
Help for UNIX System Administrators

O'REILLY® Craig H unt

001

Apple Inc.
APL1110

U.S. Patent No. 8,724,622

TCP/IP Network Administration

002

TCP/IP Network Administration
Second Edition

Craig Hunt

O'REILLY®
Beijing · Cambridge · Farnham · KOln · Pat-is · Sebastopol · Taipei · Tokyo

003

TCP/IP Network Administration, Second Edition
by Craig Hunt

Copyright © 1998, 1992 Craig Hunt. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Mike Loukides

Update Editor: Gigi Estabrook

Production Editor: Nicole Gipson Arigo

Printing History:

August 1992:

March 1993:

September 1993:

January 1994:

May 1994:

january 1998:

First Edition.

Minor corrections.

Minor corrections.

Minor corrections.

Minor corrections.

Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java™ Series is a trademark of O'Reilly & Associates, Inc. The association
of a crab and the topic of TCP!IP is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-322-7

[M]

[6/01]

004

TCP/IP Network Administra.tion, Second Edilion
by Craig Hunt

Copyright © 1998, 1992 Craig Hunt. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Mike Loukides

Update Editor: Gigi Estabrook

Production Editor: Nicole Gipson Arigo

Printing History:

August 1992: First Edition.

March 1993: Mirror corrections.

September 1993: Minor corrections.

January 1994: Minor corrections.

May 1994: Minor corrections.

January 1998: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java™ Series is a trademark of O'Reilly & Associates, Inc. The association
of a crab and the topic of TCP liP is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-322-7
[M]

[6/ 01]

005

In this chapte~·:
• TCP/IP and the

Internet
• AData

Communications
Model

• TCP liP Protocol
Architecture

• Network Access Layer
• Internet Layet·
• Tt-ansport Layer
• Application Layet·
• Summary

1
Overview of TCP /IP

All of us who use a UNIX desktop system- engineers, educators, scientists, and
business people-have second careers as UNIX system administrators. Networking
these computers gives us new tasks as network administrators.

Network administration and system administration are two different jobs. System
administration tasks such as adding users and doing backups are isolated to one
independent computer system. Not so with network administration. Once you
place your computer on a network, it interacts with many other systems. The way
you do network administration tasks has effects, good and bad, not only on your
system but on od1er systems on the network. A sound understanding of basic net­
work administration benefits everyone.

Networking computers dramatically enhances meir ability to communicate- and
most computers are used more for communication man computation. Many main­
frames and supercomputers are busy crunching d1e numbers for business and sci­
ence, but the number of such systems pales in comparison to me millions of
systems busy moving mail to a remote colleague or retrieving information from a
remote reposito1y. Fu1ther, when you think of me hundreds of millions of desktop
systems that are used primarily for preparing documents to communicate ideas
from one person to another, it is easy to see why most computers can be viewed
as communications devices.

The positive impact of computer communications increases with me number and
type of computers mat pa1ticipate in the network. One of the great benefits of
TCP/IP is d1at it provides interoperable communications between all types of hard­
ware and all kinds of operating systems.

1

006

2 Chapte,.l: Ove,.view ofTCP/IP

This book is a practical, step-by-step guide to configuring and managing TCP/IP
networking software on UNIX computer systems. TCP!IP is the software package
that dominates UNIX data communications. It is the leading communications soft­
ware for UNIX local area networks and enterprise intranets, and for the foundation
of the worldwide Internet.

The name "TCP/IP'' refers to an entire suite of data communications protocols. The
suite gets its name from two of the protocols that belong to it: the Transmission
Conu·ol Protocol and the Internet Protocol. Although there are many other proto­
cols in the suite, TCP and IP are certainly two of the most impo1tant.

The first part of this book discusses the basics of TCP/IP and how it moves data
across a network. The second part explains how to configure and run TCP /IP on a
UNIX system. Let's start with a little history.

TCP /IP and the Internet
In 1969 the Advanced Research Projects Agency (ARPA) funded a research and
development project to create an experimental packet-switching network. This
network, called the ARPANEI: was built to study techniques for providing robust,
reliable, vendor-independent data communications. Many techniques of modern
data communications were developed in the ARPANET.

The experimental ARPANET was so successful that many of the organizations
attached to it began to use it for daily data communications. In 1975 the ARPANET
was converted from an experimental network to an operational network, and the
responsibility for administering the network was given ro the Defense Communica­
tions Agency (DCA). • However, development of the ARPANET did not stop just
because it was being used as an operational network; the basic TCP/IP protocols
were developed after the ARPANET was operational.

The TCP/IP protocols were adopted as Milita.y Standards (MIL STD) in 1983, and
all hosts connected to the network were requ ired to convert to the new protocols.
To ease this conversion, DARPAt funded Bolt, Beranek, and Newman (BBN) to
implement TCP/IP in Berkeley (BSD) UNIX. Thus began the marriage of UNIX and
TCP/IP.

About the time that TCP/IP was adopted as a standard, the term Internet came
into common usage. In 1983, tl1e old ARPANET was divided into MILNET, the

• DC.\ has smce changed its name to Defense Information Systems Agency (DISA).

t During the 1980s and early 1990s. ARPA, which is pan of the U.S Dcpanment of Defense, was
named Defense Ad,·anccd Research Projects Agency (DARPA). Currently known as ARPA, the agency is
again preparmg to change its name to DARPA. Whether it is known as ARPA or DARPA. the agency and
its mbsion of funding ad\'anced research has remained the same.

007

TCP/IP and the Internet 3

unclassified part of the Defense Data Network (DON), and a new, smaller
ARPANET. ''Internet" was used to refer to the entire network: MILNET plus
ARPANET.

In 1985 the National Science Foundation (NSF) created NSFNet and connected it to
the then-existing Internet. The original NSFNet linked together the five NSF super­
computer centers. It was smaller than the ARPANET and no faster-56Kbps.
Nonetheless, the creation of the NSFNet was a significant event in the history of
the Internet because NSF brought with it a new vision of the use of the Internet.
NSF wanted to extend the network to every scientist and engineer in the United
States. To accomplish this, in 1987 NSF created a new, faster backbone and a
three-tiered network topology that included the backbone, regional networks, and
local networks.

In 1990, the ARPANET formally passed out of existence, and the NSFNet ceased its
role as a primary Internet backbone network in 1995. Still, today the Internet is
larger than ever and encompasses more than 95,000 networks worldwide. This
network of networks is linked together in the United States at several major inter­
connection pointS:

• The three Network Access PointS (NAPs) created by the NSF to ensure contin­
ued broad-based access to the Internet.

• The Federal Information Exchanges (FIXs) interconnect U.S. government net­
works.

• The Commercial Information Exchange (CIX) was the first interconnect specifi­
cally for commercial Internet Service Providers (ISPs).

• The Metropolitan Area Exchanges (MAEs) were also created to interconnect
commercial ISPs.

The Internet has grown far beyond its original scope. The original networks and
agencies that built the Internet no longer play an essential role for the current net­
work. The Internet has evolved from a simple backbone network, through a three­
tiered hierarchical structure, to a huge network of interconnected, distributed net­
work hubs. It has grown exponentially since 1983-doubling in size every year.
Through all of this incredible change one thing has remained constant: the Inter­
net is built on the TCP/IP protocol suite.

A sign of rhe network's success is the confusion that surrounds the term internet.
Originally it was used only as the name of the network buill upon the Inremer
Protocol. Now internet is a generic term used to refer to an entire class of net­
works. An internet (lowercase "i") is any collection of separare physical networks,
interconnected by a common protocol, to form a single logical network. The Inter­
net (uppercase "I") is the worldwide collection of interconnected networks, which
grew our of the original ARPANET, that uses Internet Protocol (IP) to link the

008

4 Chapter 1: Overview ofTCP/IP

various physical networks into a single logical network. In this book, both "inter­
net" and "Internet" refer to networks that are interconnected by TCP!IP.

Because TCP/ IP is required for Internet connection, the growth of the Internet has
spurred interest in TCP/IP. As more organizations become familiar with TCP/IP,
they see that its power can be applied in other network applications. The Internet
protocols are often used for local area networking, even when the local network is
not connected to the Internet. TCP/IP is also widely used to build enterprise net­
works. TCP/IP-based enterplise networks that use Internet techniques and World
Wide Web tools to disseminate internal corporate information are called intranets.
TCP/IP is the foundation of all of these varied networks.

TCP liP Features
The popularity of the TCP/IP protocols did not grow rapidly just because the pro­
tocols were there, or because connecting to the Internet mandated their use. They
met an important need (worldwide data communication) at the right time, and
they had several important features that allowed them to meet this need. These
features are:

• Open protocol standards, freely available and developed independently from
any specific computer hardware or operating system. Because it is so widely
supported, TCP/ IP is ideal for uniting different hardware and software, even if
you don't communicate over the Internet.

• Independence from specific physical network hardware. This allows TCP/IP to
integrate many different kinds of networks. TCP/ IP can be run over an Ether­
net, a token ring, a dial-up line, an FDDI net, and virtually any other kind of
physical transmission medium.

• A common addressing scheme that allows any TCP!IP device to uniquely
address any other device in the entire network, even if the network is as large
as the worldwide Internet.

• Standardized high-level protocols for consistent, widely available user services.

Protocol Standards
Protocols are formal rules of behavior. In international relations, protocols mini­
mize the problems caused by cultural differences when various nations work
together. By agreeing tO a common set of rules that are widely known and inde­
pendent of any nation's customs, diplomatic protocols minimize misunderstand­
ings; everyone knows how to act and how to interpret the actions of others.
Similarly, when computers communicate, it is necessary to define a set of rules to
govern their communications.

009

A Data Communications Model 5

ln data communications these sers of rules are also called protocols. ln homoge­
neous networks, a single computer vendor specifies a set of communications rules
designed to use the strengths of the vendor's operating system and hardware
architecture. But homogeneous networks are like the culture of a single country­
only the na~ives are truly at home in it. TCP/IP attemprs to create a heterogeneous
network with open protocols that are independent of operating system and archi­
tectural differences. TCP/IP protocols are available to everyone, and are developed
and changed by consensus- not by the fiat of one manufacturer. Everyone is free
to develop products to meet these open protocol specifications.

The open nature of TCP/IP protocols requires publicly available standards docu­
ments. All protocols in the TCP/ IP protocol suite are defined in one of three Inter­
net standards publications. A number of the protocols have been adopted as
Mililaty Standards (MIL STD). Others were published as Internet Engineering
Notes (IEN)-though the lEN form of publication has now been abandoned. But
most information about TCP/IP protocols is published as Requests for Comments
(RFCs). RFCs contain the latest versions of the specifications of all standard TCP/IP
protocols. As the title "Request for Comments" implies, the style and content of
these documenrs is much less rigid than most standards documents. RFCs contain
a wide range of interesting and useful information, and are not limited to the for­
mal specification of data communications protocols.

As a network system administrator, you will no doubt read many of the RfCs your­
self. Some contain practical advice and guidance that is simple to understand.
Other RFCs contain protocol implementation specifications defined in terminology
that is unique to data communications.

A Data Communications Model
To discuss computer networking, it is necessaty to use terms that have special
meaning. Even other computer professionals may not be familiar with aU the terms
in the networking alphabet soup. As is always the case, English and computer­
speak are not equivalent (or even necessarily compatible) languages. Although
descriptions and examples should make the meaning of the networking jargon
more apparent, sometimes terms are ambiguous. A common frame of reference is
necessary for understanding data communications terminology.

An architectural model developed by the International Standards Organization
(ISO) is frequently used to describe the structure and function of data communica­
tions protocols. This architectural model, which is called the Open Systems Inter­
connect Reference Model (OSI), provides a common reference for discussing

• Interested in finding out how Internet standards are created? Read Tbe /111emet Sta11dards Process,
RFC 1310.

010

6 Chapter 1: Overview ofTCP/IP

communications. The terms defined by this model are well understood and widely
used in the data communications community-so widely used, in fact, that it is
difficult to discuss data communications without using OSI's terminology.

The OSI Reference Model contains seven layers that define the functions of data
communications protocols. Each layer of the OSI model represents a function per­
formed when data is transferred between coope!"'.tting applications across an inter­
vening network. Figure 1-1 identifies each layer by name and provides a short
functional description for it. Looking at this figure, the protocols are like a pile of
building blocks stacked one upon another. Because of this appearance, the struc­
ture is often called a stack or protocol stack.

0 Application Layer
consists of application programs
that use the network.

0 Presentation Layer
standardizes data presentation to
the applications.

0 Session Layer
manages sessions between
applications.

0 Transport Layer
provides end-to-end error
deteclion and correction.

0 Network Layer
manages connections across the
network for thB uppBr /ayBrs.

0 Data Link Layer
provides reliable data delivery
across the physical/Ink.

0 Physical Layer

I
defines the physical characteristics
of the network media.

Figure 1-1: 7be OS! Reference Model

A layer does not define a single protocol-it defines a data communications func­
tion that may be performed by any number of protocols. Therefore, each layer
may contain multiple protocols, each providing a service suitable to the function
of that layer. For example, a file transfer protocol and an electronic mail protocol
both provide user services, and both are part of the Application Layer.

011

A Data Communications Model 7

Every protocol communicates with its peer. A peer is an implementation of the
same protocol in the equivalent layer on a remote system; i.e., the local file trans­
fer protocol is the peer of a remote file transfer protocol. Peer-level communica­
tions must be standardized for successful communications to take place. In the
abstract, each protocol is concerned only with communicating to its peer; it does
not care about the layer above or below it.

However, there must also be agreement on how to pass data between the layers
on a single computer, because every layer is involved in sending data from a local
application to an equivalent remote application. The upper layers rely on the
lower layers to transfer the data over the underlying network. Data is passed down
the stack from one layer to the next, until it is transmitted over the network by the
Physical Layer protocols. At the remote end, the data is passed up the stack to the
receiving application. The individual layers do not need to know how the layers
above and below them function; they only need to know how to pass data to
them. Isolating network communications functions in different layers minimizes
the impact of technological change on the entire protocol suite. New applications
can be added without changing the physical network, and new network hardware
can be installed without rewriting the application software.

Although the OSI model is useful, the TCP/ IP protocols don't match its structure
exactly. Therefore, in our discussions of TCP/ IP, we use the layers of the OSI
model in the following way:

Application Layer
The Application Layer is the level of the protocol hiera1·chy where user­
accessed network processes reside. In this text, a TCP/ IP application is any
network process that occurs above the Transport Layer. This includes all of the
processes that users directly interact with, as well as other processes at this
level that users are not necessarily aware of.

Presentation Layer
For cooperating applications to exchange data, tl1ey must agree about how
data is represented. In OSI, this layer provides standard data presentation rou­
tines. This function is frequently handled within the applications in TCP/ IP,
though increasingly TCP/ IP protocols such as XDR and MIME perform this
function.

Session Layer
As with the Presentation Layer, the Session Layer is not identifiable as a sepa­
rate layer in the TCP/ IP protocol hierarchy. The OSI Session Layer manages
the sessions (connection) between cooperating applications. In TCP/IP, this
function largely occurs in tl1e Transport Layer, and the term "session" is not
used. For TCP/ IP, the terms "socket" and "port" are used to describe the path
over which cooperating applications communicate.

012

8 Chapter I: Overview ofTCP/IP

Transport Layer
Much of our discussion of TCP/ IP is directed to the protocols that occur in the
Transport Layer. The Transport Layer in the OSI reference model guarantees
that the receiver gets the data exactly as it was sent. In TCP / IP this function is
performed by the Transmission Control Protocol (TCP). However, TCP/ IP
offers a second Transport Layer service, User Datagram Protocol (UDP), that
does not perform the end-to-end reliability checks.

Network Layer
The Network Layer manages connections across the network and isolates the
upper layer protocols from the details of the underlying network. The Internet
Protocol (IP), which isolates the upper layers from the underlying network
and handles the addressing and delive1y of data, is usually described as
TCP/ IP's Network Layer.

Data Link Layer
The reliable delive1y of data across the underlying physical network is han­
dled by the Data Link Layer. TCP/ IP rarely creates protocols in the Data Link
Layer. Most RFCs that relate to the Data Link Layer discuss how IP can make
use of existing data link protocols.

Physical Layer
The Physical Layer defines the characteristics of the hardware needed to carry
the data transmission signal. Features such as voltage levels, and the number
and location of interface pins, are defined in this layer. Examples of standards
at the Physical Layer are interface connectors such as RS232C and V.35, and
standards for local area network wiring such as IEEE 802.3. TCP/ IP does not
define physical standards- it makes use of existing standards.

The terminology of the OSI reference model helps us describe TCP/ IP, but to fully
understand it, we must use an architectural model that more closely matches the
structure of TCP/ IP. The next section introduces the protocol model we'll use to
describe TCP / IP.

TCP/IP Protocol Architecture
While there is no universal agreement about how to describe TCP/ IP with a lay­
ered model, it is generally viewed as being composed of fewer layers than the
seven used in the OSI model. Most descriptions of TCP l iP define three to five
functional levels in the protocol architecture. The four-level model illustrated in
Figure 1-2 is based on the three layers (Application, Host-to-Host, and Network
Access) shown in the DOD Protocol Model in the DDN Protocol Handbook­
Volume 7, with the addition of a separate Internet layer. This model provides a
reasonable pictorial represemation of the layers in the TCP/ IP protocol hierarchy.

013

TCP/IP Protocol Architecture

0 Application Layer
consists of applications and
processes that use the network.

E) Host-to-Host Transport Layer
provides end-to-end data
delivery services.

f) Internet Layer
defines the datagram and handles
the routing of data.

0 Network Access Layer
consists of routines for accessing
physical networks.

Figure 1-2: Layers in the TCP/IP protocol architecture

9

As in the OSI model, data is passed down the stack when it is being sent to the
network, and up the stack when it is being received from the network. The four­
layered structure of TCP/ IP is seen in the way data is handled as it passes down
the protocol stack from the Application Layer to the underlying physical network.
Each layer in the stack adds control information ro ensure proper delivery. This
control information is called a header because it is placed in front of the data to
be transmitted. Each layer treats all of the information it receives from the layer
above as data and places its own header in front of that information. The addition
of delivery information at every layer is called encapsulation. (See Figure 1-3 for
an illustration of this.) When data is received, the opposite happens. Each layer
strips off its header before passing the data on to the layer above. As information
flows back up the stack, information received from a lower layer is interpreted as
both a header and data.

Each layer has its own independent data structures. Conceptually, a layer is
unaware of the data structures used by the layers above and below it. In reality,
the data structures of a layer are designed to be compatible with the structures
used by the surrounding layers for the sake of more efficient data transmission.
Still, each layer has its own data structure and its own terminology to describe that
structure.

Figure 1-4 shows the terms used by d ifferent layers of TCP/IP to refer to the data
being transmitted. Applications using TCP refer to data as a stream, while applica­
tions using the User Datagram Protocol (UDP) refer to data as a message. TCP calls
data a segment, and UDP calls its data structure a packet. The Internet layer views
all data as blocks called datagrams. TCP/ IP uses many different types of

014

10 Chapter 1: Overview ofTCP/IP

·------------------------ - ---------------- ------ --------------~---- -------
Transport Layer

Header ~ala
~ - ---- --l L.. ------------
tnternet Layer '\)' I Header Header Data I
N;h;;rk A;c~~~-i;y;;------------------------- ---- ----JJ------1t----------.

Header Header ~ Header ~ Data I

Application Layer
Data I

Send Receive

Figure 1-3: Data encapsulation

underlying networks, each of which may have a different terminology for the data
it transmits. Most networks refer to transmitted data as packets or frames. In Figure
1-4 we show a network that transmits pieces of data it calls frames.

Application Layer
TCP m [
~ea~

UDP on<> I
~ss~

Transport Layer

Internet Layer
datagram

Network Access Layer
frame frame

Figure 1-4: Data structures

Let's look more closely at the function of each layer, working our way up from the
Network Access Layer to the Application Layer.

015

In ternet Layer 11

Network Access Layer
The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The
protocols in this layer provide the means for the system to deliver data to the
other devices on a directly anached network. It defines how to use the network to
transmit an IP datagram. Unlike higher-level protocols, Network Access Layer pro­
tocols must know the details of the underlying network (itS packet structure,
addressing, etc.) to correctly format the data being transmitted to comply with the
network constraints. The TCP/IP Network Access Layer can encompass the func­
tions of all three lower layers of the OSI reference Model (Network, Data Link, and
Physical).

The Network Access Layer is often ignored by users. The design of TCP/ IP hides
the function of the lower layers, and the bener known protocols (IP, TCP, UDP,
etc.) are all higher-level protocols. As new hardware technologies appear, new
Network Access protocols must be developed so that TCP/ IP networks can use the
new hardware. Consequently, there are many access protocols-one for each
physical network standard.

Functions performed at this level include encapsulation of IP datagrams into the
frames transmitted by the network, and mapping of IP addresses to the physical
addresses used by the network. One of TCP/ IP's strengths is its universal address­
ing scheme. The IP address must be converted into an address that is appropriate
for the physical network over which the datagram is transmitted.

Two examples of RFCs that define network access layer protocols are:

• RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Eth­
ernet addresses

• RFC 894, A Standard for the Transmt:ssion of JP Datagrams over Ethernet Net­
works, which specifies how IP datagrams are encapsulated for transmission
over Ethernet networks

As implemented in UNIX, protocols in this layer often appear as a combination of
device drivers and related programs. The modules that are identified with network
device names usually encapsulate and deliver tl1e data to the network, while sepa­
rate programs perform related functions such as address mapping.

Internet Layer
The layer above the Network Access Layer in the protocol hierarchy is the Internet
Layer. The Internet Protocol, RFC 791, is the heart of TCPIIP and the most impor­
tant protocol in the Internet Layer. IP provides the basic packet delivery service on
which TCP/ IP networks are built. All protocols, in the layers above and below IP,

016

12 Chapter 1: Overview ofTCP/IP

use the Internet Protocol to deliver data. All TCP/ IP data flows through IP, incom­
ing and outgoing, regardless of its final destination.

Internet Protocol
The Imernet Protocol is the building block of the Internet. Its functions include:

• Defining the datagram, which is the basic unit of transmission in the Internet

• Defining the Internet addressing scheme

• Moving data between the Network Access Layer and the Host-to-Host Trans-
port Layer

• Routing datagrams to remote hosts

• Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let's look at some of IF's charac­
teristics. First, IP is a connectionless protocol. This means that IP does not
exchange control information (called a "handshake") to establish an end-to-end
connection before transmitting data. In contrast, a connection-oriented protocol
exchanges control information with the remote system to verify that it is ready to
receive data before any data is sent. When the handshaking is successful, the sys­
tems are said to have established a connection. Internet Protocol relies on proto­
cols in other layers to establish the connection if they require connection-oriented
service.

IP also relies on protocols in the other layers to provide error detection and error
recovery. The Internet Protocol is sometimes called an unreliable protocol because
it contains no error detection and recovery code. This is not to say that the proto­
col cannot be relied on-quite the contrary. IP can be relied upon to accurately
deliver your data to the connected network, but it doesn't check whether that data
was correctly received. Protocols in other layers of the TCP/ IP architecture provide
this checking when it is required.

The datagram

The TCP/ IP protocols were built to transmit data over the ARPANET, which was a
packet switching network. A packet is a block of data that carries with it the infor­
mation necessary to deliver it- in a manner similar to a postal letter, which has an
address written on its envelope. A packet switching network uses the addressing
information in the packets to switch packets from one physical network to
another, moving them toward their final destination. Each packet travels the net­
work independently of any other packet.

The datagram is the packet format defined by Internet Protocol. Figure 1-5 is a
pictorial representation of an IP datagram. The first five or six 32-bit words of the

017

Internet Layer 13

datagram are concrol information called the header. By defal:llt, the header is five
words long; the sLxth word is optional. Because the header's length is variable, it
includes a field called Internet Header Length (JHL) that indicates the header's
length in words. The header contains all the information necessary to deliver the
packet.

lo~t--------- Bits ----------1~,
14 Ia I ~ I ~ I~ I ~ I ~ ~

13 T Version I IHL I Type of Service Total Length

Identification Flags I Fragmentation Offset

I ~ 3
~­
~ 4

E
nme to Live

l

Figure 1-5: IP datagram format

Protocol Header Checksum

Source Address

Destination Address

Options I Paddmg 1
data begins here ...

The Internet Protocol delivers the datagram by checking the Destination Address
in word 5 of the header. The Destination Address is a standard 32-bit IP address
that identifies the destination network and the specific host on that network. (The
format of IP addresses is explained in Chapter 2, Delivering the Data.) If the Desti­
nation Address is the address of a host on the local network, the packet is deliv­
ered directly to the destination. If the Destination Address is not on the local
network, the packet is passed to a gateway for delivery. Gateways are devices that
switch packets between the different physical networks. Deciding which gateway
to use is called routing. IP makes the routing decision for each individual packer.

Routing datagrams

Internet gateways are commonly (and perhaps more accurately) referred £O as IP
routers because they use Internet Protocol to route packets between networks. In
traditional TCP/IP jargon, there are only two types of network devices-gateways
and hosts. Gateways forward packets between networks, and hosts don't. How­
ever, if a host is connected to more than one network (called a multi-homed host),
it can forward packets between the networks. When a multi-homed host forwards
packets, it acts just like any other gateway and is considered to be a gateway.

018

14 Chapter 1: Overview ofTCP/IP

Current data communications terminology makes a distinction between gateways
and routers,• but we'll use the terms gateway and lP router interchangeably.

Figure 1-6 shows the use of gateways to forward packets. The hosts (or end sys­
tems) process packets through all four protocol layers, while the gateways (or
intermediate systems) process the packets only up to the Internet Layer where the
routing decisions are made.

Host A1

Application

Transport

Internet

Network Access

Network A

GatewayG1

Figure 1-6: Routi11g through gateways

GatewayG2

NetworkS

Host C1

Application

Transport

NetworkC

Systems can only deliver packets to other devices attached to the same physical
network. Packets from Al destined for host Cl are forwarded through gateways
Gland G2. Host Al first delivers the packet to gateway Gl, with which it shares
network A. Gateway Gl delivers the packet to G2 over network B. Gateway G2

then delivers the packet directly to host Cl, because they are both attached to net­
work C. Host AJ has no knowledge of any gateways beyond gateway Gl. It sends
packets destined for both networks C and B to that local gateway, and then relies
on that gateway to properly forward the packets along the path to their destina­
tions. Likewise, host Cl would send its packets to G2, in order to reach a host on
network A, as well as any host on network B.

Figure 1-7 shows another view of routing. This figure emphasizes that the underly­
ing physical networks that a datagram travels through may be different and even
incompatible. Host Al on the token ring network routes the datagram through
gateway Gl, to reach host Cl on the Ethernet. Gateway Gl forwards the data
through the X.25 network to gateway G2, for delivery to Cl. The datagram tra­
verses three physically different networks, but eventually arrives intact at Cl.

* In currem terminology, a gateway moves data between different protocols and a router moves data
between differcm networks. So a system that moves mail between TCP/IP and OSI is a gateway, but a
traditional IP gateway is a router.

019

Internet Layer 15

cti!.~ I R - "TTi·

A1

Ethernet

Figure 1-7: Networks, gateways, and hosts

Fragmenting datagrams

As a datagram is routed through different networks, it may be necessary for the IP
module in a gateway to divide the datagram into smaller pieces. A datagram
received from one network may be too large to be transmined in a single packet
on a different network. This condition occurs only when a gateway interconnects
dissimilar physical networks.

Each type of network has a maximum transmission unit (MTU), which is the
largest packet that it can transfer. If the datagram received from one network is
longer than the other network's MTU, it is necessary to divide the datagram into
smaller fragments for transmission. This process is called fragmentation. Think of
a train delivering a load of steel. Each railway car can cany more steel than the
trucks that will take it along the highway; so each railway car is unloaded onto
many different trucks. In the same way that a railroad is physically different from a
highway, an Ethernet is physically different from an X.25 network; IP must break
an Ethernet's relatively large packets into smaller packets before it can transmit
them over an X.25 network.

The format of each fragment is the same as the format of any normal datagram.
Header word 2 contains information that identifies each datagram fragment and

020

16 Chapter 1: Overview ofTCP/ IP

provides information about how to re-assemble the fragments back into the origi­
nal datagram. The Identification field identifies what datagram the fragment
belongs to, and the Fragmentation Offset field tells what piece of the datagram this
fragmem is. The Flags field has a "More Fragments" bit that tells IP if it has assem­
bled all of the datagram fragments.

Passing datagm ms to the transport layer

When IP receives a datagram that is addressed to the local host, it must pass the
data portion of the datagram to the correct Transport Layer protocol. This is done
by using the protocol number from word 3 of the datagram header. Each Transport
Layer protocol has a unique protocol number that identifies it to IP. Protocol num­
bers are discussed in Chapter 2.

You can see from this short overview that IP performs many important functions.
Don't expect to fully understand datagrams, gateways, routing, IP addresses, and
all the other things that IP does from this short description. Each chapter adds
more details about these topics. So let's continue on with the other protocol in the
TCP!IP Internet Layer.

Internet Control Message Protocol
An integral part of IP is the Internet Control Message Protocol (ICMP) defined in
RFC 792. This protocol is part of the Internet Layer and uses the IP datagram deliv­
ery facility to send its messages. ICMP sends messages that perform the following
control, error reporting, and informational functions for TCP/IP:

Flow control
When datagrams arrive too fast for processing, the destination host or an inter­
mediate gateway sends an ICMP Source Quench Message back to the sender.
This tells the source to stop sending datagrams temporarily.

Detecting unreachable destinations
When a destination is unreachable, the system detecting the problem sends a
Destination Unreachable Message to the datagram's source. If the unreachable
destination is a network or host, the message is sent by an intermediate gate­
way. But if the destination is an unreachable port, the destination host sends
the message. (We discuss ports in Chapter 2.)

Redirecting routes
A gateway sends the ICMP Redirect Message to tell a host to use another gate­
way, presumably because the other gateway is a better choice. This message
can be used only when the source host is on the same network as both gate­
ways. To better understand this, refer to Figure 1-7. If a host on the X.25 net­
work sent a datagram to Gl, it would be possible for Gl to redirect that host

021

Tmnspot·t Layet· 17

to G2 because the host, Gl, and G2 are all anached to the same network. On
the other hand, if a host on the token ring network sent a datagram to Gl, the
host could not be redirected to use G2. This is because G2 is not attached to
the token ring.

Checking remote hosts
A host can send the ICMP Echo Message to see if a remote system's Internet
Protocol is up and operational. When a system receives an echo message, it
replies and sends the data from the packet back to the source host. The ping
command uses this message.

Transport Layer
The protocol layer just above the Internet Layer is the Host-to-Host Transport
Layer. This name is usually shortened to Transport Layer. The two most important
protocols in the Transport Layer are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). TCP provides reliable data delivery service with end-to­
end error detection and correction. UDP provides low-overhead, connectionless
datagram delivery service. Both protocols deliver data between the Application
Layer and the Internet Layer. Applications programmers can choose whichever ser­
vice is more appropriate for their specific applications.

User Datagram Protocol
The User Datagram Protocol gives application programs direct access to a data­
gram delivery service, like the delivery service that IP provides. This allows appli­
cations to exchange messages over the network with a minimum of protocol
overhead.

UDP is an unreliable, connectionless datagram protocol. As noted previously,
"unreliable" merely means that there are no techniques in the protocol for verify­
ing that the data reached the other end of the network correctly. Within your com­
puter, UDP will deliver data correctly. UDP uses 16-bit Source Port and
Destination Port numbers in word 1 of the message header, to deliver data to the
correct applications process. Figure 1-8 shows the UDP message format.

Why do applications programmers choose UDP as a data transport service? There
are a number of good reasons. If the amount of data being transmitted is small,
the overhead of creating connections and ensuring reliable delivery may be greater
than the work of re-transmining the entire data set. In this case, UDP is the most
efficient choice for a Transport Layer protocol. Applications tl1at fit a query­
response model are also excellent candidates for using UDP. The response can be
used as a positive acknowledgment to the query. If a response isn't received
within a certain time period, the application just sends another query. Still other

022

18 Chapter 1: Overview ofTCP/ IP

Source Port Destination Port

Length Checksum

data begins here ...

Figure 1-8: UDP message format

applications provide their own techniques for reliable data delivery, and don't
require that service from the transp01t layer protocol. Imposing another layer of
acknowledgment on any of these types of applications is inefficient.

Transm ission Control Protocol
Applications that require the transport protocol to provide reliable data delivery
use TCP because it verifies that data is delivered across the network accurately and
in the proper sequence. TCP is a reliable, connection-oriented, byte-stream proto­
col. Let's look at each of the terms-reliable, connection-oriented, and byte­
stream- in more detail.

TCP provides reliability with a mechanism called Positive Acknowledgment with
Re-transmission (PAR). Simply stated, a system using PAR sends the data again,
unless it hears from the remote system that the data arrived okay. The unit of data
exchanged between cooperating TCP modules is called a segment (see Figure 1-9).
Each segment contains a checksum that the recipient uses to verify that the data is
undamaged. If the data segment is received undamaged, the receiver sends a posi­
tive acknowledgment back to the sender. If the data segment is damaged, the
receiver discards it. After an appropriate time-out period, the sending TCP module
re-transmits any segment for which no positive acknowledgment has been
received.

TCP is connection-oriented. It establishes a logical end-to-end connection between
the two communicating hosts. Control information, called a handshake, is
exchanged between the two endpoints to establish a dialogue before data is trans­
mitted. TCP indicates the control function of a segment by setting the appropriate
bit in the Flags field in word 4 of the segment header.

The type of handshake used by TCP is called a three-way handshake because
three segments are exchanged. Figure 1-10 shows the simplest form of the three­
way handshake. Host A begins the connection by sending host B a segment with
the "Synchronize sequence numbers" (SYN) bit set. This segment tells host B that

023

Tt-ansport Layet·

.... ,:f---1-4 --~-8 --~~- sir --~~--~~--~~-~~~

B T Source Port I Destination Port

Sequence Number

~ 3
:5-
~ 4

E
~

Offset I Reserved I
Checksum

Figure 1-9: TCP segment format

Acknowledgment Number

Flags Window

Urgent Pointer

Options I Padding l
data begms here ...

19

A wishes to set up a connection, and it tells B what sequence number host A will
use as a sta1ting number for its segments. (Sequence numbers are used to keep
data in the proper order.) Host B responds to A with a segment that has the
"Acknowledgment" (ACK) and SYN bits set. B's segment acknowledges the receipt
of A's segment, and informs A which Sequence Number host B will start with.
FinaUy, host A sends a segment that acknowledges receipt of B's segment, and
transfers the first actual data.

Host A Hosts

SYN

SYN,ACK

ACK, data

l_.'------+-::=3 .. ~ data transfer has begun

Figure 1-10: Three-way handshake

After this exchange, host A's TCP has posmve evidence that the remote TCP is
alive and ready to receive data. As soon as the connection is established, data can

024

20 Chapter 1: Overview ofTCP/IP

be transferred. When the cooperating modules have concluded the data transfers,
they will exchange a three-way handshake with segments containing the "No more
data from sender" bit (called the FIN bit) to close the connection. It is the end-to­
end exchange of data that provides the logical connection between the two sys­
tems.

TCP views the data it sends as a continuous stream of bytes, not as independent
packets. Therefore, TCP takes care to maintain the sequence in which bytes are
sent and received. The Sequence Number and Acknowledgment Number fields in
the TCP segment header keep track of the bytes.

The TCP standard does not require that each system start numbering bytes with
any specific number; each system chooses the number it will use as a starting
point. To keep track of the data stream correctly, each end of the connection must
know the other end's initial number. The two ends of the connection synchronize
byte-numbering systems by exchanging SYN segments during the handshake. The
Sequence Number field in the SYN segment contains the Initial Sequence Number
(ISN), which is the starting point for the byte-numbering system. For security rea­
sons the ISN should be a random number, though it is often 0.

Each byte of data is numbered sequentially from the ISN, so the first real byte of
data sent has a sequence number of ISN+1. The Sequence Number in the header
of a data segment identifies the sequential position in the data stream of the first
data byte in the segment. For example, if the first byte in the data stream was
sequence number 1 QSN=O) and 4000 bytes of data have already been transferred,
then the first byte of data in the current segment is byte 4001, and the Sequence
Number would be 4001.

The Acknowledgment Segment (ACK) performs two functions: positive acknowl­
edgment and flow control. The acknowledgment tells the sender how much data
has been received, and how much more lhe receiver can accept. The Acknowl­
edgment Number is the sequence number of the next byte the receiver expects to
receive. The standard does not require an individual acknowledgment for every
packet. The acknowledgment number is a positive acknowledgment of all bytes
up to that number. For example, if the first byte sent was numbered 1 and 2000
bytes have been successfully received, the Acknowledgment Number would be
2001.

The Window field contains the window, or the number of bytes the remote end is
able to accept. If the receiver is capable of accepting 6000 more bytes, the win­
dow would be 6000. The window indicates to the sender that it can continue
sending segments as long as the total number of bytes that it sends is smaller than
the window of bytes that the receiver can accept. The receiver controls the flow of

025

Application Layer 21

bytes from the sender by changing the size of the window. A zero window tells
the sender to cease transmission until it receives a non-zero window value.

Figure 1-11 shows a TCP data stream that starts with an Initial Sequence Number
of 0. The receiving system has received and acknowledged 2000 bytes, so the cur­
rent Acknowledgment Number is 2001. The receiver also has enough buffer space
for another 6000 bytes, so it has advertised a window of 6000. The sender is cur­
rently sending a segment of 1000 bytes starting with Sequence Number 4001. The
sender has received no acknowledgment for the bytes from 2001 on, but continues
sending data as long as it is within the window. If the sender fills the window and
receives no acknowledgment of the data previously sent, it will, after an appropri­
ate time-out, send tl1e data again starting from tl1e first unacknowledged byte.

In Figure 1-11, re-transmission would start from byte 2001 if no further acknowl­
edgments are received. This procedure ensures that data is reliably received at the
far end of the network.

TCP is also responsible for delivering data received from IP to the correct applica­
tion. The application that the data is bound for is identified by a 16-bit number
called the port number. The Source Port and Des/.ination Port are contained in the
first word of the segment header. Correctly passing data to and from the Applica­
tion Layer is an important part of what the Transport Layer services do.

' Data Received : :.. • :

j1001 12001 13001

Window6000

Current
Segment

:... ... :
. .
14001 15001

Lnitial Sequence
NumberO

• •

L Acknowledgment L Sequence
Number 2001 Number 4001

Figure 1-11: TCP data stream

Application Layer

16001 17001

At the top of the TCP/IP protocol architecture is the Applicalion Layer. This layer
includes all processes that use the Transport Layer protocols to deliver data. There
are many applications protocols. Most provide user services, and new services are
always being added to this layer.

026

22 Chapter 1: Overview ofTCP/lP

The most widely known and implemented applications protocols are:

telnet
The Network Terminal Protocol, which provides remote login over the net­
work.

FJP
The File Transfer Protocol, which is used for interactive file transfer.

SMTP
The Simple Mail Transfer Protocol, which delivers electronic mail.

HTIP
The Hypertext Transfer Protocol, which delivers Web pages over the network.

While HITP, FTP, SMTP, and telnet are the most widely implemented TCP/ IP
applications, you will work with many others as both a user and a system adminis­
trator. Some other commonly used TCP/ IP applications are:

Domain Name Service (DNS)
Also called name service, this application maps IP addresses to the names
assigned to network devices. DNS is discussed in detail in this book.

Open Shortest Path First (OSPF)
Routing is central to the way TCP/ IP works. OSPF is used by network devices
to exchange routing information. Routing is also a major topic of this book.

Network Filesystem (NFS)
This protocol allows files to be shared by various hosts on the nerwork.

Some protocols, such as telnet and FTP, can only be used if the user has some
knowledge of the network. Other protocols, like OSPF, run without the user even
knowing that they exist. As system administrator, you are aware of all these appli­
cations and all the protocols in the od1er TCP/ IP layers. And you're responsible for
configuring them!

Summary
In this chapter we discussed the structure of TCP/ IP, the protocol suite upon
which the Internet is built We have seen that TCP/IP is a hierarchy of four layers:
Applications, Host-to-Host Transport, Internet, and Network Access. We have
examined the function of each of these layers. In ilie next chapter we look at how
the IP packet, the datagram, moves through a network when data is delivered
between hosts.

027

In this chapte-r:
• Addressing, Routing,

and Multiplexing
• The IP Address
• Subnets
• Internet Routing

Architectu?'€
• The Routing Table
• Addt'€ss Resolution
• Protocols, Ports, and

Sockets

Delivering the Data
• Summa1y

In Chapter 1, Overview ofTCP/IP, we touched on the basic architecture and design
of the TCP/ IP protocols. From that discussion, we know that TCP/ IP is a hierarchy
of four layers. In this chapter, we explore in finer detail how data moves between
the protocol layers and the systems on the network. We examine the structure of
Internet addresses, including how addresses route data to its final destination, and
how addressing rules are locally redefined to create subnets. We also look at the
protocol and port numbers used to deliver data to the correct applications. These
additional details move us from an overview of TCP/ IP to the specific implementa­
tion details that affect your system's configuration.

Addressing, Routing, and Multiplexing
To deliver data between two Internet hosts, it is necessary to move the data across
the network to the correct host, and within that host to the correct user or process.
TCP liP uses three schemes to accomplish these tasks:

Addressing
IP addresses, which uniquely identify every host on the network, deliver data
to the correct host.

Routing
Gateways deliver data to the correct network.

Multiplexing
Protocol and po11 numbers deliver data to the correct software module within
the host.

Each of these functions-addressing between hosts, routing between networks,
and multiplexing between layers-is necessary to send data between two

23

028

24 Chapter 2: Delivering the Data

cooperating applications across the Internet. Let's examine each of these functions
in detail.

To illustrate these concepts and provide consistent examples, we use an imaginary
corporate network. Our imaginary company sells packaged nuts to the Army. Our
company network is made up of several networks at our packing plant and sales
office, as well as a connection to the Internet. We are responsible for managing
the Ethernet in the computing center. This network's S[ructure, or topology, is
shown in Figure 2-1.

Figure 2-1: Sample network

The icons in the figure represent computer systems. There are, of course, several
other imaginary systems on our imaginary network. You'll just have to use your
imagination! But we'll use the hosts peanut (a workstation) and almond (a system
that serves as a gateway) for most of our examples. The thick line is our computer
center Ethernet and the circle is the local network that connects our various corpo­
rate networks. The cloud is the Internet. What the numbers are, how they're used,
and how datagrams are delivered are the topics of this chapter.

029

The IP Address

The IP Address
The Internet Protocol moves data between hosts in the form of datagrams. Each
datagram is delivered to the address contained in the Destination Address (word 5)
of the datagram's header. The Destination Address is a standard 32-bit IP address
that contains sufficient information to uniquely identify a network and a specific
host on that network.

An IP address contains a network part and a host pa1·1, but the format of these
parts is not the same in every IP address. The number of address bits used to iden­
Lify the network, and the number used to identify the host, vary according to the
prefix length of the address. There are two ways the prefix length is determined:
by address class or by a CIDR address mask. We begin with a discussion of tradi­
tional IP address classes.

Address Classes
Originally, the IP address space was divided into a few fixed-length sttuctures
called address classes. The three main address classes are class A, class B, and class
C By examining the first few bits of an address, IP software can quickly determine
the class, and therefore the structure, of an address. IP follows these rules to deter­
mine the address class:

• If the first bit of an IP address is 0, it is the address of a class A network. The
first bit of a class A address identifies the address class. The next 7 bits identify
the network, and the last 24 bits identify the host. There are fewer than 128
class A network numbers, but each class A network can be composed of mil­
lions of hosts.

• If the first 2 bits of the address are 1 0, it is a class B nelwork address. The first
2 bits identify class; the next 14 bits identify the network, and the last 16 bits
identify the host. There are thousands of class B network numbers and each
class B network can contain thousands of hosts.

• If the first 3 bits of the address are 1 1 0, it is a class C ne/work address. In a
class C address, the first 3 bits are class identifiers; the next 21 bits are the net­
work address, and the last 8 bits identify the host. There are millions of class C
network numbers, but each class C network is composed of fewer than 254
hosts.

• If the first 4 bits of the address are 1 1 1 0, it is a multicast address. These
addresses are sometimes called class D addresses, but they don't really refer to
specific networks. Multicast addresses are used to address groups of comput­
ers all at one time. Multicast addresses identify a group of computers that

030

26 Chapter 2: Delivering the Data

share a common application, such as a video conference, as opposed to a
group of computers that share a common network.

• If the first four bits of the address are 1 1 1 1, it is a special reserved address.
These addresses are sometimes called class E addresses, but they don't really
refer to specific networks. No numbers are currently assigned in this range.

Luckily, this is not as complicated as it sounds. IP addresses are usually written as
four decimal numbers separated by dots (periods). • Each of the four numbers is in
the range 0-255 (the decimal values possible for a single byte). Because the bits
that identify class are contiguous with the network bits of the address, we can
lump them together and look at the address as composed of full bytes of network
address and full bytes of host address. If the value of the first byte is:

• Less than 128, the address is class A; the first byte is the network number, and
the next three bytes are the host address.

• From 128 to 191, the address is class B; the first two bytes identify the net­
work, and the last two bytes identify the host.

• From 192 to 223, the address is class C; the first three bytes are the network
address, and the last byte is the host number.

• From 224 to 239, the address is multicast. There is no network part. The entire
address identifies a specific multicast group.

• Greater than 239, the address is reserved. We can ignore reserved addresses.

Figure 2-2 illustrates how the address structure varies with address class. The class
A address is 10.104.0.19. The first bit of this address is 0, so the address is inter­
preted as host 104.0.19 on network 10. One byte specifies the network and three
bytes specify the host. In the address 172.16.12.1, the two high-order bits are 1 0
so tl1e address refers to host 12.1 on network 172.16. Two bytes identify the net­
work and two identify the host. Finally, in the class C example, 192.168.16.1, the
three high-order bits are 1 1 0, so this is tl1e address of host 1 on network
192.168.16-three network bytes and one host byte.

The IP address, which provides universal addressing across all of the networks of
the Internet, is one of the great strengths of the TCP/IP protocol suite. However,
the original class structure of the lP address has weaknesses. The TCPIIP designers
did not envision the enormous scale of today's network. When TCP/ IP was being
designed, networking was limited to large organizations that could afford substan­
tial computer systems. The idea of a powerful UNIX system on every desktop did
not exist. At that time, a 32-bit address seemed so large that it was divided into

* Addresses arc occasionally wrinen in other formats, e.g., as hexadecimal numbers. However, the
"dot" notation form is the most widely used. Whatever the notation, the structure of the address is the
same.

031

The IP AddtY!ss 27

~ Class A

10 104 0 19 I
' ' : :
' 8 network bits ' 24 host bits

lE ClassB

172 -, 16 12 1

I

16 network bits 16 host bits

ClassC

192 168 16 1

24 network bits 8 host bits

Figure 2-2: IP address structure

classes to reduce the processing load on routers, even though dividing the address
into classes sharply reduced the number of host addresses actually available for
use. For example, assigning a large network a single class B address, instead of six
class C addresses, reduced the load on the router because the router needed to
keep only one route for that entire organization. However, an organization that
was given the class B address probably did not have 64,000 computers, so most of
the host addresses avaiJable to the organization were never assigned.

The class-structured address design was critically strained by the rapid growth of
the Internet. At one point it appeared that all class B addresses might be rapidly
exhausted.* To prevent this, a new way of looking at IP addresses without a class
structure was developed.

• The source for this prediction is the draft of Supemetting: an Address Assignment and Aggregation
Strategy, by V. Fuller, T. Li, J. Yu, and K. Varadhan, !\•larch 1992.

032

28 Chapter 2: Delivering the Data

Classless IP Addresses
The rapid depletion of the class B addresses showed that three primary address
classes were not enough: class A was much too large and class C was much too
small. Even a class B address was too large for many networks but was used
because it was better than the alternatives.

The obvious solution to the class B address crisis was to force organizations to use
multiple class C addresses. There were millions of these addresses available and
they were in no immediate danger of depletion. As is often the case, the obvious
solution is not as simple as it may seem. Each class C address requires its own
entry within the routing table. Assigning thousands or millions of class C addresses
would cause the routing table to grow so rapidly that the routers would soon be
overwhelmed. The solution required a new way of assigning addresses and a new
way of looking at addresses.

Originally network addresses we~e assigned in more or less sequential order as
they were requested. This worked fine when the network was small and central­
ized. However, it did not take network topology into account. Thus only random
chance would determine if the same intermediate routers would be used to reach
network 195.4.12.0 and network 195.4.13.0, which makes it difficult to reduce the
size of the routing table. Addresses can only be aggregated if they are contiguous
numbers and are reachable through the same route. For example, if addresses are
contiguous for one service provider, a single route can be created for that aggrega­
tion because that service provide will have a limited number of routes to the Inter­
net. But if one network address is in France and the next contiguous address is in
Australia, creating a consolidated route for these addresses does not work.

Today, large, contiguous blocks of addresses are assigned to large network service
providers in a manner that better reflects the topology of the network. The service
providers then allocate chunks of these address blocks to the organizations to
which they provide network services. This alleviates the short-term shortage of
class B addresses and, because the assignment of addressees reflects the topology
of the network, it permits route aggregation. Under this new scheme, we know
that network 195.4.12.0 and network 195.4.13.0 are reachable through the same
intermediate routers. In fact, both of these addresses are in the range of the
addresses assigned to Europe, 194.0.0.0 to 195.255.255.255. Assigning addresses
that reflect the topology of the network enables route aggregation, but does not
implement it. As long as network 195.4.12.0 and network 195.4.13.0 are inter­
preted as separ-ate class C addresses, they will require separate entries in the rout­
ing table. A new, flexible way of defining addresses is needed.

Evaluating addresses according to the class rules discussed above limits the length
of network numbers to 8, 16, or 24 bits-1, 2, or 3 bytes. The IP address,

033

The IP Address 29

however, is not really byte-oriented. It is 32 contiguous bits. A more flexible way
to interpret the network and host portions of an address is with a bit mask. An

address bit mask works in this way: if a bit is on in the mask, that equivalent bit in
the address is interpreted as a network bit; if a bit in the mask is off, the bit
belongs to the host part of the address. For example, if address 195.4.12.0 is inter­
preted as a class C address, the first 24 bits are the network number and the last 8
bits are the host address. The network mask that represents this is 255.255.255.0,
24 bits on and 8 bits off. The bit mask that is derived from the traditional class
structure is called the default mask or the natural mask. However, with bit masks
we are no longer limited by the address class structure. A mask of 255.255.0.0 can
be applied to network address 195.4.0.0. This mask includes all addresses from
195.4.0.0 to 195.4.255.255 in a single network number. In effect, it creates a net­
work number as large as a class B network in the class C address space. Using bit
masks to create networks larger than the natural mask is called supernetting, and
the use of a mask instead of the address class to determine the destination net­
work is called Classless Inter-Domain Routing (CIDR).•

CIDR requires modifications to the routers and routing protocols. The protocols
need to distribute, along with the destination addresses, address masks that define
how the addresses are interpreted. The routers and hosts need to know how to
interpret these addresses as "classless" addresses and how to apply the bit mask
that accompanies the address. Older routing protocols, such as Routing Informa­
tion Protocol (RIP), and older operating systems do not support CIDR address
masks. As the incorporation of the mask information in the routing table shows,
new operating systems Like Linux 2.0.0 do support CIDR.

route
Kernel routing table
Destination Gateway Genmask Flags MSS Window Use I face
172.16.26.32 * 255.255.255.224 u 1500 0 2 ethO
195.4.0.0 129.6.26.62 255.255.0.0 UG 1500 0 0 ethO
loopback * 255.0.0.0 u 3584 0 1 lo
default 129.6.26 .62 * UG 1500 0 3 ethO

Specifying both the address and the mask is cumbersome when wntmg out
addresses. A shorthand notation has been developed for writing CIDR addresses.
Instead of writing network 172.16.26.32 with a mask of 255.255.255.224, we can
write 172.16.26.32/ 27. The format of this notation is address/prefix-length, where
prefix-length is the number of bits in the nerwork portion of the address. Without
this notation, the address 172.16.26.32 could easily be interpreted as a host
address. RFC 1878 list all 32 possible prefix values. But little documentation is
needed because the CIDR prefix is much easier to understand and remember than
are address classes. I know that 10.104.0.19 is a class A address, but writing it as

* CIDR is pronounced "cider."

034

30 Chapter 2: Delivering the Data

10.104.0.19/8 shows me that this address has 8 bits for the network number and
therefore 24 bits for the host number. I don't have to remember anything about
the class A address structure.

CIDR is an interim solution, though it is capable of providing address and routing
relief for many more years. The long-term solution is to replace the current
addressing scheme with a new one. In the TCP/ IP protocol suite addressing is
defined by the IP protocol. Therefore, to define a new address structure, the Inter­
net Engineering Task Force (IETF) created a new version of IP called 1Pv6. • IPv6
has a very large 128-bit address, so address depletion is not an issue. The large
address also makes it possible to use a hierarchical address structure to reduce the
burden on routers while still maintaining more than enough addresses for future
network growth. Other benefits of IPv6 are:

• Improved security built into the protocol

• Simplified, fixed-length, word-aligned headers to speed header processing and
reduce overhead

• Improved techniques for handling header options

IPv6 has several good features, but it is still a few years from widespread availabil­
ity. In the meantime, the current generation of TCP!IP should be more than ade­
quate for your network needs. On your network you will use IP and standard IP
addressing.

Final notes on IP addresses

Not all network addresses or host addresses are available for use. We have already
said that the addresses with a first byte greater than 223 cannot be used as host
addresses. There are also two large pieces of the address space, 0.0.0.0/8 and
127.0.0.0/8, that are reserved for special uses. Network 0 designates the default
route and network 127 is the loopback address. The default route is used to sim­
plify the routing information that IP must handle. The loopback address simplifies
network appHcations by allowing the local host to be addressed in the same man­
ner as a remote host. We use these special network addresses when configuring a
host.

There are also some host addresses reserved for special uses. In all network
classes, host numbers 0 and 255 are reserved. An IP address with all host bits set
to 0 identifies the network itself. For example, 10.0.0.0 refers to network 10, and
172.16.0.0 refers to network 172.16. Addresses in this form are used in routing
table listings to refer to entire networks. An IP address with all host bits set to 1 is

• The currem release of I P is rP version 4 (I Pv4). IP version 5 is an experimental Stream Transport (ST)
protOcol used for real-time data delivery.

035

Sub nets 31

a broadcast address. • A broadcast address is used to simultaneously address every
host on a network. The broadcast address for network 172.16 is 172.16.255.255. A
datagram sent to this address is delivered to eve•y individual host on nerwork
172.16.

IP addresses are often called host addresses. While this is common usage, it is
slightly misleading. IP addresses are assigned to network interfaces, not to com­
puter systems. A gateway, such as almond (see Figure 2-1), has a different address
for each network to which it is connected. The gateway is known to other devices
by the address associated with the network that it shares with those devices. For
example, peanut addresses almond as 172.16.12.1, while external hosts address it
as 10.104.0.19.

Systems can be addressed in three different ways. Individual systems are directly
addressed by a host address, which is called a unicast address. A unicast packet is
addressed to one individual host. Groups of systems can be addressed using a
multicast address, e.g., 224.0.0.9. Routers along the path from the source to desti­
nation recognize the special address and route copies of the packet to each mem­
ber of the multicast group.t All systems on a network are addressed using the
broadcast address, e.g., 172.16.255.255. The broadcast address depends on the
broadcast capabilities of the underlying physical network.

IP uses the network portion of the address to route the datagram between net­
works. The full address, including the host information, is used to make final
delivery when the datagram reaches the destination network.

Subnets
The structure of an IP address can be locally modified by using host address bits
as additional network address bits. Essentially, the "dividing line" between net­
work address bits and host address bits is moved, creating additional networks,
but reducing the maximum number of hosts that can belong to each network.
These newly designated network bits define a network within the larger network,
called a subnet.

Organizations usually decide to subnet in order to overcome topological or organi­
zational problems. Subnetting allows decentralized management of host address­
ing. With the standard addressing scheme, a central administrator is responsible for
managing host addresses for the entire network. By subnetting, the administrator
can delegate address assignment to smaller organizations within the overall

• Unfortunately. there arc tmplcmcmation-spccific ,·ariations in broadcast addresses. Chapter S. Basic
Configura/ion, discusses these variations.

t Thi.s is only panially true. Multicasting is not supported by every router. Sometimes it is necessary to
tunnel through routers and networks by encapsulating the multicast packet inside of a unic-ast packet.

036

32 Chapter 2: Delivering the Data

organization-which may be a political expedient, if not a technical requirement.
If you don't want to deal with the data processing department, assign them their
own subnet and let them manage it themselves.

Subnetting can also be used to overcome hardware differences and distance limita­
tions. IP routers can link dissimilar physical networks together, but only if each
physical network has its own unique network address. Subnetting divides a single
network address into many unique subnet addresses, so that each physical net­
work can have its own unique address.

A subnet is defined by changing the bit mask of the IP address. A subnet mask
functions in the same way as a normal address mask: an "on" bit is interpreted as
a network bit; an "off" bit belongs to the host part of the address. The difference is
that a subnet mask is only used locally. In the outside world the address is still
interpreted as a standard IP address.

Assume we have been assigned network address 172.16.0.0/16. The subnet mask
associated with that address is 255.255.0.0. The most commonly used subnet mask,
and the one we use in most of our examples, extends the network portion of the
address by an additional byte, e.g., 172.16.0.0/24. The subnet mask that does this
is 255.255.255.0; all bits on in the first three bytes, and all bits off in the last byte.
The first two bytes define the original network; the third byte defines the the sub­
net address; the fourth byte defines the host on that subnet.

Many network administrators prefer byte-oriented masks because they are easy to
read and understand when addresses are written in dotted decimal notation. How­
ever, limiting subnet masks to byte boundaries does not take advantage of their
true power. The subnet mask is bit-oriented. We could subdivide 172.16.0.0/16
into 16 subnets with the mask 255.255.240.0, i.e. 172.16.0.0/20. Applying this mask
defines the four high-order bits of the third byte as the subnet part of the address,
and the remaining 12 bits-four bits of the third byte and all of the fourth byte­
as the host portion of the address. This creates 16 subnets that each contain more
than four thousand host addresses, which may well be better suited to our net­
work and organization. For example, we may have a small number of large subdi­
visions. Table 2-1 shows the subnets and host addresses produced by applying this
subnet masks to network address 172.16.0.0/16.

Table 2-1: Effect of a Subnet Mask

Network Number

172.16.0.0
172.16.16.0
172.16.32.0

172.16.48.0

First Address

172.16.0.1
172.16.16.1
172.16.32.1

172.16.48.1

Last Address

172.16.15.254
172.16.31.254

172.16.47.254
172.16.63.254

037

Sub nets 33

Table 2-1: Effect of a Subnet Mask (continued)

Network Nwnber First Address Last Address

172.16.64.0 172.16.64.1 172.16.79.254
172.16.80.0 172.16.80.1 172.16.95.254
172.16.96.0 172.16.96.1 172.16.111.254
172.16.112.0 172.16.112.1 172.16.127.254
172.16.128.0 172.16.128.1 172.16.143.254
172.16.144.0 172.16.144.1 172.16.159.254
17216.160.0 172.16.160.1 172.16.175.254
172.16.176.0 172.16.176.1 172.16.191.254
172.16.192.0 172.16.192.1 172.16.207.254
172.16.208.0 172.16.208.1 172.16.223.254
172.16.224.0 172.16.224.1 172.16.239.254
172.16.240.0 172.16.240.1 172.16.254.254

You don't have to manually calculate a table like Table 2-1 to know what subnets
and host addresses are produced by a subnet mask. The calculations have already
been done · for you. RFC 1878 lists all possible subnet masks and the valid
addresses they produce.

Organizations have been discouraged from subnetting class C addresses because
of the fear that subnetting reduces the number of host addresses to increase the
number of network addresses. A class C network is limited to fewer than 255 host
addresses. Further limiting the number of hosts would reduce the utility of a class
C address. The mask 255.255.255.192 divides a class C address into four subnets of
64 host addresses. The fear is that the subnet address of all Os and the subnet
address of all ls will not be usable. This leaves only two subnets; and because
host addresses of all ls and all Os are also unusable, the remaining two subnets
can only address 62 hosts. Therefore the address space of this class C network
number is reduced from 254 hosts to 124 hosts. The fear of subnetting class C
addresses is no longer justified.

Originally, the RFCs implied that you should not use subnet numbers of all Os or
all ls. However, RFC 1812, Requirements for IP Ver.sion 4 Router.s, makes it clear
that subnets of all Os and all 1s are legal and should be supported by all routers.
Some older routers do not allow the use of these addresses despite the newer
RFCs. Updating router software or hardware should make it possible for you to
reliably subnet class C addresses.

Class C subnets are used when ve1y small networks are needed for specialized
network equipment, such as terminal servers, cluster controlLers or routers. In
some configurations an entire subnet may be consumed for the link between two
routers. In this case only two host addresses are needed, one for the router at each
end of the link. A subnet mask of 255.255.255.252 applied to a class C address

038

34 Chapter 2: Delivering the Data

creates 64 subnets each containing four host addresses. In a special case this might
be just what is needed.

Internet Routing Architecture
Chapter 1 described the evolution of the Imernet architecture over the years.
Along with these architectural changes have come changes in the way that routing
information is disseminated within the network.

In the original Internet structure, there was a hierarchy of gateways. This hierarchy
reflected the fact that the Internet was built upon the existing ARPANET. When the
Internet was created, the ARPANET was the backbone of the network: a central
delivery medium to carry long-distance traffic. This central system was called the
core, and the centrally managed gateways that interconnected it were called the
core gateways.

In that hierarchical structure, routing information about all of the networks in the
Imernet was passed into the core gateways. The core gateways processed the
information, and then exchanged it among themselves using the Gateway to Gate­
way Protocol (GGP). The processed routing information was then passed back out
to the external gateways. The core gateways maimained accurate routing informa­
tion for the entire Internet.

Using the hierarchical core router model to distribute routing information has a
major weakness: every route must be processed by the core. This places a tremen­
dous processing burden on the core, and as the Internet grew larger the burden
increased. In network-speak, we say that this routing model does not "scale well."
For this reason, a new model emerged.

Even in the days of a single Internet, core groups of independent networks called
autonomous systems (AS) existed outside of the core. The term "autonomous sys­
tem" has a formal meaning in TCP/IP routing. An autonomous system is not
merely an independent network. It is a collection of networks and gateways with
its own internal mechanism for collecting routing information and passing it to
other independent network systems. The routing information passed to the other
network systems is called reachability infonnation. Reachability information sim­
ply says which networks can be reached through that autonomous system. The
Exterior Gateway Protocol (EGP) was the protocol used to pass reachability infor­
mation between autonomous systems and into the core (see Figure 2-3).

The new routing model is based on co-equal collections of autonomous systems,
called routing domains. Routing domains exchange routing information with other
domains using Border Gateway Protocol (BGP). Each routing domain processes
the information it receives from other domains. Unlike the hierarchical model, this
model does not depend on a single core system to choose the "best" routes. Each

039

Internet Routing Architecture 35

- Core Gateway

{=-a I - External Gateway

Internet Core

Figure 2-3: Gateway hierarchy

routing domain does this processing for itself; therefore, this model is more
expandable. Figure 2-4 represents this model with three intersecting circles. Each
circle is a routing domain. The overlapping areas are border areas, where routing
information is shared. The domains share information, but do not rely on any one
system to provide all routing information.

The problem with this model is: how are "best" routes determined in a global net­
work if there is no central routing authority, like the core, that is trusted to deter­
mine the "best" routes? In the days of the NSFNET, the policy routing database
(PRDB) was used to determine whether the reachability information advertised by
an autonomous system was valid. But now, even the NSFNET does not play a cen­
tral role.

To fill this void, NSF created the Routing Arbiter (RA) servers when it created the
Network Access Points (NAPs) that replaced the role of the NSFNET. A route arbiter
is located at each NAP. The server provides access to the Routing Arbiter Database
(RADB), which replaced the PRDB. Internet Service Providers can que1y servers to
validate the reachability information advertised by an autonomous system.

Many ISPs do not use the route servers. Instead they depend on formal and infor­
mal bilateral agreements. In essence, two ISPs get together and decide what reach­
ability information each will accept from the other. They create, in effect, local
routing policies. This is a slow manual process that probably will not be flexible
enough for a rapidly growing Internet.

040

36

D - Border areas where
routing data is exchanged

Figure 2-4: Routing domains

Chapter 2: Delivering the Data

Routing Domain

The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed
routing architecture, there are multiple organizations that validate and register
routing information. Europeans were the pioneers in this. The Reseaux IP
Europeens (RIPE) Network Control Center (NCC) provides the routing registry for
European IP networks. Big network carriers, like MCI and ANS, provide registries
for their customers. All of the registries share a common format based on the
RIPE-181 standard.

Creating an effective routing architecture continues to be a major challenge for the
Internet that will certainly evolve over time. No malter how it is derived, eventu­
ally the routing information winds up in your local gateway, where it is used by IP
to make routing decisions.

The Routing Table
Gateways route data between networks; but all network devices, hosts as well as
gateways, must make routing decisions. For most hosts, the routing decisions are
simple:

• If the destination host is on the local network, the data is delivered to the des­
tination host.

041

The Routing Table 37

• If the destination host is on a remote network, the data is forwarded to a local
gateway.

Because routing is network-oriented, IP makes routing decisions based on the net­
work portion of the address. The IP module determines the network part of the
destination's IP address by applying the network mask to the address. If the desti­
nation network is the local network, the mask that is applied may be the local
subnet mask. If no mask is provided with the address, the address class deter­
mines the network portion of the address.

After determining the destination network, the IP module looks up the network in
the local routing table. • Packets are routed toward their destination as directed by
the routing table. The routing table may be built by the system administrator or by
routing protocols, but the end result is the same; IP routing decisions are simple
table look-ups.

You can display the routing table's contents with the netstat -nr command. The -r
option tells netstat to display the routing table, and the - n option tells netstat to
display the table in numeric form. It's useful to display the routing table in
numeric form because the destination of most routes is a network, and networks
are usuaUy referred to by network numbers.

On a Solaris system, the netstat command displays the routing table with the fol­
lowing fields:

Destination
The destination network (or host).

Gateway
The gateway to use to reach the specified destination.

Flags
The flags describe certain characteristics of this route. The possible flag values
are:

U Indicates that the route is up and operational.

H Indicates this is a route to a specific host (most routes are to networks).

G Means the route uses a gateway. The system's network interfaces provide
routes to directly connected networks. All other routes use remote gate­
ways. Directly connected networks do not have the G flag set; aU other
routes do.

D Means that this route was added because of an ICMP Redirect Message.
When a system learns of a route via an ICMP Redirect, it adds the route to

• This table is also called the fonoarding table.

042

38

Ref

Use

Chapter 2: Delivering the Data

its routing table, so that additional packets bound for that destination will
not need to be redirected. The system uses the D flag to mark these
routes.

The number of times the route has been referenced to establish a connection.

The number of packets transmitted via this route.

Interface
The name of the network interface• used by this route.

The only two fields important for our current discussion are the destination and
gateway fields. The following is a sample routing table:

% netstat - nr
Routing Table:
Destination Gateway Flags Ref Use Interface

----------- ----------- ---------
127.0.0 . 1 127 . 0 . 0 . 1 UH 1 298 loO
default 172.16.12. 1 UG 2 50360
172.16.12 . 0 172 . 16 . 12.2 u 40 111379 leO
172.16.2.0 172 . 16 . 12 .3 UG 4 1179
172 . 16 . 1.0 172 . 16 . 12 . 3 UG 10 1113
172.16 . 3 . 0 172 . 16 . 12 .3 UG 2 1379
172.16 . 4.0 172 . 16.12 .3 UG 4 1119

The first table entry is the loopback route for the local host. This is the loopback
address mentioned earlier as a reserved network number. Because every system
uses the loopback route to send datagrams to itself, this entry is in every host's
routing table. The H flag is set because it is a route to a specific host (127.0.0.1),
not a route to an entire network (127.0.0.0). We'll see the loopback facility again
when we discuss kernel configuration and the ifconfig command. For now, how­
ever, our real interest is in external routes.

Another unique entry in the routing table is the entry with the word "default" in
the destination field. This entry is for the default route, and the gateway specified
in this entry is the default gateway. The default route is the other reserved net­
work number mentioned earlier: 0.0.0.0. The default gateway is used whenever
there is no specific route in the table for a destination network address. For exam­
ple, this routing table has no entry for network 192.168.16.0. If IP receives any
datagrams addressed to this network, it wiU send the datagram via the default
gateway 172.16.12.1.

• The network interface is the network access hardware and software that IP uses to communicate
with the physical network. Sec Chapter 6, Configuring the Interface, for details.

043

Address Resolution 39

You can tell from the sample routing table display that this host (peanut) is
directly connected to network 172.16.12.0. The routing table entry for that network
does not specify an external gateway; i.e. , the routing table entry for 172.16.12.0
does not have the G flag set. Therefore, peanut must be directly connected to that
network.

All of the gateways that appear in a routing table are on networks directly con­
nected to the local system. In the sample shown above this means that, regardless
of the destination address, the gateway addresses all begin with 172.16.12. This is
the only network to which peanut is directly attached, and therefore it is the only
network to which peanut can directly deliver data. The gateways that peanut uses
to reach the rest of the Internet must be on peanut's subnet.

In Figure 2-5 the IP layer of each host and gateway on our imaginary network is
replaced by a small piece of a routing table, showing destination networks and the
gateways used to reach those destinations. When the source host (172.16.12.2)
sends data to the destination host (172.16.1.2), it first determines that 172.16.1.2 is
the local network's official address and applies the subnet mask. (Network
172.16.0.0 is subnetted using the mask 255.255.255.0.) After applying the subnet
mask, IP knows that the destination's network address is 172.16.1.0. The routing
table in the source host shows that data bound for 172.16.1.0 should be sent to
gateway 172.16.12.3. Gateway 172.16.12.3 makes direct delivery through its
172.16.1.5 interface. Examining the routing tables shows that all systems list only
gateways on networks they are directly connected to. Note that 172.16.12.1 is the
default gateway for both 172.16.12.2 and 172.16.12.3. But because 172.16.1.2 can­
not reach network 172.16.12.0 directly, it has a different default route.

A routing table does not contain end-to-end routes. A route points only to the next
gateway, called the next hop, along the path to the destination network." The host
relies on the local gateway to deliver the data, and the gateway relies on other
gateways. As a datagram moves from one gateway to another, it should eventually
reach one that is directly connected to its destination network. It is this last gate­
way that finally delivers the data to the destination host.

Address Resolution
The IP address and the routing table direct a datagram to a specific physical net­
work, but when data travels across a network, it must obey the physical layer pro­
tocols used by that network. The physical networks that underlay the TCP!IP
network do not understand IP addressing. Physical networks have their own
addressing schemes, and there are as many different addressing schemes as there

* As we'll sec in Chapter 7, Configuring Routing, some routing protocols, such as OSPF and BGP,
obtain end-to-end routing information. Nevertheless, the packet is still passed to the next-hop router.

044

40

Source Host

Application

Transport

Destination ! Gateway
···172:1·s:r:o ... ! .. i72:rs:r2-.-s··
... 172:1.6J2:6 .. !Thi·s:1"2"."2".
··lieialili········T172:1-il:1"2·.T·

Network Access

172.16.12.2 _____,~

Figure 2-5: Table-based routing

Gateway

Destination ! Gateway
... 1.7'f16:1·:rr-.. ·;·ri2:1·e:r:s-···
... 1.7'2'.16:1·2:ii'··n72:1·s~f2:s ...
·--iietaiiic··-······:··172:1-e:ffi···

Network Access

172.16.12.3 172.16.1.5

Chapter 2: Delivering the D ata

Destination Host

Application

Transport

Destination ! Gateway
... 172:1"6Tif .. l"172:i·s:L2····
··lieiaiiii········rf72:1·s:rs ...
······················;-········-············

Network Access

172.16.1.2
'----.~-.....1

are different types of physical networks. One task of the network access protocols
is to map IP addresses to physical network addresses.

The most common example of this network access layer function is the translation
of IP addresses to Ethernet addresses. The protocol that performs this function is
Address Resolution Protocol CARP), which is defined in RFC 826.

The ARP software maintains a table of translations between IP addresses and Eth­
ernet addresses. This table is built dynamically. When ARP receives a request to
translate an IP address, it checks for the address in its table. If the address is
found, it returns the Ethernet address to the requesting software. If the address is
not found in the table, ARP broadcasts a packet to every host on the Ethernet. The
packet contains the IP address for which an Ethernet address is sought. If a receiv­
ing host identifies the IP address as its own, it responds by sending its Ethernet
address back to the requesting host. The response is then cached in the ARP table.

The arp command displays the contents of the ARP table. To display the entire
ARP table, use the arp -a command. Individual entries can be displayed by speci­
fying a hostname on the arp command Hne. For example, to check the enuy for
peanut in the ARP table on almond, enter:

% arp peanut
peanut (172.16.12.2) at 8:0 : 20:0:e : c8

Checking all entries in the table with the -a option produces the following output:

% arp -a

Net to Media Table

045

Add,Y!ss Resolution 41

Device IP Address Mask Flags Phys Addr

leO peanut.nuts.com 255.255.255.255 08:00:20:00:0e:c8
leO acorn.nuts.com 255.255.255.255 08:00:02:05:21:33
leO almond.nuts.com 255.255.255.255 SP 08:00:20:22:fd:51
leO pecan.nuts.com 255.255.255.255 00:20:af:le:7e:5f
leO BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:OO:OO:OO

This table tells you that when almond forwards datagrams addressed to peanut, it
puts those datagrams into Ethernet frames and sends them to Ethernet address
08:00:20:00:0e:c8.

Three of the entries in the sample table (peanut, acorn, and pecan) were added
dynamically as a result of queries by almond. Two of the entries (almond and
BASE-ADDRESS.MCAST.NE1) are static entries added as a result of the configura­
tion of almond. We know this because both of these entries have an S, for "static,"
in the Flags field. The special BASE-ADDRESS.MCAST.NET entry is for all multicast
addresses. The M flag means ~mapping" and is only used for the multicast entry.
On a broadcast medium like Ethernet, the Ethernet broadcast address is used to
make final delivery to a multicast group.

The P flag on the almond entry means that this entry will be "published." The
"publish" flag indicates that when an ARP query is received for the IP address of
almond, this system answers it with the Ethernet address 08:00:20:22:fd:51. This is
logical because this is the ARP table on almond. However, it is also possible to
publish Ethernet addresses for other hosts, not just for the local host. Answering
ARP queries for other computers is called proxy ARP.

For example: assume that acorn is the server for a remote system named hazel
connected via a dial-up telephone line. Instead of setting up routing to the remote
system, the administrator of acorn could place a static, published entry in the ARP
table with the IP address of hazel and the Ethernet address of acorn. Now when
acorn hears an ARP query for the IP address of hazel, it answers with its own Eth­
ernet address. The other systems on the network therefore send packets destined
for hazel to acorn. acorn then forwards the packets on to hazel over the tele­
phone line. Proxy ARP is used to answer queries for systems that can't answer for
themselves.

ARP tables normally don't require any anention because they are built automati­
cally by the ARP protocol, which is very stable. However, if things go wrong, the
ARP table can be manually adjusted. See Chapter 11, Troubleshooting TCP/IP, the
section called "Troubleshooting with the arp Command."

046

42 Chapter 2: Delivering the Data

Protocols, Ports, and Sockets
Once data is routed through the network and delivered to a specific host, it must
be delivered to the correct user or process. As the data moves up or down the
TCP /IP layers, a mechanism is needed to deliver it to the correct protocols in each
layer. The system must be able to combine data from many applications into a few
transport protocols, and from the transport protocols into the Internet Protocol.
Combining many sources of data into a single data stream is called multiplexing.

Data arriving from the network must be demultiplexed: divided for delivery to
multiple processes. To accomplish this task, IP uses protocol numbers to identify
transpot1 protocols, and the transport protocols use port numbers to identify appli­
cations.

Some protocol and po11 numbers are reserved to identify well-known services.
Well-known services are standard network protocols, such as ITP and telnet, that
are commonly used throughout the network. The protocol numbers and port num­
bers allocated to well-known setvices are documented in the Assigned Numbers
RFC. UNIX systems define protocol and port numbers in two simple text files.

ProtocollVur.nbers
The protocol number is a single byte in the third word of the datagram header.
The value identifies the protocol in the layer above IP to which the data should be
passed.

On a UNIX system, the protocol numbers are defined in !etc/protocols. This file is
a simple table containing the protocol name and the protocol number associated
with that name. The format of the table is a single entry per line, consisting of the
official protocol name, separated by whitespace from the protocol number. The
protocol number is separated by whitespace from the "alias" for the protocol
name. Comments in the table begin with#. An /etc/protocols file is shown below:

% cat /etc/protocols
#ident "@ (#)protocols 1. 2 90/02/03 SMI" /* SVr4.0 1.1 */

Internet (IP) protocols

ip 0 IP # internet protocol, pseudo protocol nurober
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hrnp 20 HMP # host monitoring protocol

047

Protocols, Ports, and Sockets

xns- idp 22
rdp 27

XNS-IDP I Xerox NS IDP
RDP I •reliable datagram• protocol

43

The listing shown above is the contentS of the /etc/protocols file from a Solaris
2.5.1 workstation. This list of numbers is by no means complete. If you refer to the
Protocol Numbers section of the Assigned Numbers RFC, you'll see many more
protocol numbers. However, a system needs to include only the numbers of the
protocols that it actually uses. Even the list shown above is more than this specific
workstation needed, but the additional entries do no harm.

What exactly does this table mean? When a datagram arrives and its destination
address matches the local IP address, the IP layer knows that the datagram has to
be delivered to one of the transport protocols above it. To decide which protocol
should receive the datagram, IP looks at the datagram's protocol number. Using
this table you can see that, if the datagram's protocol number is 6, IP delivers the
datagram to TCP. If the protocol number is 17, IP delivers the datagram to UDP.
TCP and UDP are the two transport layer services we are concerned with, but all
of the protocols listed in the table use IP datagram delivery service directly. Some,
such as ICMP, EGP, and GGP, have already been mentioned. You don't need to be
concerned with the minor protocols.

Port Numbers
After IP passes incoming data to the transport protocol, the transpott protocol
passes the data to the correct application process. Application processes (also
called network services) are identified by port numbers, which are 16-bit values.
The source port number, which idemifies the process that sent the data, and the
destination port number, which identifies the process that is to receive the data,
are contained in the first header word of each TCP segment and UDP packet.

On UNIX systems, port numbers are defined in the /etc/services file. There are
many more network applications than there are transport layer protocols, as the
size of the table shows. Port numbers below 256 are reserved for well-known ser­
vices (like FfP and telnet) and are defined in the Assigned Numbers RFC. Pons
numbered from 256 to 1024 are used for UNIX-specific services, services like
rlogin that were originally developed for UNIX systems. However, most of them
are no longer UNIX-specific.

Port numbers are not unique between transport layer protocols; the numbers are
only unique within a specific transport protocol. In other words, TCP and UDP
can, and do, both assign the same port numbers. It is the combination of protocol
and port numbers that uniquely identifies the specific process to which the data
should be delivered.

048

44 Chapter 2: Delivering the Data

A partial /etc/services file from a Solaris 2.5.1 workstation is shown below. The for­
mat of this file is very similar to the /etc/protocols file. Each single-line entry startS
with the official name of the service, separated by whitespace from the port num­
ber/protocol pairing associated with that service. The port numbers are paired
with transport protocol names, because different transport protocols may use the
same port number. An optional list of aliases for the official service name may be
provided after the port number/protocol pair.

peanut% head -20 /etc/services
#ident "@(#)services 1.13 95/07/28 SMI" I* SVr4.0 1.8 */

II Network services, Internet style
II
tcpmux 1/tcp
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
nets tat 15/tcp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
tel net 23/tcp
smtp 25/tcp mail

This table, combined with the /etc/protocols table, provides all of the information
necessaty to deliver data to the correct application. A datagram arrives at its desti­
nation based on the destination address in the fifth word of the datagram header.
Using the protocol number in the third word of the datagram header, IP delivers
the data from the datagram to the proper transport layer protocol. The first word
of the data delivered to the transport protocol contains the destination port num­
ber that tells the transport protocol to pass the data up to a specific application.
Figure 2-6 shows this delivery process.

Despite its size, the /etc/services file does not contain the port number of every
well-known application. You won't find the port number of every Remote Proce­
dure Call (RPC) service in the services file. Sun developed a different technique for
reserving ports for RPC services that doesn't involve registering well-known port
numbers. When an RPC service starts, it picks any unused port number and regis­
ters that number with the portmapper. The portmapper is a program that keeps
track of the port numbers being used by RPC services. When a client wants to use
an RPC service, it queries the portmapper running on the server to discover the
port assigned to the service. The client can find portmapper because it is assigned

049

Protocols, Ports, and Sockets

r
I

mheader-
1

datagra
word3

I
wordS

I
I

I

J

Figure 2-6: Protocol and port numbers

Internet Protocol I I address 172.16.12.2

6

172.16.12.2
23 10-- segment header

word 1

45

well-known port 111. portmapper makes it possible to install well-known services
without formally obtaining a well-known port.

Sockets
Well-known ports are standardized port numbers that enable remote computers to
know which port to connect to for a particular network service. This simplifies the
connection process because both the sender and receiver know in advance that
data bound for a specific process will use a specific port. For example, all systems
that offer telnet do so on port 23.

There is a second type of port number called a dynamically allocated port. As the
name implies, dynamically allocated portS are not pre-assigned. They are assigned
to processes when needed. The system ensures that it does not assign the same
port number to two processes, and that the numbers assigned are above the range
of standard port numbers.

Dynamically allocated portS provide the flexibility needed to support multiple
users. If a telnet user is assigned port number 23 for both the source and

050

46 Chapter 2: Delivering the Data

destination ports, what port numbers are assigned to the second concurrent telnet
user? To uniquely identify every connection, the source port is assigned a dynami­
cally allocated port number, and the well-known port number is used for the desti­
nation port.

In the telnet example, the first user is given a random source port number and a
destination port number of 23 (telnet). The second user is given a different ran­
dom source port number and the same destination port. It is the pair of p01t num­
bers, source and destination, that uniquely identifies each network connection.
The destination host knows the source port, because it is provided in both the
TCP segment header and the UDP packet header. Both hosts know the destination
port because it is a well-known port.

Figure 2-7 shows the exchange of port numbers during the TCP handshake. The
source host randomly generates a source port, in this example 3044. It sends out a
segment with a source port of 3044 and a destination port of 23. The destination
host receives the segment, and responds back using 23 as its source port and 3044
as its destination port.

Source Destination
~ -

172.16.12.2 192.168.16.2

3044,23 I
23,3044

3044,23
... 23,3044

I l

Figure 2-7: Passing port numbers

The combination of an IP address and a port number is called a socket. A socket
uniquely identifies a single nerwork process within the entire Internet. Sometimes
the terms "socket" and "port number" are used interchangeably. In fact, well­
known services are frequendy referred to as "well-known sockets." In the context
of this discussion, a "socket'' is the combination of an IP address and a port num­
ber. A pair of sockets, one socket for the receiving host and one for the sending
host, define the connection for connection-oriented protocols such as TCP.

051

Summary 47

Let's build on the example of dynamically assigned ports and well-known porrs.
Assume a user on host 172.16.12.2 uses telnet to connect to host 192.168.16.2.
Host 172.16.12.2 is the source host. The user is dynamically assigned a unique port
number-3382. The connection is made to the telnet service on the remote host
which is, according to the standard, assigned well-known port 23. The socket for
the source side of the connection is 172.16.12.2.3382 (IP address 172.16.12.2 plus
port number 3382). For the destination side of the connection, the socket is
192.168.16.2.23 (address 192.168.16.2 plus port 23). The port of the destination
socket is known by both systems because it is a well-known port. The port of the
source socket is known, because the source host informed the destination host of
the source socket when the connection request was made. Tbe socket pair is
therefore known by both the source and destination computers. The combination
of the two sockets uniquely identifies this connection; no other connection in the
Internet has this socket pair.

Summary
This chapter shows how data moves through the global Internet from one specific
process on the source computer to a single cooperating process on the other side
of the world. TCP!IP uses globally unique addresses to identify any computer in
the world. It uses protocol numbers and port numbers to uniquely identify a single
process running on that computer.

Routing directs the datagrams destined for a remote process through the maze of
the global network. Routing uses part of the IP address to identify the destination
network. Every system maintains a routing table that describes how to reach
remote networks. The routing table usually contains a default route that is used if
the table does not contain a specific route to the remote network. A route only
identifies the next computer along the path to the destination. TCP/IP uses hop­
by-hop routing to move datagrams one step closer to the destination until the
datagram finally reaches the destination network.

At the destination network, fina l delivery is made by using the full IP address
(including the host part) and converting that address to a physical layer address.
An example of the type of protocol used to convert IP addresses to physical layer
addresses is Address Resolution Protocol (ARP). It converts IP addresses to Ethernet
addresses for final delivery.

The first two chapters described the structure of the TCP/IP protocol stack and the
way in which it moves data across a network. In the next chapter we move up the
protocol stack to look at the type of services the network provides to simplify con­
figuration and use.

052

Troubleshooting
TCP/IP

Network administration tasks fall into two very different categories: configuration
and troubleshooting. Configuration tasks prepare for the expected; they require
detailed knowledge of command syntax, but are usually simple and predictable.
Once a system is properly configured, there is rarely al"ly reason to change it. The
configuration process is repeated each time a new operating system release is
installed, but with very few changes.

In contrast, network troubleshooting deals with the unexpected. Troubleshooting
frequently requires knowledge that is conceptual rather than detailed. Network
problems are usually unique and sometimes difficult to resolve. Troubleshooting is
an important part of maintaining a stable, reliable network service.

In this chapter, we discuss the tools you will use to ensure that the network is in
good running condition. However, good tools are not enough. No troubleshooting
tool is effective if applied haphazardly. Effective troubleshooting requires a
methodical approach to the problem, and a basic understanding of how the net­
work works. We'll start our discussion by looking at ways to approach a network
problem.

319

053

320 Chapter 11: Troubleshooting TCP/IP

Approaching a Problem
To approach a problem properly, you need a basic understanding of TCP/IP. The
first few chapters of this book discuss the basics of TCP/IP and provide enough
background information to troubleshoot most network problems. Knowledge of
how TCP/IP routes data through the network, between individual hosts, and
between the layers in the protocol stack, is important for understanding a network
problem. But detailed knowledge of each protocol usually isn't necessary: When
you need these details, look them up in a definitive reference-don't try to recall
them from memory. · ·

. .

Not all TCP/IP problems are alike, and not all problems can be approached in the
same manner. But the key to solving any problem is understanding what the prob­
lem is. This is not as easy as it may seem. The "surface" problem is sometimes
misleading, and the "real" problem is frequently obscured by many layers of soft­
ware. Once you understand the true nature of the problem, the solution to the
problem is often obvious.

First, gather detailed information about exactly what's happening. When a user
reports a problem, talk to her. Find out which application failed. What is the
remote host's name and IP address? What is the user's hostname and address?
What error message was displayed? If possible, verify the problem by having the
user run the application while you talk her through it. If possible, duplicate the
problem on your own system.

Testing from the user's system, and other systems, find out:

• Does the problem occur in other applications on the user's host, or is only
one application having trouble? If only one application is involved, the appli­
cation may be misconfigured or disabled on the remote host. Because of secu­
rity concerns, rriariy systems disable some services .

. !· . .

• Does the problemoc~ur ,with only .one remote host, all remote hosts, or only
certain "groups" of remote hosts? If only one remote host is involved, the
problem could easily be with that host. If all remote hosts are involved, the
problem: is probably with the user's system (particularly if no other hosts on
your local network are experiencing the same problem). If only hosts on cer­
tain subnets or external networks are involved, the problem may be related to
routing.

• Does the problem occur on other local systems? Make sure you check other
systems on the same subnet. If the problem only occurs on the user's host,
concentrate testing on that system. If the problem affects every system on a
subnet, concentrate on the router for that subnet.

054

·Approaching aProblem 321

Once you know the symptoms of the problem, visualize each protocol and device
that handles the data. Visualizing the problem will help you avoid oversimplifica­
tion, and keep you from assuming that you know the cause even before you start
testing. Using your TCP /IF knowledge, narrow your attack to the most likely
causes of the problem, but keep an open mind.

Troubleshooting Hints
Below we offer several useful troubleshooting hints. They are not part of a
troubleshooting methodology-just good ideas to keep in mind.

•

•

•

•

•

•

•

•

•

Approach problems methodically. Allow the information gathered from each
test to~ide your testing. Don'~jump.on a hunch. into another test scenario
without ensuring that you can pick up your original scenario where you left
off.

Work carefully through the problem, dividing it into manageable pieces. Test
,each piece before moving onto. the next. }?or example, when. testing a net­
work c<;>nnection, test each part of.the network untilyou find the problem.

Keep good records of the tests you have completed and their results. Keep a
historical record of the problem in case it reappears.

Keep an open mind. Don't assume too much about the cause of the problem .
Some people believe their network is always at fault; while others assume the
remote end is always the problem. Some are so sure they know the cause of a
problem that they ignore the evidence of the tests. Don't fall into these traps.
Test each possibility and base your actions on the evidence of the tests.

Be aware of security barriers. Security firewalls sometimes block ping, tracer­
oute, and even ICMP error messages. If problems seem to cluster around a
specific remote site, find out if they have a firewalL

Pay attention, to ~rrpr messages. Error messages are often vague, but they fre­
quently contain i!Ilportant hints for solving the problem.

Duplicate the reported problem yourself. Don't rely too heavily on the user's
problem report. The user has probably only seen this· problem from the appli­
cation level. If necessary, obtain the user's data files to duplicate the problem.
Even if you cannot duplicate the problem, log the details of the reported prob­
lem for your records.
' . . . ' ·. ,- '

Most. problems are caused by human error. You can prevent some of these
errors by providing information and training on network configuration and
usage.

Keep your users informed. This reduces the number of duplicated trouble
reports, and the duplication of effort when several system administrators work

055

·.::-.:·:···'

Chapter 11: Troubleshooting TCP/IP

on the same problem without knowing others are already working on it. If
. you're lucky, someone may have seen the problem before and have a helpful
suggestion about how to resolve it.

• Don't speculate about the cause of the problem while talking to the user. Save
your speculations for discussions with your networking colleagues. Your spec­
ulations may be accepted by the user as gospel, and become rumors. These
rumors can cause users to avoid using legitimate · network services and may
undermine confidex;J.Ce in your network. Users want solutions to their prob­
lems; they're n.ot interested in speculative.techno-babble.

• Stick to a few simple troubleshooting tools. For most TCP/IP software prob­
lems, the tools discussed in this chapter are sufficient. Just learning how to use
a new tool is often more time-consuming than solving the problem with an
old familiar tool.

• Thoroughly test the problem at your end of the network before locating the
owner of the remote system to coordinate testing with him. The greatest diffi­
culty of network troubleshooting is that you do not always control the systems
at both ·ends of the network. In many cases, you may not even know who
does control the remote system. • The more information you have about your
end, the simpler the job will be when you have to contact the remote adminis­
trator.

• Don't neglect the obvious. A loose or damaged cable is always a possible
problem. Check plugs, connectors, cables, and switches. Small things can
cause big problems.

Diagnostic Tools
Because most problems have a simple cause, developing a clear idea of the prob­
lem often provides the solution. Unfortunately, this is not always true, so in this
section we begin to discuss the tools that can help you attack the most intractable
problems. Many diagnostic tools are available, ranging from commercial systems
with specialized hardware and software that may cost thousands of dollars, to free
software that is available from the Internet. Many software tools are provided with
your UNIX system. You should also keep some hardware tools handy.

To maintain the network's equipment and wiring you need some simple hand
tools. A pair of needle-nose pliers and a few screwdrivers may be sufficient, but
you may also need specialized tools. For example, attaching RJ45 connectors to
Unshielded Twisted Pair (UTP) cable requires special crimping tools. It is usually
easiest to buy a ready-made network maintenance toolkit from your cable vendor.

* Chapter 13 explains how to find out who is responsible for a remote network

056

Diagnostic Tools 323

A full-featured cable tester is also usefuL Modern cable testers are small hand-held
units with a keypad and LCD display that test both thinner or UTP cable. Tests are
selected from the keyboard and results are displayed on the LCD screen. It is not
necessary to interpret the results because the unit does that for you and displays
the error condition in a simple text message. For example, a cable test might pro­
duce the message ''Short at 74 feet." This tells you that the cable is shorted 74 feet
away from the tester. What could be simpler? The proper test tools make it easier
to locate, and therefore fix, cable problems.

A laptop computer can be a most useful piece of test equipment when properly
configured. Install TCP/IP software on the laptop. Take it to the location where the
user reports a network problem. Disconnect the Ethernet cable from the back of
the user's system and attach it to the laptop. Configure the laptop with an appro­
priate address for the user's subnet and reboot it. Then ping various systems on
the network and attach to one of the user's servers. If everything works, the fault
is probably in the user's computer. The user trusts this test because it demonstrates
something she does every day. She will have more confidence in the laptop than
an unidentifiable piece of test equipment displaying the message "No faults
found." If the test fails, the fault is probably in the network equipment or wiring.
That's the time to bring out the cable tester.

Another advantage of using a laptop as a piece of test equipment is its inherent
versatility. It runs a wide variety of test, diagnostic, and management software.
Install UNIX on the laptop and run the software discussed in the rest of this chap­
ter from your desktop or your laptop.

This book emphasizes free or "built-in" software diagnostic tools that run on UNIX
systems. The software tools used in this chapter, and many more, are described in
RFC 1470, FYI on a Network Management Tool Catalog: Tools for Monitoring and
Debugging TCP/IP Jnternets and Interconnected Devices. A catchy title, and a very
useful RFC! The tools listed in that catalog and discussed inthis book are:

ifconfig

arp

Provides information about the basic configuration of the interface. It is useful
for detecting bad IP addresses, incorrect subnet masks, and improper broad­
cast addresses. Chapter 6, Configuring the Interface, covers ifconftg in detail.
This tool is provided with the UNIX operating system.

Provides information about Ethernet/IP address translation. It can be used to
detect systems on the local network that are configured with the wrong IP
address. arp is covered in this chapter, and is used in an example in Chapter
2, Delivering the Data. arp is delivered as part of UNIX.

057

:/·i:~)~:(-:

rt~m%:\·.:: ;:::32:::,- ~4;;_ . .,........,.....,...,.~---------------c_'h_ap_t_e_r_l_I_: 1l_r._v_u_bl_e_sh_o_o_tt_n-=-g_11_~_'P_YL_'P

netstat
Provides a variety of information. It . is commonly used to display detailed
statistics about each network interface, network sockets, and the network rout­
ing table. netstat is used repeatedly in this book, most extensively in Chapters
2, 6, and 7. netstat is delivered as part of UNIX.

ping
Indicates whether a remote host can be reached. ping also displays statistics
about packet loss and delivery time. ping is discussed in Chapter 1 and used
in Chapter 7. ping also comes as part of UNIX.

nslookup

dig

Provides information about the DNS name service. nslookup is covered in
detail in Chapter 8, Configuring DNS Name Service. It comes as part of the
BIND software package.

Also provides information about name service, and is similar to nslookup.

ripquery
Provides information about the contents of the RIP update packets being sent
or received by your system. It is provided as part of the gated software pack­
age, but it does not require that you run gated. It will work with any system
running RIP.

traceroute
Prints information about each routing hop that packets take going from your
system to a remote system.

snoop
Analyzes the individual packets exchanged between hosts on a network.
snoop is a TCP / IP protocol analyzer that examines the contents of packets,
including their headers. It is most useful for analyzing protocol problems. tcp­
dump is a tool similar to snoop tha~ is available via anonymous FfP from the
Internet.

This chapter discusses each of these tools, even those covered earlier in the text.
We start with ping, which is used. in more troubleshooting situations than any
other diagnostic tool.

Testing Basic Connectivity
The ping command tests whether a remote host can be reached from your com­
puter. n1is simple function is extremely useful for testing the network connection,
independent of the application in which the original problem was detected. ping
allows you to determine whether further testing should be directed toward the

058

Testing Basic Connectivity 325

network connection (the lower layers) or the application (the upper layers). If
ping shows that packets can travel to the remote system and back, the user's prob­
lem is probably in the upper layers. If packets can't make the round trip, lower
protocol layers are probably at fault.

Frequently a user reports a network problem by stating that he can't telnet (or ftp,
or send email, or whatever) to some remote host. He then immediately qualifies
this statement with the announcement that it worked before. In cases like this,
where the ability to connect to the remote host is in question, ping is a very useful
tool.

Using the hostname provided by the user, ping the remote host. If your ping is
successful, have the user ping the host. If the user's ping is also successful, con­
centrate your further analysis on the specific application that the user is having
trouble with. Perhaps the user is attempting to telnet to a host that only provides
anonymous ftp. Perhaps the host was down when the user tried his application.
Have the user try it again, while you watch or listen to every detail of what he is
doing. If he is doing everything right and the application still fails, detailed analy­
sis of the application with snoop and coordination with the remote system admin­
istrator may be needed.

If your ping is successful and the user's ping fails, concentrate testing on the user's
system configuration, and on those things that are different about the user's path
to the remote host, when compared to your path to the remote host.

If your ping fails, or the user's ping fails, pay close attention to any error mes­
sages. The error messages displayed by ping are helpful guides for planning fur­
ther testing. The details of the messages may vary from implementation to
implementation, but there are only a few basic types of errors:

Unknown host
The remote host's name cannot be resolved by name service into an IP
address. The name servers could 15e at fault (either your local server or the
remote system's server), the name could be incorrect, or something could be
wrong with the network between your system and the remote server. If you
know the remote host's IP address, try to ping that. If you can reach the host
using its IP address, the problem is with name service. Use nslookup or dig to
test the local and remote servers, and to check t~e . accuracy of the host name
the user gave you.

Netwotk unteachable
The local system does not have a route to the remote system. If the numeric
IP address was used on the ping command line, re-enter the ping command
using the hostname. This eliminates the possibility that the IP address was
entered incorrectly, or that you were given the wrong address. If a routing

059

326 Chapte1' 11: Troubleshooting TCP/IP

protocol is being used, make sure it is running and check the routing table
with netstat. If RIP is being used, ripquery will check the contents of the RIP
updates being received. If a static default route is being used, re-install it. If
everything seems fine on the host, check its default gateway for routing prob­
lems.

No answer
The remote system did not respond. Most network utilities have some version
of this message. Some ping implementations print the message "100% packet .
loss." telnet prints the message "Connection timed out" and sendmail retUrns
the error "cannot connect." All of these errors mean the same thing. The local
system has a route to the remote system, but it receives no response from the
remote system to any of the packets it sends.

There are many possible causes of this problem. The remote host may be
down. Either the local or the remote host may be configured incorrectly. A
gateway or circuit between the local host and the remote host may be down.
The remote host may have routing problems. Only additional testing can iso­
late the cause of the problem. Carefully check· the local configuration using
netstat and ifconfig. Check the route to the remote system with traceroute.
Contact the administratpr of the remote system and. report the problem.

All of the tools mentioned here will be discussed later in this chapter. However,
before leaving ping, let's look more closely at the command and the statistics it
displays.

The ping Command
The basic format of the ping command on a Solaris system is:*"

ping host (packetsize] [count]

host
The hostname or IP address of the remote host being tested. Use the host­
name or address provided by the user in the trouble report.

packetsize '
Defines the size in bytes of the test packets. This field is required only if the
count field is going to be used. Use the default packetsize of 56 bytes.

count
The number of packets to be sent in the test. Use the count field, and set the

· value low. Otherwise, the · ping command may continue to send test packets

* Check your system's document~tion. ping varies slightly from system EO system. On Linux, the format
shown above would be: ping (-c count) [-spacketsize] host

060

Testing Basic Connectivity 327

until you interrupt it, usually by pressing CTRL-C CC). Sending excessive num­
bers of test packets is not a 'good use of network bandwidth and system
resources. Usually five packets are sufficient for a test.

To check that ns.uu.net can be re~ched from aimond, W,e se~d .five 56-byte pack-
ets with the following comm~n~: .. ·

. .. , . ·.''l,•

% ping -s ns.uu.net 56 5 · ··
PING ns.uu.net: 56 data bytes
·64 bytes fi·om ns.uu.net (137.39.1.3): icmp_seq=O. time=32.8 rns ··
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=1. tirne=15.3 rns
64 bytes from ns. uu.net (137. 39 .1. 3): icmp_seq=2. tirne=13 .1 ms
64 bytes from ns. uu. net (137.39 .1. 3 l : icmp_seq;,;3. time=32. 4 ~s
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=4. tirne=28.1 ms

----ns.uu.net PING Statistics----
5 packets transmitted, 5 p&ckets received;' 0%. packet loss ., . •·
round-trip (ms) min/avg/rnax = 13.1/24.3/32.8

The -s option is included because almond is a Solaris workstation, and we want
packet-by-packet statistics. Without the -s option, . Sun's ping command . only
prints a summary line saying "ns.uu.net is alive.~· Other ping implementations do
not require the -s option; they display the statistics by default.

This test shows an extremely goodwide area network link to ns.uu.net with no
packet los.s. and a fast response. The round~trip between peanut and ns.,uu.net
took an average of only 24.3 milliseconds. A small .packet loss, and a rqund-trip
time an order of magnitude higher, would not, be abnormal for a conne'7tion made
across a wide area network. The statistics displayed by the ping command can
indicate low-level network problems. The key statistics are:

.. I' ·'. : ~ : : \ . '

• . .The .sequence in. whipl:I .. the packets are arriving, as shown by the ICMP
sequence number (icmp_seq) displayed for each packet.

• How long it takes a packet to make the round trip, displayed in milliseconds
after the string time=. '· ..

• The percentage of packets lost, displayed in a summary line at the end of the
ping output.; ' ' .··_; ;.

If the packet loss is high, the: response tune is very slow, or packets are arriving
out of order, there could be. a network hardware problem. If you see these condi­
tions when communicating over great distances on a wide area network, there is
nothing to .worry about TCP/IP was designed to deal with unreliable . ne~orks,

and some wide area networks suffer a lot of packet loss. But if these problems are
seen on a local area network, they indicate trouble.

On a local network cable segment, the, round-trip time should be near. 0; . there
should be little .. or no packet loss, and the packets should arrive in order. If these

061

328 Chapter 11: Troubleshooting TCP/IP

things are not true, there is a problem with the network hardware. On an Ethernet
the problem could be improper cable termination, a bad cable segment, or a bad
piece of "active" hardware, such as a hub, switch, or transceiver. Check the cable
with a cable tester as described earlier. Good hubs and switches often have built­
in diagnostic software that can be checked. Cheap hubs and transceivers may
require the "brute force" method of disconnecting individual pieces of hardware
until the problem goes away.

The results of a simple ping test, even if the ping is successful, can help you direct
further testing toward the most likely causes of the problem. But other diagnostic
tools are needed to examine the problem more closely and find the underlying
cause.

Troubleshooting Network Access
The "no answer" and "cannot connect" errors indicate a problem in the lower lay­
ers of the network protocols. If the preliminary tests point to this type of problem,
concentrate your testing on routing and on the network interface. Use the ifconfig,
netstat, and arp commands to test the Network Access Layer.

Troubleshooting with the ifconfig Command
ifconfig checks the network interface configuration. Use this command to verify
the user's configuration if the user's system has been recently configured, or if the
user's system cannot reach the remote host while other systems on the same net­
work can.

When ifconfig is entered with an interface name and no other arguments, it dis­
plays the current values assigned to that interface. For example, checking interface
leO on a Solaris system gives this report:

% ifconfig leO
leO: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 172.16.55.105 netmask ffff££00 broadcast 172.16.55.255

The ifconfig command displays two lines of output. The first line of the display
shows the interface's name and its characteristics. Check for these characteristics:

UP The interface is enabled for use. If the interface is "down," have the system's
superuser bring the interface "up" with the ifconfig command (e.g., ifconfig leO
up). If the interface won't come up, replace the interface cable and try again.
If it still fails, have the interface hardware checked.

RUNNING
This interface is operational. If the interface is not "running/' the driver for this
interface may not be properly installed. The system administrator should

062

T1'0ublesbooting Network Access 329

review all of the steps necessary to install this interface, looking for errors or
missed steps.

The second line of ifconfig output sh~ws the IPaddress, the s~bnetmask (written
in hexadecimal), and the broadcast address. Check these three field; to make sure
the network interface is properly configured.

Two common interface configuration problems are misconfigured subnet masks
and incorrect IP ~ddresses. A bad ~ubnet mask is indicated · when the host can
reach other hosts on its local subnet and remote hosts on distant networks, but it
cannot reach hosts on other local subnets. ifconfig quickly reveals if a bad subnet
mask is set.

An incorrectly set IP address can be a subtle problem. If the network part of the
address is incorrect, every ping will fail with the "no answer" error. In this case,
using ifcon.fig will reveal the incorrect address. However, if the host part of the
address is wrong, the problem can be more difficult to detect. A small system,
such as a PC that only connects out to other systems and never accepts incoming
connections, can run for a long time with the wrong address without its user notic­
ing the problem. Additionally, the system that suffers the ill effects . may not be the
one that is misconfigured. It is possible for someone to accidentally use. your IP
address on his system, and for his mistake to cause your system intermittent com­
munications problems. An example of this problem is discussed later. This type of
configuration error cannot be discovered by ifconfi.g, because the error is on a
remote host. The arp command is used for this type of problem.

Troubleshooting with the arp Command
The arp command is used to analyze problems with IP to Ethernet address transla­
tion. The aip command has three useful options for troubleshooting: •..

-a Display all ARP entries in the table.

-d hostname
Delete an entry from the ARP table.

-shostname ether-address
Add a new entry to the table~

With these three options you can view the contents of the ARP table, delete a
problem entry, and install a corrected entry. The ability to install a corrected entry
is useful in "buying time'' while you look for the permanent fix.

Use arp if you suspect that incorrect entries are getting into the address resolution
table. One clear indication of problems with the ARP table is a report that the
"wrong" host responded to some command, like ftp or telnet. Intermittent prob­
lems that affect only certain hosts can also indicate that the ARP table has been

063

·. 330 Chapter II: Troubleshooting TCP/IP

corrupted. A,RP table problems are usually caused by two systems using the same
IP address. The problems appear intermittent, because the entry that appears in
the table is the address of the host that responded quickest to the last ARP request.
Sometimes the , "corn~ct" host responds first, and . sometimes the "wrong" host
responds first. .

If you suspect that two systems are using the same I~ address, display the address
resolution table with the arp -a command. Here's an example from a Solaris
system:• ·

· % arp -a
Net to Media Table
Device IP Address

leO peanut.nuts.com

Mask Flags Phys Addr

255.255.255.255 08:00:20:05:21:33
leO pecan.nuts.com 255.255.255.255 OO:OO:Oc:eO:BO:bl
leO . almond.nuts.com 255.255.255.255 SP 08:00:20:22:fd:51
leO . BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:OO:OO:OO

It is easiest to verify that the IP and Ethernet address pairs are correct if you have
a record of each host's correct Ethernet address. For this reason you should record
each host's Ethernet and IP address when it is added to your network. If you have
such a record, you'll quickly see if anything is wrong with the table.

If you ~orft have this type of record, the first three bytes of the Ethernet address
can help you to detect a problem. The first three bytes of the address identify the
equipment manufacturer~ .. A list of these identifying prefixes is found in the
Assigned Numbers RFC, in the section entitled "Ethernet Vendor Address Compo­
nents." This information is also available at ftp://ftp.isi.edu/in-notesliana/-
assignments!etbernet-numbers. · -·· ·. . . ·. ' · - .

From the v~ndor prefixes ~e . see that two of the ARP entries displayed in our
example are Sun system~ (8:0:ZO). If pecan is also supposed to be a S~n, the O:O:Oc
Cisco prefix indicates that a Cisco router has been mistakenly configured with
pecan's IP address.

If neither checking a record of correct assignments nor checking tl1e manufacturer
prefix helps you identify the source of the errant ARP, try using telnet to connect
to the IP address shown in the ARP entry. If the device supports telnet, the login
banner might help you identify the incorrectly configured host.

* The format in which the ARP table is displayed may vary slightly between systems. ·

064

Troubleshooting Network Access . 331

ARP problem case study

A user called in asking if the server was down, and reported the following prob­
lem. The user's workstation, called · cashew, appeared to "lock up" for minutes at a
time when certain commands were used, while· other commands worked with no
problems. The network commands that involved the NIS name server all caused
the lock-up problem, but some unrelated commands also caused the problem. The
user reported seeing the error message: ·

NFS getattr failed for server almond: RPC: Timed out

The server almond was providing cashew with NIS and NFS services. The com­
mands that failed on cashew were commands that required NIS service, or that
were stored in the centrally maintained /usrllocal directory exported from almond.
The commands that ran correctly were installed locally on the user's .workstation.
No one else reported a problem with the server, and we were able to ping cashew
from almon¢ ~nd get good responses.

We had the user check the /usr!adm!messages file for recent error messages, and
she discovered this: · '

Mar 6 13:38:23 cashew vmunix: duplicate IP address!!
sent from ethernet address: O:O:c0:4:38:la

·~ .. ·, ~' :

This message indicates that the workstation detected another host on the Ethernet
responding to its IP address. The "imposter" used the Ethernet · address
O:O:c0:4:38:1a in its ARP response." The correct Ethernet address for cashew is
8:0:20:e:12:37.

We checked almonds ARP table and found that it had the incorrect ARP entry for
cashew:· we deleted the bad cashew entry with the ai-p. -:-d command, and in~talled
the correct entry with the -s option, as shown below: .

arp -d cashew
cashew (172.16.180.130) deleted.
arp -s cashow 5:0;20:e:12:37

ARP entries received via the ARP protocol are temporary. The values are held in
the table for a finite lifetime and ·~re 'deleted w.hen that lifetime e~pires. New val­
ues . are then obtained via ~ the AR.P protocol. . Therefo·n~, if some remote interfaces
change, the local table adj~sts and communications .· continue. Usually this is a
good idea, but if someone is using the wrong [p address, that . bad address . can
keep reappearing in the ARP table even if it is deleted. However, manually
entered values are permanent; they stay in the table and can only be deleted man­
ually. This allowed us to install a correct entry in the table, without worrying about
it being overwritten by a bad address. ,· · ·· .

' ,' ~ .

. :•'

065

332 Chapter 11: Troubleshooting TCP/IP

This quick fix resolved cashew's immediate problem, but we still needed to find
the culprit. We checked the /etc/ethers file to see if we had an entry for Ethernet
address O:O:c0:4:38:1a, but we didn't. From the first three bytes of this address,
O:O:cO, we knew that the device was a Western Digital card. Since our network has
only UNIX workstations and PCs, we assumed the Western Digital card was
installed in a PC. We also guessed that the problem address was recently installed
because the user had never had the problem before. We sent out an urgent
announcement to all users asking if anyone had recently installed a new PC,
reconfigured a PC, or installed TCP /IP software on a PC. We got one response.
When we checked his system, we found out that he had entered the address
172.16.180.130 when he should have entered 172.16.180.138. The address was cor­
rected and the problem did not recur.

Nothing fancy was needed to solve this problem. Once we checked the error mes­
sages, we knew what the problem was and how to solve it. Involving the entire
network user community allowed us to quickly locate the problem system and to
avoid a room-to-room search for the PC. Reluctance to involve users and make
them part of the solution is one of the costliest, and most common, mistakes made
by network administrators.

Checking the lnteiface with netstat
If the preliminary tests lead yo~ to suspect that the connection to the local area
network is unreliable, the netstat -i . command can provide useful information. The
example below shows the output from the netstat -i command:

% netstat -i
Name Mtu Net/Dest Address
leO 1500 nuts.comalmond
loO 1536 loopback localhost

. ' . .

Ipkts Ierrs Opkts Oerrs Coliis Queue
442697 2 633424 2 50679 0

53040 0 . . 53040 0 0 0

The line for the loopback interface, laO, can be ignored. Only the line for the real
network interface is significant, and only the last five fields on that line provide
significant troubleshooting information.

Let's look at the last field first. There should be no packets queued (Queue) that
cannot be transmitted. If the interface is up and running; and the system cannot
deliver packets to . the network, suspect · a bad drop cable or a bad interface.
Replace the cable and see if the problem goes away: If it doesn't, call the vendor
for interface hardware repairs. . ,

The input errors (!errs) and the output errors (Oerrs) should be close to 0. Regard­
less of how much traffic ·has passed through this interface, 100 errors in either of
these fields is high. High output errors could indicate a saturated local network or
a bad physical connection between the host and the network. High input errors
could indicate that the network is saturated, the local host is overloaded, or there

066

Troubleshooting Network Access 333

is a physical network problem. Tools, such as ping statistics or a cable tester, can
help you determine if it is a physical network problem. Evaluating the collision
rate can help you determine if the local Ethernet is saturated. · · ·

A high value in the collision field (Collis) is normal, but if the percentage of output
packets that result in a collision is . too high, it indicates that the network is satu­
rated. Collision rates greater than 5% bear watching. If high collision rates are seen
consistently, and are se~n a~oD:g a broad sampling of systems on the network,
you may need to subdivide the network to reduce traffic load.

Collision rates are a percentage of output packets. Don't use the total number of
packets sent and received; use the values in the Opkts and Collis fields when
determining the collision rate. For example, the output in the netstat sample above
shows 50679 collisions out of 633424 outgoing packets. That's a collision rate of
8%. This sample network could be overworked; check the statistics on other hosts
on this network. Ifthe other systems also show a high collision rate, consider sub­
dividing this network.

Subdividing an Ethernet
To reduce the collision rate, you must reduce the amount of traffic on the network
segment. A simple way to do this is to create multiple segments out of the single
segment. Each new segment will have fewer hosts and, therefore, less traffic. We'll
see, however, that it's not quite this simple.

The most effective way to subdivide an Ethernet is to install an Ethernet switch.
Each port on the switch is essentially a separate Ethernet. So a 16-port switch gives
you 16 Ethernets to work with when balancing the load. On most switches the
ports can be. used in a variety of ways (see Figure 11-1). Lightly used systems can
be attached to a hub that is then attached to one of the. switch ports to allow the
systems to share a single segment. Servers and demanding systems can be given
dedicated ports so that they don't need to share a segment with anyone. Addition­
ally, some switches provide a few Fast Ethernet 100 Mbps ports. These are called
asymmetric switches because different ports operate at different speeds. Use the
Fast Ethernet ports to connect heavily used servers. If you're buying a new switch,
buy a 10/100 switch with auto-sensing ports. This allows every port to be used at
either 100 Mbps or at 10 Mbps, which give you the maximum configuration flexi­
bility.

Figure 11-1 shows an 8-port 10/100 Ethernet switch. Ports 1 and 2 are wired to
Ethernet hubs. A few systems are connected to each hub. When new systems are
added they are distributed evenly among the hubs to.· prevent any one segment
from becoming overloaded. Additional hubs can .be added to the available switch
ports for future. expansion .. Port 4 attaches a demanding system with its own

067

334 Chapter 11: Troubleshooting TCPIIP

private segment. Port 6 operates at 100 Mbps and attaches a heavily·used server. A
port can be reserved for a future 100 Mbps connection to a second 10/100 Ether­
net switch for even more expansion.

Ethernet 1 0/1 00 Switch

Figure 11-1: Subdividing an Ethernet with switches

Before allocating the ports on: your switch, evaluate what services are in demand,
and who talks to whom. Then develop a plan that reduces the amount of traffic
flowing over any segment. For example, if the demanding system on Port 4 uses
lots of bandwidth because it is-constantly talking to one of the systems on Port 1,
all of the systems on Port 1 will suffer because of this traffic. The computer that
the demanding system communicates with should be moved to one of the vacant
ports or to the same port (4) as the demanding system. Use your switch to the
greatest advantage by balancing the load.

Should you segment an old coaxial cable Ethernet by cutting the cable and joining
it back together through a router or a bridge? No. If you have an old network that
is finally reaching saturation, it is time to install a new network built on a more
robust technology. A shared media network, a network where everyone is on the
same cable (in this example, a coaxial cable Ethernet) is an accident waiting to
happen. Design a network that a user cannot bring down by merely disconnecting
his system, or even by accidentally ·cutting a' wire in his office. Use Unshielded
Twisted Pair (UTP) cable, ideally Category 5 cable, to create a lOBaseT Ethernet or

068

Checking Routing 335

lOOBaseT Fast Ethernet that wires equipment located in the user's office to a hub
securely stored in a wire closet. The network components in the user's office
should be sufficiently isolated from the network so that damage to those compo­
nents does not damage the entire network. The new network will solve your colli­
sion problem. and reduce the amount of hardware troubleshooting you are called
upon to do.

Network hardware problems

Some of the tests discussed in this section can show a network hardware problem.
If a hardware problem is indicated, contact the people responsible for the hard­
ware. If the problem appears to be in a leased ~elephont;! line, contact the tele­
phone company. If the problem appears to be in a wide area network, contact the
management of that network. Don't sit on a problem expecting it to go away. It
could easily get worse.

If the problem is in your local area network, you will have to handle it yourself.
Some tools, such as the cable tester described above, can help. But frequently the
only ' way to approach a · ha~d~~:re. problem is by ·brute force-disconnecting
pieces of hardware until you find die one causing the problem. It is most conve­
nient to do this at the switch or hub. If you identify a device causing the .problem,
repair or replace it. Remember that the problem can be the cable itself, rather than
any particular device.

Checking Routing ..
The "network unreachable" error message ·clearly indicates a routing problem. If
the problem is in the local host's routing table, it is easy to detect and resolve.
First, use netstat -nr and grep to see whether or not a valid route to your destina­
tion is inst:illed in the· routing table. This example checks for a specific route to
network 128.8.0.0:

% netatat -nr I grep '128\.8\.0'
128.8. 0.0 26.20.0.16 UG 0 37 stdO

This same. te.st, run on a system that did not ~ave this route in its routing table,
would return no response at. all. For example, a ~ser reports that the "network is
down" because he cannot ftp to sunsite.unc.edu, and a ping test returns. the fol­
lowing results:

% ping -a sunsite.unc.edu 56 2
PING sunsite.unc.edu: 56 data bytes
sendto: Network is unreachable
ping: wrote sunsite.unc.edu 64 chars, ret=-1
sendto: Network is unreachable
ping: wrote suns.i..te.unc.edu 64 chars , ret=-1

069

336 Chapter 11: Troubleshooting TCP/IP

----sunsite.unc.edu PING Statistics----
2 packets transmitted, 0 packets received, 100% packet loss

Based on the "network unreachable" error message, check the user's routing table.
In our example, we're looking for a route to sunsite.unc.edu. The IP address* of
sunsite.unc.edu is 152.2.254.81, which is a class B address. Remember that routes
are network-oriented. So we check for a route to network 152.2.0.0:

% netstat -nr I grep '152\.2\.0\.0'
%

This test shows that there is no specific route to 152.2.0.0. If a route was found,
grep would display it. Since there's no specific route to the destination, remember
to look for a default route. This example shows a successful check for a default
route:

% netstat -nr I grep def
default 172.16.12.1 UG 0 101277 leO

If netstat shows the correct specific route, or a valid default route, the problem is
not in the routing table. In . that case, .. use traceroute, as described later in this
chapter, totrace the route allthe way to its destination.

If netstat doesn't return the expected route, it's a local routing problem. There are
two ways to approach local routing problems, depending on whether the system
uses static or dynamic routing. If you're using static routing, install the missing
route using the route add command. Remember, most systems that use static rout­
ing rely on a default route, so the missing route could be the default. route. Make
sure that the startup files add the needed route to the table ·when~;;er the system
reboots. See Chapter 7, Configuring Routing, for details about the route add com­
mand.

If you're using dynamic routing, make sure that the routing program is running.
For example, the command below makes sure that gated is running:

% ps 'cat /etc/gated.pid'
PID TT STAT TIME COMMAND

27711 ? s 304:59 gated -tep /etc/log/gated.log

If the correct routing daemon is riot running, restart it and specify tracing. Tracing
allows you to check for problems that might be causing the daemon to terminate
abnormally.

* Use nslookup to find the IP address if you don't know it. nslookup is discussed later in this chapter.

070

Checking Routing 337

Checking RIP Updates
If the routing daemon is running and the local system receives routing updates via
Routing Information Protocol (RIP), use ripquery to check the updates received
from your RIP suppliers. For example, to check the RIP updates being received
from almond and pecan, the peanut administrator enters the following command:

% ripquery -1 -n -r almond pecan
44 bytes from almond.nuts.com(172.16.12.1):

0.0.0.0, metric 3
10.0.0.0, metric 0

264 bytes from pecan.nuts.com(172.16.12.3):
172.16.5.0, metric 2
172.16.3.0, metric 2

172.16.12.0, metric 2
172.16.13.0, metric 2

After an initial line identifying the gateway, ripquery shows the contents of the
incoming RIP packets, one line per route. The first line of the report above indi­
cates that ripquery received a response from almond. That line is followed by two

.. lines for the two routes advertised by almond almond advertises the default route
(destination 0.0.0.0) with a metric of 3, and its direct route to Milnet (destination
10.0.0.0) with a metric of 0. Next, ripquery shows the routes advertised by pecan.
These are the routes to the other nuts-net subnets.

The three ripquery options used in this example are:

-1 Sends the query as a RIP version 1 packet. By default, queries are sent as RIP
version 2 packets. Older systems may only support RIP version 1.

-n Causes ripquery to display all output in numeric form. ripquery attempts to
resolve all IP. addresses to ~ames if the -n option is not specified. It's a good
idea to use the -n option; it produces a cleaner display, and you don't waste
time resolving names.

-r Directs ripquery to use the RIP REQUEST command, instead of the RIP POLL
command, to query the RIP supplier. RIP POLL is not universally supported.
You are more likely to. get a successful response if you specify -r on the rip·
query command line.

The routes returned in these updates should be' the routes you expect. If they are
not, or if no routes are returned, check the configuration of the RIP suppliers.
Routing configuration problems cause RIP suppliers to advertise routes that they
shouldn't, or to fail to advertise the routes that they should. You can detect these
problems only by applying your knowledge of your network configuration. You
must know what is right to detect what is wrong. Don't expect to see error

071

338 Chapter 11: Troubleshooting TCP/IP

messages or strange garbled routes. For example, assume that in the previous test
pecan returned the following update:

264 bytes from pecan.nuts.com(l72.16.12.3):
0.0.0.0, metric 2
172.16.3.0, metric 2

172.16.12.0, metric 2
172.16.13.0, metric 2

This update shows that pecan is advertising itself as a default gateway with a
lower cost (2 versus 3) than almond. This would cause every host on this subnet
to use pecan as its default gateway. If this is not what you wanted, the routing
configuration of pecan should be corrected. •

Tracing Routes
If the local routing table and RIP suppliers are correct, the problem may be occur­
ring some distance away from the local host. Remote routing problems can cause
the "no answer" error message, as well as the "network unreachable" error mes­
sage. But the "network unreachable" message does not always signify a routing
problem, It can mean that the remote network cannot be reached because some­
thing is down between the local host and the remote de:>tination. traceroute is the
program that can help you locate these problems.

traceroute traces the route of UDP packets from the local host to a remote host. It
prints the name (if it can be determined) and IP address of each gateway along
the route to the remote host. . · .

traceroute uses two techniques, small ttl (time:-to-live) values and an invalid port
number>'to trace packets to their destination. traceroute sends . out UDP packets
with small ttl values to detect the intermediate ' gateways. The tti values start at 1
and inc~ease in incrementS of i' for each group of three UDP packets sent. When a
gateway receives a packet, it decrements the ttl. If the ttl is then 0, the packet is
not forwarded and an ICMP "Time Exceeded" message is returned to the source of
the packet. traceroute displays one line of output for each gateway from which it
receives a "Time Exceeded" message. Figure 11-2 shows a sample of the single
line of output that is displayed for a gateway, and it shows the meaning of each
field in the line. When the desti~(ltiOI1 host receives a packet from traceroutc;:, it
returns an ICMP "Unreachable Port" . message. This happens because traceroute
i~tentionally uses an invalid port number (33434) to force this error. when
trace~oute receives the, "Ur1reach'able Port" message,it knows that it has reached

* Correct routing configuration is discussed in Chapter 7.

072

Checking Routing 339

Figure 11-2: traceroute output

the destination host, and it terminates the trace. So, traceroute is able to develop a
list of the gateways, starting at one hop away and increasing one hop at a time
until the remote host is reached. Figure 11-3 illustrates the flow of packets tracing
to a host three hops away. The following shows a traceroute to ds.internic.net
from a Linux system hanging off BBN PlaNET. traceroute sends out three packets
at each ttl value. If no response is received to a packet, traceroute prints an aster­
isk (*). If a response is received, tiaceroute displays the name and address of the
gateway that responded, and the packet's round-trip time in milliseconds.

% traceroute ds.internic.net
traceroute to ds.internic.net (198.49.45.10), 30 hops max, 40 byte packets

1 gw-55.riuts.corn (172.16.55.200) 0.95 rns 0.91 rns 0.91 ms
2 172.16.230.254 (172.16.230.254) 1.51 ms 1.33 ms 1.29 ms
3 gw225 .nuts.corn (-172.16.2.252) 4.13 ms 1.94 ms 2 . 20 rns
4 192.221.253.2 (192.221.253.2) 52.90 ms 81.19.rns 58.09 ms
5 washdc1-br2.bbnplanet.net (4.0.36.17) 6.5 ms 5.8 ms 5.88 ms
6 nyc1-brl.bbnplanet.net (4.0.1.114) 13.24 ms 12.71 rns 12.96 ms
7 nyc1-br2.bbnplanet.net (4.0.1.178) 14.64 ms 13.32 ms 12.21 ms
8 cambridge1-br1.bbnplanet.net (4.0.2.86) 28.84 ms 27.78 ms 23.56 ms
9 cambridge1-cr14.bbnplanet.net (199.94.205.14) 19.9 ms 24.7 ms 22.3 ms

10 attbcstoll.bbnplanet.net (206.34.99.38) 34.31 ms 36.63 ms 32.21 ms
11 dsO.internic . net (198.49.45.10) 33.19 ms 33.34 rns *

This trace shows that 10 intermediate gateways are involved, that packets are mak­
ing the trip, and that round-trip travel time for packets from this host to
ds.internic.net is about 33 ms.

Variations and bugs in the implementation of ICMP on different types of gateways,
and the unpredictable nature of the path a datagram can take through a network,
can cause some odd displays. For this reason, you shouldn't examine the output of
traceroute too closely. The most important things in the traceroute output are:

• Did the packet get to its remote destination?

• If not, where did it stop?

In the code below we show another trace of the path to ds.internic.net. This time
the trace does not go all the way through to the InterNIC.

073

340 Chapter II: Troubleshooting TCPIIP

Source 1st Gateway 2nd Gateway Destination

Figure II-3: Flow of iraceroute packets

t traceroute ds.internic.net
traceroute to ds.internic.net (198.49.45.10), .30 hops max,

40 byte packets
1 gw-55.nuts.com (172.16.55.200) 0.959 ms . 0.917 ms 0.913 ms
2 172.16.230.254 {172.16.230.254) 1.518 ms 1.337 ms 1.296 ms
3 gw225.nuts.com (172.16.2.252) 4.137 ms 1.945 ms 2.209 ms
4 192.221.253.2 (192.221.253.2) 52.903 ms 81.19 ms 58.097 ms
5 washdc1-br2.bbnplanet.net (4.0.36.17) 6.5 ms 5.8 ms 5.888 ms
6 nyc1-brl.bbnplanet.net (4.0.1.114) 13.244 ms 12.717 ms 12.968 ms
7 nycl-br2.bbnplanet.net (4.0.1.178) 14.649 ms 13.323 ms 12.212 ms
8 . cambridge1-brl.bbnplanet.net (4.0.2.86) 28.842 ms 27.784 ms

23.561 ms

9 * * *
10 * * *

29 * * *
30 * * *

074

Checking Name Service 341

When traceroute fails to get packets through to the remote end system, the trace
trails off, displaying a series of three asterisks at each hop count until the count
reaches 30. If this happens, contact the administrator of the remote host you're try­
ing to reach, and the administrator of the last gateway displayed in the trace.
Describe the problem to them; they may be able to help.* In our example, the last
gateway th~t responded to our packets was cambridgel-brl.bbnplanet.net. We
would contact this system administrator, and the administrator of ds.internic.net.

Checking Name Service
Name server problems are indicated when the "unknown host" error message is
returned by the user's application. Name server problems can usually be diag­
nosed with nslookup or dig. nslookup is discussed in detail in Chapter 8. dig is an
alternative tool with similar functionality that is discussed in this chapter. Before
looking at dig, let's take another look at nslookup and see how it is used to trou­
bleshoot name service.

Three features of nslookup covered in Chapter 8 are particularly important for
troubleshooting remote name server problems. These features are its ability to:

• Locate the authoritative servers for the remote domain using the NS query

• Obtain all records about the remote host using the ANY query

• Browse all entries in the remote zone using nslookup's Is and view commands

When troubleshooting a remote server problem, directly query the authoritative
servers returned by the NS query. Don't rely on information returned by non­
authoritative servers. If the problems that have been reported are intermittent,
query all of the authoritative servers in turn and compare their answers. Intermit­
tent name server problems are sometimes caused by the remote servers returning
different answers to the same query.

The ANY query returns all records about a host, thus giving th~ broadest range of
troubleshooting information. Simply knowing what information is (and isn't) avail­
able can solve a lot of problems. For example, if the query returns an MX record
but no A record, it is easy to understand why the user couldn't telnet to that host!
Many hosts are accessible to mail that are not accessible by other network ser­
vices. In this case, the user is confused and is trying to use the remote host in an
inappropriate manner.

If you are unable to locate any information about the hostname that the user gave
you, perhaps the hostname is incorrect. Given that the hostnarne you have is

* Chapter 13, Internet Information Resources, explains how to find out who is responsible for a spe-
cific computer. · ·

075

342 Chapter 11: Troubleshooting TCP/IP

wrong, looking for the correct name is like trying to find a needle in a haystack.
However, nslookup can help. Use nslookup's Is command to dump the remote
zone file, and redirect the listing to a file. Then use nslookup's view command to
browse through the file, looking for names similar to the one the user supplied.
Many problems are caused by a mistaken hostname.

All of the nslookup features and commands mentioned here are used in Chapter 8.
However, some examples using these commands to solve real name server prob­
lems will be helpfuL The three examples that follow are based on actual trouble
reports.•

Some systems work, others don't

A user reported that she could resolve a certain hostname from her workstation,
but could not resolve the same hostname from the central system. However, the
central system could resolve other hostnames. We ran several tests and found that
we could resolve the hostname on some systems and not on others. There seemed
to be no predictable pattern to the failure. So we used nslookup to check the
remote servers.

% nslookup
Default Server: alrnond.nuts.corn
Address: 172.16.12.1

> set type=NS
> foo.edu.
Server: alrnond.nuts.corn
Address: 172.16.12.1

foo.edu
foo.edu

nameserver = gerbil.foo.edu
narneserver = red.big.corn

foo.edu nameserver = shrew.foo.edu
gerbil.foo.edu inet address = 198.97.99.2
red.big.corn inet address= 184.6.16.2
shrew.foo.edu inet address= 198.97.99.1
> set type:..ANY"
> sel:"Vel:" gerbil,foo.edu
Default Server: gerbil.foo.edu
Address: 198.97.99.2

> hamster.foo.edu
Server: gerbil.foo.edu
Address: 198.97.99.2

hamster.foo.edu inet address= 198.97.99.8
> server red.big.com
Default Server: red.big.com

* The host and server names are fictitious, but the problems were real.

076

Checking Name Service

Address: 184.6.16.2
> hamster.foo.edu
Server: red.big.com
Address: 184.6.16.2

*** red.big.com can't find harnster.foo.edu: Non-existent domain

343

This sample nslookup session contains several steps. The first step is to locate the
authoritative servers for the host name in question (hamster joo.edu). We set the
query type to NS to get the name server records, and query for th~ domain
(joo.edu) in which the hostname is found. This returns three names of authorita­
tive servers: gerbiljoo.edu, r:ed.big.com, and shrewjoo.edu. . . ,

Next, we set the query type to ANY to look for any records r~lated to the host­
name. in question. Then we set the server to the first server in the list,
gerbiljoo.edu, and . query for hamster joo.edu. This returns an address record. So
server gerbiljoo.edu works fine. We repeat the test using red.big.com as the server,
and it fails. No records are returned.

The next step is to get SOA records from each server and see if they are the same:

> set type•SOA
> foo.edu.
Server: red.big.com
Address: iB4.6.16.2

foo.edu or~g~n = gerbil.foo.edu
mail addr = arnanda.gerbil.foo.edu
serial=10164, refresh=43200, retry=3600, expire=3600000,
min:.:2592000

> server gerbil.foo.edu
Default Server: gerbil.foo.edu
Address: 198.97.99.2

> foo.edu.
Server: gerbil. foo. edu
Address: 198.97.99.2

foo.edu or~g~n = gerbil.foo.edu

> exit

mail addr = amanda.gerbil.foo.edu
serial=10164 1 refresh=43200, retry=3600, expire=3600000,
min=2592000

If the SOA records have different serial numbers, perhaps the zone file, and there­
fore the hostname, has not yet been downloaded to the secondary server. If the
serial numbers are the same and the data is different, as in this case, there is a def­
inite problem. Contact the remote domain administrator and notify her of the
problem. The administrator's mailing address is shown in the "mail addr" field of

077

344 Chapter 11: Troubleshooting TCP/IP

the SOA record. In our example, we would send mail to amanda@gerbilfoo.edu
reporting the problem.

The data is here and the server can't find it!

This problem was reported by the administrator of one of our secondary name
servers. The administrator reported that his server could not resolve a certain host­
name in a domain for which his server was a secondary server. The primary server
was', however, able to resolve the name. The administrator dumped his cache
(more on dumping the server cache in the next section), and he could see in the
dump that his server had the correct entry for the host. But his server still would
not resolve that hostname to an IP address!

The ·problem ·was replicated on several other secondary servers. The primary
server would resolve the name; the secondary servers wouldn't. All servers had the
same SOA serial number, and a dump of the cache on each server showed that
they all had the correct address records for the hostname in question: So why
wouldn't they resolve the hostname to an address?

Visualizing the difference between the way primary and secondary servers load
their data made us suspicious of the zone file transfer. Primary servers load the
data directly from local disk files. Secondary servers transfer the data from the pri­
mary server via a zone file transfer. Perhaps the zone files were getting corrupted.
We displayed the zone file on one of the secondary servers, and it showed the fol­
lowing data:

% cat /usr/etc/sales.nuts.com.hosts
PCpma IN A 172.16.64.159

IN HINFO "pen "n1/ 800salesnutscom"
PCrkc IN A 172.16.64.155

IN HINFO ''pc" "n3/800salesnutscom"
PCafc IN A 172.16.64.189

IN HINFO npctl ''n3/800salesnutscom"
accu IN A 172.16.65.27
cmgd.s1 IN A 172.16.130.40
cmg IN A 172.16.130.30
PCgns IN A 172.16.64.167

IN HINFO .. pen "(3 / SOOsalesnutscom•
gw IN A 172.16.65.254
zephyr IN A 172.16.64.188

IN HINFO "Sun" "sparcstation"
ejw IN A 172.16.65.17
PCecp IN A 172.16.64.193

IN HINFO •rpct• "n~Lsparcstationstcom"

078

Checking Name Se1-vice 345

Notice the odd display in the last field of the HINFO statement for each PC. • This
data might have been corrupted in the transfer or it might be bad on the primary
server. We used nslookup to check that.

% nslookup
Default Server: almond.nuts.corn
Address: 172.16.12.1

> serv'er acorn.sa1es.nuts.com
Default Server: acorn.sales.nuts.corn
Address: 172.16.6.1

> set query•HINFO
> PCw1g.sales.nuts.corn
Server: acorn.sales.nuts.corn
Address: 172.16.6.1

PCWlg.sales.nuts.com CPU=pc OS=ov
packet size error (Oxf7fff590 != Oxf7fff528)
> exit

In this nslookup example, we set the server to acorn.sales.nuts.com, which is the
primary server for sales.nuts.com. Next we queried for the HINFO record for one
. of the hosts that appeared to have a corrupted record. The "packet size error"
·message dearly indicates that nslookup was even having trouble retrieving the
HINFO record directly from the primary server. We contacted the administrator of
the primary server and told him about the problem, pointing out the records that
appeared to be in error. He discovered that he had forgotten to put an operating
system entry on some of the HINFO records. He corrected this, and it fixed the
problem.

Cache corruption

The problem described above was caused by having the name server cache cor­
rupted by bad data. Cache corruption ca11: occur even if your system is not a sec­
ondary server. Sometimes the root server .entries in the cache become corrupted.
Dumping the cache can help diagnose these types of problems.

For example, a user reported intermittent name server failures. She had no trouble
with any hostnames within the local domain, or with some names outside the local
domain, but names in several different remote domains would not resolve.
nslookup tests produced no solid clues, so the name server cache was dumped
and examined for problems. The root server entries were corrupted, so named was
reloaded to dear the cache and reread the named;ca file. Here's how it was done.

* See Appendix D, A dhcpd Reference, for a detailed description of the HINFO statement.

079

346 Chapter 11: Troubleshooting TCP/IP

The SIGINT signal causes named to dump the name server cache to the file
/varltmp!named_dump.db. The following command passes named this signal:

kill -INT 'cat /etc/named.pid'

The process ID of named can be obtained from !etc/named.pid, as in the example
above, because named writes its process ID in that file during startup. •

Once SIGINT causes named to snapshot its cache to the file, we can then. examine
the first part of the file to see if the names and addresses of the root servers are
correct. For example:

head -10 /var/tmp/named_dump.db
; Dumped at Wed Sep 18 08:45:58 1991
; --- Cache & Data
$ORIGIN

80805 IN SOA NS.NIC.DDN.MIL.
(910909 10800 900 604800 86400)

479912 IN NS NS.NIC.DDN.MIL.
479912 IN NS AOS.BRL.MIL.
479912 IN NS A.ISI.EDU.
479912 IN NS C.NYSER.NET.
479912 IN NS TERP.UMD.EDU.

HOSTMASTER.NIC.DDN.MIL.

The cache shown above is clean. If intermittent name se~er problems lead you to
suspect a cache corruption problem, examine the cache and check the names and
addresses of all the root servers. The following symptoms might indicate a prob­
lem with the root server cache: ·

• Incorrect root server names. The section on /etc/named.ca in Chapter 8
explains how you can locate the correct root server names. The easiest way to
do this is to get the file domain!named.root from the InterNIC.

• No address or an incorrect address for any of the servers. Again, the correct
addresses are in domain/named. root.

• A name other than root (.) in the name field of the first root server NS record,
or the wildcard character (*) occurring in the name field of a root or top-level
name server. The structure of NS records is described in Appendix D.

A "bad cache" with multiple errors might look like this:

head -10 /var/tmp/named_dump.db
; Dumped at Wed Sep 18 08:45:58 1991
; --- Cache & Data
$ORIGIN .
arpa 80805 IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA.

(910909 10800 900 604800 86400)
479912 IN NS NS.NIC.DDN.MIL.

* On our Linux system the process ID is written to lvar!run!named.pid.

080

Checking Name Service 347

479912 IN NS AOS . BRL. MIL ..
479912 IN NS A.ISI.EDU.
479912 IN NS C.NYSER.NET.
479912 IN NS TERP.UMD.EDU.

* 479912 IN NS NS.FOO.MIL.

This contrived example has three glaring errors. The "arpa" entry in the first field
of the SOA record is invalid, and ·is the most infamous form of cache corruption.
The last NS record is also invalid. NS.FOO.MIL. is not a valid root server, and an
asterisk (*) in the first field of a root server record is not normal.

If you see problems like these, force named to reload its cache with the SIGHUP
signal as shown below:

kill -HOP 'cat /etc/named.pid'

This clears the cache and reloads the valid root server entries from your named.ca
file.

If you know which system is corrupting your cache, instruct your system to ignore
updates from the culprit by using the bogusns statement in the /etc/named.boot
file. The bogusns statement lists the IP addresses of name servers whose informa­
tion cannot be trusted. For example, in the previous section we described a prob­
lem where acorn.sales.nuts.com (172.16.16.1) was causing cache corruption with
improperly formatted HINFO records. The following entry in the named.boot file
blocks queries to acorn.sales.nuts.com and thus blocks the cache corruption:

bogusns 172.16.16.1

The bogusns entry is only a temporary measure. It is designed to keep things run­
ning while the remote domain administrator has a chance to diagnose and repair
the problem. Once the remote system is fixed, remove the bogusns entry from
named.boot.

dig: An Alternative to nslookup
An alternative to nslookup for making name service queries is dig. dig queries are
usually entered as single:-line commands, while nslookup is usually run as an inter­
active session. But the dig command performs essentially the same function as
nslookup. Which you use is mostly a matter of. personal choice. They both work
well.

As an example, we'll use dig to ask the root server terp.umd.edu for the NS
records for the mit.edu domain. To do this, enter the following command:

% dig 0terp.umd.edu mit.edu ns

In this example, @terp.umd.edu is the server that is being queried. The server can
be identified by name or IP address. If you're troubleshooting a problem in a

081

348 Chapter 11: Tt'Oubleshooting TCP/IP

remote domain, specify an authoritative server for that domain. In this example
we're asking for the names of servers for a top-level domain (mit.edu), so we ask
a root server.

If you don't specify a server explicitly, dig .uses the local name server, or the name
server defined in the /etc!resolv.conf file .. (Chapter 8 describes resolv.conj.)
Optionally, you can set the environment variable LOCALRES to the name of an
alternate resolv.conf file. This alternate file will then be used in place of
/etc/resolv. conf for dig queries. Setting the LOCALRES variable will only affect dig.
Other programs that use name service will continue to use /etc/resolv.conf

. . ~ ~.

The last item on our sample command line is ns. This is the query type. A query
type is a value that requests a specific type of DNS information. It is similar to the
value used in nslookup's set type command. Table.ll-1 shows the possible dig
query types and their meanings.

Table 11-1: dig Query Types

Query Type DNS Record Requested

a
any
mx
ns

Address records
Any type of record

so a
hinfo
axfr
txt

Mail Exchang~ records
Name Server records
Start of Authority records
Host Info records
All records in the zone
Text records

Notice that the function of nslookUp's ls co!nmand is performed by the dig query
type axfr.

dig also has an option that is useful for locating a hostname when you have only
an IP address. If you only have the IP,address of a host, you may want to find out
the hostname because numeric addres~es ''are m~re prone to typos. Having· the
hostname can reduce the user's problems~ The in-addr.arpa domain converts
addresses to hostnames, and dig provides · a simple way to enter in-addr.arpa
domain queries. Using the -x option, you can· query for a number to name con-

. version without having to manually reverse the numbers and add "in-addr.arpa."
For example, to query for the hostname of IP address 18.72.0.3, simply enter:

, dig -x 1s.12.o.3

; <<>>DiG 2.1 <<>> -x
;; res options: init recurs defnam dnsrch
, , got answer:
·;; '->>HEADER<<- opcode: QUERY, status: NOERROR, . id: 6' ··
;; flags : qr aa rd ra; Ques: 1, Ans: 1, Auth: 0, Addit: 0

082

Analyzing Protocol Problems

, , QUESTIONS:
;; 3.0.72.18.in-addr.arpa, type= ANY, class IN

; ; ANSWERS:
3.0.72.18.in-addr.arpa. 21600 PTR

;; Total query time: 74 rnsec
;; . FROM: peanut to SERVER: de~ault
;; WHEN: Sat Jul 12 11:12:55 1997
, , MSG SIZE sent: 40 rcvd: · 67

BITSY.MIT.EDU.

172.16.12.1

349

The answer to our query is BITSY~MIT.EDU, but, dig displays lots of other output.
The first five lines and the last four lines provide information and statistics about
the query. For our purposes, the only important information is the answer.*

Analyzing Protocol Problems
; !

Problems caused by bad TCP /IP configurations ~re much more common than
problems caused by bad. TCP /IP ·protocol implementations. Most of the problems
you encounter will succumb to analysis using the simple tools we have already
discussed. But on occasion, , you., ~ay. need to analyze the protocol interaction
between two systems. In the worst ·9!S_<:;, you mayneed to analyze the packets in
the data stream bit by bit. Pr()tocol,analyzers ,help ypu >do this. . , , ; .. ·

snoop ·· is the tool we'll use. It' is ·· provided ; with the Solaris operating systeri:D
Although . we. use' snoop in all of 'out examples, the concepts introduced in'. this
section should be applicable to the ,analyzer that you use, because most ,prqtocol
analyzers function in basically, the same way. Pr<:>tocol analyzers allow . you to
select, or filter, the packets you wa~t to ~xamine, and to examine those packets
byte by byte. We'll discuss both of these functions.

Protocol analyzers watch all the packets on th~ network. Therefore, you only need
one system that runs analyzer software on the affected part of the network. One
Solaris system with· snoop can monitor the network traffic and tell you what the
other hosts are (or aren't) doing! This, of course, assumes a shared media network.
If you use an Ethernet switch, only' the traffic on an individual segment can be
seen. Some switches provide a' lnonitor port. For others you may need to take
your monitor to the location .. of the ~problem. ' · . ·· · ' · ·

. . : : . : i ~ : : : : i : : ' ' . . . ; . .' : . :

1,: ,·'. •', .-:;

'i;i'; · : .. · .\J ..

* Tci see a single-line answer to this quer}r, pipe dig's output to grep; e.g., dig -x 18.72.0_.3 'I grep PTR.
t If you don't use Solaris, try tcpdump. It is' available via anonymous FfP cin' the Internet and is similar
to snoop. ,. • ... · . ·· · ; ,

' ; :_ ~ .' : .

083

350 Chapter 11: Troubleshooting TCP/IP

Packet Filters
snoop reads all the packets on an Ethernet. It does this by placing the Ethernet
interface into promiscuous mode. Normally, an Ethernet interface only passes
packets up to the higher layer protocols that are destined for the local host. In
promiscuous mode, all packets are accepted and passed to the higher layer. This
allows snoop to view all packets and to select packets for analysis, based on a fil­
ter you define. Filters can be defined to capture packets from, or to, specific hosts,
protocols, and ports, or combinations of all these. As an example, let's look at a
very simple snoop filter. The following snoop . cornn1and displays all packets sent
between the hosts almond and peanut:

. ' ' .

snoop host almond and host pean~t
Using device /dev/le (promiscuous mode)
peanut.nuts.com -> almond ;nuts.com' ICMP Echorequest
alrnond.nuts.com -> peanut.nuts.com ICMP Echo reply

·· peanut.nuts.com -> almond.nuts.com RLOGIN C port=1023
·'almond.nuts;com -> peanut.nuts.com RLOGIN· R port=1023
~c

';

The filter "host almond and host peanut" selects · only those packets that are from
pecinutto almond, or from almond to peanut.o The filter is constructed from a set
of primitives, and associated hostnames, protocol nanies, and port numbers. The
primitives can be modified and combined_ with the operators and, or, and not. The
filter may be omitted; this causes snoop to display all packets from the network.

Table·ll-2 shows the primitives used to build snoop filters. There are a few addi­
tional primitives and some variations that perform the same functions, but these
are the essential primitive. See the snoop manpage for additional details.

Table 11-2: Expression Primitives

Primitive

dst host I net I port destination
sec host I net I port source •
host destination
net destination
port destination
ether address
protocol

Matches Packets

To destination host, net, or port
From source host, net, or port
To or from destination host . '' .

T~ or from destination network
To or from destination port
To o~· fro~·i'Eth~rnet address
Of protocol type (icmp, udp, or tcp)

Using these primitives with the operators and and or, complex filters can be con­
structed. However, filters are usually simple. Capturing the traffic between two
l:losts is probably the most common filter. You may further limit the data captured
to a specific protoc~l, but often you're . not sure which protocol will reveal the
problem. Just because the user sees the problem in ftp or telnet does not mean
that is where the problem actually occurs. Analysis must often start by capturing

084

Analyzing Protocol Problems 351

all packets, and can only be narrowed after test evidence points to some specific
problem.

Modifying analyzer output

The example in the previous section shows that snoop displays a single line of
summary information for each packet received. All lines show the source and des­
tination addresses, and the protocol being used (ICMP and RLOGIN in the exam­
ple). The lines that summarize the ICMP packets identify the packet types (Echo
request and Echo reply in the example). The lines that summarize the application
protocol packets display the source port and the first 20 characters of the packet
data.

This summary information is sufficient to gain insight into how packets flow
between two hosts and into potential problems. However, troubleshooting proto­
col problems requires more detailed information about each packet. snoop has
options that give you control over what information is displayed. To display the
data contained in a packet, use the -x option. It causes the entire contents of the
packet to be dumped in hex and ASCII. In most cases, you don't need to see the
entire packet; usually, the headers are sufficient to troubleshoot a protocol prob­
lem. The -v option displays the headers in a well-formatted and very detailed
manner. Because of the large number of lines displayed for each packet, only use
-v when you need it.

The following example shows an ICMP Echo Request packet displayed with the
-v option. The same type of packet was summarized in the first line of the previ­
ous example.

snoop -v host almond and host macadamia
Using device /dev/le (promiscuous mode)
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 3 arrived at 16:56:57.90
ETHER: Packet size = 98 bytes
ETHER: Destination ~ 8:0:20:22:fd:51, Sun
ETHER: Source = O:O:c0:9a:dO:db, Western Digital
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IPHeader
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = OxOO
IP: =· 0 (precedence)
IP: ... 0 =normal delay
IP: 0 ... =normal throughput
IP: .0 .. =normal reliability
IP: Total length = 84 bytes
IP: Identification = 3049

085

352

IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
ICMP:
ICMP:
ICMP:
ICMP:
ICMP:
ICMP:

Flags = OxO
.0 =may fragment
.. 0 =last fragment

Fragment offset = 0 bytes
Time to live = 64 seconds/hops
Protocol = 1 (ICMP)
Header checksum = fdeO

Chapter 11: Troubleshooting TCP/IP

Source address = 172.16.55.106, macadamia.nuts.com
Destination address = 172.16.12.1, almond.nuts.com
No options

----- ICMP Header

Type = 8 (Echo r equest)
Code = 0
Checksum = ac54

The detailed formatting don<e; by snoop maps the bytes,received from the network
to the header structure. Look at the description of the various header fields in
Chapter 1, Overview ofTCP!JP, and Appendix F, Selected TCPIIP Headers, for more
information.

Protocol Case·Study ·
This example is an actual case that was solved by protocol analysis. The problem
was reported as an occasional ftp failure with the error message:

netout: Option not supported by protocol . , .·. . .
421 Service not available, remote server has ~losed connection·

Only one user reported the problem, and it occurred only when transferring large
files from a workstation to the central computer, vi~ ·our FDDI backbone 'network.

We obtained the user's data file and were able to duplicate the problem from other
workstations, but only when we transferred the file to the samecentral system via
the backbone network. Figure 11-4 graphically summarizes the tests we ran to
duplicate the problem.

We notified all users of the problem. In response, we received reports that others
had also experienced it, but again only when transferring to the central system,
and only when transferring via the backbone. They had not reported it, because
they rarely saw it. But the additional reports gave us some evidence that the prob­
lem did not relate to any recent network changes.

Because the problem had been duplicated on other systems, it probably was not a
configuration problem on the user's system. The ftp failure could also be avoided
if the backbone routers and the central system did not interact. So we concen­
trated our attention on those systems. We checked the routing tables and ARP

086

Protocol Case Study

Workstation A

Figure 11-4: FrP test summary

0 The transfers from workstation A to workstation 8, via the
backbone routers, work fine.

6 The transfers from workstation B to the central system,
which don't use the backbone routers, also work tine.

E) Transfers from workstation A to the central system, which
do use the backbone routers, fall periodically.

353

tables, and ran ping tests on the central system and the· routers. No problems were
observed.

Based on this preliminary analysis, the ftp failure appeared to be a possible proto­
col interaction problem between a certain brand of routers and a central computer.
We made that assessment because the transfer routinely failed when these two
brands of systems were involved, but never failed in any other circumstance. If the
router or the central system were misconfigured, they should fail when transferring
data to other hosts. If the problem was an intermittent physical problem, it should
occur randomly regardless of the hosts involved. Instead, this problem occurred
predictably, and only between two specific brands of computers. Perhaps there
was something incompatible in the way these two systems implemented TC:P/IP.

Therefore, we used snoop to capture the TCP/IP headers during several . ftp test
runs. Reviewing the dumps showed that all transfers that failed with the "netout"
error message had an ICMP Parameter Error packet near the end of the session,

087

354 Chapter 11: Troubleshooting TCP/IP

usually about 50 packets before the final close. No successful transfer had this
ICMP packet. Note that the error did not occur in the last packet in the data
stream, as you might expect. It is common for an error to be detected, and for the
data stream to continue for some time before the connection is actually shut
down. Don't assume that an error will always be at the end of a data stream.

Here are the headers from the key packets. First, the IP header of the packet from
the backbone router that caused the central system to send the error:

ETHER: ----- Ether Header ----­
ETHER:
ETHER:
ETHER:
ETHER:
ETHER:
ETHER:
ETHER:

Packet 1 arrived at 16:56:36.39
Packet size 60 bytes
Destination = 8:0:25:30:6:51, CDC
Source· = 0: 0: 93: eO: aO: b£, Protean
Ethertype = 0800 (IP)

IP: ----- IP Header
IP:
IP:
IP:
IP:

Version = 4
Header length
Type of service

20 bytes
= OxOO

IP: xxx. = 0 {precedence)
IP: ... 0 normal delay
IP: 0. . . normal throughput
IP: . 0. . = normal reliability
IP: Total length =· 5'52 bytes
IP: Identification = . 8a22 :.
IP: Flags = OxO
IP: .0.. may fragment
IP: .. 0. last fragment
IP: Fragment offset 0 bytes
IP: Time to live = 57 seconds/hops
IP: Protocol = 6 (TCP)
IP: Header checksum = ffff
IP: Source address = 172 .16 .55.106, fs.nuts.com
IP: Destination address = 172.16.51.252, bnos.nuts.com
IP: No options
IP:

And this is the ICMP Parameter Error packet sent from the central system in
response to that packet:

ETHER: ----- Ether Header
ETHER:
ETHER: Packet 3 arrived at 16:56:57.90
ETHER: Packet size 98 bytes
ETHER: Destination= 0:0:93:eO:aO:bf, Proteon
ETHER: Source = 8:0:25:30:6:51, CDC
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header ----­
IP:

088

Protocol Case Study

IP:.
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP:
IP: .
IP:
IP:

Version = 4
Header length = 20 bytes
Type of service = OxOO

XXX.

· ••• 0

0 . .•
.0 ..

Total length =

= 0 (precedence)
= normal delay
= normal throughput '·.
= normal reliability

56 bytes
Identification = OOOc
Flags = OxO .

1

.0 =may fragment

.. 0. . .. •. last fragment
Fragment offset = 0 bytes
Time to live = 59 seconds/hops
Protocol = 1 (ICMP)
Header checksum. ~ . 8a0b

Source address . ~ 172.16.51.252, bnos.nuts.com
Destination ~d~ess = 172.16.55.106, fs.nuts.com
No options

ICMP : ----- ICMP Header
ICMP :
ICMP: Type = 12 (Parameter problem}
ICMP : Code = 0
ICMP: Checksum = Od9f
ICMP: Pointer = 10

355

Each packet header is broken out bit-by-bit anci mapped to the appropriate
TCP/IP he'ader fields. From this detailed analysis of each packet, we see that the
router issued an IP Header Checksum of Oxffff, · and that the central system
objected to this checksum~ We know that the central system objected to the check­
sum because it returned an ICMP Parameter Error with a Pointer of 10. The Param­
eter Error indicates that there is something wrong with the data the system has just
received, and the Pointer identifies the specific data that the system thinks is in
. . . :: . . '' ' .

error. The tenth byte of the router's IP header is the IP Header. Checksum. The
data field of the ICMP error message returns the header that it believes is in error.
When we displayed that data we noticed that when the central system returned
the header, the checksum field was "corrected" to 0000. Clearly the central system
disagreed with the router's checksum calculation.

Occasional checksum errors will occur. They can be caused by transmission prob­
lems, and are intended to detect these types of problems. Every protocol suite has
a mechanism for recovering from checksum errors. So how should they be han­
dled in TCP /IP?

To determine the correct protocol action iri this situation, we turned to the· authori­
tative sources-the RFCs. RFC 791, Internet Protocol, provided information ·about
the checksum calculation, but the best source Tor this particular problem was RFC
1122, Requirements for Internet Hosts- Communication Layers, by R. Braden. This

089

356 Chapter 11: Troubleshooting TCP/IP

RFC provided two specific references that define the action to be taken. These
excerpts are from page 29 of RFC 1122:

In the following, the action specified in certain cases is to "silently
discard" a received datagram. This means that the datagram will be
discarded without further processing and that the host will not send
any ICMP error message (see Section 3.2.2) as a result

A host MUST verify the IP header checksum on every received datagram
and silently discard every datagram that has a bad checksum.

Therefore, when a system receives a packet· with a bad checksum, it is not sup­
posed to do anything with it. The packet should be discarded, and the system
should wait for the next packet to arrive. The system should not respond with an
error message. A system carui.ot respond to a bad IP header checksum, because it
cannot really know where the packet came from. If the header checksum is in
doubt, how do you know if the addresses in the header are correct? And if you
don't know for sure where the packet came from, how can you respond to it?

IP relies on the upper-layer protocols to recover from tl1ese problems. If TCP is
used (as it was in this case), the sending TCP eventually notices that the recipient
has never acknowledged the segment, and it sends the segment again. If UDP is
used, the sending application is responsible for recovering from the error. In nei­
ther case does recovery rely on ,an error message returned from the recipient.

Therefore,· for an ·incorrect checksum, the central system should have simply dis­
carded tl1e bad packet. The vendor was informed of this problem and, much to
their credit, they sent us a fix for the software within two weeks. Not only that, the
fix worked perfectly! . ·

Not all problems 'are resolved so cleanly. But the technique of analysis is the saine
no matter what the problem.

. ' . '

Simple Network Management Protocol
Troubleshooting is necessary to recover from problems, but the ultimate goal of
the network administrator is to avoid problems. That is also the goal of network
management software. The network management software used on TCP/IP net­
works is based. on the Simple Network Management Protocol (SNMP).

SNMP is a client/server protocol. In SNMP terminology, it is described as a man­
ager/agent protocol. The agent {the server) runs on the device being managed,
which is called the Managed Network Entity. The agent monitors the status of the
device and reports that. status to the manager.

090

Simple Network Management Protocol 357

The manager (the client) runs on the Network Management Station (NMS). The
NMS collects information from alL of the different devices that are being managed,
consolidates it, and presents it to the network administrator. This design places all
of the data manipulation tools and most of the human inte-raction on the NMS.
Concentrating the bulk of the work on the manager means that the agent software
is small and easy to implement. Correspondingly, most TCP/IP network equipment
comes with an SNMP management agent. . , , . , ,

SNMP is a request/response protocol. UDP poi:t 161 is its well-known port. SNMP
uses UDP as its transport protocol because it' has · no ne~d ·for the overhead of TCP.
"Reliability" is not required becauJ¢ eac~ request ge~erates a response. If the
SNMP application does not . receive ~ , r~sponse, it' :simp~y re-issues the request.
"Sequencing" is not needed because each request and each response travels as a
single datagram.

Th~< r~quesi,and respo~~e messages that SNMP. ~.ends, in t:he datagra~s are calied
Protocol Data Units (PPU) . . The five PDUs used by SNMP ~ue listecf in Table 11-3.
Thes~ '~essage ·types' allow. th~ ·'manager to ~eq~est . manage~e~t information, and
when a pp~opriate, to · ~odifi that in[ormation.: Jh~ messages ·also allow the agent
to respond to manager requests and to . ~otify the manager of unusual situations.
'=. ·'·· .' ·':

Table 11-3: SNMP Protocol Data Units
J.. ,· (:

PDU .·

· GetRequest
GetNextRequest
GetResponse
SetReques~ ,

Use

Manager requests an update.
Manager requests the next entry in a table.
Agent answers a manager request.

Tra~.

Manager modifies data on the managed device . .
. Agent ai~rts man~ger, of an ~n~~ual event. .

' ; ; ; . · . .. ; . . . ·. . . , .. ! ~·: ·' ' . : ·

\ . i

.. .. ; ·. ~ . .

• : J

The NMS. p~riodically requests: _~he : status of ·each managed,.devke .(GetRequest)
.: ... : : . . . : .: . . :" " . . :~: ~ : : : ! i I • I . • : • . : .· • . • . • ' •

and each agent responds with the status of its device (GetRespo11se) . . ¥aking peri-
odic requests is called polling. Polling redt{ces the burden . on the ' ~gent bec~use
the NMS decides when polls are needed, and the agent simply, responds. Polling
also reduces the burden on the network because· the polls originate from a single
system at a predictable rate. The shortcomirig of. polling is that it does not allow
for real~time updates. If a problem occurs. op. a. x:nanaged device, the manager does
not find out until the agent is polled. Tp , handle this, SNMP uses a modified
. polling system called trap-directed polling.

A trap is an interrupt signaled by a predefihed event. When a'trap event occurs,
the SNMP agent does not wait for the rri~na:ger to poll; instead it imri:iediately
sends information to the manager. Traps allow the agent to inform the manager of
unusual events while allowing the manager to maintain contr()l of polling. SNMP

091

358 Chapter 11: Troubleshooting TCP/IP

traps are sent on UDP port 162. The manager sends polls on port 161 and listens
for traps on port 162. Table 11-4 lists the trap events defined in the RFCs.

Table 11-4: Generic Traps Defined in the RFCs

Trap

coldStart
warmS tart
enterpriseSpecific
authenticationFailure
linkDown
linkUp
egpNeighborLoss

Meaning

Agent restarted; possible configuration changes
Agent reinitialized without configuration changes
An event significant to this hardware or software
Agent received an unauthenticated message
Agent detected a network link failure
Agent detected a network link coming up
The device's EGP neighbor is down

The last three entries in this table show the roots of SNMP in Simple Gateway
Management Protocol (SGMP), which was a tool for tracking the status of network
routers. Routers are generally the only devices that have multiple network links to
keep track of and are the only devices that run Exterior Gateway Protocol (EGP). *
These traps are not significant for most systems.

The most important trap may be the enterpriseSpeciftc trap. The events that signal
this trap are defined differently by every vendor's SNMP agent software. Therefore
it is possible for the trap to be tuned to events that are significant for that system.
SNMP uses the term "enterprise" to refer to something that is privately defined by
a vendor or organization as opposed to something that is globally defined by an
RFC.

SNMP has twice as much jargon as the rest of networking-and that's saying
something! Managed Network Entity, NMS, PDU, trap,' polling, enterprise-that's
just the beginning! 'We also need to mention (below) what SMI is, what a MIB is,

·and what ANS.l is used for. Why this bewildering array of acronyms and buz-
zwords? I think there are two main reasons: · · · ·

• . • Network management covers a wide range of different devices, from repeaters
to mainframe computers. A "vendor-neutral" language is needed to define
terms for.the manufacturers of all of this different equipment ·

• SNMP is based on the Common Management Informat{on Protocol (CMIP) that
was created by the International Standards Organization (ISO). Formal inter­
national standards always spend a lot of time defining terms because it is
important to make terms clear when . they are used by people from many dif­
ferent cultures. who speak many different languages.

* EGP is covered in Chapter 7. ·

092

Simple Network Management Protocol 359

Now that you know why you have to suffer through all of this jargon, let's define
a few more important terms.

The Structure of Management Information (SMI) defines how data sho~ld be pre­
sented in an SNMP environment. The SMI is documented in RFC 1155 and RFC
1065, Structure and Identification ofManagement Information for TCPIIP-based
Internets. The SMI defines how managed objects· are named, the syntax in whiCh
they are defined, and how they are encoded for transmission over the ne~ork.
The SMI is based on previous ISO work. · ·

Each managed object is given a globally unique name called an object identifier.
The object identifier is part of a hierarchical name space that is managed by . the
ISO: . The hierarchical name st~cture 'is used, ju~t· like it is in DNS, to guararitee
that each name is globally unique. In an object identifier, each level of the hierar­
chy is identified by a number.

Objects a~e defim~djust as formally as they are named. The syntaX used to define
managed objects is Abstract S)mtc:lJc Notation One (ASN.1). ASN.1 is ISO Standard
8824, Specification of Abstract Syntcix Notation One (ASN.1). It is a very formal set
of language rules for defining data. It makes the data definition independent of
incompatibilities between systems and character sets. ASN.l also includes a set of
rules for. encoding data for transfer over. a network. These rules are defined in ISO
Standard 8825, Specification of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.l). The Basic Encoding Rules (BER) define that bit 8 of an octet is sent
first, that 2's complement is use~ for signed integers, and other nitty-gritty detaiis
of data t~ansmission. · · · · · · · · ' · · ·

Every object managed by SNMP has a unique object identifier defined by the
ASN.l syntax and encoding definedby BER.When all of these unique objects are
grou'ped tog'~ther, they are called th~ M~n::Zg~;zent Information Base (MIB). The
MiB. r~f~~s to all infonmttio~ 'th~t is. 'than aged . by S~MP. Hu~~ve~, V.,e us~ ally refer
to "a MIB" or "the MIBs" (plural), meaning the individual databa~;'es of manage­
ment information formally defined by an RFC or privately defined by a vendor.

'Mmf and MIBII are standards d~ft~ed by RFcs: · MIBII .. is a superset'of MIBI, and'' is
. ili~ ' standard MIB for monitoring TCP /IP. It pro~ides such information. as i:he rium­
'ber of packets. tra!Ismitt~d into and out of an iriterface,and th~ n~mber of er;o~s
·that occurred ~ending .and receiving th~se · pack~ts--useful inf~rmatlon for sipot­
dng usage tren?s and pote~tial trouble .spots. Every ag~nt supports MIBI or MIBIL

Some systems also provide a private MIB in addition to the standard MIBII. Private
MIBs add to the monitoring capability by providing system-specific information.
Most UNIX systems do not provide private MIBs. Private MIBs are most common
on network hardware like routers, hubs, and switches.

093

360 Cbapter 11: Troubleshooting TCP/IP

No matter what MIBs are provided by the agents, it is the monitoring software that
displays the information for the system administrator. A private MIB won't do you
any good unless your network monitoring software also supports that MIB. For
this reason, most administrators prefer to purchase a monitor from the vendor that
supplies the bulk of their netw~rk equipment. Another possibility is to select a
mo~tor that includes a MIB compiler, which gives you the most flexibility. A MIB
c9mpiler reads in the ASN.l description of a MIB and adds the MIB to the monitor.
A MIB compiler makes the monitor extensible because if you can get the ASN.l
source from the network equipment vendor, you can add the vendor's private MIB
to your monitor. ·

MIB compilers are only part of the advanced features offered by some monitors.
Some of the features offered are:

Network maps
Some monitors automatically draw a map of the network~ Colors are used to
.indicate the state (up, down, etc.) of the devices on the ne~ork~ At a glance,
the network manager sees the overall state of the network

Tabular data displays
Data displayed in · tables or rendered into charts is used to make comparisons
between different devices. Some monitors output data that can then be read
into a standard spreadsheet or graphing program.

Filters
Filters sift the d~ta coming in from the agents in order to detect certai~ . ~ondi­
tions.

Alarms ... '· . . , .. ,, ; . , ,
Ahirms indicate when "thresholds" are exceeded or special events occur. For
example, you rriay want an alarm 'to ' trigger when your ser\re~ exceeds s<Jme
specified number of transmit errors;·, ' ' '' ' '

' . . I . .

Don't be put off by the jargon. All of this detail is necessary to formally define a
network management scheme that is independent of the managed systems, but
you don't need to rriemorize it. You need to know that a MIB is a col.lection of
management information, that an NMS is the network management station, and
that an agent. runs in each managed device in ord~r to make intelligent! decisions
when selecting an SNMP monitor. This information provides that necessary back­
ground. The · features available in network monitors vary ~idely; so does the price.
Select an SNMP monitor that is suitable . for the complexity of your network and
the size of your budget.

094

