
INTEL Ex.1002.001

 1'.
/O ~o/»0’L/

au/Lz/eu‘ Old‘5’“ULGDE‘, U" ‘ILITVY PAT

TO THE CODIMISSIONER FOR PATENTS:

Transmitted herewith is a patent application identified as follows:
First-named inventor: Laurence B. Boucher
Assignee: Alacritech, Inc.
Filing Date: September 27, 2002

T APPLICATION

' Under37 ER§LS3(b))

Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION

US.
US.
US,
US.
US.
US.
US.
US
US.
US.
US.

(X)

(x)

(X)

' ‘EPng-PathiApiparatus For Rece' ’Serial No.:

This application claims the benefit under 35 USC §120 (prior application not abandoned) of:

 10/992,967 . ,j

This application claims the benefit under 35 USC §120 of Application Serial No, 10/092,967, filed March 6,

2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240, filed December
15, 2001, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/464,283, filed
December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/439,603,
filed November 12, 1999, which in tun-i claims the benefit under 35 USC §120 of Application Serial No.
09/067,544, filed April 27, 1998, which in tum claims the benefit under 35 USC §119 of Provisional Application
Serial No. 60/061,809, filed October 14, 1997.

This application also claims the benefit under 35 USC {5120 of Application Serial No. 09/384,792, tiled
August 27, 1999, which in turn claims the benefit under 35 USC {$120 of Application Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application Serial No.
60/098,296, filed August 27, 1998.

This application also claims the benefit under 35 USC. §120 ofthe following:
Patent Application Serial No.
Patent Application Serial No;
Patent Application Serial No
Patent Application Serial No.
Patent Application Serial No,
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.

09/416,925 (ALA-005), filed October 13, 1999;
09/514,425 (ALA~007), filed February 28, 2000;
09/675,484 (ALAAOIOA), filed September 29, 2000;
09/675,700 (ALAAOIOB), filed September 29, 2000;
09/789,366 (ALA7013), filed February 20, 2001;
09/8()l,488 (AL/\7011), filed March 7, 2001;
09/802,551 (ALA-012), filed March 9, 2001;
09/802,426 (AL/\7014), filed March 9, 2001;
09/802,550 (ALA—015), filed March 9, 2001;
09/855,979 (ALA-016), filed March 14, 2001; and
09/970,124 (ALA-020), filed October 2, 2001.

The specification contains a statement claiming priority under 35 USC § 120 and claiming the benefit under
35 use. §119.
The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
09/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/801,488; 09/802,551: 09/802,426; 09/802,550; 09/855,979; 09/970,124) is considered as being part ofthe
disclosure of the accompanying application and is hereby incorporated by reference therein.
The entire disclosure of each of the prior provisional applications (60/061,809; 60/098,296) is considered as
being part ofthe disclosure ofthe accompanying application and is hereby incorporated by reference therein.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 001

INTEL Ex.1002.002

,1
ll {t

Enclosed are:

2 pages Application Transmittal Letter
145 pages Specification
5 pages Claims
1 page Abstract
89 pages Drawings
4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed — copy)
4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed — copy)
page CD Appendix Transmittal Letter

=‘ X CD Appendix (two copies)

page Terminal Disclaimer Over A Prior Patent
A check for filing fee ($ 922.00)
Return Receipt Postcard><><1-‘

M

New Executed Declaration Not Required:

A newly executed declaration is not filed in this application because, under 37 CFR 1.63(d)(l), a newly executed
declaration is not required because: the prior application contained a declaration as prescribed by 37 CFR 1.63; the
continuation application (this application) is filed by all of the inventors named in the prior application; the specification
and drawings in the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two) in the prior application is being submitted in the
continuation application (this application).

The filing fee is calculated as follows:

CLAIMS AS FILED

FOR NO. FILED NO. EXTRA RATE
Total Claims 24 4 $18.00
Independent Claims 3 0 $84.00
Multiple Dependcnt Claims (if applicable)
Assignment Recording Fee

Terminal Disclaimer Fee (37 CFR l.20(d))

$0.00
$1 10.00

r Basic Filing Fee $740.00
' Total Filing Fee $922.00

c; ‘1‘

I hereby certify that this is being deposrted with the US. Postal Respectfully submitted,Service “Express Mail Post Office to Addressee" service under

37 CFR § 1.10 on the date indicated below and IS addressed to: ByZ #—
Mark Lauer

Box Patent Application
Assrstant Commrssioner for Patents
Washington, D.C. 20231 Reg- N°~ 36,573

7 / CustdeN6T24,501“"’
B 2%,, 1 to,» 7 jy:

Date: 7 —oz

Attorney for Applicants

Typed Name: Mark Lauer

Correspondence Address:

Express Mail Label No.2 EL928548779US. Mark Lauer’ Patent Attorney
7 , t 1" k S ' 80

Date ochposit 7041 Koll Ccn er ar way, ulte 2

Pleasanton, California 94566
Phone: (925) 484—9295
Fax: (925) 484—9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 002

INTEL Ex.1002.003

TO TIIE ASSISTANT COMMISSIONER FOR PATENTS:

Inventors: Laurence B. Boucher, et a1. Atty Docket: ALA-006E

Filing Date: September 27, 2002 Serial No.: Unknown

Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO
A TCP CONNECTION

Compact Disk Transmittal Letter per 37 g EFR 1.52('e)3(ii|)

Sir:

Transmitted herewith are:

Two Labeled Compact Discs 7 Recordable (CD-R) 7 “Copy 1” and “Copy 2,” each in a

CD case and contained in a padded envelope.

The content on the two discs is identical

The machine format is: IBM-PC

The operating system is: MS—Windows

The creation date of the CDs is: September 26, 2002

The name, date and size ofthe files on the CDs are listed below:

There are three folders on each disc: 1) CD Appendix A,

2) CD Appendix B, and

3) CD Appendix C.

Folder Appendix A contains two files:

CD Appendix A Title Pagetxt. Its size is 370 bytes. It was created 9/26/02.

Rcv.v. Its size is 84.4KB. It was created 1/7/99.

Folder Appenidix B contains two files:

CD Appendix B Title Pagetxt. Its size is 495 bytes. It was created 9/26/02.

Microcodetxt. Its size is 105 KB. It was created 10/1/99.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 003

INTEL Ex.1002.004

Folder Appendix C contains three files:

CD Appendix C Title Pagetxt. lts size is 416 bytes. It was created 9/26/02.

atcpsource.wrd.txt. Its size is 778 KB. It was created (written to disc) 2/ 19/02.

simbasource.wrd.txt. Its size is 262 It was created (written to disc) 2/19/02.

Respectfully submitted,

CERTIFICATE OF MAILING 25
I hereby certify that this correspondence is being deposited With Mark Lauer
the United States Postal Service as Express Mail Label Nor Reg. N0. 36,578
EL928365779US in an envelope addressed to: nox PATENT 7041 Koll Center

APPLICATION, ASSistant Commissmner for Patents, Parkway
Washington, DC. 20231, on September 27, 2002. Suite 280

Pleasanton, CA 94566
Date: j '2 7 v.2 & Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 004

INTEL Ex.1002.005

ALA-006E

TERMINAL DISCLAIMER OVER A PRIOR PATENT .

1, 10/03/2002 DTESSEMI 00000025 10250070
I11 re Application of: Laurence B. Boucher et al‘. 93 "3148 110.00 DP

Application No.: Unknown

Filed: September 27, 2002

Title: FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

Express Mail No.: EL928365779US

The owner, Alacritech, Inc., of a one hundred percent interest in the instant
application hereby disclaims, except as provided below, the terminal part of the statutory

\ term of any patent granted on the instant application, which would extend beyond the
expiration date of the full statutory term defined in 35 U.S.C. 154 to 156 and 173, as
presently shortened by any terminal disclaimer, of prior US. Patent Nos. 6,226,680 and
6,247,060. The owner hereby agrees that any patent so granted on the instant application
shall be enforceable only for and during such period that it and the prior patents are
commonly owned. This agreement runs with any patent granted on the instant application
and is binding upon the grantee, its successors or assigns.

In making the above disclaimer, the owner does not disclaim the terminal part of
any patent granted on the instant application that would extend to the expiration date of
the full statutory term as defined in 35 U.S.C. 154 to 156 and 173 of the prior patents, as
presently shortened by any terminal disclaimer, in the event that they later: expire for
failure to pay a maintenance fee, are held unenforceable, are found invalid by a court of
competent jurisdiction, are statutorily disclaimed in whole or terminally disclaimed under
37 CFR 1.321, have all claims canceled by a reexamination certificate, are reissued, or
are in any manner terminated prior to the expiration of its full statutory term as presently
shortened by any terminal disclaimer.

I hereby declare that all statements made herein of my own knowledge are true
and that all statements made on information and belief are believed to be true; and further

that these statements were made with the knowledge that willful false statements and the
like so made are punishable by fine or imprisonment, or both, under Section 1001 ol‘Title
18 of the United States Code and that such willful false statements may jeopardize the
validity ofthe application or any patent issued thereon.

The undersigned is an attorney or agent of record.

Date: : ‘27‘0‘2 b
Mark Lauer

Registration No. 36,578

The terminal disclaimer fee under 37 CFR 1.20(d) is included.
.‘m /- ~..Ka’FV

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 005

INTEL Ex.1002.006

ALA-006E

10

15'

20

25

30

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M. Philbriek

Daryl D. Starr

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §120 of US. Patent Application Serial

No. 10/092,967, entitled “FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION,” filed March 6, 2002, by Laurence B.

Boucher et al., which in turn claims the benefit under 35 U.S.C. §120 of US. Patent

Application Serial No. 10/023,240 (Attorney Docket No. ALA-006A), entitled “TRANSMIT

' FAST—PATH PROCESSING ON TCP/IP OFFLOAD NETWORK INTERFACE DEVICE,”

filed December 15, 2001, by Laurence Boucher et al., which in turn claims the benefit

under 35 U.S.C. §120 of US. Patent Application Serial No. 09/464,283 (Attorney Docket No.

ALA-006), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM

FOR ACCELERATED COMMUNICATION”, filed December 15, 1999, by Laurence B.

Boucher et al., which in turn claims the benefit under 35 U.S.C. §120‘0fU.S. Patent

Application Serial No. 09/439,603 (Attorney Docket No. ALA-009), entitled “INTELLIGENT

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING”, filed November 12, 1999, by Laurence B. Boucher et al., which in turn

claims the benefit under 35 U.S.C. §120 of US. Patent Application Serial No. 09/067,544

(Attorney Docket No. ALA-002), entitled “INTELLIGENT NETWORK INTERFACE

SYSTEM AND METHOD FOR ACCELERATED PROTOCOL PROCESSING”, filed April

27, 1998, which in turn claims the benefit under 35 U.S.C. § ll9(e)(l) of the Provisional

Application filed under 35 U.S.C. §111(b) entitled “INTELLIGENT NETWORK

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 006

INTEL Ex.1002.007

ALA-006E

10

15

20

25

30

INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING,” Serial No.

60/061,809 (Attorney Docket No. ALA—001), filed on October 14, 1997.

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application

Serial No. 09/3 84,792 (Attorney Docket No. ALA—008), entitled “INTELLIGENT

NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED

COMMUNICATION,” filed August 27, 1999, which in turn claims the benefit under 35

U.S.C. §l20 0fU.S. Patent Application Serial No. 09/141 ,713 (Attorney Docket No. ALA-

003), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED PROTOCOL PROCESSING”, filed August 28, 1998, which both claim the

benefit under 35 U.S.C. § 1 19(e)(1) of the Provisional Application filed under 35 U.S.C.

§1l 1(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATEDCOMMUNICATION,” Serial No. 60/098,296 (Attorney Docket No. ALA-

004), filed August 27, 1998.

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application

Sefial No. 09/416,925 (Attorney Docket No. ALA-005), entitled “QUEUE SYSTEM FOR

- MICROPROCESSORS,” filed October 13, 1999, U.S. Patent Application Serial No.

09/514,425 (Attorney Docket No. ALA-007), entitled “PROTOCOL PROCESSING STACK

FOR USE WITH INTELLIGENT NETWORK INTERFACE CARD,” filed February 28,

2000, U.S. Patent Application Serial No. 09/675,484 (Attorney Docket No. ALA—010A),

entitled “INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,” filed September

29, 2000, U.S. Patent Application Serial No. 09/675,700 (Attorney Docket No. ALA-01013),

entitled “INTELLIGENT NETWORK STORAGE INTERFACE DEVICE,” filed September

29, 2000, U.S. Patent Application Serial No. 09/789,366 (Attorney Docket No. ALA—013),

entitled “OBTAINING A DESTINATION ADDRESS SO THAT A NETWORK

INTERFACE DEVICE CAN WRITE NETWORK DATA WITHOUT HEADERS

DIRECTLY INTO HOST MEMORY,” filed February 20, 2001, U.S. Patent Application

Serial No. 09/801,488 (Attorney Docket No. ALA-01 1), entitled “PORT AGGREGATION

FOR NETWORK CONNECTIONS THAT ARE OFFLOADED TO NETWORK

INTERFACE DEVICES,” filed March 7, 2001, U.S. Patent Application Serial No. 09/802,551

(Attorney Docket No. ALA—012), entitled “INTELLIGENT NETWORK STORAGE

INTERFACE SYSTEM,” filed March 9, 2001, US. Patent Application Serial No. 09/802,426

(Attorney Docket No. ALA—014), entitled “REDUCING DELAYS ASSOCIATED WITH
2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 007

INTEL Ex.1002.008

ALA-006E

10

15

2O

25'

30

INSERTING A CHECKSUM INTO A NETWORK MESSAGE,” filed March 9, 2001, U.S.

Patent Application Serial No. 09/802,550 (Attorney Docket No. ALA-015), entitled

“INTELLIGENT INTERFACE CARD AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING,” filed March 9, 2001, U.S. Patent Application Serial No. 09/855,979

(Attorney Docket No. ALA-016), entitled “NETWORK INTERFACE DEVICE

EMPLOYING DMA COMMAND QUEUE,” filed March 14, 2001, U.S. Patent Application

. Serial No. 09/970,124 (Attorney Docket No. ALA-020), entitled “NETWORK INTERFACE

DEVICE THAT FAST-PATH PROCESSES SOLICITED SESSION LAYER READ

COMMANDS,” filed October 2, 2001.

The subject matter of all of the above—identified patent applications (including the

subject matter in the Microfiche Appendix ofU.S. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), which is a part of the present disclosure,

includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on

the compact disc. CD Appendix A contains a hardware description language (verilog code)

description of an embodiment of a receive sequencer. CD Appendix B contains microcode

executed by a processor that operates in conjunction with the receive sequencer of CD

Appendix A. CD Appendix C contains a device driver executable on the host as well as ATCP

code executable on the host. A portion of the disclosure of this patent document contains

material (other than any portion of the “free BSD” stack included in CD Appendix C) which is

subject to copyright protection. The copyright owner of that material has no objection to the

facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears

in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright

rights.

TECHNICAL FIELD

The present invention relates generally to computer or other networks, and more

particularly to processing of information communicated between hosts such as computers

connected to a network.

LA)

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 008

INTEL Ex.1002.009

A.) Jan}, mt. M .t—r.

:2”;- ILJ; €2er ml}: 1;.

m} 4..

ALA-006E

10

15

'20

25

30

BACKGROUND

The advantages of network computing are increasingly evident. The convenience and

efficiency of providing infonnation, communication or computational power to individuals at

their personal computer or other end user devices has led to rapid growth of such network

computing, including intemet as well as intranet devices and applications.

As is well known, most network computer communication is accomplished with the aid of

a layered software architecture for moving information between host computers connected to

the network. The layers help to segregate information into manageable segments, the general

functions of each layer often based on an international standard called Open Systems

Interconnection (OSl). OSl sets forth seven processing layers through which information may

pass when received by a host in order to be presentable to an end user. Similarly, transmission

of information from a host to the network may pass through those seven processing layers in

reverse order. Each step of processing and service by a layer may include copying the

processed information“ Another reference model that is widely implemented, called TCP/lP

(TCP stands for transport control protocol, while 1P denotes intemet protocol) essentially

employs five of the seven layers of 081.

Networks may include, for instance, a high-speed bus such as an Ethernet connection 'or an

intemet connection between disparate local area networks (LANs), each of which includes

multiple hosts, or any of a variety of other known means for data transfer between hosts.

According to the 081 standard, physical layers are connected to the network at respective

hosts, the physical layers providing transmission and receipt of raw data bits via the network.

A data link layer is serviced by the physical layer of each host, the data link layers providing

7 frame division and error correction to the data received from the physical layers, as well as

processing acknowledgment frames sent by the receiving host. A network layer of each host is

serviced by respective data link layers, the network layers primarily controlling Size and

coordination of subnets of packets of data.

A transport layer is serviced by each network layer and a session layer is serviced by each

transport layer within each host. Transport layers accept data from their respective session

layers and split the data into smaller units for transmission to the other host’s transport layer,

which concatenates the data for presentation to respective presentation layers. Session layers

allow for enhanced communication control between the hosts. Presentation layers are serviced

by their respective session layers, the presentation layers translating between data semantics
4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 009

INTEL Ex.1002.010

ALA—006E

10

15

20

25

30

and syntax which may be peculiar to each host and standardized structures of data

representation. Compression and/or encryption of data may also be accomplished at the

presentation level. Application layers are serviced by respective presentation layers, the

application layers translating between programs particular to individual hosts and standardized

programs for presentation to either an application or an end user. The TCP/IP standard

includes the lower four layers and application layers, but integrates the functions of session

layers and presentation layers into adjacent layers. Generally speaking, application,

presentation and session layers are defined as upper layers, while transport, network and data

link layers are defined as lower layers.

The rules and conventions for each layer are called the protocol of that layer, and since the

protocols and general fimctions of each layer are roughly equivalent in various hosts, it is

useful to think of communication occurring directly between identical layers of different hosts,

even though these peer layers do not directly communicate without information transferring

sequentially through each layer below. Each lower layer performs a service for the layer

immediately above it to help with processing the communicated information. Each layer saves

‘ the information for processing and service to the next layer. Due to the multiplicity of

hardware and software architectures, devices and programs commonly employed, each layer is

necessary to insure that the data can make it to the intended destination in the appropriate

form, regardless of variations in hardware and sofiware that may intervene. i

In preparing data for transmission from a first to a second host, some control data is added

at each layer of thefirst host regarding the protocol of that layer, the control data being

indistinguishable from the original (payload) data for all lower layers of that host. Thus an

application layer attaches an application header to the payload data and sends the combined

data to the presentation layer of the sending host, which receives the combined data, operates

on it and adds a presentation header to the data, resulting in another combined data packet.

The data resulting from combination of payload data, application header and presentation

header is then passed to the session layer, which performs required operations including

attaching a session header to the data and presenting the resulting combination of data to the

transport layer. This process continues as the information moves to lower layers, with a

transport header, network header and data link header and trailer attached to the data at each of

those layers, with each step typically including data moving and copying, before sending the

data as bit packets over the network to the second host.
5

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 010

INTEL Ex.1002.011

ALA-006E

.10

15

20

25

30

The receiving host generally performs the converse of the above-described process,

beginning with receiving the bits from the network, as headers are removed and data processed

in order from the lowest (physical) layer to the highest (application) layer before transmission

to a destination of the receiving host. Each layer of the receiving host recognizes and

manipulates only the headers associated with that layer, since to that layer the higher layer

control data is included with and indistinguishable from the payload data. Multiple interrupts,

valuable central processing unit (CPU) processing time and repeated data copies may also be

necessary for the receiving host to place the data in an appropriate form at its intended
destination.

The above description of layered protocol processing is simplified, as college-level

textbooks devoted primarily to this subject are available, such as Computer Networks, Third

Edition (1996) by Andrew S. Tanenbaum, which is incorporated herein by reference. As

defined in that book, a computer network is an interconnected collection of autonomous

computers, such as internet and intranet devices, including local area networks (LANs), wide

. area networks (WANs), asynchronous transfer mode (ATM), ring or token ring, wired,

wireless, satellite or other means for providing communication capability between separate

processors. A computer is defined herein to include a device having both logic and memory

fiJnctions for processing data, while computers or hosts connected to a network are said to be

heterogeneous if they function according to different operating devices or communicate via

different architectures.

As networks grow increasingly popular and the information communicated thereby

becomes increasingly complex and copious, the need for such protocol processing has

increased. It is estimated that a large fraction of the processing power of a host CPU may be

devoted to controlling protocol processes, diminishing the ability of that CPU to perform other

tasks. Network interface cards have been developed to help with the lowest layers, such as the

physical and data link layers. It is also possible to increase protocol processing speed by

simply adding more processing power or CPUs according to conventional arrangements. This

solution, however, is both awkward and expensive. But the complexities presented by various

networks, protocols, architectures, operating devices and applications generally require

extensive processing to afford communication capability between various network hosts.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 011

INTEL Ex.1002.012

ALA-006E

10

15

720

25

30

SUMMARY OF THE INVENTION

The current invention provides a device for processing network communication that greatly

increases the speed of that processing and the efficiency of transferring data being

communicated. The invention has been achieved by questioning the long-standing practice of

performing multilayered protocol processing on a general-purpose processor. The protocol

processing method and architecture that results effectively collapses the layers of a connection-

based, layered architecture such as TCP/1P into a single wider layer which is able to send

network data more directly to and from a desired location or buffer on a host. This accelerated

processing is provided to a host for both transmitting and receiving data, and so improves

performance whether one or both hosts involved in an exchange of information have such a
feature.

The accelerated processing includes employing representative control instructions for a

given message that allow data from the message to be processed via a fast-path which accesses

message data directly at its source or delivers it directly to its intended destination. This fast-

path bypasses conventional protocol processing of headers that accompany the data. The fast—

path employs a specialized microprocessor designed for processing network communication,

avoiding the delays and pitfalls of conventional software layer processing, such as repeated

copying and interrupts to the CPU. In effect, the fast-path replaces the states that are

traditionally found in several layers of a conventional network stack with a single state

machine encompassing all those layers, in contrast to conventional rules that require rigorous

differentiation and separation of protocol layers. The host retains a sequential protocol

processing stack which can be employed for setting up a fast-path connection or processing

message exceptions. The specialized microprocessor and the host intelligently choose whether

a given message or portion of a message is processed by the microprocessor or the host stack.
One embodiment is a method of generating a fast-path response to a packet received onto a

network interface device where the packet is received over a TCP/IP network connection and

where the TCP/IP network connection is identified at least in part by a TCP source port, a TCP

destination port, an IP source address, and an IP destination address. The method comprises:

1) Examining the packet and determining fi'om the packet the TCP source port, the TCP

destination port, the IP source address, and the IP destination address; 2) Accessing an

appropriate template header stored on the network interface device. The template header has

TCP fields and IP fields; 3) Employing a finite state machine that implements both TCP
7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 012

INTEL Ex.1002.013

ALA—006E

10

15

20

25

30

protocol processing and IP protocol processing to fill in the TCP fields and IP fields of the

template header; and 4) Transmitting the fast-path response from the network interface device.

The fast-path response includes the filled in template header and a payload. The finite state

machine does not entail a TCP protocol processing layer and a discrete IP protocol processing

layer where the TCP and IP layers are executed one after another in sequence. Rather, the

finite state machine covers both TCP and IP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted are pushed

onto a plurality of transmit queues. A transmit sequencer pops the transmit queues and obtains

the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers

where the packets are stored. The retrieved packets are then transmitted from the network

interface device. In one embodiment, there are two transmit queues, one having a higher

transmission priority than the other. Packets identified by buffer descriptors on the higher

priority transmit queue are transmitted from the network interface device before packets

identified by the lower priority transmit queue.

Other structures and methods are disclosed in the detailed description below. This

summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF TIIE DRAWINGS

FIG. 1 is a plan View diagram of a device of the present invention, including a host

computer having a communication-processing device for accelerating network

communication.

FIG. 2 is a diagram ofinformation flow for the host of FIG. 1 in processing network

communication, including a fast-path, a slow-path and a transfer of connection context

between the fast and slow—paths.

FIG. 3 is a flow chart of message receiving according to the present invention.

FIG. 4A is a diagram ofinfonnation flow for the host of FIG. 1 receiving a message packet

processed by the slow-path.

FIG. 4B is a diagram of information flow for the host of FIG. 1 receiving an initial message

packet processed by the fast-path.

FIG. 4C is a diagram of information flow for the host of FIG. 4B receiving a subsequent

message packet processed by the fast—path.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 013

INTEL Ex.1002.014

ALA—006E

10}

15

20

25

30

FIG. 4D is a diagram of information flow for the host of FIG. 4C receiving a message

packet having an error that causes processing to revert to the slow—path.

FIG. 5 is a diagram of information flow for the host of FIG. 1 transmitting a message by

either the fast or slow-paths.

FIG. 6 is a diagram of information flow for a first embodiment of an intelligent network

interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG. 7 is a diagram of hardware logic for the INIC embodiment shown in FIG. 6, including

a packet control sequencer and a fly-by sequencer.

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for analyzing header bytes as they are

received by the INIC.

FIG. 9 is a diagram of information flow for a second embodiment of an INIC associated

with a server having a TCP/IP processing stack.

FIG. 10 is a diagram of a command driver installed in the host of FIG. 9 for creating and

controlling a communication control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and command driver of FIG. 10 configured for
NetBios communications.

FIG. 12 is a diagram of a communication exchange between the client of FIG. 6 and the

server ofFIG. 9.

FIG. 13 is a diagram of hardware functions included in the INIC of FIG. 9.

FIG. 14 is a diagram ofatrio ofpipelined microprocessors included in the INIC of FIG. 13,

including three phases with a processor in each phase.

FIG. 15A is a diagram of a first phase of the pipelined microprocessor of FIG. 14.

FIG. ISB is a diagram of a second phase of the pipelined microprocessor of FIG. 14.

FIG. 15C is a diagram of a third phase of the pipelined microprocessor of FIG. 14.

FIG. 16 is a diagram of a plurality of queue storage units that interact with the

microprocessor of FIG. 14 and include SRAM and DRAM.

FIG. 17 is a diagram ofa set of status registers for the queues storage units of FIG. 16.

FIG. 18 is a diagram of a queue manager, which interacts, with the queue storage units and

status registers of FIG. 16 and FIG. 17.

FIGS. I9A—D are diagrams of various stages of a least—recently—used register that is

employed for allocating cache memory.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 014

INTEL Ex.1002.015

ALA-006E

10

15

20

25

30

FIG. 20 is a diagram of the devices used to operate the least—recently-used register of FIGS.
19A—D.

FIG. 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure 13.

FIG. 22 is a diagram of the receive sequencer of FIG. 21.

FIG. 23 is a diagram illustrating a “fast-path” transfer of data of a multi-packet message

from INIC 200 to a destination 231 l in host 20..
FIGS. 24-107 are associated with the description below entitled “Disclosure From

Provisional Application 60/061,809.”

DETAILED DESCRIPTION

FIG. 1 shows a host 20 of the present invention connected by a network 25 to a remote host

22. The increase in processing speed achieved by the present invention can be provided with

an intelligent network interface card (INIC) that is easilyand affordany added to an existing

host, or with a communication processing device (CPD) that is integrated into a host, in either

case freeing the host CPU from most protocol processing and allowing improvements in other

tasks performed by that CPU. The host 20 in a first embodiment contains a CPU 28 and a

CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

processing communication data and memory buffers controlled by a direct memory access

(DMA) unit. Also connected to the host bus 33 is a storage device 35, such as a

semiconductor memory or disk drive, along with any related controls.

Refen'ing additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44

housed in storage 35, the stack including a data link layer 36, network layer 38, transport layer

40, upper layer 46 and an upper layer interface 42. The upper layer 46 may represent a

session, presentation and/or application layer, depending upon the particular protocol being

employed and message communicated. The upper layer interface 42, along with the CPU 28

and any related controls can send or retrieve a file to or from the upper layer 46 or storage 35,

as shown by arrow 48. A connection context 50 has been created, as will be explained below,

the context summarizing various features of the connection, such as protocol type and source

and destination addresses for each protocol layer. The context may be passed between an

interface for the session layer 42 and the CPD 30, as shown by arrows 52 and 54, and stored as

a communication control block (CCB) at'either CPD 30 or storage 35.

10

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 015

INTEL Ex.1002.016

A LA-006E

10

15

2O

25

30

When the CPD 30 holds a CCB defining a particular connection, data received by the CPD

from the network and pertaining to the connection is referenced to that CCB and can then be

sent directly to storage 35 according to a fast-path 58, bypassing sequential protocol

processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,

such as sending a file from storage 35 to remote host 22, can also occur via the fast—path 58, in

which case the context for the file data is added by the CPD 30 referencing a CCB, rather than

by sequentially adding headers during processing by the transport 40, network 38 and data link

36 layers. The DMA controllers of the CPD 3O perform these transfers between CPD and

storage 35.

The CPD 30 collapses multiple protocol stacks each having possible separate states into a

single state machine for fast-path processing. As a result, exception conditions may occur that

are not provided for in the single state machine, primarily because such conditions occur

infrequently and to deal with them on the CPD would provide little or no performance benefit

to the host. Such exceptions can be CPD 30 or CPU 28 initiated. An advantage ofthe

invention includes the manner in which unexpected situations that occur on a fast—path CCB

are handled. The CPD 30 deals with these rare situations by passing back or flushing to the

‘ host protocol stack 44 the CCB and any associated message frames involved, via a control

negotiation. The exception condition is then processed in a conventional manner by the host

protocol stack 44. At some later time, usually directly after the handling of the exception

condition has completed and fast-path processing can resume, the host stack 44 hands the CCB

, back to the CPD.

This fallback capability enables the performance-impacting functions of the host protocols

to be handled by the CPD network microprocessor, while the exceptions are dealt with by the

host stacks, the exceptions being so rare as to negligibly effect overall performance. The

custom designed network microprocessor can have independent processors for transmitting

and receiving network information, and further processors for assisting and queuing. A

preferred microprocessor embodiment includes a pipelined trio of receive, transmit and utility

processors. DMA controllers are integrated into the implementation and work in close concert

with the network microprocessor to quickly move data between buffers adjacent to the ,

controllers and other locations such as long term storage. Providing buffers logically adjacent

to the DMA controllers avoids unnecessary loads on the PCI bus.

11

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 016

INTEL Ex.1002.017

' ALA-006E

10‘

15

20

25

30

FIG. 3 diagrams the general flow of messages received according to the current invention.

A large TCP/1P message such as a file transfer may be received by the host from the network

in a number of separate, approximately 64 KB transfers, each of which may be split into many,

approximately 1.5 KB frames or packets for transmission over a network. Novell NetWare

1 protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol

(NCP) over lntemetwork Packet Exchange (IPX) work in a similar fashion. Another form of

data communication which can be handled by the fast-path is Transaction TCP (hereinafter

T/TCP or TTCP), a version of TCP which initiates a connection with an initial transaction

request after which a reply containing data may be sent according to the connection, rather

than initiating a connection via a several-message initialization dialogue and then transferring

data with later messages. In any of the transfers typified by these protocols, each packet

conventionally includes a portion of the data being transferred, as well as headers for each of

' the protocol layers and markers for positioning the packet relative to the rest of the packets of

this message.

When a message packet or frame is received 47 from a network by the CPD, it is first

validated by a hardwareassist. This includes determining the protocol types of the various

layers, verifying relevant checksums, and summarizing 57 these findings into a status word or

words. Included in these words is an indication. whether or not the frame is a candidate for

fast—path data flow. Selection 59 of fast—path candidates is based on whether the host may

benefit from this message connection being handled by the CPD, which includes determining

whether the packet has header bytes indicating particular protocols, such as TCP/1P or

SPX/IPX for example. The small percent of frames that are not fast-path candidates are sent

61 to the host protocol stacks for slow-path protocol processing. Subsequent network

microprocessor work with each fast-path candidate determines whether a fast—path connection

such as a TCP or SPX CCB is already extant for that candidate, or whether that candidate may

be used to set up a new fast—path connection, such as for a TTCP/IP transaction. The

validation provided by the CPD provides acceleration whether a frame is processed by the fast-

path or a slow-path, as only error free, validated frames are processed by the host CPU even

for the slow—path processing.

All received message frames which have been determined by the CPD hardware assist to be

fast-path candidates are examined 53 by the network microprocessor or INIC comparator

circuits to determine whether they match a CCB held by the CPD. Upon confirming such a
12

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 017

INTEL Ex.1002.018

ALA-006E

10

15

20

25

30

match, the CPD removes lower layer headers and sends 69 the remaining application data from

the frame directly into its final destination in the host using direct memory access (DMA) units

of the CPD. This operation may occur immediately upon receipt of a message packet, for

example when a TCP connection already exists and destination buffers have been negotiated,

or it may first be necessary to process an initial header to acquire a new set of final destination

addresses for this transfer. In this latter case, the CPD will queue subsequent message packets

while waiting for the destination address, and then DMA the queued application data to that

destination.

A fast-path candidate that does not match a CCB may be used to set up a new fast-path

connection, by sending 65 the frame to the host for sequential protocol processing. In this

case, the host uses this frame to create 51 a CCB, which is then passed to the CPD to control

subsequent frames on that connection. The CCB, which is cached ‘67 in the CPD, includes

control and state information pertinent to all protocols that would have been processed had

conventional software layer processing been employed. The CCB also contains storage space

for per-transfer information used to facilitate moving application-level data contained within

subsequent related message packets directly to a host application in a form available for

immediate usage. The CPD takes command of connection processing upon receiving a CCB

for that connection from the host.

As shown more specifically in FIG. 4A, when a message packet is received from the remote

host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which

checksums headers and data, and parses the headers, creating a word or words which identify

the message packet and status, storing the headers, data and word temporarily in memory 60.

I As well as validating the packet, the receive logic 32 indicates with the word whether this

packet is a candidate for fast-path processing. FIG. 4A depicts the case in which the packet is

not a fast—path candidate, in which case the CPD 30 sends the validated headers and data from

memory 60 to data link layer 36 along an internal bus for processing by the host CPU, as

shown by arrow 56. The packet is processed by the host protocol stack 44 of data link 36,

network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

i sent to storage 35, as shown by arrow 65.

FIG. 4B, depicts the case in which the receive logic 32 of the CPD determines that a

message packet is a candidate for fast—path processing, for example by deriving from the

paeket’s headers that the packet belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A
13

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 018

INTEL Ex.1002.019

ALA-006E

10

15

20

25

30

processor 55 in the CPD 30 then checks to see whether the word that summarizes the fast—path

candidate matches a CCB held in a cache 62. Upon finding no match for this packet, the CPD

sends the validated packet from memory 60 to the host protocol stack 44 for processing. Host

stack 44 may use this packet to create a connection context for the message, including finding

and reserving a destination for data from the message associated with the packet, the context

taking the form of a CCB. The present embodiment employs a single specialized host stack 44

for processing both fast-path and non-fast—path candidates, while in an embodiment described

below fast—path candidates are processed by a different host stack than non-fast-path

candidates. Some data (D1) 66 from that initial packet may optionally be sent to the

destination in storage 35, as shown by arrow 68. The CCB is then sent to the CPD 30 to be

saved in cache 62, as shown by arrow 64. For a traditional connection-based message such as

typified by TCP/IP, the initial packet may be part of a connection initialization dialogue that

transpires between hosts before the CCB is created and passed to the CPD 30.

Referring now to FIG. 4C, when a subsequent packet from the same connection as the

initial packet is received from the network 25 by CPD 30, the packet headers and data are

validated by the receive logic 32, and the headers are parsed to create a summary of the

message packet and a hash for finding a corresponding CCB, the summary and hash contained

in a word or words. The word or words are temporarily stored in memory 60 along with the

packet. The processor 55 checks for a match between the hash and each CCB that is stored in

the cache 62 and, finding a match, sends the data (D2) 70 via a fast-path directly to the

destination in storage 35, as shown by arrow 72, bypassing the session layer 42, transport layer

40, network layer 38 and data link layer 36. The remaining data packets from the message can

also be sent by DMA directly to storage, avoiding the relatively slow protocol layer processing

and repeated copying by the CPU stack 44.

FIG. 4D shows the procedure for handling the rare instance when a message for which a

fast-path connection has been established, such as shown in FIG. 4C, has a packet that is not

easily handled by the CPD. In this case the packet is sent to be processed by the protocol stack

44, which is handed the CCB for that message from cache 62 via a control dialogue with the

CPD, as shown by arrow 76, signaling to the CPU to take over processing of that message.

Slow-path processing by the protocol stack then results in data (D3) 80 from the packet being

sent, as shown by arrow 82, to storage 35. Once the packet has been processed and the error

situation corrected, the CCB can be handed back via a control dialogue to the cache 62, so that
14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 019

INTEL Ex.1002.020

2.4:). ,1:

ALA-006E

'10

15

20.

25

30

payload data from subsequent packets of that message can again be sent via the fast-path of the

CPD 30. Thus the CPU and CPD together decide whether a given message is to be processed

according to fast-path hardware processing or more conventional software processing by the

CPU.

Transmission of a message from the host 20 to the network 25 for delivery to remote host 22

also can be processed by either sequential protocol software processing Via the CPU or

accelerated hardware processing Via the CPD 30, as shown in FIG. 5. VA message (M) 90 that

is selected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack

44, as shown by arrows 92 and 96. For the situation in which a connection exists and the CPD

30 already has an appropriate CCB for the message, however, data packets can bypass host

stack 44 and be sent by DMA directly to memory 60, with the processor 55 adding to each

data packet a single header containing all the appropriate protocol layers, and sending the

, resulting packets to the network 25 for transmission to remote host 22. This fast-path

transmission can greatly accelerate processing for even a single packet, with the acceleration

multiplied for a larger message.

A message for which a fast-path connection is not extant thus may benefit from creation of

a CCB with appropriate control and state information for guiding fast—path transmission. For a

traditional connection~based message, such as typified by TCP/IP or SPX/IPX, the CCB is

created during connection initialization dialogue. For a quick-connection message, such as

typified by TTCP/IP, the CCB can be created with the same transaction that transmits payload

'data. In this case, the transmission of payload data may be a reply to a request that was used to

set up the fast—path connection. In any case, the CCB provides protocol and status information

regarding each of the protocol layers, including which user is involved and storage space for

per—transfer information. The CCB is created by protocol stack 44, which then passes the CCB

to the CPD 30 by writing to a command register of the CPD, as shown by arrow 98. Guided

by the CCB, the processor 55 moves network frame—sized portions of the data from the source

in host memory 35 into its own memory 60 using DMA, as depicted by arrow 99. The

processor 55 then prepends appropriate headers and checksums to the data portions, and

transmits the resulting frames to the network 25, consistent with the restrictions of the

associated protocols. Afier the CPD 30 has received an acknowledgement that all the data has

reached its destination, the CPD will then notify the host 35 by writing to a response buffer.

15

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 020

INTEL Ex.1002.021

ALA-006E

10'

15

20

25

30

Thus, fast-path transmission of data communications also relieves the host CPU of per—frame

processing. A vast majority of data transmissions can be sent to the network by the fast—path.

Both the input and output fast-paths attain a huge reduction in interrupts by functioning at an

upper layer level, i.e., session level or higher, and interactions between the network

microprocessor and the host occur using the fill] transfer sizes which that upper layer wishes to

make. For fast-path conununications, an interrupt only occurs (at the most) at the beginning

and end of an entire upper-layer message-transaction, and there are no interrupts for the

sending or receiving of each lower layer portion or packet of that transaction.

A simplified intelligent network interface card (INIC) 150 is shown in FIG. 6 to provide a

network interface for a host 152. Hardware logic 171 of the INIC 150 is connected to a

network 155, with a peripheral bus (PCI) 157 connecting the INIC and host. The host 152 in

this embodiment has a TCP/IP protocol stack, which provides a slow-path 158 for sequential

software processing of message frames received from the network 155. The host 152 protocol

stack includes a data link layer 160, network layer 162, a transport layer 164 and an

application layer 166, which provides a source or destination 168 for the communication data-

in the host'152. Other layers which are not shown, such as session and presentation layers,

may also be included in the host stack 152, and the source or destination may vary depending

upon the nature of the data and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages

along a slow-path 158 that includes the protocol stack of the host, or along a fast-path 159 that

bypasses the protocol stack of the host. Each reCeived packet is processed on the fly by

hardware logic 171 contained in INIC 150, so that all of the protocol headers for a packet can

be processed without copying, moving or storing the data between protocol layers. The

hardware logic 171 processes the headers of a given packet at one time aspacket bytes pass

through the hardware, by categorizing selected header bytes. Results ofprocessing the

selected bytes help to determine which other bytes of the packet are categorized, until a

summary of the packet has been created, including checksum validations. The processed
headers and data from the received packet are then stored in lNIC storage 185, as well as the

word or words summarizing the headers and status of the packet. For a network storage

configuration, the INIC 150 may be connected to a peripheral storage device such as a disk

drive which has an IDE, SCSI or similar interface, with a file cache for the storage device

16

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 021

INTEL Ex.1002.022

ALA-006E

10.'

15

20

25

30

residing on the memory 185 of the INIC 150. Several such network interfaces may exist for a

host, with each interface having an associated storage device.

The hardware processing of message packets received by 1N IC 150 from network 155 is

shown in more detail in FIG. 7. A received message packet first enters a media access

controller 172, which controls INIC access to the network and receipt of packets and can

provide statistical information for network protocol management. From there, data flows one

byte at a time into an assembly register 174, which in this example is 128 bits wide. The data

is categorized by a fly-by sequencer 178, as will be explained in more detail with regard to

FIG. 8, which examines the bytes ofa packet as they fly by, and generates status from those

bytes that will be used to summarize the packet. The status thus created is merged with the

data by a multiplexor 180 and the resulting data stored in SRAM l 82. A packet control

p sequencer 176 oversees the fly-by sequencer 178, examines information from the media access

controller 172, counts the bytes of data, generates addresses, moves status and manages the

movement of data from the assembly register 174 to SRAM 182 and eventually DRAM 188.

The packet control sequencer 176 manages a buffer in SRAM 182 via SRAM controller 183,

and also indicates to a DRAM controller 186 when data needs to be moved from SRAM 182 to

a buffer in DRAM [88. Once data movemcnt for thc packet has bcen completed and all the

data has been moved to the buffer in DRAM 188, the packet control sequencer 176 will movc

the status that has been generated in the fly-by sequencer ‘l 78 out to the SRAM 182 and to the

beginning of the DRAM 188 buffer to be prepended to the packet data. The packet control

sequencer 176 then requests a queue manager 184 to enter a receive buffer descriptor into a

receive queue, which in turn notifies the processor 170 that the packet has been processed by

hardware logic 171 and its status summarized.

FIG. 8 shows that the fly-by sequencer 178 has several tiers, with each tier generally

, focusing on a particular portion of the packet header and thus on a particular protocol layer, for

generating status pertaining to that layer. The fly-by sequencer 178 in this embodiment

includes a media access control sequencer l9] , a network sequencer 192, a transport sequencer

194 and a session sequencer 195. Sequencers pertaining to higher protocol layers can

additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer

176 and given pointers by the packet control sequencer that tell the fly-by sequencer whether a

given byte is available from the assembly register 174. The media access control sequencer

191 detennines, by looking at bytes 0—5, that a packet is addressed to host 152 rather than or in
1 7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 022

INTEL Ex.1002.023

ALA—006E \

10

1'5

20

25

30

addition to another host. Offsets 12 and 13 of the packet are also processed by the media

access control sequencer 191 to determine the type field, for example whether the packet is

Ethernet or 802.3. If the type field is Ethernet those bytes also tell the media access control

sequencer 191 the packet’s network protocol type. For the 802.3 case, those bytes instead

indicate the length of the entire frame, and the media access control sequencer 191 will check

eight bytes further into the packet to determine the network layer type.

For most packets the network sequencer 192 validates that the header length received has

the correct length, and checksums the network layer header. For fast~path candidates the

network layer header is known to be IP or IPX from analysis done by the media access control

sequencer 191. Assuming for example that the type field is 802.3 and the network protocol is

IF, the network sequencer 192 analyzes the first bytes of the network layer header, which will

begin at byte 22, in order to determine IP type. The first bytes of the IP header will be

processed by the network sequencer 192 to determine what IP type the packet involves.

Determining that the packet involves, for example, 1P version 4, directs further processing by

the network sequencer 192, which also looks at'the protocol type located ten bytes into the 1P

header for an indication of the transport header protocol of the packet. For example, for IP

over Ethernet, the IP header begins at offset 14, and the protocol type byte is offset 23, which

will be. processed by network logic to determine whether the transport layer protocol is TCP,

for example. From the length of the network layer header, which is typically 20-40 bytes,.

network sequencer 192 determines the beginning of the paeket’s transport layer header for

validating the transport layer header. Transport sequencer 194 may generate checksums for

the transport layer header and data, which may include information from the IP header in the

ease of TCP at least.

Continuing with the example of a TCP packet, transport sequencer 194 also analyzes the

first few bytes in the transport layer portion of the header to determine, in part, the TCP source V

and destination ports for the message, such as whether the packet is NetBios or other

protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine

and validate the TCP header length. Byte 13 of the TCP header contains flags that may, aside

from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

cause the processor to categorize this packet as an exception. TCP offset bytes 16 and 17 are

the checksum, which is pulled out and stored by the hardware logic 171 while the rest of the

frame is validated against the checksum.
l 8

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 023

INTEL Ex.1002.024

ALA-006E

U1

10

15

20

25

30

Session sequencer 195 determines the length of the session layer header, which in the case

ofNetBios is only four bytes, two of which tell the length of the NetBios payload data, but

which can be much larger for other protocols. The session sequencer 195 can also be used to

categorize the type of message as read or write, for example, for which the fast-path may be

particularly beneficial. Further upper layer logic processing, depending upon the message

type, can be performed by the hardware logic 171 of packet control sequencer 176 and fly-by

sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the

headers by categorization of selected bytes from a single stream of bytes, with the status of the

packet being built from classifications determined on the fly. Once the packet control

sequencer 176 detects that all of the packet has been processed by the fly—by sequencer 178,

the packet control sequencer 176 adds the status information generated by the fly—by sequencer

178 and any status information generated by the packet control sequencer 176, and prepends

(adds to the front) that status information to the packet, for convenience in handling the packet

by the processor 170. The additional status information generated by the packet control

sequencer 176 includes media access controller 172 status information and any errors

discovered, or. data overflow in either the assembly register or DRAM buffer, or other
miscellaneous information regarding the packet. The packet control sequencer 176 also stores

entries into a receive buffer queue and a receive statistics queue via the queue manager 184.

An advantage of processing a packet by hardware logic 171 is that the packet does not, in

contrast with conventional sequential software protocol processing,1have to be stored, moved,

copied or pulled from storage for processing each protocol layer header, offering dramatic

increases in processing efficiency and savings in processing time for each packet. The packets

can be processed at the rate bits are received from the network, for example 100

megabits/second for a 100 baseT connection. The time for categorizing a packet received at

this rate and having a length of sixty bytes is thus about 5 microseconds. The total time for

processing this packet with the hardware logic 171 and sending packet data to its host

destination via the fast—path may be about 16 microseconds or less, assuming a 66 MHz PCI

bus, whereas conventional sofiware protocol processing by a 300 MHz Pentium II® processor

may take as much as 200 microseconds in a busy device. More than an order ofmagnitude

decrease in processing time can thus be achieved with fast~path 159 in comparison with a

high-speed CPU employing conventional sequential software protocol processing,

demonstrating the dramatic acceleration provided by processing the protocol headers by the
19

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 024

INTEL Ex.1002.025

ALA-006E

10

15

20

25

30

hardware logic 171 and processor 170, without even considering the additional time savings

afforded by the reduction in CPU interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message packet held in storage 185, whether

that packet is a candidate for the fast—path 159 and, if so, checks to see whether a fast-path has

already been set up for the connection that the packet belongs to. To do this, the processor 170

first checks the header status summary to determine whether the packet headers are of a

protocol defined for fast-path candidates. If not, the processor 170 commands DMA

controllers in the INIC 150 to send the packet to the host for slow-path 158 processing. Even

for a slow-path 158 processing of a message, the INIC 150 thus performs initial procedures

such as validation and determination ofmessage type, and passes the validated message at

least to the data link layer 160 of the host.

For fast-path 159 candidates, the processor 170 checks to see whether the header status

summary matches a CCB held by the INIC. If so, the data from the packet is sent along fast-

path 159 to the destination 168 in the host. If’the fast-path 159 candidate’s packet summary

does not match a CCB held by the INIC, the packet may be sent to the host 152 for slow—path

processing to create a CCB for the message. Employment of the fast—path 159 may also not be

needed or desirable for the ease of fragmented messages or other complexities. For the vast

majority ofmessages, however, the INIC fast—path 159 can greatly accelerate message

processing. The TNIC 150 thus provides a single state machine processor 170 that decides

whether to send data directly to its destination, based upon information gleaned on the fly, as

opposed to the conventional employment of a state machine in each of several protocol layers

for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver of the host

selects the processing route based upon whether the indication is fast—path or slow—path. A

TCP/IP or SPWIPX message has a connection that is set up from which a CCB is formed by

the driver and passed to the INIC for matching with and guiding the fast-path packet to the

connection destination 168. For a TTCP/IP message, the driver can create a connection

context for the transaction from processing an initial request packet, including locating the

message destination 168, and then passing that context to the IN1C in the form of a CCB for

providing a fast-path for a reply from that destination. A CCB includes connection and state

information regarding the protocol layers and packets of the message. Thus a CCB can

include source and destination media access control (MAC) addresses, source and destination
20

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 025

INTEL Ex.1002.026

ALA-006E

10

15

20

25

30

IP or lPX addresses, source and destination TCP 0r SPX ports, TCP variables such as timers,

receive and transmit windows for sliding window protocols, and information indicating the

session layer protocol.

Caching the CCBs in a hash table in the INIC provides quick comparisons with words

summarizing incoming packets to determine whether the packets can be processed via the fast-

path 159, while the full CCBs are also held in the INIC for processing. Other ways to

accelerate this comparison include software processes such as a B-tree or hardware assists

such as a content addressable memory (CAM). When lNIC microcode or comparator circuits

detect a match with the CCB, a DMA controller places the data from the packet in the

destination 168, without any interrupt by the CPU, protocol processing or copying. Depending

upon the type of message received, the destination of the data may be the session, presentation

or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed as a file server. This

INIC provides a network interface for several network connections employing the 802.3u

standard, commonly known as Fast Ethernet. The INIC 200 is connected by a PCI bus205 to

the server 202, which maintains a TCP/IP or SPX/IPX protocol stack including MAC layer

212, network layer 215, transport layer 217 and application layer 220, with a

source/destination 222 shown above the application layer, although as mentioned earlier the

application layer can be the source or destination. The INIC is also connected to network lines

210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial
cable or other lines each allowing data transmission of 100 Mb/s, while faster and slower data

rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated

row of hardware circuits which can each validate and summarize message packets received

from their respective network line. Thus line 210 is connected with a first horizontal row of

sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line

242 is connected with a third horizontal row of sequencers 262 and line 244 is connected with

a fourth horizontal row of sequencers 264. After a packet has been validated and summarized

by one of the horizontal hardware rows it is stored along with its status summary in storage
270.

A network processor 230 determines, based on that summary and a comparison with any

CCBs stored in the INIC 200, whether to send a packet along a slow-path 231 for processing

by the host. A large majority of packets can aVOid such sequential processing and have their
21

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 026

INTEL Ex.1002.027

ALA-006E

data portions sent by DMA along a fast-path 237 directly to the data destination 222 in the

server according to a matching CCB. Similarly, the fast—path 237 provides an avenue to send

data directly from the source 222 to any of the network lines by processor 230 division of the

data into packets and addition of full headers for network transmission, again minimizing CPU

5 processing and interrupts. For clarity only horizontal sequencer 250 is shown active; in

actuality each of the sequencer rows 250, 260, 262 and 264 offers full duplex communication,

concurrently with all other sequencer rows. The specialized INIC 200 is much faster at

working with message packets than even advanced general—purpose host CPUs that processes

those headers sequentially according to the software protocol stack. ’

10 One of the most commonly used network protocols for large messages such as file transfers

is server message block (SMB) over TCP/IP. SMB can operate in conjunction with redirector

software that determines whether a required resource for a particular operation, such as a

printer or a disk upon which a file is to be written, resides in or is associated with the host from

which the operation was generated or is located at another host connected to the network, such

15 as a file server. SMB and server/redirector are conventionally serviced by the transport layer;

in the present invention SMB and redirector can instead be serviced by the INIC. In this case,

sending data by the DMA controllers from the INIC buffers when receiving a large SMB

transaction may‘ greatly reduce interrupts that the host must handle. Moreover, this DMA

generally moves the data to its final destination in the file device cache. An SMB transmission

20 of the present invention follows essentially the reverse of the above described SMB receive,

with data transferred from the host to the INIC and stored in buffers, ‘while the associated

1 protocol headers are prepended to the data in the INIC, for transmission via a network line to a

remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, thBios

and SMB protocol layers via custom hardware and without repeated interrupts of the host can

25 greatly increase the speed of transmitting an SMB message to a network line.

As shown in FIG. 10, for controlling whether a given message is processed by the host 202

or by the INIC 200, a message command driver 300 may be installed in host 202 to work in

concert with a host protocol stack 310. The command driver 300 can intervene in message

reception or transmittal, create CCBs and send or receive CCBs from the INIC 200, so that

30 functioning of the INIC, aside from improved performance, is transparent to a user. Also

shown is an INIC memory 304 and an INIC miniport driver 306, which can direct message

packets received from network 210 to either the conventional protocol stack 310 or the
22

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 027

INTEL Ex.1002.028

ALA-006E

,10

15

2O

25

3O

command protocol stack 300, depending upon whether a packet has been labeled as a fast-path

candidate. The conventional protocol stack 310 has a data link layer 312, a network layer 314
and a transport layer 316 for conventional, lower layer processing of messages that are not

labeled as fast-path candidates and therefore not processed by the command stack 300.

Residing above the lower layer stack 3 l 0 is an upper layer 318, which represents a session,

presentation and/or application layer, depending upon the message communicated. The

command driver 300 similarly has a data link layer 320, a network layer 322 and a transport

layer 325. V

The driver 300 includes an upper layer interface 330 that determines, for transmission of

messages to the network 210, whether a message transmitted from the upper layer 318 is to be

processed by the command stack 300 and subsequently the INIC fast-path, or by the

conventional stack 310. When the upper layer interface 330 receives an appropriate message

from the upper layer 318 that would conventionally be intended for transmission to the

network alter protocol processing by the protocol stack of the host, the message is passed to

driver 300. The INIC then acquires network-sized portions of the message data for that

transmission Via INIC DMA units, prepends headers to the data portions and sends the

resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or

similar message packet from the network 210 to be used in setting up a fast-path connection,

miniport driver 306 diverts that message packet to command driver 300 for processing. The

driver 300 processes the message packet to create a context for that message, with the driver

302 passing the context and command instructions back to the INIC 200 as a CCB for sending

data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,

TTCP, SPX or similar CCB connections may be held indefinitely by thc'INIC, although a least

recently used (LIRU) algorithm is employed for the case when the INIC cache is full. The

driver 300 can also create a connection context for a TTCP request which is passed to the INIC

200 as a CCB, allowing fast-path transmission of a TTCP reply to the request. A message

having a protocol that is not accelerated can be processed conventionally by protocol stack

3 1 0.

FIG. 11 shows a TCP/IP implementation of command driver software for Microsoft®

protocol messages. A conventional host protocol stack 350 includes MAC layer 353, IP layer

355 and TCP layer 358. A command driver 360 works in concert with the host stack 350 to

process network messages. The command driver 360 includes a MAC layer 363, an IP layer
23

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 028

INTEL Ex.1002.029

ALA—006E

10

15

20

25

30

366 and an Alacritech TCP (ATCP) layer 373. The conventional stack 350 and command

dn'ver 360 share a network driver interface specification (NDIS) layer 375, which interacts

with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications

for processing by either the conventional host stack 350 or the ATCP driver 360. A TDI filter

driver and upper layer interface 380 similarly determines whether messages sent from a TDl

user 382 to the network are diverted to the command driver and perhaps to the fast—path of the

INIC, or processed by the host stack.

FIG. 12 depicts a typical SMB exchange between a client 190 and server 290, both of

which have communication devices of the present invention, the communication devices each

holding a CCB defining their connection for fast—path movement of data. The client 190

includes INIC 150, 8023 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios

layer 166, and SMB layer 168. The client has a slow-path 157 and fast-path 159 for

communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data

link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and SMB 222. The server is

connected to network lines 240, 242 and 244, as well as line 210 which is connected to client

190. The server also has a slow-path 231 and fast—path 237 for communication processing.

Assuming that the client 190 wishes to read a 100KB file on the server 290, the client may

begin by sending a Read Block Raw (RBR) SMB command across network 210 requesting the

first 64 KB of that file on the server 290. The RBR command may be only 76 bytes, for

_ example, so the TNIC 200 on the server will recognize the message type (SMB) and relatively

small message size, and send the 76 bytes directly via the fast-path to NetBios of the server.

NetBios will give the data to SMB, which processes the Read request and fetches the 64KB of

data into server data buffers. SMB then calls NetBios to send the data, and NetBios outputs

the data for the client. In a conventional host, NetBios would call TCP output and pass 64 KB

to TCP, which would divide the data into 1460 byte segments and output each segment Via IP

and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP

driver along with an indication regarding the client-server SMB connection, which indicates a

CCB held by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the

host buffers, add the appropriate headers for TCP, IP and MAC at one time, and send the

completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the

whole 64KB transfer has been sent. Usually after receiving acknowledgement from the client

24

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 029

INTEL Ex.1002.030

ALA—006E

10

15

,20

25

30

that the 64KB has been received, the INIC will then send the remaining 36KB also by the fast-

path 237.

With INIC 150 operating on the client 190 when this reply arrives, the INIC 150 recognizes

from the first frame received that this connection is receiving fast—path 159 processing

(TCP/IP, NetBios, matching a CCB), and the ATCP may use this first frame to acquire buffer

space for the message. This latter case is done by passing the first 128 bytes of the N etBios

portion of the frame via the ATCP fast—path directly to the host NetBios; that will give

NetBios/SMB all of the frame’s headers. NetBios/SMB will analyze these headers, realize by

matching with a request ID that this is a reply to the original RawRead connection, and give

the ATCP a 64K list of buffers into which to place the data. At this stage only one frame has

arrived, although more may arrive while this processing is occurring. As soon as the client

buffer list is given to the ATCP, it passes that transfer information to the INIC 150, and the

INIC 150 starts DMAing any frame data that has accumulated into those buffers.

FIG. 13 provides a simplified diagram of the INIC 200, which combines the fimctions of a

network interface controller and a protocol processor in a single ASIC chip 400. The INIC

200 in this embodiment offers a filll-duplex, four channel, 10/ lOO-Megabit per second (Mbps)

intelligent network interface controller that is designed for high speed protocol processing for

server applications. Although designed specifically for server applications, the INIC 200 can

be connected to personal computers, workstations, routers or other hosts anywhere that

TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200 is connected with four network lines 210, 240, 242 and 244, which may

transport data along a number of different conduits, such as twisted pair, coaxial cable or.

optical fiber, each of the connections providing a media independent interface (MII) via

commercially available physical layer chips, such as model 80220/80221 Ethernet Media

Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,

CA 94538. The lines preferably are 802.3 compliant and in connection with the INIC I

constitute four complete Ethernet nodes, the INIC supporting lOBase—T, 10Base—T2, lOOBase—

TX, 100Base-FX and lOOBase—T4 as well as filture interface standards. Physical layer

identification and initialization is accomplished through host driver initialization routines. The

connection between the network lines 210, 240, 242 and 244 and the INIC 200 is controlled by

MAC units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408 which contain logic

circuits for performing the basic functions of the MAC sublayer, essentially controlling when
25

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 030

INTEL Ex.1002.031

ALA-006E

10

15

20

25

the INIC accesses the network lines 210, 240, 242 and 244. The MAC units 402-408 may act

in promiscuous, multicast or unicast modes, allowing the INIC to function as a network

monitor, receive broadcast and multicast packets and implement multiple MAC addresses for

each node. The MAC units 402—408 also provide statistical information that can be used for

simple network management protocol (SNMP).

The MAC units 402, 404, 406 and 408 are each connected to a transmit and receive

sequencer, XMT & RCV—A 418, XMT & RCV—B 420, XMT & RCV-C 422 and XMT &

RCV-D 424, by wires 410, 412, 414 and 416, respectively. Each of the transmit and receive

sequencers can perform several protocol processing steps on the fly as message frames pass

through that sequencer. In combination with the MAC units, the transmit and receive

sequencers 418-422 can compile the packet status for the data link, network, transport, session

and, if appropriate, presentation and application layer protocols in hardware, greatly reducing

the time for such protocol processing compared to conventional sequential software engines.

The transmit and receive sequencers 410—414 are connected, by lines 426, 428, 430 and 432 to

an SRAM and DMA controller 444, which includes DMA controllers 438 and SRAM

controller 442. Static random access memory (SRAM) buffers 440 are coupled with SRAM

controller 442 by line 441. The SRAM and DMA controllers 444 interact across line 446 with

external memory control 450 to send and receive frames via external memory bus 455 to and

from dynamic random access memory (DRAM) buffers 460, which is located adjacent to the

IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 MB,

and may optionally be disposed on the chip. The SRAM and DMA controllers 444 are

connected via line 464 to a PCI Bus Interface Unit (BIU) 468, which manages the interface

between the INIC 200 and the PCI interface bus 257. The 64-bit, multiplexed BIU 468

provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC

200 is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-

bit addressing in either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMA controllers 444,

and connected via line 475 to the PCI BlU 468. Microprocessor 470 instructions and register

files reside in an on chip control store 480, which includes a writable on-chip control store

(WCS) of SRAM and a read only memory (ROM), and is connected to the microprocessor by

line 477. The microprocessor 470 offers a programmable state machine which is capable of

processing incoming frames, processing host commands, directing network traffic and
26

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 031

INTEL Ex.1002.032

ALA—006E

10

15'

20

25

30

directing PCI bus traffic. Three processors are implemented using shared hardware in a three

level pipelined architecture that launches and completes a single instruction for every clock

cycle. A receive processor 482 is primarily used for receiving communications while a

transmit processor 484 is primarily used for transmitting communications in order to facilitate

full duplex communication, while a utility processor 486 offers various functions including

overseeing and controlling PCl register access. V

The instructions for the three processors 482, 484 and 486 reside in the on-chip control-

store 480. Thus the functions of the three processors can be easily redefined, so that the

microprocessor 470 can adapted for a given environment. For instance, the amount of

processing required for receive functions may outweigh that required for either transmit or

utility functions. In this situation, some receive fimctions may be performed by the transmit

processor 484 and/or the utility processor 486. Alternatively, an additional level of pipelining

can be created to yield four or more virtual processors instead of three, with the additional

level devoted to receive functions.

The lNlC 200 in this embodiment can suppert up to 256 CCBs which are maintained in a

table in the DRAM 460. There is also, however, a CCB index in hash order in the SRAM 440

to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,

with up to sixteen cached CCBs in SRAM in this example. Allocation of the sixteen CCBs

cached in SRAM is handled by a least recently used register, described below. These cache

locations are shared between the transmit 484 and receive 486 processors so that the processor

with the heavier load is able to use more cache buffers. There are also eight header buffers

- and eight command buffers to be shared between the sequencers. A given header or command

buffer is not statically linked to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 shows an overview of the pipelined microprocessor 470, in which instructions for

the receive, transmit and utility processors are executed in three alternating phases according

to Clock increments I, II and III, the phases corresponding to each of the pipeline stages. Each

phase is responsible for different functions, and each of the three processors occupies a

different phase during each Clock increment. Each processor usually operates upon a different

instruction stream from the control store 480, and each carries its own program counter and

status through each of the phases.

27

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 032

INTEL Ex.1002.033

ALA-006E I

In general, a first instruction phase 500 of the pipelined microprocessors completes an

instruction and stores the result in a destination operand, fetches the next instruction, and

stores that next instruction in an instruction register. A first register set 490 provides a number

of registers including the instruction register, and a set of controls 492 for first register set

5 provides the controls for storage to the first register set 490. Some items pass through the first

phase without modification by file controls 492, and instead are simply copied into the first

register set 490 or a RAM file register 533. A second instruction phase 560 has an instruction

decoder and operand multiplexer 498 that generally decodes the instruction that was stored in

the instruction register of the first register set 490 and gathers any operands which have been

10 generated, which are then stored in a decode register of a second register set 496. The first

register set 490, second register set 496 and a third register set 501, which is.employed in a

third instruction phase 600, include many of the same registers, as will be seen in the more

detailed iviews ofFIGs. ISA-C. The instruction decoder and operand multiplexer 498 can read

7 from two address and data ports of the RAM filc register 533, which operates in both the first

15 phase 500 and second phase 560. A third phase 600 of the processor 470 has an arithmetic

logic .unit (ALU) 602 which generally performs any ALU operations on the operands from the

second register set, storing the results in :1 results register included in the third register set 501.

A stack exchange 608 can reorder register stacks, and a queue manager 503 can arrange

queues for the processor 470, the results ofwhich are stored in the third register set.

20 The instructions continue with the first phase then following the third phase, as depicted by a

circular pipeline 505. Note that various functions have been distributed across the three phases

of the instruction execution in order to minimize the combinatorial delays within any given

phase. With a frequency in this embodiment of 66 MHZ, each Clock increment takes 15

nanoseconds to complete, for a total of 45 nanoseconds to complete one instruction for each of

25 the three processors. The rotating instruction phases are depicted in more detail in F165. 15A-

C, in which each phase is shown in a different figure.

More particularly, FIG. 15A shows some specific hardware functions of the first phase 500,

which generally includes the first register set 490 and related controls 492. The controls for the

first register set 492 includes an SRAM control 502, which is a logical control for loading

30 address and write data into SRAM address and data registers 520. Thus the output of the ALU

602 from the third phase 600 may be placed by SRAM control 502 into an address register or

data register of SRAM address and data registers 520. A load control 504 similarly provides
28

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 033

INTEL Ex.1002.034

ALA-006E

10

15

20

25

30

controls for writing a context for a file to file context register 522, and another load control

506 provides controls for storing a variety of miscellaneous data to flip-flop registers 525.

ALU condition codes, such as whether a carried hit is set, get clocked into ALU condition

codes register 528 without an operation performed in the first phase 500. Flag decodes 508

can perform various functions, such as setting looks, that get stored in flag registers 530.

The RAM file register 533 has a single write port for addresses and data and two read ports

for addresses and data, so that more than one register can be read from at one time. As noted

above, the RAM file register 533 essentially straddles the first and second phases, as it is

written in the first phase 500 and read from in the second phase 560. A control store

instruction 510 allows the reprogramming of the processors due to new data in from the

control store 480, not shown in this figure, the instructions stored in an instruction register

535. The address for this is generated in a fetch control register 51 1, which determines which

address to fetch, the address stored in fetch address register 538. Load control 515 provides

instructions for a program counter 540,‘ which operates much like the fetch address for the

control store. A last-in first-out stack 544 of three registers is copied to the first register set

without undergoing other operations in this phase. Finally, a load control 51 7 for a debug

address 548 is optionally included, which allows correction of errors that may occur.

F[G 15B depicts the second microprocessor phase 560, which includes reading addresses

and data out of the RAM file register 533. A scratch SRAM 565 is written from SRAM

address and data register 520 of the first register set, which includes a register that passes

through the first two phases to be incremented in the third. The scratch SRAM 565 is read by

the instruction decoder and operand multiplexer 498, as are most of the registers from the first

register set, with the exception of the stack 544, debug address 548 and SRAM address and

data register mentioned above. The instruction decoder and operand multiplexer 498 looks at

the various registers of set 490 and SRAM 565, decodes the instructions and gathers the

operands for operation in the next phase, in particular determining the operands to provide to

the ALU 602 below. The outcome of the instruction decoder and operand multiplexer 498 is

stored to a number of registers in the second register set 496, including ALU operands 579 and

582, ALU condition code register 580, and a'queue channel and command 587 register, which

in this embodiment can control thirty—two queues. Several of the registers in set 496 are

loaded fairly directly from the instruction register 535 above without substantial decoding by
the decoder 498, including a program control 590, a literal field 589, a test select 584 and a

29

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 034

INTEL Ex.1002.035

ALA-006E

10'

15

20

25

30

flag select 585. Other registers such as the file context 522 of the first phase 500 are always

stored in a file context 577 of the second phase 560, but may also be treated as an operand that

I is gathered by the multiplexer 572. The stack registers 544 are simply copied in stack register

594. The program counter 540 is incremented 568 in this phase and stored in register 592.

Also incremented 570 is the optional debug address 548, and a load control 575 may be fed

from the pipeline 505 at this point in order to allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALU and queue

operations. The ALU 602 includes an adder, priority encoders and other standard logic

fimctions. Results of the ALU are stored in registers ALU output 618, ALU condition codes

620 and destination operand results 622. A file context register 616, flag select register 626

and literal field register 630 are simply copied from the previous phase 560. A test multiplexer

604 is provided to determine whether a conditional jump results in a jump, with the results

stored in a test results register 624. The test multiplexer 604 may instead be performed in the

first phase 500 along with similar decisions such as fetch control 51 1 . A stack exchange 608

shifis a stack up or down by fetching a program counter from stack 594 or putting a program

counter onto that stack, results of which are stored in program control 634, program counter

638 and stack 640 registers. The SRAM address may optionally be incremented in this phase

600. Another load control 610 for another debug address 642 may be forced from the pipeline

505 at this point in order to allow error control in this phase also. A QRAM QALU 606,

shown together in this figure, read from the queue channel and command register 587-, store in

SRAM and rearrange queues, adding or removing data and pointers as needed to manage the

queues of data, sending results to the test multiplexer 604 and a queue flags and queue address

register 628. Thus the QRAM & QALU 606 assume the duties of managing queues for the

three processors, a task conventionally performed sequentially by software on a CPU, the

queue manager 606 instead providing accelerated and substantially parallel hardware queuing.

FIG. 16 depicts two of the thirty-two hardware queues that are managed by the queue

manager 606, with each ofthe queues having an SRAM head, an SRAM tail and the ability to

queue information in a DRAM body as well, allowing expansion and individual configuration

of each queue. Thus FIFO 700 has SRAM storage units, 705, 707, 709 and 711, each

containing eight bytes for a total of thirty—two bytes, although the number and capacity of

these units may vary in other embodiments. Similarly, FIFO 702 has SRAM storage units
30

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 035

INTEL Ex.1002.036

ALA-006E

10

15

20

25

30

713, 715, 717 and 719. SRAM units 705 and 707 are the head ofFIFO 700 and units 709 and

711 are the tail ofthat FIFO, while units 713 and 715 are the head of FIFO 702 and units 717

and 719 are the tail of that FIFO. Information for FIFO 700 may be written into head units

705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shown by arrow

725. A particular entry, however, may be both written to and read from head units 705 or 707,

or may be both written to and read from tail units 709 or 711, minimizing data movement and

latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as

shown by arrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may

instead be read from the same head or tail unit to which it was written.

The SRAM FIF OS 700 and 702 are both connected to DRAM 460, which allows virtually

unlimited expansion of those FIFOS to handle situations in which the SRAM head and tail are

full. For example a first ofthe thirty-two queues, labeled Q—zero, may queue an entry in

DRAM 460, as shown by arrow 727, by DMA units acting under direction of the queue

manager, instead ofbeing queued in the head or tail of FIFO 700. Entries stored in DRAM

460 return to SRAM unit 709, as shown by arrow 730, extending the length and fall-through

time of that FIFO. Diversion from SRAM to DRAM is typically reserved for when the SRAM

is full, since DRAM is slower and DMA movement causes additional latency. Thus Q-zero

may comprise the entries stored by queue manager 606 in both the FIFO 700 and the DRAM

460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,

for example, can be moved by DMA into DRAM 460, as shown by arrow 735. The capacity

for queuing in cost-effective albeit slower DRAM 460 is user-definable during initialization,

allowing the queues to change in size as desired. Information queued in DRAM 460 is

returned to SRAM unit 717, as shown by arrow 737.

Status for each of the thirty—two hardware queues is conveniently maintained in and

accessed from a set 740 of four, thirty-two bit registers, as shown in FIG. 17, in which a

specific bit in each register corresponds to a specific queue. The registers are labeled Q-

Out_Ready 745, Q-In_Ready 750, Q—Empty 755and Q—Full 760. If a particular bit is set in

the Q-OutfiReady register 750, the queue corresponding to that bit contains information that is

ready to be read, while the setting of the same bit in the Q—In_Ready 752 register means that

the queue is ready to be written. Similarly, a positive setting of a specific bit in the Q—Empty

register 755 means that the queue corresponding to that bit is empty, while a positive setting of

a particular bit in the Q-Full register 760 means that the queue corresponding to that bit is full.
3 1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 036

INTEL Ex.1002.037

ALA—006E

'10

15

20

25

30

Thus Q-Out_Ready 745 contains bits zero 746 through thirty-one 748, including bits twenty-

seven 752, twenty—eight 754, twenty—nine 756 and thirty 758. Q-ln_Ready 750 contains bits

zero 762 through thirty—one 764, including bits twenty-seven 766, twenty-eight 768, twenty-

nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 through thirty—one 776,

including bits twenty-seven 778, twenty—eight 780, twenty-nine 782 and thirty 784, and Q-full

760 contains bits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-

cight 792, twenty—nine 794 and thirty 796.

Q—zero, corresponding to FIFO 700, is a free buffer queue, which holds a list of addresses

for all available buffers. This queue is addressed when the microprocessor or other devices

need a free buffer address, and so commonly includes appreciable DRAM 460. Thus a device

needing a free buffer address would check with Q-zero to obtain that address. Q-twenty-

seven, corresponding to FIFO 702, is a receive buffer descriptor queue. After processing a

received frame by the receive sequencer the sequencer looks to store a descriptor for the frame

in Q—twenty—seven. If a location for such a descriptor is immediately available in SRAM, bit

twenty-seven 766 of Q-In_Ready 750 will be set. If not, the sequencer must wait for the queue

manager to initiate a DMA move from SRAM to DRAM, thereby freeing space to store the

receive descriptor.

Operation of the queue manager, which manages movement of queue entries between

SRAM and the processor, the transmit and receive sequencers, and also between SRAM and

DRAM, is shown in more detail in FIG. 18. Requests which utilize the queues include

Processor Request 802, Transmit Sequencer Request 804, and Receive Sequencer Request

806. Other requests for the queues are DRAM to SRAM Request 808 and SRAM to DRAM

Request 810, which operate on behalf of the queue manager in moving data back and forth

between the DRAM and the SRAM head or tail of the queues. Determining which of these

various requests will get to use the queue manager in the next cycle is handled by priority logic

Arbiter 815. To enable high frequency operation the queue manager is pipelined, with

Register A 818 and Register B 820 providing temporary storage, while Status Register 822

maintains status until the next update. The queue manager reserves even cycles for DMA,

receive and transmit sequencer requests and odd cycles for processor requests. Dual ported

QRAM 825 stores variables regarding each of the queues, the variables for each queue

including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer

32

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 037

INTEL Ex.1002.038

ALA-006E

10

15

20

25

30

corresponding. to the queue’s SRAM condition, and a Body Write Pointer and Body Read
Pointer corresponding to the queue’s DRAM condition and the queue’s size.

Alter Arbiter 815 has selected the next operation to be performed, the variables of QRAM

825 are fetched and modified according to the selected operation by a QALU 828, and an

SRAM Read Request 830 or an SRAM Write Request 840 may be generated. The variables

are updated and the updated status is stored in Status Register 822 as well as QRAM 825. The

status is also fed to Arbiter 815 to signal that the operation previously requested has been

fulfilled, inhibiting duplication of requests. The Status Register 822 updates the four queue

registers Q-Out_Ready 745, Q—IniRcady 750, Q-Empty 755 and Q—Full 760 to reflect the new

status of the queue that was accessed. Similarly updated are SRAM Addresses 833, Body

Write Request 835 and Body Read Requests 838, which are accessed via DMA to and from

SRAM head and tails for that queue. Alternatively, various processes may wish to write to a

queue, as shown by Q Write Data 844, which are selected by multiplexer 846, and pipelined to

SRAM Write Request 840. The SRAM controller services the read and write requests by

writing the tail or reading the head of the accessed queue and returning an acknowledge. In

this manner the various queues are utilized and their status updated. I

FIGS. 19A-C show a least-rcecntly—used register 900 that is employed for choosing which

contexts or CCBs to maintain in INIC cache memory. The INIC in this embodiment can cache

up to sixteen GCBs in SRAM at a given time, and so when a new CCB is cached an old one

must often be discarded, the discarded CCB usually chosenraccording to this register 900 to be

the CCB that has been used least recently. In this embodiment, a hash table for up to two

hundred fifiy-six CCBs is also maintained in SRAM, while up to two hundred fifiy-six full

CCBs are held in DRAM. The least-recently—used register 900 contains sixteen four-bit blocks

labeled RO—R15, each of which corresponds to an SRAM cache unit. Upon initialization, the

blocks are numbered 0-15, with number 0 arbitrarily stored in the block representing the least

recently used (LRU) cache unit and number 15 stored in the block representing the most

recently used (MRU) cache unit. FIG. 19A shows the register 900 at an arbitrary time when

the LRU block R0 holds the number 9 and the MRU block R15 holds the number 6.

When a different CCB than is currently being held in SRAM is to be cached, the LRU

block R0 is read, which in FIG. 19A holds the number 9, and the new CCB is stored in the

SRAM cache unit corresponding to number 9. Since the new CCB corresponding to number

9 is now the most recently used CCB, the number 9 is stored in the MRU block, as shown in
33

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 038

INTEL Ex.1002.039

ALA-006E

10

15

20

25

30‘

FIG. 19B. The other numbers are all shified one register block to the lefi, leaving the number

1 in the LRU block. The CCB that had previously been cached in the SRAM unit

corresponding to number 9 has been moved to slower but more cost-effective DRAM.

FIG. 19C shows the result when the next CCB used had already been cached in SRAM. In

this example, the CCB was cached in an SRAM unit corresponding to number 10, and so after

employment of that CCB, number 10 is stored in the MRU block. Only those numbers which

had previously been more recently used than number 10 (register blocks R9-R15) are shified

to the left, leaving the number 1 in the LRU block. In this manner the INIC maintains the

most active CCBS in SRAM cache.

In some cases a CCB being used is one that is not desirable to hold in the limited cache

memory. For example, it is preferable not to cache a CCB for a context that is known to be

closing, so that other cached CCBS can remain in SRAM longer. In this case, the number

representing the cache unit holding the decacheable CCB is stored in the LRU block R0 rather

than the MRU block R15, so that the decacheabl‘e CCB will be replaced immediately upon

employment of a new CCB that is cached in the SRAM unit corresponding to the number held

in the LRU block R0. FIG. 19D shows the case for which number 8 (which had been in block

R9 in FIG. 19C) corresponds to a CCB‘that will be used and then closed. In this case number
8 has been removed from block R9 and stored in the LRU block R0. All the numbers that had

previously been stored to the left ofblock R9 (Rl-RS) are then shifted one block to the right.

FIG. 20 shows some of the logical units employed to operate the least-recently-uscd

register 900. An array of sixteen, three or four input multiplexers 910, of which only

multiplexors MUXO, MUX7, MUX8, MUX9 and MUX15 are shown for clarity, have outputs

fed into the corresponding sixteen blocks of least—recently-used register 900. For example, the

output of MUXO is stored in block R0, the output of MUX7 is stored in block R7, etc. The

value of each of the register blocks is connected to an input for its corresponding multiplexor

and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For

instance, the number stored in R8 is fed into inputs for MUX7, MUX8 and MUX9. MUXO

and MUXl 5 each have only one adjacent block, and the extra input for those multiplexors is

used for the selection of LRU and MRU blocks, respectively. MUXI 5 is shown as a four—

input multiplexor, with input 915 providing the number stored on R0.

An array of sixteen comparators 920 each receives the value stored in the corresponding

block of the least—recently—used register 900. Each comparator also receives a signal from
34

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 039

INTEL Ex.1002.040

vw‘uh In}.—{a} 9MP "2.3?

ALA-006E

10

15'

20

25

3O

processor 470 along line 935 so that the register block having a number matching that sent by

processor 470 outputs true to logic circuits 930 while the other fifteen comparators output

false. Logic circuits 930 control a pair of select lines leading to each of the multiplexers, for

selecting inputs to the multiplexors and therefore controlling shifting of the register block

numbers. Thus select lines 939 control MUXO, select lines 944 control MU‘X7, select lines

949 control MUX8, sclect lines 954 control MUX9 and select lines 959 control MUX15.

When a CCB is to be used, processor 470 checks to see whether the CCB matches a CCB

currently held in one of thc sigteen cache units. If a match is found, the processor sends a

signal along line 935 with the block number corresponding to that cache unit, for example

number 12. Comparators 920 compare the signal from that line 935 with the block numbers

and comparator C8 provides a true output for the block R8 that matches the signal, while all

the other comparators output false. Logic circuits 930, under control from the processor 470,

usc selcct lines 959 to choose the input from line 935 for MUX15, storing the number 12 in the

MRU block R15. Logic circuits 930 also send signals along the pairs of select lines for MUX8

and higher multiplexors, aside from MUX15, to shift their output one block to the left, by

selecting as inputs to each multiplexor MUX8 and higher the value that had been stored in

register blocks one block to the right (R9-R15). The outputs of multiplexors that are to the 1ch

of MUX8 are selected to be constant.

If processor 470 ‘does not find a match for the CCB among the sixteen cache units, on the

other hand, the processor reads from LRU block R0 along line 966 to identify the cache

corresponding to the LRU block, and writes the data stored in that cache to DRAM. The

number that was stored in R0,‘in this case number 3, is chosen by/‘select lines 959 as input 915

to MUXl 5 for storage in MRU block R15. The other fifteen multiplexors output to their

respective register blocks the numbers that had been stored each register block immediately to

the right.-

For the situation in which the processor Wishes to remove a CCB from the cache after use,

the LRU block R0 rather than the MRU block R15 is selected for placement of the number

corresponding to the cache unit holding that CCB. The number corresponding to the CCB to

be placcd in the ,LRU block R0 for removal from SRAM (for example number 1, held in block

R9) is sent by processor 470 along line 935, which is matched by comparator C9. The

processor instructs logic circuits 930 to input the number 1 to R0, by selecting with lines 939

input 935 to MUXO. Select lines 954 to MUX9 choose as input the number hcld in register
35

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 040

INTEL Ex.1002.041

ALA—006E

10

15

,20

25

30

block R8, so that the number from R8 is stored in R9. The numbers held by the other register

blocks between R0 and R9 are similarly shifted to the right, whereas the numbers in register

blocks to the right of R9 are left constant. This frees scarce cache memory from maintaining

closed CCBs for many cycles While their identifying numbers move through register blocks

from the MRU to the LRU blocks. I

Figure 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure

13. INIC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and

Dynamic Random Access Memory (DRAM) 460. PHY chip 2100 couples INIC card 200 to

network line 210 via a network connector 2101. INIC card 200 is coupled to the CPU of the

host (for example, CPU 28 of host 20 of Figure 1) via card edge connector 2107 and PCI bus

257. ASIC chip 400 includes a Media Access Control (MAC) unit 402, a sequencers block
2103, SRAM control 442, SRAM 440, DRAM control 450, a queue manager 2103, a

processor 470, and a PCI bus interface unit 468. Structure and operation of queue manager

2103 is described above in connection with Figure 18 and in US. Patent Application Serial

Number 09/416,925, entitled “Queue System For Microprocessors”, attorney docket no. ALA-

005, filed October 13, 1999, by Daryl D. Starr and Clive M. Philbrick (the subject matter of i

which is incorporated herein by reference). Sequencers block 2102 includes a transmit

sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC

destination address is stored in configuration register 2106. Part of the program code executed
by processor 470 is contained in ROM (not shown) and part is located in a writeable control

' store SRAM (not shown). The program is downloaded into the writeable control store SRAM
at initialization from the host 20.

Figure 22 is a more detailed diagram of receive sequencer 2105. Receive sequencer 2105

includes a data synchronization buffer 2200, a packet synchronization sequencer 2201 ,‘a data

assembly register 2202, a protocol analyzer 2203, a packet processing sequencer 2204, a queue

manager interface 2205, and a Direct Memory Access (DMA) control block 2206. The packet

synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network—

synchronizcd clock of MAC 402, whereas the remainder of the receive sequencer 2105 utilizes

a fixed-frequency clock. Dashed line 2221 indicates the clock domain boundary.

CD Appendix A contains a complete hardware description (verilog code) of an embodiment

of receive sequencer 2105. Signals in the verilog code are named to designate their functions.

Individual sections of the verilog code are identified and labeled with comment lines. Each of
36

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 041

INTEL Ex.1002.042

ALA-006E

these sections describes hardware in a block of the receive sequencer 2105 as set forth below

in Table 1.

SECTION OF VERILOG CODE

Synchronization Interface

0 Sync-Buffer Read-Ptr Synchronizers

Packet-Synchronization Sequencer

Data Synchronization Buffer

Synchronized Status for Link-Destination~Address

Synchronized Status-Vector

Synchronization Interface

Receive Packet Control and Status

Buffer-Descriptor

Ending Packet Status

AssyReg shift—in. Mac —> AssyReg.

Fifo shift-in. AssyReg -> Srarn Fifo

Fifo ShiftOut Burst. SramFifo ~> DramBuffer

Fly-By Protocol Analyzer; Frame, Network and Transport Layers

Link Pointer

Mac address detection

Magic pattern detection

Link layer and network layer detection

Network counter

Control Packet analysis

Network header analysis

Transport layer counter

Transport header analysis

Pseudo-header stuff

Free-Descriptor Fetch

Receive-Descriptor Store

Receive-Vector Store

Queue-manager interface-mux

BLCXH<CH3FIGu22

2201

2201

2201

2201and2200

2201

2201

2204

2204

2201

220L

2202 and 2204

2206

2206

2203

2203

2203

2203

2203

2203

2203

2203

2203

2203

2203

2205

2205

2205

2205

37

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 042

INTEL Ex.1002.043

ALA-006E

10

15

20

25

flPause Clock Generator

2201

Pause Timer 2204

TABLE 1

Operation of receive sequencer 2105 of Figures 21 and 22 is now described in connection

with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At

initialization time, processor 470 partitions DRAM 460 into buffers. Receive sequencer 2105
uses the buffers in DRAM 460 to store incoming network packet data as well as status

information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A

buffer descriptor indicates the size and location in DRAM of its associated buffer. Processor

470 places these buffer descriptors on a “free-buffer queue” 2108 by writing the descriptors to

the queue manager 2103. Queue manager 2103 maintains multiple queues including the “free-

buffer queue” 2108. In this implementation, the heads and tails of the various queues are

located in SRAM 440, whereas the middle portion of the queues are located in DRAM 460.

Lines 2229 comprise a request mechanism involving a request line and address lines.

Similarly, lines 2230 comprise a request mechanism involving a request line and address lines.

Qucuc manager 2103 uses lines 2229 and 2230 to issue requests to transfer queue information

from DRAM to SRAM or from SRAM to DRAM.

The queue manager interface 2205 of the receive sequencer always attempts to maintain a

free buffer descriptor 2207 for use by the packet processing sequencer 2204. Bit 2208 is a

ready bit that indicates that free—buffer descriptor 2207 is available for use by the packet

processing sequencer 2204. If queue manager interface 2205 does not have a free buffer

descriptor (bit 2208 is not set), then queue manager interface 2205 requests one from queue

manager 2103 via request line 2209. (Request line 2209 is actually a bus which communicates

the request, a queue ID, a read/write signal and data if the operation is a write to the queue.)

In response, queue manager 2103 retrieves a free buffer descriptor from the tail of the “free

buffer queue” 2108 and then alerts the queue manager interface 2205 via an acknowledge

signal on acknowledge line 2210. When queue manager interface 2205 receives the

acknowledge signal, the queue manager interface 2205 loads the free buffer descriptor 2207

and sets the ready hit 2208. Because the fi'ee buffer descriptor was in the tail of the free buffer

queue in SRAM 440, the queue manager interface 2205 actually receives the free buffer

38

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 043

INTEL Ex.1002.044

ALA-006E

10

15

20

25

30

descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet

processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When

the queue manager interface 2205 retrieves the free buffer descriptor 2207 and the free buffer

descriptor 2207 is available for use by the packet processing sequencer, the queue manager

interface 2205 informs the packet processing sequencer 2204 via grant line 2212. By this

process, a free buffer descriptor is made available for use by the packet processing sequencer

2204 and the receive sequencer 2105 is ready to processes an incoming packet.

Next, a TCP/IP packet is received from the network line 210 via network connector 2101

and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC 402 Via a

Media Independent Interface (M11) parallel bus 2109. MAC 402 begins processing the packet

and asserts a “start of packet“ signal on line 2213 indicating that the beginning of a packet is

being received. When a byte of data is received in the MAC and is available at the MAC

outputs 2215, MAC 402 asserts a “data valid” signal on line 2214. Upon receiving the “data

valid” signal, the packet synchronization sequencer 2201 instructs the data synchronization

buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data

synchronization buffer 2200 is four bytes deep. The packet synchronization sequencer 2201

then increments a data synchronization buffer write pointer. This data synchronization buffer

write pointer is made available to the packet processing sequencer 2204 via lines 2216.

Consecutive bytes of data from data lines 2215 are clocked into the data synchronization

buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained by the

packet processing sequencer 2204. The packet processing sequencer 2204 determines that

data is available in data synchronization buffer 2200 by comparing the data synchronization

buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines
2219.

Data assembly register 2202 contains a sixteen—byte long shift register 2217. This register

2217 is loaded serially a single byte at a time and is unloaded in parallel. When data is loaded

into register 2217, a write pointer is incremented. This write pointer is made available to the

packet processing sequencer 2204 Via lines 221 8. Similarly, when data is unloaded from

register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.

This read pointer is available to the data assembly register 2202 via lines 2220. The packet

39

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 044

INTEL Ex.1002.045

ALA-006E

10

'15

'20

'25

30

processing sequencer 2204 can therefore determine whether room is available in register 2217

by comparing the write pointer on lines 2218 to the read pointer on lines 2220. i

If the packet processing sequencer 2204 determines that room is available in register 2217,

then packet processing sequencer 2204 instructs data assembly register 2202 to load a byte of

data from data synchronization buffer 2200. The data assembly register 2202 increments the

data assembly register write pointer on lines 2218 and the packet processing sequencer 2204

increments the data synchronization buffer read pointer on lines 2219. Data shifted into

register 2217 is examined at the register outputs by protocol analyzer 2203 which verifies

checksums, and generates “status” information 2223.

DMA control block 2206 is responsible for moving information from register 2217 to

buffer 21 14 via a sixty-four byte receive FIFO 2110. DMA control block 2206 implements

receive FIFO 21 10 as two thirty-two byte ping-pong buffers using sixty-four bytes of SRAM

440. DMA control block 2206 implements the receive FIFO using a write-pointer and a read-

pointer. When data to be transferred is available in register 2217 and space is available in

FIFO 21 10, DMA control blockv2206 asserts an SRAM write request to SRAM controller 442

via lines 2225. SRAM controller 442 in turn moves data from register 2217 to FIFO 2110 and

asserts an acknowledge signal back to DMA control block 2206 via lines 2225. DMA control

block 2206 then increments the receive FIFO write pointer and causes the data assembly

I register read pointer to be incremented.

When thirty-two bytes of data has been deposited into receive FIFO 2] 10, DMA control

block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This

write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for _

the DRAM request address, and the receive FIFO read pointer for the SRAM read‘address.

Using the receive FIFO read pointer, the DRAM controller 450 asserts a read request to

SRAM controller 442. SRAM controller 442 responds to DRAM controller 450 by returning

the indicated data from the receive FIFO 2] 10 in SRAM 440 and asserting an acknowledge

signal. DRAM controller 450 stores the data in a DRAM write data register, stores a DRAM

request address in a DRAM address register, and asserts an acknowledge to DMA control

block 2206. The DMA control block 2206 then decrements the receive FIFO read pointer.

Then the DRAM controller 450 moves the data from the DRAM write data register to buffer

21 14. In this way, as consecutive thirty-two byte chunks of data are stored in SRAM 440,

DRAM control block 2206 Amoves those thirty—two byte chunks of data one at a time from
40

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 045

INTEL Ex.1002.046

ALA-006E

10

15

20‘

25

30

SRAM 440 to buffer 2214 in DRAM 460. Transferring thirty-two byte chunks of data to the

DRAM 460 in this fashion allows data to be written into the DRAM using the relatively

efficient burst mode of the DRAM.

Packet data continues to flow from network line 210 to buffer 2114 until all packet data has

been received. MAC 402 then indicates that the incoming packet has completed by asserting

an “end of frame” (i.e., end of packet) signal on line 2227 and by presenting final packet status

(MAC packet status) to packet synchronization sequencer 2204. The packet processing

sequencer 2204 then moves the status 2223 (also called “protocol analyzer status”) and the

MAC packet status to register 2217 for eventual transfer to buffer 21 14. After all the data of

the packet has been placed in buffer 2214, status 2223 and the MAC packet status is

transferred to buffer 2214 so that it is stored prepended to the associated data as shown in

Figmre 22.

Afier all data and status has been transferred to buffer 2] l4, packet processing sequencer

2204 creates a summary 2224 (also called a “receive packet descriptor”) by concatenating the

,free buffer descriptor 2207, the buffer load-criunt, the MAC 1D, and a status bit (also called an

“attention bit”). If the attention bit is a one, then the packet is not a “fast-path candidate”;

whereas if the attention bit is a zero, then the packet is a “fast-path candidate”. The value of

the attention bit represents the result of a significant amount ofprocessing that processor 470

would otherwise have to do to determine whether the packet is a “fast-path candidate”. For

example, the attention bit being a zero indicates that the packet'employs both TCP protocol

and IP protocol. By carrying out this significant amount of processing in hardware beforehand

and then encoding the result in the attention bit, subsequent decision making by processor 470

as to whether the packet is an actual “fast-path packet” is accelerated. A complete logical

description of the attention bit in verilog code is set forth in CD'Appendix A in the lines

following the heading “Ending Packet Status”.

Packet processing sequencer 2204 then sets a ready bit (not shown) associated with

summary 2224 and presents summary 2224 to queue manager interface 2205. Queue manager

interface 2205 then requests a write to the head of a “summary queue” 21 12 (also called the

“receive descriptor queue”). The queue manager 2103 receives the request, writes the

summary 2224 to the head of the summary queue 2212, and asserts an acknowledge signal

back to queue manager interface via line 2210. When queue manager interface 2205 receives

the acknowledge, queue manager interface 2205 informs packet processing sequencer 2204
41

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 046

INTEL Ex.1002.047

ALA-006E

10

15

20

'25

30‘

that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with the

summary. Packet processing sequencer 2204 also generates additional status information (also

called a “vector”) for the packet by concatenating the MAC packet status and the MAC ID.

Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and

presents this vector to the queue manager interface 2205. The queue manager interface 2205

and the queue manager 2103 then cooperate to write this vector to the head of a “vector queue”
2113 in similar fashion to the way summary 2224 was written to the head of summary queue

2112 as described above. When the vector for the packet has been mitten to vector queue

2113, queue manager interface 2205 resets the ready bit associated with the vector.

Once summary 2224 (including a buffer descriptor that points to buffer 2114) has been _
placed in summary queue 21 12 and the packet data has been placed in buffer 2144, processor

470 can retrieve summary 2224 from summary queue 2112 and examine the “attention bit”.

lfthe attention bit from summary 2224 is a digital one, then processor 470 determines that

the packet is not a “fast—path candidate” and processor 470 need not examine the packet

I headers. Only the status 2223 (first sixteen bytes) from buffer 21 14 are DMA transferred to

SRAM so processor 470 can examine it. If the status 2223 indicates that the packet is a type

of packet that is not to be transferred to the host (for example, amulticast frame that the host is

not registered to receive), then the packet is discarded (i.e., not passed to the host). If status

2223 does not indicate that the packet is the type ofpacket that is not to be transferred to the

host, then the entire packet (headers and data) is passed to a buffer on host 20 for “slow-path”

transport and network layer processing by the protocol stack of host 20.

If, on the other hand, the attention bit is a zero, then processor 470 determines that the

packet is a “fast-path candidate”. If processor 470 determines that the packet is a “fast-path

candidate”, then processor 470 uses the buffer descriptor from the summary to DMA transfer

the first approximately 96 bytes of information from buffer 2114 from DRAM 460 into a

portion of SRAM 440 so processor 470 can examine it. This first approximately 96 bytes

contains status 2223 as well as the IP source address of the IP header, the IP destination

address of the 1P header, the TCP source address of the TCP header, and the TCP destination

address ofthe TCP header. The IP source address of the 1P header, the IP destination address

of the 1P header, the TCP source address ofthe TCP header, and the TCP destination address

of the TCP header together uniquely define a single connection context (TCB) with which the

packet is associated. Processor 470 examines these addresses of the TCP and IP headers and
42 '

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 047

INTEL Ex.1002.048

ALA-006E

10

15

20

25

30

determines the connection context of the packet. Processor 470 then checks a list of

connection contexts that are under the control of INIC card 200 and determines whether the

packet is associated with a connection context (TCB) under the control of INIC card 200.

Ifthe connection context is not in the list, then the “fast-path candidate” packet is

determined not to be a “fast-path packet.” In such a case, the entire packet (headers and data)

is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack ofhost 20.

If, on the other hand, the connection context is in the list, then software executed by

processor 470 including software state machines 2231 and 2232 checks for one of numerous

exception conditions and determines whether the packet is a “fast-path packet” or is not a

“fast-path packet”. These exception conditions include: 1) IP fragmentation is detected; 2) an

IP option is detected; 3) an unexpected TCP flag (urgent bit set, reset bit set, SYN bit set or

FIN bit set) is detected; 4) the ACK field in the TCP header is before the TCP window, or the

ACK field in the TCP header is after the TCP window, or the ACK field in the TCP header

shrinks the TCP window; 5) the ACK field in the TCP header is a duplicate ACK and the

ACK field exceeds the duplicate ACK count (the duplicate ACK count is a user settable

, value); and 6) the sequence number of the TCP header is out of order (packet is received out of

sequence): If the software executed by processor 470 detects one of these exception

conditions, then. processor 470 determinesthat the “fast—path candidate” is not a “fast-path

packet.” In such a case, the connection context for the packet is “flushed” (the connection

context is passed back to the host) so that the connection context is no longer present in the list

of connection contexts under control of INIC card 200. The entire packet (headers and data) is

transferred to a buffer in host 20 for “slow-path” transport layer and network layer processing

by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such exception condition, then the “fast—path

candidate” packet is determined to be an actual “fast-path packet”. The receive state machine

2232 then processes of the packet through TCP. The data portion of the packet in buffer 21 14

is then transferred by another DMA controller (not shown in Figure 21) from buffer 2114 to a

host—allocated file cache in storage 35 of host 20. In one embodiment, host 20 does no

analysis of the TCP and IP headers of a “fast—path packet”. All analysis of the TCP and IP

headers of a “fast—path packet” is done on INIC card 20.

Figure 23 is a diagram illustrating the transfer of data of “fast—path packets” (packets of a

64k—byte session layer message 23 00) from INIC 200 to host 20. The portion of the diagram
43

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 048

INTEL Ex.1002.049

ALA-006E

10

15

20

25

30

to the left of the dashed line 2301 represents INIC 200, Whereas the portion of the diagram to

the right of the dashed line 2301 represents host 20. The 64k-byte session layer message 2300

includes approximately forty-five packets, four of which (2302, 2303, 2304 and 2305) are

labeled on Figure 23. The first packet 2302 includes a portion 2306 containing transport and

network layer headers (for example, TCP and IP headers), a portion 2307 containing a session

layer header, and a portion 2308 containing data. In a first step, portion 2307, the first few

bytes of data from portion 2308, and the connection context identifier 2310 of the packet 2300

are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a second step, host 20

examines this information and returns to lNIC 200 a destination (for example, the location of a

file cache 2311 in storage 35) for the data. Host 20 also copies the first few bytes of the data

from buffer 2309 to the beginning ofa first part 2312 of file cache 231 1. In a third step, INIC
200 transfers the remainder of the data from portion 2308 to host 20 such that the remainder of

the data is stored in the remainder of first part 2312 of file cache 2311. No network, transport,

or session layer headers are stored in first part 2312 of file cache 2311. Next, the data portion

2313 of the second packet 2303 is transferred to host 20 such that the data portion 2313 of the

second packet 2303 is stored in a second part 2314 of file cache 2311. The transport layer and

network layer header portion 2315 of second packet 2303 is not transferred to host 20. There

is no network, transport, or session layer header stored in file cache 2311 between the data

portion of first packet 2302 and the data portion of second packet 2303. Similarly, the data

portion 2316 of the next packet 2304 of the session layer message is transferred to file cache

2311 so that there is no network, transport, or session layer headers between the data portion

of the second packet 2303 and the data portion of the third packet 2304 in file cache 2311. In

this way, only the data portions of the packets of the session layer message are placed in the

file cache 231 1 . The data from the session layer message 2300 is present in file cache 2311 as

a block such that this block contains no network, transport, or session layer headers.

In the case of a shorter, single-packet session layer message, portions 2307 and 2308 of the

session layer message are transferred to 256-byte buffer 2309 of host 20 along with the

connection context identifier 2310 as in the case of the longer session layer message described

above. In the case of a single—packet session layer message, however, the transfer is completed

at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does not transfer

subsequent data to such a destination.

44

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 049

INTEL Ex.1002.050

ALA—006E

CD Appendix B includes a listing of software executed by processor 470 that determines

whether a “fast-path candidate” packet is or is not a “fast-path packet”. An example of the

instruction set ofprocessor 470 is found starting on page 79 of the Provisional US. Patent

Application Serial No. 60/061,809, entitled “Intelligent Network Interface Card And System

5 For Protocol Processing”, filed October 14, 1997 (the subject matter of this provisional

application is incorporated herein by reference).

CD Appendix C includes device driver software executable on host 20 that interfaces the

host 20 to INIC card 200. There is also ATCP code that executes on host 20. This ATCP

code includes: 1) a “free BSD” stack (available from the University ofCalifornia, Berkeley)

10 that has been modified slightly to make it run on the NT4 operating system (the “fi'ee BSD”

V stack normally runs on a UNIX machine), and 2) code added to the free BSD stack between

the session layer above and the device driver below that enables the BSD stack to carry out

“fast—path” processing in conjunction with INIC 200.

TRANSMIT FAST—PATH PROCESSING: The following is an overview ofone

‘ 15 embodiment of a transmit fast-path flow once a command has been posted (for additional

information, see provisional application 60/098,296, filed August 27, 1998). The transmit

request may be a segment that is less than the MSS, or it may be as much as a full 64K session

layer packet. The former request will go out as one segment, the latter as a number of MSS—

sized segments. The transmitting CCB must hold on to the request until all data in it has been

20 transmitted and ACKed. Appropriate pointers to do this are kept in the CCB. To create an

output TCP/1P segment, a large DRAM buffer is acquired from the QgFREEL queue. Then

data is DMAd from host memory into the DRAM buffer to create an MS S-sized segment.

This DMA also checksums the data. The TCP/1P header is created in SRAM and DMAd to

the front of the payload data. It is quicker and simpler to keep a basic fiame header (i.e., a

25 templatelheader) permanently in the CCB and DMA this directly from the SRAM CCB buffer

into the DRAM buffer each time. Thus the payload checksum is adjusted for the pseudo-

header (i.e., the template header) and placed into the TCP header prior to DMAing the header

from SRAM. Then the DRAM buffer is queued to the appropriate Q_UXMT transmit queue.

The final step is to update various window fields etc in the CCB. Eventually either the entire

30_ request will have been sent and ACKed, or a retransmission timer will expire in which case the

context is flushed to the host. In either case, the INIC will place a command response in the

45

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 050

INTEL Ex.1002.051

ALA-006E

10

15

20

25

30

response queue containing the command buffer from the original transmit command and

appropriate status.

The above discussion has dealt with how an actual transmit occurs. However the real

challenge in the transmit processor is to determine whether it is appropriate to transmit at the

time a transmit request arrives, and then to continue to transmit for as long as the transport

protocol permits. There are many reasons not to transmit: the receiver’s window size is less

than or equal to zero, the persist timer has expired, the amount to send is less than a full

segment and an ACK is expected/outstanding, the receiver’s window is not half-open, etc.

Much of transmit processing will be in determining these conditions.

The fast-path is implemented as a finite state machine (FSM) that covers at least three

layers of the protocol stack, i.e., IP, TCP, and Session. The following summarizes the steps

involved in normal fast-path transmit command processing: 1) get control of the associated

CCB (gotten from the command): this involves locking the CCB to stop other processing (e.g.

Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into

an SRAM CCB buffer. There are sixteen of these buffers in SRAM and they are not flushed to

DRAM until the buffer space is needed by other CCBs. Acquisition and flushing of these

CCB buffers is controlled by a hardware LRU mechanism. Thus getting into a buffer may

_‘ involve flushing another CCB from its SRAM buffer. 3) Process the send command

(EX_SCMD) event against the CCB’s FSM.‘

Each event and state intersection provides an action to be executed and a new state. The

following is an example of the state/event transition, the action to be executed and the new

state for the SEND command while in transmit state IDLE (SX_IDLE). The action from this

state/event intersection is AX_NUCMD and the next state is XMIT COMMAND ACTIVE

(SX_XMIT). To summarize, a command to transmit data has been received while transmit is

currently idle. The action performs the following steps: 1) Store details of the command into

the CCB. 2) Check that it is okay to transmit now (e.g. send window is not zero). 3) If output

is not possible, send the Check Output event to QWEVENTI queue for the Transmit CCB’s

FSM and exit. 4) Get a DRAM 2K-byte buffer from the Q-FREEL queue into which to move

the payload data. 5) DMA payload data from the addresses in the scatter/gather lists in the

command into an offset in the DRAM buffer that leaves space for the frame header. These

DMAs will provide the checksum of the payload data. 6) Concurrently with the above DMA,

fill out variable details in the frame header template in the CCB. Also get the IP and TCP
46

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 051

INTEL Ex.1002.052

ALA—006E

10

15

2O

'25

3O

header checksums while doing this. Note that base IP and TCP headers cheeksums are kept in

the CCB, and these are simply updated for fields that vary per frame, viz. IP Id, IP length, 1P

checksum, TCP sequence and ACK numbers, TCP window size, TCP flags and TCP

checksum. 7) When the payload is complete, DMA the frame header from the CCB to the

front of the DRAM buffer. 8) Queue the DRAM buffer (i.e., queue a buffer descriptor that

points to the DRAM buffer) to the appropriate Q UXMT queue for the interface for this CCB.

9) Determine if there is more payload in the command. If so, save the current command

transfer address details in the CCB and send a CHECK OUTPUT event via the (LEVENTI

queue to the Transmit CCB. If not, send the ALL COMMAND DATA SENT (EX_ACDS)

event to the Transmit CCB. 10) Exit from Transmit FSM processing.

Code that implements an embodiment of the Transmit FSM (transmit software state

machine 2231 of Figure 21) is‘ found in CD Appendix B. In one embodiment, fast—path

transmit processing is controlled using write only transmit configuration register (Xmthg).

Register Xmthg has the following portions: 1) Bit 31 (name: Reset). Writing a one (1) will

force reset asserted to the transmit sequencer of the channel selected by XcvSel. 2) Bit 30

(name: thEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)

causes» the transmit sequencer to halt after completion of the current packet. 3) Bit 29 (name:
PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission, after

completion of the current packet, whenever the receive sequencer detects an 802.3X pause

eonunand packet. 4) Bit 28 (name: Loaang). Writing a one (1) causes the data in

RevAddrB[10:00] to be loaded in to the Mac’s random number register for use during

collision back—offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15 (name: FreeQId). Selects

the queue to which the freed buffer descriptors will be written once the packet transmission

has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: thQId).

Selects the queue from which the transmit buffer descriptors will be fetched for data packets.

8) Bits 09:05 (name: CtrlQId). Selects the queue from which the transmit buffer descriptors

will be fetched for control packets. These packets have transmission priority over the data

packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:

VectQId). Selects the queue to which the transmit vector data is written afier the completion

of each packet transmit. ln some embodiments, transmit sequencer 2104 of Figure 21 retrieves

buffer descriptors from two transmit queues, one of the queues having a higher transmission

priority than the other. The higher transmission priority transmit queue is used for the
47 /

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 052

INTEL Ex.1002.053

ALA-006E

10

15'

20‘

BACKGROUND OF THE INVENTION.

'25

30

transmission of TCP ACKs, whereas the lower transmission priority transmit queue is used for

the transmission of other types of packets. ACKs may be transmitted in accordance with

techniques set forth in US. Patent Application Serial No. 09/802,426 (the subject matter of

which is incorporated herein by reference). In some embodiments, the processor that executes

the Transmit FSM, the receive and transmit sequencers, and the host processor that executes

the protocol stack are all realized on the same printed circuit board. The printed circuit board

may, for example, be a card adapted for coupling to another computer.

All told, the above—described devices and systems for processing of data communication

result in dramatic reductions in the time and host resources required for processing large,

connection-based messages. Protocol processing speed and efficiency is tremendously

accelerated by specially designed protocol processing hardware as compared with a general

purpose CPU running conventional protocol software, and interrupts to the host CPU are also

substantially reduced. These advantages can be provided to an existing host by addition of an

intelligent network interface card (INIC), or the protocol processing hardware may be

integrated with the CPU. In either case, the protocol processing hardware and CPU

intelligently decide which device processes a given message, and can change the allocation of

that processing based upon' conditions of the message.

DISCLOSURE FROM PROVlSlONAL APPLICATION 60/061 809.

Network processing as it exists today is a costly and inefficient use of system

resources. A 200 MHZ Pentium-Pro is typically consumed simply processing network data

from a lOOMb/second—network connection. The reasons that this processing is so costly are

described here.

TOO MANY DATA MOVES.

When network packet arrives at a typical network interface card (NIC), the NIC moves

the data into pre—alloeated network buffers in system main memory. From there the data is

read into the CPU cache so that it can be checksummed (assuming of course that the protocol

in use requires checksums. Some, like IPX, do not.). Once the data has been fully processed

by the protocol stack, it can then be moved into its final destination in memory. Since the
48

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 053

INTEL Ex.1002.054

ALA-006E

10

15

20

25

30

CPU is moving the data, and must read the destination cache line in before it can fill it and

write it back out, this involves at a minimum two more trips across the system memory bus. In

short, the best one can hope for is that the data will get moved across the system memory bus

four times before it arrives in its final destination. It can, and does, get worse. If the data

happens to get invalidated from system cache after it has been checksummed, then it must get

pulled back across the memory bus before it can be moved to its final destination. Finally, on

some systems, including Windows NT 4.0, the data gets copied yet another time while being

moved up the protocol stack. In NT 4.0, this occurs between the miniport driver interface and

the protocol driver interface. This can add up to a whopping eight trips across the system

memory bus (the four trips described above, plus the move to replenish the cache, plus three
more to copy from the miniport to the protocol driver). That‘s enough to bring even today’s

advanced memory busses to their knees.

TOO MUCH PROCESSING BY THE CPU. ‘ \

In all but the original move from the NIC to system memory, the system CPU is

responsible for moving the data. This is particularly expensive because while the CPU is

moving this data it can do nothing else. While moving the data the CPU is typically stalled

waiting for the relatively slow memory to satisfy its read and write requests. A CPU, Awhich

can execute an instruction every 5 nanoseconds, must now wait as long as several hundred

nanoseconds for the memory controller to respond before it can begin its next instruction.

Even today’s advanced pipelining technology doesn’t help in these situations because that

relies on the CPU being able to do useful work while it waits for the memory controller to

respond. If the only thing the CPU has to look forward to for the next several hundred

instructions is more data moves, then the CPU ultimately gets reduced to the speed of the

memory controller.

Moving all this data with the CPU slows the system down even after the data has been

moved. Since both the source and destination cache lines must be pulled into the CPU cache

when the data is moved, more than 3k ot'instructions and or data resident in the CPU cache

must be flushed or invalidated for every 1500 byte frame. This is of course assuming a

combined instruction and data second level cache, as is the case with the Pentium processors.

After the data has been moved, the former resident of the cache will likely need to be pulled

back in, stalling the CPU even when we are not performing network processing. Ideally a
49

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 054

INTEL Ex.1002.055

".r .1" nut; (21”? ’3.

ALA-006E

10

15

20

25

30

system would never have to bring network frames into the CPU cache, instead reserving that

precious commodity for instructions and data that are referenced repeatedly and frequently.

But the data movement is not the only drain on the CPU. There is also a fair amount of

processing that must be done by the protocol stack software. The most obvious expense is

calculating the checksum for each TCP segment (or UDP datagram). Beyond this, however,

there is other processing to be done as well. The TCP connection object must be located when

a given TCP segment arrives, lP header checksums must be calculated, there are buffer and

memory management issues, and finally there is also the significant expense of interrupt

processing which we will discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMB request (write or read—reply) is typically made up of 44 TCP segments

when running over Ethernet (1500 byte MTU). Each of these segments may result in an

interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming data, it’s

possible to get another 44 transmit-complete interrupts as a result of sending out the TCP

acknowledgements. While this is possible, it is not terribly likely. Delayed ACK timers allow

us to acknowledge more than one segment at a time. And delays in interrupt processing may

mean that we are able to process more than one incoming network frame per interrupt.

Nevertheless, even if we assume four incoming frames per input, and an acknowledgement for

every two seginents (as is typical per the ACK-every-other-segment property of TCP), we are

still left with 33 interrupts per 64k SMB request.

Interrupts tend to be very costly to the system. Often when a system is interrupted,

important information must be flushed or invalidated from the system cache so that the

interrupt routine instructions, and needed data can be pulled into the cache. Since the CPU

will return to its prior location after the interrupt, it is likely that the information flushed from

the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While

the processor pipeline is an extremely efficient way of improving CPU performance, it can be

expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the

peripheral bus (PCI). This is discussed more in the following section.

50

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 055

INTEL Ex.1002.056

ALA—006E

10

15

20

25

30

INEFFICIENT USE OF THE PERIPHERAL BUS (PCI).

We noted earlier that when the CPU has to access system memory, it may be stalled for

several hundred nanoseconds. When it has to read from PCI, it may be stalled for many

microseconds. This happens every time the CPU takes an interrupt from a standard NIC. The

first thing the CPU must do when it receives one of these interrupts is to read the NIC Interrupt

Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling

thing about this is that since interrupt lines are shared on PC—based systems, we may have to

perform this expensive PCI read even when the interrupt is not meant for us.

I There are other peripheral bus inefficiencies as well. Typical NICs operate using

descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system

memory to determine where to place the data. Once the data has been moved to main

memory, the descriptor is then written back out to system memory with status about the

received frame. Transmit operates in a similar fashion. The CPU must notify that NIC that it

has a new transmit. The NIC will read the descriptor to locate the data, read the data itself, and

then write the descriptor back with status about the send. Typically on transmits the NIC will

then read the next expected descriptor to see if any more (data needs to be sent. In short, each

receive or transmit frame results in 3 or 4 separate PCI reads or writes (not counting the status

register read)“

SUMMARY OF THE INVENTION.

Alacritech was formed with the idea that the network processing described above could

be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the

Alacritech INIC, we address each of the above problems, resulting in the following

advancements: V

1. The vast majority of the data is moved directly from the INIC into its final

destination. A single trip across the system memory bus.

2. There is no header processing, little data copying, and no checksumming

required by the CPU. Because of this, the data is never moved into the CPU cache, allowing

the system to keep important instructions and data resident in the CPU cache.

3. ‘ Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per
64k SMB write.

5]

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 056

INTEL Ex.1002.057

ALA-006E

1'0

15

20

25'

3O

4. There are no CPU reads over PCI and there are fewer PCl operations per

receive or transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

PERFORM TRANSPORT LEVEL PROCESSING ON THE INIC.

In order to keep. the system CPU from having to process the packet headers or

checksum the packet, we must perform this task on the INIC. This is a daunting task. There

are more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.

Clearly this is more code than could be efficiently handled by a competitively priced network

card. Furthermore, as noted above, the TCP/IP protocol stack is complicated enough to

consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive

card, we need special network processing hardware as opposed to simply using a general

purpose CP U.

ONLY SUPPORT TCP/1P.

In this section we introduce the notion of a "context". A context is required to keep

track of information that spans many, possibly discontiguous, pieces of information. When

processing TCP/1P data, there are actually two contexts that must be maintained. The first

context is required to reassemble IP fragments. It holds information about the status of the IP

reassembly as well as any checksum information being calculated across the IP datagram l

(UDP, or TCP). This context is identified by the IP_ID of the datagram as well as the source

and destination IP addresses. The second context is required to handle the sliding window

protocol of TCP. It holds information about which segments have been sent or received, and

which segments have been acknowledged, and is identified by the IP source and destination

addresses and TCP source and destination ports.

Ifwe were to'choose to handle both contexts in hardware, we would have to potentially

keep track ofmany pieces ofinformation. One such example is a casein which a single 64k

SMB write is broken down into 44 1500 byte TCP segments, which are in turn broken down

into 131 576 byte IP fragments, all of which can come in any order (though the maximum

window size is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection

establishment time, which should prevent IP fragmentation in nearly all TCP connections. The
52

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 057

INTEL Ex.1002.058

ALA-006E

10

15

20

25

30

only time that we should end up with fragmented TCP connections is when there is a router in

the middle of a connection which must fragment the segments to support a smaller MTU. The

only networks that use a smaller MTU than Ethernet are serial line interfaces such as SLIP and

PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we

had 256 of these connections, we would still only need to support 34Mb/sec, or a little over

three lObT connections worth of data. This is not enough to justify any performance

enhancements that the INIC offers. If this becomes an issue at some point, we may decide to

implement the MTU discovery algorithm, which should prevent TCP fragmentation on all

connections (unless an ICMP redirect changes the connection route while the connection is

established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP

segments on the INIC. UDP is another matter. Since UDP does not support the notion of a

Maximum Segment Size, it is the responsibility of IP to break down a UDP datagram into

MTU sized packets. Thus, fragmented UDP datagrams are very common. The most common

UDP application running today is NFSV2 over UDP. While this is also the most common
version ofNFS running today, the current version of Solaris being sold by Sun Microsystems

runs NFSV3 over TCP by default. We can expect to see the NFSVl2/UDP traffic start to

decrease over the coming years. In summary, we will only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLE TCP “EXCEPTIONS”.

As noted above, we won’t provide support for fragmented TCP segments on the INIC.

We have also opted to not handle TCP connection and breakdown. Here is a list of other TCP

“exceptions” which we have elected to not handle on the INIC:

Fragmented Segments —Discussed above. i

Retransmission Timeout — Occurs when we do not get an acknowledgement for

previously sent data within the expected time period. I

Out of order segments Occurs when we receive a segment with a sequence number

other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have now eliminated support for so many different code paths, it might seem

hardly worth the trouble to provide any assistance by the card at all. This is not the case.

53 \

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 058

INTEL Ex.1002.059

ALA-006E

10

15

20

25,.

30

According to W. Richard Stevens and Gary Write in their book “TCP/IF Illustrated Volume

2”, TCP operates without experiencing any exceptions between 97 \and 100 percent of the time

in local area networks. As network, router, and switch reliability improve this number is likely

to only improve with time.

TWO MODES OF OPERATION.

So the next question is what to do about the network packets that do not fit our criteria.

The answer shown in Fig. 24 is to use two modes of operation: One in which the network

frames are processed on the IN 1C through TCP and one in which the card operates like a

typical dumb NIC. We call these two modes fast-path, and slow-path. 1n the slow—path case,

network frames are handed to the system at the MAC layer and passed up through the host

protocol stack like any other network frame. In the fast path case, network data is given to the

y host after the headers have been processed and stripped.

The transmit case works in much the same fashion. In slow-path mode the packets are

given to the INIC with all of the headers attached. The INIC simply sends these packets out as

if it were a dumb NIC. In fast—path mode, the host gives raw data to the INIC which it must

carve into MSS sized segments, add headers to the data, perform checksums on the segment,

and then send it out on the wire.

THE TCB CACHE.

Consider a situation in which a TCP connection is being handled by the card and a

fragmented TCP segment for that connection arrives. In this situation, it will be necessary for

the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a

structure that contains the entire context associated with a connection. This includes the

source and destination IP addresses and source and destination TCP ports that define the

connection. It also contains information about the connection itself such as the current send

and receive sequence numbers, and the first—hop MAC address, etc. The complete set of TCBs

exists in host memory, but a subset of these may be "owned" by the cardvat any given time.

This subset is the TCB cache. The INIC can own up to 256 TCBs at any given time.

TCBs are initialized by the host during TCP connection setup. Once the connection has

achieved a “steady—state” of operation, its associated TCB can then be turned over to the INIC,
54

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 059

INTEL Ex.1002.060

ALA-006E

10

15

20

25

30

putting us into fast-path mode. 'From this point on, the INIC owns the connection until either a

FIN arrives signaling that the connection is being closed, or until an exception occurs which

the INIC is not designed to handle (such as an out of order segment). When any of these

conditions occur, the lNlC will then flush the TCB back to host memory, and issue a message

to the host telling it that it has relinquished control of the connection, thus putting the

connection back into slow—path mode. From this point on, the INIC simply hands incoming

segments that are destined for this TCB off to the host with all of the headers intact.

Note that when a connection is owned by the INIC, the host is not allowed to reference

the corresponding TCB in host memory as it will contain invalid information about the state of

the comieetion.

TCP HARDWARE ASSISTANCE.

When a frame is received by the INIC, it must verify it completely before it even

determines whether it belongs to one of its TCBs or not. This includes all header validation (is

it 1P, IPV4 or V6, is the IP header checksum correct, is the TCP checksum correct, etc). Once

this is done it must compare the source and destination IP address and the source and

destination TCP port with those in each of its TCBs to determine if it is associated with one of '

its TCBs. This is an” expensive process. To expedite this, we have added several features in

hardware to assist us. The header is fully parsed by hardware and its type is summarized in a

single status word. The checksum is also verified automatically in hardware, and a hash key is

created out of the IP addresses and TCP ports to expedite TCB lookup. For full details on

these and other hardware optimizations, refer to the INIC Hardware Specification sections

(Heading 8).

With the aid of these and other hardware features, much of the work associated with

TCP is done essentially for free. Since the card will automatically calculate the checksum for

TCP segments, we can pass this on to the host, even when the segment is for a TCB that the

INIC does not own.

TCP SUMMARY. ‘

By moving TCP processing down to the INIC we have offloaded the host of a large

amount of work. The host no longer has to pull the data into its cache to calculate the TCP

55

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 060

INTEL Ex.1002.061

ALA—006E

10

15

20

25

30

checksum. It does not have to process the packet headers, and it does not have to generate

TCP ACKS. We have achieved most of the goals outlined above, but we are not done yet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relation to the hosts transport layer interface (Called

TDI or Transport Driver Interface in Windows NT). For full details on this interface, refer to

the Alacritech TCP (ATCP) driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing

the data in its final destination. Somehow the host has to tell the INIC where to put the data.

This is a problem in that the host cannot do this without knowing what the data actually is.

Fortunately, NT has provided a mechanism by which a transport driver can “indicate” a small

amount of data to a client above it while telling it that it has more data to come. The client,

having then received enough of the data to know what it is, is then responsible for allocating a

block ofmemory and passing the memory address or addresses back down to the transport

driver, which is in turn responsible for moving the data into the provided location.

We will make use of this feature by providing a small amount of any received data to

the host, with a notification that we have more data pending. When this small amount of data

is passed up to the client, and it returns with the address in which to put the remainder of the

data, our host transport driver will pass that address to the INIC which will DMA the

remainder of the data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small

amount of data (500 bytes for example), with a push flag set indicating that the data must be

. delivered to the client immediately, it does not make sense to deliver some of the data directly

while waiting for the list of addresses to DMA the rest. Under these circumstances, it makes

more sense to deliver the 500 bytes directly to the host, and allow the host to copy it into its

final destination. While various ranges are feasible, it is currently preferred that anything less

than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while

anything more will be delivered as a small piece which may be128 bytes, while waiting until

receiving the destination memory address before moving the rest.

56

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 061

INTEL Ex.1002.062

ALA-006E

10

15

20

25

30

The trick then is knowing when the data should be delivered to the client or not. As

we’ve noted, a push flag indicates that the data should be delivered to the client immediately,

but this alone is not sufficient. Fortunately, in the case of NetBlOS transactions (such as

SMB), we are explicitly told the length of the session message in the NetBlOS header itself.

With this we can simply indicate a small amount of data to the host immediately upon

receiving the first segment. The client will then allocate enough memory for the entire

NetBlOS transaction, which we can then use to DMA the remainder of the data into as it

arrives. In the case of a large (56k for example) NetBlOS session message, all but the first

couple hundred bytes will be DMA’d to their final destination in memory.

But what about applications that do not reside above NetBlOS? In this case we can not

rely on a session level protocol to tell us the length of the transaction. Under these

circumstances we will buffer the data as it arrives until A) we have receive some

predetermined number of bytes such as 8k, or B) some predetermined period of time passes

between segments or C) we get a push flag. If after any of these conditions occur we will then

indicate some or all of the data to the host depending on the amount of data buffered. If the

data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be returned from the host so that we may then DMA the remainder of the data.

TRANSMIT.

The transmit case is much simpler. In this case the client (NetBIOS for example) issues

a TDI Send with a list of memory addresses which contain data that it wishes to send along

with the length. The host can then pass this list of addresses and length off to the lNlC. The

lNIC will then pull the data from its source location in host memory, as it needs it, until the

complete TDl request is satisfied.

AFFECTS ON INTERRUPTS.

Note that when we receive a large SMB transaction, for example, that there are two

interactions between the INIC and the host. The first in which the INIC indicates a small

amount of the transaction to the host, and the second in which the host provides the memory

location(s) in which the INIC places the remainder of the data. This results in only two

interrupts from the INIC. The first when it indicates the small amount of data and the second

after it has finished filling in the host memory given to it. A drastic reduction from the 33/64k
S7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 062

INTEL Ex.1002.063

ALA-006E

10

15

'20

25

3O

SMB request that we estimate at the beginning of this section. On transmit, we actually only

receive a single interrupt when the send command that has been given to the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having now established our interaction with Microsoft’s TDI interface, we have

achieved our goal of landing most of our data directly into its final destination in host memory.

We have also managed to transmit all data from its original location on host memory. And

finally, we have reduced our interrupts to 2 per 64k SMB read and l per 64k SMB write. The

only thing that remains in our list of objectives is to design an efficient host (PCI) interface.

HOST (PCI) INTERFACE.

In this section we define the host interface. For a more detailed description, refer to the

“Host Interface Strategy for the Alacriteeh INIC” section (Heading 3).

AVOID PCI READS.

One of our primary objectives in designing the host interface of the INIC was to

eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they

completely stall the reader until the transaction. completes. As noted above, this could hold a

CPU up for several microseconds, a thousand times the time typically required to execute a

single instruction. PCI writes on the other hand, are usually buffered by the memory-

bus<$PCI—bridge allowing the writer to continue on with other instructions. This technique is

known as “ estin ".p g

MEMORY-BASED STATUS REGISTER.

The only PCI read that is required by most NICs is the read of the interrupt status

register. This register gives the host CPU information about what event has caused an

interrupt (if any). In the design of our INIC we have elected to place this necessary status

register into host memory. Thus, when an event occurs on the INIC, it writes the status

register to an agreed upon location in host memory. The corresponding driver on the host

reads this local register to determine the cause of the interrupt. The interrupt lines are held

high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadow registers are maintained on the FNIC to ensure that events are not lost.
58

CAVIUM-1002

Cavium, Inc. v. Alacriteeh, Inc.
Page 063

INTEL Ex.1002.064

/

ALA-006E

10

20

30

BUFFER ADDRESSES ARE PUSHED TO THE INIC.

Since it is imperative that our INIC operate as efficiently as possible, we must also

avoid PCI reads from the INIC. We do this by pushing our receive buffer addresses to the

INIC. As mentioned at the beginning of this section, most NICs work on a descriptor queue

algorithm in which the NIC reads a descriptor from main memory in order to determine where

to place the next fi'ame. We will instead write receive buffer addresses to the INIC as receive ,

buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the host to pass off a pages worth (4k) of buffers in a single write.

SUPPORT SMALL AND LARGE BUFFERS ON RECEIVE.

In order to reduce further the number of writes to the INIC, and to reduce the amount of

memory being used by the host, we support two different buffer sizes. A small buffer contains

roughly 200 bytes of data payload, as well as extra fields containing status about the received

data bringing the total size to 256 bytes. We can therefore pass 16 of these small buffers at a

time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path

data that does not fit in a small buffer. Notc that when we have a large fast-path receive, a

small buffer will be used to indicate a small piece of the data, while the remainder 0fthe data

will be DMA’d directly into memory. Large buffers are never passed to the host by

themselves, instead they are always accompanied by a small buffer which contains status about

the receive along with the large buffer address. By operating in the manner, the driver must

> only maintain and process the small buffer queue. Large buffers are returned to the host by

virtue ofbeing attached to small buffers. Since large buffers are 2k in size they are passed to

the INIC 2 buffers at a time.

COMMAND AND RESPONSE BUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we

also need a manner by which we can instruct the INIC to send data. Plus, when the INIC

indicates a small amount of data in a large fast—path receive, we need a method of passing back

the address or addresses in which to put the remainder of the data. We accomplish both of

these with the use of a command buffer. Sadly, the command buffer is the only place in which

we must violate our rule of only pushing data across PCI. For the command buffer, we write
59

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 064

INTEL Ex.1002.065

ALA—006E

10

15

20

25

30

the address of command buffer to the INIC. The INIC then reads the contents of the command
buffer into its memory so that it can execute the desired command. Since a command may

take a relatively long time to complete, it is unlikely that command buffers will complete in

order. For this reason we also maintain a response buffer queue. Like the small and large

receive buffers, a page worth of response buffers is passed to the INIC at a time. Response

buffers are only 32 bytes, so we have to replenish the INIC’s supply of them relatively

infrequently. The response buffers only purpose is to indicate the completion of the

designated command buffer, and to pass status about the completion.

EXAMPLES.

In this section we will provide a couple of examples describing some of the differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment

will contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of

this first segment is provided to the host by filling in a small receive buffer, modifying the

interrupt status register on the host, and raising the appropriate interrupt line. Upon receiving

the interrupt, the host will read the ISR, clear it by writing back to the INIC’s Interrupt Clear

Register, and will then process its small receive buffer queue looking for receive buffers to be

processed. Upon finding the small buffer, it will indicate the small amount of data up to the

client to be processed by NetBIOS. It will also, ifnecessary, replenish the receive buffer pool

on the INIC by passing off a pages worth of small buffers. Meanwhile, the NetBIOS client

will allocate a memory pool large enough to hold the entire NetBIOS message, and will pass

this address or set of addresses down to the transport driver. The transport driver will allocate

an INIC command buffer, fill it in with the list of addresses, set the command type to tell the

INIC that this is where to put the receive data, and then pass the command off to the INIC by

writing to the command register. When the INIC receives the command buffer, it will DMA

the remainder of the NetBIOS data, as it is received, into the memory address or addresses

designated by the host. Once the entire NetBIOS transaction is complete, the INIC will

complete the command by writing to the response buffer with the appropriate status and

command buffer identifier.

60

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 065

INTEL Ex.1002.066

ALA-006E

10

15

20

25

30

In this example, we have two interrupts, and all but a couple hundred bytes are DMA’d.

directly to their final destination. On PCI we have two interrupt status register writes, two

interrupt clear register writes, a command register write, a command read, and a response

buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register

reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get

moved anywhere from 4 to 8 times across the system memory bus.

\

SLOW-PATH RECEIVE.

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s,

it simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer

(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the host.

Otherwise it places the data in a large buffer, writes the address of the large buffer into a small

buffer, and again notifies the host. The host, having received the interrupt and found the

completed small buffer, checks to see if the data is contained in the small buffer, and if not,

locates thellarge buffer. Having found the data, the host will then pass the frame upstream to

be processed by the standard protocol stack. It must also replenish the INIC’s small and large

receive buffer pool if necessary.

With the INIC, this will result in one interrupt, one interrupt status register write and

one interrupt clear register write as well as a possible small and or large receive buffer register

writc. The data will go through the normal path although if it is TCP data then the host will

not have to perform the cheeksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assume that the client has a small amount of data to send. It will

issue the 'l‘DI Send to the transport driver which will allocate a command buffer, fill it in with

the address of the 400 byte send, and set the command to indicate that it is a transmit. It will

then pass the command off to the INIC by writing to the command register. The INIC will

then DMA the 400 bytes into its own memory, prepare a frame with the appropriate
61

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 066

INTEL Ex.1002.067

ALA-006E

IO

15

20

25

30

checksums and headers, and send the frame out on the wire. After it has received the

acknowledgement it will then notify the host of the completion by writing to a response buffer.

With the INIC, this will result in one interrupt, one interrupt status register write, one

interrupt clear register write, a command buffer register write a command buffer read, and a

response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write] The data would get moved

across the system bus a minimum of4 times. The resulting TCP ACK of the data, however,

would add yet another interrupt, another interrupt status register read, interrupt clear register

write, a descriptor read and write, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECH INIC.

This section describes the host interface strategy for the Alaeritech Intelligent Network

Interface Card (INIC). The goal of the Alaeritech INIC is to not only process network data

through TCP, but also to provide zero-copy support for the SMP upper-layer protocol. It

achieves this by supporting two paths for sending and receiving data, the fast—path and the

slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,

while slow-path traffic corresponds to network data for which the NIC does not have a

connection. The fast-path flow works by passing a header to the host and subsequently holding

further data for that connection on the card until the host responds via an INIC command with

a set of buffers into which to place the accumulated data. In the slow—path data flow, the INIC

will be operating as a “dumb” NIC, so that these packets are simply dumped into frame buffers

on the host as they arrive. To do either path requires a pool of smaller buffers to be used for

headers and a pool of data buffers for frames/data that are too large for the header buffer, with

both pools being managed by the INIC. This section discusses how these two pools of data are

managed as well as how buffers are associated with a given context.

RECEIVE INTERFACE.

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth

are the driving forces behind the host interface that is described herein. As mentioned above,

the fast-path flow puts a header into a header bufferuthat is then forwarded to the host. The host

uses the header to determine what further data is following, allocates the necessary host
62

CAVIUM-1002

Cavium, Inc. v. Alaeritech, Inc.
Page 067

INTEL Ex.1002.068

ALA-006E

10

15

20

25

30‘

buffers, and these are passed back to the INIC via a command to the INIC. The INIC then fills

these buffers from data it was accumulating on the card and notifies the host by sending a

response to the command. Alternatively, the fast-path may receive a header and data that is a

complete request, but that is also too large for a header buffer. This results in a header and data

buffer being passed to the host. This latter flow is identical to the slow—path flow, which also

puts all the data into the header buffer or, if the header is too small, uses a large (2K) host

buffer for all the data. This means that on the unsolicited receive path, the host will only see

either a header buffer or a header and at most, one data buffer. Note that data is never split

between a header and a data buffer.

Fig. 25 illustrates both situations. Since we want to fill in the header buffer with a

single DMA, the header must be the last piece of data to be written to the host for any received

transaction.

RECEIVE INTERFACE DETAILS.

HEADER BUFFERS.

Header buffers in host memory are 256 bytes long, and are_aligned on 256 byte

boundaries. There will be a field in the header buffer indicating it has valid data. This field

will initially be reset by the host before passing the buffer descriptor to the INIC. A set of

header buffers are passed from the host to the INIC by the host writing to the “Header Buffer

Address Register” on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous

header buffers.

Bits 7—0 Number of header buffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and pass all 16 buffers to

the INIC with one register write. The INIC will maintain a queue of these header descriptors

in the SmallIIType queue in it’s own local memory, adding to the end of the queue every time

the host writes to the Header Buffer Address Register. Note that the single entry is added to

the queue; the eventual dequeuer will use the count after extracting that entry.

The header buffers, will be used and returned to the host in the same order that they

were given to the INIC. The valid field will be set by the INIC before returning the buffer to

the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a header buffer for the host to process. When servicing this
63

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 068

INTEL Ex.1002.069

ALA-006E

10

15’

20

25

30

interrupt, the host will look at its queue ofheader buffers, reading the valid field to determine

how many header buffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory are aligned to page boundaries, assumed here to be

2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass receive

data buffers to the INIC, the host must write to two registers on the lNIC. The first register to

be written is the “Data Buffer Handle Register.” The buffer handle is not significant to the

INIC, but will be copied back to the host to return the buffer to the host. The second register

written is the Data Buffer Address Register. This is the physical address of the data buffer.

When both registers have been written, the INIC will add the contents of these two registers to

FreeType queue of data buffer descriptors. Note that the INIC host driver sets the handle

register first, then the address register. There needs to be some mechanism put in place to

ensure the reading of these registers does not get out of sync with writing them. Effectively the

INIC can read the address register first and save its contents, then read the handle register. It

can then lock the register pair in some manner such that another write to the handle register is

not permitted until the current contents have been saved. Both addresses extracted from the

registers are to be written to the FreeType queue. The TNIC will extract 2 entries each time

when dequeuing.

Data buffers will be allocated and used by the INIC as needed. For each data buffer

used by a slow-path transaction, the data buffer handle will be copied into a header buffer.

Then the header buffer will be returned to the host.

TRANSMIT INTERFACE.

TRAN SMIT INTERFACE OVERVIEW.

The transmit interface shown in Fig. 26, like the receive interface, has been designed to

minimize the amount of PCI bandwidth and latencies. In order to transmit data, the host will

transfer a command buffer to the INIC. This command buffer will include a command buffer

handle, a command field, possibly a TCP context identification, and a list of physical data

pointers. The command buffer handle is defined to be the first word of the command buffer

and is used by the host to identify the command. This word will be passed back to the host in

a response buffer, since commands may complete out of order, and the host will need to know
64

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 069

INTEL Ex.1002.070

r ALA-006E

10

15

20

25

30»

which command is complete. Commands will be used for many reasons, but primarily to cause

the INIC to transmit data, or to pass a set of buffers to the INIC for input data on the fast-path

as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the

same order as they were given to it by the host. This enables the host to know which response

buffer(s) to next look at when the TNIC signals a command completion.

TRANSMIT INTERFACE DETAILS.

COMMAND BUFFERS.

Command buffers in host memory are a multiple of32 bytes, up to a maximum of 1K

bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC by

writing to one of five “Command Buffer Address Registers.” These registers are defined as

follows:

Bits 3175 Physical address in host memory of the command buffer.

‘ Bits 4—0 Length of command buffer in bytes / 32 (i.e. number of multiples of 32

bytes).

This is the physical address of the command buffer. The register to which the command

is written predeterrnines the XMT interface number, or if the command is for the RCV CPU;

hence there will be 5 of them, 0 — 3 for XMT and 4 for RCV. When one of these registers has

been written, the INIC will add the contents of the register to it’s own internal queue of

command buffer descriptors. The first word of all command buffers is defined to be the

command buffer handle. It is the job of the utility CPU to extract a command from its local

queue, DMA the "command into a small INIC buffer (from the FreeSType queue), and queue

that buffer into the Xmit#Type queue, where # is 0 e 3 depending on the interface, or the

appropriate RCV queue. The receiving CPU will service the queues to perform the commands.

When that CPU has completed a command, it extracts the command buffer handle and passes

it back to the host via a response buffer.

RESPONSE BUFFERS.

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.

They are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. This field will initially be reset by the host before
65

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 070

INTEL Ex.1002.071

ALA-006E

10

15

20

~25

30

passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to

the IN IC by the host writing to the “Response Buffer Address Register” on the INIC. This

register is defined as follows:

Bits 31-8 Physical address in host memory of the first ofa set of contiguous

response buffers. .

Bits 7-0 Number ofresponse buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 128 buffers

to the INIC with one register write. The INIC will maintain a queue of these header

descriptors in it’s ResponseType queue, adding to the end of the queue every time the host ~.

writes to the “Response Buffer Address Register”. The INIC writes the extracted contents

including the count, to the queue in exactly the same manner as for the header buffers.

The response buffers can be used and returned to the host in the same order that they

were given to the INIC. The valid field Will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a response buffer for the host to process. When servicing

this interrupt, the host will look at its queue of response buffers, reading the valid field to

determine how many response buffers are to be processed.

INTERRUPT STATUS REGISTER/ INTERRUPT MASK REGISTER.

Fig. 27 shows the general format'of this register. The setting of any bits in the ISR will

cause an interrupt, provided the corresponding bit in the Interrupt Mask Register is set. The

default setting for the [MR is 0.

The INIC is configured so that the host should never need to directly read the ISR from

the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host

memory into which the ISR is dumped. The address and size of that area ca be passed to the

INIC via a command on the XMT interface. That command will also specify the setting for the

IMR. Until the INIC receives this command, it will not DMA the ISR to host memory, and no

events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC

in this case.

For the host to never have to actually read the register from the INIC itself, it is

necessary for the INIC to update this host copy of the register whenever anything in it changes.

- The host will Ack (or deassert) events in the register by writing the register with 0’s in
66

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 071

INTEL Ex.1002.072

ALA-006E

10

15

20

25

3O

appropriate bit fields. So that the host does not miss events, the following scheme has been

developed:

The INIC keeps a local copy of the register Whenever it DMAs it to the host i.e. aficr

some event(s). Call this COPYA Then the INIC starts accumulating any new events not

reflected in the host copy in a separate word. C511 this NEWA. As the host clears bits by

writing the register back with those bits set to zero, the INIC clears these bits in COPYA (or

the host write-back goes directly to COPYA). If there are new events in NEWA, it ORs them

with COPYA, and DMAs this new ISR to the host. This new ISR then replaces COPYA,

NEWA is cleared and the cycle then repeats.

REGISTER ADDRESS.

For the sake of simplicity, in this example of Fig. 28 the registers are at 4-bytc

increments from whatever the base address is.

’ ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.

This section outlines the design specification for the Alacritech TCP (ATCP) transport

driver. The ATCP driver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.

This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the
driver.

2. At the top of the protocol stack we introduce an NT filter driver used to

intercept TDI requests destined for the Microsofi TCP driver.

3. At the bottom of the protocol stack we include an NDIS protocol—driver

interface which allows us to communicate with the INIC miniport NDIS driver beneath the
ATCP driver.

This section covers each of these topics, as well as issues common to the entire ATCP

driver.

CODING STYLE.

In order to ensure that our ATCP driver is written in a consistent manner, we have

adopted a set ofcoding guidelines. These guidelines are introduced with the philosophy that

we should write code in a Microsoft style since we are introducing an NT-based product. The

67

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 072

INTEL Ex.1002.073

ALA-006E

10

15

20

30

guidelines below apply to all code that we introduce into our driver. Since a very large portion

of our ATCP driver will be based on FreeB SD, and since we are somewhat time-constrained

on our driver development, the ported FreeBSD code will be exempt from these guidelines.

1. Global symbols - Al] function names and global variables in the ATCP driver

should begin with the “ATK” prefix (ATKSend() for instance).

2. Variable names — Microsoft seems to use capital letters to separate multi—word

variable names instead ofunderscores (VariableName instead of variableiname). We should

adhere to this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure

types are always capitals and they typedefa pointer to the structure as “P”<name> as follows:

typedef struct _FOO {

INT bar;

} FOO, *PFOO;

We will adhere to this style.

4. Function calls — Microsoft separates function call arguments on separate lines:

X = foobar(

argumentl ,

argument2,

);

We will adhere to this style. \

5. Comments — While Microsoft seems to alternatively use // and /* */ comment

notation, we will exclusively use the /* */ notation.

6. Function comments ~ Microsoft includes comments with each function that

describe the function, its arguments, and its return value. We will also include these

comments, but will move them fiom within the function itself to just prior to the function for

better readability.

7. Function arguments 7 Microsoft includes the keywords IN and OUT when

defining function arguments. These keywords denote whether the function argument is used

as an input parameter, or alternatively as a placeholder for an output parameter. We will

include these keywords.

68

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 073

INTEL Ex.1002.074

ALA-006E

8. Function prototypes — We will include function prototypes in the most logical

header file corresponding to the .c file. For example, the prototype for function foo() found in

foo.c will be placed in foo.h.

9. Indentation 7 Microsoft code fairly consistently uses a tabstop of 4. We will

5 do likewise.

10. Header file #ifndefi each header file should contain a #ifndef/#define/#endif

which is used to prevent recursive header file includes. For example, foo.h would include:

#ifndef iFOOiHi

#define #FOOiHi

10‘ <foo.h contents..>

#endif/* _FOO_I I__ */

Note the _NAME_H_ format.

69

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 074

INTEL Ex.1002.075

ALA—006E

10

15

20

'25

30

1 1. Each file must contain a comment at the beginning which includes the Id as

follows:

. /* I

* Id

*/

CVS (RCS) will expand this keyword to denote RCS revision, timestamps, author, etc.

SMP

This section describes the process by which we will make the ATCP driver SMP safe.

The basic rule for SMP kernel code is that any access to a memory variable must be protected

by a lock that prevents a competing access by code running on another‘processor. Spinlocks

are the normal locking method for code paths which do not take a long time to execute (and

which do not sleep.)

In general each instance of a structure will include a spinlock, which must be acquired

before members of that structure are accessed, and held while a function is accessing that

instance of the structure. Structures which are logically grouped together may be protected by

a single spinlock: for example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and ‘socket’ structure

which together constitute the administrative information for a TCP connection will probably

be collectively managed by a single spinlock in the ‘socket’ structure.

In addition, every global data structure such as a list or hash table must also have a

protecting spinlock which must be held while the structure is being accessed or modified. The

NT DDK in fact provides a number of convenient primitives for SMP-safe list manipulation,

and it is recommended that these‘be used for any new lists. Existing listmanipulations in the

FreeBSD code can probably be left as-is to minimize code disturbance, except of course that

the necessary spinlock acquisition and release must be added around them.

Spinlocks should not be held for long periods of time, and most especially, must not be

held during a sleep, since this will lead to deadlocks. There is a significant deficiency in the

NT kernel support for SMP systems: it does not provide an operation which allows a spinlock

to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX

environment where much of the processing occurs in the context of the user process which

initiated the operation. (The spinlock would have to be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)
70

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 075

INTEL Ex.1002.076

ALA-006E

10

‘157

20

25

30

The NT approach is more asynchronous, however: IRPs are simply marked as

‘PENDING’ when an operation cannot be completed immediately. The calling thread does

NOT sleep at that point: it returns, and may go on with other processing. Pending IRPs are

later completed, not by waking up the thread which initiated them, but by an

“IoCompleteRequest” call which typically runs at DISPATCH level in an arbitrary context.

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver,

hoping the above issue will not arise.

DATA FLOW OVERVIEW.

The ATCP driver supports two paths for sending and receiving data, the fast—path and

the slow—path. The fast-path data flow corresponds to connections that are maintained on the

INIC, while slow-path traffic corresponds to network data for which the INIC does not have a

connection. In order to set some groundwork for the rest of this section, these two data paths

are summarized here.

FAST—PATH INPUT DATA FLOW.

There are 2 different cases to consider:

1. I NETBIOS traffic (identifiable by port number.)
2. Everything else.

I

NETBIOS INPUT.

As soon as the INIC has received a segment containing a NETBIOS header, it will

forward it up to the TCP driver, along with the NETBIOS length from the header. (In

principle the host could get this from the header itself, but since the INIC has already done the

decode, it seem reasonable to just pass it.)

From the TDI spec, the amount of data in the buffer actually sent must be at least 128

bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed

directly by the TDI client without any further MDL exchange. Experiments tracing the TDI

data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the amount of

payload data in a single Ethernet frame. Thus the initial system specifies that the INIC will

indicate anything up to a complete segment to the ATCP driver. [See note (1)].

71

(

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 076

INTEL Ex.1002.077

ALA-006E

10

'15

20

25

30

Once the INIC has passed up an indication with an NETBIOS length greater than the

amount of data in the packet it passed, it will continue to accumulate further incoming data in

DRAM on the INIC. Overflow of INIC DRAM buffers will be avoided by using a receive

window on the INIC at this point, which can be 8K. I

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the NETBIOS length as "bytes available."

(2)}

[See note

In the "large data input" case, where "bytes available" exceeds the packet length, the

TDI client will then provide an MDL, associated with an IRP, which must be completed when

this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of the

receive handler, or as an explicit TDI_RECEIVE request.)

The ATCP driver will build a “receive request” from the MDL information, and pass

this to the INIC. This request will contain:

' l) The TCP context (identifier; 2) Size and offset information; 3) A list ofphysical

addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to

identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must copy any remaining data (which was not taken by the

receive handler) from the segment indicated by the INIC to the start of the MDL, and must

adjust the size & offset information in the request passed to the INIC to account for this.

The INIC will fill the given page(s) with incoming data up to the requested amount,

and respond to the ATCP driver when this is done [See note (3)]. If the MDL is large, the INIC

may open up its advertised receive window for improved throughput while filling the MDL.

On receiving the response from the INIC, the ATCP driver will complete the IRP associated ‘

with this MDL, to tell the TDI client that the data is available. At this point the cycle of events

is complete, and the ATCP driver is now waiting for the next header indication.

OTHER TCP INPUT.

1n the general case we do not have a higher—level protocol header to enable us to

predict that more data is coming. So on non-NETBIOS connections, the INIC will just

‘ accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, a

72

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 077

INTEL Ex.1002.078

ALA—006E

10

15

20

25

30

maximum advertised window size, which may be 16K, will be used to prevent overflow of

INIC DRAM buffers.

When the prescribed amount has been accumulated, or when a PSII flag is seen, the

INIC will indicate a small packet which may be. 128 bytes of the data to the ATCP driver,

along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes available."

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated", the TDI client

will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to be

filled, as before. The INIC will reply to the ATCP driver, which in turn will complete the IRP

to the TDI client.

Using an MDL from the client avoids a copy step. However, ifwe can only buffer 8K

and delay indicating to the ATCP driver until we have done so, a question arises regarding

further segments coming in, since INIC DRAM is a scarce resource. We do not want to ACK

with a zero-size window advertisement: this would cause the transmitting end to go into persist

state, which is bad for throughput. If the transmitting end is also our INIC, this results in

‘ having to implement the persist timer on the INIC, which we do not wish to do. Instead for

large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the

MDL, and also, to avoid stopping the transmitting end, we will use a receive window of twice

the amount we will buffer before calling the host. Since the host comes back with the MDL

quite quickly (measured at < 100 microseconds), we do not expect to experience significant
overruns.

INIC RECEIVE WINDOW UPDATES.

If the INIC “owns” an MDL provided by the TDI client (sent by ATCP as a receive

request), it will treat this as a “promise” by the TDI client to accept the data placed in it, and

may therefore ACK incoming data as it is filling the pages.

However, for small requests, there will be no MDL returned by the TDI client: it

absorbs all of the data directly in the receive callback function. We need to update the INIC’s

View of data which has been accepted, so that it can update its receive window. In order to be

73

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 078

INTEL Ex.1002.079

ALA-006E

10

15

20

25

able to do this, the ATCP driver will accumulate a count of data which has been accepted by

the TDI client receive callback function for a connection.

From the INIC’s point of View, though, segments sent up to the ATCP driver are just

“thrown over the wall”; there is no explicit reply path. We will therefore “piggyback” the

update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data for that
connection, it will place this count in a field in the send request (and then clear the counter.)

Any receive request (passing a receive MDL to the TNIC) may also be used to transport

window update info in the same way.

Note: we will probably also need to design a message path whereby the ATCP driver

I can explicitly send an update of this “bytes consumed” information (either when it exceeds a

preset threshold or if there are no requests going out to the TNIC for more than a given time

interval), to allow for possible scenarios inwhich the data stream is entirely one—way.

NOTES.

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver to its client's callback

in this case is always 1460. The NETBIOS-aware TDI client presumably calculates the size of

the MDL it will return from the NETBIOS header. So strictly speaking we do not need the

NETBIOS header length at this point: just an indication that this is a header for a "large" size.

However, we *do* need an actual "bytes available" value for the non-NETBIOS case, so we

may as well pass it.

3) We observe that the PSH flag is set in the segment completing each NETBIOS transfer.

The lNlC can use this to determine when the current transfer is complete and the MDL should

be returned. It can, at least in a debug mode, sanity check the amount of received data against

what is expected, though.

FAST—PATH OUTPUT DATA FLOW.

The fast-path output data flow is similar to the input data-flow, but simpler. In this

case the TDl client will provide a MDL to the ATCP driver along with an IRP to be completed

when the data is sent. The ATCP driver will then give a request (corresponding to the MDL)

to the INIC. This request will contain:

74

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 079

INTEL Ex.1002.080

ALA—006E

10

15’

20

25

30

1) The TCP context identifier; 2) Size and offset information; 3) A list ofphysical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to

identify the request on completion; 5) “Piggybaeked” window update information (as

discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the

corresponding network frames onto the network. When all of the data is sent, the INIC will

notify the host of the completion, and the ATCP driver will complete the IRP.

Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, we will have

to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we will

port the FreeBSD protocol stack. In this mode, the TNIC will be operating as a “dumb NIC”;

the packets which pass over the NDIS interface will just contain MAC-layer frames. I

The MBUFs in the incoming direction will in fact be managing NDIS-allocated

packets. In the outgoing direction, we need protocol—allocated MBUFs in which to assemble

the data and headers. The MFREE macro must be cognizant of the various types of MBUFs,

and “do the right thing” for each type.

We will retain a (modified) socket structure for each connection, containing the socket

buffer fields expected by the FreeBSD code. The TCP code that operates on socket buffers

(adding/removing MB-UFs to & from queues, indicating acknowledged & received data etc)

will remain essentially unchanged from the FreeBSD base (though most of the socket

functions & macros used to do this will need to be modified; these are the functions in

kem/uipe_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and

out of socket buffers, must be entirely re-implcmcnted to work in TDI terms. Thus, instead of

sosend(), there will be a function that copies data from the MDL provided in a TDI_SEND call

into socket buffer MBUFs. Instead ofsoreceiveO, there will be a handler that calls the TDI

client rcceive callback fimction, and also copies data from socket buffer MBUFs into any

MDL provided by the TDI client (either explicitly with the callback response or as a separate

TDI_RECEIVE call.)
75

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 080

INTEL Ex.1002.081

ALA-006E

10

15

20

25

30’

We must note that there is a semantic difference between TDI_SEND and a wn'te() on

a BSD socket. The latter may complete back to its caller as soon as the data has been copied

into the socket buffer. The completion of a TDI_SEND, however, implies that the data has

actually been sent on the connection. Thus we will need to keep the TDI_SEND IRPs (and

associated MDLs) in a queue on the socket until the TCP code indicates that the data from

them has been ACK’d.

', DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler

function registered. This has not been observed, but we can probably just ASSERT for a

missing handler for the moment. If it should happen, however, we must assume that the TDl

client will be doing TDIiRECElVE calls on the connection. If we can’t make a callup at the

time that the indication from the lNlC appears, we can queue the data and handle it when a

TDI_RECEIVE does appear.

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP

corresponding to an MDL which has been “handed” to the TNIC by a send or receive request.

' We can handle this by being able to force the context back off the INIC, since IRPs will only

' get cancelled when the connection is being aborted.

CONTEXT PASSING BETWEEN ATCP AND INIC.

FROM ATCP TO INIC.

There is a synchronization problem that must be addressed here. The ATCP driver will

make a decision on a given connection that this connection should now be passed to the INIC.

It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensure that no slow—path outgoing data is outétanding. This is

not difficult; it simply pends and queues any new TDLSEND requests and waits for any

unacknowledged slow path output data to be acknowledged before initiating the context pass

operation.

The problem arises with incoming slow-path data. Ifwe attempt to do the context-pass

in a single command handshake, there is a window during which the ATCP driver has send the

context command, but the IN [C has not yet seen this (or has not yet completed setting up its

context.) During this time, slow-path input data frames could arrive and be fed into the slow—
76

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 081

INTEL Ex.1002.082

ALA-006E

10

15

20

25

30

path ATCP processing code. Should that happen, the context information which the ATCP

driver passed to the INIC is no longer correct. We can simply abort the outward pass of the

context in this event, but it seems better to have a reliable handshake.

Therefore, the command to pass context from ATCP driver to INIC will be split into

two halves, and there will be a two-exchange handshake.

The initial command from ATCP to INIC expresses an “intention” to hand out the -

context. It will include the source and destination IP addresses and ports, which will allow the

INIC to establish a “provisional” context. Once it has this “provisional” context in place, the

INIC will not send any more slow-path input frames for that src/dest IP/port combination (it

will queue them, if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows

that the INIC will send no more slow-path input. The ATCP driver then waits for any

remaining unconsumed slow-path input data for this connection to be consumed by the client.

(Generally speaking there will be none, since the ATCP driver will not initiate a context pass

while there is unconsumed slow-path input data; the handshake is simply to close the ‘

crossover window.)

Once any such data has been consumed, we know things are in a quiescent state. The

ATCP driver can then send the second, “commit” command to‘hand out the context, with

confidence that thelTCB values it is handing out (sequence numbers etc) are reliable.

Note 1: it is conceivable that there might be situations in which the ATCP driver

decides, after having sent the original “intention” command, that the context is not to be

passed after all. (E.g. the local client issues a close.) So we must allow for the possibility that

the second command may be a “abort”, which should cause the INIC to dealloeate and clear up

its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may

be in process ofbeing handed out at a time: in other words, it will never issue another initial

“intention” command until it has completed the second half of the handshake for the first one.

FROM INIC TO ATCP.

There are two possible cases for this: a context transfer may be initiated either by the

ATCP driver or by the INIC. However the machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
77

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 082

INTEL Ex.1002.083

ALA-006E

10

15

20

V25

30

message to the INIC specifying the context number to be flushed. Once the INIC receives

this, it will proceed with the same steps as for the case where the flush is initiated by the INIC

itself: I V

1) The INIC will send an error response to any current outstanding receive request it is

working on (corresponding to an MDL into which data is being placed.) Before sending the

response, it updates the receive command “length” field to reflect the amount ofdata which

has actually been placed in the MDL buffers at the time of the flush.

2) Likewise it will send an error response for any current send request, again reporting

the amount of data actually sent from the request.

3) The INIC will DMA the TCB for the context back to the host. (Note: part of the

information provided with a context must be the address of the TCB in the host.)

4) The INIC will send a “flush” indication to the host (very preferably via the regllar

input path as a special type of frame) identifying the context which is being flushed. Sending

this indication via the regular input path ensures that it will arrive before any following slow-

path frames.

At this point, the INIC is no longer doing fast-path processing, and any further

incoming frames for the connection will simply be sent to the host as raw frames for the slow

input path. The ATCP driver may not be able to complete the cleanup operations needed to

I resume normal slow path processing immediately on receipt of the “flush frame”, since there

may be outstanding send and receive requests to which it has not yet received a response. If

this is the case, the ATCP driver must set a “pend incoming TCP frames” flag in its per-

connection context. The effect of this is to change the behavior of tcp_input(). This runs as a

function call in the context of ipiinput(), and normally returns only when incoming frames

' have been processed as far as possible (queued on the socket receive buffer or out-of-sequence

reassembly queue.) However, if there is a flush pending and we have not yet completed

resynchronization, we cannot do TCP processing and must instead queue input frames for TCP

on a “holding queue” for the connection, to be picked up later when context flush is complete

and normal slow path processing resumes. (This is why we want to send the “flush” indication

via the normal input path: so that we can ensure it is seen before any following frames of slow-

path input.)

Next we necd to wait for any outstanding “send” requests to be errored off: 71

78

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 083

INTEL Ex.1002.084

ALA—006E

10

15

20

25

30

1) The TNIC maintains its context for the connection in a “zombie” state. As “send”

requests for this connection come out of the INIC queue, it sends error responses for them

back to the ATCP driver. (It is apparently difficult for the FNIC to identify all command

requests for a given context; simpler for it to just continue processing them in order, detecting

ones that are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the number of outstanding requests it has sent to

the INIC. As error responses for these are received, it decrements this count, and when it

reaches zero, the ATCP driver sends a “flush complete” message to the INIC.

3) When the INIC receives the “flush complete” message, it dismantles its “zombie”

context. From the INIC perspective, the flush is now completed.

4) When the ATCP driver has received error responses for all outstanding requests, it

has all the information needed to complete its cleanup. This involves completing any IRPs

corresponding to requests which have entirely completed and adjusting fields in partially-

» completed requests so that send and receive of slow path data will resume at the right point in

the byte streams.

5) Once all this cleanup is complete, the ATCP driver will loop pulling any “pended”

TCP input frames off the “pending queue” mentioned above and feeding them into the normal

TCP input processing. Once all input frames on this queue have been cleared off, the “pend

incoming TCP frames” flag can be cleared for the connection, and we are back to normal

slow-path processing.

FREEBSD PORTING SPECIFICATION.

The largest portion of the ATCP driver is either derived, or directly taken from the

FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this

code, the FreeBSD code itself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/1P (current version referred to as Net/3) is a general purpose TCP/1P

driver. It contains code to handle a variety of interface types and many different kinds of

protocols. To meet this requirement the code is often written in a sometimes confusing, over—

complex manner. General—purpose structures are overlaid with other interface—specific

structures so that different interface types can coexist using the same general-purpose code.
79

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 084

INTEL Ex.1002.085

ALA—006E

10

15

20

25

30

For our purposes much of this complexity is unnecessary since we are only supporting a single

interface type and a few specific protocols. It is therefore tempting to modify the code and

data structures in an effort to make it more readable, and perhaps a bit more efficient. There

are, however, some problems with doing this. First, the more we modify the original

FreeBSD, the more changes we will have to make. This is especially true with regard to data

structures. If we collapse two data structures into one we might improve the cleanliness of the

code a bit, but we will then have to modify every reference to that data structure in the entire

protocol stack. Another problem with attempting to “clean up” the code is that we might later

discover that we need something that we had previously thrown away. Finally, while we

might gain a small performance advantage in cleaning up the FreeBSD code, the FreeBSD

TCP code will mostly only run in the slow-path connections, which are not our primary focus,

Our priority is to get the slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the

data structures and code at close to the original FreeBSD implementation as possible. The

code will be modified for the following reasons:

1) As required for NT interaction — Obviously we can’t expect to simply “drop-in” the

FreeBSD code as is. The interface of this code to the NT system will require some significant

code modifications. This will mostly occur at the topmost and bottommost portions of the

protocol stack, as well as the “ioctl” sections of the code. Modifications for SMP issues are

also needed. ‘

2) Unnecessary code can be removed 7 While we will keep the code as close to the

original FreeBSD as possible, we will nonetheless remove code that will never be used (UDP

is a good example of this).

UNIX (—) NT CONVERSION.

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These

include beopy to copy memory, malloc to allocate memory, timestamp fimctions, etc. These

will not be itemized in detail since the conversion to the corresponding NT calls is a fairly

trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

80

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 085

INTEL Ex.1002.086

ALA-006E

10

15

20

25

30

NETWORK BUFFERS. _

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers

are mapped using a combination of packet descriptors and buffer descriptors (the buffer

descriptors are really MDLs). There are a couple of problems with the Microsoft method.

First it does not provide the necessary fields which allow us to easily strip offprotocol

headers. Second, converting all of the FrecBSD protocol code to speak in terms ofbuffer

descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our

own mbuf structures and remap the NT packets as shown in Fig. 29.

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf

including the data pointer, which pointsto the current location of the data, data length fields

and flags. In addition each mbuf will point to the packet descriptor which is associated with

the data being mapped. Once an NT packet is mapped, our transport driver should never have

to refer to the packet or buffer descriptors for any information except when we are finished and

are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a

packet header should never be split across multiple buffers. Thus, we should never require the

equivalent of the “m_pullup” routine included in Unix. Also note that there are circumstances

in which we will be accepting data that will also be accepted by the Microsoft TCP/IP. One

such example of this is ARP frames. We will need to build our own ARP cache by looking at

ARP replies as they come off the network. Under these circumstances, it is absolutely

imperative that we do not modify the data, or the packet and buffer descriptors. We will

discuss this further in the follOwing sections.

We will allocate a pool of mbuf headers at ATCP initialization time. It is important to

remember that unlike other Nle, we can not simply drop data if we run out of the system

resources required to manage/map the data. The reason for this is that we will be receiving

data from the card that has already been acknowledged by TCP. Because of this it is essential

that we never run out of mbuf headers. To solve this problem we will statically allocate mbuf

headers for the maximum number of buffers that we will ever allow to be outstanding. By

doing so, the card will run out of buffers in which to put the data before we will run out of

mbufs, and as a result, the card will be forced to drop data at the link layer instead ofus

dropping it at the transport layer. DhXXX: as we’ve discussed, I don’t think this is really true

anymore. The INIC won’t ACK data until either it’s gotten a window update from ATCP to
81

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 086

INTEL Ex.1002.087

 i:'t
n

ALA-006E

'10

15

20

25

30

tell it the data’s been accepted, or it’s got an MDL. Thus it seems workable, though

undesirable, if we can’t accept a frame from the INIC & return an error to it saying it was not
taken.

We will also require a pool of actual mbufs (not just headers). These mbufs are

required in order to build transmit protocol headers for the slow—path data path, as well as

other miscellaneous purposes such as for building ARP requests. We will allocate a pool of

these at initialization time and we will add to this pool dynamically as needed. Unlike the

mbuf headers described above, which will be used to map acknowledged TCP data coming

from the card, the full mbufs will contain data that can be dropped if we can not get an mbuf.

‘ THE CODE.

In this section we describe each section of the FreeBSD TCP/IP port. These sections

include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACE. INITIALIZATION.
STRUCTURES. .

There area variety of structures, which represent a single interface in FreeBSD. These

structures include: ifnet, arpcom, ifaddr, in ifaddr, sockaddr, sockaddr_in, and sockaddr_dl.

Fig. 30 shows the relationship between all of these structures:

In the example of Fig. 30 we show a single interface with a MAC address of

00:60:97zDBz9B2A6 configured with an IP address of 192,100.12. As illustrated above, the

in_ifaddr is actually an ifaddr structure with some extra fields tacked on to the end. Thus the

ifaddr structure is used to represent both a MAC address and an IP address. Similarly the

sockaddr structure is recast as a sockaddridl or a sockaddr__in depending on its address type.

An interface can be configured to multiple IP addresses by simply chaining in_ifaddr

structures after the in‘ifaddr structure shown in Fig. 30.

As mentioned in the Porting Philosophy section, many of the above structures could

likely be collapsed into fewer structures. In order to avoid making unnecessary modifications

to FreeBSD, for the time being we will leave these structures mostly as is. We will however

eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.

82

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 087

INTEL Ex.1002.088

ALA-006E

10

20

25

30

We also show above a structure called ifaee. This is a structure that we define. It

contains the arpcom structure, which in turn contains the ifnet structure. It also contains fields

that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle used to call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeBSD initializes the above structures in two phases. First when a network interface

is found, the ifnet, arpeom, and first ifaddr structures are initialized first by the network layer

driver, and then via a call to the if_attach routine. The subsequent in_ifaddr structure(s) are

, initialized when a user dynamically configures the interface. This occurs in the in_ioctl and

the in_ifinit routines. Since NT allows dynamic configuration of a network interface we will

continue to perform the interface initialization in two phases, but we will consolidate these two

phases as described below:

IFTNIT.

The lfInit routine will be called from the ATKProtocolBindAdapter function. The

Iflnit function will initialize the Iface structure and associated arpcom and ifnet structures. It

will then allocate and initialize an ifaddr structure in which to contain link-level information

‘ about the interface, and a sockaddridl structure to contain the interface name and MAC

address. Finally it will add a pointer to the ifaddr structure into the ifnetiaddrs array (using

the if_index field of the ifnet structure) contained in the extended device object. Iflnit will

then call IfConfi g for each IP address that it finds in the registry entry for the interface.

IFCONFIG.

IfConfig is called to configure an’IP address for a given interface. It is passed a pointer

to the ifnet structure for that interface along with all the information required to configure an

IP address for that interface (such as IP address, netmask and broadcast info, etc). IfConfig

will allocate an iniifaddr structure to be used to configure the interface. It will chain it to the

total chain ofin__ifaddr structures contained in the extended device object, and will then

configure the structure with the information given to it. After that it will add a static route for

the newly configured network and then broadcast a gratuitous ARP request to notify others of

ourMac/IP address and to detect duplicate IP addresses on the net.
83

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 088

INTEL Ex.1002.089

ALA-006E

'10

15‘

20

25

30

ARP.

We will port the FreeBSD ARP code to NT mostly as—is. For some reason, the

FrccBSD ARP code is located in a file called iffietherc While the functionality of this file

will remain the same, we will rename it to a more logical arp.c. The main structures used by

ARP are the llinfo_arp structure and the rtentry structure (actually part of route). These

structures will not require major modifications, The functions that will require modification

are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARP frame can either

be an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP

request on the network, while ARP replies are directed so we should only see ARP replies that

are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP request trying to resolve our IP address ~ Under normal circumstances, ARP

would reply to this ARP request with an ARP reply containing our MAC address. Since ARP

requests will also be passed up to the Microsofl TCP/IP driver, we need not reply. Note

however, that FreeBSD also creates or updates an ARP cache entry with the information

derived from the ARP request. It does this in anticipation of the fact that any host that wishes

to know our MAC address is likely to wish to talk to us soon. Since we will need to know his

MAC address in order to talk back, we might as well add the ARP information ndw rather than

issuing our own ARP request later.

2. ARP request trying to resolve someone else’s IP address 7 Since ARP requests are

broadcast, we see every one on the network. When we receive an ARP request of this type, we

simply check to see if we have an entry for the host that sent the request in our ARP cache. If

we do, we check to see if we still have the correct MAC address associated with that host. If it

is incorrect, we update our ARP cache entry. Note that we do not create a new ARP cache

entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having

' resolved the address, we check to see if there is any transmit requests pending for the resolve

IP address, and if so, transmit them.

84

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 089

INTEL Ex.1002.090

ALA-006E

10

15

20

25

30

Given the above three possibilities, the only major change to the in_arpinput code is

that we will remove the code which generates an ARP reply for ARP requests that are meant
for our interface.

ARPINTR.

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We

will be calling in_arpinput directly from our ProtocolReceichPC routine (discussed in the

NDIS section below) so this function is not needed.

ARPWHOHAS.

This is a single line function that serves only as a wrapper around arprcquest. We will

remove it and replace all calls to it with direct calls to arprequest.

ARPREQUEST.

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it

’ down to the ethemet output routine to be transmitted. For us, the code remains essentially the

same except for the obvious changes related to how we allocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interface is initialized to broadcast a gratuitous ARP

request (described in the interface initialization section) and to set some ARP related fields in

thc ifaddr structure for the interface. We will simply move this functionality into the interface

initialization code and remove this function.

ARPTIMER.

This is a timer—based function that is called every 5 minutes to walk through the ARP

table looking for entries that have timed out. Although the time-out period for FreeBSD is 20

minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can

modify this value or delete the timer altogether to suit our needs. Either way the function

won’t require any major changes. All other functions in ifketherc will not require any major

changes.
85

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 090

INTEL Ex.1002.091

‘—r. f ::
..5 ":1? mg: .;

ALA—006E

IO

20

25

30

ROUTE.

On first thought, it might seem that we have no need for routing support since our

ATCP driver will only receive IP datagrams whose destination IP address matches that of one

of our own interfaces. Therefore, we will not “route” from one interface to another. Instead,

the MICROSOFT TCP/IP driver will provide that service. We will, however, need to maintain

an up-to-date routing table so that we know a) whether an outgoing connection belongs to one

of our interfaces, b) to which interface it belongs, and c) what the first-hop IP address

(gateway) is if the destination is not on the local network.

We discuss four aspects on the subject of routing in this section. They are as follows:

I. The mechanics of how routing information is stored.

2 The manner in which routes are added or deleted from the route table.

3. When and how route information is retrieved from the route table.

4
Notification of route table changes to interested parties.

THE ROUTE TABLE.

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA

(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated

algorithm that is a bit costly to set up, but is very efficient to reference. Since the routing table

should contain the same information for both NT and FreeBSD, and since the key used to

search for an entry in the routing table will be the same for each (the destination IP address),

we should be able to port the routing table software to NT without any major changes.

The software which implements the route table (via the PATRICIA algorithm) is

located in the FreeBSD file, radixc. This file will be ported directly to the ATCP driver with
no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added or deleted in a number of different ways. The kernel adds or

deletes routes when the state of an interface changes or when an ICMP redirect is received.

User space programs such as the RIP daemon, or the route command also modify the route
table.

86

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 091

INTEL Ex.1002.092

ALA—006E

10

20

25

30

For kernel—based route changes, the changes can be made by a direct call to the routing

software. The FreeBSD software that is responsible for the modification of route table entries

is found in route.c. The primary routine for all route table changes is called rtrequest(). It

takes as its argaments, the request type (ADD, RESOLVE, DELETE), the destination IP

address for the route, the gateway for the route, the netmask for the route, the flags for the

route, and a pointer to the route structure (struct rtentry) in which we will place the added or

resolved route. Other routines in the route.c file include ninitO, which is called during

interface initialization time to add a static route to the network, rtredirect, which is called by

ICMP when we receive a ICMP redirect, and an assortment of support routines used for the

modification of route table entries. All of these routines found in route.c will be ported with

no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route

changes are sent down to the kernel from user—space applications via a special route socket.

This code is found in the FreeBSD file, rtsock.e. Obviously this will not work for our ATCP

driver. 'Instead the filter driver portion of our driver will intercept route changes destined for

the Microsoft TCP driver and will apply those modifications to our own route table via the

rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddr_in) expected by the rtrequest routine.

Obviously, none of the code from rtsockc will be ported to the ATCP driver. This same

procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FrecB SD, the route table is consulted in ip_output when an IP datagram is being

sent. In order to avoid a complete route table search for every outgoing datagram, the route is

stored into the injcb for the connection. For subsequent calls to ip_output, the route entry is

then simply checked to ensure validity. While we will keep this basic operation as is, we will
require a slight modification to allow us to coexist with the Microsoft TCP driver. When an

active connection is being set up, our filter driver will have to determine whether the

connection is going to be handled by one of the INIC interfaces. To do this, we will have to

consult the route table from the filter driver portion of our driver. This is done via a call to the

rtallocl function (found in route.c). lfa valid route table entry is found, then we will take

87

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 092

INTEL Ex.1002.093

ALA-006E

control of the connection and set a pointer to the rtentry structure returned by rtallocl in our

v in_pcb structure.

WHAT TO DO WHEN A ROUTE CHANGES.

5 When a route table entry changes, there may be connections that have pointers to a

stale route table entry. These connections will need to be notified of the new route. FreeBSD

I solves this by checking the validity of a route entry during every call to ipioutput. If the entry

is no longer valid, its reference to the stale route table entry is removed, and an attempt is

made to allocate a new route to the destination. For our slow path, this will work fine.

10 Unfortunately, since our 11’ processing is handled by the INIC for our fast path, this sanity

check method will not be sufficient. Instead, we will need to perform a review of all of our

fast path connections during every route table modification. If the route table change affects

I ’ our connection, we will need to advise the INIC with a new first-hop address, or if the
destination is no longer reachable, close the connection entirely.

15

ICMP.

Like the ARP code above, we will need to process certain types of incoming ICMP

frames. Of the 10 possible ICMP message types, there are only three that we need to support.

I These include ICMP_REDIRECT, ICMPiUNREACH, and ICMP_SOURCEQUENCH. Any

20 FreeBSD code to deal with other types of ICMP traffic will be removed. Instead, we will V

simply return NDIS_STATUS_NOT_ACCEPTED for all but the above ICMP frame types.

This section describes how we will handle these ICMP frames.

ICMPgREDIRECT.

25 ' Under FreeB SD, an ICMPiREDIRECT causes two things to occur. First, it causes the

route table to be updated with the route given in the redirect. Second, it results in a call back

to TCP to cause TCP to flush the route entry attached to its associated in_pcb structures. By

doing this, it forces ip_output to search for a new route. As mentioned in the Route section

above, we will also require a call to a routine which will review all of the TCP fast-path

30 connections, and update the route entries as needed (in this case because the route entry has

been zeroed). The lNIC will then be notified of the route changes.

88

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 093

INTEL Ex.1002.094

ALA-006E

10

15

20

25

30

lCMP_UNREACH.

In both FreeBSD and Microsoft TCP, th€\lCMP_UNREACH results in no more than a

simple statistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quench is sent to cause a TCP sender to close its congestion window to a

single segment, thereby putting the sender into slow—start mode. We will keep the FreeBSD

code as—is for slow—path connections. For fast path connections we will send a notification to

the card that the congestion window for the given connection has been reduced. The lNlC will

then be responsible for the slow—start algorithm.

W.

The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

1P INITIALIZATION.

During initialization time, ip_init is called to initialize the array of protosw structures.

These structures contain all the information needed by IP to be able to pass incoming data to

the correct protocol above it. For example, when a UDP datagram arrives, IP locates the

protosw entry corresponding to the UDP protocol type value (0x11) and calls the input routine

specified in that protosw entry. We will keep the array of protosw structures intact, but since

we are only handling the TCP and ICMP protocols above lP, we will strip the protosw array

down substantially.

IP INPUT.

Following are the changes required for IP input (function ip_intr()).

NO IP FORWARDING.

Since we will only be handling datag'rams for which we are the final destination, we

should never be required to forward an IP datagram. All references to IP forwarding, and the

ip_forward function itself, can be removed.

89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 094

INTEL Ex.1002.095

ALA-006E

1o.

15

20

25

30

IP OPTIONS.

The only options supported by FreeBSD at this time include record route, strict and

loose source and record route, and timestamp. For the limestamp option, FreeBSD only logs

the current time into the IP header so that before it is forwarded. Since we will not be

forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the

remaining options, NT essentially does nothing useful with them. For the moment, we will not

bother dealing with IP options. They will be added in later if needed.

’ IP REASSEMBLY.

There is a small problem with the FreeBSD 1P reassembly code. The reassembly code

reuses the IP header portion of the IP datagram to contain IP reassembly queue information. It

can do this because it no longer requires the original IP header. This is an absolute no—no with

r . the NDIS 4.0 method ofhandling network packets. The NT DDK explicitly states that we

must not modify packets given to us by NDIS. This is not thelonly place in which the

FreeBSD code modifies the contents of a network buffer. It also does this when performing

’ endian conversions. At the moment we will leave this code as is and violate the DDK rules.

We believe we can do this because we are going to ensure that no other transport driver looks

’ V at these frames. If this becomes a problem we will have to modify this code substantially by

moving the 1P reassembly fields into the mbuf hcadcr.

1P OUTPUT.

There are only two modifications required for IP output. The first is that since, for the

moment, we are not dealing with IP options, there is no need for the code that inserts the IP

options into the 1P header. Second, we may discover that it is impossible for us to ever receive

an output request that requires fragmentation. Since TCP performs Maximum Segment Size

negotiation, we should theoretically never attempt to send a TCP segment larger than the

MTU.

NDIS PROTOCOL DRIVER.

This section defines protocol driver portion of the ATCP driver. The protocol driver

portion of the ATCP driver is defined by the set of routines registered with NDIS via a call to

NdisRegisterProtocol. These routines are limited to those that are called (indirectly) by the
90

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 095

INTEL Ex.1002.096

ALA-006E

10

15

2O

25

30

INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so

that when the INIC driver calls NdisMIndicateReceivePackct it will result in a call from NDIS

to our driver. Strictly speaking, the protocol driver portion of our driver does not include the

method by which our driver calls down to the miniport (for example, the method by which we

» send network packets). Nevertheless, we will describe that method here for lack of a better

place to put it. That said, we cover the following topics in this section of the document: 1)

Initialization; 2) Receive; 3) Transmit; 4) Query/Set In formation; 5) Status indications;

6) Reset; and 7) Halt.

1N ITIALIZATION.

The protocol driver initialization occurs in two phases. The first phase occurs when the

ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs the

following: ‘

1. Allocate resources -— We attempt to allocate many of the required resources as soon

as possible so that we are more likely to get the memory we want. This mostly applies to

allocating and initializing our mbuf and mbuf header pools.

2. Register Protocol 7 We call NdisRegisterProtocol to register our set ofprotocol
driver routines.

3. Locate and initialize bound NICs — We read the Linkage parameters of the registry

to determine which NIC devices we are bound to. For each of these devices we allocate and

initialize a [FACE structure (defined above). We then read the TCP parameters out of the

registry for each bound device and set the corresponding fields in the IFACE structure.

After the underlying INIC devices have completed their initialization, NDIS will call

our driver’s ATKBindAdapter fimction for each underlying device. It will perform the

following:

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACE structure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter in Formation. This includes such things as link speed

and MAC address. Save relevant information in the IFACE structure.

4. Perform the interface initialization as specified in the section on Interface

Initialization.

9]

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 096

INTEL Ex.1002.097

ALA—006E

10

15

20

25

30

RECEIVE.

Receive is handled by the protocol driver routine ATKReceivePacket. Before we

« describe this routine, it is important to consider each possible receive type and how it will be

handled.

RECEIVE OVERVIEW.

Our INIC miniport driver will be bound to our transport driver as well as the generic

Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively to

INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as other

types ofNICs. This is illustrated in Fig. 31. By binding the driver in this fashion, we can

_ choose to direct incoming network data to our own ATCP transport driver, the Microsofi TCP

driver, or both. We do this by playing with the ethernet “type” field as follows.

To NDIS and the transport drivers above it, our card is going to be registered as a

normal ethernet card. When a transport driver receives a packet from our driver, it will expect

the data to start with an ethernet header, and consequently, expects the protocol type field to be

in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to either IP,

or ARP, it will not accept the packet. So, to deliver an incoming packet to our driver, we must

simply map the data such that byte 12 contains a non—recognized ethernet type ficld. Note that

we must choose a value that is greater than 1500 bytes so that the transport drivers do not

confuse it with an 802.3 frame. We must also choose a value that will not be accepted by

other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to

Microsoft TCP, we can then simply leave the ethernet type field set to IP (or ARP). Note that

since we will also see these frames we can choose to accept or not-accept them as necessary.

Incoming packets are delivered as follows:

A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-

‘ path frames and fast-path frames. In the slow-path case, the TCP frames are given in there

entirety (headers included). In the fast-path case, the ATKReceivePacket is given a header

buffer that contains status information and data with no headers (except those above TCP).

More on this later.

B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non—TCP packets.
92

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 097

INTEL Ex.1002.098

ALA-006E

10

15

20

25

30

2. All packets that are not destined for one of our interfaces (packets that will be

routed). Continuing the above example, if there is an IP address l44.48.252.4 associated with

the 3com interface, and we receive a TCP connect with a destination IP address of

l44.48.252.4, we will actually want to send that request up to the ATCP driver so that we

create a fast—path connection for it. This means that we will need to know every IP address in

the system and filter frames based on the destination IP address in a given TCP datagram.

This can be done in the INIC miniport driver. Since it will be the ATCP driver that learns of

dynamic IP address changes in the system, we will need a method to notify the INIC miniport

of all the IP addresses in the system. More on this later.

C. Packets delivered to both:

1. All ARP frames.

2. All ICMP frames.

TWO TYPES OF RECEIVE PACKETS.

There are several circumstances in which the INIC will need to indicate extra

information about a receive packet to the ATCP driver. One such example is a fast path

receive in which the ATCP driver will need to be notified ofhow much data the card has

buffered. To accomplish this, the first (and sometimes only) buffer in a received packet will

actually be an INIC header buffer. The header buffer contains status information about the

receive packet, and may or may not contain network data as well. The ATCP driver will

. recognize a header buffer by mapping it to an ethemet frame and inspecting the type field

found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames

that are destined for both our driver and the Microsofi TCP driver (ARP, ICMP) will be

' indicated without a header buffer. Fig. 32 shows an example of an incoming TCP packet. Fig.

33 shows an example of an incoming ARP frame.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIS has been designed such that all packets indicated via

NdisMIndicateReceivePacket by an underlying miniport are delivered to the

ProtocolReceivePacket routine for all protocol drivers bound to it. These protocol drivers can

choose to accept or not accept the data. They can either accept the data by copying the data

7 out of the packet indicated to it, or alternatively they can keep the packet and return it later via
93

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 098

INTEL Ex.1002.099

ALA-006E

10

15'

20

25

a call to NdisRctumPackets. By implementing it in this fashion, NDIS allows more than one

protocol driver to accept a given packet. For this reason, when a packet is delivered to a

protocol driver, the contents of the packet descriptor, buffer descriptors and data must all be

treated as read—only. At the moment, we intend to violate this rule. We choose to Violate this

because much of the FreeBSD code modifies the packet headers as it examines them (mostly

for endian conversion purposes). Rather than modify all of the FrceBSD code, we will instead

ensure that no other transport driver accepts the data by making sure that the ethcrnet type field

is unique to us (no one else will want it). Obviously this only works with data that is only

’ delivered to our ATCP driver. For ARP and ICMP frames we will instead copy the data out of

the packet into our own buffer and return the packet to NDIS directly. While this is less

. efficient than keeping the data and returning it later, ARP and ICMP traffic should be small

enough, and infrequent enough, that it doesn’t matter.

The DDK specifies that when a protocol driver chooses to keep a packet, it should

return a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then

later returned to NDIS via the call to NdisRctumPackets. This can only happen after the

ProtocolReceivePacket has returned control to NDIS. This requires that the call to

NdisReturnPackets must occur in a different execution context. We can accomplish this by

scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our own. For

brevity in this section, we will assume it is a done through a DPC. In any case, we will require

a queue ofpending receive buffers on which to place and fetch receive packets.

After a receive packet is dequeued by the DPC it is then either passed to TCP directly

for fast-path processing, or it is sent through the FrceBSD path for slow—path processing. Note

that in the case of slow-path processing, we may be working on data that needs to be returned

to NDIS (TCP data) or we may be working on our own copy of the data (ARP and ICMP).

When we finish with the data we will need to figure out whether or not to return the data to

NDIS or not. This will be done via fields in the mbufheader used to map the data. When the

mfreem routine is called to free a chain ofmbufs, the fields in the mbuf will be checked and, if

required, the packet descriptor pointed to by the mbuf will be returned to NDIS.

94

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 099

INTEL Ex.1002.100

ALA-006E

10V

15

20

25

30

MBUF (—> PACKET MAPPING.

As noted in the section on mbufs above, we will map incoming data to mbufs so that

our FreeBSD port requires fewer modifications. Depending on the type of data received, this

mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data for a TCP fast-path connection. In this example,

the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf

and sent upstream for fast-path TCP processing. In this case it is required that the header

buffer be mapped and sent upstream because the fast-path TCP code will need information

contained in the header buffer in order to perform the processing. When the mbuf in this

example is freed, the mfreem routine will determine that the mbuf maps a packet that is owned

by NDIS and will then free the mbuf header only and call NdisReturnPaekets to free the data.

In Fig. 34B, we show incoming data for a TCl?‘ slow-path connection. In this example

the mbuf points to the start of the TCP data directly instead of the header buffer. Since this)

buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf pointing to

a header buffer (FreeBSD would get awfully confused). Again, when mfreem is called to free

the mbuf, it will discover the mapped packet, free the mbuf header, and call NDIS to free the

packet and return the underlying buffers. Note that even though we do not directly map the

header buffer with the mbuf we do not lose it because of the link from the packet descriptor.

Note also that we could alternatively have the INIC miniport driver only pass us, the TCP data

buffer when it receives a slow-path receive. This would work fine except that we have

determined that even in the case of slow-path connections we are going to attempt to offer

some assistance to the host TCP driver (most likely by checksum processing only). In this

'case there may be some special fields that we need to pass up to the ATCP driver from the

INIC driver. Leaving the header buffer connected seems the most logical way to do this.

Finally, in Fig. 34C, we show a received ARP frame. Recall that for incoming ARP

and ICMP frames we are going to copy the incoming data out of the packet and return it

directly to NDIS. In this case the mbuf simply points to our data, with no corresponding

packet descriptor. When we free this mbuf, mfreem will discover this and free not only the

mbuf header, but the data as well.

95

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 100

INTEL Ex.1002.101

ALA—006E

OTHER RECEIVE PACKETS.

We use this receive mechanism for other purposes besides the reception of network

data. It is also used as a method of communication between the ATCP driver and the INIC.

One such example is a TCP context flush from the INIC. When the INIC determines, for

5 whatever reason, that it can no longer manage a TCP connection, it must flush that connection

to the ATCP driver. It will do this by filling in a header buffer with appropriate status and

delivering it to the lNlC driver. The INIC driver will in turn deliver it to the protocol driver

which will treat it essentially like a fast-path TCP connection by mapping the header buffer

with an mbufheader and delivering it to TCP for fast-path processing. There are two

10 advantages to communicating in this manner. First, it is already an established path, so no '

extra coding or testing is required; Second, since a context flush comes in, in the same manner

as received frames, it will prevent us from getting a slow-path frame before the context has

been flushed. . v

l SUMMARY

Having covered all of the various types of receive data, following are the steps that are

taken by the ATKProtocolReeeivePacket routine.

1,. Map incoming data to an ethernet frame and check the type field;

2. If the type field contains our custom INIC type then it should be TCP;

20 3. If the header buffer specifies a fast—path connection, allocate one or more mbufs headers

to map the header and possibly data buffers. Set the packet descriptor field of the mbuf

to point to the packet descriptor, set the mbuf flags appropriately, queue the mbuf, and

retum l;

4. if the header buffer specifies a slow-path connection, allocate a single mbuf header to

25 map the network data, set the mbuf fields to map the packet, queue the mbuf and return

1. Note that we design the INIC such that we will never get a TCP segment split across

more than one buffer;

5. If the type field of the frame indicates ARP or lCMP;

6. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.

30 Queue the mbuf, and return 0 (not accepted); and

7. If the type field is not either the INIC type, ARP or ICMP, we don’t want it. Return 0.

96

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 101

INTEL Ex.1002.102

ALA-006E

10

'l5

20

25

30

The receive processing will continue when the mbufs are dcqucucd. At the moment

this is done by a routine called ATKProtocolReceiveDPC. It will do the following:

1. Dequeue a mbuf from the queue; and

2. Inspect the mbuf flags. If the mbuf is meant for fast-path TCP, it will call the fast-path

routine directly. Otherwise it will call the ethernet input routine for slow-path

processing.

TRANSMIT.

In this section we discuss the ATCP transmit path.

i NDIS 4 SEND OPERATION.

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes

_ to send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets with

an array of packet descriptors to send. As soon as this routine is called, the transport/protocol

driver relinquishes ownership of the packets until they are returned, one by one in any order,

via a NDIS call to the ProtocolSendComplete routine. Since this routine is called

asynchronously, our ATCP driver must save any required context into the packet descriptor

header so that the appropriate resources can be freed. This is discussed further in the.

following sections.

TYPES OF “SENDS”.

Like the Receive path described above, the transmit path is used not only to send

network data, but is also used as a communication mechanism between the host and the INIC.

Here are some examples of the types of sends performed by the ATCP driver.

FAST—PATH TCP SEND.

When the ATCP driver receives a transmit request with an associated MDL, it will

package up the MDL physical addresses into a command buffer, map the command buffer

with a buffer and packet descriptor, and call NdisSendPackets with the corresponding packet.

The underlying INIC driver will issue the command buffer to the INIC. When the

corresponding response buffer is given back to the host, the INIC miniport will call

NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete

97

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 102

INTEL Ex.1002.103

ALA—006E

10

15'

20

25

30

(ATKSendComplete) routine, at which point the resources associated with the send can be

freed. We will allocate and use a mbuf to hold the command buffer. By doing this we can

store the context necessary in order to clean up after the send completes. This context includes

a pointer to the MDL and presumably some other connection context as well. The other

advantage to using a mbuf to hold the command buffer is that it eliminates having another

special set of code to allocate and return command buffer. We will store a pointer to the mbuf

in the reserved section of the packet descriptor so we can locate it when the send is complete.

Fig. 35 illustrates the relationship between the client’s MDL, the command buffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

As described in the Fast-Path Input Data Flow section above, the receive process

typically occurs in two phases. First the INIC fills in a host receive buffer with a relatively

small amount of data, but notifies the host of a large amount of pending data (either through a

large amount of buffered data on the card, or through a large amount of expected NetBios

data). This small amount of data is delivered to the client through the TDI interface. The

client will then respond with a MDL in which the data should be placed. Like the Fast~path

TCP send process, the receive portion of the ATCP driver will then fill in a command buffer

with the MDL information from the client, map the buffer with packet and buffer descriptors

and send it to the lNlC via a call to NdisSendPackets. Again, when the response buffer is

returned to the INIC miniport, the ATKSendComplete routine will be called and the receive

will complete. This relationship between the MDL, command buffer and buffer and packet

descriptors are the same as shown in the Fast—path send section above.

SLOW-PATH (FREEBSD).

Slow-path sends pass through the FreeBSD stack until the ethemet header is prepended

in ether_output and the packet is ready to be sent. At this point a command buffer will be

filled with pointers to the ethemet frame, the command buffer will be mapped with a packet

and buffer descriptor and NdisSendPackets will be called to hand the packet off to the

miniport. Fig. 36 shows the relationship between the mbufs, command buffer, and buffer and

packet descriptors. Since we will use a mbuf to map the command buffer, we can simply link

98

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 103

INTEL Ex.1002.104

ALA-006E

10

15

20

25

30

the data mbufs directly off of the command buffer mbuf. This will make the freeing of

resources much simpler.

NON—DATA COMMAND BUFFER.

The transmit path is also used to send non-data cormnands to the card. As shown in

Fig. 37, for example, the ATCP driver gives a context to the INIC by filling in a command

buffer, mapping it with a packet and buffer descriptor, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.

Given the above different types of sends, the ATKProtocolSendComplete routine will

perform various types of actions when it is called from NDIS. First it must examine the

reserved area of the packet descriptor to determine what type of request has completed. In the

case of a slow-path completion, it can simply free the mbufs, command buffer, and descriptors

and return. In the case of a fast-path completion, it will need to notify the TCP fast path

routines of the completion so TCP can in tum complete the client’s IRP. Similarly, when a

non—data command buffer completes, TCP will again be notified that the command sent to the

INIC has completed.

TDI FILTER DRIVER.

In a first embodiment ofthe product, the INIC handles only simple-case data transfer

operations on a TCP connection. (These of course constitute the large majority of CPU cycles

consumed by TCP processing in a conventional driver.)

There are many other complexities of the TCP protocol which must still be handled by

host driver software: connection setup and breakdown, out-o f-order data, nonstandard flags,
etc.

The NT OS contains a fully functional TCP/1P driver, and one solution would be to

enhance this so that it is able to detect our lNlC and take advantage of it by "handing oft" data—

path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.

Thus the solution above, while a goal, cannot be done immediately. We instead provide our

own custom driver software on the host for those parts of TCP processing which are not

handled by the INIC.
99

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 104

INTEL Ex.1002.105

ALA-006E

10

15

20

30

This presents a challenge. The NT network driver framework does make provision for

7 multiple types ofprotocol driver: but it does not easily allow for multiple instances of drivers

handling the SAME protocol.

For example, there are no "hooks" into the Microsoft TCP/1P driver which would allow

for routing of IP packets between our driver (handling our INICs) and the Microsoft driver

(handling other NICs).

Our approach to this is to retain the Microsoft driver for all non—TCP network

processing (even for traffic on our INICs), but to invisibly "steal" TCP traffic on our

connections and handle it via our own (BSD-derived) driver. The Microsoft TCP/1P driver is

unaware of TCP connections on interfaces we handle.

The network "bottom end" of this artifice is described earlier in the document. In this

section we will discuss the "top end": the TDI interface to higher-level NT network client
software.

We make .use of an NT facility called a filter driver. NT allows a special type of driver

("filter driver") to attach itself "on top" of another driver in the system. The NT I/O manager

then" arranges that all requests directed to the attached driver are sent first to the filter driver;

‘ this arrangement is invisible to the rest of the system.

The filter driver may then either handle these requests itself, or pass them down to the

underlying driver it is attached to. Provided the filter'drive'r completely replicates the

(externally visible) behavior of the underlying driver when it handles requests itself, the

existence of the filter driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft TCP/1P driver; this gives us the

basic mechanism whereby we can intercept requests for TCP operations and handle them in

our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we want to

achieve, there are some significant technical problems to be solved. The basic issue is that

setting up a TCP connection involves a sequence of several requests from higher—level

software, and it is not always possible to tell, for requests early in this sequence, whether the

connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we need it later,

but also allow the request to be passed down to the Microsoft TCP/1P driver in case the

connection ultimately turns out to be one which that driver should handle.
' 100

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 105

INTEL Ex.1002.106

ALA-006E

10

l5

20

25

30

Let us look at this in more detail, which will involve some examination of the TDI

interface: the NT interface into the top end ofNT network protocol drivers. Higher-level TDI

client software which requires services from a protocol driver proceeds by creating various

types of NT FILE_OBJECTs, and then making various DEVICE_IO_CONTROL requests on

these FILE_OBJECTs.

There are two types of FILE_OBJECT of interest here. Local IP addresses that are

represented by ADDRESS objects, and TCP connections that are represented by

CONNECTION objects. The steps involved in setting up a TCP connection (from the "active"

client side, for a CONNECTION object) are:

1) Create an ADDRESS object; 2) Create a CONNECTION object; 3) ‘lssue a

TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION object with the

ADDRESS object; and 4) Issue a TDI_CONNECT io-control on the CONNECTION object,

specifying the remote address and p011 forthe connection.

Initial thoughts were that handling this would be straightforward: we would tell, on the

basis of the address given when creating the ADDRESS object, whether the connection is for

one of our interfaces or not. After which, it would be easy to arrange for handling entirely by

our code, or entirely by the Microsoft code: we would simply examine the ADDRESS object

to see ifit was "one of ours" or not. ‘

There are two main difficulties, however. First, when the CONNECTION object is

created, no address is specified: it acquires a local address only later when the

TDIiASSOCIATEgADDRESS is done. Also, when a CONNECTION object is created, the

caller supplies an opaque "context cookie" which will be needed for later communications

with that caller. Storage of this cookie is the responsibility of the protocol driver: it is not

. directly derivable just by examination of the CONNECTION object itself. If we simply

passed the "create" call down to the Microsoft TCP/1P driver, we would have no way of

obtaining this cookie later if it turns out that we need to handle the connection. Therefore, for

every CONNECTION object which is created we allocate a structure to keep track of I

information about it, and store this structure in a hash table keyed by the address of the

CONNECTION object itself, so that we can locate it if we later need to process requests on

this object. We refer to this as a "shadow" object: it replicates infomiation about the object

stored in the Microsoft driver. (We must, of course, also pass the create request down to the

Microsofi driver too, to allow it to setup its own administrative information about the object.)
l 01

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 106

INTEL Ex.1002.107

ALA-006E

10

15

20

25

30

A second major difficulty arises with ADDRESS objects. These are often created with

the TCP/IP "wildcard" address (all zeros); the actual local address is assigned only later during

connection setup (by the protocol driver itself.) Of course, a "wildcar " address does not

allow us to determine whether connections that will be associated with this ADDRESS object

should be handled by our driver or by the Microsoft one. Also, as with CONNECTION

objects, there is "opaque" data associated with ADDRESS objects that cannot be derived just

from examination of the object itself. (In this case addresses of callback functions set on the

object by TDI_SET_EVENT io—controls.)

Thus, as in the CONNECTION object case, we create a "shadow" object for each

ADDRESS object which is created with a wildcard address. In this we store information

(principally addresses of callback functions) which we will need if we are, handling

connections on CONNECTION objects associated with this ADDRESS object. We store

similar information, of course, for any ADDRESS object which is explicitly for one of our

interface addresses; in this case we don't need to also pass the create request down toithe
MiCrosofi driver.

With this concept of "shadow" objects in place, let us revisit the steps involved in

setting up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is

a "wildcar " address, we create a "shadow" object before passing the call down to the

Microsoft driver.

The next step (omitted in the earlier list for brevity) is normally that the client makes a

number of TDI_SET_EVENT io-control calls to associate various callback functions with the

ADDRESS object. These are functions that should be called to notify the TDI client when

certain events (such arrival of data or disconnection requests etc) occur. We store these

callback function pointers in our "shadow" address object, before passing the call down to the

Microsoft driver. K

cht, the TDI client makes a call to create a CONNECTION object. Again, we create

our "shadow" of this object.

Next, the client issues the TDIiASSOCIATEiADDRESS io-control to bind the

CONNECTION object to the ADDRESS object. We note the association in our "shadow"

' ._ objects, and also pass the call down to the Microsoft driver. a

102

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 107

INTEL Ex.1002.108

ALA-006E

Finally the TDI client issues a TDI_CONNECT io-control on the CONNECTION

object, specifying the remote IP address (and port) for the desired connection. At this point,

we examine our routing tables to determine if this connection should be handled by one of our

interfaces, or by some other NIC. If it is ours, we mark the CONNECTION object as "one of

5 ours" for future reference (using an opaque field which NT FILE_OBJECTS provide for driver

use.) We then proceed with connection setup and handling in our driver, using information

stored in our "shadow" objects. The Microsofi driver does not see the connection request or

any subsequent traffic on the connection.

If the connection request is NOT for one of our interfaces, we pass it down to the

10 Microsofi driver. Note carefully, however, that we can not simply discard our "shadow"

objects at this point. The TDI interface allows re—use ofCONNECTION objects: on

termination ofa connection, it is legal for the TDI client to dissociate the CONNECTION

object. from its current . Thus our "shadow" objects must be retained for the lifetime

ADDRESS object, re-associate it with another, and use it for another connection of the NT

15 FILE_OBJECTS: the subsequent connection could turn out to be via one of our interfaces.

TIMERS.

KEEPALIVE TIMER.

We don’t want to implement keepalive timers on the INIC. It would in any case be a

20’ very poor use of resources to have an INIC context sitting idle for two hours.

IDLE TIMER.

We will keep an idle timer in the ATCP driver for connections that are managed by the

INIC (resetting it whenever we see activity on the connection), and cause a flush of context

25 back to the host if this timer expires. We may want to make the threshold substantially lower

than 2 hours, to reclaim INIC context slots for useful work sooner. May also want to make

that dependent on the number of contexts which have actually been handed out: don’t need to

reclaim them if we haven’t handed \out the max.
\

I 30 RECEIVE AND TRANSMIT MICROCODE DESIGN.

This section provides a general description of the design of the microcode that will

execute on two of the sequencers of the Protocol Processor on the INIC. The overall
1 03

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 108

INTEL Ex.1002.109

ALA—006E

10

15

20

30

philosophy of the TNIC is discussed in other sections. This section will discuss the INIC

microcode in detail.

DESIGN OVERVIEW.

As specified in other sections, the INIC supplies a set of 3 custom processors that will

provide considerable hardware—assist to the microcode running thereon. The paragraphs

immediately following list the main hardware—assist features:

I) Header processing with specialized DMA engines to validate an input header and

generate a context hash, move the header into fast memory and do header comparisons on a

DRAM-based TCP control block;

2) DRAM fifos for free buffer queues (large & small), receive—frame queues, event

queues ete.;

3) Header compare logic;

4) Checksum generation;

5) Multiple register contexts with register access controlled by simply setting a context

register. The Protocol Processor will provide 512 SRAM-based registers to be shared among

the 3 sequencers;

6) Automatic movement of input frames into DRAM buffers from the MAC Fifos;

7) Run receive processing on one sequencer and transmit processing on the other. This

was chosen as opposed to letting both sequencers run receive and transmit. One of the main

reasons for this is that the header-processing hardware can not be shared and interlocks would

be needed to do this. Another reason is that interlocks would be needed on the resources used

exclusively by receive and by transmit; V

8) The INIC will support up to 256 TCP connections (TCB’s). A TCB is associated

with an input frame when the frame’s source and destination IP addresses and source and

destination ports match that of the TCB. For speed of access, the TCB’s will be maintained in

a hash table in NlC DRAM to save sequential searching. There will however, be an index in

hash order in SRAM. Once a hash has been generated, the TCB will be cached in SRAM.

There will be up to 8 cached TCBs in SRAM. These cache locations can be shared between

both sequencers so that the sequencer with the heavier load will be able to use more cache

buffers. There will also be 8 header buffers to be shared between the sequencers. Note that

each header buffer is not statically linked to a specific TCB buffer. In fact the link is dynamic
104

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 109

INTEL Ex.1002.110

ALA-006E

10

15

20

25

3O

. on a per—frame basis. The need for this dynamic linking will be explained in later sections.

Suffice to say here that if there is a free header buffer, then somewhere there is also a free TCB

SRAM buffer;

9) There were 2 basic implementation options considered here. The first was single—

stack and the second was a process model. The process model was chosen here because the

custom processor design is providing zero—cost overhead for context switching through the uSe

of a context base register, and because there will be more than enough process slots (or

contexts) available for the peak load. It is also expected that all “local” variables will be held

permanently in registers whilst an event is being processed;

10)‘ The features that provide this are 256 of the 512 SRAM—based registers that will

be used for the register contexts. This can be divided up into 16 contexts (or processes) of 16

registers each. Then 8 of these will be reserved for receive and 8 for transmit. A Little’s Law

analysis has shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100

Mbits, requires more than 8 jobs to be in process in the NIC. However each job requires an

SRAM buffer for a TCB context and at present, there are only 8 of these currently specified

due to SRAM space limits. So more contexts (eg. 32 * 8 regs each) do not seem worthwhile.

Refer to the section entitled “LOAD CALCULATIONS” for more details of this analysis. A

context switch simply involves reloading the context base register based on the context to ‘be '

restarted, and jumping to the appropriate address for resumption; V

11) To better support the process model chosen, the code will lock an active TCB into

an SRAM buffer while either sequencer is operating on it. This implies there will be no‘

swapping to and from DRAM of a TCB once it is in SRAM and an operation is started on it.

More specifically, the TCB will not be swapped after requesting that a DMA be performed for

it. Instead, the system will switch to another active “process”. Then it will resume the former

process at the point directly after where the DMA was requested. This constitutes a zero-cost

switch as mentioned above;

12) Individual TCB state machines will be run from within a “process”. There will be

a state machine for the receive side and one for the transmit side. The current TCB states will

be stored in the SRAM TCB index table entry;

13) The INIC will have 16 MB of DRAM. The current specification calls for dividing

a large portion of this into 2K buffers and control allocation / deallocation of these buffers

105

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 110

INTEL Ex.1002.111

ALA-006E

10

15

20

30

through one of the DRAM fifos mentioned above. These fifos will also be used to control

small host buffers, large host buffers, command buffers and command response buffers;

14) For events from one sequencer to the other (i.e. RCV (—) XMT), the current

specification calls for using simple SRAM CIO buffers, one for each direction;

15) Each sequencer handles its own timers independently of the others;

16) Contexts will be passed to the INIC through the Transmit command and response

buffers. INIC—initiated TCB releases will be handled through the Receive small buffers. Host—

initiated releases will use the Command buffers. There needs to be strict handling of the

acquisition and release of contexts to avoid windows where for example, a frame is received

on a context just after the context was passed to the INIC, but before the INIC has “accepted”

it; and I

17) T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections.

This is because they are typically used for the HTTP protocol and the client for that protocol ’

typically connects, sends a request and disconnects in one segment. The server sends the

connect confirm, reply and disconnect in his first segment. Then the client confirms the

‘ disconnect. This is a total of 3 segments for the life of a context. Typical data lengths are on

the order of 300 bytes from the client and 3K from the server. The INIC will provide as good
an assist as seems necessary here by checksumming the frame and splitting headers and data.

The latter is only likely when data is forwarded with a request such as when a filled-in form is

sent by the client.

SRAM REQUIREMENTS.

SRAM requirements for the Receive and Transmit engines are shown in Fig. 38.

Depending upon the available space, the number of TCB buffers may be increased to 16.

GENERAL PHILOSOPHY.

The basic plan is to have the host determine when a TCP connection is able to be

handed to the INIC, setup the TCB and pass it to the card Via a command in the Transmit

queue. TCBS that the INIC owns can be handed back to the host via a request from the Receive

or Transmit sequencers or from the host itself at any time.

When the INIC receives a frame, one of its immediate tasks is to determine if the frame

is for a TCB that it controls. It not, the frame is passed to the host on a generic interface TCB.
106

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 1 11

INTEL Ex.1002.112

' ALA-006E

10

15

20

25

30

On transmit, the transmit request will specify a TCB hash number if the request is on a 1N 1C-

controlled TCB. Thus the initial state for the INIC will be transparent mode in which all

received frames are directly passed through and all transmit requests will be simply thrown on

the appropriate wire. This state is maintained until the host passes TCBs to the INIC to control.

Note that frames received for which the INIC has no TCB (or it is with the host) will still have

the TCP checksum verified if TCP/IP, and may split the TCPIP header off into a separate
buffer.

. REGISTER USAGE.

There will be 512 registers available. The first 256 will be used for process contexts.

The remaining 256 will be split between the three sequencers as follows: 1) 257 — 320: 64 for

RCV general processing / main loop; 2) 321 — 384: 64 for XMT general processing / main

loop; and 3) 385 — 512: 128 for three sequencer use.

RECEIVE PROCESSING.

MAIN LOOP.

Fig. 39 is a summary ofthe main loop of Receive.

RECEIVE EVENTS.

The events that will be processed on a given context are:

I) accept a context;

2) release a context command (from the host via Transmit);

3) release a context request (from Transmit);

4) receive a valid frame; this will actually become 2 events based on the received

frame — receive an ACK, receive a segment;

5) receive an “invalid” frame i.e. one that causes the TCB to be flushed to the host;

6) a valid ACK needs to be sent (delayed ACK timer expiry); and

7) There are expected to be the following sources of events: a) Receive input queue:

it is expected that hardware will automatically DMA arriving frames into frame buffers and

queue an event into a RCV—event queue; b) Timer event queue: expiration of a timer will

queue an event into this queue; and c) Transmit sequencer queue: for requests from the

transmit processor.
1 O7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 112

INTEL Ex.1002.113

ALA—006E

10

15

20

25

30

For the sake of brevity the following only discusses receive-frame processing.

RECEIVE DETAILS — VALID CONTEXT.

The base for the receive processing done by the INIC on an existing context is the fast-

path or “header prediction” code in the FreeBSD release. Thus the processing is divided into

three parts: header validation and cheeksumming, TCP processing and subsequent SMB

processing.

HEADER VALIDATION.

There is considerable hardware assist here. The first step in receive processing is to

DMA the frame header into an SRAM header buffer. It is usefill for header validation to be

implemented in conjunction with‘this DMA by scanning the data as it flies by. The following
tests need to be “passed”:

1) MAC header: destination address is our MAC address (not MC or .BC too), the

Ethertype is IP; 2) IP header: header cheeksum is valid, header length = 5, IP length > header

length, protocol — TCP, no fragmentation, destination IP is our IP address; and‘3) TCP header:

ehecksum is valid (incl. pseudo—header), header length = 5 or 8 (timestamp option), length is

' valid, dest port = SMB or FTP data, no FIN/SYN/URG/PSH/RST bits set, timestamp option is

valid if present, segment is in sequence, the window size did not change, this is not a

retransmission, it is a pure ACK or a pure receive segment, and most important, a valid

context exists. The valid-context test is nonvtrivial in the amount of work involved to

determine it. Also note that for pure ACKs, the window-size test will be relaxed. This is

because initially the output PERSIST state is to be handled on the INIC.

Many but perhaps not all of these tests will be performed in hardware 7 depending

upon the embodiment.

TCP PROCESSING.

Once a frame has passed the header validation tests, processing splits based on whether

the frame is a pure ACK or a pure received segment.

108

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 113

INTEL Ex.1002.114

ALA-006E

10

15

20

25

3-0

PURE RCV PACKET.

The design is to split off headers into a small header buffer and pass the aligned data in

separate large buffers. Since a frame has been received, eventually some receiver process on

the host will need to be informed. In the case of FTP, the frame is pure data and it is passed to

the host immediately. This involves getting large buffers and DMAing the data into them,

then setting the appropriate details in a small buffer that is used to notify the host. However for

SMB, the INIC is performing reassembly of data when the frame consists of headers and data.

So there may not yet be a complete SMB to pass to the host. In this case, a small buffer will be

acquired and the header moved into it. If the received segment completes an SMB, then the

procedures are pretty much as for FTP. If it does not, then the scheme is to at least move the

received data (not the headers) to the host to free the INIC buffers and to save latency. The list
of in-progress host buffers is maintained in the TCB and moved to the header buffer when the

SMB is complete.

The final part of pure-receive processing is to fire off the delayed ACK timer for this

segment.

I PURE ACK.

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers

' that can be returned to the host. If so, send an event to the Transmit processor (or do the

processing here). If there is more output available, send an event to the transmit processor.

Then appropriate actions need to be taken with the retransmission timer.

SMB PROCESSING.

Fig. 40 shows the format ofthe SMB header of an SMB frame. The LENGTH field of

the NetBIOS header will be used to determine when a complete SMB has been received and

the header buffer with appropriate details can be posted to the host. The interesting commands

are the write commands: SMBwrite (OXB), SMBwriteBraw (OxlD), SMBwriteBmpx (0x1E),

SMBwriteBs (OxlF), SMBwriteelose (Ox2C), SMBwriteX (0x2F), SMBwriteunlock (0x14).

These are interesting because they will have data to be aligned in host memory. The point to

note about these commands is that they each have a different WCT field, so that the start offset

of the data depends on the command type. SMB processing will thus need to be cognizant of

these types.
1 09

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 114

INTEL Ex.1002.115

l

ALA-006E

RECEIVE DETAILS — NO VALID CONTEXT.

The design here is to provide as much assist as possible. Frames will be checksummed

and the TCPIP headers may be split off.

RECEIVE NOTES.

1. PRU_RCVD or the equivalent in Microsoft language: the host application has to

tell the IN [C when he has accepted the received data that has been queued. This is so that the

INIC can update the receive window. It is an advantage for this mechanism to be efficient.

10 This may be accomplished by piggybacking these on transmit requests (not necessarily for the

same TCB).

2. Keepalivc Timer: for a INIC-controlled TCB, the INIC will not maintain this timer.
This leaves the host with the job of determining that the TCB is still active.

3. Timestamp option: it is useful to support this option in the fast path because the

15 BSD implementation does. Also, it can be very helpful in getting a much better estimate of the

round-trip time (RTT) which TCP needs to use.

4. Idle timer: the INIC will not maintain this timer (see Note 2 above).

5. Frame with no valid context: The INIC may split TCP/1P headers into a separate
header buffer.

20

TRANSMIT PROCESSING.

MAIN LOOP.

Fig. 41 is a summary of the main loop of Transmit.

25 TRANSMIT EVENTS.

The events that will be processed on a given context and their sources are: 1) accept a

context (from the Host); 2) release a context command (from the Host); 3) release a context

command (from Receive); 4) valid send request and window > 0 (from host or RCV

sequencer); 5) valid send request and window I 0 (from host or RCV sequencer); 6) send a

30 window update (host has accepted data); 7) persist timer expiration (persist timer); 8)

context-release event e.g. window shrank (XMT processing or retransmission timer); and 9)

receive—release request ACK(from RCV sequencer).
l l 0

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 1 15

INTEL Ex.1002.116

ALA-006E '

1'0

15

20

25

30

TRANSMIT DETAILS * VALID CONTEXT.

The following is an overview of the transmit flow: The host posts a transmit request to

the INIC by filling in a command buffer with appropriate data pointers etc and posting it to the

INIC Via the Command Buffer Address register. Note that there is one host command buffer

queue, but there are four physical transmit lines. So each request needs to include an interface

number as well as the context number. The INIC microcode will DMA the command in and

place it in one of four internal command queues which the transmit sequencer will work on.

This is so that transmit processing can round-robin service these four queues to keep all four

interfaces busy, and not let a highly-active interface lock out the others (which would happen

with a single queue). The transmit request may be a segment that is less than the M83, or it

may be as much as a full 64K SMB READ. Obviously the former request will go out as one

segment, the latter as a number of MSS—sized segments. The transmitting TCB must hold onto

the request until all data in it has been transmitted and acked. Appropriate pointers to do this

will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC and

TCP/1P headers are created in it. It may be quicker/simpler to keep a basic frame header set up

in the TCB and either DMA directly this into the frame each time. Then data is DMA’d from

host memory into the frame to create an MSS-sized segment. This DMA also checksums the

data. Then the checksum is adjusted for the pseudo—header and placed into the TCP header,

" and the frame is queued to the MAC transmit interface which may be controlled by the third

sequencer. The final step is to update various window fields etc in the TCB. Eventually either

the entire request will have been sent and acked, or a retransmission timer will expire in which

case the context is flushed to the host. In either case, the INIC will place a command response

in the Response queue containing the command buffer handle from the original transmit

command and appropriate status.

The above discussion has dealt how an actual transmit occurs. However the real

challenge in the transmit processor is to determine whether it is appropriate to transmit at the

time a transmit request arrives. There are many reasons not to transmit: the receiver’s window

size is <= 0, the Persist timer has expired, the amount to send is less than a full segment and an

ACK is expected / outstanding, the receiver’s window is not half-open etc. Much of the

transmit processing will be in determining these conditions.

111‘

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 116

INTEL Ex.1002.117

_ ALA-006E

10

.15

20

25

30

TRAN SMIT DETAILS — NO VALID CONTEXT.

The main difference between this and a context—based transmit is that the queued

request here will already have the appropriate MAC and TCP/1P (or whatever) headers in the

frame to be output. Also the request is guaranteed not to be greater than MSS—sized in length.

So the processing is fairly simple. A large buffer is acquired and the frame is DMAed into it,

at which time the checksum is also calculated. If the frame is TCP/1P, the checksum will be

appropriately adjusted if necessary (pseudo—header etc) and placed in the TCP header. The

frame is then queued to the appropriate MAC transmit interface. Then the command is

immediately responded to with appropriate status through the Response queue.

TRANSMIT NorEs‘.

1) Slow-start: the INIC will handle the slow-start algorithm that is now a part of the

TCP standard. This obviates waiting until the connection is sending a full—rate before passing

it to the INIC. I

2) Window Probe vs Window Update - an explanation for posterity. A Window Probe

is sent from the sending TCB to the receiving TCB, and it means the sender has the receiver in

PERSIST state. Persist state is entered when the receiver advertises a zero window. It is thus

the state of the transmitting TCB. In this state, he sends periodic window probes to the receiver

in case an ACK from the receiver has been lost. The receiver will return his latest window size

in the ACK. A Window Update is sent from the receiving TCB to the sending TCB, usually to

tell him that the receiving window has altered. It is mostly triggered by the upper layer when it

accepts some data. This probably means the sending TCB is viewing the receiving TCB as

being in PERSIST state. i l

3) Persist state: it is designed to handle Persist state on the INIC. It seems

unreasonable to throw a TCB back to the host just because its receiver advertised a zero

window. This would normally be a transient situation, and would tend to happen mostly with

clients that do not support slow-start. Alternatively, the code can easily be changed to throw

the TCB back to\ the host as soon as a receiver advertises a zero window.

4) MSS-sized frames: the INIC code will expect all transmit requests for which it has

no TCB to not be greater than the MSS. If any request is, it will be dropped and an

appropriate response status posted.

112

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 117

INTEL Ex.1002.118

ALA—006E

10

15

20

25

30

5) Silly Window avoidance: as a receiver, the INIC will do the right thing here and not

advertise small windows — this is easy. However it is necessary to also do things to avoid this

as a sender, for the cases where a stupid client does advertise small Windows. Without getting

into too much detail here, the mechanism requires the lNlC code to calculate the largest

window advertisement ever advertised by the other end. It is an attempt to guess the size of the

other end’s receive buffer and assumes the other end never reduces the size of its receive

buffer. See Stevens, “TCP/IP Illustrated”, Vol. 1, pp. 325-326 (1994).

[THE UTILITY PROCESSOR.
SUMMARY.

The. following is a summary of the main functions of the utility sequencer of the

microprocessor:

1) Look at the event queues: Event13Type & Event23Type (we assume there will be

an event status bit for this - USEAEV13 and USE_EV23) in the events register; these are

1 events from sequencers 1 and 2; they will mainly be XMIT requests fiom the XMT sequencer.

Dequeue request and place the frame on the appropriate interface.

2) RCV—frame support: in the model, RCV is done through VinieReceiveO which is

registered by the lower—edge driver, and is called at dispatch—level. This routine calls

I VinicTranslerDataCompleteO to check if the xfer (possibly DMA) of the frame into host

buffers is complete. The latter rtne is also called at dispatch level on a DMA—completion

interrupt. It queues complete buffers to the RCV sequencer via the normal queue mechanism.

3) Other processes may also be employed here for supporting the RCV sequencer.

4) Service the following registers (this will probably involve micro—interrupts):

a) Header Buffer Address register:

Buffers are 256 bytes long on 256—byte boundaries.

31—8 — physical addr in host of a set of contiguous hddr buffers.

7—0 - number ofhddr buffers passed.

Use contents to add to SmallHType queue.

b) Data Buffer Handle & Data Buffer Address registers:

Buffers are 4K long aligned on 4K boundaries.

Use contents to add to the FreeType queue.

c) Command Buffer Address register:
1 13

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 118

INTEL Ex.1002.119

ALA—006E

Buffers are multiple of 32 bytes up to 1K long (2**5 * 32).

31-5 - physical addr in host of cmd buffer.

4—0 — length of cmd in bytes/32 (i.e. multiples of 32 bytes).

Points to host cmd; gct FreeSType buffer and move.

5 command into it; queue to XmitO—Xmit3Type queues.

d) Response Buffer Address register:

Buffers are 32 bytes long on 32-byte boundaries.

31-8 - physical addr in host of a set of contiguous resp buffers.

7—0 - number of resp buffers passed. .

10 v Use contents to add to the ResponseType queue.
5) Low buffer threshold support: set approp bits in the ISR when the available-buffers

count in the various queues filled by the host falls below a threshold.

FURTHER OPERATIONS OF THE UTILITY PROCESSOR.

15 The utility processor of the microprocessor housed on the INIC is responsible for

setting up and implementing all configuration space and memory mapped operations, and also

as described below, for managing the debug interface.

All data transfers, and other INIC initiated transfers will be done via DMA.

Configuration space for both the network processor function and the utility processor function

20 will define a single memory space for each. This memory space will define the basic

communication structure for the host. In general, writing to one of these memory locations

will perform a request for service from the INIC. This is detailed in the memory description

for each function. This section defines much of the operation of the Host interface, but should

be read in conjunction with the Host Interface Strategy for the Alacritech INIC to fully define
25 the Host/INIC interface.

Two registers, DMA hardware and an interrupt function comprise the INIC interface to

the Host through PCI. The interrupt fimction is implemented Via a four bit register (PClilNT)

tied to the PCI interrupt lines. This register is directly accessed by the microprocessor.

I THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the

30 PCI_AddrcssiReg, to enable the Host to access Configuration Space and the memory space

allocated to thc INIC. These registers are not available to the Host, but are used by THE

114

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 1 19

INTEL Ex.1002.120

ALA-006E

MICROPROCESSOR to enable Host reads and writes. The function of these two registers is
as follows.

1) PCIgData_Reg: This register can be both read and Written by THE

MICROPROCESSOR. On write operations from the host, this register contains the data being

5 sent from the host. On read operations, this register contains the data to be sent to the host.

2) PCI_Address_Reg: This is the control register for memory reads and writes from

the host. The structure of the register is shown in Fig. 42. During a write operation from the

Host the PCl_Data_Reg contains valid data after Data Valid is set in the PC1_Address_Reg.

Both registers are locked until THE MICROPROCESSOR writes the PCIiData_Reg, which

10 resets Data Valid. All read operations will be direct from SRAM. Memory space based reads

will return 00. Configuration space reads will be mapped as shown in Fig. 43.

CONFIGURATION SPACE.

The INIC is implemented as a multi—function device. The first device is the network

15 controller, and the second device is the debug interface. An alternative production

embodiment may implement only the network controller function. Both configuration space

headers will be the same, except for the differences noted in the following description.

Vendor ID ~ This field will contain the Alacritcch Vendor ID. One field will be used

for both functions. The Alacritcch Vendor ID is hex 139A.

20 ‘ Device ID i Chosen at Alacritcch on a device specific basis. One field will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.

Those that are enabled will be set to O or 1 depending on the state of the system. Each

function (network and debug) will have its own command field, as shown in Fig. 44.

25 Status 7 This is not initialized to zero. Each function will have its own field. The

configuration is as shown in Fig. 45. ‘

Revision ID ~ The revision field will be shared by both functions.

Class Code ‘ This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

3O Cache Linc Size — This is initialized to zero. Supported sizes are 16, 32, 64 and 128

bytes. This hardware register is replicated in SRAM and supported separately for each

115

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 120

INTEL Ex.1002.121

ALA-006E

10

15

20

25

30

function, but THE MICROPROCESSOR will implement the value set in Configuration Space

1 (the network processor).

Latency Timer — This is initialized to zero. The fiJnction is supported. This hardware

register is replicated in SRAM. Each filnction is supported separately, but THE

MICROPROCESSOR will implement the value set in Configuration Space 1 (the network

processor).

Header Type —— This is set to 80 for both fimctions, but will be supported separately.

BIST ~ Is implemented. In addition to responding to a request to run self test, if test

after reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each

function. It is 64 bits in length, and the bottom four bits are configured as follows: Bit 0 ~ 0,

indicates memory base address; Bit 1,2 — 00, locate base address anywhere in 32 bit memory

space; and Bit 3 — 1; memory is prefetchable.

CardBus CIS Pointer — Not implementediinitialized to O.

Subsystem Vendor ID — Not implementediinitialized to O.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implementediinitialized to O.

Interrupt Line ~ Implemented—initialized to 0. This is implemented separately for
each function.

Interrupt Pin 7 This is set to 01, corresponding to INTA# for the network controller,

and 02, corresponding to TNTB# for the debug interface. This is implemented separately for
each function.

Min_Gnt — This can be set at a value in the range of 10, to allow reasonably long bursts

on the bus. This is implemented separately for each function.

Max_Lat — This can be set to O to indicate no particular requirement for frequency of

access to PCI. This is implemented separately for each function.

MEMORY SPACE.

Because each of the following functions may or may not reside in a single location, and

may or may not need to be in SRAM at all, the address for each is really only used as an

identifier (label). There is, therefore, no control block anywhere in memory that represents
1 16

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 121

INTEL Ex.1002.122

ALA-006E

this memory space. When the host writes one of these registers, the utility processor will

construct the data required and transfer it. Reads to this memory will generate 00 for data.

NETWORK PROCESSOR.

5 The following four byte registers, beginning at location hOO of the network processor’s

allocated memory, are defined.

00 e Interrupt Status Pointer —- lnitialized by the host to point to a four byte area where
status is stored.

04 — Interrupt Status ~ Returned status from host. Sent afier one or more

l0 status conditions have been reset. Also an interlock for storing any

new status: Once status has been stored at the Interrupt Status Pointer

location, no new status will be ORed until the host writes the Interrupt

Status Register. New status will be ored with any remaining

uncleared status (as defined by the contents of the returned status)

15 and stored again at the Interrupt Status Pointer location. Bits are

as follows: ‘

Bit 31 A ERR -— Error bits are set;

Bit 30 — RCV — Receive has occurred;

Bit 29 e XMT e Transmit command complete; and

20 Bit 25 e RMISS — Receive drop occurred due to no buffers.

08 V Interrupt Mask 7 Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the same bit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

25 when the Interrupt Status Register is written, enabling new status

to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

0C -— Header Buffer Address — Written by host to pass a set ofheader buffers to the INIC.

10? Data Buffer Handle 7 First register to be written by the Host to transfer a receive data

30 buffer to the INIC. This data is Host reference data. It is not used by the INIC, it is

returned with the data buffer. However, to insure integrity of the buffer, this register

must be interlocked with the Data Buffer Address register. Once the Data Buffer
1 17

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 122

INTEL Ex.1002.123

ALA-006E

10

15

2O

25

30

Address register has been written, neither register can be written until after the Data

Buffer Handle register has been read by THE MICROPROCESSOR.

l4 — Data Buffer Address — Pointer to the data buffer being sent to the INIC by the Host.

Must be interlocked with the Data Buffer Handle register.

18 — Command Buffer Address XMTO ~ Pointer to a set of command

buffers sent by the Host. THE MICROI’ROCESSOR will DMA the. buffers to local

DRAM found on the FreeSType queue and queue the Command

Buffer Address XMTO with the local address replacing the host Address.
1C 7 Command Buffer Address SMTl.

20 7 Command Buffer Address SMT2.

24 — Command Buffer Address SMT3.

28 — Response Buffer Address -— Pointer to a set of response buffers sent

by the Host. These will be treated in the same fashion as the Command Buffer Address

registers.

UTILITY PROCESSOR.

Ending status will be handled by the utility processor in the same fashion as it is

handled by the network processor. At present two ending status conditions are defined B31 —

command complete, and B30 — error. When cnd status is stored an interrupt is generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is

responsible for insuring that the Data Pointer is valid and points to sufficient memory before

storing a command pointer. Storing a command pointer initiates command decode and

execution by the debug processor. The Host must not modify either command or Data Pointer

until ending status has been received, at which point a new command may be initiated.

Memory space is write only by the Host, reads will receive 00. The format is as follows:

7 00 — Interrupt Status Pointer -- lnitialized by the host to point to a four byte area where
status is stored.

O4 — Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be stored until the host writes the Interrupt

Status Register. New status will be ored with any remaining
1 18

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 123

INTEL Ex.1002.124

ALA-006E

10

15

20

25

08—

OC—

10—

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — CC — Command Complete;

Bit 3O — ERR — Error;

Bit29 — Transmit Processor Halted;

Bit28 ~ Receive Processor Halted; and

Bit27 7 Utility Processor Halted.

Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the same bit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status

to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

Command Pointer — Points to command to be executed. Storing

this pointer initiates command decode and execution.

Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

- DEBUG INTERFACE.

In order to provide a mechanism to debug the microcode running on the microprocessor

sequencers, a debug process has been defined which will run on the utility sequencer. This

processor will interface with a control program on the host processor over PCI.

PCI INTERFACE.

Interface Strategy sections, above.

119

This interface is defined in the combination of the Utility Processor and the Host

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 124

INTEL Ex.1002.125

ALA-006E

10

15

20

25

30

COMMAND FORMAT.

The first byte of the command, the command byte, defines the structure of the remainder

of the command.

COMMAND BYTE.

The first five bits of the command byte are the command itself. The next bit is used to

specify an alternate processor, and the last two bits specify which processors are intended for

the command.

PROCESSOR BITS.

00 w Any Processor;

01 A Transmit Processor;

10 7 Receive Processor; and

11 7 Utility Processor.

ALTERNATE PROCESSOR. I

This bit defines which processor should handle debug processing if the utility

processor is defined as the processor in debug.

0 i Transmit Processor; and

1 7 Receive Processor.

SINGLE BYTE COMMANDS.

00 — Halt - This command asynchronously halts the processor.

08 — Run — This command starts the processor.

10 — Step - This command steps the processor.

EIGHT BYTE COMMANDS.

18 7 Break

0 1

Command Reserved

120

2—3

Count

4 — 7

Address

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 125

INTEL Ex.1002.126

n

ALA-006E

10

15

20

25

30

This command sets a stop at the specified address. A count of 1 causes the specified

processor to halt the first time it executes the instruction. A count of 2 or more causes the

processor to halt after that number of executions. The processor is halted just before executing

the instruction. A count of 0 does not halt the processor, but causes a sync signal to be

generated. If a second processor is set to the same break address, the count data from the first

break request is used, and each time either processor executes the instruction the count is

decremented.

2O — Reset Break

0 1 — 3 4 — 7

Command Reserved Address

This command resets a previously set break point at the specified address. Reset break

fully resets that address. If multiple processors were set to that break point, all will be reset.

28 — Dump

0 l l 2 - 3 4 — 7

Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the address field is specified.

DESCRIPTOR.

00 — Register - This descriptor uses both count and address fields. Both fields are

four byte based (a count of l transfers four bytes).

01 — Sram - This descriptor uses both count and address fields. Count is in four byte

blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

02 — DRAM - This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

. the lower four byte aligned address.
12 l

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 126

INTEL Ex.1002.127

ALA-006E

5

10

15

20

25

30

03*

Cstore - This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four bytc aligned address.

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04 — CPUwSTATUS;

05 — PC;

06 — ADDR_REGA;

07 — ADDR_REGB;

08 — RAMgBASE;

09 — FILE_BASE;

0A * 1N STR_REGgL;

OB — INSTRVREGAH;

0C 7 MAC_DATA;

0D 7 DMA_EVENT;

0E — MlSCiEVENT;

0F — QilNuRDY;

10 — Q_OUT_RDY;

l l — LOCK STATUS;

l2 7 STACK — This returns 12 bytes; and

13 SENSEWREG.

This register contains four bytes of data. If error status is posted for a command, if the

next command that is issued reads this register, a code describing the error in more detail may

" be obtained. If any command other than a dump of this register is issued after error status,

sense information will be reset.

30 — Load

0

Command

1

Descriptor

122

2-3

Count

4 — 7

Address

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 127

INTEL Ex.1002.128

ALA-006E

This command transfers from the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the address field is specified.

5 DESCRIPTOR.

L 00 — Register - This descriptor uses both count and address fields. Both fields are

four byte based.

0] — Sram - This descriptor uses both count and address fields. Count is in four byte

blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the

10 lower four byte aligned address.

02 — DRAM — This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address.

03 —

15 byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

Cstore— This descriptor uses both count and address fields. Count is in four

the lower four byte aligned address. This applies to WCS only.

Stand-alone descriptors: The following descriptors do not use either the count or address

lields. They transfer the contents of the referenced register.

20 04 — ADDR_REGA;

05 7 ADDR_REGB;

06 RAMiBASE;

07 7 FILE BASE;

08 ~ MACWDATA;

25 09 — Q_IN_RDY;

0A — CLOUT_RDY;

0B — DBG_ADDR; and

38 — MAP.

This command allows an instruction in ROM to be replaced by an instruction in WCS.

30 The new instruction will be located in the Host buffer. It will be stored in the first eight bytes

of the buffer, with the high bits unused. 'l‘o reset a mapped out instruction, map it to location

00.

123

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 128

INTEL Ex.1002.129

ALA-006E

10

15

20

25

30

0 1 — 3 4 7 7

Command Address to Address to

Map To Map Out

HARDWARE SPECIFICATION.

FEATURES:

1) PERIPHERAL COMPONENT INTERCONNECT (PCI) INTERFACE.

a) Universal PCI interface supports both 5.0V and 3.3V signaling environments;

b) Supports both 32—bit and 64 bit PCI interface;

0) Supports PCI clock frequencies from lSMHz to 66MHZ;

(1) High performance bus mastering architecture;

e) Host memory based communications reduce register accesses;

t) Host memory based interrupt status word reduccs register reads;

g) Plug and Play compatible;

h) PCI specification revision 2.1 compliant;

i) PCI bursts up to 512 bytes;

j) Supports cache line operations up to 128 bytes;

k) Both big—endian and little—endian byte alignments supported; and

1) Supports Expansion ROM.

2) NETWORK INTERFACE.

a) Four internal 802.3 and ethernet compliant Macs;'

r b) Media Independent Interface (MII) supports external PHYS;

c) loBASE-T, IOOBASE—TX/FX and lOOBASE-T4 supported;

d) Full and half—duplex modes supported;

6) Automatic PHY status polling notifies system of status change;

t) Provides SNMP statistics counters; I

g) Supports broadcast and multicast packets;

h) Providesipromiscuous mode for network monitoring or multiple unicast address

detection;

i) Supports “huge packets” up to 32KB;

j) Mac-layer loop-hack test mode; and
124

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 129

INTEL Ex.1002.130

ALA-006E

10

1'5

20.

25

30

k) Supports auto—negotiating Phys.

3) MEMORY INTERFACE.

21) External DRAM buffering of transmit and receive packets;

b) Buffering configurable as 4MB, 8MB, 16MB or 32MB;

c) 32-bit interface supports throughput of224MB/s; I

(1) Supports external FLASH ROM up to 4 MB, for diskless boot applications; and

e) Supports external serial EEPROM for custom configuration and Mac addresses.

4) PROTOCOL PROCESSOR.

a) High speed, custom, 32—bit processor executes 66 million instructions per second;

b) Processes IP, TCP and NETBIOS protocols;

0) Supports up to 256 resident TCP/1P contexts; and

d) Writable control store (WCS) allows field updates for feature enhancements.

5) POWER.

a) 3.3V chip operation; and

b) ’PCI controlled 5.0V/3.3V I/O cell operation.

6) PACKAGING.

a) 272-pin plastic ball grid array;

h) 91 PC] signals;

0) 68 M11 signals;

(1) 58 external memory signals;

e) 1 clock signal;

0 54 signals split between power and ground; and

g) 272 total pins. ‘

GENERAL DESCRIPTION.

The microprocessor (see Fig. 46) is a 32-bit, full-duplex, four channel, 10/100-Megabit

per second (Mbps), Intelligent Network Interface Controller (INIC), designed to provide high-

speed protocol processing for server applications. It combines the functions of a standard
125

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 130

INTEL Ex.1002.131

ALA—006E

10

15-

20

25

30

network interface controller and a protocol processor within a single chip. Although designed

specifically for server applications, the microprocessor can be used by PCs, workstations and

routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous DRAM

(SDRAM), the INIC comprises four complete cthemet nodes. It contains four 802.3/ethernet

compliant Macs, a PCI Bus Interface Unit (BIU), a memory controller, transmit fifos, receive

fifos and a custom TCP/lP/NETBIOS protocol processor. The INIC supports lOBase-T ,

’ lOOBase-TX, lOOBase-FX and lOOBase-T4 via the MI] interface attachment of appropriate

Phys. 1 I

The INIC Macs provide statistical information that may be used for SNMP. The Macs

operate in promiscuous mode allowing the INIC to function as a network monitor, receive

broadcast and multicast packets and implement multiple Mac addresses for each node.

‘ Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support lOBASE-

T, lOBASE—TZ, 100BASE-TX, lOOBase—FX and 100BASE-T4 as well as fiJture interface
standards. PHY identification and initialization is accomplished through host driver

initialization routines. PHY status registers can be polled continuously by the INIC and

detected PHY status changes reported to the host driver. The Mac can be configured to support

a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BlU provides a direct interface to the PCI bus for both slave

and master functions. The INIC is capable of operating in either a 64-bit or 32-bit PCI

environment, while supporting 64-bit addressing in either configuration. PCI bus frequencies

up to 66MHz are supported yielding instantaneous bus transfer rates of 533MB/s. Both 5.0V

and 3.3V signaling environments can be utilized by the INIC. Configurable cache-line size up

to 256B will accommodate future architectures, and Expansion ROM/Flash support allows for

diskless system booting. Non-PC applications are supported via programmable big and little

endian modes. Host based communication has been utilized to provide the best system I

performance possible.

The lNlC supports Plug-N-Play auto—configuration through the PCI configuration

space. External pull—up and pull—down resistors, on the memory I/O pins, allow selection of

various features during chip reset. Support of an external eeprom allows for local storage of

configuration information such as Mac addresses.

126

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 131

INTEL Ex.1002.132

ALA-006E

10

15

20

25

30

External SDRAM provides frame buffering, which is configurable as 4MB, 8MB, 16MB

or 32MB using the appropriate SIMMs. Use of -l 0 speed grades yields an external buffer

bandwidth of 224MB/s. The buffer provides temporary storage of both incoming and outgoing

frames. The protocol processor accesses the frames within the buffer in order to implement

TCP/IP and NETBIOS. Incoming frames are processed, assembled then transferred to host

memory under the control of the protocol processor. For transmit, data is moved from host

memory to buffers where various headers are created before being transmitted out via the Mac.

’ 1) CORES/CELLS.

a) LSI Logic Ethernet-l 10 Core, 100Base and 10Base Mac with MII interface;

b) LSI Logic single port SRAM, triple port SRAM and ROM available;

c) LSI Logic PCI 66MHZ, 5V compatible I/O cell; and

(1) LSI Logic PLL.

2) DIE SIZE / PIN COUNT.

LSI Logic G10 process. Fig. 47 shows the area on the die of each module.

3) DATAPATH BANDWIDTH (See Fig. 48).

4) CPU BANDWIDTH (See Fig. 49).

5) PERFORMANCE FEATURES.

a) 512 registers improve performance through reduced scratch ram accesses and reduced

instructions;

b) Register windowing eliminates context-switching overhead;

c) Separate instruction and data paths eliminate memory contention;

d) Totally resident control store eliminates stalling during instruction fetch;

e) Multiple logical processors eliminate context switching and improve real-time
response;

f) Pipelined architecture increases operating frequency;

g) Shared register and scratch ram improve inter—processor communication;

h) Fly-by state-Machine assists address compare and checksum calculation;

i) TCP/IP—context caching reduces latency;

j) Hardware implemented queues reduce CPU overhead and latency;

k) Horizontal microcode greatly improves instruction efficiency;

1) Automatic frame DMA and status between Mac and DRAM buffer; and
127 ’

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 132

INTEL Ex.1002.133

ALA—006E

m) Deterministic architecture coupled with context switching eliminates processor stalls.

128

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 133

INTEL Ex.1002.134

ALA-006E

10

15

20

25

30

PROCESSOR.

_ The processor is a convenient means to provide a programmable state-machine which

is capable ofprocessing incoming frames, processing host commands, directing network

traffic and directing PCI bus traffic. Three processors are implemented using shared hardware

in a three-level pipelined architecture which launches and completes a single instruction for

every clock cycle. The instructions are executed in three distinct phases corresponding to each

of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the

destination operand, modifies the program counter (Pc), selects the address source for the

instruction to fetch, then fetches the instruction from the control store. The fetched instruction

is then stored in the instruction register at the end of the clock cycle.

The processor instructions reside in the on—chip control—store, which is implemented as

a mixture ofROM and SRAM. The ROM contains 1K instructions starting at address OXOOOO

and aliases each 0x6400 locations throughout the first OXSOOO of instruction space. The SRAM

(WCS) will hold up to OxZOOO instructions starting at address 0x8000 and aliasing each

OXZOOO locations throughout the last 0x8000 of instruction space. The ROM and SRAM are

both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate mapping

ram provides bits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM

based instructions. The mapping ram has a configuration of 128x7 which is insufficient to

allow a separate map address for each of the 1K ROM locations. To allow re—mapping of the

entire ‘lK ROM space, the map ram address lines are connected to the address bits Fetch[9:3].

The result is that the ROM is re-mapped in blocks of 8 contiguous locations.

The second instruction phase decodes the instruction which was stored in the

instruction register. It is at this point that the map address is checked for a non—zero value

which will cause the decoder to force a Jmp instruction to the map address. If a non-zero value

is detected then the decoder selects the source operands for the Alu operation based on the

values of the OpdASel, OdeSel and Alqu fields. These operands are then stored in the

decode register at the end of the clock cycle. Operands may originate from File, SRAM, or

'flip—flop based registers. The second instruction phase is also where the results of the previous
instruction are written to the SRAM.

129

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 134

INTEL Ex.1002.135

ALA-006E

10

15

20

25

30

The third instruction phase is when the actual Alu operation is performed, the test

condition is selected and the Stack push and pop are implemented. Results of the Alu

operation are stored in the results register at the end of the clock cycle.

Fig. 50 is a block diagram of the CPU. Fig. 50 shows the hardware functions

associated with each of the instruction phases. Note that various functions have been

distributed across the three phases of the instruction execution in order to minimize the

combinatorial delays within any given phase.

INSTRUCTION SET.

The micro-instructions are divided into six types according to the program control

directive. The micro-instruction is further divided into sub—fields for which the definitions are

dependent upon the instruction type. The six instruction types are listed in Fig. 51.

All instructions (see Fig. 51) include the Alu operation (Alqu), operand “A” select

I (OpdASel), operand “B” select (OdeSel) and Literal fields. Other field usage depends upon

the instruction type.

The “jump condition code” (Jcc) instruction causes the program counter to be altered if

the condition selected by the “test select” (TstSel) field is asserted. The new program counter

(PC) value is loaded from either the Literal field or the AluOut as described in the following

section and the Literal field may be used as a source for the Alu or the ram address if the new

Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally.

The new program counter (Pc) value is loaded from either the Literal field or the AluOut as

described in the following section. The format allows instruction bits 23:16 to be used to

perform a flag operation and the Literal field may be used as a source for the Alu or the ram

address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counter to be altered

unconditionally. The new program counter (Pc) value is loaded from either the Literal field or

the AluOut as described in the following section. The old program counter value is stored on

the top location of the Pe—Stack which is implemented as a LIFO memory. The format allows

instruction bits 23:16 to be used to perform a flag operation and the Literal field may be used

as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

130

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 135

INTEL Ex.1002.136

ALA-006E

10

15

20

25

30

The “Nxt” (Nxt) instruction causes the program counter to increment. The format

allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be

used as a source for the Alu or the ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction

in which the “flag operation” (FlgSel) field is set to a value of Ohff. The current Pc value is

replaced with the last value stored in the stack. The Literal field may be used as a source for

the Alu or the ram address.

The Map instruction is provided to allow replacement of instructions which have been

stored in ROM and is implemented any time the “map enable” (MapEn) bit has been set and

the content of the “map address” (MapAddr) field is non-zero. The instruction decoder forces a

jump instruction with the Alu operation and destination fields set to pass the MapAddr field to

the program control block.

The program control is determined by a combination of Pngtrl, DstOpd, FlgSel and

TstSel. The behavior of the program control is defined with the "C-like" description in Fig. 52.

Figs. 53—61 show ALU operations, selected operands, selected tests, and flag operations.

SRAM CONTROL SEQUENCER (SramCtrl).

SRAM is the nexus for data movement within the TNIC. A hierarchy of sequencers,

working in concert, accomplish the movement of data between DRAM, SRAM, CPU, ethernet

and the Pci bus. Slave sequencers, provided with stimulus from master sequencers, request

data movement operations by way of the SRAM, Pci bus, DRAM and Flash. The slave

sequencers prioritize, service and acknowledge the requests.

The data flow block diagram of Fig. 62 shows all of the master and slave sequencers of

the INIC product. Request information such as r/w, address, size, endian and alignment are

represented by each request line. Acknowledge information to master sequencers include only

the size of the transfer being acknowledged.

The block diagram of Fig. 63 illustrates how data movement is accomplished for a Pei

slave write to DRAM. Note that the Psi (Pei slave in) module functions as both a master

sequencer. Psi sends a write request to the SramCtrl module. Psi requests pr to move data

from SRAM to DRAM. pr subsequently sends a read request to the SramCtrl module then

writes the data to the DRAM via the Xctrl module. As each piece of data is moved from the

SRAM to pr, pr sends an acknowledge to the Psi module.
131

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 136

INTEL Ex.1002.137

ALA-006E

10

15

20

25

30

The SRAM control sequencer services requests to store to, or retrieve data from an ‘

SRAM organized as 1024 locations by 128 bits (16KB). The sequencer operates at a frequency

of 133MHz, allowing both a CPU access and a DMA access to occur during a standard

66MHz CPU cycle. One 133MHz cycle is reserved for CPU accesses during each 66MHz

7 cycle while the remaining 133MHz cycle is reserved for DMA accesses on a prioritized basis.

The block diagram of Fig. 64 shows the major functions of the SRAM control

sequencer. A‘slave sequencer begins by assertng a request along with r/w, ram address,

endian, data path size, data path alignment and request size. SramCtrl prioritizes the requests.

The request parameters are then selected by a multiplexer which feeds the parameters to the

‘ SRAM via a register. The requestor provides the SRAM address which when coupled with the

other parameters controls the input and output alignment. SRAM outputs are fed to the output

aligner via a register. Requests are acknowledged in parallel with the returned data.

Fig. 65 is a timing diagram depicting two ram accesses during a single 66MHz clock

cycle.

EXTERNAL MEMORY CONTROL (Xctrl).

Xctrl (See Fig. 66) provides the facility whereby pr, er, Dcfg and Eectrl access

external Flash and DRAM. Xctrl includes an arbiter, i/o registers, data multiplexers, address

multiplexers and control multiplexers. Ownership of the external memory interacc is requested

by each block and granted to each of the requesters by the arbiter function. Once ownership

has been granted the multiplexers select the address, data and control signals from owner,

allowing access to external memory.

EXTERNAL MEMORY READ SEQUENCER (er).

The er sequencer acts only as a slave sequencer. Servicing requests issued by master

sequencers, the er sequencer moves data from external SDRAM or flash to the SRAM, via

the Xctrl module, in blocks of 32 bytes or less. The nature of the SDRAM requires fixed burst

sizes for each of it's internal banks with ras precharge intervals between each access. By

selecting a burst size of 32 bytes for SDRAM reads and interleaving bank accesses on a 16

byte boundmy, we can ensure that the ras precharge interval for the first bank is satisfied

before burst completion for the second bank, allowing us to re—instruct the first bank and

continue with uninterrupted DRAM access. SDRAMs require a consistent burst size be
132

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 137

INTEL Ex.1002.138

ALA-006E

10

.15

20

25

30

utilized each and every time the SDRAM is accessed. For this reason, if an SDRAM access

does not begin or end on a 32 byte boundary, SDRAM bandwidth will be reduced due to less

than 32 bytes of data being transferred during the burst cycle.

Fig. 67 depicts the major functional blocks of the Km external memory read sequencer.

The first step in servicing a request to move data from SDRAM to SRAM is the prioritization

of the master sequencer requests. Next the er sequencer takes a snapshot of the DRAM‘ read

address and applies configuration information to determine the correct bank, row and column

address to apply. Once sufficient data has been read, the er sequencer issues a write request

to the SramCtrl sequencer which in turn sends an acknowledge to the er sequencer. The er

sequencer passes the acknowledge along to the level two master with a size code indicating

how much data was written during the SRAM cycle allowing the update of pointers and

counters. The DRAM read and SRAM write cycles repeat until the original burst request has

been completed at which point the er sequencer prioritizes any remaining requests in

preparation for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the er sequencer as an

algorithm is implemented which ensures highest priority to refresh cycles followed by flash

accesses, DRAM writes then DRAM reads.

Fig. 68 is a timing diagram illustrating how data is read fi‘om SDRAM. The DRAM has

been configured for a burst of four with a latency of two clock cycles. Bank A is first

selected/activated followed by a read command two clock cycles later. The bank

select/activate for bank B is next issued as read data begins returning two clocks after the read

command was issued to bank A. Two clock cycles before we need to receive data from bank B

we issue the read command. Once all 16 bytes have been received from bank A we begin

receiving data fi‘om bank B.

EXTERNAL MEMORY WRITE SEQUENCER (xWr).

The pr sequencer is a slave sequencer. Servicing requests issued by master

sequencers, the pr sequencer moves data from SRAM to the external SDRAM or flash, Via

the Xctrl module, in blocks of 32 bytes or less while accumulating a checksum of the data

moved. The nature of the SDRAM requires fixed burst sizes for each of it's internal banks with

ras precharge intervals between each access. By selecting a burst size of 32 bytes for SDRAM

writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras
133

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 138

INTEL Ex.1002.139

ALA—006E

10

15

20

25

3O

prechage interval for the first bank is satisfied before burst completion for the second bank,

allowing us to re-instruct the first bank and continue with uninterrupted DRAM access.

' SDRAMs require a consistent burst size be utilized each and every time the SDRAM is

accessed. For this reason, if an SDRAM access does not begin or end on a 32 byte boundary,

SDRAM bandwidth will be reduced due to less than 32 bytes of data being transferred during

the burst cycle.

Fig. ()9 depicts the major functional blocks of the pr sequencer. The first step in

servicing a request to move data from SRAM to SDRAM is the prioritization of the level two

master requests. Next the pr sequencer takes a Snapshot of the DRAM write address and

applies configuration information to determine the correct DRAM, bank, row and column

address to apply. The pr sequencer immediately issues a read command to the SRAM to

which the SRAM responds with both data and an acknowledge. The pr sequencer passes the

acknowledge to the level two master along with a size code indicating how much data was

read during the SRAM cycle allowing the update of pointers and counters. Once sufficient data

has been read from SRAM, the pr sequencer i5sues a write command to the DRAM starting

the burst cycle and computing a checksum as the data flys by. The SRAM read cycle repeats

until the original burst request has been completed at which point the pr sequencer

prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the pr sequencer as an

algorithm is implemented which ensures highest priority to refresh cycles followed by flash
accesses then DRAM writes.

Fig..70 is a timing diagram illustrating how data is written to SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. Bank A is first

selected/activated followed by a write command two clock cycles later. The bank

select/activate for bank B is next issued in preparation for issuing the second write command.

As soon as the first 16 byte burst to bank A completes we issue the write command for bank B

and begin supplying data.

PC] MASTER-OUT SEQUENCER (Pmo).

The Pmo sequencer (See Fig. 71) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmo sequencer moves data from an SRAM based fifo to a Pci

target, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus
134

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 139

INTEL Ex.1002.140

ALA—006E

10

15

20

25

30

dictates the use of the write line command to ensure optimal system performance. The write

line command requires that the Pmo sequencer be capable of transferring a whole multiple

(1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers.

To accomplish this end, Pmo will automatically perform partial bursts until it has aligned the

transfers on a cache line boundary at which time it will begin usage of the write line command.

The SRAM fifo depth, of256 bytes, has been chosen in order to allow Pmo to accommodate

cache line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmo will

perform multiple, contiguous cache line bursts until it has exhausted the supply of data.

Pmo receives requests from two separate sources; the DRAM to Pci (D2p) module and

the SRAM to Pci (82p) module. An operation first begins with prioritization of the requests

where the 82p module is given highest priority. Next, the Pmo module takes a Snapshot of the

SRAM fifo address and uses this to generate read requests for the SramCtrl sequencer. The

Pmo module then proceeds to arbitrate for ownership of the Pci bus Via the PciMstrIO module.

Once the Pmo holding registers have sufficient data and Pci bus mastership has been granted,

the Pmo module begins transferring data to the Pei target. For each successfirl transfer, Pmo

sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal

pointers, counters and status. Once the Pci burst transaction has terminated, Pmo parks on the

Pei bus unless another initiator has requested ownership. Pmo again prioritizes the incoming

rcquests and repeats the process.

PCI MASTER—OUT SEQUENCER (Pmi).

The Pmi sequencer (See Fig. 72) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmi sequencer moves data from a Pci target to an SRAM

based fifo, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus

dictates the use of the read multiple command to ensure optimal system performance. The read

multiple command requires that the Pmi sequencer be capable of transferring a cache line or

more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts

until it has aligned the transfers on a cache line boundary at which time it will begin usage of

the read multiple command. The SRAM fifo depth, of 256 bytes, has been chosen in order to

allow Pmi to accommodate cache line sizes up to 128 bytes. Provided the cache line size is

less than 128 bytes, Pmi will perform multiple, contiguous cache line bursts until it has filled

the fifo.
135

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 140

INTEL Ex.1002.141

'{10

15

20

25

30

ALA-006E

Pmi receive requests from two separate sources; the Pei to DRAM (P2d) module and

the Pei to SRAM (P25) module. An operation first begins with prioritization of the requests

where the P2s module is given highest priority. The Pmi module then proceeds to arbitrate for

ownership of the Pei hus via the PeiMstrIO module. Once the Pci bus mastership has been

granted and the Pmi holding registers have sufficient data, the Pmi module begins transferring

data to the SRAM fifo. For each successful transfer, Pmi sends an acknowledge and encoded

size to the master sequencer, allowing it to update it's internal pointers, counters and status.

Once the Pci burst transaction has terminated, Pmi parks on the Pei bus unless another initiator

has requested ownership. Pmi again prioritizes the incoming requests and repeats the process.

DRAM TO PCI SEQUENCER (D2P).

The D2p sequencer (See Fig. 73) acts is a master sequencer. Servicing channel requests

issued by the CPU, the D2p sequencer manages movement of data from DRAM to the Pei bus

by issuing requests to both the er sequencer and the Pmo sequencer. Data transfer is ‘

accomplished using an SRAM based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty—two DMA channels. Once a

command request has been detected, D2p fetches a DMA descriptor from an SRAM location

dedicated to the requesting channel which includes the DRAM address, Pei address, Pci endian

and request size. D2p then issues a request to the D2s sequencer causing the SRAM’based fife
to fill with DRAM data. Once the fifo contains sufficient data for a Pei transaction, D25 issues

a request to Pmo which in tum moves data from the fifo to a Pci target. The process repeats

until the entire request has been satisfied at which time D2p writes ending status in to the

SRAM DMA descriptor area and sets the channel done bit associated with that channel. D2p

then monitors the DMA channels for additional requests. Fig. 74 is an illustration showing the

major blocks involved in the movement of data from DRAM to Pei target.

PCI TO DRAM SEQUENCER (P2d). ,

The P2d sequencer (See Fig. 75) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P2d sequencer manages movement of data

from Pei bus to DRAM by issuing requests to both the pr sequencer and the Pmi sequencer.

Data transfer is accomplished using an SRAM based fifo through which data is staged.

136

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 141

INTEL Ex.1002.142

ALA—006E

10

15

20.

25

30

P2d can receive requests from any of the processor's thirty—two DMA channels. Once a

command request has been detected, P2d, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAM address, Pei address, Pci endian and request size. P2d then issues a request to Pmo

which in turn moves data from the Pci target to the SRAM filo. Next, P2d issues a request to

the Km sequencer causing the SRAM based [ifo contents to be Written to the DRAM. The

process repeats until the entire request has been satisfied at which time P2d writes ending

status in to the SRAM DMA descriptor area and sets the channel done bit associated with that

channel. P2d then monitors the DMA channels for additional requests. Fig. 76 is an illustration

showing the major blocks involved in the movement of data from a Pci target to DRAM:

SRAM TO PCI SEQUENCER (82p).

The 82p sequencer (See Fig. 77) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the 82p sequencer manages movement of data
from SRAM to the Pci bus by issuing requests to the Pmo sequencer

82p can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, 82p, operating as a slave sequencer,- fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

SRAM a‘ddress, Pei address, Pci endian and request size. 82p then issues a request to Pmo

which in turn moves data from the SRAM to a Pci target. The process repeats until the entire

request has been satisfied at which time 82p writes ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. 82p then monitors

the DMA channels for additional requests. Fig. 78 is an illustration showing the major blocks

involved in the movement ol'data from SRAM to Pei target.

PCI TO SRAM SEQUENCER (P25).

The P25 sequencer (See Fig. 79) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P25 sequencer manages movement of data

from Pci bus to SRAM by issuing requests to the Pmi sequencer.

P23 can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, P2s, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the
137

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 142

INTEL Ex.1002.143

ALA-006E

10

.15

20

25

30

SRAM address, Pei address, Pei endian and request size. P25 then issues a request to Pmo

which in turn moves data from the Pei target to the SRAM. The process repeats until the entire

request has been satisfied at which time P25 writes ending status in to the DMA descriptor area

of SRAM and sets the channel done bit associated with that channel. P25 then monitors the

DMA channels for additional requests. Fig. 80 is an illustration showing the major blocks

involved in the movement of data from a Pei target to DRAM.

DRAM T0 SRAM SEQUENCER (D25).

The D25 sequencer (See Fig. 81) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the D25 sequencer manages movement of data

from DRAM to SRAM by issuing requests to the er sequencer.

D25 can receive requests from any of the processor's thirty-two-DMA channels. Once a
command request has been detected, D25, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAM address, SRAM address and request size. D2s then issues a request to the er

sequencer causing the transfer of data to the SRAM. The process repeats until the entire

request has been satisfied at which time D25 writes ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. D25 then monitors

the DMA channels for additional requests. Fig. 82 is an illustration showing the major blocks

involved in the movement of data from DRAM to SRAM.

SRAM TO DRAM SEQUENCER (82d).

The S2d sequencer (See Fig. 83) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the 82d sequencer manages movement of data

from SRAM t0 DRAM by issuing requests to the pr sequencer. F

S2d can receive requests from any of the processor's thirty—two DMA channels. Once a

command request has been detected, S2d, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAM address, SR AM address, checksum reset and request size. S2d then issues a request to

the pr sequencer causing the transfer of data to the DRAM. The process repeats until the

entire request has been satisfied at which time S2d writes ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. 82d then monitors
1 3 8

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 143

INTEL Ex.1002.144

ALA-006E

10

.15

20

25

'30

the DMA channels for additional requests. Fig. 84 is an illustration showing the major blocks

involved in the movement of data from SRAM to DRAM.

PCI SLAVE INPUT SEQUENCER (Psi).

The Psi sequencer (See Fig. 85) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pei master, the Psi sequencer manages movement of data from

Pei bus to SRAM and Pei bus to DRAM Via SRAM by issuing requests to the SramCtrl and

pr sequencers.

Psi manages write requests to configuration space, expansion rom, DRAM, SRAM and

memory mapped registers. Psi separates these Pei bus operations in to two categories with

different action taken for each. DRAM accesses result in Psi generating write request to an

SRAM buffer followed with a write request to the pr sequencer. Subsequent write or read

DRAM operations are retry terminated until the buffer has been emptied. An event notification

is set for the processor allowing message passing to occur through DRAM space.

All other Pci write transactions result in Psi posting the write information including Pci

address, Pci byte marks and Pci data to a reserved location in SRAM, then setting an event flag

which the event processor monitors. Subsequent writes or reads of configuration, expansion

rom, SRAM or registers are terminated with retry until the processor clears the event flag. This

allows the IN]C pipelining levels to a minimum for the posted write and give the processor

ample time to modify data for subsequent Pei read operations.

Fig. 85 depicts the sequence of events when Psi is the target of a Pci write operation.

Note that events 4 through 7 occur only when the write operation targets the DRAM.

PCI SLAVE OUTPUT SEQUENCER (Pso).

The Pso sequencer (See Fig. 86) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pei master, the Pso sequencer manages movement of data to Pei

bus from SRAM and to Pei bus from DRAM via SRAM by issuing requests to the SramCtrl

and er sequencers.

Pso manages read requests to configuration space, expansion rom, DRAM, SRAM and

memory mapped registers. Pso separates these Pei bus operations in to two categories with

different action taken for each. DRAM accesses result in Pso generating read request to the

‘ er sequencer followed with a read request to SRAM buffer. Subsequent write or read DRAM
139

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 144

INTEL Ex.1002.145

ALA-006E

IO

‘15

20

25

operations are retry terminated until the buffer has been emptied.

All other Pei read transactions result in Pso posting the read request information

including Pci address and Pci byte marks to a reserved location in SRAM, then setting an

event flag which the event processor monitors. Subsequent writes or reads of configuration,

expansion rom, SRAM or registers are terminated with retry until the processor clears the

event flag. This allows the INIC to use a microcoded response mechanism to return data for

the request. The processor decodes the request information, formulates or fetches the requested

data and stores it in SRAM then clears the event Hag allowing Ps0 to fetch the data and return

it on the Pei bus.

Fig. 78 depicts the sequence of events when P50 is the target of a Pci read operation.

FRAME RECEIVE SEQUENCER (Rch).

The receive sequencer (See Fig. 87) (RcvSeq) analyzes and manages incoming packets,

stores the result in DRAM buffers, then notifies the processor through the receive queue

(Rch) mechanism. The process begins when a buffer descriptor is available at the output of

the FreeQ. RcvSeq issues a request to the ng which responds by supplying the buffer

descriptor to RcvSeq. RcvSeq then waits for a receive packet. The Mac, network, transport and

session information is analyzed as each byte is received and stored in the assembly register

(AssyReg). When four bytes ofinformation is available, RcvSeq requests a write of the data to

the SRAM. When sufficient data has been stored in the SRAM based receive fifo, a DRAM

write request is issued to pr. The process continues until the entire packet has been received

at which point RcvSeq stores the results of the packet analysis in the beginning of the DRAM

buffer. Once the buffer and status have both been stored, RcvSeq issues a write-queue request

to ng. ng responds by storing a buffer descriptor and a status vector provided by RcvSeq.

The process then repeats. If RcvSeq detects the arrival of a packet before a free buffer is

available, it ignores the packet and sets the FramcLost status bit for the next received packet.

Fig. 88 depicts the sequence of events for successful reception of a packet followed by

a definition of the receive buffer and the buffer descriptor as stored on the Rch. Fig. 89

shows the Receive Buffer Descriptor. Figs. 90-92 show the Receive Buffer Format.

140

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 145

INTEL Ex.1002.146

ALA-006E

10

15

20

25

FRAME TRANSMIT SEQUENCER (thX).

The transmit sequencer (See Fig. 93) (thSeq) analyzes and manages outgoing

packets, using buffer descriptors retrieved from the transmit queue (thQ) then storing the

descriptor for the freed buffer in the free buffer queue (FreeQ). The process begins when a

buffer descriptor is available at the output of the thQ. thSeq issues a request to the ng

which responds by supplying the buffer descriptor to thSeq. thSeq then issues a read

request to the er sequencer. Next, thSeq issues a read request to SramCtrl then instructs

the Mac to begin frame transmission. Once the frame transmission has completed, thSeq

stores the buffer descriptor on the FreeQ thereby recycling the buffer.

Fig. 94 depicts the sequence of events for successful transmission of a packet followed

by a definition of the receive buffer and the buffer descriptor as stored on the thQ. Fig. 95

shows the Transmit Buffer Descriptor. Fig. 96 shows the Transmit Buffer Format. Fig. 97

shows the Transmit Status Vector.

QUEUE MANAGER 1: 2mg I.

The INIC includes special hardware assist for the implementation of message and

pointer queues. The hardware assist is called the queue manager (See Fig. 98) (ng) and

manages the movement of queue entries between CPU and SRAM, between DMA sequencers

and SRAM as well as between SRAM and DRAM. Queues comprise three distinct entities; the

queue head (QHd), the queue tail (QTl) and the queue body (Qde). QHd resides in 64 bytes

of scratch ram and provides the area to which entries will be written (pushed). QTl resides in

64 bytes of scratch ram and contains queue locations from which entries will be read (popped).

Qde resides in DRAM and contains locations for expansion of the queue in order to

minimize the SRAM space requirements. The Qde size depends upon the queue being

aceeSSed and the initialization parameters presented during queue initialization.

141

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 146

INTEL Ex.1002.147

ALA-006E

‘10

_15

20

25

30

ng accepts operations from both CPU and DMA sources (See Fig. 99). Executing

these operations at a frequency of 133MHz, ng reserves even cycles for DMA requests and

reserves odd cycles for CPU requests. Valid CPU operations include initialize queue (InitQ),

write queue (WrQ) and read queue (RdQ). Valid DMA requests include read body (Rdde)

and write body (Wrde). ng working in unison with Q2d and D2q generate requests to the

pr and er sequencers to control the movement of data between the QHd, QT] and Qde.

Fig. 98 shows the major functions ofng. The arbiter selects the next operation to be

performed. The dual—ported SRAM holds the queue variables HdWrAddr, HdeAddr,

TlWrAddr, TleAddr, deWrAddr, deRdAddr and Q82. ng accepts an operation request,

fetches the queue variables from the queue ram (Qram), modifies the variables based on the

. current state and the requested operation then updates the variables and issues a read or write

request to the SRAM controller. The SRAM controller services the requests by writing the tail

or reading the head and returning an acknowledge.

’ DMA OPERATIONS.

DMA operations are accomplished through a combination of thimytwo DMA channels

(DmaCh) and seven DMA sequencers (DmaSeq). Each DMA channel provides a mechanism

whereby a CPU can issue a command to any of the seven DMA sequencers. Where as the

DMA channels are multi-purpose, the DMA sequencers they command are single purpose as

shown in Fig. 100.

The processors manage DMA in the following way. The processor writes a DMA

descriptor to an SRAM location reserved for the DMA channel. The format of the DMA

‘ descriptor is dependent upon the targeted DMA sequencer. The processor then writes the

DMA sequencer number to the channel command register.

Each of the DMA sequencers polls all thimytwo DMA channels in search of commands

to execute. Once a command request has been detected, the DMA sequencer fetches a DMA

descriptor from a fixed location in SRAM. The SRAM location is fixed and is determined by

the DMA channel number. The DMA sequencer loads the DMA descriptor in to it's own

registers, executes the command, then overwrites the DMA descriptor with ending status.

Once the command has halted, due to completion or error, and the ending status has been

written, the DMA sequencer sets the done bit for the current DMA channel.

142

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 147

INTEL Ex.1002.148

ALA-006E

The done bit appears in a DMA event register which the CPU can examine. The CPU

fetches ending status from SRAM, then clears the done bit by writing zeroes to the channel

command (ChCmd) register. The channel is now ready to accept another command.

The format of the channel command register is as shown in Fig. 101. The format of the

5 P2d or P2s descriptor is as shown in Fig. 102. The format ofthe 82p or D2p descriptor is as

shown in Fig. 103. The format ofthe S2d, D2d or D25 descriptor is as shown in Fig. 104. The

format of the ending status of all channels is as shown in Fig. 105. The format of the ChEvnt

register is as shown in Fig. 106. Fig. 107 is ablock diagram ofMAC CONTROL (Macctrl).

10 LOAD CALCULATIONS.

The following load calculations are based on the following basic formulae:

N : X * R (Little’s Law) where:

N 2 number ofjobs in the system (either in progress or in a queue),

15 X 2 system throughput,

R 2 response time (which includes time waiting in queues).

U = X * S (from Little’s Law) where:

S 7— service time,

20 U i utilization.

R : S / (l—U) for exponential service times (which is the worst-case assumption).

A 256-byte frame at 100Mb/sec takes 20 usec per frame.

25 4 * 100 Mbit ethemets receiving at full frame rate is:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame,

102000 frames/sec @ 512 bytes/frame,

204000 frames/sec @ 256 bytes/frame.

143

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 148

INTEL Ex.1002.149

ALA—006E

The following calculations assume 250 instructions/frame, 45nsec clock. Thus

S = 250 * 45 nsecs = 11.2 usecs.

5 Lets look at it for varying instructions per frame assuming 512 bytes per frame average.‘

Av Frame Size Thruput Utilization Response Nbr in system

(X) (U) (R) (N)

1024 51200 7' 0.57 26 usecs 1.3

512 102000 > I - - — -

256 204000 > 1 — - - -

Instns Per Thruput Utilization Response Nbr inlsy‘stem

Frame Time (S) p (X) (U) (R) (N)
11.2 usec 102000 >1 7 V 75:77

1 1.2 85000 (*) 0.95 224 usccs 19

250 11.2 80000 (5*) 0.89 7 101 ' 7’ W 8

225 10 102000 1.0 n — — —

225 10 95000 (*) 0.95 200 19

225 10 89000 (**) 0.89 90 8 '

200 ‘ 9 102000 0.9 90 9

150 6.7 102000 0.68 20 2

(*) shows what frame rate can be supported to get a utilization of less than I .

(**) shows what frame rate can be supported with 8 SRAM CCB buffers and at least 8 process
contexts.

10 If100 instructions / frame is used, S = 100 * 45 nsees = 4.5 usecs, and we can support 256

byte frames:

100

4.5

204000 0.91 50 10

Note that these calculations assume that response times increase exponentially as

utilization increases. This is the worst—case assumption, and probably may not be true for our

144

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 149

INTEL Ex.1002.150

ALA—006E

10

system. The figmes show that to support a theoretical full 4 * 100 Mbit receive load with an

average frame size of 512 bytes, there will need to be 19 active “jobs” in the system, assuming

250 instructions per frame. Due to SRAM limitations, the current design specifies 8 SRAM

buffers for active TCBs, and not to swap a TCB out of SRAM once it is active. Sounder these

limitations, the FNIC will not be able to keep up with the full frame rate. Note that the initial

implementation is trying to use only SKB of SR AM, although 16KB may be available, in

which case 19 TCB SRAM buffers could be used. This is a cost trade-off. The real point here

is the effect of instructions/frame on the throughput that can be maintained. If the

instructions/frame drops to 200, then the INIC is capable ofhandling the fiill theoretical load

(102000 frames/second) with only 9 active TCBs. If it drops to 100 instructions per frame,

then the INIC can handle full bandwidth at 256 byte frames (204000 frames/second) with 10

active CCBs. The bottom line is that all hardware—assist that reduces the instructions/frame is

really worthwhile. Ifheader-assist hardware can save us 50 instructions per frame then it goes

straight to the throughput bottom line.

145

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 150

INTEL Ex.1002.151

ALA-006E

CLAIMS

1. A method for network communication, the method comprising:

receiving a plurality ofpackets from the network, each of the packets including

a media access control layer header, a network layer header and a transport layer header;

processing the packets by a first mechanism, so that for each packet the

network layer header and the transport layer header are validated without an interrupt dividing

the processing of the network layer header and the transport layer header;

sorting the packets, dependent upon the processing, into first and second types

I of packets, so that‘the packets of the first type each contain data;

sending the data from each packet of the first type to a destination without

sending any of the media access control layer headers, network layer headers or transport layer

headers to the destination.

2. The method of claim 1, wherein processing the packets by a first mechanism further

comprises:

processing the media access control layer header for each packet without an

interrupt dividing the processing of the media access control layer header and the network

layer header.

3. The method of claim 1, further comprising:

processing an upper layer header of at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header corresponds

to a protocol layer above the transport layer.

4. The method of claim 1, further comprising:

processing an upper layer header of at least one of the packets of the second

type by a second mechanism, thereby determining the destination.

146

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 151

INTEL Ex.1002.152

ALA-006E

5. The method of claim 1, further comprising:

processing a transport layer header of another packet by a second mechanism,

prior to receiving the plurality ofpackets from the network, thereby establishing a Transport

Control Protocol (TCP) connection for the packets of the first type.

6. The method of claim I, wherein sorting the packets includes classifying each of the

packets of the first type as having an Internet Protocol (IP) header and a Transport Control

Protocol (TCP).

7. The method of claim 1, further comprising:

transmitting a second plurality ofpackets to the network, each of the second

‘ plurality of packets containing a media access control layer header, a network layer header and

a transport layer header, including processing the second plurality ofpackets by the first

mechanism, so that for each packet the media access control layer header, the network layer

header and the transport layer header are processed without an interrupt dividing the

processing of the media access control layer header, the network layer header and the transport

layer header.

8. The method of claim 1, wherein the first mechanism is a sequencer running microcode.

9. A method for communicating information over a network, the method comprising:

obtaining data from a source allocated by a first processor;

dividing the data into multiple segments;

prepending a packet header to each of the segments by a second processor,

thereby forming a packet corresponding to each segment, each packet header containing a

media access control layer header, a network layer header and a transport layerk‘header,

‘ wherein the prepending of each packet header occurs without an interrupt dividing the

prepending of the network layer header and the transport layer header; and

transmitting the packets to the network.

147

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 152

INTEL Ex.1002.153

ALA-006E

10. The method of claim 9, wherein prepending a packet header to each of the segments by

a second processor further comprises:

prepending the media access control layer header for each packet without an

interrupt dividing the prepending of the media access control layer header and the network

layer header.

1 1. The method of claim 9, wherein each packet header contains an Internet Protocol (IP)

header and 21 Transport Control Protocol (TCP) header.

the media access control layer header,

12. The method of claim 9, further comprising establishing a Transport Control Protocol

(TCP) connection by the first processor and using the connection to prepend the packet header

to each of the segments by the second processor.

13. The method of claim 9, further comprising creating a template header and forming each

packet header based upon the template header.

14. The method of claim 9, wherein obtaining data from the source in memory allocated by

the first processor is performed by a Direct Memory Access (DMA) unit controlled by the

second processor.

15. The method of claim 9, fithher comprising prepending an upper layer header to the

data, prior to dividing the data into multiple segments.

16. The method of claim 9, further comprising: ,

receiving another packet irom the network, the other packet containing a

receive header including information corresponding to a network layer and a transport layer;

and

selecting whether to process the other packet by the first processor or by the

second pl'OCCS SOI‘.

148

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 153

INTEL Ex.1002.154

i7

ALA-006E

17. A method for communicating information over a network, the method comprising:

providing multiple segments of data; ,

prepending an outbound packet header to each of the segments, thereby
forming an outbound packet corresponding to each segment, the outbound packet header

containing an outbound media access control layer header, an outbound network layer header

and an outbound transport layer header, wherein the prepending of each outbound packet

header occurs without an interrupt dividing the prepending of the outbound media access

control layer header, the outbound network layer header and the outbound transport layer

header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network, each of the inbound1

packets including an inbound media access control layer header, an inbound network layer

header and an inbound transport layer header;
processing the inbound packets, so that for each packet the inbound network

layer header and the inbound transport layer header are validated without an interrupt dividing

the processing of the inbound network layer header and the inbound transport layer header.

18. The method of claim 17, wherein the processing the inbound packets is performed

simultaneously with the prepending the outbound packet header to each of the segments.

19. The method of claim 17, further comprising creating a template header and using the

template header to fonn each outbound packet header.

20. The method of claim 17, wherein providing multiple segments of data includes

dividing a block of data into the segments.

21. The method of claim 20, further comprising prepending an upper layer header to the

block of data, prior to dividing the block of data into multiple segments.

149

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 154

INTEL Ex.1002.155

.

* J7 fl .
,/«-;r-»,»:v :

ALA-006E

22. The method of claim 17, further comprising:

sending data from each inbound packet to a destination without sending any of

the media access control layer headers, network layer headers or transport layer headers to the
destination.

23. The method of claim 17, further comprising:

. processing an upper layer header of at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header corresponds

to a protocol layer above the transport layer.

24. The method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to receiving

the plurality of packets from the network, thereby establishing a Transport Control Protocol

(TCP) connection for the inbound packets.

150

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 155

INTEL Ex.1002.156

 (" i L. .
w/ué'fjfi‘fln' V‘ . ALA—006E

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

5 . Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M. Philbn'ck

Daryl D. Starr

10

ABSTRACT OF THE DISCLOSURE

A system for protocol processing in a computer network has an intelligent network

interface card (INIC) or communication processing device (CPD) associated with a host

computer. The INIC provides a fast-path that avoids protocol processing for most large multi—

15 packet messages, greatly accelerating data communication. The INIC also assists the host for

those message packets that are chosen for processing by host sofiware layers. A

communication control block for a message is defined that allows DMA controllers of the

INIC to move data, free of headers, directly to or from a destination or source in the host. The

context is stored in the INIC as a communication control block (CCB) that can be passed back

20 to the host for message processing by the host. The INIC contains specialized hardware

circuits that are much faster at their specific tasks than a general purpose CPU. A preferred

embodiment includes a trio of pipelincd processors with separate processors devoted to

transmit, receive and management processing, with full duplex communication for four fast

Ethernet nodes.

151

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 156

INTEL Ex.1002.157

REMOTE

HOST ‘

3.. _4\nn\=xmu \u .. rm“ .?"\.,.. V.» .2 7.; rma" Hm.“ 2:4“: nmr: um 4’ 112.11 .-.: - ..

 CONTEXT

54

52
FIG. 2

UPPER LAYER

INTERFACE

/ TRANSPORT

DATA LINK

INIC/CPD

46

 STORAGE ‘
35

58

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 157

INTEL Ex.1002.158

67

2/89

RECEIVE PACKET

FROM NETWORK 47

BY CPD

VALIDATE PACKET,
SUMMARIZE 57

HEADERS

59A

FAST PATH NO

CANDIDATE?

YES 53

NO
MATCH WITH V

CCB?

SEND TO

DESTINATION

IN HOST VIA
FAST—PATH

. 9m: .m: a? :4“). . ‘ .un “mp ~.-.-;: :5": ¥ . . I. 7.: . ~, ,2 “1&3”? »“3.. a..." n.:;. v.3! my 5...; .a‘ m ,4: 2...: ":5- 5... an my: 3;...

61

SEND PACKET TO

STACK FOR SLOW—

PATH PROCESSING

65

SEND PACKET TO

STACK FOR SLOW—

PATH PROCESSING

CREATE CCB FOR

MESSAGE

51

FIG. 3

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 158

INTEL Ex.1002.159

.‘ rm). “n:- Lflv 1‘3,“ 3.”: “fiuufky _’".91. #2....” R... an? 11.34 .9' “Li? 5:, ’2.“

' ——————————— E — 2 7
60 I CCB ' 42 68 ————— — —1

. REMOTE TRANS 40 l |
HOST ROCESSO '55 38 35-4 }

RECEIVE LOGIC I 36 g :l J ‘ ~ ’ ~ t _ a “
32 ’7/_ _ _ ‘— _ _ _ _ _ _ _

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 159

INTEL Ex.1002.160

am A .mh «uh. m.“ .u.5: war" ~ ., H r. p. =2«1).. 31...]: Eli-«'- 31.9 3.4: 9.31 1’“ 11.31 m

4/89

 PROCESSOR
S

HARDWARE LOGIC

_____._____:

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 160

INTEL Ex.1002.161

5/89

MEDIA ACCESS
CONTROLLER

ASSEMBLY 176
REGISTER

FLY BY Icfififi
FSEQUENCER SEQUENCER

MULTIPLEXOR 180 ,

182 183

' SRAM 14———-——

DRAM CONTROL

186

QUEUE’v . 188 184 MANAGER

FIG. 7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 161

INTEL Ex.1002.162

$33 n....'. Tar”? i'tfi 2.”:

6/89

174

PACKET

I 76 CONTROL

SEQUENCER

ASSEMBLY

REGISTER

MAC

SEQUENCER

‘ NETWORK

SEQUENCER

178

TRANSPORT

SEQUENCER

SESSION

SEQUENCER

195

180

MULTIPLEXOR

FIG. 8

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 162

INTEL Ex.1002.163

 HARDWARE LOGIC 4

HARDWARE LOGIC 3

HARDWARE LOGIC 2

HARDWARE LOGIC 1

262

242
' 240

FIG. 9

TDI USERS 382

3 8;) _ _ _ _ TDI FILTER DRIVER
& UPPER LAYER INTERFACE

370

360

366 355

363 353

 377 INIC MINIPORT DIUVER

FIG. 11

SOURCE/DEST

APPLICATION

TRAN SPORT I

350

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 163

INTEL Ex.1002.164

"g: 3”» 3“.JL 6“)! "n.1, H.237

8/89

law,“ a“ . m..flmhfifix “my «m. V an’1'"! 111... ' .’mmznfm .9" 31.4% m Tru'fi'
mtg rm}; H...

an” 52,“.

TRANSPORT

 NETWORK

DATA LINK

 |

|

320% DATA LINKI

' i
306 NINIC MINTPORT DRIVER!

INIC

MEMORY

FIG. 10

$ Atwo

240

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 164

INTEL Ex.1002.165

 NV“ownK
E

W!ll-n....IJfllllllllllllllll-J.
_‘

com{\“J27:EN‘BE/m\/ofl__SN/\To<2/_r\)oE
__

92m/_r.a
B5

9a2}\}52:NE.,.89/T\/weCNN/\78552monEz/\m2_‘
_

Nmm(\“Jmzm“lv9%/, _I_/\\\‘..8N_mmSmmm_975507

.Illllnlllllullllnllllch

CAVIUM-1002

Page 165
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.166

REG FILE
WCS

I EXTERNAL
MEMORY

CTRL

460

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 166

INTEL Ex.1002.167

CLOCK

/ I ‘I

I

: 492\-I CONTROLS FOR FIRST REGISTER SET I| .

// 505
500 (\ 490

‘ 533

I \
kI—HI FIRST REGISTER SET .

' I I RAM FILE

K REGISTER>— _ _ - .. ._ _ _ _ _

//

I 498 ' ‘

I \
g ' INSTRUCTION DECODER

} AND
560 / . OPERAND MULTIPLEXER

\ 496 ‘ ‘ I , L I- ' I 1 v v r

7 \Tf—>I SECOND REGISTER SET
\ I

\> _ _ __ _ _ _ _ _ __ _ __ _ _
//

. _Y_
STACK »

I EXCHANGEI IARITHMETIC LOGIC UNIT I I QUEUE I
/ C 608 7 /

60% I602 503
\I y—

IH ' THIRD REGISTER SET ‘I
l v

f '\\ 501] V
470 \u ——————————— fl " "“ u ’ “

FIG. 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 167

INTEL Ex.1002.168

q “r ii")? 1.2.3.7,! H. UHF ".

12/89

wvmKymx\

ovmmmm\\

<2.05FDOQHDOQmmikmmummmdm2;

O0EDMQD<

MQQ<MDQ<

v

CAVIUM-1002

Page 168
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.169

w.7.“): um: .194“ wflmum, 3..17.31 Lw“, 1.“: :43 wku’“ *‘i‘r “"5 3‘? u ,1 ‘.IVF 34.1.. 33.}? Km," mm H"'E

1 3/89

mamwowomcomowmwwmmwmvwmNmm\owmmumEmxxxxxxxx_ m2.UE

MQQ15:0

mwm
MNELU,Q<OA

mom

OhmwowMOZHMOVE

9200$60

mmeAEHADEQZEmmOQZ<MmQOUmEZOELUDMHmZH

0

mm
mam?mmBoaSea.MmELmHUmmmam2;ED.MQQ<

U

:UH/wmnum_ 32mm
mom_ /I|||

/

room

CAVIUM-1002

Page 169
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.170

14/89

a?MQQ<QMHU63meMU<HmUm“20¢Hfi~

-woowoovowmooNDEHmmrw

E
AMHO

mUZ<EUNmM935

5OS1%98VSNSo3"mamaqmm5%MW80.So*5855minSE5mea?D?BE
bio336

B4

III.»llll[AIL

CAVIUM-1002

Page 170
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.171

15/89

745 ‘

K} h

752 746

766 762 740

755 [:7—]
g

> 776 784 782 780 778 77

, 760

788 796 794 792 790 786

FIG. 17‘

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 171

INTEL Ex.1002.172

.3”? mayy A" ~;’“,‘: I.“ ,2m5" ‘YL. 3 IL..’.‘. V1.23? L'w)’ H43

16/89

R
CV 806

Seq

Req

04
815

‘ a

DZQ Q2D XMT

802 Proc Seq Seq

Req Req Req

808 810

ARBITER

REGISTER A

DIn 825
Out In

QR AM

DOut

820

828

/ 82 1

I k I

ll Body Body I Stan;
Write Read I Write

: Req Req I Data
755 760 750 745 830

FIG. 18

l

253”\—83€ AK558 8&0

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 172

INTEL Ex.1002.173

17/89

90 LRU MRU

\> R0 R1 R2 ’ R7 R8 R9 R13 R14 R15
1 1 9 1 7 _ _ 2 12 1 - _ 13 4 6

FIG. 19A

900 LRU , MRU

\ R0 R1 R2 R7 R8 R9" R13 R14 R15
1 7 5 12 1o 3 - - 4 6 9

FIG. 19B

900 LRU MRU
‘R0 R1 R2 R7 R8 R9 R13 R14 R15

1 '7 5 - - 12 3 8 - - 6 9 10

‘ FIG. 19C .

900 LRU . MRU
\ R0 R1 R2 R7 R8 R9 R13 R14 R15

8 1 7 - - 2 12 3‘ - - 6‘ 9 1o 1

' FIG. 19D

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 173

INTEL Ex.1002.174

PROCESSOR

470j

LOGICCIRCUITS

FIG.20

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 174

INTEL Ex.1002.175

19/89

NETWORK

210

2101 INIC 200/-/ r—J —

 PHYSICAL

LAYER

INTERF.
 2100

PROCESSOR
470

TX RX

2231 2232

 2113 2106

SEQUENCERS “ CONRG2102
RXSEQ TXSEQ

 2105
ST

2
ATUS
223

-—

 } BUFFER2114

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 175

INTEL Ex.1002.176

‘ :‘é: "2 .n‘“ :3“): A”? .2": ‘r- -mil» Vim}? TL}.- H4071 30.}! H.151 .. 35m; .14 -.

20/89

QUEUE

MAC MANAGER

221 2213 2214 2227
5 .- 22210 2210 2209I

8 1 I____ __ _ l____

DATA

SYNC PACKET MANAGER
BUFFER SYNC INTERFACE

SEQUENCER
2201

F“ ‘ ‘ ‘ ‘ — ‘ ‘ ‘ ‘ ‘ ‘ R - — - E F —*’ 2212 2211 |
DATA 3202 2216 2219 ,

ASSEMBLY 2218 PACKET
REGISTER 3 PROCESSING SUMMARY I

2220 SEQUENCER 2224 .

— 3 2204 :

DMACONTROL

2206 PROTOCOL
ANALYZER

2203

 " ~ — _ 1.2%:422—2—5; — _________ “ .2: 222.5236

SRAM DRAM
CONTROLLER CONTROLLER

LSTATusL DATA
W

2223

FIG. 22

 2214

f,

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page176

INTEL Ex.1002.177

21/89

INIC 200 HOST 20

DESTINATION

(FILE CACHE)
23 1 1

2301

2306 2307

r—Jfi

Br—J

23 15

Riga

TCP/lP DATA K
MULTI— 2313 2303

PACKET .
MESS/\CH‘E

2300 » TCP/IP DATA
2316

r ‘~ 2305

TCP/IP DATA 1

FIG. 23

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 177

INTEL Ex.1002.178

~“ “ 4.- : .‘~ .r‘ : .7 .. -. “‘3.“ :‘= ., “J: #7:.- ”"2 ':.~~ 2‘ Am:
3r“ 1.3- 21.? Le: 9’ 3,53: 1:. u: ‘?.E;a,z .n‘ 22"..» 5.-

22/89 _

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 178

INTEL Ex.1002.179

23/89

 TCP context
identifier

FIG. 26

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 179

INTEL Ex.1002.180

u .19.. 6...?) 21:13.31 3.2.5: .5: 33...?"- :..":%.j "27‘: 5...; A: 3.3: 1;: ‘

24/89

31 ' . 0

Error bits are sent
RCV has oceured

ERR Command has been completed
RCV
XMT

Revdmpoccrrredmletonobufiers

RMISS

ISR 0x0 Interrupt Status

IMR 0x4 Intemrpt Mask
HBAR 0x8 Header Bufim Address

DBHR . 0xC Data Buffer Handle

DBAR 0x10 Data Buffer Address

CBARO 0x14 Command Bufier Address XM'K)

CBARl 0x18 Command Buifer Address XMTI

CBARZ 0x1C Command Buffer Address XMTZ

CBAR3 0x20 Command Buffer Address XM'B

CBAR4 0x24 Command Buffer Address RCV

RBAR 0x28 Response Buffer Address

k /

FIG. 28

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 180

INTEL Ex.1002.181

alpcom

sockaddr_dl

00:60:97:DB:9B:A6

sockaddr in

192,100.12

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 181

INTEL Ex.1002.182

26/89

FIG. 31

Example of incoming TCP pkt Example of incoming ARP Frame

FIG. 32 FIG. 33

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 182

INTEL Ex.1002.183

27/89

CAVIUM-1002

Page 183
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.184

28/89'

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 184

INTEL Ex.1002.185

SRAMrqufirememsforflleReoeiveandTrmmitenginm:

TCB bufiexs

Header buffets

TCB hash index

Timers

DRAM Fifo queues

29/39

256 bytes * 16 4096

128 bytes * 16 2048

16 bytes * 256 4096
128

128 bytes * 16 2E8

~12K bytes

 %

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 185

INTEL Ex.1002.186

30/89”

SmnmaryofthemainloopofReceive:

forever {

while there are any Receive events {

if (a new event) {

if (no new context available)

ignore the event;

}

call appropriate event handler to service the event;

this may make a waiting process nmnable or set up

a new process to be run (get fiee context hddr buffer,

TCB bufler, set the context up).

}

while any process contexts are nrnable {

run them by jumping to the start/resume address;

if (process complete)

free the context;

}

}

L __/

FIG. 39

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 186

INTEL Ex.1002.187

31/89'

NetBIOS header

SMB header

BCC

Notes (interesting fields):

LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command

WCT Count (16 bit) of parameter words in VWV []

VWV Variable number of parameter words

BCC Bytes of data following

FIG. 40 ‘

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 187

INTEL Ex.1002.188

' 32/89 V

SunniaryoffllemainloopofTransmit

forever {

while there are any Transmit events {

if (a new event) {

if (no new context available)

ignore the event;

}

call appropriate event handler to service the event;

this may make a waiting process nmnable or set up

a new process to be run (get free context, hddr bufier,

TCB butler, set the context up). ~

}

while any process contexts are tunable {

run them by jumping to the start/resume address;

if (process complete)

free the context;

}

}

K J

FIG. 41

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 188

INTEL Ex.1002.189

33/89

‘ "Bit‘3l - 24 Bytc enable '7 - 0. Only the low order four bits ale
- - valid for 32bit addmssing mode.

3- Bit23- OMemoryawess"
” 1 Configmation m

Bit 22 - 0 Read (to Host)

1 Wu'te (to Host)
Bit 21 - 1 Data Valid

Bit 20 - 16 Reserved

Bit 15 - 0 Address -

B j

FIG. 42

Configm‘aiion Space 1 SRAM Address Offset

00 00
04 04
08 08
0C 0C
10 10
3C 14

Configmafion Space 2

00 00
04 18
08 08
0C 1C
10 20
3C 24

Allotherreadstoconfigmafionspaccwillmunnoo. '.
B—J

' " FIG. 43 ‘ '

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 189

INTEL Ex.1002.190

34/85

BitO-O I/ancessesarenot enabled

Bit 1 - 1 Memory accesses are enabled
Bit 2 - 1 Bus master is enabled

Bit 3 - 0 Special Cycle is not enabled

Bit 4 - 1 Memory Write and Invalidate is enabled

Bit 5 - 0 VGA palette snooping is not enabled

Bit 6 - 1 Parity checking is enabled

Bit 7 - 0 Address data stepping is not enabled
Bit 8 - SERR# is enabled

Bit 9 - 0 Fast back to back is not enabled

FIG. 44

,BitS-l 66WcapableisenabledThisbitwillbesetiftheMC

Detectsthesystemnmningat66bflizonreset
Bit 6 —0 User Definable Features is not enabled

Bit 7 - 1 Fast Back-to-Back slave transfers enabled

Bit8-l ParityEnorenabled-Tbisbitisinitializedtoo

Bit9,10-00-Fastdevieeselectwillbesetifweareat33MHz
01-Mediumdeviceselectwillbesetifweareat66MHz

Bit ll - 1 Target Abort is implemented Initialized to 0.

Bit 12 - 1 Target Abort is implemented Initialized to 0.

Bit l3 - 1 Master Abort is implemented Initialized to 0.

Bit 14 - l SERR# is implemented Initialized to 0.

Bit 15-1 Parityenorisimplementedlnitializedtoo.

FIG. 45

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 190

INTEL Ex.1002.191

35/89 '

thA thB thc thD
& & & &

Rch Rch Rch Rch

Seq Seq Seq Seq

REG FILE EXTERNAL
8K1 wcs MEMORY
1K1 ROM BUS

1 KB x 128 Sam EXTERNAL
“FROG & DMA C111 MEMORY (31:1

:

PCI BUS
INTERFACE UNIT

PCI BUS

‘ FIG. 46

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 191

INTEL Ex.1002.192

36/89

MODULE DESCR SPEED AREA '

Scratch RAM, lel28 spofl, 4.37 115 110111, 06.77 m2
was, . 8Kx49 span, 6.40 ns mom, 18.29 m2
MAP, 128117 sport, 3.50 ns nom, 00.24 m2
ROM, 1Kx49 32001, 5.00 ns 110111., A 00.45 m2
RBGs, 512x32 tport, 6.10 ns nom, 03.49 m2
Macs, .75 m2 x 4 = 03.30 mm2
PLL, 51m? = 00.55 m2

MISC LOGIC, 117,260 gates / (5035 gates / m2) = 23.29 m2

TOTAL CORE 56.22 mm2

. 2 2
(Core Side) = 5622 mm
Core side = 07.50 mm

Die side = core side + 1.0 m (1/0 cells) = 08.50 mm
Die area = 8.5 mm x 8.5 mm = 72.25 m2

Pads nwded = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA = 272 pins

p__fl___#__/

FIG. 47

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 192

INTEL Ex.1002.193

37/89 '

(lOMB/s/lOOBase) x 2 (full duplex) x 4 connections = 80 MB/s

Average frame siZe = 512 B

Frame rate = 8OMB/s / 512B = 156,250 fiames/ s

Cpu overhead / time = (256B context read) + (64B header read) +

(128B context write) + (128B misc.) = 512B / frame

Total batman = (5123 in) + (5123 out) + (512B Cpu) = 15363 / frame

Dram Bandwidth = (1536B/fiame) x (156,250 frames/s) = 240MB/s A

'Dram Bandwidth @ some = (32 bytes / 167ns) = 202nm

Dram Bandwidth @ 66MHz = (32 bytes / 150m) = 224MB/s

PCI Bandwidth required = BOMB/s

PCI Bandwidth available @ 30 MHZ, 32b, average = 46MB/s

PCI Bandwidth available @ 33 MHZ, 32b, average = 50MB/s

PCI Bandwidth available @ 60 MHZ, 32b, average = 92MB/s

PCI Bandwidth available @ 66 MHZ, 32b, average = lOOMB/s

PCI Bandwidth available @ 30 MHZ, 64b, average = 92MB/s

PCI Bandwidth available @ 33 MHZ, 64b, average = 100MB/5

PCI Bandwidth available @ 60 MHz, 64b, average = 134MB/s

PCI Bandwidth available @ 66 MHZ, 64b, average = 200MB/s

k _,/

FIG. 48

Receive hame interval = 512B / 40MB/s = 12.8us

Instructions / flame @ 60MHz = (12.8us/frame) / (50ns/instruction) = 256

instructions/flame

Instructions / frame @ 661Vle = (12.8us/frame) / (45ns/instruction) = 284
insmrctions/fiame

Required instructions / flame = 250 instructions/frame

k _/

h FIG. 49

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 193

INTEL Ex.1002.194

' , v: y—‘iv visa» 3:}; 5“: ‘21,“ .-;~".\.- .2 7,.- - ,: .‘9 “';:"-.:~:. 5.2; £4? 3...? 21.7.?! .f' 11.: F, '{LL‘ :7: 224-, .. ‘ =7.qu m.

D HI

3 C111

I

33/89

TOAD LOAD

TORE Ctl'l Ch’l

“K ' a
g Slam LOAD LOAD FLAG ' FETCH

cm CD CD DEC cm cm

I =1 II II I
2 Addr FHF FF ALU FLAG addI din mm FETCH Slam DEBUG
.' & BASED C C pc gTAck Addr
5 Data CI'X REGs CCs RECfs REG Addr &BASE

‘ 512m

INCR

Addr

‘ j).— FILE

4Kx32 addr Egg dout
g scratgh INCR

E Slam
E AD

Ctrl

H'i"

NSTRUCHA%DECODER L0
OPERAND MULTIPLEXER

FILE ALU ALU ALU TEST FLAG QCH PGM 8mm DEBUG
LIT PC STAck Addr

CFx OPD's cog OP SEL SEL &BASE Addr
&

QCMD Ctrl

TEST iIQRAMI STAck LOAD
ALU & INCR

MUX I QALU I EXCHANGE Ctrl
ALU ALU DEST TEST FLAG QFLGS PGM 3mm DEBU

OUT OPD & suck Add:CTX CCs SEL RSLT SEL QAddr Ctrl &BASE Add:‘

‘ ‘ a a a

 LTT PCE-- ---=-- 1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 194

INTEL Ex.1002.195

INSTRUCTION—WORD FORMAT

'TYPE 3 [55:49] |48:47| |46:42| |41133| |32:24| |23zl6| |15:00|
Jcc

Jmp

Jsr

Rts

Nxt

0b0000000

ObOOOOOOO

ObOOOOOOO

ObOOOOOOO

ObOOOOOOO

MapAddr

0b00,

0b01,

OblO,

01311,

Obll,

Alqu,

Alqu,

Alqu,

Alqu,

Alqu,

OpdASel, OdeSel,

OpdASel, OdeScl,

OpdASel, OdeSe],

OpdASel, OdeSel,

OpdASel, OdeSel,

TstSel, Literal

FlgSel, Literal

FIgSeI, Literal

Ohff, Literal

FIgSel, Literal

OBXX, OBXXXXX,OBXXXXXXXXX, OBXXXXXXXXX, OHXX, OHXXXX

FIG. 51

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 195

INTEL Ex.1002.196

‘40/89' ‘

SEQUENCER BEHAVIOR

if (MapEn‘ & (MapAddr != 0b0000000)){
Stackc = Stackc;
StackB : StackB;
StackA = StackA; ‘

InstrAddr = 0118000 I Pc[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & ~DbgMd);

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr : DbgAddr + (Execute & DbgMd);}

Hrs-map instr

else if(Pngtrl = Jcc){
Stackc = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = ~Tst@TstSel ? Pc:(AluDst==Pc) '? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr : DbgAddr + (Execute & DbgMd);}

//conditional jump

else if (Pngtrl = Jmp){ //jumpStackc = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = (AluDst == I’c) ? AluOutzLiteral;
Pc = InstrAddr + (Execute & ~Dthd)

Fetch = DbgMd 7 DbgAddrzlnstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (Pngtrl == Jsr){
Stackc = StackB;
StackB = StackA;
StackA : Pc;

InstrAddr = (AluDst z: Pc) ? AluOut2Literal;
Pc = InstrAddr + (Execute & r-DbgMd)

Fetch = DbgMd ? DbgAddrclnstrAddr;
DbgAddr : DbgAddr + (Execute & DbgMd);}

else if (FlgSel = Rts){
InstrAddr = StackA;

StackA = StackB;
StackB = Stackc;
Stackc = ErrVec;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd 7 DbgAddr:InstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd);}

//j ump subroutine

//retum subroutine

else

InstrAddr = Pc;
StackA = StackA;
StackB = StackB;
Stackc = Stackc;

Pc = InstrAddr l (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr : DbgAddr + (Execute & DbgMd);}

//cont1'nue

FIG. 52

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 196

INTEL Ex.1002.197

. ALU OPERATIONS

Alqu

0b00000

0b00001

0b00010

0b00011

0b00100

ObOOlOl

0b00110

0b00111

0b01000

0b01001

0b01010

0b01011

0b01]00

0b0110]

0b01110

0b0111]

C

‘ OPERATION

. A 2 (A & ~(1<<B));
0; V=(B>= 32) ? 1:0;

,A=(A&B);.C .0;V=0,

A I (Literal & B);
C = 0; V : 0;

A = (~Literal & B);
0; V I 0;

(Al(1<<B));a0

(AIR);
0; V= 0;

(
0Literal | B);

.: V r 0;

(~Literal] B);
0; V = 0;

'V:(B>=32)? 1:0;

f0 (i=31' i>=0; i——) if B[i] continue; Ari;
a

0;V=(B)'?0:1;

;V 0;

B[31:24] A B[23: 16] A B[15:08] A B[07:00];
0;V=0;

E
0;

:0
O.7

23:16],B[31:24],B[07:00],B[15:08]};

0], B[31:16]};

FIG. 53

//bit clear

//logical and

//logical and

//logical and not

//bit set

//10gical or

//logical or

//logical or not

//priority enc

//Iogical xor

//Iogica1 xor

//logical xor not

//1nove

//hash

//swap bytes

//swap doublets

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 197

INTEL Ex.1002.198

AluOE

0b10000

0b10001

0b10010

0b10011

0b10100

0b10101

0b10110

0b10111

0b11000

0b11001

0b11010

0b11011

0b11100

01311101

0b11110

Oblllll

42/89

- " FUNCTION

A=(A+B);
C =(A + 3132]; V 2 0;

.A=(A+B+C);
C=(A+B+C)[32];V=0;

A = (Literal + B);
‘ C = (Literal + B)[32]; V = 0;

A ‘= (—Literal + B);
C = (-Literal + B)[32]; V = 0;

A=(A-B);
C=(A—B)[32]; V=O;

A=(A-B—~C);
C=(A—B-~C)[32];V=O;

A:(-A+B);
C=(-A+B)[32];V=O;

A=(-A+B-~C);
C=(—A+B—~C)[32];V:0;
A: A<<B

A = (B << Literal);
C = B[31]; V : (Literal >= 32)? 0:1;

A=(B<<1);
C= B[31];V=0;

n=(A-B);
C=(A— B)[32j; V: 0;

A=(A>’> B);
C = A[0]; V 2 (B >= 32) ? 1:0;

A = (B >> Literal);
C = A[O]; V = (Literal >= 32)? 1:0;

A=(B>> 1);
c= A[OJ;V=O;

n=(B-A);
C=(B—A)[32]; V: 0;

FIG. 54

//add B

//add B, carry

//add constant

//sub constant

//sub B

//sub B, borrow

//sub A

//sub A, borrow

//shift left A

//shift lefi B

//shift left B

//compare

//shift right A

//shift right B

//shifi right B

//compare

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 198

INTEL Ex.1002.199

V ‘43ll89

File@(0pdSel[4:O] l FileBase);
Allows paged access to any part of the register file.

File@{2'bl l, CpnId, 0pdSel[4:O]};
Allows direct access to Cpu specific registers.

Reserved for future expansion.

ObOOOOOOOOOOOOOBHDOOOOOOOOOOOOOOCC
This is a read—only register providing information about the Cpu executing
(OpdSell1:0]) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, l and 2 are returned.
"11" represents the current state of Hit, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

Reserved for future expansion.

0x00_00AAAA
writing to this address causes the program control logic to use AluOut as the
new Pc value in the event of a Jmp, Jcc or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Ma , or
Rts, the register write has no effect. Reading this register returns the vafiie '
Fe for the Cpu executing (OpdSel[l 20]) cycles after the current cycle.

OXDOOOAAAA
Writing to this register alters the contents of the debu address register
(DbgAdd r) for the Cpu executing (OpdSel[l:0]) cyc es after the current
cycle. DbgAddr provides the fetch address for the control—store when
DbgMd has been selected and the Cpu is executing. DbgAddr is also used
as the control-store address when performing a Wchs@DbgAddr or
RdWcs@,DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

Reserved for future expansion

OEdSEI SELECTED OPERANDS

ObOOOOaaaaa File

ObOOO 1 aaaaa CpuReg

ObOODOCXXXX reserved

ObO l OOOOOXX CpuStatus

ObOIOOOOIXX reserved

ObOIOOOIOXX Pc

0b0100011XX DbgAddr

0b0100 IXXXX reserved

0b010100000 RamAddr {OblCCC, 0x000, Obl, AAAA}
RamAddr = AluOlit[]5] '7 AluOut : (AluOut I RamBase);
PrevCC = AluOut[3l] ? CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description
3] Always l.
30 PrevC Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
[5 Always 1.
14:0 RamAddr Contents of last Sram address used.

When writing this register, if aluioutl31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluOut. IfAluOutllSJ is set, bits 14:0 will be written to the RamAddr. If AluOut [15]
is not set, bits I420 will be ored with the contents ofthe RamBase and written to the RamAddr

FIG. 55

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 199

INTEL Ex.1002.200

o dSel I
0b010100001

ObOIOlOOOIO

ObOlOlOOOll

013010100100

ObOlOlOOlO]

0b010100110

0b01010011]

44/89

. SELECTED OPERANDS

AddrRegA OXOOOOAAAA

AddrRegA = AluOut;

A read/write o erand which loads AddrRegA used to provide the address for read and write
operations. W en AddrRegA[15] is set the contents Will be presented directly to the ram. When
AddrRegAllSlis reset, the contents Will first be ored With the_co_ntents ofthe RamBase register
before presentation to the ram. WI‘IUIIE to this register takes priority over Literal loads usmgFlgOp. Reading this register returns t e current value ofthe register.
AddrRegB OXOOOOAAAA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write
0 eratinns. _ _ _

en AddrRe _B[15] is set. the contents Will be presented directly to the ram. When
AddrRegB[15 is reset, the contents will first be ored with the contents ofthe RamBase
register before1{iresentation to the ram. Writing to this re ister takes priority over Literal loadsusmg FlgOp. eadmg this register returns the current va ue of the register.
AddrRegAb OXOOOOAAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA used to provide the address
for read and write operations Writing to this re ister takes(priority over Literal loads usmgFlgOp. Reading this register returns the value XOOOOOOO .
RamBase OXOOOOAAAA
RamBase = AluOut;

A read/write register which provides. the base address for ram read and write cycles. When
RamAderIS] is set, the contents Will not be used. When RamAddr[15] is reset, the contents
Will first be ored_ With the contents of the RamBase re ister before presentation to the ram.
Reading this register returns the Value for the current pu.
FileBase 0b000000000000OOOOOOOOOOOAAAAAAAAA
FileBase : AluOut;
FileAddr = OpdSel[8] 7 OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write cvcles. When
OdpdSelES] Is set the contents Will not be used and OpdSel Will be presented directlfi to thea dress ines of the file. When 0 dSel[8] is resetJ the contents Will first beored'w1t the
contents of the FileBase register efore presentation to the file. Reading this register returns thevalue for the current Cpu.

InstrRegL OXHHHII

This is a read—only re ister which returns the contents of InstrReg[3 1:0]. Writing tothis register has no e ect.

InstrRegH OXOOIIIIH

This is a read-on] register which returns the contents of InstrReg[55 :32]. Writing to thisregister has no ef ecti

FIG. 56

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 200

INTEL Ex.1002.201

O dSel

ObOlOlOlOOO

0b010101001

0b010101010

0b010101011

ObOIOIOIIOO

SELECTED OPERANDS

Minusl

FreeTime

LiteralL

Lite ralH

Oxffffffff

This is a read-only register which supplies a value OxffflTfH.. Writing to this
register has no effect.

A free—running timer with a resolution of 1 .00 microseconds and a maximum count
of71 minutes. This timer is cleared during reset.

Instr[1520]
A read-only register. Writing to this register has no effect

Instr[l5:0]<<16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use
during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp
Mstnp

WrMcfg

WrMmg

RdPhy

WrPhy

MacData definition

ObXXXXXXXXWXXXXXXXXXXXXXXXXXXXX

MacData is not used for the StopM operation.

hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdllO,
ipgrl [6:0],
ipgr2[6:0], ipgt[6:0].
Loads the Machg register with the contents of the MacData register. Refer to
LSl Logic's Ethernet—1 10 Core TechnicalAlanual for detailed definitions ofthese
bits.

ObXXXXXXXXXXXXXXXXXXXXXSSSSSSSSSSS

Loads seed[10:0] into the Mac's random number generator.

ObXXXXRRRRXXXXPPPPXXXXXXXXXXXXXXXX
Reads register[R] of phy[P].

0bXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD

Writes registerlR] ofphy[P] with MacData[15 :0].

Reading this register returns prsd[]5:0] of MacO which contains phy status data returned to the
Mac at the completion of a RdPhy command, This data is invalid while Machy is asserted
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a
definition of the phy register contents.

FIG. 57

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 201

INTEL Ex.1002.202

46/89 ‘

FIG. 58A

FIG. 58B

FIG. 58

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 202

INTEL Ex.1002.203

0 dScl

ObOlOlOllOl

b010101110

47/39

SELECTED OPERANDS

MacOp - A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut " descrigtion

omen/t Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for
Machy to be deasserted before issuing another command or changing the‘ contents of MacData.

0xXXXXXDGvI WrMcfg - Writes the contents ofMacData to the Machg register of W
The user must wait for Machy to be deasscrted before issuing another command
or changing the contents of MacData.

0xXXXXX2XM Werng — Writes the contents ofMacData to the seed register ofMac[M]. The
user must wait for Machy to be deasserted before issuing another command or
changing the contents of MacData.

Ox)OOOO{3)CM RdPhy - Reads the contents of reg[R] for phy[P] on the M11 management bus of
Mac[M]. The contents may be read from MacData after Machy has been de-asserted. ‘

OXXXXXX4XNI WrPhy — Writes the contents ofMacData[15:0] to e reg[R] of phy[P] on the M11
management bus of Mac[M]r The user must wait for Machy to be deasserted
before issuing another command or changing the contents of MacData.

()xXXXXXBXM WrAddrAL - Writes the contents ofMacData[15:0] to MacAddrA[15:0] for Mac[IVI].
OXXXXXXQXM WrAddrAH - Writes the contents ofMacData[l 1:0] to MacAddrAI47:16] forMac[M].
()xXXXXXaXM W'rAddrBL - Writes the contents of'MacData[15:0] to MacAddrB[15:0] for Mac[M]i
OXXXXXXIJXM WrAddrBH - Writes the contents ofMacData[l 1:0] to MacAddrB [47:16] f0rMac[M].

ChCmd A write-on] y register.

bit name description

31 :1 1 reserved Data written to these bits is ignored.

10:8 command 0 - Stops execution of the current operation and clears the

07:05 reserved
04:00 ChId

corresponding event flag.
1 — Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pci.
4 - Transfer data from Sram to ExtMem.
5 — Transfer data from ExtMem t0 Sram.
6 — Transfer data from Pei to Sram.
7 — Transfer data from Sram to Pci.

Data written to these bits is ignored.
Provides the channel number for the channel command.

FIG. 58A

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 203

INTEL Ex.1002.204

0b01010| 110

0b010101111

0b010110000

ChEvnt A read-only register.

bit name description
31:00 Cth Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes O to the corresponding
ChCmd register.

GenEvnt A read-only register.

bit name description

31 PciRdEvnt indicates that a PCI initiator is attempting to read a mproc.
v register.

30 PciWrEvnt Indicates that a PCI initiator has posted a write to a mproc.
register.

29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.

QCtrl A write-only register used to select and manipulate a Q.

bit name description
31:11 reserved Data written to these bits are ignored.
10:8 QSz Used on1y during InitQ operations to specify the size ofthe Qde in Dram.

7 - Queue depth is 32K entries (128KB).
6 — Queue depth is 16K entries (64KB).

L 5 — Queue depth is 8K entries (32KB).
4 7 Queue depth is 4K entries (16KB).
3 — Queue depth is 2K entries (81(8).
2 — Queue deplh is 1K entries (4KB).
1 — Queue depth is 512 entries (2KB).
0 — Queue depth is 256 entries (lKB).

7:5 QOp Specifies the queue operation to perform.
7 V Dle Disables all queues.
6 ~ EnQ Enables all queues.
5 — Rdde Increments the QdeRdPtr and increments the QTIWrPtr.
4 — Wrde Decrements the QdeWrPtr and increments the QHdePtr.
3 — RdQ Returns a queue entry in register QData..
2 -— rsvd Reserved. Not to be used.

1 — InitQ Set the queue status to empty and initializes Q81;
0 — SelQ Selects the Qld to be utilized during writes to QData.

FIG. 58B

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 204

INTEL Ex.1002.205

4:0

ObOlOI 10001

"0b010110010

ObOIOIlOOll

ObOlOllOlOO

ObOIOllOlOI

ObOlOlllOOO

0b010111001

ObOlOlllOlO

0b010111011

ObOIOIIIIXX

ObOIIOXXXXX

ObOl l lOXXXX

Qld Specifies the queue on which to perform all operations except Dle or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data popped off duringthe previous RdQ operation.

reserved Reserved for future expansion.

Xchtrl A write-only register used to enable and disable Mac transmit and receivesub-channels.

bit namc__ descri tion
31:09 reserved Data written to these bits are ignored.
8 enable When set, indicates to the Mac transmit or receive sequencer that the subchannel

contains a transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.
04 Rchh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannelwhen cleared.

03 reserved Data written to this bit are ignored
02 SubCh Selects subchannel B when set or A when reset.
01:00 Maeld Provides the Mac number for the subchannel enable bit.

Lru OXOOOOOOOA

A read/write operand indicating which of the 16 entries is least recently used.
\Vhen Reading This register the least recently used entry is returned, after which
it is automatically made the most recently used entry. This register should only be
read in conjunction with a 'Move' operation ofthe ALU, else the results are
unpredictable. Writing to this register forces the addressed entry to become the
least recently used entry.

Mru OXOOOOOOOA

A write only operand forcing [he addressed entry to become the most recently
used entry.

QIany A read~only register comprising QHd not full flags for each of the 32 queues.

QOuthy A read-only register comprising QTl not empty flags for each of the 32 queues.

QEmpty A read—only register comprising QEmpty flags for each of the 32 queues.

QFnll A read-only register comprising QFull flags for each of the 32 queues.

reserved Reserved for future expansion.

Constants {0b000, OpdSel[4:O]}

reserved Reserved for fiiture expansion.

FIG. 58C

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 205

INTEL Ex.1002.206

OQdSel SELECTED OPERANDS

ObOl 1 1 IXXXX Sram OPERATIONS

OQdSel|3 POStAddl‘OQ
0 nop
1 RamAddr = RamAddr + (OpdSel[l :01);

OpdSel 21 transpose Ctrl ‘0 ‘ don't trans 050
1 ‘ transpose ytes

A OQdSel 1:0 RamOpdSz
0 quadlet
l triplet
2 doublet
3 byte

RAM READ ATTRIBUTES SOURCE OPERAND

endian trans- byte Sram
mode JOSE: offs data sz= sz=T sz=D sz=B

little 0 0 abcd abcd Obcd 000d 000d
little 0 l ach trap 0abc 00bc 0000
little 0 2 abXX trap trap OOab OOOb
little 0 3 aXXX tra trap trap 000a
little I 0 abcd do a Odcb 00dc 000d
little 1 l ach trap 0cba OOCb 000c
little 1 2 abXX trap trap 00ba OOOb
little 1 3 aXXX trap tra trap 000a
BIG 0 0 abcd abcd 0a c OOab 000a
BIG 0 1 Xbcd trap Obcd 00bc OOOb
BIG 0 2 XXcd trap trap OOcd 000C
BIG 0 3 XXXd trap trap trap 000d
BIG 1 0 abcd dcba cha OOba 000a
BIG 1 l Xbcd trap Odeb 0061‘) 000b
BIG 1 Z XXcd trap trap 00dc 000C
BIG 1 3 XXXd trap trap trap 000d

RAM WRITE ATTRIBUTES SOURCE OPERAND

endian trans- Opd Alu '
mode _pose size out OF=0 0F=1 OF=2 OF=3

little 0 Q abEU abcd trap trap trap
little 0 T Xbcd -bcd bcd- trap trap
little 0 D XXcd --cd -cd— cd—- traplittle 0 B XXXd ---d ——d- -d—- d———
little 1 Q abcd dcba tra trap trap
little 1 T Xbcd -dcb dc — trap trap
little 1 D XXcd -—dc -dc- dc—- traplittle 1 B XXXd ---d -—d— —d—— d——-
big 0 Q abcd abcd trap trap trap
big 0 T Xbcd bcd- -bcd trap trap
big 0 D XXcd cd-- —cd- --cd trapbig 0 B XXXd d—-- -d-- -—d- ---d
big 1 Q abcd dcba trap trap trap
big 1 T Xbcd dcb- -dcb tra trap
big I D XXcd dc—- —dc- -- c trapbig 1 B XXXd d--~ —d-- --d- —--d

Oblaaaaaaaa File File@O dSel[8:0]; .
Allows irect, non-paged, access to the top halfofthe register file.

FIG. 59

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 206

INTEL Ex.1002.207

TstSel

ObXOOXXXXX

ObXOIOOOOO

00x0100001

ObX0100010

0bX0100011

ObXOI 00 1 00

ObXO 1 00101

0bx0100110

0bX0100111

0bx0101000

0bX0101001

0bX010101X

ObXOI 01 IXX

ObXOl l OXXX

ObXOI l IXXX

ObXOIXXXXX

V ObXIXXXXXX

SELECTED TEST

Tst = TstSel[7] A AluOut[TstSel[4:0]]

Tst = TstSel[7] A C

Tst : TstSel[7] A V

Tst = TstSel[7] A Z

Tst = TstSel[7] A (Z I ~C)

Tst = TstSel[7] A PrevC

Tst = TstSel[7] A PrevV

Tst : TstSel[7j A PrevZ

Tst = TstScl[7] A (PrevZ & Z)

Tst = TstSel[7J A QOpDn

Tst = reserved

Tst : reserved

Tst : reserved

Tst = TstSel[7] A Lock[TstSel[2:0]]
Lock(TstSel[2:0j) = 1;

Tst = TstScl[7] A Lock[TstSel[2:0]]

Tst = reserved

Tst Z reserved

FIG. 60

//Alu bit

//carTy

//crror

//zero

//less or equal

//previous carry

//prcvious error

//previous zero

//64b zero

//queue 0p okay

//tests the current value of
//the Lock then set it.

//tests the value of Lock.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 207

INTEL Ex.1002.208

Fl Sel

0b00000000

0b00000001

0b00000010

0b0000001 l

ObOOOOOIOO

0b00000101

013000001 IX

ObOOOOIXXX

0b00010XXX

0b0001 lXXX

0b0010XXXX

0b0011XXXX

01301000000

0b01000001

0b01000010

0b0100001 l

0b01000100
0b010001XX

0b010010XX

0b010011XX

Ob0101 OOXX

ObOlOIOIXX

0b0101 lXXX
ObOl 1XXXXX
OleXXXXXX

52/89

FLAG OPERATION

No operation.
SelfRst

SelBigEnd
SelLitEnd

DblMap

EnbMap
reserved

reserved

ClrLek

reserved

AddrOp

FlgScl 3 2

UlQ—O

FlgSel 1 0

WNHO

Forces :1 self reset for the entire chip excluding the PCI configurationregisters

Selects big-endian mode for ram accesses for the current Cpu.

Selects little-endian mode for rain accesses for the current Cpu,

Disable instruction re-mapping for the current Cpu.

Enable instruction re-mapping for the current Cpu.

I.ock[FlgSel[2:0 J — O;
Clears the semap ore register bit for the current Cpu only.

AddrSeleet
RamAddr = LiteralIlS]
RamAddr = AddrRegAflS]
RamAddr = AddchgBUS]
1f(0pdA == RamAddr)
RamAddr 7 AluOut[15]
else if(OpdA : ram)
RamAddr = AddrRegBHS]else
RamAddr —' AddrRegAU 5]
addr reg loadnop
AddrRegA = Literal,
AddrRegB = Literal,
AddrRegA = Literal;

'7 Literal (Literal | RamBasc);
?AddchgA ‘ (AddrRegA I RamBase),
’7 AddrRegB (.AddchgB | RamBase);

‘7 AluOut . (AluOut| RamHasc);

? AddchgB ’ (AddrRegB | RamBase);

'7 AddrRegA , (AddrkegA l RamBase);

AddrRegB = Literal,

note: When specifying the same register for both the load and select fields, the current value ofthe
register, before it is loaded with the new value, will be used for the ram address.
reserved

WrWesL@Dbg

WchsH@Dbg

RdWesL@Dbg

RdWcsH@Dbg
reserved

Step

I’ch

DbgMd

Hlt

Run

reserved
reserved
reserved

Causes the bits [31:0] ofthe control-store at address DbgAddr to bewritten with the current AluOut data.

Causes the bits [63:32] of the control-store at address DbgAddr to be
written With the current AluOut data then increments DbgAddr.

Causes the bits [31:0] ofthe control-store at address DbgAddr to bemoved to file address Oxlff.

Causes the bits [63:32] ofthe control-store at address DbgAddr to be
moved to file address Oxlffthen increments DbgAddr.

Allows the C u (FlgSelU :0]) evcles after the current cycle to execute a single
instruction. here is no effect tf‘the Cpu is not halted. An offset of0 is not allowed.

Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[l:0]) cycles after the current cycle.

Selects the DbgAddr address register as the address source for the
control~store during instruction fetches for the Cpu (FlgSel[1 :0])
cycles after the current cycle.

Halts the Cpu (FlgSel[1:0]) cycles afler the current cycle.

Clears Halt for the Cpu (FlgSel[l :0]) cycles after the current cycle.

FIG. 61

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 208

INTEL Ex.1002.209

53/89

E:
I:
I'-
--" «m

E d =
I'-
IE

m
-I Smm

C

’8

“n

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 209

INTEL Ex.1002.210

54/89

FIG.63
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 210

INTEL Ex.1002.211

 Jul—‘1 «mm . x. .v r.

55/89

Rer - - - N Addr/ Addr/Rm Ctr1/ .. . crrl/
DataO Data N

133MHz

CLK Arbiter

-v v
133MHz '

CLK Register

Add: DIN

133MHz ’

CLK Register WE D0ut

Partial Align

133MHz CLK Register

'-
Afk Sign

_ FIG. 64' Data

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 211

INTEL Ex.1002.212

m .u A-uVu‘ :3“: :93,“ 3‘s: V w. .ka um. urn. .w mm”--, 1 ,n5.1:. 42...?! Eu}: 35.).7‘ .3‘“ 42.3: .3: ..

56/89

EEEEEQEEEEEQEEEEEEEégzfimgézufimsfiénfimfiamofimfifimaogmofimfsaéofiaaamomfifisaaofimongmmassmafimfizoamass53763massmaéozzcamESEuzzoama3<2935%m52E:5Ne2552En:_£22EH:_asmeE;E9.2“EEas2meEE92EasmomEmE.923“gm3%as35.5$.22;WmmééamgmzagflagmafiaoEméésmgaézénapammaggaz
CAVIUM-1002

Page 212
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.213

prch

prAddI

prSmte

waCfil

prData

Dcngeq

DcngddI

DcfgState

DcfgClIl

DcngaIa

th‘IReq
EectrlAddr

BeetrIState

EectrlClrl

EectrlData

57/89

 TO Xmem

T0 Xmem

TO Xmem

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 213

INTEL Ex.1002.214

’ I . 58/89

TO Requester
D2p

D25

D2d XAddr 4 TO Xctrl

D2q EN
Pso SmmGnt

' Xmm A > SramData

XMB I

a

thC

MD xcm ‘ T0 Xctrl

Karle Ack To requester

SmmReq

SmmGnt

SIamAck

SmmAckSz SmGnt

p mm

FIG. 67

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 214

INTEL Ex.1002.215

59/89

 we.65Z3%vaeaaeaae.$5 ,
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 215

INTEL Ex.1002.216

i ‘ T0 Requester

’ A
D2d TO Xctrl

QZCI ,
Psi w XData 4 ~ TO Xclrl

A
Rch

Rcvc XCtrl TO Xctrl

I‘ To
‘ T0 PM

I 333 I To M

XctIlGnt

> Ack TO requester

XcIIIReq

SramGnI SmmReq

SmmAck

SmmAckSz SramGnt

SmdeData > SIamPamms

FIG. 69

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 216

INTEL Ex.1002.217

61/89

 on.03Z33veeaeaaeeA3E.
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 217

INTEL Ex.1002.218

. 62/89

FIG.71
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 218

INTEL Ex.1002.219

FIG.72
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 219

INTEL Ex.1002.220

erAck

erSmtus

Pmo Ack

Pmo Status

Sram Ack

Smm Rd Data

64/89

TO er

T0 Pmo

TOer

T0 Pmo

TO Xnd

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 220

INTEL Ex.1002.221

65/89

CAVIUM-1002

Page 221
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.222

66/89

TO pr

~ T0 Pmi

TO Pmi

TO Pmi

' TO pr

XMChksum

prAck

prStatus

PmiACk FifoCnt

PmiStatus Pmi Req

. prqu

SlamAck SmmReq

From Sram

SmdeData Smpm

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 222

INTEL Ex.1002.223

67/89

CAVIUM-1002

Page 223
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.224

68/89 -

TO Pmo

- TO Pmo

T0 Pmo

PmoAck PmoReq

PmoStatus

SmmReq

SmmAck

From Sram

SmdeData

FIG. 77

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 224

INTEL Ex.1002.225

69/89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 225

INTEL Ex.1002.226

70/89

TO Pmi

TO Pmi

TO Pmi

PmiAck .
PnuReq

PmiStatus

SramReq

SramAck

From Sram

WM 813um

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 226

INTEL Ex.1002.227

71/89

CAVIUM-1002

Page 227
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.228

72/89

TO Xni

' T0 er

TO er

erAck

XIdReq

erStatus

SmmReq

SmmAck

From Sram

S am 813um

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 228

INTEL Ex.1002.229

73/89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 229

INTEL Ex.1002.230

‘ 74/89

prAck

prStams

SmmAck

SIadeD/ata

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 230

INTEL Ex.1002.231

' _XL.

75/89

FIG.84
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 231

INTEL Ex.1002.232

76/89

CAVIUM-1002

Page 232
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.233

_ u— 5“}: :3 3
{Eng h." 'Xw’? "IF-5

fit, an»..3 L13! J“J m:u.ra
,3 3:3

ar,P am2.“L

77/89

gEmE02Em

CAVIUM-1002

Page 233
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.234

 :1; mitt" ,

' , I COMMAND
MacDataIn I BUFFER

mun '

Mac In I Smm
Sm—IN

, l m WR I
WA lung

um I

m — 'wwylmFRAME

3mm IP

um“!
FREQ—1D I T‘gAbNSPORTmm .fimfi
CHI PAYLOAD

” IWW'
PauseDetEn CONTEXT

HASH

prReq
PauseDet

QmERReq
81:11an

From Sram

FIG. 87 . Wm

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 234

INTEL Ex.1002.235

79/89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 235

INTEL Ex.1002.236

. .\ .uw ,
a. i:

' 80/59

RECEIVE BUFFER DESCRIPTOR

bit name
31:30 reserved
29:28 size
27200 address

TIME STAMP

bil name
31:00 Rchime

CHECKSUM

bit name
31:16 IpChksum

15:00 TcpChksum

RESERVED

FRAME Data

description

A copy of the bits in the FreeBustcr. ~
Represents the last address +1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determinethe s1ze of the frame received.

FIG. 89

OFFSET 0x0008:0x000B

description
The contents 0 reeClk at he comp etion o t e amc receive operat10n.

FIG. 90

OFFSET 0x000C:0x000F

description
Reflects the va ue o t e ea er 0 cc sum at ame comp etlon or IP ea or
completion. If an IP datagram was not detected, the checksum rovides a total for
the entire data ortion of the received frame. The dam area is efined as those bytes
received after t e e field ofan ethernet fi'ame, the LLC header ofan 802.3 flameor the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at 1P completion or frame completion.
If [P was detected but session was unknown, the checksum will not include the
psuedo-header. 1f 11’ was not detected, the checksum will be OXOOOO.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

FIG. 91

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 236

INTEL Ex.1002.237

81/39

RECEIVE BUFFER FORMAT

FRAME Status A OFFSET 0x0000:0x0003

bit name description
31 attention , Indicates one or more 0 t e o owmg: CompositeErr, leDn, !MaeADet &

!MacBDet, IpMcst, lchst, lethernet & 1802.38nap, !Ip4, !Tcp .
30 CompositeErr Sct when any of the error bits of ErrStatus are set or if frame processing stops

while receiving a Tcp or Udp header.
29 CtrlFrame A control frame was received at our unicast or special MltCst address.
28 IpDn Frame processing Hlted due to exhaustion of the 1P4 length counter.
27 802.3Dn 1 Frame processing Hlted due to exhaustion of the 802.3 length counter.
26 MacADet Frame's destination address matched the contents of MaeAddrA.

. 25 MaeBDet Frame‘s destination address matched the contents of MacAddrB.
24 MacMcst The Mac detected a MltCst address.
23 Machst The Mac detected a BrdCst address.
22 lpMcst The flame processor detected an IP MltCst address.
21 Ichst The frame processor detected an IP BrdCst address.
20 Frag The flame processor detected a Frag IP datagram.
19 lpOffst The flame processor detected a non-zero IP datagram offset.
18 lpFlgs The frame processor detected flags within the IP datagram.
17 IpOpts The flame processor detected a header length greater than 20 for the 1P datagram.
16 Tchlgs The flame processor detected an abnormal header flag for the TCP segment.
15 Tchpts The flame processor detected a header length greater than 20 for the TCP segment.
14 Tchrg The flame processor detected a non-zero urgent pointer for the TCP segment.13 CarrierEvnt Refer to E110 Technical Manual.
12 LongEvnt Refer to E1 10 Technical Manual.
1 1 FrameLost Set when an incoming frame could not be processed as aresult ofan outstanding flame completion

event not yet serviced by the utility processor.10 reserved
10 NoAck The frame processor detected a
09:08 FrameTyp 00 - Reserved. 01» ethernet. 10 - 802.3. 1 1 - 802.3 Snap.
07:06 kaTyp 00 — Unknown. 01-1p4. 10 — Ip6 11 - ip other.
05:04 TrnsptTyp 00 - Unknown. 01- reserved. 10 - Tcp 11 - Udp03 NetBios A NetBios frame was detected.
02 reserved
01:00 channel The Mac on which this frame was received.

FRAME Status B ‘ OFFSET 0x000410x0007

bit name description
31 802.3Shrt End 0 frame was encountered efore t e 802.3 lengt count was e austed.
30 Buvar The flame length exccded the buffer space available.29 Badet Refer to E1 10 Technical Manual.
28 InvldPrmbl Refer to E110 Technical Manual.
27 CrcErr Refer to E110 Technical Manual.
26 Drblebl Refer to E110 Technical Manual.
25 CodeErr Refer to E110 Technical Manual.
24 IpHd rShrt The 1P4 header length field contained a value less than 0x5.
23 Iplncmplt The frame terminated before the 1P length counter was exhausted.
22 ‘ IpSumErr The IP header checksum was not Oxfle at the completion of the IP header read.
21 TcpSumErr The session checksum was not Oxffi'f at the termination of session processing.
20 TcpHdrShrt The TCP header length field contained a value less than 0x5.
19:16 Presst The state of the frame processor at the time the frame processing terminated.

ObOOOO Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b001 1 Processing unknown network data.
ObOlOO Processing 1P header.
0b0101 Processing 1P data (unknown transport).
0b01 10 Processing transport [reader (IP data).
0b01 1 1 Processing transport data (IP data).
0b1000 Processing 1P processing complete.0b1001 Reserved.
0b101x Reserved.
Obl lxx Reserved.

15:08 MacHsh The Mac destination-address hash. Refer to E110 Technical Manual.
07:00 Ctsth The 8-bit context—hash generated by exclusive-oring all bytes of the 1P source

address, 1P destination-address, transport source port and the transport destination port.

FIG. 92'

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 237

INTEL Ex.1002.238

82/89

9
T0 ngR

I comm 'BUFFER

.' Sm.
MaoCIrlIN 3%“ > T0 Sram

I ' From Slam
mm A > W

- I 3:: I
I. > are m

M“ I “Fng I
MacAddrB FIFIS’IRWR A TO pr

I Data I
I HOLD REG '

SW“
SradeData ANASLIHEZER 'I FRAME

I POINTER '
W I W” I
Ctrl—Q—ID I EPISNSPORTIPw .'

PAYLOAD
CHECKSUM

PauseClr thData

prReq
FWD“ PauseD

Cpu_PauseReq 335%“
From Slam

FIG. 93 F Wm

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 238

INTEL Ex.1002.239

83/39‘

From PROCESSOR

From RCV_SEQ

FROM PROCESSOR

TO PROCESSOR

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 239

INTEL Ex.1002.240

J1 .-.‘v v
.J'L. 1“...” FL? E...

84/89 , ,: i .

TRANSMIT BUFFER DESCRIPTOR

bit name descri tion

31 ChksumEn When set, thSeq Wli msert a‘ca cu atea checEsum. When reset, thSeq Willnot alter the outgomg data stream.
i 30 reserved . .

29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :

S
S
S
S

0 256B boundary. A[7:0] ignored.
1 2K8 boundary. A[] 0:0] ignored
2 4KB boundary. A[11:0] ignored
3 32KB boundary. A[14:0] ignored.

27:00 EndAddr The address ofthe last byte to transmit plus one.

FIG. 95

TRANSMIT BUFFER FORMAT

CH'ECKSUM PRIMER OFFSET 0x0000:0x0003

bit name description
31:00 Primer A value to bc a e ru-rng c ec sum accumu atron. For IPV4, t is 5 cu me u e

the psuedo-header values, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005

FRAME Data OFFSET 0x0006zEND OF BUFFER

FIG. 96

TRANSMIT Status VECTOR

bit name descri)tiun

31 LnkErr Indicates that a link status error occured before or during transrmt.30:15 reserved
14 ExcessDeferral Refer to E1 10 Technical Manual.
13 LateAbort Refer to EI 10 Technical Manual.
12 ExcessColl Refer to El 10 Technical Manual.
1 1 UnderRuu Refer to E110 Technical Manual.
10 Excesngth Refer to E l 10 Technical Manual.
09 Okay Refer to El 10 Technical Manual.
08 deferred Refer to E110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MltCst Refer to E110 Technical Manual.
05 CrcErr Refer to E110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

FIG. 97

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 240

INTEL Ex.1002.241

A“; i "V

hm???"- m’i. .:~"a;

‘ 35769

33a;saw

Eawmom

Eg>Qom

EmSo
0 ggggyag2ya0%amgEas>0“flex“No_ag

CAVIUM-1002

Page 241
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.242

86/55 I

 "moaom__a3:"Cog:"m"vmmm*3“umnm"mac9%gEggnogéEngage.“53g52mgIIIllIlIIlIlI|IlLlllllllllllllllllllllllllllllllLlllllllllillllllrlllllllllllllllllllllll “moangEmeow3%E2mac1IIIlIIIIIIIIIIIIIIIIIIllIIIIlII1IIIIIIIIIIIIIllJlIIIIIllIIIIlIIIIIIIIIlIIlIIIIllIIIIIII|1
magEEmacawam5Emacawm

was5EumaoéwwaoEE0@551MasWMasmmMmteaamEgo“mmE
a8SE“asgagoea;

CAVIUM-1002

Page 242
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.243

. DMA OPERATIONS

dma seg # name
0 none
1 D2dSeq
2 DZSSeq
3 D2pSeq
4 SZdSeq
5 SlpSeq
6 P2dSeq
7 PZSSeq

bil name
31:1 reserve
10:8 ChCmd

07:05 reserved
04:00 ChId

bit name
127296 PciAddrH
95:64 PciAder
59:32 MemAddr
31 PciEndian
30 Wichbl
22 DstFlash
15:00 Xerz

87/89

descrigtion
Thls IS a no operation a ess.
Moves data from ExtMem to ExtMem.
Moves data from ExtMem bus to sram.
Moves data from ExtMem to Pci bus.
Moves data from sram to ExtMem.
Moves data from sram to Pci bus.
Moves data from Pei bus to ExtMem.
Moves data fi‘om Pei bus to srarn.

FIG. 100

descri tion
Data written tot ese 1ts ls Ignore .
0 - Stops execution of the current operation and clears the corresponding event flag.1 — Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem to Poi bus.
4 - Transfer data fiom sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.
Data written to these bits is ignored.
Provides the channel number for the channel command.

FIG. 101

descri tion 'V
Bits [63:32] oftEe PC] address.
Bits [31:00] ofthe Pei address.
Bits [27:00] of the ExtMem address or bits [15:00] ot‘the Sram address.
When set, selects big endian mode for Pei transfers.
When set, disables Pci 64—bit mode.
Selects Flash for the external memory destination of P2d.
Bits [15:00] ofthe requested dma size expressed in bytes.

FIG. 102

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 243

INTEL Ex.1002.244

bit name
123296 MemAddr
95:64 PciAddrH
63:32 PciAder
30 SrcFlash
23 PciEndian
.22 WideDbl
15:00 Xerz

Lit_ MIL.—127:124 reserved
123:96 SrcAddr
95:60 reserved
59:32 DstAddr
30 FlashSel
22 FlashSel
15:00 Xerz

bit name
127:64 reserved
63 :32 ChkSurn

31 :24 reserved
23:20 SrcStatus
19: 16 DstStatus
15:00 Xerz

bit name
31:00 Cth

88/89

descri tion
Bits [27:00] 0 t e ExtMem 61
Bits [63:32] ofthe Pci address.
Bits [31:00] ofthe Pci address.
Selects Flash for the external memory source of D2p.
When set, selects big endian mode for Pci transfers.
When set, disables Pci 64—bit mode.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 103

T655,ote ramaess or Its 15:0

description ___ _ ___—_—Reserved for ture use.
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Reserved for fiJture use.
Bits [27:00] ofthe ExtMem address or bits [15:00] ofthe Sram address.
Selects Flash for the external memory source of D2d or D25.
Selects Flash for the external memory destination of S2p or D2d.
Bits [15 :00] of the requested dma size expressed in bytes.

FIG. 1 04

descri tion
Not used.
Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d
operation only.
Reserved for future use.
TBD.
TBD.
Bits [15:00] of the residual dma size expressed in bytes. This value will be zero ifthe
dma operation was successful

FIG. 105

dcscri tion

Each bit repreSents the clone llag for the respectlve dma channe . These Bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 t0 the corresponding ChCmd register ChCmep field.

FIG. 106

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 244

INTEL Ex.1002.245

5:

89/89

SHGE

58

IIIIII3_33m3m3mmmg95_ozmEmEm
:8.32

M53
CAVIUM-1002

Page 245
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.246

Attorney Docket N0.: ALA-006C

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post—office address, and citizenship are as stated below next to my name. I believe I am the original, first and sole
inventor (if only one name is listed below), or an original, first and joint iHVentor (if plural names are listed below) of the SubJSCt
matter which is claimed and for which a patent is sought by way of the application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) X is attached hereto.

and is amended by the Preliminary Amendment attached hereto.
T T was filed on , as Application Serial No. .

and was amended on (if applicable). '

I hereby state that I have reviewed and understood the contents of the above~1dentified specrfication, including the claims, as amended
by any amendment referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in37 CFR 1.56,

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)—(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
international application(s) designating at least one country other than the United States of America filed by me on the same subject
matter having a filing date before that of the application(s) on which priority is claimed:

Provisional Application ‘
I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listedbelow:

US. Priority Claim 1
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
applicati0n(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which became available between the filing date of the prior application(s) and the national or
PCT international filing date of this application:

Declaration and Power of Attorney 1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 246

INTEL Ex.1002.247

Inventor’s Signature

u N—k.
., an}?

Power of Attorney

7 As a named inventor. I hereby appoint the following attorney(s) and/0r agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith.

Mark A. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so,
made are punishable by fine or imprisonment, or bodi, under Section 1001 of Title 18 of the United States Code and that such Willful
false statements may jeopardize the validity of the application or any patent issued thereof.

Citizenship: United States of AmericaFull Name of Inventor: Laurence B. Boucher

20605 Montalvo Heights Drive
Saratoga, CA 95070

Residence:

Post Office Address: Same as above

 Date

Declaration and Power of Attorney

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 247

INTEL Ex.1002.248

s} 3;

Full Name of Inventor:

Residence :

Post Office Address:

x...)

Stephen E. J. Bhghtman

3733 Arlen CouIt
San Jose, CA 95132,

Same as above

Inventor’s Signature

I

Full Name of Inventor:

Residence:

Post Office Address:

Peter K. Craft

156 Henry Street
San Francisco, CA 941 14

Same as above

Inventor’s Signature

Full Name of Inventor:

Residence :

Post Office Address:

2 m
Inventor’s Signature

David A. Higgen

17880 Los Alamos Drive

Saratoga, CA 95070 '

Same as above

9w

Declaration and Power of Attorney

Attorney Docket N0.: ALA—006C

Citizenship: United Kingdom

Date

Citizenship: United S tares of America

Date

Date

Citizenship: United Kingdom

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 248

INTEL Ex.1002.249

. mm.- L:

Full Name of Inventor:

Residence:

Post Office Address:

CIIVC M. Philbrick

1170 Roycott Way
San Jose, CA 95125

Same as above

Inventor’5 Signature

Full Name of Inventor:

Residence:

Post Office Address:

Inventor’s Signature

Daiyl Di Starr

446 Folsom Court

Milpitas, CA 95035

Same as above ¥

Date

9 m in" m;

Attorney Docket No.: ALA—006C

Citizenship: Australia

Citizenship: United States of America

 Date

Declaration and Power of Attomcy

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 249

INTEL Ex.1002.250

‘1

' Attorney Docket No.: ALA—006C

19'?

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post~office address, and citizenship are as stated below next to my name. I believe I am the original, first and sole
inventor (if only one name is listed below), or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which a patent is sought by way of the application entitled:

“FAST—PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) X is attached hereto.
and is amended by the Preliminary Amendment attached hereto.
was filed on , as Application Serial No.
and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above—identified specification, including the claims, as amended
by any amendment referred to above, I acknowledge the duty to disclose all information which is material to patentability as defined in37 CFR 156.

Foreign Applieation(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)~(d), of any foreign application(s) for patent
or inVentor’s certificate, or any PCT international application(s) designating at least one country other than the United States of

' America listed below, and have also identified below any foreign applicati0n(s) for patent or inventor’s certificate or an PCT
I international application(s) designating at least one country other than the United States of America filed by me on the same subject

matter having a filing date before that of the application(s) on which priority is claimed:

Provisional Application I .

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listedbelow:

\
US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section NZ, 1 acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCT international filing date of this application:

Declaration and Power of Attorney

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 250

INTEL Ex.1002.251

Power of Attorney

As a named inventor, I hereby appomt the following attorney(s) and/or agent(s) listed below to prosecute this application and transactall business in the Patent and Trademark Office connected therew1th.

lVIark A. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made With the lcnowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patent issued thereof.

Full Name of Inventor: Laurence B. Boucher Citizenship: United States of Amenca

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

 LlZ’I (02.

Dateentor’s Signature

Declaration and Power of Attorney 2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 251

INTEL Ex.1002.252

\flu'

Full Name of Inventor: Stephen E. I. Blightman

3733 Arlen Court
San Jose, CA 95132

Residence:

e as above

216%

e Address: S

 ‘- nto ’5 Signature

Full Name of Inventor: Peter K. Craft

Residence: 156 Henry Street

San Francisco, ’CA 94114

Post Office Address: ove

Inventor’s Signature

Full Name of Inventor: David A. Higgen

17880 Los Alamos Drive

Saratoga, CA 95070

Residence:

Post Office Address: Same as above

Inventor’s Signature

 4.32.. ms in} m c

Citizenship: United Kingdom

 22/02Date

Citizenship: United States of America

Citizenship: United Kingdom

Date

Declaration and Power of Attorney

Attorney Docket No; ALA-006C.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 252

iI

INTEL Ex.1002.253

Full Name of Inventor: Clive M. Philbrick

Residence: 1170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

Inventor’s Signature

Full Name of Inventor: Daryl D. Starr

Residence: 446 Folsom Coun
Milpitas, CA 95035

. l i, : _
Inventor’s Sigma. 6

Declaration and Power of Attorney

Attorney Docket No.: ALA—006C

Citizenship: Australia

LL/lééfl

Date

Date

Citizenship: Uruted States of Amerlca

th{0‘2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 253

INTEL Ex.1002.254

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

10/03/2002 NESSEHI 00000026 10250870

01 “1:101 740.00 09
oz rcuoa 72.00 oz:

PTO-1556

(5/87)

'U‘S‘ Government Primlng Office: 2002 ~ 489-257/69033 [w

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 254

INTEL Ex.1002.255

PATENT APPLICATION FEE DETERMINATION [RECORD

Effective October 1, 2001

ell-ANS A3 FILED ' PART " SMALL ENTITY OTHER THAN
Column 1 H __ u ‘ OR SMALL ENTITY

TOTAL CLAIMS .

F Fl

TOTAL CHAFIGEABLE CLAIMS

INDEPENDENT CLAIMS minus 3 =u
MULTIPLE DEPENDENT CLAIM PRESENT D

* If the difference in column 1 is less than zero. enter "0" in column 2

0R TOTAL

CLAIMS As AMENIED - PART II cream-RAN
SMALL ENTITY OR SMALL ENTITY

CLAIMS
REMAINING NUMBER

AFTER PREVIOUSLY
AMENDMENT ~ PAID FOR

Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

AMENDMENTA
TOTAL

OR ADDIT. FEE

CLAIMS ‘ ' ‘ HIGHEST
REMAINING NUMBER

AFTER PREVIOUSLY

AMENDMENT I PAID FOR

AMENDMENTB
‘ 1» FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

CLAIMS HIGHEST
REMAINING NUMBER PRESENT

AFTER PREVIOUSLY EXTRA RATE
AMENDMENT PAID FOR

X$18=AMENDMENTC Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM I

‘ If the entry in column 1 is less than the entry in column 2, write '0" in column 3.
*" If the “Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter “20.” ADD”. FEE
'"If the “Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter “3.”

The "Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

FORM "0.375 (Rev, 9/01) Patent and Trademark Office. us. DEPARTMENT OF COMMERCEflu SGPOJWI 452424 I 59191

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 255

INTEL Ex.1002.256

FILING DATESERIAL NO.

MULTIPLE DEPENDENT CLAIM
APPLICANT s

rm.

mm=======:_==_
IIFEMuam

mm========_——=--
STNN

mm“Wm—_===============—_-
mymm

Mm==============I_-—mgm-nunn-II—n-IIIII-III--.pmmama-IllIll-ll-Illl—ll-_=====F===_==_—=__==5mEmu—nannmfinmmnummnmmmmmmummnuunmmmm
3

.w

'MAY BE USED FOR A nnl'rlnv: 7 "’41": n9 |\1r\'nnlr}I'-v-n us. DEPARTMENY N no

 MU: are

PTO-1380 (3-78)

CAVIUM-1002

Page 256
Cavium, Inc. v. Alacritech, Inc.

INTEL Ex.1002.257

ARTIFACT SHEET

Enter artifact number below. Artifact number is application number +
artifacfrtype code (see list below) *9 sequential letter (A, B, C ...). The first
artifact folder for anarti fact type receives the letter A, the second B, etc..

Examples: 59l2345§PA, 59153456PB, 5 123456ZA, 59l23456ZB
IndiCate quantity ofa single type ofartifact received but not scanned. Create
individual artifact folder/box and artifact number for each Artifact Type.

8/ CD(s) containing: B/
computer program listing

Doc Code: Computer Artifact Type Code: P
pages ofspecification

and/or sequence listing {3
and/or table -

Doc Code: Artifact Artifac ‘ e Code: S
content unspecified or combined a)
Doc Code: Artifact Anifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
D0c Coclchrtifact Artifact Type Code: C

Microfilm(s)

DOC Code: Artifact Artifact Type Code: F

B Video tape(s) _
. Doc Code: Artifact Artifact Type Code1V

D Model(s)
Doc Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact *Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents
marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X

D ' Other, description:
Doc Code: Anifact Artifact Type Code: Z

*March 8, 2004

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 257

INTEL Ex.1002.258

 7— 2303

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

,RECElVED
July 11, 2003

JUL .1 7 2003

Commissioner for Patents T h
13.0. Box 1450 8° "0'09y Center 2100
Alexandria, VA 22313—1450

Information Disclosure Statement per 37 CPR. §1.98

Sir: .

Pursuant to 37 C.F.R. §§ 156, 1.97 and 1.98, applicants bring one hundred and

forty-six documents listed on the enclosed fourteen—page form PTO-1449 to the attention

of the Examiner in the above-identified application.

Citation of these documents shall not be construed as an admission that the

documents are prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 CPR. § 1.56(b). Copies of the documents

listed on the enclosed fourteen-page form PTO-1449 are not submitted because they were

submitted in an earlier application (09/801,488,) which is relied upon for an earlier filing

date under 35 U.S.C. §120.

Respectfully submitted,

CERTIFICATE OF MAILING
I hereby certify that this correspondence is being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,578

addressed to the Commissioner for Patents, PO. Box 1450, 6601 KOII Center Parkway
Alexandria, VA 22313-1450, on July 1 I, 2003. Suite 245

Pleasanton, CA 94566
Date: 7— fl '02 Q: Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 258

INTEL Ex.1002.259

Filin date: Setember 27, 2002

Inventors: Laurence Boucher, et a1.

Grou Art Unit: 2154

Examiner name: Unknown
Attorney Docket No; ALA-006E

US, Patent Documents|
Document
Number

4,366,538

4,991,133

5,056,058

5,097,442

5,163,131

5,212,778

5,280,477

5,289,580

5,303,344

5,412,782

5,448,566

*Examiner
Initial

Filing Date,
Subclass [f A . roriate

Name Class

A 12/28/82

05/ l 3/86

10/08/91

03/17/92

1 l/10/92

05/18/93

01/18/94

02/22/94

04/12/94

05/02/95

09/05/95

36

36

A N0Johnson et a1. 0

ADavis et a1.

Hirata et a1. 30

Ward et al.

C

365

3 5

3 5 400 1'3
370 85.1

Latifet al. 395 275

Yokoyama et al. 395 275

250

94. l

\1 00
I .- .-

O

\O N O

\Io\0
ya“

1 1

Row et al. 0

F nology Center 210
G

11

1

J

K

\ODally et al.

Trapp

Hausman et 31. L») \O LII

Richter et al. 370

Forein Patent Documents
Translation

Document Number Date Class Subclass Yes 2Country

L WO 00/13091 03/09/00 PCT/US98/24943

M WO 99/65219 12/16/99 PCT/US99/13184

Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinberg is working on), 1 page,
printed 11/25/98.

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

 Zilog product Brief entitled "Z85C30 CMOS SCC Serial Communication Controller", Zilog lnc., 3 pages, 1997.

Internet pages of Xpoint Technologies, Inc. entitled “Smart LAN Work Requests”, 5 pages, printed 12/ 19/97.

Internet pages entitled: Asante and IOOBASE-T Fast Ethernet, 7 pages, printed 5/27/97.
Examiner Date Considered

*EXAMINER: Initial ifreference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation ifnot in conformance and not considered. Include copy ofthis form with your communication to applicant,

W Sh 1 of 1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 259

INTEL Ex.1002.260

h

. U.S. Deanment ofCommcrce, Patent and Trademark Office A Iication No: 10/260,878

\l’IfiEégMATION DISCLOSURE STATEMENT BY
I APPLICANT

Filin date: Setember 27, 2002 I

.

1
‘

' hm},

.‘

’l’k/ra mafiST—PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

US. Patent Documents

Document
Number

5,485,579

5,506,966

5,511,169

5,548,730

5,588,121

F 5,566,170

G 5,590,328

H 5,592,622

5,629,933

5,634,099

5,634,127

*Examiner
Initial

Filing Date,
Class lfA - ro riate

Name Subclass

A 01/l 6/96

04/09/96

04/23/96

08/20/96

l2/24/96

10/15/96

12/31/96

01/07/97

05/l 3/97

05/27/97

05/27/97

Hitz et alr 395 200.12

395 250

Suda 395 280 i i

3 5

395

370

3 5

395

370

395 200.07 '

395 680

l

mC)
C

EIV 1'11 0
KO

J:-0" —\I

N 00 CYoung et al.

Reddin et al.

Bakke et al

200.15

60 Tet:

5

200.02

nology Center 2100

Seno et a1.

lsfeld et a1.

Delp et al.

J

K

Andrews et a1

_-—
_fl—
_-—
-fl—
__
-
_-—
—-—
—II_
_-—
_-—

Cloud et a1.

Forei - n Patent Documents

l

Document Number Country Class Subclass Yes No

L WO 01/05107 Al 01/18/01 PCT/USOO/19006

M WO 01/05116 A2 01/18/01 PCT/USOO/19243 ,

OTHER ART (lncludin Author, Title, Date, Pertinent Paes, Etc. I
lInternet pages entitled: A Guide to the Paragon XP/S—A7 Supercomputer at Indiana University, 13 pages, printed

I2/2 1/98.

Richard Stevens, “TCP/1P Illustrated, Volume I, The Protocols”, pages 325-326 (I 994).

Gigabit Ethernet Technical Brief, Achieving End-to-End Performance, Alteon Networks, Inc., First Edition,

Date Considered l

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

September 1996.

l

Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.
Examiner

Sheet2 of4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 260

INTEL Ex.1002.261

o\‘i’1\§8\oRMATION DISCLOSURE STATEMENT BY
‘51 " APPLICANT

Attorney Docket No.: ALA-006E

US. Patent Documents
Document
Number

5,642,482

5,664,114

5,671,355

5,678,060

5,692,130

5,699,317

5,701,434

5,701,516

5,749,095

5,751,715

5,752,078

*Examiner
Initial

Filing Date,
Date lfA roriate

Name Class Subclass

A 06/24/97

09/02/97

09/23/97

10/ 14/97

1 1/25/97

12/16/97

12/23/97

12/23/97

05/05/98

05/ 12/98

05/12/98

Pardillos 395 200.2

Krech, Jr. et al. 395 200.64

Collins 395 200.2

Yokoyama et al. 709 212

Shobu et al. 395 200.12

Sartore et al. 395 230.06 2

95 484

95 842

71 l 141

Chan et al. 70 4

Delp et al. 395 827

C
ECEIVED

1

E

F O5':l9.O(D< DO30 -1 N _t D .2-.
0 Lo.)Nakagawa

H

I

J

K

D)Cheng et al.

Hagersten

(I! (I!

I

L»)

Forei - n Patent Documents
Translation

Subclass YesDocument Number Country Class 2o

L WO 01/05123 A1 01/18/01 PCT/USOO/18976

M WO Ol/40960Al 06/07/01 PCT/USOO/32660

ll2|IIIOTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.

Internet pages directed to Technical Briefon Alteon Ethernet Gigabit NlC technology, wwwlalteon.com, 14 pages,
printed 3/15/97.

VIA Technologies, lnc. article entitled "VT8501 Apollo MVP4", pages i-iv, 1-1 I, cover and copyright page,
revision 1.3, Feb. 1, 2000.

iReady News Archives article entitled "1Ready Rounding Out Management Team with Two Key Executives",
http://www.ireadyco.com/archives/keyexec.htmI, 2 pages, printed 1 1/28/98.

“Toshiba Delivers First Chips to Make Consumer Devices lnternet-Ready Based On iReady’s Design,” Press
Release October, 1998, 3 pages, printed 11/28/98.

1

*EXAMINER: lnitial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. include copy ofthis form with your communication to applicant.

Set 3 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 261

INTEL Ex.1002.262

F -~ . U.S. Deartment of Commerce, Patent and Trademark Office A lication No.: 10/260,878

EEQQQRMATION DISCLOSURE STATEMENT BY Finn date; Selember27. 2002
Inventors: Laurence Boucher, et a1.

Grou Art Unit: 2154

Examiner name: Unknown

Attorney Docket No: ALA—006E

US. Patent Documents
Document
Number

A 5,758,084

5,758,089

5,758,186

5,758,194

5,771,349

5,790,804

5,794,061

5,802,580

5,809,328

5,812,775

5,815,646

"Examiner
Initial

Filing Date,
Subclass [f A . ro riate

Class‘ Name

05/26/98 ‘

05/26/98

05/26/98

05/26/98

06/23/98

08/04/98

08/1 1/98

09/01/98

09/15/98

09/22/98

09/29/98

395

395

Hamilton et al. 395

Kuzma 395 886

Picazo, Jr. et a]. 395 188.01

Osborne 395 200.75

395 800.01 Te

McAlpice 711 149

Nogales et a]. 395 825

Van Seeters et al. 395 200.43

9 6

200.58

200.64

Silverstein et a1.

Gentry et al.

on b.) .—C
I

CElVED l
E l

-i1

Hansen et a1.
hnology Center 2100 3

H

J

K

IIIIHIIEI
w Ill .— U)Purcell et a1.

Forei [1 Patent Documents
Translation

Document Number Date Country Class Subclass Y sIE
O

L WO 01/04770 A2 01/18/01 PCT/USOO/18939

M WO/98/19412 05/07/98 PCT/US97/17257

OTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.

Internet pages from iReady Products, web sitehttp://www.ireadyco.con1/products,htm1, 2 pages, downloaded
1 1/25/98.

iReady News Archives, Toshiba, iReady shipping Internet chip, 1 page, printed 1 1/25/98.

Interprophet article entitled "Technology", http://www.interprophet.com/technology.html, 17 pages, printed 3/I/00,

iReady Corporation, article entitled "The I-IOOO Internet Tuner", 2 pages, date unknown.|4‘Examiner Date Considered

"EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Shee 7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 262

INTEL Ex.1002.263

, .’9» APPLICANT :
15 ! Grou ArtUnit 2154

‘ Exammer name Unknown
Attorney Docket No.: ALA-006E 1

US. Patent Documents

07/27/99 711

E 5,935,205 08/10/99
.5,937,169 08/10/99 3

G 5,941,969 08/24/99 710

—II v
_5,991,299 11/23/99 Radogna etal. 3

Foreign Patent Documents

_-

-WO/98/50852 11/12/98 PCT/US98/08719
-WO/99/04343 01/28/99 PCT/US98/l4729

OTHER ART (Includin Author, Title, Date, Pertinent Paes, Etc.

iReady article entitled "About Us Introduction", Internet pages fromhttpz/lwww.iReadyco.com/about.html, 3 pages,
printed I 1/25/98.

*Examiner Document
Initial Number

A 5,878,225

5,913,028

5,930,830

—u
—-

Filing Date,
Subclass lfA . ro riate
200.57

200.33

171

00 I - ECEIVED

9

7

7 216

IE

200.8

!123 no ogy Center 2100

3

1

3

29

I—‘ O

3

3

7 2

ll

95

95

09

09

95

07

0

09 30

Translation

2oSubclass Yes

 iReady News Archive article entitled “Revolutionary Approach to Consumer Electronics Internet Connectivity

Funded”, San Jose, CA, November 20,1997. 2 pages, printed 11/2/98.

iReady News Archive article entitled “Seiko Instruments Inc. ($11) INTRODUCES WORLD’S FIRST INTERNET-
READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY,” Santa Clara, CA and Chiba,
Japan, October 26, 1998, 2 pages, printed 11/2/98.

NEWSwatch article entitled "iReady intemet Tuner to Web Enable Devices", Tuesday, November 5, 1996, printed
1 1/2/98.

 *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

ShS

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 263

INTEL Ex.1002.264

Filin date: Setember 27, 2002

Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

‘fi/AST—PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

Attorne Docket No.: ALA-006E

US. Patent Documents

Name Subclass
Roach etal. 276
Panner etal. 5
Lowe 250
Pitts 56
Minami et al. 370

Olnowich 130
Anderson etal. 129 Te
Olarig 345 520

Hitzelberger 370 537

Day et al. 711

Foreion Patent Documents

Document Number Date Subclass

OTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.)

Document
Number

6,005,849

6,009,478

6,016,513

6,026,452

6,034,963

6,044,438

6,047,356

6,057,863

6,061,368

6,065,096

6,141,705

‘Examiner
Initial

Filing Date,
Date lfA - ro riate

A 12/21/99

12/28/99

01/18/00

02/15/00

03/07/00

03/28/00

04/04/00

05/02/00

05/09/00

05/ 16/00

10/3 1/00

C

D

E

F

G

H

I l

hnolo Center 2100

.l

K

Translation

Yes 2o

Ell

EETimes article entitled "Tuner for Toshiba, Toshiba Taps iReady for internet Tuner", by David Lammers, 2 pages,
printed 11/02/98.

"Comparison ofNovell Netware and TCP/IP Protocol Architectures", by 1.8, Carbone, 19 pages, printed 4/10/98.

Adaptec article entitled "ABA-7| lOC-a DuraSAN product", 11 pages, printed 10/1/01.

iSCSI HBA article entitled "iSCSl and ZGigabit fibre Channel Host Bus Adapters from Emulex, QLogic, Adaptec, l
1N1", 8 pages, printed 10/01/01. .

i
' - 1

Date congldered l
‘EXAMlNER: initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. include copy ofthis form with your communication to applicant.

eet6

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 264

INTEL Ex.1002.265

Filin date: Setember 27, 2002\ PifiEpRMATION DISCLOSURE STATEMENT BY
' APPLICANT

Inventors: Laurence Boucher, et a1.

Grou Art Unit: 2154

Examiner name: Unknown
.

“‘Qx‘TAST-PATH APPARATUS FOR RECEIVING DATA
"not ' CORRESPONDING TO A TCP CONNECTION Attome Docket No.: ALA-006E

US. Patent Documents
Document
Number

6,226,680

6,246,683

6,247,060

60/053,240

,345,301

*Examiner
Initial

Filing Date,
Class If Appropriate

Name Subclass

05/01/01

06/12/01

06/12/01

A Boucher et al. 709 230

Connery et al. 370 392

C Boucher et al. 709 238

Jolitz et al. 07/18/97

Burns et al. 709 23002/05/02

D)H(D

Techn logy Center 2100
EIIEHHHEIEI- Os

-II| .-; "I.

Forei - n Patent Documents
Translation

Date 20
Document Number Country Class Subclass ' Yes

a.
H

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

N iSCSI HBA article entitled "FCE-3210/6410 32 and 64-bit PCI-to-Fibre Channel HBA", 6 pages, printed 10/01/01.

-I lSCSl.com article entitled "iSCSI Storage", 2 pages, printed 10/01/01.
“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis", by Kalampoukas eta1., IEEE
Transactions on Networking, vol. 6, no. 6, December 1998.

[Ready News article entitled "Toshiba Delivers First Chips to Make Consumer Devices Intemet-Ready Based on
iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 1 1/2/98.

"EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

7 Sheet7of14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 265

INTEL Ex.1002.266

[" - U.S. Deartment ofCommerce, Patent and Trademark Office A lication No.2 10/260,878
I

ATION DISCLOSURE STATEMENT BY FiIin date: Setember27. 2002

APPLICANT Inventors: Laurence Boucher, etal.

Grou Art Unit: 2154

m‘mg‘$AST-PATH APPARATUS FOR RECEIVING DATA Examine, name; Unknown
' CORRESPONDING TO A TCP CONNECTION

|

l l l l ll

Attorney Docket No: ALA-006E

US. Patent Documents

Document
Number

*Examiner
Initial

Filing Date,
Class [fA . ro riate

Date Name Subclass

4

,U .
1 7 2003

05' :EIIEEHHEHEE- l

Forei Patent Documents

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

Translation

20Document Number Subclass Yes

|III
United States Patent Application No. 08/964,304, by Napolitano, et al., entitled “File Array Storage Architecture",
filed I l/04/97.
“File System Design For An NFS File Server Appliance”, Article by D. Hitz, et al., l3 pages.

Adaptec Press Release article entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May 4, 2000,
printed 6/l4/00.

Adaptec article entitled “EtherStorage Frequently Asked Questions", 5 pages, printed 7/19/00.

flflflfl
Examiner Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

W heet 8 of T

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 266

INTEL Ex.1002.267

U.S. Deartment ofCommerce, Patent and Trademark Office Aplication No.: 10/260,878 l

RMATION DISCLOSURE STATEMENT BY
l

 , _ APPLICANT .
.

> ‘ - ST-PATH APPARATUS FOR RECEIVING DATA ‘
, CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

US. Patent Documents

*Examiner Document Cl Filing Date,Initial Number ass lfAroriate

i

i

Name Subclass

l

1 7 2003.r_. zI .,‘
'i

D

Forein Patent Documents

Document Number Date Country Class Subclass Yes

fifllflfllflflflflfll I
II

-lC

O

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.) ‘

Ell
Adaptec article entitled “EtherStorage White Paper”, 7 pages, printed 7/19/00.

ClBC World Markets article entitled “Computers; Storage”, by J. Berlino et al., 9 pages, dated August 7, 2000.

Merrill Lynch article entitled “Storage Futures”, by S. Milunovich, 22 pages, dated May 10, 2000.

CBS Market Watch article entitled “Montreal Start-Up Battles Data Storage Botttleneck”, by S. Taylor, dated March ‘
5, 2000, 2 pages, printed 3/7/00. ‘

‘EXAMINER: lnitial ifreference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not

in conformance and not considered. Include copy ofthis form with your communication to applicant.

Shet 9 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 267

INTEL Ex.1002.268

3" mg.

Efllfifllflflflflfll
l

Filin date: Se tember 27, 2002 ‘

Inventors: Laurence Boucher, et a1.APPLICANT

‘4
AST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION
.

Attorne Docket No.: ALA—006E

Filing Date,
IfA ro riate

“

US. Patent Documents
Document
Number

‘Examiner

Initial Date
Name Class Subclass

1

l
" ECEIVED

Tec nology Center 2100

Foreien Patent Documents

Document Number Date Country Class Subclass

Translation

Y Z0O S

Ell
OTHER ART (lncludin Author, Title, Date, Pertinent Paes, Etc.)

Internet-draft article entitled “SCSI/TCP (SCSI over TCP)”, by J, Satran et al., 38 pages, dated February 2000,
printed 5/19/00.

Internet pages entitled “Technical White Paper-Xpoint’s Disk to LAN Acceleration Solution for Windows NT
Server,” 16 pages, printed 6/5/97. '

Jato Technologies article entitled “Network Accelerator Chip Architecture,” twelve-slide presentation, printed
8/19/98.

EETimes article entitled “Enterprise System Uses Flexible Spec,” dated August 10,1998, printed 11/25/98. 1

- l
Date Considered

‘EXAMlN ER: initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation ifnot
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Examiner

: 104

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 268

INTEL Ex.1002.269

APPLICANT

*éiXST-PATH APPARATUS FOR RECEIVING DATA
‘ lama”? CORRESPONDING TO A TCP CONNECTION

US. Patent Documents

Document
Number

*Examiner
Initial

Filing Date,
C1355 IfA roriate

Subclass

U 172003 Ir—

m up an
I‘ . v 4

AEllflfllflfllflfll . I

Foreign Patent Documents
Translation

Document Number Country Class Subclass esIE
O

Ell
OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

Internet pages entitled “Smart Ethernet Network Interface Cards”, which Berend Ozceri is developing, printed
I 1/25/98.

lntemet pages of Xaqti corporation entitled “GigaPower Protocol Processor Product Review,” printed 1 1/25/99.

Internet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert]. Walsh,
printed 6/3/99.flflflfl

Examiner

‘EXAM INER: Initial ifreference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 269

INTEL Ex.1002.270

 10/260,878

*I
I

A lication No.: I

Filin date: Setember 27, 2002 ‘

Inventors: Laurence Boucher, et al.

Grou Art Unit: 2154

Attome DocketNo.: ALA-006E I

US. Patent Documents

*Examiner Document Cl Filing Date,Initial Number 3“ IfA roriate

' ' AST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Name Subclass

chnoloay Center 21 oIflflflflflflflfll
U W8

'II 1-

Forein Patent Documents ,

Document Number Country Class Subclass Yes E
Q

fill
OTHER ART (lncludin Author, Title, Date, Pertinent Paes, Etc.)

L Internet pages of lnterProphet entitled “Frequently Asked Questions”, by Lynne Jolitz, printed 6/14/00.

M Internet pages entitled “iReady Products,” printed | I/25/98.

2 Andrew S. Tanenbaum, “Computer Networks,” Third Edition, I996, ISBN 0-13-349945-6.

Form IO-K for Exelan, lnc., for the fiscal year ending December 3 1, I987 (IO pages).

I

Form 10-K for Exelan, lnc., for the fiscal year ending December 31, I988 (10 pages).

“Second Supplemental Information Disclosure Statement per 37 C.F.R. §l.97(i)”, dated July 29, 2002 relating to
Exelan Inc. as submitted in Application Serial No. 09/464,283.

Examiner Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not

 in conformance and not considered. Include copy ofthis form with your communication to applicant.

She2 of I4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 270

INTEL Ex.1002.271

Aplication No.: 10/260,878

Filin date: Setember 27, 2002

Inventors: Laurence Boucher, el al.

Grou Art Unit: 2154

Examiner name: Unknown
Attorney Docket No.: ALA-006E

US. Patent Documents
Document
Number

6,173,333

2001/0025315Al

2001/0004354A1

Filing Date,
Class lfA I re riate

Date Name Subclass
‘Examiner
Initial

-A

C

07/18/97 Jolitz et al.

Jolitz 01/10/01

Jolitz 01/10/01

V

UL 1 7 2003

u u. c- 1 . I)Iflfiflflfllflll
Forei - n Patent Documents

Translation

YDocument Number Country Class Subclass sIE
O

OTHER ART (lncludin Author, Title, Date, Pertinent Paes, Etc.)

WindRiver article entitled “Tornado: For Intelligent Network Acceleration”, copyright Wind River Systems, 2001, 2
pages.

WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks”, Copyright Wind
River Systems, 2002, 7 pages.

Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation, 1999, 8
pages.

I

Examiner Date Considered "

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not

in conformance and not considered. Include copy ofthis form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 271

INTEL Ex.1002.272

A lication No.: 10/260,878

Filin date: Setember 27, 2002

Inventors: Laurence Boucher, et al. Grou Art Unit: 2154

,fiiST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

Attome Docket No.: ALA-006E

US. Patent Documents
Document
Number

5,058,1 10

6,021,446

6,356,951

6,389,468

6,427,169

6,434,651

6,449,656

6,453,360

*Examiner
Initial

Filing Date,
Date IfA roriate

Name ‘ Class Subclass

10/ 1 5/91

02/01/00

03/12/02

05/14/02

07/30/02

08/13/02

09/10/02

09/17/02

Beach et al. 370 85.6

709 303

709 250

709 226

709 224

710 260

709 236

709 250

A

EIIHIIEEIEII
Gentry, Jr

C Gentry, Jr

Muller et al.

Elzur

F

G
ECEIVEDG entry, Jr

Elzur et al.

Muller et al.

noogy ener II
Forein Patent Documents

Translation

Y

20
Document Number Country Class Subclass

(D tn

HI

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

Article from Rice University, Department of Computer Sc1ence entitled “Lazy Receiver Processing (LRP): A New
N Network Subsystem Architecture for Server Systems”, by Peter Druschel and Gaurav Banga, 15 pages.

Internet RFC/STD/FYl/BCP Archives article with heading “RFC2140” entitled “TCP Control Block
Interdependence”, web address http://www.faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

Examiner Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet 14 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 272

INTEL Ex.1002.273

 A _
0mm“

IN THE'UNITED STATES PATENT AND TRADEMARK OFFICE

Application of Laurence B. Boucher, et a1. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner; Unknown

Atty. Docket No: ALA-006E GAU: 2154

For: FAST—PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

June 7, 2004

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Supplemental Information Disclosure Statement per 37 C.F.R. §1.98

Sir: .

Pursuant to 37 CPR. §§ 1.56, 1.97 (e)(1), 1.98, applicants bring the following

document to the Examiner’s attention. Included with this letter is one US. Patent

document that was first cited in a communication from a foreign patent office in a

counterpart foreign application not more than three months prior to the filing of this

information disclosure statement. Also included is a one-page form PTO—1449 listing

this document.

Citation of this document shall not be construed as an admission that the

document is prior art withirespect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 CPR. § l.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING ; g
I hereby certify that this correspondence is being deposited with Mark Lauer

Reg. No. 36,578

6601 K011 Center Parkway

the United States Postal Service as first class mail in an envelope
addressed to the Commissioner for Patents, PO. Box 1450

Alexandria, VA 22313—1450, on June 7, 2004. Suite 245

Pleasanton, CA 94566

Date: é eZfl @— Tel: (925) 484—9295
Mark Lauer Fax: (925) 484-9291

/'

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 273

INTEL Ex.1002.274

.. ENTAL INFORMATION DISCLOSURE Fifi" date: Setemberzl 2002
’o TATEMENT BY APPLICANT

\\ Inventors: Laurence Boucher, et al.
.\ i -

I 38“ 5 GroqutUnit: 2154
u ATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

Attom Docket No.2 ALA-006E

US. Patent Documents

*Examiner , Document Filing Date,
Initial Number Date Name Class SUbCIaSS IfA re riate

Forein Patent Documents

~
--

-—-_----

- OTHER ART (Includin Author, Title, Date, Pertinent Paes, Etc.)

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Shet l of J

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 274

INTEL Ex.1002.275

Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA—006E - GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

June 21, 2004

Commissioner for Patents

PO. Box 1450
Alexandria, VA 22313-1450

2“d Supplemental Information Disclosure Statement per 37 C.F.R. §1.98

Sir: , ‘

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring the following

document to the Examiner’s attention. Included is one US. Patent reference document

and a one-page form PTO-1449 listing this document.

Citation of this document shall not be construed as an admission that the

document is prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § l.56(b).

Respectfiilly submitted,

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with Mark Lauer

Reg. No. 36,578

6601 Koll Center Parkway
Suite 245

Pleasanton, CA 94566
& Tel: (925) 484-9295
Mark Lauer Fax: (925) 484-9291

the United States Postal Service as first class mail in an envelope
addressed to the Commissioner for Patents, PO. Box l450
Alexandria, VA 22313-1450, on June 21, 2004.

13mm

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 275

INTEL Ex.1002.276

/ U.S. D artment of Commerce, Patent and Trademark Office A lication No.: 10/260 878

. (WET—PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown ‘2
' 1115‘“ CORRESPONDING TO A TCP CONNECTION

US. Patent Documents
Document
Number

5,517,668

*Examiner
Initial

Filing Date,
Date If A m riate

5/14/1996

Class

395

Subclass

A 800Szwerinski et a1.

2

Forei _ Patent Documents
Translation

Date Class Ye 20Document Number SubclassCountry

allHIIEHHEEHEII
OTHER ART (Includin Author, Title Date, Pertinent Paes, Etc.

a
Examiner Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is In conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Shof

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 276

INTEL Ex.1002.277

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

A

v’z‘h‘ mac“ pplication of Laurence B. Boucher, et a1. Ser. No: 10/260,878.

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154 A

For: FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

February 24, 2005

Commissioner for Patents
PO. Box 1450

Alexandria, VA 22313-1450

3” Supplemental Information Disclosure Statement

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring sixteen documents

to the Examiner’s attention. Included are copies of nine non-patent reference documents,

and a one-page form PTO-1449 listing these documents separately from seven US.

Patent reference documents. Copies of the seven US. Patent reference documents are not

enclosed.

Citation of these documents shall not be construed as an admission that the

documents are prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 c.F.R.-§ 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING
I hereby certify that this correspondence is being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. N0. 36,578

addressed to the Commissioner for Patents, PO. Box I450 6601 KOll Center Parkway
Alexandria, VA 22313—1450, on February 24, 2005. Suite 245 '

Pleasanton, CA 94566

Date: Zia—45’ Tel: (925)484—9295
Mark Lauer Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 277

INTEL Ex.1002.278

Sheet: 1 of 1

A lication No.: 10/260,878 !
QB‘IPSSPPLEMENTAL INFORMATION DISCLOSURE . _.

o. : Inventors: Laurence Boucher, et a1.

, - ATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION —. Attorney DocketNo.: ALA—006E

US. Patent Documents

*Examiner Document Subclass Filing Date,Initial Number If Appropriate

5,619,650 4/8/97 Bach et al.

———-—
OTHER ART—NON PATENT LITERATURE DOCUMENTS

*Examiner _

-
Schwaderer et al., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
Decomposition for ASIC Implementation”, from 15m Conference on Local Computer Networks, 5
aes Set. 30 — Oct. 3 1990.

Beach, Bob, IEEE Computer Society Press publication entitled, "UItraNet: An Architecture for
Gigabit Networking”, from 15m Conference on Local Computer Networks, 18 pages, Sept. 30 —
Oct. 3, 1990.

Chesson et al., IEEE Syposium Record entitled, “The Protocol Engine Chipset“, from Hot Chips Ill,
16 pages, Aug. 26-27, 1991.

Maclean et al., IEEE Global Telecommunications Conference, Globecom ‘91, presentation
entitled, “An Outboard Processor for High Performance Implementation of Transport Layer
Protocols", 7 paes, Dec. 2—5, 1991. -

Ross et al., IEEE article entitled “FX1000: A high performance single chip Gigabit Ethernet NIC”.
from Compcon ‘97 Proceedings, 7 pages, Feb. 23-26, 1997.

Koufopavlou et al., IEEE Global Telecommunications Conference, Globecom ‘92, presentation
entitled, “Parallel TCP for High Performance Communication Subsystems“, 7 pages, Dec. 6-9,

--Lilienkamp et al., Publication entitled “Proposed Host—Front End Protocol", 56 pages, Dec. 1984.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 278

INTEL Ex.1002.279

L5

L6

L7

L8

L9

L13

L14

L15

L16

L17

55

Search History

Search Query DBs Default

Operator
Plurals Time Stamp

(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) AND ((tcp OR
"transport control") NEAR2
connection) AND (header NEAR2
(template OR default))

(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) AND ((th OR
"transport control") NEAR2
connection)

(((transport 0R tcp) ADJ layer)
NEAR2 header) SAME ((tcp OR
"transport control") NEAR2
connection)

(((transport OR tcp) ADJ layer)
NEAR2 header) AND ((tcp OR
"transport control") NEAR2
connection)

(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) SAME (destination
OR address)

(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) AND ((destinatlon
OR address) WITH header)

(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) AND ((destination
OR address) WITH header) NOT L9

(header WITH (template OR
default))

((prepend OR append 0R attach)
WITH header WITH (template 0R
default))

((write OR form) WITH header
WITH (template 0R default))

"260878".apn.

1/18/2006 2:34:29 PM Page 1

US—PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US—PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US—PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO: JPO;
IBM_TDB

US—PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB; OR
USPAT;
EPO; JPO;
IBM_TDB

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

2006/01/18 09:30

2006/01/18 10:14

2006/01/18 10:03

2006/01/18 10:03

2006/01/18 13:23

2006/01/18 11:27

2006/01/18 11:27

2006/01/18 13:24

2006/01/18 13:37

2006/01/18 13:37

2006/01/13 13:59

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260378.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 279

INTEL Ex.1002.280

56

S7
$8

48

50

49
("5983271""6141705“"5937169"
"6161123""5619650“"5841764"
"5898713""5940598""6219697"
"6226680""6219697""6226680"
"6247060""6400712""6405247"
"6415313""6424650""6591302"
"6963921""6965941""5684954"
"5309437""5805572""5706508"
"5727142""5931916""5941988“
"6021507""6032183""6073180"
"6078733""6324183""6356951"
"6389468""6434620"”6453360"
"6480489"“6483804"“6606301"
"6650640""6658002""6721806"
"6751665""6823437"“6907042"
"6920493"“6938092""6947430"

"5995741""6370599")pn

("6904519""6208620""6134245"
"6229823""5307413""5682534"
"5764645""5793958""5923659"
"6084892""6091710""6097719"
"6181695""6195425""6236652"
"6246683""6262976""6292479"
"5330250""6430595""6571272“
"6625170""6697352”"6714541"
"6738361""6771673""6779033"
"6826620""6850495""6880017"
"6885678""6956853""5434976"
"5274768""6065064""6208651"
"5574919""5706429""6134244"
"6208650"“5235644""5303344"
"5386542""5594869""5903724"
"5920703"“5983259""5983274"

"6081846""6085215")pn.

("6088777""6108782""6263444"
"6334153""6353619""6389479"
"6393487""6427173""6449631"
"6470391""6625662“"6658480"
"6798743""6006268""6226267"
"6226267""6463470""6466984"
"6675218“"6760304""5740371"
"6535509""6920484""6049833"
"5619645""6055237""6192411"
"4893307""5021949""5815516"
"5950195""6148410""5777989"
"5867636""5898830""6021263"
"6052788""6098108""6097697"
"6119170""6122276""6128662"
"6151300""6185617""6195705"
"5278955""5412654""5442633"

"5550984""5636371“)pn.

Search History 1/18/2006 2:34:29 PM Page 2
C:\Documents and Settings\ekuiper\My Documents\EAS‘l\Workspaces\applications\10260878.wsp

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

 ON

ON

2006/01/13 15:25

2006/01/13 16:28

2006/01/15 16:33

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page280

INTEL Ex.1002.281

510
81

("5650993""5664116""5673322"
"5699361"“5757924""5764756"
"5774640""5799016""5822523"
"5838682""5907610""5917997"
"5931913""5935215""5944783"
"5951650""5964891""6006264"
"6018766""6041041""6061341"
"6075796""6104716""6115385"
"6119171""6137792""6147976"
"6151679""6169795""6212175"
"6226686""6212175""6226686"
"6233249""6233626""6240513"
"6249294""6252857""6263371”
"6266701""6269099""6286047"
"6314284""6321267""6324161”
"6324582""6345301""6351775"

"6353891""6370144")pn.

(20010004354H"20010025315W"43
66538”"4991133W"5056058H"5058
110H"5097442H"5163131H"521277
8H"5280477H"5289580W"5303344"
|"5412782H"5448566"P5485579H"
5505966"V5511169"P5548730H"55
66170”"5588121W"5590328W"5592
622W"5629933H"5634099H"563412
7W"5642482H"5664114"P5671355"
|"5678060H"5692130W"5699317H"
5701434W"5701516"P5749095H"57
51715H"5752078H"5758084H"5758
089W"5758186W"5758194H"577134
9H“5790804”"5794061W"5802580"
|"5809328W"5812775W"5815646H"
5878225W"5913028H"5930830W"59
31918H"5935205W"5937169H"5941
969H"5941972W"5950203"P599129
9H“5996024”"6005849W"6009478"
|“6016513”"6021446"V6026452H"
6034963"P6044438H"6047356W"60
57863H"6061368"P6065096H"6141
705W"6173333"P6226680H"624668
3W"6247060W"6247169"V6345301"
I"6356951W"6389468W"6434651H"
6449656"P6453360")PN.

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

1W

ON
2006/01/15 16:34

2006/01/15 18:18

Search History 1/18/2006 2:34:29 PM Page 3
C:\Documents and Settings\ekuiper\My Documents\EASl'\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page281

INTEL Ex.1002.282

66 ("4366538"|"4991133"|"5056058"|"

5097442"|"5163131"|"5212778"|"52
80477"|"5289580"|"S303344"|"5412
782"|"5448566"|“5485579"|"550696
6"]"5511169"|"5548730"|"5566170"
|"5588121"l"5590328"|"5592622"|"
5629933"|"5634127"|"5642482"|"56
64114"|"5671355"|"5678060"|“5692
130"|"5699317"|"5701516"|"574909
5"|"5751715"|"5752078"|"5758084"
|"5758089"|"5758194"|"5771349"|"
S790804"i"5794061"i"5802580"|"58
09328"|"5812775"|"5815646"|"5878
225"|"S913028"|"5930830"|“593191
8"|"5935205"|"5937169"|"5941972"
|"5950203"|"5991299"|"5996024"|"
6005849"!"6009478"|"6016513"|"60
26452"|"6034963"|"6044438"|"6047
356"|"6057863"|"6061368"|"606509
6"l"6141705"|"6226680"|"6246683"
I"6247060"|"6345301").PN.

("5598410").PN.

("5517668").PN.

(interrupt WITH header) AND
(network ADJ layer) AND (transport
ADJ layer) AND (header WITH
validat$4) AND (header WITH
prepend$4)

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (header WITH
validat$4) AND (header WITH
prepend$4)

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (header WITH
valldat$4)

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (header WITH
(validat$4 OR check 0R checksum
0R "crc"))

Search History 1/18/2006 2:34:29 PM Page 4

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

OR

OR

OR

OR

 ON

ON

ON

ON

ON

ON

 2006/01/15 18:27

2006/01/15 18:15

2006/01/15 18:17

2006/01/16 12:36

2006/01/16 12:38

2006/01/16 12:43

2006/01/16 13:04

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 282

INTEL Ex.1002.283

518

$19

$20

$21

522

523

$24

89

152

40

45

2427

549

15

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (((mac 0R "media
access" OR datalink OR "data link")
ADJ layer) WITH header) AND
(header WITH (valldat$4 OR check
OR checksum OR "crc"))

((network ADJ layer) WlTH header)
AND ((transport ADJ layer) WITH
header) AND (((mac 0R "media
access control" OR datalink OP.

"data link") ADJ layer) WITH
header)

("5077732" | "5428615" I "5651002"
| "5729543" I "5732081'I |
"5825774").PN. OR ("5991299").
URPN.

("5088090" | "5274631" | "5406643"
| "5452294" | "5473599" |
"5504866" | "5570466" |
"5583996").PN. OR ("5845091").
URPN.

(network ADJ layer) AND (transport
ADJ layer) AND ((mac OR "media
access control" OR datalink OR

"data link“) ADJ layer)

(network ADJ layer) AND (transport
ADJ layer) AND ((mac OR "media
access control" OR datalink OR

"data link") ADJ layer) AND
(protocol WITH header WITH layer)

(network ADJ layer) AND (transport
ADJ layer) AND ((mac OR "media
access control" OR datalink OR

"data link") ADJ layer) AND
(protocol WITH header WITH layer)
AND (inbound SAME outbound
SAME header)

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

OR

OR

OR

OR

OR

ON

ON

ON

ON

ON

ON

ON

2006/01/16 14:20

2006/01/16 19:20

2006/01/16 16:42

2006/01/16 16:50

2006/01/16 17:16

2006/01/16 17:29

2006/01/18 09:27

Search History 1/18/2005 2:34:29 PM Page 5
C:\Documents and Settings\ekuiper\My Documents\EAS‘l\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 283

INTEL Ex.1002.284

525

$26

Search History

133

58

("4652874" I "4807111" | "4850042"
l"4899333"|"4922503"|
"4933938"|"5150358“|"5210746"
|"5220562"|"5231633"|
"5251205"|"5278830“|"5291482"
|“5293379"|"5301333"|
"53o9437"|"5313454"|"5343471"
|“5386413"|"5392432"|
"5394402"|"5410540"|"541o722"
|"5422838“|"5425028“|
"5426736"|"5450399"|"5455820"
i"5457681"i"5459714“|
"5459717"|"5461611"|"5461624"
|“5473607"|"5477537“|
"5481540"|"5485455"|"5485578"
|"5490139"|"5490252“|
"5500860"I"5515376"|"5535202"
|"55554OS"|"5561666"|
"5570365"l"5572522"|"5583981"
["5592476"|"5594727"|
"5600641"|"5602841"|"5608726"
|“5610905"|"5619500"|
"5619661"|"5633865"|"5636371"
|“5640605"|"5649109"|
"5651002"|"5675741"|"5684800"
|"5691984"|"5706472"|
"5720032"|"5724358“|"5726977"
|"5734865"|"5740171"|
"5740175"|"5740375"|"5742604"
|“5742760"|"5745048"|
"5748905"|"5751967"|"5754540"
l"5754801"|"5757771"|
"5757795"|"5764634“|"5781549"
|"5784573"|“5790546"|
"5802047"|'5802052")PN.OR
C3920566“)URPN.

525 AND header AND layer AND
protocol

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

OR

OR

ON

2006/01/16 18:03

2006/01/16 18:03

1/18/2006 2:34:29 PM Page 6
C:\Documents and Settings\ekuiper\My Documents\EAST\Worleaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 284

INTEL Ex.1002.285

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
Unlled Sula Patent and Trademark OfficeAddmu: COMMISSIONER FOR PATENTS

PD. Box 1450
Alexandria, Virginia 211134450ww.uspln.gov

APPLICATlON N0. FIRST NAMED [NVENTOR AITORNEY DOCKET No. CONFIRMATION No.

10/260,873 09/27/2002 Laurence B. Boucher ALA—006E 9902

245‘" 759° 01/270006
MARK A LAUER KUIPER. EIuc J
6601 KOLL CENTER PARKWAY

1U TE 245 AK'I‘ UNIT PAPER NUMBER
PLEASANTON, CA 94566 2154

DATE MAILED: 01/27/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 285

INTEL Ex.1002.286

Application No. Applicant(s)

.;. 10/260,878 BOUCHER ET AL.
Office Action Summary Examine,

Eric Kuiper

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --
Period for Reply -

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- ll NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will. by statute. cause the applic ton to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the reading date of this corn. . niwticn. even if timer tiled. may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

NE Responsive to communication(s) filed on 27 September 2002.

2a)l:] This action is FINAL. 2b)® This action is non-final.

3)|:l Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 0.6. 213.

Disposition of Claims

HE Claim(s)1—_24is/are pending in the application.

4a) Of the above Ciaim(s)_ islare withdrawn from consideration.

5):] Ciaim(s) __ is/are allowed.

mg Ciaim(s) 1-_24 is/are rejected.

DIE Ciaim(s) _1_1 islare objected to.

8)I:] Ciaim(s)_ are subject to restriction and/or election requirement.

Application Papers

9)I:] The specification is objected to by the Examiner.

10)I:] The drawing(s) filed on __ is/are: a)l:] accepted or b)l:] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)I:I The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)l:] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)|:] All b)l:| Some * c)l:l None of:

1.1:] Certified copies of the priority documents have been received.

2.1:] Certified copies of the priority documents have been received in Application No._

3.1:] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2()).

" See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) E Notice of References Cited (PTO-892) 4) [:1 Interview Summary (PTO-413)
2) E] Notice of Draflsperson‘s Patent Drawing Review (PTO-948) Paper NOISI’Ma'I Date‘ ___r
3) IE Inlorrnation Disclosure Stalemenl(s) (PTO-1449 or PTO/SB/Ofl) 5) E] “Once 0' '"f‘ma' Pale”! APPI'GBM" (PTO-152)

Paper No(s)/Mail Date . 6) [:1 Other:
U.S. PEIBI'II and Trademark Office
PTOL-326 (Rev. 7-05) Office Action Summary Part of Paper No./Mai| Date 01162006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 286

INTEL Ex.1002.287

' Application/Control Number: 10/260,878 Page 2
‘ Art Unit: 2154

DETAILED ACTION

1. Claims 1-24 have been presented for examination.

Claim Objections

2. Claim 11 is objected to because of the following informalities: line 3 contains only the

phrase “the media access control layer header,” which appears to be a typographical error in the

addition of this phrase to the claim. Appropriate correction is required.

Claim Rejections - 35 USC § 102

3. The following is a quotation of the appropriate paragraphs of 35 USC. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -—

(e) the invention was described in (I) an application for patent, published under section 122(b), by another filed
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for
patent by another filed in the United States before the invention by the applicant for patent, except that an
international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this
subsection of an application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

4. Claims 1, 2, 6 and 7 are rejected under 35 USC. 102(e) as being anticipated by Hendel

et al. (US 5,920,566, hereinafter Hendel).

5. As per claim 1, Hendel teaches a method for network communication (e.g. Hendel, col. 4,

lines 53-55), the method comprising:

receiving a plurality of packets from the network, each of the packets including a media

access control layer header, a network layer header and a transport layer header (e.g. Hendel, col.

4, lines 56-67; col. 5, lines 1-8);

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 287

INTEL Ex.1002.288

x

' Application/ControlNumber: 10/260,878
Art Unit: 2154

Page 3

processing the packets by a first mechanism, so that for each packet the network layer

header and the transport layer header are validated without an interrupt dividing the processing

of the network layer header and the transport layer header (e.g. Hendel, col. 12, lines 66-67; col.

13, lines 1-16);

sorting the packets, dependent upon the processing, into first and second types of packets,

so that the packets of the first type each contain data (e.g. Hendel, col. 5, lines 26-33);

sending the data from each packet of the first type to a destination without sending any of

the media access control layer headers, network layer headers or transport layer headers to the

destination (e.g. Hendel, CO]. 13, lines 63-67; col. 14, lines 1-9).

6. As per claim 2, Hendel teaches the method of claim 1, wherein processing the packets by

a first mechanism further comprises:

processing the media access control layer header for each packet without an interrupt

dividing the processing of the media access control layer header and the network layer header

(e.g. Hendel, col. 12, lines 66-67; CO]. 13, lines 1-16).

7. As per claim 6, Hendel teaches the method of claim 1, wherein sorting the packets

includes classifying each of the packets of the first type as having an Internet Protocol (IP)

header and a Transport Control Protocol (TCP) (e.g. Hendel, col. 6, lines 50-61).

8. As per claim 7, Hendel teaches the method of claim 1, further comprising:

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 288

INTEL Ex.1002.289

' Application/Control Number: 10/260,878
Art Unit: 2154

Page 4

transmitting a second plurality of packets to the network, each of the second plurality of

packets containing a media access control layer header, a network layer header and a transport

layer header, including processing the second plurality of packets by the first mechanism, so that

for each packet the media access control layer header, the network layer header and the transport

layer header are processed without an interrupt dividing the processing of the media access

control layer header (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

‘ Claim Rejections - 35 USC § 103

9. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title, ifthe differences between the subject matter sought to be patented and the prior art are
such that the subject matter as a whole would have been obvious at the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the
manner in which the invention was made.

10. The factual inquiries set forth in Graham v. John Deere C0,, 383 US 1, 148 USPQ 459

(1966), that are applied for establishing a background for determining obviousness under 35

U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.

2. Ascertaining the differences between the prior art and the claims at issue.

3. Resolving the level of ordinary skill in the pertinent art.

4. Considering objective evidence present in the application indicating obviousness
or nonobviousness.

11. Claims 3 and 4 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hendel et

al. (US 5,920,566, hereinafter Hendel) in view of Ota et al. (US 6,1 15,615, hereinafter Ota).

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 289

INTEL Ex.1002.290

‘l

' Application/Control Number: 10/260,878
Art Unit: 2154

Page 5

12. As per claim 3, Hendel teaches the method of claim 1, but fails to teach the method

further comprising: processing an upper layer header of at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header corresponds to a

protocol layer above the transport layer.

However, in a similar art, Ota teaches a network communications system that uses an

application layer level address to indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Ota with Hendel because of the advantages of using an upperilayer header to determine

the destination of packets in a network. Network layer and transport layers also generally

include addresses or indications of destination for the packets and including this feature into the

application layer as well provides another fail-safe step for the network in the even of a failure in

some portion of the network. Having fail-saferroutes for information decreases the amount of

network downtime since routes can be switched almost instantaneously upon the realization of a

fault or error. This is a benefit in any communications network system.

13. As per claim 4, Hendel teaches the method of claim 1, but fails to teach the method

further comprising: processing an upper layer header of at least one of the packets of the second

type by a second mechanism, thereby determining the destination.

However, in a similar art, Ota teaches a network communications system that uses an

application layer level address to indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 290

INTEL Ex.1002.291

‘ lApplication/Control Number: 10/260,878 Page 6
A11 Unit: 2154

It would have been obvious to one skilled in the art at the time the invention was made to

combine Ota with Hendel for similar reasons as stated above in regards to claim 3.

14. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hendel et al. (US

5,920,566, hereinafter Hendel) in view of Klaus (US 5,892,903, hereinafter Klaus).

15. As per claim 5, Hendel teaches the method of claim 1, further comprising:

processing a transport layer header of another packet by a second mechanism, prior to

receiving the plurality of packets from the network (e.g. Hendel, (:01. 12, lines 66-67; col. 13,

lines 1-16).

Hendel fails to teach establishing a Transport Control Protocol (TCP) connection for the

packets of the first type.

However, in a similar art, Klaus teaches the use of a transport layer header to create a

TCP connection over a network (e.g. Klaus, col. 5, lines 8-23).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Klaus with Hendel because of the advantages of using a transport layer header to

provide a TCP connection over a network. The use transport layer, included in the well-known

OSI model, is advantageous because it provides segregation of communication functions across

the various layers of the protocol stack and modularizes the functions required to implement

network communication, which simplifies computer communication operation and maintenance

(e.g. Klaus, col. 2, lines 14-23). The use of the 081 model also allows for communication across

various systems and platforms without the need for conversion or modification of the

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 291

INTEL Ex.1002.292

. Application/Control Number: 10/260,878
Art Unit: 2154

Page 7

communication method. This can greatly increase the efficiency of communication across a

network, which is beneficial in any communications network system.

16. Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hendel et al. (US

5,920,566, hereinafter Hendel) in view of Radogna et al. (US 5,991,299, hereinafter Radogna).

17. As per claim 8, Hendel teaches the method of claim 1, but fails to teach the method

wherein the first mechanism is a sequencer running microcode.

However, in a similar art, Radogna teaches a dedicated sequencer using microcode to

perform network communication and header translation and processing (e.g. col. 4, lines 25-30).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Radogna with Hendel because of the benefits of using a specialized processor to handle

various tasks in a communications system. Using a sequencer for processing header information

can greatly accelerate a frame or packet through a network since the central processing unit does

not become overburdened when many packets need to be processed. This frees up the central

processor to handle other networking tasks, therefore increasing the speed and efficiency of

transmissions through the network. The use of software microcode for this processing easily

accommodates new protocols and can bypass hardware processing in the event of a hardware

failure. These are beneficial in any computer network system.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 292

INTEL Ex.1002.293

' Application/Control Number: 10/260,878
Art Unit: 2154

Page 8

18. Claims 9, 10, 14, 16-18, 20 and 22 are rejected under 35 U.S.C. 103(a) as being

unpatentable over Radogna et a]. (US 5,991,299, hereinafter Radogna) in view of Hendel et al.

(US 5,920,566, hereinafier Hendel).

19. As per claim 9, Radogna teaches a method for communicating information over a

network (e. g. Radogna, col. 2, lines 63-67), the method comprising:

obtaining data from a source allocated by a first processor (e.g. Radogna, col. 3, lines 50-

59);

dividing the data into multiple segments (e.g. Radogna, col. 3, lines 50—59);

prepending a packet header to each of the segments by a second processor, thereby

forming a packet corresponding to each segment (e.g. Radogna, col. 14, lines 22-36);

transmitting the packets to the network (e.g. Radogna, col. 5, lines 9-17).

Radogna fails to teach the method comprising each packet header containing a media

access control layer header, a network layer header and a transport layer header, wherein the

prepending of each packet header occurs without an interrupt dividing the prepending of the

network layer header and the transport layer header.

However, in a similar art, Hendel teaches a network communications system based on

packets utilizing media access control layer headers, network layer headers and transport layer

headers, the processing of these headers all occurring without interrupts between each layer (e.g.

Hendel, col. 12, lines 66-67; col. 13, lines l-16).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Hendel with Radogna because of the advantages of including headers for each of the

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 293

INTEL Ex.1002.294

‘ Application/Control Number: 10/260,878
Art Unit: 2154

Page 9

MAC (data link) layer, network layer and transport layer when communicating over a packetized

network conforming to the 081 model. The use of each of these layers is well known in the art

since the 081 model was developed. Prepending a header associated with each layer is a

common method for allowing the network to process the packets layer by layer, in accordance

with the 081 model. Performing the processing and prepending of headers without the use of an

interrupt between layers provides the benefit of speeding up the entire processing method and

increasing the efficiency of packet transmission across a network. This is beneficial in any

computer network system.

20. As per claim 10, Radogna and Hendel teach the method of claim 9, wherein prepending a

packet header to each of the segments by a second processor further comprises:

prepending the media access control layer header for each packet without an interrupt

dividing the prepending of the media access control layer header and the network layer header

(e.g. Radogna, col. 14, lines 22-36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

21. As per claim 1 l, Radogna and Hendel teach the method of claim 9, wherein each packet

header contains an Internet Protocol (IP) header and a Transport Control Protocol (TCP) header

(e.g. Hendel, col. 6, lines 50—61).

22. As per claim 14, Radogna and Hendel teach the method of claim 9, wherein obtaining

data from the source in memory allocated by the first processor is performed by a Direct

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 294

INTEL Ex.1002.295

I Application/Control Number: 10/260,878
Art Unit: 2154

Page 10

Memory Access (DMA) unit controlled by the second processor (e.g. Radogna, col. 5, lines 5—

17).

23. As per claim 16, Radogna and Hendel teach the method of claim 9, further comprising:

receiving another packet from the network, the other packet containing a receive header

including information corresponding to a network layer and a transport layer (e.g. Hendel, col. 4,

lines 56-67; col. 5, lines 1-8); and

selecting whether to process the other packet by the first processor or by the second

processor (e.g. Hendel, col. 5, lines 26-33).

24. As per claim 17, Radogna teaches a method for communicating information over a

network (e.g. Radogna, col. 2, lines 63-67), the method comprising:

providing multiple segments of data (e.g. Radogna, col. 3, lines 50-59);

prepending an outbound packet header to each of the segments, thereby forming an

outbound packet corresponding to each segment (e.g. Radogna, col. 14, lines 22-36);

transmitting the outbound packets to the network (e.g. Radogna, col. 5, lines 9-17); and

receiving multiple inbound packets from the network (e.g. Radogna, col. 3, lines 50-59).

Radogna fails to teach the method comprising the outbound packet header containing an

outbound media access control layer header, an outbound network layer header and an outbound r

transport layer header, wherein the prepending of each outbound packet header occurs without an

interrupt dividing the prepending of the outbound media access control layer header, the

outbound network layer header and the outbound transport layer header; processing the inbound

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 295

INTEL Ex.1002.296

' Application/Control Number: 10/260,878
Art Unit: 2154

Page 1 1

packets, so that for each packet the inbound network layer header and the inbound transport layer

header are validated without an interrupt dividing the processing of the inbound network layer

header and the inbound transport layer header.

However, in a similar art, Hendel teaches a network communications system based on

packets utilizing media access control layer headers, network layer headers and transport layer

headers, the processing and validating of these headers all occurring without interrupts between

each layer (e.g. Hendel, col. 12, lines 66-67; col. 13, lines l-l6).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Hendel with Radogna because of the advantages of including headers for each of the

' MAC (data link) layer, network layer and transport layer when communicating over a packetized

network conforming to the 081 model. The use of each of these layers is well known in the art

since the 081 model was developed. Prepending a header associated with each layer is a

common method for allowing the network to process the packets layer by layer, in accordance

with the 081 model. Performing the processing and prepending of headers without the use of an

interrupt between layers provides the benefit of speeding up the entire processing method and

increasing the efficiency of packet transmission across a network. This is beneficial in any

computer network system.

25. As per claim 18, Radogna and Hendel teach the method of claim 17, wherein the

processing the inbound packets is performed simultaneously with the prepending the outbound

packet header to each of the segments (e.g. Radogna, separate processors for receive

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 296

INTEL Ex.1002.297

‘ r ’ Application/Control Number: 10/260,878 Page 12

Art Unit: 2154

functionality and transmit functionality, col. 3, lines 50-59; col. 5, lines 9—17; col. 14; lines 22-

36).

26. As per claim 20, Radogna and Hendel teach the method of claim 17, wherein providing

multiple segments of data includes dividing a block of data into the segments (e.g. Radogna, col.

3, lines 50-59).

27. As per claim 22, Radogna and Hendel teach the method of claim 17, further comprising:

sending data from each inbound packet to a destination without sending any of the media

access control layer headers, network layer headers or transport layer headers to the destination

(e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

28. Claims 12 and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radogna et al. (US 5,991,299, hereinafter Radogna) in view of Hendel et al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9 and 17 above, and further in view of Klaus (US

5,892,903, hereinafter Klaus).

29. As per claim 12, Radogna and Hendel teach the method of claim 9, comprising

prepending the packet header to each of the segments by the second processor (e.g. Radogna,

col. 14, lines 22-36).

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 297

INTEL Ex.1002.298

Application/Control Number: 10/260,878

Art Unit: 2154

Page 13

Radogna and Hendel fail to teach the method further comprising establishing a Transport

Control Protocol (TCP) connection by the first processor and using the connection to prepend the

packet header to each of the segments by the second processor.

However, in a similar art, Klaus teaches the use of a transport layer header to create and

utilize a TCP connection over a communications network (e.g. Klaus, col. 5, lines 8-23).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Klaus with Radogna and Hendel because of the advantages of using a transport layer

header to provide a TCP connection over a network. The use transport layer, included in the

well-known 081 model, is advantageous because it provides segregation of communication

functions across the various layers of the protocol stack and modularizes the functions required

to implement network communication, which simplifies computer communication operation and

maintenance (e.g. Klaus, col. 2, lines 14-23). The use of the 081 model also allows for

communication across various systems and platforms without the need for conversion or

modification of the communication method. This can greatly increase the efficiency of

communication across a network, which is beneficial in any communications network system.

30. As per claim 24, Radogna and Hendel teach the method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to receiving the

plurality of packets from the network (e.g. Hendel, col. 12, lines 66—67; col. 13, lines 1—16).

Radogna and Hendel fail to teach the method further comprising establishing a Transport

Control Protocol (TCP) connection for the inbound packets.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 298

INTEL Ex.1002.299

Application/Control Number: 10/260,878

Art Unit: 2154

Page 14

However, in a similar art, Klaus teaches the use of a transport layer header to create and

utilize a TCP connection over a communications network (e.g. Klaus, col. 5, lines 8-23).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Klaus with Radogna and Hendel for similar reasons as stated above in regards to claim

12.

31. Claims 15, 21 and 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radogna et a]. (US 5,991,299, hereinafter Radogna) in view of Hendel et al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9, 20 and 17, respectively, above, and further in view of

Ota et al. (US 6,115,615, hereinafter Ota).

32. As per claim 15, Radogna and Hendel teach the method of claim 9, but fail to teach the

method further comprising prepending an upper layer header to the data, prior to dividing the

data into multiple segments.

However, in a similar art, Ota teaches a network communication system that attaches and

uses a header in the application layer (e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Ota with Radogna and Hendel because of the advantages of attaching a header to an

upper layer, such as the application layer, along with the other layers well-known by the 081

model. The use of an upper layer header can provide a great deal of flexibility to the system

since it is able to transmit more data with the packet itself. The 081 model is designed to attach

and process headers from each of the seven layers efficiently to ensure that the data within the

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 299

INTEL Ex.1002.300

Application/Control Number: 10/260,878

Art Unit: 2154

Page 15

packet is transmitted properly across the network. Including an application layer header further

ensures the proper receipt of the data. This is beneficial in any communication network system.

33. As per claim 21, Radogna and Hendel teach the method of claim 20, but fail to teach the

method further comprising prepending an upper layer header to the block of data, prior to

dividing the block of data into multiple segments.

However, in a similar art, Ota teaches a network communication system that attaches and

uses a header in the application layer (e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Ota with Radogna and Hendel for similar reasons as stated above in regards to claim

15.

34. As per claim 23, Radogna and Hendel teach the method of claim 17, but fail to teach the

method further comprising: processing an upper layer header of at least one of the packets by a

second mechanism, thereby determining the destination, wherein the upper layer header

corresponds to a protocol layer above the transport layer.

However, in a similar art, Ota teaches a network communications system that uses an

application layer level address to indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Ota with Hendel because of the advantages of using an upper layer header to determine

the destination of packets in a network. Network layer and transport layers also generally

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 300

INTEL Ex.1002.301

Application/Control Number: 10/260,878 Page 16
Art Unit: 2154

include addresses or indications of destination for the packets and including this feature into the

application layer as well provides another fail-safe step for the network in the even of a failure in

some portion of the network. Having fail-safe routes for information decreases the amount of

network downtime since routes can be switched almost instantaneously upon the realization of a

fault or error. This is a benefit in any communications network system.

35. Claims 13 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radogna et al. (US 5,991,299, hereinafter Radogna) in view of Hendel et al. (US 5,920,566,

hereinafier Hendel) as applied to claims 9 and 17 above, and further in view of Hansen et al. (US

5,778,419, hereinafter Hansen).

36. As per claim 13, Radogna and Hendel teach the method of claim 9, but fail to teach the

method further comprising creating a template header and forming each packet header based

upon the template header.

However, in a similar art, Hansen teaches the use of a header template from which all

packet headers are based (e.g. Hansen, col. 6, lines 4-21).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Hansen with Radogna and Hendel because of the advantages of using a template when

creating a similar header for each packet. A template is a well-known method for creating files,

or in this case, a header, which needs to be attached to many packets containing altogether the

same, or very similar data. The structure of each packet header should always consist of the

same elements in the same arrangement so a processor does not have to locate the information it

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 301

INTEL Ex.1002.302

'1

Application/Control Number: 10/260,878
Art Unit: 2154

Page 17

needs prior to performing processing functions. When a template is used, a large amount of time

can be saved when performing a large number of transmissions, since it is not necessary to create

an entire packet header during each iteration. This increases the overall speed and efficiency of

the network, which is beneficial in any communication network system.

37. As per claim 19, Radogna and Hendel teach the method of claim 17, but fail to teach the

method further comprising creating a template header and using the template header to form each

outbound packet header.

However, in a similar art, Hansen teaches the use of a header template from which all

packet headers are based (e.g. Hansen, col. 6, lines 4-21).

It would have been obvious to one skilled in the art at the time the invention was made to

combine Hansen with Radogna and Hendel for similar reasons as stated above in regards to

claim 13.

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Eric Kuiper whose telephone number is (571) 272-0953. The

examiner can normally be reached on Monday through Friday, 8:00am to 4:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, John Follansbee can be reached on (571) 272-3964. The fax phone number for the

organization where this application or proceeding is assigned is 571-273-8300.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 302

INTEL Ex.1002.303

S

Application/Control Number: 10/260,878

Art Unit: 2154

Page 18

Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http:l/pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Eric Kuiper
18 January 2006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 303

INTEL Ex.1002.304

Application/Control No. Applicant(s)/Patent Under
Reexamination

10/250378 BOUCHER ET AL. Notice of References Cited . .Examiner Art Unit

Eric Kuiper 2154 Page 1 °“
U.5. PATENT DOCUMENTS

Document Number Date . .

Country Code-Number-Kind Code MMYYYY . ClaSSIficatlon

IUS-5,920,566 07.1999 Hendel et al. 370/401
In US—5,991,299 11-1999 Radogna etal. 370/392

* m
C US—5,892,903 04-1. 999 .\.aus. Christopher W. 709/227

In US-6.115.615 09-2000 Ola et al. 455/422.1

FOREIGN PATENT DOCUMENTS
Date . .

MM-YYYY C°”""Y
Classrficatlon

Document Number
Country Code-Number—Kind Code

NON-PATENT DOCUMENTS

include as applicable: Author. Title Date. Publisher. Edition or Volume. Pertinent Pages)

V

‘A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a),)
Dates in MM-YYYY tonnat are publication dates. Classifications may be US or foreign.

E-fll
U.S. Patent and Trademark Office
PTO-892 (Rev. 01—2001) Notice of References Cited Part of Paper No. 01162006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 304

INTEL Ex.1002.305

9m (D n H O n Hl l | l l

g55'oag32’r n- g.3 CU:552.I .5Eg‘ ..E.a. l2°2 >S3 c':u88mN
US. D -. ent of Commerce Patent and Trademark Office A lication No.: 10/260 878

GIMPSEPPL'EMENTAL INFORMATION DISCLOSURE
Inventors: Laurence Boucher eta].

Art Unit: 2l54
US. Patent Documents

'Examiner Document: Filing Date,
Initial Number Date Name class subclass If Appropriate

6/4/96

4/8/97

3/10/98

9/1 I98

4/27/99

2/1/00

4/4/00

Chesson et al. 77523‘ T

"IDi 1'“

5,619,650

5,727,142

5,802,258

5,898,713

6.021.507

6,047,323

Bach et al.

Chen

Chen

181

182.08

, Melzer et at. 371

Chen 714
I

Q
,,

Krause ‘ 709 .227

OTHER ART—NON PATENT LITERATURE DOCUMENTS

(Including Author, Title. Date, Pertinent Pages. Etc.)

Schwaderer et al., IEEE Computer Society Press publication entitled, ‘XTP in VLSI Protocol
Decomposition for ASIC Implementation", from 15'” Conference on Local Computer Networks, 5
aes Set. 30— Oct. 3 1990.

Beach, Bob, IEEE Computer Society Press publication entitled, "UltraNet: An Architecture for
Gigabil Networking”, from 15"1 Conference on Local Computer Networks, 18 pages, Sept. 30 —
Oct. 3, 1990.

Chesson et al., IEEE Syposium Record entitled, "The Protocol Engine Chipset", from Hot Chips Ill,
16 pages, Aug. 26-27, 1991.

Maclean et al., IEEE Global Telecommunications Conference, Globecom '91, presentation
entitled, "An Outboard Processor for High Performance Implementation of Transport Layer
Protocols“, 7 aes. Dec. 2-5, 1991. ' -

Ross et al., IEEE article entitled "FX1000: A high performance single chip Gigabit Ethernet NIC”,
from Compcon ‘97 Proceedings, 7 pages, Feb. 23-26, 1997.

Strayer et al., “Ch. 9: The Protocol Engine" from XTP: The Transfer Protocol, 12 pages. July 1992.

7 Publication entitled "Protocol Engine Handbook'”, 44 pages, Oct. 1990.

'Examlner
Initial

an

or

an

“238‘chi<l<t'~'1<
K

"n El6

Koufopavlou et al., IEEE Global Telecommunications Conference. Globecom '92, presentation
entitled, "Parallel TCP for High Performance Communication Subsystems", 7 pages, Dec. 6-9,

 Lilienkamp et al., Publication entitled "Proposed Host-Front End Protocol", 56 pages. Dec. 1984.IE63 l’.

miner

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation it not
in conformance and not considered. Include copy of this form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 305

INTEL Ex.1002.306

4 x? 5“ m PLEMENTAL INFORMATION DISCLOSURE
‘39 STATEMENT BY APPLICANT

US. I amnem of Commerce Patent and Tradanark Office u-licarion No.: 10/260 878

tember 27 2002

Filin date: S

Inventors: Laurence Boucher et a].

Grou AnUnit: 2l54

Examiner name: Unknown

Attorn Docket No.: ALA-006E

U.S. Patent Documents

’Examiner Document Filing Date,
Lnitial Number “we IfA roriate

531‘- A 5,5l7,668 5/14/1996 Szwerinski et al. 800

filflflflflflflflfll IIIIIIIIIIIU
2‘.fl 95

Forei : Patent Documents
Translation

Yes 20

Document Number Country Class

Eflfll
OTHER ART clndln Author Title Dat Pertinent Pa es Etc.

Date Considered

Exam" 4v; 1/13/ 2006
‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 1 or '

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 306

INTEL Ex.1002.307

U.S. D urn-nan ofComm - Patent and Tradanark Ofiice Alication No.: 10/260 878

AL INFORMATION DISCLOSURE Filin date: S tcmber 27 2002
TATEMENT BY APPLICANT Inventors: Laurence Boucher et al.

Grou MUnit: 2154

Examina- name: UnknownAPPARATUS FOR RECEIVING DATA
' CORRESPONDING TO A TCP CONNECTION

Attorn Docket No.: ALA-006E -

US. Patent Documents

Filing Date,. Document
IfA to riateNumber

5,598,410

Class

370

2:5Date

1/28/1997

6

A
Et?”

Ilflflflfiflflfll
Forein Patent Documents

Translation
 Z0

Country Class Yes

EH
OTHER ART cludin Author Title, Date Pertinent Paes, Etc.

Examiner " Date Considered l [alwog

'EXAWER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conforniance and not considered. Include copy of this form with your communication to applicant.

Sheet 1 o 1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 307

INTEL Ex.1002.308

. U.S. Deartment of Commerce, Patent and Trademark Office A lication No.: I0n60,878

Filin dale: Setember 27, 2b02

Inventors: Laurence Boucher, et at.

Grou Art Unit: 2l54

Examiner name: Unknown

Attorney Docket No.: ALA-006E

I
-
III

m c
53!

E

Filing Date,
"A a roriate

I

I:

2

2

7

2

4

-

_I -
—n-
—n-

I -
-

Te nology Center 210

364

364

709

365

3 395

'I:
II
II

3»

-

85.]

00

30

8

00

00

275

275

250

O

Forein Patent Documents
Translation

..<3 20Class
_ Document Number Country

W0 00/I309l 03/09/00 PCT/US98/24943 -
nWO 99/65219 12/16/99 PCT/US99/l3l84 -

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinberg is working on), 1 page,
printed ll/25/98.

Zilog product Brief entitled "285C30 CMOS SCC Serial Communication Controller", ZiIog Inc., 3 pages, 1997.

_
I
IInternet pages of Xpoint Technologies, Inc. entitled "Smart LAN Work Requests". 5 pages, printed I2/ 19/97.
a Internet pages entitled: Asante and IOOBASE-T Fast Ethernet, 7 pages, printed 507/97.

a: to IW11/“

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet I of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 308

INTEL Ex.1002.309

.‘t

, v t . U.S. Deanment of Commerce. Patent and Trademark Office A Iication No.2 |0/260,878

\fifirégMATION DISCLOSURE STATEMENT BY
. APPLICANT

Filin date: Setember 27, 2002

'\£ InventOrs: Laurence Boucher, et al.

I\\\ ‘ 'Grou Art Unit: 2154

Examiner name: Unknown
_'

4hr, msfiST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

PM

Attome Docket No.: ALA-006E

US. Patent Documents

Document
Number

A 5,485,579

5,506,966

5,51 1,169

5,548,730

5,588,121

5,566,170

5,590,328
5,592,622

5,629,933

5,634,099

5,634,127

Filing Date,
IfA Ioriate

‘Examiner
Initial

EJIt

L

2 Class

395

395

39

395

395

370

Seno et al. 395

Isfeld et al. 395

Delp et al. 370

Andrews et al 395 200.07

Cloud et al. 395 680

me

O l / 16/96

04/09/96

04/23/96

08/20/96

12/24/96

10/ 1 5/96

I 2/3 1/96

01/07/97

05/ 13/97

05/27/97

05/27/97

200.12

25

280 ECEIVED ‘
28

200.15

60 Tee

675

200.02

«.1

\r“n

u

<\‘\CA7?

O(7 Ban

6

L

LIIC

'IYoung et al.

Reddin et al.

Bakke et al

(.4 7r-

nology Center 2100m:1

G

514

(h 7:

T

I

Ki3
is

Forei ' n Patent Documents

Document Number m Country
WO 01/05107 Al 0|/|8/0| PCT/USOD/l9006

WO 01/05116 A2 01/18/0l PCT/USOO/I9243

OTHER ART lncludin; Author, Title, Date, Pertinent Paes, Etc.

Internet pages entitled: A Guide to the Paragon XP/S—A7 Supercomputer at Indiana University. 13 pages, printed
12/21/98.

Translation

Yes0lass
E

0

Ext L
I
Z {<-

r“a K

25‘ K Fflflflfl
Richard Stevens, “TCP/IP Illustrated, Volume I, The Protocols", pages 325-326 (I994). |L“ W

lntemet pages entitled: Nonhridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/ 19/01.

Gigabit Ethernet Technical Brief, Achieving End-to-End Performance, Alteon Networks, Inc., First Edition,

 rrsU“-

September 1996.

Examiner . I . DateConsidered
Wig/1.004,?

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line throuy1 citation if not
in confomiance and not considered. Include copy of this form with your communication to applicant.

Sheet2 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 309

INTEL Ex.1002.310

4:n.

U.S. De artment of Commerce, Patent and Trademark Office A Iication No.: 10/260,878

\Y1553\WAT10N DISCLOSURE STATEMENT BY
I, APPLICANT

Filin date: Selember 27,2002

 Inventors: Laurence Boucher. et al.

 Grou A11 Unit: 2154

Examiner name: Unknown

Attome Docket No: ALA-006E

US. Patent Documents

Document Name Filing Date,In1t1al Number IfA - ror1ate

A 5,642,482 06/24/97 Pardillos 395 200.2
5,664.1 I4 09/02/97 Krech, Jr. et al. 395 200.64

Egg c 5,671,355 09/23/97 Collins 395 200.2 ECEIVED
53 k 5,678,060 10/14/97 Yokoyama et al. 709

1 1/25/97

12/ I 6/97

12/23/97

12/23/97

05/05/98

05/12/98

05/ 12/98

Shobu et al. 395

395

395

395

711

Chan et al. 370 455

Delp et al. 395 827

200.12

230.06 T

484

342

5,692,130

5,699.3 I 7

5,701,434

5,70l,5|6

5,749,095

5,751,715

5,752,078

F chnology Center 210 t

G
63 I: Sartore et al.

Elc

E

Nakagawa(J

Cheng et a1.L,RnKF7‘. Hagersten

K

Forei 11 Patent Documents
Translation

Document Number Country Class ~<
IE

O

L W0 Ol/05123 AI 01/18/01 PCT/USOO/18976

W0 0 “40960.4 I 06/07/01 PCT/U 500/32660

1‘-

OTHER ART Includin Author, Title Date, Pertinent Paes, Etc,

Internet pages directed to Technical Brief on Alteon Elhemet Gigabit NIC technology, www.alteon.com, I4 pages,
printed 3/15/97.fl7?

VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4", pages i-iv, 1-1 I, cover and copyrigit page,
53! revision 1.3, Feb. 1, 2000.

iReady News Archives article entitled "iReady Rounding Out Management Team with Two Key Executives",
ESL http://www.ireadyco.com/archives/keyexec.htm|, 2 pages, printed 11/28/98.

“Toshiba Delivers First Chips to Make Consumer Devices Intemet-Ready Based On iReady’s Design," Press
Release October, 1998, 3 pages, printed I 1/28/98.Ech

'EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation ifnot
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet30fl4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 310

INTEL Ex.1002.311

.- , us, Deanmenl orcommerce, Patent and Trademark Office A licalion No.: l0/260 878

EMEQRMATION DISCLOSURE STATEMENT BY°\. Filin date: Setember 27, 2002
APPLICANT lnventors: Laurence Boucher, et al.

Grou - An Unit: 2IS4

ca $¢3§8AST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
5 m _ .-f_f,-'CORRESPONDING TO A TCP CONNECTION

b— I

Attome DockeINo.: ALA-006E

US. Patent Documents

Filing Date,
IfA I roriate

‘Examiner Document
Initial Number

are A 5,758,084

Ema 5,758,089

5,758,186

5,758,194

5,771,349

5,790,804

5,794,061

5,802,580

5,809,328

5,812,775

5,8 1 5,646

Class

395

395

395

395

395

395

Hansen et al. 395

McAIpice 7| 1

Nogales et al. 395 825

Van Seeters et al. 395 200.43

Purcell et al. 395 l63

, Name

05/26/98 '

05/26/98

05/26/98

05/26/98

06/2 3/98

08/04/98

08/ l l/98

09/0 l/98

09/ l 5/98

09/22/98

09/29/98

200.58

200.64

831

336 'f ECEIVED
188.01

200.75

800,0] Te hnology Center 2100

Silverstein et al.

Gentry et al.

Hamilton et al.maF C

Kuzma

Picazo, Jr. et al.El

('3m“TI\
F Osborne

G

H

3):

E: I:

K

Forei - 11 Patent Documents
Translation

YesClassDocument Number Country E
0

WO 01/04770 A2 Ol/18/Ol PCT/US00/l89395ch L

M WO/98/l9412 05/07/98 PCT/U897“ 7257iF

OTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.

lntemet pages from iReady Products, web sitehttpzllwww.ireadyco.comlproducts,htm|, 2 pages, downloaded
lll25/98.

\

mMW iReady News Archives, Toshiba, iReady shipping lntemet chip, 1 page, printed ll/25/98,

lnterprophet article entitled "Technology", http://www.interprophet.com/technology.html, l7 pages, printed 3/I/00.
F iReady Corporation, article entitled "The l-lOOO lntemet Tuner“, 2 pages, date unknown.

Examiner
[I . A DaleConsidered ' ’3 2 9 V

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation ifnot

F

in conformance and not considered. include c0py of this form with your communication to applicant.
Sheet 4 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 311

INTEL Ex.1002.312

;
RMATION DISCLOSURE STATEMENT BY

, ‘8 APPLICANT

m
maze/1382“:mamazw ~

’Examiner Document Filing Date,
Initial Number lfA - roriate

EJIL A 5,878,225

5,913,028

5,930,830

5,931,918

5,935,205

5,937,169

5,94 1,969

5,941,972

5,950,203

5,991,299

5,996,024

Date Name Class

03/02/99 395
06/15/99 395 200.33
07/27/99 711 171
08/03/99 709 300
08/10/99 709 216
08/10/99 395 200.8
08/24/99 710
08/24/99 710
09/07/99 707
11/23/99 370
11/30/99 709

Forei - n Patent Documents

200.57

3K

mmmm(“Wm(III:
C

ECEIVED t

F

G 1 noogy enter2100

.< Ul
E

o

392

30]KE

Translation

Document Number Country Class

WO/98/50852 l1/l2/98 PCT/US98/087 I 9

WO/99/04343 01/28/99 PCT/US98/ 14729

OTHER ART (Includin Author, Title, Date, Peninent Pa es, Etc.

iReady article entitled "About Us Introduction", lntemet pages fromhttp://www.iReadyco.com/about.html, 3 pages,
printed l ll25/98.

e

L

l
HI1‘

(T(.1 n.

E3K

iReady News Archive article entitled “Revolutionary Approach to Consumer Electronics lntemet Connectivity
Funded“, San Jose, CA, November 20,1997. 2 pages, printed l I/2/98.

iReady News Archive article entitled “Seiko Instruments Inc. (Sll) INTRODUCES WORLD’S FIRST INTERNET-
READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY," Santa Clara, CA and Chiba,
Japan, October 26, I998, 2 pages, printed | I/‘2/98.

E NEWSwatch article entitled "iReady intemet Tuner to Web Enable Devices", Tuesday, November 5, I996, printed1 I/2/98.It

Examiner , . Date Considered . 15/2008
'EXAMINER: Initial if reference considered. whether or not citation is in conformanca with MPEP 609; Draw line through citation ifnot
in conformance and not considered. Include copy of this form with your communication to applicant.

m

I.
n

Sheet 5 of I4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 312

INTEL Ex.1002.313

-- . U.S. Deanment of Commerce, Patent and Trademark Office A Iieation No.: I0/260 878

Filin date: Setember 27, 2002

Inventors: Laurence Boucher etal.

Grou Art Unit: 2154

Examiner name: Unknown
WAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION
Atlorne Docket No.: ALA-006E

U.S. Patent Documents

‘Examiner Document
Initial Number

A 6,005,849

6,009,478

6,016,5 [3

6,026,452

6,034,963

6,044,438

6,047,356

6,057,863

6,061,368

6,065,096

6,141,705

Filing Date,
Class [M roriate
37

7|0

7 9

Name

I2/2 I/99

I2/2 8/99

0 I / l 8/00

02/ l 5/00 Pitts

03/07/00

03/28/00

04/04/00

05/02/00

05/09/00

05/ 1 6/00

I 0/3 I /00

O

\l O

27

5

25

56

O\Roach et al.

Panner et al.

C Lowe

l I
("It 7e

IIIIIHIEIEI
J

E 37

7| 1 I30

7| I 129 T

Olarig 345 520

Hitzelberger 370 537

Day et al. 71 l

Anand et al.

0Minami et al.

0 not Center 2100 f
H

Anderson et al.

0.

K IS\I Omu7"

Forei - n Patent Documents
Translation

Yes
Document Number > Country Class E

O

OTHER ART Includin Author, Title, Date, Pertinent Paes, Etc.

EETimes article entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner", by David Lammers, 2 pages,
gm.5. printed I l/02/98.

"Comparison of Novell Netwarc and TCP/IP Protocol Architectures", by 1.5. Carbone, I9 pages, printed 4/l0/98.

Adaptec article entitled "ABA—7| lOC-a DuraSAN product", I I pages, printed I0/I/0l.(TII(aFR’

iSCSI HBA article entitled "iSCSl and ZGigabit fibre Channel Host Bus Adapters from Emulex, QLogic, Adaptec,
.INI", 8 pages, printed 10/0I/0I. l

Examiner A; \v‘ DateConsidered :2

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in confOnnance and not considered. Include copy of this form with your communication to applicant.

Sheet 6 of I4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 313

INTEL Ex.1002.314

" - U.S. Deanment of Commerce, Patent and Trademark Office A lieation No.: IO/260,878

\PIEEQRWTION DISCLOSURE STATEMENT BY
’ Inventors: Laurence Boucher etal.

Ju .
3 I 5m 1' Grou ArtUnit: 2154

vé‘T‘AST-PATH APPARATUS FOR RECEIVING DATA
rum ' CORRESPONDING TO A TCP CONNECTION

Filin date: Setember 27, 2002

 Examiner name: Unknown

 Attome Docket No.: ALA-006E

US. Patent Documents

Filing Date,
if Appropriate

‘Examiner Document
Initial Number

fine A 6,226,680

6,246,683

6,247,060

60/053,240

6,345,301

Date Name Class

70 0

3 392

709 23 8

OS/Ol/Ol

06/ l 2/0l

06/ l 2/0l

Boucher et al.

EIIHHHEEIHI
‘O to.)

Connery et al.

C Boucher et al.IL

L Jolitz et al. 07/ | 8/97

Bums et al. 709 230

\l O

[A

F 02/0 5/02

.- .-

.
*-

Techn ogy Center 2100

Forein Patent Documents
Translation

YesDocument Number Country E
O

Ell
Q83Ill

OTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.
1

,,

Hflflfl
iSCSl HBA article entitled "FCE-32l0/64l0 32 and 64-bit PCl-to-Fibre Channel HBA", 6 pages, printed l0/0 l/0l.

53k |SCS|.com article entitled "iSCSl Storage", 2 pages, printed lO/Ol/Ol.

“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis", by Kalampoukas et al., IEEE
Ejlc Transactions on Networking, vol. 6, no. 6, December I998.

lReady News article entitled "Toshiba Delivers First Chips to Make Consumer Devices lntemet-Ready Based on
Est iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed l 1/2/98.

Examiner : _ _~ Date Considered [lg/209$

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in confonnance and not considered. Include copy of this form with your communication to applicant.

Sheet 7 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 314

INTEL Ex.1002.315

UIS. Deanment of Commerce, Patent and Trademark Office A lication No.: l0/260,878

is‘ . ATION DISCLOSURE STATEMENT BY mun am: Setember27 2002

. Inventors: Laurence Boucher, et al.

Grou Art Unit: 2154

:
. c m‘wg§AST-PATH APPARATUS FOR RECEIVING DATA Examine, mm Unknown

CORRESPONDING TO A TCP CONNECTION Attome Docket No.: ALA-006E

US. Patent Documents

Filing Date,
lfA - ro riate

'Examiner Document

Initial Number Class
Name

4

,C .

1 7 2003

Iil!‘ i:
.. u c

Forei u Patent Documents
Translation

.<3 Z0
Document Number Country Class

OTHER ART Includin; Author, Title, Date, Pertinent Paes, Etc.

United States Patent Application No. 08/964,304, by Napolitano, et al., entitled “File An-ay Storage Architecture",
filed I l/04/97.

"File System Design For An NFS File Server Appliance", Article by D. Hitz, et al., l3 pages.

3 IL printed 6/ I4/00.
Adaptec article entitled “EtherStorage Frequently Asked Questions", 5 pages, printed 7/19/00.

Examiner A Date Considered ‘ I '3 {20%

I Adaptec Press Release article entitled “Adaptec Announces EtherStorage Technology", 2 pages, May 4, 2000,

 'EXAMINER: Initial ifreference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation ifnot
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet 8 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 315

INTEL Ex.1002.316

n

' - U.S. Deartment of Commerce Patent and Trademark Office A Iication No.: 10f260,878

t‘- ORMATION DISCLOSURE STATEMENT BY Filin date: Setember 27 2002

'% APPLICANT Inventors: Laurence Boucher, et al.

_ ‘ - ST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

3
’ Examiner name: Unknown

 Attome Docket No.: ALA-0065

US. Patent Documents

Filing Date,
lfA - roriate

Document
Number

'Exnminer

Initial Class

l i

'4 'l

1 7 2003Elflflflflflflflflfll
Forein Patent Documents

Translation

YesClass 2a
Document Number Country

OTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.

mHF 2

m
HTT

Adaptec article entitled “EtherStorage White Paper”, 7 pages, printed 7/ I 9/00.

EK CIBC World Markets article entitled "Computers; Storage", by .l. Berlino eta1.,9 pages, dated August 7, 2000.

Merrill Lynch article entitled “Storage Futures", by S. Milunovich, 22 pages, dated May 10, 2000.

CBS Market Watch article entitled "Montreal Start-Up Battles Data Storage Botttleneck", by S. Taylor, dated March
53 t 5, 2000, 2 pages, printed 3/7/00.

Examiner "i
i

Date Considered \l 13(Zane

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 9 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 316

INTEL Ex.1002.317

m

i " - U.S. De anment of Commerce, Patent and Trademark Oflice A - lication No.: l0/260 878

=~ ORMATION DISCLOSURE STATEMENT BY
APPLICANT ,

,—4

‘AST-PATH APPARATUS FOR RECEIVING DATA ‘
CORRESPONDING TO A TCP CONNECTION _Attome Docket No.1 ALA-006E ‘

7 _ US. Patent Documents

‘Examiner Document N Cl Filing Date,
Initial Number ame ass lfA o ro riate ‘

 I mvfi

 — m
—--ifi
—-_—

ioE<rnU

Forei n Patent Documents
Translation

Document Number

OTHER ART lncludin Author, Title, Date, Peninent Paes, Etc.

Internet-draft anicle entitled “SCSI/PCP (SCSI over TCP)”, by J. Sanan et al., 38 pages, dated Febntary 2000,
printed 5/l9/00.

lntemet pages entitled “Technical White Paper-Xpoint’s Disk to LAN Acceleration Solution for Windows NT
Server,” l6 pages, printed 6/5/97.Ele

IJato Technologies article entitled “Network Accelerator Chip Architecture," twelve-slide presentation, printed8/ l9/98.

aEETimes article entitled “Enterprise System Uses Flexible Spec," dated August IO,I998, printed 11/25/98.
Examiner ! - A Date Considered if '3 I 2006
‘EXAMINER: Initial if reference considered. whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

‘3?F

HE

Sheet l0 of l4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 317

INTEL Ex.1002.318

_ . U.S. Deartment ofCommcrcc Patent and Trademark Office A lication No.2 l0f260,878

RMATION DISCLOSURE STATEMENT BY

1'}. APPLICANT

Filin dale: Setcmber 27 2002

 Inventors: Laurence Boucher, et al.

Grou Art Unit: 2I54

Examiner name: Unknown‘. .

' "149.10? CORRESPONDING TO A TCP CONNECTION Attom Docket No.: ALA-006E

US. Patent Documents

‘Examiner Document
Initial Number

Filing Date,
Name IfA r0riate

....

Class

I
4 .1

UL 1 7 2003

 Elflflflflflflflflfl
Forein Patent Documents

Translation

YesCountry Class
0Document Number

Ell
OTHER ART lncludin Author, Title, Date, Pertinent Paes, Etc.

Internet pages entitled "Smart Ethernet Network Interface Cards", which Berend Ozceri is developing, printed
I I/25/98.E“F

lntemet pages of Xaqti corporation entitled “GigaPower Protocol Processor Product Review,” printed I 1/25/99.(VtI(V

lntemet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance," by Robert J. Walsh,
printed 6/3/99. (T.\

u 7-:

Examiner l _ A Date Considered \(6! 2500
'EXAMIN ER: Initiul if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet l l of l4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 318

INTEL Ex.1002.319

U.S. De artment of Commerce, Patent and Trademark Office

RMATION DISCLOSURE STATEMENT BY

Inventors: Laurence Boucher, et al.
I . .
JIMEIIIIIIIIIIIIIIIImmmmm

; -~
AST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

A Iication No.: I0/260,878

Filin date: Setember 27, 2002

Examiner name: Unknown

 Attom DockctNo.: ALA-006E

US. Patent Documents

Filing Date,
ifA I ro riate

‘Examiner Document

Initial Number Class
Name

t

I

l

chnuloa Center 210Iflflflflflflflfl
Forei - n Patent Documents

Translation

Document Number Country Class Subclass Yes

Hull
OTHER ART Includin Aumor, Title, Date, Pertinent Pa es, Etc.

63k L lntemet pages of lnterProphet entitled “Frequently Asked Questions", by Lynne Jolitz, printed 6/ 14/00.

8‘R Internet pages entitled “iReady Products,” printed l “25/98.

EJIC N Andrew S. Tanenbaum, “Computer Networks," Third Edition, I996, ISBN 0-13-349945-6. ‘

Form lO-K for Exelan, Inc., for the fiscal year ending December 31, I987 (l0 pages).

Form lO-K for Exelan, Inc., for the fiscal year ending December 31, I988 (l0 pages).

EJIL

E} 5‘

“Second Supplemental Information Disclosure Statement per 37 C.F.R. §I.97(i)", dated July 29, 2002 relating to
Exelan Inc. as submitted in Application Serial No. 09/464,283.

Examiner 2
Date Considered \ I ‘3/ 200g,

'EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet l2 of I4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 319

INTEL Ex.1002.320

, ~ U.S.DeanmentofCommerc Patent and Trademark Office Alication No.2 l0/260,878

RMATION DISCLOSURE STATEMENT BY
APPLICANT

FiIin date: Setember 27, 2002 -I

Inventms: Laurence Boucher, et aI. Grou Art Unit: 2154

0 mmgfi‘fi‘AST—PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION Anomc Docket No.: ALA-0065

US. Patent Documents

‘Examiner Document
Initial Number

A 6,173,333

2001/0025315AI

2001/0004354A1

Filing Date,
Class IfA ro riate

Name

07/18/97 Jolitz et a1.

01/10/01
-
—
-01/10/01
_
_
_
-

John

C Jolitz

Iflfllflfllfll
Forein Patent Documents

Document Number

OTHER ART Includin Author, Title Date, Pertinent Paes, Etc.

WindRiver article entitled “Tornado: For Intelligent Network Acceleration”, copyright Wind River Systems, 2001 , 2
pages.

L
ESIL

WindRiver White Paper entitled “Complete TCP/1P Offload for High-Speed Ethernet Networks“, Capyright Wind
River Systems, 2002, 7 pages.

Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corpomtion, 1999, 8a5-
pages.

a 7‘? flflflfl-all
Examine, fl Date Considered I [lg/2506
‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with y0ur communication to applicant.

Sheet 13 ofl4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 320

INTEL Ex.1002.321

#mwk

A lication No.: 10/260,878

Filin : dale: Setcmber 27, 2002DISCLOSURE STATEMENT BY

APPLICANT Inventors: Laurence Bouchcr. et al.
Grou Art Unit: 2l54

,aIXST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

|||||
Anome Docket No.: ALA-006E

U.S. Patent Documents

‘Examiner 7 Document
In

n

so ECENED

Filing Date,
IfA - r0 riate

6,453 360 09/17/02

‘5} Tx‘

noogy e or I

Forein Patent Documents
Translation

Article from Rice University, Department ofComputer Science entitled “Lazy Receiver Processing (LRP): A New
Network Subsystem Architecture for Server Systems", by Peter Druschel and Gaurav Banga, 15 pages.

Internet RFC/STD/FYl/BCP Archives article with heading “RFCZI40” entitled “TCP Control Block
Interdependence", web address hnp://mvw.faqs.org/rfcs/rfc2I40.html, 9 pages, printed 9/20/02.

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet l4 of l4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 321

INTEL Ex.1002.322

Page 1 of2

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United Sun-:5 Patent and Trudumrk Office
Addxul: COMMISSIONER FOR PATENTSP.0. Box I450

MWW Hill-I450malnupv

*BIBDATASH EET" CONFIRMATION No. 9902
Bib Data Sheet

FILING OR 371(c)

SERIAL NUMBER FATE GROUP ART UNIT
10/260,878 091272002 2154

RULE

ATTORNEY
DOCKET NO.

ALA-006E

‘ PPLICANTS

Laurence B. BOucher, Saratoga, CA;
Stephen E. J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;
David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;
Daryl D. Starr, Milpitas, CA;

'h NUG ***it**********i***iiii**

This application is a CIP of 10/092,967 03/06/2002 PAT 6,591,302
which is a CIP of 10/023,240 12/17/2001 PAT 6,965,941
and is a CIP of 09/464,283 12/15/1999 PAT 6,427,173
which is a CIP of 09/439,603 11/12/1999 PAT 6,247,060
which is a CIP of 09/067,544 04/27/1998 PAT 6,226,680
which claims benefit of 60/061 ,809 10/14/1997
and said 10/092,967 03/06/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620
which claims benefit of 60/098,296 08/27/1998
and is a ClP of 09/141,713 08/28/1998 PAT 6,389,479
which claims benefit of 60/098,296 08/27/1998
and said 10/092,967 03/06/2002
is a CIP of 09/514,425 02/28/2000 PAT 6,427,171
and is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
and is a CIP Of 09/675,484 09/29/2000 PAT 6,807,581
and is a CIP Of 09/675,700 09/29/2000
and is a ClP Of 09/789,366 02/20/2001 PAT 6,757,746
and is a ClP Of09/801,488 03/07/2001 PAT 6,687,758
and is a CIP Of 09/802,551 03/09/2001
and is a CIP Of 09/802,426 03/09/2001
and is a CIP of 09/802,550 03/09/2001 PAT 6,658,480
and is a CIP of 09/855,979 05/14/2001 '
and is a CIP of 09/970,124 10/02/2001
(*)Data provided by applicant is not consistent with PTO records.

FOREIGN APPLICATIONS

IF REQUIREDl FOREIGN FILING LICENSE GRANTED

.. STATE OR SHEETS TOTAL INDEPENOEN

35 USC119("’"”°°"°'"°"S D yes D "0 D Mel after COUNTRY DRAWING CLAIMS CLAIMS
"‘3‘. Allowance CA 89 24 3

Examiner's Sinature

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 322

INTEL Ex.1002.323

LA,» ‘

FILING FEE FEES: Authority has been given in Paper
RECEIVED No. to charge/credit DEPOSST ACCOUNT

for following:
Page 2 of 2

D All Fees

D 1.16 Fees (Filing)

D 1.17 Fees (Processing Ext. of
time)

D 1.18 Fees (Issue)

Cl Credit

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 323

INTEL Ex.1002.324

Applicant(s)/Patent under

CHER ET AL.

Reexamination

BOU

Application/Control No.

10/260,878
Examiner

Eric Kuier
ll Hllllll

Index of Claims

A Appeal

0

Non-Elected

ObjectedInterference

123456780000000011111111fi-u-E-n-n-

(Through numeral)
CancelledRejected

Restricted

III-II - 119
I. 120
I 121

Part of Paper No. 01162006U.S. Palent and Trademark Office

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 324

INTEL Ex.1002.325

Application/Control No. Applicant(s)/Patent under
seaflo‘h NOtes Reexamination

10/260,878 BOUCHER ET AL.

Eric Kuier 2154

SEARCH NOTES

(INCLUDING SEARCH STRATEGY)

SEARCHED

Class Subclass Date Examiner

Performed Inventor search in PALM 1/13/2006

Searched EAST DalabasesSee attached Search History 1/16/2006
Conducted PLUS search “6/2006

U.S. Patent and Trademark Office Part of Paper No. 01162006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 325

INTEL Ex.1002.326

A lication Non |0f260 873

'RMATION DISCLOSURE STATEMENT BY
APPLICANT

Filindat: -- - -— 27 2002-

Invetttors: meeeBouclter etul.

Gmu Art Unit: 2154

' a mmvfiAST—PATH APPARATUS FOR RECEIVING DATA Bwninername: Unloan
CORRESPONDING TO A TCP CONNECTION

Alto __ DodtetNo.: ALA-006E
t | |

IUS. Patent Documents
Document
Number

6.173.333
2001/00253 ISAI

200l/0004354Al

Filing Date.
If A 2- to » riate

‘Examiner
Initial

272m
{II/1M]
FM] 6

nE

Will/97

OlllOIOI

OHIO/0|

ll . I

JUL 1 7 2003

Forein Patent Documents
Translation

.<8Country
C

i IE

. OTHER ART lnclutlin Author Title Date Pertinent P e Etc.

Windkiver article entitled "Tornado: For lntelligent Network Acceleration". copyright Wind River Systems. NM, 2
pages.2?7-?

,.

WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks". Copyright Wind
River Systems. 2002. 7 pages.

Intel article entitled “Solving Server Bottlenecks with intel Server Adapters". Copyright lntel Corporation, I999. 8

Examiner DateConsidered‘ lllglme .5- 2.5 05
'EXAMINER: Initial if reference considered, whether at not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy oftltis form with your communication to applicant.

Sheet l3 of I4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 326

INTEL Ex.1002.327

4/

,9

IV THE UNITED STATES PATENT AND TRADEMARK OFFICE
'h» 75;»

Application of Laurence B. Boucher, et a1. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Eric J. Kuiper

Atty. Docket No: ALA-006E GAU: 154

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

For:

April 23, 2006

MS Amendment

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Amendment

Sir:

In response to an Office Action dated January 27, 2006, please enter the following

Amendment to the Claims and consider the following Remarks.

£152)“

/

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 327

INTEL Ex.1002.328

Amendment to the Claims

1. (currently amended) A method for network communication, the method

comprising:

receiving a plurality of packets from the network, each of the packets

including a media access control layer header, a network layer header and a. transport

layer header; i

processing the packets by a first mechanism, so that for each packet the

network layer header and the transport layer header are validated without an interrupt

dividing the processing of the network layer header and the transport layer header;

sorting the packets, dependent upon the processing, into first and second

types of packets, so that the packets of the first type each contain data;

sending the data from each packet of the first type to a destination i_n

memog allocated to an application without sending any of the media access control layer

headers, network layer headers or transport layer headers to the destination.

2. (original) The method of claim 1, wherein processing the packets by a first

mechanism further comprises: V

processing the media access control layer header for each packet without

an interrupt dividing the processing of the media access control layer header and the

network layer header.

3. (original) The method of claim 1, further comprising:

processing an upper layer header of at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header

corresponds to a protocol layer above the transport layer.

‘ 4. (original) The method of claim 1, further comprising:

processing an upper layer header of at least one of the packets of the

second type by a second mechanism, thereby determining the destination.

Amendment of App. Ser. No. 10/260,878 2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 328

INTEL Ex.1002.329

5. (currently amended) The method of claim 1, further comprising:

processing a transport layer header of another packet by a second

mechanism, prior to receiving the plurality of packets from the network, thereby

establishing a Transport Transmission Control Protocol (TCP) connection for the packets

of the first type. i

6. (currently amended) The method of claim 1, wherein sorting the packets

includes classifying each of the packets of the first type as having an Internet Protocol

(IP) header and 3 Transport Transmission Control Protocol (TCP).

7. (original) The method of claim 1, further comprising:

transmitting a second plurality ofpackets to the network, each of the second

plurality of packets containing a media access control layer header, 3 network layer

header and a transport layer header, including processing the second plurality of packets

by the first mechanism, so that for each packet the media access control layer header, the

network layer header and the transport layer header are processed without an interrupt

dividing the processing of the media access control layer header, the network layer

header and the transport layer header.

8. (original) The method of claim 1, wherein the first mechanism is a sequencer

running microcode.

9. (currently amended) A method for communicating information over a network,

the method comprising: V

obtaining data from a source allocated by a first processor;

dividing the data into multiple segments;

prepending a packet header to each of the segments by a second processor,

thereby forming a packet corresponding to each segment, each packet header containing a

media access control layer header, a network layer header and a transport layer header,

wherein the network layer header is Internet Protocol (IF), the transport layer header is

Amendment of App. Ser. No. 10/260,878 3

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 329

INTEL Ex.1002.330

Transmission Control Protocol [TCP) and the prepending of each packet header occurs

‘without an interrupt dividing the prepending of the network layer header and the transport

layer header; and

transmitting the packets to the network.

10. (original) The method of claim 9, wherein prepending a packet header to

each of the segments by a second processor further comprises:

prepending the media access control layer header for each packet without

an interrupt dividing the prepending of the media access control layer header and the

network layer header.

11. (currently amended) The method of claim 9, wherein each packet header

contains an Internet Protocol (IP) header and a Transpefi Transmission Control Protocol

(TCP) header.

thefiiedia-aeeess-eentrel—layer—headefi

12. (currently amended) The method of claim 9, further comprising establishing a

Transport Transmission Control Protocol (TCP) connection by the first processor and

using the connection to prepend the packet header to each of the segments by the second

processor.

13. (original) The method of claim 9, further comprising creating a template

header and forming each packet header based upon the template header.

, 14. (original) The method of claim 9, wherein obtaining data from the source in

memory allocated by the first processor is performed by a Direct Memory Access (DMA)

unit controlled by the second processor.

15. (original) The method of claim 9, further comprising prepending an upper

layer header to the data, prior to dividing the data into multiple segments.

Amendment of App. Ser. No. 10/260,878 4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 330

INTEL Ex.1002.331

16. (original) The method of claim 9, further comprising:

receiving another packet from the network, the other packet containing a

receive header including information corresponding to a network layer and a transport

layer; and

selecting whether to process the other packet by the first processor or by

the second processor.

17. (original) A method for communicating information over a network, the

method comprising:

providing multiple segments of data;

prepending an outbound packet header to each of the segments, thereby

forming an outbound packet corresponding to each segment, the outbound packet header

containing an outbound media access control layer header, an outbound network layer

header and an outbound transport layer header, wherein the prepending of each outbound

packet header occurs without an interrupt dividing the prepending of the outbound media

access control layer header, the outbound network layer header and the outbound

transport layer header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network, each of the inbound

packets including an inbound media access control layer header, an inbound network

layer header and an inbound transport layer header;

processing the inbound packets, so that for each packet the inbound

network layer header and the inbound transport layer header are validated without an

interrupt dividing the processing of the inbound network layer header and the inbound

transport layer header.

18. (original) The method of claim 17, wherein the processing the inbound

packets is performed simultaneously with the prepending the outbound packet header to

each of the segments.

Amendment of App. Ser. No. 10/260,878 5

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 331

INTEL Ex.1002.332

19. (original) . The method of claim 17, further comprising creating a template

header and using the template header to form each outbound packet header.

20. (original)

data includes dividing a block of data into the segments.

The method of claim 17, wherein providing multiple segments of

21. (original) The method of claim 20, further comprising prepending an upper

layer header to the block of data, prior to dividing'the block of data into multiple

segments.

22. (currently amended) The method of claim 17, further comprising:

sending data from each inbound packet to a destination in memog

allocated to an application without sending any of the media access control layer headers,

network layer headers or transport layer headers to the destination.

23. (currently amended) The method of claim 4—7 Q, further comprising:

processing an upper layer header of at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header

corresponds to a protocol layer above the transport layer.

24. (currently amended) The method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to

receiving the plurality of packets from the network, thereby establishing a Transport

Transmission Control Protocol (TCP) connection for the inbound packets.

Amendment of App. Ser. No. 10/260,878 6

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 332

INTEL Ex.1002.333

Remarks

1. Claim Objections

Applicants have amended claim 11 to remove the phrase: “the media access

control layer header,”. Applicants respectfully assert that claim 11, as amended, is no

longer objectionable.

II. Claim Rejections

A. 35 U.S.C. §102

The Office Action rejects claims 1, 2, 6 and 7 under 35 U.S.C. §102(e) as being

anticipated by US. Patent No. 5,920,566 to Hendel et al. (hereinafter “Hendel”).

Regarding claim 1, the Office Action states:

As per claim 1, Hendel teaches a method for network

communication (e.g. Hendel, col. 4, lines 53-55), the method comprising:

receiving a plurality of packets from the network, each of the

packets including a media access control layer header, a network layer
header and a transport layer header (e.g. Hendel, col. 4, lines 56-67; col. 5,
lines 1-8); -

processing the packets by a first mechanism, so that for each
packet the network layer header and the transport layer header are

validated without an interrupt dividing the processing of the network layer

header and the transport layer header (e.g. Hendel, col. 12, lines 66—67;
col. 13, lines 1-16);

sorting the packets, dependent upon the processing, into first and

second types of packets, so that the packets of the first type each contain

data (e.g. Hendel, col. 5, lines 26-33); '

sending the data from each packet of the first type to a destination

without sending any of the media access control layer headers, network
layer headers or transport layer headers to the destination (e.g. Hendel,
col. 13, lines 63-67; col. 14, lines 1-9).

Applicants respectfully disagree with the Office Action assertion that Hendel

teaches “processing the packets by a first mechanism, so that for each packet the network

layer header and the transport layer header are validated without an interrupt dividing the

processing of the network layer header and the transport layer header (e.g. Hendel, col.

12, lines 66-67; col. 13, lines 1-16).” Column 12, lines 66-67 and column 13, lines 1-16

of Hendel state:

An innovative structure and method for transmitting the packet and
control information across the internal link will now be described with

Amendment of App. Ser. No. 10/260,878 7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 333

INTEL Ex.1002.334

reference to FIGS. 8A and 8B. FIG. 8A is a simplified diagram of the

packet structure utilized. More particularly, as the inbound subsystem has
determined certain information regarding the packet, e.g., routing, it is

advantageous to simply convey this information to the outbound

subsystem so that subsequent processing, such as the header field
replacement, can easily be performed without reperforming the same steps

performed by the inbound subsystem. Furthermore, it is desirable to
maintain end-to-end error robustness. Thus, the inbound subsystem

encapsulates the packet 800 with control information 805 and a cycle
redundancy code (CRC) 810. The outbound system receives the

encapsulated packet, determines frame validity using CRC 810, strips the
CRC 810 and removes the control information 805 to determine the

subsequent processing to be performed to output the packet.

This paragraph does not teach any processing of a network layer header or a

transport layer header, let alone “processing the packets by a first mechanism, so that for

each packet the network layer header and the transport layer header are validated without

an interrupt dividing the processing of the network layer header and the transport layer

header.” As noted in column 2, lines 24-25 of Hendel, “Layer 2 provides for

transmission of frames of data and error detection.” The “outbound system” that

“determines frame validity usinngRC 810” appears to be directed to layer 2 rather than

layer 3 (network layer) or layer 4 (transport layer), in contrast to claim 1. For example,

IP and TCP (network and transport layer protocols) headers each have checksums that

would be checked to validate the IF and TCP headers of a packet. Applicants

respectfully assert that Hendel does not teach such validation, and further does not teach

such validation “without an interrupt dividing the processing of the network layer header

and the transport layer header.”

Applicants also respectfully disagree with the Office Action assertion that Hendel

teaches “sending the data from each packet of the first type to a destination without

sending any of the media access control layer headers, network layer headers or transport

layer headers to the destination (e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).”

Column 13, lines 63-67 and column 14, lines 1-9 of Hendel state:

The input interface 845 outputs to the cascading input process

(CIP) 850 the packet stripped of the CRC and the CIP 850 removes the
control information and forwards the packet, stripped of the encapsulating

CRC and control information, to the packet memory 855. The control
information is stored in the control field 857 corresponding to the packet

Amendment of App. Ser. No. 10/260,878

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 334

INTEL Ex.1002.335

stored in the memory 855. The output port process 860 retrieves the

packet and the control information from the packet memory 855 and based
upon the control information, selectively performs modifications to the

packet and issues control signals to the output interface 865 (i.e., MAC).

Applicants respectfully assert that this paragraph does not teach “sending the data

from each packet of the first type to a destination without sending any of the media

access control layer headers, network layer headers or transport layer headers to the

destination.” As shown in FIG. 8A of Hendel, stripping the “control information 805”

and “CRC 810” that “encapsulates the packet 800” leaves the header and data that form

the “packet 800” intact. I

For at least these reasons, applicants respectfully assert that Hendel does not

anticipate claim 1 or any claim that depends from claim 1.

Regarding claim 2, the Office Action states:

As per claim 2, Hendel teaches the method of claim 1, wherein

processing the packets by a first mechanism further comprises:

processing the media access control layer header for each packet

without an interrupt dividing the processing of the media access control

layer header and the network layer header (e.g. Hendel, col. 12, lines 66—
67; col. 13, lines 1-16).

Column 12, lines 66-67 and column 13,'lines 1-16 of Hendel are quoted above.

Applicants respectfully assert that this paragraph does not teach any processing of a

network layer header, let alone “processing the media access control layer header for

each packet without an interrupt dividing the processing of the media access control layer

header and the network layer header.” For at least this reason, applicants respectfully

assert that Hendel does not anticipate claim 2.

Regarding claim 6, the Office Action states:

As per claim 6, Hendel teaches the method of claim 1, wherein

sorting the packets includes classifying each of the packets of the first type

as having an Internet Protocol (IP) header and a Transport Control

Protocol (TCP) (e.g. Hendel, col. 6, lines 50-61).

Column 6, lines 50-61 of Hendel state:

The MLDNE's distributed architecture can be configured to route

message traffic in accordance with a number of known routing algorithms
such as RIP and OSPF. In a preferred embodiment, the MLDNE is

configured to handle message traffic using the Internet suite of protocols,

Amendment of App. Ser. No. 10/260,878 9

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 335

INTEL Ex.1002.336

and more specifically the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) over the Ethernet LAN standard and medium access

control (MAC) data link layer. The TCP is also referred to here as an

exemplary Layer 4 protocol, while the IP is referred to repeatedly as a

Layer 3 protocol. However, other protocols can be used to implement the
concepts of the invention.

Applicants respectfully assert that this paragraph does not teach “wherein sorting

the packets includes classifying each of the packets of the first type as having an Intemet

Protocol (IP) header and a Transport Control Protocol (TCP).” For at least this reason,

applicants respectfully assert that Hendel does not anticipate claim 6.

Regarding claim 7, the Office Action states:

As per claim 7, Hendel teaches the method of claim 1, further

comprising:

transmitting a second plurality of packets to the network, each of

the second plurality of packets containing a media access control layer
header, a network layer header and a transport layer header, including

processing the second plurality of packets by the first mechanism, so that

for each packet the media access control layer header, the network layer
header and the transport layer header are processed without an interrupt

dividing the processing of the media access control layer header, the

network layer header and the transport layer header (e.g. Hendel, col. 12,

lines 66-67; col. 13, lines l-16).

Column 12, lines 66-67 and column 13, lines 1-16 of Hendel are quoted above.

Applicants respectfully assert that this paragraph does not teach any processing of a

network layer header or a transport layer header, let alone “transmitting a second plurality

of packets to the network, each of the second plurality of packets containing a media

access control layer header, a network layer header and a transport layer header,

including processing the second plurality of packets by the first mechanism, so that for

each packet the media access control layer header, the network layer header and the

transport layer header are processed without an interrupt dividing the processing of the

media access control layer header, the network layer header and the transport layer

header.” For at least this reason, applicants respectfully assert that Hendel does not

anticipate claim 7.

Amendment of App. Ser. No. 10/260,878 10

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 336

INTEL Ex.1002.337

B. 35 U.S.C. §103

The Office Action rejects claims 3 and 4 under 35 U.S.C. §103(a) as being

unpatentable over Hendel in view of US. Patent No. 6,115,615 to Ota et a1. (hereinafter

“Ota”). Regarding claim 3, the Office Action states:

As per claim 3, Hendel teaches the method of claim 1, but fails to

teach the method further comprising: p

processing an upper layer header of at least one of the packets by a

second mechanism, thereby determining the destination, wherein the upper

layer header corresponds to a protocol layer above the transport layer.
However, in a similar art, Ota teaches a network communications

system that uses an application layer level address to indicate the

destination and route packets through the network (e.g. Ota, col. 7, lines
18-25, 40-53).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Ota with Hendel because of the

advantages of using an upper layer header to determine the destination of

packets in a network. Network layer and transport layers also generally
include addresses or indications of destinations for the packets and

including this feature into the application layer as well provides another

fail-safe step for the network in the event of a failure in some portion of
the network. Having fail-safe routes for information decreases the amount
of network downtime since routes can be switched almost instantaneously

upon the realization of a fault or error. This is a benefit in any

communications network system.

Applicants have amended claim 1 to recite, in part, “sending the datafrom each

packet of the first type to a destination in memory allocated to an application without

sending any of the media access control layer headers, network layer headers or transport

layer headers to the destination.” Applicants respectfully assert that Ota does not teach

“sending the data from each packet of the first type to a destination in memory allocated

to an application without sending any of the media access control layer headers, network

layer headers or transport layer headers to the destination.” Ota instead allegedly “gives

a unique application layer level address to a mobile station, and regards a network layer

level address (IP address in this embodiment) as an address indicating a route.” Ota,

column 7, lines 40-43. For at least this reason, applicants respectfully assert that claim 3

is nonobvious over the combination of Ota and Hendel proposed by the Office Action.

Amendment of App. Ser. No. 10/260,878 11

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 337

INTEL Ex.1002.338

Regarding claim 4, the Office Action states:

As per claim 4, Hendel teaches the method of claim 1, but fails to

teach the method further comprising:

processing an upper layer header of at least one of the packets of

the second type by a second mechanism, thereby determining the
destination.

However, in a similar art, Ota teaches a network communications

system that uses an application layer level address to indicate the

destination and route packets through the network (e.g. Ota, col. 7, lines
18-25, 40-53).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Ota with Hendel for similar reasons as

stated above in regards to claim 3.

Applicants respectfully assert that claim 4 is nonobvious over the combination of

Ota and Hendel proposed by the Office Action for similar reasons as stated above in

regards to claim 3.

The Office Actionrejects claim 5 under 35 U.S.C. §103(a) as being unpatentable

over Hendel in view of US. Patent No. 5,892,903 to Klaus (hereinafter “Kl'aus”).

Regarding claim 5, the Office Action states:

As per claim 5, Hendel teaches the method of claim 1, further

comprising:

processing a transport layer header of another packet by a second

mechanism, prior to receiving the plurality of packets from the network

(e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

Hendel fails to teach establishing a Transport Control Protocol
(TCP) connection for the packets of the first type.

However, in a similar art, Klaus teaches the use of a transport layer

header to create a TCP connection over a network (e.g. Klaus, col. 5, lines
8-23).

It would have been obvious to one skilled in the art at the time the
invention was made to combine Klaus with Hendel because of the

advantages of using a transport layer header to provide a TCP connection

over a network. The use transport layer, included in the well-known OSI

model, is advantageous because it provides segmentation of

communication functions across the various layers of the protocol stack

and modularizes the functions required to implement network

communication, which simplifies computer communication operation and

maintenance (e.g. Klaus, col. 2, lines 14-23). The use of the OSI model
allows for communication across various systems and platforms without
the need for conversion or modification of the communication method.

This can greatly increase the efficiency of communication across a
network, which is beneficial in any communications network system.

Amendment oprp. Ser. No. 10/260,878 12

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 338

INTEL Ex.1002.339

Applicants respectfully disagree with the Office Action assertion that “It would

have been obvious to one skilled in the art at the time the invention was made to combine

Klaus with Hendel because of the advantages of using a transport layer header to provide

a TCP connection over a network.”

Hendel is directed to “an apparatus and related method for relaying packets by a

multi-layer distributed network element according to known routing protocols.” Hendel,

column 4, lines 53-55. “The network element should be able to operate at bridge-like

speeds, yet be capable of routing packets across different subnetworks and provide upper

layer functionalities such as quality of service.” Hendel, column 4, lines 47-50.

Establishing a TCP connection, which is complicated and performed in software, wouldu

contradict Hendel’s need for a network element that can handle changing network

conditions such as topology and message traffic yet make efficient use of high

performance hardware to switch packets based on their Layer 2, Layer 3, and Layer 4

headers.” Hendel, column 4, lines 53-55.

Moreover, as noted in column 3, lines 29-49 of Klaus, “In the TCP/IP protocol, a

communication connection is established through a three handshake open network

protocol. The first handshake or data message is from a source computer and is typically

called a "synchronization" or "sync" message. In response to a sync message, the

destination computer transmits a synchronization-acknowledgment ("sync-ack") message.

The source computer then transmits an acknowledgment ("ack") message and a

communication connection between the source and destination computer is established.”

This multi-step procedure, performed in software and over a network, would appear to

one of ordinary skill to slow the routing and switching of packets that Hendel is directed

to.

In addition, it is not asserted in the Office Action, and it is certainly not apparent

from the cited references, what computer the “network element” of Hendel would

establish a TCP connection with, if combined with Klaus as proposed by the Office

Action. Stated differently, applicants respectfully assert that the combination of Klaus

and Hendel that is proposed by the Office Action may be inoperable, teaching one of

ordinary skill in the art away from making such a combination.

Amendment of App, Ser. No. 10/260,878 13

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 339

INTEL Ex.1002.340

Applicants respectfully assert that these disadvantages of establishing a TCP

connection would far outweigh the advantages alleged by the Office Action, which for

the most part would not even be applicable to the proposed combination of Klaus and

Hendel.

For at least this reason, applicants respectfully assert that claim 5 is nonobvious

over the combination of Klaus and Hendel proposed by the Office ActiOn.

The Office Action rejects claim 8 under 35 U.S.C. §103(a) as being unpatentable

over Hendel in view of US. Patent No. 5,991,299 to Radogna et a1. (hereinafter

“Radogna”). Regarding claim 8, the Office Action states:

As per claim 8, Hendel teaches the method of claim 1, but fails to
teach the method wherein the first mechanism is a sequencer running
microcode.

However, in a similar art, Radogna teaches the use of a dedicated

' sequencer running microcode to perform network communication and
header translation and processing (e.g. col. 4, lines 25—30).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Radogna with Hendel because of the

benefits of using a specialized processor to handle various tasks in a

communications system. Using a sequencer for processing header

information can greatly accelerate a frame or packet through a network

since the central processing unit does not become overburdened when

many packets need to be processed. This frees up the central processor to
handle other networking tasks, therefore increasing the speed and

efficiency of transmissions through the network. The use of software
microcode for this processing easily accommodates new protocols and can -

bypass hardware processing in the event of a hardware failure. This is
beneficial in any communications network system.

Applicants respectfully assert that, assuming arguendo Radogna and Hendel were

combined as proposed by the Office Action, the resulting device would not be processing

the packets by a sequencer running microcode, so that for each packet the network layer

header and the transport layer header are validated without an interrupt dividing the

processing of the network layer header and the transport layer header, in contrast to claim

8. There is, for example, no teaching in Radogna or Hendel of validating a transport

layer header, let alone the limitation of “for each packet the network layer header and the

transport layer header are validated without an interrupt dividing the processing of the

network layer header and the transport layer header.” Radogna, like Hendel, is directed

Amendment of App. Ser. No. 10/260,878 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 340

INTEL Ex.1002.341

to high speed header translation processing for bridges and routers. Validating transport

layer headers would not only be a waste of time in such devices, but may cause

unnecessary errors if, for example, checksums were removed as is typical for such

validation, to be replaced with new checksums on retransmission.

FOr at least this reason, applicants respectfully assert that claim 8 is nonobvious

over the combination of Radogna and Hendel proposed by the Office Action.

The Office Action rejects claims 9, 10, 14, 16—18 and 22 under 35 U.S.C. §103(a)

as being unpatentable over Radogna in View of Hendel. Regarding claim 9, the Office

Action states:

As per claim 9, Radogna teaches a method for communicating

information over a network (e.g. Radogna, col. 2, lines 63-67), the method

comprising:

obtaining data from a source allocated by a first processor (e.g.

Radogna, col. 3, lines 50—59);

dividing the data into multiple segments (e.g. Radogna, col. 3,
lines 50-59);

prepending a packet header to each of the segments by a second
processor, thereby forming a packet corresponding to each segment (e.g. >

Radogna, col. 1.4, lines 22-36);

transmitting the packets to the network (e.g. Radogna, col. 5, lines

9—17). -

Radogna fails to teach the method comprising each packet header

containing a media access control layer header, a network layer header and

a transport layer header, wherein the prepending of each packet header
occurs without an interrupt dividing the prepending of the network layer

header and the transport layer header.
However, in a similar art, Hendel teaches a network

communications system teach the method comprising each packet header

containing a media access control layer header, a network layer header and
a transport layer header, wherein the prepending of each packet header
occurs without an interrupt dividing the prepending of the network layer

header and the transport layer header (e.g. Hendel, col. 12, lines 66-67;
col. 13, lines 1-16).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Radogna with Hendel because of the

advantages of including headers for each of the MAC (data link) layer,

network layer and transport layer when communicating over a packetized
network conforming to the OSI model. The use of these layers is well

known since the 081 model was developed. Prepending a header

associated with each layer is a common method for allowing the network

to process the packets layer by layer, in accordance with the 081 model.
Performing the processing and prepending of headers without an interrupt

Amendment of App. Ser. No. 10/260,878 15

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 341

INTEL Ex.1002.342

between layers provides the benefits of speeding up the entire processing
method and increasing the efficiency of packet transmission across a
network. This is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “Hendel

teaches a network communications system teach the method comprising each packet

header containing a media access control layer header, a network layer header and a

transport layer header, wherein the prepending of each packet header occurs without an

interrupt dividing the prepending of the network layer header and the transport layer

header (e.g. Hendel, col. 12, lines 66-67; col. 13, lines l-l6).” Column 12, lines 66-67

and column 13, lines 1-16 of Hendel state:

An innovative structure and method for transmitting the packet and
control information across the internal link will now be described with

reference to FIGS. 8A and 8B. FIG. 8A is a simplified diagram of the

packet structure utilized. More particularly, as the inbound subsystem has
determined certain information regarding the packet, e.g., routing, it is

advantageous to simply convey this information to the outbound
subsystem so that subsequent processing, such as the header field

replacement, can easily be performed without reperforming the same steps

performed by the inbound subsystem. Furthermore, it is desirable to
maintain end-to-end error robustness. Thus, the inbound subsystem

encapsulates the packet 800 with control information 805 and a cycle

redundancy code (CRC) 810. The outbound system receives the
encapsulated packet, determines frame validity using CRC 810, strips the
CRC 810 and removes the control information 805 to determine the

subsequent processing to be performed to output the packet.

This paragraph does not teach any processing of a network layer header or a

transport layer header, let alone “processing the packets by a first mechanism, so that for

each packet the network layer header and the transport layer header are validated without

an interrupt dividing the processing of the network layer header and the transport layer

header.” As noted in column 2, lines 24-25 of Hendel, “Layer 2 provides for

transmission of frames of data and error detection.” The “outbound system” that

“determines frame validity using CRC 810” appears to be directed to layer 2 rather than

layer 3 (network layer) or layer 4 (transport layer), in contrast to claim 1. For example,

IP and TCP (network and transport layer protocols) headers each have checksums that

would be checked to validate the IP and TCP headers of a packet. Applicants

respectfully assert that Hendel does not teach such validation, and further does not teach

Amendment of App. Ser. No. 10/260,878 16

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 342

INTEL Ex.1002.343

such validation “without an interrupt dividing the processing of the network layer header

and the transport layer header.” As shown in FIG. 8A of Hendel, adding and stripping

the “control information 805” and “CRC 810” that “encapsulates the packet 800” leaves

the header and data that form the “packet 800” intact.

For at least these reasons, applicants respectfully assert that claim 9 and any claim

that depends from claim 9 is nonobvious over the combination of Radogna and Hendel

proposed by the Office Action.

Regarding claim 10, the Office Action states:

As per claim 10, Radogna and Hendel teach the method of claim 9,

wherein prepending a packet header to each of the segments by a second

processor further comprises:

prepending the media access control layer header for each packet

without an interrupt dividing the prepending of the media access control

layer header and the network layer header (e.g. Radogna, col. 14, lines 22-
36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the ‘method of claim 9, wherein prepending a packet header to each of

the segments by a second processor further comprises: prepending the media access

control layer header for each packet without an interrupt dividing the prepending of the

media access control layer header and the network layer header (e. g. Radogna, col. 14,

lines 22-36; Hendel, col. 12, lines 66-67; col. 13, lines 1—16).” Column l2, lines 66-67

and column 13, lines 1—16 of Hendel are quoted above and do not teach this. Column 14,

lines 22-36 of Radogna state:

The method of operation of the hardware microsequencer 100 and

associated support hardware comprising the THP engine is generally
illustrated in FIGS. 6a-6c. Frames are delivered to Transmit Segmentation

Unit (TSEG) FIFOs 59 from the Buffer RAM 22 based upon per port

queues maintained within the MBA as depicted in step 200. The Transmit

Segmentation Unit (TSEG) 58 queues transmit vectors from the Master
Buffer ASIC (MBA) 32, which indicate where in the Buffer RAM 22,

respective segments of transmit frames are stored. The frames are packed
into the TSEG FIFO 59 so that there are no spaces between bytes.

Information needed by the THP 60 to identify and execute the proper
translation routine is contained within the transmit vector which is

prepended to each frame presented to the THP for header translation.

Amendment of App. Ser. No. 10/260,878 l7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 343

INTEL Ex.1002.344

As can be seen, this paragraph also does not teach the limitations of claim 10. For

at least these reasons, applicants respectfully assert that claim 10 is nonobvious over the

combination of Radogna and Hendel proposed by the Office Action.

Regarding claim 14, the Office Action states:

As per claim 10, Radogna and Hendel teach the method of claim 9,

wherein obtaining data from the source in memory allocated by the first

processor is performed by a Direct Memory Access (DMA) unit controlled

by the second processor (e.g. Radogna, col. 5, lines 5-17).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the method of claim 9, wherein obtaining data from the source in

memory allocated by the first processor is performed by a Direct Memory Access (DMA)

unit controlled by the second processor. (e.g. Radogna, col. 5, lines 5—17).” Column 14,

lines 22-36 of Radogna state:

The RSEG 50 comprises a DMA controller which controls storage

of received frame data within appropriate Buffer RAM 22 locations.
The Transmit ASIC

The transmit ASIC includes a Transmit Segmentation Unit (TSEG)

58, a plurality of Transmit Segment Unit (TSEG) FIFOs 59, a Transmit
Header Processor (THP) 60, a Transmit State Machine ("TXSM") 62 and

Transmit State Machine FIFOs 64. The TSEG 58 comprises a DMA
controller which serves to move frame data segments from locations

within the Buffer RAM 22 into an input FIFO designated as the TSEG

FIFO 59. The TSEG FIFO 59 comprises an input to the THP 60.

As can be seen, these paragraphs do not teach the limitations of claim 14. That is,

although a DMA controller is mentioned, these paragraphs do not teach “wherein

obtaining data from the source in memory allocated by the first processor is performed by

a Direct Memory Access (DMA) unit controlled by the second processor.” For at least

this reason, applicants respectfully assert that claim 14 is nonobvious over the

combination of Radogna and Hendel proposed by the Office Action.

Regarding claim 16, the Office Action states:

As per claim 16, Radogna and Hendel teach the method of claim 9,
further comprising:

receiving another packet from the network, the other packet
containing a receive header including information corresponding to a

network layer and a transport layer (e.g. Hendel, col. 4, lines 56-67; col. 5,
lines 1-8); and

Amendment of App. Ser. No. 10/260,878 18

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 344

INTEL Ex.1002.345

selecting whether to process the other packet by the first processor

or by the second processor (e.g. Hendel, col. 5, lines 26-33).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the method of claim 9, further comprising: ...selecting whether to

process the other packet by the first processor or by the second processor. (e.g. Hendel,

col. 5, lines 26-33).” Column 5, lines 26-33 of Radogna instead state:

When the packet is received over the internal link by a second

subsystem, the packet is forwarded to the neighbor node in response to the

packet's new first header portion matching a type 1 entry in the second

forwarding memory. The type 1 entry in the second subsystem contains
the address of the neighbor node or endstation and had been created

independently of the matching type 2 entry of the inbound subsystem.

As can be seen, this paragraph does not teach the limitations of claim 16. That is,

this paragraph does not teach “selecting whether to process the other packet by the first

processor or by the second processor.” For at least this reason, applicants respectfully

assert that claim 16 is nonobvious over the combination ofRadogna and Hendel proposed

by the Office Action.

Regarding claim 17, the Office Action states:

As per claim 17, Radogna teaches a method for communicating
information over a network, the method comprising:

providing multiple segments of data (e.g. Radogna, col. 3, lines 50-
59); '

prepending an outbound packet header to each of the segments,

thereby forming an outbound packet corresponding to each segment (e.g.

Radogna, col. 14, lines 22-36);

transmitting the outbound packets to the network (e.g. Radogna,
col. 5, lines 9—17);

receiving multiple inbound packets from the network, each of the
inbound packets including an inbound media access control layer header,

an inbound network layer header and an inbound transport layer header

(e.g. Radogna, col. 3, lines 50-59).

Radogna fails to teach the method comprising the outbound packet
header containing an outbound media access control layer header, an
outbound network layer header and an outbound transport layer header,

' wherein the prepending of each outbound packet header occurs without an
interrupt dividing the prepending of the outbound media access control

layer header, the outbound network layer. header and the outbound
transport layer header;

Amendment of App. Ser. No. 10/260,878 19

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 345

INTEL Ex.1002.346

However, in a similar art, Hendel teaches a network

communications system based on packets utilizing media access control

layer headers, network layer headers and transport layer headers, the

processing and validating of these headers all occurring without interrupts
between each layer (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Hendel with Radogna because of the

advantages of including headers for each of the MAC (data link) layer,

network layer and transport layer when communicating over a packetized
network conforming to the OSI model. The use of these layers is well
known since the OSI model was developed. Prepending a header

associated with each layer is a common method for allowing the network

to process the packets layer by layer, in accordance with the OSI model.

Performing the processing and prepending of headers without an interrupt

between layers provides the benefits of speeding up the entire processing
method and increasing the efficiency of packet transmission across a
network. This is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “Hendel

teaches a network communications system based on packets utilizing media access

control layer headers, network layer headers and transport layer headers, the processing

and validating of these headers all occurring without interrupts between each layer (e.g.

Hendel, col. 12, lines 66-67; col. 13, lines 1-16).” As discussed above for claim 1 and

claim 9, Hendel teaches no such thing. Moreover, applicants respectfully note that the

Office Action does not assert that Hendel and Radogna teach, and Hendel and Radogna

do not teach, “processing the inbound packets, so that for each packet the inbound

network layer header and the inbound transport layer header are validated without an

interrupt dividing the processing of the inbound network layer header and the inbound

transport layer header,” in contrast to claim 17.

For at least these reasons, applicants respectfully assert that claim 17 and any

claim that depends from claim 17 is nonobvious over the combination of Radogna and

Hendel proposed by the Office Action.

Regarding claim 18, the Office Action states:

As per claim 18, Radogna and Hendel teach the method of claim

17, wherein the processing the inbound packets is performed
simultaneously with the prepending the outbound packet header to each of

the segments (e.g. Radogna, separate processors for receive functionality
and transmit functionality, col. 3, lines 50-59; col. 5, lines 9-17; col. 14,
lines 22—36).

Amendment of App. Ser. No. 10/260,878 20

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 346

INTEL Ex.1002.347

As noted above, the proposed combination Radogna and Hendel does not process

inbound packets or prepend outbound packet headers, as recited, so assuming arguendo

that Radogna has separate processors for receive functionality and transmit functionality

is immaterial to the claim. For at least this reason, applicants respectfully assert that

claim 18 is nonobvious over the combination-of Radogna and Hendel proposed by the

Office Action.

Regarding claim 22, the Office Action states:

As per claim 22, Radogna and Hendel teach the method of claim
17, further comprising:

sending data from each inbound packet to a destination without

sending any of the media access control layer headers, network layer

headers or transport layer headers to the destination (e.g. Hendel, col. 12,
lines 66-67; col. 13, lines 1-16; col. 14, lines 1-9).

_ Applicants respectfully assert that Hendel does not teach, in column 12-14 or

elsewhere, “sending data from each inbound packet to a destination without sending any

of the media access control layer headers, network layer headers or transport layer

headers to the destination,” as recited in claim 22. For at least this reason, applicants

respectfully assert that claim 22 is nonobvious over the combination of Radogna and

Hendel proposed by the Office Action.

The Office Action rejects claims 12 and 24 under 35 U.S.C. §103(a) as being

unpatentable over Radogna in view of Hendel and Klaus. Regarding claim 12, the Office

Action states:

As per claim 12, Radogna and Hendel teach the method of claim 9,

comprising prepending the packet header to each of the segments by the

second processor (e.g. Radogna, col. 14, lines 22-36). ‘
Radogna and Hendel fail to teach the method further comprising

establishing a Transport Control Protocol (TCP) connection by the first

processor and using the connection to prepend the packet header to each of

the segments by the second processor.
However, in a similar art, Klaus teaches the use of a transport layer

header to create and utilize a TCP connection over a network (e.g. Klaus,

col. 5, lines 8-23).
It would have been obvious to one skilled in the art at the time the

invention was made to combine Klaus with Radogna and Hendel because

of the advantages of using a transport layer header to provide a TCP
connection over a network. The use transport layer, included in the well-

known OSI model, is advantageous because it provides segmentation of

Amendment of App. Ser. No. 10/260,878 21

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 347

INTEL Ex.1002.348

communication functions across the various layers of the protocol stack

and modularizes the functions required to implement network

communication, which simplifies computer communication operation and
'maintenance (e.g. Klaus, col. 2, lines 14-23). The use of the 081 model
allows for communication across various systems and platforms without
the need for conversion or modification of the communication method.

This can greatly increase the efficiency of communication across a

network, which is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “It would

have been obvious to one skilled in the art at the time the invention was made to combine

Klaus with Radogna and Hendel because of the advantages of using a transport layer

header to provide a TCP connection over a network.”

Hendel is directed to “an apparatus and related method for relaying packets by a

multi-layer distributed network element according to known routing protocols.” Hendel,

' column 4, lines 53-55. “The network element should be able to operate at bridge-like

speeds, yet be capable of routing packets across different subnetworks and provide upper '

layer functionalities such as quality of service.” Hendel, column 4, lines 47-50.

Establishing a TCP connection, which is complicated and performed in software, would

contradict Hendel’s “need for a network element that can handle changing network

conditions such as topology and message traffic yet make efficient use ofhigh

performance hardware to switch packets based on their Layer 2, Layer 3, and Layer 4

headers.” Hendel, column 4, lines 53-55.

Radogna, like Hendel, is directed to high speed header translation processing for

bridges and routers. Establishing a TCP connection, which is complicated and performed

in software, would contradict Radogna’s desire “to be able to perform header translations

in a network device, such as a router, at or near the frame reception rate for the device.”

Radogna, column 1, lines 63-65.

Moreover, as noted in column 3, lines 29-49 of Klaus, “In the TCP/IP protocol, a

communication connection is established through a three handshake open network

protocol. The first handshake or data message is from a source computer and is typically

called a "synchronization" or I'sync" message. In response to a sync message, the

destination computer transmits a synchronization-acknowledgment ("sync-ack") message.

The source computer then transmits an acknowledgment ("ack") message and a

Amendment of App. Ser. No. 10/260,878 22

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 348

INTEL Ex.1002.349

communication connection between the source and destination computer is established.”

This multi-step procedure, performed in software and over a network, would appear to

one of ordinary skill to slow the routing and switching of packets that Hendel is directed

to.

In addition, it is not asserted in the Office Action, and it is certainly not apparent

from the cited references, what computer the “network element” of Hendel would

establish a TCP connection with, if combined with Radogna and Klaus as proposed by

the Office Action. Stated differently, applicants respectfully assert that the combination

of Klaus and Radogna and Hendel that is proposed by the Office Action may be

inoperable, teaching one of ordinary skill in the art away from making such a

combination.

Applicants respectfully assert that these disadvantages of establishing a TCP

connection would far outweigh the advantages alleged by the Office Action, which for

the most part would not even be applicable to the proposed combination of Klaus and

Radogna and Hendel.

For at least this reason, applicants respectfully assert that claim 12 is'nonobvious

over the combination of Klaus and Radogna and Hendel proposed by the Office Action.

Regarding claim 24, the Office Action states:

As per claim 24, Radogna and Hendel teach the method of claim

17, further comprising:

processing a transport layer header of another inbound packet,

prior to receiving the plurality of packets from the network (e.g. Hendel,
col. 12, lines 66-67; col. 13, lines 1-16),

Radogna and Hendel fail to teach the method further comprising
establishing a Transport Control Protocol (TCP) connection for the

inbound packets.
However, in a similar art, Klaus teaches the use of a transport layer

header to create and utilize a TCP connection over a network (e. g. Klaus,

col. 5, lines 8-23).
It would have been obvious to one skilled in the art at the time the

invention was made to combine Klaus with Radogna and Hendel for

similar reasons as stated above in regards to claim 12.

Applicants respectfully assert that Hendel does not teach, in column 12, lines 66-

67; column 13, lines 1-16, or elsewhere, “processing a transport layer header of another

inbound packet” as recited in claim 24, for similar reasons as stated above in regards to

Amendment of App. Ser. No. 10/260,878 23

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 349

INTEL Ex.1002.350

claim 12.. Applicants also respectfully assert that it would not have been obvious to one

skilled in the art at the time the invention was made to combine Klaus with Radogna and

Hendel, for similar reasons as stated above in regards to claim 12. For at least these

reasons, applicants respectfully assert that claim 24 is nonobvious over the combination

of Radogna and Hendel proposed by the Office Action.

The Office Action rejects claims 15, 21 and 23 under 35 U.S.C. §103(a) as being

unpatentable over Radogna in view of Hendel and Ota. Regarding claim 15, the Office

Action states:

As per claim 15, Radogna and Hendel teach the method of claim 9,

but fail to teach the method further comprising prepending an upper layer

header to the data, prior to dividing the data into multiple segments.
However, in a similar art, Ota teaches a network communication

system that attaches and uses’ a header in the application layer (e.g. Ota,
col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the an at the time the

invention was made to combine Ota with Radogna and Hendel because of

the advantages of attaching a header to an upper layer, such as the

application layer, along with the other layers of the well-known 081
model. The use of an upper layer header can provide a great deal of

flexibility to the system since it is able to transmit more data with the
packet itself. The 081 model is designed to attach and process headers

from each of the seven layers efficiently to ensure that the data within the

packet is transmitted properly across the network. Including an

application layer header further ensures the proper receipt of the data.

This is beneficial in any communications network system.

Applicants respectfully note that the Office Action does not assert, and even the

combination of the references proposed by the Office Action would not teach,

“prepending an upper layer header to the data, prior‘to dividing the data into multiple

segments,” as recited in claim 15. This may be because the advantages alleged by Ota

. and the Office Action would not work in this case. That is, Ota allegedly “gives a unique

application layer level address to a mobile station, and regards a network layer level

address (IP address in this embodiment) as an address indicating a route.” Ota, column 7,

lines 40-43. But should such a “unique application layer level address” be prepended as

“an upper layer header to the data, prior to dividing the data into multiple segments,” that

header would presumably only be attached to the first segment of the multiple segments,

afier dividing the data into multiple segments. In other words, the upper layer addressing

Amendment of App. Ser. No. 10/260,878 24

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 350

INTEL Ex.1002.351

scheme proposed by Ota would fail for all but the first packet of multiple packets,

resulting in multiple problems and showing how useless the upper layer addressing

scheme proposed by Ota really is. Because the 081 model does not have any mechanism

for providing upper layer headers to each packet for blocks of data that are divided for

transmission over a network, and the addressing scheme of Ota reduces network layer

level addresses such as IP addresses as merely “indicating a route,” Ota is probably

inoperable, teaching one of ordinary skill in the art away from using Ota or combining it

with any functional reference.

For at least these reasons, applicants respectfully assert that claim 15 is

nonobvious over the combination of Radogna, Hendel and Ota proposed by the Office

Action.

Regarding claim 21, the Office Action states:

As per claim 21, Radogna and Hendel teach the method of claim
20, but fail to teach the method further comprising prepending an upper

layer header to the data, prior to dividing the data into multiple segments.
However, in a similar art, Ota teaches a network communication

system that attaches and uses a header in the application layer (eg. Ota,
col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Ota with Radogna and Hendel for similar

reasons as stated above in regards to claim 15.

Applicants respectfully note that the Office Action does not assert, and even the

combination of the references proposed by the Office Action would not teach,

“prepending an upper layer header to the data, prior to dividing the data into multiple

segments,” as recited in claim 21. This may be because the advantages alleged by Ota

and the Office Action would not work in this case. That is, Ota allegedly “gives a unique

application layer level address to a mobile station, and regards a network layer level

address (IP address in this embodiment) as an address indicating a route.” Ota, colurrm 7,

lines 40-43. But should such a “unique application layer level address” be prepended as

“an upper layer header to the data, prior to dividing the data into multiple segments,” that

header would presumably only be attached to the first segment of the multiple segments,

after dividing the data into multiple segments. In other words, the upper layer addressing

scheme proposed by Ota would fail for all but the first packet of multiple packets,

Amendment of App. Ser. No. 10/260,878 25

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 351

INTEL Ex.1002.352

INTEL Ex.1002.353

INTEL Ex.1002.354

INTEL Ex.1002.355

INTEL Ex.1002.356

INTEL Ex.1002.357

INTEL Ex.1002.358

INTEL Ex.1002.359

INTEL Ex.1002.360

INTEL Ex.1002.361

INTEL Ex.1002.362

INTEL Ex.1002.363

INTEL Ex.1002.364

INTEL Ex.1002.365

INTEL Ex.1002.366

INTEL Ex.1002.367

INTEL Ex.1002.368

INTEL Ex.1002.369

INTEL Ex.1002.370

INTEL Ex.1002.371

INTEL Ex.1002.372

INTEL Ex.1002.373

INTEL Ex.1002.374

INTEL Ex.1002.375

INTEL Ex.1002.376

INTEL Ex.1002.377

INTEL Ex.1002.378

INTEL Ex.1002.379

INTEL Ex.1002.380

INTEL Ex.1002.381

INTEL Ex.1002.382

INTEL Ex.1002.383

INTEL Ex.1002.384

INTEL Ex.1002.385

INTEL Ex.1002.386

INTEL Ex.1002.387

INTEL Ex.1002.388

INTEL Ex.1002.389

INTEL Ex.1002.390

INTEL Ex.1002.391

INTEL Ex.1002.392

INTEL Ex.1002.393

INTEL Ex.1002.394

INTEL Ex.1002.395

INTEL Ex.1002.396

INTEL Ex.1002.397

INTEL Ex.1002.398

INTEL Ex.1002.399

INTEL Ex.1002.400

INTEL Ex.1002.401

INTEL Ex.1002.402

INTEL Ex.1002.403

INTEL Ex.1002.404

INTEL Ex.1002.405

INTEL Ex.1002.406

INTEL Ex.1002.407

INTEL Ex.1002.408

INTEL Ex.1002.409

INTEL Ex.1002.410

INTEL Ex.1002.411

INTEL Ex.1002.412

INTEL Ex.1002.413

INTEL Ex.1002.414

INTEL Ex.1002.415

INTEL Ex.1002.416

INTEL Ex.1002.417

INTEL Ex.1002.418

INTEL Ex.1002.419

INTEL Ex.1002.420

INTEL Ex.1002.421

INTEL Ex.1002.422

INTEL Ex.1002.423

INTEL Ex.1002.424

INTEL Ex.1002.425

INTEL Ex.1002.426

INTEL Ex.1002.427

INTEL Ex.1002.428

INTEL Ex.1002.429

INTEL Ex.1002.430

INTEL Ex.1002.431

INTEL Ex.1002.432

INTEL Ex.1002.433

INTEL Ex.1002.434

INTEL Ex.1002.435

INTEL Ex.1002.436

INTEL Ex.1002.437

INTEL Ex.1002.438

INTEL Ex.1002.439

INTEL Ex.1002.440

INTEL Ex.1002.441

INTEL Ex.1002.442

INTEL Ex.1002.443

INTEL Ex.1002.444

INTEL Ex.1002.445

INTEL Ex.1002.446

INTEL Ex.1002.447

INTEL Ex.1002.448

INTEL Ex.1002.449

INTEL Ex.1002.450

INTEL Ex.1002.451

INTEL Ex.1002.452

INTEL Ex.1002.453

INTEL Ex.1002.454

INTEL Ex.1002.455

INTEL Ex.1002.456

INTEL Ex.1002.457

INTEL Ex.1002.458

INTEL Ex.1002.459

INTEL Ex.1002.460

INTEL Ex.1002.461

INTEL Ex.1002.462

INTEL Ex.1002.463

INTEL Ex.1002.464

INTEL Ex.1002.465

INTEL Ex.1002.466

INTEL Ex.1002.467

INTEL Ex.1002.468

INTEL Ex.1002.469

INTEL Ex.1002.470

INTEL Ex.1002.471

INTEL Ex.1002.472

INTEL Ex.1002.473

INTEL Ex.1002.474

INTEL Ex.1002.475

INTEL Ex.1002.476

INTEL Ex.1002.477

INTEL Ex.1002.478

INTEL Ex.1002.479

INTEL Ex.1002.480

INTEL Ex.1002.481

INTEL Ex.1002.482

INTEL Ex.1002.483

INTEL Ex.1002.484

INTEL Ex.1002.485

INTEL Ex.1002.486

INTEL Ex.1002.487

INTEL Ex.1002.488

INTEL Ex.1002.489

INTEL Ex.1002.490

INTEL Ex.1002.491

INTEL Ex.1002.492

INTEL Ex.1002.493

INTEL Ex.1002.494

INTEL Ex.1002.495

INTEL Ex.1002.496

INTEL Ex.1002.497

INTEL Ex.1002.498

INTEL Ex.1002.499

INTEL Ex.1002.500

INTEL Ex.1002.501

INTEL Ex.1002.502

INTEL Ex.1002.503

INTEL Ex.1002.504

INTEL Ex.1002.505

INTEL Ex.1002.506

INTEL Ex.1002.507

INTEL Ex.1002.508

INTEL Ex.1002.509

INTEL Ex.1002.510

INTEL Ex.1002.511

INTEL Ex.1002.512

INTEL Ex.1002.513

INTEL Ex.1002.514

INTEL Ex.1002.515

INTEL Ex.1002.516

INTEL Ex.1002.517

INTEL Ex.1002.518

INTEL Ex.1002.519

INTEL Ex.1002.520

INTEL Ex.1002.521

INTEL Ex.1002.522

INTEL Ex.1002.523

INTEL Ex.1002.524

INTEL Ex.1002.525

INTEL Ex.1002.526

INTEL Ex.1002.527

INTEL Ex.1002.528

INTEL Ex.1002.529

INTEL Ex.1002.530

INTEL Ex.1002.531

INTEL Ex.1002.532

INTEL Ex.1002.533

INTEL Ex.1002.534

INTEL Ex.1002.535

INTEL Ex.1002.536

INTEL Ex.1002.537

INTEL Ex.1002.538

INTEL Ex.1002.539

INTEL Ex.1002.540

INTEL Ex.1002.541

INTEL Ex.1002.542

INTEL Ex.1002.543

INTEL Ex.1002.544

INTEL Ex.1002.545

INTEL Ex.1002.546

INTEL Ex.1002.547

INTEL Ex.1002.548

INTEL Ex.1002.549

INTEL Ex.1002.550

INTEL Ex.1002.551

INTEL Ex.1002.552

INTEL Ex.1002.553

INTEL Ex.1002.554

INTEL Ex.1002.555

INTEL Ex.1002.556

INTEL Ex.1002.557

INTEL Ex.1002.558

INTEL Ex.1002.559

INTEL Ex.1002.560

INTEL Ex.1002.561

INTEL Ex.1002.562

INTEL Ex.1002.563

INTEL Ex.1002.564

INTEL Ex.1002.565

INTEL Ex.1002.566

INTEL Ex.1002.567

INTEL Ex.1002.568

INTEL Ex.1002.569

INTEL Ex.1002.570

INTEL Ex.1002.571

INTEL Ex.1002.572

INTEL Ex.1002.573

INTEL Ex.1002.574

INTEL Ex.1002.575

INTEL Ex.1002.576

INTEL Ex.1002.577

INTEL Ex.1002.578

INTEL Ex.1002.579

INTEL Ex.1002.580

INTEL Ex.1002.581

INTEL Ex.1002.582

INTEL Ex.1002.583

INTEL Ex.1002.584

INTEL Ex.1002.585

INTEL Ex.1002.586

INTEL Ex.1002.587

INTEL Ex.1002.588

INTEL Ex.1002.589

INTEL Ex.1002.590

INTEL Ex.1002.591

INTEL Ex.1002.592

INTEL Ex.1002.593

INTEL Ex.1002.594

INTEL Ex.1002.595

INTEL Ex.1002.596

INTEL Ex.1002.597

INTEL Ex.1002.598

INTEL Ex.1002.599

INTEL Ex.1002.600

INTEL Ex.1002.601

INTEL Ex.1002.602

INTEL Ex.1002.603

INTEL Ex.1002.604

INTEL Ex.1002.605

INTEL Ex.1002.606

INTEL Ex.1002.607

INTEL Ex.1002.608

INTEL Ex.1002.609

INTEL Ex.1002.610

INTEL Ex.1002.611

INTEL Ex.1002.612

INTEL Ex.1002.613

INTEL Ex.1002.614

INTEL Ex.1002.615

INTEL Ex.1002.616

INTEL Ex.1002.617

INTEL Ex.1002.618

INTEL Ex.1002.619

INTEL Ex.1002.620

INTEL Ex.1002.621

INTEL Ex.1002.622

INTEL Ex.1002.623

INTEL Ex.1002.624

INTEL Ex.1002.625

INTEL Ex.1002.626

INTEL Ex.1002.627

INTEL Ex.1002.628

INTEL Ex.1002.629

INTEL Ex.1002.630

INTEL Ex.1002.631

INTEL Ex.1002.632

INTEL Ex.1002.633

INTEL Ex.1002.634

INTEL Ex.1002.635

INTEL Ex.1002.636

