
Apple Inc.
APL1109

U.S. Patent No. 8,724,622001

 I.

Paul E» Hath'fiflflrl

“MANNING

Apple Inc.

APLl 109

001 US. Patent No. 8,724,622

002

Illustrated Guide

to HTTP

1%MLSEflHHMON

MANNING

Greenwldl

003

For electronic browsing and ordering of this booit. see hrrpdiwwwbrowsebnokeonrn.

The publisher offers discounts on this book when ordered in quantity. For more

information. please contact:

Special Sales Depsronent
Manning Publications Co.
3 Lewis Street

Greenwich. CT (16330

Fax: {203] filii 3‘313

entail: ordersfi’rrunning—som

@199? by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced. stored in a rerrieral system. or

transmitted. in any Earth or by means elocrronic. mechanical. photocopying. or

otherwise. widtour prior Written permission oFthe publisher.

B Reoogniz'tng the importance oF preserving what has been written. it is

Manning’s policy to have the bot-its ll: publishes printed. on acid-fie: paper, and
we exert our lost oil-ores to that: end.

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. 1iii-"'l'tete those designations appear in the book.
and Manning Publications ms aware an trademark claim, the designations have

been printed in initial caps or all caps.

library of Congress Csnlogingrinrl’uhlieation Data
Hethnton. P111115.

Illustrated guide to HTTP i Paul 5. Hethmon.
p. cm.

Includes bibliographical rel-lenses and index.
ISBN 1-554?7?.3?.fi

l. Hyper-next systems. 1. HTTP [Computer network protocol}
1. Title.

QflfifflHfildH‘iEé 199?
Midi-41:21 9?-159I5

Cil‘

M Manning Publications Co.
3 Lewis Street

Greenwich. CT [5331']

Cupyedimr: MW Mitchell
Typesertet'. Dotod'ty MnIsiECl

Covet duigner: Leslie Haimes

Printed in the United States offimetieo

l23456?3910—CR-—W95939?

003

004

chapter 2
HTTP overview

2.1 Wat is thc World Wide WEI}? 8

2.2 General apemtion 113

2.3 Abitufhismry 12

2.4 HTTPILI 16

2.5 Finishing 24

004

005

CHAP TEE .3 M TTP fl VER VIE ll?

2. 1 “Wm: is the

World Wale Web?

Just what is the World Wide Webi During the last Few years, just about every-

body has defined what it is (and isn't]. I'm not going to add another definition

here, but ifyou are reading this book you should be familiar enough with it. Dis-

regarding any definition, the 1t'llr'orld Wide Web has become one of the most

important information technologies of the nineties.

2.}.1 The client/terrier erode!

From a programmer’s viewpoint, the 1World TlWide T"i"r'F"el:I is the largest clientlI

server sysrem implemented to date. It is made up of innumerable clients and

servers, all exchanging information. In a typical clientiserver system, a propri-

etary client talks to a proprietary server to accomplish some raslr. The taslt might

be a sales order system for a mail order firm, or a data mining systEm for corpo-

rate estecLItives. The Web changes things a hit, malting them more complicated

and simple at the same time. The simple part comes from the open, well-defined

protocols used between the clients and the servers. The complicated part comes

From the loss ofextensive programmeradefined protocols.

let me explain the latter a little more thoroughly. If you were given the taslt

of writing an application to handle order entry, you would typically define the

types oF transactions to occur between your client and server. A typical exchange

might be to look up a description of an item in the catalog. The client would

malte a connection to the server, send a request which might be binary or plain

text, and then would receive the reply which would typically be plain text. The

reply might contain binary data also. such as a picture. lGiven a TCPIIP environ~

ment using sockets. the client would make a connection to a port on which the

server is listening. Then it would send a pacltet of information to the server. In

order to make interpreting the data easier. you might have defined a structure for

request packets that consist of 4 bytes for a numerical request code. The server

then knows to read 4 bytes from the socket and then interpret accordingly.

1"lil'rl‘len the server sends the response to the client, the client knows to expect a

005

006

WHATIE THE WURLLJ WIDE WEB?

certain type of reply. {See Figure 2.1}. In this case, you've defined a header of

4 bytes that contains the length of the description [in plain text}, and the

description immediately follmsrs rhe header. If data follows the description, then

the 4 bytes after it are the length of the binary data, the picture of the item. Once

the binary data lrias been received, the server closes the connection and the trans-
action is finished.

Figure 2.1 Glisnu'aarver
Iransaetlon

in this scenario, you as the programmer, had d‘ut utmost flexibility. 1liou

were able to define the exact messages and the Format of the replies to rhern.

Being able to do this makes your code very efficient. 1tron don't have to interpret

the transactions to any extent. You are able to minimize the amount oF network

traffic you generate and maximize the amoum of data in each Ltansaction. Con-

tinuing on with your application, you can quickly define and implement all of

the transactions your ciient and server need to know For proper response.

Hot a couple oF months down the road, the word comes down from the 15

department that your uiFty clientrlserver application also needs to run under

Window 95 and 05m as well as the Mac ciient you originally wrote. So now

you’ve got to go back and program two nosr clients and have the possibility of

doing more in the Future. It would have been nice to write a single client which

would run on ali oi- the possible operating systems. This is where HTTF comes

into play. Instead of writing clients For every possible operating system, you can

use a Web client such as Netscape Navigator, along with a "Web server, to build

your elieno’server system.

006

007

CHAPTER 2' HTTP GUERVIEW

Routines are a bit dii‘ierenr in the Internet world however. In your original

clienti'server application you had the freedom to define your own messaging

standards. Now, someone else is going to give you the blueprint to work from in

the form of an RFC. As mentioned previously, RFC is short for Request For

Comments. RFCs are the technical documents which describe the protocols in

use on the Internet. HTTP is the protocol used to send and receive messages

between 1illr'eb clients and servers. HTML is the protocol used to create the Web

pages sent as the data resource of the HTTP message. The two are closely related

but distinct. The latest RFCs are on the ICU-ROM accompanying this boolt.

The principal US resposirory for RFCs is held at the Internic. the agency respon-

sible for domain registrations. among other Functions. The Web site is

aw. i net-rerun. not. 1From the main page, follow the prompts to the Directory
and Database Servicm and From mere to the RFC information.

2.2 General operation

HTTP is a request—response type of protocol. The client application sends a

request to the server and then do: server responds to the request. In HTTPHJEI

and H'I'I'Pr" Li], this was generally accomplished by malting a new connection

For each request. HTTP! 1.] introduces persistent connections as the default

behavior. Wild] persistent connections. the client and server maintain the corn

nection. exchanging multiple requests and responses until the connection is

explicitly closed by one. Even with persistent connections. HTTP remains a

stateless prorocoi. No information is retained by the server between requests.

There are three general request—response chains in which HTTP operates.

The first is when a user agent makes a request directly to the origin server as

shown in Figure 2.2 herein. In this scenario, the user agent makes a connection

directly to the origin server on the default port oi: Eifl {unless otherwise specified}

and sends its request. The server will be listening for inooming connections and

start a new thread or process to serve the new request. Once the request has been

worsened, the server sends the reSponse back over the connection.

The second request—response chain involves a proxy or cache agent as an

intermediary. In this scenario, the user agent makes its request to the proxy

It}

007

008

GENERA i'. UPI-IRA TIQN

 Request message

User agent [TGF’ port BI] H'ITF' server | Figure 2.2 finale ellent to server
H'I'I'P operation

instead of to the origin server [See Figure 2.3]. The proxy then makes the rcqucsr

to the origin server on behalf— of the client. The server replies to the proxy, and

then the proxy relays this to the user agent, thus fulfilling the request. This type

operation is mostly seen in Firewali environments where the local 1AM is isolated

from the Internet. J'to alternate on this procedures is for the intermediate agent

to also serve as a caching agent.

When making a request through the cache agent, the cache agent tries to

serve the response From its internal cache of resources. The cache itselisaves any

response it receives, ii' the response is a cachahle one. This shortens the request-

tesponse chain, improves response time, and reduces network load. Most proxy

agents are also caching agents.

The final scenario is one involving an intermediate agent, acting as a tunnel.

A tunnei blindly Funnels requests and responses benveen two HTTP

applications. As shown in Figure 2.4, it is, in essence, providing a path for the

user agent to the server.

A tunnel is diFierenr From a proxy in how it operates. r'i. tunnel is simply a

mechanism via which the user agent sends requests and receives responses From

an origin server. The tunnel itself does nothing to the requests unlike a proxy

Request! Io proxy

Home 2.3 Ellen! to proxy to server H1117 operation

I!

008

009

CHAPTER 2 HTTP OVERVIEW

I Hoouostlooorvor

Ueer agent "

Figure 2.4 Cilantro server via tunnel HTrF operation

which may rewrite certain headers or require authentication from die user before

providing services. A tunnel would be used most often to route HI 1P tralIie
over a non-TCI’IIP link.

Past the three basic request-response chains, anyone can put together any

combination of intermediate agents. It is entirelyr reasonable for a user agent to

send a request to a proxy, which sends it through a tunnel which reaches another

proxy, and finali}r makes it to the origin server. Through all of this, the basic idea

still maintains the request-response paradigm, although it may moire marryr

contortions along the wav. Next, we wiU need to look in depth at the specific

operation oi: HI IP.

23 A bit ofbr'rtmy

Before we delve into HTTPI I .1, a hit of background is in order. In this section

we’ll examine the previous versions oi" H I I P: HTTPffléi and HTTP! I .11

HI [Pf 1-1 is a response to those established previous versions—their strengths

and their shortcomings.

2.3. i HTTPIOfl

The first implementation oF HTTP is now known as HTTPi'flH. The entire

description of that protocol encompasses only a Perv pages. In HTTPIUE. a

I2

009

010

A BIT OF HISTORY

client program makes a connection to the server on TCP port EU. The client

then sends its request in the Following Form:

GET document . html CRLF

The request starts with the word GET. No odier methods are supported. A

space character is then sent, followed by the document name. The document

more may be Fully qualified and is not allowed to have any spaces. To end the

line, the client should send a carriage return line feed combination. The specifi-

cation mentions that servers should be tolerant of clients by only transmitting
the line feed.

One other option is allowed for the document name. The client may send a

search request by appending a question mark, followed by a search term. Multir

pie search terms may be specified by putting a plus sign between each. This type

request should only be generated when the document specified contains the

lSINDEX HTML tag. This allows a request of:

GET doCument.hcm1?he-lp+me CRLP

For the reply, the server returns the contents of the document. There is no

content information, MIME type, or any other information returned to the cli-

ent. The protocol is, in fact, restricted to sending only H'I'ML text documents.

When the document has been sent, the server closes the conneCtion to signify the

end of the document. This is necessary since no length information is exchanged

between the server and client. When sending the document, the server delitnits

each line by an optional carriage return, which is then followed by a mandatory
line feed character.

As can be seen from this description, implementing the HTTP![1.9 protocol

can he done in a few clover: lines of code. The problem, however, was the

limitation it imposed. Only text documents could he served and there was no

method for the client to submit information to the server.

2.3.2 HTTPHfl

The HTTPIIJII protocol was developed From 1992 to 1996. It has only

appeared as an Informational RFC. as recently as May 1996. Before that point,

I3

010

011

CHAPTER 2 HTTP OVERVIEW

I-I'_.["l"P.Ir 1J1 was based on what the major 1Web servers and clients did. Since

RFC 1945 is only an informational RFC, it does not actually specify an official

standard of the Internet. It does. however. describe the common usage of

HTTPH .l} and provides the reference for our server’s later implementation via
the enclosed CD.

H'ITPILD developed From the need to exchange more titan simple text

information. It became a way to build a distributed hypermedia information

system adapted to many needs and purposes. From 1994 to 199?, the Web

developed from a Forum in which cornpurer science departments could showcase

their research into a center where everyone has a Web page. In Fact half of the

television commercials today include a URL. in order for this to happen, HTTP

expanded tremendously from its original specification.

The lirst major change From the HTTPJ'IUS specification was the use oF

MIME—like headers in request messages and in response messages. On the client

side, the request message grew From the one line request to a structured. stable

mulri=line request:

Pu]. l-Roq'uee I: =‘Requoet-rLine

*i General—Header |

Request—Header |
Entity-Header }

CRLF

l Enti.ty-Eody J

Request-Line - Method SP Hequeet-UEI SP HTTP—Version CRLF

The added headers resulted From the need to transmit more information in

the request. For clients, this information included sending preferences for the

type if information desired. This was expressed in terms of MIME media types:
terms such as text Ihtml and imagergif were initiated so clients and servers

could send information each could understand and use. The additional headers

also let clients implement conditional retrievals using the If-Hodifiec‘i-Sinco

header. This header allows the client to request that the resource be returned

only if it has changed since the given date. With this. clients could cache l‘te—

quently requested pages and update them only when necessary, thus saving valur
able time and bandwidth.

Dn dae server side, the server was finally allowed to send back content infor—

mation. along wid'i the resource. In HTTPiflfl, only rhe resource ms sent. 1|With

14

011

012

A BIT OF HISTORY

the expanded response syntax. the server could now tell the client exactly what

type information was in the resource and, finally. substantially send more than
HTML documents:

Full—Response = StatuSeLine

*{ General—Header l
Response-Header |
Entity-Header l

CRLF

l Entity—Body]
Status—Lino -‘ HTTP—Varsion SP Status—Coder SP Reason—Phrase: CRLF

The addition of [he Content-Typo header allowed the server to include the

media type of the resource. Along with the original HTML documents, images

and audio files became popular and commonplace as Forms of information to

present on a 1Web site.

The next HTTP change was the definition of new request methods. Along

with the original GET request. HEAD and POST were now allowed. The HEAD

request allows a client application to request a resource and receive all of the

information about the resource without actually receiving the resource. This had

uses for Web robots and spiders, which traverse links to gather update informae

tion and detect broken links. The Poor method is what brought real interactivity

to the Web. Now clients had a way to send substantial information to a server

for processing. The GET method had been used at first as a way to transmit infor—

mation to a server, but was limited by the amount of information a server would

accept as part of the requoatrURI.* Now with POST, virtually unlimited entity

bodies could be sent in a request message. W’ith this. came the use of the Web

for inputting information: order forms, surveys, and requests could be made

From a Web page.

Servers also gathered the ability to respond with a status code to the client's

requesr. The infamous sot Not Found status code oould now be sent whenever

the resource was not present. Beyond this. the server could also respond with

too to indicate a general success response, sea to indieare a resource had moved

temporarily to a different location, ear to indicate authorization was required.

or 5W to indicate a general server error while trying to fulfill the request.

' Uniform Resource Identifiers {Lillie} are ouverod in Chapter 3.

15

012

013

CHAPTER .2 HTTP OVERVIEW

The 4le Unauthorized status code leads us into the final point to make

about HTTPHJ]. It introduced the idea oF restricted access to resources. A

server could require a client to supply a username and password before returning
certain resources. The idea of basic authentication allowed someone tn build a

Web site with private information. Information could be restricted to a certain

person or group of people. This also allowed a Web site to track a person

throughout his visit. This ability permits a site to create a shopping cart for a user

to track the items he wishes to purchase through multiple pages. At the end of

the visit, the server can supply the complete list of items the user has selected.

lGiven the stateless nature of HTTP, this allows commerce to flourish much easr

let on the Web.

From these enhancements to the protocol, HTTP developed From a simple

information retrieval system into a general purpose transaction system capable of

building quite complex systems with standard applications across multiple plate

Forms. 15With this success came problems. Users demanded Faster loading orw

pages, which led to clients malting multiple con nections to a single server. The

higher number of connections led to bandwidth and server overload at times.

Problems also appeared as more vanity servers appeared on the Internet. Servers

which host multiple virtual domains on a single machine required a unique IP

address For each virtual domain to identify each to the software. This has caused

the finite supply of IP addresses to dwindle just a bit faster. Problems also arose

as caching agents were introduced. Servers did not have a good way to specify

what could and could not be safely cached. which led many sites to use catcher

busting techniques, which prohibit a cache agent From being able to cache a para

ticular response. Throughout 1995 and 1996. the IETFJ’HTTP Working Stoop

worlted to develop HTTP! 1.1 to build upon H']TP.I"1.U, improve HI I I’ls gen—

eral capabilities, and fist some of the problems which had appeared.

2.4 HTTP/1.1

In operation, HTTPHJ closely resembles H'I—TPJ'lfl. It still consists of the

request—response paradigm and is highly compatible with H] [PHD

id

013

014

HTTPHJ

applications. There are seven areas we’ll discuss here about how HTTP.Ir 1.1 dif-
fers From HTTP! 1.1.}:

*I New request methods

- Persistent connections

' Chunked encoding

' Byte range operations

* Content negotiation

. Digesr Authentication

* Caching

2. 4. I New request method:

The H'l"l'l’ 1.1 specification has defined two new methods which are higth

beneficial to the end user: PFJ'T' and DELETE. The L-‘U'I' method allows a user agent

to request a server to aeoept a resource and store it as the request-URI given by

the client. This method allows a user agent to update or create a new resource on

a server. in use. an HTML editor might implement this as a way for the user to

maintain pages on a Web site. The user could create the pages and have them

automatically updated by the editor. Notice that this behavior is difFerent From

the previoust available POST method. Using POST, the u5er agent was requesting

the resource identified by the request-URI to accept the eotiwr sent by the client.

In essence. it was viewed as subordinate to the requestFUlU. The PUT method is

aslting the server to accept the entity as the request-URI. Another use of this

method might include implementing an HTTP based revision control system.

The DELETE method is selfreitplanatorv: the user agent is requesting that the

request—URI be removed from the server. Along with PUT. there is now a stan—

dard method to implement Web based editing. The protocol specification spe—

cifically allows the server to defer die actual deletion of a resource when it

receives a request. It should move the resource to a nonaccessible location how-

ever. This relaxation allows a server to save deleted resources in a safe place for

review before final deletion and should probably be implemented in this way by

I?

014

015

CHAPTER 2 HTTP UVERWEW

any server. Both the DELETE and PUT methods allow a user agent to create,

replace. and delete resources on a server. Because of this, access to both methods

should be controlled in some manner, either using IP address based restrictions

or via one of the authentication methods within HTTP.

The DPTIoNS method is used to query a server about the capabilities of a

specific resource or about the server in general. A user agent can trial-u: an

oP'I'IorrE-s request against a specific recource to find out which methods the server

supports when accessing the resource. The response returned by the server

should include an}.r communications related information about the resource.

Typical information in the response would include an Pillow header listing the

supported methods when requesting the resource. A user agent may also make a

general OPTIONS request of the server and receive the same information as it

applies to the server as a whole.

The final method added, TRACE, is used For debugging purposes at the appli—

cation level. A client program can use the method to have its original request

echoed back to it. Using this information. the client can debug problems which

might occur to an origin server when several intermediate agents handle its

request. In use, an HTTP traceroute can be accomplished by letting the request

advance one server at a time, checking the response back from each.

2.4.2 Persistent connections

As mentioned a bit earlier, in the quest for User satisfaction, Web browsers began

making multiple connections to origin servers in order to speed up response

times. Unfortunately, this led to some major congestion since a few clients could

quickly bog down a slow linlt. The practice also suffered from the inherit mecha-

nisms of making TC];II connections where serup time can usurp a good portion of

the total connection cycle. Starting with l-I".l"".l"PrIlr 1. l, the protocol implements, as

a default behavior, the practice of persistent connections. This means that once a

client and server open a connection, the connection remains open until one or

the other specifically requests that it he closed. While open, the client can send

multiple, but separate, requests and. the server can respond to them in order. Clie

cots are also free to send multiple requests without waiting for the responses1

i3

015

016

HTTFHJ

basically pipelining the requests. In practice. a client might do this when

requesting all of the graphic images From a particular page. It can also make the

requests for the images. one after the other. and then finally listen for the

responses finm the server. Implemented well. response time to the users will be

high. without the inefficiencies of individual requests.

2.4.3 Cbnnhed encoding

Dnc problem arises For servers when persistent connections become the default

behavior: they must now return a proper Concetta-Length header with each

response. Previously. servers could signify the end of the entity body by simply

closing the connection. With persistent connections. the server can no longer do

this and must be able to determine the length of any entity it sends to the client.

For most resources. this is not a problem. The length of H"1'ML. and image files

can be determined throufit the operating system. Where trouble arises is in

dynamically generated responses.

Fortunately, HTTP! 1.1 also provides a solution: chanced encoding. Using

chunked encoding. a server or CGI ptoCess can send back an entity body of

unknown initial length by sending it back in chunks of known length. We'll dis“

cuss the details in a later chapter. but Figure 2.5 shows the basic format.

As shown. the server sends the site of the upcoming chunl-t in bytes and then

the actual chunk ofdata. This is repeated until all the data is sent. Once all of the

data is sent. a Final siae oft] is sent. indicating the end of the data. Following this.

the server may optionally send Footers. or header fields which are allowed to be

sent after the entityr hotly. With this method. it becomes easy for a server to send

dynamically generated data and easy For the client to decode it.

Figure 2.5 Chunltetl encoding
Ifil’fflfll

I9

016

017

CHAPTER .i.’ HTTP OVERVIEW

2.4.4 Byte range operations

Another optimization and convenience introduced is bye tongs operations. I'm

sure almost everyone has experienced trying to download the latest beta software

from a favorite vendor. only to have the connection fail with Iflfl bytes to go

[not of 5 MB, ofentIrSe}. At that point, download is attempted again, hoping for

the best. Now. the user agent can just ask for the last ll'll'i bytes of the resource

instead of asking fiat the entire resource again. This can improve both the mood

and response time. When requesting a byte range, a client makes a request as

norrnal. but includes a Range header specifying the byte range the resource is to

return. The client may also specify multiple byte ranges within a single request if

it so desires. in this case. the server returns the resource as a multipartr

byternngen media type.

The use of byte ranges is not limited to recovery of failed transfers. Certain

clients may wish to limit the number of bytes downloaded prior to committing a

full request. A client with limited memory, disk space, or bandwidth can request

the first sn-many bytes of a resource to let the user decide whether to finish the

download. Servers are not required to implement byte range operations, but it is

a recommended part of the protocol.

2.4.5 Content negotiation

There are times when a server may hold several different representations ofa sin—

gle resource in order tn serve clients hetter. The alternate representations may be

national language versions of a page or a resource which is available. both in its

regular media type and as a gtiped version. In order to provide to the client the

best representation. eontent negotiation may be performed. This can take the

form of server-driven, agent—driven. or transparent negotiation.

The first form, retreat-drifter! negotirrtr'err, is performed on the origin server,

based on the client’s request. The server will inspect the various Accept-*

headers a Client may find and. using this information plus other optional infnr~

mation, send the best response to the client. This allows the client to send

Accept, Aenept—Chareet, Accept-Language, or any combination of the

Accent—Ii headers, stating their preference for responses. 1'illi’l'usn servers perform

20

017

018

HTTPHJ

this negotiation. they must then send a Vary header to the client stating over

which parameters the server chose the particular resource. The very header is

required to he returned in order to provide caches with enough information to

properly determine which Future requests may be satisfied by the response.

The second form of content negoriation is agmradrr'rien. in this approach,

the server provides to the user agent the inFonnation needed to pick the heat rep-

resentation of the resource. This may come in the Form oi: the optional

a1 tarna toss header or in the entity body to the initial response. The

Alternates header is mentioned in the appendices to the HTTP protocols, but

the ease: definition will he provided in a later specification thereto. Using either

approach allows the server to provide a list oFchoices to the user agent. The user

agent may then automatically. or with user input, pick the heir representation.

The Iinal form is called transparent negotiation. In transparent negotiation.

an intermediate cache provides serverudriven negotiation. based on the agents
driven information From the server. In more concrete terms, the cache has the

agent-driven negotiation information from the server For a particular resource

with multiple representations. Assuming the cache understands all of the ways in

which the representations vary, it may pick the best response when a client

request is received. This allows an off-loading of server duries onto cache agents

and improves response time to clients while providing accurate responses.

.2. st. 6 Digest Anrbsnnicerisn

Digest Authentication is included in l-l"l"'l"l='aIr l .l as a replacement for Basic

Authentication. Basic Authentication suffers From the problem of passing the

user's password in clear text across the nenvorl-t. With Digest Audrenticationt the

password is kept as a shared secret between the client and server. The server and

client compote a digest value. using the MD? [Message Digest 5} algorithm

over a concatenation of the secret password and a few other values. This digest is

then sent acroSs the network. Since only the client and Server know the secret

password, the client can compute the digest value, send it to the serverl and then

the server can verify it against the information it holds. Since no one else knows

' MDE is detailed in RFCIJZL

2!

018

019

CHAP TEE 2 H TTF U YER VIEW

the secret password, authenticity is more secure. This algorithm is similar to the

POP?) protocol’s APO? method ofauthentication.

Digest fluthentication is still only a reasonably secure method, however. it

still requires an outside mode oF exchanging the pastord heoveen clients and

servers. Digest J'tuthentication, therefore, is meant solely as a replacement For
Basic Aurhentication.

2. 4.7 Catching

The caching model in HTTPHJ allows the server a great deal oF control over

the caching of responses. First. the specification makes it clear what is cachable

and what is not. Generally speaking. only GET or HEAD responses are sachables.

responses to any other method must be explicitly marked as cachahle by the

server. The protocol uses the Cache-Control header to transmit caching
instructions from servers and clients to caches.

For servers, the cache control directives can he segregated into five groups:

what is eachabie. what is not cachable, how old it can be. donit serw: anything

past its age, and don't transform. in the first group- are directives which allow an

origin server to explicitly mark something as cachable when it normally would

not be. This can be used to allow caching oFanthenticated responses or responses

to Peer requests. An example ofa cachet-1e Peat request might be the results of

a search engine on a Web site. Under many circumstances. the results From a

search would remain valid For several hours or even a flow days. If the response is

cachable and serves one other client request, the server has oiT—loaded some work

onto cache agents.

The what is not cachable group oFdirectives include the no-eaehe and no—

ucore direcrives. Basically. these directives instruct the cache agents to never

save a response which includes the directive. The too—cache applies to responses

only, while the ne—aeoro applies to both the request and response messages.

The no-s tore directive can be thought of as the stronger. It instructs caches to

remove the requestfresponse Frorn volatile storage {i.e.. memory] as soon as pos-

sible and to never store it in nonvolatile storage (Le... hard disk}.

A server who wishes to control how long a response may be cached will use
the max-age- directive. This directive sets a time limit from when it is served to

.132

019

020

HTTPHJ

when the response is considered stale. A client may still request a cache return of

a response. even though it has become stale. In these situations. the server can

inciude a direcrive from the don"t serve anything past its age group. These direcr

tives finuet-rovelidote and. proxy-rovelida’co} instruct a cache to tIEvali-

clate a response with the origin server to malte certain it is still valid. If the

response is not valid. the server will normally supply a fresh response; if the

server cannot be contacted to tevaliclate the response, then the cache will rerurn

an error to the requesting client.

The final category of directives is the don”t transform group. The directive

here is called nor—transform. Its fimction is to prevent an intermediate agent

from transforming a response in any way. The typical example would be a server

sending our medical images. Given the nature oF medical images. the content

audtots wish to maintain the images in their original formats, perhaps TIFF. An

intermediate agent may normally wish to transform all images into JPEG format

because of the space savings on disk and in handwiddi. This would result in a

loss oF information which is unacceptable in the given contest. hen-.2: the
rte-trons form directive.

The client agents also gain some control in H'ITI’HJ over the responses
that caches serve to them. The directives can be broken down into three basic

groups: not cachable. how old can it be. and don’t maltc a new request. The not

cachable group uses the no—coche and no—atoro directives as do the servers.

Here. the meaning is slightly different. Wl‘ien a client requests no-eaehe or

no—atora, it is instructing the cache agent to not send any responses it may have

stored, but instead to make a new request to the origin server. It also instructs the

cache agent to not cache me response From the server.

In the how old can it be group. the cache control directives permit an agent

to control the age oFa response which a server returns to it. It can specify this by

the age of" the response {how long has it been since the Origin server generated it],

by specifying how stale it can be {how long past its age is permissible}. or by spec-

ifying how much longer the response must be Fresh [how iong until it becomes

stale}. Using these directives, or combinations of them' the client can controi

whether the response comes from the cache or From the origin server. if a client

wishes to receive a response which is no more than five minutes old and no more

than two minutes stale, it may specify a max-agysrm and max-ota1o=12fl in

23

020

021

CHAPTER 2 HTTP OVERVIEW

its request message (values are expreetecl in sec-ands). IF the client wishes to force

the cache to revalidatc a tcspense, it can specify max-agefll. This Fetccs the

cache to mlidate the response with the origin server.

The lam directive. nnly-if-cached, Farms fl'ic clnn't make :1 new requeSt

group. This directive can be used in a request to have the cache only return a

response if it alreadyr exisrs in the cache. If the response dues net entice then the

client agent will receive a 5M Gateway Timeout. error.

2.5 Finishing

This chapter has provided a broad overview cf what cennitutcs HTTP, and in

particular. HI 1P! 1.1. In due next chapter, we will cover syntax and semantics

specific to HTTP“ .1

.34

021

022

chapt6?“ 3

Basic HTTP—{yntax
and Semantics

3.1 TCEminfllflg}? 26

3.2 Prumculsyntax 31

3.3 The. basic grammar 33

3.4 Basic HTTP concepts 34

3.5 Finishing 52

3,5

022

023

CHAPTER 3 BASIC HTTP—SYNTAX AND EEMANTICE

In order to understand HTTP, you first need an understanding of the terminol-

ogy used in the protocol specification. As with most interact protocols, there

exists a plethora of terms and definitions unique to H I I P. In this chapter, we’ll

discuss the basics. Many oFthme terms are presented verbatim From the protocol.

Given the need For precision here, it seems best to present a restatement from the

protocol and then expand upon it if necessary, hence this is the approach taken.

We'll start by going over some terminology. Words which have a particular

meaning within the protocol may not be the first meaning you would assign to

the word. Nest, we'll go over some of the basic grammar constructs used in the

protocol. This will cover items which are not protocol-specific, but are necessary

in order to build up to the protect-1's specific terms. Finally, we'll cover some

basic concepts of HTTP, including factors such as byte ranges and entity tags.

This chapter should give you a basis for better underStanding of the succeeding

Chapters 4. 5, and ti.

3. J Temiflelogy

The HTTP protocol defines many terms precisely. We’ll restate those definitions

here, enclosed in quotes, and discuss them further as needed. The first three

terms are not technical terms, but instead are those which describe the various

requirements oF the protocol. Certain parts of the protocol are required to be

implemented in an application in order For the application to be compliant,

while other requirements are only recommended or optional. The protocol uses

specific words to denote the different meanings:

Must “This word most or the adjective required: means that the item is an

absolute requirement of the specification.”

To qualify as a compliant, an HTTP.“ l .1 application must satisfyr all parts of

the protocol which are described with man or required For a general purpose cli-

ent or server, compliance can be considered mandatory. All parts of the protocol

would be implemented. For a limitedruse client or server, perhaps compliance

should be embedded into an application, but then only a limited set of

26

023

024

TERMINOLUGF

requirements might be implemented. The application would thus not be com-

pliant but instead would use a subset of Hi 1 Pl I .l to accomplish its task.

Showed The word should "or the adjective recommended. means that there may

exist valid reasons. in particular circumstances, to ignore this item, but the Full

implications should he understood. and the ease carefully weighed before choos-

ing an alternative course.”

To be unconditionally compliant with HTTP:Ir 1.1, an application must

implement all of the shouldrequirements. If it does not, then it can only be con-

ditionally compliant. Generally speaking. an all purpose HTTP client or server

will implement the requirements of this category. The wording. however, gives

flexibility to those programmers implementing special purpose applications of

the HTTP protocol.

An example oFa should requirement which might not be implemented is

accEpting unbounded URI lengths in requests From clients. The protocol recom+

mends that an application be able to handle arbitrary and unbounded length

URI strings. In practice. if one were to implement a source code version control

system using HTTP. then an upper bound could he placed on the URI length,

given limitations within the server's filesystem on the maximum path length. If

the local filesystern only supports path lengths to 512 characters, then the HTTP

server could reasonablyr expect to not see URLs above this length.

May The word may “or the adjective optional means that this item is truly

optional. One vendor may choose to include the item because a particular mar-

ketplace requires it, or because it enhances the product—for example. another

vendor may omit the same item."

A good example of an optional behavior is the handling oF the Hoar. field in

a HTTPILI style multihomed server. IF a server is not multihomed, then the

Value of due Hoar: field will not matter in determining with which resource to

respond. Only the URI sent will be significant. A multihomed server. however,
will need to determine resources based on the URI and the Heat field.

Therefore. the Following terms are technical in nature with precise meanings

within the protocol.

27

024

025

CHAPTER 5 BASIC HTTP—SYNTAX AND SEMANTIL‘H

Age "The age of a response involves the time since it was sent by. or success-
fully validated with. the origin server.”

Cerise Cache is defined as “a program’s local store of response messages and

the subsystem that controls its message storage, retrieval. and deletion. A cache

stores cachahle responses in order to reduce the response time and network

bandwidth consumption on Future, equivalent requests. Any client or server may

include a cache, although a cache cannot be used by a server that is routinely acts

ing as a tunnel."

Girlfriend- "A response is cachable il'a cache is allowed to store a copy of the

response message for use in answering subsequent requests. The rules For deter-

mining the eachability of HTTP responses are defined in Section 13 {of the pro-

tocol.) Even if a resource is cachable. there may be additional constraints on

whether a cache can use the cached copy for a particular request."

Client A client consists of “a program that establishes connecrions For the pur-

pose of sending requests."

Connection A connection is "a transport layer virtual circuit established

between two programs For the purpose of communication."

Content negotiation Content negotiation encompasses Nthe mechanism For

selecting the appropriate representation when senticing a request. as described in

Section 12 {of the protocol.) The representation of entities in any response can

be negotiated (including error responsesl.”

Ens-fig.- An entity is “the information transferred as the payload ofa request or

response. An entity consists of metainformation in the Form of entity-header

fields and content in the Form of an entity-hotly. as described in Section T" [of

the protocol}.

Explicit expiration rinse Explicit expiration time denotes "the time at which

the origin server intends that an entity should no longer be returned by a cache
without Further validation.”

23

025

026

TERMINOLOGY

First-head “A response is first—hand if it comes directly and without unneces-

sary delay from the origin server. perhaps via one or more proxies. A response is

also first-hand iFits validity has just been checked directly with the origin server."

Fresh "A response is Fresh if its age has not yet exceeded its freshness lifetime.”

Freshness {Wrists Freshness lifetime involves “the length of time between the

generation of a response and its expiration time."

Gateway A gateway is “a server that acts as an intermediary For some other

server. Unlike a proxy. a gateway receives requests as if it were dae origin server

for the requested resource; the requesting client may not be aware that it is com-

municating with a gateway.”

Hero-isn't“ respiration rims Heuristic expiration time is ”an expiration time

assigned by a cache when no explicit expiration time is available.”

Message A message is “the basic unit of HI 1P communication, consisting ofa

structured sequence of octets matching the syntax defined in Section 4 of the

protocol and transmitted via the connection.”

Origin server An origin server is “the server on which a given resource resides
or is to be created."

Proxy Proxy is "an intermediary program which acts as both a server and a di-

ent for the purpose of making requests on behalf of other clients. Reouests are

serviced internally, or by passing them on. with possible translation, to other

servers. A proxy must routinely implement both the client and server require-

ments of this specification.”

Representation Representation embodies “an entity included with a response

that is subject to content negotiation, as described in Section 12 [of the proto-

col). There mayr exist multiple representations associated with a particular

response status.“

2.9

026

027

CHAPTER 3 EASE-LT HTTP—SYNTAXAND SEMANTICE

Request Requesr implies "an HTTP request message. as defined in Section 5"

of the protocol.

Resource A resource is "a nennorlt data object or service that can be identified

by a URL as defined in Section 3.2 {of the protocol]. Resources may be available

in multiple representations leg. multiple languages. data formats. size. resolu-

tions] or vary in other ways."

Rename Response embodies “an HTTP response message. as defined in

Section 5” of the protocol.

Semenrrcdfiy transparent "A cache behaves in a semantically tress-meme man—

ner. with respect to a particular response. when its use affects neither the request-

ing client nor the orign server. except to improve performance. When a cache is

semantically transparent. the client receives exactly the same response (except for

hop-by—hop headers} that it; would have received had its request been handled

directly by the origin server.”

Set-trier A server constimtes “an application program that accepts connections

in order to service requests by sending back responses. Any given program may

be capable of being both a client and a server: our use of these terms refers only

to the role being performed by the program for a particular connection. rather

than to the program's capabilities in general. Likewise. any server may act as an

origin server. proxy. gateway, or tunnel. switching behavior based on the nature

of each request."

Stole “A response is stale if its age has passed its Freshness lifetime."

Tunnel A tunnel is “an intermediary program which is acting as a blind relay

between two connections. Once active. a tunnel is not considered a party to the

HI [F communication. although the tunnel may have been initiated by an

HI I 1“ request. The tunnel ceases to exist when both ends of the relayed connec‘

tions are closed."

.39

027

028

PROTOCOL SYNTAX

User agent “The client which initiates a request. These are often browsers, otliw

tors, spiders [Web—traversing robots), or other end-user tools."

Wanderer A validator is "a protocol element {i.e., an entity tag or a

Last-Modified time} that is used to determine whether a cache entry is an

equivalent copy of an entity.”

Variant “A resource may have one, or more than one, representation{s] associ-

ated with it at any given instant. Each of these representations is termed a sari-

unr. Use oF the term variant does not necessarily imply that the resource is

subject to content negotiation.“

3.2 Protocol syntax

As in many RFCs, the HTTP! 1.1 protocol uses an augmented Backus-Nam

Form [BNF] first Found in RFC 332. The onset usage of this Format has varied

From protocol to protocol, so it is worth specifying exactly what is meant within
the H l I P document.

First we have the basic definitions:

name = definition The name of a rule is simply the name itself {without any

enclosing "s" and ":-"} and is separated From its definition by the equal "=” char-

acter. white space is only significant in that indentation of continuation lines is

used to indicate a rule definition that spans more than one line. Certain basic

rules are in uppercase, such as SP, Lisa, HT, CRLF, DIGIT, ALPHA. etc. Angle

brackets are used within definitions whenever their presence will facilitate disv

cerning the use of rule names.

"Efrem!" Quotation marks surround literal text. Unless stated otherwise, the

text is case insensitive.

3!

028

029

CHAPTER :3 BASIC HTTPnEFNTAX AND SEMIINTIL‘S

rule! I miss? Elements separated by a bar “ l“ are alternatives. i.e., yes | no

will accept yes or no.

(mid mIeQJ Elements enclosed in parentheses are treated as a single element.

Thus, [elem [foo | bar} elem} allows the token sequences elem foo elem
anti elem bar elem.

“rule The ehsraetet “*" preceding an element indicates repetition. The Full

form is ens-*emaeleraent indicating at least en:- and at most em:- occurrences of

element. Default values are D and infinity so that * [element] allows any num-

ber, including i]; 1*alament requires at least one; and 1*ae1asnsnt allows one
or two.

{mile} Square brackets eneiose optional elements; [fee bar] is equivalent to
*lifoo bar].

N ml: Specific repetition: «ens- Enlistment} is equivalent to entr'enr- {element} :

that is, exacrly en:- occurrences oF :elementi . Thus anIoIT is a two-digit number,

and EALPI-ta. is a string of three alphabetic diameters.

#rnic A construct “a“ is defined, similar to “t". for defining lists of elements.

The full Form is enssemselement indicating at least en:- and at most era:- ele-

ments, each separated by one or more commas K", ") and optional linear white

space {Lats}. This makes the usual form of' lists VET]! easy; a rule such as i "*st
element *r *LWS *, .. *st element 11 can be shown as 1#eleruent.%er-

ever this eonstmcr is used. null elements are allowed, but do not contribute to

the count of elements present, that is, {element} , , ielementl is permitted.

but counts as only two elements. Therefore, where at least one element is

required. at least one non-null element must be present. Default values are '3 and

infinity so that #element allows an}.Ir number, including zero; Helen-ant

requires at least one; and l#2e1emenc allows one or mo.

comment A semicolon. set off some distance to the right of rule text, starts a

comment that continues to the end of line. This is a simple way of including use-

fizl notes in parallel with the specifications.

5.?

029

030

I?fErflA5!C'GRAfldfl£AR

implied “55% The grammar described by this Specification is word—based.

Except where noted otherwise. linear white space [Li-rs} can be included bemeen

any two adjacent words {token or quoted-string}. and between adjacent tokens

and tie-limiters {especialeL without changing the interpretation of a field. AI:

least one delimiter {tsp-serials] must exist between an}r two tokens, since they

would otherwise he interprered as a single token.

3.3 The basic grammar

Throughout the HTTP protocol, the grammar presented makes use of several

basic constructs. These define functions such as what a carriage return or space

character is exactly. The basic construcrs are predicated on the LIE-ASCII coded

character set as defined by ANSI Kid-1936, as Follows:

DC'I‘ET 1 (any 3-bit sequence of data:-

CHAR = can? US—ASCII character {octets U ~ 12?};

UPALPHA = deny USeABCII uppercafie letter "A“.."Z“5
LDALPl-Ifi E can); [IS—ASCII lowercase: lattar 'a'.."a"}

acres = earner-Ia | Lessons
more: = eany us-ascII digit. urn-s":-

CTL : cany US-ASCII control character

{octets fl - 31} and DEL {127}:

CE = ens—ascrr CR, carriaga return {13}:

LP = <US-ASCII LP. linefEEd i1015

SP = eUSehE-CII SP, alpaca {32}!
HT = cos-ascrr HT. horizontal-tab {91:-

' = (us-ASCII double—quote mark {34}:
CRLF 2 CR LP

LHS B [CELF] 1*i 5? I HT l
TEXT = {any DC'T'ET except CTLEIIhut including LWS}

HE}:- = MAI I «BI- I Inc-u I IDIII I IBII I «Fu- I Ha.“ I

“b" I "c” I "d" | “a" I 'E' I DIGIT
token = weary CHAR except CTLs or tspeeialss

capacials = 'I' | 'l' I '{T' I n}:- I was i a“. l .:.|
u:|- I 11."- I c-:_ I Milli-I 1 III I l]|l I l?l I I=l I

"i”l“]'I5PIHT

comment = 'i' ‘{ ctext | comment i "l"
ctaxt eany TExT excluding 'i' and '}“>

quoted-string { e”: 'tthaxej e“: 1

33

030

031

CHAPTER 5 BASIC HTTP—SYNTAX AND REMANTICS

noteatt = carry TEXT except: e-s-s

qutatadwpair = "I." CI-LRR

3.1! Basic HTTP concepts

Last to be discucted are basic H I [P concepts. These ideas are used in the proto-

col although they do not stand on their own as distinct requests or responses.

Instead they are used by the actual protocol messages to convey certain mean—

ings. An example of this would be giving the HTTP version number such as

HTTP!1.1. An application does not use this standalone, but instead includes it

as part of either a request or response line to convey the HTTP version as used

by the application.

3.5!. I HTTP version

Each HTTP request and response includes a version number to indicate the pro-

tocol version supported by the sender. This version number is not necessarily the

version number of the particular request or response but is instead the version

number supported by the sender. This allows a HTTP! 1.1 client to send a

request labeled H'PTPH . 1 to a server without knowing whether or not the server

supports HTTP!1.1 features. The request in this example may only include

HTTP!I.I‘J features. The server. howmr. can interpret the request as coming

From an HTTP!1.1 compliant application and return a response which uses the

capabilities of HTTP! 1.1.

Similarly. upon receiving an HTTP! 1 .0 request from a client, an HTTP! 1.1

server may remtn the HTTP! 1.1 version within the response. so long as the

response itself is compliant with the HTTP! 1.0 specification. This allows the

Server to inform the client of the 1.1 capabilities oi: the server. In effeet, the

HTTP version is an upper limit on the capabilities of the sender. not an indica-

tion of the content of the message. An application which does not wish to receive

H H 11'! 1.1 messages should never send an H! H’ version oF L]. It should

restrict itself to HTTP! 1 .i}, even if it understands some parts of HTTP! 1.1.

34'

031

032

BASIC HTTP CONCEPTS

For proxy applications. a special word oFcaution here: since the HTTP ver-

sion indicates the version of the sender {which is the proxy}. the proxy may he

Forced to downgrade a request or response when it does not understand the level

Indicated. An HTTP” .] compliant proxy, upon receiving an I-i'iTPt‘LZ

request. must downgrade the version number of the request to I-I"1"Tl"iIr 1.1. The

danger here to the proxy application is that it may need to modify header fields

when downgrading the request. Some oi: the modifications may not be permitted

by the protocol. As an alternate, the proxy can respond with an error message or

EWitch to tunnel behavior to handle the request.

Grammatically, the HTTP version is defined to he:

HTTP-Version = "HTTP" “a" I‘DIGIT ".‘ l'DIGIT

The first number in the version is considered the major version number.

This number is incremented whenever the Format of messages within the proto—

col change. This would be For a change such as moving From the current RFC

332 style headers to a binary header Format. The second number in the version is
the minor version number. This number is incremented for extensions to the

protocol which extend the capabilities without altering the message format. An

example of this would be when the additional header fields in the 1.] specifica—

tion are not present in the LEI specification. The general format of the headers is

still the same. although additional capabilities have been defined.

1ifou should also note that because of this definition, the major and minor

version numbers are treated independently. A version number of HTTPi'1.5 is
lower than HTTP! 1.12. Likewise. a version number of HTTPHJZ is lower

than a version number oi: HTTPHH. Applications must treat the major and

minor numbers separately when determining the overall version.

:1 4.2 Unrfiarm Remorse Identifiers

Uniform Resource Identifiers {URI} are used in HTTP to identify a particular

resource available via the HI IP protocol. Many terms are used interchangeably

in this respect: Uniform Resource Locators, Uniform Resource Names,

Universal Document identifiers. and. simply W or Web addresses. 1Within

35

032

033

CHAPTER 3 MEIC HTTP—SYNTAX AND SEMANTICS

the HTTP protocol, the}Ir define how a HTTP ciient requests a resouroe and. how

a H l I P server interprets the request. This use does not exreud to how a URI is

used. within an HTML document, oni}F to what the HTTP application does with

it, once it is removed from the document.

The current {as of this writing) definitions of URI syntax and semantics are

in RFC H.723 and RFC IEDB. The syntax presented in the HTTP protocol is

actually a superset of what is presented in RFC 17"33. HTTP allows national

charaeters beyond RFC NEE, hence an HTTP application should he carefiri to

implement the syntax presented in HTTP, not just what is presented in

RFC 1133 and RFC 139:3. You. should also be aware of work being done to

update the URI standards and should cheek the RFC and Internet Draft archives

For the latest standards and proposais.

The syntax for HTTP URls is given by:

URI I 'i absoluteURI I ralativreURI J [“H" fragment]

abeoluteU'RI = scheme I':' ‘i uoher I reserved }

reletiveURI = nee_path | abSJath I reljath
netfith = "f!’ net_lne l aheJIat'I-i I

inhalant}: e '3' rel_pat:h

rel_pat}:i a {path} [“:' parents] [“a" query]

path : fsegrnent *t '3‘" segment i

faeqrnent - l'pchar

segment = "poher

parents = perm *i ”s“ perm}

pirate. = '{ pchar I “I" J

scheme = 1*r ALPHA | DIGIT [*+' 1 "-- :-

net_le:—t: = *i pehar I ';" | "'2' :I

query : *i uehar | reserved 11

fragment n *i uehar | reserved i
other : uohar I ":' I *E' | “a" I ”2" I *+"

richer = meeervedl I escape

unreserved = ALPHA | more [eete | Extra | national
escape = *e- HEX HEX

reserved a ";' | 'r' I '2” | '1' | 'E' | “a" I '=" I '+*
extra : H!l I Iil I III: I III I III I I'l-

eafe - "$' I '-" l '_" I ".'

unsafe = :11. | SP | -e":- | '11” | 't' | 'e“ I "a.“
national = tan}? GCTET excluding ALPHA. DIGIT.

reserved, extra. safe. and unsafe:-

httpuU'RL = ‘http:' 'H' heet I ':' port I [eheJath]

heat = an legal Internet. heat. tinnein name

36

033

034

HA SIC HTTP CONCEPTS

or IP address tin dottodvdocimol form].

as defined by Section 2.1 of RFC 1123:-
port. - *DIGIT

As indicated by the grammar, HTTP does not place limits on the length ofa

URI. However, applications should be aware that tartan},r (especially older) appli—

cations ma],r restrict the length of a URI which is accepted. A. limit of 255 octets

is common. Server applications must be able to handle URIs oi'any resource they

serve. IF a resource is identified by a URI of 2.900 octets. then the server must be

able to accept it in a request from a client. Similarly. ifa server accepts GET based

Forms. then it should be able to handle arbitraryr length URIs which such forms

might generate.

1ii'i'henever an HTTP application needs to know whether or not two URJs

are equal, then the application must do a comparison. Comparisons of URIs are
done with six rules:

* Comparisons are case sensitive and done onet—bymctet except as noted.

' A port which is empty. or not given} is equivalent to the default port for
that URI.

' Comparisons of hostnarnes are case insensitive.

' Comparisons ofscheme names are case insensitive.

' An tempt},r absolute path is equivalent to an absoiute path of"!".

- Characters are equivalent to their “er Hex Hex encoding except for reserved
and unsafe sets.

This leads to the following URIs being equivalent:

http:Hexamp1e.com: Sflr~joneefweleome.html
HTTP:IHEXAMPLE.CDH!~jonaszalcomfi.html

HTTP: r‘Ionanmle.eomrt1ejoneefwo1eome.htarl

http:IKExamplo.comfiqfijonanfwalcnma.html

The next URI is not equivalent to me previous examples:

ntcp: HExernple . eomfl'i'm‘oneefweleome . ntml

.37

034

035

CHAPTER 3 BASIC HTTPHSYNTAX AND SEMANTICS

3.4.3 Formeasfir date and time

HTTP applications have traditionally used three difierent formats to represent
date and time values. Two ofthe formats are based on RFC: while the third for—

mat is From the C language library call aseeima 1' i . The aaetimell Format can
be defined as:

aaetime—date = wkday SP datefi SP time SP 4DIGIT

witday = “Mon" | “Tue“ I "Wed” | "Thu“ I "Fri” I

“Set“ | "Sun"

dates = month so { anIoIT I as 1DIGIT i

month -= 'Jeoa' | “Fe-h“ | "Her" I "Apr' | 'Hay' I “Jon“ I

"Jul" | "Aug" | "sap" | "new | 'Nt:w' | "Dec”
time = EDTGIT "t' ZDIGTT ':" EDIGTT

This gives us a date value of:

Hon Hflv 4 21:53:34 1995

This format has been depreeated for use within H I I Will and HTTP! 1.1

applications. The biggest drawback to this Format is the lack of a time zone.

Applications which receive dates in this format should assume the time value is

expressed in GMT {UTE}.

The other deprecated format in use within HTTP is based on RFC 350. It is

defined to be:

rfeflSfl-date = weekday '," SP date-2 5P time SP "GI-I'I'"

weekday = "Honda?” I "Tuesday" I "Wednesday" I
"Thursday“ I “Friday" | "Saturday" | "Sunday"

datez fl ZDIGIT ‘-' month 's“ EDIGIT

This Format includes the GMT indicator For time mne, but lacks a necessary

Il-dlglt year value:

Monday, Dd—Nov—QE 21:52:34 GMT

The final Format is the one required by the HTTPJ' Ll protocol:

stanza-date - witdny "I" SP daeel SP Lima 51‘ 'GMT'
datel = ZDIGIT SP month SP dDIGIT

38

035

036

BASIC HTTP CONCEPTS

This format is derived From RFC 322 as updated by RFC l 123 and gives us
all of the desired characteristics:

Mon. 04 NOV 1995 21:52:34 GMT

1111 HTTPH .1 date valum must he expressed in Greenwich Mean Time

(GMT. also known as UTC). In addition. the RFC 1123 Format allows a

Four—digit year which prevents ambiguous dates For the next ten thousand years.

As per the protocol standard. all HTTPH .1 applications are required to only

generate the RFC 1123 date for messages. This does not preclude them from

using an alternate date Format Pm log files or to preSent same to the user.

H"l"I'.‘P'.-‘r 1.1 applications must also be able to accept all three formats. In practice,

this is not as difficult as it sounds. At most. two characters of a date string must

he examined to determine the format in question. The short code example in the
next section illustrates how to do this.

3. 4.4 Code: dare handfs'ng

This function is designed to parse any of the three possible date formats and

return a cime_t style value. this value being the number of seconds which have

elapsed since the epoch value ofJanuary 1. was. This gives us a Format which is

eas},Ir to rnanipuiate with the standard C library fisnctions For the requisite date
and time values:

cirao_l: ConvertDatoiohar *ezD-atoi
{

char saucnthlfiait I! Allow extra tor had formats.
struct Lm tmData:

if iatrlenlaznateel 3* 341 H Catch badfunicnovm formatting.
[

returni itimo_r.1 fl 1:

1

As shown here. we’ll make. at most. Four checks before returning a default

value of U. The first check is for the length of the date String passed into the

Function. Given the possibilities of the three date Formats. there shouid be no

3.9

036

037

{JidFTER 3 HA3£CJ¥TT?—~SKNIHA€AhHJSEHIABFIICS

date string with more than 34 characters in it. If we find one, we immediately

return a value of D since there is no hope of parsing it:

if toaflntelfl] :: ’.'i If RFC 322. updated by RFC 1123
[

Seeanfisznete. '%*5 as *5 Ed %d:%d:%d %*n".

stcmceca.tandayJ, saflonth, hitmflnca.tm_yaar},
etcmDaca.tmuhourl, Ettmnata.cm_minl.

fittmflata.tm#5ecil;

Lmfiaca.cm_year ~= 1900;
l

The second If statcmcnt looks for the preferred format. E}! inspecting the

specification, the fourth character position must contain the comma character in

this Format. No odter format shares this characteristic, so we can key on it and

parse the given string if we find it:

else if tezDetetB] == ' 'i If ANSl C's asceimeti format
{

eeeanfiszflnce. "%*s to %d Ed:td:%d Ed".

annonch, Eitmflata.tm_mday}, Ettmflata.tm_hourj,

Ettmneto.tm_minl. eitmnata.cm#aeci,

sicmfiaca.anyearii:

tmData.cmhyaar -# lgflfl;

The next format for which we check is the asocimet } format. In this For-

mat (and no other], the fourth charactcr must be a space character. Given a

space, we parse according to the syntax:

also if {inesciitszfletetfilli If RFC 350, ohsoleced by RFC 1935
{

Escanftsannta, "%*3 idF%ES-%d id:%d:%d %*s".

ettmData.cm_moay}. ezbtonth. ettntflata.cm_veeri.
E{tmflata.tm_huur}, Eihmflatn.tm‘min},
attmnece.tm_sooii:

Finally, we make another check for the RFC 85'3“ format. The Fourth charac-

ter in this format will always be an ASCII character, specificall},r part of the

weekday. For robustness, we test For this condition insteao of defaulting to it.

The final else clause renuns a time ofaero again:

4'5

037

038

BASIC HT Tr" {L'GNCEP TS

else If Unknown time format

i

rahurn iitimfl_tiflir
l-

The remainder of the firnction then converts the scruct. are data into the

time_t value. The entire Function is presented on the accompanying CD.

Drift: second: One last note should be made about date and time values within

HTTP:Ir 1.1. Some message headers permit values to be expressed in delta seer

ends, which is the number of seconds that have elapsed since a message was

received. The syntax For this is simply:

delta-seconds e I‘DIGIT

3.4.5 Character sets

The term character set is used in HTTP in the same manner as in MIME. It is

used to denote a method of converting a. sequence of octets into a sequence of

characters according to a table mapping. Quoting RFC 152] , Section 2, page 5:

The term steamers-r re: is used in this document to refer to a method

used with one or more tables to convert encoded text to a series of

octets. This definition is intended to allow various itinds of test encod-

ings, From simple single-table mappings such as ASCII to complex

table switching methods such as those that use lSG 2fl22's techniques.

However. a MIME character set name must firily specify the mapping

to be performed.

1When used in this manner, the term character set entails more closing, Fulfill—

ing character encoding The character set tables define how an application should

interpret a sequence of octets. This allows an HTTP application to send an entity

body encoded in a character set other than US-ASCTI. You should also note: when

a character set, other than US-ASCII, is used for the entity body, then the HTTP

protocol allows the use or the equivalent characters For carriage return and line

feed in that character set. So, for any character set an HTTP application accepts,
it must be able to determine line breaks, based on the characters of that set.

4!

038

039

CHAPTER :1 BASIC HTTPmSYNTAX AND SEMANTICS

You should note that the use of character sets is restricted to the entity body

oFan H I I P message. Only {IS-ASCII may be used within measage headers. The

definition and use of character sets within HTTP is solely to enable applications

to reliably transfer non LIE-ASCII text.

TIWhen using character sets, applications should use only those character sets

registered with the IANA Character Set registry. The Internet Assigned Num-

bers Authority {RNA} serves as a central clearinghouse for assigning unique

parameters to Internet protocols. In this role. the Character Set registry main-

tains a list of approved names For individual character sets. HTTP applications

must respect any character sets in this registry, and represent them precisely as

indicated in the registry.

In the HTTP protocol, character sets are defined to be:

choreat = token

Character set tokens are case insensitive.

3. 4. 6 Content endings

In order to reduce the number of bytes transferred berween HTTP applications,

a content encoding transformation oi" the entity body may be performed. This

aliows an application to serve resources in a compressed Format, while preserving

its underlying media type. As an example of this usage. this mechanism would be

an HTTP server which distributes video files. Typical video files are rad'iet large,

so the server stores the files in compressed Format and transfers them to the client

in this format. By using a content coding, the server can indicate the compressed

Form of the file, while still sending the original media type oi: the file.

Content endings fior HTTP are case insensitive and defined by:

content—coding = token

For HTTP!] .1, three different content endings are defined: GZIF. compress.

and deflate. GZIP is defined in RFC. 1952, deflate in RFC 1951:! and RFC 1951.

Compress is the common Unix Format. New content endings are allowed, and

the protocol recommends that all new codings be registered and the algorithms

Freely available For implementation.

4.?

039

040

HASIC H TTP {L'UNCEPTE

3.4. 7 Trenrfir endings

From the name, you might think transfer endings are similar to content codings.

but in practice they are orthogonal to one another. A transfer coding is known as

a transformation which has been appiied to the entity body of a message. It is a

property of the message and not of the entity body. In simpler terms, it means

the entity body is being transferred in an encoded fashion.

For I-IT".[‘1"1Ir Ll. the only transfer coding defined is thanked encoding. "iiTith

this encoding the entity body is transferred as a series of cherries which encode their

own length. Normally, an HTTP application must send a Content-Length mes-

sage header to tell the receiving application the number of bytes in the entity

body. For dynamically produced entity bodies. this value may not be knovrn

ahead oi" time since determining the length may be an expensive operation in

terms of resources or time. In cases such as these. the sending application can

apply the chunked encoding to a dynamic resource as it is produoed. The

receiving application must then deoode the ehunlted encoding to put together the

actual entity body:

The syntax For ehunlted encoding is given by:

Chunkeo-Body = 'ehunk
'D'CRLF

footer

CRLF

chunk = chunk—size [chunk—ext 3 CRLF
chunk-data CRLP

(Hex excluding "o":
heernoweero *HEX

{ ‘:' ehunk—ext-name E “= chunkvextevalue] l
taken

token | quoted-string
ehunk-aiaeiDCTET}

*entity-henoer

hex—no-aoro

chunk-nine

chunk—ext

chunk—awannmo
ehunk-ext-val

chunk-data

footer

There are a couple of Factors you should notice in this definition. First.

unlike roost of HTTPi 1.1, For chunked encoding, the number of oeters in a

chunk is represented in hexadecimal Form. There must not be any leading zeros

as part of the hexadecimal number either. A chunk size of zero is reserved to

mark the end of the chiinlrerl encoding transfer. Another point to notice is that

4'3

040

041

CHAPTER 3 BASIC HTTP—SYNTAXAND SEMAN TICS

the chunk site does not include the 2 bytes of the carriage return line feed at the
end nl‘ the chunk.

It Footer is permitted as part of [he chunked encoding transfer. This is to

allow dynamically generated entity headers to be included with the response. On

a dynamically generated resource, the value of the entity headers may not be

ltnown before the entity is generated and sent. This allows the server to append

the final entity headers after the fact.

All HTTP'lIr 1.1 applications must understand how to receive and decode

chunked encoding. if a transfer coding which an application does not under-

stand is received, it should always return a Sol error code to the sender and not

accept the encoding. The protocol fiirrher recommends closing the connection

after sending the 501 response. Applications sending chunked encoding must

never send it to an HTTPILH application. mile transfcr coding is meant

mostly for dynamically generated responses, the protocol does not Forbid a client

application from using it to send an entity body to a server. Therefore, routine

server applications should not overlook the requirement of being ahle to accept

ehnnited encoding. The code snippet in the next section shows an implementa-

tion ofreceiving such chunked encoding.

3.4.8 Code: socialized encoding

The HTTPHJ protocol presents an algorithm for receiving an entity body

transFerred using the chunketi encoding method. Here, We'll present working C.

code, The code csarnple uses two C++ classes which are also presented in the

accompanying CD. The socket class is also presented in Chapter F.

I!

If GocChunked
I!

If Reactive. the! anti Icy using the Unlinked method.
If

inc GecChunkEd{SOCke-t *solienc. otstream sofout, Headers *hlnfo}
{

BDOL oflotflone T TRUE:

char *sePtt:

44

041

042

BASIC HTTP CDNCEPTS

int iBytas. i, j, 1. iFoctor:

while lhflotnone == TRUEl

I

sclient-afleevTeolEND_EDL1i I! Grab a line. should
I! have chunk size.

The loop starts by grabbing a line of data From the socket. The Hecv’l‘eol { :-

rnethod retrieves the slate up unto the terminating line Feed delimiter. The

NO_E:CIL Hag passed in causes the method to not return the endv-ofellne marker:

if [etromp{sClientrsezoutEuf. "D'l == fll

{

bflntflunfi = FALSE; I! The and of the chunks.
continue:

l

Since the ending marker is sirntiljpr a zero. a simple string comparison suffices

to determine the end of the chunks. Finding the end causes the loop flag to

FALSE and the outer while loop ends:

sthr = otrchr[sClient-nozflurfluf. ‘:'l:

if {sthr != NULL] *sePtr . NULL: I! Mark and of chunk-size.

Here we learn whether or not a chunk extension was sent. The code here

does not recognize any extensions, but duos look for the sernioolun which Would

mark the start oF a chunk extension. IF found, we simply place a new terminating

NULL in the string oven-tinting the semicolon:

l = strlan{sCliant-buzflutfluf}; I! Find lost hex digit.

l--:

iEynes n D:
iFector = 1:

I! Convert to decimal bytes.
while {1 9: D}

{

iEytna += iFaeLur * HexEDeeInclient-hszflutflu£[l]ir

1--;
iPaetor *= 16;

i = fl:

4'5

042

043

CHAPTER 3 BASIC HTTF—JYNTAX AND SEMANTICE

This setticun converts the hexadecimal number to a decimal number for

internal manipulation. The Hexanee H functieu [presented as Fellows) converts

a single hex digit tn the equivalent decimal digit:

I! New receive the specified number of bytes.

while Ii C iBytesJ
l

j = eCIient-aRecvtiBytes - i]: II Some data-

1 +8 j: I! Total the bytes.

efflut.write{sfllient-aezfiutflut. jlr I! Save to disk.
} .

aCliant—afiechaulIMG_EDL}; Hf Discard and 0f chunk marker.

}

The loop here uses anuther method in the Becket class to receive the cur;

reet number of bytes Earn the sender. As the bytes are received, they are written

in raw Form to disk using nfetream:

HIMWmMmemflMminmeflflfl.

hlnfe—rRevHeaderslsClienti;

The final nperatien is tn check For any additional headers the client may
have Sent. The class method used understands the vatietus headers and fills in the

class data members as new information is received:

return H:

I} Convert a her character to a decimal character.
I!

int Hexz Dee {char e!

I

switch {cl
l

case ’A':

ca$e 'a':

return 1U:
case 'B':

46'

043

044

BA SIC HTTP CGNCEP TE

ease 'b':

return 11:
case 'C':

ease 'o':

return 12;
case 'D':

case 'd':

return 13;
case 'E':

case '2':

return 14:
case 'F':

ease 'f':

return 15:
default:

return to * éfli;

While the BNF grammar looks a Ioit imposing, the actual implementation of

ehunked encoding is Straightforward. Modifi'ing this code to straight C would

only require a bit more work.

3.4.9 Media gape:

In order to specify the type of data within an entity body, HTTP uses lnterner

Media Types such as are use-ti in MIME. Internet Media Types are registered

with the IANA, the same organization which handles eharaeter set regiStration.

Anyone may register a new media type using the procedure oudineti in

RFC. 15911}. Some examples of registered media types iueiude:

textfplain

textftab—eeparatad—VEluaa

applicationfzip

applicationfworoperfeee 5 . 1

applieatienfpdf

imagefgif

vidaofmpag

044

045

{TI-M I” THE? _'-F HAUL? HTTP—SYNTAX AND SEMA NTICE

The protocol encourages applications to only use registered types. At the

time of this writing, the official lisr of media types can be retrieved via anony-
mous FTP From the EANA archives at:

ftp: Hftp . iei .edu!in-notea!ienefeeejgnmentermedia—typea

Media types are defined by:

medial-typo = type: ".4” subtype *[";" gal'asttELEr: I

type a token
subtype = token

parameter = attribute “a" value
attribute n token

value ‘t tell-tan | quotatiestring

The type, subtype, and attribute tokens are not case sensitive. The value of

the parameter may or may not be case sensiu've depending on its definition.

HTTP applications must take care not to insert white space characters hetv-reen

the type and suhrype names or between attributes and their values. HTTPJ'LI

applications should also be aware that older HTTP applications might not cot—

rectly recognize parameter values for media types:

Cnnenfmr'finm fir media types All Internet media types are registered in
terms of a canonical form. This canonical Form defines the Format of the entity

body itself. In the case of test media types, this form may include entities with

varying Forms ofend—oilline deliiniteis: carriage return line Feed. carriage return.

or line Feed. Although a bit of a pain to support in code. the HTTP protocol

allows an application to use any of these conventions when sending text media

types. if the character set used in the entity body does not use the same octets to

represent carriage return and line Feed as 15038594. than the protocol allows

me use of the octet sequences defined by the character set. So to be truly interna-

tional, an application needs to be aware of the difierences hemeen character sets

in this regard.

The relaxation of rules here For the entity body does not apply to any other

part of the protocol. Art application must still generate and send the carriage

return line feed combination between headers and elsewhere as required in the

as

045

046

fir! 5H: HTTP CONCEPTS

protocol. Also, the specification does not allow the switching oi: end—oF-line

sequences within an entity body. If the entity body uses a carriage return. then it

must use a carriage return throughout the entire entity body.

Mnlnprtrt gases As in the MIME standard, HTTP;i 1.1 allows the use oi: multir

part types such as media types which encapsulate more than one entity within a

single message body. The multipart type allows sending multiple types oi? data or

discrete elements ofan entity in a single response. For Hm: l. 1. this is used by

server applications to send multiple byte range responses to a client. If a client

requests bytes 1 through Ill and 35 through [i5 oF a resource, then the server

mutt use a multipatt type to send both byte ranges within d'te same routine

response message.

HTTP applications can send applicable headers within a body part. TWhen

sending headers within a body part, and when separating the hotly parts. the

application must always use a carriage rcturu line feed to delineate the lines.

3.4.10 Product raiser-rs

HTTP applications are allowed to send a product toltcn, an identifying string. as

part oi" HTTP messages. These tokens are specifically to identiFy a product Ivy

name and version. Their use For advertising is Forbidden by the protocol. Given

the fact only applications are likely to ever see them. their use For advertising is

minimal. at best. anyway. The syntax is:

product
product—version

token i "I" product—version]
token

3.4.11 Qflrfldfiy sinister

Quality values are used in HTTP content negotiation to indicate relative impor‘

tanoe of similar parameters. This allows an application to request multiple types

and indicate which types it would prelier. An example would be:

Accept: textfhtml. textfplain: q=fl.5. LextfiriehLext; qnfl.3

4‘9

046

047

CHAPTER 5 BASIC HTTP—3 Fifi-“TAX A ND Se‘MAN'I'fE‘S

This specifies that the requesting application prefers textr’html, but will

accept texts” richtaxt and then tea-:1: fplain. The quality values are

represented as threerdigit floating point numbers with higher numbers preferred.

The range allowed is from U.UUU to LUUU. The syntax is:

qtralutl. : t "o" [t1*so1etv1 J] t '1" 1 n“3{"{1*} J }

3.412 Language tags

A language tag is similar in concept to a character set value, but represents a dif-

ferent quantity. Iil'lr’hile a character set defines an encoding from ocrers to glyphs,

a language rag merely represents a natural language. This language may be spo-

ken. written, or used in some Form to convey information. Computer languages

are excluded From this definition. Language tags are used in the

Accept—Language and Content; shanguage tags to negotiate and tag the la n-

guage used in the resource.

This allows a server to keep the same document in several dilihtent lan-

guages and return the one preferred by the client. based on the value in the

AcceptvLanguage header. When the server does return the specified document,

it indicates the language of the document using the Content-Language

response header.

As in Media Types, the LENA maintains a registry of" language tags per

RFCITBIS. The syntax is:

primary-tea ’{ "-' eubtag 1
1*BALPHA
1*flnLPna

language-tag

primary—tag
suhtag

3.4.13 Entity regs

Entity tags arose from the need to make unambiguous comparisons between two

or more entities From the same requested resource. A typical application of this

would he to verify whether a page has changed between two visits. The use of

entity rags allows for the precise comparison between the two requests. liurthetr

more, there is also the eoneept of a weal-t entity tag which implies the semantie

55'

047

048

HASTCIJTIPtlflvflfPTE

content of the resource has not changed, even though it is not exactly the same.

This can he used when something such as the background image is changed, but

the words on the page are the same.

The actual value of the entity tag is considered an opaque quoted string. The

actual bytes which main: up the quoted string are only ofsignificance to the gen-

erating application. The application comparing the vaiues must do a simple

string comparison only. Depending on the use of the entity tag, either a weak or

strong comparison is made. The protocol specifies which are used in which

instances. The syntax For entity tags is given as:

entityvtag - i weak 1 opaque—tag
week = ”W!”

opaque—tag = quoted—string

Applications which generate entity tags must take care to never generate the

same tag For two entities which are accessed via the some resource. In simpler

terms. an application may choose to use something such as the last modification

time of a file as an entity tag. This usage is permissible only so long as there is no

chance For that entity to be updated more than once within a single time step. If

the file system keeps last modification times to a one—second precision and the

entity can he modified more than once within a given second. then a simple

timestamp value is not sufiicient for an entity tag.

3.4.1555 Range artist

As mentioned in the explanation of chunked encoding. an HTTPHJ applica-

tion can request that only a certain range [or ranges} oi'an entity be returned in a

response. This allows an application to limit the size oFa requested resource, or

to only retrieve a missing part of a resource. HTTPHJ allows arbitrary range

units to be used in this manner, although only byte ranges are defined as Follows

by the protocol:

rangEnmic = bytes—unit I othar—rangE—unit

bytes-unit = "bytes'

othar—ranga—unil‘. = taken

5!

048

049

CHAPTER 3 BASIC HTTP—SYNTAX AND EEMANTICS

3.5 Finis/fling

Thia chapter has covered mm of the basic mcchanics of HTTP. Ln [ht ncxt

Chapter we will look in dcrail at the request 111:ng sent by clients.

52

049

050

 chapter 4

The request

4.] The RequestMcssagt 54

4.2 Mfithod definitions 55

$3 The reques: header fields 61

4.4 Implementation F'I

4.5 Finishing 83

.53

050

051

CHAPTER «I THE REQUEST

The first thing to look at for HT'1'1}:F 1.1 is the request. The request line is the

message sent by the client to the server to request a resource or an sotion to take

place. First, let us take a. look at the overall construction of the request message.

4.] The Request Message

The term Request Massage is used re indicate the full message sent by a client

to a server to request :1 resource. This includes the Request-Line and possibly a

set of header lines. The overall syntax is defined as:

Raquest * Request—Line

*i General—Header

[Request-Header

[Entity—Heeoer }
CRLF

[Entitywfindy 1

Request-Line : Merhod SP Request-URI SP HTTP—UEISion CELFonW

Given a Web senter located on hope.eg.ut}t.edu, and the resource

er finds-xx .thul. the RaqueeL—Line would be:

GET ferfindex.html HTTP!1.1

Hose: hope.og.utk.edu
User—Agent: IEMnWEhExplorurnDLLfvl.lb

Refer-er: http: New . hethmon. eomrintiexhtml

The other general form a client might forward is when an entity body is sent

with the request:

POST fegiteeereh.emd HTTP!1.1

Host: hops.eg.utk.edu
User—Agent: IEH—WEhExplorer—DLLIVI.lh

Content-Length: 32

Content-type: textfplein

termzibmfitype:h#20

In this example, a PEST method is used to send an entity body with die

request. This is Formed similarly to the previous example but has the addition of

an entity body after a blank line. It is important to note that the client must send

54

cm

052

METHOD DEFINITIONS

nvo CRLFa in a row before the beginning of the entity body. The first CRLF

marks the end of the User-Agent line. The second one follows with no interp

vening characters—in essence a blank line. This way. the server has a clear and

concise delineation between the header fields and the entity body. The actual

form oF the data in the entity body is defined by the application level and not

within the I-I'I'TIJ protocol. In this example we’ve shown a typical tequest

invoiving plain text For a routine Form submission.

All request lines begin with a method. This is a keyword such as GET or

Poe's which indicate the type action the request is asking the server to execute.

Following the Method, the client sends the Request—URI, indicating the

resource upon which the Method acts. Finally. the line ends with the client’s
HTTP version number. Remember this version number indicates the l'l'i'l'l"l

capabilities of the client, not necessarily the version of the actual request. The clir

ent may send only HTTP.Ir LU compliant requests and still indicate a HTTP! 1.1

version here. The client must be prepared to accept HTTP:If l .1 responses in this

situation. In practical terms, the client would only send the highest version num-
bar it wishes to accommodate.

We’ll start looking at these diiFerent pieces neat. starting with the dil-I'erent

methods available to HTTP” .1 applications.

4.2 Met/70d dq‘z‘rzz'tiom
In this seetion. we'll rake a look at the different methods available For HTTP! l..l

requests. With HI I PI] .1. there are seven basic methods: OPTIONS, GET, HEAD,

sos'r, sue, DELETE, and Taacn.

4:2. I The OPTIONS method

The oPTIoNS method is used to query a server about the capabilities available

From the server, or from a particular resource on the server. When querying

about general capabilities, the client will send:

OPTIONS ' HTTPfl.I

55

052

053

CHAPTER if THE REQUEST

The server, in turn, will reply with the general capabilities available. This

will likely include an A1 low header lisn'ng d'ie methods supported by the server.

Any general or response header fields which are appropriate should be returned.

What must not be returned are entity headers. There must not be an entity body

in a response to an OPTIC-NS request, unless it is an error response. Since there is

no entity body. entity headers are not appropriate.

IF the request From the client uses a [fl—RI instead of the “it”, then the response

should only include information relevant to that resource. A server is espeCtetl to

resolve the URI and determine which methods are supported. This may mean

returning an A1 low header with only GET and HEAD, and perhaps an

Accept—Rangers header indicating byte range retrieval that is allowed For the
resource:

filmnsh UPTIUNS * HTTPF1.1

Response: REID silk

Pillow: OFTIGNS, GET. HEAD. PGS'I'. P'U'I'
Accept—Ranges: bytes

Precept-Encoding: gzip

FllettIIst: onerous regi—binrozeer I-I'I'I‘Pfl.1

Response: 250 Elk
Allow: POST

AcceptrEncoding:

It should be pointed out that in the last example, the Accept—Encoding

line is correct. The standard allows an empty value indicating that the server does

not accept any form of content encoding.

6.2.2 The GET method

GET serves as the work horse med'rod for HTTP. It is the only method defined in

the original HTTPHLS' standard. ‘When a client sends a requeSt using the GET

method, it is requesting that the server return the entity body of the resource

identified in the RequesteURI. He mentioned before, this may be a simple

--resouree such as a Web page. an image. or an audio file. In those cases. the server

will return the entity body as part of the response to the client.

The request may he more oomplicated when the client uses the query sym=

bol within the Request-URI. This is the use of the question mark symbol [1?)

56'

053

054

METHOD DEFINITIONS

after the resource in order to pass information to the resource indicated. In

simple terms, this means passing parameters to a CGI resource and having the

CGI resource use the parameters to determine the exact resource to be returned

to the client. This can be used to implement a search engine of available docu-

ments, as an indent into a database, or as a definitive way to pass coordinates for

an imagemap.

Either form of a GET request may be modified by the inclusion of an

IE4Modifiad—Sinoe request header in the request. If this header is present,

then the GET is performed as a conditional operation. Only il'the resource has

been modified since the date given in the header is TRUE, is the resource returned

to the client. This means. ifyour resource has a last-modified date of September

29. 1996, at 5:12 RM. and the client sends a last modified date of September

15, 199E“ at Hill} A.M., then d're server should return the resource to the client.

For our examples here, assume the resource named index.ht:ml has a last-

modified date of September 29, 19.95, at 5:12 PM. For each example, we’ll out—

line the response the server should make:

Request: GET findex.httn1 HTTPH.. 1

Haw-men: The resource index.htm1.

Request: GET findexmtml HTTPMJ

If-Modified-Sinee: Wed. 25 Sep- 1996 DEAL-3:23 GMT

Help-eon: Tl“: [ESUUI'CE index.htm1.

Request: GET II"'ir'tll.51et:u:.'l'l1.'_1'nl HTTPJ'LI

Ifnnodified~sinee: Tue. 1 Get. 1996 14:09:34 GMT

Hupunu: A 3134 not. modified response. No resource is sent.

Request: GET {Coliseeroh?http+hook HTTP! 1 .1

RHPIH'III: The output From the resource search given the two terms http and
book.

4.2.3 The HEAD method

As noted previously, the HEAD method has the same semantics as d'le GET

method. The difference between the two methods is in the responses returned by

the server. For HEAD, the server never returns an entity body in a response. This

allows clients to verify links and check For modifications to resources without the

57

054

055

CHAPTER 1' THE REQUEST

expense of transferring the entity body. A client may not perForm a conditional
HEAD akin to a conditional GET. if a server receives an If-Modifieel-Sinee

header as part ofa HEAD request, it should ignore it and return the normal header

information as if it were not present.

For the examples. we use the same resource as in the GET section.

fiequeel: HEAD I indent . hunt]. I-ITTEUI l . :L

antennas: The response headers for index.html.

Request: HEAD findex.ht.ml HTTPtlJ

If—HodifiEd—fiince: Wed, 25 Sep 1996 09:45:23 GMT

Response]: The response headers for index .ht.m.'i..

4.2.4 The POST method

POST is used by a client to rrsosfet an entity body to the server. The entity body

is thought of as being subordinate to, and accepted by, the resource in the

Raquast—URI. This allows For data submission via HTTP to accomplish various

goals, such as database updating or order entry. This method was developed as a

way to transmit larger sizes of data from clients to servers over the GET plus query
term method.

There is one other big iiilTerenee between GET and POST. This is the idea of

idempsreme in simple terms, it means that performingI 51 GET request multiple

times should always result in the same response. If a client requests a GET for a

specific Web page, then the same 1'ili'reh page will always be returned. For POST.

this does not hold true. Submitting a POST request multiple times may very well

result in multiple copies of Forms being submitted for processing to a data hané

tiling process. In more practical terms, if you were to POST an order Form for a

pound oF chocolate ten times. then you would likely receive ten pounds of choc—

olate plus a bill for it. Most HTTP clients have a setting to warn the user about

this possibility.

1|i'il’hen a client uses the POST method, it must include a Con tent-Length

header as part of the request. This must be included as a way for the server to

determine the end oF the entity hotly. Since the socket connection must remain

open for the server to send a response, the client cannot simply close the

58

055

056

ME THDD DEFINITIONS

connection to marlt the end of the data, as is done For FTP transfers. Check the

following exampies:

Has-quasi: PEST regiwbinfsubmit H'I'I‘WLID

Content—Length: 3319

[3819 chs of date]

Response: The output from the process submit.

fleqtswl: POST I egi ebinforder HTTP! 1 . Ell
Content—Langth: EH82

[6032 bytes of date]

Response: The ourpur from the process order.

4.2.5 Tire PUT method

The PUT ntethocl is analogous to s sending a file via FTP. The client requests the

server to accept the enclosed entityr body, and store it as the REquest-URI in the

request line. This is djfi'erent From the Pose method. since the rose method

implies the entity is to be passed or given to the RequestthRI for processing.

With the our meLhod. clients now have a way to implement updating a Web site

through HTTP itself.

TIii"l1.er1 a server accepts a PUT request, it must respect an}? CGntE‘nt-* headers

sent with the request. This provision is required to ensure that ii" a

Content-Encoding header is given, the server must be capable of decoding the

entir}r bod}:r before updating the associated URI. If the server cannot honor a

content header, then it must issue an error response and discard the request. See

the following examples.

Bequest: PUT Iuse-1'5fphechmonfwelcomemcml H‘I‘TEHIF 1 .1

Content—Type: textr'html

Content-Length: lit-9

[3103 bytes of entity]

Hermon: 2134 No Content
Server: 3wdf1.l

Bequest: PUT Icatalogrsecflfpgldmtml HTTPr’lJ

Contznt—Typa: taxtfhtml

59

056

057

{HidPTER 4 TH£?R£IEUEET

Con cont—Long Lh: 4525

Con tent -Eneocl'i rig: gzip

L III-525 bytes of entity 1

We: SD] Not. Implemented
Server: 3wd!1.1

4.2. 6 Tire DELETE method

The DELETE method allows a client to request a URI to he removed from the

strver. This method is explicitly allowed to be overridden on the server. A suc-

cessful response code only indicates the server expeets to carry out the operation.

In practice, a server might remove the resource from the server tree and place it

in temporary storage. until reviewed by the server operator For permanent dele-

tion. Given the ability for wideSptead mayhem with this method, any implemen‘

ration should enforce some sort of mandatory security over using it.

Typical Web servers require authentication only when a resource indicates

it. For the DELETE method. a better way would be to always require aurhentica—

tion, and deny it when none is specified.

Rowen: DELETE foatalog!salasfoct5§.html H‘I'I‘PILI

Mouse: ace No Content.

Request: DELETE reompeoyfahoutmernl H'I'I‘PJIJ

“cleanser: 20'2 Ree-opted Pending Approval

4.2.7 The TRACE meshed

TEACH is used by client applications to do loopback requests. When a server

receives a TRACE request, it should respond with a message containing all of the

headers sent in the TRACE request. This allows a client to trace the progress of a

request through multiple proxies and firewalls For error detection. A client may

also attach a Mex-Forwards request header to this type of request to limit the

number of proxies and gateways passing the request. IF Hex—Forwards reaches

zero before reaching the destination serverjr the proxy or gateway to decrement

the value to stem should return a response.

60

057

058

THE REQUEST HEADER FIELDS
__

filqullt: 'I'RACE .I' HTTP p“ 1 . 1
Host: 1tau-immune,eclu

Hanueorwaroe: la

User-Agent : JooEron-aerf l e . CI

Heapome: 200 on

Cantant~Typas massagefhttp

Cont one -Lengeh: Etc

TRhCE .t' HTTFIIJ

Mast-Forwards: 1G

Usarnhgant : Jena‘lz’lz'ostealer.uf 1i} . [I
Hone: mmtkeclu

4.3 The request beaderfiekfi

Mong with the request line sent by the client, several request, entity, and general

header fieids are normally sent to mil-re the full request message. The informa—

tion contained in these header fields provides information about the client as

well as the entity body, if one is present. The header fields, used only for

requests, or generally only for requests, are presented in this seetion.

4.3.1 Accept.”

The nee-ope header Field is used by the client to signal which media types it pre-

fers. This field may have multiple values, each with a relative quality value. Serv-
ers which can serve different versions of a document based on the client’s

preference should look at this field, IF the server cannot Furnish an acceptable
resource, it should return a ens code.

Syntax: Accept: “Aeoeyt' " : " “media-range {accept-perm] i

media-range={ “I“

I {type "r" "*” II

| i type: ”I“ subtype :I
II ’I 's" parameter.- 1

accept-perms: ':" "q“ "=' cfvelne

*i accept—extension 1

accept-extension: ”r" token ['=“ i token I quoted-string II J

Eunrnple: Accept: eextr’plainr ozEI.E. textfhtml

6!

058

059

CHAPTER 13 THE REQUEST

In this example, the ciicnt is requesting a textrntrnl version of the docu-

ment first, but if none is available, then a textrplain may he substituted.

4.3.2 Accept-Chane:

This header is used by the client to request that a resource be delivered in a cer--

tain character set. When used. it is one of the headers over which serverpdriven

negotiation takes place. When a server cannot furnish a resource in a requested

character set, it should return a cos response. The standard does allow sending

an unacceptable response. lzrasicall}Ir allowing the scrver to ignore the header if it

cannot satisfy the request. Depending on the circumstances. this mayr he

preferred to not sending a response. As in the Accept header, qnalit}.F values may

he routine!)Ir used:

Syntax: accept-Charsec =“Accopc-Chersec' ':"

1H charset L ';" 'q" "=" cruel-.13] J

Example: Aceept—Charaat: ISU—RUEZ—JP—E. ISDHEDEE-JP; q:fl.fl

4.3.3 Acceprvflacsdiag

The client uses Precept-Encoding to signal to the server whether it will accept a

Content-Encoding on responses From the server. The absence oF this header

signifies to the server that the client will accept any encoding defined in the stan-

dard. At the moment. this includes GZIP, compress, and deflate. If the header is

present. but contains no values. then no encodings are acceptable to the client.

Client applications should alwan take care to use this header if the}? are unable

to accept encoded responses.

Syntax: Aneapt—Enctctding = “Accept—Encoding” "r“ if content-ending 1:

Example: Accopt—Eacoding: gzip

4.3.4 Accept—Language

The client may use this request field to indicate which natural languages are

acceptable For responses. This field is used in the same way the other ACCEpt-*

6.3

059

060

THE REQUEST HEADER FIELDS

fields are used by the server. The server should look at this field for the client

preferences and attempt to satisfy them if possible. language tags are matched

exactly and as a function of the prefix. This prefix rule says that if a client

rcqueSts err—ob for English—Great Britain, then matching on on- is allowed.

This does not mean all languages follow the same rules for prefixes. Said another

way, it is possible for prefixes to match, but if the client does not understand the

other languages, it is a fianction of the language family.

Syntax: nonoptuLanguage- = “Accept-Language"
1th: language—range

[";" "q' I qvolua] 1|

language-range - I: E 1*EALPHR *I "-" 1*EALPHH- l i l "i" l

Example: Annapt-Longunga: do, antq-D.5

4.3.5 Authorisation

The Authorization header field is used by the client to send authorization

information from the client to the sewer. This information is used to int-til")r

whether a client can make the request. The most common use for this header is

to protect pages from viewing by a restricted audience. Another common use is
to use the authorization information to track a user as it visits a Web site. Since

HTTP is a stateless protocol, that is information From one request! response that

is not used in the sort requestiresponse. This allows sites to track users through a

site by requiring the authorization information for each resource requested. The

syntax for the Authorization header is:

authorisation = "Authorisation“ "i“ eredentiele

For HTTP! 1.1, there are two authentication methods: Digest Arrest Authen-

rir'rrriisn {which will be covered in Chapter I5) and Boris Authentication. With

Basic Authentication, the client sends a usernameipassword combination to the

server for verification. The usornaine and password are not encrypted during

transfer. They are encoded though using Basetisi encoding as defined in

RFC 1521. For Basie Audlentication we have the following definition:

credentials = basic—credentials

basic-erodantiola - 'Eaeio" 5P basic-cookie

060

061

CHAPTER 4 THEREQUEST

basic—cookie “ chnnafifl encoding of uflaridwpassword,

except not limited to 1'5 Chfirfline>
usarid—passwurd = I taken I ':“ *TEKT

This defines the credentials to be a concatenation of the userID. a coion.

and the password. |Cince concatenated. the result is encoded using the BaseIS‘i

algorithm. fits an example thereof. consider the userID of phachmon and a pass;
word. of combo:

First concatenate: phathmon : samba

New encode: eohreassess scareme =

Authorization: Essie eG‘hldGhLbE-dfieifi'crmfln

Finally. this gives us an example of:

GET {Drive to 3p: ices . html WITH! 1 . J.
huthori zetion : Basie oGh‘l dfihchfidfiea F1: YtnBz

4.3.6 Cede: Basso?

Baselii‘i is not a difficult algorithm to program. it is designed to encode arbitraryr

octet sequences in a way that passes through SMTP mail agents where only T—hit

characters are guaranteed. To encode. a 24-bit sequence is transformed into a

‘Lchamcrer encoded sequence. To arrive at the 4i characrers. the 24-bit group is

broken into four 6-bit groups. Each of these 6-bit sequences is interpreted as an

index into the Basefié alphabet. If Fewer than 24 hits are available when the end

of the data is reached. special encoding is done using the "a" character. If only

3 bits are available. then two characters are generated and the data is padded

with two ":" characters. [F 115 hits are available. then three characters are gener-

ared and the encoded output is padded with a single “z” character.

Let's take a look at the process of encoding a 24-bit sequence. Given the

sequence:

00110011 00110011 00110011

We look at it as:

001100 110011 001100 110011

51!

061

062

THE REQUEST HEB-1 DER FIEL {J3

This gives us ear four 6-bit sequences. New we must View each as the lower

6 bits afar-i 3-bit byte:

06001100 09110011 flflflflllflfl 00110011

These byte values are then used tn index inn:- the Basefiti alphabet:

AEEDEFGHIJKLHNflPQRSTUVWKYEahudefghijklmnupqratuvwxyzfl1234SETBB+I=

The A character is considered to be 'at index [1' and the “1"” character at

index (53. The “="r character is the special dunner at index 64. Here is nur com-

plete fimctitin to encode an arbitrary string in Easefié:

I! --

If

I! flxfe = llllllfiu Bit aequeneea needed for masks
If 0x03 - UUDDUUII

I! flxffl n llllflflflfi
H (1fo - naeaun

If flxcfl W 11000000

If flx3f = Dflllllll

I! 0x30 = DDIIDDGD
I! flxfie = Dflllllflfl

I!
H -r_.__“new._e__.______,--F_..+...----..m“---__......_..-._r._.___-___..__..-_

If The Eaaefid. alphabet

eenat

char 52E64[] fl

"ABCDEFGHIJKLHNOPDRSTUVWHYEabcdafghijklmnopqretuvwxyrfl123455139+!fl"i

If --

I!

I! Tenfilij
If

If This functien takes a character string as input and

If transferme it tn Easefié eneuding. The return value
H is dynamically allocated and must be freed by the caller.
I!

char * Tefifiiiehar *azstr]

{

char *aefinc;

062

063

CfifliPTER 4 TEHEREIZUEET

int. iLen:

i.

1:

iLen : atrlentazstrli

szEne = new char llintllifleatliLen * 1.5}1; Hf Space for the

If eneeded string.

j = U:

for {i n a; i { [iLan - IiLen % 31:: i+-3} If Encode 3 bytes at a
i If time.

azEnte] = 52364! :seStrri] & Uxfc} b: 2 1;

ezEnelj+1l = azfifidl [InmatrEi] E Dxflfi] <4 4] j ltaefitrfi+1j &
Dxtfll 5? 4} J:

s:Enc[j+2} . azBEII ItazStrli+ll & flxflf] id 2} 1 [iszStrIi+2] E
Dxcfl] e? EH];

ezEnelj+31 = 52354[IsafitrEi+EJ & Exit} };

i += 1:
1

i I iLen - {iLen t 31: If Where we left off before.

switch liLEn % 3:
I

can: 2: If One character padding needed.
I

seEnte] w BeEE4E [aefitrii] & Dxte} 5: 2 1;

azEnclj+1l = szfifidl {laxStrEiJ & DxflE} c: 4} I llazserli+ll
E Dxffl} }? 4}];

szEnclj+il n EZBEII {BESEr[i+lI E DxDEI {e 2]:

EEEnCIj+31 : Ezflfillfidl: If Pad
break:

1

case 1: I! Two character needing needed.
{

eeEnele = azEEdt {EZSETIil & axfc] :5 2 I:

azEnelj+1I = szfifidl iszELrEi] E Dxfi3} << 4 I;

aeEnelj+El = szflfidlfidl: I! Pad

seEnclj+31 = ezBEdlfidl: If Pad
break:

1

J

eeEnte+fll = NULL:
return {szEncli

}

063

064

THE REQUEST HEADER FIELDS

4.3.7 From

This header field can be used by a client to send an Internet email address of the

user controlling the client. For typical browser usage, this field is recommended

to he completely user configurable. The client should allow the user to send, not

send, or change the email address at anytime. For applications such as Web

robots and spiders, a From header should he included as a contact point in case

the automated agent is causing problems for a Web site.

"From" ':" mailbox

1 RFC 322 definition]

Syntax: Fr om
mailbox IfH

Example: From: phatlunonflhethmon.com

4.3.8 Hers

Host is a new header in HTTP;Ir 1.1 used to help diFFerentiate between virtual

hosts on the same machine. W'hen a request For the default root ' a" * oomes into a

scrver providing virtual hosts. the Host field can he used. This field is required

for all HTTI’IIJ requests. If a HTTWLI request does not have a Host field,

the server must refuse it with a not: response code.

Syntax: Horst = 'Hoat‘." host { ":" pore]

Eump’fo: Host : apacwreb . flu . LtLls. . ado.

4.3.9 {faModfied-Sr'ose

If-Moclified-Since is used with the GET method to make a conditional

request. The field of the header contains a. dateltimc stamp. 'thn the client

requests a resource and includes this header. three possibilities exist:

- [F the resource is valid and has not been modified, then a 304 response is

regularly returned.

' If the resource is valid and has changed, then a zoo response with rl'ie entity
is returned.

' If the resource is invalid or the request results in a response other than a 2m.

then the error response code is returned as if the header were not included.

67

064

065

CHAPTER 4' THE REQUEST

The use of this header allows For efficient checking of a resource to see iF a

cached response can he used insmad. If the response has not changed. then a

minimum number of bytes is sent for the response. But if the resource has

changed, a second request is not needed in order to retrieve it.

51mm: If—Hodified-Sinee - “Ii-Hodifiod—Sinoa" " : “ HTTP-deco

Bunnie: If—Hn-difiad—Since: Fifi”r EM first 1996 13:13:34 GMT

Ii—Hodiflori—Einoer Thu, 31 Oct 1996 23:59:59 GMT

esro warms

If-Hatoh is a new header for HTTP! 1.1, and is used to malt: a request condi-

tional. The If-neteh field may he used For any method. The value is an entity

tag, which the server will match against the current entity tag for the resource in

the request URI. If there is :1 match, then the server should carry out the

requested operation. A typical use of this would be to make certain a DELETE

operation is only performed on the correct resource. When the match fails, the

server should return :1 I112 Preoondition Failed response code. Only Strong

comparisons are allowed for It-Matoh. A client may send the special case value

of "it" when they wish to rneteh any current entity.

syntax: If-Hateh u "If-Hatch" ”1" r “It" | li‘ontity-tag 1

Examle: Iii-Hatch: “abode"

4.3.1 I fiNoee-Merch

If-None-Hatoh is a header which serves as another conditional, hut in the mega

arive sense. The client only wants the operation carried out if there is not :1

match of entity tags. The weak entity tag comparison function may he used if

the method is GET or HEAD . Other methods require the strong comparison Func-

tion. As per the If—Heteh header, there also exists the special value H" which

matches any entity tag of the resource. If there is a match, then the server should

respond with a 3M code {or GET or HEAD. and sit for other methods.

Syntax: If—None-Hatoh = 'If-Hone-Hateh" "t" I: '*" | 1#entity-tag]

Bungle: IE-Hono-Hateh: HFabcde", "xyz"

58

065

066

THE REQUEST HEADER FIELDS

4.3.1’2 flange

If-Range provides a way for a client to do a conditional GET with a Range

request. Normally. when a client would do a GET with a byte range request. it

would use either If-Unmodified-Sinee or If -Maeeh to make sure it got a

byte range for the matching entity. if the match failed. then the client would

have to make another request For the Full resource. Using the IE—nenge header,

the client can send the request, and iFthe match Fails on the entity tag or date in

the header. then the server will automatically send the complete entity. This

saves the extra request by the client:

Syntax: IEFRnnga = "If—Itiangta' " : ' l Entity—Lag I HTTP-date]I

Example: TE—‘Ranga: Stat, 213 Jul 1995 13:53:21 GMT

4.5.113 rfi‘lUnmedi e -Sinee

This field is another conditional modifier field. its meaning is to only perForrn

the requested operation if the resource has not been modified since the given

date. {in Failure, the server should return a 412 Preeondit ion Failed response:

Eynlmt: If—Urunodifiefinsinee 4- "If-Unmodified-Elince' ":' HTTP-date.

Example: If—Unmodifieo-since: Sat. EU Jul 1936 19tfll:5-i GMT

4.3.14 Merefihrwem’s

This request Field is only used with the TRACE method. The client may speciFy

the maximum number of forwards it wishes the request to go through before

being returned. Servers will ignore this field, since the TRACE tequeSL will cause

them to send a response to the client. intermediate agents, such as proxies and

caches, decrement the number given as it passes through. IF an intermediate

agent decrements the value to zero, then the Forwarding is considered at its limit.

At this point. the intermediate agent must renn'n the proper response to the

TRACE request:

syntax: Hex-Forwards = 'Hax-Fomartle' ":' 1*DIGI'T'

Example: Hax- Forwa rde: : 5

6.9

066

067

CHAPTER sF THE REQUEST

4.3.15 PrswwAarbsriaarisa

After reeeiving a Proxy-Authenticate response From a proxy, the cl ienr may
use this header to validate themselves. This header Uses the same mechanics as

the Authorization header, but is used specifically to audaenricare the transac-

rion with a proxy server:

syntax: Proxy—Authorization = "Proxy-Authorization" :" credentials

ammph: Authorisation: Basie oGhldthbzaoozrtvmfl-

4.3. 16 Range

Byte range retrievals are a new feature of HTTPJ'LI, designed to improve per-

formance. There are many times when a client will only receive part ofa resource

before unexpected conditions cause the connection to drop. The Range header

allows a client to request only the byte range of the resource it does not have,

instead of requesting the entire resource again. in normal operation, the Range

header will he used with an If [reader to make the rerrievaI conditional upon

matching the resource. The client may also send the If-Range header to receive

the entire resource, ifit does not match what it currently has. A client may send

multiple hyte ranges in a single request, but should only do so if it can handle

receiving the rnu].-t:i1:rarr.iIfbye-oranges media type. The Range header may also

be used by a client to request a maximum sire of a resource when bandwidth or

storage limitations preclude retrieving unlimited size resources:

Strum: Ranger = “Range" ':"' ranges—specifier

ranges—specifier = byte-rangea-ap-eoifiar

bytewrangea—apeeifier = bytesiunit “=" byte-range-eet

byte-range-eot - 11H byte-rangB-npac: I
suffix—byte—range—spee }

byte—ranga-spac =I first-byte-poa "-" [last-byte—rpoa]

first-hyte-poa = 1*DIGIT

last—byta-poe = 1*DIGITFl IF

auffix+hyte—range-epeo n - suffix—length
suffix—length 1*DIGIT

Eurrrpll: Range: hytea=fl—3EIE

Range: bytes-450

Range: bytee=200-340Jfl0w

FT?

067

068

IMPLEMENTATION

When specifying a range, the numbers given refer to the byte offset of the

tesouree. This means the litSt offset oFan entity is i]. not [. Likewise. ifthe entity

is Lilflfl bytes, then the last byte offset is 99‘). In the second foregoing example,

the range given is reFerred to as a suffix byte range. This is a request for the iasr

4513 bytes of the resource. An implementation note here is that it is possible to

give overlapping ranges within a single range request.

4.3.17 Rffirfr

Reflexes: is an optional request header field used to indicate to the server the

source of the current Request-URI. The field is optional to allow for privacy of
the browser user. The value oFthe field can either be an absolute or relative URI.

If the field is only a partial URI, then the server must interpret it relative to the

Raqueat—URI. The client must not include a fragment with the URI:

Syntax: Referer :— 'Hefere1‘" ":"l absolute-URI | relativeflRI 2!

Example: Refer-er: htep:IMaw.seftware.ihm.eemfoafwarpfineex.htm1

Rereser: #publiefindeafLflJitml

4.3. 18 User-Agent

This field is used as the signature field of the browser. The inlhrmation given

here can be used by the server for auditing, statistics, or tailoring responses
around htoWser limitations:

Syntax: Hear-Agent. n "Uaerhgent' ":' l'l product I eemment ‘.I

Example: User—Agent: MozillafLUEI-i [0532: Il'

User-Agent: fidoffl. 9 Harvest!1.4.p12

4.4 Implementation

For the rest of this chapter, we’ll take a look at some examples and implementa-

tion details for request messages. "What we will cover will be typical of all request

messages and how a server interprets the messages. We’ll also loalt at some code

.7}

068

069

CHAPTER 4' THE REQUEST

For certain parts when the implementation may not be quite clear. Do remember

that the complete code to implement a H I l P! l .1 server is included on the CD.

The code presented herein is excerpted from there.

‘14.} GETced HEAD

Our first example will be on the most common methods in HTTP: GET and
HEAD. The GET method is the workhorse oFHTTP. Each resource a client wishes

to obtain must be done via a GET request. For this example, we’ll use a server

setup on the host somexemplemom, A quick note here, in case you are not

aware oF it, is that the domain example . corn is a reserved domain for just what

we are doing here, namel},F presenting examples. It won’t actually resolve to a real
Internet host.

On our server, we'll create a document tree [see Figure 4.1} with a main wel—

come document called welcome.html and then present two branches: public

and private.

The first request to examine is the default resource for the Web site. This

corresponds to the resource identified as httpsffwt-M.Examplas.comf. 1With

this type request, the client application is requesting that die default resource be
returned to it. When the client constructs this request on behalf of the user, it

must include several headers per HTTPH .1:

GET f HTTP!1.1

HosL: www.2uample.eom

User-Agent: Hoai11a32.o2E {DSI2; I}

Accept: textf*

Accept-Encoding: gzip

From: phethmonéhethmon.oom

welcomflhlrnl

l—|_—l
{public fpr'rvate

rm—I lg—I
productshlml saleshtml priooshtml reportshtrnl

Figure 4.1 womessmpleeom document tree

I?

069

070

l'MPLEMENTA T'IL'IN

Strictly speaking, the only part of the request message required here is the

initial request line and the Hoot header field. The other fields are optional

although likely to be sent by a typical client. The Accept field indicates the

client will accept any resource in the text. type range. This might include

testrhtml or text rennin. The Accept-Encoding header is optional, but is

likely to always be sent since its absence indicates the client is willing to accept

any Form of content encoding of the entity hotly. In our example, the client is

indicating it will only accept encoding in the GZII’ format. The Final header,

From, is again optional.

In dais basic type request, d‘ie header lines sent by the client are mostly dic—

tated hy the capabilities oF the client. if the client cannot accept any content

encoding, then the Accept-Encoding header should be sent without a value to

indicate this. Similarly, iFd'ie client wishes to restrict the character sets it accepts,

then a properly Formatted Accept-Cherset header should be seat.

When the server receives the request, it must parse out the different headers

to fully understand the client’s request. The example server provided on the CD

uses multiple threads to service requests from clients. This would be typical lint

most non UNIX-based implementations and also for newer UNIX ones (where

the operating system supports threads}. The example server uses a socket class to

accept new connections and then spawns a thread to service the request:

for l r : i I! Forever

l

oClient = sSock.Acceptil: I! Listen for incoming connections

if reclient 1: noLLi

i

If We established a connection, start e thread to handle it

inc 2 _heginchreadlniconn, D. STACKSIZE. {void 'isclienti;
if i iRe == -1 l

l

I! Failure to start thread. Close the connection.

sCliente>Cloeell:

delete scliantr
}

7.3

070

071

CHEAPTER r I?iEfiHfl3UEST

in this code fragment. sEoclt is an instance of the Socket class. The Class

method Accept i} performs the typical Functions required to accept an incomr

ing connection, and then creates a new class instance, sClient, to perform all

networkrrelfled operations. Once the connection has been established, a new

thread is created to service the request. At this point the server has not yet

received the actual request from the client. The fimction WEConni 1| clots this.

inc = stlient-eRecheol(ND_EOL}; If Get the message

If Parse the components of the request
sseanflsClient—>se0utfluf. “ts *5 ss'. szReouest. szflri. szVer]:

if istriompiezver. “httpr1.fl"} :r 0}

{

UoHttplDisClient. szRBQHest. szUri}:
l

else if istricmpisa?er. “httpr1.1*} so o;

l

in: = DoHttplllsClient, szRequost, seUri};

while EiRc :: TRUE} If Do persistent connections.

i

sclient-efiecheoliNO_EflLlr

sseanElsClient-bszflutfluf. “$3 $5 $5”. seflequest.
ssUri, sanrl;

iRc = DoHttplltsClient. szRequest, seflri},
}

1

also fr Treat this request as a HTTP!0.B request.
{

oonttposteclient. aeflequsst. szuri};
1

Using the Socket class, the first line of code receiws the first line of the

request message from the client. The server simply parses the request line into

the three components and switches, based on the HTTP version number. For

H1111; LB or HTTWUH requests, the server simply services the request and

ends the connection. For HTTP! 1.1 requests. the server services the request and

will continue to do so until the client drops the connection or ends the CUHflE‘U-r

tion explicitly. This allows for the implementation oF persistent connections.

At this point, the server has uni},r received the request line and determined

that the client is sen-sling an l-ITTI’J'IJ compliant request For a resource. The

74

071

072

IfiiF££¥HEUVTUITIGfiJ

server must then determine which resource the client is requesting, and whether

an}; of the headers present in the request message modify the way in which the

server would return the resource. In order to do thisJ the server must receive all

of the headers and parse them into their components and meaning. This means

receiving each line ct" the request From the client and saving the values.

Our server here uses a Headers class to handle the dirty work oi" receiving

and parsing the header lines. The class declaration is {gruarttialljrIr shown as follows:

class Headers

{

public:

Headersl}:

~Heedersli;
int Rovfleaders{$ccket *sfllientls
inc Checkfleadcrstl:

int FindRanges{int iSizaj;

char *ssflethud.

*szUri.

*szVer.

What is missing From dais code are the remaining data fields for storing the

header values. We’ll leave it on the CD and present a fragment of the

RevHeadere [1| method instead:

do

I

iRc : sClient—sfieaneo]IND_EUL}; If Get the message.
if {iRc < D} break;

if {sCliant—aszflutfiuf[fl] == NULL} break;

szfimp = scliennrseeOutEuE;

if i! isspscetseTmPIDll l f! Replace the header it not
If continuation.

i = fl:

whila [£*HsTmp l= ':‘i as 1*ssTmp1i I! Until the

If delimiter

saHeri] = *sszp: If CGPY-

i++; If Advance.

sszp++;

75

072

073

CIthTER é 31¥£'R££HIEST

}

aat-Idrii] n HULL: H Properly end string.
strlwrisszr}; If Luwercasa Duly.

}

EETmP++t If He past the ':' er ' '.
while ti'eaTmp Ts ‘ '1 as t'eaTmpli

i

aszp++: If Eliminate leading ayaCEB.

}

switchisszrIUJJ
i

case 'a':

i

if istremplszI-Ier. "aceept"] .—..-. a]:
i

if lasheeepti

{

ezfluf : new eherlacrlenlszheeeptl

+ aerleniaaTmp} + 2];

sprintftseflufi. “%e.%e*. ezhceept. Eszp]:

delete [J sercept:
sahenept = safiuf;

1
else

Beeceepc - atrduptsaTmp}:

l

The server first grabs a line of the request message from the client. It must
then check tn see ifthe line is a new header Dr a centinuatinn header. it does this

by checking rc- see whether or not the first character is a space. This ma}r actually

be a space character at a herizemal tab character. If it is net a eentinuatien line.

then the header field name must be parsed nut Lil: the line. Our algurithm here is

_tc- .1:an the name intn a separate bullet until we teach the cnlnn delimiter. lOnce

copied the buffer holding the header name is pr-‘tlperljir terminated changed to

lowercase, and saved fer a moment. Next. the tempera}! pointer, eaTmp, is

advanced to the beginning of the header field value, including bypassing any

leading spaces.

Now, the header class has the header name in one buffcr and a painter re the

field value in the ether buFFer. In order to determine the field. a simple algerirhrn

is used. The first step is tu use a switch statement keyed en the first letter of the

?6

073

074

IMPLEMENTATION

field name. This breaks down the header Fields into smaller chunks for process

ing. By using a switch-case- oonsrruction here. for efficiency the code itsechan

be well optimized by the compiler. Once the hroad category has been deter—

mined, a string comparison is made to match the header name exactly. Since

We’ve already changed the header name to lowercase, an exact comparison can he

made instead of a case-insensitive comparison. Given the sheer number oi" head—

ers available in I-I'T'T'i-"iI 1.1, it makes sense to narrow the search as quickly as

possible. With a smaller number of possibilities. a merely simple if—alnn—iE
tree could be used.

fls shown in the code for the Accept header. it is possible for the header to

have multiple values and even to appear multiple times. If a value has already

been stored for the header. as evidenced by the aaAeeept variable having a

value. then the new value is appended to the current one. Otherwise the value is

simply stored. For some headers, the protocol only allows a single value. in those

cases, the last value received is the one saved by the header class.

The server now has all of the information From the client in order to process

the request. For this particular request. the server must determine the defiault

resource to be returned to the client since no specific resource was requested.

The exact resource returned will vary, depending on the server application. For a

1tili'eb server. this is usually specified as being the welcome . ntml or index. html

file within a certain directory of the server machine.

Once the server determines which resource to send back, it can check this

resource against the headers sent by the client. In our example, the media type of

the resource is checked against the Accept. header type given: testerF *. Sines our

server is sending back a HTML document. the media types match. Remember

the server has a choice to respond with an error message if the media types do

not match, or to return a resource with a diil‘erent media type. The protocol ree—

ommends a server semis return an error message when it cannot return the

proper media type.

The server should now rean the resource to the client via the already open

connection. When sending the response back. the server constnicts an

appropriate response message containing the resource. In Chapter 6. we will take

a close look at how the response message is constructed. For now, it is suFficient

to say the resource is returned as the entity body.

?7

074

075

CHAPTER 4 THE REQUEST

If the request method had been HEAD instead oFGET, then the server would

have performed the identical steps up until the last. For HEAD requests, the server

application must never send an entity body. The response is constructed exactly

the same as if For a response to a GET request. This allows a client to query about

a specific resource without actually retrieving the resource. This can be useful for

verifying links.

4.4.2 POST

The POST method is used as a way For a client appiication to submit data to a

resource on a server application. This is the method used For form data on Web

pages in most instances. GET may also be used, but is more limited. Using the

POST method, the Client sends an entity body to the server For prooesring. The

RequflatFUHI in this case points to the resource on the server which will accept

the entity body. Depending on the server implementation, this may be a Perl or

REXX script, an executable program, or a dynamic little library. The possibilities

here are only limited by the server's implementation. Once the resource acts

upon the entity body, a IHFDDSE is generated and returned to the client.

Once again. using our examplecnm domain, a client has constructed a

request, based on a form filled out by the user [see Figure 4.2}.

When the client submits the Form, it creates a request message such as:

Posts regi-hinfenrvey HTTPrlJ
Heat: www.a:-tarnple.enm

From: phethmonEhe thrnort . corn

Content-Type- : tea-strollain
Contmt—Lfingth: 23

Wank=TuHuchEECCEEEI Psycho

For this requesr message. the client has indicated which resource is to handle

the P03!!! data in the request line. This information comes from the Web form.

The information which is different from a GET request is the addition of

Content—Type and Content-Length headers. Since the request contains an

entity body, the client must indicate the media type of the entity and the site.

The size is especially important since the server must ltnnw when the entityr body

73

075

076

IMPLEMENIH HUN

I Welcome to the Est-ample IClJ mpany

, T'i'F-E, ornament tn fill, nitt an: we]: surrey.
L-Iura‘atewsh and: weak _.

Bratislava:-

Wheel}!
fitq'fiemh

._r-_It I esnts'm assistant mas : '
-@b'a Ell". - ,
filF-Iieillksr'ivlriistimi's'gaits. I

' fittest satiaui'psydtiattehaua.

Flgure 4.2 Screen shot Of filled out term

ends in order to start ptooessing the request. The entity body itself tomes after a

single blank line after the headers. in more specific terms. the client sends the

normal carriage return line Feed to mark the end ofthe ContentuLength header

and then immediately sends another carriage return line Food to mark the Start of

the entity body. After the 23 bytes of the entity body, the client again sends a

carriage return line feed to mark the end of the entity body.

On the server side. as before, the server receives the initial request and then

parses the headers. Once the headers are parsed, the server must then receive the

entity body based on the Content-Length value of 23 bytes. lClnoe the entity

body has been received, the protocol acrually leaves the picture.

The HTTP!1.1 protocol does not specify standards for what happens after a

server accepts an entity body via a POST request. The server must deeide what to

do and how to generate a response to the request. For a Web server, dlis is usu—

ally done via executing a C31 script or compiled program- Most servers then

leave it up to the exeeated process to generate a response and an entity body to

return to the client. Given the example here. the esteemed resource might simply

store the posted data into a database and return a generic response to the client,

?9

076

077

CHAPTER 4 THE REQUEST

thanking it for its input. in this case. the response would be an entir]:r bod}?

containing the thank you message. along with the proper reiated response head-

ers describing the response.

4.4.3 PUT

A client using the PUT request method will construct headers very similar to the

Poor method. The diFFerente actually, is in the interpretation. rather than the

construction. As mentioned earlier in this chapter, the PUT method indicates to

the server to accept the enclosed entity,Ir body and store it. using the

request—URI given by the client. Wth this method, no processing of data takes

place. Either a new resource is created or an old resource is replaced. For our

example, we’ll assume the client wishes to update the resource identified by the

URI http: I5W.Eltomple.CUmfpriVotefprice-B .htrnl. This resource is

considered to he in a private area of the server, accessible onl}r to those with

rights. In light of the PUT method and its ability to replace a resource, we would

also want to control access to the PUT method. Clot client might therefore send a

request message such as:

PUT fprivatofpricesmtm] HTTPILJ

Host: www.exe.mple.eotn

From: phe thmonfl he thrnon .eom

Contente'l‘ype: textr‘hunl

Content—Length: 13313
If-Meteh: 'xBszirE"

Authorization: anie cGhldGhth-ifieiFtEmE:

[1330 byte entitzvr hodyi

When the server receives this request. it interprets it as meaning to store the

enclosed entity hotly as the resource :“privatarpriees .html, replacing the

current entity body. Before the server can do this however. it must check two

things: The first. is the Author-i eat ion header. The server must verifi.r that the

given user and password are satisfauorjr, and allow the requested operation. IF

the user is verified. then the server must Further qualiFy the request by matching

the entityr tag given in the If-Hetch header. Once these conditions are root, the

8H

077

078

IMPLEMENTA TIDN

server ma}Ir then carry out the requested operation and return the appropriate

response to the client.

4.4.4 DELETE

lConstructing a DELETE request message is simple for the client. Mtet identifying

the resource to be removed, the client uses this as the request aunt, adds the

111120233th header fields and sends the request to the server. For our example

domain, assume that the client wishes to remove the rpublierealonmtzml

resource. The client further wishes to make certain that the resource has not been

updated since November 23, 199E, at 5:l}1 PM“ before deleting it. lGiven these

circumstances, we can construct a request message such as:

DELETE Hpublic-Ioolosmtml HTTPFIJ

Horst: mew.exutnple.com

From: phethmonfihe thmon. corn
If—Urumdifin—Sinca: Sat, 23 Nov 1995 1'!:01:{Jl} GMT

huthoriaat ion : Basie cement-rents EcZthB=

Once the server receives and parses the request message, it makes its authorir

nation check on the credentials given in the request. 1F the credentials are valid, it

then checks the date given in the If—Unrnoctifiocl—Sinoe header against the

date oF the resource. The semantics here say to onlyr carry out this request it" the

date oi: the resource is earlier than the date given. If dais is true, then the server

removes the resource and returns the appropriate response to the client.

In this example, we again show the client sending authoritation credentials

to he verified by the server. fits with the PUT method, servers should he cautious

about accepting the DELETE method. As a policy, all requests using either

method should require some type of authorization instead of chaulring to the

typical model of only requiring authorization when required by the resource.

4.4.5 OPTIONS

The oPTIoNS header can be used by the client to find out the capabilities of the

server. A client mav wish to find out what methods the server supports For

31

078

079

cssrrss v res ssotrssr

vrvnv.example.cotn. To do this. the client sends a request message using the
onerous method:

GPTIDNE ' HTTP!1.1

Hose: www.cxempla.eom

From: phethmonfihethmon.eom

The server. upon receiving the oar-Ions request. must first determine if the

request applies to the server as a whole. or to a specific resource on the server. In

the example here. the request URI has been set to the “*t case. indicating gen-

eral resources of the server. For the response to this method. the server uses the

internally configured data it has. The server may allow the administrator to deny

all DELETE tequesrs. Thus, even though the server may have supported the

method. it should not return it since the support has heen disabled.

4.4.6 TRACE

An example of the TRACE method would be when a client application is having

difficulties contacting a particular server. IF lthis occurs. the client may wish to

send a TRACE request to find out the route the request is taking. It might be that

the route hetween the client and server includes multiple proxies or gateways.

For our example. the client needs to perform a Trance on the connection from it
to vrvrvv . example . com:

TRACE I HTTPI1.1

Host: www.exemp1e.c¢m
Max-Forwards: 5

The server simply returns the entire request message as the entity body of the

response to the client. The media type of this message body is oonsidered to he

maesagarheep. If the application is. instead. a proxy or gateway. then the

request must be passed on. afier deerementing the transect-warns value by one.

If. as a proxy or gateway. a value of zero for Mast—Forwards has been received.

then a reply to the client should he returned.

079

080

FINISHING

4.5 Finishing

We have now cuvert'd the basics of HTTP, along with request messages. In the

ncxt chapter. we will take a look at cntity and gfincral headers plus thc practical

cunccpt Inf-cache tantra].

33

080

081

chapter 5
Entity dndgmemlheaders,
and Cache—Comm!

3.] The entity headers 3'3

3.2 The genera] handcrs 33

5.3 Cacherfinnrrnl 9]

5.4 Finishing lflfi

34'

081

082

THE ENTITY HEADERS

During the exchange of information between clients and servers, there exists a

certain amount of information which Falls into the entity and general category.

Informational headers relative to the entity body are referred to as entity headers.

Headers which supply ancillary inl‘ionnation not directly related to requesrs.

responses, or the entity body, are referred to as general firearm.

5.1 The entity bender;

Entity headers are used to describe the attributes of the entity body being sent by

the client or server applications. This includes information such as the size oFrhe

entity, encoding which may have been applied to it for transfer, or the media

type of the entity. Clients and servers should use that: headers, as appropriate, to

convey information to the recipient.

5.1.! Afloat:

a] .1. low is an entity header field used to transmit to the client the different meth-

ods supported by the resource as identified by the request URI. This field is

mandatory iFthe server returns a 405 Machoct not Allowed response. A client

may still attempt methods not listed in the Al low header, although the client

should respect it:

Syntax: Allow = 'nllow" ":" Urn-senor}

Eat-mph: Allow: GET. HEAD

5.1.2 Content-Base

The Content-Base field is used to specify the base URI for resolving any rela-

tive URLs within the entity body. This field takes precedent over

ContenteLocacic-n, if present, and the original URI of the request, when

resolving relative URLs.

syntax: Content—Base n “Content-Bets? “:' abooluteunl

Example: Content—Base : apaeweb. an: . Lick. efiu r etpcug!

35

082

083

CHAPTER 5 ENTITF AND GENERAL HEADERS. AND fidCHE-CUNTRGL

5.1.3 Contentrflrwsding

The ContentuEneoc'ling entity field specifies endings which have been applied

to the entity body before transmission. This is used to allow the server to com-

press an entity body before transmission to reduce the size of the transmission.

The server must respect any Accept-Encoding header sent by the client. when

applying a content encoding.

Erma: Content-Encoding = "Content-Encoding“ " : “ lfioontent-ooding

Example: Cont. anthncoding: comrass

5. 1.4 Content-Language

Content-Language specifies the natural language or languages of the entity

being returned. If the server performs negotiation of the resource that is to be
returned to the client. based on an Accept-Language header. then it should

return this header and value to indicate the result of the serverrbased negotiation.

The header may also he returned with any entity body. not just those in which

negotiation has takeu place.

syntax: Content-Language = Treatment-Language“ ':' Hlnnguege-cag

Example: ContentrLenguege: en

5. 1.5 Content-Length

The Content-Length field is one oFthe more important of the fields available.

This field is used to specify the byte length of the entity body being sent. With

persistent connections, both the client and server must specify the length ofany

entity sent. When the length of an entity body is unknown. chunked encoding

may be used in place of this header.

flyntmt: content-Length = 'Content-Lenoth' ‘:‘ I‘DIGIT

Example: Content-Length: 196d

86

083

084

T?HEEN?TTYJEEdDERE

5. I. 6 Consent-Lerntisn

The Content-Location entity field can be used to supply the location of the

entity being rerurned. This is useful when a particular resource has multiple enrir

ties associated with it [i.e., national language versions] and each of them may be

accessed individually:

Syntlx: Content—Location = 'contenteLoeacion" “:' i absoluteUfiI |
ralativa'fl'fll }

Example: Concentrbucatitm: Ehc‘amar' langfanr'

5.1.7 Consenrv-MDE

The Content-m5 iieid may be umd by the server to provide an end-to—end

integrity checlt of the entity body. It is not a means ofsecuring a transaction, but

a means of detecting accidental modifications during transmission. The MDS

algorithm used is the same as presented in RFC [364. If present, it is camputed

only on the entity body. It is not computed over any Transfer-Encoding

which may have been applied to the entity body, but is merely computed over

any Content-Encoding:

Synun: Content-HDE = 'Content-HDE' ':' mdS-digesr

de—digant n ebasefia of 123 bit HDE digest as per RFC lafida

Est-mph: content-turns: teenynzqinjeaormjnonon

5.1.8 Content—Range

When a client requests a byte range response ofa resource. the server must use the

Content—Range entity field to specify which byte ranges are being returned, and

the total length of the entity. if only a single byte range is being returned, the

server must also include a Content—Length header showing the number of bytes

actually sent. If multiple byte ranges are being sent, then the multipartrbyee

ranges media type is used. We'll discuss this Farther in Chapter 17.

Qwumn Content-Henge = 'Content-Range' Ii.

content-range-spec

3?

084

085

CHAPTER 5 ENTITY AND GENERAL HEADERS; AND CACHE-CONTROL

CDntEnt-rflngE-SPEL‘ - byte-eentant-range-spae

hyte-enntent-renge-spee = bytes-unit SP first-hyte-pns '-'

last—byte—pee "I" entity—length

entity—langth = 1*DIGIT

Example: Cnntant—que: bytes {59‘24DEJ4TDT

5.1.9 Cement—1350.5-

The Content-Type field indicates the media type of the entityF being retumed:

Syntax: Content—Type: = "Content—Type" ":" media—type

Ellrnpll: Cuntmt—ma: imagefgii

5. I . I If} ETeg

This entity field gives the entityr tag for the entity in the message:

Syntax: ETng = "E'I'ag' ':' entity-tag

Example: ETug: ' dr2ee'r2e3e1m

5.1.}! Lest-Medfied

The server shnuiti return the Last—Modified. field with all responses containing

an entity. This time value rheuld he the time the server believes the resource was

hurt mntiified. For files, it may simply be the timestamp. while tintabase informa-

tinn may ennsist of the last time a field was updated:

5min: LuaL-Hndifiied - 'Laat.~flerii.fied" ':' H'I'I‘Pmdaee

Empil: Laeth-Iedified: fiat. 243 Jul 1995 19:05:23 GET

5.2 The general headers

Generai headers apply tn the ennneetinn. rather than tn the entity,r hotly of a

request at response.

33

085

086

THE GENERAL HEADERS

5.2. 1 Connection

The Connection field allows either the client or server to specify options to

appl}.r to the current session. For HTTPIIJ, this field is used to communicate

the sender’s desire to close the current connection, once the response is sent. The

onl}r value defined For HTTP! 1.1 is close:

Syntax: Connection =- 'Conneetion' ":' lflieonneeeion-tokenl
oonneeeion-token = token

Example: Connection; :1 use

5.2.2 Date

The Date is generated by the server in ever}! response to time-staan when a

message originated. It must use the RFC 1123 style time Format. The date spe-

cifically does not refer to the time the entity body was generated:

Synum: Date = 'Dnte“ ':' HTTPwdato

Enunflot Data; Sat, 20 Jul 1995 15t35:flfl GMT

5.2.3 Pregrnn

Pragma is a general header field that is defined in H'l'I'P’lr] .l solely for backward

compatibilityr with HTTPflfl practice. The most common use of Penman is to

specify no—eaehe behavior and as such, is the same as using Cache—Control :

no-eaehe. The HTTP protocol will not be defining any new directives For

Pregma:

"Pragma" -:" lipragna‘diraetive

'no~caeha' I nxtannion—pragma

token [“2" i token | quoted-string i]

Syntax: Fragrant

pragma~dirnctiva

Extension-pram
i1IIII

Enempla.‘ PI‘EIQTDE. : no-enehe

5.24 Transfer-Enesdr‘ng

The Transfer—Encoding field signals what transformations have been made to

the message body For transport. Common application of this field is for the

89

086

087

CHAPTER .5 ENTITFAND GENERAL HEADERS. AND CA CHEsCGNTRGL

ehunked method of transfer coding which allows a client or server to send an

entity without knowing its length in advance.

Syntax: Transfer-Encoding = “Transfer-Encoding“ ' : '

1 #Lransferr encoding

Eumph: Transfer—Encoding: chunk-ed

5.2.5 Upgrede

This field is used to negotiate a change in protocols between the client and

server. As future versions of HTTP evolve, a client may send the Upgrade field

when it dues not know what version of HTTP the server supports. IF the server

supports a higher level, then the server may send the response of 101 Switching

Protocol and indicate to which protocol it is switching. The change only

applies to the protocol layer on the existing transport layer connection:

Stu-ates: Upgrade- : 'Upgrede' ':" ”product:

Example: Upgrade: HT'I'PIEJ

5.2.6 Vie

This header must be inserted by gateways and proxies to indicate the protocols

and recipienes which handled the request between the client and server. It can he

used for tracking down loops and identifiring protocol capabilities oF the interv~

mediate handlers among others:

Syntax: 'v'ia = "vie" ':“ Hi receivednprotocol

received—by L come-.11.]: j :I

r protocol-name “I“] protocol—versionreeej.ved-isj,ur

protocol-name - token

protocol-version = coke-n

received—by = l host: l ":" port 1 i I pseudonm
pseudonyms = token

Enmpll: Via: 1.0 proxy.ag.utk.e&u

95'

087

088

CA CHE-CONTROL

5.3 CacbaaConmrl

Cache-Control is one part of HTTP;l l .l which evolved heavily From previous

versions. The caching aspects of the protocol have been designed to allow For

efficient caching with quite a bit of control by both origin servers and clients

alike. The general goal of caching is to reduce nenvorlt traffic by reducing or

eliminating the need For a client application to make a request to an origin

server. In simpler terms, ifa client or cache agent has a copy ofa resource already

stored. we want to be able to reuse the resource if at all possible.

When using a cache. whether in the user agent or in a stand-alone cache

agent, the goal of the protocol is to always provide a semantically transparent

operation. This means the user agent should always receive the same representa-

tion of a tmoutce via a cache as if the resource were obtained directly from the

origin server. There are conditions which may exist when this condition is not

met. When this happens, the protocol provides for explicit warnings to the user.

A typical scenario involving a cache would be when a company provides a

proxy cache agent for internal users to access the Internet. This might have been

set up for bandwidth or firewall considerations. In this usage, the client browsers

must send all requests through the proxy agent. The proxy agent then makes the

request on behalf of the original user and caches as many responses as it can. The

first step which occurs. as shown as I in Figure 5. l . is For user agent A. to make a

request to the proxy cache. The proxy cache then makes request 2 to the origin

server For the resource. In step a. the origin server returns the response to the

proxy cache which, in turn, returns it to user agent A in step 4.

Now, at some later point. user agent B makes the same request to the proxy

cache. But this time, instead of making a requeSt to the origin server]I the proxy
cache checks its internal cache. finds the resource which matches. and returns it

to User agent B in step 2 {see Figure 5.2}.

When a cache is operating in this manner. it is said to he a public or shared

cache. Any client which connects to it may receive any resource the cache agent

has cached. In other terms, cached resources are not associated with a specific

.91

088

089

CHAPTER 5 ENTITYAND GENERAL HEADERS. AND CACHE-CONTRDI.

1 Fllqun‘lbflm

User agent A '-

Figure 5.1 vaienrme operation

user. The I-I'T‘l'li’:Ir 1.1 preteen! allews a server to speeifiaflv deny caching a

specific resource in a public cache. but would alluw is in what is rermerl a private

cache. A private cube is a cache dedicated to a specific user. Resources which

may be allowed in a private (but no: public) cache might include Lhnse requiring

a user authorization re rerrieve. Ifspeeifie user an diariearien is required. such as

a bunk requiring a username and passwnrd before reviewing a checking States

menr, then it is likely this information is private in nature. If the preteen]

allowed it to be cached in a public cache, then sensitive infnrmariun euuid be

accessible to nenautherized users.

User agent B

Figure 5.2 Pmyreeel'm eperntiun

.92

089

090

CA CHErCONTRGL

5.3.1 was: is eschews?

Broadly speaking, anything not specifically Forbidden to be cached is cachable.

Responses which are specifically Forbidden as cachable include responses to:

a POST requests

' For requests

' DELETE requests

' OPTIONS requests

' TRACE requcSts

' RequcSts which include an nu chori ea c i on header

What this leaves as cachable are responses to GET and HEAD requests. Given

the nature of HTTP usage, this accounts for the bulk of user requesrs. The GET

and HEAD responses are required to have a status code of either ace, 2:33, 2GB,

300. 301. or 4113. lfa cache does not support byte ranges. then it ma},F not cache

the 2135 responses, since these are partial responses by definition.

As with anything. there are exceptions to the broad mles presented above.

Let us first take a look at the headers used in cachcdcontrol. and the specific

cache-control directives which can modify behavior oFa cache.

5.3.2 Age

The Age header is a response header used to transmit the senders estimation of

the age of a response. This can be either the original response from the origin

server, or the time since an orifinai response was revalidated with the origin

server. HTI'PUIr 1.1 caches are required to send an Age header in ever}.r response

sent. Ifa cache receives an age value which is larger than it can represent numer—

itallv, it must instead send a value of 2.14?.433.548. This is a value of 25' and is

recommended for all caches to be able to handle numbers up to this size. 1v’alues

for Age are always expressed in delta seconds. in the process using onlyr nonnega-

tive decimal integers:

Age = "Page" “t" agar-value

age-value delta-saconds

93

090

091

CHAPTER 5 ENTITY AND GENERAL HEADERS. AND CACHE-CONTROL

Note The meaning of die wording in this section of the draFt specification

was the subject of a bit of eerie-overs]:I in the HTTP Working Group. Some

members Felt the Age header should onlyr he sent if the response had been resir

dent in the cache, not when the cache is acting as a proxy. Implementors should

teller to the lanst HTTP specificadon for current guidelines.

5.3.3 Grebe- Centre!

This header controls rnost ofwhat happens with HTTPJIr 1.1 caching. Directives

which are sent via a CachEnContrc-l header moat be carried out by an}? caches

which receive them. Caches and other intermediate HTTP agents must also pass

through any cache directives since the],Ir may also apply to other agents along the

requestfresponse chain:

“Cache-Control" "t" licache-directive

cache-Inquistediractiva

| cache-responso-direotive

arm: Cache-Cont rol
cacha-dirictiva IIII:

cache-requeot-direccive =

‘novcache' ['-" c-a 1*Eield-name era 1

| 'na—stura'

I “max-age" “=* delta—seconds
l 'maxefltnla' E '=' daltaefiacunda]

| 'min-fresh“ ".-.'I delta-seconds

| 'only-if-eached'

[cache-extension

onehe-responee-direccive =

"public“

| "private” I '=' ("J lfifiald-namfl <'1 l

| 'no-cache“ ['=" -='> ”field-name e-s]
| 'no-atoro'

| "no-transform'

| ”mustwrevalidate'

J 'pruxywravnlidate'

| 'teaamager *=' delta—seconds

l cacha—thansiun

cache—Extension = tukan I '=“ l tokan | quotadwntring l l

The cache directives noncache and private allow the sender to optionally

specify the header fields to which the cache directive applies. ll: header fields are

94’

0m

092

CA CHE- CDN THC-‘1.

specified. then the direcrive only applies to those fields which are listed. if no

header fields are listed. then the directive applies to the entire message.

5.3.4 Expires

The Expires field is used to give a date at which the response should be consid

ered stale. For finer control, the server should use the newer Cache—Control

directives. To indicate a response which will not expire, the server should use a

date one year from the current date. To indicate a response which is expired, the
server should use the same date as in the on re header:

Syntax: Expires - "Expires" ":" HTTP-date

Erlmph: Expiron: Eat. 2D Jul 199? 15:35:fl0 GMT

5.3.5 Warning

The Warning response field is used to convey additional information about a

response beyond that indicated in the general response code. Within the

HTTPr'lJ protocol, this is used to relay additional information about the

response when semantic transparency may have been violated. This can occur

when a cache agent returns a stale (out of date) response to a client, or after a

transformation has been applied to the entity body [changing an image format

from (ZIP to JPEG). Multiple we rning headers are allowed in a response mes—

sage, and intermediate agents must not remove any they receive unless permitted

by the specific warning code aFter the resource has been revalidated. This can

happen when a warning value of in {Response in stale} is attached to a

response. ii" the cache holding this response is later able to validate the response

as fresh. then it may remove the is warning value. When an intermediate agent

adds an additional Warning header, it should do so after any previous Warning

headers. User agents should look at earlier Warning headers first. when multiple
headers are encountered:

il
”Warning" " : " liwaming—valun

warn-eode 3P warneagont SP warn-text
flyntsr: We rrl i no

warninguvaluo
warn—coda EDIGIT

warn-agent :. l host [I':" port I i I pseudonym
warn-text. n quoted-string

.95

092

093

CHAPTER 5 ENTITFAND GENERAL HEADERS, AND CAfiHE-CONTRGL

The current warning codes are:

- 15': Response is static This mart he included whenever the returned response

is stale. A cache may add this warning to any response, but may never

remove it until the response is known to he Fresh.

' L".- Reaar’iderion flirted This man be included if a cache rerurns a stale

response because an attempt to revalidate the response Failed. due to an

inability to reach die server. A cache may add this warning to any response,

but may newer remove it until the response is suecessfislly revaiidated.

' I2: Disconnected operation This rhenirf be included it the cache is inten-

tionally disconneCted From the rest of the network for a period of time.

' I5: Heuristic expiration This must be included if the cache henristicaily

chose a freshness lifetime greater than 24 hours and the response's age is

greater than 24 hours.

' .i-s': Tmnghrmerion applied This start he added by an intermediate cache

or proxy if it applies any transformation changing the contentacoding [as

specified in the eontent-Eneod ing header} or mediavrype {as specified in

the Content—Type header] of the response, unless this Warning cede

already appears in the response. It most not be deleted From a response even
after reVaiidation.

" .951- Misrtiientaro warning The warning text may include arbitrary infor-

mation to he presented to a human user, or logged. A system receiving this

warning man not take any automated action.

5.3. 6 Cache operation

When in operation, a cache tries to sarisi‘y as many requests as it can with as few

requests to origin servers. in serving the requests it receives, it must satisfi'

semantic transparency, ifpnssihle. and return warnings or errors when it cannot.

We wiil look at how a cache must operate by looking at the difFerenr directives it
EDCDHD'L'EIS enroute.

Cerise-Centres: rte-respite When a cache agent receives the no—eaehe direc-

rive, it may net cache the response under any circumstances.

9:15”

093

094

CACHE-CONTROL

Chairs-Centres rte-store The no-aeore directive may either he sent with a

request or a response message. If it is aent with a request message by a client, then

neither the request nor the response to it may be cached anywhere along the

requestftesponse chain. If sent in a response, then the response may not be

cached. This directive does not apply to user agents who cache responses as part

ofa history mechanism. nor does it apply to users specifically saving the response

to permanent Storage {i.e., save to file}.

CacheFContmi: mar—rage When used in a request message, max—age allows the

user agent to specify how old a response it will accept in terms of age of the

response. A cache agent can compare this value to the age value associated with a

normal response.

When sent by an origin server, the max-age value specifies the expiration

time For l'l'lE response.

Cecfie-Contmi: mate-star’s The max-s tale directive allows a user agent to

make a request specifying that it will accept an out of date response up to a cer-

tain value. IF the user agent gives fiflfl for a value, then a cache may return a

response which is up to Bill] seconds past its expiration time. A cache agent send-

ing such a reply must attach a Warning header to the response with a code of 1G

{Response in scale}.

CecbeFConn'oi: minfiesb IF a client wishes to receive a rmponse which will

remain fresh for a given amount of time after it receives it, then it may nee the

min-fresh directive to specify the amount at time. For the cache, this means

adding the min—fresh time to the current age and verifying that the response

would still be fresh at that point.

CathedCoHtmi: snh—rfcnched in certain situations, a client may only wish to

retrieve a resource if the resource is currently stored in the cache agent. This may

occur because of disconnected operation or limited bandwidth constraints. In

this situation, the client may send the only-if-eaohed directive. IF the cache

has a copy oi: the resource that meets any other requirements of the request, it

then returns it. IF. however. it does not, it returns a sea Gateway Timeout:

reaponse to the client.

97

094

095

CHAPTER 5 ENTITYAND GENERAL HEADERS, AND CACHE-CUNTROL

Cache-*Crmrrori' puHic The public response directive instructs the cache that

the response is cachable even though normally it would not he. Under normal

conditions, a. cache agent may only cache responses with a status code of EDD,

2133. 2135, son, 301, or 410 and then only responses to GET and HEAD methods.

IF this directive is present in a response to another method. then the response

may be cached.

if the requesr required authorization using the Authorization header,

then it would only be reachable in a shared cache, that is. iF the public. directive

were present.

CachevConrrol: private The origin server sends a private direcdve when the

response is only cachahie by the requesting user. The cache agent may cache this

only For the requesting user. Private caches may cache these responses as they

normaliy would.

Grebe-Chartres? neerrrmfim A server may use the nn-cranaform directive

to forbid transformations of the resource to the entity body. This can prevent a

cache or proxy agent, when serving clients, From translating a TIFF image into a

JPEG image in order to save disk space within the cache or bandwidth. Some

applications require the client to receive an exact duplicate of the original entity.

Intermediate agents may not change the following headers when no-traneform

is specified: Content-Encoding. Content—Length, Content-Range, and
Content—Type.

CashewConrrnc musreemlielsre The muet-revalidate response directive

allows a server to require revalidation of a resource once it is considered stale.

When present, a cache may use the resource to serve subsequent requests For the
resource until the resource becomes stale. Once the resource is considered stale,

the cache must revalidate the resource with the origin server for each reque'sr. If it

cannot reach the server to revalidate the response. it must return a 504 {Gateway

Timeout} response to the requesting agent.

CacfifiCflflITmi: mejeflfldfiHdte The proxy-revalidate directive is the

same as the muet-revalitiate directive, except that it does not apply to the

private caches.

.93

095

096

CACHEvCGNTR-‘IIL

5.3.7 Expiration ofrsspsrirer

Much of how cacheeontml works is based on the idea of expiration times.

Mien a resource has reached its expiration timeI it is said to be static. The expira—

tion time of a resource may be calculated in different ways. The first1 and best

method, is For the origin server to explicitly set an expiration time. The server has

two ways to accomplish this. The first way is to provide an Expires: header.

This method has the advantage of also being defined in 1-HT?! Li}. When pre‘

sentecl with an expiration time this way. a cache has an explicit date at which to

mark the saved resource as stale. The second way the server may use is the

mast—age directive. This directive lets the server specifyr how long a response

remains fresh in regard to thefineness of the response. A server may include both

an Expires header and a max—ago directive in the same response. HTTP!1.1

compliant caches must disregard the Expires header in these cases. This ailows

the server to specify one expiration time for HTTPJ'Ifl caches {which may be

shorter} and a longer one for HTTP! 1 .l caches {which may be longer or modi-

fied by further cache—control directives).

If a server does not specify an expiration time using either Expires or

max—age, then the cache may apply a heuristic to the response in order to assign

one. One way a cache may do this is to look as the Last-Modified and Data

header values. IF the response includes both. then the cache may caleuiate the

expiration time as some Fraction of the time between those two dates. As an

example. assume a resptmse has an absolute time of T2 hours heoveen the

Last—Modified and Date values. The cache then takes a percentage of this

value to use as a max—age value. say 5% or 3.] hours. The cache could also base

the percentage on a sliding scale where time dillcrerices of greater than 1 week

are assigned at 'lD'ilh of die difference on the assumption the resource is less likely

to change ifit has been the same for a longer period. In cases where the response

does not include a Last-Modified header, the cache may still assign an expita‘

tion time. although it should be especially conservative about it. If the heuristi-

cally assigned expiration time is greater than 24 hours, the cache must inciude a

Warning header with a code of 13 when it sends the response to a client.

Once the HTTP!r1.] cache calculates the expiration time. this value is

referred to as the fies-m lift-rims. The Freshness lifetime is the number of sec-

onds a response remains Fresh within the cache.

9.9

096

097

CHAPTER :5 ENTIT‘FAND GENERAL HEADERS. AND (TACHE-CONTROI.

An i-ITI‘PJ' 1.1 server should always try to assign an explicit expiration time

to cachahle responses. For file based servers where administration of individual

expiration times is difficult, a server could oFFer to assign an expiration time
based on the heurisrics described herein. The server coLLid Further oH'er the

administrator a choice of percentages based on the age of the file. Another option

wotfld he to assign expiration times. based on the media type of the resource.

Images used on a page, especially logos and bullets, are unlikely to change for

long periods oFtitne. and could have correspondingly long expiration times.

5.3. 8 Fresh and srnt'e responses

Once the cache knows an expiration time for a particular response, it must then

decide when the resource is flesh, and when it is strain A Fresh response is one

which mayr still he sent to a client. It has not passed its expiration date. A stale

response is one which has passed its expiration date and may not normally be

sent to a client, unless warnings are attached and semantic transparency is explic-

itly relaxed. A cache must first determine the age ofa response in order to deters
mine the Freshness or staleness of it.

The age of a response is considered to he the time which has elapsed since

the response was generated at the origin server. It includes time spent in transit

and time spent as resident in caches. It may be calculated by figuring the differ

ence between the current time and the time in the Date header or by the Page

header if only HTTP” .1 caches are in the response path. The HTTP." l .1 speci-

fimtion presents the Following algorithm to calculate the age ofa response:

y'i-

* nga_1.ralua

* is the value of Age: header received by the cache with

" this. response.

* flaro_value

' is the value of the origin sorver's Date: header

* reque5t_eime

* is Lhe {local} cine when the cache made Lhe enquEEt

* that resulted in this cached response

* responee_time

* its the lineal] time when thfl cache received the

* response
* now

Mr}

097

098

CA CHE-CONTROL

' is the current {local} time
“I

appare:rt_aoo = ataxia, responao_timo ~ dato_va1uefr ;

oorreceeofijeoeiveclwege = moxiapparent_age, ago_valuo}r

responsejlelay = reapotrse_time .. request_time;

corracto-Linitiolfifio = corraotofirooaivoiaga + responso_delay;
resident_eimo 2 now - response-J1me:

:urront_aue = correeceLinitial_ago + residenthuimo;

This algorithm is a eonsewative one and will, on average. overesthnate the

age of a response, This is intentional within the protocol, to be certain no one

receives a stale response by accident.

Now that the cache knows both the freshness lifetime and the age of the

response, it can determine whether the response is fresh or stale. If the freshness

lifetime is greater than the age of the response, then the response is fresh, and it

does not require validation before the cache can use it as a response to a client. If

the response is stale, then the cache must validate the response before sending it
to a dient.

5.3.9 chsdesiug a response

1When a response is stale, a cache must validate it with the origin server, or an

upstream cache, before using it for further responses to its clients. HTTPHJ

provides a way for caches to use validators within a request to a server to check

on whether or not the response is still valid. in general, a cache would do this by

issuing a conditional get which includes a validator for the response. Then if the

resource had not changed, the server can respond with a 3134 Not. Modi find

response and save the expense of retranstnitting the entity body. If the resource

had changed. then the server simply sends the new entity body in a standard

response. Either way, the minimum of network traffic has taken place.

HTTP! 1.1 provides two different vaiidators: Laotnnooified dates and

entity tags. Both types may he considered either as week or strong validators.

depending on usage and indications by the origin server. The strong validator is

a validator which changes whenever the entity with which it is associated changes

in any way, no matter how minor. The weak validator is a validaror which

changes only when the entity changes in a semantically significant way. This

I!!!

098

099

CHAPTER 5 ENTITY/1ND GENERAL HEADERS. AND {THERE-CONTROL

might be used by a server when only the background color of a page has

changed. Even though it is not exacdy the same, the information conveyed by
the resource is still the same.

When comparing validarors. i-IT'I'F‘.Ir I .1 defines one operations:

' Strong comparison Both validators must be identical and both must be

strong

'- Weml» comparison Both vaiidarors must be identical. but one or both may
be weak

Entity tags are always considered strong, unless explicitly tagged as weak.

Last modified dates are always considered weal-t unless certain conditions are met

as outlined by the Protocol specification:

" The validator is being compared by an origin server to the actual current val—

idator For the entity and,

' Thar origin server reliably knows that the associated entity did not change

twice during the second covered by the presented validator.

OF

' The validator is about to be used by a client in an Ifi-Modified- since or

Tf—Unmooi tied—Since header, because the client has a cache entry for the

associated entity, and

' Thai cache entry includes a Date value, which Ives the time when the ori—

gin server sent the original response, and

‘ The presented Last—Modified time is at least iii] seconds before the listed

Date value.

fll'

' The validatot is being compared by an intermediate cache to the validator

stored in its cache entry For the entity, and

i That cache entry includes a Date value, which gives the time when the ori-

gin server sent the original response, and

H12

099

100

Cal CHE— CONTROL

' The presented Last-Modified time is at least 6!} seconds before the listed
Date 1.ralue.

5.5.10 Examples

Caching is a complex subject in HTTPILI. lt answers the needs of those who
need to conserve resources such as bandwidth, and the needs oi: those who need

control over when, where, and how their responses are cached. The protocol

specification is the final word on this and does contain many points not brought

up in this seetion of this book. If you are going to administer or implement a

HTTP!1.1 cache, you will need to read the protocol and know what it says. Ler

us now go over some examples to more precisely illustrate the use of the
cachocontrol mechanisms.

Exempie I In example 1, the cache agent has a copy of the resource stored.

The origin server has not placed any extra restrictions on the cachabiliry of the

resource. At the moment. the cache has calculated the age of the resource as well

as the expiration time, and has concluded that the resource is still fresh:

age-value = 100
freshness—lifetime = 3Dfl

Now let us look at some specific requests for the resource given under these
conditions: We will consider I resource to be the correct URI for the resource.

Non—eesential headers are omitted:

Request I: GET fresource HT‘I‘WL l

Help-unset: The cache uses the stored copy.

Home: GET {resource HTTFILl
Cache-Control: min-freeh=250

Responses: The cache must validate the resource.

Request 3: GET fresource H'I‘I'Pil. l
Cache-Control; no-coche

Responses: The cache must: reload the resource from the origin server.

I93

100

101

CHAPTER 5 ENTITY AND GENERAL HEADERS. AND fiAflHEaCGNI‘RGL

Harman“: GET fresource H'l'l‘PflJ
Cache—Control: mast—agefl]

Response: The cache must validate with the origin sewer.

Request 5: GET Iu":|:'est.'rurt:e HTTPIl . 1
Cache-Control : max-agezfifl L‘r

Responses: The cache uses the stored copy.

Example .2 In this example, the cache once again has a copy of the resource in

storage. This time the age and Freshness are:

agewalue : EDD
freehneaenlifetime n 413”}

Our requests from the client are:

Request“: GET freeeurce I-l‘I‘I‘P!1.1

Hesperus“ The cache validates the resource.

Request 2: GET {resource H"I"'I‘Ii'..lr l . 1
Cache-Control: no-atore

Responses: The cache must reload the mouree from the origin server and not

store the response. The specification is silent on the disposition oiithe

currentlyr cached copy. Conservative caches wouiti. flush the resource
from the cache.

Request 3: GET Hresource HTTP." l . 1
Cache-Control: max-stalezzflfl

Response 3: The cache returns the resource after attaching a Warning to to it.

Request 4: GET 1' resource HTTP! l . 1

Cache” Control: only — if - cache-d

Hesperus! a: The cache returns the resource after attaching a Warning 1D to it.

Requests: GET #reaource HTTPIIJ

Cache-Control: mast-agefifli}. max-staleflflfl

Response 5: The cache returns the resource after attaching a Warning ii] to it.

I04

101

102

FINISHING

5.4 Finishing

In this chapter, we have covered the basics 0F entity and general headers, such

being the headers which tnsq.r occur in either request or ffipflflst messages. Also

covered has been the concept ofcaehe-mntrel. which is all new in HI I Pi1.1. In

the next chapter we will look further inte the response messages sent by the
HTTP server.

H35

102

103

1] The seeker 129

12'. Setting up the server seeker 13C!

13 Setting up the client seeker 134

14 Data transmissinn 135

‘35 Utility routines 144

16 Hes: name and address routines 144

1? NT specifies 146

13 OS}? specifics H?

19 The socket class 145'

Ill} The socket class methuds 1'34

111 Finishing 1??)

I23

103

104

THESDCXIT

7. I The socket

The socket is the basic mechanism used by programs to communicate in the

TCPHP world. In simple terms, it is a communications link between two prov

grams across a TCPIIP network. Sockets have their beginnings in BSD UNIX

from around 1932. At that time, the Internet was developing into the form as we

know it today. The Defense Advanced Research Projects Agency (DARPAJ had

funded the ARPANET, beginning in the 19?05. The original ARI’ANET cone

nested military. university. and research sites across the United States with a

packet-switched network. This network consisted mainly of leased telephone

lines. although it did include experimentation with radio networks and satellite
communications.

in the early 19305. BSD UNIX was growing in popularity among university

computer science departments. To encourage the use of the new TCPHP proto-

cols that UARPA mearch had created, they made an implementation of them

available at a low coat. DflRPA Funded Bolt Betanek and Newman, Inn, to

implement TCWIP on a UNIX system and the University of California at

Berkeley did likewise to integrate TCPIIP into its BSD UNIX softWare. By

doing this, DARPA was able to reach most computer science departments in die

United States and ensure the success of the socket and TCPIIP protocols.

The aonkadc‘lr structure defined in the «asya'tsooket .h‘a header file defines

a socket address. Also used with the aeekaddr structure are aetuet. in_addr

and attract aockaddr_in.

#inolude eayataooket_he
etruee seek-add:

l

onshore sa_tamily: .r” address family *I

char sa_c'la.ta[ld]; a“ protocol Specific information *r"

it

#include enetinettin.hs

struet in_addr
l

u_long e_addr.- .H 32 his hose address. network byte order *r
i:

struct so: leaflet; in

1.29

104

105

CHAPTER Y .fiDCKETF

{

short uianetniiy: a" AF_IHET family '2'

Lenore siILoort; a” 16 hit: port: nonfleer *s

struct. iLaddr slin_ar]dr; a" 32 hit heist. addrflss ’3

char einmzerors]; a” net to seen, not used ‘3'

The sa_family field of the seekaddr structure defines which addressing

family is heing used with the socket. AF_INET is the address Family we will be

using. IDther funilies include AFJfl-IIK, AF_NS, and nF_IHPLINK. When the

seekadcir structure is used with the AF_INET family, it is oyerlaid with the

seekaddr_in sttucttue. In simple terms, this means that the socket calls expect

a structure of type sockadclr. Wen using the calls with the AF_INE‘I' family,
use the seekaddr_in structure and cast it to the sockaddr structure in the

Function call.

in the no:ktuidr_in structure. slin_fa.tni1y corresponds [ti [he Bnhfomi ly

field of the socksdclr structure and is always set to AFfiINET. singer: is the

lfirbit port number in network byte order, while sin_nddr is the 31bit host

address in network byte order. stin_sero is not used and is set to zero. in a typi-

cal server application, the singer: field will be set to the wcll+ltnown port

number For the server, while the ain_ndd.c field will be set to INADDR_At-I‘t'. By

setting the host address to IWADDRNY, the sysrem will accept connections from

any internet interface. The client program is oniy slightly different, in that it will

set the specific sinuac'idr field to the host address of the sewer to which it wishes
to connect.

7.2 Setting up the server seeker
The first API call to be used is steel-tact :I .

#inelucle csye "t types . h:-

Hinelutie csyo‘weoekeema

int socketiint family. int. type, int. pretoeol};

family is ser to AF_1NET, as outlined in the last section. type specifies the

type of socket to lac created. The possible values are soCK_s'I'uEm-t,

I35“

105

106

SETTThmiiflpIEMFEERVFfluiflifliET

socs...t>oaas. and soctt_aaw. For this book, we will be using the SGCKWSTHEAM

only. The combination oFAF_IHET and SGCLSTREAM yield a TCP socket. With

soett_oonan. a UDP socket would he created. while SOCKHRAW gives access to

the IP protocol. The protocol field is typically set to zero, which means the

system selects the correct protocol based on the firs: two parameters. The return
vaiue from socket it will he —1 in case of error, or will return the socket truth"

be: otherwise.

Once a socket is allocated in a server applieation, the nest API to he logically
used is biz-rot i.

#include <3y3htypafi.h1

iinelude <5yni5oeket.ho

int bindtint 5, struct sockaddr *addr, int afldrlan};

The hind call is used to assign a name to a socket. e is die socket number

previousl}r allocated while seer is the protocol specific strueture holding the

address. The size of the structure is specified in the addrlon parameter. With

TCP, the structure used is of type street soekaddr_in .bindt J: is used to tell

the system that your application wants any messages received for the given

address. For a server application such as FTPD or H'I'I'I’D, use the well ltnown

port address of these servers in the call. You ma},I specify an}r port For the bind

call, given the operating system restrictions. UNIX systems restricr the ports

below 1924 to the superuset {root} only. If the port is alts-std}F in use by another

process, the call to bind will Fail. The exception to this is, if the socket option

sojeossmon has been set, using the aetsoekopt I: call. By setting this

option, the system will give control of the port to your program. taking it awayr

From the previous process using the port. A positive return value indicates
success.

Once our server is bound to a port, the socket must be set to passive mode in

order to accept count-etions from the clients. To acoomplish this. the liatent }
call is used:

#inelude esvoitypee.hs

flinelude csysisoekee.ha

int listentint 5. int backlooi:

£33

W6

107

CHAPTER 7 SOCKETS

As before, 3 is the socket number, backlog is the maximum number of

requests the system will queue. For most systems. the maximum allowed is five.

To make the program more flexible, the constant someones can he used. This
constant is defined in the header files to the current maximum value allowed.

Once a socket is placed in passive mode. it cannot be used to initiate connec-

tions. but only accept them. A positive value indicates succeSs.

One last toll is needed by the server in order to establish connections:

aooept ii:

#inelude savsktypee.hs

#inelude nuyetaoeket.h>

int acoeptiint e. struot sookadflr *olient. int *eddzlen}:

The eeeept {i call causes the calling process to either accept a connection
From a client or be blocked until such a connecrion occurs. if the call returns suc—

cessfully, a new socket will have been created [hill is cormeetcd to the client. The

new socket number is the return value From accept t}. At this point, you will

have crested what man}r books call a S-tuple. A 5-mple is siutpi].F the set of data

int defines a unique connection between two processes across a TCPNP socket.

It consists of the following: a socl-tet number. a server IP address. a server port. a

client IP address. and a client port.

These Four calls are all that is necessary to create a minimal server. The fol-

lowing example shows just that:

#innludfl esysttypes.h>
Iiflfllufll‘.‘ {S SKSDCkfit .hb

flincludfl <natinattin.h}

void malniint ergo, char *argv[]}
{

int 5. If our socket

to. If return code

C. If client socket

loo: If length of atruoture

atruct sookaflfir_in server. Client:

a : sockettAF_INET. 50CK_STHE&H. Hi; I! create a socket

it Is s Di

{

I32

107

108

SETTHVGETFFWfiEEERVER.fl3CKET
———-—-—n———

car: (4 "Error! Cannnt creati socket." << endl;

return:

}

len = eieeefietruct neekedfir_inl;
heereiserver, Ian}: I! clear the date

sarver.sin_family = AF_IHET:

server.ein_part = htunel????l;
server.ein_eddr = IMMWELANY;

1:: = kindle. lstruet snake-1dr *1 eserver. lenl:

if {re e D}

{

cerr e< 'Errorl Bind failed." << endl:

return:

I

re a listeniss SOHARCUNN}: If change to passive socket
if {rc < fl]

{

car: at "Errer! Listen failed.“ << endl;

return:

}

fart : : i
I

bzeroteelient. leu};

c = aeeeptls. {snruet sockaddr 'Ihelient, Elan]:

if {C < Di

I

carr c4 'Error! Accept failed.' <4 endl;
return:

J

IF do some Hark with new socket c to client

closeicl:

This example follows the API calls as outlined previously. A sucker is 3110.

eated first, using the eockati} call. IF successful, the seeker is bound to port

2???? using the bindi I call. The use efpen 3'??? is an arbitrary one, as any port

could be used. Pen 7*"??? is above the range of the reserved and welH-mewn

pens For such services as HTTP and SMTP [ED and 25 respecflvely}. The line

server.sin_pert = heensrn'r'n;

108

109

CHAPTER .7 SGEEETS

does introduce one concept not yet mentionecl. in the TCPHIP world, the range

of machines goes from PCs to supercomputers using various CPUs. To over-

come the problem of the machine representation of an integer being different on

a Motorola EEG-silt] than on an Intel Pentium Pro, the concept of network byte

order is used. Network byte order uses big endian notation such as on the

Motorola GEE-Ell} series of processors. On machines that use big endian notation,
htons I i will be defined as a null macro. For machines that use the little endian

notation, it will swap the byte ordering. It is always a good idea to use the byte

swapping routines even if you know the machine you’re targeting is big endian.

With the proliferation of processors and the ability of operating systems to run

on many platforms, you never lcnow where your code will end up.

Does the bitter} call completes. the socket is placed into passive mode with

the listen I: i call. At this point, the server is ready to accept incoming connec-

tions. A loop is used to cycle the server through the accept cycle. The cycle starts

by clearing the data structure used for the client inFnrmation. accept { 1 is then

called to complete the connection. Upon successful completion of the accopt 1: I

call, the necessary processing between the client and server takes place. Depend-

ing on the operating system, this processing would take place by starting a new

process {UNIX}, or by starting a new thread (USER and NT). For a very simple

server, the processing could take place in the same process as the accept call, but

that would risk the possibility ofclropping a waiting connection.

73 Setting up the client socket

The procedure For setting up the client program starts out me same as for the

server, that is. a socket is allocated with the socket it call. After that, the client

is ready to establish a connection with a server. The call used to do this is
{strum-1m: IE]I .

it include «rays ‘t types . h>

#incluc'lo csys‘tsockat .h:

int. comadtlinb s, strum: sockaddr *sarvor, int. leni;

134

109

110

SETTING UP THE G'LIENT SOCKET

iris before, 5 is the socket handle From the sockeell call. server is the

atruee sooI-taddr_in structure. It specifies the server to whirl: it wishes to L‘DIl-i

nest by filling in the address and pott fields. The last parameter. lon. is the size

of parameter tWO. When connect completes successfully, a connection is estab-

lished benveen the client and server with another S-tuple. A negative retum
value indicates failure.

The following example shows a simple client:

#inclufle ssysktypes.hs

flinelude <335H30Ckfit.hh
flinolufle snetinetxin-ha

I! this program expects the server address as s parameter

void mainline erge. char *argv[]l

{

int 5. If the socket handle

IE: I! return code

struct anckaddr_in server;

if large I: 21

{

cerr es "Error! Incorrect number of urgumenee.‘ cc endl;
return:

3 = 30Eke§L£AF_INET. SDCILSTREMPI. m.-
if is s n}

l
car: is “Errort Cannot CIBfltE so:kat.' es Budl;
IE turn:

}

bzero{&servar, sizaufistruct sockaddr_in};

serversinjemily = AFHIINET:

sarvnr.sin_port = htnnsiTTTT}:

server.sin_addr ; inet_aflflr{ergv[1]l: I! use command line address

re = eonneetts, {struck soekaddr *} seerver,

sizeoflstruce sockaddr_inll;

it {re s Bl

[

car: as "Error! Connect failefl." if endl:
return;

135

110

111

CELiPTER F $fltflfiEIfi

If do some processing of data between client and server

eioseisi:

While simple, this example shows the four basic steps that a client applies:

Lion muss; perform. The first step is to create a socket. Next a connection must be

made to the server. The actual data processing is performed and the last step is to
close the seeker.

7. 4 Data transmission

Since we are dealing with stream sockets. die data transmission which occurs is

simply,’ a byte stream. There are no inherent records or signals for the end of a

message, hence the application must supplyr it. The typical signal for the end ofa

data transmission in the Internet protocols is the Telnet endrofrline sequence.

This sequence is defined as a carriage return. Followed by a line feed. You will
note this is also the end—of—line marker for 0332 and NT. TCPJ’IP has several

different APIs available For sending and receiving data. The two that we‘ll be

using in this hook are:

iinelude eevattypee.ha

#inelude esysisoelteths

int sendiint 5. char *msg. int len. int flags};

inL reeviint a. char *mae. int len. inL flags}:

In both calls. the first parameter 5 refers to the socket number on which to

perform the operation. msg is the buffer holding the data to he sent, For sendi i .

or the buffer area to receive the data. For race”. The next parameter, 1e11,

holds the length of the data For send! 1 , and the length of the message buffer for

recvi } . The flags parameter is used to modify the behavior of the calls. Same cf

the flags available include MEGHDCIB and MSGJ'EEK. MSGfiDOB refers to placing

ontwoF-hound data inshonnd while MSG_PEEK is used For the reevi} call in

order to receive the waiting data, but not consume it. The data is left for later

calls to read.

£36—

111

112

13:le TRANSMISSIGN

Before we delve into the use of these calls, one point of TCP communica—

tiens needs to be addressed. When a process transmits data using the sendli

call, it will request a certain number of bytes to be sent. However, there is no

guarantee that the number of bytes requested to be sent will be the number of

bytes actually sent. So, it may be necessary to resend part of the buffer because it

was not sent on the first tell. Likewise. when receiving data using the reevn

call, you may allocate a buffer of 1924 bytes and set your length to that number.

To the protocol stack. the length is just the maximum length you will accept.

You will only receive the number of bytes available. Multiple recvl is will be

needed to insure receiving the number oi" bytes your process needs.

Now we see the need for the Telnet end-ef-line sequence in Web and Inter-

net protocols. The processes which are communicating need a way to signal each

other that the command has ended. The easiest way to accomplish this is to luwe

a special fitncrion to read lines From the socket. The next example shows the
ReevL-ine t l function which does this:

#include (syahtypes.hh

#include eeyeheooker.h>

If Receive a command line terminated by a telnet aol sequence

int Rachina£int ifiockatJ char *szfluf, int ihnn}
{

inL iEyeeeReed.
'i.Tc'l}t.

hNoLDone:

iBytesRead = reeytiSecket. sszeufmi. 1. e1.-
iIdx = l;
hflotflone = TRUE:

while thotDnne :2 TRHE}

i

iEytesRead = recvliSockat, &szBuf[iIde, 1r D};
it liflyeeenead s D}

E

return i -1 1; HI error receiving
1

iIdx++t

if [lszEuf[iIdx — 2] == 'Hr'j ss

13?

112

113

CHAPTER F SOCKETS
__

ianutliIdx F 1] == 'ln'J I

i

hNoLDene z FALSE: it get telnet eel
}

if :ildx == iLenl

i

return i -1 ll If error, buffer too small

}
l

aeBuFLiIdx ~ 2] = NULL; fr append null termination
return i TRUE it

This example shows a simple way to receive a command line typicallyr used

in lnterner protocols such as HTTP, FTP, or SMTP. The in netion takes three

arguments which are the same as the first three arguments of reevu: }. The

Fourth argument ofreevi l is not usecl anti. is left at D. It starts h}r reading a sin-

gle character from the seeker. Since our aim is to read until we have a telnet enrl-

oF—line sequence, we must have a minimum of two characrers. The first character

is read outside of the loop to ensure that we have at least two when we check. We

next enter the reading loop. A character is read and the return code is checked

for an error. If there is no error, then the string is checketl For the end-oF-line

sequence. We also check for a possible overrun of the message buffer. Finally,

once the end-of-line sequence has heen read, me buffer is null terminate-cl at the

end of the message. We discard the cnti-of-line sequence.

The drawback of this approach is mar receiving one character at a time is an

expensive operation. 13.. much hatter approach we ulcl he to receive as Inanv char-

acters as are avsiIahle and then inspecr me huh-er until the end-eirline sequence

is reached. In order re accomplish dais effectively, a C++ class could he used re

encapsulate the seeker. "With the class approach. you can easily maintain a buffer

of tiara for each socket used in the system. Fortunately, most command iines are

small, less than a Few dozen characters. For an efficient implementation, I would

recommend using C++ classes and we‘ll do that later in this chapter.

Now. let us take a look at how we would use the senfil } and reevt } Func‘

Lions in our simple client:

#inelude esyeltypae.h>

#inelude {syslsoeket.h>

133

113

114

DA TA TEA NSMISSI ON

#include <netinettin.h>

#include <ioetream.he

#include cstring.h:

If this program expects the server address as a parameter

void mainlint argc. char *srgvl]:

1

int 5. H# the socket handle

re; 3! return code

char szBuflEEE]; If data buffer

struet suekaddrmin server: If server address

iitmysi=31
I

cerr <4 "Errcrl Incorrect number GE srguments.‘ {I endl:
return:

}

s n seeketIAF_1NET. SUCK_$TREAH. 0}:
if is s D]

F

cerr {A "Errcrl Cannot create socket.‘ rs endl;
return:

3

bseroifiserver, sizeofflstruct senkadfir_in}:

server.sin_femily = AF_INET;

server sin_pert = htens:117?1:

ssrvar.sin_sddr = inet_adfiz{sruv{1]}; #f use command line address

re = eennectis, {struct seckaddr *1 sserver.

sizenflstruct snckaddr;in1};

if [re s D?

{

cerr €< "Error! Connect failed.“ as endl;

return;

}

If do some processing of data between client and server

strcpytszfluf. 'HELLUHrKn"}:

rc = Bennie, szflufr strleniszflufl, 0};

if {re 4 D?

{

cerr cc I'Errerr! fiend failed." r: endl;
return:

139'

H4

115

CHHFIEW ? SUUKE?3

r: t Rechina{E, sz‘BufI 256};
if Ere < Ul

i
eerr cc "Error! ReeuLine failed.” #4 endl:

return:

if lstrcmpiazflui, 'DK"! In D}
{

cert e: “Errorl Unknown reply Erom server.“ :e endl:
return;

l

strepyinzBuf, 'GDODEYEHan"l:

re a sendls, seBuE. eLrlenEeeHuEl. 0]:
if (to c D]

{
eerr ee 'Error! Send failed.“ ec endl:
return:

l

I: = Rflchinela, szfluf¥ 255}:
it {re c fll

[

oerr << ”Error! Reovhine failed.' <€ enfll:
return:

i

if {stremptszEuf. "Ufl'l l: U}
{

eerr {1‘ "Error! Unknown reply from server.“ is endl;
return:

l

closets}:

This example is the same as our first client example. only with the addition

of oode to exchange messages with the server. The logic is simple. Once the cli-

ent is connected to the remote server: a simple greeting is sent. The client then

checks for the server's response. If'ir receives the on reply it expects, it then sends

a closing mflsage oFGDGDEYE. The UK replyr is expected again and checked before
the client closes the connection to the server.

On the server side, things have changed only slightly:

Mt?

H5

116

DA TA TRANSMISSION
——-——

flinslude <3ysfitypes.h>

fiinolude <5ysksooket.he
#inslude tnetinetkin.h>

#inolude ciostream.h}

#anlude {string.h>

void meinIint argc. char *argvl]:

{

int 5. If our socket

rc, I! return code

C. I! client socket

lefl: If length of structure

struet soekadflr_in server. client:

5 - sockettAPmII-IETr SDCK_STREAH. D}: If create a socket
if Is 4 0}

{
esrr {e “Error! Cannot create socket.‘ is ondl:

return:

}

len = sizeoftstruct sookadflr_in1:

b2ero£server, lenl: If clear the data

ssrusr.sin_£amily = AF_INET:

server.sin_port = htnnsLTTTT3;
server.sin_addr = IHADDR;AHYI

r: s bindis, [struct sockaddr '} Eaerver, lenj;
if (re s U:

{

cerr at 'Error! Bind failed.“ << endl;
return;

to t listsnis. EDMAXEDHN}; I! change to passive socket

if {rc c D]

{

oerr (c ‘Ersor! Listen failed.‘ << endl;
return:

}

fflr{ : j J If forever

{

hzerulficlienL, len}:

c : acceptts, Lstruct socksddr *i&slieut. Elen}:
if {c < D?

{

14!

H6

117

CHAPTER F SOCKETS
—_

car: << "Error! Accept £ailed.‘ it anal;
return:

}

H fir: same work with new socket c to client

TalkTDCliEnt{:];

vuid TalkToClientiint ifiocketl

{

int 1R3;

bflthune;

char szBuEEREEJ.

E:flk[1 = "UK",
EzErIEI = “ERR“:

hNDtDDna n TRUE:

while {hflotflone := TRUE)

{

13: = RecuLine£iSocket; safluf. EEEJ:

if {ific { U}

{

cerr c: "Error! Rechine failed.“ cc endl;

bNutDnne = FALSE;
}

if {strcmptszfiuf, ‘HHLLD"H == 0}
{

iR¢ = senfliifiockEE. szflk. atrleniszflk}l fl}:

if [iRc 4 fl}
{

cerr cc 'Errorl Send failed." {i endl:
hflutncne = FALSE

}

2133 if {strcmpl513u[. 'GflflDEYE"} =2 D!

{

inc - senfitificcket. 510k, strleniszok}. 91:

if {inc 4 D]

I

cart << 'Errfir] 53nd failefi." (i anal:

bfifltnane = FALSE

}

hNhtDone = FALSE; If ulna: cannactinn on GOODBYE

I42

H7

118

DA TA TRANSMISSION

l

else If unknown meets-age

{
HandiiSockat, szErr¥ strlenIEZErr}, fl};

bNotDone ; FALSE;

}

closetiEockatj:

The revised server example has a function TalkToClient {J added to it to

handle all communications with the connecting clients. In this function, the

server goes into a loop, receiving messages From the remote client. Upon receiv-

ing the HELLO message. the server responds with an UK reply. If the GOODBYE

message is received, then the 0K reply is sent and the Boolean flag is marked

FALSE to end the connection. IF the server receives any other messages, then the

ERR reply is sent and the connection is closed.

Although the example server does no real work. it does model the work flow

of a real server. Connections are accepted in a loop and a function handles the

work. In a real server. the diFFerenee would he that another process or thread

would be used to handle the work Function. Under 033'2, the typical code would

look like this:

_heginthreed[TalkToClient, fl. 3192. {void *lNULLi:

This function starts a new thread of execution on the TalkToClient Ell

fimction. Under Linux. the Fork i i call is used to start a new process:

if iforkii == 0}

i

closets}:

TalkToClienticl:
return:

i

Either method produces d‘ie same results. Another datead of execution han-

dies the connection to [he currently connected client so that the server can go

back to accepting more connecn'ons.

I43

118

119

 chapter 8

The HTTP/1.1 server

8.1 The configuration file 175

8.2 The main program 179

8.3 Theserver 183

8.4 The authorization model 187

8.5 Request and response headers 189
8.6 HTTP/1.1 216

8.7 Finding the method 224

8.8 TRACE 225

8.9 OPTIONS 229

8.10 PUT 230

8.11 Iffunctions 238

8.12 Chunked encoding 242

8.13 The DELETE method 247

8.14 GET the document 254

8.15 Checking the If-Range 265

8.16 Transmission of byte ranges 267

8.17 Finishing 274

I74

119

120

THE CONFIG URA TION FILE

Since HTTPJ'I .1 has not yet reached standard status, the code in appendix

hereto is based on the latest Internet Draft 7, dated August 12, 1996, which has

been approved by the IESG as a proposed standard, but has not been processed

by the RFC editor as this is written. By the time this book is in print, the pro-

posed Standard should be available from the Internic. You should retrieve a copy

to check if any changes were made necessitating code changes in the server. If

changes were necessary, you may contact me at phethmon®hethmon.com to

learn where to obtain the updated code.

What is presented here is an explanation of the HTTP server on the accom»

panying CD. In some places, you will be referred to the CD to look at some of

the code. The code in those sections is fairly straightforward and the comments

in the code should be sufficient. The parts of the code which implement the pro—

tocol directly, and are perhaps a bit tricky, are fully explained.

8.1 7796 configuration file

We'll start by looking over the configuration file which controls how the server
behaves:

#

de configuration file
#

ServerRoot h:\book\server1.1

#

HostName Warp.rmt.utk.edu

#
Port 80

#

DNSLookup On

The offset in minutes between local time and GMT

Where hhmm is the format. This value plus local time
should equal GMT.
GMTOffset 0400

175

120

121

CHAPTER 8 THE HTTP/1.1 SERVER

#
Welcome welcome.html

#

AccessLOg h:\book\serverl.0\access.log

#

ErrOrLog h:\b00k\serverl.0\error.log

#

LogTime GMT

Filename used for read access authorizations
ReadAccessName 3wdread

Filename used for write access authorizations
WriteAccessName 3wdwrite

#

PathAlias is used to map document tree aliases to real locations
#

Up to 128 path aliases allowed.
#

PathAlias /1.U h:/book/server1.0/
PathAlias /1.1 h:/book/server1.1/
PathALias /0.9 h:/book/server0.9b/

PathALias limages h:/book/images/

#

ExecAlias is used to map cgi—bin aliases to real locations
#

Up to 128 exec aliases allowed.
#

ExecAlias [cgi—bin h:/book/serverl.1/cgi—bin

#

DeleteDir is used to put store deleted resources
#

DeleteDir h:/book/server1.1/delete/

#

ExtType is used to map file extensions to the appropriate MIME type.
MIME types beginning with "text/“ are assumed to be text format, all
others are assumed binary and transmitted as such.
#

Up to 256 extensions allowed.

176

121

122

THE CONFIG URA TION FILE
w

#

ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
EXtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType

ExtType
ExtType
ExtType
ExtType

ExtType
Ext Type
ExtType
ExtType
ExtType

ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
EXtType

html
htm
txt
text

readme

au
wav
wave

5nd

mid
midi
avi

mPeQ
mpg
mpe
inf

pdf
zip
exe

ps

dvi

text/html
text/html

text/plain

text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
image/jpeg
image/jpeg
image/jpeg
image/gif
image/tiff
image/tiff
image/bmp
audio/basic
audio/x—wav
audio/x—wav
audio/basic
audio/x~midi
audio/x—midi
video/avi

video/mpeg
video/mpeg
video/mpeg
application/xhview

application/pdf
application/unzip
application/octet-stream

applicatiOn/post5cript
application/x-dvi

Our configuration file starts out, as before, by specifying a default server

root, hostname, and DNS lookup. These items are fairly self-explanatory. How-

ever the next variable, GMTOffset is used to tell the server the proper time

relationship between local time and GMT (or UTC) standard. Due to the

variances in support for establishing GMT under 03/2 and NT, we’ll depend on

the user to tell us the explicit difference in hours and minutes. The Welcome

122

177

123

CHAPTER 8 THE HTTP/1.1 SERVER

variable gives the default filename to use if one is not specified by the client.

AccessLog and ErrorLog control where the respective access and error files are

written. The LogTime variable tells the server whether to use local time or GMT

within the log files.

In order to implement basic authentication, the server must have a way to

determine who has the proper authorization to View or change documents. This

includes access for methods such as GET and POST, but also the PUT and DELETE

methods. The access permissions need to be able to be specified independently of

one another however, so resources may be viewed by anyone, but only updated

by those with authorization:

Filename used for read access authorizations
ReadaocessName 3wdread

Filename used for write access authorizations

WriteAccessNarne 3wdwrite

The former applies only to read access while the latter applies to write access

to files. Depending on the operation requested by the client, we check the appro-

priate permissions:

Also specified in the file is a place to hold deleted resources.

#

DeleteDir is used to put store deleted resources
#

DeleteDir h: fbook/serverl . 1/delete/

If this keyword is set, when the remote client deletes a file using the DELETE

method, the original file will be stored here. The server administrator must then

periodically clean up the delete directory. This allows the user to call up in a

panic after having deleted the incorrect resource and to have the cool headed

administrator say “no problem.”

Then we come to one of the more important directives: PathAlias.

PathAlias is used to specify a translation between the paths requested by clients

and the actual location in the file system. This lets us use a URL of the form:

http: l/warp . rmt .utk. edu/l . 1

I78

123

124

IYiEfiiAIAFPRCH3RAAf

This would in turn map to:

h:\book\server1.l

In use, we can set up different roots for various document trees. It also

allows us to optimize some client caching by putting all of our image files in the

same directory which can be located by the same relative URL. Given images are

some of the biggest items your server will be sending, and the byte savings can be

quite large when the same images are repeated on multiple pages.

Our next directive, ExecAlias, does the same thing for our CGI scripts as
A1 iasPath did for documents. The format is the same as for A1 iasPath. The

last directive in the file is used to tell the server what the proper MIME types are

for various files in the system. The ExtType directive gives the file extension and

the proper MIME type to return for it. It allows us to specify that files named

Readme can be returned as plain text. It will likewise match a filename without
an extension.

The source to read and parse the configuration file is presented in

config . Cpp on the CD. The code presented in it is simple and therefore will be

skipped here.

8.2 The main program
Now let us take a look at the main function for the server:

volatile int iAccessLock = 0; // Ram semaphore for access logfile.
volatile int iErrorLock = 0; // Ram semaphore for error logfile.
void Stop(int iSigJ:

//

// main()
//

// Our main function and entry point
//

I79

124

125

CYIAPIER 8 3Y£EIJTIPIL1 SERVER

int main(int argc, char *arngM
{

int iPort = WWW_PORT;
int i,

iRC;
char sszdESlZ];
BOOL bNotDone = TRUE;

#ifdef _OSZ_

iRc = sock_init(); // Make sure sooket services are available
if (iRc 1: O}

{

oerr << “Error!" << endl;

cerr << “Socket services not available. Exiting." << endl;
return 1:

}

#elif __WINDOWS__
WORD wVersionRequested;
WSADATA wsaData;

wVersionRequested = MAKEWORD(1, l);

iRc = WSAStartup(wVersionRequested, &wsaData};
if (iRc !: 0)

{
cerr << "Error!“ << endl:

cerr << “Socket services not available. Exiting." << endl:
return 1;

}
#endif

iRC = ReadConfigi”3wd.cf“};
if (iRo J

{

cerr << "Error!" << endl;

cerr << "Error reading configuration file. Exiting." << endl;
return 1; // Exit on error.

}

i = 1;

while (i < ergo} // Check the command line args
I .

if {stromptargvii}, “—p") == 0]
{

// Set the port to user requested
sPort = (short) atoitargv[i + 1]};

180

125

126

THE MAIN PROGRAM

1 += 2:
}

else // Unknown arg, ignore it
{

cout << “Unknown argument \" << argv[i]
<< “\" ignored.“ << endl;

~ 1++;

}

signal(SIGABRT, (_SigFuno}Stop);
signaltSIGBREAK, (_SigFunc)stop};
signal{SIGINT, (_SigFuno)Stop);
signa1(SIGTERM, [_SigFuno)Stop);

cout << "w3d> Starting server on port number " << iPort << "."
<< endl;

Server();

#ifdef _¢WINDOWS__

WSACleanup(); // Cleanup for windows sockets.
#Iendif

// Now we're done

return 0;

//

// Stop
//

// Handle the signals and stop the server.

void Stoplint iSig}
{

#ifdef _WINDOWS_

WSACleanupl); // Cleanup for windows sockets.
#endif

exit{0);

I81

126

127

CHAPTER 8 THE HTTP/1.1 SERVER

Before our main function, we declare two important variables.

iAccess—Lock and iErrorLock are used as RAM semaphores for controlling

access to both the access log and error log respectively. Since we’re using threads

to handle each connection, we must serialize access to the log files. These integer

values are used with the fast RAM semaphore functions provided by Visual Age

C++. We must take care to initialize the values to zero so the semaphores are free

initially.

We start our main function by initializing our socket support for 03/2 with

the sock_init () call or for Windows with the WSAStartup () call. Both calls

serve to initialize socket support under the respective operating systems.

After this, we read the configuration file using the standard name 3wd . cf. If

there is an error, we print out a short error message to standard error and exit.

The reading of the configuration file is set before checking the command line

arguments on purpose. We want to allow any command line arguments to over-

ride the values in the configuration file. To simplify our programming, the

global variables are set before we check the command line. This way we do not

have to keep a separate set of possible command line variables to hold those val—

ues while the configuration file is read.

In the next section, we then read the command line arguments:

i = 1;

while (i < argc} // Check the command line args
{

if (StrcmplargVEiJ, "—p") == 0}
{

// Set the port to user requested
SPort 2 {short} atoilarngi + 1]);
i +: 2;

}

else // Unknown arg. ignore it
{

cerr << "Unknown argument \"“ << argv[i]

<< "\“ ignored." << endl;
i++;

}

The first thing to do is to skip over argv [0] , as it contains the program

name. Our index variable i is set to 1 to start. A while loop is used until i has

been incremented past the value of argo , thus checking all of the command line-

182

127

128

rrnrsssvrs

arguments. For our server, the only argument we’re supporting is for an alternate

port. We look for a —p and if found, use the next argument as the port number.

Once that is done, we must increment our index value by 2 to allow for the —p

and the port number. Any other argument is ignored and a short error message is
sent to standard error.

The next four lines set up the signal handlers to catch a break signal from the

user. This is used to allow the server to clean up after itself before closing. Once

those are set up, then we call the Server() function to actually handle the

incoming connections from the client. If Server () returns, as would happen on

an error condition, then WSACleanupU is called for the Winsoek version to

clean up any remaining soakets. 051’2 will automatically clean up sockets when

the program ends. Also shown in the code listing is the signal handler itself;

Stop () . It is simply called whenever an exception is caught and proceeds to
make sure WSACleanup {) is called for the Winsock version.

8.3 7796 server

The next part of the server is the filnction used to listen for requests from clients.

This is contained in the function Server { }:

//

// This function_accepts the incoming connections spawning the threads
// to handle the actual work.
//

void Server(]
{

Socket sSock, // Our server socket for listening
*sClient; // The client socket

int iRc: // Integer return code

cout << "w3d> Using port number " << sPort << ".
<< endl << ”w3d> ",-

if (I sSock.Create()) // If failure
{

cerr << “Error." << endl;

183

128

129

CHAPTER 8 THE HTTP/1.1 SERVER

cerr << "Cannot create socket to accept connections.“ << endl;
return;

}

sSock.Passive(sPort, REUSE_PORT}; // Go to passive model

for { ; ; l // Forever
{

sClient = sSock.Accept(); // Listen for incoming connections

if (sClient 1: NULL)
{

// We established a good connection, start a
// thread to handle it

iRc = _beginthreale3Conn, 0, STACKSIZE. (void *lsClient);
if (iRc == —1)

{
// Failure to start thread. Close the connection.

sClient—>Close();
delete sClient;

Using our socket class, the code here is very simple. The firsr thing we do is

announce on what port we’re listening. Next, we create a socket using
sSock . Create (i from our socket class. Ifwe fail, we announce that and return,

otherwise a call to sSock.Passive (sPort, REUSE_PORT) puts our socket into

listen mode. We specifir the REUSE_PORT option to make sure our daemon

receives the port from the TCP/IP stack.

Now at this point, we’re ready to accept incoming connections. We start an

infinite for loop and wait for a connection in the sSock.Accept() call.

Accept {) will return a pointer to a new Socket class instance when a connece

tion is made. We verify that the class instance is valid and then call

_beginthread()tolnuufletheconnecdon. ,

Our next operation is to start a secondary thread to actually handle the

incoming HTTP connections. We use the C library call _beginthread(). If

you are not familiar with using threads in your programs, then a short

explanation is in order. Each thread in a program operates as an independent

184'

129

130

TYfiESERVER

order of execution. They do share a common address space and any global vari-

ables are accessible by any thread in the process. This gives both advantages and

disadvantages. By sharing a common address space, threads are sometimes

referred to as a lightweight process. Each operates independently, but does not

require a separate process, just its own stack and processor context. But just as

this is an advantage, it also means ifone thread causes an exception, all threads in

the process will fail.

Our call to _beginthread(} I requires four arguments for the IBM Visual

Age C++ compiler. Other compilers may support a different number of argu—

ments. Check your compiler’s documentation for details. The first argument is

the address of the filnction to start. This function must be declared using the

_Optl ink calling convention. The second argument is a holdover from 08/2

1.x days when the address of the bottom of the stack was needed. Stack allocae

tion is now handled automatically by 08/2. The third parameter is the size of

the stack for the thread. As mentioned previously, the stack allocation is handled

automatically, so we specify a generous size. The last parameter is a pointer

which is passed as the only argument to the Function. This is where we can pass

. thread specific information. 'Since only 4 bytes are passed by the system, a

pointer to a data structure is a common argument to pass. The code here passes a

NULL value since we have no need to pass a parameter to the server thread.

Our call to _beginthread() here specifies starting W3Conn () and passing

it a pointer to the Socket class instance as a parameter to the new thread. This

gives us a tidy package with which to start the connection. Our last bit of work

here is to make sure a new thread was actually started to handle the connection.

If the call failed, we close the socket and delete the class instance.

The next fimction is W3Conn{). This is the function with which the new

thread starts executing in order to serve the incoming request:

//
// W3Conn
//

// This is our worker thread to handle the actual request.
//

void fiOptlink W360nn[void *arg}
{

Socket *sClient;

185

130

131

CHAPTER 8 THE HTTP/1.1 SERVER

char *szRequest, *szUri, *szVer;
int iRc;

sClient = (Socket *Jarg; // Get the pointer to the socket

// Resolve the IP Name if requested.
if [bDnsLookup == TRUE}

{
sClient—>ResolveName[);
}

szRequest = new char[SMALLBUF];
szUri = new charISMALLBUF];
szVer = new char[SMALLBUF];

iRc = sClient—>Recheol[N0_EOL); // Get the message

// Parse the components of the request

sscanf(sClient—szOutBuf, "%s %s %s", szRequest, szUri, szVEr];

if (stricmptszVer, "http/l.0") == 0)
{

DoHttplUisClient, szRequest, szUri);
}

else if (stricmp(szVer, "http/l.1") == 0}
{

iRc = DoHttplltsClient, szRequest, szuri);
while (iRc =: TRUE) // Do persistent connections.

{

sClient—>Recheol(NO_EOL);
sscanf{sClient—>szOutBuf, "%3 %s %s", szRequest,

szUri, szVer);

iRC = DoHttplltsClient, szRequest, szUri);

}

else // Treat this request as a HTTP/0.9 request.
{

DoHttp09{sC1ient, szRequest, szUri];
}

delete [] szRequest;
delete [I szUri;
delete [J szVer;
delete sClient;
return;

// ——

I86

131

132

THE AUTHORIZATION MODEL

When we find szVer equal to HTTP!1.1, we call the function DoHttpll ()

to actually process the request:

iRc = DoHttplllsClient, szRequest, szUri);
while (iRc == TRUE) 'l/ Do persistent connections.

{

sClient—>Recheol(ND_EOL);

sscanf(sClient—>szOutBuf, "%s %s %s", szRequest,
szUri, szVEI);

iRc = DoHttpll(sClient, szRequest, szUri);

Since persistent connections are the default behavior for HTTP/1.1, we loop
over the connection until the client tells us it wants to close. The return value

from DoHttp11() will be FALSE when the client sends the Connection:

close header to us. Inside our loop, we simply grab the request line, parse it out
and call DoHttpll [) each time.

-I 8.4 The authorization model

Before we go further, let us take a look at what is required to support the separate

read and write accesses. First from the header file util . hpp:

//

// Authorization codes.
//

#define ACCESS_OK 1 // Allow access.
#define ACCESS_DENIED 2 // NEed authorization.
#define ACCESS_FAILED 3 // Credentials failed.

#define WRITE_ACCESS 1 // Check write access
#define READ_ACCESS 2 // Check read access

The defines here are used within the server to define the different failure

codes and types of access requested. Whenever a client makes a request, the

server calls the CheckAuth() function to determine if access is allowed. If an

187

132

133

CTiAPYER 8 IYiEffTTYVLI SERVER

access file is present, then this function does the necessary work to determine

whether or not the current request is granted access.

//

// CheckAutht)
//

// This function will scan the directory tree for an access file.
// If found it will either verify the authorization if present in the
// Headers variable and return a challenge otherwise.
//

int CheokAuth(char *szPath, Headers *hInfo, int iType]
{

char *sszpPath, *sthr,
*szName;

int 1,

iRc:
BOOL bNotFound = TRUE;
struct stat sBuf;

if (iType == READ_fiCCESSJ // Check for read or write access.
{

szName = szReadAccess;
}

else

{

szName = szWriteAccess;
}

sszpPath = strdup(szPath};

l = strlentsszpPath] — 1;

{I Look for the access filename-
while {bNotFoundl

I

while ((1 > 0} && [sszpPath[1] != '/‘]J
{

sszpPath[l] = NULL;
l--:

if {1 == 0} break; I/ Stop. Nb more path left.
l-—: // Go before the “/" for the next attempt.

188

133

134

RECZU533‘AIED RESIK)AQH?}{EA1)ERS

strcat(sszpPath, szName}; // Create filename.
iRc = stat(sszpPath, &sBuf);
if {iRc == 0) // We found the file.

{

iRc = CheckFileIsszpPath, hInfO);
bNotFound = FALSE;
continue;

}
}

delete [] sszpPath;

if (bNotFound == TRUE} // No access file found. Return ok-
{

return [ACCESS_OK);
}

return [iRc};

The first step after starting the function now is to check the value of iType

passed in. If we match the READ_ACCESS value, we assign szName to point to

I szReadAccess. For matching wRITE_ACCESS, we use szWriteAccess instead.

The CheckFi1e{) function is called to verify the given username and password

against what is in the access file. The function can be found in the util . cpp file
on the CD.

8.5 Request and response headers

With HTTP/1.1, the number of headers defined by the protocol has gone up

tremendously. In order to handle the increased number and to just handle the

increased amount of data in general that we track during each transaction, we

have created a class called Headers. Herewith is part of the headers.hpp
include file:

//

// The Headers class contains most of the information used during
// a connection with a client. The header lines, the method, the

189

134

135

CHAPTER 8 THE HTTP/1.1 SERVER

// URI, and various other bits used to service a request.
//

class Headers

{

public:

Headersl);
~Headers[);

int Rcheaders(Socket *sClient);

int CheckHeaders();

int FindRanges(int iSize);

char *szMethod,
*szUri,
*szVer,

*szQuery,
*szAuthType,
*szRemoteUser,

*szAccept,

The Headers class contains the complete set of information pertaining to a

single HTTP request. Most data members mimic an HTTP! 1.1 header and as

such, just hold that information. A few are there to hold other information per-

taining to the request and we’ll go over them also. The first two member func—
tions we examine relative thereto are the constructor and destructor:

//
// Headers
//

// The ctor initializes most values to NULL for safety and easy
// checking.
//

Headers::Headers(}
{

szMethod = NULL;

szUri 2 NULL;
SzVEr = NULL;
szQuery = NULL;

SzAuthType : NULL;
szRemoteUser = NULL;

szAccept = NULL;

szAcceptCherset NULL;

190

135

136

szAcceptEncoding = NULL;
szAcceptLanguage = NULL;
szAge = NULL;

szAllow = NULL;
szAuth = NULL;
szCacheControl = NULL:

szConnection = NULL;
szContentBase = NULL:

szContentEncoding = NULL;
szContentLanguage = NULL;

SzContentLength = NULL;
SZContentLocation = NULL;
szContentMDS = NULL;

EzContentRange = NULL;
SzContentType : NULL;
SzDate = NULL;

szETag = NULL;

szExpires = NULL;
SzFrom : NULL;
SZHOSt = NULL;

szIEModSince = NULL;
szIfMatch = NULL;
szIfNoneMatch = NULL;

szIfRange = NULL;

5 z I EUnmodSince = NULL;
szLastMod = NULL;
SzLocation = NULL;
szMaxForwards = NULL;

SzPragma = NULL;

szPublic = NULL;
SzRange = NULL;

szReferer = NULL;
szRetryAfter = NULL;
szServer = NULL:

szTranSferEncoding = NULL;
szUpgrade = NULL;
SzUserAgent = NULL;
szVary = NULL;
SZVia = NULL;

SzWarning = NULL;
szWWWAuth = NULL;
SzDate = NULL;

SZRealm = NULL;

ttIfModSince = 0;
ttIfUnmodSince = 0;

bPerSistent = TRUE;

ulCOntentLength = 0;

136

REQUEST AND RESPONSE HEADERS

191

137

CHAPTER 8 THE HTTP/1.1 SERVER

szIfMatchEtags = NULL;

szIfNoneMatchEtags = NULL;
rRanges = NULL;

iRangeNUm = 0;
bChunked = FALSE;

//
ll ~Headers
//

// The dtor deletes any memory stored in the class instance.
//

Headers::~Headers(}
{

int i;

if [szMethodl delete [] ezMethod;

if (erri) delete [] erri;
if [szVer) delete [] szver;

if {szQuery} delete [] szQuery;
if (szAuthType) delete [] szAuthType;
if {szRemoteUser} delete [] szRemoteUser;
if (szAccept) delete I] szAccept;

if tszAcceptChareet) delete [] szAcceptCharset;

if (szAcceptEncoding) delete [J szAcceptEncoding;
if (ezAcceptLanguageJ delete [] szAcceptLanguage;
if {szAgel delete [] azAge:
if [ezAllow] delete [] szAllow;
if (ezAuth) delete [] ezAuth;

if (szCecheControl) delete [] ezCacheControl;
if (szConnection) delete [] szConneetion;
if (szContentBase) delete [] szContentBase;
if (szContentEncoding) delete [] szContentEncoding;

if (szContentLanguage) delete [] szContentLanguage;
if (szContentLength) delete [] szContentLength;
if (szContentLocationl delete [] szContentLocation;
if (szContentMDS) delete [] szContentMD5;
if (szContentRangeJ delete [] szContentRange;

if (szContentTypeJ delete [J ezContentType;
if {szDate} delete [] ezDate;

if (szETagl delete [] szETag;
if {szExpireeJ delete [J szExpiree;
if (strom) delete [] strom;
if (szHost) delete [] szHost;

if (szIfModSineel delete [] szIfModSince;

137

138

REQUEST AND RESPONSE HEADERS

if {szIfMatch} delete [] szIfMatch;
if (szIfNoneMatch) delete [] szIfNoneMatch;

if (szIfRange) delete [] szIfRange;
if (szIfUhmodSince) delete [] szIfUnmodSince;
if (szLastMod) delete [] szLastMod;
if (szLocation) delete [] szLocation;
if (szMaxForwards) delete [] szMaxForwards;

if (szPragma) delete [] szPragma;
if (szPublic) delete [] szPublic:

if (szRange) delete [] szRange;
if [szReferer) delete [] szReferer;

if (szRetryAfter) delete [] szRetryAfter;
if {szServer) delete [] szServer;
if (szTransferEncoding) delete [] szTransferEncoding;
if (szUpgrade) delete [] SZUpgrade;

if (szUserAgent) delete [] szUserAgent;
if (szVaryl delete [J szVary;

if (szViaJ delete [] szvia;

if (SZWarning) delete [] szWarning;
if (SZWWWAuth) delete [] szWWWAuth;
if (szDateJ delete [] szDate;
if (szRealm) delete [J szRealm;

if (szIfMatchEtags)

for (i = 0; szIfMatChEtags[i] 1: NULL; i++)
{

delete [] (szIfMatchEtags[i]};
}

delete [] SzIfMatchEtags;
}

if (szIfNoneMEtchEtagS)
{

for (i = 0; ezIfNoneMatehEtags[i] != NULL; i++)
{

deIEte [] (szIbeneMatchEtagS[i]l;
}

delete [] SzIfNoneMatChEtagS;
}

if (rRanges != NULL) delete I] rRanges;

The etor function is very simple. It makes certain everything has a default

value. The reason for this is to make our coding easier when using the class. We

want to be able to check for the presence of a particular header by checking if it

193

138

139

CHAPTER 8 KHEJ¥TTRH.ISERVFR

has a value. By explicitly assigning NULL to the character pointers, we can use

logical expressions such as:

if (h—bszAccept != NULL}

This leads to an easy-to—understand programming style and coding. If we

did not initialize the pointers to NULL, it would be likely that an expression such

as this would be true, but for h—>SZACCept to point jusr about anywhere in the

system would cause a crash as soon as we tried to use it.

We also initialize several byte counters and time counters to 0 to signify

being empty. Likewise, assigned are default values for a couple of Booleans.

bPersistent tells us whether or not to keep alive the connection with the client

while bChunked tells us whether to receive a chunked encoding from the client.

The destructor is also rather straightforward. It just checks for allocated

memory and frees any it finds. The only tricky parts are handling the memory

deallocation for 52 IfMatChEtagS and for 52 I fNoneMatchEtags. Both of these

are pointers to pointers, so we must be sure to free all the memory. To do this,

we loop through the array values of each, and free the character strings stored

there. Once all of the substrings are taken care of, we free the main pointer to

pointers. The rRange variable is similar, but only one-dimensional in nature, so

only a single delete operation is needed.

The Rcheaders (} fimction is next:

//

// Rcheaders{}
//

// Receive the rest of the headers sent by the client.
//

int

Headers::Rcheaders(Socket *sClient}
{

char *sszr,

sszr char[SMALLBUF];
II aS

194

139

140

do

REQUESTAND RESPONSE HEADERS

iRc = sClient—>Recheol(NO_EOLJ; // Get the message.
if (iRc < 0] break;
if [sClient—>szOutBuf[O] == NULL} break;

sszp = sclient—>SZOutBuf;

if (! isspacetsszDIOJJ) // Replace the header if not
// continuation.

{

i=0;
while {[*sszp != ‘:'J && (*sszp)) // Until the

{ // delimiter.

sszr[i] = *sszp; // Copy.
i++; // Advance.
SZTmp++;

}

sszr[i] = NULL; // Properly end string.
strlwr(sszr); // Lowercase only.

}

sszp++; // Go past the ':' or ' '.

while ((*sszp == ' ') && (*sszp)]
{

sszp++; // Elimina
}

switch(sszr[0])

te leading spaces.

{
case 'a':

I

if (strcmp(sszr, “accept"l == 0)
{

if (szAccept)
{

szBuf = new char[str1en[szAccept) +
strlen(sszp] + 2];

sprintf(szBuf, “%s,%s', szAccept, sszp};
delete [] szAccept;
szAccept = szBuf;

}
else

{

szAccept = strdup(sszp);
}

}

else if (strcmp(sszr, "accept—charset") == 0)
{

195

140

141

CHAPTER 8 THE HTTP/1.1 SERVER

if (szAcceptCharset)
{

SzBuf = new char[strlen{szAcceptCharset) +
strlen(sszpJ + 2]:

sprintf(szBuf, “%s,%s“, szAcceptCharset, sszp):
delete [] szAceeptCharset;
szAcceptCharset = szBuf;

}
else

{

szAcceptCharset = strdupisszp);
}

}

else if (strcmp(sszr, “accept—encoding") := 0)
{

if {szAcceptEncodingJ
{

szBuf = new char[strlen(szAcceptEncoding) +
strlen(sszp) + 2];

sprintflszBuf, "%s,%s', szAcceptEncoding,
sszp);

delete [] szAcceptEncoding;
szAcceptEncoding = szBuf;

}
else

{

szAcceptEncoding = strdup(sszp);
}

}

8136 if [Strcmp(sszr, “accept—language“) == 0)
{

if (szAcceptLanguage)
{

szBuf : new Char[strlen(szAcceptLanguage) +
strlen(sszp) + 2}:

sprintf(szBuf, “%s,%s“, szAcceptLanguage,
SZTmP);

delete [] szAcceptLanguage;
szAcceptLanguage = szBuf;

}
else

{

szAcceptLanguage = Strdup(sszp];
}

}

else if (strcmp(sszr, ”authorization“] == 0)
{

196

141

142

REQUEST AND RESPONSE HEADERS
if {szAuth} delete [] szAuth;
szAuth = strdup(sszp];

}

break;
}

case 'C':

{

if (strcmp{sszr, “connection”! == 0)
{

if (szConnection) delete [] szConnection;

szConnection = strdup(sszp);
if (stricmptszConnection, "close") == 0}

{

bPereistent = FALSE;

}

else if {strcmp{eszr, "content—length”) == 0}
f

if (szContentLength) delete [] szContentLength;
szContentLength = etrduptsszp);
ulContentLength : atoliszContentLength);

}

else if (strcmp(sszr, "content—type“) == 0}
{

if [szcontentType} delete [] szContentType;
szContentType = strdup(sszp};

}
break;

}
case ‘d':

{

if {etrcmp(sszr, "date"! == 0]
. {

% if (SzDate) delete [] szDate;
f SzDate = etrduptsszp};

}
break;

}
case 'f':

{

if (strcmptsszr, "from") :2 0}
{

if {strom} delete [] strom;
strom = strdup(sszp);

}

break;
}

I97

142

143

CHAPTER 8 THE HTTP/1.1 SERVER

case 'h':

{

if (strcmp(sszr, “host") == 0)
{

if (szHostJ delete [] szHost;
szHost = strdupieszp);

}
break;

}
case 'i':

{

if (strcmp(sszr, ”if-modified—since“) := 0)
{

if (szIfModSince) delete [] szlfModsince;

SzIfModSince : strdup{sszp);
ttIfModSince = ConvertDate{szIfModSince};

}

else if (Strcmpisszr, “if—match“) == 0}
{

if (szIfMatch)
{

szBuf = new char[strlen(szIfMatchJ +

strlen(sszp} + 2];

sprintf(szBuf, '%s,%s", szIfMatch, sszp}:
delete [] szIEMatch;

szIfMatch = szBuf;
}

else

{

szIfMatch = strdup(sszp);
}

}

else if {strcmp(sszr, “if—none—match") == 0)
{

if (szIfNoneMatch)
{

szBuf = new char[strlen(szIfNoneMatch) +

strlen(sszp) + 2];
sprintf(szBuf, '%s,%s", szIfNoneMatch, sszp);
delete [] szIfNoneMatch;
szIfNoneMatch = szBuf;

}
else

{
szIfNoneMatch = strdup£sszp);

}

198

143

144

else if {strcmp(sszr,
{

if (szIfRangeJ
szIfRange =

}
else if {strcmpisszr,

{
if

szIfUnmodSince
ttIfUnmodSince

}
break;

if (strcmp(sszr,
{

if {szRange}
szRange =

}

else if (strcmp(sszr,
{

if (szReferer)
szReferer =

}

break;
}

case

{

't':

if (strcmp{sszr,
{

{szIfUnmodSince}

"range"}

“transfer-encoding")

REQ UEST AND RESPONSE HEADERS

"if-range") —— 0)

delete [] szIfRange;
strdup(sszp}:

"if—unmodified—since") 0)

delete [] szIfUnmodSince;

2 strdup(sszp):
= ConvertDate(szIfUnmodSince);

0}

delete [] szRange:
strdup(sszp}:

"referer“) O)

delete [] szReferer;

strdup(sszp}:

0)

if (szTransferEncoding)
delete H

{

szTransferEncoding;
szTransferEncoding =
if (stricmp(szTransferEncoding,

strduptsszp):
"chunked"} 0}

bChunked = TRUE;

}
break;

}
case

{

lul:

if [strcmptsszr,
{

if (szUpgrade)
szUpgrade =

II upgrade II J

delete

Strdup(sszp};

0}

[] szUpgrade;

199

144

145

CHAPTER 8 THE HTTP/1.1 SERVER

}

else if (strcmplsszr, "user—agent") == 0)
{

if {szUserAgentl delete [] szUserAgent;
szUserAgent = strdup(sszpl;

}

break;
}

}

}
while (SClient->520utBuf[D] != NULL];

delete [] sszr;

// Now determine if we received any etags.
if (szIEMatch != NULL) szIEMatchEtags = Etag(szIfMatch};
if (szIfNoneMatch != NULL} szIfNoneMatchEtags =

EtagtszIfNoneMatch];

return iRc;

This member filnction is basically an expanded version of the

Rcheaders {) function found in the I-ITTPI' 1.0 server. We start out by allocat-

ing memory for our internal buffer and then entering the loop:

sszr = new char[SMALLBUF];

do

{

iRc = sClient->Recheol(NO_EOL}r // Get the message.
if (iRc < 0) break,-
if (sClient—:~szOutBuf[0] == NULL) break,-

The first step in the loop is to receive a line from the client. We do this, and

specify to leave off the end-of-line marker. After receiving the line, we must

check for any error condition which would end the loop. The first is checking

for an error when reading bytes from the socket. If an error was encountered by
the Socket class, then a return code of —1 is sent back. The next check is not for

an error condition, but for the blank line after the headers. The Socket instance

will have read the end-of—line marker, but will not return anything else on the

line. We break out of the loop for either condition.

200

145

146

REQUEST AND RESPONSE HEADERS

Next we must separate the header tag from its value, while checking for

headers which may have been continued across multiple lines:

sszp = sClient—>szOutBuf;
if (! isspace(sz‘l'mp[0]) J // Replace the header if not

i // continuation.
i = 0;

while ((*sszp != ':') && (*sszpll // Until the delimiter.
{

sszr[i] = *sszp; // Copy.
i++; // Advance.
sszp++;

}

sszrii] = NULL; // Properly end string.
strlwrtsszr); // Lowercase only.

}

SZTmp++: // Go past the ':' or ‘ '.

while ((*ssz == ' ') && (*sszp))
{

sszp++; // Eliminate leading spaces.
}

Using sszp for convenience, we assign it to point to the input buffer. We

then check to see if the line just read is a continuation line. It is a continuation

line if the first character of the line is a white space character. If it is not a contin-
uation line, then we must find the first “ : ” character in the line which marks the

break between the header name and the value. While we look for it, we copy the

header name into the SZHdI‘ buffer. Once found, sszr has a NULL appended to

it, and then it is converted to lowercase for comparison purposes. Outside of the

if statement, sszp is advanced until the first non»white space character in the

string is found.

By constructing the code in this manner, we gain something important. We

always have the header value stored in local storage between lines of input. When

handling continuation lines, we have to know what header name was used on the

previous line so we may append to it. If we simply made sszr point to the

beginning of sClient~>szOutBuf, then the header name would be lost when

we grabbed the next line. If the next line was a continuation, then we would be

in a bind. So we save the value in local storage and ifwe find a continuation line,

we don’t assign a new value to sszr. We still have the previous one to use.

201r

146

147

CHAPTER 8 THE HTTP/1.1 SERVER

At this point, we have both the header name and the header value. Now we

must figure out which header we just read and store it. To do this in an efficient

way, we use a combination switch and if—else tree to determine the header:

switch(ezfldr[0]}
{

case 'a':

{

if {strcmp(sszr, “accept") == 0)
i

// Do some processing.
}

else if (strcmp(sszr, “accept—charset") == 0)
{

// Do some processing.
}

break;
}

case 'C'

// And so on.

This shortened version shows the basic outline of how it is handled. The

switch statement keys on the first character in the header name. This allows us

to divide the subsequent if-else trees into at least twenty—six different struc-

tures, although for HTTP/1.1 headers, we don’t use all twenty-six letters. Instead,

with the correct case statement, we only have, at most, five comparisons to make

to determine which header it is. To improve the hit ratio slightly, we could order

the comparisons within the case statements in the frequency in which we expect

to see the header. The current order is pretty close anyway, so the gain would

probably not be worth it over keeping the alphabetic order for maintenance.

When we match on a comparison, there are a couple of different constructs

we use to save the values. The first is for a header which may be continued over

multiple lines.

if (ezAccept)
{

SzBuf = new char[strlen{szAccept) + strlenlsszp) + 2];
sprintftszBuf, “%s,%s", szAccept, sszp);
delete [] szAccept;

202

147

148

REQUEST AND RESPONSE HEADERS

szAccept szBuf;

}
else

{

szAccept = Strduplsszp);
}

We start here by checking to ascertain if the header has already been

assigned a value. If it has, then we’re adding to what is currently saved. To do

this, we allocate a new buffer large enough to hold the current value, plus the

new value. You must also take care to leave enough space for the ending NULL,

plus the comma between the values. The next line uses sprintf () to join the

lines together, putting a comma in between them. We then delete the old value

and assign the newly created bullet to the header variable. If there is not a value

assigned to the header variable yet, we simply use strdup (l to assign one.

The next way in which we save a value is to utilize those which cannot span

multiple lines:

if (strcmp(sszr, "connectiOn") == 0)
{

if (szConnection) delete I] szConnection;

szConnection = strdup[sszpJ;
if (stricmplszConneetion, “close") == 0}

{

bPersistent = FALSE;
}

Using this code, we check to see if the header variable has already been

assigned a value. If it has, we delete the current value and then assign a new

one using strdup {) . Also shown here is an additional check done for the value

of ezConnection. If we find the Connection header, we check to see if its

value is close. If it is, then bPersistent is assigned a value of FALSE so the

persiStent connection ends in W3 Conn () .

Other headers which will require additional processing include

Content—Length, If—Modified—Since, If—Unmodified—Since, and

Trans fer—Encoding. When we encounter these headers, we convert the value

to our internal use value which may be either a length, time, or Boolean flag.

203

148

149

CHAPTER 8 THE HTTP/1.1 SERVER

Once outside of the receiving loop, only a couple ofhousekeeping chores are

left. The first is to free the dynamically allocated memory used in szI—Idr. After

that, we check for entity tags:

// Now determine if we received any etage.
if (szIfMatch != NULL) szIfMatchEtage = Etag{szIfMatch);

if (szIfNoneMatch != NULL) ezIfNoneMatchEtags =
Etag{szIfNoneMatch);

The private member function Etag separates out the individual entity tags

into the character arrays where we can use them:

//

// Etag
//

// Retrieve the etage sent by the client.
//

char **

Headers::Etag(char *SzTags]
{

char *Sthr, *szstart, **szEtags, chp;

int i, j;

// Find out how many tags are expected.
i=0:
sthr = szTags;

while (*Sthr 1: NULL)
{

if (*eth == ','} i++;
SZPtr++;

}

// A minimum of 2. One for a tag and one for a NULL marker.
i += 2;

szEtags = new char * [1);
for (j = 0: :i < i: :i++}

{

szEtags[j] = NULL;

j = 0;
sthr = szTags;

while (*sthr != NULL)

204

149

150

REQUEST AND RESPONSE HEADERS

{

while ((isspace(*sthr}) && (*sthr 5: NULL) J
{

sthr++;

}

if (*sthr == NULL) continue; // Escape.
szStart = sthr;

if (*sthr == 'W') sthr += 2; // Bypass weak indicator.
if (*sthr == ‘*')

{

szEtagsEj] = strdup("*"): // Match any.
break;

}

sthr++; // Advance past the <"> mark.
while ([*sthr {2 '”'J && {*sthr !2 NULL})

{

sthr++; // Look for end of etag.
}

if (*sthr == NULL) continue; // Escape.

sthr++; // Past the ending <"> mark.
CTmp = *sthr; // Save character temporarily.
*sthr = NULL; // Hark end of string of current etag.
szEtags[j] = strdup{szStart); // Save it-
:i++; // Count it.
*sthr = chp; // Restore character.
while ((*sthr != ',‘) && (*sthr != NULL))

{

sthr++; // Advance to start of next etag or end—of—line.
}

if (*sthr == ',') sthr++;
}

return szEtags;
}

// --

This little function goes back to nasty C pointers to accomplish its work.

The first thing to do is to find out how many entity tags to expect. To do this,

we count the number of commas found. This may end up c0unting more than

are actually present, since a comma could be contained within an entity tag.

What we do assure ourselves of is not undercounting, which is more important.
Once we have c0unted the number of commas, we add 2 to the value to allow

for a minimal case where we only have a single tag (so there would have been no

205

150

151

y.

CHAPTER 8 THE HTTP/{.1 SERVER

commas counted). The extra is for one to be NULL and thus mark-the end of the

array. Memory is then allocated for the array of pointers present and each one is
SCIRJNULL. _

We start out the main part of the program by setting some initial values and

entering a loop:

j = 0:
sthr = szTags;
while (*sthr 1: NULL)

{

while ((isspace(*sthr)) && (*sthr 1: NULL) }
{

sthr++;

}

if (*sthr == NULL) continue: // Escape.

The variable j is used as our index value into the array of entity tags and is

initialized to 0. We also set our temporary pointer to the beginning of the line of

entity tags. Once in the loop, we have it continue until the end of the line is

reached (as indicated by *sthr being NULL). The first step taken in the loop is

to eliminate any leading white space characters from the string. Once out of that

loop, we check For NULL again and break ifwe find it. '

szStart = sthr;

if (*sthr == 'W'} athr += 2; // Bypass weak indicator.
if [*sthr == '*')

{

szEtagsij] = strdup("*"); // Match any-
break;

}

sthr++; // Advance past the <"> mark.

At this point, we have found the start of an entity tag, so we assign the

szStart pointer to remember where it begins. The next line checks for a weak

entity tag indicator. Our server does not generate weak entity tags, so any we

receive will be spurious. Now we check for the special case entity tag of ‘ * ' . If we

find it, we simply do a strdup [) into the next available spot of the SzEtagS

array and break out of the loop. Even if there are more, it doesn’t matter since

‘*' matches anything. On a normal entity tag, sthr would point to the

206

151

152

REQUEST AND RESPONSE HEADERS

beginning quote mark of the entity tag, so we advance past it. Now we have

found the start, so we need to look for the end of the entity tag:

while [(*Sthr 3: '"') && (*Sthr != NULL} J
{

sthr++; // Look for end of etag.
}

if (*sthr == NULL) continue; // Escape.
sthr++; // Past the ending e") mark.

The while loop goes through the line looking for the ending quote mark of

the entity tag. Once we break out of the loop, we check for a NULL value for

safety and then, if possible, advance past the ending quote mark we just found.

At this point we have szStart pointing to the beginning quote mark of the

entity tag and sthr pointing to the character just after the ending quote mark.

Now we need to save the entity tag:

chp = *sthr; // Save character temporarily.
*sthr = NULL; // Mark end of string of current etag.
szEtags[j] = strdup(szStart}; // Save it.

.j++; // Count it.

*sthr = chp; // Restore character.

In order to save the entity tag, but not trounce on any subsequent values, we

save the character sthr which currently points to the temporary variable chp.

Next, we assign NULL to *sthr thus ending the string pointed to by szStart.

We can simply use strdup () on the next line to save the value and then restore

the string to the original state on the final line.

In the last section of code within the loop, we advance sthr past the next
comma:

while { (*SZPtr I: ',‘) && (*sthr != NULL) J
{

sthr++; // Advance to start of next etag or end—of—line.
}

if (*sthr == ',') sthr++;

When the loop starts up again, it will either be at the end of the line and

quit, or it will be at the start of the next entity tag. Once out of the loop, we

207

152

153

CHAPTER 8 THE HTTP/LI SERVER

simply return szEtags as the result. The destructor for the class will take care of

freeing the memory later.

The next public member function of the Headers class is

CheckI-Ieaders (). This function does some consistency checks on the header

fields received from the client. There are a few ways in which clients can send

conflicting header information. An example would be sending an If—Match and

If—None—Match header with the same entity tag. Both cannot be valid at the

same time. The only time this is likely to happen is when the client is in some

sort of error state, or just plain broke. However, the server must be capable of

handling any legal and illegal combination of headers. In this example, both

headers may be present and both may have the same entity tag and it would be

legal. What it means however, is beyond the scope of the protocol and our server

rejects it outright. Let us take a look at the entire fiJnction now:

//
// CheckHeaders
//

f/ Check the headers received for inconsistent headers.
//

int

Headers::CheckHeaders[}
{

int i. j;

// Check for the host header first.

if (szHost == NULL) return FALSE;

// First check to make sure the If—Unmodified—Since time
// is not before the If—Modified—Since time.

if ((szIfModSince !: NULL} && (szIfUnmodSince 1: NULL))
{

if (ttIfModSince <= ttIfUnmodSincel
{

return FALSE;

}
}

// Now check for etags which match between If—Match and
// If—None—Match.

208

153

154

REQ UEST AND RESPONSE HEADERS

if {(szIfMfitch != NULL} && (szIfNoneMatch I: NULL))
{

for (i = 0; szIfMfitehEtags[i] I: NULL; i++}
{

for (j = 0; szIfNoneMetchEtags[j] != NULL; j++}
{

if {Strcmp(szIfMBtchEtags[i],
szIfNoneMatchEtags[j]) := 0}

return FALSE;

}

return TRUE;

The first check made in CheckHeaders () is for the Host header. This

header is required in all HTTP/1.1 requests. When it is not found, the server

must generate an error message to the client. The fimction returns FALSE when a

condition fails. The next possible and sometimes troublesome inconsistency
involves the If—Modified—Since and If—Unmodified—Since headers:

// First check to make sure the If—Unmodified—Since time
// is not before the If—Modified—Since time.

if ((szIfModSince 1: NULL) && (szIfUnmodSince != NULL))
{

if (ttIfUnmodsince <= ttIfModSince)
{

return FALSE;

}

If both headers are present, we must check to make sure the client has not

specified a paradox of time by presenting the If—Unmodi f ied-SinCe time-

stamp before the If—Modified—Sinee timestamp. If they do use this new time

keeping method, we reject the headers.

The last consistency check done is among the entity tags if both If -Match

and If—None—Match are present:

209

154

155

CHAPTER 8 THE HTTPHJ SERVER

// New check for etags which match between If—Match and
// If—None—Match.

if ((szIfMatch £= NULL) && (szIfNoneMatch != NULL}}
{

for (i = 0; azIfMatchEtags[i] 1: NULL; i++)
{

for (j = 0; szIfNoneMatchEtags[j] 1: NULL; j++1
{

if (strcmp(szIfMatchEtags[i],
szIfNoneMatchEtagsLjJ) == 0)

{
return FALSE;

}

For this check We loop through both sets of entity tags, making comparisons

between them. Though fairly processor intensive, it is unlikely both are present

to begin with. If both are present, it is unlikely that there would be many tags

defined for either one. So the match-checking should be fairly quick and defi—

nitely necessary. Again, ifwe do find a match, we return FALSE to signal that the
headercheckiafled.

The last member function is FindRanges (). Once again we have a fairly

involved function using numerous pointers to do the work. The HTTP/1.1 pro—

tocol allows a great deal of flexibility in specifying ranges. This flexibility for the
clients results in considerable work for the server:

//

ll FindRanges
//

// Locate and store the ranges sent by the client.
//

int

Headers::FindRanges(int iSize)
{

char *szBuf, *sszp;

int i, iNum, iLength, iIdx,
bError;

if (szRange == NULL} return 1; // Nothing to do.

210

155

156

REQUEST AND RESPONSE HEADERS

bError = FALSE;

sszp = szRange;
iNum = 1;
while (*sszp != NULL) // Count the number of ranges.

{

if {*sszp :2 ',') iNum++;
Sszp++;

}

rRangee = new Range[iNum]: // Space for them.
SzBuf = new charISMALLBUF];

// Now pull out the range numbers.
ildx = 0;

sszp = strchr(szRange, '=');
sszp++;

while (*sszp 1: NULL)
{

if (isdigit(*sszp)} // Found range start.
{

i F 0;

while (isdigit{*sszp}) // Advance past the digits.
{

szBuf[i] = *sszp;
i++;
Sszp++;

}

szBufEi] = NULL; ll Mark NULL and grab the start.

rRanges[iIdx].iStart = atoi(szBuf);

if (*sszp != '—'} bError = TRUE; // Wrong format.
sszp++;

if (isdigit(*sszp}) // Found range end.
{

i = 0;

while (isdigit{*sszp)} // Advance past the digits.
{

SzBqui] 2 *sszp;
i++;
Sszp++;

}

SZBuf[i] = NULL; // Mark NULL and grab the end.
rRanges[iIdx].iEnd = atoi(szBuf);

}

else // Use end—of-file as range end.
{

156

211

157

CHIAPTER 8 T?£EI¥TT?/LI SERVER

rRangesEiIdx].iEnd = iSize - 1;
}

iIdx++; // Advance to next spot.
}

else if (*sszp == 'e') // No start range given.
{

sszp++;
if (isdigit(*sszpl != TRUE) bError = TRUE;
1 = 0;

while (isdigit{*Sszp)i // Grab number of bytes-
{

BzBuf[i] = *sszp;
i++;
sszp++;

}

SzBqui] = NULL;
i = atoi(szBuf];

// The start will be so i bytes from the end of the file.
rRanges[iIdx].iStart = iSize — i — 1;
rRanges[iIdx].iEnd = iSize A l;
ildx++;

delete [] szBuf;

iRangeNum = iIdx;

if (bError == TRUE] ll Error in ranges.
{

delete [] rRanges:
rRanges = NULL;

iRangeNum = 0:
return 1;

return 0;

The first check necessary in this function is to make certain we received a

Range header from the client. Ifwe didn’t, we can quit and return immediately.
Otherwise we initialize a few data structures to start:

212

157

158

REHQELESY‘AFWD RESIHDFVSEFIIEAIlERS

bError = FALSE;
Sszp = szRange;
iNum = 1;

while {*sszp != NULL) // Count the number of ranges.
{

if (*sszp == ',‘) iNum++;
Sszp++;

}

rRanges : new Range[iNuml; // Space for them.
SzBuf = new Char[SMALLBUF]:

The first variable we set is our error flag, bError. Due to the complexity of

the function, it is easier to set a flag when there is an error and worry about it at

the end. The default, of course, is no error. Next we count the number of ranges

sent by the client by counting the number of commas in szRange. We initialize

Our counter to 1 as a minimum. Following the counting, we allocate the required

number of Range instances in an array to hold the range values sent by the cli-

ent. We also allocate temporary memory for the function here.

The main portion of the filnction takes part in a while, which keys on the

_NULL at the end of the string:

// NOW pull out the range numbers.
iIdX = 0;

Sszp = strchr(szRange, '=');
sszp++;

while (*sszp != NULL)
{

iIdx is our counter for the number of range values found and is initialized

to 0. We next find the start of the byte ranges by looking for the equal sign in the

string. By definition, the equal sign comes just after the token bytes in the

string. sszp is then advanced by one, which should be the start of the first byte

range. The loop itself continues until the end of the string marker has been

finally found.

Inside the loop we first check for a byte range which starts with a number:

if (isdigit(*sszp)} // Found range start.
{

i = 0:

while (isdigit{*sszpl) // Advance past the digits.

23

158

159

CHAPTER 8 THE HTTP/1.1 SERVER

szBufEi] = *sszp;
1++;

sszp++;
}

szBuf[i] = NULL; fl Mark NULL and grab the Start.

rRanges[iIdx].iStart = atoi(SzBuf);

The isdigit () function tells us whether or not we have a range start.

When we do, we must look for the end of the current number. The while loop

continues as long as we have numbers in a row. We store the number in szBuf

inside the loop and once outside, append the NULL. The last line then stores the

number in numerical form in the current rRange array. At this point we must

find out whether we have an open specification, which means fromt‘his byte

marker until the end of the file, or a closed range:

if (*SZTmp 3: '—'} bError = TRUE; // Wrong format.
Sszp++;

if (iedigit{*sszp)) // Found range end.
{

i = 0;

while (isdigitl*sszp)l // Advance past the digits.
{

SzBuf[i] = *Sszp;
i++;

Sszp++;
}

ezBuf[i] = NULL; I! Mark NULL and grab the end.
rRanges[iIdx1.iEnd = atoitszBuf);

}

else // Use end—of—file as range end.
{

rRanges[iIdx].iEnd = iSize — 1;
}

iIdx++; // Advance to next spot.

The first check done is for correctness of format. There must be a “—” char—

acter as the next character. Anything else is an error and sets our error flag to

TRUE. sszp is then advanced past the “—” and we test whether or not the next

character is a digit. If it is a digit, then the client has specified an ending range

number and we must grab it, just as we grabbed the beginning number. This

214

159

160

REQUEST AND RESPONSE HEADERS

time, the end number is stored as the iEnd member of rRangeS. This gives us a

complete byte range. If there was not a digit there, then the end—of—file is saved as

the end of the byte range. Our function has as its parameter the byte size of the

file. We save the file size —1 as the ending byte marker. The reason for one less is

that byte counting starts at 0 in HTTP! I. 1. The counter, iIdx, is then advanced

to the next spot in the array.

If the first character tested was not a digit, the only other valid possibility is

for it to start with a “—” which means to send the last so—many bytes of the file. If

the client specified —500 as a byte range, then we would routinely send the last

500 bytes of the file:

else if (*sszp == ’—‘) // No start range given.
{

sszp++;

if [isdigit(*sszp} l: TRUE) bErrOr : TRUE;
i=0;

while {iSdigit{*sszp)) // Grab number of bytes.
{

szBuf[i] = *sszp;
i++;
Sszp++;

}
SzBuf[i] = NULL;
i : atoi(szBuf);

// The start will be 1 bytes from the end of the file.
rRanges[iIdx].iStart = iSize — i — 1;
rRanges[iIdx].iEnd = iSize — l;
iIdx++;

In this section, we advance past the “-” we just found and then check to

make sure there is a number coming up next. If there is not a number, we have

encountered another syntax error and set the error flag. Otherwise we grab the

number ofbytes by advancing through the while loop until we run out ofnum-

bers. Once out, we convert the number we found to a numerical value and store

it in i. The beginning byte range in this case will be found by subtracting the

number given from the file size and then subtracting one more for the

HTTP:l 1.1 indexing. The end of the file is found by subtracting 1 from the file

size and we then advance our array index to the next available spot.

215

160

161

CHAPTER 8 THE HTTP/1.1 SERVER

The default else statement, if we didn’t find a digit or dash first, is to

advance the pointer by 1. This takes care of any white space, although none

should be present. Outside of the 100p, we only have a few housekeeping duties:

delete [] szBuf;
iRangeNum = iIdx;

if [bError == TRUE) // Error in ranges-
{

delete [] rRanges;
rRangeS = NULL;

iRangeNum = 0;
return 1;

}
return 0;

The first statement outside of the loop frees our locally allocated memory,

especially important in a multithreaded server program. The next statement

saves the number of byte ranges found in the member variable iRangeNum. We

then check to see if the error flag was set while searching for byte ranges. If it

were, rRanges is freed and marked NULL. We also set iRangeNum to 0 to make

sure no inadvertent accesses are made on rRanges. Using normal C library style

returns, we return 1 on failure and O on success.

8.6 HTTP/1.1

In W3Conn () , the thread will call the DoHttpll () function to handle a

HTTP!1.1 level request. This filnction determines the exact request and handles

direction of other filnctions to return the proper response to the client:

//

H DoHttpll ()
/ /

// This function handles our HTTP/1.1 requests.
//

int DOHttpll(SOCket *SClient, Char *SzMethod, Char *SzUri)
'[

216

161

162

H?TYVL1

int iRc,

iRSp.
iType,
iMethod;

char *szReq,
*szPath,

*szSearCh;
Headers *hInfo;

long lBytes = 0;
BOOL bExec = FALSE.

ngi = FALSE,
bPersistent:

szReq : strdup(sClient—>szOutBuf}; // Save the request line.
iRsp = 200;
szSearch = NULL;
szPath = NULL;

sngi = NULL:
hInfo = new Headers{};

iMethod = CheckMethodtszMethod); // The request method.

I/ First, check for TRACE method.

if {iMethOd == TRACE}
{

// Do a trace, saving connection.
bPersistent = DoTrace(sClient, hInfo};

DeHexify{szReq);
WriteToLog(sclient, szReq, iRsp, hInfo—>ulContentLength);
delete [] szReq;
delete hInfo;
return bPersistent:

hInfo—>RcheaderS(sClient); // Grab the request headers.
bPersistent = hInfo—>bPersistent; // Find out if close

// Was requested.
iRc = hInfo~eCheckHeaders(); // Make sure none are inconsistent.

if (iRc == FALSE) // Bad request.
{

iRsp = SendErrortsClient.
"Missing Host header or incompatible headers detected.",

400, HTTP_l_1, hInfo);

DeHexifyiszReq);

WriteToLogtsClient, szReq. iRsp, hInfo->ulContentLength);
delete [] szReq;

217

162

163

CHAPTER 8 THE HTTP/L} SERVER

delete hInfo;
return bPersistent;

// Check for a query in the URI.
if ((Sszp = strchr(szUri, '?')) 1: NULL)

{
// Break up the URI into dOCument and and search parameters.
*sszp = NULL; // Append NULL to shorter URI.

sszp++; // Let sszp point to the query terms.
szSearch = strdup(sszp);
hInfo—>szQuery = strdupiszSearch};
if (Strchr(szSearch, ‘2') 1: NULL}

{

ngi = TRUE; // Only a cgi request can contain an
// equal Sign.

}
}

DeHexifytszUri); // Remove any eseape sequences.
hInEo->szMethod = strduplszMethod}; // Save a few items.
hInfo->szUri = strdup(szUri);
hInfo~>szver = strduptHTTP_l_l}:

szPath = ResolvePath{szUri); // Check for path match.
sngi = ResolveExeciszUri); // Check for exec match.

// New key on the request method and URI given.
if ((iMethOd == OPTIONS) 5:52 (SZPath I: NULL} }

{

iRsp = DoOptionstsClient, szPath, hInfo, GET);
}

// OPTIONS with a match on Cgi Path.
else if ((iMethod == OPTIONS) && (sngi 1: NULL})

{

iRsp = DoOptionstsClient, sngi, hInfo, POST};
}

// Generic OPTIONS.

else if {iMethod 2: OPTIONS)
{

iRsp = DoOptions(sClient, ”*". hInfo, UNKNOWN};
}

// Any POST request.
else if (iMethod == POST)

{

iRsp = DoExeclltsClient,‘iMethod, sngi, szSearch, hInfoJ;

218

163

164

IITTTVLI

// A GET or HEAD to process as a CGI request.
else if ({ngi == TRUE) &&

((iMethod == GET) | f (iMethOd == HEADJJ)

 iRsp = DoExeCll(sC1ient, iMethod, sngi, szSearch, hInfol;
}

// Any PUT request.
else if (iMethod == PUT)

{

iRsp = DoPut(sClient, hInfo, szPath, sngi);
}

// Any valid DELETE request.
else if ((imethod := DELETE) && (szPath I: NULL))

{

iRsp
}

l/ The default, probably a simple GET or HEAD.
else if (szPath != NULL)

DoDelete(sClient, szPath, hInfo};

{

iRsp = DoPathl1(sClient, iMethod, szPath, szSearch, hInfo);
}

// Error Condition.
else

{

iRsp = SendErrorlsClient, “Resource not found.“, 404,
HTTP_1_1, hInfo];

}

// This request now finished. Log the results.
DeHexify(szRqu;
WriteToLog(sC1ient, szReq, iRsp, hInfo—>ulContentLength};
delete [] szReq;
delete hInfo;

if [(szSearCh != NULL) && (ngi == FALSE])
{

unlink(szPath]; // The temporary search file.
delete [J szSearch;

}

if (szPath) delete [] szPath;

if (sngi) delete [] sngi;

return bPersistent;

219

164

165

CHAPTER 8 THE HTTP/1.1 SERVER

This function starts out allocating memory, as and when needed, and initial—

izing some variables:

szReq = strdup(sClient—>szOutBuf); // Save the request line.
iRsp = 200;
szSearch = NULL;
szPath = NULL;
sngi = NULL;
hInfo = new Headers();

We save the request line in szReq, set the default response code to 200,

assign NULL to three strings, and create a new instance of the Headers class for

this request. A note here about use ofpersistent connections: within w3 Conn [) is

where the loop occurs to handle persistent connections. This filnction is called

for each request which comes in. It would have been possible to loop within this
function instead, but the coding for looping outside the function is much sim-

pler. Also important is to know for certain that we won’t make a mistake in

coding and mix up parts of multiple requests. All of the data structures used are

created new for each request which comes in. The performance hit is worth it for

the clarity of coding and ease of fiiture maintenance.

Our next step is to determine which method is being used:

iMethod = CheckMethod(3zMethod]; // The request method.

// First, check for TRACE method.
if (iMethod == TRACE)

{

I! Do a trace, saving connection.
bPersistent = DoTrace(eClient, hInfo);

DeHexify(szReq);
WriteToLog{sClient, szReq, iRsp, hInfo—>ulContentLength);
delete [] szReq;
delete hInfo;

return bPersistent:

CheckMethod(} is called to determine the method used in the request line.

Once we have this information, our first check is for the TRACE method. We

check for it first, because of the nature of the TRACE method. When we service it,

we must return the headers, as we received them, to the client. Normally we

220

165

166

IJTYYV1.I

would receive the headers, which will change their exact makeup and order ifwe

use our Headers instance to just send them back. Furthermore, there may be

headers sent in the message of which our server is not aware. So within the

DoTrace (} function, we simply receive a line and then echo it back to the client.

The only thing checked, is for the existence of a Connection : close header to
determine whether to close the connection afterward or not. Once the function

completes and returns here, we go through our normal steps to log the connec-

tion and free memory.

Receiving and verifying the headers comes next:

hInfo—>Rcheaders(sClient); // Grab the request headers.
bPerSistent = hInfo—>bPersistent: // Find out if close was

// requested.
iRc = hInfo—>CheckHeaderS(}; // make sure none are inconsistent.

-if (iRc :2 FALSE) // Bad request.
{

iRsp = SendErrorIsClient,

“Missing Host header or incompatible headers detected.",
400, HTTP_1_1, hInfo);

DeHexifytszReq);

WriteToLog(SClient, SZReq, iRsp, hInfo—bulCOntentLength);
delete [1 szReq;
delete hInfo;

return bPersistent;

We use the Header class method RcheaderS (} as described earlier in the

chapter to receive the header lines from the client. Our persistence flag is then

assigned, based on h:nfo—>bPersistent. Next, we make a check on the con-

sistency of the headers. If any of the headers causes a problem, we send a 400

response back to the client, indicating an error has occurred. The message we

send is a bit generic and could be upgraded if we wanted to have

CheckHeadere {) return an error code instead of a Boolean value. In that case

we might return 0 on success, 1 if the Host header is missing, and so forth.

The next few lines of code perform our standard query string check on the

URI and the assigning of values from the request line to the hInfo variable.

Now let us take a look at our if—else tree which determines which path ofexe-
cution we take:

22]

166

167

CHAPTER 8 THE HTTP/1.1 SERVER

// Now key on the request method and URI given.
// OPTIONS with a match on Path.
if ((iMethOd == OPTIONS) 8:8: (szPath != NULL) 1

{

iRsp = D00ptions(sClient, szPath, hInfo, GET};
}

// OPTIONS with a match on Cgi Path.
else if ((iMethod =2 OPTIONS) && (sngi !: NULL] }

{

iRsp = DoOptionstsClient, sngi, hInfo, POST};
}

// Generic OPTIONS.

else if (iMethod == OPTIONS)
{

iRsp = DoOptions(sC1ient, “*", hInfo, UNKNOWN};

The first check we make in the tree is for the OPTIONS method. The first

branch handles resolving the URI to a path, the second to an executable path,

and the third to the generic case of H". We pass a flag value as the last parameter

to tell the DOOptions [) function what methods are allowed for a resource. The

next couple of branches check for a CGI request:

// Any POST request.
else if (iMethod :2 POST]

{

iRsp = DoExecll(sClient, iMethod, sngi, szSearch, hInfo);
}

// A GET or HEAD to process as a CGI request.
else if t (ngi z: TRUE) &&

((iMethod == GET) || (iMethod == HEAD”)

iRsp 2 DoExecllisClient, iMethod, sngi, szSearch, hInfo);

Our first check in this section looks for the POST method. Whenever we

receive a POST request, we automatically call the DoExec11[) function. The

other possibility is for the client to send a GET or HEAD.Wl’1iCh must be handled

by the CGI processor. This keys on the ngi flag set earlier. The next two cases

handle looking for PUT or DELETE:

// Any PUT request.
else if (iMethod =: PUT}

222

167

168

HTTP/1.}

iRsp = DoPutlsClient, hInfo, szPath, sngi);
}

// Any valid DELETE request.
else if (iMethod == DELETE}

{

iRsp DoDelete(sClient, szPath, sngi, hInfo);
ll

For the PUT method, we include both szPath and sngi, since it is possible

for the client to update either type of resource. For DELETE, we pass both possi-

ble cases to the DoDelete() function. Once inside the Function it figures out

which one to try and delete. This reduces the number of comparisons we do in
[he if—else tree.

Thus we have:

// A simple GET or HEAD request.

else if (((iMethod == GET} |[(iMethod 2: HEADJJ as
(szPath 1: NULL))

iRsp = DoPathllIlsClie-nt, iMethod, szPath, szSearch, hInfo):
_ }
// Unknown method used.
else if (iMethod == UNKNOWN}

{

iRsp = SendErrorisClient, "Request method not implemented.",
501, HTTP_1_1, hInfo};

}
// Error Condition.
else

{

iRsp = SendError(sClient, "Resource not found.”,
404, HTTPH1_1, hInfo);

The first check is for the common case of a GET or HEAD request. We also

must make sure the szPath resolved to a valid resource before executing

DoPathll {) . If we get past all of the previous cases, then we have two possible

error conditions to handle. The first is for an unknown method used by the cli—

ent. For an unknown method, we use SendError () to send a 501 code back to

the client. This indicates our server does not implement or understand the

request method. The last and default case will be used when nothing else

223

168

169

CHAPTER 3 THE HTTP/1.1 SERVER

resolves. The likely cause of this is a request for a non-existent resource by the

client. We simply send a generic 401 response for this case.

The rest of the function handles the logging and cleaning up of the resources

used by the request. This includes several dynamically allocated arrays, and the

Headers class instance. The function ends up by returning the bPersistent

flag to W3Conn{) where it is checked to determine whether or not to continue

the connection at that juncture.

8. 7 Finding t/oe Method
Something we need to do before exploring the different functions that support

the methods is to look at how to determine which method the client is using:

//
// CheckMethod
//

// Determine which method the client is sending. Remember
// that methods *ARE* case—sensitive, unlike most of HTTP/1.1.
//

int CheckMethodtchar *szMethod)

{

if (strcmp{szMethod, "GET“} =2 0)
{

return GET;
}

else if (strcmp(szMethod, "POST"} == 0)
{

return POST;
}

else if (strcmp(szMethod, "HEAD") := 0)
{

return HEAD;
}

else if (strcmp{szMethOd, "OPT:0NS") == 0}
{

re turn OPTIONS;

}

else if (strcmp(szMethod, “PUT“) == 0)

224

169

170

TRACE

return PUT;
}

else if (strcmp(szMethod, "DELETE”i == 0]
{

return DELETE;
}

else if {stromptszMethod, 'TRACE“} :2 0}
{

return TRACE;

}
return UNKNOWN;

This function is very simple. We just pass in a pointer to the method

requested by the client and do a series of strcmpl) function calls until we find a

match. In our header file, we defined the constants for each of the methods for

ease of use. We also define an UNKNOWN method in case someone tries something

we don’t know about. We do one optimization for this fimetion, with the order

of the evaluations prioritized in the expected frequency of the requests. We’ve

put GET first and TRACE last. Although minor, it should help a bit.

8.8 TRACE

Now let us take a look at the fiinetions required to support each method starting
with TRACE:

//
// DoTrace

//

// Perform a HTTP trace on the request just received.
{I

int DoTrace(Socket *sClient, Headers *hInfo)
{

ofstream ofOut:

char *szName, szBuf[SMALLBUF], *sszp;

225

170

171

CHAPTER 8 THE HTTP/1.1 SERVER

struct stat sBuf;

int iRC;
BOOL bPersistent = TRUE;

szName : tmpnam{NULLJ; // Request temporary filename.

ofOut.open{szName);
if [! ofOut)

{

hInfo—>Rcheaders(sClient);
bPersistent = hInfo—>bPersistent;
delete hInfo; _
SendError(SClient, “Server error.", 500, HTTP_1_1, hInfo);
return bPersistent;

}

while (sclient—>520utBuf[0] 1: NULL)
{

ofOut << sClient->szOutBuf << endl;
// Look for Connection header.

sszp = strchr{sClient—>szOutBuf, ':');
if (sszp != NULL]

{

*sszp = NULL;

sszp++;

if {stricmp(sClient—bszOutBuf, “connection"J == 0}
{

sscanf(sszp, "%s", szBuf);

if (stricmptszBuf, “close“) == 0)
{

bPersistent : FALSE;
}

}
}

sClient—>Recheol{N0_EOL);
}

ofOut.Close(];
iRc = stattszName, &sBuf);
if (iRc == 0)

{

sClient—>Sendt"HTTP/1.l 200 \r\n");
sClient—)Send("Server: ');
sClient—>Send(szServerVer);
sClient—>Send(“\r\n");

sszp = CreateDatettimetNULL)): // Create a date header.
if (sszp != NULL)

{

226

171

172

TRACE

sClient—eSend("Date: "l;
sClient—>Send(sszp);
5C1ient—>Send(“\r\n");
delete [] SZTmp;

}

sClient—>Send(“Content—Type: text/http\r\n");

hInEo—bulContentLength = SBuf.st_size: // Save the entity size.

sprintftszBuf, “Content—Length: %d\r\n", sBuf.st_size);
sClient~>Send{szBuf};
sClient—>Send("\r\n”};

iRc = sClient—>SendText(SzName};
}

unlink(szName);
return bPersistent;

The TRACE method is very easy to implement. Whenever it is received, we

simply send the headers of the request back to the client as an entity body. Since

_ we’re going to send the headers back verbatim, we first open a temporary file in
which to store them.

szName = tmpnam(NULL}; // Request temporary filename.
ofOut.open(szName);
if (I ofOut)

{

hInfo—bRcheaders[sClient);
bPersistent = hInfo~>bPersistent;
delete hInfo;

SendErr0r(5Client, “Server error.", 500, HTTP_1ul, hInfO);
return bPersistent;

The only check made here is to be sure the temporary file was opened suc-

cessfiilly. The occurrence would be rare, but for completeness, we go ahead and

grab the headers if the file open failed, and then send (or at least try to send) an

error reply back to the client. The reason for receiving the headers is twofold:

First to clear any incoming data before the next request, and second, to check for

the persistent connections header.

227

172

173

CHAPTER 8 THE HTTP/1.1 SERVER

Once we have the temporary file open, we start into a loop, saving lines to

the temporary file and looking for the Connection header:

while (sClient-rszOutBuf[0] != NULL)
{

ofOut << sClient—>szOutBuf << endl;
ll Look for Connection header.

sszp = strchr(sClient—>szOutBuf, ':');

if (sszp 2: NULL}
{

if (stricmp(sClient—>szOutBuf, "connection") == 0)
{

sscanftsszp, “%s", szBuf);

if (stricmp(szBuf, “close"l == 0)
{

bPersistent = FALSE;
}

}
}

sClient—>Recheol(NO_EOL};

At the top of the loop, we make our check for the end of the headers by

looking for a NULL incoming line. Inside the loop, the first step is to save the curr

rent line to the temporary file, since we’re going to mangle the line in the next

step. The next step consists of using strchr [) to locate the delimiting colon in
the header line. If we find it, we NULL it to mark the end of the field name. A

comparison is then made for the field name connection. If we succeed at this,

we pull the field value using sscanf () since it will eliminate any white space for

us and make the comparison for the close token. Finding the token sets the

bPersistent flag to FALSE. Outside of the if statement, the last line in the

loop receives another line from the client before we repeat the process.

Outside of the loop, we grab the size of the file using the stat () call and

then construct the necessary headers to return the message to the client. One

note here is to notice the Content—Type sent to the client is text/http. This

media type is specifically defined for the TRACE method by the protocol. Our last

step at this stage is to delete the temporary file and return the bPersistent flag
to end the function.

228

173

174

OPTIONS

8.9 OPTIONS

The DoOptions {) filnction handles all OPTIONS requests from clients. Depend—

ing on the values passed in, it sends the generic response, or one specific, to a

plain resource or execumble resource:

If

// DoOptions
//

// Figure out the options available for the specified resource.
//

int DoOptionstSocket *sClient, char *szPath, Headers *hInfo, int
iTypeJ
{.

char *sszp;

sClient~>Send["HTTP/l.1 200 OK \r\n"};
sClient—bSendt"Server: “};
sClient->Send(szServerVer);

9 sClient->Send("\r\n“);

sszp = CreateDateitimetNULLll: // Create a date header.

if (sszp != NULL)
{

SClient—>Send[“Date: “1:

SClient—>Send(sszpl;
sClient~>Send{"\r\n'];

delete [J szT-rnp:
}

sClient->Send("Accept—Encodings: \r\n");

if (stremp(szPath, "*“l == 0) // General options requested.
{

sClient~bSend{"Allow: GET, HEAD, POST, PUT, DELETE, TRACE\r\n");

sClient—>Send("Accept—Ranges: bytes\n\n");
}

else if (iType == GET]
[

sClient~>Send("Allow: GET, HEAD \r\n“);

sClient—>Send{"Accept—Ranges: bytes\n\n"];
}

else if (iType == POST]
{

229

174

175

CHAPTER 8 THE HTTP/1.} SERVER

sClient—>Send("Allow: POST \r\n“};
}

sClient—58endl "\r\n"J;

hInfo—>ulContentLength = 0;

return 200;

There are only a couple of things we do in this function to distinguish it

from a normal return. The fiinction starts by sending the standard Server and

Date headers. After this, we send the Accept—Encodings header, with no

value, to signify Our server does not accept any type of encoding on the entity

body. We next key on the value of szPath to decide whether or not to send gen-

eral options. If the value of szPath is the “*” character, dien the client has asked

for the general information on server capabilities. Our response to this is an

Allow header, which contains all of the methods We accept, plus an

Accept —Ranges header to signal out acceptance of byte range requests.

When szPath is nor “*”, we look at the value ofiType. Depending on the

resolution of the URI which DoI-It tpll () performed, the value passed in will

either be GET or POST. We send the appropriate A1 low header for each, plus the

Accept —Ranges header for GET. The server does not accept byte ranges for

POST. The final send is a blank line to signify the end of the headers.

8.10 PUT

The PUT method is new for HTTP/1.1. There were some uses of it in

HTTP! 1.0, but not enough to make the standard. The method is very simple in

concept: just accept the entity body in the requeSt and store it as the name in the

URI. Be on alert here for the permissions. You don’t want to let just anyone

write new files all over your server machine. The one aspect of PUT and DELETE

support I would change now would be to make the default behavior not give per-

mission, the exaet opposite of our security model. If this were a textbook, I

would just tell you it was an exercise for the reader, but since this isn’t, I’ll tell

230

175

176

PU?‘

you to check with me via email to see if I go back and revise the server. Knowing

me, I probably will. Enough prattling; let us take a look at the function:

//
// DoPut

//

// Save the entity sent as the specified URI.
//

int DoPut(Socket *sClient, Headers *hInfo, char *szPath, char *sngi)
{

struct stat sBuf;

char *sszp,
*szExt,
*szLoc,

szBuf [PATH_LENGTH] ,
stileEPATH_LENGTH];

ofstream omep:
int iRsp = 200,

iRC,

iType,

iIfUnmod,

iIfMetCh,
iIfNone,
i, j;

unsigned long uch;
BOOL bChunked = FALSE;

// Figure out where to store it.
if (szPath 1: NULL)

{
SZLOC = SzPath;

}

else if (sngi 1: NULL)
{

SZLOC = sngi;
}

else // Error. Cannot resolve location.

{

SendError(5Client, "Location not found.“, 404, HTTP_1_1, hInfo);
return 404;

iRe = CheckAuth(szLoc, hInfo, WRITE_ACCESS]; // Check for
// authorization.

231

176

177

CHAPTER 8 THE HTTP/1.] SERVER

if (iRc == ACCESS_DENIED) // Send request for credentials.
{

sClient-38end{"HTTP/l.l 401 \r\n");
sClient—>Send("Server: ”i;
sClient—>Send(szServerVerJ;
sClient—>Send{"\r\n”1;

sszp = CreateDate(time(NULL)}; // Create a date header.
if (sszp != NULL]

{
sClient—>Send{”Date: "J;
sC1ient—>Send(sszp);
sClient—>Send(“\r\n");
delete [J Sszp;

}

Sprintf(szBuf, "WWW—Authenticate: Basic realm=\“%s\"\r\n“.
hInfo—>szRealm};

sClient—>Send(szBuf);
sClient—>Send("Content—Type: text/html\r\n“};

Sprintf(szBuf, “Content—Length: %d\r\n“, etrlen(32401});
sClient-eSendiszBuf];
sClient—>Send("\r\n");
sClient—eSend(sz40l);
return 401;

}

else if (iRc == ACCESS_FAILED} ff Send forbidden response.
{

sClient—>Send("HTTP/l.l 403 Access Denied\r\n"};
sClient—>Send(“Server: “);
sClient—>Send{szServerVer};
sClient—>Send["\r\n“);

sszp = CreateDate(time(NULL)); // Create a date header.

if {sszp 1: NULL)
[

sClient—>Send(“Date: "l;

sClient—>Send(sszp);
sClient—>Send{"\r\n");

delete [] sszp;
}

sClientw>Send("Content—Type: text/html\r\n“);
sprintfiszBuf, “Content—Length: %d\r\n”, strlen{52403));
sClient—>Send(szBuf); '
sClient—>Send(“\r\n");
SClient—>Send{sz403);

return 403;
}

if (hInfo—>szRange 1: NULL) If Range not allowed for PUT.

232

177

178

PU?‘

{

SendErrortsClient, “Range header not accepted for PUT.", 501,
HTTP_l_l, hInfo);

return 501;
}

if (hInfo->szIfMOdSince I: NULL) // If-Modified—Since
{ // not allowed for PUT.

SendError{sClient,

"If—Modified—Since header not accepted for PUT.",
501, HTTP_1_1, hInfo);

return 501;

// Now check the If headers.

iIfUnmod = IfUnmodSince(hInfe, sBuf.st_mtime);
iIfMatch = IfMatch£hInfo, sBuf.st_mtime);
iIfNone = IfNOne(hInfo, sBuf.st_mtime};

if ({iIfUnmod == FALSE) || (iIfMatch 2: FALSE} |
(iIfNone == FALSE))

{
SendErrortsClient, “Precondition failed.", 412,

HTTP_l_l, hlnfo);
return 412;

}

// Accept the resource.
if {hInfc—>bChunked ::

{
bChunked = TRUE;

}

TRUE)

else if (hInfo->szContentLength :2 NULL] // They must supply a
{

SendError(sClient,
return 411;

}

tmpnamtstile);

omep.epen(stile, ios
if (! omep}

{

SendError(sClient,

// length.
"Length required.", 411, HTTP_1_1, hInfo);

;;binary);

“Legal processing error.“, 500,
HTTP_1_1, hInfo);

return 500;

if (bChunked == TRUE)
{

GetChunked(SClient , Omep, hInfo);

233

178

179

C¥£APTFR 8 I?LEI{T7TVLI SERVER

}

else // Use Content—Length instead.
{

i = 0;

while (i < hInfo—>u1ContentLength) // The actual resource.
{

j : sClient—>Recv[hInfo—>ulContentLength — i);
i+=j:
omep.write(sClient—>szOutBuf, j);

}

}

omep.close();

iRc = stat(szLoc, &sBuf); // Check for the resource.

uch = DosCopy(stile, szLoc, DCPY_EXISTING]:
unlink(stile); // Remove the temporary always.
if {uch != 0)

{

SendError(sC1ient, "Local processing error.", 500,
HTTP_1_1, hInfo] ,-

return 500;
}

if (iRc =: 0) // File exists. Overwrite it.
{

sClient—>Send(“HTTP/l.1 204 No Content\r\n");

iRsp = 204;
}

else // New resource

{

sClient—>Sendt"HTTP/1.l 201 Created\r\n");
iRsp = 201;

}

sClient~>Send{“Server: “};
sClient—>Send(szServerVer);
sClient—>Send("\r\n');

sszp = CreateDatettime(NULL)); // Create a date header.
if (sszp != NULL}

{

sClient—>Send{"Date: “);

sClient—>Send(sszp);
sClient—rSend('\r\n');

delete [] sszp;
}

sClient—>Send("\r\n"];

234

179

180

PU?“

hInfo—>ulContentLength = 0;

return iRsp;
}

The first step is to figure out where to place the entity. We do this by check-

ing the values of szPath and engi:

// Figure out where to store it.
if {szPath 1: NULL)

{
szLoc = szPath;

}

else if (sngi != NULL)
{

ezLoc = sngi;
}

else // Error. Cannot resolve location.
{

SendError(sClient, ”Location not found.", 404,
HTTP__1_1, hInfol .-

return 404;
}

Our if—else tree checks sz Path first. Ifit is not NULL, then we assign our

local pointer szLoc to point to it. The next branch checks sngi, while the final

branch sends an error message to the client.

We check for authorization in the next step, as we do for any method that

involves retrieving or placing an entity. The steps involved are the same as we’ve

seen in the past, so we won’t repeat the code fragment here. From the previous

code listing, you can see the call to CheckAuth (J , followed by the check of the
return value for either ACCESS_DENIED or ACCESS_FAILED. Either one causes

an error message to be sent to the client and ends the function.
This next check is a bit different from what we’ve done before:

if {hInfo—bszRange != NULL) // Range not allowed for PUT.
{

SendError(sClient, "Range header not aceepted for PUT.", 501,
HTTP_1"1. hInfO};

return 501;

255

180

181

CHAPTER 8 THEIJTTPH.ISERVER

if {hInfo—bszIfModSince != NULL) // If—Modified—Since
{ // not allowed for PUT.

SendErrortsClient,

“If—Modified—Since header not accepted for PUT.”,
501, HTTP_l_1. hInfo);

return 501;

With the PUT method, there are a couple of things our server refuses to do.

The first of these is support a byte range request for the PUT entity. While it is

possible to support a byte range insertion into a file, there are quite a few vari-

ables which make it uncertain all of the time. The single biggest obstacle is

exactly how to calculate the byte range. If considering the PUT operation as

updating a Web page, then you basically want to replace part of it. How many

times, in editing anything, do you inadvertently make changes which take up the

identical number of bytes as what it replaced? If you were working with fixed

length records, as in a database, then it would be possible to define an extension

range type which is the index number, and submit updates in that manner. We’ll
avoid those worms here.

The Other item we don’t allow is the specification of an

If—Modified—Since header. The HTTP! 1.1 standard specifically states that
this header is used as a modifier to the GET method. If we detect the header as

just being present, we return an error message to the client.

Now we must check the other If headers introduced by HTTP/1.1:

// Now check the If headers.

iIfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime};
iIfMatch : IfMatch(hInfo, sBuf.st_mtime);
iIfNone = IfNonelhInfo, sBuf.st_mtime);

if ((iIfUnmod =: FALSE) 1| {iIfMatch == FALSE} ||
(iIfNone == FALSE))

{

SendErrorlsClient, "Precondition failed.", 412,
HTTP#1#1, hInfo);

return 412;

The three headers represented here, If —Unmodified—Since, If—Match,

and If—None—Match, must be checked to make sure none failed. The calls to the

236

181

182

PU?‘
r—www m-mn- —- m— : —--—-=a—aur.' -:.urw;'_r_'_'_flm. .. -=m—.

respecrive funcrions perform the checks and return FALSE when any fail. If any

of the three failed, the 412 Precondition Failed code is returned to the client.

We'll cover the If functions a bit later in this chapter.

Now we’re ready to receive the resource From the client for Further process-

ing. In order to do so, we musr be able to determine the end of the entity body.

The two ways we have available to do this are chunkcd encoding and the alien t’s

specifiring a content length:

// Accept the resource.
if (hlnfo~>bchunked :2 TRUE)

{
bChunked = TRUE;

}

else if (hInfo—>szContentLength =: NULL)// They must supply

{ // a length.
SendErrorlsClient, "Length required.", 411, HTTP_1_1. hInfo};
return 411;

We check for chunked encoding firsr, by looking at hInfo—>bChunked. If

it’s TRUE, then the client has specified the entity body as being transferred using

the chunked method. If not, then we check for the Content—Length header to

tell us the number of bytes present. If this one fails, we send a 411 Length

Required code to the client and end the function.

A temporaiy file is opened now to hold the entity body as it is received from

the client. We then branch onto receiving methods:

if [bChunked == TRUE)
{

GetChunkedtsClient, omep, hInfo};
}

else // Use Content—Length instead.
{

i z 0;

while {i < hlnf0~bu1C0ntentLengthJ // The actual resource.
{

j = sClientw>Recv[hInfo—}ulContentLength — i);
'l+= j;

omep.writeisClient—>szOutBuf. j);

237

182

183

CHAPTER 8 THE HTTP/LI SERVER

For the chunked method, another function GetChunked(} is called. We’ll

look at it in a moment. For entity bodies specified by a length, the else branch

goes into a loop trying to receive the specified number of bytes. The construction

here is important to note. The Socket class Recv (1 function only tries to

receive the specified number of bytes, so it may return less. Thus, we must loop

through until we get the number we want, and each time we must adjust the

number for which we ask. Our temporary file has been opened in binary mode,

so a write (3 operation is used where the number of bytes to be written can be

easily specified.

Once the entity has been saved to the temporary file, We use the appropriate

OS API call to copy the new file over the top of the old one. The stat () call

just before is to determine whether the file was already there. If the file did exist,

we send a 204 No Content response to the client. If it is a new file, then a

201 Created is sent. Our Server and Date headers are sent, followed by the

empty line to mark the end of the headers. hInfo—bulContentLength is set to

zero since no entity was sent and iRSp is finally returned.

8. I I Iffunctions

In the last section, we made some calls to the If functions, which check the val-

ues of the conditional headers which may be present. Let us go ahead and look at
them now:

//

/ f I fMOdSince
//

H Check whether the file had been modifed since the date

// given by the client.
//

int IfModSincelHeaders *hInfo, time_t ttMtime) '
{

if (hInfo—>szIfModSince != NULL}
{

if ((hInfo—>ttIfModSince > 0) 5:5:
(hInfo—>ttIfModSince < ttMtime)J

{

238

183

184

IFCFLUVCIYOFfiS

return TRUE;

}
else

{
return FALSE;

}

return TRUE; // Default is TRUE.

The first If function checks the If—Modified—Since header. In this func-

tion, we must first look for the header by checking if hInfo—>szIfModSince is

not NULL. Once found, we make certain the value given by the client is greater

than zero, and that the date given is earlier than the current timestamp on the

file. We return FALSE only if the timestamp check fails.

Our next If function, IfUnmodSince () is almost a twin:

//

. // IfUnmodSince
//
// Check whether the file has not been modified since the date

// given by the client.
//

int IfUhmodSince(Headers *hInfo, time_t ttMtime}
{

if (hInfo~>szIfUnmodSince != NULL)
{

if ((hInfo—>ttIfUnmodsince) 0} &&
(hInfo—>ttIfUnmodSince > ttMtime})

{
return TRUE:

}
else

{
return FALSE;

}

return TRUE; // Default is TRUE.

184

185

CHAPTER 8 THE HTTP/1.1 SERVER

The logical difference here from the IfModS ince (J function is the return—

ing of FALSE only when the time given is earlier than the modification time of

the file, the exact opposite of before. We are, of course, checking the
If-Unmodified—Sincevahwforthfifnncnon.

Next we turn our attention to the entity tags in the If—Mateh header:

//
/ / IfMatCh
//

// Check the etag of the resource against that given by the client
// for a match.
//

int IfMatch(Headers *hInfo, time#t ttMtime)
{

int iIfMatch = TRUE,
1;

char *szBuf,

szEtagStar[] : "*";

// Check to see if any etags match.
if [hInfo—>szIfMatch [2 NULL)

{

iIfMatch = FALSE; // We fail unless we match.
szBuf = new char[SMALLBUF];

sprintflszBuf, "\"%d\"“, ttMtime};
for (i : 0; hInfo->ezIfMatchEtage[i] != NULL; i++)

{

if {strcmp(hInfo->ezIfMatchEtags[i], ezBuf) 2: 0)
{

i: fMatch : TRUE;
break;

} .

if tstrcmp{hInfoFeszIfMatchEtags[i], szEtagStar) == 0)
{

iIfMatch = TRUE:
break;

}
}

delete [] szBuf;
}

return iIfMatch;

240

185

186

IF‘FLUVCYYCMVS

This function is a bit more involved than those which check timestamps. In

this function we must compare entity tags over the set of tags sent by the client.

In most cases, this should be a single tag, but multiple tags are allowed and the
code must handle them. The first check made is to see if an If—Match header

was found. If it wasn’t, a default value of TRUE is returned, meaning the test is

satisfactory. It may seem a bit odd at first, but the field is optional, so not having

any values is the same as matching one, and we return TRUE.

When the header is present, we default the return value to FALSE. We must

match now. A call to sprintf (} is used to create the entity tag for the compari—

son test. What we do here is loop through the stored entity tags in the Header

class. Our for loop is conditional on finding the last value to be NULL since we

don’t save the number of tags, but instead we use a NULL marker. Inside the

loop, we must make two comparisons each time. The first is against the entity

tag since we created it. The second is against the wildcard entity tag of “M. The

first time we find a match, iIfMatch is set to TRUE and we break out of the loop

immediately to return it to the calling function.

The next If function handles checking the IIf—«NOne—Match header. Basi-

. cally it does the opposite of the previous function. It checks to make sure there is

not a match ofentity tags:

//
// IfNone
//

// Check to make sure no etags match the resource.
//

int IfNonelHeaders *hInfo, time_t ttMtime)
{

int iIfNone = TRUE,
i:

char *szBuf,
szEtagStar[] = '*“;

// Check to see if any of the If—ane—Match etags match
if {hInfo—>szIfNoneMatch != NULL)
{

iIbene = TRUE; // We're 0k unless we match.
szBuf = new char[SMALLBUFJ;

sprintf{szBuf, "\"%d\"", ttMtime);

24]

186

187

CHAPTER 8 IEH?HTTPH.ISERVER

for (i = U; hlnfo—>szIfNoneMatchEtags[i] != NULL; i++)
{

if (strempthInfo—bszIfNoneMatchEtags[i], szBuf} == 0)
{

iIfNone = FALSE;
break;

}

if (strcmpIhInfo-)szIfNoneMatchEtags[i], szEtagStar) := 0}
{

iIfNone = FALSE;
break;

}
}

delete [1 szBuf;
}

return iIfNone;

As can be seen, the flow of execution is like the IfMatchU function. We

first check to see if the header If-None—Match was found. Not finding it causes

a TRUE condition to be returned. Inside the If statement, we create the entity

tag for the current resource and then compare it to the entity tags sent by the cli-

ent. A check is also made against the match-all token “* If a comparison is true

here, the function sets the return value to be FALSE. The meaning of the header

is to fail if we match an entity tag for the subject and current resource, hence
FALSE must be returned.

8.12 Chum/reed encoding

The chunked encoding method is a way for an HTTP! 1.1 application to send an

entity body without explicitly knowing the full length when the transmission

starts. It allows the application to send a chunk of the entity body, specifying

only the length of the current chunk. For applications which dynamically gener-

ate responses, it means not having to store the entity body in order to calculate

the length anymore. Receiving chunked encoding is fairly simple too:

242

187

188

CEIUBHKED.EAHCCUDHVG

//
// GetChunked
//

// Receive the entity using the chunked method.
//

int GetChunked£Socket *sClient, ofstream &of0ut, Headers *hInfo)
{

BOOL bNotDone = TRUE,-
char *sthr;

int iBytes, i, j, l, iFactor;

while (bNotDone == TRUE)
{

sClient—>Recheol(NO_EOL); // Grab a line. Should have
// chunk size.

if (strcmp(sClient—>szOutBuf, “0") == 0}
{

bNotDone = FALSE; // The end of the chunks.
continue;

}

sthr = strohr(sClient—>szOutBuf, ‘;'};

if {sthr != NULL) *sthr = NULL; // Mark end of chunk—size.

1 = strlen{sClient->szOutBuf); // Find last hex digit.
1--:

iBytes = 0;
iFactor = 1;

// Convert to decimal bytes.
while (1 >= 0)

{

iBytes += iFactor * Hex2Deo(sClient—>szOutBuf[l]);
l--:
iFaotor *= 16;

}
ir-O;

// Now receive the specified number of bytes.
while (i < iByteS}

{

j = sClientu>Recv(iBytes — i); I] Some data.
i += j: // Total the bytes.
ofOut.write(sClient-bszOutBuf. j}: /K Save to disk.

243

188

189

CHAPTER 8 THEI¥TTPU.IS£RVER

sClient—>Recheol(NO_EOL); // Discard end of chunk marker.

// Now consume anything in the footer.
hInfo—>Rcvfieaders(SClient);
return 0:

The basic form for chunked encoding (as presented in Chapter 2) is:

1|
*chunk
" 0 " CRL-F

footer
CRLF

chunk—size [chunk—ext] CRLF
chunk-data CRLF

<HEX excluding "0“>

Chunked—Body

chunk

hex—no—zero

chunk—size = hex—no—zero *HEX

chunk—ext = *[“;" chunk—ext—name ["=" chunk—ext—value] J
chunk—ext—name = token

chunk—ext—val = token 1 quoted—string
chunk—data = chunk-Size (OCTET)

footer = *entity—header

In pseudo-code, we have a pattern such as:

<Size in hex>CRLF
<data>CRLF
csize in hex>CRLF
<data>CRLF

<0 size>CRLF

<optional footer>CRLF

For our algorithm, we want to grab the first line of the entity body as delim-

ited by the carriage return line feed sequence. On this line will be the size of the

upcoming chunk specified in Hex. The only restricrion on the size is that it can-
not be a zero size chunk. The use of the zero size chunk is restricted to indicate

the end of the chunked encoding. Once the size is decoded, we must receive the

specified number of bytes and then receive the carriage return line feed sequence

244

189

190

CYJUfih¥££35UVCCU3HVG

denoting the end of the chunk. This carriage return line feed is not part of the

data, but just a marker between the end of the chunk and the next size specifica—

tion. This pattern is repeated until the 0 chunk is reached. After the 0 chunk, it

is possible for the client to send some additional headers known as foorers. Only

those headers specified in the protocol for use in the footer may be used here.

Finally, an ending carriage return line feed is received to mark the end of the

entity body and request.

Our first seCtion of code grabs the chunk size from the client:

while [bNotDone == TRUE)
{

sCliente>Recheol{N0_EOL}; // Grab a line. Should have
// chunk size.

if [strcmp(sClient—>szOutBuf, "0"} == 0}
{

bNotDone = FALSE; // The end of the chunks.

continue;
}

Using the standard Recheol () function, the next line of input is read

from the client. We make a comparison here to determine if it is the ending

chunk by comparing it to 0. Ifwe find the end, our loop flag is set to FALSE and

the continue statement forces execution to the top of the loop Where the condi-

tional will now be false. If we don’t find a 0, then we have a hex size for a chunk

and must decode it:

sthr = strchr(sClient->520utBuf, ';'};
if {sthr != NULL] *szptr = NULL; // Mark end of chunk~size.

1 = strlen(SClient—aszOutBuf); // Find last hex digit.
l-e:
iBytes = 0;
iFactor : 1;

If Convert to decimal bytes.
while (1 >= 0)

{

iBytes += iFactor * HeXZDeC{sClient—>szOutBuf[l]l;
1--:

iFactor *= 16;

245

190

191

CHiAPTER 8 Y?LEIJTT?/LJ SERVER

The first two lines here check for the existence of a chunk extension widl the

size. If a chunk extension is present, then a semicolon will separate it from the

size. We simply find the semicolon and NULL it out to end the line. Now we can

find the last digit of the hex number by using Strlen {) and adjusting our C

indexing by one. iBytes is initialized to 0 as our byte counter and iFactor to 1

as the adjustment for the base 16 of the hex number.

Inside the loop, we multiply iFactor by the decimal value of die hex digit.

As we move from right to left of the hex string, we increase our factor by 16 each

time, to allow for the change in place of the hex digits. When our index value

reaches 0, we have completed the conversion. The HexZDec () Emotion is a sim-

ple reworking of the Hex2 Char {) function used for translating URls. Instead of

returning a character value, it returns the appropriate decimal conversion.

To actually receive the chunk, we use the same construct as in the DoPut ()

function previously mentioned:

i = U;

// Now receive the specified number of bytes.
while (i < iBytes)

{

j = sClient—>Recv(iBytes r i); // Some data.
1 += j; // Total the bytes.
ofout.write(sClient—>szOutBuf. j): // Save to disk.

This loop continues reading bytes from the socket until the specified nume

ber of bytes have been read. Since We aren’t guaranteed how many bytes will be

returned each time, we must adjust our request for bytes on the fly. Once the

specified number is read, we grab the carriage return line feed, which marks the

end of the chunk, and return to the top of the loop to receive the nexr chunk.

After the last chunk is read and the loop ends, we call hInfo—>RCVI-Ieaders i}

to consume any footers sent by the client.

For completeness, following is the Hex2Dec (3 as modified from the original

Hex2Char() function: I

f/

// Hex2Dec

246

191

192

THE DELETE METHOD

//
// Convert a hex Character to a decimal Character.
//

int Hex2Deolchar c)
{

switch (c)
{

case 'A':
case 'a':

return 10;
case '3':

case ‘b':

return 11;
case 'C':
ease 'c':

return 12;
case ‘D':

case '6':

return 13;
case 'E‘:
case 'e':

return 14;
case 'F':

ease 'f':

return 15;
default:

return (c — 48];

8.13 The DELETE met/70d

DELETE is the next method we’ll examine. The method allows the client to delete

selected resources on the Web server. This could be used to implement a Web

management system where users can update and remove pages remotely or per—

haps a version control system. Just as in the PUT method, this method must be

guarded against unauthorized use since a security hole could wreak havoc with a

Web server. Following is the complete funcdon:

247

192

193

CHAPTER 8 THE HTTP/1.1 SERVER

// ~---
//
// DoDelete
//

// This function checks to see if it can delete the resource

I} specified by the client.
//

int DoDelete{Socket *sClient, char *szPath, char *sngi,
Headers *hInfe)

struct stat sBuf;

dmr*mflm,
*szExt,
szBuf[PATH_LENGTH],
stile[PATH_LENGTH];

ofstream Omep;

int iRsp = 200,
iRc,

! iType,
' iIfMod,

iIfUnmod,
iIfMatch,
iIfNone;

iRc = checkAuthtszPath, hInfo, WRITEflACCESS); // Check for

W // authorization.
;' if (iRC == ACCESS_DENIED) // Send request for credentials.
“.' {

'4 sClient—>Send("HTTP/l.1 401 \r\n“);
w sClient—)Send("Server: "J;

h - sClient—>Send[szServerVer};
{ ‘ _ sClient—>Send{"\r\n');

ll sszp = CreateDate(time(NULL)J; // Create a date header.

“i if (sszp 1: NULL)
' {

sClient—>Send{“Date: "3;
sClient—>Send(sszp);
sClient—>Send("\r\n“);
delete [] sszp:

} .
i sprintf(szBuf, "WWW—Authenticate: Basic realm=\"%s\"\r\n“,

hInfo—>szRealm];

sCLient—>Send(szBuf);
SCLient~>Sendt“Content-Type: text/html\r\n‘);
sprintftszBuf, "Content—Length: %d\r\n“, strlen{s2401});
sClient~>SendtszBuf);

248
193

194

THE DELETE METHOD

SClient—>Send{"\r\n"};
sClient—>Send(52401);
return 401;

}

else if (iRC == ACCESS_FAILED} X] Send forbidden response.
{

sClient~>Send{"HTTP/l.l 403 Access Denied\r\n”);
sClient—>Send(”8erver: "};
sClient—>Send(szServerVer);
sClient—>Send("\r\n"};

sszp = CreateDate(time(NULL)); // Create a date header.
if (sszp != NULL)

{

sClient—>Send{"Date: "};

sClient—>Send(sszp};
sClient—>Send("\r\n");

delete [] sszp;
}

sClient—>Send{"Content—Type: text/html\r\n");
sprintf(szBuf, "Content—Length: %d\r\n", strlentsde3));
sClient—>Send(szBuf);
sClient—bSend(”\r\n");
sClient—>Send(széo3);
return 403;

}

if (hInEo—>szRange I: NULL} // Range not allowed for DELETE.
{

SendErrortsClient, "Range header not accepted for DELETE.",
501, HTTP_1_1, hInfo);

return 501;

}
if (hInfo—>szIfModSince 1: NULL) // If—Modified—Since

{ // not allowed for DELETE.

SendErrorisClient,

“If—Modified—Since header not accepted for DELETE.“,
501, HTTP_lml, hInfo];

return 501;
}

// Now Check the If headers.

iIfUnmod = IfUIJmOdSince (hInfo. SBuf . st_mtime} ;
iIEMatCh = IfMatCh(hInfo, sBuf.st_mtime) ;
iIfNone : IfNDne(hIIlfo, sBuf.st_mtime);

if ((iIfUnmod == FALSE)'|[(iIfMatch == FALSE) ||
(iIENone :: FALSE))

249

194

195

CHAPTER 8 THE HTTP/1.! SERVER

SendErrorisClient, "Precondition failed.”, 412,
HTTP_1_1, hInfo} ,-

return 412;

if (szDeleteDir 1: NULL] // Save the deleted resource.
{

// Use the same file extension as the current resource.
szExt = strrchr(szPath, '.'};
if (szExt 1: NULL)

{
SzExt++;

}
else

{
szExt = “del”:

}

sszp = MakeUniquetszDeleteDir, szEXt}:
DosCopytszPath, sszp, DCPY_EXISTING);

}

iRc = unlinktszPath);
if (iRc == 0) // Resource deleted.

{
sClient—>Send{”HTTP/l.1 204 \r\n");

iRsp = 204;
}

else // Delete failed.
{

sClient—eSend("HTTP/l.l 500 \r\n");

iRsp = 500;
}

i sClient—>Send(“Server: ");
E sClient—>Send(szServerVer);

sClient—>Send["\r\n"):

sszp = CreateDatettime(NULL));// Create a date header.
if (sszp 1: NULL}

{

SClient->Send("Date: ");

sClient->Send(sszp);
sClient->Send("\r\n"):

delete I] sszp;
}

SClient->Send("\r\n“);
hInfo—>ulContentLength = 0;
return iRsp;

g // ———— ——

250

195

196

7YIEIDELEYEEAJEYYJOL)

The DoDelete () function starts by checking for the client’s authorization.

This check uses the same code as the previous functions so we won’t go over it in

depth right here. After the authorization is approved, we must start Checking the

conditional headers to make certain we should complete the request:

if {hInfo—>szRange 1: NULL) // Range not allowed for DELETE.
{

SendErrorlsClient, ”Range header not accepted for DELETE.",
501, HTTP_1_l. hInfo};

return 501;
}

if (hInfo—bszIfModSince != NULL) // IfuModified—Since
{ // not allowed for DELETE.

SendErrorisClient,

"If—Modified—Since header not accepted for DELETE.",
501, HTTP_1_1, hInfo);

return 501;

The first conditionals for which we check are the ones we don’t allow. If the

client sends a range request with the DELETE method, we reject the request out-

right. The hInfo—>szIfModSince variable is also checked to see if header

If—Modified—Sinee was sent. Again here, the protocol states it is only valid for

GET requests, so we reject it also. The other If headers are checked next:

II New check the If headers.

iIEUnmod = IfUnmodSineethInfo, sBuf.st_mtime};

iIfMateh = IfMatchlhInfo, eBuf.st_mtime);
iIfNone = IfNone(hInfo, sBuf.st_mtime);

if ((iIfUnmod == FALSE) || [iIfMatch == FALSE} ||
(iIfNone == FALSE))

[

SendError(sClient, “Precondition failed.”, 412,
HTTP_1_1. hInfoJ;

return 412;

As in the DoPut (i function, the same checks are made here. We want to

make Sure the If—Unmodified—Since, If—Match, and If—None—Match head-

ers check out. Our check functions return FALSE if any fail, and we then return

the 412 Precondition Failed response to the client.

25!

196

197

CYiflPTFR 8 EYIElfTT?/L1 SERVER

What we do next is unique to this function: If a client does delete a resource,

we allow the Webmaster to specify in the configuration file to save any deleted

resources. This allows for a safety net for the users and makes the Webmaster

appear omnipotent to the careless users:

if {szDeleteDir != NULL) // Save the deleted resource.
{

// Use the same file extension as the current resource.
SzExt = strrchr(szPath, '.'};

if (szExt 1: NULL)
{

szExt++;

}
else

{
szExt = “Gel";

}

sszp = MakeUnique[szDeleteDir, szExt];
DosCopylszPath, sszp, DCPY_EXISTING);
delete [1 sszp;

We check our global flag variable szDeleteDir to determine whether to

save a copy of the resource. If we find it defined, this signifies its use to save the

resource and tells us where to save it. Inside the If statement, we look for the file

extension of the resource using strrehr (), which will find the last occurrence

of the dot character in the filename. Ifwe find it, we adjust szExt to point to the

start of the extension, and if not, to the string del. The following line creates a

unique temporary file for us in the directory we specify, with the extension we

provide. This filnction, MakeUnique { J, is one we must provide since the C

library functions do not let us pick the directory in which to create the tempo-

rary filenames. The last step is to copy the resource to the new filename and then

delete the memory for the filename.

The last part of the function is to just complete the action:

iRc = unlinktszpath);
if {iRc == 0} // Resource deleted.

{

sClient—>Send[“HTTP/l.l 204 No Content\r\n");

iRsp = 204;

252

197

198

TEHEIIELEilifiJEFYIOID

else // Delete failed.

{
sClient—>Send(”HTTP/1.l 500 Server Error\r\n"};

iRsp = 500;

Using unlink(), we delete the requested resource. Based on the return

value, we send a 204 No Content when the delete operation succeeds and a
500 Server Error when it fails. The remainder of the function returns the

Server and Date headers back to the client.

Let us also look at the MakeUnique () function.

//

// MakeUnique()
//

// Create a unique filename in the specified directory with the

// specified extension.
//

Char * MakeUnique£char *szDir, char *szExt}
{

ULONG ulNum = D;

BOOL bNotUnique
int iRc;
char *stileName;

TRUE:

stileName = new charIPATH_LENGTH1;

while (bNotUnique)
{

sprintf(stileName, "%s%08d.%s“. szDir, ulNum, szExt);

iRc = open(sti1eName. O_CREAT [O_EXCL | 0_WRONLY
| o_TEXT. S_IWRITE‘.);

if (iRc !: -1)
i

// Success. This file didn’t exist before.

close(iRc);

bNotUnique = FALSE;
continue;

ulNum++;

if (ulNum > 99999999)
{

253

198

199

CHAPTER 8 THE HTTP/1.1 SERVER

delete [] stileName;
stileName = NULL;

bNotUnique = FALSE;
l

}

return (stileName) ,-

This function is simple in its operation. We start with an empty String,

sti leName, and create a filename by concatenating together the directory sent

by the client, an integer number controlled by the function, and the extension

sent by the client. Once put together, we try to create a new file with a call to

open (} with the 0_CREAT and 0_EXCL flags set to make certain we only create

the file if it does not already exist.

If the open () call is successful, then we close the new file, set NotUnique to

FALSE, and issue 3 continue statement to have the loop complete. The new file-

name is then returned to the client. When the open() call fails, we instead

increment our counter and run through the loop again. The basic algorithm here

is to sequentially increment our integer counter until we find one not in use.

Given the possibility of running on a FAT partition, we limit the number of dig-

its we use to 8. This gives us plenty ofchoices however.

8.14 GET the document

Our final method handler to cover is DoPathll (] . This is the function which

handles the bulk of the requests of the Web server:

//
// DoPathll(l
//

// This function checks to see if it can return the requested
// document back to the client.
//

int DoPathll(Socket *SClient, int iMethod, char *szPath,

254

199

200

wrmmw l-mrflu:';- "V'L'aA—Imu' -.—_1.—.-- - _________________,_
GETTHEDOCUMENT

xnh—_I=;- u:—_“=___._.r~u_-

char *szSearch, Headers *hInfo)

struct stat sBuf:

char *sszp,
*szEXt.

szBuf£PATH_LENGTH].
stile[PATHfiLENGTH];

ofstream omep;
int

if

{

iRc

if

{

iRsp = 200.
iRc.

iType.
iIfMod.

iIfUnmod,
iIfMatch,
iIfNone,

iIfRange,
iRangeErr;

{szPathlstrlen(szPath) w 1] == ‘/'}

strcat(szPath, szWelcome}; // Append default welcome file.

= CheckAuth£szPath, hInfo, READQACCESS): IX Check for
// authorization.

(iRc == ACCESS_DENIED} // Send request for credentials.

sClient->Send{"HTTP/1.1 401 \r\n"};

sClient—>Send{"Server: "):
sClient->Send(szServerVer}i

sClient->Send("\r\n"];

sszp = CreateDate(time(NULL))r // Create a date header.
if (sszp != NULL}

{
sClient-35end("0ate: "J;

SClient~>Send(sszpl;
sClient—>Send("\r\n"};

delete [1 sszp;
}

sprintf(szBuf,
"WWW—Authenticate: Basic realm=\"%s\”\r\n“,

hInfo->szRealml;
sClient->Send{szBuf);

sClient->Send("Content-Type: text/html\r\n"};

sprintf(szBuf, “Content—Length: %d\r\n“. strlen{32401}1;
sClient-bSend(szBuf):
sClient->Send{"\r\n“};

255

200

201

CELdPTUiR 8 IY¥£'IITYYV1.I SERDUER

sClient—>Send(sz401};
return 401;

else if (iRc 2: ACCESS_FAILED) // Send forbidden response.

 sClient—>Send(“HTTP/l.1 403 Access Denied\r\n“);

sClient—>Send('Server: ");
sClient—>Send(szServerVer);

sClient—>Send("\r\n");

sszp 2 CreateDateitimetNULL)); // Create a date header.

if (sszp != NULL)
{

sClient—>Send(“Date: “J;

sClient—>Send{sszp};
sClient—>Send("\r\n“);

delete E] sszp;
}

sClient—}Send("Content—Type: text/html\r\n“);
sprinthszBuf, “Content—Length: %d\r\n“, strlen(sz403));
sClient—>Send(szBuf};
sClient—>Send{"\r\n');
sClient—>Send[52403);
return 403:

if (szSearch != NULL} // Do an index search.
{

iRc = IndextszPath, szSearch, stile, hInfo—>szUri);
if [iRC != U}

{

iRc = SendError£sClient, "Resource not found.", 404,
HTTP_l_1, hInfo);

return iRc;
}

strcpy(szPath, stile];

iRc = stat(szPath, &sBuf);
if {iRc 4 0)

{

iRsp = SendError(sClient, "Resource not found.“, 404,
HTTP_l_l, hInfo};

return iRsp:

// Check If headers.

iIfMod = IfModSince(hInfe, sBuf.st_mtime);

256

201

202

GE?‘?YIE.D()CLHWEHVT

iIfUhmod IfUnmodSincethInfo, sBuf.st_mtime);
iIfMatch IfMatch(hInfo, sBuf.st_mtimeJ;
iIfNone = IfNone(hInfo, SBuf.st_mtime);

iIfRange = IfRange(hInfo, sBuf.stfimtime];
iRangeErr = hInfo~>FindRanges{sBuf.st_size}:

ll

1/ Check to make sure any If headers are FALSE.
// Either not—modified or no etags matched.

if ((iIfMod =2 FALSE) || (iIfNone == FALSE} 1
{

sClientA>Send(”HTTP/1.l 304 Not Modified\r\n"]:

iRsp = 304;
}

// No matching stage or it's been modified.

else if ((iIfMatch == FALSE) || (iIfUnmod == FALSE))
{

sClient->Send(“HTTP/l.1 412 Precondition Failed\r\n”];

iRSp = 412;
}

1/ Resource matched so send just the bytes requested.
else if ((iIfRange 2: TRUE) && {iRangeErr == 0))

{

SClient—>Send("HTTP/l.l 206 Partial Content\r\n');
iRsp = 206;

}

// Resource didn’t match. so send the entire entity.
else if ({hInfo—>szIfRange 1: NULL} && (iIfRange == FALSE))

{

sClient—>Send('-HTTP/1.1 200 0K\r\n");
iRsp 2 200;

}

// Only asked for a byte range.
else if (iRangeErr == 0)

{

SClient—>Send{"HTTP/l.1 206 Partial Content\r\n");

iRsp = 206;
}

// Must be a plain jane request.
else

{

sClient—>Send{“HTTP/1.1 200 OK\r\n"};

iRsp = 200;
}

sClient~>Send{“Server: "J; // Standard server header.
sClient~>Send(szServerVer);
sClient—>Send("\r\n"):

202

257

203

(H1APIER 8 TYiEf¥TTYVL1 SERVER

sszp = CreateDate(time(NULL)}; // Create a date header.
if (sszp != NULL)

{

sCLient—>Send('Date: “);

sClient—)Send(sszp);
sCLient—>Send[“\r\n");

delete [] sszp;

}

sszp = CreateDate{sBuf.st_mtime); // The last modified time
// header.

if (sszp != NULL)
{

sClient—>Send(“Last—Modified: “);
sClient—>Send(sszp};
SClient—>Send("\r\n"};

delete [] sszp;
}

sprintftszBuf, "ETag: \"%d\"\r\n“, sBuf.st_mtime); // Entity tag.
sClient—bSendtszBuf);

if [[iRSp == 304) || (iRSp == 412))
{

sClient—>Send(“\r\n");

return iRsp: // Don't send anything else.
}

if (szSearch != NULL} // Force search results to text/html type.
{

iType = FindType("x.html"J;
}

else

{

iType = FindTypetszPath); // Figure out the media type to
// return.

}

if (iRSp == 206] // Sending partial content.
{

// Send byte range to Client.
SendByteRange(sClient, hInfo, szPath, &sBuf, iType, iMethod};
return iRSp; '

}

// Send full entity.
sprintfiszBuf, "Content—Type: %S\r\n“, eExtMap[iType].szType);
sClient—>Send[szBuf);
Sprintf(szBuf, "Content—Length: %d\r\n", sBuf.st_size);

258

203

204

GETTHEDOCUMENT

sClient—>Send(szBuf};
sClient—>Send(” \r\n" ll ,-

if (iMethod := GET) // Don’t send unless GET.
{

if (eExtMap[iType].bBinary == TRUE)
{

iRc = sClient—>SendBinary(szPath);

iRc = sClient—>SendText(szPath);

Since this function handles all default GET or HEAD requests, it is possible for

,the client to not specify a specific resource, but to let the system provide the

_ default. The first bit of code in DOHttpll () takes care of this:

if (szPathEstrlen(szPath) — 1] == '/'}
{

strcattszPath, szWelcome); // Append default welcome file.
}

We simply check for any path ending in a forward slash and if found, we

append the default welcome file name as listed in the configuration file. Note,

we do not check here to see if this is valid. We just check to make sure we have a

Full pathname when looking up the resource.

The security check comes after this point, since we now have a full path-
name to check. The difference between this one and the calls in DoPut {) and

DoDelete() is specifying to check read access with the R:3AD_ACCESS flag.

Upon failure here, we either request credentials from the client or deny them

access if they supplied credentials which failed.

Once access has been approved, we must check to ascertain whether or not

the client requested a simple ISINDEX of the requested resource. This will be
true ifszSearch is not NULL:

259

204

205

CHAPTER 3 THE HTTP/1.1 SERVER

if {szSearch != NULL) // Do an index search.
{

iRc = Index(szPath, szSearCh, stile, h:nfo—>szUri);
if (iRc != 0)

{
iRC = SendErrorlsClient, “Re30urce not found.", 404,

HTTP_1_1, hInfO);

return iRc;
}

strcpY(szPath, stile);

The Index () function (unchanged from the HTTP! 1.0 version) performs

the simple search, creates the htrnl output file and stores the filename in sti la.

Since the rest ofDoHttpll () uses szPath, we copy the contents of sti la into
the current szPath.

Now that we have reached this point, we verify the existence of the resource

file by using the stat () call. If it develops that the file does not exist, an error

message is sent to the client with a 404 Not Found code. Otherwise, it is time to

check the If headers, all of them this time:

// Check If headers.

iIfMod = IfModSince(hInfo, sBuf.st_mtime);
iIfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime);
iIfMatch = IfMatChlhInfo. sBuf.st_mtime);
iIfNone = IfNone(hInfo, sBuf.st_mtime);
iIfRange = IfRangethInfo, sBuf.st_mtime};
iRangeErr = hInfo—>FindRanges(SBuf.st_size);

The first four lines are functions we have seen when handling the other

request methods. New at this time, are the IfRange () and

hInfo—>FindRanges () functions. The IfRange {) function checks the

If—Range header to see if it is present. If it is present, it then verifies whether or

not the field value matches the given resource. This field value may either be a

date or entity tag for the I f —Range header. FindRanges { } , as mentioned earlier

in the chapter, parses any byte ranges given by the client and stores them in an

array of Range class objects.

Next comes the tricky part of HTTPIIJ: Given the multitude of possible

headers the client may send for any given request, the order in which the

260

205

206

GE?"7?£E‘DC)CLHMEUVT

conditionals are checked is important. Depending on the failure condition here,

we send different response codes to the client:

ll Either not—modified or no etags matched.

if ((iIfMod == FALSE} || (iIfNone := FALSE})
{

sClient~>Send("HTTP/l.l 304 Not Modified\r\n");

iRsp = 304;

The first check we make is for those headers which require a 304 response
on failure. This is either the If—Modified—sinee or If—None—Match headers.

If the former fails, it means the resource has not been modified since the date

given by the client, hence we don’t want to send them another copy. If the latter

fails, it means an entity rag sent by the client did match the entity tag of the

resource. Remember the If—None~Match means only to perform the action if

none of the tags sent match the resource. So if one matches, then we have a fail-
ure of the conditional:

// No matching etags or it's been modified.

else if { (iIfMatch == FALSE} || {iIfUnmod == FALSE} J
{

sClient—bSend("HTTPfl.l 412 Precondition Failed\r\n“1;
iRsp = 412;

This check is for the If—Match and If—Unmodified—since headers. If

either of these fail, we must return a 412 Precondition Failed response to the

client. The If-Match header fails if none of the entity tags sent by the client

match the entity tag of the resource. If—Unmodified—Since fails when the

resource has been modified since the date given by the client.
The checks in the first two If statements must be done before our other

checks. The reason is that these are the checks for failure. The rest of the checks

are for success. We don’t want to send a success response line to the client and

then turn around and fail to send the resource. Now that We have progressed this

far, We know we are going to send a resource to the client. It is just a matter of

whether it will be a full resource or a byte range that we send back.

261

206

207

C£L4PTER 8 YYiEffTTP/LI SERVER

// Resource matched so send just the bytes requested.
else if {(iIfRange == TRUE) && {iRangeErr == 0))

{

sClient—>Send("HTTP/l.l 206 Partial Content\r\n“);
iRsp = 206:

At this point, we must check to See ifwe need to send a byte range. The con-

ditions necessary for this to be true are for the client to have sent a valid Range

header and a valid If—Range. iRangeErr will be 0 when the client sent a valid

byte range request. iIfRange will be TRUE if the client did not send an

If—Range header or if the If —Range header sent is valid. When both conditions

are met, we send the 206 Partial Content response to the client.

// Resource didn't match, so send the entire entity.
else if {{hInfo—>szIfRange != NULL) && {iIfRange == FALSE))

{

sClient—>Send("HTTP/1.l 200 0K\r\n");
iRsp = 200;

The next check is instituted when the client requests a byte range, but the

resource has since changed. This uses the If —Range header to short circuit the

normal error message and instead has us send the complete new resource. These

conditions are true when the client did send an If —Range header and the

iIfRange variable is FALSE, meaning the field value did not match.

I/ Only asked for a byte range.
else if (iRangeErr == 0)

{

sClient—>Send["HTTP/l.l 206 Partial Content\r\n“);
iRsp = 206;

This check must come after the previous two, since it is basically a default

following the client’s request for a byte range retrieval. We execute this branch

when the client has sent a valid Range header and there are no contradictory

conditional headers it being basically covered by an unconditional byte range

retrieval. Again, for purpose of byte range retrievals, we send a 206 Partial

Content response.

The final default response we send to the client is a 2 00 OK response:

262

207

208

CETTHEDOCUMENT
mag-Whoa“. ___-._.-__- ____ __. ..t _. .. _._ _. _._.. _-- umm

// Must be a plain jane request.
else

{

sClient—bSend(“HTTP/1.i 200 OK\r\n”};

iRsp = 200;

At this time, we start to build and send our standard response headers to the

client. This includes the Server, Date, Last-Modified, and ETag headers.

The first two are canstruCtecl as we’ve seen before. The Last—Modified header

is built using the CreateDatet) function and the last modified time From the

sBuf.st_mtime variable. For the ETagi}, we simply use the acrual value of

sBuf.st_mtime to construct the entity tag. For our file system based Web

server, it provides sufficient uniqueness to qualiFy as an entity tag. In a system

where resources are constantly updated, as something based on real time feeds

might be, the lasr modified timestamp would probably not prove to be suffi»

ciently unique to use as an entity tag. Depending on the system’s usage, we

might need to use some sort ofinteger counter which is incremented on changes.

Once the basic response headers are sent, we check the response code:

it ((iRsp == 3041 H {iRsp := 412))
{

sClient~>Send("\r\n"};

return iRsp; // Don‘t send anything eise.

If we find a 304 or 412 code, we are finished. Because of conditional head—

ers, we are nor sending an entity body to the client, so we just send the final

empty line to mark the end of the headers and return the response code.

When we do send an entity body to the client, We must determine the media

type of the resource and label it:

if (szSearch [a NULL) // Force search results to toxt/html type.
{ I1

iType FindType{"x.html"l:
}

else

{

iType z FindTypetszPath};// Figure out the media type to return.

263

208

209

CHAPTER 8 THE HTTP/1.1 SERVER

The only special checking to do here is to determine if ezSearch is defined.

If it is, we have done an index search and must force the media type to

text/html since szPath will hold the name of a temporary file and will not

have the html extension. On any other case, we let the FindTypeU function

from the HTTP! 1.0 server figure out the media type for us.

Now we must simply transfer the resource to the client. There are two possi-

bilities for this. The first is that we are sending a byte range back to the client, in

which case iRsp will be 20 6. The other possibility is sending the entire resource
back to the client: '

if (iRep == 206) // Sending partial content.
{

// Send byte range to client.
SendByteRangeisClient, hInfo, szPath, esBuf, iType, iMethod);
return iRSp;

The first choice checks to see if iRsp is 206. If it is, we then call the function

SendByteRange () to figure out which byte ranges to send to the client. iRsp is
then returned to end the function. For the default case we first send the

Content—TypeandContent-Length:

// Send full entity.
sprintfiszBuf, "Content—Type: %s\r\n", eExtMap[iType].szType):
sClient—>Send(szBuf);

sprintftszBuf, "Content~Length: %d\r\n", sBuf.st_size];
sClient—>Send(szEuf);
sClient—>Send{"\r\n");

The first line creates the Content—Type header using the information from

FindType () . The next line sends the buffer to the client and then the

Content —Length header is created and sent. The final line sends the empty line

to mark the transition from headers to entity. Our last check is to make certain

the request method is GET before sending the entity body:

if (iMethod == GET) // Don't Send unless GET.
{

if (eExtMap[iType].bBinary == TRUE)
[

iRc = SClient->SendBinary(szPath);

264

209

210

CYYECHCUVG TEHEIFZRAIVGEE

iRc = sClient—>SendText(szPath);

Within the if statement, we key on the file type as held in the eExtMap

array to decide whether to send the file as binary or text data. Once done, iRSp
is returned to end the function.

8.15 Checking the [fchmge

i We used the fiinction IfRange () in the DoHttpll () , but have not seen it yet.

This function is used to verifir the If—Range header, so let us look at it now:

//

// IfRange
//

// Find out whether the If—Range tag matches the resource.
//

int IfRange(Headers *hInfo, time_t ttMtime)
{

char *szBuf;
time_t ttDate;

// Check the If—Range header. We must have Range also to be valid.
if {[hInfo—>szIfRange != NULL} && (hInfo—>szRange != NULL!)

{

// Figure out whether it is an etag or date.

if ((hInfo—>szIfRange[0] == '"') II
(hInfo—bszIfRangeEZ] == '"'))

{

szBuf : new char[SMALLBUF]; // An etag-
sprintf£szBuf, "\"%d\"", ttMtime};
if (strcmp(szBuf, hInfo—>szIfRange) == 0)

{

delete [] szBuf;
return TRUE; // match, send them the resource.

}

265

210

211

CHAPTER 8 THE HTTP/1.1 SERVER

delete [] SZBuf;
}
else

{ .

ttDate = ConvertDate(hInfo—>szIfRangel; // We found a date.
if {ttDate >= ttMtime)

{
return TRUE; // Match, send them the resource.

}

}

return FALSE; // No match.
}

This function combines parts of the other If functions we have seen so far.

The reason for this is the possibility for either an entity tag or date for the value.

Luckily, we only have to check two characters to determine which is which:

// Check the If—Range header. We must have Range also to
// be valid.

if ((hInfo—>szIfRange 1: NULL) && (hInfo—>szRange != NULL!)
{

// Figure out whether it is an etag or date.

if ((hInfo—>szIfRange[0] == ‘"'} ll
thnfo->szIfRange[2] == '"'J)

{

Another check which must be made first in the function is to see whether we

have both an If —Range and Range header in the request. An If—Range header

without a Range header is invalid and ignored, according to the protocol Stan-

dard. If this part is satisfactory, we then make our check to determine whether

We have an entity tag or date. The check is made on the first and third characters

of the string. If either one is a double quote symbol, then we have an entity tag.

We must use both since we may have a situation such as this:

IE—Range: W/“abc”
If—Range: Wed 24. Jul 1996 09:35:2? GMT

266

2“

212

W""..

TRAIVSAJLSSIOIVIDE‘BPTY?RAIVGES

As can be seen from the example, it is possible for the two to match in the

first position, so we must also check the third positiOn where they cannot match

if the first position matches.

The entity tag comparison is similar to before:

szBuf = new Char[SMALLBUF]; // An etag.
sprintf(szBuf, “\"%d\”", ttMtime);

if (Strcmp(szBuf, hInfo-bszIfRange) == 0)
i

delete [J szBuf;
return TRUE; // Match, send them the resource.

}
delete [] szBuf;

The entity tag is constructed and a strcmp () made to determine whether

3 there is a match. Note that we do not check the entity tag sent by the client

against the H" case as for I fwMatch or If—None-—Match. The syntax for

If—Range only allows an entity—tag as a value.

For the date comparison, we convert the date given by the client to a

time_t value and then make certain it is greater than or equal to the modifica-

tion time of the resource. When we find a matching condition in either of the

two comparisons, a TRUE value is returned.

8.16 Transmission ofbyte ranges

Our last section for this chapter covers the SendByteRange (} function. When-

ever a client requests a byte range retrieval, we must take some extra measures in

its transmission. This is especially pertinent when the client sends a multiple byte

range request:

//

// SendByteRange
//

// Send the given byte ranges back to the client.
//

267

212

213

CHAPTER 8 THE HTTP/1.1 SERVER

int SendByteRange{Socket *sClient, Headers *hInfo, char *szPath,
struct stat *sBuf, int iType, int iMethod)

ifstream ifIn;
int iByteS, iCount, iLen,

i. j:

Char 1'*Szl3uf.. *szBoundary;

szBuf = new char[SMALLBUF];

if (hInfo—>iRangeNum == 1} // Simple response, only one part.
{

iLen = hInfo—>rRanges[0].iEnd _ hInfo—}rRanges[0].iStart + 1;
Sprintf(szBuf, "Content-Length: %d\r\n”, iLen);
sClient—>Send(szBuf);

sprintf(szBuf, “Content—Type: %s\r\n", eExtMapEiType].szType);
sClient—>Send(szBuf};
sClient—fiSend("\r\n"};

if [iMethod == HEAD) // Don’t send an entity.
{

delete [] szBuf;

hInfo—>u1ContentLength = 0;
return 0;

}

iqu.0peu(szPath, ios::binary}: // Open the file, binary mode.
ifIn.seekg(hInfo—>rRangeS[D].iStart, ios::beg);
iCount = 0;

while (iCount < iLen)
{

ifIn.read(szBuf,

(SMALLBUF < iLen—iCount ? SMALLBUF : iLen—iCountl):

iBytes = ifIn.gcount[);
iCount += iBytes;
sClient—bSendlszBuf, iBytes);

}

ifIn.Close();
}

else // Do a multi—part MIME type.
{

SzBoundary = new char[70];

sraud(sBuf—>st_mtime);
for (i = 0; i < 68; i++]

{

j = rand():

szBoundary[i] = szMime[j % iNumMime];

268

213

214

TRANSMISSION OF BYTE RANGES

}

szBoundary[69] = NULL;

sprintf(SzBuf,
“Content—Type: multipart/byteranges; boundary=\"%s\“\r\n",
SZBOundary};

sClient—>Send(szBuf};

if (iMethod == HEAD) // Don't send an entity.
{

delete [] szBuf;
hInfo—>ulContentLength = 0;
return 0;

ifIn.open(szPath, ios::binary); // Open the file, binary mode.

for (i = 0; i < hInfo-biRangeNum; i++)
{

sClient—>Send("\r\n——“); // The boundary marker first.
sClient—>Send(szBoundary);
sClient—>Send("\r\n");
Sprintf(szBuf, "Content—Type: %s\r\n",

eExtMap£iType].szType};
sClient—>Send(szBuf); // New content—type.

sprintf(szBuf, “Content—Range: bytes %d—%d/%d\r\n\r\n“,

hInfo—>rRanges[i].iStart, I
hInfo—>rRanges[i].iEnd,
sBuf—>st_size);

Sclient—>Send(szBuf); // Now content—range.

ifIn.seekg(hInfo~>rRanges[i].istart, ios::beg};
iLen = hInfo->rRanges[i].iEnd —

hInfo—>rRanges[i].iStart + l;
iCount = O;

// Read the specified number of bytes.
while (iCOunt < iLen}

{

ifIn.read[szBuf,

(SMALLBUF < iLen—iCount ? SMALLBUF : iLen—iCount));
iBytes = ifIn.gcount{);

iCount += iBytes;
sClient—>Send(szBuf, iBytes);

}
}

sClient—>Send[“\r\n-—”}: // The ending boundary marker.
sClient—>Send(szBoundary);

269

214

215

L...

CHAPTER 8 THE HTTP/1.} SERVER

sClient—>Send(“——\r\n");
delete [] sonundary;
ifIn. Closell:

}

delete [] szBuf;
return 0;

}

We have two possible paths for sending byte range responses. The first is the

simple case where the client only requests a single byte range. This one is han-
dled much as for any response—a Content—Length is sent along with a

Content—Type and the byte range as an entity body. We check for this type by

checking for the number of byte ranges:

if (hInfo—>iRangeNum == 1) // Simple response. only one part.
{

iLen = hInfo—>rRanges[0].iEnd — hInfo—>rRangeS[0].iStart + 1;

sprintf(szBuf, "Content—Length: %d\r\n", iLen);
sClient—>SendlszBufl;

sprintf(szBuf, "Content—Type: %e\r\n",
eExtMap[iType].szTypel;

sClient—>Send(szBuf);

sClient—>Send(" \r\n") ,-'

If we do find a single byte range request, then we calculate the number of

bytes by subtracting the start number from the end number and then adding

one. We must add one, since the specification says byte ranges are inclusive. This

length and the media type are then sent to the client.

We must next check for a HEAD request:

if (iMethod == HEAD) // Don't send an entity.
{

delete [] szBuf;
hInfo—>u1ContentLength = 0;
return 0:

Even though we are doing a byte range request, it is still possible for a client

to do 9. HEAD request on it. This might be done by a client to determine how

270

215

216

TRANSMISSION OF BYTE RANGES

many bytes are left to transfer for a resource before actually requesting the trans—

fer. If it is a HEAD request, we must free our temporary buffer, ezBuf, and mark

our byte count transferred to the client as zero.

For GET, we send the requested byte count:

ifIn.open(szPath, ios::binary); // Open the file, binary mode.
ifIn.seekglhlnfo—eranges[0].iStart, ios::beg);
iCount = 0;
while (iCount < iLen)

{

ifIn.read(szBuf,
(SMALLBUF < iLen—iCount ? SMALLBUF : iLen-iCount));

iBytes : ifIn.gcount[):
iCount += iflyteS:
SClient—>Send(szBuf, iBytesJ:

}

ifIn.close[);

We start here by opening the file in binary mode so we can traverse through

the file by byte count. Next we use seekg l) to position the file pointer at the

beginning byte. Now we loop through our read(3 operation counting bytes and

sending them each time. In the read() call, we don’t simply request the total

length of the byte range, but instead request the smaller of SMALLBUF and

iLen — iCO‘unt. We must do this in order to not overflow szBuf. We adjust

the number of bytes we requeSt each time by the number we read each time.

Once we read and send the requested number, the loop ends and we close the file.

For multiple byte ranges, we must do a little more work. When a client

requeSts multiple byte ranges we need a method to reliably separate the parts in

the entity. To do this, a special media type ofmultipart /byteranges is used.

This is based on the MIME standard and requires using a boundary marker

between the parts and a separate Content—Type and Content —Range for each

part. A typical entity body might resemble the following:

Content—Type: multipart/byteranges; baundary="mimeboundarymarker"
u—mimeboundarymarker

Content—Type: text/plain
Content—Range: bytes 0-4/10

abcde

--mimeboundarymarker

271

216

217

CHAPTER 8 THE HTTP/1.1 SERVER

Content—Type: text/plain
Content—Range: bytes 5—9/10

fghi j
— —rnimeboundarymarker — —

The basic idea is that the parts are separated by the boundary marker, which

is an arbitrary string. The quotes surrounding it are not part of the string but are

required when certain characters are present and are always allowed. We always

use them for simplicity of the algorithm. A part starts with two dashes followed

immediately by the marker and a carriage return line feed. Next come any head-

ers applicable to this part. We use Content—Type and Content—Range. The

Content—Range header is required. There is an empty line following the headers

and then the actual data starts. The end of the data is signaled by a carriage

return line feed, two dashes, and the marker. The carriage return line feed is not

part of the data here, but a delimiter. The end of the parts is specified by the

same sequence, plus the addition of two dashes after the boundary marker.

RFC 1521 goes into more detail on the multipart media types.

First we need to create the boundary marker:

szBoundary = new charETO];
srand(SBuf—>st_mtimel ;
for (i = 0; i < 68; i++)

{

j = rand“;
szBoundary[i] = szMime[j % iNUmMime];

}

SzBoundary[69] = NULL;

To create the boundary market, we use the standard random number rou—

tines from the C library over the allowable MIME alphabet:

/ / The alphabet used for MIME boundaries .
const

Char SZMime[] =

" 01234567 89abcdefghij klrrrnopqrs tuvwxyzABCDEFGI-IIJKLMNOPQRSTUVWXYZ ' (l =_
_ .—?n;r . .—

The alphabet shown here is stretched over two lines due to book limitations,

but it is actually a single string in the code. We loop over the length of our

272

217

218

TRANSMISSION OFBYTE RANGES

boundary calling rand () each time. With this number we index into the MIME

alphabet using the mod operator to ensure a valid index value. We use the

resource’s last modification time as the seed number, which should give us some

ciently random behavior. The only qualification on the boundary marker is that

it must not be expected to occur within the body part. Using a 69—character

String over the entire MIME alphabet should fairly guarantee it.

The boundary marker is then sent to the client:

sprintf(szBuf,
“Content—Type: multipart/byteranges; boundary=\"%s\"\r\n“,
szBoundary);

sClient—>Send(szBuf);

Once this is done, we check to see whether or not the method used by the

:client was HEAD. If it was, then we tidy up as before and return from the

Function. If it was GET, then we open the file and start looping through each of

the byte ranges we have. The protocol actually allows combining byte ranges

when they overlap, but for simplicity, we’ll assume clients won’t request the

same Parts twice and will just send them exactly what they asked for:

SClient—>Send(”\r\n——"J; // The boundary marker first.
sclient->Send{szBoundaryl:
sClient->Send(“\r\n");

sprintf(szBuf, "Content—Type: %S\r\n", eExtMapEiType].szType);
sClient->Send{szBuf); // Now content—type.
3printf(szBuf, ”Content—Range: bytes %d—%d/%d\r\n\r\n",

hInfo—>rRanges[i].iStart, hInfo—>rRanges[i].iEnd,
sBuf—>st_size);

sClient—>Send(szBuf}; // Now content—range.

ifIn.seekg(hInfo—>rRanges[i].istart, ios::beg];
iLen = hInfo—>rRanges[i].iEnd — hInfo—>rRanges[i].iStart + 1;
iCount = 0;

// Read the specified number of bytes.
while (iCount < iLen)

{

ifIn.read{szBuf,
(SMALLBUF < iLen—iCount ? SMALLBUF : iLen—iCount));

iBytes = ifIn.gcount();
iCount += iBytes;
sClient—>Send{szBuf, iBytes);

273

218

219

CHAPTER 8 ZHEIiTTPH.ISERVER

The code here is designed to construct a single part of the multith entity

body. We start out by sending a \r\n—— which delimits the parts. This serves

two purposes here, i.e., the first time through the loop it provides the initial

empty line separating the headers from the entity body. On subsequent trips, it

provides the carriage return line feed after the part data. Note also that the

boundary marker does not include the quote marks when in use, only in the

Content—Type header. The Content—Type header for this part is sent next, fol~

lowed by the Content—Range header. The latter header consists of the unit

specifier which is always bytes for us, and then the starting byte marker, a dash,

the ending byte marker, a forward slash, and then the total length of the

resource. Once the headers are sent, we use the same piece of code as when send-

ing a single part to forward the requested number of bytes.

Once out of the loop, we close the entity body:

sClient—>Send("\r\ne-”); // The ending boundary marker.
sClient—>Send{szBoundary};
sClient—>Sendl“-—\r\n”}:

delete [] szBoundary;
ifIn.close{):

We send the ending boundary marker, the one delimited with two dashes on

both ends, and a final carriage return line feed. The memory for szBoundary is
freed and the file closed.

The function ends after freeing the memory used by szBuf.

8.17 Finis/7mg

This chapter has covered the basics of an HTTPHJ server. You should have a

good understanding ofhow to translate the prorocol elements of HTTP! 1.1 into

working code at this point. In the last chapter, we’ll cover how to support the
standard CGI interface for both OSKZ and Windows NT.

274

219

