
1 of 10

Network-Based Multicomputers: An Emerging Parallel Architecture

H.T. Kung, Robert Sansom, Steven Schlick, Peter Steenkiste, Matthieu Arnould,
Francois J. Bitz, Fred Christianson, Eric C. Cooper, Onat Menzilcioglu, Denise Ombres, Brian Zill

School of Computer Science / Carnegie Mellon University / Pittsburgh, PA 15213

Abstract

Multicomputers built around a general network are now a vi-
able alternative to multicomputersbased on a system-specific
interconnect because of architectural improvements in two
areas. First, the host-network interface overhead can be
minimized by reducing copy operations and host interrupts.
Second, the network can provide high bandwidth and low
latency by using high-speed crossbar switches and efficient
protocol implementations. While still enjoying the flexibility
of general networks, the resulting network-based multicom-
puters achieve high performance for typical multicomputer
applications that use system-specific interconnects. We have
developed a network-based multicomputer called Nectar that
supports these claims.

1 Introduction

Current commercial parallel machines cover a wide spec-
trum of architectures: shared-memory parallel computers
such as the Alliant, Encore, Sequent, and CRAY Y-MP;
and distributed-memory computers including MIMD ma-
chines such as the Transputer [15], iWarp [5, 6], and various
hypercube-like systems [3, 17], and SIMD machines such as
the Connection Machine [26], DAP, and MasPar. Like SIMD
machines, distributed memory MIMD computers, or multi-
computers, are inherently scalable. Multicomputers however
can handle a larger set of applications than SIMD machines
because they allow different programs to run on different
processors. Multicomputers with over 1,000 processors have
been used successfully in some application areas [14].

Multicomputers are traditionally built by using system-
specific interconnections to link a set of dedicated processors.
Examples of these traditional multicomputers are any of the
high-performance hypercube systems such as the iPSC-2 and

This research was sponsored by the Defense Advanced Research
Projects Agency (DOD) under contract number MDA972-90-C-
0035, in part by the National Science Foundation and the Defense
Advanced Research Projects Agency under Cooperative Agree-
ment NCR-8919038 with the Corporation for National Research
Initiatives.

N-Cube machines. Like a proprietary internal bus in a con-
ventional machine, the interconnect is intended to connect
to a small set of specially-designed processor boards, and is
optimized to do so. System-specific interconnects are used
instead of general networks, such Ethernet or FDDI, mainly
for performance reasons. However, since they are system-
specific, these interconnects do not have the flexibility of
general networks: for example, they cannot be connected to
many types of existing hosts.

This paper argues that it is feasible to build high-
performance network-based multicomputers that use general
networks instead of system-specific interconnects. Such a
multicomputer is able to use existing hosts, including work-
stations and special-purpose processors, as its processors.
While enjoying a high degree of flexibility, the underlying
network can have performance comparable to that of a ded-
icated interconnect. This is true both for large messages,
where bandwidth is important, and for small messages, where
software overhead is typically the limiting factor. As a result,
the types of applications that run on existing multicomputers
also run efficiently on network-based multicomputers. At
the same time, network-based multicomputers are able to
take advantage of rapid advances in network and processor
technology.

The Nectar project is one of the first attempts to build
a high-performance network-based multicomputer. Nectar
is composed of a high-bandwidth crosspoint network and
dedicated network coprocessors. A prototype system using
100 Mb/s (megabits per second) links has been operational
since early 1989. The system has currently 26 hosts, includ-
ing a connection to a CRAY Y-MP via a 26 kilometer single-
mode fiber link. The Nectar prototype has been used as a
vehicle to study architectural issues in network-based multi-
computers and high-speed networks. This paper is based on
insights and experiences gained from the Nectar prototype.

To further pursue our ideas, we are collaborating with
an industrial partner (Network Systems Corporation) to de-
velop a gigabit Nectar system capable of sustaining gigabit
per second end-to-end communication. This new system will
support the 800 Mb/s HIPPI (High-Performance Parallel In-
terface) ANSI standard, and will also have a SONET/ATM

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 of 10

interface supported by phone carriers. The gigabit Nectar
system is one of the five testbeds in a US national effort to
develop gigabit per second wide-area networks [24].

This paper describes architectural features that are desir-
able for general-purpose networks if they are to be used
as interconnects for high-performance multicomputers. In
Section 2 we summarize the advantages and interconnec-
tion requirements of network-based multicomputers and in
Section 3 we give an overview of the prototype Nectar sys-
tem. We then look at design tradeoffs of critical network
components: the host-network interface (Section 4) and the
network interconnect (Section 5). We summarize our results
in Section 6.

2 Network-Based Multicomputers

We first summarize the advantages of network-based multi-
computers and then describe the architectural requirements
for their interconnect.

2.1 Network-Based Multicomputer Advantages

Network-based multicomputers offer substantial advantages
over traditional multicomputers that use dedicated intercon-
nects:

1. Supports heterogeneous architectures. A network-
based multicomputer can incorporate nodes specially
selected to suit a given application. Instead of having
computations with different characteristics use a sin-
gle architecture as in conventional computer systems,
network-based multicomputers support a new compu-
tation paradigm that matches architectures to different
computational needs.

2. Use of existing architectures. By incorporating existing
systems as hosts, a network-based multicomputer can
take advantage of rapid improvements of commercially
available computers. In addition, it can reuse existing
systems software and applications.

In fact, a network-based multicomputer provides a
graceful environment for moving applications to new
architectures such as special-purpose, parallel systems.
In the beginning, an application can execute part of the
computation on these new systems while using more
conventional systems to run the rest of the application.
The application can increase its use of the new systems
as more software and application code for the new sys-
tems is developed.

3. Availability of large data memory. In a network-based
multicomputer, applications can use the aggregate of
the memory available in all the nodes. Since each node
can have a sizable memory, the amount of memory is
potentially huge, and it becomes possible to solve very

large problems using relatively modest systems such as
workstations.

4. High-speed I/O. The underlying high-speed network is
inherently suited to support high-speed I/O to devices
such as displays, sensors, file systems, mass stores, and
interfaces to other networks. For example, via such
a network, disk arrays [18, 21] can deliver very high
data transfer rates to applications. Thus, because of the
combination of their I/O capability and their ability to
incorporate powerful computing nodes, network-based
multicomputers represent a balanced architectural ap-
proach capable of speeding up both computation and
I/O.

2.2 Multicomputer Interconnect Requirements

The requirements for a multicomputer network are a com-
bination of the requirements of general-purpose networks
and dedicated interconnects. In the first place they must
have the high performance of the dedicated interconnects
found in traditional multicomputers so that they can sup-
port multicomputer applications efficiently, but at the same
time, since they have to operate in the same environment
as a general-purpose network, multicomputer networks must
have the same flexibility and reliability as general-purpose
networks.

Performance has both throughput and latency require-
ments: for large messages, the network bandwidth deter-
mines how quickly a message can be delivered; however,
for small messages, having a low overhead on the sender
and receiver side is more important. In the case of network-
based multicomputers, the network efficiency must increase
in proportion to the computation rate of the hosts on the
network. For today’s traditional multicomputers, the band-
width of each interconnection link can be as high as several
100 Mb/s [5] and the communication latency between pro-
cesses on two processors can be as low as 50 to 500 mi-
croseconds [4]. These numbers set performance goals for
network-based multicomputers, and they have an impact on
both the design of the network and the host-networkinterface.

In terms of flexibility, the network must be general-purpose
enough to allow the attachment of many types of computers.
Moreover, the nodes of network-based multicomputers are
typically distributed over a building or campus so regular
interconnect architectures such as a torus or hypercube are
not practical. Although regular interconnects are attractive
when mapping regular algorithms on homogeneous multi-
computers, they are not flexible enough to allow the matching
of network bandwidth to the requirements of heterogeneous
hosts, or to handle the adding and removing of nodes while
the network is operating.

As in any general-purpose LAN, the underlying network
of a network-based multicomputer needs to cope with data er-
rors and network failures, since the same physical media are

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 of 10

CABHOST

CAB

CAB

HOST

CAB

HOST

CABHOST

CAB HOST

HUBHUB

HUB

Nectar-Net

HOST

Fiber Pair

Figure 1: Nectar system

used in both cases. This is in contrast with traditional mul-
ticomputers, which typically assume that the interconnect is
reliable. One of the challenges of building multicomputers
around general networks is to make sure that the techniques
employed to insure reliability do not hamper the system per-
formance.

In the rest of the paper we describe methods of achieving
these requirements. We start by describing the Nectar system,
our first system experiment in this area.

3 Nectar System

To demonstrate the feasibility of network-based multicom-
puters, we started developing the Nectar system [2] in 1987.
Nectar is a high-bandwidth, low-latency computer network
for connecting high-performance hosts. Hosts are attached
using Communication Acceleration Boards (CABs). The
Nectar network consists of fiber-optic links and crossbar
switches (HUBs). The HUBs are controlled by the CABs
using a command set that supports circuit switching, packet
switching, multi-hop routing, and multicast communication.
Figure 1 gives an overview of the Nectar system.

3.1 Nectar Prototype

We have built a 26-host Nectar prototype system to support
early system software and applications development. The
prototype uses 100 Mb/s fiber links and 16� 16 HUBs. The
CAB is implemented as a separate board on the host VMEbus.

The CAB is connected to the network via a fiber port that
supports data transmission rates up to 100 Mb/s in each direc-
tion. The fiber port contains the optoelectronics interfaces
to the two fiber lines and FIFOs to buffer data transferred
over the fibers. Each CAB has 1 megabyte of data mem-
ory, 512 kilobytes of program memory, and a 16.5 MHz
SPARC processor. The CAB also has a DMA controller to

provide high speed transfers between the fiber port and the
data memory, and between the data memory and the VMEbus
interface.

3.2 Nectar Systems Software

The Nectar system software consists of a CAB runtime sys-
tem and libraries on the host that exchange messages with the
CAB on behalf of the application. The CAB runtime system
manages hardware devices such as timers and DMA con-
trollers, supports multiprogramming (the threads package),
and manages data buffers (the mailbox module). The threads
package, derived from the Mach C Threads package [9], sup-
ports lightweight threads in a single address space. Threads
provide a low cost, flexible method of sharing the CAB CPU
between concurrent activities, which is important for commu-
nication protocol implementation. Mailboxes provide flex-
ible and efficient management of buffer space in the CAB
memory and form the endpoints of communication between
processes on hosts or CABs.

The streamlined structure of the CAB software has made
it possible for Nectar to achieve low communication latency.
For the existing Nectar prototype, the latency to establish a
connection through a single HUB is under 1 microsecond.
The latency is under 100 microseconds for a message sent
between processes on two CABs, and about 200 microsec-
onds between processes residing in two workstation hosts.
The above figures do not include the fiber transmission la-
tency of approximately 5 microseconds per kilometer. These
performance results are similar to those of traditional multi-
computers.

The CAB runtime system currently supports several
transport protocols with different reliability/overhead trade-
offs [10]. They include the standard TCP/IP protocol suite
besides a number of Nectar-specific protocols. For TCP,
when TCP checksums are not computed, the throughput
between two CABs is over 80 Mb/s for 8 kilobyte pack-
ets. When checksums are computed, TCP throughput drops
to about 30 Mb/s. This indicates that hardware support
for checksum calculation can significantly improve perfor-
mance, at least for this type of system.

3.3 Nectar Applications

The network-based multicomputer architecture has made it
possible to parallelize a new class of large applications [19].
These applications were previously either too large or too
complex to be implemented on parallel systems. We have
successfully ported several such applications onto the Nectar
prototype system. Examples are COSMOS [7], a switch-
level circuit simulator; NOODLES [8], a solid-modeling
package; and a simulation of air pollution in the Los An-
geles area.

Because Nectar uses existing general-purpose computers
as hosts, applications can make direct use of code that has

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 of 10

previously been developed for these computers, and as a
result, the Nectar implementation of the above applications
took relatively little effort in spite of their relatively high
complexity. In the distributed versions of both COSMOS
and Noodles, for example, each node executes a sequential
version of the program that was modified to do only part of
the computation.

The COSMOS simulator was ported to Nectar by partition-
ing the circuit across the Nectar nodes. This makes it possible
to simulate very large circuits, that cannot be handled on a
single node, and it illustrates the benefit of being able to use
the aggregate memory of a number of systems for a single ap-
plication. Other applications, such as a chemical flow sheet
application, were able to use a group of workstations plus a
Warp systolic array.

In addition to the use of existing code, the implemen-
tation of applications on Nectar has emphasized the use of
general-purpose supports for large-grain parallelization. This
development approach complements existing fine-grain ef-
forts in parallelizing inner-most loops of computations. The
combined capability should significantly increase the appli-
cability of parallel processing.

4 Host-Network Interface

The critical factor in parallelizing applications on a multi-
computer is how quickly tasks on different hosts can commu-
nicate. The latency is often determined by software overhead
on the sending and receiving hosts, so reducing this overhead
is a primary goal in the design of a host-network interface. In
Nectar we decreased message latency by reducing the number
of data copies for each message (each copy adds significant
latency because main memory bandwidth is limited on most
hosts), and by offloading protocol processing to an outboard
processor so that the number the number of host interrupts
is reduced (each host interrupt adds 10-20 microseconds to
latency [1]).

We first describe three design alternatives for the host-
network interface, and examine how different software im-
plementations can utilize these designs. We then discuss
specific hardware and software issues for building interfaces
for workstations, based on our experience with Nectar.

4.1 Host-Network Interface Design

The three components that play a role in the host-network
interface are the host CPU, main memory, and network in-
terface. Figure 2 shows three ways in which data can flow
between these components when sending messages. The
grey arrows indicate the building of the message by the ap-
plication; the black arrows are copy operations performed by
the system.

The architecture depicted in Figure 2(a) is the network
interface found in many computer systems, including most
workstations. When a system call is made to write data to

the network, the host operating system copies the data from
user space to system buffers. Packets are sent to the network
by providing a list of descriptors to the network controller,
which uses DMA to transfer the data to the network. The
main disadvantage of this design is that three bus transfers
are required for every word sent and received. However, this
is not really a problem if the speed of the network medium is
sufficiently slow compared to the memory bandwidth, as is
the case for current workstations connected to an Ethernet.

The communication activity relative to the processing ac-
tivity is much higher on multicomputers than on traditional
general-purpose networks, and as a result, the network speed
of multicomputers has to be a significant fraction of the pro-
cessor and memory bandwidth of the computer to avoid that
the network becomes a bottleneck. Existing workstations
connected to a high-speed network (100 Mb/s or higher band-
width) are an example. In these systems, the memory bus
will be a bottleneck if the architecture of Figure 2(a) is used
for the network interface. The performance can be improved
by reducing the number of data copies done over the mem-
ory bus by using external memory in the network interface.
Figures 2(b) and 2(c) show two alternative ways of utilizing
external memory.

Figure 2(b) depicts an alternative in which the system
buffers have been moved from host memory to external mem-
ory on the network interface. When data is sent or received,
the data is copied between the user buffer in main memory
and the system buffers in the network interface. The copy-
ing requires two bus transfers per word if it is done by the
CPU, and one bus transfer per word if it is done by a DMA
controller.

The approach used in Nectar is shown in Figure 2(c). With
this approach the user buffers are located on the network
interface (the CAB), and the data does not have to be copied:
data packets are formed and consumed in place by the user
process. As a result, communication latency is minimized
and main memory bandwidth is conserved.

4.2 Network Interface Software

The design alternatives shown in Figure 2 are linked to the
ways in which applications send and receive messages. With
the Unix socket interface [20] users specify messages with a
pointer-length pair. The semantics of the Unix socket read
call is that the call returns when the message is available in
the specified area. The socket write call returns when the
message can be overwritten. The semantics of both calls
requires that the data is logically copied as part of the call.
This requirement is naturally met by the standard host inter-
face implementation of Figure 2(a), although the design of
Figure 2(b) can also be used in the socket model.

To support the host interface of Figure 2(c), the Nectar
interface implements “buffered” send and receive primi-
tives [23] using the mailboxes mentioned in Section 3.2.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5 of 10

CPU

MAIN MEMORY

sys

NETWORK

CPU

MAIN MEMORY NETWORK

CPU

MAIN MEMORY NETWORK

user user sys user

(b) (c)(a)

Figure 2: Design alternatives for the host-network interface

With a buffered send, the application builds its message in a
message buffer that was previously obtained from the system.
As part of the send operation, the application gives up the
right to access the message buffer, so the system can free it
automatically when the data has been sent and appropriately
acknowledged. Similarly for a receive, the system returns a
pointer to a message buffer to the user process. The applica-
tion has to return the message buffer to the system after the
message has been consumed.

The advantage of buffered sends and receives over socket-
like primitives is that data no longer has to be copied as part
of the send and receive calls. This gives the implementation
more freedom in implementing the communication interface,
and can result in a lower overhead to the application and lower
message latency.

Our experience with the Nectar system indicates that
buffered primitives are faster for large messages, but that
the immediate (socket-like) primitives are faster for short
messages. The reason is that for immediate sends and re-
ceives of short messages, the data can be included with the
request that is exchanged between the host and the CAB.
For short messages, the extra complexity of the buffer man-
agement for buffered primitives is more expensive than the
cost of simply copying the data. In the Nectar prototype,
the buffered primitives are more efficient for messages larger
than about 50 words.

4.3 Design Choices

We review the major design choices that were made for the
prototype Nectar system and draw some general conclusions
based on our experience with the prototype.

4.3.1 Shared Memory

One problem with the shared memory interface in the Nec-
tar prototype is the relatively high latency of CAB memory

accesses from the host. The access time to CAB memory
is approximately 2 to 3 times greater than to main memory,
depending on the particular host. A large part of this la-
tency is due to the asynchronous VME bus that requires both
the host and CAB to synchronize on every transfer. More
recently-developed, high-speed synchronous busses [12, 25]
couple the host more tightly to the I/O bus, thus reducing the
latency of accesses across the I/O bus.

Maintaining consistency between the host cache and the
CAB memory is another problem that must be addressed.
The current solution is to mark all buffers as uncacheable,
which increases the latency for accesses to messages that
are handled using buffered sends and receives. If the CAB
memory were cached, it would be necessary to invalidate
cache lines when new data arrives on the CAB.

Immediate sends and receives are implemented by having
the system software copy the data between the user buffer in
main memory and the CAB. Alternatively, the network inter-
face can implement block transfers between user buffers in
main memory and the network interface using DMA. Com-
pared with copying using the CPU, using DMA incurs an
overhead to pin the affected user virtual memory pages and
to invalidate cache lines. Whether CPU copies or DMA
transfers are more efficient depends on the relative costs for
the particular system. For large transfers these costs can often
be amortized, while for small transfers it is typically better
to have the CPU read and write the user buffers directly,
avoiding the overheads of DMA.

4.3.2 Checksum Hardware

Most software implementations calculate the transport-level
checksum in a separate pass over the data. As a result,
one memory read is added for every word sent or received.
This extra memory access can be avoided by calculating the
checksum while the data is copied, either using the CPU or

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

