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Inventors: 

Assignee: 

INTELLIGENT NETWORK INTERFACE DEVICE 

AND SYSTEM FOR ACCELERATED COMMUNICATION 

Provisional Patent Application Filed Under 35 U.S.C. § 111 (b) 

Laurence B. Boucher 
Stephen E. J. Blightman 
Peter K. Craft 
David A. Higgin 
Clive M. Philbrick 
Daryl D. Starr 

Alacritech Corporation 

t. Background of the Invention 
Network processing as it exists today is a costly and inefficient use of system resources. 

A 200 MHz Pentium-Pro is typically consumed simply processing network data from a 
1 OOMb/second-network connection. The reasons that this processing is so costly are described in 
the next few pages. 

1.1. Too Many Data Moves 
When network packet arrives at a typical network interface card (NIC), the NIC moves 

the data into pre-allocated network buffers in system main memory. From there the data is read 
into the CPU cache so that it can be checksummed (assuming of course that the protocol in use 
requires checksums. Some, like IPX, do not.). Once the data has been fully processed by the 
protocol stack, it can then be moved into its final destination in memory. Since the CPU is 
moving the data, and must read the destination cache line in before it can fill it and write it back 
out, this involves at a minimum 2 more trips across the system memory bus. In short, the best 
one can hope for is that the data will get moved across the system memory bus 4 times before it 
arrives in its final destination. It can, and does, get worse. If the data happens to get invalidated 
from system cache after it has been checksummed, then it must get pulled back across the 
memory bus before it can be moved to its final destination. Finally, on some systems, including 
Windows NT 4.0, the data gets copied yet another time while being moved up the protocol stack. 
In NT 4.0, this occurs between the miniport driver interface and the protocol driver interface. 
This can add up to a whopping 8 trips across the system memory bus (the 4 trips described 
above, plus the move to replenish the cache, plus 3 more to copy from the miniport to the 
protocol driver). That's enough to bring even today's advanced memory busses to their knees. 
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1.2. Too Much Processing by the CPU 
In all but the original move from the NIC to system memory, the system CPU is 

responsible for moving the data. This is particularly expensive because while the CPU is moving 
this data it can do nothing else. While moving the data the CPU is typically stalled waiting for 
the relatively slow memory to satisfy its read and write requests. A CPU, which can execute an 
instruction every 5 nanoseconds, must now wait as long as several hundred nanoseconds for the 
memory controller to respond before it can begin its next instruction. Even today's advanced 
pipelining technology doesn't help in these situations because that relies on the CPU being able 
to do useful work while it waits for the memory controller to respond. If the only thing the CPU 
has to look forward to for the next several hundred instructions is more data moves, then the 
CPU ultimately gets reduced to the speed of the memory controller. 

Moving all this data with the CPU slows the system down even after the data has been 
moved. Since both the source and destination cache lines must be pulled into the CPU cache 
when the data is moved, more than 3k of instructions and or data resident in the CPU cache must 
be flushed or invalidated for every 1500 byte frame. This is of course assuming a combined 
instruction and data second level cache, as is the case with the Pentium processors. After the 
data has been moved, the former resident of the cache will likely need to be pulled back in, 
stalling the CPU even when we are not performing network processing. Ideally a system would 
never have to bring network frames into the CPU cache, instead reserving that precious 
commodity for instructions and data that are referenced repeatedly and frequently. 

But the data movement is not the only drain on the CPU. There is also a fair amount of 
processing that must be done by the protocol stack software. The most obvious expense is 
calculating the checksum for each TCP segment (or UDP datagram). Beyond this, however, 
there is other processing to be done as well. The TCP connection object must be located when a 
given TCP segment arrives, IP header checksums must be calculated, there are buffer and 
memory management issues, and finally there is also the significant expense of interrupt 
processing which we will discuss in the following section. 

1.3. Too Many Interrupts 
A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments when 

running over Ethernet (1500 byte MTU). Each of these segments may result in an interrupt to 
the CPU. Furthermore, since TCP must acknowledge all of this incoming data, it's possible to 
get another 44 transmit-complete interrupts as a result of sending out the TCP 
acknowledgements. While this is possible, it is not terribly likely. Delayed ACK timers allow 
us to acknowledge more than one segment at a time. And delays in interrupt processing may 
mean that we are able to process more than one incoming network frame per interrupt. 
Nevertheless, even if we assume 4 incoming frames per input, and an acknowledgement for 
every 2 segments (as is typical per the ACK-every-other-segment property of TCP), we are still 
left with 33 interrupts per 64k SMB request. 

Interrupts tend to be very costly to the system. Often when a system is interrupted, 
important information must be flushed or invalidated from the system cache so that the interrupt 
routine instructions, and needed data can be pulled into the cache. Since the CPU will return to 
its prior location after the interrupt, it is likely that the information flushed from the cache will 
immediately need to be pulled back into the cache. 
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What's more, interrupts force a pipeline flush in today's advanced processors. While the 
processor pipeline is an extremely efficient way of improving CPU performance, it can be 
expensive to get going after it has been flushed. 

Finally, each of these interrupts results in expensive register accesses across the 
peripheral bus (PCI). This is discussed more in the following section. 

t.4. Inefficient Use of the Peripheral Bus (PCI) 
We noted earlier that when the CPU has to access system memory, it may be stalled for 

several hundred nanoseconds. When it has to read from PCI, it may be stalled for many 
microseconds. This happens every time the CPU takes an interrupt from a standard N1C. The 
first thing the CPU must do when it receives one of these interrupts is to read the NIC Interrupt 
Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling thing 
about this is that since interrupt lines are shared on PC-based systems, we may have to perform 
this expensive PCI read even when the interrupt is not meant for us! 

There are other peripheral bus inefficiencies as well. Typical NI Cs operate using 
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system memory 
to determine where to place the data. Once the data has been moved to main memory, the 
descriptor is then written back out to system memory with status about the received frame. 
Transmit operates in a similar fashion. The CPU must notify that NIC that it has a new transmit. 
The NIC will read the descriptor to locate the data, read the data itself, and then write the 
descriptor back with status about the send. Typically on transmits the N1C will then read the 
next expected descriptor to see if any more data needs to be sent. In short, each receive or 
transmit frame results in 3 or 4 separate PCI reads or writes (not counting the status register 
read). 

2. Summary of the Invention 
Alacritech was formed with the idea that the network processing described above could 

be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the 
Alacritech IN1C, we address each of the above problems, resulting in the following 
advancements: 

The vast majority of the data is moved directly from the INIC into its final destination. A single 
trip across the system memory bus. 

There is no header processing, little data copying, and no checksumming required by the CPU. 
Because of this, the data is never moved into the CPU cache, allowing the system to keep 
important instructions and data resident in the CPU cache. 

Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per 64k SMB write. 

There are no CPU reads over PCI and there are fewer PCI operations per receive or transmit 
transaction. 

The remainder of this document will describe how we accomplish the above. 
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2.1. Perform Transport Level Processing on the INIC 
In order to keep the system CPU from having to process the packet headers or checksum 

the packet, we must perform this task on the INIC. This is a daunting task. There are more than 
20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack. Clearly this is more 
code than could be efficiently handled by a competitively priced network card. Furthermore, as 
we've noted above, the TCP/IP protocol stack is complicated enough to consume a 200 MHz 
Pentium-Pro. In order to perform this function on an inexpensive card, we need special network 
processing hardware as opposed to simply using a general purpose CPU. 

2.t.i. Focus On TCP/IP 
In this section we introduce the notion of a "context". A context is required to keep track 

of information that spans many, possibly discontiguous, pieces of information. When processing 
TCP/IP data, there are actually two contexts that must be maintained. The first context is 
required to reassemble IP fragments. It holds information about the status of the IP reassembly 
as well as any checksum information being calculated across the IP datagram (UDP or TCP). 
This context is identified by the IP _ID of the datagram as well as the source and destination IP 
addresses. The second context is required to handle the sliding window protocol of TCP. It 
holds information about which segments have been sent or received, and which segments have 
been acknowledged, and is identified by the IP source and destination addresses and TCP source 
and destination ports. 

If we were to choose to handle both contexts in hardware, we would have to potentially 
keep track of many pieces of information. One such example is a case in which a single 64k 
SMB write is broken down into 44 1500 byte TCP segments, which are in tum broken down into 
131 576 byte IP fragments, all of which can come in any order (though the maximum window 
size is likely to restrict the number of outstanding segments considerably). 

Fortunately, TCP performs a Maximum Segment Size negotiation at connection 
establishment time, which should prevent IP fragmentation in nearly all TCP connections. The 
only time that we should end up with fragmented TCP connections is when there is a router in 
the middle of a connection which must fragment the segments to support a smaller MTU. The 
only networks that use a smaller MTU than Ethernet are serial line interfaces such as SLIP and 
PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we had 
256 of these connections, we would still only need to support 34Mb/sec, or a little over three 
1 ObT connections worth of data. This is not enough to justify any performance enhancements 
that the INIC offers. If this becomes an issue at some point, we may decide to implement the 
MTU discovery algorithm, which should prevent TCP fragmentation on all connections (unless 
an ICMP redirect changes the connection route while the connection is established). With this in 
mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP segments on the 
INIC. 

SPX follows a similar framework as TCP, and so the expansion of the INIC to handle 
IPX/SPX messages is straightforward. 

UDP is another matter. Since UDP does not support the notion of a Maximum Segment 
Size, it is the responsibility ofIP to break down a UDP datagram into MTU sized packets. Thus, 
fragmented UDP datagrams are very common. The most common UDP application running 
today is NFSV2 over UDP. While this is also the most common version of NFS running today, 
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