
An Analysis of TCP Processing
Overhead

David D. Clark
Van Jacobson
John Romkey
Howard Sa/wen

w HILE NETWORKS, ESPECIALLY LOCAL AREA
networks, have been getting faster, perceived throughput at the
application has not always increased accordingly. Various per
formance bottlenecks have been encountered, each of which
has to be analyzed and corrected.

One aspect of networking often suspected of contrib11ting to
low throughput is the transport layer of the protocol suite. This
layer, especially in connectionless protocols, has considerable
functionality, and is typically executed in software by the host
processor at the end points of the network. It is thus a likely
source of processing overhead.

While this theory is appealing, a preliminary examination
suggested to us that other aspects of networking may be a more
serious source of overhead. To test this proposition, a detailed
study was made of a popular transport protocol, Transmission
Control Protocol (TCP) [1]. This paper provides results of that
study. Our conclusions are that TCP is in fact not the source of
the overhead often observed in packet processing, and that it
could support very high speeds if properly implemented.

Our conclusions are that TCP is in fact
not the source of the overhead often
observed in packet processing, and that
it could support very high speeds if
properly implemented.

TCP
TCP is the transport protocol from the Internet protocol

suite. In this set of protocols, the functions of detecting and re
covering lost or corrupted packets, flow control, and
multiplexing are performed at the transport level. TCP uses se
quence numbers, cumulative acknowledgment, windows, and
software checksums to implement these functions.

0163-6804/89/0006-0023 $01.00"' 1989 IEEE

TCP is used on top of a network level protocol called
Internet Protocol (IP) [2). This protocol, which is a
connectionless or datagram packet delivery protocol, deals
with host addressing and routing, but the latter function is al
most totally the task of the Internet level packet switch, or gate
way. IP also provides the ability for packets to be broken into
smaller units (fragmented) on passing into a network with a
smaller maximum packet size. The IP layer at the receiving end
is responsible for reassembling these fragments. For a general
review of TCP and IP, see [3) or [4).

Under IP is the layer dealing with the specific network tech
nology being used. This may be a very simple layer in the case
of a local area network, or a rather complex layer for a network
such as X.25. On top of TCP sits one of a number of applica
tion protocols, most commonly for remote login, file transfer,
or mail.

The Analysis
This study addressed the overhead of running TCP and IP

(since TCP is never run without IP) and that of the operating
system support needed by them. It did not consider the cost of
the driver for some specific network, nor did it consider the
cost of running an application.

The study technique is very simple: we compiled a TCP,
identified the normal path through the code, and counted the
instructions. However, more detail is required to put our work
in context.

The TCP we used is the currently distributed version of
TCP for UNIX from Berkeley [5]. By using a production
quality TCP, we believe that we can avoid the charge that 011r
TCP is not fully functional.

While we used a production TCP as a starting point for our
analysis, we made significant changes to the code. To give TCP
itself a fair hearing, we felt it was necessary to remove it from
the UNIX environment, lest we be confused by some unex
pected operating system overhead.

For example, the Berkeley implementation of UNIX uses a
buffering scheme in which data is stored in a series of chained
buffers called mbufs. We felt that this buffering scheme, as well
as the scheme for managing timers and other system features,

June 1989 - IEEE Communications Magazine • 23

DEFS-ALA000? 181

INTEL Ex.1030.001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

was a characteristic of UNIX rather than of the TCP, and that
it was reasonable to separate the cost of TCP from the cost of
these support functions. At the same time, we wanted our eval
uation to be realistic. So it was not fair to altogether ignore the
cost of these functions.

Our approach was to take the Berkeley TCP as a starting
point, and modify it to better give a measure of intrinsic costs.
One of us (Romkey) removed from the TCP code all references
to UNIX-specific functions such as mbufs, and replaced them
with working but specialized versions of the same functions.
To ensure that the resulting code was still operational, it was
compiled and executed. Running the TCP in two UNIX ad
dress spaces and passing packets by an interprocess communi
cation path, the TCP was made to open and close connections
and pass data. While we did not test the TCP against other im
plementations, we can be reasonably certain that the TCP that
resulted from our test was essentially a correctly implemented
TCP.

The compiler used for this experiment generated reasona
bly efficient code for the Intel 80386. Other experiments we
have performed tend to suggest that for this sort of application,
the number of instructions is very similar for an 80386, a
Motorola 68020, or even an RISC chip such as the SPARC.

Finding the Common Path
One observation central to the efficient implementation of

TCP is that while there are many paths through the code, there
is only one common one. While opening or closing the connec
tion, or after errors, special code will be executed. But none of
this code is required for the normal case. The normal case is
data transfer, while the TCP connection is established. In this
state, data flows in one direction, and acknowledgment and
window information flows in the other.

Control Packet Flow ,----·------------,
I I
I I
I Data Data I

Sender Receiver
I I --, r- --, r::--

1nput I I Output I Output .i
~rocess- I I ~rocess- Process-
ing mg ling
(191-213> I I c23s> I (235)

Data Packet Flow

() = Instructions

Fig. 1. Analysis terminology.

In writing a TCP, it is important to optimize this path. In
studying the TCP, it was necessary to find and follow it in the
code. Since the Berkeley TCP did not separate this path from
all the other cases, we were not sure if it was being executed as
efficiently as possible. For this reason, and to permit a more di
rect analysis, we implemented a special "fast path" TCP. When
a packet was received, some simple tests were performed to see
whether the connection was in an established state, the packet
had no special control flags on, and the sequence number was
expected. If so, control was transferred to the fast path. The
version of the TCP that we compiled and tested had this fast
path, and it was this fast path that we audited.

24 '" June 1989 - IEEE Communications Magazine

There are actually two common paths through the TCP, the
end sepding data and the end receiving it. In general, TCP per
mits both ends to do both at once, although in the real world it
happens only in some limited cases. But in any bulk data exam
ple, where throughput is an issue, data almost always flows in
only one direction. One end, the sending end, puts data in its
outgoing packets. When it receives a packet, it finds only con
trol information: acknowledgments and windows.

The other receiving end finds data in its incoming packets
and sends back control information. In this paper, we will use
the terms sender and receiver to describe the direction of data
flow. Both ends really do receive packets, but only one end
tends to receive data. In Figure I, we illustrate how our terms
describe the various steps of the packet processing.

A First Case Study-Input Processing
A common belief about TCP is that the most complex, and

thus most costly, part is the packet-receiving operation. In fact,
as we will discuss, this belief seems false. When receiving a
packet, the program must proceed through the packet, testing
each field for errors and determining the proper action to take.
In contrast, when sending a packet, the program knows exactly
what actions are intended and essentially has to format the
packet and start the transmission.

A preliminary investigation tended to support this model,
so for our first detailed analysis, we studied the program that
receives and processes a packet.

There are three general stages to the TCP processing. In the
first, a search is made to find the local state information (called
the Transmission Control Block, or TCB) for this TCP connec
tion. In the second, the TCP checksum is verified. This re
quires computing a simple function of all the bytes in the pack
et. In the third stage, the packet header is processed. (These
steps can be reordered for greater efficiency, as we will discuss
later.)

We chose not to study the first two stages. The checjcsum
cost depends strongly on the raw speed of the environment and
the detailed coding of the computation. The lookup function
similarly depends on the details of the data structure, the as
sumed number of connections, and the potential for special
hardware and algorithms. We will return to these two opera
tions in a later section, but in the present analysis, they are
omitted.

The following analysis thus covers the TCP processing from
the point where the packet has been checksummed and the
TCB has been found. It covers the processing of all the header
data and the resulting actions.

The packet input processing code has rather different paths
for the sender and receiver of data. The overall numbers are the
following:

• Sender of data: 191 to 213 instructions
• Receiver of data: 186 instructions

A more detailed breakdown provides further insight.
Both sides contain a common path of 154 instructions. Of

these, 15 are either procedure entry and exit or initialization.
For the receiver of data, an additional 15 instructions are spent
sequencing the data and calling the buffer manager, and anoth
er 17 are spent processing the window field in the packet.

The sender of data, which is receiving control information,
has more steps to perform. In addition to the 154 common in
structions, it takes 9 to process the acknowledgment, 20 to
process the window, 17 to compute the outgoing congestion
window (so-called "slow-start" control), and 44 instructions
(but not for each packet) to estimate the round trip time. The
round-trip delay is measured not for every packet, but only
once per round trip. For short delay paths, where one packet
can be sent in one round trip, this cost could occur for every ac
knowledgment. Since the Berkeley TCP acknowledges at most

DEFS-ALA000? 182

INTEL Ex.1030.002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

every other packet in a bulk data transfer, the cost in this case is
22 instructions per packet. For longer paths, the cost will be
spread over more packets, so 22 instructions is an upper
bound.

From this level ofanalysis of one part of the code, it is possi
ble to draw a number of conclusions. First, there are actually
very few instructions required. In the process of making this
study, we found several opportunities for shortening the path
length. None of those are in this version. Second, a significant
amount of code is involved in control of the protocol dynam
ics; computing the congestion window and the round trip
delay. These activities have nothing to do with the actual data
flow. The actual management of the sequence numbers is very
quick. But between l 7 and 61 instructions are spent on compu
tation of dynamic control parameters.

The analysis made clear that some changes to the protocol
would provide a slight speedup. But any improvement
achieved would be fractional, not a gross change in overall per
formance. In a later section, we will return to a more global
speculation on what these numbers mean.

TCP Output Processing
We subjected the output side of TCP to an analysis that was

somewhat less detailed than that of the input side. We did not
program a fast path, and we did not attempt to separate the
paths for data sending and receiving. Thus, we have a single
number that is a combination of the two paths and which (by
inspection) could be significantly improved by an
optimization of the common path.

We found 235 instructions to send a packet in TCP. This
number provides a rough measure of the output cost, but it is
dangerous to compare it closely with the input processing cost.
Neither the output side nor the input side had been carefully
tuned, and both could be reduced considerably. Only if both
paths had received equivalent attention would a direct com
parison be justified. Our subjective conclusion in looking at
the two halves of the TCP is that our starting assumption (the
receiving side is more complex than the sending side) is proba
bly wrong. In fact, TCP puts most of its complexity in the send
ing end of the connection. This complexity is not a part of
packet sending, but a part of receiving the control information
about that data in an incoming acknowledgment packet.

The Cost of IP
In the normal case, IP performs very few functions. Upon

inputting of a packet, it checks the header for correct form, ex
tracts the protocol number, and calls the TCP processing func
tion. The executed path is almost always the same. Upon
outputting, the operation is even more simple.

The instruction counts for IP were as follows:
• Packet receipt: 5 7 instructions
• Packet sending: 61 instructions

An Optimization Example-Header
Prediction

The actual sending of a packet is less complex than the re
ceiving of one. There is no question of testing for malformed
packets, or of looking up a TCB. The TCB is known, as is the
desired action.

One example of a simple operation is the actual generation
of the outgoing packet header. IP places a fixed-size, 20-byte
header on the front of every IP packet, plus a variable amount
of options. Most IP packets carry no options. Of the 20-byte
header, 14 of the bytes will be the same for all IP packets sent
by a particular TCP connection. The IP length, ID, and check-

sum fields (6 bytes total) will probably be different for each
packet. Also, if a packet carries any options, all packets for that
TCP connection will be likely to carry the same options.

The Berkeley implementation of UNIX makes some use of
this observation, associating with each connection a template
of the IP and TCP headers with a few of the fixed fields filled
in. To get better performance, we designed an IP layer that cre
ated a template with all the constant fields filled in. When TCP
wished to send a packet on that connection, it would call IP and
pass it the template and the length of the packet. Then IP would
block-copy the template into the space for the IP header, fill in
the length field, fill in the unique ID field, and calculate the IP
header checksum.

This idea can also be used with TCP, as was demonstrated
in an earlier, very simple TCP implemented by some of us at
MIT [6]. In that TCP, which was designed to support remote
login, the entire state of the output side, including the unsent
data, was stored as a preformatted output packet. This reduced
the cost of sending a packet to a few lines of code.

A more sophisticated example of header prediction in
volves applying the idea to the input side. In the most recent
version of TCP for Berkeley UNIX, one of us (Jacobson) and
Mike Karels have added code to precompute what values
should be found in the next incoming packet header for the
connection. If the packets arrive in order, a few simple compar
isons suffice to complete header processing. While this version
of TCP was not available in time to permit us to compile and
count the instructions, a superficial examination suggests that
it should substantially reduce the overhead of processing com
pared to the version that we reviewed.

Support Functions
The Buffer Layer

The most complex of the support functions is the layer that
manages the buffers which hold the data at the interface to the
layer above. Our buffer layer was designed to match high
throughput bulk data transfer. It supports an allocate and free
function and a simple get and put interface, with one addition
al feature to support data sent but not yet acknowledged. All
the bookkeeping about out-of-order packets was performed by
TCP itself.

The buffer layer added the following costs to the processing
of a packet:

• Sending a data packet: 40 instructions
•Receiving a data packet: 35 instructions
• Receiying an acknowledgment (may free a buffer): 30 in

structmns
It might be argued that our buffer layer is too simple. We

would accept that argument, but are not too concerned about
it. All transport profocols must have a buffer layer. In compar
ing two transport protocols, it is reasonable to assume (to first
order) that if they have equivalent service goals, then they will
have equivalent buffer layers.

A buffer layer can easily grow in complexity to swamp the
protocol itself. The reason for this is that the buffer layer is the
part of the code in which the demand for varieties of service
has a strong effect. For example, some implementations of
TCP attempt to provide good service to application clients
who want to deal with data one byte at a time, as well as others
who want to deal in large blocks. To serve both types of clients
requires a buffer layer complex enough to fold both of these
models together. In an informal study, done by one of us
(Clark), of another transport protocol, an extreme version of
this problem was uncovered: of 68 pages of code written in C,
which seemed to be the transport protocol, over 60 were found
to be the buffer layer and interfaces to other protocol layers,
and only about 6 were the protocol.

June 1989 - IEEE Communications Magazine • 25

DEFS-ALA000? 183

INTEL Ex.1030.003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The problem of the buffer layer is made worse by the fact
that the protocol specifiers do not admit that such a layer ex
ists. It is not a part of the ISO reference model, but is left as an
exercise for the implementor. This is reasonable, within limits,
since the design of the buffer layer has much to do with the par
ticular operating system. (This, in fact, contributed to the great
simplicity of our buffer layer; since there was no operating sys
tem to speak of, we were free to structure things as needed, with
the right degree of generality and functionality.)

The problem of the buffer layer is
made worse by the fact that the
protocol specifiers do not admit that
such a layer exists.

However, some degree of guidance to the implementor is
necessary, and the specifiers of a protocol suite would be well
served to give some thought to the role of buffering in their ar
chitecture.

Timers and Schedulers
In TCP, almost every packet is coupled to a timer. On send

ing data, a retransmit timer is set. On receipt of an acknowledg
ment, this timer is cleared. On receiving data, a timer may be
set to permit dallying before sending the acknowledgment. On
sending the acknowledgment, if that timer has not expired, it
must be cleared.

The overhead of managing these timers can sometimes be a
great burden. Some operating systems' designers did not think
that timers would be used in this demanding a context, and
made no effort to control their costs.

In this implementation, we used a specialized timer package
similar to the one described by Varghese [7]. It provides very
low-cost timer operations. In our version the costs were:

• Set a timer: 35 instructions
• Clear a timer: 1 7 instructions
•Reset a timer (clear and set together): 41 instructions

Checksums and TCBs-The Missing
Steps

In the discussion of TCP input processing above, we inten
tionally omitted the costs for computing the TCP checksum
and for looking up the TCB. We now consider each of these
costs.

The TCP checksum is a point of long-standing contention
among protocol designers. Having an end-to-end checksum
that is computed after the packet is actually in main memory
provides a level of protection that is very valuable [8]. Howev
er, computing this checksum using the central processor rather
than some outboard chip may be a considerable burden on the
protocol. In this paper, we do not want to take sides on this
matter. We only observe that "you get what you pay for." A
protocol designer might try to make the cost optional, and
should certairtly design the checksum to be as efficient as possi
ble.

There are a number of processing overheads associated with
processing the bytes of the packet rather than the header fields.
The checksum computation is one of these, but there are oth
ers. In a later section, we consider all the costs of processing the
bytes.

Looking up the TCB is also a cost somewhat unrelated to the

26 • June 1989 - IEEE Communications Magazine

details of TCP. That is, any transport protocol must keep state
information for each connection, and must use a search func
tion to find this for an incoming packet. The only variation is
the number of bits that must be matched to find the state (TCP
uses 96, which may not be minimal), and the number of con
nections that are assumed to be open.

Using the principle of the common path and caching, one
can provide algorithms that are very cheap. The most simple
algorithm is to assume that the next packet is from the same
connection as the last packet. To check this, one need only pick
up a pointer to the TCB saved from last time, extract from the
packet and compare the correct 96 bits, and return the pointer.
This takes very few instructions. One of us (Jacobson) added
such a single-entry TCB cache to his TCP on UNIX, and mea
sured the success rate. Obviously, for any bulk data test, where
the TCP is effectively dedicated to a single connection, the suc
cess rate of this cache approaches I 00%. However, for a TCP in
general operation, the success rate (often called the "hit ratio")
was also very high. For a workstation in general use (opening
5,715 connections over 38 days and receiving 353,238 pack
ets), the single entry cache matched the incoming packet 93.2%
of the time. For a mail server, which might be expected to have
a much more diverse set of connections, the measured ratio
was 89.8% (over two days, 2,044 connections, and 121,676 in
coming packets).

If this optimization fails too often to be useful, the next step
is to hash the 96 bits into a smaller value, perhaps an 8-bit field,
and use this to index into an array oflinked lists ofTCBs, with
the most recently used TCB sorted first. If the needed TCB is
indeed first on the list selected by the hash function, the cost is
again very low. A reasonable estimate is 25 instructions. We
will use this higher estimate in the analysis to follow.

Some Speed Predictions
Adding all these costs together, we see that the overhead of

receiving a packet with control information in it (which is the
most costly version of the processing path) is about 335 in
structions. This includes the TCP and IP level processing, our
crude estimate of the cost of finding the TCB and the buffer
layer, and resetting a timer. Adding up the other versions of the
sending and receiving paths yields instruction counts of the
same magnitude.

With only minor optimization, an estimate of 300 instruc
tions could be justified as a round number to use as a basis for
some further analysis. If the processing overhead were the only
bottleneck, how fast could a stream of TCP packets forward
data?

Obviously, we must assume some target processor to esti
mate processing time. While these estimates were made for an
Intel 80386, we believe the obvious processor is a 32-bit RISC
chip, such as a SPARC chip or a Motorola 88000. A conserva
tive execution rate for such a machine might be I 0 MIPS, since
chips of this sort can be expected to have a clock rate of twice
that or more, and execute most instructions in one clock cycle.
(The actual rate clearly requires a more detailed analysis-it
depends on the number of data references, the data fetch archi
tecture of the chip, the supporting memory architecture, and so
on. For this paper, which is only making a very rough estimate,
we believe that a working number of I 0 MIPS is reason
able.)

In fairness, the estimate of 300 instructions should be ad
justed for the change from the 80386 to an RISC instruction
set. However, based on another study of packet processing
code, we found little expansion of the code when converting to
an RISC chip. The operations required for packet processing
are so simple that no matter what processor is being used, the
instruction set actually utilized is an RISC set.

DEFS-ALA000? 184

INTEL Ex.1030.004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A conservative adjustment would be to assume that 300 in
structions for a 80386 would be 400 instructions for an RISC
processor.

At 10 MIPS, a processor can execute 400 instructions in 40
µs, or 25,000 packets/s. These processing costs permit rather
high data rates.

Ifwe assume a packet size of 4,000 bytes (which would fit in
an FDDI frame, for example), then 25,000 packets/s provides
800 Mb/s. For TCP, this number must be reduced by taking
into account the overhead of the acknowledgment packet. The
Berkeley UNIX sends one acknowledgment for every other
data packet during bulk data, so we can assume that only two
out of the three packets actually carry data. This yields a
throughput of 530 Mb/s.

Figuring another way, if we assume an FDDI network with
I 00 Mb/s bandwidth, how small can the packets get before the
processing per packet limits the throughput? The answer is 500
bytes.

These numbers are very encouraging. They suggest that it is
not necessary to revise the protocols to utilize a network such
as FDDI. It is only necessary to implement them properly.

Why Are Protocols Slow?
The numbers computed above may seem hard to believe.

While the individual instruction counts may seem reasonable,
the overall conclusion is not consistent with observed perform
ance today.

We believe that the proper conclusion is that protocol pro
cessing is not the real source of the processing overhead. There
are several others that are more important. They are just hard
er to find, and the TCP is easier to blame. The first overhead is
the operating system. As we discussed above, packet process
ing requires considerable support from the system. It is neces
sary to take an interrupt, allocate a packet buffer, free a packet
buffer, restart the I/0 device, wake up a process (or two or
three), and reset a timer. In a particular implementation, there
may be other costs that we did not identify in this study.

In a typical operating system, these functions may turn out
to be very expensive. Unless they were designed for exactly this
function, they may not match the performance requirements at
all.

A common example is the timer package. Some timer pack
ages are designed under the assumption that the common oper
ations are setting a timer and having a timer expire. These op
erations are made less costly at the expense of the operation of
unsetting or clearing the timer. But that is what happens on
every packet.

It may seem as if these functions, even if not optimized, are
small compared to TCP. This is true only if TCP is big. But, as
we discovered above, TCP is small. A typical path through
TCP is 200 instructions; a timer package could cost that much
if not carefully designed.

The other major overhead in packet processing is perform
ing operations that touch the bytes. The example associated
with the transport protocol is computing the checksum. The
more important one is moving the data in memory.

Data is moved in memory for two reasons. First, it is moved
to separate the data from the header and get the data into the
alignment needed by the application. Second, it is copied to get
it from the I/O device to system address space and to user ad
dress space.

In a good implementation, these operations will be com
bined to require a minimal number of copies. In the Berkeley
UNIX, for example, when receiving a packet, the data is
moved from the I/O device into the chained mbuf structure,
and is then moved into the user address space in a location that
is aligned as the user needs it. The first copy may be done by a

DMA controller or by the processor; the second is always done
by the processor.

To copy data in memory requires two memory cycles, read
and write. In other words, the bandwidth of the memory must
be twice the achieved rate of the copy. Checksum computation
has only one memory operation, since the data is being read
but not written. (In this analysis, we ignore the instruction
fetch operations to implement the checksum, under the as
sumption that they are in a processor cache.) In this implemen
tation of TCP, receiving a packet thus requires four memory
cycles per word, one for the input DMA, one for the checksum
and two for the copy. 1

A 32-bit memory with a cycle time of 250 ns, typical for dy
namic RAMs today, would thus imply a memory limit of 32
Mb/s. This is a far more important limit than the TCP process
ing limits computed above. Our estimates of TCP overhead
could be off by several factors of two before the overhead of
TCP would intrude into the limitations of the memory.

A Direct Measure of Protocol
Overhead

In an independent experiment, one ofus (Jacobson) directly
measured the various costs associated with running TCP on a
UNIX system. The measured system was the Berkeley TCP
running on a Sun-3/60 workstation, which is based on a 20-
MHz 68020. The measurement technique was to use a sophis
ticated logic analyzer that can be controlled by special start,
stop, and chaining patterns triggered whenever selected ad
dresses in the UNIX kernel were executed. This technique per
mits actual measurement of path lengths in packet processing.
A somewhat subjective division of these times into categories
permits a loose comparison with the numbers reported above,
obtained from counting instructions.

The measured overheads were divided into two groups:
those that scale per byte (the user-system and network-memory
copy and the checksum), and those that are per packet (system
overhead, protocol processing, interrupts, and so on.) See
Table I.

TABLE I. Measured Overheads
Costs•

Per byte:
User-system copy
TCP checksum
Network-memory copy
Perpaeket:
Ethernet driver
TCP + IP + ARP protoct>ls
Operating system overhead

·idle time: 200 µs

200µs
185µs
386µs

100µs
100µs
240µs

The per-byte costs were measured for a maximum-length
Ethernet packet of 1,460 data bytes. Thus, for example, the
checksum essentially represents the 125-ns/byte average mem
ory bandwidth of the Sun-3/60. The very high cost of the
network-memory copy seems to represent specifics of the par-

1 The four memory cycles per received word are artifacts of the
Berkeley UNIX we examined, and not part of TCP in general. An ex
perimental version of Berkeley UNIX being developed by one of us
(Jacobson) uses at most three cycles per received word, and one cycle
per word if the network interface uses on-board buffer memory rather
than DMA for incoming packets.

June 1989 - IEEE Communications Magazine • 27

DEFS-ALA000? 185

INTEL Ex.1030.005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

