4 Con1rol
GLINT address tags are 9 bit values. For the purposes of dGdyDom OF 5 Con1rol

the Indexed DMA Format they are organized into major

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
17 18

-continued DMA Buffer Addresses

Major Off- Host software must generate the correct DMA buffer
Group set address for the GLINT DMA controller. Normally. this

Unit Register (hex) (hex) Type means that the address passed to GLINT must be the
5

BStart OF 6 Control physical address of the DMA buffer in host memory. The
dBdx OF 7 Control buffer must also reside at contiguous physical addresses as
dBdyDom OF 8 Control accessed by GLINT. On a system which uses virtual
AStart OF 9 Control memory for the address space of a task. some method of
dAdx OF A Control allocating contiguous physical memory. and mapping this dAdyDom OF B Control 10
ColorDDAMode OF c Control into the address space of a task. must be used.
ConstantColor OF D Control If the virtual memory buffer maps to non-contiguous
Color OF E Mixed physical memory. then the buffer must be divided into sets Alpha Test AlphaTestMode 10 0 Control
AntialiasMode 10 1 Control of contiguous physical memory pages and each of these sets

Alpha Blend AlphaBiendMode 10 2 Control 15 transferred separately. In such a situation the whole DMA
Dither Dither Mode 3 Control buffer cannot be transferred in one go; the host software
Logical Ops FBSoftwareWrite 10 4 Control must wait for each set to be transferred. Often the best way Mask

LogicalOpMode 10 5 Control to handle these fragmented transfers is via an interrupt
FBWriteData 10 6 Control handler.

LB Read LBReadMode 11 0 Control
LBReadFormat 11 1 Control 20

LBSoUICeOffset 11 2 Control
DMA Interrupts

LBStencil 11 5 Output GLINT provides interrupt support. as an alternative
LBDepth 11 6 Output
LBWmdowBase 11 7 Control means of determining when a DMA transfer is complete. If

LB Write LBWriteMode 11 8 Control enabled. the interrupt is generated whenever the DMACount
LBWriteFormat 11 9 Control 25 register changes from having a non-zero to having a zero

GID/Stencill Wmdow 13 0 Control value. Since the DMACount register is decremented every
Depth

StencilMode 13 1 Control time a data item is transferred from the DMA buffer this
Stenci!Data 13 2 Control happens when the last data item is transferred from the DMA
Stencil 13 3 Mixed buffer.
DepthMode 13 4 Control 30 To enable the DMA interrupt. the DMAinterruptEnable Depth 13 5 Mixed
ZStartU 13 6 Control bit must be set in the IntEnable register. The interrupt
ZStartL 13 7 Control handler should check the DMAFlag bit in the IntFlags
dZdxU 13 8 Control register to determine that a DMA interrupt has actually
dZdxL 13 9 Control
dZdyDomU 13 A Control 35

occurred. To clear the interrupt a word should be written to
dZdyDomL 13 B Control the IntFiags register with the DMAFlag bit set to one.
FastClearDepth 13 c Control This scheme frees the processor for other work while

FB Read FBReadMode 15 0 Control
FBSourceOffset 15 1 Control DMA is being completed. Since the overhead of handling an
FBPixeiOffset 15 2 Control interrupt is often quite high for the host processor, the
FBColor 15 3 Output scheme should be tuned to allow a period of polling before
FBWmdowBase 15 6 Control 40

FB Write FBWriteMode 15 7 Control
sleeping on the interrupt

FBHardwareWrite 15 8 Control
Mask Output FIFO and Graphics Processor FIFO
FBBiockColor 15 9 Control Interface

Host Out FilterMode 18 0 Control
StatisticMode 18 1 Control 45 To read data back from GLINT an output FIFO is pro-
MinRegion 18 2 Control vided. Each entry in this FIFO is 32-bits wide and it can hold
MaxRegion 18 3 Control

tag or data values. Thus its format is unlike the input FIFO ResetPickResult 18 4 Command
MinHitRegion 18 5 Command whose entries are always tag/data pairs (we can think of each
MaxHitRegion 18 6 Command entry in the input FIFO as being 41 bits wide: 9 bits for the
PickResult 18 7 Command 50 tag and 32 bits for the data). The type of data written by
Sync 18 8 Command

GLINT to the output FIFO is controlled by the FilterMode
register. This register allows filtering of output data in

This format allows up to 16 registers within a group to be various categories including the following:
loaded while still only specifying a single address tag

55
Depth: output in this category results from an image

description word. upload of the Depth buffer.

If the Mode of the address tag description word is set to Stencil: output in this category results from an image
indexed mode. then the high-order 16 bits are used as a mask upload of the Stencil buffer.
to indicate which registers within the group are to be used. Color: output in this category results from an image
The bottom 4 bits of the address tag description word are 60 upload of the framebuffer.
unused. The group is specified by bits 4 to 8. Each bit in the Synchronization: synchronization data is sent in response
mask is used to represent a unique tag within the group. If to a Sync command.
a bit is set then the corresponding register will be loaded. The data for the Filter Mode register consists of 2 bits per
The number of bits set in the mask determines the number category. If the least significant of these two bits is set (Ox1)
of data words that should be following the tag description 65 then output of the register tag for that category is enabled;
word in the DMA buffer. The data is stored in order of if the most significant bit is set (0><2) then output of the data
increasing corresponding address tag. for that category is enabled. Both tag and data output can be

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
19

enabled at the same time. In this case the tag is written first
to the FIFO followed by the data.

For example. to perform an image upload from the
framebuffer. the FilterMode register should have data output
enabled for the Color category. Then. the rectangular area to 5

be uploaded should be described to the rasterizer. Each pixel
that is read from the framebuffer will then be placed into the
output FIFO. If the output FIFO becomes full. then GLINT
will block internally until space becomes available. It is the
programmer's responsibility to read all data from the output 10

FIFO. For example. it is important to know how many pixels
should result from an image upload and to read exactly this
many from the FIFO.

20
Other Interrupts

GLINT also provides interrupt facilities for the following:
Sync: If a Sync command is sent and the Sync interrupt has

been enabled then once all rendering has been completed,
a data value is entered into the Host Out FIFO. and a Sync
interrupt is generated when this value reaches the output
end of the FIFO. Synchronization is described further in
the next section.

External: this provides the capability for external hardware
on a GLINT board (such as an external video timing
generator) to generate interrupts to the host processor.

Error: if enabled the error interrupt will occur when GLINT
detects certain error conditions . such as an attempt to
write to a full FIFO.

Vertical Retrace: if enabled a vertical retrace interrupt is
generated at the start of the video blank period.
Each of these are enabled and cleared in a similar way to

the DMA interrupt.
Synchronization

To read data from the output FIFO the OutputFIFOWords
register should first be read to determine the number of 15
entries in the FIFO (reading from the FIFO when it is empty
returns undefined data). Then this many 32-bit data items are
read from the FIFO. This procedure is repeated until all the
expected data or tag items have been read. The address of the There are three main cases where the host must synchro-

20 nize with GLINT: output FIFO is described below.
Note that all expected data must be read back GLINT will

block if the FIFO becomes full. Programmers must be
careful to avoid the deadlock condition that will result if the
host is waiting for space to become free in the input FIFO
while GLINT is waiting for the host to read data from the 25

output FIFO.
Graphics Processor FIFO Interface

GLINT has a sequence of 1Kx32 bit addresses in the PCI
Region 0 address map called the Graphics Processor FIFO

before reading back from registers
before directly accessing the framebuffer or the local

buffer via the bypass mechanism
framebuffer management tasks such as double buffering
Synchronizing with GLINT implies waiting for any pend

ing DMA to complete and waiting for the chip to complete
any processing currently being performed. The following
pseudo-code shows the general scheme:

Interface. To read from the output FIFO any address in this 30 --------------------
range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All
32-bit addresses in this region perform the same function:
the range of addresses is provided for data transfer schemes
which force the use of incrementing addresses.

Writing to a location in this address range provides raw
access to the input FIFO. Again, the first address is normally
chosen. Thus the same address can be used for both input
and output FlFOs. Reading gives access to the output FIFO;

35

writing gives access to the input FIFO. 40

Writing to the input FIFO by this method is different from
writing to the memory mapped register file. Since the
register file has a unique address for each register. writing to
this unique address allows GLINT to determine the register
for which the write is intended This allows a tag/data pair 45

to be constructed and inserted into the input FIFO. When
writing to the raw FIFO address an address tag description
must first be written followed by the associated data. In fact.
the format of the tag descriptions and the data that follows
is identical to that described above for DMA buffers. Instead 50

of using the GLINT DMA it is possible to transfer data to
GLINT by constructing a DMA-style buffer of data and then
copying each item in this buffer to the raw input FIFO
address. Based on the tag descriptions and data written
GLINT constructs tag/data pairs to enter as real FIFO 55
entries. The DMA mechanism can be thought of as an
automatic way of writing to the raw input FIFO address.

Note, that when writing to the raw FIFO address the FIFO
full condition must still be checked by reading the
InFIFOSpace register. However. writing tag descriptions 60

does not cause any entries to be entered into the FIFO: such
a write simply establishes a set of tags to be paired with the
subsequent data. Thus. free space need be ensured only for
actual data items that are written (not the tag values). For
example. in the simplest case where each tag is followed by 65

a single data item. assuming that the FIFO is empty. then 32
writes are possible before checking again for free space.

GLIN'IData data;
II wait fur DMA to complete
while (*DMACOWll != 0) {

poll or wait for interrupt
}
while (*InFIFOSpa::e < 2) {

; II wait for free space in tbe FIFO
}
II enable sync output and send the Sync command
data. Word = 0;
data.FilterMode.Synchronization = Oxl;
FilterMode(data.Word);
Sync(OxO);
/* wait for tbe sync output clala */
do{

while (*OutFIFOWords = 0)
; II poll waiting for data in output

FIFO
} while (*OutputFIFO != Sync_tag);

Initially, we wait for DMA to complete as normal. We
then have to wait for space to become free in the FIFO (since
the DMA controller actually loads the FIFO). We need space
for 2 registers: one to enable generation of an output sync
value, and the Sync command itself. The enable flag can be
set at initialization time. The output value will be generated
only when a Sync command has actually been sent, and
GLINT has then completed all processing.

Rather than polling it is possible to use a Sync interrupt
as mentioned in the previous section. As well as enabling the
interrupt and setting the filter mode, the data sent in the Sync
command must have the most significant bit set in order to
generate the interrupt. The interrupt is generated when the
tag or data reaches the output end of the Host Out FIFO. Use
of the Sync interrupt has to be considered carefully as
GLINT will generally empty the FIFO more quickly than it
takes to set up and handle the interrupt.

Host Framebuffer Bypass
Normally. the host will access the framebuffer indirectly

via commands sent to the GLINT FIFO interface. However.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
21

GLINT does provide the whole framebuffer as part of its
address space so that it can be memory mapped by an
application. Access to the framebuffer via this memory
mapped route is independent of the GLINT FIFO.

22
next. A further set of 3 bits (localbuffer width) in the
LBMemoryControl register defines the number of valid bits
per pixel. A typical localbuffer configuration might be 48

Drivers may choose to use direct access to the framebuffer 5

for algorithms which are not supported by GLINT. The
framebuffer bypass supports big-endian, little-endian and
GIB-endian formats.

bits per pixel but in bypass mode the data for each pixel
starts on a 64-bit boundary. In this case valid pixel data will
be contained in bits 0 to 47. Software must set the LBRead-
Format register to tell GLINT how to interpret these valid
bits.

A driver making use of the framebuffer bypass mecha
nism should synchronize framebuffer accesses made 10

through the FIFO with those made directly through the
memory map. If data is written to the FIFO and then an
access is made to the framebuffer, it is possible that the
framebuffer access will occur before the commands in the
FIFO have been fully processed. This lack of temporal 15
ordering is generally not desirable.

Host software must set the width in pixels of each scanline
of the localbuffer in the LBReadMode FIFO register. The
first 9 bits of this register define 3 partial products which
determine the offset in pixels from one scanline to the next.
As with the framebuffer partial products. these values will
usually be worked out at initialization time and a copy kept
in software. When this register needs to be modified the
software copy is retrieved and any other bits modified before

Framebuffer Dimensions and Depth
At reset time the hardware stores the size of the frame

buffer in the FBMemoryControl register. This register can be
read by software to determine the amount of VRAM on the 20

display adapter. For a given amount of VRAM, software can
configure different screen resolutions and off-screen
memory regions.

writing to the register. If the system is set up so that each
pixel in the framebuffer has a corresponding pixel in the
localbuffer then this width will be the same as that set for the
framebuffer.

The localbuffer is accessible via Regions 1 and 3 of the
PCI address map for GLINT. The localbuffer bypass sup
ports big-endian and little-endian formats. These are
described in a later section.

Register Read Back
Under some operating environments, multiple tasks will

want access to the GLINT chip. Sometimes a server task or
driver will want to arbitrate access to GLINT on behalf of
multiple applications. In these circumstances. the state of the

The framebuffer width must be set up in the FBReadMode
register. The first 9 bits of this register define 3 partial 25

products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked
out at initialization time and a copy kept in software. When
this register needs to be modified the software copy is
retrieved and any other bits modified before writing to the
register.

30 GLINT chip may need to be saved and restored on each
context switch. To facilitate this, the GLINT control regis
ters can be read back. (However. internal and command
registers cannot be read back.)

Once the offset from one scanline to the next has been
established, determining the visible screen width and height
becomes a clipping issue. The visible screen width and
height are set up in the ScreenSize register and enabled by
setting the ScreenScissorEnable bit in the ScissorMode
register.

The framebuffer depth (8, 16 or 32-bit) is controlled by
the FBModeSel register. This register provides a 2 bit field
to control which of the three pixel depths is being used. The
pixel depth can be changed at any time but this should not
be attempted without first synchronizing with GLINT. The
FBModeSel register is not a FIFO register and is updated
immediately it is written. If GLINT is busy performing
rendering operations. changing the pixel depth will corrupt
that rendering.

Normally. the pixel depth is set at initialization time. To
optimize certain 2D rendering operations it may be desirable
to change it at other times. For example. if the pixel depth
is normally 8 (or 16) bits, changing the pixel depth to 32 bits
for the duration of a bitblt can quadruple (or double) the blt
speed, when the bit source and destination edges are aligned
on 32 bit boundaries. Once such a blt sequence has been set
up the host software must wait and synchronize with GLINT
and then reset the pixel depth before continuing with further
rendering. It is not possible to change the pixel depth via the
FIFO, thus explicit synchronization must always be used.

Host Localbuffer Bypass
As with the framebuffer. the localbuffer can be mapped in

and accessed directly. The host should synchronize with
GLINT before making any direct access to the localbuffer.

At reset time the hardware saves the size of the localbuffer
in the LBMemoryControl register (localbuffer visible region
size). In bypass mode the number of bits per pixel is either
32 or 64. This information is also set in the LBMemory
Control register (localbuffer bypass packing). This pixel
packing defines the memory offset between one pixel and the

To perform a context switch the host must first synchro-
35 nize with GLINT. This means waiting for outstanding DMA

to complete. sending a Sync command and waiting for the
sync output data to appear in the output FIFO. After this the
registers can be read back.

To read a GLINT register the host reads the same address
40 which would be used for a write, i.e. the base address of the

register file plus the offset value for the register.
Note that since internal registers cannot be read back care

must be taken when context switching a task which is
making use of continue-draw commands. Continue-draw

45 commands rely on the internal registers maintaining previ
ous state. This state will be destroyed by any rendering work
done by a new task. To prevent this, continue-draw com
mands should be performed via DMA since the context
switch code has to wait for outstanding DMA to complete.

50 Alternatively. continue-draw commands can be performed
in a non-preemptable code segment.

Normally, reading back individual registers should be
avoided. The need to synchronize with the chip can
adversely affect performance. It is usually more appropriate

55 to keep a software copy of the register which is updated
when the actual register is updated.

Byte Swapping
Internally GLINT operates in little-endian mode.

However, GLINT is designed to work with both big- and
60 little-endian host processors. Since the PCIBus specification

defines that byte ordering is preserved regardless of the size
of the transfer operation, GLINT provides facilities to
handle byte swapping. Each of the Configuration Space,
Control Space, Framebuffer Bypass and Localbuffer Bypass

65 memory areas have both big and little endian mappings
available. The mapping to use typically depends on the
endian ordering of the host processor.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
23

The Configuration Space may be set by a resistor in the
board design to be either little endian or big endian.

The Control Space in PCI address region 0. is 128K bytes
in size. and consists of two MK sized spaces. The first MK
provides little endian access to the control space registers; 5
the second 64K provides big endian access to the same
registers.

The framebuffer bypass consists of two PCI address
regions: Region 2 and Region 4. Each is independently
configurable to by the ApertureO and Aperture 1 control

10 registers respectively. to one of three modes: no byte swap.
16-bit swap. full byte swap. Note that the 16 bit mode is
needed for the following reason. If the framebuffer is
configured for 16-bit pixels and the host is big-endian then
simply byte swapping is not enough when a 32-bit access is
made (to write two pixels). In this case. the required effect 15

is that the bytes are swapped within each 16-bit word. but the
two 16-bit halves of the 32-bit word are not swapped. This
preserves the order of the pixels that are written as well as
the byte ordering within each pixel. The 16 bit mode is
referred to as Gffi-endian in the PCI Multimedia Design 20

Guide, version 1.0.
The localbuffer bypass consists of two PCI address

regions: Region 1 and Region 3. Each is independently
configurable to by the ApertureO and Aperture 1 control
registers respectively. to one of two modes: no byte swap. 25

full byte swap.
To save on the size of the address space required for

GLINT. board vendors may choose to turn off access to the
big endian regions (3 and 4) by the use of resistors on the
board. 30

24
The maximum width of the localbuffer is 48 bits. but this

can be reduced by changing the external memory
configuration, albeit at the expense of reducing the func
tionality or dynamic range of one or more of the fields.

The localbuffer memory can be from 16 bits (assuming a
depth buffer is always needed) to 48 bits wide in steps of 4
bits. The four fields supported in the localbuffer. their
allowed lengths and positions are shown in the following
table:

Field

Depth
SteDCil
FrameCount
GID

Lengths

16, 24, 32
0, 4. 8
0, 4, 8
0, 4

Start bit p<>Sitions

0
16, 20, 24, 28, 32
16, 20, 24, 28, 32, 36, 40
16, 20. 24, 28, 32, 36, 40, 44, 48

The order of the fields is as shown with the depth field at
the least significant end and GID field at the most significant
end. The GID is at the most significant end so that various
combinations of the Stencil and FrameCount field widths
can be used on a per window basis without the position of
the GID fields moving. If the GID field is in a different
positions in different windows then the ownership tests
become impossible to do.

The GID, FrameCount, Stencil and Depth fields in the
localbuffer are converted into the internal format by right
justification if they are less than their internal widths, i.e. the
unused bits are the most significant bits and they are set to
0.

The format of the localbuffer is specified in two places:
the LBReadFormat register and the LBWriteFormat register. There is a bit available in the DMAControl control

register to enable byte swapping of DMA data. Thus for
big-endian hosts, this control bit would normally be enabled.
Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will
usually force a given interpretation for true color pixel
values. For example. 32-bit pixels will be interpreted as
either ARGB (alpha at byte 3. red at byte 2. green at byte 1
and blue at byte 0) or ABGR (blue at byte 2 and red at byte

It is still possible to part populate the localbuffer so other
combinations of the field widths are possible (i.e. depth field
width of 0). but this may give problems if texture maps are

35 to be stored in the localbuffer as well.

0). The byte position for red and blue may be important for 40

software which has been written to expect one byte order or
the other, in particular when handling image data stored in
a file.

GLINT provides two registers to specify the byte posi
tions of blue and red internally. In the Alpha Blend Unit the 45

AlphaBlendMode register contains a 1-bit field called Col
orOrder. If this bit is set to zero then the byte ordering is
ABGR; if the bit is set to one then the ordering is ARGB. As
well as setting this bit in the Alpha Blend unit. it must also
be set in the Color Formatting unit In this unit the Dither- 50

Mode register contains a Color Order bit with the same
interpretation. The order applies to all of the true color pixel
formats. regardless of the pixel depth.
Hardware Data Structures

Some of the hardware data structure implementations 55
used in the presently preferred embodiment will now be
described in detail. Of course these examples are provided
merely to illustrate the presently preferred embodiment in
great detail, and do not necessarily delimit any of the
claimed inventions. 60

Localbuffer
The localbuffer holds the per pixel information corre

sponding to each displayed pixel and any texture maps. The
per pixel information held in the localbuffer are Graphic ID
(GID). Depth. Stencil and Frame Count Planes (PCP). The 65

possible formats for each of these fields. and their use are
covered individually in the following sections.

Any non-bypass read or write to the localbuffer always
reads or writes all 48 bits simultaneously.

GID field
The 4 bit GID field is used for pixel ownership tests to

allow per pixel window clipping. Each window using this
facility is assigned one of the GID values, and the visible
pixels in the window have their GID field set to this value.
If the test is enabled the current GID (set to correspond with
the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel
belongs to the window so the localbuffer and framebuffer at
this coordinate may be updated.

Using the GID field for pixel ownership tests is optional
and other methods of achieving the same result are:
clip the primitive to the window's boundary (or rectangular

tiles which make up the window's area) and render only
the visible parts of the primitive

use the scissor test to define the rectangular tiles which make
up the window's visible area and render the primitive
once per tile (This may be limited to only those tiles
which the primitive intersects).
Depth Field
The depth field holds the depth (Z) value associated with

a pixel and can be 16, 24 or 32 bits wide.
Stencil Field
The stencil field holds the stencil value associated with a

pixel and can be 0. 4 or 8 bits wide.
The width of the stencil buffer is also stored in the

StencilMode register and is needed for clamping and mask
ing during the update methods. The stencil compare mask
should be set up to exclude any absent bits from the stencil
compare operation.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
25

FrameCount Field
The Frame Count Field holds the frame count value

associated with a pixel and can be 0. 4 or 8 bits wide. It is
used during animation to support a fast clear mech~nism to
aid the rapid clearing of the depth and/or stencil fields 5

needed at the start of each frame.
In addition to the fast clear mechanism the extent of all

updates to the localbuffer and framebuffer can be recorded
(MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the 10

bounding box of the smallest area to clear. For some
applications this will be significantly smaller than the whole
window or screen. and hence faster.

The fast clear mechanism provides a method where the
cost of clearing the depth and stencil buffers can be amor- 15

tized over a number of clear operations issued by the
application. This works as follows:

The window is divided up into n regions. where n is the
range of the frame counter (16 or 256). Every time the
application issues a clear command the refer.e~ce frame 20

counter is incremented (and allowed to roll over if It exceeds
its maximum value) and the n'h region is cleared only. The
clear updates the depth and/or stencil buffers to the new
values and the frame count buffer with the reference value.
This region is much smaller than the full window and hence 25

takes less time to clear.
When the localbuffer is subsequently read and the frame

count is found to be the same as the reference frame count
(held in the Window register) the localbuffer data is used
directly. However. if the frame count is found to be di11erent 30

from the reference frame count (held in the Window register)
the data which would have been written. if the localbuffer
had been cleared properly. is substituted for the stale data
returned from the read. Any new writes to the localbuffer
will set the frame count to the reference value so the next 35

read on this pixel works normally without the substitution.
The depth data to substitute is held in the FastClearDepth
register and the stencil data to substitute is held in the
StencilData register (along with other stencil information).

The fast clear mechanism does not present a total solution 40

as the user can elect to clear just the stencil planes or just the
depth planes. or both. The situation where the stencil planes
only are 'cleared' using the fast clear method, then some
rendering is done and then the depth planes are 'cleared'
using the fast clear will leave ambiguous pixels in the 45

localbuffer. The driver software will need to catch this
situation. and fall back to using a per pixel write to do the
second clear. Which field(s) the frame count plane refers to
is recorded in the Window register.

When clear data is substituted for real memory data so
(during normal rendering operations) the depth write mask
and stencil write masks are ignored to mimic the OpenGL
operation when a buffer is cleared.

Localbuffer Coordinates

26
GUI systems (such as Windows. Windows Nf and X)

usually have the origin of the coordinate system at the t?P
left corner of the screen but this is not true for all graphics
systems. For instance OpenGL uses the bottom left corner as
its origin. The WindowOrigin bit in the LBRea~o~e
register selects the top left (0) or bottom left (1) as the ong.n.

The actual equations used to calculate the localbuffer
address to read and write are:

Bottom left origin:
Destination address= LBWmdowBase- Y • W +X
Source address =

LBWmdowBase - Y*W + X + LBSourceOffset
Top left origin:

where:

Destination address= LBWmdowBase + Y • W +X
Source address =

LBWindowBase + Y*W + X + LBSowceOffset

x is the pixel's X coordinate.
Y is the pixel's Y coordinate.
LBWindowBase holds the base address in the localbuffer

of the current window.
LBSourceOffset is normally zero except during a copy

operation where data is read from one address and
written to another address. The offset between source
and destination is held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PPO. PPl and
PP2 fields in the LBReadMode register.

These address calculations translate a 2D address into a
linear address.

The Screen width is specified as the sum of selected
partial products so a full multiply operation is not needed.
The partial products are selected by the fields PPO. PPl and
PP2 in the LBReadMode register.

For arbitrary width screens. for instance bitmaps in 'off
screen' memory. the next largest width from the table must
be chosen. The di11erence between the table width and the
bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block.
However. often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Texture Memory
The localbuffer is used to hold textures in the GLlNf

40aiX variant. In the GLlNf 300SX variant the texture
information is supplied by the host.
Framebuffer

The framebuffer is a region of memory where the infor
mation produced during rasterization is written prior to
being displayed. This information is not restricted to color
but can include window control data for LUf management
and double buffering.

The coordinates generated by the rasterizer are 16 bit 2's 55

complement numbers. and so have the range +32767 to
-32768. The rasterizer will produce values in this range. but
any which have a negative coordinate. or exceed the screen
width or height (as programmed into the ScreenSize
register) are discarded.

Coordinates can be defined window relative or screen
relative and this is only relevant when the coordinate gets
converted to an actual physical address in the localbuffer. In
general it is expected that the windowing system will use
absolute coordinates and the graphics system will use rela- 65

tive coordinates (to be independent of where the window
really is).

The framebuffer region can hold up to 32 MBytes and
there are very few restrictions on the format and size of the
individual buffers which make up the video stream. l)'pical

60 buffers include:
True color or color index main planes.
Overlay planes.
Underlay planes.
Window ID planes for LUT and double buffer

management.
Cursor planes.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
27

Any combination of these planes can be supported up to
28

partial products are selected by the fields PPO. PPl and PP2
in the FBReadMode register. This is the same mechanism as
is used to set the width of the localbuffer. but the widths may
be set independently.

a maximum of 32 MBytes. but usually it is the video level
processing which is the limiting factor. The following text
examines the options and choices available from GLINT for
rendering. copying. etc. data to these buffers. 5 For arbitrary screen sizes. for instance when rendering to

To access alternative buffers either the FBPixelOOset
register can be loaded. or the base address of the window
held in the FBWindow-Base register can be redefined. This
is described in more detail below.

'off screen' memory such as bitmaps the next largest width
from the table must be chosen. The difference between the
table width and the bitmap width will be an unused strip of
pixels down the right hand side of the bitmap.

Buffer Organization
Each buffer resides at an address in the framebuffer

memory map. For rendering and copying operations the
actual buffer addresses can be on any pixel boundary.
Display hardware will place some restrictions on this as it
will need to access the multiple buffers in parallel to mix the 15
buffers together depending on their relative priority. opacity
and double buffer selection. For instance. visible buffers
(rather than offscreen bitmaps) will typically need to be on

Note that such bitmaps can be copied to the screen only
10 as a series of scanlines rather than as a rectangular block.

a page boundary.
Consider the following highly configured example with a 20

1280x1024 double buffered system with 32 bit main planes
(RGBA). 8 bit overlay and 4 bits of window control infor
mation (WID).

Combining the WID and overlay planes in the same 32 bit
pixel has the advantage of reducing the amount of data to 25
copy when a window moves. as only two copies are
required-one for the main planes and one for the overlay
and WID planes.

Note the position of the overlay and WID planes. This was
not an arbitrary choice but one imposed by the (presumed) 30
desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conver
sion of the internal color format to the external one stored in
the framebuffer depends on the size and position of the
component. Note that GLINT does not support all possible 35
configurations. For example; if the overlay and WID bits
were swapped, then eight bit color index starting at bit 4
would be required to render to the overlay. but this is not
supported.

Framebuffer Coordinates
Coordinate generation for the framebuffer is similar to

that for the localbuffer. but there are some key differences.

40

As was mentioned before. the coordinates generated by
the rasterizer are 16 bit 2's complement numbers. Coordi
nates can be defined as window relative or screen relative, 45
though this is only relevant when the coordinate gets con
verted to an actual physical address in the framebuffer. The
WindowOrigin bit in the FBReadMode register selects top
left (0) or bottom left (1) as the origin for the framebuffer.

The actual equations used to calculate the framebuffer 50
address to read and write are:

Bottom left origin:

However. often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Color Formats
The contents of the framebuffer can be regarded in two

ways:
As a collection of fields of up to 32 bits with no meaning or

assumed format as far as GLINT is concerned. Bit planes
may be allocated to control cursor. LUT. multi-buffer
visibility or priority functions. In this case GLINT will be
used to set and clear bit planes quickly but not perform
any color processing such as interpolation or dithering.
All the color processing can be disabled so that raw reads
and writes are done and the only operations are write
masking and logical ops. This allows the control planes to
be updated and modified as necessary. Obviously this
technique can also be used for overlay buffers, etc.
providing color processing is not required.

As a collection of one or more color components. All the
processing of color components. except for the final write
mask and logical ops are done using the internal color
format of 8 bits per red, green, blue and alpha color
channels. The final stage before write mask and logical
ops processing converts the internal color format to that
required by the physical configuration of the framebuffer
and video logic. The nomenclature n @m means this
component is n bits wide and starts at bit position min the
framebuffer. The least significant bit position is 0 and a
dash in a column indicates that this component does not
exist for this mode. The ColorOrder is specified by a bit
in the DitherMode register.
Some important points to note:

The alpha channel is always associated with the RGB color
channels rather than being a separate buffer. This allows
it to be moved in parallel and to work correctly in
multi-buffer updates and double buffering. H the frame-
buffer is not configured with an alpha channel (e.g. 24 bit
framebuffer width with 8:8:8:8 RGB format) then some of
the rendering modes whicq use the retained alpha buffer
cannot be used. In these cases the NoAlphaBuffer bit in
the AlphaBlendMode register should be set so that an
alpha value of 255 is substituted. For the RGB modes
where no alpha channel is present (e.g. 3:3:2) then this
substitution is done automatically. Destination address = FBWmdowBase - Y*W + X +

FBPixe!Olfset
Source address= FBWmdowBase - Y*W +X+

FBPixe!Olfset + FBSowceOlfset

55 For the Front and Back modes the data value is replicated
into both buffers.

Top left Origin:
Destination address = FBWmdowBase + Y*W + X +

FBPixe!Olfset
Source address = FBWmdowBase + Y*W + X +

FBPixe!Olfset + FBSowceOffset

These address calculations translate a 2D address into a
linear address. so non power of two framebuffer widths (i.e.
1280) are economical in memory.

The width is specified as the sum of selected partial
products so a full multiply operation is not needed. The

60

65

All writes to the framebuffer try to update all 32 bits
irrespective of the color format This may not matter if the
memory planes don't exist, but if they are being used (as
overlay planes, for example) then the write masks
(FBSoftware WriteMask or FBHardware WriteMask) must
be set up to protect the alternative planes.

When reading the framebuffer RGBA components are scaled
to their internal width of 8 bits. if needed for alpha
blending.
CI values are left justified with the unused bits (if any) set

to zero and are subsequently processed as the red compo-

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
29

nent. The result is replicated into each of the streams G .B
and A giving four copies for CIS and eight copies for CI4.

The 4:4:4:4 Front and Back formats are designed to
support 12 bit double buffering with 4 bit Alpha, in a 32
bit system.

The 3:3:2 Front and Back formats are designed to support
8 bit double buffering in a 16 bit system.

The 1:2: 1 Front and Back formats are designed to support
4 bit double buffering in an 8 bit system.

It is possible to have a color index buffer at other positions
as long as reduced functionality is acceptable. For
example a 4 bit CI buffer at bit position 16 can be
achieved using write masking and 4:4:4:4 Front format
with color interpolation. but dithering is lost.

The format information needs to be stored in two places:
the DitherMode register and the AlphaBlendMode register.

lnlernal Color Channel

Fonnat Name R G B A

Color 0 8:8:8:8 8@0 8@8 8@16 8@24
Order: 1 5:5:5:5 5@0 5@5 5@10 5@15
RGB 2 4:4:4:4 4@0 4@4 4@8 4@12

3 4:4:4:4 4@0 4@8 4®16 4@24
Front 4@4 4@12 4@20 4@28

4 4:4:4:4 4@0 4@8 4@16 4@24
Back 4@4 4@12 4@20 4@28

5 3:3:2 3@0 3@3 2@6
Front 3@8 3@11 2@14

6 3:3:2 3@0 3@3 2@6
Back 3@8 3@11 2@14

7 1:2:1 1@0 2@1 1@3
Front 1@4 2@5 1@7

8 1:2:1 1@0 2@1 1@3
Back 1@4 2@5 1@7

Color 0 8:8:8:8 8@16 8@8 8@0 8@24
Order: 1 5:5:5:5 5@10 5@5 5@0 5@15
BGR 2 4:4:4:4 4@8 4@4 4@0 4@12

3 4:4:4:4 4@16 4@8 4@0 4@24
Front 4@20 4@12 4@4 4@28

4 4:4:4:4 4@16 4@8 4@0 4@24
Back 4@20 4@12 4@4 4@28

5 3:3:2 3@5 3@2 2@0
Front 3@13 3@10 2@8

6 3:3:2 3@5 3@2 2@0
Back 3@13 3@10 2@8

7 1:2:1 1@3 2@1 1@0
Front 1@7 2@5 1@4

8 1:2:1 1@3 2@1 1@0
Back 1@7 2@5 1@4

CI 14 CIS 8@0 0 0 0
15 Cl4 4@0 0 0 0

5

10

15

20

25

30

35

40

45

30
the GID based pixel ownership tests for one of the buffers
but rely on the scissor clipping. or to install a second set of
GID planes so each buffer has it's own set. GLINT allows
either approach.

If rendering operations to the main and overlay planes
both need the depth or stencil buffers, and the windows in
each overlap then each buffer will need its own exclusive
depth and/or stencil buffers. This is easily achieved with
GLINT by assigning different regions in the localbuffer to
each of the buffers. Typically this would double the local
buffer memory requirements.

One scenario where the above two considerations do not
cause problems. is when the overlay planes are used exclu
sively by the GUI system. and the main planes are used for
the 3D graphics.

VRAM Modes

High performance systems will typically use VRAM for
the framebuffer and the extended functionality of VRAM
over DRAM can be used to enhance performance for many
rendering tasks.
Hardware Write Masks.

These allow write masking in the framebuffer without
incurring a performance penalty. If hardware write masks
are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the write
mask, and write it back.

To use hardware write masking. the required write mask
is written to the FBHardwareWriteMask register. the
FBSoftwareWriteMask register should be set to alii's, and
the number of framebuffer reads is set to 0 (for normal
rendering). This is achieved by clearing the ReadSource and
ReadDestination enables in the FBReadMode register.

To use software write masking. the required write mask is
written to the FBSoftwareWriteMask register and the num_..
ber of framebuffer reads is set to 1 (for normal rendering).
This is achieved by setting the ReadDestination enable in the
FBReadMode register.
Block Writes Block writes cause consecutive pixels in the
framebuffer to be written simultaneously. This is useful
when filling large areas but does have some restrictions:

No pixel level clipping is available;
No depth or stencil testing can be done;
All the pixels must be written with the same value so no

color interpolation, blending, dithering or logical ops
can be done; and

The area is defined in screen relative coordinates.

Overlays and Underlays
In a GUI system there are two possible relationships

between the overlay planes (or underlay) and the main
planes.

Block writes are not restricted to rectangular areas and

50 can be used for any trapezoid. Hardware write masking is
available during block writes.

The overlay planes are fixed to the main planes, so that if
the window is moved then both the data in the main 55

planes and overlay planes move together.
The overlay planes are not fixed to the main planes but

floating. so that moving a window only moves the
associated main or overlay planes.

In the fixed case both planes can share the same GID. The 60

pixel offset is used to redirect the reads and writes between
the main planes and the overlay (underlay) buffer. The pixel
ownership tests using the GID field in the localbuffer work
as expected.

In the floating case different Gills are the best choice, 65

because the same GID planes in the localbuffer can not be
used for pixel ownership tests. The alternatives are not to use

The following registers need to be set up before block fills
can be used:

FBBlockColor register with the value to write to each
pixel; and

FBWriteMode register with the block width field.
Sending a Render command with the PrimitiveType field

set to "trapezoid" and the FastFillEnable and FastFilllncre
ment fields set up will then cause block filling of the area.
Note that during a block fill of a trapezoid any inappropriate
state is ignored so even if color interpolation, depth testing
and logical ops. for example, are enabled they have no effect.

The block sizes supported are 8. 16 and 32 pixels. GLINT
takes care of filling any partial blocks at the end of spans.
Graphics Programming

GLINT provides a rich variety of operations for 2D and
3D graphics supported by its Pipelined architecture.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
31

The Graphics Pipeline
This section describes each of the units in the graphics

Pipeline. FIG. 2C shows a schematic of the pipeline. In this
diagram. the local buffer contains the pixel ownership values
(known as Graphic IDs). the FrameCount Planes (FCP). 5
Depth (Z) and Stencil buffer. The framebuffer contains the
Red. Green. Blue and Alpha bitplanes. The operations in the
Pipeline include:

32
A Gouraud Shaded Triangle

We may now revisit the "day in the life of a triangle"
example given above. and review the actions taken in greater
detail. Again. the primitive being rendered will be a Gouraud
shaded. depth buffered triangle. For this example assume
that the triangle is to be drawn into a window which has its
colormap set for RGB as opposed to color index operation.
This means that all three color components; red. green and
blue. must be handled. Also. assume the coordinate origin is Rasterizer scan converts the given primitive into a series of

fragments for processing by the rest of the pipeline.
Scissor Test clips out fragments that lie outside the bounds

of a user defined scissor rectangle and also performs
screen clipping to stop illegal access outside the screen
memory.

10 bottom left of the window and drawing will be from top to
bottom. GLINT can draw from top to bottom or bottom to
top.

Consider a triangle with vertices. v 1• v 2 and v 3 where each
vertex comprises X. Y and Z coordinates. Each vertex has a

Stipple Test masks out certain fragments according to a
specified pattern. Line and area stipples are available.

Color DDA is responsible for generating the color informa
tion (frue Color RGBA or Color Index(CI)) associated
with a fragment.

15 different color made up of red. green and blue (R. G and B)
components. The alpha component will be omitted for this
example.

Texture is concerned with mapping a portion of a specified 20

image (texture) onto a fragment. The process involves
filtering to calculate the texture color. and application
which applies the texture color to the fragment color.

Fog blends a fog color with a fragment's color according to
a given fog factor. Fogging is used for depth cuing images 25

and to simulate atmospheric fogging.
Antialias Application combines the incoming fragment's

alpha value with its coverage value when anti aliasing is
enabled.

Alpha Test conditionally discards a fragment based on the 30

outcome of a comparison between the fragments alpha
value and a reference alpha value.

Pixel Ownership is concerned with ensuring that the location
in the framebuffer for the current fragment is owned by
the current visual. Comparison occurs between the given 35

fragment and the Graphic ID value in the localbuffer, at
the corresponding location, to determine whether the
fragment should be discarded.

Stencil Test conditionally discards a fragment based on the
outcome of a test between the given fragment and the 40

value in the stencil buffer at the corresponding location.
The stencil buffer is updated dependent on the result of the
stencil test and the depth test.

Depth Test conditionally discards a fragment based on the
outcome of a test between the depth value for the given 45

fragment and the value in the depth buffer at the corre
sponding location. The result of the depth test can be used
to control the updating of the stencil buffer.

Alpha Blending combines the incoming fragment's color
with the color in the framebuffer at the corresponding so
location.

Color Formatting converts the fragment's color into the
format in which the color information is stored in the
framebuffer.
This may optionally involve dithering. 55
The Pipeline structure of GLINT is very efficient at

processing fragments. for example. texture mapping calcu
lations are not actually performed on fragments that get
clipped out by scissor testing. This approach saves substan
tial computational effort. The pipelined nature does however 60
mean that when programming GLINT one should be aware
of what all the pipeline stages are doing at any time. For
example. many operations require both a read and/or write
to the localbuffer and framebuffer; in this case it is not
sufficient to set a logical operation to XOR and enable 65

logical operations. but it is also necessary to enable the
reading/writing of data from/to the framebuffer.

Initialization
GLINT requires many of its registers to be initialized in

a particular way. regardless of what is to be drawn. for
instance. the screen size and appropriate clipping must be set
up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been
done.

Other state will change occasionally, though not usually
on a per primitive basis, for instance enabling Gouraud
shading and depth buffering.
Dominant and Subordinate Sides of a Triangle

As shown in FIG. 4A, the dominant side of a triangle is
that with the greatest range of Y values. The choice of
dominant side is optional when the triangle is either fiat
bottomed or fiat topped.

GLINT always draws triangles starting from the dominant
edge towards the subordinate edges. This simplifies the
calculation of set up parameters as will be seen below.

These values allow the color of each fragment in the
triangle to be determined by linear interpolation. For
example, the red component color value of a fragment at
XN, Ym could be calculated by:

adding dRdy 13, for each scanline between Y 1 and Y n• to
R1.

then adding dRdx for each fragment along scanline Y n

from the left edge to xn.
The example chosen has the 'knee,' i.e. vertex 2. on the

right hand side. and drawing is from left to right. If the knee
were on the left side (or drawing was from right to left). then
the Y deltas for both the subordinate sides would be needed
to interpolate the start values for each color component (and
the depth value) on each scanline. For this reason GLINT
always draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle. this
means left to right.
Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set
as follows, for color interpolation. Note that the format for
color values is 24 bit, fixed point 2's complement.

II Load the color start and delta values to draw
II a triangle
RStart (R1)

GStart (01)

BStart (B1)

dRdyDom (dRdy13)
dGdyDom (dGdy13)
dBdyDom (dBdy,,)
dRdx (dRdx)

II To walk up the dominant edge

II To walk along the scanli.ne

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770

dGdx(dGdx)
dBdx (dBdx)

33
-continued dXDom=dX13

dXSub=dX12

34

The start X.Y. the number of scanlines. and the above
deltas give GLINT enough information to edge walk the top

Calculating Depth Gradient Values
To draw from left to right and top to bottom. the depth

gradients or deltas) required for interpolation are:

5 half of the triangle. However, to indicate that this is not a flat
topped triangle (GLINT is designed to rasterize screen
aligned trapezoids and flat topped triangles). the same start
position in terms of X must be given twice as StartXDom
and StartXSub.

10 To edge walk the lower half of the triangle. selected

And from the plane equation:

dliU= { } - { } 15

where

The divisor. shown here as c. is the same as for color 20

gradient values. The two deltas dZdyl13 and dZdx allow the
Z value of each fragment in the triangle to be determined by
linear interpolation. just as for the color interpolation.
Register Set Up for Depth Testing

Internally GL1NT uses fixed point arithmetic. Each depth 25

value must be converted into a 2's complement 32.16 bit
fixed point number and then loaded into the appropriate pair
of 32 bit registers. The 'Upper' or 'U' registers store the
integer portion. whilst the 'Lower' or 'L' registers store the
16 fractional bits. left justified and zero filled.

For the example triangle, GLINT would need its registers
set up as follows:

II Load the depth slart and delta values
II to draw a triangle
ZScartU (Zl_MS)

30

35

additional information is required. The slope of the domi
nant edge remains unchanged, but the subordinate edge
slope needs to be set to:

dXSub=dX23
Also the number of scanlines to be covered from Y 2 to Y 3

needs to be given. Finally to avoid any rounding errors
accumulated in edge walking to X2 (which can lead to pixel
errors). StartXSub must be set to X2•

Rasterizer Mode

The GLINT rasterizer has a number of modes which have
effect from the time they are set until they are modified and
can thus affect many primitives. In the case of the Gouraud
shaded triangle the default value for these modes are suit
able.
Subpixel Correction

GLINT can perform subpixel correction of all interpo
lated values when rendering aliased trapezoids. This correc
tion ensures that any parameter (color/depth/texture/fog) is
correctly sampled at the center of a fragment Subpixel
correction will generally always be enabled when rendering
any trapezoid which is smooth shaded. textured. fogged or
depth buffered. Control of subpixel correction is in the
Render command register described in the next section, and
is selectable on a per primitive basis.
Rasterization

ZStartL (Z1_LS)
dZdyDomU (dZdy13_MS)
dZdyDomL (dZdy13_LS)
dZdxU (dZdx_MS)
dZdxL (dZdx_LS)

GLINT is almost ready to draw the triangle. Setting up the
registers as described here and sending the Render command

40
will cause the top half of the example triangle to be drawn.

For drawing the example triangle, all the bit fields within
the Render command should be set to 0 except the Primi
tiveType which should be set to trapewid and the SubPix
elCorrectionEnable bit which should be set to TRUE.

Calculating the Slopes for each Side
GLINT draws filled shapes such as triangles as a series of

spans with one span per scanline. Therefore it needs to know 45

the start and end X coordinate of each span. These are
determined by 'edge walking'. This process involves adding
one delta value to the previous span's start X coordinate and
another delta value to the previous span's end x coordinate
to determine the X coordinates of the new span. These delta 50
values are in effect the slopes of the triangle sides. To draw
from left to right and top to bottom. the slopes of the three
sides are calculated as:

dXu
X3-X1

Y3-Y1
55

dXu
x2-x,

Y2- Yt

II Draw triangle with knee
II Set deltas
StartXDom (X1«16) II Converted to 16.16 fixed
point
dXDom (((X3 - X 1)«16)/(Y3 - Y 1))

SlartXSub (X1«16)
dXSub (((X2 - X 1)«16)/(Y2 - Y 1))

ScartY (Y1«16)
dY (-1«16)
Cowt (Y1 - Y2)

If Set the render cOII1IIllllld mode
render.PrimitiveType = GLINT_TRAPEZOIDJRIMITIVE
render.SubPixeiCorrectionEnable = TRUE
II Draw the top half of the triangle
Render(render)

dXn
X3-X2

Y3- Y2
60 After the Render command has been issued. the registers

This triangle will be drawn in two parts. top down to the
'knee' (i.e. vertex 2). and then from there to the bottom. The
dominant side is the left side so for the top half:

in GLINT can immediately be altered to draw the lower half
of the triangle. Note that only two registers need be loaded
and the command ContinueNewSub sent. Once GLINT has
received ContinueNewSub, drawing of this sub-triangle will
begin.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
35

II Setup the delta and start for the new edge
StartXSub (X2«16)
dXSub (((X3 - X2)<<16Y(Y3 - Y2))

II Draw sub-triangle
ContinueNewSub (Y2 - Y3) II Draw lower half

Rasterizer Unit

5

The rasterizer decomposes a given primitive into a series
of fragments for processing by the rest of the Pipeline. 10

GLINT can directly rasterize:
aliased screen aligned trapezoids
aliased single pixel wide lines
aliased single pixel points
antialiased screen aligned trapezoids
antialiased circular points
All other primitives are treated as one or more of the

above. for example an antialiased line is drawn as a series of
antialiased trapezoids.
Trapezoids GLINT's basic area primitives are screen
aligned trapezoids. These are characterized by having top
and bottom edges parallel to the X axis. The side edges may

15

20

be vertical (a rectangle). but in general will be diagonal. The
top or bottom edges can degenerate into points in which case 25

we are left with either flat topped or fiat bottomed triangles.
Any polygon can be decomposed into screen aligned trap
ezoids or triangles. Usually. polygons are decomposed into
triangles because the interpolation of values over non
triangular polygons is ill defined. The rasterizer does handle 30

fiat topped and flat bottomed 'bow tie' polygons which are
a special case of screen aligned trapezoids.

To render a triangle. the approach adopted to determine
which fragments are to be drawn is known as 'edge walk
ing'. Suppose the aliased triangle shown in FIG. 4A was to 35

be rendered from top to bottom and the origin was bottom
left of the window. Starting at (X1, Y1) then decrementing
Y and using the slope equations for edges 1-2 and 1-3. the
intersection of each edge on each scanline can be calculated.
This results in a span of fragments per scanline for the top 40

trapezoid. The same method can be used for the bottom
trapezoid using slopes 2-3 and 1-3.

It is usually required that adjacent triangles or polygons
which share an edge or vertex are drawn such that pixels
which make up the edge or vertex get drawn exactly once. 45

This may be achieved by omitting the pixels down the left

36
Send the Render command. This starts the scan conver

sion of the first triangle. working from the dominant
edge. This means that for triangles where the knee is on
the left we are scanning right to left, and vice versa for
triangles where the knee is on the right.

Load the edge parameters and derivatives for the remain
ing subordinate edge in the second triangle.

Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

Pseudocode for the above example is:

II Set the rasterizer mode to the default
RasterizerMode (0)
II Setup the start values and the deltas.
II Note that the X andY coordinates are converted
II to 16.16 fonnat
StartXDom (Xl«l6)
dXDom (((X3- X1)«16:V(Y3- Y1))
StartXSub (Xl«l6)
dXSub (((X2- X1)<<16Y(Y2- Yl))
StartY (Y1«16)
dY (-1<16) II Down the screen
Count (Yl - Y2)
II Set the render mode to aliased primitive with
II subpillel correction.
render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SubpilleiCorrectionEnable = GLINT_ TRUE
render.AntialiasEnable = GLINL..DISABLE
II Draw top half of the triangle
Render(render)
II Set the start and delta for the second half of
II the triangle.
StartXSub (X2«16)
dXSub (((X3- X2)<<16:V(Y3- Y2))
II Draw lower half of triangle
CootinueNewSub (abs(Y2 - Y3))

After the Render command has been sent. the registers in
GLINT can immediately be altered to draw the second half
of the triangle. For this. note that only two registers need be
loaded and the command ContinueNewSub be sent. Once
drawing of the first triangle is complete and GLINT has
received the ContinueNewSub command, drawing of this
sub-triangle will start. The ContinueNewSub command reg
ister is loaded with the remaining number of scanlines to be
rendered.
Lines

Single pixel wide aliased lines are drawn using a DDA
algorithm. so all GLINT needs by way of input data is
StartX. StartY. dX. dY and length.

For polylines. a ContinueNewLine command (analogous
to the Continue command used at the knee of a triangle) is
used at vertices.

When a Continue command is issued some error will be
propagated along the line. To minimize this. a choice of
actions are available as to how the DDA units are restarted
on the receipt of a Continue command. h is recommended
that for OpenGLrendering the ContinueNewLine command

or the right sides and the pixels along the top or lower sides.
GLINT has adopted the convention of omitting the pixels
down the right hand edge. Control of whether the pixels
along the top or lower sides are omitted depends on the start 50

Y value and the number of scanlines to be covered. With the
example. if StartY =Y1 and the number of scanlines is set to
Y1-Y2. the lower edge of the top half of the triangle will be
excluded. This excluded edge will get drawn as part of the
lower half of the triangle. 55 is not used and individual segments are rendered.

Antialiased lines. of any width, are rendered as antialiased
screen-aligned trapezoids.
Points

GLINT supports a single pixel aliased point primitive. For

To minimize delta calculations. triangles may be scan
converted from left to right or from right to left. The
direction depends on the dominant edge, that is the edge
which has the maximum range of Y values. Rendering
always proceeds from the dominant edge towards the rel
evant subordinate edge. In the example above. the dominant
edge is 1-3 so rendering will be from right to left.

60 points larger than one pixel trapezoids should be used. In this
case the PrimitiveType field in the Render command should
be set to equal GLINT_POINT_PRIMITIVE.

The sequence of actions required to render a triangle (with
a 'knee') is:

Load the edge parameters and derivatives for the domi- 65

nant edge and the first subordinate edges in the first
triangle.

Anti aliasing
GLINT uses a subpixel point sampling algorithm to

antialias primitives. GLINT can directly rasterize antialiased
trapezoids and points. Other primitives are composed from
these base primitives.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
37

The rasterizer associates a coverage value with each
fragment produced when antialiasing. This value represents
the percentage coverage of the pixel by the fragment.
GLINT supports two levels of antialiasing quality:

normal. which represents 4x4 pixel subsampling
high. which represents 8x8 pixel subsampling.
Selection between these two is made by the Antialias-

ingQuality bit within the Render command register.

38
To scan convert an antialiased point as a circle. GLINT

traverses the boundary in sub scanline steps to calculate the
coverage value. For this, the sub-scanline intersections are
calculated incrementally using a small table. The table holds

5 the change in X for a step in Y. Symmetry is used so the table
only holds the delta values for one quadrant.

StartXDom. StartXSub and StartY are set to the top or
bottom of the circle and dY set to the subscanline step. In the
case of an even diameter, the last of the required entries in

10 the table is set to zero.
When rendering antialiased primitives with GLINT the

FlushSpan command is used to terminate rendering of a
primitive. This is due to the nature of GLINT antialiasing.
When a primitive is rendered which does not happen to
complete on a scanline boundary. GLINT retains antialiasing
information about the last sub-scanline(s) it has processed.
but does not generate fragments for them unless a FlushSpan

15 command is received. The commands ContinueNewSub.
ContinueNewDom or Continue can then be used, as
appropriate, to maintain continuity between adjacent trap
ezoids. This allows complex antialiased primitives to be
built up from simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids 20

to render an antialiased line. The line will in general consist

Since the table is configurable. point shapes other than
circles can be rendered. Also if the StartXDom and StartX
Sub values are not coincident then horizontal thick lines
with rounded ends, can be rendered.

Block Write Operation

GLINT supports VRAM block writes with block sizes of
8, 16 and 32 pixels. The block write method does have some
restrictions: None of the per pixel clipping, stipple, or
fragment operations are available with the exception of write
masks. One subtle restriction is that the block coordinates

of three screen aligned trapezoids as shown in FIG. 4B. This
FIG. illustrates the sequence of rendering an Antialiased
Line primitive. Note that the line has finite width.

The procedure to render the line is as follows:

If Setup the blend and coverage application l.Dlits
If as appropriate - not shown
II In this example only the edge deltas ale shown
II loaded into registers for clarity. In reality
II start X and Y values ale required
II Render Thlpezoid A
dY(1«16)
dXDom(dXDom1 «16)
dXSub(dXSub1«16)
Count(count!)
render.PrimitiveType = GLINT_TRAPEZOID
remder.AntialiasEnable =GLINT_ TRUE
render.AntialiasQuality = GLINT_MIN_ANTIALIAS
render.CoverageEnable = GLINT_TRUE
Render(render)
II Render Trapezoid B
dXSub(dXSub2«16)
ContinueNewSub(count2)
II Render Trapezoid C
dXDom(dXDom2«16)
ContinueNewDom(count3)
If Now we have finished the primitive tlush out
If the last scanline
F1ushSpan()

Note that when rendering antialiased primitives, any
count values should be given in subscanlines, for example if
the quality is 4x4 then any scanline count must be multiplied
by 4 to convert it into a subscanline count. Similarly. any
delta value must be divided by 4.

will be interpreted as screen relative and not window relative
when the pixel mask is calculated in the Frarnebuffer Units.

Any screen aligned trapezoid can be filled using block
25 writes. oot just rectangles.

The use of block writes is enabled by setting the FastFil
lEnable and FastFilllncrement fields in the Render command
register. The framebuffer write unit must also be configured.

30
Note only the Rasterizer. Framebuffer Read and Frame-

buffer Write units are involved in block filling. The other
units will ignore block write fragments, so it is not necessary
to disable them.
Sub Pixel Precision and Correction

35 As the rasterizer has 16 bits of fraction precision, and the
screen width used is typically less than 216 wide a number
of bits called subpixel precision bits, are available. Consider
a screen width of 4096 pixels. This figure gives a subpixel
precision of 4 bits (4096=212

). The extra bits are required for

40 a number of reasons:

45

antialiasing (where vertex start positions can be supplied
to subpixel precision)

when using an accumulation buffer (where scans are
rendered multiple times with jittered input vertices)

for correct interpolation of parameters to give high quality
shading as described below

GLINT supports subpixel correction of interpolated val
ues when rendering aliased trapezoids. Subpixel correction
ensures that all interpolated parameters associated with a

50 fragment (color, depth. fog, texture) are correctly sampled at
the fragment's center. This correction is required to ensure
consistent shading of objects made from many primitives. It
should generally be enabled for all aliased rendering which

When rendering. AntialiasEnable must be set in the
Antialias-Mode register to scale the fragments color by the 55

coverage value. An appropriate blending function should
also be enabled.

uses interpolated parameters.
Subpixel correction is not applied to antialiased primi

tives.
Bitmaps

Note. when rendering antialiased bow-ties. the coverage
value on the cross-over scanline may be incorrect.

GLINT can render small antialiased points. Antialiased
points are treated as circles, with the coverage of the
boundary fragments ranging from 0% to 100%. GLINT
supports:

point radii of 0.5 to 16.0 in steps of 0.25 for 4x4
antialiasing

point radii of 0.25 to 8.0 in steps of 0.125 for 8x8
antialiasing

A Bitmap primitive is a trapezoid or line of ones and zeros
which control which fragments are generated by the raster-

60 izer. Only fragments where the corresponding Bitmap bit is
set are submitted for drawing. The normal use for this is in
drawing characters. although the mechanism is available for
all primitives. The Bitmap data is packed contiguously into
32 bit words so that rows are packed adjacent to each other.

65 Bits in the mask word are by default used from the least
significant end towards the most significant end and are
applied to pixels in the order they are generated in.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
39

The rasterizer scans through the bits in each word of the
Bitmap data and increments the X. Y coordinates to trace out
the rectangle of the given width and height. By default. any

40
Warning: During image upload, all the returned fragments

must be read from the Host Out FIFO. otherwise the GLINT
pipeline will stall. In addition it is strongly recommended
that any units which can discard fragments (for instance the set bits (1) in the Bitmap cause a fragment to be generated.

any reset bits (0) cause the fragment to be rejected.
The selection of bits from the BitMas.kPattero register can

be mirrored. that is. the pattern is traversed from MSB to
LSB rather than LSB to MSB. Also. the sense of the test can

5 following tests: bitrnask. alpha. user scissor. screen scissor.
stipple. pixel ownership. depth. stencil). are disabled other
wise a shortfall in pixels returned may occur. also leading to
deadlock.

be reversed such that a set bit causes a fragment to be
rejected and vice versa. This control is found in the Raster- 10

izerMode register.

Note that because the area of interest in copy/upload/
download operations is defined by the rasterizer. it is not
limited to rectangular regions. When one Bitmap word has been exhausted and pixels in

the rectangle still remain then rasterization is suspended
until the next write to the BitMas.kPattero register. Any
unused bits in the last Bitmap word are discarded.
Image Copy/Upload/Download

Color formatting can be used when performing image
copies. uploads and downloads. This allows data to be

15 formatted from, or to, any of the supported GLINT color
formats.

GLINT supports three "pixel rectangle" operations: copy,
upload and download. These can apply to the Depth or
Stencil Buffers (held within the localbuffer) or the frame
buffer.

It should be emphasized that the GLINT copy operation
moves RAW blocks of data around buffers. To zoom or
re-format data, in the presently preferred embodiment, exter-
nal software must upload the data. process it and then
download it again.

To copy a rectangular area, the rasterizer would be
configured to render the destination rectangle. thus gener
ating fragments for the area to be copied. GLINT copy
works by adding a linear offset to the destination fragment's
address to find the source fragment's address.

Note that the offset is independent of the origin of the
buffer or window, as it is added to the destination address.
Care must be taken when the source and destination overlap

20

25

30

to choose the source scanning direction so that the overlap
ping area is not overwritten before it has been moved. This 35

may be done by swapping the values written to the StartX
Dom and StartXSub. or by changing the sign of dY and
setting StartY to be the opposite side of the rectangle.

Localbuffer copy operations are correctly tested for pixel
ownership. Note that this implies two reads of the 40

localbuffer, one to collect the source data. and one to get the
destination GID for the pixel ownership test.

GLINT buffer upload/downloads are very similar to cop-
ies in that the region of interest is generated in the rasterizer.
However, the localbuffer and framebuffer are generally 45

configured to read or to write only, rather than both read and
write. The exception is that an image load may use pixel
ownership tests. in which case the localbuffer destination
read must be enabled.

Units which can generate fragment values, the color DDA 50

unit for example, should generally be disabled for any
copy/upload/download operations.

Rasterizer Mode

A number of long-term modes can be set using the
Rasterizer-Mode register, these are:

Mirror BitMask: This is a single bit flag which specifies the
direction bits are checked in the BitMask register. If the
bit is reset. the direction is from least significant to most
significant (bit 0 to bit 31), if the bit is set, it is from most
significant to least significant (from bit 31 to bit 0).

Invert BitMask: This is a single bit which controls the sense
of the accept/reject test when using a Bitmask. If the bit
is reset then when the BitMask bit is set the fragment is
accepted and when it is reset the fragment is rejected.
When the bit is set the sense of the test is reversed.

Fraction Adjust: These 2 bits control the action taken by the
rasterizer on receiving a ContinueNewLine command. As
GLINT uses a DDA algorithm to render lines, an error
accumulates in the DDA value. GLINT provides for
greater control of the error by doing one of the following:
leaving the DDA running. which means errors will be

propagated along a line.
or setting the fraction bits to either zero, a half or almost

a half (Ox7FFF).
Bias Coordinates: Only the integer portion of the values in

the DDAs are used to generate fragment addresses. Often
the actual action required is a rounding of values, this can
be achieved by setting the bias coordinate bit to true
which will automatically add almost a half (Ox7FFF) to
all input coordinates.

Rasterizer Unit Registers
Real coordinates with fractional parts are provided to the

rasterizer in 2'scomplement 16 bit integer, 16 bit fraction
format. The following Table lists the command registers
which control the rasterizer unit:

Register Name Description

Render Starts the rasrerization process
Continue New Dom Allows the rasterization to continue with a new dominant

edge. 1be dominant edge DDA is reloaded with the new
parameters. The subotdinate edge is canied on from the
previous trapezoid. This allows any convex polygon to be
broken down into a collection of trapezoids, with continuity
maintained across boundaries.
The data &ld holds the number of scanlines (or sub scan
lines) to fill. Note this count does not get loaded into the
Co1mt register.

ContinueNewSub Allows the rasterization to continue with a new subordinate
edge. 1be subordinate DDA is reloaded with the new

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
41

-continued

Register Name Description

parameters. The dominant edge is carried on from the
previous trapezoid. TI1is is useful when scan converting
triangles with a 'knee' (i.e. two subon:linate edges).
The data field holds the number of scanlines (or sub
scanlines) to fill. Note tl1is cotmt does not get loaded into
the CoWl! register.

42

Continue Allows the rasterization to continue after new delta value(s)
have been loaded, but does not cause either of the
trapezoid's edge DDAs to be reloaded.
The data field holds the number of scanlines (or sub
scanlines) to fill. Note this cotmt does not get loaded into
the CoWlt register.

ContinueNewLine Allows the rasterization to continue for the next segment in
a polyline. The XY position is carried on from the
previous line, but the fraction bits in the DDAs can be:
kep~ set to zero, half, or nearly one half, under control of
the RasterizerMode.
The data field holds the number of scanlines to fill. Note
this cotmt does not get loaded into the Count register.
The use of ContinueNewLine is not recommended for
OpenGL because the DDA units will start with a slight
error as compared with the value they would have been
loaded with for the second and subsequent segments.

F1ushSpan Used when antialiasing to force the last span out when not
all sub spans may be defined.

The following Table shows the control registers of the
rasterizer, in the presently preferred embodiment:

RasterizerMod
e Defines the long term mode of operation of the rasterizer.

StartXDom Initial X value for the dominant edge in trapezoid filling,
or initial X value in line drawing.

dXDom Value added when moving from one scanline (or sub
scanline) to the next for the dominant edge in trapezoid
filling.
Also holds the change in X when plotting Jines so for Y
major Jines this will be some fraction (dx/dy), otherwise
it is normally ± 1.0, depending on the required scanning
direction.

StartXSub Initial X value for the subonlinate edge.
dXSub Value added when moving from one scanline (or sub

scanline) to the next for the subordinate
edge in trapezoid filling.

StartY Initial scanline (or sub scanline) in trapezoid filling,
or initial Y position for line drawing.

dY Value added to Y to move from one scanline to the
next. For X major lines this will be some fraction
(dy/dx), otherwise it is nonnally ± 1.0,
depending on the required scanning direction.

Cotmt Number of pixels in a line.
Number of scanlines in a trapezoid.
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.

BitMask:Pattem Value used to control the BitMask stipple operation (if
enabled).

PoiniTableO Antialias point data table. There are 4 words in the table
PointTable 1 and the register tag is decoded to select a word.
PoiniTable2
PointTable3

For efficiency. the Render command register has a number

30

35

40

45

50

55

of bit fields that can be set or cleared per render operation,
and which qualify other state information within GLINT.
These bits are AreaStippleEnable. LineStippleEnable. 60

ResetLineStipple. TextureEnable FogEnable. CoverageEn
able and SubpixelCorrection.

One use of this feature can occur when a window is
cleared to a background color. For normal 3D primitives.
stippling and fog operations may have been enabled, but 65

these are to be ignored for window clears. Initially the
FogMode. AreaStippleMode and LineStippleMode registers

are enabled through the UnitEnable bits. Now bits need only
be set or cleared within the Render command to achieve the
required result. removing the need for the FogMode. AreaSt
ippleMode and LineStippleMode registers to be loaded for
every render operation.

The bitfields of the Render command register. in the
presently preferred embodiment, are detailed below:

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
43 44

Bit Name Description

0 Area- This bit, when set, enables area stippling of the fragments
Stipple- produced during rasterization. Note that area stipple in the
Enable Stipple Unit must be enabled as well for stippling to occur.

When this bit is reset no area stippling occurs irrespective of
the setting of the area stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no area stippling for this
primitive.

Line- This bit, when set, enables line stippling of the fragments
Stipple- produced during rasterization in the Stipple Unit. Note that
Enable line stipple in the Stipple Unit must be enabled as well for slip-

piing to occur.
When this bit is reset no line stippling occurs irrespective of
the setting if the line stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no line stippling for this
primitive.

2 Reset- This bit, when set, causes the line stipple counters in the
Line- Stipple Unit to be reset to zero, and would typically be used
Stipple for the first segment in a polyline. This action is also qualified

by the LineStippleEnable bit and also the stipple enable bits in
the Stipple Unit.
When this bit is reset the stipple counters carry on from where
they left off (if line stippling is enabled)

3 FastFillE This bit, when set, causes fast block filling of primitives.
nable When this bit is reset the nonnal rasterization process occurs.

4, 5 Fast-Fill- This two bit field selects the block size the frarnebuffer
Incremen supports. The sizes supported and the corresponding codes
I are:

0 = 8 pixels
1 = 16 pixels
2 = 32 pixels

6.,7 Primitive- This two bit field selects the primitive type to rasterize. The
'JYpe primitives are:

0 =Line
1 = Trapezoid
2 =Point

8 Antialias- This bit, when set, causes the generation of sub scanline dala
Enable and the coverage value to be calculated for each fragment.

The number of sub pixel samples to use is conttolled by the
AntialiasingQuality bit.
When this bit is reset normal rasterization occurs.

9 An- This bit, when set, sets the sub pixel resolution to be 8 x 8
tialiasing- When this bit is reset the sub pixel resolution is 4 x 4.
Quality

10 UsePoint- When this bit and the AntialiasingEnable are set, the dx values
Table used to remove from one scanline to the next are derived from

the Point Table.
11 SyncOn- This bit, when set, causes a number of actions: -

Bi!Mask The least significant bit or most significant bit (depeiJdins oo
the MirrorBitMask bit) in the Bit Mask register is extracted
and optionally inverted (controlled by the lnvertMask bit).
If this bit is 0 then the corresponding fragment is culled from
being drawn.
After every fragrant the Bit Mask register is rotated by one
bit.
If all the bits in the Bit Mask register have been used then
rasterization is suspended wtil a oow BitMasld'attem is
received. If any other register is written while the rasterization
is suspended then the rasterization is aborted The register
write which caused the abort is then processed as nonnal.
Note the behavior is slightly different w ben the Syn-
cOnHostData bit is set to prevent a deadlock from occurring.
In this case the rasterization ck>esn't suspend when all the bits
have been used and if new BitMaskPattern data words are not
received in a timely manner then the subsequent fragments will
just reuse the bi1mask.

12 Sync On When this bit is set a fragment is produced only when one of
HostData the following registers has been written by the host: Depth,

FBColor, Stencil or Color. If SyncOnBitMask is reset, then if
any register other than one of these four is written to, the
rasterization is aborted If SyncOnBitMask is set, then if any
register other than one of these four, or BitMaskPattem, is
written to, the rasterization is aborted. The register write
which caused the abort is then processed as normal. Writing to
the BitMaskPattem register doesn't cause any fragments to be
generated, but just updates the BitMask register.

l3 TextureE This bit, when set, enables texturing of the fragments produ::ed
nable during rasterization. Note that the Texture Units must be

suitably enabled as well for any texturing to occur.

APPENDIX O

Microsoft Corp. Exhibit 1005

Bit Name

14 Fog-
Enable

5.798.770
45

-continued

Description

When this bit is reset no texturing occurs irrespective of the
setting of the Texture Unit controls.
This bit is useful to temporarily force no texturing for this
primitive.
This bit, When set, enables fogging of the fragments produced
during rasterization. Note that the Fog Unit must be suitably
enabled as well for any fogging to occur.
When this bit is reset no fogging occurs irrespective of the
setting of the Fog Unit controls.
This bit is useful to temporarily force no fogging for this
primitive.

46

15 Coverage- This bit, when set, enables the coverage value produced as part
of the antialiasing to weight the alpha value in the alpha test
unit Note that this unit must be suitably enabled as well.
When this bit is reset no coverage application. occurs irrespec
tive of the setting of the AntialiasMode in the Alpha. Test unit
This bit, when set enables the sub pixel correction of the color,
depth, fog and texture values at the start of a scanline. When
this bit is reset no correction is done at the start of a scanline.
Sub pixel corrections are only applied to aliased trapezoids.

Enable

16 SubPixel-
Cor=-
tion
Enable

A number of long-term rasterizer modes are stored in the
RasterizerMode register as shown below:

Bit Name

0 Mirror-
BitMask

lnvertBit-
Mask

2,3 Fraction-
Adjust

4,5 BiasCoor
dinates

Description

When this bit is set the bitmask bits are conswned from
the most significant end towards the least significant end.
When this bit is reset the bitmask bits are consumed from
the least significant end towards the most significant end.
When this bit is set the bitmask is inverted first before
being tested.
These bits control the action of a ContinueNewLine com
mand and specify how the fraction bits in the Y and
XDom DDAs are adjusted
0: No adjustment is done
1: Set the fraction bits to zero
2: Set the fraction bits to half
3: Set the fraction to nearly half, i.e. Ox7fff
These bits control how much is added onto the
StartXDom, StartXSub and StartY values, when they are
loaded into the DDA units. The original registers are not
affected:
0: Z..ro is added
1: Half is added
2: Nearly half, i.e. Ox7fff is added

Scissor Unit

address selection can be controlled independently in the X
and Y directions. In addition the bit pattern can be inverted

25 or mirrored. Inverting the bit pattern has the effect of
changing the sense of the accept/reject test. H the mirror bit
is set the most significant bit of the pattern is towards the left
of the window, the default is the converse.

In some situations window relative stippling is required
but coordinates are only available screen relative. To allow

30 window relative stippling, an offset is available which is
added to the coordinates before indexing the stipple table. X
and Y offsets can be controlled independently.
line Stippling

In this test, fragments are conditionally rejected on the
35 outcome of testing a linear stipple mask. H the bit is zero

then the test fails, otherwise it passes. The line stipple
pattern is 16 bits in length and is scaled by a repeat factor r
(in the range 1 to 512). The stipple mask bit b which
controls the acceptance or rejection of a fragment is deter-

40 mined using:
b=(floor (s/r)) mod 16

where s is the stipple counter which is incremented for every
fragment (normally along the line). This counter may be
reset at the start of a polyline, but between segments it

45 continues as if there were no break.
The stipple pattern can be optionally mirrored, that is the

bit pattern is traversed from most significant to least sig
nificant bits, rather than the default, from least significant to
most significant.

Two scissor tests are provided in GLINT, the User Scissor
test and the Screen Scissor test. The user scissor checks each
fragment against a user supplied scissor region; the screen
scissor checks that the fragment lies within the screen.

This test may reject fragments if some part of a window 50

has been moved off the screen. It will not reject fragments

Color DDA Unit
The color DDA unit is used to associate a color with a

fragment produced by the rasterizer. This unit should be
enabled for rendering operations and disabled for pixel
rectangle operations (i.e. copies, uploads and downloads).
Two color modes are supported by GLINT. true color RGBA
and color index (CI).

if part of a window is simply overlapped by another window
(GID testing can be used to detect this).

Stipple Unit

Gouraud Shading

Stippling is a process whereby each fragment is checked 55

against a bit in a defined pattern, and is rejected or accepted
depending on the result of the stipple test. H it is rejected it
undergoes no further processing; otherwise it proceeds down
the pipeline. GLINT supports two types of stippling, line and

When in Gouraud shading mode, the color DDA unit
performs linear interpolation given a set of start and incre-

60 ment values. Clamping is used to ensure that the interpolated
value does not underflow or overflow the permitted color

area.
Area Stippling

A 32><32 bit area stipple pattern can be applied to frag
ments. The least significant n bits of the fragment's (X.Y)
coordinates, index into a 2D stipple pattern. If the selected
bit in the pattern is set, then the fragment passes the test. 65

otherwise it is rejected. The number of address bits used,
allow regions of 1,2,4,8.16 and 32 pixels to be stippled. The

range.
For a Gouraud shaded trapezoid, GLINT interpolates

from the dominant edge of a trapezoid to the subordinate
edges. This means that two increment values are required
per color component, one to move along the dominant edge
and one to move across the span to the subordinate edge.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
47

Note that jf one is rendering to multiple buffers and has
initialized the start and increment values in the color DDA
unit. then any subsequent Render command will cause the
start values to be reloaded.

If subpixel correction has been enabled for a primitive.
then any correction required will be applied to the color
components.
Flat Shading

In fiat shading mode. a constant color is associated with
each fragment. This color is loaded into the ConstantColor
register.

Texture Unit
The texture unit combines the incoming fragment's color

(generated in the color DDA unit) with a value derived from
interpolating texture map values (texels).

Texture application consists of two stages; derivation of
the texture color from the texels (a filtering process) and then
application of the texture color to the fragment's color,
which is dependent on the application mode (Decal. Blend
or Modulate).
GLINT 300SX compared with the GLINT 400TX

Both the GLINT 300SX and GLINT 300TX support all
the filtering and application modes described in this section.
However. when using the GLINT 300SX. texel values.
interpolants and texture filter selections are supplied by the
host. This implies that texture coordinate interpolation and
texel extraction are performed by the host using texture
maps resident on the host. The recommended technique for
performing texture mapping using the GLINT 300SX is to
scan convert primitives on the host and render fragments as
GLINT point primitives.

The GLINT 400TX automatically generates all data
required for texture application as textures are stored in the
localbuffer and texture parameter interpolation with full
perspective correction takes place within the processor. Thus
the GLINT 400TX is the processor of choice when full
texture mapping acceleration is desired. the GLINT 300SX
is more suitable in applications where the performance of
texture mapping is not critical.

Texture Color Generation.

Texture color generation supports all the filter modes of
OpenGL. that is:

Minification:
Nearest
Unear
N earestMipMapN earest
NearestMipMapLinear
UnearMipMapNearest
UnearMipMapLinear

Magnification:
Nearest
Unear

48
Mip Mapping is a technique to allow the efficient filtering

of texture maps when the projected area of the fragment
covers more than one texel (ie. minification). A hierarchy of
texture maps is held with each one being half the size (or one

5 quarter the area) of the preceding one. A pair of maps are
selected. based on the projected area of the texture. In terms
of filtering this means that three filter operations are per
formed: one on the first map. one on the second map and one
between the maps. The first filter name (Nearest or Linear)

10 in the MipMap name specifies the filtering to do on the two
maps. and the second filter name specifies the filtering to do
between maps. So for instance. linear mapping between two
maps. with linear interpolation between the results is sup
ported (LinearMipMapUnear). but linear interpolation on

15 one map. nearest on the other map. and linear interpolation
between the two is not supported.

The filtering process takes a number of texels and
interpolants. and with the current texture filter mode pro
duces a texture color.

20 Fog Unit
The fog unit is used to blend the incoming fragment's

color (generated by the color DDA unit. and potentially
modified by the texture unit) with a predefined fog color.
Fogging can be used to simulate atmospheric fogging. and

25 also to depth cue images.
Fog application has two stages; derivation of the fog

index for a fragment. and application of the fogging effect.
The fog index is a value which is interpolated over the
primitive using a DDA in the same way color and depth are

30 interpolated. The fogging effect is applied to each fragment
using one of the equations described below.

Note that although the fog values are linearly interpolated
over a primitive the fog values can be calculated on the host
using a linear fog function (typically for simple fog effects

35 and depth cuing) or a more complex function to model
atmospheric attenuation. This would typically be an expo
nential function.

Fog Index Calculation-The Fog DDA
The fog DDA is used to interpolate the fog index (f)

40 across a primitive. The mechanics are similar to those of the
other DDA units. and horizontal scanning proceeds from
dominant to subordinate edge as discussed above.

The DDA has an internal range of approximately +511 to
-512. so in some cases primitives may exceed these bounds.

45 This problem typically occurs for very large polygons which
span the whole depth of a scene. The correct solution is to
tessellate the polygon until polygons lie within the accept
able range, but the visual effect is frequently negligible and

50

can often be ignored.
The fog DDA calculates a fog index value which is

clamped to lie in the range 0.0 to 1.0 before it is used in the
appropriate fogging equation. (Fogging is applied differently
depending on the color mode.)

Minification is the name given to the filtering process
used whereby multiple texels map to a fragment, while 55

magnification is the name given to the filtering process
whereby only a portion of a single texel maps to a single
fragment.

Antialias Application Unit
Antialias application controls the combining of the cov

erage value generated by the rasterizer with the color gen
erated in the color DDA units. The application depends on
the color mode. either RGBA or Color Index (Cl).

Nearest is the simplest form of texture mapping where the
nearest texel to the sample location is selected with no 60

filtering applied.

Antialias Application
When antialiasing is enabled this unit is used to combine

the coverage value calculated for each fragment with the
fragment's alpha value. In RGBA mode the alpha value is
multiplied by the coverage value calculated in the rasterizer
(its range is 0% to 100%). The RGB values remain

Unear is a more sophisticated algorithm which is depen
dent on the type of primitive. For lines (which are lD). it
involves linear interpolation between the two nearest texels,
for polygons and points which are considered to have finite
area, linear is in fact bi-linear interpolation which interpo
lates between the nearest 4 texels.

65 unchanged and these are modified later in the Alpha Blend
unit which must be set up appropriately. In CI mode the
coverage value is placed in the lower 4 bits of the color field.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
49

The Color Look Up Table is assumed to be set up such that
each color has 16 intensities associated with it, one per
coverage entry.
Polygon Antialiasing

When using GLINT to render antialiased polygons. depth
buffering cannot be used. This is because the order the
fragments are combined in is critical in producing the
correct final color. Polygons should therefore be depth
sorted. and rendered front to back. using the alpha blend
modes: SourceAlphaSaturate for the source blend function
and One for the destination blend function. In this way the
alpha component of a fragment represents the percentage
pixel coverage. and the blend function accwnulates cover
age until the value in the alpha buffer equals one, at which
point no further contributions can made to a pixel.

For the antialiasing of general scenes. with no restrictions
on rendering order. the accumulation buffer is the preferred
choice. This is indirectly supported by GLINT via image
uploading and downloading, with the accumulation buffer
residing on the host.

When antialiasing, interpolated parameters which are
sampled within a fragment (color. fog and texture), will
sometimes be unrepresentative of a continuous sampling of
a surface, and care should be taken when rendering smooth
shaded antialiased primitives. This problem does not occur
in aliased rendering, as the sample point is consistently at the
center of a pixel.

Alpha Test Unit
The alpha test compares a fragment's alpha value with a

reference value. Alpha testing is not available in color index
(CI) mode. The alpha test conditionally rejects a fragment
based on the comparison between a reference alpha value
and one associated with the fragment.

Localbuffer Read/Write Unit
The localbu:ffer holds the Graphic ID, FrameCount, Sten

cil and Depth data associated with a fragment. The local
buffer read/write unit controls the operation of GID testing,
depth testing and stencil testing.
Localbuffer Read

The LBReadMode register can be configured to make 0,
1 or 2 reads of the localbuffer. The following are the most
common modes of access to the localbuffer:

Normal rendering without depth, stencil or GID testing.
This requires no localbuffer reads or writes.

Normal rendering without depth or stencil testing and
with GID testing. This requires a localbu:ffer read to get
the GID from the localbuffer.

Normal rendering with depth and/or stencil testing
required which conditionally requires the localbuffer to
be updated. This requires localbuffer reads and writes
to be enabled.

Copy operations. Operations which copy all or part of the
localbuffer with or without GID testing. This requires
reads and writes enabled.

Image upload/download operations. Operations which
download depth or stencil information to the local
buffer or read depth, stencil fast clear or GID from the
localbuffer.

Localbuffer Write

50
Pixel Ownership Test

The ownership of a pixel is established by testing the GID
of the current window against the GID of a fragment's
destination in the GID buffer. If the test passes. then a write

5 can take place. otherwise the write is discarded. The sense
of the test can be set to one of: always pass. always fail. pass
if equal. or pass if not equal. Pass if equal is the normal
mode. In GLINT the GID planes. if present, are 4 bits deep
allowing 16 possible Graphic ID's. The current GID is

10 established by setting the Window register.
If the unit is disabled fragments pass through undisturbed.
Stencil Test Unit
The stencil test conditionally rejects fragments based on

the outcome of a comparison between the value in the stencil
15 buffer and a reference value. The stencil buffer is updated

according to the current stencil update mode which depends
on the result of the stencil test and the depth test.
Stencil Test

This test only occurs if all the preceding tests (bitmask.
20 scissor, stipple, alpha, pixel ownership) have passed. The

stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test
between the reference stencil value and the value held in the
stencil buffer. The stencil operation controls the updating of

25 the stencil buffer, and is dependent on the result of the stencil
and depth tests.

If the stencil test is enabled then the stencil buffer will be
updated depending on the outcome of both the stencil and
the depth tests (if the depth test is not enabled the depth

30 result is set to pass).
In addition a comparison bit mask is supplied in the

StencilData register. This is used to establish which bits of
the source and reference value are used in the stencil
function test. In addition it should normally be set to exclude

35 the top four bits when the stencil width has been set to 4 bits
in the StencilMode register.

The source stencil value can be from a number of places
as controlled by a field in the StencilMode register:

40

45

LBWriteData
Stencil

Test logic
Stencil
register

LBSourceData:
(stencil

50 value read
from the
localbuffer)
SOUICe stencil
value read
from the

55 localbuffer

Use

Ibis is the 110rmal mode.
Ibis is used, for instance, in the OpenGL draw pixels
function where the host supplies the stencil values in the
Stencil register.
Ibis is used wben a constant stencil values is needed, for
example, wben clearing the stencil buffer when fast clear
planes are not available.
Ibis is used, for instance, in the OpenGL copy pixels
function when the stencil planes are to be copied to the
destination. The source is offset from the destination by
the value in LBSourceOffset register.

Ibis is used, for instance, in the OpenGL copy pixels
function wben the stencil planes in the destination
are not to be updated. The stencil data will come
either from the localbuffer date, or the FCStencil
register, depending on whether fast clear
operations are enabled.

Writes to the localbuffer must be enabled to allow any
update of the localbuffer to take place. The LBWriteMode 60

register is a single bit flag which controls updating of the
buffer.

Depth Test Unit
The depth (Z) test, if enabled. compares a fragment's

depth against the corresponding depth in the depth buffer.
The result of the depth test can effect the updating of the
stencil buffer if stencil testing is enabled. This test is only
performed if all the preceding tests (bitmask. scissor. stipple,
alpha. pixel ownership. stencil) have passed. The source
value can be obtained from a number of places as controlled
by a field in the DepthMode register:

Pixel Ownership (GID) Test Unit

Any fragment generated by the rasterizer may undergo a 65

pixel ownership test. This test establishes the current frag
ment's write permission to the localbuffer and frame buffer.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
51

Source Use

52
The data read from the framebuffer may be tagged either

FBDefault (data which may be written back into the frame
buffer or used in some manner to modify the fragment color)
or FBColor (data which will be uploaded to the host). The DDA (see

below)
Depth register

This is used for normal Depth buffered 3D rendering.

This is used, for instance, in the OpenGL draw pixels
function where dte host supplies the depth values through
the Depd1 register.

5 table below summarizes the framebuffer read/write control
for common rendering operations:

Read-
Alternatively this is used when a constant depth value is
needed, for example, when clearing the depth buffer
(when fast clear planes are not available) or 2D
rendering where the depth is held constant.

10 Source
ReadDes·
tination Writes

Read Data
Type Rendering Operation

LBSourceData: This is used, for instance, in the OpenGL copy pixels
function when the depth plartes are to be copied

Disabled Disabled Enabled

Source depth
value from the
localbuffer
Source Depth

to the destination.

This is used, for instance, in the OpenGL copy pixels
function when the depth planes in the destination are
not updated The depth data will COnte either from the
localbuffer or the FCDepth register depending the state
of the Fast Clear modes in operation.

Disabled
Disabled

15 Enabled

Disabled
Enabled
Disabled

Enabled
Disabled
Enabled

FBColor
FBDefault

Rendering with no logi
cal operations, software
write masks or blending.
Image cbwnload.
Image upload.
Image copy with
hardware write masks.
Rendering using logi
cal operations, soft
ware write masks

Disabled Enabled Enabled FBDefault

or blending.

When using the depth DDA for normal depth buffered
rendering operations the depth values required are similar to
those required for the color values in the color DDA unit:

20 Enabled Enabled Enabled FBDefault Image copy with
software writemasks.

ZStart=Start Z Value
dZdYDom=lncrement along dominant edge.
dZdX=Increment along the scan line.

The dZdX value is not required for Z-buffered lines.
The depth unit must be enabled to update the depth buffer.

H it is disabled then the depth buffer will only be updated if
ForceL-BUpdate is set in the Window register.

25

Framebuffer Write

Framebuffer writes must be enabled to allow the frame
buffer to be updated. A single 1 bit flag controls this
operation.

Framebuffer Read/Write Unit
Before rendering can take place GLINT must be config

ured to perform the correct framebuffer read and write
operations. Framebuffer read and write modes effect the
operation of alpha blending, logic ops, write masks, image
upload/download operations and the updating of pixels in

35 the framebuffer.

The framebuffer write unit is also used to control the
operation of fast block fills, if supported by the framebuffer.

3° Fast fill rendering is enabled via the FastFillEnable bit in the
Render command register, the framebuffer fast block size
must be configured to the same value as the FastFilllncre
ment in the Render command register. The FBBlock:Color
register holds the data written to the framebuffer during a
block fill operation and should be formatted to the 'raw'

Framebuffer Read
The FBReadMode register allows GLINT to be config

ured to make 0, 1 or 2 reads of the framebuffer. The
following are the most common modes of access to the
framebuffer: Note that avoiding unnecessary additional 40
reads will enhance performance.

framebuffer format When using the framebuffer in 8 bit
packed mode the data should be replicated into each byte.
When using the framebuffer in packed 16 bit mode the data
should be replicated into the top 16 bits.

When uploading images the UpLoadData bit can be set to
allow color formatting (which takes place in the Alpha
Blend unit).

It should be noted that the block write capability provided

Rendering operations with no logical operations, software
write-masking or alpha blending. In this case no read of
the framebuffer is required and framebuffer writes should
be enabled.

Rendering operations which use logical ops, software write
masks or alpha blending. In these cases the destination
pixel must be read from the framebuffer and framebuffer
writes must be enabled.

45 by the chip of the presently preferred embodiment is itself
believed to be novel. According to this new approach. a
graphics system can do masked block writes of variable
length (e.g. 8, 16, or 32 pixels, in the presently preferred

Image copy operations. Here setup varies depending on 50
whether hardware or software write masks are used. For
software write masks. the framebuffer needs two reads,
one for the source and one for the destination. When
hardware write masks are used (or when the software
write mask allows updating of all bits in a pixel) then only
one read is required. 55

Image upload. This requires reading of the destination
framebuffer reads to be enabled and framebuffer writes to
be disabled.

Image download. In this case no framebuffer read is required
(as long as software writemasking and logic ops are 60

disabled) and the write must be enabled.
For both the read and the write operations, an offset is

added to the calculated address. The source offset
(FBSourceOffset) is used for copy operations. The pixel
offset (FBPixelOOset) can be used to allow multi-buffer 65

updates. The offsets should be set to zero for normal
rendering.

embodiment). The rasterizer defines the limits of the block
to be written, and hardware masking logic in the frame
buffer interface permits the block to be filled in, with a
specified primitive. only up to the limits of the object being
rendered. Thus the rasterizer can step by the Block Fill
increment. This permits the block-write capabilities of the
VRAM chips to be used optimally, to minimize the length
which must be written by separate writes per pixel.

Alpha Blend Unit
Alpha blending combines a fragment's color with those of

the corresponding pixel in the framebuffer. Blending is
supported in RGBA mode only.
Alpha Blending

The alpha blend unit combines the fragment's color value
with that stored in the frarnebuffer. using the blend equation:

Co=CsS+Cfl

where: C., is the output color; Cs is the source color
(calculated internally); Cd is the destination color read from

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
53

the framebuffer; S is the source blending weight; and D is
the destination blending weight. S and D are not limited to
linear combinations; lookup functions can be used to imple
ment other combining relations.

H the blend operations require any destination color 5
components then the frarnebuffer read mode must be set
appropriately.
Image Formatting

The alpha blend and color formatting units can be used to
format image data into any of the supported GLINT frame-

10
buffer formats.

Consider the case where the frarnebuffer is in RGBA
4:4:4:4 mode, and an area of the screen is to be uploaded and
stored in an 8 bit RGB 3:3:2 format. The sequence of

54
Flat shaded aliased primitive
No dithering required
No logical ops
No stencil. depth or GID testing required
No alpha blending The following are available:
Bit masking in the rasterizer
Area and line stippling
User and Screen Scissor test

operations is:
Set the rasterizer as appropriate
Enable frarnebuffer reads

H all the conditions are met then high speed rendering can
be achieved by setting the FBWriteData register to hold the
framebuffer data (formatted appropriately for the frame
buffer in use) and setting the UseConstantFBWriteData bit
in the LogicalOpMode register. All unused units should be

15 disabled.

Disable frarnebuffer writes and set the UpLoadData bit in
the FBWriteMode register

Enable the alpha blend unit with a blend function which
passes the destination value and ignores the source
value (source blend Zero. destination blend One) and
set the color mode to RGBA 4:4:4:4

20

Set the color formatting unit to format the color of
incoming fragments to an 8 bit RGB 3:3:2 frarnebuffer
format. 25

The upload now proceeds as normal. This technique can
be used to upload data in any supported format.

The same technique can be used to download data which
is in any supported framebuffer format. in this case the
rasterizer is set to sync with FBColor, rather than Color. In 30

this case framebuffer writes are enabled, and the UpLoad
Data bit cleared.

Color Formatting Unit
The color formatting unit converts from GLINT's internal

color representation to a format suitable to be written into 35

the framebuffer. This process may optionally include dith
ering of the color values for framebuffers with less than 8
bits width per color component. H the unit is disabled then
the color is not modified in any way.

As noted above. the framebuffer may be configured to be 40

RGBA or Color Index (Cl).
Color Dithering

GLINT uses an ordered dither algorithm to implement
color dithering. Several types of dithering can be selected.

H the color formatting unit is disabled. the color compo- 45

nents RGBA are not modified and will be truncated when
placed in the frarnebuffer. In Cl mode the value is rounded
to the nearest integer. In both cases the result is clamped to
a maximum value to prevent overflow.

In some situations only screen coordinates are available, 50

but window relative dithering is required. This can be
implemented by adding an optional offset to the coordinates
before indexing the dither tables. The offset is a two bit
number which is supplied for each coordinate, X and Y. The
XOffset. YOffset fields in the DitherMode register control 55

this operation, if window relative coordinates are used they
should be set to zero.

Logical Op Unit
The logical op unit performs two functions; logic opera

tions between the fragment color (source color) and a value 60

from the framebuffer (destination color); and. optionally,
control of a special GLINT mode which allows high per
formance flat shaded rendering.
High Speed Flat Shaded Rendering

A special GLINT rendering mode is available which 65

allows high speed rendering of unshaded images. To use the
mode the following constraints must be satisfied:

This mode is most useful for 2D applications or for
clearing the framebuffer when the memory does not support
block writes. Note that FBWriteData register should be
considered volatile when context switching.

Logical Operations

The logical operations supported by GLINT are:

Mode Name Operation Mode Name Operation

0 Clear 0 8 Nor --(S I D)
I And S&D 9 Equivalent --(S. D)
2 And Reverse S&-D 10 Invert -D
3 Copy s 11 Or Reverse S 1-D
4 And Inverted -S&D 12 Copy Invert -s
5 Noop D 13 Or Invert -SID
6 X or s 'D 14 Nand --(S & D)
7 Or SID 15 Set 1

Where:
S=Source (fragment) Color, D=Destination (frarnebuffer)

Color.
For correct operation of this unit in a mode which takes

the destination color. GLINT must be configured to allow
reads from the framebuffer using the FBReadMode register.

GLINT makes no distinction between RGBA and CI
modes when performing logical operations. However, logi
cal operations are generally only used in Cl mode.
Framebuffer Write Masks

1\vo types of frarnebuffer write masking are supported by
GLINT. software and hardware. Software write masking
requires a read from the frarnebuffer to combine the frag
ment color with the frarnebuffer color. before checking the
bits in the mask to see which planes are writeable. Hardware
write masking is implemented using VRAM write masks
and no framebuffer read is required.
Software Write Masks

Software write masking is controlled by the FBSoftware
WriteMask register. The data field has one bit per frame
buffer bit which when set. allows the corresponding frame
buffer bit to be updated. When reset it disables writing to that
bit Software write masking is applied to all fragments and
is not controlled by an enable/disable bit. However it may
effectively be disabled by setting the mask to all 1' s. Note
that the ReadDestination bit must be enabled in the FBRead
Mode register when using software write masks. in which
some of the bits are zero.
Hardware Write Masks

Hardware write masks. if available. are controlled using
the FBHardwareWriteMask register. H the framebuffer sup
ports hardware write masks, and they are to be used. then
software write masking should be disabled (by setting all the

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
55

bits in the FBSoftwareWriteMask register). This will result
in fewer framebuffer reads when no logical operations or
alpha blending is needed.

If the framebuffer is used in 8 bit packed mode. then an
8 bit hardware write mask must be replicated to all 4 bytes 5
of the FBHardwareWriteMask register. If the framebuffer is
in 16 bit packed mode then the 16 bit hardware write mask
must be replicated to both halves of the FBHardwareWrite
Mask register.
Host Out Unit

10
Host Out Unit controls which registers are available at the

output FIFO. gathering statistics about the rendering opera
tions (picking and extent testing) and the synchronization of
GLINT via the Sync register. These three functions are as
follows:
Message filtering. This unit is the last unit in the core so any 15

message not consumed by a preceding unit will end up
here. These messages will fall in to three classifications:
Rasterizer messages which are never consumed by the
earlier units. messages associated with image uploads.
and finally programmer mistakes where an invalid rues- 20

sage was written to the input FIFO. Synchronization
messages are a special category and are dealt with later.
Any messages not filtered out are passed on the output
FIFO.

56
In the presently preferred embodiment. the frame buffer

interface of the GLINT chip contains additional simple
interface logic. so that two chips can both access the same
frame buffer memory. This permits the GLINT chip to be
combined with an additional chip for management to the
graphics produced by the graphical user interface. This
provides a migration path for users and applications who
need to take advantage of the existing software investment
and device drivers for various other graphics chips.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with a
GUI accelerator chip (such as an S3 chip). This provides a
path for software migration. and also provides a way to
separate 3D rendering tasks from 2D rendering.

In this embodiment. a shared framebuffer is used to enable
multiple devices to read or write data to the same physical
framebuffer memory. Example applications using the
GLINT 300SX:

Using a video device as a coprocessor to GLINT. to grab
live video into the framebuffer. for displaying video in
a window or acquiring a video sequence;

Using GLINT as a 3D coprocessor to a 2D GUl
accelerator. preserving an existing investment in 2D
driver software.

Statistic Collection. Here the active step messages are used
to record the extent of the rectangular region where
rasterization has been occurring. or if rasterization has
occurred inside a specific rectangular region. These facili
ties are useful for picking and debug activities.

25 In a coprocessor system. the framebuffer is a shared
resource. and so access to the resource needs to be arbitrated.
There are also other aspects of sharing a framebuffer that
need to be considered:

30
Memory refreshing;

Synchronization. It is often useful for the controlling soft
ware to find out when some rendering activity has
finished, to allow the timely swapping or sharing of
buffers, reading back of state. etc. To achieve this the
software would send a Sync message and when this
reached this unit any preceding messages or their actions 35

are guaranteed to have finished. On receiving the Sync
message it is entered into the FIFO and optionally gen
erates an interrupt.

Sample Board-Level Embodiment

A sample board incorporating the GLINf chip may
include simply:

40

Transfer of data from the memory cells into the shift
registers of the VRAM;

Control of writemasks and color registers.
GLINf uses the S3 Shared Frame Buffer Interface (SFBI) to
share a framebuffer. This interface is able to handle all of the
above aspects for two devices sharing a frame buffer, with
the GLINf acting as an arbitration master or slave.

Timing Considerations in Shared Frame-Buffer
Interface

The Control Signals used in the Shared Framebuffer
interface, in the presently preferred embodiment. are as
follows: the GLINf chip itself. which incorporates a PCI interface;

Video RAM (VRAM). to which the chip has read-write
access through its frame buffer (FB) port;

GLINT as Primary Controller
45

DRAM. which provides a local buffer then made for such
purposes as Z buffering; and

a RAMDAC. which provides analog color values in accor
dance with the color values read out from the VRAM.
Thus one of the advantages of the chip of the presently 5{)

preferred embodiment is that a minimal board implementa
tion is a trivial task.

FIG. 3A shows a sample graphics board which incorpo
rates the chip of FIG. 2B.

FIG. 3B shows another sample graphics board 55

implementation. which differs from the board of FIG. 3A in
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with GUl 60

accelerator chip.
FIG. 3D shows another graphics board. in which the chip

of FIG. 2B shares access to a common frame store with a
video coprocessor (which may be used for video capture and
playback functions (e.g. frame grabbing).
Alternative Board Embodiment with Additional Video Pro-
cess or

65

FBReqN is internally re-synchronized to System Clock.
FBSelOEN remains negated.
FBGntN is asserted an unspecified amount of time after

FBReqN is asserted.-Framebuffer Address, Data and
Control lines are tri-stated by GLINT (the control lines
should be held high by external pull-up resistors). The
secondary controller is now free to drive the Frame
buffer lines and access the memory.

FBGntN remains asserted until GLINT requires a frame
buffer access. or a refresh or transfer cycle.

FBReqN must remain asserted while FBGntN is asserted.
When FBGntN is removed. the secondary controller must

relinquish the address. data and control bus in a grace
ful manner i.e. RAS. CAS. WE and OE must all be
driven high before being tri-stated.

The secondary controller must relinquish the bus and
negate FBReqN within 500 ns of FBGntN being
negated.

Once FBReqN has been negated. it must remain inactive
for at least 2 system clocks (40 ns at 50 MHz).

GLINT as a Secondary Controller

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
57 58

Framebuffer Refresh and VRAM transfer cycles by The memory systems (i.e. local buffer and framebuffer) are
GLINT are turned off when GLINT is a secondary duplicated for each GLINT. Recall that the texture maps
framebuffer controller. are stored in the local buffer. A single GLINT places very

GLINT asserts FBReqN whenever is requires a frame- high demands on the memory systems. and it would be
buffer access. s very difficult to share them between multiple GLINTs. In

the presently preferred embodiment there are no provi-
FBGntN is internally re-synchronized to system clock. sions for sharing the local buffer. so if this is necessary it
When FBGntN is asserted. GLINT drives FBselOEN to would have to be done behind GLINT's back and trans-

enable any external buffers used to drive the control parently. The framebuffer can be shared (since GLINT has
signals, and then drives the framebuffer address. data a SFB interface). but this is likely to be a bottle neck if

10 and control lines to perform the memory access. shared between GLINTs.
FBReqN remains asserted while FBGntN is asserted. Broadcast. In some parallel systems each GLINT will get the

When FBGntN is negated. GLINT finishes any outstand- same (or mostly the same) primitive data and just render
ing memory cycles. drives the control lines inactive, those pixels assigned to it. It is very desirable that this data
negates FBselOEN and then tri-states the address. data

15
is written by the host only once, or fetched from the host

and control lines. then releases FBReqN. GLINT guar- address space once if DMA is being used. This presents
antees to release FBReqN within 500 ns of FBGntN two issues: Firstly the PCI bus does not have any concept
being negated of broadcasting to multiple devices. and secondly GLINT

does not have a dedicated FIFO status signal pin an
GLINT will not reassert FBReqN within 4 system clock external controller can use. Neither of these issues are

cycles (80 ns@ 50 MHz). 20 insurmountable. but will require hardware to solve.
Considerations for Board-Level Implementations However. if the application only uses a 'few' large texture

The following are some points to be noted when imple- mapped primitives so repeatedly sending or fetching the
menting a shared framebuffer design with a GLINT 300SX: parameters for each GLINT will not be a problem.

Some 2D Gill Accelerators such as the S3 Vision964. and To avoid problems with Antialiasing. Bitmasks for
GLINT use configuration resistors on the framebuffer 25 characters. or Line stipple, the area stipple table can be used
databus at reset. In this case care should be taken with to reserve scanlines to a processor.
the configuration setup where it effects read only reg- Parallel Configurations
isters inside either device. If conflicts exist that can not This section looks at some of the common ways of
be resolved by the board initialization software. then applying parallelism to the rendering operation. The list is
the conflicts should be resolved by isolating the two 30 not exhaustive and an interested reader is directed to the
devices from each other at reset so they can read the book by Whitman cited above. No one paradigm is best and
correct configuration information. This isolation need the choice is very application or market dependent.
only be done for the framebuffer databus lines that Frame Interleaving
cause problems; Frame Interleaving is where a GLINT works on frame n.

GLINT should be configured as the secondary controller 35 the next GLINT works on frame n+ 1. etc. Each GLINT does
when used with an S3 GUI accelerator. as the S3 everything for its own frame and the video is sourced from
devices can only be primary controllers; each GLINT's framebuffer in turn. This paradigm is perhaps

GLINT cannot be used on the daughter card interface as the simplest one with very little hardware overhead and none
described in the S3 documentation. because this gives of the above complications regarding antialiasing. block
no access to the PCI bus. A suitable PO bridge should 40 copies, bitrnasks and line stipples.
be used in a design with a PCI 2D GUI accelerator and This scheme only works when the image is double
GLINT so they can both have access to the PO bus; buffered (normal for simulation systems) and where the

The use of ribbon cable to carry the framebuffer signals increase in transport delay is acceptable. Transport delay is
between two PCI boards is not recommended, because the time it takes for a user to see a visual change after new
of noise problems and the extra buffering required 45 input stimulus to the system has occurred. With 4 GLINTs
would impact performance; this will be 4 frame times attributable to the rendering

The GLINT 300SX does not provide a way of sharing its system. plus whatever else the whole system adds.
localbuffer. The cost of this method is also one of the highest. as ALL

The 400TX also allows grabbing of live video into the the memory has to be duplicated. By contrast. the schemes
localbuffer and real-time texture mapping of that video into so where the screen is divided up can save depth and color
the framebuffer for video manipulation effects. buffer memory (but not texture memory).

Sequential frames will usually have very similar amounts
Alternative Board Embodiments with Multiple of rendering. unless there is a discontinuity in the viewing

Rendering Accelerator Chips position and/or orientation. so load balancing is generally
This technical note describes some system design issues 55 good.

on how multiple GLINT devices can be used in parallel to Frame Merging or Primitive Parallelism
achieve higher performance. The main driving force for Frame merging is a similar technique to frame interleav-
higher performance is the simulation market which. at the ing where each GLINT has a full local buffer and frame-
low end. demands somewhere between 25-30M texture buffer. In this case the primitives are distributed amongst the
mapped pixels per second 60 GLINTs and the resultant partial images composited using

There are some key points before we look at different the depth information to control which fragment from the
parallel organizations: multiple buffers is displayed in each pixel position.
To gain any benefit from running multiple GLINTs in GLINT has not been designed to share the local buffer

parallel. the overall system must be rendering bound. If (where the depth information is held) so the compositing is
the system is host bound or geometry bound. then adding 65 not readily supported. Also the composition frequently
in more GLINTs will not improve the systems perfor- needs to be done at video rate so requires some fast
mance. hardware.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
59 60

Alpha blending and Antialiasing presents some problems
but the bitmask. block copies and line stipple are easily
accommodated. Good load balancing depends on even dis
tribution of primitives. Not all primitives will take the same
amount of time to process so a round robin distribution 5

scheme. or a heuristic one with takes into account the
expected processing time for each primitive will be needed.
Screen Subdivision-Blocks

Router Unit Description
The Router Unit allows the order of some of the units to

be changed so that texturing can be done before or after the
depth test. Any texture operations will cause a loss in
performance over the same non-textured rendering. so it is
a good idea only to texture those pixels which pass all the
depth. stencil and GID tests. OpenGL defines the order in
which operations are to be performed on fragments as
texture. alpha test. stencil and then depth. It is very likely Here the screen is divided up into large contiguous

regions and a GLINT looks after each region. Primitives 10

which overlap between regions are sent to both regions and
scissor clipping used. Primitives contained wholly in one
region are ideally just sent to the one GLINT.

that in a typical scene many textured fragments will get
rejected by the depth test. say. which isn't the most effective
use of the texturing capacity. If the alpha test is disabled (or
cannot reject fragments) then OpenGL compatible semantics
are still maintained if the order is rearranged to be stencil.

The number of regions and the horizontal and/or vertical
division of the screen can be chosen as appropriate. but 15
horizontal bands are usually easier for the video hardware to
cope with. Each GLINT only needs enough local buffer and
frame buffer to cover the pixels in its own region. but texture
maps are duplicated in full. Block copies are a problem
when the block. or part block is moved between regions. Bit 20
masking and line stipples can be solved with some careful
clipping.

depth. texture and then alpha test.
The message stream can be re-configured into either of

the two orders using the RouterMode message. The reset
order is texture. then depth so a to be compatible with
OpenGL. Changing the pipeline order is self synchronising
so the user doesn't need to wait for the message stream to
empty first.
Implementation

This unit is divided into two sub-units: a switcher and a
multiplexer. FIG. SA shows how these are connected
together. The basic operation is as follows:

Load balancing is very poor in this paradigm. since most
of the scene complexity can be concentrated into one region.
Dynamically changing the size of the regions based on 25

expected scene complexity (maybe measured from the pre
vious frame) can alleviate the poor load balancing to some
extent.

When the Switcher sub-unit receives a Router Mode mes
sage it makes a note of the new order, forwards the Rou
terMode message on and blocks all further messages until it
receives a resume signal from the Multiplexer sub unit
When the resume signal is asserted the Switcher Screen Subdivision-Interleaved Scanlines

The interleave factor is every other n'h scanline where n
is the number of GLINTs. Vertical interleaves are possible.
but not supported by the GLINT rasterizer. Nearly all
primitives will overlap multiple scanlines so are ideally
broadcast to all GLINTs. Each GLINT will have different
start values for the rasterization and interpolation param
eters.

Each GLINT only needs enough local buffer and frame
buffer to cover the pixels in its own region. but texture maps
are duplicated in full.

Some block copies are a problem when the block is
moved between non nth scanlines. but horizontal moves are
available with any alignment. Bit masking can be solved
with some careful clipping. but line stipples have no easy
solution. Antialiasing is not normally a problem but with
GLINT 300SX there is no provision for sub scanline steps
as well as nth scanline steps. Load balancing is excellent in
this paradigm which is the main reason it features promi
nently in the literature.

Thus the simplest and lowest risk method of using mul
tiple GLINTs is Frame Interleaving. but if this is not an
option. e.g. because of the transport delay or the amount of
memory needed. then the next best choice is the Interleaved
Scanlin e.
Linkage

FIG. 2B shows how the units are connected together.
Some general points are:

The order of the units can be configured in two ways. The
most general order (Router. Colour DDA. Texture Units.
Fog Unit. Alpha Test. LB Rd. GID/ZJStencil, LB Wr,
Multiplexer) and will work in all modes of OpenGL.
However. when the alpha test is disabled it is much better to
do the Graphics ID. depth and stencil tests before the texture
operations rather than after. This is because the texture
operations have a high processing cost and this should not be
spent on fragments which are later rejected because of
window. depth or stencil tests.

30 re-configures the message paths according to the new order
and un-blocks the message stream so it starts to flow again.

When the Multiplexer sub-unit receives the RouterMode
message it re-configures the message paths according to the
new order and asserts the resume signal to the Switcher. The

35 RouterMode message is consumed. The unit order is con
trolled using the RouterMode message. It uses the O-bit of
the passed message to indicate if the processing order is:

40 Bit 0=0
BitO=l

Texture Depth
Depth Texture

When the order is TextureDepth (the default after reset) the
message routing is done according to FIG. SB. When the

45 order is Depth Texture the message routing is done according
to FIG. SC.

Disclosed Embodiments

Among the disclosed classes of preferred embodiments,
50 there is provided: A method for processing graphics data

through a data path comprising the steps of: (a) receiving a
routing command from a data bus input; (b) stalling further
input from said data bus input until previous data has exited
said data path; (c) resuming said input from said data bus

55 input; (d) if said routing command has a first value, then
performing a first set of graphics processes on said data. and
then performing a second set of graphics processes on said
data; (e) if said routing command has a second value.
thenperforming said second set of graphics processes on said

6(1 data. and thenperforming said first set of graphics processes
on said data. wherein some portion of said data may be
eliminated by said first or second sets of graphics process
according to the results of said processes; wherein steps (d)
and (e) are repeated until a new routing command is

65 received; wherein said first set of graphics processes
requires a longer processing time than said second set of
graphics processes.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
61

Among the disclosed classes of preferred embodiments.
there is also provided: A method for processing graphics
data through a data path comprising the steps of: (a) receiv
ing a routing command from a data bus input; (b) stalling
further input from said data bus input until previous data has
exited said data path: (c) resuming said input from said data
bus input; (d) if said routing command has a first value,
then performing a set of texturing processes on said data, and
thenperforming a set of pixel elimination processes on said
data; (e) if said routing command has a second value.
thenperforrning said set of pixel elimination processes on
said data, and thenperforming said set of texturing processes
on said data, wherein some portion of said data may be
eliminated by said set of pixel elimination processes accord
ing to the results of said processes; wherein steps (d) and (e)
are repeated until a new routing command is received;
wherein said first set of graphics processes requires a longer
processing time than said second set of graphics processes.

62
Among the disclosed classes of preferred embodiments,

there is also provided: A pipelined graphics processing
device, comprising:a switching device connected to a data
bus input and configured to route graphics data received on

5 said data bus according to instruction data received on said
data bus; a multiplexing device connected to said switching
device and to a data bus output; a first processing block
connected and configured to receive said graphics data from
said switching device and pass processed graphics data to

10 said multiplexing device; anda second processing block
connected and configured to receive said graphics data from
said switching device and pass processed graphics data to
said multiplexing device; wherein said switching device
routes said graphics data according to a first data path,

15 wherein said graphics data is processed by said first pro
cessing block and then by said second processing block, or
a second data path. wherein said graphics data is processed
by said second processing block before said first processing

Among the disclosed classes of preferred embodiments,
there is also provided: A method for rendering graphics data 20
comprising the steps of: (a) receiving a routing command
from a data bus input; (b) stalling further input from said
data bus input until previous data has exited said data path;

block. according to said instruction data.
Among the disclosed classes of preferred embodiments.

there is also provided: A pipelined graphics processing
device, comprising: a routing device connected to a data bus
input and data bus output and configured to route graphics
data received on said data bus according to instruction data (c) resuming said input from said data bus input; (d) if said

routing command has a first value, thenperforrning a set of
texturing processes on said data, and thenperforming a set of
pixel elimination processes on said data; (e) if said routing
command has a second value, thenperforming said set of
pixel elimination processes on said data, and thenperforrning
said set of texturing processes on said data, wherein some
portion of said data may be eliminated by said set of pixel
elimination processes according to the results of said pro
cesses; (f) rendering said data and writing the results to a
memory; (g) displaying the contents of said memory;
wherein steps (d) and (e) are repeated until a new routing
command is received;wherein said set of texturing processes
requires a longer processing time than said set of pixel
elimination processes.

25 received on said data bus; a first processing block connected
and configured to receive said graphics data from said
routing device and pass processed graphics data back to said
routing device; anda second processing block connected and
configured to receive said graphics data from said routing

30 device and pass processed graphics data back to said routing
device; wherein said routing device routes data according to
a first data path, wherein said graphics data is processed by
said first processing block and then by said second process
ing block. or a second data path, wherein said graphics data

35 is processed by said second processing block before said
first processing block, according to said instruction data.

Among the disclosed classes of preferred embodiments,
there is also provided: A graphics processing subsystem.,
comprising: at least four functionally distinct processing

40 units, each including hardware elements which are custom
ized to perform a rendering operation which is not per
formed by at least some others of said processing units; at
least some ones of said processing units being connected to
operate asynchronously to one another; a frame buffer.

Among the disclosed classes of preferred embodiments,
there is also provided: A method for processing graphics
data through a data path comprising the steps of: (a) receiv
ing a routing command from a data bus input; (b) stalling
further input from said data bus input until previous data has
exited said data path; (c) resuming said input from said data
bus input; (d) if said routing command has a first value,
thenreading said graphics data from said data bus input;
performing a color DDA process on said data;performing a
texturing process on said data;performing an alpha test on
said data; if the data has passed the previous test, then
performing a graphics ID test on said data; if the data has
passed the previous tests, then performing a stencil test on
said data;if the data has passed the previous tests, then
performing a depth test on said data; and if the data has
passed the previous tests, then writing said data to a local
bus; (e) if said routing command has a second value,
thenreading said graphics data from said data bus input;
performing a graphics ID test on said data;if the data has
passed the previous test, then performing a stencil test on
said data; if the data has passed the previous tests, then
performing a depth test on said data; if the data has passed 60
the previous tests, then performing a color DDA process on
said data; if the data has passed the previous tests. then
performing a texturing process on said data; if the data has
passed the previous tests. then performing an alpha test on
said data; if the data has passed the previous tests. then 65
writing said data to a local bus; wherein steps (d) and (e) are
repeated until a new routing command is received.

45 connected to be accessed by at least one of said processing
units;said processing units being mutually interconnected in
a pipeline relationship. with at least some successive ones of
said processing units being interconnected through a FIFO
buffer; and wherein at least one said processing unit is

50 connected to look downstream, in said pipeline relationship,
past the immediately succeeding one of said processors; and
wherein at least two of said processing units may be dynami
cally reordered in said pipeline relationship; whereby the
duty cycle of said processors is increased while permitting

55 use of a reduced depth for said FIFO.

Modifications and Variations

As will be recognized by those skilled in the art. the
innovative concepts described in the present application can
be modified and varied over a tremendous range of
applications. and accordingly the scope of patented subject
matter is not limited by any of the specific exemplary
teachings given.

The foregoing text has indicated a large number of
alternative implementations. particularly at the higher
levels, but these are merely a few examples of the huge
range of possible variations.

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
63

For example. the preferred chip context can be combined
with other functions. or distributed among other chips. as
will be apparent to those of ordinary skill in the art

For another example. the described graphics systems and 5
subsystems can be used. in various adaptations. not only in
high-end PC's. but also in workstations. arcade games. and
high-end simulators.

For another example, the described graphics systems and
subsystems are not necessarily limited to color displays. but 10

can be used with monochrome systems.

For another example. the described graphics systems and
subsystems are not necessarily limited to displays, but also
can be used in printer drivers. 15

What is claimed is:
I. A method for processing graphics data through a data

path comprising the steps of:

(a) receiving a routing command from a data bus input; 20

(b) stalling further input from said data bus input until
previous data has exited said data path;

(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

25
performing a first set of graphics processes on said data.

and then
performing a second set of graphics processes on said

data;

(e) if said routing command has a second value, then
performing said second set of graphics processes on

said data. and then

30

performing said first set of graphics processes on said
data. wherein some portion of said data is selectively
eliminated by said first or second sets of graphics 35
process according to the results of said processes;

wherein steps (d) and (e) are repeated until a new routing
command is received;

wherein said first set of graphics processes requires a
longer processing time than said second set of graphics 40
processes.

2. The method of claim I. wherein said first set of graphics
processes comprises the steps of:

reading said graphics data from said data bus input;
performing a color DDA process on said data;

performing a texturing process on said data; and
performing an alpha test on said data.

45

3. The method of claim I. wherein said second set of
graphics processes comprises the step of if the data has so
passed all previous tests. then performing a graphics ID test
on said data.

4. The method of claim I. wherein said second set of
graphics processes comprises the step of if the data has
passed the previous tests. then performing a stencil test on 55
said data.

5. The method of claim I. wherein said second set of
graphics processes comprises the steps of if the data has
passed the previous tests. then performing a depth test on
said data. 60

6. The method of claim I. wherein step (d) comprises
steps according to the OpenGL standard.

7. The method of claim I. wherein step (b) is performed
by a switcher connected at said data bus input.

8. The method of claim I. wherein a multiplexer at an 65
output of said data path indicates when said data path is clear
and step (c) can begin.

64
9. A method for processing graphics data through a data

path comprising the steps of:
(a) receiving a routing command from a data bus input;
(b) stalling further input from said data bus input until

previous data has exited said data path;
(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

performing a set of texturing processes on said data.
and then

performing a set of pixel elimination processes on said
data;

(e) if said routing command has a second value. then
performing said set of pixel elimination processes on

said data. and then
performing said set of texturing processes on said data.

wherein some portion of said data is selectively
eliminated by said set of pixel elimination processes
according to the results of said processes;

wherein steps (d) and (e) are repeated until a new routing
command is received;

wherein said first set of graphics processes requires a
longer processing time than said second set of graphics
processes.

IO. A method for rendering graphics data comprising the
steps of:

(a) receiving a routing command from a data bus input;
(b) stalling further input from said data bus input until

previous data has exited said data path;
(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

performing a set of texturing processes on said data.
and then

performing a set of pixel elimination processes on said
data;

(e) if said routing command has a second value. then
performing said set of pixel elimination processes on

said data, and then
performing said set of texturing processes on said data,

wherein some portion of said data is selectively
eliminated by said set of pixel elimination processes
according to the results of said processes;

(f) rendering said data and writing the results to a
memory;

(g) displaying the contents of said memory;
wherein steps (d) and (e) are repeated until a new routing

command is received;
wherein said set of texturing processes requires a longer

processing time than said set of pixel elimination
processes.

ll. A method for processing graphics data through a data
path comprising the steps of:

(a) receiving a routing command from a data bus input;
(b) stalling further input from said data bus input until

previous data has exited said data path;
(c) resuming said input from said data bus input;
(d) if said routing command has a first value. then

reading said graphics data from said data bus input;
performing a color DDA process on said data;
performing a texturing process on said data;
performing an alpha test on said data;
if the data has passed the previous test. then performing

a graphics ID test on said data;
if the data has passed the previous tests. then perform

ing a stencil test on said data;

APPENDIX O

Microsoft Corp. Exhibit 1005

5.798.770
65

if the data has passed the previous tests. then perform
ing a depth test on said data; and

if the data has passed the previous tests. then writing
said data to a local bus;

(e) if said routing command has a second value. then
reading said graphics data from said data bus input;
performing a graphics ID test on said data;
if the data has passed the previous test. then performing

a stencil test on said data;

5

66
19. A pipelined graphics processing device. comprising:

a routing device connected to a data bus input and data
bus output and configured to route graphics data
received on said data bus according to instruction data
received on said data bus;

if the data has passed the previous tests. then perform- IO

ing a depth test on said data;

a first processing block connected and configured to
receive said graphics data from said routing device and
pass processed graphics data back to said routing
device; and

a second processing block connected and configured to
receive said graphics data from said routing device and
pass processed graphics data back to said routing
device;

if the data has passed the previous tests. then perform
ing a color DDA process on said data;

if the data has passed the previous tests. then perform
ing a texturing process on said data;

if the data has passed the previous tests. then perform
ing an alpha test on said data;

if the data has passed the previous tests. then writing
said data to a local bus;

15 wherein said routing device routes data according to a first
data path. wherein said graphics data is processed by
said first processing block and then by said second
processing block. or a second data path. wherein said

wherein steps (d) and (e) are repeated until a new routing 20

command is received.

graphics data is processed by said second processing
block before said first processing block, according to
said instruction data.

12. The method of claim 1L wherein step (d) comprises
steps according to the OpenGL standard

20. A graphics processing subsystem. comprising:

13. The method of claim 11. wherein step (b) is performed
by a switcher connected at said data bus input. 25

at least four functionally distinct processing units. each
including hardware elements which are customized to
perform a rendering operation which is not performed
by at least some others of said processing units; at least 14. The method of claim 11. wherein a multiplexer at said

local bus indicates when said data path is clear and step (c)
can begin.

15. A pipelined graphics processing device, comprising:
a switching device connected to a data bus input and

configured to route graphics data received on said data
bus according to instruction data received on said data
bus;

30

some ones of said processing units being connected to
operate asynchronously to one another;

a frame buffer. connected to be accessed by at least one of
said processing units;

a multiplexing device connected to said switching device 35
and to a data bus output;

said processing units being mutually interconnected in a
pipeline relationship. with at least some successive
ones of said processing units being interconnected
through a FIFO buffer;

and wherein at least one said processing unit is connected
to look downstream, in said pipeline relationship, past
the immediately succeeding one of said processors;

and wherein at least two of said processing units are
selectively dynamically reordered in said pipeline rela
tionship;

a first processing block connected and configured to
receive said graphics data from said switching device
and pass processed graphics data to said multiplexing
device; and

a second processing block connected and configured to
receive said graphics data from said switching device
and pass processed graphics data to said multiplexing
device;

wherein said switching device routes said graphics data
according to a first data path, wherein said graphics
data is processed by said first processing block and then
by said second processing block. or a second data path,
wherein said graphics data is processed by said second
processing block before said first processing block.
according to said instruction data.

16. The device of claim 15. wherein said first data path
processes said graphics data according to the OpenGL
standard

17. The device of claim 15. wherein said switching device
halts all input data until the current data path is clear before
switching data paths.

18. The device of claim 15. wherein said multiplexing
device is configured to determine when the current data path
is clear and to allow said switching device to switch data
paths.

40

whereby the duty cycle of said processors is increased
while permitting use of a reduced depth for said FIFO.

21. The graphics processing subsystem of claim 20,
45 wherein said processing units include a texturing unit.

22. The graphics processing subsystem of claim 20.
wherein said processing units include a scissoring unit.

23. The graphics processing subsystem of claim 20.
wherein said processing units include a memory access unit

50 which reads and writes a local buffer memory.
24. The graphics processing subsystem of claim 20.

wherein at least some ones of said processing units include
internally paralleled data paths.

25. The graphics processing subsystem of claim 20.
55 wherein all of said processing units are integrated into a

single integrated circuit.

60

26. The graphics processing subsystem of claim 20.
wherein all of said processing units, but not said frame
buffer. are integrated into a single integrated circuit.

* * * * *

APPENDIX O

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

APPENDIX P

Microsoft Corp. Exhibit 1005

Visualization of Large Terrains in Resource-Limited Computing

Environments

Boris Rabinovich Craig Gotsman

Computer Science Department
Technion - Israel Institute of Technology

Haifa 32000, Israel
[borisr|gotsman]@cs.technion.ac.il

Abstract

We describe a software system supporting interactive visualization
of large terrains in a resource-limited environment, i.e. a low-end
client computer accessing a large terrain database server through a
low-bandwidth network. By “large”, we mean that the size of the
terrain database is orders of magnitude larger than the computer
RAM. Superior performance is achieved by manipulating both ge-
ometric and texture data at a continuum of resolutions, and, at any
given moment, using the best resolution dictated by the CPU and
bandwidth constraints. The geometry is maintained as a Delaunay
triangulation of a dynamic subset of the terrain data points, and the
texture compressed by a progressive wavelet scheme.

A careful blend of algorithmic techniques enables our system
to achieve superior rendering performance on a low-end computer
by optimizing the number of polygons and texture pixels sent to
the graphics pipeline. It guarantees a frame rate depending only
on the size and quality of the rendered image, independent of the
viewing parameters and scene database size. An effic ent paging
scheme minimizes data I/O, thus enabling the use of our system in
a low-bandwidth client/server data-streaming scenario, such as on
the Internet.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; D.4.4 [Operating Systems]:
Communications Management—Network Communication.
Keywords: Terrain rendering, level-of-detail, interactive graphics

1 Introduction

Terrain visualization is an important component of many civilian
and military applications [10, 3]. The input to the terrain visualiza-
tion problem is usually a large Digital Terrain Map (DTM), consist-
ing of elevation data sampled on a regular grid, and corresponding
aerial and/or satellite texture data, which is mapped onto the recon-
structed terrain surface. The output is rendered images of the terrain
surface, usually as part of a “fly hrough” sequence.

The advent of the World-Wide-Web suggests the running of
this type of application over the Internet, in a client/server sce-
nario. The server is a very large remote database, accessed by the

client, usually a low-end computer, over a narrow-bandwidth line
(3 KByte/sec is typical for the contemporary Internet). The two
bottlenecks that have to be overcome are the bandwidth in deliver-
ing relevant terrain data from the server to the client, and the CPU
power required at the client for rendering this data.

The key to eff cient terrain rendering is eff cient online manipu-
lation of both the geometric and texture data, especially when the
scene database at the server is orders of magnitude larger that the
size of client system RAM. Naive terrain rendering algorithms con-
vert each DTM cell (bounded by four adjacent grid points) into two
3D triangles, and render (send through the graphics pipeline) all
such triangles in a region determined by the viewing frustum. They
also map the texture data at its highest resolution onto these poly-
gons. This is a very ineffic ent procedure, as for low pitch angles,
the number of these triangles and texture pixels (texels) may be ex-
tremely large. Each individual triangle projection to image space is
very small, and many texels may be condensed to one image pixel,
contributing negligibly to the image. One remedy to this prob-
lem, adopted in a number of works over the past few years (e.g.
[8]) is to maintain the scene data at a number of discrete levels-
of-detail. Since terrain areas at large viewing distances project to
small image areas, there is no point rendering them in full detail.
At any given moment during the animation, the appropriate level-
of-detail is used to render the image. To do this effectively, pieces
of the scene must be taken from multiple levels (foreground areas
from a high-detail version, and background areas from a low-detail
version), requiring methods to “stitch” together pieces of differ-
ent models in a continuous fashion, so that there are no holes or
breaks along the seams. This has proven to be a major problem
for the geometric data, since there usually is no topological corre-
lation between the different levels of detail. De Berg and Dobrint
[1], Cohen-Or and Levanoni [5], and Lindstrom et al. [12] have
provided partial solutions to the stitching problem.

In this paper we use a different approach to maintaining the
terrain geometry, proposed independently by Klein and Huttner
[11] and Delepine [6]. The geometry is treated in a continuous-
resolution fashion. We do not maintain multiple geometric models
(at different levels of detail), rather continuously update one model
online to represent in an optimal way the projection of the terrain
contained in the viewing frustum. As a result, the number of poly-

APPENDIX R

Microsoft Corp. Exhibit 1005

gons in the approximation is more or less constant, independent of
the viewing parameters (for a f xed frame rate). For the texture,we
employ a progressive wavelet compression scheme [2], which en-
ables the extraction of texture at a continuum of resolutions from
arbitrary prefi es of the encoded bit stream.

Our ultimate goal is to render any terrain image in time propor-
tional to the image resolution (in pixels), and not to the scene com-
plexity, number of DTM points in the viewing frustrum, texture
resolution, etc. We are motivated by the (simple) observation that
an image of fi ed resolution can contain only a bounded amount
of information, therefore any algorithm rendering such an image
should not use more than a bounded number of polygons and tex-
els. Such algorithms are called output-sensitive. Most algorithms
are not output-sensitive, and in order that they be such, require care-
ful design. Our system contains a careful blend of techniques, some
borrowed from computational geometry, which together achieve a
high degree of output sensitivity, enabling adequate performance in
a limited-resource environment.

Since one server may be accessed simultaneously by a large
number of clients, is is crucial to minimize the amount of work the
server performs per client. If this load is minimized, the server will
be scalable, able to support a virtually unlimited number of clients.
We adhere to this principle throughout our implementation.

Using these methods, we have developed a client application
achieving terrain visualization at interactive rates on a low-end SGI
(O�)workstation, accessing a server database over a network with
bandwidth comparable to the Internet. This paper describes the ar-
chitecture and algorithms incorporated into our system.

2 System Overview

The large terrain scene resides on the server disk, partitioned into
geometry and texture tiles of f xed size. A raw geometry tile con-
tains a matrix of elevation heights, and a texture tile a matrix of
texels. Tiling schemes are standard in terrain visualization appli-
cations (e.g. [4]). The server processes requests for geometry and
texture data received from remote clients. In a preprocessing step
at the server, applied independently to each tile (thus enabling a
scene consisting of an unlimited number of tiles), the DTM points
are assigned “grades” related to their importance in approximating
the terrain surface. These grades are obtained from the simplifica-
tion algorithm of Heckbert and Garland [9]. Using these grades
as a third dimension, the DTM points in each tile are organized
into a 3D octree, which will enable effic ent answers to future geo-
metric queries. The client maintains online a geometry cache con-
taining DTM points from a small subset of the server’s geometry
tiles. Even from these tiles, only the relevant upper levels of the
corresponding octrees are imported to the client. Which levels are
relevant is determined on the f y by the client.

At any given moment, a subset of the geometry cache points are
maintained at the client in a dynamic Delaunay triangulation, our
primary geometric data structure. To maintain the triangulation, we
use the algorithms of Devillers, Meiser and Teillaud [7] for eff cient
insertion and deletion into a 2D Delaunay triangulation. Delaunay
triangulations are commonly considered to be suitable for terrain

visualization purposes. A DTM point deserves to be in the triangu-
lation if its grade is greater than a threshold, which is proportional
to the distance of the point from the viewpoint. Section 3 elaborates
on the details of how we handle the geometry.

The texture data is maintained at the server in tiles, compressed
using the progressive wavelet scheme of Buccigrossi and Simon-
celli [2]. This scheme compresses the data to approximately 30%
of its raw size with negligble loss, and, more important, allows the
decoding of the texture data from any prefi of the bit stream. Nat-
urally, using more bits will result in a higher quality result. Client
requests for texture data at a given resolution result in the streaming
of the prefi of minimal length suffic ng for the required resolution.
Section 4 describes our handling of the texture in more detail.

The client graphics pipeline, sometimes supported in hardware,
is fed relevant triangles and texels. This pipeline takes care of the
basic rendering operations, e.g. perspective projection, hidden sur-
face elimination, and texture mapping. The main issues we ad-
dress in our implementation are the minimization of data transmit-
ted from the server to the client caches and subsequently fed to the
graphics pipeline.

Typical triangulations and rendered images generated by our
client system are shown in Fig. 2.

3 Geometry Processing

3.1 Data Reduction

A typical DTM is supplied on a regular grid, and this data is usu-
ally highly redundant. If the surface is to be approximated by a
piecewise-linear 2D function (a collection of planar polygons), a
small number of large polygons suffic to approximate the surface
well in planar regions. On the other hand, terrain areas with high
curvature, such as ridges and ravines, require a large number of
small polygons to achieve a satisfactory approximation (see Fig.
2). By this argument, is it obvious that some DTM points are more
important than others. Heckbert and Garland [9] have described
a procedure which starts off with a small number of DTM points
(usually the four corners of the DTM coverage), and incremen-
tally adds points whose contribution to the surface approximation
is most significan . The contribution of a point to the approxima-
tion is quantif ed by its vertical distance from the piecewise-linear
approximation built with all previous points. The larger this dis-
tance - the more important the point is. The incremental procedure
is done effic ently using a priority queue mechanism.

We use the Heckbert and Garland procedure at the server as a
preprocessing operation on each tile to assign each DTM point a
numeric “grade” - precisely the vertical distance described in the
previous paragraph. This grade is stored with the point, and used
later to determine online whether the point is required for the ter-
rain approximation. This decision is based on the grade and the
point’s distance from the viewpoint. To facilitate eff cient decision-
making, we build a 3D octree of the DTM points, the grade serving
as the third dimension. The grid structure of the points in the XY
plane facilitates a f xed quadtree structure in this plane, which, in
turn, facilitates the organization of the data stored in the tile in a

APPENDIX R

Microsoft Corp. Exhibit 1005

record of fi ed length. This hierarchical spatial data structure will
enable effic ent range reporting of points.

3.2 View Frustum Culling

The f rst step in frame generation is to determine which DTM tiles
are relevant to the current view. In principle, if the terrain surface
were planar, the intersection of the viewing frustum with the terrain
surface (the view footprint) would be a trapezoid, whose four vertex
positions could be easily computed (see Fig. 3). Since the terrain
surface is not planar, the footprint terrain is bounded by a region
which is the union of two trapezoids, formed on horizontal planes
whose elevations coincide with the minimal and maximal elevations
in the projection area, repectively.

The footprint is “scan-converted” by the client to determine
which DTM tiles intersect it, and what resolution data (which levels
of the octree) are required. This data is requested from the server.
For every tile received, the octree structure of its points enables
to eff ciently determine which tile points are actually contained in
the footprint. Effic ency is achieved by pruning off large sets of
the points corresponding to branches of the octree close to its root.
The remaining points are then tested, as described in Section 3.3,
to determine if they are required for the terrain approximation and
rendering.

3.3 Continuous Resolution

Each DTM point has a grade quantifying its importance in the ter-
rain approximation. This grade is traded off with distance from the
viewpoint. In other words, more distant points are considered less
significan . In practice, the client considers a virtual cone centered
at the viewpoint, and calculates which DTM points in the geome-
try cache have a grade positioning them inside the cone (see Fig.
3). We would like to be able to determine this set of points in time
proportional mainly to their number (and not to the total number of
points in the viewing frustum). In computational-geometric termi-
nology, this is called output-sensitive range reporting. We achieve
this again using the tile octree. The complexity of the range report-
ing procedure is O�

p
N � k�, where N is the number of points in

the viewing frustum, and k the number of points in the answer to
the query ([13], p.79). Using this virtual cone also implies that a
small change in the viewpoint induces a small change in the DTM
points used for the rendering, thus ensuring the temporal continuity
of the rendered images.

3.4 Caching

Portions of geometry tiles are imported from the server on demand
and stored in the client cache. Only the neccesary upper levels of
the tile octree are imported, possible due to the f xed structure of
the octree. Hence a typical snapshot of the client cache contents
would reveal a few (foreground) tiles from which almost the en-
tire data content has been read, and many (background) tiles with a
very sparse content. A prediction mechanism, based on the view-
point trajectory, enables the loading of tiles in advance, resulting in
smooth streaming of geometry from server to client.

3.5 Dynamic Delaunay Triangulation

The piecewise linear surface induced by the Delaunay triangulation
of the 2D projection of the DTM points is generally considered the
most suitable for surface approximation. This is because the mini-
mal angle in the triangulation is maximized, eliminating long “sliv-
ery” triangles. Hence, the client constantly maintains a Delaunay
triangulation of the DTM points contributing to the approximation
of the terrain in the footprint. Many O�n log n� time algorithms
exist for the Delaunay triangulation of n points, but not many are
able to effic ently support update of the triangulation upon insertion
or deletion of points. We use the algorithm of DeVillers et al [7],
which inserts points in O�log n� and deletes points in O�log log n�

average time using a hierarchical data structure. Care must be taken
to slightly perturb the spatial positions of the DTM points, other-
wise degeneracies in the Delaunay triangulation and unstable nu-
merics may occur.

At the client, points which were in the footprint corresponding
to the previous frame, and are no longer in the current footprint, are
removed from the triangulation - the main geometric data structure
maintained online by the client. New points which were previously
not in the footprint, and now are, are inserted into the triangulation.
The turnover of points in the triangulation depends on the viewpoint
velocity. Theoretically, very large velocities could cause successive
frames to see totally different regions of the terrain, requiring the
formation of an entirely different triangulation between frames. In
practice, however, this does not occur. Typically, 99% of the foot-
print areas overlap between successive frames.

Pseudo-code of the f ow of control in the client while rendering
a single frame appears in Fig. 1.

4 Texture Processing

The texture data must also be manipulated at multiple resolutions,
since image foreground pixels contain high resolution texels, and
image background pixels contain low resolution texels. The reso-
lution of the texels contributing to any given image pixel is essen-
tially a function of the viewing distance to that scene point. The
server texture database is also organized in tiles, storing the texels
compressed to approximately 30% of their original volume, using
a progressive wavelet scheme. This results in a bit stream sorted by
importance.

A typical low-end client computer contains a texture buffer of
limited capacity (e.g. 1024x1024 pixels) with a pyramid struc-
ture on top of it. By supplying appropriate texture coordinates for
the rendered triangle vertices, the graphics hardware/software maps
texels from the texture buffer to the image pixels in the interior of
the projected triangles. Each level of the texture pyramid contains
texels representing the same terrain area, at decreasing resolutions.
However, since not all texels, especially not at all resolutions, will
contribute to the terrain image (see Fig. 4), there is no need to
import them from the server. We optimize network bandwidth by
loading only those texture tiles which intersect the view footprint,
at the appropriate resolution, if they are not yet loaded. By this
we mean we calculate the number of encoded bits of the texture
stream required to reconstruct the texture tile at the appropriate res-

APPENDIX R

Microsoft Corp. Exhibit 1005

olution (the lower the required resolution, the less bits required). In
any case, we use any bits available at rendering time, even though
there might be less than required (if the network temporarily slows
down). Which tiles are relevant can be easily determined from the
geometry of the footprint. Occasionally, it is neccesary to shift the
contents of the texture buffer, due to the movement of the view-
point.

5 Experimental Results

We have implemented the procedures described in Sections 2 - 4
as a prototype client/server system, the client running on a R5000
SGIO� , at 180MHz with 64MB RAM, based on the OpenGL API,
and an X/Motif GUI. This client accesses the scene database server
over a 3 KByte/sec network. The main parameters influenc ng the
overall performance of the system are the size of the visualization
window, i.e. the number of rendered image pixels, and the fl ght
velocity. This performance is measured in the client frame rate, and
the quality of the imagery delivered at that frame rate. There is an
obvious tradeoff between the two, which is controlled by two inde-
pendent “resolution” parameters, one for geometry, and one for tex-
ture. Increasing these parameters increases the number of triangles
and/or texture bytes used for the rendering process, thus increasing
the image quality, but decreasing the frame rate, due to higher ren-
dering and bandwidth overhead. There is, however, a point beyond
which the resolution parameter saturates, i.e. the marginal increase
in image quality is insignif cant.

The geometric resolution parameter, namely, the average number
of triangles rendered per image pixel, is controlled by the angle
of the cone used for culling DTM points, as described in Section
3.3. The smaller the angle, the narrower the cone, admitting less
DTM points into the Delaunay triangulation, in turn implying less
triangles for the same number of image pixels (see also Fig. 3).
The texture resolution is controlled by specifying the fraction of
the texture tile bit stream imported and decoded to texels for the
foreground image pixels. The resolution of the background image
pixels is derived from this.

Keeping the resolution parameters and velocity fi ed causes the
system to maintain a f xed frame rate. Increasing the velocity would
slow down the system, as the turnover of points in the Delaunay
triangulation and turnover of texture tiles in the texture buffer in-
creases, incurring more CPU and bandwidth overhead. By trial and
error, it seems that reasonable image quality is obtained at a geo-
metric resolution of 0.06 triangles and 0.5 texture bytes per output
image pixel. Any more than that imposes an unneccesary load on
the system, slowing it down, and any less than that results in poor
quality images (see Fig. 2). A telltale sign of insuff cient geometric
resolution (triangles per image pixel) is if there are “jumps” (also
known as “popping”) in the terrain surface during animation, due to
the triangles being too large and crude. A telltale sign of insuff cient
texture resolution (texels per image pixel) are blurred images.

Fig. 5 shows the speed/quality tradeoffs we are able to achieve
with our system at different “fl ght” velocity parameters, when
one of the geometric/texture resolution parameters is f xed, and
the other varied. Velocity is measured as the percentage of non-

overlapping area between footprints corresponding to successive
frames. The figu e shows that approximately 3 frames/sec are
achievable with reasonable quality, when the image size is f xed at
300x400 pixels, and fly ng at an average (3%) velocity. Higher ve-
locities result in a larger turnover of geometry and texture, slowing
down the system frame rate. Our system accesses a scene database
server covering the northern part of Israel, containing a total of ���

DTM points and ��
� texels. The client uses a geometry cache of

size 2MB RAM, and texture buffer of 1024x1024 texels.

6 Conclusion

In the long-term, our techniques will support client/server terrain
visualization applications over the Internet. A large scene database
resides at a central server site, and is accessed (perhaps simultane-
ously) by a number of low-end clients over the Internet for visual-
ization purposes. This application requires tight optimization of the
available network bandwidth and client rendering power.

The ever-increasing user appetite for larger and richer geomet-
ric scenes has forced computer graphics practitioners to develop
output-sensitive rendering algorithms whose computational com-
plexity is not sensitive to the complexity of the input scene, rather
to the complexity of the output image. We have implemented this
for the terrain visualization application by rendering at geometric
and texture level-of-detail which changes continuously along the
spatial and temporal dimensions. Our algorithm satisfie almost all
of the f ve requirements from such an algorithm, as formulated in
[12].

Use of other sophisticated data optimization techniques, such as
occlusion culling [14], in which large portions of the geometry in-
side the view frustrum are effic ently culled because they are invis-
ible, can further reduce the rendering load.

Temporal aliasing sometimes occurs in our implementation. The
use of morphing techniques to alleviate this, such as that of Cohen-
Or and Levanoni [5], are not directly applicable, again due to the
dynamic nature of our Delaunay triangulation. Alternatives are be-
ing investigated.

Acknowledgements

We thank Olivier DeVillers for providing code implementing the al-
gorithm of [7], Paul Heckbert for code implementing the algorithm
of [9], and R. Buccigrossi for code implementing the algorithm of
[2].

This research was supported by the Technion V.P.R. Fund - Pro-
motion of Sponsored Research.

APPENDIX R

Microsoft Corp. Exhibit 1005

References

[1] M. De Berg and K. Dobrindt. On levels of detail in terrains. In
11th Annual ACM Symposium on Computational Geometry.
ACM, 1994.

[2] R.W. Buccigrossi and E.P. Simoncelli. Progressive wavelet
image coding based on a conditional probability model. In
Proceedings of Int’l Conf. Acoustics Speech and Signal Pro-
cessing. IEEE, 1997.

[3] D. Cohen and C. Gotsman. Photorealistic terrain imaging and
fl ght simulation. IEEE Computer Graphics and Applications,
14(2):10–12, March 1994.

[4] D. Cohen-Or, U. Lerner, E. Rich, and V. Shenkar. A real-time
photo-realistic visual fly hrough. IEEE Transactions on Visu-
alization and Computer Graphics, 2(3):255–265, September
1996.

[5] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels
of detail in Delaunay triangulated terrain. In Proceedings of
Visualization ’96. IEEE Computer Society Press, 1996.

[6] T. Delepine. Online terrain level-of-detail. In Proceedings of
ITECH, 1997.

[7] O. Devillers, S. Meiser, and M.Teillaud. Fully dynamic De-
launay triangulation in logarithmic expected time per oper-
ation. Computational Geometry: Theory and Applications,
2:55–80, 1992.

[8] L. De Floriani. A pyramidal data structure for triangle-based
surface representation. IEEE Computer Graphics and Appli-
cations, 9(2):67–78, 1989.

[9] P. Heckbert and M. Garland. Fast polygonal approximation
of terrains and height fie ds. Technical Report CMU-CS-95-
181, School of Computer Science,Carnegie Mellon Univer-
sity,Pittsburg ,PA , 15213, 1995.

[10] K. Kaneda, F. Kato, E. Nakamae, T. Nishita, Tanaka, and No-
gushi. Three-dimensional terrain modeling and display for
environmental assessment. Computer Graphics (Proceedings
of SIGGRAPH’89), 23(3):207–214, 1989.

[11] R. Klein and T. Huttner. Simple camera-dependent approx-
imation of terrain surfaces for fast visualization and anima-
tion. In Proceedings of Visualization ’96 (late breaking top-
ics). IEEE Computer Society Press, 1996.

[12] P. Lindstrom, D. Koller, L.F. Hodges W. Ribarsky, N. Faust,
and G. Turner. Real-time, continuous level of detail rendering
of height fie ds. In Proceedings of SIGGRAPH ’96, 1996.

[13] M. Shamos and F. Preparata. Computational Geometry.
Springer, 1989.

[14] O. Sudarsky and C. Gotsman. Output-sensitive visibility algo-
rithms for dynamic scenes with applications to virtual reality.
Computer Graphics Forum, 15(3):249–258, 1996 (Proceed-
ings of Eurographics, Poitiers, France, August 1996).

1. Calculate view frustum and bound terrain footprint by rectangle.

2. Scan-convert the rectangle and for each geometry tile in it:

(a) If the tile is not in the footprint, but was in it in the previous
frame, then:

� Remove all its points from the Delaunay triangulation.

(b) If the tile is in the footprint, but was not in the previous frame,
then:

� Request tile from server at appropriate resolution.

� Search in tile octree for appropriate voxels.

� Insert the points from these voxels in Delaunay triangu-
lation.

(c) If tile is in the footprint and was also in the previous frame,
then:

� Search in tile octree for appropriate voxels.

� Find difference from previous frame.

� Insert (Delete) difference points in (from) Delaunay tri-
angulation.

3. For each texture tile in the bounding rectangle:

(a) If the texture tile is in the footprint, but was not in the previous
frame, then:

� Calculate required resolution.

� Request the appropriate bit stream pref x from the server.

(b) If texture tile is in the footprint, and was also in the previous
frame, then:

� Calculate its resolution.

� If this resolution is higher than that of the previous frame,
then request more of the bit stream from the server.

4. For every tenth frame check the actual performance (frames/sec)
against the required performance and adjust the geometric and/or tex-
ture resolution parameters to achieve that performance.

5. Render image.

Figure 1: Pseudo-code of the client algorithm.

APPENDIX R

Microsoft Corp. Exhibit 1005

(a) (b)

Figure 2: Terrain meshes (Delaunay triangulated) and views rendered at different data resolutions. (a) High resolution: 0.08 triangles/pixel
and 1 texels/pixel. (b) Equivalent quality at lower resolution: 0.02 triangles and 0.8 texels/pixels. Note how more DTM points are used in
foreground areas or areas of high curvature.

APPENDIX R

Microsoft Corp. Exhibit 1005

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Viewpoint

DTM tile

view footprint (trapezoid)

relevant DTM tiles

DTM point not rendered

DTM point rendered at low resolution

DTM point rendered at high resolution

Figure 3: Determining the DTM points of the rendered Delaunay triangulation for a given view at different geometric resolutions. The
narrow cone represents a low-resolution view, and the wide one a high resolution. The “elevations” of the DTM points are their precalculated
grades. All points within the footprint with grade above the relevant cone are included in the triangulation. This range-reporting operation is
performed effic ently using an octree structure on the points in each tile. Note that more points are admitted in the view foreground than in
its background.

rendered image

level 1

texture pyramid

level 3 level 4

level 2

Figure 4: The contribution of individual tiles in the texture buffer to the rendered image corresponding to the marked footprint. Those tiles
not contributing need not reside in the texture buffer at all, and are not streamed and decoded from the server.

APPENDIX R

Microsoft Corp. Exhibit 1005

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

frames/sec

tr
ia

ng
le

s/
pi

xe
l

1%

3%

5%

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

frames/sec

te
xt

ur
e

by
te

s/
pi

xe
l

1%

3%

5%

(a) (b)

Figure 5: Speed/resolution tradeoff in our prototype visualization client while rendering 300x400 pixel images on a R5000 SGIO�, accessing
the scene database server over a 3 KByte/sec network. (a) Varying only geometric resolution. The texture resolution is f xed to 0.5 compressed
texture bytes per pixel. (b) Varying only texture resolution. The geometric resolution is f xed to 0.06 triangles/pixel. The individual curves
correspond to different fl ght velocities, which inf uence the turnover of data in system caches and bandwidth overhead.

APPENDIX R

Microsoft Corp. Exhibit 1005

PROC E:' ED I N GS

V i s u a I i za t i o n ' 9 7

October 19 - 24,1997

Phoenix,, Arizona

Sponslored by
IEEE Computer Society Technical Committee on Computer Graphics

In cooperation with
ACMSIGGRAPH

APPENDIX R

Microsoft Corp. Exhibit 1005

The Association for Computing Machinery
1515 Broadway

New York, NY 10036

Copyright 0 1997 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the lim-
its of US copyright law, for private use of patrons, those articles in this volume that cany a code at the bottom of the first page,
provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Other copying, reprint or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors’
opinions and,” in the interests of timely dissemination, are published as presented and without change. Their inclusion in this pub-
lication does not necessarily constitute endorsement by the editors, the IEEE Computer Society Press, or the Institute of Electrical
and Electronics Engineers, Inc.

ACM ISBN: 1-58113-011-2
ACM Order Number: 428978

ACM Order Department
P.O. Box 12114
Church Street Station
New York, NY 10257 USA
Tel: +1-212-626-0500
Fax: +1-212-944- 13 18
E-mail: orders@acm.org

ACM European Service Center
108 Cowley Road
Oxford OX4 1JF
United Kingdom
E-mail: acm-europe@acm.org

IEEE Computer Society Press Order Number: PRO8262
IEEE Catalog Number: 97CB36155

IEEE ISBN - Library Binding: 0-8186-8263-9
IEEE ISBN - Microfiche: 0-8186-8264-7

IEEE ISBN: 0-8186-8262-0

ISSN: 1070-2385

Additional copies may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264 USA
Tel: +1-714-821-8380
Fax: +1-714-821-4641
E-mail: cs.books @computer.org

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331 USA
Tel: +1-908-981-1393
Fax: +1-908-981-9667
E-mail: mis.custserv@computer.org

IEEE Computer Society
13, Avenue de 1’Aquilon
B-1200 Brussels
Belgium
Tel: +32-2-770-2198
Fax: +32-2-770-8505
E-mail; euro.ofc @computer.org

IEEE Computer Society
Ooshima Building
2- 19- 1 Minami- Aoyama
Minato-ku, Tokyo 107
Japan
Tel: +81-3-3408-3118
Fax: +81-3-3408-3553
E-mail: tokyo.ofc@computer.org

APPENDIX R

Microsoft Corp. Exhibit 1005

mailto:orders@acm.org
mailto:acm-europe@acm.org
mailto:computer.org
mailto:mis.custserv@computer.org
mailto:computer.org
mailto:tokyo.ofc@computer.org

Table of Contents
Preface . 11
Conference Committee . 13
Programcommittee . 14

Keynote Address: Global Tele-Immersion . 15
Tom DeFanti

Capstone Address: Dissolving Descartes: Perception and the Construction of Reality . 16
Mark Pesce

Papers

Session 2B: Volume Rendering I

A Comparison of Normal Estimation Schemes . 19
Torsten Mollel; Raghu Machiraju. Klaus Muellel; Roni Yagel
ColorPlate . 525

Collision Detection for Volumetric Models . 27
Taosong He. Arie Kaufman
ColorPlate . 526

The VSBUFFER: Visibility Ordering of Unstructured Volume Primitives by Polygon Drawing 35
Riidiger Westermann. Thomas Ertl
ColorPlate . 527

Volume Rendering of Abdominal Aortic Aneurysms . 43
Roger C . Tam. Christopher G . Healey. Bops Flak. Fkter Cahoon
ColorPlate . 528

Session 3A: Vector Fields

Auralization of Streamline Vorticity in Computational Fluid Dynamics Data . 5 1

Singularities in Nonuniform Tensor Fields . 59

Visualization of Higher Order Singularities in Vector Fields . 67
Gerik Scheuermann. Hans Hagen. Heinz Kriigel; Martin Menzel. Alyn Rockwood

Principal Stream Surfaces . 75
Wenli Cui. Pheng-Ann Heng
ColorPlate . 529

Christopher R . Volpe. Ephraim F? Glinert

Yingmei Lavin. Yuval Levy. Lambertus Hesselink

Session 3B: Terrain Visualization

ROAMing Terrain: Real-time Optimally Adapting Meshes . 81

Visualization of Height Field Data with Physical Models and Texture Photomapping . 89

Mark A . Duchaineau. Murray Wolinsky. David E . Sigeti. Mark C . Millel; Charles Aldrich.
Mark B . Mineev- Weinstein

Dru Clark. Michael J . Bailey
ColorPlate . 530

Visualization of Large Terrains in Resource-Limited Computing Environments . 95

Building and Traversing a Surface at Variable Resolution . 103

Boris Rabinovitch. Craig Gotsman

Leila De Floriani. Paola Magillo. Enrico Puppo
ColorPlate . 531

APPENDIX R

Microsoft Corp. Exhibit 1005

Session 4A: Information Visualization

Multivariate Visualization Using Metric Scaling

Color Plate S32

Visualizing the Behavior of Higher Dimensional Dynamical Systems . .119

Color Plate 533

Displaying Data in Multidimensional Relevance Space with 2D Visualization Maps

ColorPlates34

Pak Chung Wong, R. Daniel Bergeron

Ruiner Wegenkittl, Helwig Loffelmann, Eduard Groller

. 127
Jackie Assa, Daniel Cohen-Or, Tova Milo

Session 4B: MultiResolution

Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data . .135
Yong Zhou, Baoquan Chen, Arie Kaufman
ColorPlate . 535

Haar Wavelets over Triangular Domains with Applications to Multiresolution Models for Flow over a Sphere . .143
Gregory M. Nielson, Il-Hong Jung, Junwon Sung
ColorPlate . S36

Wavelet-based Multiresolutional Representation of Computational Field Simulation Datasets1S1

ColorPlate . 537

*err

Zhifan Zhu, Raghu Machiraju, Bryan Fry, Robert J. Moorhead

Session 5A: User Interfaces & Interaction

Dynamic Color Mapping of Bivariate Qualitative Data 159
Penny Rheingans
ColorPlate . . .538

TheCon tourSpec t~m .
Chandrajit L. Bajaj, Valerio Pascucci, Daniel R. Schikore
ColorPlate .

Constrained 3D Navigation with 2D Controllers ,175
Andrew J. Hanson, Eric A. Wernert
Color Plate 540

Session 5B: Volume Rendering II

Two-Phase Perspective Ray Casting for Interactive Volume Navigation . .183
Martin L. Brady, Kenneth Jung, HT Nguyen, Thinh Nguyen
ColorPlate . S41

Accelerated Volume Rendering Using Homogenous Region Encoding . .19 1
Jason L. Freund, Kenneth Sloan
ColorPlates . S42-S43

An Anti-Aliasing Technique for Splatting . .197
J. Edward Swan II, Klaus Muellel; Torsten Mollel; Naeem ShareeJ Roger A. Crawfis, Roni Yagel
ColorPlate . S44

6

APPENDIX R

Microsoft Corp. Exhibit 1005

Session 6A: Zsosurfaces

A Topology Modifying Progressive Decimation Algorithm . 205
William J. Schroeder
ColorPlate . 545

Efficient Subdivision of Finite-Element Datasets into Consistent Tetrahedra . 213
Guy Albertelli. Roger A . Crawfis

Interval Volume Tetrahedrization . 221
Gregory M . Nielson. Junwon Sung
ColorPlate . 546

Computing the Separating Surface for Segmented Data . 229
Gregory M . Nielson. Richard Franke

Session 6B: Visualization Systems

Application-Controlled Demand Paging for Out-of-Core Visualization . 235
Michael B . Cox. David Ellsworth
ColorPlate . 547

GADGET Goal-Oriented Application Design Guidance for Modular Visualization Environments 245
Issei Fujishiro. Yuriko Takeshima. Yoshihiko Ichikawa. Kyoko Nakamura
ColorPlate . 548

Collaborative Visualization . 253
Jason D . Wood. Helen Wright. Ken W Brodlie
Colorplate . 549

VizWiz: A Java Applet for Interactive 3D Scientific Visualization on the Web . 261
Cherilyn K . Michaels. Michael J . Bailey
ColorPlate . 550

Session 7A: Data Extraction

Image Synthesis From A Sparse Set of Views . 269
Qian Chen. Gkrard G . Medioni
ColorPlate . 551

Virtualized Reality: Constructing Time-Varying Virtual Worlds from Real World Events 277
Peter W Randez PJ Narayanan, Takeo Kanade
ColorPlate . 552

Extracting Feature Lines from 3D Unstructured Grids . 285

I/O Optimal Isosurface Extraction . 293

Kwan-Liu Ma, Victoria L . Interrante
ColorPlate . 553

E-Jen Chiang, Claudio I: Silva
ColorPlate . 554

'7

APPENDIX R

Microsoft Corp. Exhibit 1005

Session 7B: Flow Visualization

CAVEvis: Distributed Real-Time Visualization of Time-Varying Scalar and Vector Fields Using the

Vzjendra S . Jaswal
ColorPlate . 555

CAVE Virtual Reality Theater . 301

Fast Oriented Line Integral Convolution for Vector Field Visualization via the Internet 309

UFLIC: A Line Integral Convolution Algorithm For Visualizing Unsteady Flows

Rainer Wegenkittl, Eduard Groller

. 317
Han-Wei Shen, David L . Kao
ColorPlate . 556

The Motion Map: Efficient Computation of Steady Flow Animations . 323
Bruno Jobard. Wilfrid Lefer

Session SA: Compression

Integrated Volume Compression and Visualization . 329
Tzi-cker Chiueh. Chuan-kai Yang. Taosong He. Hanspeter P$stel; Arie Kaujkan
ColorPlate . 557

Multiresolution Compression And Reconstruction . 337

ColorPlate . 558
Oliver G . Staadt. Markus H . Gross. Roger Weber h

Optimized Geometry Compression for Real-time Rendering . 347
Mike M . Chow
ColorPlate . 559

Session 9A: Polygonal Surfaces

Architectural Walkthroughs Using Portal Textures . 355
Daniel G . Aliaga. Anselmo A . Lustra
ColorPlate . 560

Repairing CADModels . 363
Gill Barequet. Subodh Kumar
ColorPlate . 561

Dynamic Smooth Subdivision Surfaces for Data Visualization . 371
Chhandomay Mandal. Hong Qin. Baba C . Vemuri
ColorPlate . 562

Session IOA: Surface Simplification

Smooth Hierarchical Surface Triangulations . 379
Tran S . Gieng. Bernd Hamann. Kenneth I . Joy. Gregory L . Schlussmann. Isaac J . Trotts

The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data 387
Roberto Grosso. Christoph Liirig. Thomas Ertl
ColorPlate . 563

Simplifying Polygonal Models Using Successive Mappings . 395
Jonathan Cohen. Dinesh Manocha. Marc Olano
ColorPlate . 564

Controlled Simplification of Genus for Polygonal Models . 403
Jihad El.Sana. Amitabh Varshney
ColorPlate . 565

8

APPENDIX R

Microsoft Corp. Exhibit 1005

Case Studies

Session 2C: Flow Visualization

Vortex Identification . Applications in Aerodynamics . 413
David Kenwright. Robert Haimes
ColorPlate . 566

exVis 1 . 0. Developing a Wind Tunnel Data Visualization Tool . 417
Samuel P. Uselton
ColorPlate . 567

Strategies for Effectively Visualizing 3D Flow with Volume LIC . 421
Vctoria Interrante. Chester Grosch
ColorPlate . 568

Towards Efficient Visualization Support for Single-block and Multi-block Datasets . 425
Jean M . Favre
ColorPlate . 569

Session 3C: Medical Visualization

Brushing Techniques for Exploring Volume Dataset!; . 429
Pak Chung Wong. R . Daniel Bergeron
ColorPlate . 570

Interactive Volume Rendering for Virtual Colonoscopy . 433
Suya You. Lichan Hong. Ming Wan. Kittiboon Junya.prasert. Arie Kaufman. Shigeru Mumki.
Yong Zhou. Mark W a . Zhengrong Liang
ColorPlate . 571

DNA Visual And Analytic Data Mining . 437
Patrick Hoffman. Georges Grinstein. Kenneth Marx. Ivo Grosse. Eugene Stanley
ColorPlate . 572

An Interactive Cerebral Blood Vessel Exploration System . 443
Anna Puig. Dani Tost. Isabel Navazo
ColorPlate . 573

Session 5C: Educational Visualization

Instructional Software for Visualizing Optical Phenomena . 447
David C . Banks. John 7: Foley. Kiril N . Mdimce. Ming-Hoe Kiu
ColorPlate . 574

WildfireVisualization . 451
James Ahrens. Patrick McCormick. James Bossert. Jon Reisnel; Judith Winterkamp
ColorPlate . 575

Visualization of Geometric Algorithms in an Electronic Classroom . 455
Maria Shneerson. Ayellet Tal
ColorPlate . 576

9

APPENDIX R

Microsoft Corp. Exhibit 1005

Session 6C: Web & Virtual Reality

Collaborative Augmented Reality: Exploring Dynamical Systems . .459
Anton Fuhrmann, Helwig Loffelmann, Dieter Schmalstieg
ColorPlate . 577

Visualizing Customer Segmentations Produced by Self Organizing Maps . .463
Holly Rushmeiel; Richard Lawrence, George Almasi
ColorPlate . S78

Pearls Found on the way to the Ideal Interface for Scanned-probe Microscopes . .467
Russell M. Taylor II, Jun Chen, Shoji Okimoto, Noel Llopis-Artime, Vernon L. Chi, Fredrick P: Brooks JK,
Mike Falvo, Scott Paulson, Pichet Thiansanthaporn, Dave Glick, Sean Washburn, Richard Superfine
ColorPlate . 579

ViewingIGESFilesThroughVRML . 471
Jed Marti

Session 7C: Engineering and Computational Geometry

Visualization of Plant Growth . .475
Jeremy J. Loomis, Xiuwen Liu, Zhaohua Ding, Kikuo Fujimura, Michael L. Evans, Hideo Ishikawa
ColorPlate . 580

Determination of Unknown Particle Charges in a Thunder Cloud Based Upon Detected Electric Field Vectors .479
Dun Drake, Thomas Simpson, Larry Smithmeil; Penny Rheingans
ColorPlate . 581

'+-

Interactive Visualization of Aircraft and Power Generation Engines . .483
Lisa Sobierajski Avila, William Schroeder
ColorPlate . S82,

Efficient visualization of physical and structural properties in crash-worthiness simulations ,487
Sven Kuschfeldt, Thomas Ertl, Michael Holzner
ColorPlate . 5 8 ~

Session 9B: Math & Statistics

Visualization of Rotation Fields . ,491
Mark A. Livingston
ColorPlate . 5 8 ~

Isosurface Extraction Using Particle Systems . ,495
Patricia Crossno, Edward Angel
ColorPlate . 585

A Visualization of Music . ,499
Sean M. Smith, Glen M. Williams

Panels

Terascale Visualization: Approaches, Pitfalls, and Issuesso7
Organizers: Carol Huntel; Roger Crawfis
Panelists: Michael Cox, Roger Crawfis, Bernd Hamann, Chuck Hansen, Carol Huntel; Mark Miller

Information Exploration Shootout Project and Benchmark Data Sets:
Evaluating how Visualization does in Analyzing Real-World Data Analysis ProblemsS 11 1
Organizer: Georges Grinstein
Panelists: Sharon Laskowski, Bernice Rogowitz, Graham Wills

Perceptual Measures for Effective Visualizations . .5 115
Organizer: Holly Rushmeier
Panelists: Harrison Barrett, Penny Rheingans, Sam Uselton, Andrew Watson

AuthorIndex . . . SI19
Cover Image Credits . 521
Color Plate Section 523

10

APPENDIX R

Microsoft Corp. Exhibit 1005

User Datagram Protocol (UDP) (Windows CE 5.0)

Send Feedback
UDP provides a connectionless, unreliable transport service. Connectionless means that a communication session between hosts is not established before exchanging data. UDP is often
used for one-to-many communications that use broadcast or multicast IP datagrams. The UDP connectionless datagram delivery service is unreliable because it does not guarantee data
packet delivery and no notification is sent if a packet is not delivered. Also, UDP does not guarantee that packets are delivered in the same order in which they were sent.

Because delivery of UDP datagrams is not guaranteed, applications using UDP must supply their own mechanisms for reliability, if needed. Although UDP appears to have some limitations,
it is useful in certain situations. For example, Winsock IP multicasting is implemented with UDP datagram type sockets. UDP is very efficient because of low overhead. Microsoft networking
uses UDP for logon, browsing, and name resolution. UDP can also be used to carry IP multicast streams for applications such as Microsoft® Windows Media®.

See Also
Core Protocol Stack for IPv4 | User Datagram Protocol (UDP) and Name Resolution for IPv4

Send Feedback on this topic to the authors

Feedback FAQs

© 2006 Microsoft Corporation. All rights reserved.

© 2015 Microsoft

Windows CE 5.0

Page 1 of 1User Datagram Protocol (UDP) (Windows CE 5.0)

4/28/2015https://msdn.microsoft.com/en-us/library/ms885773.aspx

APPENDIX S

Microsoft Corp. Exhibit 1005

