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PREFACE

With the passage of approximately nine years since publication of the first
edition, this text has been transformed from the status of a newcomer to a
mature representative of heat transfer pedagogy. Despite this maturation,
however, we like to think that, while remaining true to certain basic tenets, our
treatment of the subject is constantly evolving.

Preparation of the first edition was strongly motivated by the belief that,
above all, a first course in heat transfer should do two things. First, it should
instill within the student a genuine appreciation for the physical origins of the
subject. It should then establish the relationship of these origins to the
behavior of thermal systems. In so doing, it should develop methodologies
which facilitate application of the subject to a broad range of practical
problems, and it should cultivate the facility to perform the kind of engineer-
ing analysis which, if not exact, still provides useful information concerning
‘the design and/or performance of a particular system or process. Require-
ments of such an analysis include the ability to discern relevant transport
processes and simplifying assumptions, identify important dependent and
independent variables, develop appropriate expressions from first principles,
and introduce requisite material from the heat transfer knowledge base. In the
first edition, achievement of this objective was fostered by couching many of

the examples and end-of-chapter. problems m terms of actual ‘engineering
systems.

The second edition was also driven by the foregoing objectives, as well as
by input derived from a questionnaire sent to over 100 colleagues who used, or
were otherwise familiar with, the first edition. A major consequence of this
input was publication of two versions of the book, Fundamentals of Heat and
Mass Transfer and Introduction to Heat Transfer. As in the first edition, the
Fundamentals version included mass transfer, providing an integrated treat-
ment of heat, mass and momentum transfer by convection and separate
treatments of heat and mass transfer by diffusion. The Introduction version of
the book was intended for users who embraced the treatment of heat transfer

but did not wishto cover mass transfer effects. In both versions, significant
improvements were made in the treatments of numerical methods and heat
transfer with phase change.

In this latest edition, changes have been motivated by the desire to
expand the scope of applications and to enhance the exposition of physical
principles. Consideration of a broader range of technically important prob-
lems is facilitated by increased coverage of existing material on thermal
-~ oo) fesistance, fin performance, convective heat transfer enhancement, and
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compact heat exchangers, as well as by the addition of new material on
submerged jets (Chapter 7) and free convectionin open, parallel plate chan-
nels (Chapter 9). Submerged jets are widely used for industrial cooling and
drying operations, while free convection in parallel plate channels is pertinent
to passive cooling and heating systems. Expanded discussions of physical
principles are concentrated in the chapters on single-phase convection
(Chapters 7 to 9) and relate, for example, to forced convection in tube banks
and to free convection on plates andin cavities. Other improvements relate to
the methodology of performing a first law analysis, a more generalized lumped
capacitance analysis, transient conduction in semi-infinite media, and finite-
difference solutions.

In this edition, the old Chapter 14, which dealt with multimode heat
transfer problems, has been deleted and many of the problems have been
transferred to earlier chapters. This change was motivated by recognition of
the importance of multimodeeffects and the desirability of impacting student
consciousness with this importance at the earliest possible time. Hence,
problems involving more than just a superficial consideration of multimode
effects begin in Chapter 7 and increase in number through Chapter 13.

The last, but certainly not the least important, improvement in this
edition is the inclusion of nearly 300 new problems. In the spirit of our past
efforts, we have attempted to address contemporary issues in many of the
problems. Hence, as well as relating to engineering applications such as energy
conversion and conservation, space heating and cooling, and thermal protec-
tion, the problems deal with recentinterests in electronic cooling, manufactur-
ing, and material processing. Many of the problems are drawn from our
accumulated research and consulting experiences; the solutions, which fre-
quently are not obvious, require thoughtful implementation of the tools of heat
transfer. It is our hope that in addition to reinforcing the student’s understand-
ing of principles and applications, the problems serve a motivational role by
relating the subject to real engineering needs.

Over the past nine years, we have been fortunate to have received
constructive suggestions from many colleagues throughout the United States
and Canada. It is with pleasure that we express our gratitude for this input.

FRANK P. INCROPERA
West Lafayette, Indiana Davip P. DeWrrr 
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cated conditions. We began with thesimple ca
state conduction with no internal generation
complications due to multidimensional and ge
have not yet considered situations for whict conditions chang

Wenow recognize that many heat transfer problemsaretime dependent
Such unsteady, or transient, problemstypically arise when the bounday
conditions of a system are changed. For example,if the surface temperature
a system is altered, the temperature at each point in thesystem will also begin
to change. The changes will continue to occuruntil a steady-state temperatutt
distribution is reached. Consider a hot metal billet that is removed from:
furnace and exposed to a cool airstream. Energy is transferred by convection
andradiation from its surface to the surroundings. Energytransfer by condit
tion also occurs from the interior of the metal to the surface, and the
temperature at each point in the billet decreases until a steady-state conditiot
is reached. Such time-dependenteffects occur in many industrial heating an!
cooling processes. .

To determine the time dependence of the temperaturedistribution withis
a solid during a transient process, we could begin by solving the appropmi
formof the heat equation, for example, Equation 2.13. Some cases for wh
solutions have been obtained are discussed in Sections 5.4 to 5.8. Howett
such solutions are often difficult to obtain, and where possible a 5
approachis preferred. One such approach may be used under conditions for
which temperature gradients within the solid are small. It is termed the
capacitance method.

5.1 THE LUMPED CAPACITANCE METHOD

* simple, yet common, transient conduction problem is one in which a sold
experiences a suddenCoram aes# sudden change inits thermal environment. Consider a bt
immersing ; ‘S mitially at a uniform temperature 7, and is quem ‘
quenchine n:2 liuid of lower temperature T,, < 7, (Figure 51). ¥hing is said to begin at time 1 = 0, the temperature of the solid

t<0
T=T

Cooling of a hot Metal forging.
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5.1 The Lumped Capacitance Method 227 
    decrease for time ¢ > 0, until it eventually reaches T,,. This reduction is due to

convection heat transfer at the solid—liquid interface. The essence of the
lumped capacitance method is the assumptionthat thetemperature of the
solid is spatiallyuniform at any instant during the transient process. This
assumptionimplies that temperature gradients within the solid are negligible.

From Fourier’s law, heatconductionin theabsence of a temperature
gradient implies the existenceof infinite thermal conductivity. Such a condi-
tion is clearlyimpossible. However, although the condition is never satisfied
exactly, it is closely approximated if the resistance to conduction within the
solid is small compared with the resistance to heat transfer between the solid
and its surroundings. For now we assumethatthis is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer
consider the problem from within the framework of the heat equation. Instead,
the transient temperature response is determined by formulating an overall
energy balance on the solid. This balance mustrelate the rate of heatloss at
the surface to the rate of change of the internal energy. Applying Equation
L.1la to the control volume of Figure 5.1, this requirement takes the form
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= p,t a solid (5.1)
or |

dT
~hA,(T — T,,) = pVe—- G2)

dt

Introducing the temperature difference «|

 @=T-T G3
See ises fe ;

and recognizing that (d@/dt) = (dT/dt), it follows that
eVe dé

os.” te
Separating variables and integrating from the initial condition, for which i= 0 Si
and T(0) = T., we then obtain ae

pVc -9dé ;
hA, J, @ ~ fa

where

Wenham lie

5 Valuating the integrals it follows that ‘
 

aye ae pk ls
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Te1 7,2 3 Tea

Figure 5.2 Transient temperature response of
lumped capacitance solids corresponding to
different thermal time constants 7:
or

Equation 5.5 may be used to determine the time roigaired for the solid to read
some temperature T, or, conversely, Equation 5.6 may be used to compute tht
temperature reached by the solid at some time 1. :

_, he foregoing results indicate that the difference between the sold 2
fluid temperatures must decay exponentially to zero as t approaches inlini
This behavior is shown in Figure 5.2. From Equation 5.6 it is also evident tt!

where R, recta ane 10 convection heat transfer and C, is the /wm
“4pacitance of the solid. Any increase in R, or C, wileaeiaad oe slowly to changes in its thermal environment andwill 
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5.2 Validity of the Lumped Capacitance Method 229

Fie

Figure 53 Equivalent thermal circuit for a
lumped capacitance solid.

To determine the total energy transfer Q occurring up to some time f, we
simply write

o- [ade = ha,f'0dt
Substituting for @ from Equation 5.6 and integrating, we obtain

 
The quantityQis, of course, related to the change in the internal energy of the
solid, and from Equation 1.11b

 

For quenching Q is positi ‘ences a decrease in: positive and the solid experiences > in energy
Equations 5.5, 5.6, and 5.8a also apply to situations where the solid is heated
(8 <0), in which case Q is negative and the internal energy of the solid
increases.

S2 VALIDITY OF THE LUMPED CAPACITANCE METHOD

From the foregoing results it is easy to see whythere is a strong preference for
using the lumped capacitance method. It is certainly the simplest and most
convenient method that can be used to solve transient conduction problems.
Hence it is important to determine under what conditions it may be used with

.

Surface is maintained at a temperature T, and the othersurface is exposed to
4 fluid of temperature T,, < T. ,. The temperature of this surface will be some

aetdehee
ietT

an|

H74
a
ie)
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Figure5.4 Effect ofBiot number on
steady-state temperature distribution ini
plane wall with surface convection.

intermediate value, T,., for which T,, < T, , <T, ,. Hence under steady-at
conditions the surface energy balance, Equation 1.12, reduces to

kA

FZ (Tia - T2) = hA(T,, - T,)

or

onGuantity (hL/k) appearing in Equation 5.9 is a dimensionless pars
JS termed the Biot number, and it plays a fundamental role #

aaco that involve surface convection effects. According ©
oo as illustrated in Figure 5.4, the Biot number provide +arie temperature drop in the solid relative to the temperall#

erence between the surface and the fluid. Note especially the

= T, and experiences convection
« < T. The problem may be reais

Position sithaca We are interested in the temperature varia?
(x, 1). This variation is a strong function of per A
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 number on
stributionins Bi<1 Biz1 Bi>1
wvection. T=Tit) T= Tix, ¢) T= Tix, 4)

Figure 5.5 Transient temperature distribution for different Biot numbers in a plane
, wall symmetrically cooled by convection.

number, and three conditions are shown in Figure 5.5. For Bi <1 the
temperature gradient in the solid is small and T(x, t) = T(t). Virtually all
the temperature difference is between the solid and the fluid, and the solid
temperature remains nearly uniform as it decreases to T,,. For moderate to
large values of the Biot number, however, the temperature gradients within the
solid are significant. Hence T = T(x, t). Note that for Bi > 1, the tempera-
ture difference across the solid is now much larger than that between the
surface and the fluid.

We conclude this section by emphasizing the importance of the lumped
capacitance method.Its inherentsimplicity renders it the preferred method for
solving transient conduction problems. Hence, when confronted with such a
problem, the very first thing that one should do is calculate the Biot number. It
the following condition is satisfied
 

   
the error associated with using the lumped capacitance method is small. For
convenience, it is customary to define the characteristic length of Equation 5.10
as the ratio of the solid’s volume to surface area, L. = V/A,. Such a definition
facilitates calculation of L, for solids of complicated shape and reduces to the
half-thickness L for a plane wall of thickness 2L (Figure 5.5), to r,/2 for a
long cylinder, and to r,/3 for a sphere. However, if one wishes to implement
the criterion in a conservative fashion, L, should be associated with the length
scale corresponding to the maximum spatial temperature difference. Accord-
ingly, for a symmetrically heated (or cooled) plane wall of thickness 21, L-
Would remain equal to the half-thickness L. However, for a long cylinder or
sphere, L. would equal the actual radius r,, rather than r,/2 or r,/3.
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Finally, we note that, with L. = V/A,, the exponent of Equation 5.6 my
be expressed as

hA,t ht AL. k ¢t AL, at

k pe L? kai?

  

pVc Y' pcL,

 
 

  
 
 

 
  

 

  
  
 

 
 

  a, fsaPeNagsAe = rs Eee

is termed the Fourier number.It is a dimensionless time, which, with the Bit
number, characterizes transient conduction problems. Substituting Equatiot
5.11 into 5.6, we obtain

 

Gh: Gee 7.
7 Faz 7 TP (-B- Fo) (5.8)

EXAMPLE 5.1

aejunction, which may be approximated as a sphere, is 10
Or temperature measurementin a gas stream. The convection

jag ths stingsn Surface and the gas is known to be h = 400 W/ati
kg: Keanduermophysical properties are k = 20 W/m~K, «= #0
the Bed kg/m. ine the junction diameter geol
is placed in a ve a time constantof1 s. If the junctionis at 27°C
to reach 199° am that is at 200°C, how longwill it take for thejuni
SOLUTION

Known: Thermophys; ;
sure temperature of ai Properties of thermocouple junction used to mea 
2. Ti equiredat " 1 199°C in gas stream at 200°C.

Page 20 of 98

Schematic:

7, = 200°C
h = 400 W/m K

Gas stream

Assumptions:

Pwn
Temperati

Radiation

Losses by

Constant

Analysis:

1, Because t

the soluti

capacitan
approach
determin

fact that

Accord

L=ra
excellen|
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mk \\ /] Thermocouple, & = 20 W/m-Kquae: junction c = 400 J/kg K
T, = 25°C|» = 8500 kg/m’

Assumptions:

 

 
 
 
 
 

 
 
 
 
 

 

1. Temperature of junction is uniform at any instant.
2. Radiation exchange with the surroundings is negligible.
3. Losses by conduction through the leads are negligible.
4. Constant properties.

Analysis:

1. Because the junction diameter is unknown, it is not possible to begin
the solution by determining whether the criterion for using the lumped

approach is to use the method to find the diameter and to then
determine whether thecriterionis satisfied. FromEquation5.7 andthe
fact that A, = 7D? and V = 7D°/6 for a sphere, it follows that

1 a paD?,i
‘  hrD? Gay

Rearranging and substituting numericalvalues,

6he, 6 X 400W/m? -K X18 oagese
pe 8500 kg/m x 400 J/kg -K

With L. = r,/3 it thenfollows fromEquation5.10 that

 

aha 400W/m?- K x3.53X107m =235 .0Bi =
3 x20W/m-kK

 
 

 
-— Accordingly, igsSueiguhe&sopranaatbeientte 0 Wag
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2. From Equation 5.5 the time required
199°C is

ee6 FT DeRar
Sineje f=?) 6h TT,

8500 kg/m? x 7.06 x 10-* m x400J/kg - K
J ai

f=35.2s = 51,

Comments: Heatlosses due to radiation exchange between the junction
and the surroundings and conduction throughtheleads would necessitate
using a smaller junction diameter to achieve the desired time response.

53 GENERAL LUMPED CAPACITANCE ANALYSIS

Although transient conduction in a solid iscommonly initiated by convection
heat ‘transfer to or from an adjoining fluid, other processes mayi
‘ransient thermal conditions within the solid. For example, a solid may ®
ake — large surroundings by a gas or vacuum.If the temperatures 0
cs and surroundings differ, radiation exchange could cause the internal

“nergy, and hence the temperature, of the solid to change. Tempe
ture ch 4 jof the eee also be induced by applying a heat fiux at a portion, of u

mayinopt . Situation for which thermal conditions within a solid
‘aneously influenced by convection, radiation, an applied 
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5.3. General Lumped Capacitance Analysis 235

heat flux, and internal energy generation.Itis presumed that, initially (¢ = 0),
the temperature of the solid (7;) differs from that of the fluid, T,,, and the
surroundings, T,,,, and that both surface and volumetric heating (q;’ and 4)
are initiated. The imposed heat flux q/ and the convection—radiation heat
transfer occur at mutually exclusive portions of the surface, Agyy and Age, ,)>
respectively, and convection-radiation transfer is presumed to be from the
surface. Applying conservation of energy at any instant 1, it follows from
Equation 1.11a that

r <. aTq; A, + E, i oer t Gra) Aste, r) at ree. (5.14)
or, from Equations 1.3a and 1.7,

2 dTavA, , + E,— [h(T - T,.) + e0(T* - Te,)|Anen = VEG (5-15)
Unfortunately, Equation 5.15 is a nonlinear, first-order, nonhomoge-

neous, ordinary differential equation which cannot be integrated to obtain an
exact solution.! However, exact solutions may be obtained for simplified
versions of the equation. For example, if there is no imposed heat flux or
generation and convection is either nonexistent (a vacuum) or negligible
relative to radiation, Equation 5.15 reduces to

aTpo = ~eA,,(Tt ~ Tex) (5.16)
Separating variables and integrating from the initial condition to any time t, it
follows that

eA, 7 pt Tr aTSee x 5.17)pVe I, I, Teena: ;
Evaluating both integrals and rearranging, the time required toreach the
temperature T becomes

   fg pve : ESF Tyo + Ti
WA,af \"\Fe =F] Boe 

+2|tan~* apa S
heh | This expression cannotbe usedtoevaluate T explicitlyinterms of,7), and

«Am amprosimete niue-diference solution maybeobtainedby dicrefizing whetime
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eee
“a f (5.13)ra

An exact solution to Equation 5.15 mayalsobe obtainedif radiation my
be neglected and h is independent of time. Introducing areduced temperatur
@=T ~ T,,, where d6/dt = dT/dt, Equation 5.15 reduces to a linear, fint
order, nonhomogeneous differential equationof theform

d6 42
—+a0-b=0 (5.2)dt

where a =(hA,./pVc) and b = ((q'A, , + E,)/pVc]. Although Equation
5.20 may be solved by summingits homogeneous and particular solutions
alternative approach is to eliminate the nonhomogeneityby introducing the
transformation

reese? (5.2)a

Recognizing that 0’/dt = d0/dt, Equation 5.21 may be substituted ilo
(5.20) to yield

dé’

oe 5217 +26’ =0 (

—

Separating variables and integrating from 0 to f (8 to 6’), it follows that
4’

7 7% (—ar) ae

Or substituting for @” and 6,

Em Ei i (b/a)
TT,=(yay7°(-a)

Hence.

T~T

akSe sn b/a 5.25)a exp ( @) + FzIl - exp (-at)] (
AS it must, Equation 5.25 Teduces to~ 2 ee(5.6) when b = 0 andyields T=!

Equation 5.25 reduces to (T — T,,) = (6/2). which
ing an energy balance on the control surface

“State conditions.
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54 SPATIAL EFFECTS

Situations frequently arise for which the lumped capacitance method is inap-
propriate, and alternative methods must be used. Regardless of the particular
form of the method, we must now cope with the fact that gradients within the
medium are no longer negligible.

In their most general form, transient conduction problems are described
by the heat equation, Equation 2.13 for rectangular coordinates or Equations
2.20 and 2.23, respectively, for cylindrical and spherical coordinates. The
solution to these partial differential equations provides thevariation of tem-
perature with both time and the spatial coordinates. However, in many
problems, such as the plane wall of Figure 5.5, only one spatial coordinate is
needed to describe the internal temperature distribution. With no internal
generation and the assumption of constant thermal conductivity, Equation
2.13 then reduces to

aon Bae.

ax? aOF

To solve Equation 5.26 for the temperature distribution T(x, 1), it is
Necessary to specify an initial condition and two boundary conditions. For the
typical transient conduction problem of Figure 5.5, the initial condition is

(5.26)

 

(x,0) = 7, (5.27)
and the boundary conditions are

oT

oo ae 0 (5.28)
and

. oT

,| =alT(L,t) - Te] (5.29)re lewd 5

ture distribution at time ¢ = 0;
Equation 5.28 reflects the symmetry requirement forthe midplane ofthe wall;
and Equation 5.29 describes the surface conditionexperienced for time ¢ >0.

_ From Equations 5.26 to 5.29, it isevident that, in addition todepending onx
and 1, temperatures in the wall also dependon anumberofphysicalparame-
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the antvariables inio
eT.If thetemperature differ

9, = T, — T,,, a dimensionlessform of the dependent va
as eae oa

ile oe.cl ia
== —_= (531)

; | T, ah e 3 }

Accordingly, #* must lie in the range 0 < 6* < 1. Adimensionless spatial
coordinate may be defined as e i

a x

whereL is the half-thickness of the planewall, and a dimensionless time mi)
be defined as ; ;

oa

where r* is equivalentto the dimensionless Fourier number, Equation 5.12,
Substituting the definitions of Equations 5.31 to 5.33 into Equations 52

to 5.29, the heat equation becomes
a79* a9

dx*? ~ 9Fo

and theinitial and boundary conditions become
8*(x*,0) =1 GH
dg*

ax* =0 esx*=(

(5.34

and

a6g*

aeete) G7

i.here the Biot number is Bi = hL/k. In dimensionless form the function
eemay now be expressed as 
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Equation 5.38 implies that for a prescribed geometry, the transient temperature
distribution is a universal function of x*, Fo, and Bi. Thatis, the dimensionless
solution assumes a prescribed form that does not depend on the particular
value of T,, T,,, L, k, a, or h. Since this generalization greatly simplifies the
presentation and utilization of transient solutions, the dimensionless variables
are used extensively in subsequentsections.

55 THE PLANE WALL WITH CONVECTION

Exact, analytical solutions to transient conduction problems have been ob-
tained for manysimplified geometries and boundary conditions and are well
documented in theliterature [1—4]. Several mathematical techniques, including
the method of separation of variables (Section 4.2), may be used for this
purpose, andtypically the solution for the dimensionless temperature distribu-
tion, Equation 5.38, is in the form of an infinite series. However, except for
very small values of the Fourier number,this series may be approximated by a
single term and the results may be represented in a convenient graphical form.

5.5.1 Exact Solution

Consider the plane wail of thickness 2L (Figure 5.72). If the thickness is small
relative to the width and height of the wall,it is reasonable to assume that
conduction occurs exclusively in the x direction. If the wall is initially at a
uniform temperature, T(x,0) = 7;, and is suddenly immersed in a fluid of

 
= a i * T,, the resulting temperatures may beobtained by solving Equation 5.34

(539) subject to the conditions of Equations 5.35 to 5.37. Since the convectionep | conditions for the surfaces at x* = +1 are the same, the temperature distribu-
(68) tion at any instant must be symmetrical about the midplane (x* = 0). An

T(r,0) = T;

 Ts.
| T(x, 0) = T,| i pe

—p>= — —p>*F
s

 
 

Wi (a) pm aa o a 2 ate
Figure 5.7 — : dl % <1% siaay: 8 pee ee are ‘

- temperature subjectedtosudden convectionconditions.(a)Plame
Wall. (5) Infinitecylinder or sphere. ten cas eae

n
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=
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240 Chapter5 Transient Conduction

exact solution to this problem has been obtained andis of the form [2]
oo

6* = ¥) C,exp(—S7Fo) cos (f,x*) (5.3%)
n=1

where the coefficient C,, is

4sinf,,

C=2,+sin(2f,)(5.39)
and the discrete values (eigenvalues) of {,, are positive roots of the transcer-
dental equation

§, tan, = Bi (5.3%)

Thefirst four roots of this equation are given in Appendix B.3.

5.5.2 Approximate Solution

mcrae shown (Problem 5.24) that for values of Fo > 0.2, theinfinite sens
Solution, Equation 5.39a, can be approximated bythefirst term of the seri
Invoking this approximation, the dimensionless form of the temperatut
distribution becomes

6* = C, exp (—{?Fo) cos (f,x*) (5.408)
or

g* = os cos (f,x*) (sath

where @* represents the midplane (x* = 0) temperature
9° = C, exp (-{?Fo) (al

eee.implication of Equation 5.40b is that the time dependence of theany location within the wall i the midplattemperature Fici is the same as that of thealae, Seer cients C, and {, are evaluated from Equations 5
ively, and are given in Table 5.1 for a range of Biot numbe

S53. Total Energy Transfer
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Table 5.1 Coefficients us
to the series so. 

Bi*

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.15

0.20

0.25

0.30

100.0

“Bi = kL/k for the plane wall a

PLANE WALL

is
(rad) G

0.0998 1.0017

0.1410 1.0033

0.1732 1.0049

0.1987 1.0066

0.2217 1.0082

0.2425 1.0098

0.2615 1.0114

0.2791 1.0130

0.2956 1.0145

0.3111 1.0160

0.3779 1.0237

0.4328 1.0311

0.4801 1.0382

0.5218 1.0450

0.5932 1.0580

0.6533 1.0701

0.7051 1.0814

0.7506 1.0919

0.7910 1.1016

0.8274 1.1107

0.8603 1.1191

1.0769 1.1795

1.1925 1.2102

1.2646 1.2287

1.3138 1.2402

1.3496 1.2479

1.3766 1.2532

1.3978 1.2570

1.4149 1.2598

1.4289 1.262¢

1.4961 1.269

1.5202 1.2715

1.5325 1.272:

15400=1.277

1.5552 1.273)
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Table 5.1 Coefficients used in the one-term approximation
to the series solutions for transient one-dimensional conduction 

INFINITE
PLANE WALL CYLINDER SPHERE 

f u
‘1 (rad) Cy (rad) q 

0.0998 1.0017 0.1412 1.0025 0.1730 1.0030

0.1410 1.0033 0.1995 1.0050 0.2445 1.0060

0.1732 0049 0.2439 1.0075 0.2989 1.0090

0.1987 0066 0.2814 1.0099 0.3450 1.0120

0.2217 0082 0.3142 1.0124 0.3852 1.0149

0.2425 0098 0.3438 1.0148 0.4217 1.0179

0.2615 1.0114 0.3708 1.0173 0.4550 1.0209

0.2791 0130 0.3960 1.0197 0.4860 1.0239

0.2956 1.0145 0.4195 1.0222 0.5150 1.0268
0.3111 1.0160 0.4417 1.0246 0.5425 1.0298

(3779 0237 0.5376 1.0365 0.6608 1.0445
0.4328 O311 0.6170 1.0483 0.7593 1.0592

0.4801 0382 0.6856 1.0598 0.8448 1.0737

0.5218 1.0450 0.7465 1.0712 0.9208 1.0880

0.5932 1.0580 0.8516 1.0932 1.0528 1.1164

0.6533 0701 0.9408 1.1143 1.1656 1.1441
0.7051 1.0814 1.0185 1.1346 1.2644 1.1713

0.7506 0919 1.0873 1,1539 1.3525 1.1978

0.7910 016 1.1490 1.1725 1.4320 1.2236

0.8274 1.1107 1.2048 1.1902 1.5044 1.2488

0.8603 1.1191 1.2558 1.207] 1.5708 1.2732

L.O769 1.1795 1.5995 1.3384 2.0288 1.4793

1.1925 1.2102 1.7887 1.4191 2.2889 1.6227

1.2646 1.2287 1.9081 1.4698 2.4556 1.7201

1.3138 1.2402 1.9898 1.5029 2.5704 1.7870

1.3496 1.2479 2,0490 1.5253 2.6537 1.8338

1.3766 1.2532 2.0937 1.5411 2.7165 1.8674

1.3978 1.2570 2.1286 1.5526 2.7654 1.8921

1.4149 2598 2.1566 1.5611 2.8044 1.9106

1.4289 262 2.1795 1.5677 2.8363 1.9249

1.4961 2 2.2681 1.5919 2.9857 1.9781

1.5202 a 2.32 1.5973 3.0372 1.9898

1.5325 2723 3455 1.5993 3.0632 1.9942

1.5400 ce 2.3572 1.6002 3.0788 1.9962

1.5552 2 2 1.6015 3.1102 1.9990

 
 

*Bi=hL/k for the plane wall and hr,/k for the infinite cylinder and sphere. See Figure 5.7.
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242 Chapter 5 Transient Conduction

Equating the energy transferred from the wall Q to E,,,, andsetting £,, =(
and AE., = E(t) — E(0), it follows that

Q = —[E(t) — E(0)] (5.43)

 
  
 

 = ~ fpc[T(r, 1) - T]] av (5.40)  
 where the integration is performed over the volume of the wall. It is conve

nient to nondimensionalize this result by introducing the quantity

Q, =ipcV(T, — T,.) (5.44)

 
  

  
 which may be interpreted as the initial internal energy of the wall relativet0

the fluid temperature.It is also the maximwm amountofenergy transfer whitt
could occur if the process were continued to time 4 = oo. Hence, assuliti
constant properties, the ratio of the total energy transferred from the wall ove
the time interval ¢ to the maximum possible transfer is

TIT, 1) - 7] avQ

0JeGJ (5.45)

  
  Employing the approximate form of the temperature distribution for the plant

wall, Equation 5.40b, the integration prescribed by Equation 5.45 al be
 

  
  

performed to obtain

Q sin [,Se eea 5.46)Q. ye (  

  where @can be determined from i i bl 5.1 for values¢!the coefficients C, and f. Equation 5.41, using Table  
 

aFesentations of the approximate relations for the transient ri
ad cane and energy transfer were first presented by ee
decades: SA hes (6. Thegraphs have been widely used for neatly i
functional <—aecomputational convenience, they illustrat?a
On the Biot and Fourier eet, dimensionless temperature distrib

Results for the te ss
maybe used toaare presented in Figures 5.8 to 5.10-ath

  
  
  
  

  
 at an midplane temperature of the wall, T(0, t)*

of ea Bi the transient process. If T, is known for particular
‘a Figure 5.9 may be used to determine the correspon

ny location off the midplane. Hence, Figure 5.9 must
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t*=(at/L")=Fo Figure5.8Midplanetemperatureasafunctionoftimeforaplanewallofthickness2L[5].Usedwithpe
rmission.
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Figure 5.9 Temperature distribution in a plane wall of
thickness 2[5]. Used with permission.

        
in conjunction with Figure 5.8. For example, if one wishes to determine the
surface temperature (x* = +1) at sometime t, Figure 5.8 would first be used
to determine T, at t. Figure 5.9 would then be used to determine the surface
temperature from knowledge of T.. The procedure would be inverted if
problem were one of determining the time required for the surface to reach @
prescribed temperature.

astLUI
CHaaTCTryiaifAAAYASea Ethtetatweacnti,HH jAIAATtuged4ight,WyeesmneeeiL

 
Figure 5.10 Ip of
thickness 27 Aeaepadeae of time for a plane wall
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5.6 Radial Systems with Convection 245

Absence of the Fourier number in Figure 5.9 implies that the time
dependence of any temperature off the midplane corresponds to the time
dependence of the midplane temperature. This result is, of course, a conse-
quence of the approximation that led to Equation 5.40b and is valid forall but
the earliest stages of the transient process (Fo > 0.2).

Graphical results for the energy transferred from a plane wall over the
time interval ¢ are presented in Figure 5.10. These results were generated from
Equation 5.46. The dimensionless energy transfer Q/Q, is expressed exclu-
sively in terms of Fo and Bi.

Because the mathematical problem is precisely the same, the foregoing
results may also be applied to a plane wall of thickness L, which is insulated
on one side (x* = 0) and experiences convective transport on the other side
(x* = +1), This equivalence is a consequence of the fact that, regardless of
whether a symmetrical or an adiabatic requirementis prescribed at x* = 0,
the boundary condition is of the form 06*/dx* = 0.

RADIAL SYSTEMS WITH CONVECTION

For an infinite cylinder or sphere of radius 7, (Figure 5.76), which is at an
initial uniform temperature and experiences a change in convective conditions,
results similar to those of Section 5.5 maybe developed. Thatis, an exact
series solution may be obtained for the time dependence of the radial tempera-
ture distribution; a one-term approximation may be used for most conditions;
and the approximation may be conveniently represented in graphical form.
The infinite cylinder is an idealization that permits the assumption of one-
dimensional conduction in the radial direction. It is a reasonable approxima-
tion for cylinders having L/r, = 10.

Exact solutions to the transient, one-dimensional form of the heatequation
have been developed for the infinite cylinder and for the sphere. For a uniform
eeandconvective boundary conditions, the solutions [2] are48follows.

__ InfiniteCylinder In dimensionless form,the temperature is

=Fcep(—82Fo)Jo(b") ries
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where where 0* :

BeitteoJ ay =6" EREED a
nO \on 1 \3n Values of

and the discrete values of {| are positive roots of the transcendental equation ot

Jt, Sphere fa (Sn) = Bi (5.47c)
Jo(S,)

§* =

The quantities J, and J, are Bessel functions ofthe first kind andtheir values
are tabulated in Appendix B.4. Roots of the transcendental equation (5.47¢)
are tabulated by Schneider [2]. =

Sphere Similarly, for the sphere @* =

= 1Oe «

@° = &Coexp(—S3Fo) —sin (5,r*) ie where 63
where . =

4\sin(f,) - Val fc, = Asin.)~&,008(5,)] (5.48) Daety
2f,, — sin (2¢,) c

and the discrete values of §, afe positive roots of the transcendental equation 563 Total I
1 > = ; 48cg,cot ,=Bi (5:4) Asin Sex

Roots of the transcendental equation are tabulated by Schneider [2]. aes
3.50b, an

|
Ree Infinite C

| Pat tnfinite cylinder and sphere, Heisler [5] has shown that for Fo 2
Pa ore Series solutions can be approximated bya single term. Hen Q
1pellecase Plane wall, the time dependence of the temperature - - QO,
centerpoint. the radial system is the same as that of the centerline

eas ; SphereInfinite Cylinder The one-term approximation to Equation 5.47 is
ae Qa=Cy exp ( ~S{Fo) Jq(§,r*) Om Q,

oF o

Values 0
8 = 021,(¢r*) (5.4) §.50c, us
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5.6 Radial Systems with Convection 247

where 9% represents the centerline temperature andis of the form

 

(5 §* = C, exp (—$?Fo) (5.49c)
Values of the coefficients C, and {, have been determined andarelisted in

cendental equation Table 5.1 for a range of Biot numbers.

(5410). Sphere From Equation 5.48a, the one-term approximation is
1

6* = C, exp(—$7F 5.50aad andtheir values exp (Si Oe Cam
al equation (5.47) _

| or
}

; o* = Ota: sin (&r*) (5.50b)
(5.482) where 9* represents the center temperature and is of the form

j 6* = C, exp (—{?Fo) (5.50c)
a

cas) | __Yaluesof the coeficients C, and & have been determined and are listed in
Table 5.1 for a range of Biot numbers.

 
 

 
 

As in Section 5.5.3, an energy balance may be performed to determine the
total energy transfer from the infinite cylinder or sphere over the time interval
At =. Substituting from the approximate solutions, Equations 5.49b and
5.50b, and introducing Q, from Equation 5.44, the results are as follows.

Infinite Cylinder

7!j==th) (5.51)

v oI Fe lsin(&,) ~ S0860] 652)
; _{ilues of the center temperature 6 aredetermined fromEquation 5.49cor |

0, using the coefficients of Table51fortheappropriatesystem.
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Figure5.11Centerlinetemperatureasafunctionoftimeforaninfinitecylinderofradius7,(5].Usedwithpermission. 
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Ss
aes

                                                 (et/r3)=Fo 2ee0.010.02 0.0501 0.2 05 10 2

(k/hro) = Bi-"

Figure 5.12 Temperature distribution in an infinite cylinder
ofradius r, [5]. Used with permission.

5.64 Graphical Representation

Graphical representations similar to those for the plane wall (Figures 5.8 to
5.10) have also been generated by Heisler [5] and Grober et al. [6] for an
infinite cylinder and a sphere. Results for the infinite cylinder are presented in
Figures 5.11 to 5.13, and those for the sphere are presented in Figures 5.14 to
5.16. Note that, with respect to the use of these figures, the Biot number is
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Figure5.11Centerlinetemperatureasafunctionoftimeforaninfinitecylinderofradiusr,(5).Usedwithpermission.
 
 
 

107

Figure 5.13 Internal energy change as a function of time for an infinite cylinder of iEvepecrvupiecl ey
radius r, [6], Adapted with permission. J ben
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Figure5.14Centertemperatureasafunctionoftimeinasphereofradiusrv,[5].Usedwithpermission.
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Figure 5.15 Temperature distribution in a sphere of radius
r, [5]. Used with permission.

defined in terms of r,. In contrast recall that, for the lumped capacitance method,
the characteristic length in the Biot numberis customarily defined as r,/2 for the
cylinder and r,/3 for the sphere.

In closing it should be noted that the Heisler charts may also be used to
determine the transient response of a plane wall, an infinite cylinder, or a
Sphere subjected to a sudden change in surface temperature. For such a

ITVAN7TATLTTATA AYtT)CATAATTCIAHynenHTHPOI

ARYU.OF1.URBANA-CHAMPAIGN
   
    

  == BRaere
 

  

Centertemperatureasafunctionoftimeinasphereofradiusrv,[5].Usedwithpermission.
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itas 516 Internal energy changeas a function of time for a sphere of radius r,+ Adapted with permission.
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252 «Chapter 5 Transient Conduction

conditionit is only necessary to replace T,, by the prescribed surface tempen-
ture T, and to set Bi~' equal to zero. In so doing the convection coefficientis
tacitly assumed to be infinite, in which case T,, = T,.

 
 
 
 

  
  
  

  
  
  
  
 

 
  

 

 
 

 

EXAMPLE 5.2

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wal
thickness of 40 mm. Thepipe is heavily insulated on the outside, and befor
the initiation of flow, the walls of the pipe are at a uniform temperatureof
—20°C. With theinitiation of flow, hot oil at 60°C is pumped through the
pipe creating a convective surface condition corresponding to h= 500
W/m’ - K atthe inner surface ofthe pipe.

1. What are the appropriate Biot and Fourier numbers 8 min after the
initiation of flow?

2. At t= 8 min, whatis the temperatureofthe exterior pipe surface covered
by the insulation?

3. Whatis the heat flux q” (W/m)to the pipe from theoil at t= 8 min’
4 How much energy per meter of pipe length has been transferred from the

oil to the pipe at ¢ = 8 min?

SOLUTION

Known: Wall subjected to sudden change in convective surface condition.
Find:

1. Biot and Fourier numbers after 8 min.
2. Temperature of exterior pipe surface after 8 min.
3; Heat flux to the wall at 8 min.
4. Energy transferred to Pipe per unit length after 8 min.
Schematic: 
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Assumptions.

1. Pipe wa
less thar

2. Constan

3. Outer st

Properties:
300 Kj: p
a= 18.8 x]

Analysis:

lL. At i=

Equatio

Bi

Fo

2. With B;
ate. Ho

thickne;

experier
obtaine:
Bi} =

6,

Hence;
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5.6 Radial Systems with Convection 253

‘face temper Assumptions: i
1 coefficient is ; E , iy

1. Pipe wall can be approximated as plane wall, since thickness is much vy
less than diameter. t

2. Constant properties. ie
3. Outer surface of pipe is adiabatic. if

nd has a wall it
le. and befor Properties: Table A.1, steel type AISI 1010 [T =(—20 + 60)°C/2 = )

; : 300 K]: p = 7823 kg/m, c= 434 J/kg-K, k = 63.9 W/m: K, eM
smperature of Ne if
d through the a= 18.8 x10 m*/s. Pi
t to h=50 : iB .

a] bt

minafter the 1. At t=8 min, the Biot and Fourier numbers are computed from A
Equations 5.10 and 5.12, respectively, with L, = L. Hence i

wrface cover| hL 500 W/m? - K x 0.04m
/ Bi= — =— —_= 0313 4

at 1= 8mit! k 63.9W/m-K

wedfromeJ rp wat_188 x 10°F mi/s x 8 min x 60s/min6s aes oreo = a .

‘ LP (0.04 m)*
aa 2. With Bi = 0.313, use of the lumped capacitance method is inappropri-

ee ate, However, since transient conditions in the insulated pipe wall of
thickness L correspond to those in a plane wall of thickness 21
experiencing the same surface condition, the desired results may be
obtained from the charts for the plane wall. Using Figure 5.8, with
Bi~* = 3.2, it follows that

© TOoj-f, me
6, T, — f, :i oo

Hence after 8 min, the temperature of the exterior pipe surface, which
corresponds to the midplane temperature ofa plane wall, is

T, = T(0, 480s) = T,, + 0.22(T, — T..)

T, = 60°C + 0.22(—20 — 60)°C= 42°C 3

. = Heat transfer to the inner surfaceat x = L is by convection,and at any
_ time + the heat flux may be obtained fromNewton’s law ofcooling.

Hence at ¢ = 480 s, Fe ‘

4.(L, 480s) =qf = h[T(L,4808)-Te) tS
The surface temperature T(L, 480s) may beobtainedfrom Figure 5.9. pa
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For the prescribed conditions

and=Bi} = 3.2

it follows that

6(L,480s)  T(L,480s) — T,, pas
6,(480s)  7,(480s)-T,

Hence

T(L, 480s) ~ T,, + 0.86[T,(480 s) — T,,]
T(L,480 s) = 60°C + 0.86[42 — 60]°C = 45°C

Theheat flux at ¢ = 8 min is then

qi = 500 W/m? - K (45 — 60)°C = —7500 W/m? :

The nergy transfer to the pipewall over the 8-min interval may be
obtained from Figure 5.10 and Equation 5.44. With

Bi=0.313 —Bi2Fo = 0.55

it follows that

Q
— = 0.78
Q,

Hence

Q = 0.78pcV(T, — T,,)

or with a volumeper unit pipe length of V’ = «DL,

Q' = 0.78pcxDL(T, - T..)

Q' ~ 0.78 x 7823 kg/m x 434 J/kg -K
XX 1m x 0.04 m (—20 - 60)°C

Q' = -2.7x 10’ J/m
Comments:

. = = ms oe « + t thedirection of heat associated with q” and Q’ simply implies; transfer is from the oil to the pipe (into the pipe wall)
2. Since Fo > 0.2, the one-term a imati calculate |Pproximation can be used to

wall] temperatures and the total energy transfer. The midplane temper |
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ture can be determined from Equation 5.41 

 
  
  
  

  
  
 

= z %
T C, exp (—§?Fo)

where, with Bi = 0.313, C, = 1.047 and §, = 0.531 rad from Table 5.1.
With Fo = 5.64,

= 1.047 exp [ — (0.531 rad)* x 5.64] = 0.214
This result is in good agreementwith the value of 0.22 obtained from
Figure 5.8. Hence,

7(0,8 min) = T., + 9*(T, — T,,) = 60°C + 0.214(—20 — 60)°C = 42.9°C
which is within 2% of the value determined from the Heisler chart.

3. Using the one-term approximation for the surface temperature, Equa-
tion 5.40b with x* = 1 has the form

ie 03 cos (f;)

T(L,t) = T,, + (T; — T,) 6% 008 ($1)

T(L,8 min) = 60°C + (—20 — 60)°C x 0.214 x cos (0.531 rad)
T(L,8 min) = 45.2°C

which is within 1% of the value determined from the Heisler chart.

4. Thetotal energy transferred during the transient process can bedeter-
mined from the result associated with the one-term approximation,
Equation 5.46.

 
  
  

  
  

  
 
 

id a
i OQ qs

Q sin (0.531 rad)
Se ab aeee 4 = 0.80Q Sia

which is within 3% of the value determined from the Grdber chart.

eei es calisaned The, eeulegSaseels©
_— puletlal, a sphere ofradius r, = 5mm,isinitiallyin equilibrium at400°Cina

Process.
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256 Chapter Transient Conduction

Step | Cooling in air at 20°C for a period of time r, until the center
temperature reachesa critical value, T,(0, t,) = 335°C. Forthissituation,
the convective heat transfer coefficient is h, = 10 W/m?-K.

After the sphere has reached this critical temperature, the secondstep is
initiated.

Step 2 Cooling in a well-stirred water bath at 20°C, with a convective heat
transfer coefficient of h,, = 6000 W/m? - K.

The thermophysical properties of the material are p = 3000 kg/m’, k= 2)
W/m - K, c = 1000 J/kg - K, and a = 6.66 x 10-® m2/s.

1. Calculate the time t, Tequired for step 1 of the cooling process to b
completed.

2. Calculate the time 1, required during step 2 of the process for the cenlet
of the sphere to cool from 335°C (the condition at the completion of
1) to 50°C.

SOLUTION

 Known: Temperature requirements for cooling a sphere.

 
Find:

1. Time ¢, required to accomplish desired cooling in air.

 

ma iTime 1,, required to complete cooling in water bath.
Schematic:

= =—><—1
he =10W/ne-K | aes
ere hw = 6000 W/m? -K

e Water —>

*Sphere,r, = 5 mm
| 2 3000 kg/mi, Ti=400°¢ | C=lk/hg-k |

(THO, te) = 335°C @ = 6.66 x 19-5 Toe
es | mas | Teel, ty) = 50°C

Spr B= 20.Wim-K |. a
Step 2

 
Assumptions:

1. One-dimer

2. Constant

Analysis:

1. To determ

Biot numb

Bi =

According
temperatu:
5.5 it folla

2. To detern
used for |

again calc

Bi =

and the ly
excellent

‘>t, am
BS Eto

Bi-

6,
8i
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intil the center Assumptions:

 

   

or this situation,

‘K 1. One-dimensional conductionin r.

2. Constant properties.
second step is

Analysis:

converte Nal 1. To determine whether the lumped capacitance method can be used, the
Biot number is calculated. From Equation 5.10, with L, = r,/3,

‘* har, 1OW/m-KX0.005m _ ganna
kg/am, k= | | 3k. AafeI ea

Accordingly, the lumped capacitance method may be used, and the
+ process tobe temperature is nearly uniform throughout the sphere. From Equation

5.5 it follows that

si ee eve 6 Pre T, - T,,
iy h,A, 6, 3h, cw, a a

where V = (4/3)mr3 and A, = 4ar2. Hence

| : _ 3000 kg/m? x 0.005 m x 1000J/kg-K|400-20 9,|
a f 3x 10W/m-K 335 — 20

4

2 To determine whether the lumped capacitance methodmay also be
used for the second step of the cooling process, the Biot number is
again calculated. In this case

 
 
 

Bi = Bu 6000 W/m? - K x 0.005 m_
ae 3x 20W/m-K

and the lumped capacitance method is not appropriate. However, to an
excellent approximation, the temperature of the sphere is uniform at
‘= 1, and the Heisler charts may beused for the calculations from
'=1,tot=1,+1,. Using Figure5.14with

k 20 W/m -K[eee

hyr, 6000W/m : K x0.005 m

0.50

= 0.67
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it follows that Fo = 0.80, and

a (0.005m)> |
i= fo = 080 66 x10-*m/s = 23

Comments:

1. If the temperature distribution in the sphereatthe conclusion ofstep]
were not uniform, the Heisler chart could not be used for the calcula-
tions of step 2. |

The surface temperature of the sphere at the conclusion of step 2 may |
be obtained from Figure 5.15. With

Bi-' = 0.67 and

Ar) T(r,) ~ T,
6) F=f,

T(r,) = 20°C + 0.52(50 — 20)°C = 36°C

Thevariation ofthe center and surface temperature with timeis then 4s
follows.

T;= 400 °c

T(0, t) = Tro,t)

335 °C

T(0, #

50 °C

36 °C

fe te+ty

: imation isFor the step 2 transient process in water, the one-term approximation
appropriate for determining the time t, at which the center tempe™
pod Teaches 50°C, that is, T(0, t,,) = 50°C. Rearranging Equation

 
sf

: = 150obtain the coefficients for Bi = 1/0.67=1 .
= 1.800 rad) and substituting appropriate temper

ie

Using Table 51 to
(C, = 1.376 and §

C,fo= —|2 [2 70,6)7aGo Bak
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id for the calcula|| 57

ion of step 2 may

5.7 The Semi-Infinite Solid 259

tures, it follows that

1 | 1 (50 — 20)°CaeoeIneseeeeeee
(1.800 rad)?|1.376=(335 — 20)°C

Substituting for r, and a,it followsthat ¢,, = 3.1 s, which is within 3%
of the value of 3.0 s obtained from the Heisler chart.

 

THE SEMI-INFINITE SOLID

Another simple geometry for which analytical solutions may be obtained is the
semi-infinite solid. Since such a solid extends toinfinity in all but one direction,
it is characterized by a single identifiable surface (Figure 5.17). If a sudden
change of conditions is imposed at this surface, transient, one-dimensional

_ conduction will occur within the solid. The semi-infinite solid provides a useful
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idealization for many practical problems. It may be used to determine tran-
sient heat transfer near the surface of the earth or to approximate the transient
fesponse of a finite solid, such as a thick slab. For this second situation the
approximation would be reasonable for the early portion of the transient,
during which temperatures in the slab interior (well removed from the surface)
are uninfluenced by the change in surface conditions.

The heat equation for transient conduction in a semi-infinitesolidisgiven
by Equation 5.26. The initial conditionis prescribedby Equation 5.27, and the
‘terior boundary condition is of the form

Case (2) Case (3)
=T 0)=7;T(x, 0)=T; T(x, 0) eoaes-k AT/8x\z29=  
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Closed-form solutions have been obtained forthree importantsurface cond
tions, instantaneously applied at ¢ = 0 [1,2]. 1 mditions are shown in
Figure 5.17. They include application of a ‘ tsT, + T,, application of a constant surfac heat Ka and exposureofthepwfece to a fluid characterizedby fs T, andpecoefficient f,
The solutions are summarized as |follows. et

Case 1 Constant Surface Temperature
T(0,t) = T.

T(x, t) aos f x
etlee7, 2Var

2 aT k(T, — T,)qs (t) =o =“AT,—i)
ax at Vimar

Case 2 Constant Surface Heat Flux
”, — on

q, = q,

aa wet) (sa2Vat k

appearing in Equation 5.55 is the Gaussian errora
The quantity erf w
which is tabulated in Secti
function, erfc w, is defined asn B.l of Appendix B. The comple

eoae
r the three cases are also shown in Figure SJ?

ishing features. For case 3 the specific tempe!™
uation 5.60 are plotted in Figure 5.18.

to pes % is equivalent to the result that ¥ 1%
the surface temperature to T, = Tz:

«rm on the right-hand side of Equation 5,60
alent to Equation 5.55.

Note i

h = co the second term
Zero, and the result js equiv
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nt surface conti.

yns are shown in

face temperature
| exposure ofthe
ion coefficient fh. 

(556) Figure 5.18 Temperature histories in a semi-infinite
solidwith surface convection [2]. Adapted with

  
 
 
 
 
 
 

 

Figure 5.19 Interfacial contact between two
semi-infinite solids at different initial
temperatures.

if Aninteresting permutation of case 1 results whentwosemi-infinite solids,
A initially at uniform temperatures T,,, andTz,, are placed in contactat their
| feesurfaces (Figure 5.19). If the contact resistance isnegligible,the require-

_ Mentof thermal equilibriumdictatesthat, at theinstant of contact (1 = 0),
B both surfaces must assume thesametemperatureT,,forwhichTp,, <7.<

1Since T, does not change withincreasingtime, it followsthat the
_ ‘Mansient thermal “andthesurfaceheatfluxofeachofthesolids isan determinedbyFetions 5.55and5.56,respectively.

i 1htmrcsempge19myeemiacacy talece eekeeOe
Ga=a"5 -

Singtmatin38nntn
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coordinate of Figure 5.19requires asign change forqf a; it followsthat

=Kk,(7,— 7, ;) k,(T, =e ri
> y721/2 —. (zap)(7a,t)

or, solving for T,,

(kpc) xT, , + (kpc)¥T,T - ( pc) =a! ( ey Boi Ag (543
(koe) x” + (kpc)9"

Hence, the quantity m = (kpc)'/2 is a weightingfactor which determines
whether T, will more closely approach Ty (ma, > mg) or Ty;(mg > my).

EXAMPLE 5.4

In laying water mains, utilities must be concerned with the possibility af
freezing during cold periods. Although the problem of determining the tem
perature in soil as a function of time is complicated by changing surface
conditions, reasonable estimates can be based on the assumption of a constall
surface temperature over a Prolonged period of cold weather. What minimul
burial depth x,, would you recommendto avoid freezing under conditions for
which soil, initially at a uniform temperature of 20°C, is subjected 10!
constant surface temperature of — 15°C for 60 days?
SOLUTION

Known: Tem
20°C perature imposed at the surface of soil that is initially al

 
Find: The depth e
Schematic:

to which the soil has frozen after 60 days.

rt== 15°C

1.

; One-dimensional Conduction in x.
- Soil is a Semi-infinite Medium.

3. Constant Properties,
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followsthat Properties: Table A.3, soil (300 K): p = 2050 kg/m’, k = 0.52 W/m-K,
¢ = 1840 J/kg - K, a = (k/pe) = 0.138 x 10~° m?/s.

 
(54 Analysis: The prescribed conditions correspond to those of case 1 of

Figure 5.17, and the transient temperature response of the soil is governed
by Equation 5.55. Hence at the time t = 60 days after the surface tempera-
ture change,

sa Mie) ae( 22)which determine Meats 2Vat
B. (My > ms).

Ee ee»=(-15) (sar)
the ity of i :; le | Hence from Appendix B.1
changing surfat Zig

ition of aconstaal Ser 0.40
der conditions for and
is subjected ©# }

X,, = 0.80Vat = 0.80(0.138 x 10~* m’/s x 60 days x 24h/day

3600 s/h)'”* = 0.68 m ,

js initially| | | Comments: The properties of soil are highly variable, depending on the
a i. Rature of the soil and its moisture content.

ays. 4 fr
| 58 MULTIDIMENSIONAL EFFECTS

mt problems are frequently encountered for which two- even
three-dimensional effects are significant. Solution to a class of such problems
can be obtained from theone-dimensional results ofSections 5.6and 5.7.

__ Consider immersing the short cylinder of Figure 5.20, which isinitially at
_‘uniformtemperature 7,, in a fluid of temperature T,, + T,. Because the

 
 
 
 

Assumingconstant propertiesandnogeneration,theappropriateform of

=) aT 10aTax? Siege ae
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Hr. x.) _ Wr) y We
 

0; 8; 4

OF = C(r*, t*) x Pix’)

 
Figure 5.20 Two-dimensional, transient conductionin a short cylinder. (a) Geometry.
(b) Form of the productsolution.

where x has been used in place of z to designate the axial oe:closed-form solution to this equation may be obtained by the sigue :variables method. Although wewill not consider the details ofthis solu
is importantto note that the end result may be expressed in the following
form.

T(r,x,t)-T, (x,t) - T,, Ft) F,
————————— Sl ___i11a _hee K~T, |fme 1,-T,,  |ininie

That is, the two-dimensional solution may be expressed as a Pesone-dimensional solutions that correspond to those for a plane wall ausness 2Z and an infinite cylinder of radius r,. These solutions are pi +from Figures 5.8 and 5.9 for the plane wall and Figures 5.11 and at ainfinite cylinder. They are also available from the one-term approxima
given by Equations 5.40 and 5.49, ‘ed in FiguteResults for other multidimensional geometries are summarized x of°21. In each case the multidimensional solution is prescribed in termsProduct invo}ving One or more of the following one-dimensional solutions.

T(x, t) —Sealete(5.6)
fo ee Semi-infinite

P(x, 1) = 0%!)=To6.6)
t oo  Plane

wall

C(r, t) gos, | (5.66)i re Infinitecylinder

The x coordinate for the semi-infinite solid is measured from the ae
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Semi-infinite

solid

S(x,, t)Pl

(a)

|L-21,—-|
(d) Semi-infinite

plate

S(xg, t)(xy, P(x, t

 
(9) Semi-intinite

rectangular bar

Figure $21 Soluti
Products of one-dir

Whereas for the Pp
5.21 the coordinz

ional temr
5.21h, is then, for
Plane walls of thi
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C(r, t) eeee—aSSSaera aBoag

Fo  
 
 

Hr) Het
8 6

t*) x Pix*, A)——— (a) ee (b)
S(x;, t)P(xg, t) P(xy, t) P(xa, t) Clr, t) Sx, t)

 
Suite

 
a) Geometry.

(a) Semi-infinite (e) rectangular
bar

Sia, t)P(xy, t)P(xz, t) P(xy, t)(xz, t)P(x3, t)

 
ino  
 
 

(9) Semi-intinite hack to (h) Rectangular

rf Figure 5.21 veee_ Products of one-dimensional results.

 
Tx, 2s X3,Pee = Pla)- Plan)Poon)
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The distances x,, x,, and x, are all measured with respect to a rectangular
coordinate system whose origin is at the center of the parallelepiped.

The amountof energy Q transferred to or from a solid during a multid-
mensional transient conduction process may also be determined by combining
one-dimensional results, as shown by Langston [7].

EXAMPLE 5.5

In a manufacturing process stainless steel cylinders (AISI 304) initially a
600 K are quenched by submersion in an oil bath maintained at 300 K with
h = 500 W/m? - K. Each cylinder is of length 2 = 60 mm and diameter
D = 80 mm. Consider a time 3 min into the cooling process and determin
temperatures at the center of the cylinder, at the center ofa circular face, and
at the midheight ofthe side.

SOLUTION

perature and dimensions of cylinder and temperature |
and convection conditions of an oil bath.
Known: Initial tem

Find: Temperatures T(r, x,t) after 3 min at the cylinder center, T(0,0.
3 min), at the center of a circular face, T(0, L, 3 min), and at the midheight
of the side, T(r,,0,3 min),

Schematic:

To = 40 mm

 
T(r, x,0) = T; = 600 K

Tro, 0, t)

Assumptions:

1. Two-dim

2. Constani

Properties:
450 K]: p=
k/pc = 4.19

Analysis: T
the tempera
following pri

 

where P(x, |
tively. Accoi

T(0,0,3 mi

ro

 

Hence, for t

Bj-)} =

it follows fr:

7>|>a

Similarly, fc

a
ll
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© a rectangular Assumptions:

 
 

 
 
 
 
 

2piped.
uring @ multi 1. Two-dimensional conduction in r and x.

d by combining 2. Constant properties.

Properties: Table A.1, stainless steel, AISI 304 [T = (600 + 300)/2 =
450 K]: p = 7900 kg/m’, c = 526 J/kg-K, k=17.4 W/m-K, a=
k/pe = 4.19 X 10~° m?/s.

04) initially at |
_at 300Kwih ||Analysis: The solid steel cylinder corresponds to case i of Figure 5.21, and
1 and diameter ||the temperature at any point in the cylinder may be expressed as the
and determine following product of one-dimensional solutions.

reular face, and

: T(r, x,t) — T., . 3TT, = P(x, t)C(r,t)

where P(x, t) and C(r, t) are defined by Equations 5.65 and 5.66, respec-
| | tively. Accordingly, for the center of the cylinder,

temperature | ;
| T(0,0,3 min) — 7, -7(0,3 min) — T,, T(0,3 min) — T,,

BAT. MST ineeee
nter, T(0,0,
e midheight Hence, for the plane wall, with

k Ktes Fie SAee ae

at 419x 10~* m’/s x 180s
he6ee

L (0.03 m)

| it follows from Figure 5.8 that

9, _ T(0,3 min) —
———— = 0.64me ee Ae |

Similarly, forthe infinite cylinder, with
3 k 171.4W/m-K —

 
Bir) = —= —_Tf"—__= 081

hr, S00W/m -K x 0.04m |

o ae 4s_ a _ 419x10 m?/sxwees=“7
" (0.04m)?
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it follows from Figure 5.11 that where, from Fig

  

    

  

  
   

  

@, 1(0,3 min) — T,, 0.55 A(r,) 7
@  T-T,|afie 5

Hence, for the center of the cylinder, Hence
T(0,0,3 min) - T,,

= 0.64 x 0.55 = 0.35 T(r,,3 mitT,-T,
fT, =

T(0,0,3 min) ~ 300 K + 0.35(600 — 300) K ~ 405 K 4

The temperature at the center of a circular face may be obtained from the
requirement that

T(0, L,3 min) - 7, _ T(L,3 min) - T, _T(0,3min)-T,,T(r,,3 mii
T-T, T-T,|Plone T- To Vet T, -

wh . fi i ‘ i = 1ere, from Figure 5.9 with (x/L)=1 and Bi 1.16, Hence
AL)  T(L,3 min) — Tre = 0.68 T(r,,0,316, T(0,3 min) — T,,|Plane

wall T, aa
Hence

T(r,
T(L,3 min) - T, T(L,3 min) — T,, T(0, 3 min) — T,,

=e O—————

r=. Plane (0,3 min) — T, Plane i,- 1 ae Comments:

7(L,3 min) — 7, l. Verityahaa. 6068x064 = 0.44 rieruy thatT, a. ae 3 min) = 2
ere 2. The one-ter

less temper.
7(0, L,3 min) ~ 7, midplanete

TT. = 0.44 x 0.55 = 0.24 ’
OF — -70, L,3 min) = 300 K + 0.24(600 — 300) K = 372K '

The temperature at the midhe; i ¥midheight ed from Where, withrequirement that eM Of the side may be obtain With Fo =
T(r, in) — : zae)_ 7(0,3 min) — 7, T(r,,3 min) — Te 6,

= PeaS. -—|ioe =Neat Pe ie T.- fee | Plan
wall =
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where, from Figure 5.12 with (r/r,) = 1 and Bi~' = 0.87,

A(r,) _ T(r,.3 min) — T,, 
= 0.61 

  

 
 

! 6,  T(0,3 min) — 7,, otek
| | Hence

i | T_T. infinite (0,3 min) — T,,|faite
an (0,3min)~ Te

— nme P| 2A%.3 min)-T,, = 0.61 x 0.55 = 0.34
ae a i Fs Pegs cylinder 

Ms ' Hence

 
 
 
 
 
 
 
 

 

T(r,,0,3 min) Ti Z
a = 0.64 x 0.34 = 0.22

T(r,,0,3 min) ~ 300 K + 0.22(600 - 300)K + 366K 4

| Comments:

| | Verify that the temperature at the edge of the cylinder is T(r,, L,
|} | 3min) = 345K. |
a The one-term approximations can be used to calculate the dimension-
| less temperatures read from the Heisler charts. For the plane wall, the

midplane temperature can be determinedfrom Equation 5.41

a,
ae is C, exp (—5?Fo) bee

|Where, with Bi = 0.862, C, = 1.109and {, =0.814rad from Table 5.1. |
— With Fo = 0.84, asap a RRR Ra Ste AEé

 
= 1.109exp ea (0.814 rad)?x 0.84] vs0.636, | a eo e = a

 
Page 57 of 98



   

Page 58 of 98

270°» =Chapter 5 Transient Conduction

The surface temperature can be evaluated usingEquation 5.40b
6*

with x* = 1 to give

6*(1, Fo) @(L,t)
Ch cn -8oO o =cos (0.814 radx1) =0.687

Forthe infinite cylinder, the centerline temperature can be determined |
from Equation 5.49¢.

6, ;
OF = & = Cexp(-S7Fo)

where, with Bi = 1.15, C, = 1.227 and {, = 1.307from Table 5.1. With |
Fo = 0.47,

= 1.109 exp [— (1.307 rad)? x 0.47] = 0.550Infinite
cylinder

8,

6,

The surface temperature can be evaluated using Equation 5.49b

with r*=1 and the value of the Bessel function determined from
Table B.4,

@*(1, Fo) @(L, 1)
ee 3 = Jy(1.307 rad x 1) = 0.616o

The one-term approximations are in good agreement with results from
the Heisler charts,

eeneeiee

5.9 FINITE-DIFFERENCE METHODS

and “es enmes to transient problems are restricted to simplea
a yundary conditions, such as those considered in the preceding wae

wry Coverage of these and other solutions is treated in the ea
“f, Mm Many cases the geometry and/or boundary © toPreclude the use of analytical techniques, and recourse must be made
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finite-difference methods. Such methods, introduced in Section 4.4 for steady-
state conditions, are readily extended to transient problems. In this section we
consider explicit and implicit forms offinite-difference solutions to transient
conduction problems. More detailed treatments, as well as related algorithms,
may be found in the literature [8—10].

59.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.5. Under tran-
sient conditions with constant properties and no internal generation, the
appropriate form of the heat equation, Equation 2.15,is

Lor 2T o@#T (5.67)—— + —
a dt ax? dy?

To obtain the finite-difference form of this equation, we may use the central-
difference approximations to the spatial derivatives prescribed by Equations
4.31 and 4.32. Once again the m and n subscripts may be used to designate
the x and y locations of discrete nodal points. However, in addition to being
discretized in space, the problem must be discretized in time. The integer p is
introduced for this purpose, where

t= pat (5.68)

and the finite-difference approximation to the time derivative in Equation 5.67
18 €xpressed as

oT Tet T?
a Sig Ek (5.69)

Ar mn

The superscript p is used to denote the time dependence of T, and the time
derivative is expressed in terms of the difference in temperatures associated
with the new (p + 1) and previous (p) times. Hence calculations must be
Performed at successive times separated by the interval Ar, and just as a
inite-difference solution restricts temperature determination to discrete points
8 Space, it also restricts it to discrete points in time.
faiteuation 5.69 is substituted into Equation 5.67, the nature of the
lute-difference solution will depend on the specific time at which tempera-

are evaluated in the finite-difference approximations to the spatial
aratng In the explicit method of solution, these temperatures are evalu-

at the previous (p) time. Hence Equation 5.69 is considered to be a
_/Ward-difference approximation to the time derivative. Evaluating terms on

night-hand side of Equations 4.31 and 4.32 at p and substituting into
tion 5.67, the explicit form of the finite-difference equation for the
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interior node m, n is

+1 T TP Tp
! in is Then = Peace + Tn-t,n—~ 2Tnn _
« At i “(Ax y mind -

Test + Tyna—2720
(Av)

Solving for the nodal temperature at the new(p + 1) ime and assumingthat
Ax = Ay,it follows that ;

(5.10)

i ne Fo(T?.,.,, + aoe TS. n+1 + ae n-1)
+(1- 4Fo)T?

where Fo is a finite-difference form of the Fourier number
aAr

Fo = (ixy (5.2)

If thesystem is one-dimensional in x, the explicit form ofthe finite-differene
€quation for an interior node m reduces to

TP+) Fo(T?,, + T?_,) + (1 — 2Fo)T? (5.73)
Equations 5.71 and 5.73 are explicit because unknown nodal temperatures

or the hew time are determined exclusively by known nodaltemperatures at
the Previous time. Hence calculation of the unknown temperatures is straight
forward. Since the temperature of each interior node is known at t=0
(p = 0) from prescribed initial conditions, the calculations begin at t=i
-coe where Equation 5.7] or 5.73 is applied to each interior node to
ate poratetemperature.With temperatures known for ¢ = At, the mate
scnapecihaes sence equation is then applied at each node to eS
distributi er = 2Ar (p =2). In this way, the transient temperat

Be on is obtained by marching out in time, using intervals of At.
*H€ accuracy of the finite-difference solution may be improved by de

casing the values of Ax and At. Of course, the number ofinterior 9

oeFequired to carry the solution to a prescribed final a
decreasing Ax and ao Hence, the computation time increase ésCen acres At: The choice of Ax is typically based on a compra
been made, how sad computational requirements. Once this eeinstead, wever, the value of Ar may not be chosen independently.Setermined by seability requirements.
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An undesirable feature of the explicit method is that it is not uncondition-
ally stable. In a transient problem, the solution for the nodal temperatures
should continuously approachfinal (steady-state) values with increasing time.
However, with the explicit method, this solution may be characterized by
numerically induced oscillations, which are physically impossible. The oscilla-
tions may become unstable, causing the solution to diverge from the actual
steady-state conditions. To prevent such erroneous results, the prescribed
value of At must be maintained below a certain limit, which depends on Ax
and other parameters of the system. This dependence is termed a stability
criterion, which may be obtained mathematically [8] or demonstrated from a
thermodynamic argument (see Problem 5.69). For the problems ofinterest in
this text, the criterion is determined by requiring that the coefficient associated
with the node of interest at the previous time is greater than or equal to zero. In
general, this is done by collecting all terms involving 7,2 ,, to obtain the form
of the coefficient. This result is then used to obtain a limiting relation
involving Fo, from which the maximum allowable value of Ar may be
determined. For example, with Equations 5.71 and 5.73 already expressed in
the desired form, it follows that the stability criterion for a one-dimensional
interior node is (1 — 2Fo) > 0, or

Fo <} ee)

and for a two-dimensional node, it is (1 — 4Fo) > 0, or

Fox (5.75)

For prescribed values of Ax and a, these criteria may be used todetermine
upper limits to the value of Ar.

Equations 5.71 and 5.73 mayalso be derived by applying the energy
balance method of Section 4.4.3 to a control volume about the interior node.

ing for changes in thermal energy storage, a general form of the
“nergy balance equation may be expressed aS

E.. + E,=E,, (5.76)
interest of adopting a consistent methodology,it is again assumed that

all hea:_ ‘St Reat flow is into the node.i '
_ Toillustrate application of Equation 5.76, consider the surface node of

i nal system shown inFigure 5.22. To more accurately deter-
conditions near the surface, this node hasbeen assigned a

thickness whichis one-half that of theinterior nodes. Assuming convection
fluid and no generation, itfollows fromEquation

Pe eee 
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Figure 5.22 Surface node with convection and one-dimensional
transient conduction,

or, solving for the surface temperature at ¢ + Ar,
2h At t(7-7, 2aApeinsc= a ¢) + Ax? Gy - Tf) + TfT+! =
 

Recognizing that (2h At/pc Ax) = 2h Ax/k\a At/Ax2) = 2BiFo ad
grouping terms involving 7/, it follows that

nck ae =

Tf" = 2Fo(Tp + BiT,,) + (1 —2Fo — 2BiFo)Tf (5.7)
Thefinite-difference form of the Biot number is

eS
i= * (5.78)

Recalling the procedure for determining the stability criterion, we requ
that the coefficient for Tf be greater than or equal to zero. Hence

1—2Fo -2BiFo>0
or

aadFee (5.79)

ri.ifinite-difference solution requires the use of Equation 52
5.79 must be danesasd well as Equation 5.77 for the surface node,Equator

nodes, Equation oon than that for Equation 5.74. To ensure stability foral
able value of Fo, and hence Aeon 0 Used toselect the maximum

5.2. Each equation may be
method to a control volume about the com

Table5.2.Summaryoftransient,two-dimensionalfinite-differenceequations(Ax=Ay)
 

EXPLICITMETHOD

IMPLICITMETHOD

STABILITYCRITERION

FINITE-DIFFERENCEEQUATION
CONFIGURATION

4+TP

TR)=FalTP.
wored r+—+—_+
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EXAMPLE 5.6

A fuel elementof a nuclear reactoris in the shape ofa plane wall of thicknes
2L = 20 mm andis convectively cooled at both surfaces, with h =11W)
W/n - K and T,, = 250°C. At normal operating power, heatis generated
uniformly within the element at a volumetric rate of g, = 107 W/m.A
departure from the steady-state conditions associated with normal operation
will occurif there is a changein the generation rate. Consider a sudden chang
to 4,=2% 10’ W/m’, and use the explicit finite-difference method 10
determine the fuel element temperature distribution after 1.5 s. The fud
elementthermal properties are k = 30 W/m - K and a=5 x 10°° m/s.
SOLUTION

 

Known: Conditions associated with heat generation in a rectangular fuel |
element with surface cooling. |

Find: Temperature distribution 1.5 s after a change in operating power.
Schematic:

!
Fuel element 4

4; = 1 * 107 Wim3 a
4 = 2 x 107 Wim? 4
a=5 x 10-§ més ae

k= 30W/m- K |

a '
i

en:rhif  
[
 

& Cy w
nits

Assumptions:

1, One-dimensional conduction in x.
2. Uniform 2eneration.
3. Constant Properties.

A “ : : crementmor ‘ numerical solution will be obtained using a space in
network aaa there is symmetry about the midplane, —yi “x unknown nodal temperatures. Using the energy

 
method, Equati
for any interior

in

Ax

Solving for T,?°

 

T2*) = Fc

This equation |
nodes 1, 2, 3,
about node5,

or

T?*! = 2Fo

Since the ;
2, we select Fa

Fo(1 + Bi

Hence, with

haA| patany
k

it follows that

Fo < 0.46
Or

hee

To be well w;
sponds to

5 x
Fo= ——
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method, Equation 5.76, an explicit finite-difference equation may be derived
for any interior node m.

 

err Tr-1 — Tn pee my A aAg Sais
heat is: semiui enn a "e SADIE Re oie ia
= 10’ W/m.A ,Gosia il> _ Solving for 7?*' and rearranging,
' ae q(Ax)”‘ence oy} T?*) = Fo|T?_, - + (1 —2Fo)T? (1)1.5 5. The fuel Thi k ( mm
x 10-6 m/s,/ This equation may be used for node 0, with T2_, = TZ,,, as well as for

nodes 1, 2, 3, and 4. Applying energy conservation: to a control volume
about node 5,

| +1 Pp
etangular foel | J Dripaee gee ee eee

eae}
iting power. |||

 : A \2T?*} = aor + BiT, + si | + (1—2Fo-2BiFo)T? (2)
 
 
 

 
 

 

. Since the mostrestrictive stability criterionisassociated with Equation
| | 2 .Weselect Fo from the requirement that

Fo(1 + Bi) <4

4e

p= BAX _ NOOW/m?-K(0.002m) |4,
iis 30 W/m - K I

itfollows that "

Fo < 0.466

_ Fo(Ax)?_0,466(2 x 107? m)
fe el 5 x 10-°m’/s

o= Aee
(2x 10-3 m)’  
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Substituting numerical values, including g = qz=2 X 10' W/m, the nodal |
equations become a

T}*' = 0.375(2T? + 2.67) + 0.2507?
T?** = 0.315(Tf + TP + 2.67) + 0.2507?

Tf*' = 0.375(Tf + TP + 2.67) + 0.25077

T}*! = 0.375(TP + T? + 2.67) + 0.2507?

Ty** = 0.375(TP + T? + 2.67) + 0.2507?

TP** = 0.750( T? + 19.67) + 0.1957?
To begin the marching solution, the initial temperature cee

must be known. This distribution is given by Equation 3.42, with ¢ = 4.
Obtaining T, = T, from Equation 3.46,

gL 10’ W/m x 0.01 m :
s= Tr ca 1100 W/m? - K

it follows that

a2T(x) = 16.1 - a + 340.91°C
Computed temperatures for the nodal points of interest are shown in the
first row of the accompanying table. '

Using the finite-difference equations, the nodal temperatures ma*sequentially calculated with a time incrementof 0.3 s until the desired itime is reached. Theresults are illustrated in rows 2 through 6 ofthe a8and maybe contrasted with the new Steady-state condition (row 7), Wil
Was obtained by using Equations3.42 and 3.46 with G = q,,
Tabulated nodal temperatures
ee ee ey

3357.58 356.91 354.9) 351.58 346.91 340.91
358.08 357.41 355.41 352.08 347.41 341.41
358.58 357.91 355.91 352.58 347.91 341.88
359.08 358.41 356.41 353.08 348.41 342.35
359.58 358.91 356.91 353.58 348.89 342.82
360.08 359.41 357.4) 334.07 349.37 343.27
465.15 463.29 459.82 453.15 443.99 431.82
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)’ W/m’,the nodal Comments: It is evident that at 1.5 s, the wall is in the early stages of the
transient process and that many additional calculations would have to be
made to reach steady-state conditions with the finite-difference solution.
The computation time could be slightly reduced by using the maximum
allowable time increment (Art = 0.373 s), but with someloss of accuracy. In
the interest of maximizing accuracy, the time interval should be reduced
until the computed results become independentof further reductions in Ar.
 

_ $92. Discretization of the Heat Equation: The Implicit Method

rature distribution ; In the explicit finite-difference scheme, the temperature of any node at ¢ + At
3.42, with g=4. | maybe calculated from knowledge of temperatures at the same and neighbor-

ing nodes for the preceding time t. Hence, determination of a nodal tempera-
ture at some timeis independent of temperatures at other nodes for the same

| time. Although the method offers computational convenience, it suffers from
340.91°C { limitations on the selection of Ar. For a given space increment, the time

| interval must be compatible with stability requirements. Frequently, this
dictates the use of extremely small values of Ar, and a very large number of
time intervals may be necessary to obtain a solution.

A reduction in the amount of computation time may often be realized by
employing an implicit, rather than explicit, finite-difference scheme. The
implicit form of a finite-difference equation may be derived by using Equation

“are shown in the|| 569 to approximate the time derivative, while evaluating all other tempera-
| | tures at the new (p + 1) time, instead of the previous (p)time. Equation 5.69

yperatures may be | is then considered to provide a backward-difference approximationto the time
il the desiredfinal.a derivative, In contrast to Equation 5.70, the implicit form ofthe finite-difference
ugh 6 of thetable|| — “quation for the interior node of a two-dimensional system is then

da» ie LTTh TEL +TE

=,= Mu i | , - za ‘1rt ca oe re ees + Tet Ties (5.86)
at) fem (Ay)

: ri i ‘4 “alranging and assuming Ax = Ay,itfollows that
(1+ 4Fo)72+1 — Fo(Tet}, + T2th «+ Teves + Thien1) = Tren

| (5.87) 
 
 

 
. aoa
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general, unknown. Hence, to determine the unknown nodal temperatures at
t + Ar, the corresponding nodal equations must be solved simultaneously. Such
a solution may be effected by using Gauss-Seideliteration or matrix inversion.
as discussed in Section 4.5. The marching solution would theninvolve simul
neously solving the nodal equations at each time ¢ = Ar,2At,..., until the
desired final time was reached.

Although computations involving the implicit method are more compli-
cated than those of the explicit method, the implicit formulation has the
important advantage of being unconditionally stable. That is, the solution
remains stable for all space and time intervals, in which case there are no
restrictions on Ax and At. Since larger values of At may therefore be used
with an implicit method, computation times may often be reduced, with littl
loss of accuracy. Nevertheless, to maximize accuracy, Ar should be sufficiently
A to ensure that the results are independent of further reductions in itsvalue.

The implicit form of a finite-difference equation mayalso be derived from
the energy balance method. For the surface node of Figure 5.22,it is readily
shown that

(1+2Fo+ 2FoBi)T?** — 2FoT?*} = 2FoBiT,, + T? (5.88)
For anyinterior node of Figure 5.22, it may also be shownthat

(1 + 2Fo)72*! — Fo(Tett + Te+1) = 7? (5.89)
Forms of the implicit finite-difference equation for other common geometries
are presented in Table 5.2. : lying theui iia: Each equation may be derived by applyin

EXAMPLE 5.7

aof copper initially at a uniform temperature of 20°C is sudden!)
ooradiation at one surface such that the netheatflux is maintained #
diffi ne of 3 x 10° W/m’. Using the explicit and implicit_

neue techniques with a space increment of Ax = 75 mm, determine the
ted surface and at an interior point that is150 =
min have elapsed. Compare the results with er

“PPropriate analytical solution.

 
  

Known: Thick
Slab of copper, initially i temperature, is S¥?Sidetorynmaaa

Find:

nn

Using the ex}
the surface al

min.

Repeat the ca

3. Determine th

Schematic:

One-dimensi:

Thick slab ;
constant suri

Constant pre

Properties: Tab
10-* m’/s.

Analysis:

1. An explicit {
may be obta
about the no

g,A+)

or

bP se
137 =

Thefinite-dj
tion 5.73, B
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i

tures at

ly. Such MEne eel eraee
venioa,||1. Using the explicit finite-difference method, determinetemperaturesat
sjialia! he surfaceand150mm from the surfaceafter an elapsed timeof 2
intil the in. 2 4 r +54 - 4 Lay

e lati ing the implicit finite-difference method.
compli Ree Senviae thesame tein atuees analytically.
ap ine the same temperatures analytics
olution

AIGN 
Ax = 75mm —

- One-dimensional conduction in x.

- Thick slab may be approximated as a semi-infinite medium with

 1.URBANA-CHAMP
F

constant surface heat flux.

3. Constant properties.

pene Table A.1, copper (300 K): k = 401 W/m-K, a= 117 x
m/s.

Analysis:

1. An explicit form ofthe finite-difference equation for the surface node
may be obtained by applying an energy balance to a control volume
about the node.

ARYU.S
aotUse

cA +kA Ty 1 dex: FE ae.
Pyesoeunaegecar Eee Haan 

tAPosie re) + (1 — 2Fo)TfkFg? as 2Fo|
The finite-difference equation for any interior node is given by Equa-

: odes are governed by thetion 5.73. Both the surface and interior n
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stability criterion

Fos}

Noting thatthe finite-difference equations are simplified by choos-
ing the maximum allowable value of Fo, we select Fo = 1 Hence

Ax 1 (0.075 myraat ee ( m) 

a 237x10-my,  *
With

qo Ax 3x 10° W/m? (0.075 m)
MeroewanOS

the finite-difference equations become

Tg*'=56.1°C+ Tf and T+ = se
for the surface andinterior nodes, respectively. Performingthe calcula-
tons, the results are tabulated as follows.
eseens

Explicit finite-difference solution for Fo = ‘
Pp t (s) T, T, T; T, T,

Sees4>
1 24 76.1 20 20 20 20
- 48 76.1 48.1 20 20 20
; 2 1042 4g] 34.1 20 20
i 96 104.2 69.1 34.1 27.1 20
eeSes

After 2 min, the surface temperature and the desired interior temp
ture are J, = 125.3°C and T, = 48.1°C.

Note that calculation of identical temperatures at successive tims

is, of : changescontinuously wi 'S,OFCourse, one in which the temperature
Facy of the calculations

To determine the ex ; i: tent to which the accuracy may beb

Y reducing Fo, let us redo the calculations for Fo = 1(At = 125). oe

The idiosyncrasy is eliminated and the 20% |
's Improved by reducing the value of Fo.» |

finite-diffe:

Tf +1

!Kida

and the re

Explicit fini

t (8)

0

12

24

=

seeya!hie:deNaaBebag
S 2°

After 2 1

444°C. C

is clear |

recurring
tration (t
ment in ;

exact solu

Performir
node, the

q. +

or,

(1+

Arbitrari

2Tg
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finite-difference equations are then of the form

Tg*! = 1(56.1°C + TP) + 47%

 
 

  
 
 
 
 
 

 
 
 
 
 

 
 

 

by choos Tg) = 4(T2,, + Te.) + 4
‘ence

and the results of the calculations are tabulated as follows.
TD

Explicit finite-difference solution for Fo = 1/4
tT] ? © Ti ide. ie Feo IP ee ee

ae 20 #8620 20°. Ip 368 aeSetat 20
pe 4s eke! 29) | ag7(:< Sphere Poe 28
PGE rhs ag) og. ea ee ae ee

a : mag pe’ San>* A ae ee ee
i Src|84, 06 244) De DS MY ae ae

560 890 46.7 275 23 21 2 20 20 20
Ge te 959 525 30.7 26 24 M0 20 20 20

qT 7 8 1023 579 341 M1 WS Wl MO DW ww
i Yee $ 9% 1081 681 376 238 25S 203 MO 00 Dm
ae 9 108 1137 680 410 276 22 2S 21 200 200

a 1 120 BS 726 296 2322 U8 22 20 200
——S f eeee

ee After 2 min, the desired temperatures are Ty =118.9°C and T, =
Se 44.4°C. Comparing the above results withthoseobtained for Fo = dit
= is clear that by reducing Fo we have eliminated the problem of

recurring temperatures. We have also predicted greater thermal pene-
| tration (to node 6 instead of node 3). An assessment of the improve-

me ment in accuracy must await a comparison with results basedon an A
€xact solution.

Performing an energy balance on a control volume about the surface
node, the implicit form of the finite-difference equationis

3773 ee 1 Ax TFs ae Tg
Kcaoec——_

 

Ra Re mie pane aR
or, =“

| yah amily
-, G+ 2F) Ceeen cate
. Arbitrarily choosingFo = A(At=24s),itfollowsthat : x
poeapegygea 
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From Equation 5.89, the finite-difference equation for anyinterior node
is then of the form

— Teeth + 47e*! — Tet) = 27?

Since we are dealing with a semi-infinite solid, the number of
nodes is, in principle, infinite. In practice, however, the number may be
limited to the nodes that are affected by the changein the boundary
condition for the time period ofinterest. From the results of the explicit
method, it is evident that we are safe in choosing nine nodes corre-
sponding to T,, T,,..., T;. We are thereby assuming that, at ¢ = 120s,
there has been no changein T;.

We now havea set of nine equations that must be solved simulta-
neously for each time increment. Using the matrix inversion method,
We express the equations in the form [.A][T] = [C], where

7h 0 0 0 0

4 -1 0 0 0

=] =} 0 0

0 - 0

=I

4

~1

0

0

|

—el—aa=—
\

SpoOaoSoS2©
$6.1 + TP
arp
27?
27?
27?
27?
27?
2?

27g + T?+1

table of nodal - ning withthe first sn, cuiperatures may be compiled, beginning *
To ass ? 0) corresponding to the prescribed initial condition
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any interior node coefficient matrix [A]~! mustfirst be found. At each time p + 1,it is
then multiplied by the column vector [C], which is evaluated at p,to
obtain the temperatures T?*', T?*",..., Tf+l For example, multiply-
ing [A]~! by the column vector corresponding to p = 0,

—_s:piaa=, the number of edicteefea

 

76.1

> number may be “ ;
in the boundary i)
Its of theexplicit 40 | | }
ine nodes corte- | 40 t (
aat, at t= 1205, | [C],-o =|40 ay

40 at
e solved simulta- | a aw
iversion method, | }
lere / 40

0 60
0 7 the second row ofthe table is obtained. Updating [C], the process is
0 repeated four more times to determine the nodal temperatures at 120 s.
9 The desired temperatures are Ty = 114.7°C and T, = 44.2°C.

Mi; ; eiruniansisaseeeeeeeeseisisineeseesscaiincsieeennenesaneenieaaa

| | Implicit finite-difference solution for Fo = 4
implicitfinite-differencesolutionforFo=30
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a3 Approximating the slab as a semi-infiniteite medium, theappropriate
analytical expressionis given by Equation 5.58, which may be applied
to any point in the slab.
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At the interior point (x = 0.15 m) \
23x10° W/m?

T(0.15 m, 120 s) — 20°C= 401W/m-K
- \1/2

(117 x 10-6 m?/s x 120 s/x)'”

(0.15 m)? | 3.x 10°W/ox 0.15 m
4x117X10-° m’/sx 120s}  401W/m-K

0.15 m ree ay
x11 —- erf SO_ | = 454°C

2y117 x 107° m’/s x 120s }

fa

Comments:

1. Comparingtheexactresults with those obtained from thethree approx
imate solutions, it is clear that the explicit method with Fo = 1/4
provides the most accurate predictions.

 
METHOD Ty = T(0,120s)  T, = T(0.15 m, 120 s)
Explicit(Fo=1) 1253 48.1
Explicit(Fo=1) 118.9 44.4
Implicit(Fo=1) 1147 44.2
Exact 120.0 45.4

MOiaonSo

This is not unexpected, since the corresponding value of Ar 1s 50%
smaller than that used in the other two methods.
Although computations are simplified by using the maximum allowable
value of Fo in the explicit method, the accuracy of the results 1s seldom
Satisfactory.

Note that the coefficient matrix [A] is tridiagonal. Thatis, all elemea’s
a. tO except those which are on, or to either side of, the _
diagonal. Tridiagonal matrices are associated with neeeconduction problems. In such cases the problem of solving for
unknown temperatures is greatly simplified, and stock computer P©
§rams mayreadily be obtained for this purpose.
A more Ssneral radiative heating condition would be onein which th
Surface is suddenly ex

Aeee T, (Problem 5.84). The net rate at which radiation 1s oeerredto the surface May then be calculated from Equatio® ,Allowing for conv i
€ction heat transfer to the surface, applicationconservation of nergy to the surface node yields an explicit =

  



   

Page 75 of 98

References 287

difference equation of the form

T? TS Bat Ta4 I a) 0ele = (12) | + (0, —tkeee
Use of this finite-difference equation in a numerical solution is compli-
cated by the fact that it is nonlinear. However, the equation may be

x 0.15m linearized by introducing the radiation heat transfer coefficient h,
defined by Equation 1.9, and thefinite-difference equation is

 

 
-K

| T?-Tf dx 7Y**~Tf
|. P are a ee =p>—: h? (Tu,—T?) + A(T,—TE) +k we ae mais Fi

The solution may proceed in the usual manner, although theeffect of a
radiative Biot number (Bi, = 4, Ax/k) mustbe included in the stabil-
ity criterion and the value of A, must be updated at each step in the

hree approx:|| calculations. If the implicit method is used, h, is calculated at p + 1, in
h Fo=1/4|| which case an iterative calculation must be madeat each time step.

—— } as
| S10 SUMMARY

===\

a: Transient conduction occurs in numerous engineering applications, andit is
|} ‘important to appreciate the different methods for dealing withit. There is
| “ettainly muchto be said for simplicity, in which case, when confronted with a
| tansient problem, thefirst thing you should do is calculate the Biot number.
Y If this number is much less than unity, you mayuse the lumped capacitance

f Aris 50 | | Method to obtain accurate results with minimal computational requirements.
\t- However,if the Biot number is not much less than unity, spatial effects must

1m allowable | | be considered, and some other method must be used. Analytical results are
| ‘Wailable in convenient graphical and equation form for the plane wall, the

infinite cylinder, the sphere, and the semi-infinite solid. Youshould know
_ When and how to use these results. If geometrical complexities and/or the
form of the boundary conditions preclude theiruse, recourse mustbe made to
| fitite-difference methods. With the digital computer, such methods may be

___ Weed to solve any conduction problem, regardless of complexity.
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PROBLEMS

Qualitative Considerations

5.1 Consider a thin electrical heater attached to a plate and backed byinsulation
Initially, the heater and plate are at the temperature of the ambientair, [..
Suddenly, the powerto the heater is switched ongiving rise to a constantheat fus
q, (W/n?) at the inner surface of the plate.

Insulation Plate

leads

(a) Sketch and label, on T—x coordinates, the temperature distributions: ae
Steady-state, and at two intermediate times.

(b) Sketch the heatflux at the outer surface q(L, 1) as a function of time; Lx ? : . 0

The inner surface of a plane wall is insulated while the outer surface 1s that dan airstream at T,.. The wall is at a uniform temperature corresponding (©
si = - Suddenly, a radiation heat source is switched on applying 4 wnifors
flux 9” to the outer surface.

insulation 33 Get>0

4 1 tthe
(a) Sketch and label, on T—

Steady-state, and at two intermediate times.
(b) Sketch the heat flux at

* coordinates, the temperature distributions: jnitial.

the outer surface a(L,t) as a function of tme-
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A microwave oven operates on the principle that application of a high frequency
field causes electrically polarized molecules in food to oscillate. The net effect is a

er, McGraw-Hill, uniform generation of thermal energy within the food, which enables it to be
heated from refrigeration temperatures to 90°C in as short a time as 30s.

ects Using One- Consider the process of cooking a slab of beef of thickness 2 in a
fer, 25, 149-150, microwave oven and compare it with cooking in a conventional oven, where each

side of the slab is heated by radiation for a period of approximately 30 min. In

for Initial Value each case the meatis to be heated from 0°C to a minimum temperature of 90°C.
Base your comparison on a sketch of the temperature distribution at selected

7. McGraw-Hill, times for each of the cooking processes. In particular consider the time f) at
which heating is initiated, a time ¢, during the heating process, the time 1,

| : corresponding to the conclusion of heating, and a time ¢, well into the subsequent
ransfer Analysis, cooling process.

54 A plate of thickness 2, surface area A,, mass M, andspecific heatc,, initially at
a uniform temperature J,, is suddenly heated on both surfaces by a convection
process (T,,,) for a period of time t,, following which the plate is insulated.
Assume that the midplane temperature does not reach T,, within this period of
time.

od by insulation (a) Assuming Bi > 1 for the heating process, sketch and label, on T—x coordi-
ambientait, T,- nates, the following temperature distributions:initial, steady-state (f + 00),
constant heatflux T(x, t,), and at two intermediate times between ¢ = f, and [ > o.

(b) Sketch and label, on T-1 coordinates, the midplane and exposed surface
temperature distributions.

(c) Repeat parts a and b assuming Bi < 1 for the plate.
(d) Derive an expression for the steady-state temperature T(x, 00) = 7;, leaving

your result in terms ofplate parameters (M,c,),thermal conditions (7;, T,,.. h),
the surface temperature T(L, f), and the heating time1.

| lumped Capacitance Method
‘a 35. Steelballs 12 mm in diameter are annealed byheating to 1150 K andthen slowly

ributions:ists) J cooling to 400 K in an air environment for which T,, = 325 K and h = 20
a W/m? - K. Assuming the properties of the steel tobe k = 40 W/m - K, p = 7800

onof time | __—_‘K8/m’, and ¢ = 600 J/kg - K,estimate the timerequired for the coolingprocess.
ace isexposed _ 56 The heat transfer coefficientfor air flowing over a sphere isto be determined by
onding tothat f ing the temperature-time historyofa spherefabricated from pure copper.
plying avai]  —-The sphere, which is 12.7 mm in diameter, is at66°C beforeitis inserted intoan 
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airstream having a temperature of 27°C. A thermocouple onthe outer surfaceof
the sphere indicates 55°C 69 after the sphere isinsertedinthe airstream.
Assume, and then justify, that the sphere behavesasaspacewise isothermal object

A solid steel sphere (AISI 1010), 300 mmin diameter,iscoated withadiclectrs
Material layer of thickness2 mm andthermal conductivity 0.04W/m- K. The
Coated sphere is initially at auniformtemperature of500°C and is suddenly
quenched in a large oil bath for whichT,,=100°Candh=3300W/nr-K.
Estimate the time required for thecoated spheretemperature toreach140°C,
Hint: Neglect the effectof energystorage inthedielectricmaterial, sinceits

_ thermal capacitance (pcV’)issmallcomparedto thatofthesteelsphere,
~ q in

coated withadielectric

al

1
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5.8 A spherical lead bullet of 6 mm diameteris movingat a Mach number of
approximately 3. The resulting shock wave heats ir aroundthebullet to 700
K, and the average convection coefficient for heattransfer between theair and the
bullet is 500 W/nr - K. If the bullet leavesthebarrel
flightis 0.4 s, whatis its surface temperatureonim
Carbonsteel (AISI 1010) shafts of 0.1 m diameter ar
furnace whose gasesare at 1200 K and -

300 K, howlong must they remain in
the furnace to achieve a centerline temperatureof800 K?

5.10 A thermal energy storage unit consists of a large rectangular channel, which is
well insulated on its outer surface and encloses alternating layers ofthe storage
material and the flow passage.

Each layer of the storage material is an aluminum slab of width W = 0.05 ™
Which is at an initial temperature of 25°C. Consider conditions for which tht
Storage unit is charged by passing a hot gas through the passages, with the #
temperature and the convection coefficient assumed to have constant values of
T.. = 600°C and h = 100 W/nr -K throughout the channel. How long will
take to achieve 75% of the maximum possible energy storage? What =
temperature of the aluminum atthis time?

; Passing it through a conveyor oven maintained 3 #= ‘temperature of 175°C. Satisfactory avea have i obtained on spine
spondye©: With am oven residence time of 35 min. The coating suppit e
140°C a the coating should be treated for 10 min above a ree a
remain in the on, Sbould @ spring of dimensions 76 mm by 35 mm by 16%
cal propertinn pit OFder to property heat treat the coating? The rofk <softhe spring material are p = 8131 kg/mm’, c, = 473 1/kg

-6
=73 x10

= 177 W/m- K and a cred at
operate

oven with air at 175°C and a convest™®
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1 number of

bullet to 70
1€ air and the

1 the time of

in a gas-fired
icient of 100

‘ey remain in

nel, which is
f the storage

5.14 In an industrial process requiring high dc currents, water-jacketed copper rods, 20

Problems 291

coefficient of 20 W/m - K, and (2) cooling in an enclosure with air at 25°C and a
convection coefficient of 10 W/nr - K.

(a) Assuming the panelis initially at 25°C, what is the minimum residence time
for the panel in the oven?

(b) What is the total elapsed time for the two-step curing operation if it is
completed when the panel has been cured and cooled to the safe-to-touch
temperature of 37°C?

5.13 A plane wall of a furnace is fabricated from plain carbon steel (k = 60 W/m - K,
p = 7850 kg/m’, c = 430 J/kg - K) and is of thickness L = 10 mm. Toprotectit
from the corrosive effects of the furnace combustion gases, one surface of the wall
is coated with a thin ceramic film which, for a unit surface area, has a thermal

resistance of R’’ , = 0.01 nr - K/W. The opposite surface is well insulated from
the surroundings.

Ceramic film, — ;———— Carbonsteel,

Ri; | p, & &, T;Furnace
gases
T.,h

Pip T,;  
At furnace start-up the wall is at an initial temperature of J, = 300 K, and
combustion gases at 7_, = 1300 K enter the furnace, providing a convection
coefficient of h = 25 W/nr - K at the ceramic film. Assuming the film to have
negligible thermal capacitance, how long will it take for the inner surface of the
steel to achieve a temperature of 7, , = 1200 K? Whatis the temperature T,, of
the exposed surface of the ceramic film at this time?

mm in diameter, are used to carry the current. The water, which flows continu-
ously between the jacket and the rod, maintains the rod temperature at 75°C
during normal operation at 1000 A. Theelectrical resistance of the rod is known
to be 0.15 @/m. Problems would arise if the coolant water ceased to be available
(e.g. because of a valve malfunction). In such a situation heat transfer from the
tod surface would diminish greatly, and the rod would eventually melt. Estimate
the time required for melting to occur.

15 A long wire of diameter D = 1 mm is submerged in an oil bath of temperature
T, = 25°C. The wire has an electrical resistance per unit length of R, = 0.01
2/m. If a current of J = 100 A flows through the wire and the convection
Coefficient is h = 500 W/nr - K, whatis the steady-state temperature of the wire?
From the time the currentis applied, how long does it take for the wire to reach a
temperature which is within 1°C of the steady-state value? The properties of the
Wire are p = 8000 kg/m, c = 500 J/kg - K, and k = 20 W/m- K

5.
. Consider the system of Problem 5.1 where the temperature of the plate 1s

*Pacewise isothermal during the transient process.

Page 79 of 98

ARYU.OF1.URBANA-CH

 

'
*i

AMPAIG

NBR}

 



   

Page 80 of 98

292 Chapter5 Transient Conduction

(a) Obtain an expression for the temperatu
T(t) in terms of g/’, T,,,-h, L, and the plat

(b) Determine the thermal time constant and the steady-state temperature for a
12-mm-thick plate of pure copper when T,, = 27°C, h = 50 W/m - K, ani
q,, = 5000 W/nr. Estimate thetime requ ch steady-stateconditions

5.17 An electronic device, such as apower transistor ted ona finned heat sink,
can be modeled as a spatially isothermalobject ternal heat generation and
an external convection resistance.

(a) Consider such a system of mass M,specificheat c, andsurface area A,, which
is initially in equilibrium with theenvironmentat ”,- Suddenly,theelectronic
device is energized such that a constantheatgeneration E, (W) occurs. Show
that the temperature response of the deviceis ‘

6 t

6, “0Ze)
where @ = T — T(oo) and T(00) isthe steady-state temperature correspond
ing to > co; 6 =7, —T(co); 7,= initial temperature of device; R=
thermal resistance 1/hA,; and C= thermal capacitance Mc.

(b) An electronic device, which generates 60 W ofheat, is mounted on
aluminum heat sink weighing 0.31 kg and reaches a temperature of 100°C ia
ambientair at 20°C under steady-state conditions.If the device is initially #
20°C, what temperature will it reach 5 min after the power is switched on!

5.18 Before being injected into a furnace, pulverized coal is preheated by passing
through a cylindrical tube whose surface is maintained atT.,, = 1000°C. The cal
pellets are suspended in an airflow and are known to move with a speed of 3 m/s
If the pellets may be approximated as spheres of 1-mm diameter and it may
assumed that they are heated by radiation transfer from the tube surface, ho*
long mustthe tube be to heatcoal entering at 25°C to a temperature of 600°C :
the use of the lumped capacitance method justified?

3.19 A metal sphere of diameter D, which is at a uniform temperature T,, is suddest
femoved from a furnace and suspended from a fine wire in a large room with #
at a uniform temperature T,, and the surrounding walls at a temperature Tx
(a) Neglecting heat transfer by radiation, obtain an expression for the a

required to cool the sphere to some temperature T.
(b) Neglecting heat transfer by convection, obtain an expression for pat

required to cool the sphere to the temperature T.
(c) How would you go about determining the time required for the sphere '° 7

lo the temperature T if both convection and radiation are of the same
of magnitude?

rete hich
= 0.75) 50 mm in diameter, ¥”
Both the air and the surrouni

7 in the
pacestations increase in size, there is an attendant increas¢ ™

amount of electrical : > tempertures ae »' Power they dissipate. To keep station compartmentput!
® Prescribed limits, it is necessary to transfer the
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heat to space. A novel heat rejection scheme that has been proposed for this
purpose is termed a Liquid Droplet Radiator (LDR). The heatis first transferred
to a high vacuum oil, which is then injected into outer space as a stream of small
droplets. The stream is allowed to traverse a distance L, over which it cools by
radiating energy to outer space at absolute zero temperature. The droplets are
then collected and routed back to the space station.

 

Cold oil return

Consider conditions for which droplets of emissivity «= 0.95 and diameter
D=0.5 mm are injected at a temperature of 7; = 500 K and a velocity of
V=0.1 m/s. Properties of the oil are p = 885 kg/m, c = 1900 J/kg - K, and
k = 0.145 W/m - K. Assuming each drop to radiate to deep space at T,,, = 0 K,
determine the distance L required for the droplets to impact the collector at a
final temperature of T, = 300 K. What is the amount of thermal energy rejected
by each droplet?

5.21 Long metallic rods of circular cross section are heattreated by passing an electric
current through the rods to provide uniform volumetric heat generation at a rate q
(W/m). The rods are of diameter D and are placed in a large chamber whose
walls are maintained at the same temperature T,, as the enclosed air. Convection
from the surface of the rods to the air is characterized by the coefficient h.

(a) Obtain an expression that could be used to determine the steady-state
temperature of the rod.

(b) Neglecting radiation and prescribing an initial (t = 0) rod temperature of
T, = T,,, obtain the transient temperature response of the rod.

522 A chip that is of length L = 5 mmom aside and thickness t = 1 mm is encased in
a ceramic substrate, and its exposed surface is convectively cooled by a dielectric
liquid for which h = 150 W/or - K and T, = 20°C.
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When the chip is energized, however, its
steady-state is established. For purposes of ana
terized by uniform volumetric heating with ;
infinite contact resistance between the chip and substrate and negligible conduc-
tion resistance within the chip, determine the steady-state chip temperature J.
Following activationof the chip, how lor take to comewithin 1°Cofthis
temperature? The chip density andspecific heat are p = 2000kg/nt and ¢ = 700
J/kg - K, respectively. = ,

5.23 Consider the conditions of Problem 5.22. Inaddition to treating heat transfer by
convection directly from the chip to the coolant, a more realistic analysis would
account for indirect transfer from the chip tothe substrate and then from the
substrate to the coolant. The total thermalresistanceassociated with this indirect
route includes contributions due to the chip-substrate interface (a contact resi-
tance), multidimensional conduction in the substrate, and convection from the
surface of the substrate to the coolant. If this total thermal resistance is R, = 200
K/W,whatis the steady-state chip temperature T,? Following activation ofthe
chip, how long does it take to comewithin 1°C ofthis temperature?

One-Dimensional Conduction: The Plane Wall
5.24 Consider the series solution, Equation 5.39, for the plane wall with convection.

Calculatemidplane (x* = 0) and surface (x* = 1) temperatures @* for Fo = 01
and 1, using Bi = 0.1, 1, and 10. Consider only the first four eigenvalues.
saaa the validity of the approximate solutions, Equations 5a)
Consider the one-dimensional wall shown in the sketch which is initially as
uniform temperature T; and is suddenly subjected to the convection boundat
condition with a fluid at E.

Es Insulation
Wall, T(x, 0) = T;,
hy ce

L

F +

Til, t) = 315°C.Rome the temperature at x= L, after 4"e - Ano} 3 :
conditions as shown below. wall, case 2, has different thickness

CASE I (m) a (nt/s) kK(W/m-K) T, (°C)
I 0.10 1I5x10-* 59
: 940 25x 10-* 499

ec) Acw/o ®)Tr,

300 400 200

t
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at (7, =T,) How long will it take for the second wall to reach 28.5°C at the position x = L,?
until a new Use as the basis for analysis, the dimensionless functional dependence for

rip is charac- transient temperature distribution as expressed in Equation 5.26.
Assuming an 5.26 A large aluminum (2024 alloy) plate of thickness 0.15 m, initially at a uniform
rible conduc temperature of 300 K, is placed in a furnace having an ambient temperature of
nperature T,, 800 K for which the convection heat transfer coefficient is estimated to be 500
n 1°Cofths W/nr - K.
and ¢ = 70) (a) Determine the time required for the plate midplane to reach 700 K.

{ (b) What is the surface temperature of the plate for this condition?

ee.aa (c) Repeat the calculations if the material were stainless steel (type 304).
aen from the . 5.27 After a long, hard week on the books, you and your friend are ready torelax. You
| this indirect J take a steak 50 mm thick from the freezer. How long do you have to let the good
contact resis | times roll before the steak has thawed? Assume that the steak is initially at — 6°C,
ion from the | that it thaws when the midplane temperature reaches 4°C, and that the room
ris R,= 20 © temperature is 23°C with a convection heat transfer coefficient of 10 W/nr - K.
vation of the Treat the steak as a slab having the properties of liquid water at 0°C. Neglect the

heat of fusion associated with the melting phase change.
5.28 A one-dimensional plane wall with a thickness of 0.1 m initially at a uniform

. temperature of 250°C is suddenly immersed in an oil bath at 30°C. Assuming the
. convection heat transfer coefficient for the wall in the bath is 500 W/m-K,

ae calculate the surface temperature of the wall 9 min after immersion. The proper-
le ties of the wall are k = 50 W/m-K, p = 7835 kg/m’,and c = 465 J/kg- K.
uations54 529 Consider the thermal energy storage unit of Problem 5.10, but with a masonry

# material of p = 1900 kg/m, c = 800 J/kg - K, and k = 0.70 W/m- K usedin
initially at8 placeof the aluminum. How long will it take to achieve 75% of the maximum
on boundary | Possible energy storage? What are the maximumand minimum temperatures of

the masonry at this time?
| 530 The wall of a rocket nozzle is of thickness L = 25 mm and is made from a high

alloy steel for which p = 8000 kg/m, c = 500 J/kg - K, and k = 25 W/m- K.
During a test firing, thewall is initially at J, = 25°C and its inner surface is
exposed to hot combustion gases forwhich h = 500W/ar - K and T,, = 1750°C.

Outer surface is well insulated.

 
 

 

 
If the wall must be maintained atleast 100°C belowits melting point of =

Tap= 1600°C,whatis the maximumallowablefiring timet,?Thediameter ofthe =
San ya8 Much largerthanits thickness1. ie Tis oo: SEES
~~ 82 tempering process, plate, whichisinitially atauniformtemperaturef,,Bie. i cooled by suddenly redacinethe temperature ofbothsurfacesto 7. Theplateis “|

 
Page 83 of 98



   

Page 84 of 98

ae

296 Chapter5 TransientConduction

20 mm thick, and the glass has a thermaldiffusivityof 6 x 10-7 m?/s.
(a) How long will it take for the midplane temperature to achieve 50% of it

maximum possible temperature reduction?- fi

(b) If (7, — T,) = 300°C,whatis themaximumtemperature gradientin the glas
at the above time? “a

5.32 Copper-coated, epoxy-filled fiberglass circuitboards are treated by heating a stack
of them under high pressure as shown in the sketch. The purpose of the
pressing-heating operation is to cure the epoxy whichbondsthefiberglass sheets
imparting stiffness to the boards. Thestack,referred to as a book, is comprised of
10 boards and 11 pressing plates whichprevent epoxyfrom flowing between the
boards and impart a smooth finish to the cured boards. In order to perform
simplified thermal analyses, it is reasonable toapproximate the book as having a
effective thermal conductivity (k) and an effective thermal capacitance (p¢,)
Calculate the effective properties if each of the boards andplates has a thickness
of 2.36 mm and the following thermophysical properties: board (b) p, = 100
kg/m’, ¢,.4 = 1500 J/kg - K, k, = 0.30 W/m-K; plate (p) p, = 8000 kg/m.
Cy.» = 480 J/kg - K, k, = 12 W/m-K.

Applied force

Platen with
|circulating fluid

-—Metal pressing

Tiss
Lee
SSSSSSM4

Circuit
board

5.33 Cireuit boards are treated by heating a stack of them under high pressutt ®
illustrated in Problem 5.32. The platens at the top and bottom of the ee
maintained at a uniform temperature by a circulating fluid. The purpost i
eeOperation is to cure the epoxy which bonds the fiberglass
has fs stiffness to the boards. The cure condition is achieved when the soe
ioe at or above 170°C for at least 5 min. The oo
— “i Properties of the stack or book (boards and metal pressing .

‘613 W/m - K and pe, = 2.73 x 10° J/m - K.
(a) ieaeaae at 15°C and, following application of ee

elapsed time t, y Fought to a uniform temperature of 190°C, ¢for the mic to reach thetemperature of 170°C, muPane OF the book 10
b omrains qeaant of time, r= +,, the platen temperature wert ee

by the ae G ct aaKh energy would have to be removed — is
initial uniform tempe ane the platen, in order to return the 5
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Problems 297

One-Dimensional Conduction: The Long Cylinder

5.34 Cylindrical steel rods (AISI 1010), 50 mm in diameter, are heat treated by
drawing them through an oven 5 m long in which air is maintained at 750°C. The
rods enter at 50°C and achieve a centerline temperature of 600°C before leaving.
For a convection coefficient of 125 W/m-K, estimate the speed at which the
rods must be drawn through the oven.

5.35 Estimate the time required to cook a hot dog in boiling water. Assume that the
hot dog is initially at 6°C, that the convection heat transfer coefficient is 100
W/nr - K, andthat the final temperature is 80°C at the centerline. Treat the hot
dog as a long cylinder of 20-mm diameter having the properties: p = 880 kg/m’,
¢ = 3350 J/kg - K, and k = 0.52 W/m- K.

5.36 A long rod of 60-mm diameter and thermophysical properties p = 8000 kg/m’,
ce = 500 J/kg - K and k = 50 W/m-K is initially at a uniform temperature and
is heated in a forced convection furnace maintained at 750 K. The convection

coefficient is estimated to be 1000 W/m -K. Ata certain time, the surface
temperature of the rod is measured to be 550 K. Whatis the corresponding center
temperature of the rod?

537 A long cylinder of 30-mm diameter,initially at a uniform temperature of 1000 K,
is suddenly quenched in a large, constant-temperature oil bath at 350 K. The
cylinder properties are k = 1.7 W/m-K, c= 1600 J/kg-K, and p = 400
kg/m’, while the convection coefficient is 50 W/nr - K. Calculate the time
required for the surface of the cylinder to reach 500 K.

538 A long pyroceram rod of diameter 20 mm is clad with a very thin metallic tube for
mechanical protection. The bonding between therod and the tubehas a thermal
contact resistance of R’. = 0.12 m- K/W.

\ Thin metallic tubeCeramic rod
T
J Bonding interface

io, D = 20mm

Ifthe rod is initially at a uniform temperature of 900 K and issuddenly cooled by
afluid at 7, =300 K and k= 100 W/m -K, at what time will the rod

e centerline reach 600 K?
__ 539Along rod 40 mm in diameter, fabricated from sapphire (aluminum oxide) and

initially at a uniform of 800K, is suddenly exposed toa cooling
Process with a fluid at300 K having aheat transfer coefficient of 1600 W/m - K.
After 35 s of exposure to the coolingprocess,therodiswrappedininsulationand
experiences no heat losses. Whatwillbe thetemperatureof therodafter a long
Gey ries CE Ei:

A longbar of 70-mm diameterandinitially at90°Cis cooledbyimmersingit ima
__ Water bath which isat40°C andprovides aconvectioncoefficientof 20W/nr-K.
ot Bee ical properties ofthebararep=2600kg/m',c=1030T/kg-K,>

and k = 3.50 W/m - K. ayarale aa eID MARR nei

S40A
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(a) How long should the bar remainin the ba
and allowed to equilibrate whileiso
uniform temperature of 55°C?

(b) Whatis the surface temperature of thebar v

A long plastic rod of 30-mm diameter( 3
kJ/nr - K) is uniformly heated in an oven as pre nfor a pressing oper
tion. For best results, the temperature in the rod should not be less than 200°C
To what uniform temperature should the rod be heated in the ovenif, for the
Worst case, the rod sits on a conveyor for 3 min w xposed to convection
cooling with ambientairat 25°C and with a convectioncoefficient of 8 W/m « K?
A further condition for good results is amaximum-minimum temperature différ-
ence ofless than 10°C.Is this condition satisfied and, ifnot,what could youdo to
satisfy it?

One-Dimensional Conduction: The Sphere
5.42 In heattreating to hardensteel ball bearings (c = 500 J/kg - K, p = 7800 ke/m,

k = 50 W/m-K),it is desirable to increase the surface temperature for a short
time without significantly warming the interior of the ball. This type of heating
can be accomplished by sudden immersion of the ballin a molten salt bath with
T,, = 1300 K and h = 5000 W/nr - K. Assumethat any location within the bal
whose temperature exceeds 1000 K will be hardened. Estimate the time required
to harden the outer millimeter of a ball of diameter 20 mm,if its initidl
temperature is 300 K.

A sphere of 80-mm diameter (k = 50 W/m-K and a=1.5 x 10° m/s)
imitially at a uniform, elevated temperature and is quenched in an oil bath
maintained at 50°C. The convection coefficient for the cooling process is 100
W/nr - K. Ata certain time, the surface temperature of the sphere is measured 1
be 150°C. Whatis the corresponding center temperature of the sphere?
A cold air chamber is proposed for quenchingsteel ball bearings of diame
D = 0.2 m and initial temperature T, = 400°C. Air in the chamberis maint
at —15°C bya refrigeration system, andthesteelballs pass through the ene?
Of a conveyor belt. Optimum bearing production requires that 70% of the initial
thermal energy content of the ball above —15°C be removed. Radiation eft
may be neglected, and the convection heat transfer coefficient within the
1s 1000 W/nr - K. Estimate the residence time of the balls within the chambe
and recommend a drive Velocity of the conveyor. The following properties ™¥ ;
used for the steel: k = 50 W/m -K,a=2x 1075 ny/s, and ¢ = 450 J/kg &

Stainless steel (
850°C, are hard
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emoved (a) If quenching is to occur until the surface temperature of the balls reaches
hieves a 100°C, how long must the balls be kept in the oil? What is the center

temperature at the conclusion of the cooling period?
ie bath! (b) If 10,000 balls are to be quenched per hour, whatis the rate at which energy
=10 must be removed by the oil bath cooling system in order to maintain its

+ oper temperature at 40°C?
200°C. 5.46 A spherical hailstone that is 5 mm in diameter is formed inahigh altitude cloud
for the at — 30°C.If the stone begins to fall through warmer air at 5°C, how long will it

rection — take before the outer surface begins to melt? What is the temperature of the
or: K? stone’s center at this point in time, and how much energy (J) has been transferred
e diffe- to the stone? A convection heat transfer coefficient of 250 W/nr - K may be
wudoto assumed, and the properties of the hailstone may be taken to be those ofice.

5.47 A sphere 30 mm in diameter initially at 800 K is quenched in a large bath having
a constant temperature of 320 K with a convection heattransfer coefficient of 75
W/nr - K. The thermophysical properties of the sphere material are: p = 400
kg/m, c = 1600 J/kg - K, and k = 1.7 W/m- K.

a short , (a) Show, in a qualitative manner on T-t coordinates, the temperatures at the
heating center and at the surface of the sphere as a function of time.
ith with (b) Calculate the time required for the surface of the sphere to reach415 K.
the bal (c) Determine the heat flux (W/m?)at the outer surface of the sphere at the time
equied f determined in part b.
+ inital (d) Determine the energy (J) that has been lost by the sphere during the process

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

of cooling to the surface temperature of 415K.

eal , (e) At the time determined by part b, the sphereis quickly removed from the bath
ig 1000 and covered with perfect insulation, such thatthere is no heat loss from the
sured10 surface of the sphere. What will be the temperatureof the sphere after a long

sui ; period oftime has elapsed?
548Spheres A and B are initially at 800 K, and they are simultaneously quenched

in

¥ large constant temperature baths, each having a temperature of 320 K. The
_ following parameters are associated witheach ofthe spheres and their cooling

Processes.

eeeeS

SPHEREA  SPHEREB 7
eeeeee

‘ke Diameter (mm) 300 30
7 Density (kg/m) 1600 400

ch : Thermal conductivity (W/m - K) 170 1.70
i: Convection coefficient (W//ni - K) 5. a

(8)Show in a qualitative manner,onTversustcoordinates,thetemperaturesat “ake
the centerandat thesurface foreachsphere as afunctionoftime. Briefly=

(b)Calculate the timerequiredfor thesurface ofeachspheretoreach415K
af
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(c) Determine the energy that has been gained byeachofthebaths duringthe
process of the spheres cooling to 415K.

5.49 The convection coefficient for flow over a solid sphere may be determined by
submerging the sphere, whichisinitiallyat 25°C, intothe flow, whichis at 75°C,
and measuring its surface temperature at some time during the transient heating
process. The sphere has a diameter of0.1 thermal conductivity and
thermal diffusivity are 15 W/m- K and10~° m’/s, respectively. If the convee-
tion coefficient is 300 W/nr - K, at what timewilla surface temperature of 60°C
be recorded? .

Semi-infinite Media

5.50 Two large blocks of different materials, such as copper and concrete, havebeen
sitting in a room (23°C) for a very long time. Which of the two blocks, if either,
will feel colder to the touch? Assume the blocksto be semi-infinite solids and your
handto be at a temperature of 37°C.

Asphalt pavement may achieve temperatures as high as50°C on a hot summer
day. Assume that such a temperature exists throughout the pavement, whet
suddenly a rainstorm reduces the surface temperature to 20°C. Calculate the total
amountof energy (J/m°) that will be transferred from the asphalt over a 30-min
period in which the surface is maintained at 20°C

5.52 A furnace wall is fabricated from fireclay brick (a = 7.1 x 10-7 m/s), and is
inner surface is maintained at 1100 K during furnace operation. The —_
designed according to thecriterion that, for an initial temperature of 300 K, 1s
midpoint temperature will not exceed 325 K after 4 h of furnace operation. Wha!
is the minimum allowable wall thickness?

5.53 A block of material of thickness 20 mm with known thermophysical properts
(k=15 W/m-K and a=20x 10-5 m/s) is imbedded in the wall of #
channel thatis initially at 25°C andis suddenly subjected to a convection pros
with gases at 325°C. A thermocouple (TC)is installed 2 mm below the surface a
the channelwall for the purpose of sensing the temperature-time history Ley
ing Start-up of the hot gas flow) and thereby determining the transient heatfut
At an elapsed time of 10 s, the thermocouple indicates a temperature of 167°C 
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Problems 301

Calculate the corresponding surface convective heat flux assuming the block
behaves as a semi-infinite solid. Compare this result with that obtained from the
Heisler method of solution.

5.54 A tile-iron consists of a massive plate maintained at 150°C by an imbedded
electrical heater. The iron is placed in contact with a tile to soften the adhesive,
allowing thetile to be easily lifted from the subflooring. The adhesive will soften
sufficiently if heated above 50°C for at least 2 min, butits temperature should not
exceed 120°C to avoid deterioration of the adhesive. Assume the tile and subfloor
to have an initial temperature of 25°C and to have equivalent thermophysical
properties of k = 0.15 W/m - K and pc, = 1.5 x 10° J/m’ - K.

=Tile, 4—mm thickness

U /fjp—setee
(a) How long will it take a worker using the tile-iron to lift a tile? Will the

adhesive temperature exceed 120°C?
(b) If the tile-iron has a square surface area 254 mm to the side, how much energy

has been removed from it during the time it has taken to lift the tile?
5.55 The manufacturer of the heat flux gage of the type illustrated in Problem 1.8

claims the time constant for a 63.2% response to be t = (4d?pc,)/m7k, where p,
¢,, and k are the thermophysical properties of the gage material anddis its

rickness, Not knowing the origin ofthis relation, your task is to modelthe gage
considering the two extreme cases illustrated below. In both cases, the gage,
initially at a uniform temperature T,, is exposed to a sudden change in surface
temperature, 7(0, 1) = T,. For case a the backside ofthe gage is insulated, and for
case b the gage is imbeddedin a semi-infinite solid having the same thermophysi-
cal properties as those of the gage.

 

 
Develop relationships for predicting the time constant of thegage for the two
cases and compare themto the manufacturer'srelation. Whatconclusioncan you

- draw from this analysis regardingthe transient response of gages for diferent
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following experimental arrangement uses the procedt
tion coefficient for gas flow normalto a surface.
encased in a super insulator of very lowtherm
coating is applied to its exposedsurface.

Gas flow T.., h

Surtace coating

Copper rod, ane
k = 400 Wim-K, a = 10~*m7/s

Super insulator

If the rod is initially at 25°C and gas flow for which h = 200 W/ar - K and :
T,, = 300°Cis initiated, whatisthe melting point temperature of the coating if Multidir
melting is observed to occur at t = 400 s? 5.64
An insurance company has hired you as a consultant toimprovetheir understand:
ing of burn injuries. They are especially interested in injuries induced whet ®
portion of a worker’s body comes into contact with machinerythat is at elevate!
temperatures in the range of 50 to 100°C. Their medical consultantinforms them
that irreversible thermal injury (cell death) will occur in anyliving tissue that's
maintained at T > 48°C for a duration Ar> 10 s. They want informalios
concerning the extentofirreversible tissue damage (as measured by distance from
theskin surface) as a function of the machinery temperature and the time dunts
which contact is made between the skin and the machinery. Can you help thes
Assumethatliving tissue has a normal temperature of37°C,is isotropic, and
constant properties equivalent to those of liquid water.
“ procedure for determining the thermal conductivity of a solid material involr®
embeddinga thermocouplein a thick slab of the solid and measuring the ee
‘© @ prescribed change in temperature at one surface. Consider an arrangemes
for which the thermocouple is embedded 10 mm from a surfacethat is suddeal
brought to a temperature of 100°C by exposure to boiling water. If the iit
eae ofthe slab was 30°C and the thermocouple measures at a
Sadan:athe surface is brought to 100°C, what is —
kg/or and 700 J/kg - K. and specific heat of the solid are known

5.59 vaheater in the form of a sheetis placed in good contact with the surf
raharee slab of Bakelite having a uniform temperature of 300 K. Determine ie

ture of the slab at the surface and at a depth of 25 mm, 10 min afterheater : ; an2500 wae and is providing a constant heatflux to the surface
ith thermal diffusivity 5.6 x 10-° ar/s and thermal com

is 's initially at a uniform temperature of 325°C. ie
€xposed to a coolant at 15°C for which the convection heat

coefficient is 100 W/m? - K Deters ace and attpl tM saeSarees
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Problems 303

5.61 A thick oak wall initially at 25°C, is suddenly exposed to combustion products at
800°C. Determine the time of exposure required for the surface to reach the
ignition temperature of 400°C, assuming the convection heat transfer coefficient
between the wall and products to be 20 W/m - K.

5.62 It is well known that, although two materials are at the same temperature, one
may feel cooler to the touch than the other. Consider thick plates of copper and
glass, each at an initial temperature of 300 K. Assuming your finger to be at an
initial temperature of 310 K and to have thermophysical properties of p = 1000
kg/nr, c = 4180 J/kg -K and k = 0.625 W/m-K, determine whether the
copper or the glass will feel cooler to the touch.

5.63 Twostainless steel plates (p = 8000 kg/m’, c = 500 J/kg - K, k = 15 W/m- K),
each 20 mm thick and insulated on one surface, are initially at 400 and 300 K
when they are pressed togetherat their uninsulated surfaces. What is the tempera-
ture of the insulated surface of the hot plate after 1 min has elapsed?

Multidimensional Conduction

5.64 A long steel (plain carbon) billet of square cross section 0.3 m by 0.3 m,initially
at a uniform temperature of 30°C,is placed in a soaking oven having a tempera-
ture of 750°C. If the convection heattransfer coefficient for the heating process is
100 W/nr - K, how long mustthe billet remain in the oven before its center

| temperature reaches 600°C?

5.65 Fireclay brick of dimensions 0.06 m X 0.09 m X 0.20 m is removed from a kiln at
1600 K and cooled in air at 40°C with A = 50 W/nr - K. Whatis the tempera-
ture at the center and at the comers of the brick after 50 min of cooling?

$66 A cylindrical copper pin 100 mm long and 50 mm in diameter is initially at a
uniform temperature of 20°C. The end faces are suddenly subjected toan intense
heating rate that raises them to a temperature of 500°C. At the same time, the
cylindrical surface is subjected to heating by gas flow with a temperature 500°C
and a heat transfer coefficient 100 W/nr - K.

Gas flow

 
1F , distribution in tran-

pes that your mother once saidthatmeat should be cookeduntil every —
Portion has attained a temperatureof 80°C, how long-willit take to cook a

 
 

Page 91 of 98



   

Page 92 of 98

304 Chapter 5 Transient Conduction

2.25-kg roast? Assume that the meatis initially at 6°C and that the oven
temperature is 175°Cwith a convection heattransfer coefficient of 15 W/m -K
Treat the roast as a cylinder with propertiesof liquid water, having a diamete
equal to its length. a re ee

A long rod 20 mm in diameter is fabricated from alumina (polycrystalline
aluminum oxide) andis initially at a uniform tempe ture of 850 K. The rod
suddenly exposed to fluid at 350 K with 4 = 500 W/m- K. Estimate th
centerline temperature of the rod after 30 sat anexposedend and at an avid
distance of 6 mm from the end. ;

Finite-Difference Solutions

5.69 Thestability criterion for the explicit method requires that the coefficientof the
Ty term of the one-dimensional, finite-difference equation be zero or positiv.
Consider the situation for which the temperatures at the two neighboring nods
(Tr-1» Thi) are 100°C while the center node (7?) is at 50°C. Show that for
values of Fo > }, the finite-difference equation will predict a value of Te *? that
violates the second law of thermodynamics.

5.70 A thin rod ofdiameter D is initially in equilibrium with its surroundings, 2 lat
vacuum enclosure at temperature, T,,,. Suddenly an electrical current J (A)
passed through the rod having an electrical resistivity p, and emissivity & Other
pertinent thermophysical properties are identified in the sketch. Derive i
transient, finite-difference equation for node m.

—De PC, &

A tantalum rod of diameter 3 mm and length 120 mm is supported by
clectrodes within a large vacuum enclosure. Initiallythe rod is in equilibrium *
=“ electrodes andits Surroundings, which are maintained at 300 K. Suddenly. #
electrical current, J = 80 A, is passed through the rod. Assume the emissivity
the rod is 0.1 and the electrical resistivity is 95 x 10-* @ - m. Use Table Ale
=m the other thermophysical properties required in your solution. Us

mite-difference method with a space increment of 10 mm.

Electrode, >
300 K

Surroundings, qe
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Problems 305

(a) Estimate the time required for the midlength of the rod to reach 1000 K.

(b) Determine the steady-state temperature distribution and estimate approxi-
mately how long it will take to reach this condition.

5.72 A one-dimensional slab of thickness 2Z is initially at a uniform temperature 7;.
Suddenly, electric current is passed through the slab causing a uniform volumetric
heating g (W/nr). At the same time, both outer surfaces (x = +L) are subjected
to a convection process at 7,, with a heat transfer coefficient h.

Ber | pera
esate -—L | +L

x

Write the finite-difference equation expressing conservation of energy for node 0
located on the outer surface at x = —L. Rearrange your equation and identify
any important dimensionless coefficients.

 
 

3.73 A wall 0.12 m thick having a thermal diffusivity of 1.5 x 10°° m/s is initially at
a uniform temperature of 85°C. Suddenly one face is lowered to a temperature of
20°C, while the other face is perfectly insulated. Using a numerical method with
space and time increments of 30 mm and 300 s, respectively, determine the
temperature distribution within the wall after 45 min have elapsed.

5.74 A large plastic casting with thermal diffusivity 6.0 X 10~’ m*/s is removed from
its mold at a uniform temperature of 150°C. The casting is then exposed to a
high-velocity airstream such that the surface experiences a sudden change in
temperature to 20°C. Assuming the casting approximates a semi-infinite medium
and using a finite-difference method with a space incrementof 6 mm, estimate the
temperature at a distance 18 mm from the surface after 3 min have elapsed. Verify
your result by comparison with the appropriate analytical solution.

5.73 A very thick plate with thermal diffusivity 5.6 x 10~° m?/s and thermal conduc-
tivity 20 W/m - K is initially at a uniform temperature of 325°C. Suddenly, the
Surface is exposed to a coolant at 15°C for which the convection heat transfer
Coefficient is 100 W/m? - K. Using the finite-difference method with a space
‘crement of Ax = 15 mm andatime increment of 18 s, determine temperatures
at the surface and at a depth of 45 mm after 3 min have elapsed.

*76 Consider the fuel element of Example 5.6. Initially, the elementis at a uniform
temperature of 250°C with no heat generation. Suddenly, the elementis inserted
‘nto the reactor core causing a uniform volumetric heat generation rate of g = 10°
W/m". The surfaces are convectively cooled with T,, = 250°C and h = 1100
W/ar - K. Using the explicit method with a space increment of 2 mm, determine
the temperature distribution 1.5 s after the elementis inserted into the core.

5 ; :
77 A plane wall of thickness 100 mm with a uniform volumetric heat generation of

4=15 x 10° W/nt is exposed to convection conditions of T,, = 30°C and
= 1000 W/nr - K on both surfaces. The wall is maintained under steady-state
“onditions when, suddenly, the heat generation level (q) is reduced to zero. The
thermal diffusivity and thermal conductivity of the wall material are 1.6 x 10°
m/s and 75 W/m - K. A space increment of 10 mm is suggested.
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(a) Estimate the midplane temperature 3 min after the generation has bem
switchedoff. ee

(b) Plot on T-x coordinates the temperaturedistribution obtained in part (3.
Showalso theinitial and steady-state temperature distributions for the wall

5.78 For the conditions described in Example5.6,use the finite-difference method to
estimate the temperature at the midplane (x = 0) 20 s afterthe power level has
been changed from 4, to 4). , .

5.79 A thin circular disk is subjected to induction heatingfromacoil, the effect of
which is to provide a uniform heat generation within a ring section as shown
Convection occurs at the upper surface, while the lower surface iswell insulated

(a) Derive thetransient, finite-difference equation for node m, which is wert
region subjected to induction heating.

(b) On +e coordinates sketch, in a qualitative manner,the steady-state temp*™
ture distribution, identifying important features. :

5.80 An electrical cable, experiencing a uniform volumetric generation 4, is half bus
im an insulating material whi : a convectiola (T.. by while the upper surface is exposed to

em,n+l1
—
—>
—

Cabie

zoeag:

em,n—l

(a) Derive the explicit, fini ; ikete-difference equations for an interior node (7. n),'
and the the comwad inwulated a Outer surface nodes (M, m) for

(®) Obtain the Stability criterion for each of the finite-difference equatio®
Identify the most restrictive criterion.
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ration has been 5.81 One end of a stainless steel (AISI 316) rod of diameter 10 mm and length 0.16 m
is inserted into a fixture maintained at 200°C. The rod, covered with an insulating

ned in part (a) sleeve, reaches a uniform temperature throughout its length. When the sleeve is
yns for the wall. removed,the rod is subjected to ambientair at 25°C such that the convection heat
venues" mnetaod Ss transfer coefficient is 30 W/m - K. Using a numerical technique, estimate the
‘power iol time required for the midlength of the rod to reach 100°C.

5.82 The cross section of an oven wall is composed of 30-mm-thick insulation sand-
vil, the effect of wiched between two thin (1.5-mm-thick) stainless steel sheets. Under steady-state
on as shown. =| conditions, the oven is operating with an inside air temperature of T,, , = 150°Cs well insulated and an ambient air temperature of T,,, = 20°C with h, = 100 W/m - K and

h, = 10 W/nor - K. When the oven heater level is changed and the fan speed
changed to substantially increase air circulation within the oven, the inside surface
of the oven experiences a sudden temperature change to 100°C. The insulation
has a thermal conductivity of 0.03 W/m - K and a thermal diffusivity of 7.5 x
10-7 nf/s. In your finite-difference solution, use a space increment of 6 mm.
Assume that the effect of the stainless steel sheets is negligible andthat the
outside convection heat transfer coefficient h, remains unchanged. Estimate the

1 time required for the oven wall to approximate steady-state conditions after
{ the inner wall temperature is changed to 100°C.q

Circulating fan a Ke; Pat mm

I Tesi, hi
ich is withinthe

y-statetempera |

bi 583 Two very long (in thedirection normal tothe page) bars havingthe prescribed
| _ itlitial temperature distributions are to besoldered together(see next page). At

<<: time = 0, the m = 3 face of the copper (pure)bar contactsthe m = 4faceof the
Steel (AIST 1010)bar. The solder andfluxactas an interfacial layerofnegligible
a andeffective contact resistance R”. = 2 X 10-5 mr - K/W.

 
 

 
(2) Derive the explicit, ema: stiCocotaeoF andBi.

AX/KRY.cmosep
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Interface with

|sae and flux
Copper, Steel,

pure7al AIS! 1010

1,3 2.3 3,3 4,3 5.3 6,3

 
Ax = Ay = 20mm

(b) Using Fo = 0.01, determine T,,> one time step after contact is made. What i
Ar? Is the stability criterion satisfied?

5.84 Referring to Example 5.7, Comment 4, consider a sudden exposureof the surface
to large surroundings at an elevated temperature (T,,,,) and to convection (Ts bh
(a) Derive the explicit, finite-difference equation for the surface node in terms of

Fo, Bi, and Bi,.

(b) Obtain the stability criterion for the surface node. Does this criterion on
with time? Is the criterion more restrictive than that for an interior node?

(c) A thick slab of material (k = 1.5 W/m-K, a=7X 107’ o/s, e= 0h
imitially at a uniform temperature of 27°C, is suddenly exposed 10 pes
Surroundings at 1000 K. Neglecting convection and using a space
of 10 mm, determine temperatures at the surface and 30 mm from the sufs*
after an elapsed time of 1 min.

>.85 Consider the system of Problem 4,58, Initially with no flue gases flowing, thew
(a= 5.5 * 10°° n?/s) are at a uniform temperature of 25°C. Using the impli
finite-difference method with a time increment of 1 h, find the
distribution in the wall 1, 2, 5, and 20 h after introduction of the flue gases

5.86 Consider the system of 3 = 15x10"system of Problem 4.66.Initially, the ceramic plate (a = bests

5.87 Consider the bonding 5 was aoalyaunder steady Operation described in Problem 3.79, whichthe (hin toe vee ditions.In this case, however,the laser wil bewel ;
stress Sa bs Prescribed period of time, creating the transient heating
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Laser source, g3 ae °

Plastic film 1 a2.4 Rem es k

ye Ntrtahee ‘
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The strip is initially at 25°C and the laser provides a uniform flux of 85,000
W/m over a time interval of Ar,, = 10's. The systemdimensions and thermo-
physical properties remain the same, but the convection coefficient to the ambient

, made. What i air at 25°C is now 100 W/m - K.
(a) Using an implicit finite-difference method with Ax = 4 mm and Ar=1 5s,

of thesult obtain temperature histories for 0 < ft < 30s at the center and film edge,
vection (Ty th Ne t) and T(m/2, 0), respectively, to determine if the adhesive is satisfacto-
Pee / cured above 90°C for 10 s and ifitsdegradation temperature of 200°C is

1 (>) Validate your program code by comparing it against the steady-state resultsof
sriterion chang Problem 3.79. What type of analytical solution would you seek in order to test
terior node? the proper transient behavior of your code?
mé/s,e=0%|588Circuit boards are treated by heating a stackof themunderhigh pressure as
posed tot |  _illustrated in Problem5.32 and described further in Problem5.33. Afinite-
pace incremes! difference method of solution is sought with two additionalconsiderations.First,
romthesui bookis to be treated ashavingdistributed, ratherthan lumpedcharacteristics,

by using a grid spacing of Ax = 236 mm with nodes at the center of the
190°C circuit boardor plate. Second, rather than bringing the platensto

ingtheimpli teedgin One Sudden change, the heating schedule 7,(1) shown below is tobe
he temperate in order to minimize excessive thermal stressesinduced byrapidlychangingthermal gradients in the vicinity of the platens.
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(a) Using a time increment of Ar = 60 s and the implicit method, find th
temperature history of the midplane of the book and determine whether
curing will occur (170°C for 5 min).

(b) Following the reduction of the platen temperatures to 15°C (t = 50 min),how
long will it take for the midplane of the book to reach 37°C, a sale
temperature at which the operator can begin unloading the press?

(c) Validate your program code by using the heating schedule of a sudden change
of platen temperature from 15 to 190°C and compareresults with those from
an appropriate Heisler solution (see Problem 5.33).

5.89 Consider the thermal conduction module and operating conditions of Problem
4.71. To evaluate the transient response of the cold plate, which has a thenmd
diffusivity of a = 75 x 10~* m’/s, assume that, when the moduleis activated at
¢ = 0, the initial temperature of the cold plate is J, = 15°C and a uniform heat
flux of gq’ = 10° W/nr is applied at its base. Using the implicit finite-different
method and a time increment of Ar = 0.1 s, compute the designated nodd
temperatures as a function of time. From the temperatures computed at 4
particular time, evaluate the ratio of the rate of heat transfer by convectionto the
water to the heat input at the base. Terminate the calculations when this rat
reaches 0.99. Print the temperature field at 5-s intervals and at the time for which
the calculations are terminated.  
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