
Network Working Group Joel Lilienkamp (SDC)
Request for Comments: 929 Richard Mandell (SDC)

Michael Padlipsky (Mitre Corp.)
December 1984

PROPOSED HOST-FRONT END PROTOCOL

Status Of This Memo

 The reader should be aware of several things in regard to what the
 present document is up to. First and foremost, IT IS A PROPOSAL FOR
 A STANDARD, NOT A STANDARD ITSELF. Next, it assumes that the
 separate document, RFC 928, which is an introduction to the present
 document, has been read before it is. Next, it should be understood
 that "final cut" over this version of the document has been exercised
 by the author of RFC 928, not by the primary author of the present
 document, so any readers bothered by style considerations should feel
 free to blame the former, who’s used to it, rather than the latter,
 who may well be guiltless. (Editing at a distance finally become too
 hard to manage, so if I’m typing it myself I’m going to fiddle with
 it myself too, including, but not limited to, sticking my own section
 on the Conceptual Model in before Joel’s words start, rather than
 leaving it in the Introduction. MAP)

 Finally, it should be noted that this is not a finished document.
 That is, the intent is eventually to supply appendices for all of the
 protocol offloadings, describing their uses of protocol idiosyncratic
 parameters and even their interpretations of the standard per-command
 parameters, but in order to get what we’ve got into circulation we
 haven’t waited until all such appendices have been written up. (We
 do have notes on how to handle FTP, e.g., and UDP will be pretty
 straightforward, but getting them ready would have delayed things
 into still another calendar year, which would have been very annoying
 ... not to say embarrassing.) For that matter, it’s not even a
 finished document with respect to what is here. Not only is it our
 stated intention to revise the protocol based upon implementation
 experience gained from volunteer test implementations, but it’s also
 the case that it hasn’t proven feasible to iron out all known
 wrinkles in what is being presented. For example, the response codes
 almost certainly need clarification and expansion, and at least one
 of us doesn’t think mandatory initial parameters need control flags.
 However, to try too hard for polish would be to stay in subcommittee
 for the better part of forever, so what you see is what we’ve got,
 but certainly isn’t meant to be what you or we are stuck with.

 This RFC suggests a proposed protocol for the ARPA-Internet
 community, and requests discussion and suggestions for improvements.
 Distribution of this memo is unlimited.

Lilienkamp & Mandell & Padlipsky [Page 1]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 929 December 1984
Proposed Host-Front End Protocol

Conceptual Model

 There are two fundamental motivations for doing outboard processing.
 One is to conserve the Hosts’ resources (CPU cycles and memory) in a
 resource sharing intercomputer network, by offloading as much of the
 required networking software from the Hosts to Outboard Processing
 Environments (or "Network Front-Ends") as possible. The other is to
 facilitate procurement of implementations of the various
 intercomputer networking protocols for the several types of Host in
 play in a typical heterogeneous intercomputer network, by employing
 common implementations in the OPE. A third motivation, of basing a
 network security approach on trusted mandatory OPEs, will not be
 dealt with here, but is at least worthy of mention.

 Neither motivation should be allowed to detract from the underlying,
 assumed desire to perform true intercomputer networking, however.
 Therefore, it is further assumed that OPEs will be attached to Hosts
 via a flexible attachment strategy, as described in [1]. That is, at
 the software level an explicit Host-Front End Protocol (H-FP) will be
 employed between Hosts and OPEs, rather than having OPEs emulate
 devices or device controllers already "known" to Host operating
 systems (in order to avoid introducing new code into the Host).

 For reasons discussed in the Introduction, an H-FP resolves into
 three layers. The Link layer enables the exchange of bits between
 Host and OPE. The Channel layer enables the bit streams to be
 demultiplexed and flow controlled (both the Channel and Link layers
 may use preexisting per-Host mechanizations, it should be recalled).
 The Command (or "Service Access") layer is our primary concern at
 present. It serves as the distributed processing mechanism which
 allows processes on Hosts to manipulate protocol interpreters (PIs)
 in OPEs on their behalf; for convenience, it will be referred to as
 "the H-FP" here. (It should be noted that the Link and Channel
 layers may be viewed as roughly equivalent to the inboard processing
 investment for a Host-comm subnet processor PI and device driver, so
 in practical terms the savings of resources achieved by outboard
 processing come from making the H-FP "smaller" than the inboard
 implementations of the protocols it allows to be offloaded.)

 The crucial property of the H-FP conceptually is that it stands as
 the interface between a (Host) process and a PI (which is actually
 outboard). Usually, the model is that of a closed subroutine
 interface, although in some cases an interprocess communication
 mechanism model must be appealed to. That is, the interactions
 between cooperating H-FP PIs in some sense mimic subroutine or IPC
 calls, from the perspective of Host processes calling upon their own

H-FP PIs, which in turn are of course interfacing via just such

Lilienkamp & Mandell & Padlipsky [Page 2]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 929 December 1984
Proposed Host-Front End Protocol

 mechanisms themselves. Another way of putting it is that "if the
 protocols were inboard," the processes invoking H-FP wouldn’t know
 the difference. H-FP, then, may be viewed as a roundabout way of
 letting Host processes "get at" various PIs.

 Naturally, the mechanization of the desired concept cannot be
 particularly literal. After all, the Hosts and the OPEs are
 different processors, so we’re not envisioning a passing through of
 parameters in an exact fashion. However, in broad terms the model is
 just that of a somewhat funny interface between a process and a PI.
 (This should not be construed as ruling out the occurrence of events
 which prompt the OPE to initiate an exchange of commands with the
 Host, though; see the Introduction for more on the topic of
 "Symmetric Begins.")

Interaction Discipline

 The interaction between the Host and the OPE must be capable of
 providing a suitable interface between processes (or protocol
 interpreters) in the Host and the off-loaded protocol interpreters in
 the OPE. This interaction must not, however, burden the Host more
 heavily than would have resulted from supporting the protocols
 inboard, lest the advantage of using an OPE be overridden.

 Channel Level Interaction

 As stated elsewhere, the Channel level protocol (implicitly in
 conjunction with the Link level) provides two major functions. These
 are demultiplexing the traffic from the Link level into distinct data
 streams, and providing flow control between the Host and the OPE on a
 per stream basis. These hold even if the Host-OPE attachment is DMA.

 The data streams between the Host and the OPE are bidirectional. In
 this document, the basic unit of data transferred by the Channel
 level is referred to as a "chunk". The primary motivation for this
 terminology is that the H-FP permits the Channel level to be one of
 several possible protocols, each with its own terminology. For
 example, a chunk on an X.25 Channel would be a packet, while a chunk
 on the DTI H-FP channel would be a message. While the Command level
 is, in a sense, "more efficient" when the chunk size is permitted to
 be large, the flexibility permitted in the choice of protocols at the
 Channel level precludes any assumptions about the chunk size.

 Each data stream is fully asynchronous. A Channel protocol user can
 send data at any time, once the channel has been properly opened.
 (The Command level’s logic may render some actions meaningless,
 however.) The data transfer service provided by the Channel protocol

Lilienkamp & Mandell & Padlipsky [Page 3]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 929 December 1984
Proposed Host-Front End Protocol

 is reliable; this entails delivery in the correct order, without
 duplication, and checked for bit errors. All retransmission, error
 checking, and duplicate detection is provided by this protocol in a
 way that is transparent to the user. (If the attachment is DMA,
 stream identification and chunk length must still be provided for.)

 The flow control at the Channel level is provided to prevent the OPE
 and the Host from overloading each other’s resources by excessive
 transmissions. In general, this flow control should not directly
 affect the outboard protocol interpreters’ operation. On the other
 had, this flow control has the same effect as explicit interface
 events that provide flow control between the user and the protocol
 interpreter (e.g., the Allocate event of the interface specification
 for TCP found in MIL-STD 1778). Hence, such events do not need to be
 communicated explicitly at the Command level. (If the attachment is
 DMA, flow control must still be provided for.)

 Should Hosts require an OPE to be attached via a Link Level that
 furnishes physical demultiplexing (e.g., a group of RS232 ports), any
 attempt to avoid furnishing reliability and explicit flow control, is
 done at their peril; we have not chosen to assist such an
 enterprise, but neither have we precluded it. (It would certainly
 violate the spirit of the thing, however.)

 Command Level Interaction

 The approach chosen for this H-FP is to base the interaction on a
 small set of commands, separately applicable to a given Channel Level
 channel. The commands are simple, but sufficiently flexible to permit
 the off-loading of the interpreters of the large number of protocols
 at various levels in the hierarchy. This flexibility is made
 possible in part by the similar nature of the interfaces to most
 protocols, combined with the provision of "protocol idiosyncratic
 parameters". These parameters are defined for each offloaded protocol
 interpreter in the OPE. The use of such parameters does not
 complicate the basic design of the OPE, since it must be customized
 for each off-loaded protocol anyway, and all that is required of the
 OPE for those parameters is to pass them to the off-loaded protocol
 interpreter. Hence, an interface tailored to a particular protocol
 can be created in a straightforward and cost-effective way.

 The command dialog is more or less asynchronous. Commands can be
 issued at any particular time (except when there is a pending
 command, which will be discussed below), and there is no need for
 dummy traffic on a channel when no commands are issued.

 Associated with each command is a response. The purpose of this

Lilienkamp & Mandell & Padlipsky [Page 4]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RFC 929 December 1984
Proposed Host-Front End Protocol

 response is to indicate, at some level that depends in part on the
 particular protocol interpreter that is offloaded to the OPE, whether
 the command was successfully executed, and if unsuccessful, the
 reason. Often, generating the response involves interaction with the
 protocol interpreter before a response can be generated.

 When a command is issued, the issuer must wait for a response before
 another command is issued. The nature of the communication between
 the Host and the OPE is thus a lock step command/response dialog.
 There are two major exceptions to this principle, however. One
 exception is the abrupt form of the End command, which can be issued
 at any time to cancel any previously issued commands, and indicate
 that services are no longer desired. The other exception is the
 Signal command. Since a Signal is out-of-band and usually of high
 importance, forcing it to wait on a response would be undesirable.
 Hence, a Signal command can be issued while commands (other than
 Signal) are pending. However, a Signal command should not be issued
 before a successful response to the Begin command has been received.
 Since it is possible for more than one command of different types to
 be pending at one time, a mechanism to distinguish responses is
 needed. Since there are never two commands of the same type pending,
 including the command name in the response is sufficient to make this
 distinction.

 A special case command is the Transmit command. Details of the
 Transmit command are provided in the next section. Essentially, the
 Transmit command is used to invoke the data transfer services of the
 off-loaded protocol (when issued by the Host) or to indicate the
 arrival of new data from the network (when issued by the OPE). The
 nature of specific protocol interfaces for these events varies widely
 between protocols. Some may block until the data is accepted by the
 remote counterpart (or "peer") protocol interpreter, while others may
 not. Hence, there is a special parameter which indicates the nature
 of the Transmit command interface. It can either require that the
 response should be generated immediately after determining the
 Transmit command is complete and formed properly, or can indicate
 that the response should not be generated until the appropriate
 interface event is given by the remote protocol interpreter. The
 default action for all Transmit commands can be initialized using the
 Begin command and changed using the Condition command. Also, the
 default action can be temporarily overridden by specifying a
 parameter with the Transmit command. The net result of this mechanism
 is to allow the Host to determine within reason just how lock-stepped
 transmissions are to be. (It is assumed that the usual case will be
 to transfer the burden of buffering to the OPE by taking immediate
 responses, provided that doing so "makes sense" with the particular
 offloaded protocol in play.)

Lilienkamp & Mandell & Padlipsky [Page 5]

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

