
F/jpw HEWLETT
~~PACKARD

Afterburner: Architectural Support
for High-Performance Protocols

Chris Dalton, Greg Watson, Dave Banks,
Costas Calamvolris, Aled Edwards, John Lumley
Networks & Communications Laboratories
HP Laboratories Bristol
HPL-93-46
July, 1993

network interfaces,
TCP/IP, Gb/s
networks, network
protocols

Internal Accession Date Only

Current workstations are often unable to make link­
level bandwidth available to user applications. We
argue that this poor performance is caused by unneces­
sary copying of data by the various network protocols.
We describe three techniques that can reduce the num­
ber of copies performed, and we explore one - the single
copy technique - in further detail.

We present a novel network-independent card, called
Afterburner, that can support a single-copy stack at
rates up to 1 Gbit/s. We describe the modifications that
were made to the current implementations of protocols
in order to achieve a single copy between application
buffers and the network card. Finally, we give the
measured performance obtained by applications using
TCP/IP and the Afterburner card for large data
transfers.

© Copyright Hewlett-Packard Company 1993

DEFS-ALA000? 188

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Afterburner: Architectural Support for
High-performance Protocols

Many researchers have observed that while the link level rates of some networks are now
in the Gbit/s range, the effective throughput between remote applications is usually an
order of magnitude less. A number of components within computing systems have been
postulated as the cause of this imbalance. Several years ago the transport and network
protocols came under great scrutiny as they were considered to be 'heavyweight' and thus ,
computationally expensive. This line of thought encouraged many researchers to explore
ways to execute protocols in parallel, or to design new 'lightweight' protocols. Other sources
of problems were thought to be poor protocol implementations, high overheads associated
with operating system functions, and a generally poor interface between applications and
the network services.

Clark et al. [2) suggested that even heavyweight protocols, such as the widely used TCP /IP
protocol combination, could be extremely efficient if implemented sensibly. More recently,
.Jacobson has shown that most TCP /IP packets can be processed by fewer than 100 in­
structions [4). It is now widely believed that while a poor implementation will impede
performance, protocols such as TCP are not inherent limiting factors.

One reason many implementations fail to achieve high throughput is that they access user
data several times between the instant the data are generated and the instant the data are
transmitted on the network. In the rest of this paper we analyse this behaviour in a widely­
used implementation of TCP, and consider three proposals for improving its performance.
We describe our experimental implementation of one of these proposals, which uses novel
hardware together with a revised implementation of the protocol. To conclude, we present
measurements of the system's performance.

The bottleneck: copying data

We believe that the speed of protocol implementations in current workstations limited not
by their calculation rate, but by how quickly they can move data. This section first reviews
the design of a popular protocol implementation, then examines its behaviour with reference
to workstation performance.

The conventional implementation

Our example is the HP-UX implementation of TCP /IP, which, like several others, is derived
from the 4.3BSD system [7). This overview focuses on how it treats data, and is rather brief.

Figure I shows the main stages through which the implementation moves data. On the
left are listed the functions which move data being transmitted; on the right are those for
received data. Curved arrows represent copies from one buffer to another; straight arrows

1

DEFS-ALA000? 189

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Afterburner: Architectural Support for High-performance Protocols

show other significant reads and writes.

Transmit Receive

Producer~ ~Consumer

Program buffer

send() () •OCV{)

tcp_output() ~1 __ K_e_rn_e_l_b_uff_e_r----.1 _'._. tcp_;,p"0

dri··· (I I) drim

. Interface .

Figure 1: Data movements in a typical TCP/IP implementation

Transmission Producer is a program which has a connection to another machine via a
stream socket. It has generated a quantity of data in a buffer, and calls the send function to
transmit it.

Send begins by copying the data into a kernel buffer. The amount of data depends on
the program - not on the network packet size - and it may be located anywhere in the
program's data space. The copy allows Producer to reuse its buffer immediately, and gives the
networking code the freedom to arrange the data into packets and manage their transmission
as it sees fit.

T cp_output gathers a quantity of data from the kernel buffer and begins to form it into
a packet. Where possible, this is done using references rather than copying. However,
tcp_output does have to calculate the packet's checksum and include it in a header; this
entails reading the entire packet.

Eventually, the network interface's device driver receives the list of headers and data pointers.
It copies the data to the interface, which transmits it to the network.

Reception The driver copies an incoming packet into a kernel buffer, then starts it moving
through the protocol receive functions. Most of these only look at the headers.

T cp_input, however, reads all the data in the packet to calculate a checksum to compare with
the one in the header. It places valid data in a queue for the appropriate socket, again using
pointers rather than copying.

2

DEFS-ALA000? 190

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

After/Jurner: Arcl1itectural Support for High-performance Protocols

Some time later, the program Consumer calls the function recv, which copies data from the
kernel buffer into a specified area. As with send, Consumer may request any amount of data,
regardless of the network packet size, and direct the data anywhere in its data space.

Where does the time go?

The standard implementation of TCP /IP copies data twice and reads it once in moving it
between the program and the network. Clearly, the rate at which a connection can convey
data is limited by the rates at which the system can perform these basic operations.

As an example, consider a system on which the Producer program is sending a continu­
ous stream of data using TCP. Our measurements show that an HP 9000/730 workstation
can copy data from a buffer in cache to one not in the cache at around 50 Mbyte/s1

, or
19 nanoseconds per byte. The rate for copying data from memo~y to the network interface
is similar. The checksum calculation proceeds at around 127 Mbyte/s, or 7.6 ns per byte.
All of these operations are limited by memory bandwidth, rather than processor speed.

Each byte of an outgoing packet, then, takes at least 45.6 ns to process: the fastest this
implementation of TCP /IP can move data is about 21 Mbyte/s (176 Mbits/s). Overheads
such as protocol handling and operating system functions will ensure it never realizes this
rate.

Several schemes for increasing TCP throughput try to eliminate the checksum calculation.
Jacobson [5] has shown that some processors, including the HP 9000/700, are able to calculate
the checksum while copying the data without reducing the copy rate. Others add support
for the calculation to the interface hardware. Still others propose simply dispensing with the
checksum in certain circumstances.

Our figures, however, suggest that for transmission, the checksum calculation accounts for
only about one-sixth of the total data manipulation time: getting rid of it increases the
upper bound to around 25 Mbyte/s (211 Mbits/s). Each data copy, on the other hand,
takes more than a third of the total. Eliminating one copy would increase the data handling
rate to more than 36 Mbyte/s (301 Mbits/s), and removing both a copy and the checksum
calculation would increase it to 50 Mbyte/s (421 Mbits/s). Clearly, there are considerable
rewards for reducing the number of copies the stack performs.

For a better idea of the effect the changes would have in practice, we need to include the
other overheads incurred in sending packets. In particular, we need to consider the time
taken by each call to send, and the time needed to process each packet in addition to moving
the data. On a 9000/730, these are roughly 40 µs and 110 µs respectively. These times
are large, but include overheads such as context switches, interrupts, and processing TCP
acknowledgements.

1 We use the convention that Kbyte and Mbyte denote 210 and 220 bytes respectively, but Mbit and Gbit denote 106 and
109 bits.

3

DEFS-ALA000? 191

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Afterburner: Architectural Support for High-performance Protocols

Table 1 gives estimates of TCP throughput for three implementations: the conventional
one, one without a separate checksum calculation ("two-copy" for short), and one using
just a single copy operation. The estimates assume a stream transmission using 4 Kbyte
packets, with each call to send also writing 4 Kbytes. Even with such small packets and
large per-packet overheads, the single-copy approach is significantly faster.

Implementation

Conventional
Two-copy
Single-copy

Time per packet (µs)
send{) packet data ~ ta)

40 110 187 337
40 110 156 306
40 110 78 228

Throughput
(Mbyte/s)

11.6
12.8
17.1

Table 1: Estimated TCP transmission rates for three implementations

Analysing the receiver in the same way gives similar results, as shown in table 2. The main
differences from transmission are that copying data from the interface to memory is slower,
at around 32 Mbyte/s, or 30 ns per byte, and that the overheads of handling an incoming
packet and the recv system call are also smaller, approximately 90 µsand 15 µs respectively.

Implementation

Conventional
Two-copy
Single-copy

Time per packet (µs)
recv() packet data Total

15 90 256 361
15 90 193 298
15 90 124 229

Throughput
(Mbyte/s)

10.8
13.1
17.1

Table 2: Estimated TCP reception rates for three implementations

Before we consider the single-copy approach in more detail, we examine the trends in two rel­
evant technologies: memory bandwidth and CPU performance. Memory bandwidth affects
the transmission of every byte and, for large packets, is arguably the limiting factor. CPU
performance determines the time to execute the protocols for each packet, but this effort
is independent of the length of the packet. (A more detailed look at the effect of memory
systems is given by Druschel et al. [3] in this issue.)

Over the past few years main memory (Dynamic RAM) has been getting faster at the rate of
about 7% per annum whereas CPU ratings in terms of instructions per second have increased
by about 50% per annum. We believe that reducing the number of data copies in protocol
implementations will yield significant benefits as long as this trend continues.

4

DEFS-ALA000? 192

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

