Apple Inc.
APLI110
001 U.S. Patent No. 8,724,622

002

003

004

TCP/IP Network Administration, Second Edition
by Craig Hunt

Copyright © 1998, 1992 Craig Hunt. All rights reserved.
Printed in the United States of America,

Published by O'Reilly & Associates, Inc,, 101 Mosris Street, Sebastopol, CA 95472,
Editor: Mike Loukides
Update Edifor: Gigi Estabrook

Production Editor: Nicole Gipson Arigo

Primting Histery:
August 1992: First Edition.
March 1993 Minor corrections.
September 1993: Minor corrections.
January 1994: Minor corrections.
May 1994: Minor corrections.
January 1998: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java™ Series is a trademark of O'Reilly & Associates, Inc. The assaciation
of a crab and the topic of TCP/IP is 4 trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps,

While every precaution has been taken in the preparation of this book, the publisher assumes

no responsibility for errors or omissions, or for damages resuliing from the use of the
information contained herein.

ISBN: 1-56592-322-7 [6/01]
iM]

005

In this chapter:
e TCP/IP and the
Internet

s A Data
Communications
Model

» TCP/IP Protocol
Architecture

* Network Access Layer Overview Of TC P / IP

e Internet Layer
s Transport Layer
* Application Layer

o Summanry

All of us who use a UNIX desktop system—engineers, educators, scientists, and
business people—have second careers as UNIX system administrators. Networking
these computers gives us new tasks as network administrators.

Network administration and system administration are two different jobs. System
administration tasks such as adding users and doing backups are isolated to one
independent computer system. Not so with network administration. Once you
place your computer on a network, it interacts with many other systems. The way
you do network administration tasks has effects, good and bad, not only on your
system but on other systems on the network. A sound understanding of basic net-
work administration benefits everyone,

Networking computers dramatically enhances their ability to communicate—and
most computers are used more for communication than computation. Many main-
frames and supercomputers are busy crunching the numbers for business and sci-
ence, but the number of such systems pales in comparison to the millions of
systems busy moving mail to a remote colleague or retrieving information from a
remote repository. Further, when you think of the hundreds of millions of desktop
systems that are used primarily for preparing documents to communicate ideas
from one person to another, it is easy to see why most computers can be viewed
as communications devices,

The positive impact of computer communications increases with the number and
type of computers that participate in the network. One of the great benefits of
TCP/IP is that it provides interoperable communications between all types of hard-
ware and all kinds of operating systems.

006

2 Chapter 1: Overview of TCP/IP

This book is a practical, step-by-step guide to configuring and managing TCP/IP
networking software on UNIX computer systems, TCP/IP is the software package
that dominates UNIX data communications. It is the leading communications soft-
ware for UNIX local area networks and enterprise intranets, and for the foundation
of the worldwide Internet.

The name “TCP/IP” refers to an entire suite of data communications protocols. The
suite gets its name from two of the protocols that belong to it: the Transmission
Control Protocol and the Internet Protocol. Although there are many other proto-
cols in the suite, TCP and IP are certainly two of the most important,

The first part of this book discusses the basics of TCP/IP and how it moves data
across a network. The second part explains how to configure and run TCP/IP on a
UNIX system. Let's start with a little history.

TCP/IP and the Internet

In 1969 the Advanced Research Projects Agency (ARPA) funded a research and
development project to create an experimental packet-switching network. This
network, called the ARPANET, was built to study techniques for providing robust,
reliable, vendor-independent data communications. Many techniques of modern
data communications were developed in the ARPANET.

The experimental ARPANET was so successful that many of the organizations
attached to it began to use it for daily data communications. In 1975 the ARPANET
was converted from an experimental network to an operational network, and the
responsibility for administering the network was given to the Defense Communica-
tions Agency (DCA)." However, development of the ARPANET did not stop just
because it was being used as an operational network; the basic TCP/IP protocols
were developed after the ARPANET was operational,

The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and
all hosts connected to the network were required to convert to the new protocols.
To ease this conversion, DARPA! funded Bolt, Beranek, and Newman (BBN) to
implement TCP/IP in Berkeley (BSD) UNIX. Thus began the marriage of UNIX and
TCP/IP.

About the time that TCP/IP was adopted as a standard, the term Internet came
into common usage. In 1983, the old ARPANET was divided into MILNET, the

* DCA has since changed its name to Defense Information Systems Agency (DISA).

1 During the 1980s and early 1990s, ARPA, which is part of the U.S. Department of Defense, was
named Defense Advanced Research Projects Agency (DARPA). Currently known as ARPA, the agency is
again preparing 1o change its name 1o DARPA. Whether it is known as ARPA or DARPA, the agency and
its mission of funding advanced research has remained the same.

007

TCP/IP and the Internet 3

unclassified part of the Defense Data Network (DDN), and a new, smaller
ARPANET. “Internet” was used to refer to the entire network: MILNET plus
ARPANET.

In 1985 the National Science Foundation (NSF) created NSFNet and connected it to
the then-existing Internet. The original NSFNet linked together the five NSF super-
computer centers. It was smaller than the ARPANET and no faster—56Kbps.
Nonetheless, the creation of the NSFNet was a significant event in the history of
the Internet because NSF brought with it a new vision of the use of the Internet.
NSF wanted to extend the network to every scientist and engineer in the United
States. To accomplish this, in 1987 NSF created a new, faster backbone and a
three-tiered network topology that included the backbone, regional networks, and
local networks.

In 1990, the ARPANET formally passed out of existence, and the NSFNet ceased its
role as a primary Internet backbone network in 1995. Still, today the Internet is
larger than ever and encompasses more than 95,000 networks worldwide. This
network of networks is linked together in the United States at several major inter-
connection points:

¢ The three Network Access Points (NAPs) created by the NSF to ensure contin-
ued broad-based access to the Internet.

e The Federal Information Exchanges (FIXs) interconnect U.S. government net-
works.

e The Commercial Information Exchange (CIX) was the first interconnect specifi-
cally for commercial Internet Service Providers (ISPs).

e The Metropolitan Area Exchanges (MAEs) were also created to interconnect
commercial ISPs.

The Internet has grown far beyond its original scope. The original networks and
agencies that built the Internet no longer play an essential role for the current net-
work. The Internet has evolved from a simple backbone network, through a three-
tiered hierarchical structure, to a huge network of interconnected, distributed net-
work hubs. It has grown exponentially since 1983—doubling in size every year.
Through all of this incredible change one thing has remained constant: the Inter-
net is built on the TCP/IP protocol suite.

A sign of the network’s success is the confusion that surrounds the term internet.
Originally it was used only as the name of the network built upon the Internet
Protocol. Now internet is a generic term used to refer to an entire class of net-
works. An internet (lowercase “i”) is any collection of separate physical networks,
interconnected by a common protocol, to form a single logical network. The Inter-
net (uppercase “I”) is the worldwide collection of interconnected networks, which
grew out of the original ARPANET, that uses Internet Protocol (IP) to link the

008

4 Chapter 1: Overview of TCP/IP

various physical networks into a single logical network. In this book, both “inter-
net” and “Internet” refer to networks that are interconnected by TCP/IP.

Because TCP/IP is required for Internet connection, the growth of the Internet has
spurred interest in TCP/IP. As more organizations become familiar with TCP/IP,
they see that its power can be applied in other network applications. The Internet
protocols are often used for local area networking, even when the local network is
not connected to the Internet. TCP/IP is also widely used to build enterprise net-
works. TCP/IP-based enterprise networks that use Internet techniques and World
Wide Web tools to disseminate internal corporate information are called intranets.
TCP/IP is the foundation of all of these varied networks.

TCP/IP Features

The popularity of the TCP/IP protocols did not grow rapidly just because the pro-
tocols were there, or because connecting to the Internet mandated their use. They
met an important need (worldwide data communication) at the right time, and
they had several important features that allowed them to meet this need. These
features are:

e Open protocol standards, freely available and developed independently from
any specific computer hardware or operating system. Because it is so widely
supported, TCP/IP is ideal for uniting different hardware and software, even if
you don't communicate over the Internet.

e Independence from specific physical network hardware. This allows TCP/IP to
integrate many different kinds of networks. TCP/IP can be run over an Ether-
net, a token ring, a dial-up line, an FDDI net, and virtually any other kind of
physical transmission medium.

e A common addressing scheme that allows any TCP/IP device to uniquely
address any other device in the entire network, even if the network is as large
as the worldwide Internet.

e Standardized high-level protocols for consistent, widely available user services.

Protocol Standards

Protocols are formal rules of behavior. In international relations, protocols mini-
mize the problems caused by cultural differences when various nations work
together. By agreeing to a common set of rules that are widely known and inde-
pendent of any nation’s customs, diplomatic protocols minimize misunderstand-
ings; everyone knows how to act and how to interpret the actions of others.
Similarly, when computers communicate, it is necessary to define a set of rules to
govern their communications.

009

A Data Communications Model 5

In data communications these sets of rules are also called protocols. In homoge-
neous networks, a single computer vendor specifies a set of communications rules
designed to use the strengths of the vendor’s operating system and hardware
architecture. But homogeneous networks are like the culture of a single country—
only the natives are truly at home in it. TCP/IP attempts to create a heterogeneous
network with open protocols that are independent of operating system and archi-
tectural differences. TCP/IP protocols are available to everyone, and are developed
and changed by consensus—not by the fiat of one manufacturer. Everyone is free
to develop products to meet these open protocol specifications.

The open nature of TCP/IP protocols requires publicly available standards docu-
ments. All protocols in the TCP/IP protocol suite are defined in one of three Inter-
net standards publications. A number of the protocols have been adopted as
Military Standards (MIL STD). Others were published as Internet Engineering
Notes (IEN)—though the IEN form of publication has now been abandoned. But
most information about TCP/IP protocols is published as Requests for Comments
(RFCs). RFCs contain the latest versions of the specifications of all standard TCP/IP
protocols.” As the title “Request for Comments” implies, the style and content of
these documents is much less rigid than most standards documents. RFCs contain
a wide range of interesting and useful information, and are not limited to the for-
mal specification of data communications protocols.

As a network system administrator, you will no doubt read many of the RFCs your-
self. Some contain practical advice and guidance that is simple to understand.
Other RFCs contain protocol implementation specifications defined in terminology
that is unique to data communications.

A Data Communications Model

To discuss computer networking, it is necessary to use terms that have special
meaning. Even other computer professionals may not be familiar with all the terms
in the networking alphabet soup. As is always the case, English and computer-
speak are not equivalent (or even necessarily compatible) languages. Although
descriptions and examples should make the meaning of the networking jargon
more apparent, sometimes terms are ambiguous. A common frame of reference is
necessary for understanding data communications terminology.

An architectural model developed by the International Standards Organization
(ISO) is frequently used to describe the structure and function of data communica-
tions protocols. This architectural model, which is called the Open Systems Inter-
connect Reference Model (OSD, provides a common reference for discussing

* Interested in finding out how Internet standards are created? Read The Internet Standards Process,
RFC 1310.

010

6 Chapter 1: Overview of TCP/IP

communications. The terms defined by this model are well understood and widely
used in the data communications community—so widely used, in fact, that it is
difficult to discuss data communications without using OSI's terminology.

The OSI Reference Model contains seven layers that define the functions of data
communications protocols. Each layer of the OSI model represents a function per-
formed when data is transferred between cooperating applications across an inter-
vening network. Figure 1-1 identifies each layer by name and provides a short
functional description for it. Looking at this figure, the protocols are like a pile of
building blocks stacked one upon another. Because of this appearance, the struc-
ture is often called a stack or protocol stack.

Figure 1-1: The OSI Reference Model

A layer does not define a single protocol—it defines a data communications func-
tion that may be performed by any number of protocols. Therefore, each layer
may contain multiple protocols, each providing a service suitable to the function
of that layer. For example, a file transfer protocol and an electronic mail protocol
both provide user services, and both are part of the Application Layer.

011

A Data Communications Model 7

Every protocol communicates with its peer. A peer is an implementation of the
same protocol in the equivalent layer on a remote system; i.e., the local file trans-
fer protocol is the peer of a remote file transfer protocol. Peer-level communica-
tions must be standardized for successful communications to take place. In the
abstract, each protocol is concerned only with communicating to its peer; it does
not care about the layer above or below it.

However, there must also be agreement on how to pass data between the layers
on a single computer, because every layer is involved in sending data from a local
application to an equivalent remote application. The upper layers rely on the
lower layers to transfer the data over the underlying network. Data is passed down
the stack from one layer to the next, until it is transmitted over the network by the
Physical Layer protocols. At the remote end, the data is passed up the stack to the
receiving application. The individual layers do not need to know how the layers
above and below them function; they only need to know how to pass data to
them. Isolating network communications functions in different layers minimizes
the impact of technological change on the entire protocol suite. New applications
can be added without changing the physical network, and new network hardware
can be installed without rewriting the application software.

Although the OSI model is useful, the TCP/IP protocols don’t match its structure
exactly. Therefore, in our discussions of TCP/IP, we use the layers of the OSI
model in the following way:

Application Layer
The Application Layer is the level of the protocol hierarchy where user-
accessed network processes reside, In this text, a TCP/IP application is any
network process that occurs above the Transport Layer. This includes all of the
processes that users directly interact with, as well as other processes at this
level that users are not necessarily aware of.

Presentation Layer
For cooperating applications to exchange data, they must agree about how
data is represented. In OSI, this layer provides standard data presentation rou-
tines. This function is frequently handled within the applications in TCP/IP,
though increasingly TCP/IP protocols such as XDR and MIME perform this
function.

Session Layer
As with the Presentation Layer, the Session Layer is not identifiable as a sepa-
rate layer in the TCP/IP protocol hierarchy. The OSI Session Layer manages
the sessions (connection) between cooperating applications. In TCP/IP, this
function largely occurs in the Transport Layer, and the term “session” is not
used. For TCP/IP, the terms “socket” and “port” are used to describe the path
over which cooperating applications communicate.

012

8 Chapter 1: Overview of TCP/IP

Transport Layer
Much of our discussion of TCP/IP is directed to the protocols that occur in the
Transport Layer. The Transport Layer in the OSI reference model guarantees
that the receiver gets the data exactly as it was sent. In TCP/IP this function is
performed by the Transmission Control Protocol (TCP). However, TCP/IP
offers a second Transport Layer service, User Datagram Protocol (UDP), that
does not perform the end-to-end reliability checks.

Network Layer
The Network Layer manages connections across the network and isolates the
upper layer protocols from the details of the underlying network. The Internet
Protocol (IP), which isolates the upper layers from the underlying network
and handles the addressing and delivery of data, is usually described as
TCP/IP’s Network Layer.

Data Link Layer
The reliable delivery of data across the underlying physical network is han-
dled by the Data Link Layer. TCP/IP rarely creates protocols in the Data Link
Layer. Most RFCs that relate to the Data Link Layer discuss how IP can make
use of existing data link protocols.

Physical Layer
The Physical Layer defines the characteristics of the hardware needed to carry
the data transmission signal. Features such as voltage levels, and the number
and location of interface pins, are defined in this layer. Examples of standards
at the Physical Layer are interface connectors such as RS232C and V.35, and
standards for local area network wiring such as IEEE 802.3. TCP/IP does not
define physical standards—it makes use of existing standards.

The terminology of the OSI reference model helps us describe TCP/IP, but to fully
understand it, we must use an architectural model that more closely matches the
structure of TCP/IP, The next section introduces the protocol model we'll use to
describe TCP/IP.

TCP/IP Protocol Architecture

While there is no universal agreement about how to describe TCP/IP with a lay-
ered model, it is generally viewed as being composed of fewer layers than the
seven used in the OSI model. Most descriptions of TCP/IP define three to five
functional levels in the protocol architecture. The four-level model illustrated in
Figure 1-2 is based on the three layers (Application, Host-to-Host, and Network
Access) shown in the DOD Protocol Model in the DDN Protocol Handbook—
Volume 1, with the addition of a separate Internet layer. This model provides a
reasonable pictorial representation of the layers in the TCP/IP protocol hierarchy.

013

TCP/IP Protocol Architecture 9

Figure 1-2: Layers in the TCP/IP protocol architecture

As in the OSI model, data is passed down the stack when it is being sent to the
network, and up the stack when it is being received from the network. The four-
layered structure of TCP/IP is seen in the way data is handled as it passes down
the protocol stack from the Application Layer to the underlying physical network.
Each layer in the stack adds control information to ensure proper delivery. This
control information is called a header because it is placed in front of the data to
be transmitted. Each layer treats all of the information it receives from the layer
above as data and places its own header in front of that information. The addition
of delivery information at every layer is called encapsulation. (See Figure 1-3 for
an illustration of this.) When data is received, the opposite happens. Each layer
strips off its header before passing the data on to the layer above. As information
flows back up the stack, information received from a lower layer is interpreted as
both a header and data.

Each layer has its own independent data structures. Conceptually, a layer is
unaware of the data structures used by the layers above and below it. In reality,
the data structures of a layer are designed to be compatible with the structures
used by the surrounding layers for the sake of more efficient data transmission.
Still, each layer has its own data structure and its own terminology to describe that
structure.

Figure 1-4 shows the terms used by different layers of TCP/IP to refer to the data
being transmitted. Applications using TCP refer to data as a stream, while applica-
tions using the User Datagram Protocol (UDP) refer to data as a message. TCP calls
data a segment, and UDP calls its data structure a packet. The Internet layer views
all data as blocks called datagrams. TCP/IP uses many different types of

014

10 Chapter 1: Overview of TCP/IP

Application Layer

Internet Layer

Figure 1-3: Data encapsulation

underlying networks, each of which may have a different terminology for the data
it transmits. Most networks refer to transmitted data as packets or frames. In Figure
1-4 we show a network that transmits pieces of data it calls frames.

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Figure 1-4: Dala structures

Let's look more closely at the function of each layer, working our way up from the
Network Access Layer to the Application Layer.

015

Internet Layer 11

Network Access Layer

The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The
protocols in this layer provide the means for the system to deliver data to the
other devices on a directly attached network. It defines how to use the network to
transmit an IP datagram. Unlike higher-level protocols, Network Access Layer pro-
tocols must know the details of the underlying network (its packet structure,
addressing, etc.) to correctly format the data being transmitted to comply with the
network constraints, The TCP/IP Network Access Layer can encompass the func-
tions of all three lower layers of the OSI reference Model (Network, Data Link, and
Physical).

The Network Access Layer is often ignored by users. The design of TCP/IP hides
the function of the lower layers, and the better known protocols (IP, TCP, UDP,
etc.) are all higher-level protocols. As new hardware technologies appear, new
Network Access protocols must be developed so that TCP/IP networks can use the
new hardware. Consequently, there are many access protocols—one for each
physical network standard.

Functions performed at this level include encapsulation of IP datagrams into the
frames transmitted by the network, and mapping of IP addresses to the physical
addresses used by the network. One of TCP/IP's strengths is its universal address-
ing scheme, The IP address must be converted into an address that is appropriate
for the physical network over which the datagram is transmitted.

Two examples of RFCs that define network access layer protocols are:

e RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Eth-
ernet addresses

e RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Net-
works, which specifies how IP datagrams are encapsulated for transmission
over Ethernet networks

As implemented in UNIX, protocols in this layer often appear as a combination of
device drivers and related programs. The modules that are identified with network
device names usually encapsulate and deliver the data to the network, while sepa-
rate programs perform related functions such as address mapping.

Internet Layer

The layer above the Network Access Layer in the protocol hierarchy is the Internet
Layer. The Internet Protocol, RFC 791, is the heart of TCP/IP and the most impor-
tant protocol in the Internet Layer. IP provides the basic packet delivery service on
which TCP/IP networks are built. All protocols, in the layers above and below IP,

016

12 Chapter 1: Overview of TCP/IP

use the Internet Protocol to deliver data. All TCP/IP data flows through IP, incom-
ing and outgoing, regardless of its final destination.

Internet Protocol
The Internet Protocol is the building block of the Internet. Its functions include:

e Defining the datagram, which is the basic unit of transmission in the Internet
e Defining the Internet addressing scheme

s Moving data between the Network Access Layer and the Host-to-Host Trans-
port Layer

¢ Routing datagrams to remote hosts

e Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let's look at some of IP’s charac-
teristics. First, IP is a connectionless protocol. This means that IP does not
exchange control information (called a “handshake”) to establish an end-to-end
connection before transmitting data. In contrast, a connection-oriented protocol
exchanges control information with the remote system to verify that it is ready to
receive data before any data is sent. When the handshaking is successful, the sys-
tems are said to have established a connection. Internet Protocol relies on proto-
cols in other layers to establish the connection if they require connection-oriented
service.

IP also relies on protocols in the other layers to provide error detection and error
recovery. The Internet Protocol is sometimes called an unreliable protocol because
it contains no error detection and recovery code. This is not to say that the proto-
col cannot be relied on—quite the contrary. IP can be relied upon to accurately
deliver your data to the connected network, but it doesn’t check whether that data
was correctly received. Protocols in other layers of the TCP/IP architecture provide
this checking when it is required.

The datagram

The TCP/IP protocols were built to transmit data over the ARPANET, which was a
packet switching network. A packet is a block of data that carries with it the infor-
mation necessary to deliver it—in a manner similar to a postal letter, which has an
address written on its envelope. A packet switching network uses the addressing
information in the packets to switch packets from one physical network to
another, moving them toward their final destination. Each packet travels the net-
work independently of any other packet.

The datagram is the packet format defined by Internet Protocol. Figure 1-5 is a
pictorial representation of an IP datagram. The first five or six 32-bit words of the

017

Internet Layer 13

datagram are control information called the header. By default, the header is five
words long; the sixth word is optional. Because the header’s length is variable, it
includes a field called Internet Header Length (IHL) that indicates the header’s
length in words. The header contains all the information necessary to deliver the
packet.

Figure 1-5: IP datagram format

The Internet Protocol delivers the datagram by checking the Destination Address
in word 5 of the header. The Destination Address is a standard 32-bit IP address
that identifies the destination network and the specific host on that network. (The
format of IP addresses is explained in Chapter 2, Delivering the Data.) 1f the Desti-
nation Address is the address of a host on the local network, the packet is deliv-
ered directly to the destination. If the Destination Address is not on the local
network, the packet is passed to a gateway for delivery. Gateways are devices that
switch packets between the different physical networks. Deciding which gateway
to use is called routing. IP makes the routing decision for each individual packet.

Routing datagrams

Internet gateways are commonly (and perhaps more accurately) referred to as IP
routers because they use Internet Protocol to route packets between networks. In
traditional TCP/IP jargon, there are only two types of network devices—gateways
and hosts. Gateways forward packets between networks, and hosts don't. How-
ever, if a host is connected to more than one network (called a multi-homed bost),
it can forward packets between the networks. When a multi-homed host forwards
packets, it acts just like any other gateway and is considered to be a gateway.

018

14 Chapter 1: Overview of TCP/IP

Current data communications terminology makes a distinction between gateways
and routers,” but we'll use the terms gateway and IP router interchangeably.

Figure 1-6 shows the use of gateways to forward packets. The hosts (or end sys-
tems) process packets through all four protocol layers, while the gateways (or
intermediale systems) process the packets only up to the Internet Layer where the
routing decisions are made.

Figure 1-6: Routing through gateways

Systems can only deliver packets to other devices attached to the same physical
network. Packets from A7 destined for host C1 are forwarded through gateways
G1 and G2 Host A1 first delivers the packet to gateway G1, with which it shares
network A. Gateway GI delivers the packet to G2 over network B. Gateway G2
then delivers the packet directly to host €1, because they are both attached to net-
work C. Host A7 has no knowledge of any gateways beyond gateway G1. It sends
packets destined for both networks € and B to that local gateway, and then relies
on that gateway to properly forward the packets along the path to their destina-
tions. Likewise, host C7 would send its packets to G2, in order to reach a host on
network A, as well as any host on network B.

Figure 1-7 shows another view of routing. This figure emphasizes that the underly-
ing physical networks that a datagram travels through may be different and even
incompatible. Host A7 on the token ring network routes the datagram through
gateway G1, to reach host €7 on the Ethernet. Gateway GI forwards the data
through the X.25 network to gateway G2, for delivery to C1. The datagram tra-
verses three physically different networks, but eventually arrives intact at C1.

* In current terminology, a gateway moves data between different protocols and a router moves data
between different networks. So a system that moves mail between TCP/IP and OSI is a4 gateway, but a
traditional IP gateway is a router.

019

Internet Layer 15

-

AL

Al

:

Ethernet

Figure 1-7: Networks, gateways, and hosts

Fragmenting datagrams

As a datagram is routed through different networks, it may be necessary for the IP
module in a gateway to divide the datagram into smaller pieces. A datagram
received from one network may be too large to be transmitted in a single packet
on a different network. This condition occurs only when a gateway interconnects
dissimilar physical networks.

Each type of network has a maximum transmission unit (MTU), which is the
largest packet that it can transfer. If the datagram received from one network is
longer than the other network’s MTU, it is necessary to divide the datagram into
smaller fragments for transmission. This process is called fragmentation. Think of
a train delivering a load of steel. Each railway car can carry more steel than the
trucks that will take it along the highway; so each railway car is unloaded onto
many different trucks. In the same way that a railroad is physically different from a
highway, an Ethernet is physically different from an X.25 network; IP must break
an Ethernet's relatively large packets into smaller packets before it can transmit
them over an X.25 network.

The format of each fragment is the same as the format of any normal datagram.
Header word 2 contains information that identifies each datagram fragment and

020

16 Chapter 1: Overview of TCP/IP

provides information about how to re-assemble the fragments back into the origi-
nal datagram. The Identification field identifies what datagram the fragment
belongs to, and the Fragmentation Offset field tells what piece of the datagram this
fragment is. The Flags field has a “More Fragments” bit that tells IP if it has assem-
bled all of the datagram fragments.

Passing datagrams to the transport layer

When IP receives a datagram that is addressed to the local host, it must pass the
data portion of the datagram to the correct Transport Layer protocol. This is done
by using the protocol number from word 3 of the datagram header. Each Transport
Layer protocol has a unique protocol number that identifies it to IP, Protocol num-
bers are discussed in Chapter 2.

You can see from this short overview that IP performs many important functions.
Don't expect to fully understand datagrams, gateways, routing, IP addresses, and
all the other things that IP does from this short description. Each chapter adds
more details about these topics. So let's continue on with the other protocol in the
TCP/IP Internet Layer.

Internet Control Message Protocol

An integral part of IP is the Internet Control Message Protocol (ICMP) defined in
RFC 792. This protocol is part of the Internet Layer and uses the IP datagram deliv-
ery facility to send its messages. ICMP sends messages that perform the following
control, error reporting, and informational functions for TCP/IP:

Flow control
When datagrams arrive too fast for processing, the destination host or an inter-
mediate gateway sends an ICMP Source Quench Message back to the sender.
This tells the source to stop sending datagrams temporarily.

Detecting unreachable destinations
When a destination is unreachable, the system detecting the problem sends a
Destination Unreachable Message to the datagram’s source. If the unreachable
destination is a network or host, the message is sent by an intermediate gate-
way. But if the destination is an unreachable port, the destination host sends
the message. (We discuss ports in Chapter 2.)

Redirecting routes
A gateway sends the ICMP Redirect Message to tell a host to use another gate-
way, presumably because the other gateway is a better choice. This message
can be used only when the source host is on the same network as both gate-
ways. To better understand this, refer to Figure 1-7. If a host on the X.25 net-
work sent a datagram to G1, it would be possible for G7 to redirect that host

021

Transport Layer 17

to G2 because the host, G, and G2 are all attached to the same network. On
the other hand, if a host on the token ring network sent a datagram to G, the
host could not be redirected to use G2 This is because G2 is not attached to
the token ring.

Checking remote hosls
A host can send the ICMP Echo Message to see if a remote system’s Internet
Protocol is up and operational. When a system receives an echo message, it
replies and sends the data from the packet back to the source host. The ping
command uses this message.

Transport Layer

The protocol layer just above the Internet Layer is the Host-to-Host Transpor
Layer. This name is usually shortened to Transport Layer. The two most important
protocols in the Transport Layer are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). TCP provides reliable data delivery service with end-to-
end error detection and correction. UDP provides low-overhead, connectionless
datagram delivery service. Both protocols deliver data between the Application
Layer and the Internet Layer. Applications programmers can choose whichever ser-
vice is more appropriate for their specific applications.

User Datagram Protocol

The User Datagram Protocol gives application programs direct access to a data-
gram delivery service, like the delivery service that IP provides. This allows appli-
cations to exchange messages over the network with a minimum of protocol
overhead.

UDP is an unreliable, connectionless datagram protocol. As noted previously,
“unreliable” merely means that there are no techniques in the protocol for verify-
ing that the data reached the other end of the network correctly. Within your com-
puter, UDP will deliver data correctly. UDP uses 16-bit Source Port and
Destination Port numbers in word 1 of the message header, to deliver data to the
correct applications process. Figure 1-8 shows the UDP message format.

Why do applications programmers choose UDP as a data transport service? There
are a number of good reasons. If the amount of data being transmitted is small,
the overhead of creating connections and ensuring reliable delivery may be greater
than the work of re-transmitting the entire data set. In this case, UDP is the most
efficient choice for a Transport Layer protocol. Applications that fit a query-
response model are also excellent candidates for using UDP. The response can be
used as a positive acknowledgment to the query. If a response isn't received
within a certain time period, the application just sends another query. Still other

022

18 Chapter 1: Overview of TCP/IP

l< Bits .
0] I16) 31
Source Port Destination Port
Length | Checksum
data begins here ...

Figure 1-8: UDP message format

applications provide their own techniques for reliable data delivery, and don't
require that service from the transport layer protocol. Imposing another layer of
acknowledgment on any of these types of applications is inefficient.

Transmission Control Protocol

Applications that require the transport protocol to provide reliable data delivery
use TCP because it verifies that data is delivered across the network accurately and
in the proper sequence. TCP is a reliable, connection-oriented, byte-stream proto-
col. Let's look at each of the terms—reliable, connection-oriented, and byte-
stream—in more detail.

TCP provides reliability with a mechanism called Positive Acknowledgment with
Re-transmission (PAR). Simply stated, a system using PAR sends the data again,
unless it hears from the remote system that the data arrived okay. The unit of data
exchanged between cooperating TCP modules is called a segment (see Figure 1-9).
Each segment contains a checksum that the recipient uses to verify that the data is
undamaged. If the data segment is received undamaged, the receiver sends a posi-
tive acknowledgment back to the sender. If the data segment is damaged, the
receiver discards it. After an appropriate time-out period, the sending TCP module
re-transmits any segment for which no positive acknowledgment has been
received.

TCP is connection-oriented. It establishes a logical end-to-end connection between
the two communicating hosts. Control information, called a handshake, is
exchanged between the two endpoints to establish a dialogue before data is trans-
mitted. TCP indicates the control function of a segment by setting the appropriate
bit in the Flags field in word 4 of the segment header.

The type of handshake used by TCP is called a three-way handshake because
three segments are exchanged. Figure 1-10 shows the simplest form of the three-
way handshake. Host 4 begins the connection by sending host B a segment with
the “Synchronize sequence numbers” (SYN) bit set. This segment tells host B that

023

Transport Layer 19

Figure 1-9: TCP segment format

A wishes to set up a connection, and it tells B what sequence number host A will
use as a starting number for its segments. (Sequence numbers are used to keep
data in the proper order.) Host B responds to A with a segment that has the
“Acknowledgment” (ACK) and SYN bits set. B's segment acknowledges the receipt
of A's segment, and informs A which Sequence Number host B will start with.
Finally, host 4 sends a segment that acknowledges receipt of B's segment, and
transfers the first actual data.

Figure 1-10: Three-way handshake

After this exchange, host A's TCP has positive evidence that the remote TCP is
alive and ready to receive data. As soon as the connection is established, data can

024

20 Chapter 1: Overview of TCE/IP

be transferred. When the cooperating modules have concluded the data transfers,
they will exchange a three-way handshake with segments containing the “No more
data from sender” bit (called the FIN bit) to close the connection. It is the end-to-
end exchange of data that provides the logical connection between the two sys-
tems.

TCP views the data it sends as a continuous stream of bytes, not as independent
packets. Therefore, TCP takes care to maintain the sequence in which bytes are
sent and received. The Sequence Number and Acknowledgment Number fields in
the TCP segment header keep track of the bytes.

The TCP standard does not require that each system start numbering bytes with
any specific number; each system chooses the number it will use as a starting
point. To keep track of the data stream correctly, each end of the connection must
know the other end’s initial number. The two ends of the connection synchronize
byte-numbering systems by exchanging SYN segments during the handshake. The
Sequence Number field in the SYN segment contains the Initial Sequence Number
(ISN), which is the starting point for the byte-numbering system. For security rea-
sons the ISN should be a random number, though it is often 0.

Each byte of data is numbered sequentially from the ISN, so the first real byte of
data sent has a sequence number of ISN+1. The Sequence Number in the header
of a data segment identifies the sequential position in the data stream of the first
data byte in the segment. For example, if the first byte in the data stream was
sequence number 1 (ISN=0) and 4000 bytes of data have already been transferred,
then the first byte of data in the current segment is byte 4001, and the Sequence
Number would be 4001.

The Acknowledgment Segment (ACK) performs two functions: positive acknowl-
edgment and flow control. The acknowledgment tells the sender how much data
has been received, and how much more the receiver can accept. The Acknowl-
edgment Number is the sequence number of the next byte the receiver expects to
receive. The standard does not require an individual acknowledgment for every
packet. The acknowledgment number is a positive acknowledgment of all bytes
up to that number. For example, if the first byte sent was numbered 1 and 2000
bytes have been successfully received, the Acknowledgment Number would be
2001.

The Window field contains the window, or the number of bytes the remote end is
able to accept. If the receiver is capable of accepting 6000 more bytes, the win-
dow would be 6000. The window indicates to the sender that it can continue
sending segments as long as the total number of bytes that it sends is smaller than
the window of bytes that the receiver can accept. The receiver controls the flow of

025

Application Layer 21

bytes from the sender by changing the size of the window. A zero window tells
the sender to cease transmission until it receives a non-zero window value.

Figure 1-11 shows a TCP data stream that starts with an Initial Sequence Number
of 0. The receiving system has received and acknowledged 2000 bytes, so the cur-
rent Acknowledgment Number is 2001. The receiver also has enough buffer space
for another 6000 bytes, so it has advertised a window of 6000. The sender is cur-
rently sending a segment of 1000 bytes starting with Sequence Number 4001. The
sender has received no acknowledgment for the bytes from 2001 on, but continues
sending data as long as it is within the window. If the sender fills the window and
receives no acknowledgment of the data previously sent, it will, after an appropri-
ate time-out, send the data again starting from the first unacknowledged byte.

In Figure 1-11, re-transmission would start from byte 2001 if no further acknowl-
edgments are received. This procedure ensures that data is reliably received at the
far end of the network.

TCP is also responsible for delivering data received from IP to the correct applica-
tion. The application that the data is bound for is identified by a 16-bit number
called the port number. The Source Port and Destination Port are contained in the
first word of the segment header. Correctly passing data to and from the Applica-
tion Layer is an important part of what the Transport Layer services do.

Win 0
i‘ dow 6000 ';E
' S%rrenf' '
' Data Receil ; men ;
' ata Received : . : :
i1] 1001 | 2001 | 3001 imm | 5001 | 6001 | 7001 |

an'ar Sequence L Acknowledgment L Sequence
Number 0 Number 2001 Number 4001

Figure 1-11: TCP data stream

Application Layer

At the top of the TCP/IP protocol architecture is the Application Layer. This layer
includes all processes that use the Transport Layer protocols to deliver data. There
are many applications protocols. Most provide user services, and new services are
always being added to this layer.

026

22 Chapter 1: Overview of TCP/IP

The most widely known and implemented applications protocols are:

telnet
The Network Terminal Protocol, which provides remote login over the net-
work.

FIP
The File Transfer Protocol, which is used for interactive file transfer.

SMTP
The Simple Mail Transfer Protocol, which delivers electronic mail.

HTITP
The Hypertext Transfer Protocol, which delivers Web pages over the network.

While HTTP, FTP, SMTP, and telnet are the most widely implemented TCP/IP
applications, you will work with many others as both a user and a system adminis-
trator. Some other commonly used TCP/IP applications are:

Domain Name Service (DNS)
Also called name service, this application maps IP addresses to the names
assigned to network devices. DNS is discussed in detail in this book.

Open Shortest Path First (OSPF)
Routing is central to the way TCP/IP works. OSPF is used by network devices
to exchange routing information. Routing is also a major topic of this book.

Network Filesystem (NFS)
This protocol allows files to be shared by various hosts on the network.

Some protocols, such as telnet and FTP, can only be used if the user has some
knowledge of the network. Other protocols, like OSPF, run without the user even
knowing that they exist. As system administrator, you are aware of all these appli-
cations and all the protocols in the other TCP/IP layers. And you're responsible for
configuring them!

Summary

In this chapter we discussed the structure of TCP/IP, the protocol suite upon
which the Internet is built. We have seen that TCP/IP is a hierarchy of four layers:
Applications, Host-to-Host Transport, Internet, and Network Access. We have
examined the function of each of these layers. In the next chapter we look at how
the IP packet, the datagram, moves through a network when data is delivered
between hosts.

027

In this chapter:

* Addressing, Routing,
and Multiplexing

» The IP Address

* Subnets

» Internet Routing
Architecture

» The Routing Table 4 =
+ Address Resolution Delivering the Data
» Protocols, Ports, and
Sockets
o Summanry

In Chapter 1, Overview of TCP/IP, we touched on the basic architecture and design
of the TCP/IP protocols. From that discussion, we know that TCP/IP is a hierarchy
of four layers. In this chapter, we explore in finer detail how data moves between
the protocol layers and the systems on the network. We examine the structure of
Internet addresses, including how addresses route data to its final destination, and
how addressing rules are locally redefined to create subnets. We also look at the
protocol and port numbers used to deliver data to the correct applications. These
additional details move us from an overview of TCP/IP to the specific implementa-
tion details that affect your system’s configuration.

Addressing, Routing, and Multiplexing

To deliver data between two Internet hosts, it is necessary to move the data across
the network to the correct host, and within that host to the correct user or process.
TCP/IP uses three schemes to accomplish these tasks:

Addressing
IP addresses, which uniquely identify every host on the network, deliver data
to the correct host.

Routing
Gateways deliver data to the correct network.

Multiplexing
Protocol and port numbers deliver data to the correct software module within
the host.

Each of these functions—addressing between hosts, routing between networks,
and multiplexing between layers—is necessary to send data between two

23

028

24 Chapter 2: Delivering the Data

cooperating applications across the Internet. Let's examine each of these functions
in detail.

To illustrate these concepts and provide consistent examples, we use an imaginary
corporate network. Our imaginary company sells packaged nuts to the Army. Our
company network is made up of several networks at our packing plant and sales
office, as well as a connection to the Internet. We are responsible for managing
the Ethernet in the computing center. This network’s structure, or ftopology, is
shown in Figure 2-1.

n | peanut walnut
172.16.12.2 172.16.124

172.16.12.0

172.16.12.3 — | 172.16.12.1
—

pecan == almond

172.16.1.5 — |10.104.0.19
| p—
p—

Figure 2-1: Sample network

The icons in the figure represent computer systems. There are, of course, several
other imaginary systems on our imaginary network. You'll just have to use your
imagination! But we'll use the hosts peanut (a workstation) and almond (a system
that serves as a gateway) for most of our examples. The thick line is our computer
center Ethernet and the circle is the local network that connects our various corpo-
rate networks. The cloud is the Internet. What the numbers are, how they're used,
and how datagrams are delivered are the topics of this chapter.

029

The IP Address 25

The IP Address

The Internet Protocol moves data between hosts in the form of datagrams. Each
datagram is delivered to the address contained in the Destination Address (word 5)
of the datagram’s header. The Destination Address is a standard 32-bit IP address
that contains sufficient information to uniquely identify a network and a specific
host on that network.

An IP address contains a network part and a host part, but the format of these
parts is not the same in every IP address. The number of address bits used to iden-
tify the network, and the number used to identify the host, vary according to the
prefix length of the address. There are two ways the prefix length is determined:
by address class or by a CIDR address mask. We begin with a discussion of tradi-
tional IP address classes.

Addpress Classes

Originally, the IP address space was divided into a few fixed-length structures
called address classes. The three main address classes are class A, class B, and class
C. By examining the first few bits of an address, IP software can quickly determine
the class, and therefore the structure, of an address. IP follows these rules to deter-
mine the address class:

e If the first bit of an IP address is 0, it is the address of a class A network. The
first bit of a class A address identifies the address class. The next 7 bits identify
the network, and the last 24 bits identify the host. There are fewer than 128
class A network numbers, but each class A network can be composed of mil-
lions of hosts.

e [f the first 2 bits of the address are 1 0, it is a class B network address. The first
2 bits identify class; the next 14 bits identify the network, and the last 16 bits
identify the host. There are thousands of class B network numbers and each
class B network can contain thousands of hosts.

e If the first 3 bits of the address are 1 1 0, it is a class € network address. In a
class C address, the first 3 bits are class identifiers; the next 21 bits are the net-
work address, and the last 8 bits identify the host. There are millions of class C
network numbers, but each class C network is composed of fewer than 254
hosts.

e If the first 4 bits of the address are 1 1 1 0, it is a multicast address. These
addresses are sometimes called class D addresses, but they don’t really refer to
specific networks. Multicast addresses are used to address groups of comput-
ers all at one time. Multicast addresses identify a group of computers that

030

26 Chapter 2: Delivering the Data

share a common application, such as a video conference, as opposed to a
group of computers that share a common network.

e If the first four bits of the address are 1 1 1 1, it is a special reserved address.
These addresses are sometimes called class E addresses, but they don't really
refer to specific networks. No numbers are currently assigned in this range.

Luckily, this is not as complicated as it sounds. IP addresses are usually written as
four decimal numbers separated by dots (periods).” Each of the four numbers is in
the range 0-255 (the decimal values possible for a single byte). Because the bits
that identify class are contiguous with the network bits of the address, we can
lump them together and look at the address as composed of full bytes of network
address and full bytes of host address. If the value of the first byte is:

e Less than 128, the address is class A; the first byte is the network number, and
the next three bytes are the host address.

e From 128 to 191, the address is class B; the first two bytes identify the net-
work, and the last two bytes identify the host.

e From 192 to 223, the address is class C; the first three bytes are the network
address, and the last byte is the host number.

e From 224 to 239, the address is multicast, There is no network part. The entire
address identifies a specific multicast group.

e Greater than 239, the address is reserved. We can ignore reserved addresses.

Figure 2-2 illustrates how the address structure varies with address class. The class
A address is 10.104.0.19. The first bit of this address is 0, so the address is inter-
preted as host 104.0.19 on network 10. One byte specifies the network and three
bytes specify the host. In the address 172.16.12.1, the two high-order bits are 1 0
so the address refers to host 12.1 on network 172.16. Two bytes identify the net-
work and two identify the host. Finally, in the class C example, 192.168.16.1, the
three high-order bits are 1 1 0, so this is the address of host 1 on network
192.168.16—three network bytes and one host byte.

The IP address, which provides universal addressing across all of the networks of
the Internet, is one of the great strengths of the TCP/IP protocol suite. However,
the original class structure of the IP address has weaknesses. The TCP/IP designers
did not envision the enormous scale of today’s network. When TCP/IP was being
designed, networking was limited to large organizations that could afford substan-
tial computer systems. The idea of a powerful UNIX system on every desktop did
not exist. At that time, a 32-bit address seemed so large that it was divided into

* Addresses are occasionally written in other formats, e.g., as hexadecimal numbers. However, the
“dot” notation form is the most widely used. Whatever the notation, the structure of the address is the
same,

031

The IP Address 27

A '
' 8 network bits ' 24 host bits ;

> >
24 network bits " Ghosthits

a

Figure 2-2: IP address structure

classes to reduce the processing load on routers, even though dividing the address
into classes sharply reduced the number of host addresses actually available for
use, For example, assigning a large network a single class B address, instead of six
class C addresses, reduced the load on the router because the router needed to
keep only one route for that entire organization. However, an organization that
was given the class B address probably did not have 64,000 computers, so most of
the host addresses available to the organization were never assigned.

The class-structured address design was critically strained by the rapid growth of
the Internet. At one point it appeared that all class B addresses might be rapidly
exhausted.” To prevent this, a new way of looking at IP addresses without a class
structure was developed.

* The source for this prediction is the draft of Supernetting: an Address Assignment and Aggregation
Strategy, by V. Fuller, T. Li, J. Yu, and K. Varadhan, March 1992.

032

28 Chapter 2: Delivering the Data

Classless IP Addresses

The rapid depletion of the class B addresses showed that three primary address
classes were not enough: class A was much too large and class C was much too
small. Even a class B address was too large for many networks but was used
because it was better than the alternatives.

The obvious solution to the class B address crisis was to force organizations to use
multiple class C addresses. There were millions of these addresses available and
they were in no immediate danger of depleticn. As is often the case, the obvious
solution is not as simple as it may seem. Each class C address requires its own
entry within the routing table. Assigning thousands or millions of class C addresses
would cause the routing table to grow so rapidly that the routers would soon be
overwhelmed. The solution required a new way of assigning addresses and a new
way of looking at addresses.

Originally network addresses were assigned in more or less sequential order as
they were requested. This worked fine when the network was small and central-
ized. However, it did not take network topology into account. Thus only random
chance would determine if the same intermediate routers would be used to reach
network 195.4.12.0 and network 195.4.13.0, which makes it difficult to reduce the
size of the routing table. Addresses can only be aggregated if they are contiguous
numbers and are reachable through the same route. For example, if addresses are
contiguous for one service provider, a single route can be created for that aggrega-
tion because that service provide will have a limited number of routes to the Inter-
net. But if one network address is in France and the next contiguous address is in
Australia, creating a consolidated route for these addresses does not work.

Today, large, contiguous blocks of addresses are assigned to large network service
providers in a manner that better reflects the topology of the network. The service
providers then allocate chunks of these address blocks to the organizations to
which they provide network services. This alleviates the short-term shortage of
class B addresses and, because the assignment of addressees reflects the topology
of the network, it permits route aggregation. Under this new scheme, we know
that network 195.4.12.0 and network 195.4.13.0 are reachable through the same
intermediate routers. In fact, both of these addresses are in the range of the
addresses assigned to Europe, 194.0.0.0 to 195.255.255.255. Assigning addresses
that reflect the topology of the network enables route aggregation, but does not
implement it. As long as network 195.4.12.0 and network 195.4.13.0 are inter-
preted as separate class C addresses, they will require separate entries in the rout-
ing table. A new, flexible way of defining addresses is needed.

Evaluating addresses according to the class rules discussed above limits the length
of network numbers to 8, 16, or 24 bits—1, 2, or 3 bytes. The IP address,

033

The IP Address 29

however, is not really byte-oriented. It is 32 contiguous bits. A more flexible way
to interpret the network and host portions of an address is with a bit mask. An
address bit mask works in this way: if a bit is on in the mask, that equivalent bit in
the address is interpreted as a network bit; if a bit in the mask is off, the bit
belongs to the host part of the address. For example, if address 195.4.12.0 is inter-
preted as a class C address, the first 24 bits are the network number and the last 8
bits are the host address. The network mask that represents this is 255.255.255.0,
24 bits on and 8 bits off. The bit mask that is derived from the traditional class
structure is called the default mask or the natural mask. However, with bit masks
we are no longer limited by the address class structure. A mask of 255.255.0.0 can
be applied to network address 195.4.0.0. This mask includes all addresses from
195.4.0.0 to 195.4.255.255 in a single network number. In effect, it creates a net-
work number as large as a class B network in the class C address space. Using bit
masks to create networks larger than the natural mask is called supernetting, and
the use of a mask instead of the address class to determine the destination net-
work is called Classless Inter-Domain Routing (CIDR),”

CIDR requires modifications to the routers and routing protocols. The protocols
need to distribute, along with the destination addresses, address masks that define
how the addresses are interpreted. The routers and hosts need to know how to
interpret these addresses as “classless” addresses and how to apply the bit mask
that accompanies the address. Older routing protocols, such as Routing Informa-
tion Protocol (RIP), and older operating systems do not support CIDR address
masks. As the incorporation of the mask information in the routing table shows,
new operating systems like Linux 2.0.0 do support CIDR.

route

Kernel routing table

Destination Gateway Genmask Flags MSS Window Use Iface
172.16.26.32 * 255.255.255.224 U 1500 0 2 ethO
195.4.0.0 129.6.26.62 255.255.0.0 UG 1500 0 0 etho
loopback * 255.0.0.0 U 3584 0 1 lo
default 129.6.26.62 * uG 1500 0 3 etho

Specifying both the address and the mask is cumbersome when writing out
addresses. A shorthand notation has been developed for writing CIDR addresses.
Instead of writing network 172.16.26.32 with a mask of 255.255.255.224, we can
write 172.16.26.32/27. The format of this notation is address/prefix-length, where
prefix-length is the number of bits in the network portion of the address. Without
this notation, the address 172.16.26.32 could easily be interpreted as a host
address. RFC 1878 list all 32 possible prefix values. But little documentation is
needed because the CIDR prefix is much easier to understand and remember than
are address classes. I know that 10.104.0.19 is a class A address, but writing it as

* CIDR is pronounced “cider.”

034

30 Chapter 2: Delivering the Data

10.104.0.19/8 shows me that this address has 8 bits for the network number and
therefore 24 bits for the host number. I don't have to remember anything about
the class A address structure.,

CIDR is an interim solution, though it is capable of providing address and routing
relief for many more years. The long-term solution is to replace the current
addressing scheme with a new one. In the TCP/IP protocol suite addressing is
defined by the IP protocol. Therefore, to define a new address structure, the Inter-
net Engineering Task Force (IETF) created a new version of 1P called IPv6." IPv6
has a very large 128-bit address, so address depletion is not an issue. The large
address also makes it possible to use a hierarchical address structure to reduce the
burden on routers while still maintaining more than enough addresses for future
network growth. Other benefits of IPv6 are:

e Improved security built into the protocol

o Simplified, fixed-length, word-aligned headers to speed header processing and
reduce overhead

e Improved techniques for handling header options

IPv6 has several good features, but it is still a2 few years from widespread availabil-
ity. In the meantime, the current generation of TCP/IP should be more than ade-
quate for your network needs. On your network you will use IP and standard IP
addressing.

Final notes on IP addresses

Not all network addresses or host addresses are available for use. We have already
said that the addresses with a first byte greater than 223 cannot be used as host
addresses. There are also two large pieces of the address space, 0.0.0.0/8 and
127.0.0.0/8, that are reserved for special uses. Network 0 designates the default
route and network 127 is the loopback address. The default route is used to sim-
plify the routing information that IP must handle. The loopback address simplifies
network applications by allowing the local host to be addressed in the same man-
ner as a remote host. We use these special network addresses when configuring a
host.

There are also some host addresses reserved for special uses. In all network
classes, host numbers 0 and 255 are reserved. An IP address with all host bits set
to 0 identifies the network itself. For example, 10.0.0.0 refers to network 10, and
172.16.0.0 refers to network 172.16. Addresses in this form are used in routing
table listings to refer to entire networks. An IP address with all host bits set to 1 is

* The current release of IP is IP version 4 (IPv4). IP version 5 is an experimental Stream Transport (ST)
protocol used for real-time data delivery,

035

Subnets 31

a broadcast address.” A broadcast address is used to simultaneously address every
host on a network. The broadcast address for network 172.16 is 172.16.255.255. A
datagram sent to this address is delivered to every individual host on network
172.16.

IP addresses are often called host addresses. While this is common usage, it is
slightly misleading. IP addresses are assigned to network interfaces, not to com-
puter systems. A gateway, such as almond (see Figure 2-1), has a different address
for each network to which it is connected. The gateway is known to other devices
by the address associated with the network that it shares with those devices. For
example, peanut addresses almond as 172.16.12.1, while external hosts address it
as 10.104.0.19.

Systems can be addressed in three different ways. Individual systems are directly
addressed by a host address, which is called a unicast address. A unicast packet is
addressed to one individual host. Groups of systems can be addressed using a
multicast address, e.g., 224.0.0.9. Routers along the path from the source to desti-
nation recognize the special address and route copies of the packet to each mem-
ber of the multicast group.t All systems on a network are addressed using the
broadcast address, e.g., 172.16.255.255, The broadcast address depends on the
broadcast capabilities of the underlying physical network.

IP uses the network portion of the address to route the datagram between net-
works. The full address, including the host information, is used to make final
delivery when the datagram reaches the destination network.

Subnets

The structure of an IP address can be locally modified by using host address bits
as additional network address bits. Essentially, the “dividing line” between net-
work address bits and host address bits is moved, creating additional networks,
but reducing the maximum number of hosts that can belong to each network.
These newly designated network bits define a network within the larger network,
called a subnet.

Organizations usually decide to subnet in order to overcome topological or organi-
zational problems. Subnetting allows decentralized management of host address-
ing. With the standard addressing scheme, a central administrator is responsible for
managing host addresses for the entire network. By subnetting, the administrator
can delegate address assignment to smaller organizations within the overall

* Unfortunately, there are implementation-specific variations in broadcast addresses. Chapter 5, Basic
Configuration, discusses these variations.

t This is only partially true. Multicasting is not supported by every router. Sometimes it is necessary 1o
tunnel through routers and networks by encapsulating the multicast packet inside of a unicast packet,

036

32 Chapter 2: Delivering the Data

organization—which may be a political expedient, if not a technical requirement.
If you don’t want to deal with the data processing department, assign them their
own subnet and let them manage it themselves.

Subnetting can also be used to overcome hardware differences and distance limita-
tions. IP routers can link dissimilar physical networks together, but only if each
physical network has its own unique network address. Subnetting divides a single
network address into many unique subnet addresses, so that each physical net-
work can have its own unique address.

A subnet is defined by changing the bit mask of the IP address. A subnet mask
functions in the same way as a normal address mask: an “on” bit is interpreted as
a network bit; an “off” bit belongs to the host part of the address. The difference is
that a subnet mask is only used locally. In the outside world the address is still
interpreted as a standard IP address.

Assume we have been assigned network address 172.16.0.0/16. The subnet mask
associated with that address is 255.255.0.0. The most commonly used subnet mask,
and the one we use in most of our examples, extends the network portion of the
address by an additional byte, e.g., 172.16.0.0/24. The subnet mask that does this
is 255.255.255.0; all bits on in the first three bytes, and all bits off in the last byte.
The first two bytes define the original network; the third byte defines the the sub-
net address; the fourth byte defines the host on that subnet.

Many network administrators prefer byte-oriented masks because they are easy to
read and understand when addresses are written in dotted decimal notation. How-
ever, limiting subnet masks to byte boundaries does not take advantage of their
true power. The subnet mask is bit-oriented. We could subdivide 172.16.0.0/16
into 16 subnets with the mask 255.255.240.0, i.e. 172.16.0.0/20. Applying this mask
defines the four high-order bits of the third byte as the subnet part of the address,
and the remaining 12 bits—four bits of the third byte and all of the fourth byte—
as the host portion of the address. This creates 16 subnets that each contain more
than four thousand host addresses, which may well be better suited to our net-
work and organization. For example, we may have a small number of large subdi-
visions. Table 2-1 shows the subnets and host addresses produced by applying this
subnet masks to network address 172.16.0.0/16.

Table 2-1: Effect of a Subnet Mask

Network Number ‘ First Address _ Last Address

172.16.0.0 | 172.16.0.1 172.16.15.254
172.16.16.0 172.16.16.1 172.16.31.254
172.16.32.0 172.16.32.1 172.16.47.254
172.16.48.0 172.16.48.1 172.16.63.254

037

Subnets

Table 2-1: Effect of a Subnet Mask (continued)

Network Number | First Address | Last Address

172.16.64.0 [172.16.64.1 172.16.79.254
172.16.80.0 [172.16.80.1 172.16.95.254
172.16.96.0 172.16.96.1 172.16.111.254
172.16.112.0 172.16.112.1 | 172.16.127.254
172.16.128.0 172.16.128.1 | 172.16.143.254
172.16.144.0 172.16.144.1 | 172.16.159.254
172.16.160.0 172.16.160.1 | 172.16.175.254
172.16.176.0 172.16.176.1 | 172.16.191.254
172.16.192.0 172.16.192.1 | 172.16.207.254
172.16.208.0 172.16.208.1 | 172.16.223.254
172.16.224.0 172.16.224.1 | 172.16.239.254
172.16.240.0 172.16.240.1 | 172.16.254.254

You don’t have to manually calculate a table like Table 2-1 to know what subnets
and host addresses are produced by a subnet mask. The calculations have already
been done' for you. RFC 1878 lists all possible subnet masks and the wvalid
addresses they produce.

Organizations have been discouraged from subnetting class C addresses because
of the fear that subnetting reduces the number of host addresses to increase the
number of network addresses. A class C network is limited to fewer than 255 host
addresses. Further limiting the number of hosts would reduce the utility of a class
C address. The mask 255.255.255.192 divides a class C address into four subnets of
04 host addresses. The fear is that the subnet address of all Os and the subnet
address of all 1s will not be usable. This leaves only two subnets; and because
host addresses of all 1s and all 0s are also unusable, the remaining two subnets
can only address 62 hosts. Therefore the address space of this class C network
number is reduced from 254 hosts to 124 hosts. The fear of subnetting class C
addresses is no longer justified.

Originally, the RFCs implied that you should not use subnet numbers of all 0s or
all 1s. However, RFC 1812, Requiremenis for IP Version 4 Routers, makes it clear
that subnets of all 0s and all 1s are legal and should be supported by all routers.
Some older routers do not allow the use of these addresses despite the newer
RFCs. Updating router software or hardware should make it possible for you to
reliably subnet class C addresses.

Class C subnets are used when very small networks are needed for specialized
network equipment, such as terminal servers, cluster controllers or routers. In
some configurations an entire subnet may be consumed for the link between two
routers. In this case only two host addresses are needed, one for the router at each
end of the link. A subnet mask of 255.255.255.252 applied to a class C address

038

34 Chapter 2: Delivering the Data

creates 64 subnets each containing four host addresses. In a special case this might
be just what is needed.

Internet Routing Architecture

Chapter 1 described the evolution of the Internet architecture over the years.
Along with these architectural changes have come changes in the way that routing
information is disseminated within the network.

In the original Internet structure, there was a hierarchy of gateways. This hierarchy
reflected the fact that the Internet was built upon the existing ARPANET. When the
Internet was created, the ARPANET was the backbone of the network: a central
delivery medium to carry long-distance traffic. This central system was called the
core, and the centrally managed gateways that interconnected it were called the
core galeways.

In that hierarchical structure, routing information about all of the networks in the
Internet was passed into the core gateways. The core gateways processed the
information, and then exchanged it among themselves using the Gateway to Gate-
way Protocol (GGP). The processed routing information was then passed back out
to the external gateways. The core gateways maintained accurate routing informa-
tion for the entire Internet.

Using the hierarchical core router model to distribute routing information has a
major weakness: every route must be processed by the core. This places a tremen-
dous processing burden on the core, and as the Internet grew larger the burden
increased. In network-speak, we say that this routing model does not “scale well.”
For this reason, a new model emerged.

Even in the days of a single Internet, core groups of independent networks called
autonomous systems (AS) existed outside of the core. The term “autonomous sys-
tem” has a formal meaning in TCP/IP routing. An autonomous system is not
merely an independent network. It is a collection of networks and gateways with
its own internal mechanism for collecting routing information and passing it to
other independent network systems. The routing information passed to the other
network systems is called reachability information. Reachability information sim-
ply says which networks can be reached through that autonomous system. The
Exterior Gateway Protocol (EGP) was the protocol used to pass reachability infor-
mation between autonomous systems and into the core (see Figure 2-3).

The new routing model is based on co-equal collections of autonomous systems,
called routing domains. Routing domains exchange routing information with other
domains using Border Gateway Protocol (BGP). Each routing domain processes
the information it receives from other domains. Unlike the hierarchical model, this
model does not depend on a single core system to choose the “best” routes. Each

039

Internet Routing Architecture 35

- Core Gateway
(== - External Gateway

Internet Core

Autonomous
System

Autonomous
System

Figure 2-3: Gateway hierarchy

routing domain does this processing for itself; therefore, this model is more
expandable. Figure 2-4 represents this model with three intersecting circles. Each
circle is a routing domain. The overlapping areas are border areas, where routing
information is shared. The domains share information, but do not rely on any one
system to provide all routing information.

The problem with this model is: how are “best” routes determined in a global net-
work if there is no central routing authority, like the core, that is trusted to deter-
mine the “best” routes? In the days of the NSENET, the policy routing database
(PRDB) was used to determine whether the reachability information advertised by
an autonomous system was valid. But now, even the NSFNET does not play a cen-
tral role.

To fill this void, NSF created the Routing Arbiter (RA) servers when it created the
Network Access Points (NAPs) that replaced the role of the NSFNET. A route arbiter
is located at each NAP. The server provides access to the Routing Arbiter Database
(RADB), which replaced the PRDB. Internet Service Providers can query servers to
validate the reachability information advertised by an autonomous system.

Many ISPs do not use the route servers. Instead they depend on formal and infor-
mal bilateral agreements. In essence, two ISPs get together and decide what reach-
ability information each will accept from the other. They create, in effect, local
routing policies. This is a slow manual process that probably will not be flexible
enough for a rapidly growing Internet.

040

36 Chapter 2: Delivering the Data

. - Border areas where
routing data is exchanged

Figure 2-4: Routing domains

The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed
routing architecture, there are multiple organizations that validate and register
routing information. Europeans were the pioneers in this. The Reseaux IP
Europeens (RIPE) Network Control Center (NCC) provides the routing registry for
European IP networks. Big network carriers, like MCI and ANS, provide registries
for their customers. All of the registries share a common format based on the
RIPE-181 standard.

Creating an effective routing architecture continues to be a major challenge for the
Internet that will certainly evolve over time. No matter how it is derived, eventu-
ally the routing information winds up in your local gateway, where it is used by IP
to make routing decisions.

The Routing Table

Gateways route data between networks; but all network devices, hosts as well as
gateways, must make routing decisions. For most hosts, the routing decisions are
simple:

o If the destination host is on the local network, the data is delivered to the des-
tination host.

041

The Routing Table 37

e If the destination host is on a remote network, the data is forwarded to a local
gateway.

Because routing is network-oriented, IP makes routing decisions based on the net-
work portion of the address. The IP module determines the network part of the
destination’s IP address by applying the network mask to the address. If the desti-
nation network is the local network, the mask that is applied may be the local
subnet mask. If no mask is provided with the address, the address class deter-
mines the network portion of the address.

After determining the destination network, the IP module looks up the network in
the local routing table.” Packets are routed toward their destination as directed by
the routing table. The routing table may be built by the system administrator or by
routing protocols, but the end result is the same; IP routing decisions are simple
table look-ups,

You can display the routing table’s contents with the netstat —nr command. The -r
option tells netstat to display the routing table, and the —n option tells netstat to
display the table in numeric form. It's useful to display the routing table in
numeric form because the destination of most routes is a network, and networks
are usually referred to by network numbers.

On a Solaris system, the netstat command displays the routing table with the fol-
lowing fields:

Destination
The destination network (or host).

Gateway
The gateway to use to reach the specified destination.

Flags
The flags describe certain characteristics of this route. The possible flag values
are:

U Indicates that the route is up and operational,
H Indicates this is a route to a specific host (most routes are to networks).

G Means the route uses a gateway. The system'’s network interfaces provide
routes to directly connected networks. All other routes use remote gate-
ways. Directly connected networks do not have the G flag set; all other
routes do.

D Means that this route was added because of an ICMP Redirect Message.
When a system learns of a route via an ICMP Redirect, it adds the route to

* This table is also called the forwarding table.

042

38 Chapter 2: Delivering the Data

its routing table, so that additional packets bound for that destination will
not need to be redirected. The system uses the D flag to mark these
routes.

Ref
The number of times the route has been referenced to establish a connection.

Use
The number of packets transmitted via this route,

Interface
The name of the network interface® used by this route.

The only two fields important for our current discussion are the destination and
gateway fields. The following is a sample routing table:

% netstat -nr
Routing Table:

Destination Gateway Flags Ref Use Interface
127.0.0.1 127.0.0.1 UH 1 298 lo0
default 172.16.12.1 uG 2 50360
172.16.12.0 172.16.12.2 U 40 111379 le0
172.16.2.0 172.16.12.3 uG 4 1179

172:16:1:0° 1I72:16:-12.3 UG 10 1113

172.16.3.0 172.16.12.3 UG 2 1379

172.16.4.0 172.16.12.3 uG - 1119

The first table entry is the loopback route for the local host. This is the loopback
address mentioned earlier as a reserved network number. Because every system
uses the loopback route to send datagrams to itself, this entry is in every host's
routing table. The H flag is set because it is a route to a specific host (127.0.0.1),
not a route to an entire network (127.0.0.0). We'll see the loopback facility again
when we discuss kernel configuration and the ifconfig command. For now, how-
ever, our real interest is in external routes,

Another unique entry in the routing table is the entry with the word “default” in
the destination field. This entry is for the default route, and the gateway specified
in this entry is the defauit gateway. The default route is the other reserved net-
work number mentioned earlier: 0.0.0.0. The default gateway is used whenever
there is no specific route in the table for a destination network address. For exam-
ple, this routing table has no entry for network 192.168.16.0. If IP receives any
datagrams addressed to this network, it will send the datagram via the default
gateway 172.16.12.1.

* The network interface is the nerwork access hardware and software that IP uses to communicate
with the physical network. See Chapter 6, Configuring the Interface, for details.

043

Address Resolution 39

You can tell from the sample routing table display that this host (peanud is
directly connected to network 172.16.12.0. The routing table entry for that network
does not specify an external gateway; i.e., the routing table entry for 172.16.12.0
does not have the G flag set. Therefore, peanut must be directly connected to that
network.

All of the gateways that appear in a routing table are on networks directly con-
nected to the local system. In the sample shown above this means that, regardless
of the destination address, the gateway addresses all begin with 172.16.12. This is
the only network to which peanut is directly attached, and therefore it is the only
network to which peanut can directly deliver data. The gateways that peanut uses
to reach the rest of the Internet must be on peanut's subnet.

In Figure 2-5 the IP layer of each host and gateway on our imaginary network is
replaced by a small piece of a routing table, showing destination networks and the
gateways used to reach those destinations. When the source host (172.16.12.2)
sends data to the destination host (172.16.1.2), it first determines that 172.16.1.2 is
the local network's official address and applies the subnet mask. (Network
172.16.0.0 is subnetted using the mask 255.255.255.0.) After applying the subnet
mask, IP knows that the destination’s network address is 172.16.1.0. The routing
table in the source host shows that data bound for 172.16.1.0 should be sent to
gateway 172.16.12.3. Gateway 172.16.12.3 makes direct delivery through its
172.16.1.5 interface. Examining the routing tables shows that all systems list only
gateways on networks they are directly connected to. Note that 172.16.12.1 is the
default gateway for both 172.16.12.2 and 172.16.12.3. But because 172.16.1.2 can-
not reach network 172.16.12.0 directly, it has a different default route,

A routing table does not contain end-to-end routes. A route points only to the next
gateway, called the next hop, along the path to the destination network.* The host
relies on the local gateway to deliver the data, and the gateway relies on other
gateways. As a datagram moves from one gateway to another, it should eventually
reach one that is directly connected to its destination network. It is this last gate-
way that finally delivers the data to the destination host.

Address Resolution

The IP address and the routing table direct a datagram to a specific physical net-
work, but when data travels across a network, it must obey the physical layer pro-
tocols used by that network. The physical networks that underlay the TCP/IP
network do not understand IP addressing. Physical networks have their own
addressing schemes, and there are as many different addressing schemes as there

* As we'll see in Chapter 7, Configuring Routing, some routing protocols, such as OSPF and BGP,
obtain end-to-end routing information. Nevertheless, the packet is still passed to the next-hop router.

044

40 Chapter 2: Delivering the Data

Source Host Destination Host

172.16.12.0 | L 172.16.1.0

Figure 2-5: Table-based routing

are different types of physical networks. One task of the network access protocols
is to map IP addresses to physical network addresses.

The most common example of this network access layer function is the translation
of IP addresses to Ethernet addresses. The protocol that performs this function is
Address Resolution Protocol (ARP), which is defined in RFC 826.

The ARP software maintains a table of translations between IP addresses and Eth-
ernet addresses. This table is built dynamically. When ARP receives a request to
translate an IP address, it checks for the address in its table. If the address is
found, it returns the Ethernet address to the requesting software. If the address is
not found in the table, ARP broadcasts a packet to every host on the Ethernet. The
packet contains the IP address for which an Ethernet address is sought. If a receiv-
ing host identifies the IP address as its own, it responds by sending its Ethernet
address back to the requesting host. The response is then cached in the ARP table.

The arp command displays the contents of the ARP table. To display the entire
ARP table, use the arp —a command. Individual entries can be displayed by speci-
fying a hostname on the arp command line. For example, to check the entry for
peanut in the ARP table on almond, enter:

% arp peanut
peanut (172.16.12.2) at 8:0:20:0:e:c8

Checking all entries in the table with the —a option produces the following output:

% arp -a
Net to Media Table

045

Address Resolution 4]

Device IP Address Mask Flags Phys Addr

le0 peanut.nuts.com 255.255.255.255 08:00:20:00:0e:c8
le0 acorn.nuts.com 255.255.255.255 08:00:02:05:21:33
le0 almond.nuts.com 255.255.255.255 8P 08:00:20:22:£d:51
le0 pecan.nuts.com 255.255.255.255 00:20:af:le:7e:5f
lel BASE-ADDRESS.MCAST.NET 240.0.0.0 sM 01:00:5e:00:00:00

This table tells you that when almond forwards datagrams addressed to peanut, it
puts those datagrams into Ethernet frames and sends them to FEthernet address
08:00:20:00:0e:c8.

Three of the entries in the sample table (peanut, acorn, and pecan) were added
dynamically as a result of queries by almond. Two of the entries (almond and
BASE-ADDRESS MCAST.NET) are static entries added as a result of the configura-
tion of almond. We know this because both of these entries have an S, for “static,”
in the Flags field. The special BASE-ADDRESS. MCAST.NET entry is for all multicast
addresses. The M flag means “mapping” and is only used for the multicast entry.
On a broadcast medium like Ethernet, the Ethernet broadcast address is used to
make final delivery to a multicast group.

The P flag on the almond entry means that this entry will be “published.” The
“publish” flag indicates that when an ARP query is received for the IP address of
almond, this system answers it with the Ethernet address 08:00:20:22:fd:51. This is
logical because this is the ARP table on almond. However, it is also possible to
publish Ethernet addresses for other hosts, not just for the local host. Answering
ARP queries for other computers is called proxy ARP.

For example: assume that acorn is the server for a remote system named hazel
connected via a dial-up telephone line. Instead of setting up routing to the remote
system, the administrator of acorn could place a static, published entry in the ARP
table with the IP address of hazel and the Ethernet address of acorn. Now when
acorn hears an ARP query for the IP address of hazel, it answers with its own Eth-
ernet address. The other systems on the network therefore send packets destined
for hazel to acorn. acorn then forwards the packets on to hazel over the tele-
phone line. Proxy ARP is used to answer queries for systems that can't answer for
themselves.

ARP tables normally don't require any attention because they are built automati-
cally by the ARP protocol, which is very stable. However, if things go wrong, the
ARP table can be manually adjusted. See Chapter 11, Troubleshooting TCF/IP, the
section called “Troubleshooting with the arp Command.”

046

42 Chapter 2: Delivering the Data

Protocols, Ports, and Sockets

Once data is routed through the network and delivered to a specific host, it must
be delivered to the correct user or process. As the data moves up or down the
TCP/IP layers, a mechanism is needed to deliver it to the correct protocols in each
layer. The system must be able to combine data from many applications into a few
transport protocols, and from the transport protocols into the Internet Protocol.
Combining many sources of data into a single data stream is called multiplexing.

Data arriving from the network must be demultiplexed: divided for delivery to
multiple processes. To accomplish this task, IP uses protocol numbers to identify
transport protocols, and the transport protocols use port numbers to identify appli-
cations.

Some protocol and port numbers are reserved to identify well-known services.
Well-known services are standard network protocols, such as FTP and telnet, that
are commonly used throughout the network. The protocol numbers and port num-
bers allocated to well-known services are documented in the Assigned Numbers
RFC. UNIX systems define protocol and port numbers in two simple text files.

Protocol Numbers

The protocol number is a single byte in the third word of the datagram header.
The value identifies the protocol in the layer above IP to which the data should be
passed.

On a UNIX system, the protocol numbers are defined in /etc/protocols. This file is
a simple table containing the protocol name and the protocol number associated
with that name. The format of the table is a single entry per line, consisting of the
official protocol name, separated by whitespace from the protocol number. The
protocol number is separated by whitespace from the “alias” for the protocol
name. Comments in the table begin with #. An /efc/protocols file is shown below:

% cat /etc/protocols

#ident "@(#)protocols 1.2 90/02/03 sMI" /* svrd. .0 1.1 */
#

Internet (IP) protocols

#

ip 0 Ip # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol

ggp 3 GGP # gateway-gateway protocol

tep [TCP # transmission control protocol

egp 8 EGP # exterior gateway protocol

pup 12 PUP # PARC universal packet protocol

udp 17 uDp # user datagram protocol

hmp 20 HMP # host monitoring protocol

047

Protocols, Ports, and Sockets 43

xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol

The listing shown above is the contents of the /etc/protocols file from a Solaris
2.5.1 workstation. This list of numbers is by no means complete. If you refer to the
Protocol Numbers section of the Assigned Numbers RFC, you'll see many more
protocol numbers. However, a system needs to include only the numbers of the
protocols that it actually uses. Even the list shown above is more than this specific
workstation needed, but the additional entries do no harm.

What exactly does this table mean? When a datagram arrives and its destination
address matches the local IP address, the IP layer knows that the datagram has to
be delivered to one of the transport protocols above it. To decide which protocol
should receive the datagram, IP looks at the datagram’s protocol number. Using
this table you can see that, if the datagram’s protocol number is 6, IP delivers the
datagram to TCP. If the protocol number is 17, IP delivers the datagram to UDP.
TCP and UDP are the two transport layer services we are concerned with, but all
of the protocols listed in the table use IP datagram delivery service directly. Some,
such as ICMP, EGP, and GGP, have already been mentioned. You don't need to be
concerned with the minor protocols.

Port Numbers

After IP passes incoming data to the transport protocol, the transport protocol
passes the data to the correct application process. Application processes (also
called network services) are identified by port numbers, which are 16-bit values.
The source port number, which identifies the process that sent the data, and the
destination port number, which identifies the process that is to receive the data,
are contained in the first header word of each TCP segment and UDP packet.

On UNIX systems, port numbers are defined in the /etc/services file. There are
many more network applications than there are transport layer protocols, as the
size of the table shows. Port numbers below 256 are reserved for well-known ser-
vices (like FTP and telnet) and are defined in the Assigned Numbers RFC. Ports
numbered from 256 to 1024 are used for UNIX-specific services, services like
rlogin that were originally developed for UNIX systems. However, most of them
are no longer UNIX-specific.

Port numbers are not unique between transport layer protocols; the numbers are
only unique within a specific transport protocol. In other words, TCP and UDP
can, and do, both assign the same port numbers. It is the combination of protocol
and port numbers that uniquely identifies the specific process to which the data
should be delivered.

048

44 Chapter 2: Delivering the Data

A partial /etc/services file from a Solaris 2.5.1 workstation is shown below. The for-
mat of this file is very similar to the /etc/protocols file. Each single-line entry starts
with the official name of the service, separated by whitespace from the port num-
ber/protocol pairing associated with that service. The port numbers are paired
with transport protocol names, because different transport protocols may use the
same port number. An optional list of aliases for the official service name may be
provided after the port number/protocol pair.

peanut% head -20 /etc/services
#ident "@(#)services 113 95/07/28 sMI1*® /* 8Vr4.0 1.8 */

#

Network services, Internet style

*

tepmux 1/tep

echo 7/tcp

echo 7/udp

discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users

daytime 13/tep

daytime 13 /udp

netstat 15/tcp

chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp

ftp 21/tcp

telnet 23/tecp

smtp 25/tep mail

This table, combined with the /etc/protocols table, provides all of the information
necessary to deliver data to the correct application. A datagram arrives at its desti-
nation based on the destination address in the fifth word of the datagram header.
Using the protocol number in the third word of the datagram header, IP delivers
the data from the datagram to the proper transport layer protocol. The first word
of the data delivered to the transport protocol contains the destination port num-
ber that tells the transport protocol to pass the data up to a specific application.
Figure 2-6 shows this delivery process.

Despite its size, the /etc/services file does not contain the port number of every
well-known application. You won't find the port number of every Remote Proce-
dure Call (RPC) service in the services file. Sun developed a different technique for
reserving ports for RPC services that doesn’t involve registering well-known port
numbers. When an RPC service starts, it picks any unused port number and regis-
ters that number with the portmapper. The portmapper is a program that keeps
track of the port numbers being used by RPC services. When a client wants to use
an RPC service, it queries the portmapper running on the server to discover the
port assigned to the service. The client can find portmapper because it is assigned

049

Protocols, Ports, and Sockets ' 45

segment header
word 1

Figure 2-6: Protocol and port numbers

well-known port 111. portmapper makes it possible to install well-known services
without formally obtaining a well-known port.

Sockets

Well-known poris are standardized port numbers that enable remote computers to
know which port to connect to for a particular network service. This simplifies the
connection process because both the sender and receiver know in advance that
data bound for a specific process will use a specific port. For example, all systems
that offer telnet do so on port 23.

There is a second type of port number called a dynamically allocated port. As the
name implies, dynamically allocated ports are not pre-assigned. They are assigned
to processes when needed. The system ensures that it does not assign the same
port number to two processes, and that the numbers assigned are above the range
of standard port numbers.

Dynamically allocated ports provide the flexibility needed to support multiple
users, If a telnet user is assigned port number 23 for both the source and

050

46 Chapter 2: Delivering the Data

destination ports, what port numbers are assigned to the second concurrent telnet
user? To uniquely identify every connection, the source port is assigned a dynami-
cally allocated port number, and the well-known port number is used for the desti-
nation port.

In the telnet example, the first user is given a random source port number and a
destination port number of 23 (telnet). The second user is given a different ran-
dom source port number and the same destination port. It is the pair of port num-
bers, source and destination, that uniquely identifies each network connection.
The destination host knows the source port, because it is provided in both the
TCP segment header and the UDP packet header, Both hosts know the destination
port because it is a well-known port.

Figure 2-7 shows the exchange of port numbers during the TCP handshake. The
source host randomly generates a source port, in this example 3044. It sends out a
segment with a source port of 3044 and a destination port of 23. The destination
host receives the segment, and responds back using 23 as its source port and 3044
as its destination port.

Figure 2-7: Passing port numbers

The combination of an IP address and a port number is called a socket. A socket
uniquely identifies a single network process within the entire Internet. Sometimes
the terms “socket” and “port number” are used interchangeably. In fact, well-
known services are frequently referred to as “well-known sockets.” In the context
of this discussion, a “socket” is the combination of an IP address and a port num-
ber. A pair of sockets, one socket for the receiving host and one for the sending
host, define the connection for connection-oriented protocols such as TCP.

051

Summary 47

Let's build on the example of dynamically assigned ports and well-known ports.
Assume a user on host 172.16.12.2 uses telnet to connect to host 192.168.16.2.
Host 172.16.12.2 is the source host. The user is dynamically assigned a unique port
number—3382. The connection is made to the telnet service on the remote host
which is, according to the standard, assigned well-known port 23. The socket for
the source side of the connection is 172.16.12.2.3382 (IP address 172.16.12.2 plus
port number 3382). For the destination side of the connection, the socket is
192.168.16.2.23 (address 192.168.16.2 plus port 23). The port of the destination
socket is known by both systems because it is a well-known port. The port of the
source socket is known, because the source host informed the destination host of
the source socket when the connection request was made. The socket pair is
therefore known by both the source and destination computers. The combination
of the two sockets uniquely identifies this connection; no other connection in the
Internet has this socket pair.

Summary

This chapter shows how data moves through the global Internet from one specific
process on the source computer to a single cooperating process on the other side
of the world. TCP/IP uses globally unique addresses to identify any computer in
the world. It uses protocol numbers and port numbers to uniquely identify a single
process running on that computer.

Routing directs the datagrams destined for a remote process through the maze of
the global network. Routing uses part of the IP address to identify the destination
network. Every system maintains a routing table that describes how to reach
remote networks. The routing table usually contains a default route that is used if
the table does not contain a specific route to the remote network. A route only
identifies the next computer along the path to the destination. TCP/IP uses hop-
by-hop routing to move datagrams one step closer to the destination until the
datagram finally reaches the destination network.

At the destination network, final delivery is made by using the full IP address
(including the host part) and converting that address to a physical layer address.
An example of the type of protocol used to convert IP addresses to physical layer
addresses is Address Resolution Protocol (ARP). It converts IP addresses to Ethernet
addresses for final delivery.

The first two chapters described the structure of the TCP/IP protocol stack and the
way in which it moves data across a network. In the next chapter we move up the
protocol stack to look at the type of services the network provides to simplify con-
figuration and use.

052

053

054

055

056

057

058

059

060

061

062

Troubleshooting Network Access 329

review all of the steps necessary to install this interface, looking for errors or
missed steps. -

The second Iiﬁe of ifconfig output shows the IP address, the sﬁbflet mask (written
in hexadecimal), and the broadcast address. Check these three fields to make sure
the network interface is properly configured.

Two common interface configuration problems are misconfigured subnet masks
and incorrect IP addresses. A bad subnet mask is indicated when the host can
reach other hosts on its local subnet and remote hosts on distant networks, but it
cannot reach hosts on other local subnets. ifconfig quickly reveals if a bad subnet
mask is set.

An incorrectly set IP address can be a subtle problem. If the network part of the
address is incorrect, every ping will fail with the “no answer” error. In this case,
using ifconfig will reveal the incorrect address. However, if the host part of the
address is wrong, the problem can be more difficult to detect. A small system,
such as a PC that only connects out to other systems and never accepts incoming
connections, can run for a long time with the wrong address without its user notic-
ing the problem. Additionally, the system that suffers the ill effects may not be the
one that is misconfigured. It is possible for someone to accidentally use your IP
address on his system, and for his mistake to cause your system intermittent com-
munications problems. An example of this problem is discussed later. This type of
configuration error cannot be discovered by ifconfig, because the error is on a
remote host. The arp command is used for this type of problem.’

Troubleshooting with the arp Command

The arp command is used to analyze problems with IP to Ethernet address transla-
tion. The arp command has three useful options for troubleshooting:

~a Display all ARP entries in the table.

~d hostname
Delete an entry from the ARP table.

—s hostname ether-address
Add a new entry to the table.

With these three options you can view the contents of thé ARP tﬁblé, delete a
problem entry, and install a corrected entry. The ability to install a corrected entry
is useful in “buying time” while you look for the permanent fix.

Use arp if you suspect that incorrect entries are getting into the address resolution
table. One clear indication of problems with the ARP table is a report that the
“wrong” host responded to some command, like ftp or telnet. Intermittent prob-
lems that affect only certain hosts can also indicate that the ARP table has been

063

064

065

066

067

068

069

070

071

072

073

074

Checking Name Service : 341

When traceroute fails to get packets through to the remote end system, the trace
trails off, displaying a series of three asterisks at each hop count until the count
reaches 30. If this happens, contact the administrator of the remote host you're try-
ing to reach, and the administrator of the last gateway displayed in the trace,
Describe the problem to them; they may be able to help.* In our example, the last
gateway that responded to our packets was cambridgel-brl.bbnplanet.net. We
would contact this system administrator, and the administrator of ds.internic.net.

Checking Name Service

Name server problems are indicated when the “unknown host” error message is
returned by the user’s application. Name server problems can usually be diag-
nosed with nslookup or dig. nslookup is discussed in detail in Chapter 8. dig is an
alternative tool with similar functionality that is discussed in this chapter. Before
looking at dig, let’s take another look at nslookup and see how it is used to trou-
bleshoot name service. & '

Three features of nslookup covered in Chapter 8 are partiéularly important for
troubleshooting remote name server problems. These features are its ability to:

e Locate the authoritative servers for the remote domain using the NS query
¢ Obtain all records about the remote host using the ANY query

e Browse all entries in the remote zone using nslookup’s Is and view commands

When troubleshooting a remote server problem, directly query the authoritative
servers returned by the NS query. Don't rely on information returned by non-
authoritative servers. If the problems that have been reported are intermittent,
query all of the authoritative servers in turn and compare their answers. Intermit-
tent name server problems are sometimes caused by the remote servers returning
different answers to the same query.

The ANY query returns all records about a host, thus giving the broadest range of
troubleshooting information. Simply knowing what information is (and isn’t) avail-
able can solve a lot of problems. For example, if the query returns an MX record
but no A record, it is easy to understand why the user couldn’t telnet to that host!
Many hosts are accessible to mail that are not accessible by other network ser-
vices. In this case, the user is confused and is trying to use the remote host in an
inappropriate manner.

If you are unable to locate any information about the hostname that the user gave
you, perhaps the hostname is incorrect. Given that the hostname you have is

* Chapter 13, Iuternet Information Resources, explaing how to find our who is responsible for a spe-
cific computer. '

075

076

077

078

079

080

Checking Name Service 347

479812 1IN NS AQS.BRL.MIL.
479812 IN NS A.ISL.EDU.

479912 1IN NS ‘C.NYSER.NET.
479912 1IN NS TERP.UMD.EDU.

* 479912 iN NS NS FOO.MIL.

This contrived example has three glaring errors. The “arpa” entry in the first field
of the SOA record is invalid, and is the most infamous form of cache corruption.
The last NS record is also invalid. NS.FOO.MIL. is not a valid root server, and an
asterisk (*) in the first field of a root server record is not normal.

If vou see problems like these, force named to reload its cache with the SIGHUP
signal as shown below:

kill -HUP “cat /atc]n&:ﬁed.pid‘

This clears the cache and reloads the valid root server entries from your named.ca
file.

If you know which system is corrupting your cache, instruct your system {o ignore
updates from the culprit by using the bogusns statement in the /Jetc/named. boot
file. The bogusns statement lists the IP addresses of name servers whose informa-
tion cannot be trusted. For example, in the previous section we described a prob-
lem where acorn.sales.nuts.com (172.16,16.1) was causing cache corruption with
improperly formatted HINFO records. The following entry in the named.boot file
blocks queries to acorn.sales.nuts.com and thus blocks the cache corruption:

bogusns 172.16.16.1

The bogusns entry is only a temporary measure. It is designed to keep things run-
ning while the remote domain administrator has a chance to diagnose and repair
the problem. Once the remote system is fixed, remove the bogusns entry from
named.boot.

dig: An Alternative to nslookup

An alternative to nslookup for making name service queries is d1g dig queries are
usually entered as single-line commands, while nslookup is usually run as an inter-
active session. But the dig command performs essentially the same function as
nslookup. Which you use is mostly a matter of personal choice. They both work
well.

As an example, we'lll use dig to ask the root server terp.umd.edu for the NS
records for the mit.edu domain. To do this, enter the following command:

% dig @Gterp.umd.edu mit.edu ns

In this example, @terp.umd.edu is the server that is being queried. The server can
be identified by name or IP address. If you're troubleshooting a problem in a

081

082

Analyzing Protocol Problems 349

;3 QUESTIONS:
e 3.0.72.18.in-addr.arpa, type = ANY, class = IN

;i ANSWERS:
3.0.72.18.in~addr.arpa. 21600 PTR BITSY.MIT.EDU.

;; Total cuery time: 74 msec.

++ FROM: peanut to SERVER: default -= 172. 16 12.1
;7 WHEN: Sat Jul 12 11:12:55 199'7

1+ MSG SIZE sent: 40 reovd: 67

The answer to our query is BITSY'.MIT._EDU, but dig displays lots of other output.
The first five lines and the last four lines provide information and statistics about
the query. For our purposes, the only important information is the answer.*

Analyzing Protocol Problems

Problems caused by Rba;c-i TCP/IP configurations are much more common than
problems caused by bad TCP/IP protocol implementations. Most of the problems
you encounter will succumb to analysis using the simple tools we have already
discussed. But on occasion, you may need to analyze the protocol interaction
between two systems. In the worst case, you may need to analyze the packets in
the data stream bit by bit. Protocol analyzers help you do this. .

snoop is the tool we'll use. It is provided with the Solaris operating system.t
Although we use snoop in all of our examples, the concepts introduced in this
section should be applicable to the analyzer that you use, because most protocol
analyzers function in basically the same way. Protocol analyzers allow you to
select, or filter, the packets you want to examine, and to examine those packets
byte by byte. We'll discuss both of these functions.

Protocol analyzers watch all the packets on the network, Therefore, you only need
one system that runs analyzer software on the affected part of the network. One
Solaris system with snocp can monitor the network traffic and tell you what the
other hosts are (or aren’t) doing. This, of course, assumes a shared media network.
If you use an Ethernet switch, only the traffic on an individual segment can be
seen. Some switches provide a monitor port. For others you may need to take
your monitor to the location of the problem

* To see a smgle-}mc answer to this query, pipe dig's output to grep; €. g dzg -x18.72.0.3 | grep PTR.

If you don't use Solaris, try tepdump. It is available via anonymous FTP on the Intcmet and is similar
o SNoop. i gl :

083

084

085

086

087

088

089

090

091

092

093

094

