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— Elizabeth Zinkann, Sys Admin
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Preface

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than
other texts on TCP/IP. Instead of just describing the protocols and what they do, we’ll
use a popular diagnostic tool to watch the protocols in action. Seeing how the protocols
operate in varying circumstances provides a greater understanding of how they work
and why certain design decisions were made. It also provides a look into the imple-
mentation of the protocols, without having to wade through thousands of lines of
source code.

When networking protocols were being developed in the 1960s through the 1980s,
expensive, dedicated hardware was required to see the packets going “across the wire.”
Extreme familiarity with the protocols was also required to comprehend the packets dis-
played by the hardware. Functionality of the hardware analyzers was limited to that
built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous workstation
to monitor a local area network [Mogul 1990]. Just attach a workstation to your net-
work, run some publicly available software (described in Appendix A), and watch what
goes by on the wire. While many people consider this a tool to be used for diagnosing
network problems, it is also a powerful tool for understanding how the network proto-
cols operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP protocols
operate: programmers writing network applications, system administrators responsible
for maintaining computer systems and networks utilizing TCP/IP, and users who deal
with TCP/IP applications on a daily basis.
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Organization of the Book

The following figure shows the various protocols and applications that are covered.
The italic number by each box indicates the chapter in which that protocol or applica-
tion is described.

Chap.7 26 27 28 30 8 14 15 16 25 29
. Telnet & Trace- NFS
Ping || Rlogin || TP SMTPW route I DNS ) TFTP ;BOOTP SNMP | |—pe=

17,18,19,20
21,22,23,24

11,12

TCP ubp

6 iemp |- 3210 p iGmp |13

4 Arp 2| Data RARP |”
Link

!

media

(Numerous fine points are missing from this figure that will be discussed in the appro-
priate chapter. For example, both the DNS and RPC use TCP, which we don't show.)

We take a bottom-up approach to the TCP/IP protocol suite. After providing a
basic introduction to TCP/IP in Chapter 1, we will start at the link layer in Chapter 2
and work our way up the protocol stack. This provides the required background for
later chapters for readers who aren’t familiar with TCP/IP or networking in general.

This book also uses a functional approach instead of following a strict bottom-to-
top order. For example, Chapter 3 describes the IP layer and the IP header. But there
are numerous fields in the IP header that are best described in the context of an applica-
tion that uses or is affected by a particular field. Fragmentation, for example, is best
understood in terms of UDP (Chapter 11), the protocol often affected by it. The time-to-
live field is fully described when we look at the Traceroute program in Chapter 8,
because this field is the basis for the operation of the program. Similarly, many features
of ICMP are described in the later chapters, in terms of how a particular ICMP message
is used by a protocol or an application.

We also don’t want to save all the good stuff until the end, so we describe TCP/IP
applications as soon as we have the foundation to understand them. Ping and Trace-
route are described after IP and ICMP have been discussed. The applications built on
UDP (multicasting, the DNS, TFTP, and BOOTP) are described after UDP has been
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examined. The TCP applications, however, along with network management, must be
saved until the end, after we’ve thoroughly described TCP. This text focuses on how
these applications use the TCP/IP protocols. We do not provide all the details on run-
ning these applications.

Readers

This book is self-contained and assumes no specific knowledge of networking or
TCP/IP. Numerous references are provided for readers interested in additional details
on specific topics.

This book can be used in many ways. It can be used as a self-study reference and
covered from start to finish by someone interested in all the details on the TCP/IP
protocol suite. Readers with some TCP/IP background might want to skip ahead and
start with Chapter 7, and then focus on the specific chapters in which they’re interested.
Exercises are provided at the end of the chapters, and most solutions are in Appen-
dix D. This is to maximize the usefulness of the text as a self-study reference.

When used as part of a one- or two-semester course in computer networking, the
focus should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24),
along with some of the application chapters.

Many forward and backward references are provided throughout the text, along
with a thorough index, to allow individual chapters to be studied by themselves. A list
of all the acronyms used throughout the text, along with the compound term for the
acronym, appears on the inside back covers.

If you have access to a network you are encouraged to obtain the software used in
this book (Appendix F) and experiment on your own. Hands-on experimentation with
the protocols will provide the greatest knowledge (and make it more fun).

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output
saved in a file for inclusion in the text. Figure 1.11 (p. 18) shows a diagram of the differ-
ent hosts, routers, and networks that are used. (This figure is also duplicated on the
inside front cover for easy reference while reading the book.) This collection of net-
works is simple enough that the topology doesn’t confuse the examples, and with four
systems acting as routers, we can see the error messages generated by routers.

Most of the systems have a name that indicates the type of software being used:
bsdi, svr4, sun, solaris, aix, slip, and so on. In this way we can identify the type
of software that we're dealing with by looking at the system name in the printed output.

A wide range of different operating systems and TCP/IP implementations are used:

* BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named
bsdi and slip. This system is derived from the BSD Networking Software,
Release 2.0. (We show the lineage of the various BSD releases in Figure 1.10 on

p-17.)
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¢ Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host
named svr4. This is vanilla SVR4 and contains the standard implementation of
TCP/IP from Lachman Associates used with most versions of SVR4.

¢ SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS 4.1.x
systems are probably the most widely used TCP/IP implementations. The
TCP/IP code is derived from 4.2BSD and 4.3BSD.

¢ Solaris 2.2 from Sun Microsystems, on the host named solaris. The Solaris 2.x
systems have a different implementation of TCP/IP from the earlier SunOS 4.1.x
systems, and from SVR4. (This operating system is really SunOS 5.2, but is com-
monly called Solaris 2.2.)

e AIX 3.22 from IBM on the host named aix. The TCP/IP implementation is
based on the 4.3BSD Reno release.

* 4.4BSD from the Computer Systems Research Group at the University of Califor-
nia at Berkeley, on the host vangogh.cs.berkeley.edu. This system has the
latest release of TCP/IP from Berkeley. (This system isn’t shown in the figure on
the inside front cover, but is reachable across the Internet.)

Although these are all Unix systems, TCP/IP is operating system independent, and is
available on almost every popular non-Unix system. Most of this text also applies to
these non-Unix implementations, although some programs (such as Traceroute) may
not be provided on all systems.

Typographical Conventions

When we display interactive input and output we'll show our typed input in a bold
font, and the computer output 1ike this. Comments are added in italics.

bsdi % telnet svr4 discard connect to the discard server
Trying 140.252.13.34... this line and next output by Telnet client
Connected to svréd.

Also, we always include the name of the system as part of the shell prompt (bsdi in
this example) to show on which host the command was run.

Throughout the text we’ll use indented, parenthetical notes such as this to describe historical
points or implementation details.

We sometimes refer to the complete description of a command in the Unix manual
as in ifconfig(8). This notation, the name of the command followed by a number in
parentheses, is the normal way of referring to Unix commands. The number in paren-
theses is the section number in the Unix manual of the “manual page” for the com-
mand, where additional information can be located. Unfortunately not all Unix systems
organize their manuals the same, with regard to the section numbers used for various
groupings of commands. We'll use the BSD-style section numbers (which is the same
for BSD-derived systems such as SunOS 4.1.3), but your manuals may be organized
differently.
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141 Introduction

The TCP/IP protocol suite allows computers of all sizes, from many different computer
vendors, running totally different operating systems, to communicate with each other.
It is quite amazing because its use has far exceeded its original estimates. What started
in the late 1960s as a government-financed research project into packet switching net-
works has, in the 1990s, turned into the most widely used form of networking between
computers. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network
(WAN) of more than one million computers that literally spans the globe.

This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-
quate background for the remaining chapters. For a historical perspective on the early
development of TCP/IP see [Lynch 1993].

1.2 Layering

Networking protocols are normally developed in layers, with each layer responsible for a
different facet of the communications. A protocol suite, such as TCP/IP, is the combina-
tion of different protocols at various layers. TCP/IP is normally considered to be a
4-layer system, as shown in Figure 1.1.
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Application Telnet, FTP, e-mail, etc.

Transport TCP, UDP
Network IP, ICMP, IGMP
Link device driver and interface card

Figure 1.1 The four layers of the TCP/IP protocol suite.

Each layer has a different responsibility.

1. The link layer, sometimes called the data-link layer or network interface layer, nor-
mally includes the device driver in the operating system and the corresponding
network interface card in the computer. Together they handle all the hardware
details of physically interfacing with the cable (or whatever type of media is
being used).

2. The network layer (sometimes called the internet layer) handles the movement of
packets around the network. Routing of packets, for example, takes place here.
IP (Internet Protocol), ICMP (Internet Control Message Protocol), and IGMP
(Internet Group Management Protocol) provide the network layer in the
TCP/IP protocol suite.

3. The transport layer provides a flow of data between two hosts, for the applica-
tion layer above. In the TCP/IP protocol suite there are two vastly different
transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol).

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received pack-
ets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Because this reliable flow of data is provided by the trans-
port layer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application
layer. It just sends packets of data called datagrams from one host to the other,
but there is no guarantee that the datagrams reach the other end. Any desired
reliability must be added by the application layer.

There is a use for each type of transport protocol, which we’ll see when we look
at the different applications that use TCP and UDP.
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4. The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation pro-
vides:

* Telnet for remote login,
* FTP, the File Transfer Protocol,

e SMTP, the Simple Mail Transfer protocol, for electronic mail,
¢ SNMP, the Simple Network Management Protocol,

and many more, some of which we cover in later chapters.

If we have two hosts on a local area network (LAN) such as an Ethernet, both run-
ning FTP, Figure 1.2 shows the protocols involved.

handles
. FTP FTP protocol FTP user application
application lient [+~~~ ""-"-—---- ™ cerver processes details
x — T
/ Y
TCP protocol
transport TCP o e i ~- TCP kernel handles
\ ] communication
details

network P - — — — — T . P

y

Ethernet Ethernet protocol Ethernet
link . - — — —— - L . ;
driver driver

Ethernet

Figure 1.2 Two hosts on a LAN running FTP.

We have labeled one application box the FTP client and the other the FTP server.
Most network applications are designed so that one end is the client and the other side
the server. The server provides some type of service to clients, in this case access to files
on the server host. In the remote login application, Telnet, the service provided to the i
client is the ability to login to the server’s host. ]

Each layer has one or more protocols for communicating with its peer at the same '
layer. One protocol, for example, allows the two TCP layers to communicate, and
another protocol lets the two IP layers communicate.

On the right side of Figure 1.2 we have noted that normally the application layer is i
a user process while the lower three layers are usually implemented in the kernel (the
operating system). Although this isn’t a requirement, it’s typical and this is the way it’s ;
done under Unix.
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There is another critical difference between the top layer in Figure 1.2 and the lower
three layers. The application layer is concerned with the details of the application and
not with the movement of data across the network. The lower three layers know noth-
ing about the application but handle all the communication details.

We show four protocols in Figure 1.2, each at a different layer. FIP is an application
layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the
Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of
many protocols. Although the commonly used name for the entire protocol suite is
TCP/IP, TCP and IP are only two of the protocols. (An alternative name is the Internet
Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious—the former handles the details of the communication media (Ethernet, token
ring, etc.) while the latter handles one specific user application (FTP, Telnet, etc.). But on
first glance the difference between the network layer and the transport layer is some-
what hazy. Why is there a distinction between the two? To understand the reason, we
have to expand our perspective from a single network to a collection of networks.

One of the reasons for the phenomenal growth in networking during the 1980s was
the realization that an island consisting of a stand-alone computer made little sense. A
few stand-alone systems were collected together into a network. While this was
progress, during the 1990s we have come to realize that this new, bigger island consist-
ing of a single network doesn’t make sense either. People are combining multiple net-
works together into an internetwork, or an internet. An internet is a collection of
networks that all use the same protocol suite. ‘

The easiest way to build an internet is to connect two or more networks with a
router. This is often a special-purpose hardware box for connecting networks. The nice
thing about routers is that they provide connections to many different types of physical
networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxes are also called IP routers, but we'll use the term router.

Historically these boxes were called gateways, and this term is used throughout much of the
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM’s SNA) for one particular applica-
tion (often electronic mail or file transfer).

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token
ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, any host on the Ethernet can communicate with
any host on the token ring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either
side) and an intermediate system (the router in the middle). The application layer and the
transport layer use end-to-end protocols. In our picture these two layers are needed only
on the end systems. The network layer, however, provides a hop-by-hop protocol and is
used on the two end systems and every intermediate system.
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Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.
That is, it does its best job of moving a packet from its source to its final destination, but
there are no guarantees. TCP, on the other hand, provides a reliable transport layer
using the unreliable service of IP. To provide this service, TCP performs timeout and
retransmission, sends and receives end-to-end acknowledgments, and so on. The trans-
port layer and the network layer have distinct responsibilities.

A router, by definition, has two or more network interface layers (since it connects
two or more networks). Any system with multiple interfaces is called multihomed. A
host can also be multihomed but unless it specifically forwards packets from one inter-
face to another, it is not called a router. Also, routers need not be special hardware
boxes that only move packets around an internet. Most TCP/IP implementations allow
a multihomed host to act as a router also, but the host needs to be specifically config-
ured for this to happen. In this case we can call the system either a host (when an appli-
cation such as FTP or Telnet is being used) or a router (when it’s forwarding packets
from one network to another). We’ll use whichever term makes sense given the context.

One of the goals of an internet is to hide all the details of the physical layout of the
internet from the applications. Although this isn’t obvious from our two-network inter-
net in Figure 1.3, the application layers can’t care (and don't care) that one host is on an
Ethernet, the other on a token ring, with a router between. There could be 20 routers
between, with additional types of physical interconnections, and the applications would
run the same. This hiding of the details is what makes the concept of an internet so
powerful and useful.
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Another way to connect networks is with a bridge. These connect networks at the
link layer, while routers connect networks at the network layer. Bridges makes multiple
LANSs appear to the upper layers as a single LAN.

TCP/IP internets tend to be built using routers instead of bridges, so we’ll focus on
routers. Chapter 12 of [Perlman 1992] compares routers and bridges.

1.3 TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows some of the
additional protocols that we talk about in this text.

User
Process

User
Process

User User application
Process Process PP

transport
____________ .
|
i
IGMP : network
|
|
_______________ J
[ttt A al
i i
1 !
Hardware
! - o BT
: ARP Interface » RARP : link
i I
Lo o e e Y ___ . J
media

Figure 1.4 Various protocols at the different layers in the TCP/IP protocol suite.

TCP and UDP are the two predominant transport layer protocols. Both use IP as
the network layer.

TCP provides a reliable transport layer, even though the service it uses (IP) is unreli-
able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then
look at some TCP applications: Telnet and Rlogin in Chapter 26, FIP in Chapter 27, and
SMTP in Chapter 28. The applications are normally user processes.
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UDP sends and receives datagrams for applications. A datagram is a unit of infor-
mation (i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDP is unreliable.
There is no guarantee that the datagram ever gets to its final destination. Chapter 11
looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial
File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-
tions that use UDP. SNMP (the Simple Network Management Protocol) also uses UDP,
but since it deals with many of the other protocols, we save a discussion of it until
Chapter 25.

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every
piece of TCP and UDP data that gets transferred around an internet goes through the IP
layer at both end systems and at every intermediate router. In Figure 1.4 we also show
an application accessing IP directly. This is rare, but possible. (Some older routing pro-
tocols were implemented this way. Also, it is possible to experiment with new transport
layer protocols using this feature.) Chapter 3 looks at IP, but we save some of the details
for later chapters where their discussion makes more sense. Chapters 9 and 10 look at
how IP performs routing.

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. Chapter 6 looks at
ICMP in more detail. Although ICMP is used primarily by IP, it is possible for an appli-
cation to also access it. Indeed we’ll see that two popular diagnostic tools, Ping and
Traceroute (Chapters 7 and 8), both use ICMP.

IGMP is the Internet Group Management Protocol. It is used with multicasting;:
sending a UDP datagram to multiple hosts. We describe the general properties of
broadcasting (sending a UDP datagram to every host on a specified network) and
multicasting in Chapter 12, and then describe IGMP itself in Chapter 13.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution
Protocol) are specialized protocols used only with certain types of network interfaces
(such as Ethernet and token ring) to convert between the addresses used by the IP layer
and the addresses used by the network interface. We examine these protocols in Chap-
ters 4 and 5, respectively.

Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1,2, 3, and so on, there is a structure to Internet addresses. Figure 1.5 shows the five
different classes of Internet addresses.

These 32-bit addresses are normally written as four decimal numbers, one for each
byte of the address. This is called dotted-decimal notation. For example, the class B
address of the author’s primary system is 140.252.13.33.

The easiest way to differentiate between the different classes of addresses is to look
at the first number of a dotted-decimal address. Figure 1.6 shows the different classes,
with the first number in boldface.
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7 bits 24 bits
Class A l 0 l netid ‘ hostid —I
14 bits 16 bits
Class B EL?F netid hostid I
21 bits 8 bits

Class C ( 1 l 1 rO 1 netid hostid l

J 28 bits
Class D ITL I 14L0 l multicast group ID J

28 bits

Class E rljj l l’fl I (reserved for future use) —l

i Figure 1.5 The five different classes of Internet addresses.

| Class Range
A 0.0.0.0 to 127.255.255.255
B 128 0.0.0 to 191.255.255.255
C 192.0.0.0 to 223.255.255.255
: D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 255.255.255.255

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per
interface.

Since every interface on an internet must have a unique IP address, there must be
one central authority for allocating these addresses for networks connected to the
worldwide Internet. That authority is the Internet Network Information Center, called the
InterNIC. The InterNIC assigns only network IDs. The assignment of host IDs is up to
the system administrator.

Registration services for the Internet (IP addresses and DNS domain names) used to be han-
dled by the NIC, at nic.ddn.mil. On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN) All other Internet users now
use the InterNIC registration services, at rs. internic.net.

There are actually three parts to the InterNIC: registration services (rs.internic.net),
directory and database services (ds.internic.net), and information services
(is.internic.net). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast
(destined for all hosts on a given network), and multicast (destined for a set of hosts that
belong to a multicast group). Chapters 12 and 13 look at broadcasting and multicasting
in more detail.
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1.5

1.6

In Section 3.4 we'll extend our description of IP addresses to include subnetting,
after describing IP routing. Figure 3.9 shows the special case IP addresses: host IDs and
network IDs of all zero bits or all one bits.

The Domain Name System

Although the network interfaces on a host, and therefore the host itself, are known by I’
addresses, humans work best using the name of a host. In the TCP/IP world the Domain
Name System (DNS) is a distributed database that provides the mapping betwecen IP
addresses and hostnames. Chapter 14 looks into the DNS in detail.

For now we must be aware that any application can call a standard library function
to look up the IP address (or addresses) corresponding to a given hostname. Similarly a
function is provided to do the reverse lookup—given an IP address, look up the corre-
sponding hostname.

Most applications that take a hostname as an argument also take an IP address.
When we use the Telnet client in Chapter 4, for example, one time we specify a host-
name and another time we specify an IP address.

Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers (and sometimes adding trailer
information) to the data that it receives. Figure 1.7 shows this process. The unit of data
that TCP sends to IP is called a TCP segment. The unit of data that IP sends to the net-
work interface is called an IP datagram. The stream of bits that flows across the Ethernet
is called a frame.

The numbers at the bottom of the headers and trailer of the Ethernet frame in Fig-
ure 1.7 are the typical sizes of the headers in bytes. We’ll have more to say about each of
these headers in later sections.

A physical property of an Ethernet frame is that the size of its data must be between
46 and 1500 bytes. We'll encounter this minimum in Section 4.5 and we cover the maxi-
mum in Section 2.8.

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use of this cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we'll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram or a fragment of
an [P datagram. We discuss fragmentation in detail in Section 11.5.

We could draw a nearly identical picture for UDP data. The only changes are that
the unit of information that UDP passes to IP is called a UDP datagram, and the size of
the UDP header is 8 bytes.
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Figure 1.7 Encapsulation of data as it goes down the protocol stack.

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMP all send data to IP. IP
must add some type of identifier to the IP header that it generates, to indicate the layer
to which the data belongs. IP handles this by storing an 8-bit value in its header called
the protocol field. A value of 1 is for ICMP, 2 is for IGMP, 6 indicates TCF, and 17 is for
UDP.

Similarly, many different applications can be using TCP or UDP at any one time.
The transport layer protocols store an identifier in the headers they generate to identify
the application. Both TCP and UDP use 16-bit port numbers to identify applications.
TCP and UDP store the source port number and the destination port number in their
respective headers.

The network interface sends and receives frames on behalf of I[P, ARP, and RARP.
There must be some form of identification in the Ethernet header indicating which net-
work layer protocol generated the data. To handle this there is a 16-bit frame type field
in the Ethernet header.
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1.7  Demultiplexing

When an Ethernet frame is received at the destination host it starts its way up the proto-
col stack and all the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next
upper layer receives the data. This is called demultiplexing. Figure 1.8 shows how this
takes place.

application| ... |application
demultiplexing based on
destination port number
in TCP or UDP header
TCP
ICMP ’ IGMP ‘
- demultiplexing based on

\ \ protocol value in IP header

_ P
ARP i RARP
demultiplexing based on
frame type in Ethernet header
Ethernet
driver

incoming frame

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled “ICMP” and “IGMP” is always a challenge. In Fig-
ure 1.4 we showed them at the same layer as IP, because they really are adjuncts to [P. But here
we show them above IP, to reiterate that ICMP messages and IGMP messages are encapsulated
in IP datagrams.

We have a similar problem with the boxes “ARP” and “RARP” Here we show them above the
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 24 we'll show ARP as part of the Ethernet device driver, beneath IP,
because that’s where it logically fits.

Realize that these pictures of layered protocol boxes are not perfect.
When we describe TCP in detail we'll see that it really demultiplexes incoming seg-

ments using the destination port number, the source IP address, and the source port
number.
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1.8

1.9

Client-Server Model

Most networking applications are written assuming one side is the client and the other
the server. The purpose of the application is for the server to provide some defined ser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative
server iterates through the following steps.

[1. Wait for a client request to arrive.

I2.  Process the client request.

I3.  Send the response back to the client that sent the request.
[4.  Go back to step I1. ‘

The problem with an iterative server is when step 12 takes a while. During this time no
other clients are serviced.
A concurrent server, on the other hand, performs the following steps.

Cl. Wait for a client request to arrive.

C2. Start a new server to handle this client’s request. This may involve creating a
new process, task, or thread, depending on what the underlying operating sys-
tem supports. How this step is performed depends on the operating system.

This new server handles this client’s entire request. When complete, this new
server terminates.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other servers to han-
dle the client requests. Each client has, in essence, its own server. Assuming the operat-
ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason we categorize servers, and not clients, is because a client normally can’t
tell whether it's talking to an iterative server or a concurrent server.

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but
there are a few exceptions. We'll look in detail at the impact of UDP on its servers in
Section 11.12, and the impact of TCP on its servers in Section 18.11.

Port Numbers

We said that TCP and UDP identify applications using 16-bit port numbers. How are
these port numbers chosen?

Servers are normally known by their well-known port number. For example, every
TCP/IP implementation that provides an FTP server provides that service on TCP port
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21. Every Telnet server is on TCP port 23. Every implementation of TFTP (the Trivial
File Transfer Protocol) is on UDP port 69. Those services that can be provided by any
implementation of TCP/IP have well-known port numbers between 1 and 1023. The
well-known ports are managed by the Internet Assigned Numbers Authority (IANA).

Until 1992 the well-known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services—that is, services found on a Unix
system, but probably not found on other operating systems. The IANA now manages the
ports between 1 and 1023.

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow us to login across a network to another
host. Telnet is a TCP/IP standard with a well-known port number of 23 and can be imple-
mented on almost any operating system. Rlogin, on the other hand, was originally designed
for Unix systems (although many non-Unix systems now provide it also) so its well-known
port was chosen in the early 1980s as 513.

A client usually doesn’t care what port number it uses on its end. All it needs to be
certain of is that whatever port number it uses be unique on its host. Client port num-
bers are called ephemeral ports (i.e., short lived). This is because a client typically exists
only as long as the user running the client needs its service, while servers typically run
as long as the host is up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and
5000. The port numbers above 5000 are intended for other servers (those that aren’t
well known across the Internet). We'll see many examples of how ephemeral ports are
allocated in the examples throughout the text.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDP start at
32768. Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /etc/services on most
Unix systems. To find the port numbers for the Telnet server and the Domain Name
System, we can execute

sun % grep telnet /etc/services

telnet 23/tcp says it uses TCP port 23

[

sun % grep domain /etc/services
domain 53/udp says 1t uses UDP port 53
domain 53/tcp and TCP port 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privi-
leges can assign itself a reserved port.

These port numbers are in the range of 1 to 1023, and are used by some applications
(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.
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1.10 Standardization Process

Who controls the TCP/IP protocol suite, approves new standards, and the like? There
are four groups responsible for Internet technology.

1. The Internet Society (ISOC) is a professional society to facilitate, support, and
promote the evolution and growth of the Internet as a global research communi-
cations infrastructure.

2. The Internet Architecture Board (IAB) is the technical oversight and coordination
body. It is composed of about 15 international volunteers from various disci-
plines and serves as the final editorial and technical review board for the quality
of Internet standards. The IAB falls under the ISOC.

3. The Internet Engineering Task Force (IETF) is the near-term, standards-oriented
group, divided into nine areas (applications, routing and addressing, security,
etc.). The IETF develops the specifications that become Internet standards. An
additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4. The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional
details on the standardization process within the Internet, as well as some of its early
history.

1.11 RFCs

All the official standards in the internet community are published as a Request for Com-
ment, or RFC. Additionally there are lots of RFCs that are not official standards, but are
published for informational purposes. The RFCs range in size from 1 page to almost
200 pages. Each is identified by a number, such as RFC 1122, with higher numbers for
newer RFCs.

All the RFCs are available at no charge through electronic mail or using FTP across
the Internet. Sending electronic mail as shown here:

To: rfc—-info@RISI.EDU
Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs.

The latest RFC index is always a starting point when looking for something. This
index specifies when a certain RFC has been replaced by a newer RFC, and if a newer
RFC updates some of the information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that
are used in the Internet protocols. At the time of this writing the latest version
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of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet-wide well-
known ports are listed here.

When this RFC is updated (it is normally updated at least yearly) the index list-
ing for 1340 will indicate which RFC has replaced it.

2. The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This
RFC specifies the state of standardization of the various Internet protocols. Each
protocol has one of the following states of standardization: standard, draft stan-
dard, proposed standard, experimental, informational, or historic. Additionally
each protocol has a requirement level: required, recommended, elective, limited
use, or not recommended.

Like the Assigned Numbers RFC, this RFC is also reissued regularly. Be sure i
you're reading the current copy. i

3. The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122
handles the link layer, network layer, and transport layer, while RFC 1123 han-
dles the application layer. These two RFCs make numerous corrections and
interpretations of the important earlier RFCs, and are often the starting point
when looking at any of the finer details of a given protocol. They list the fea-
tures and implementation details of the protocols as either “must,” “should,”
“may,” “should not,” or “must not.”

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127
[Braden 1989c¢] provides an informal summary of the discussions and conclu-
sions of the working group that developed the Host Requirements RFCs.

4. The Router Requirements RFC. The official version of this is RFC 1009 [Braden
and Postel 1987], but a new version is nearing completion [Almquist 1993]. This
is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

1.12 Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.
We'll use some of these servers throughout the text, usually with the Telnet client. Fig-
ure 1.9 describes these services. We can see from this figure that when the same service
is provided using both TCP and UDP, both port numbers are normally chosen to be the

same.

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, FTP, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from the NCP port numbers. (NCP, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP was simplex, not full-duplex, so each
application required two connections, and an even—odd pair of port numbers was reserved for
each application. When TCP and UDP became the standard transport layers, only a single
port number was needed per application, so the odd port numbers from NCP were used.
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Name TCP port | UDP port ] RFC Description
echo 7 7 862 | Server returns whatever the client sends.
discard 9 9 863 | Server discards whatever the client sends.
daytime 13 13 867 | Server returns the time and date in a human-readable
format.
chargen 19 19 864 | TCP server sends a continual stream of characters, until the

connection is terminated by the client. UDP server
sends a datagram containing a random number of

characters each time the chient sends a datagram

i time 37 37 868 | Server returns the time as a 32-bit binary number. This

i number represents the number of seconds since

i midnight January 1, 1900, UTC.

Figure 1.9 Standard, simple services provided by most implementations.

1.13 The Internet

In Figure 1.3 we showed an internet composed of two networks—an Ethernet and a
token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need
i to allocate IP addresses centrally (the InterNIC) and the well-known port numbers (the
IANA). The word internet means different things depending on whether it’s capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-
mon protocol suite. The uppercase Internet refers to the collection of hosts (over one
million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is not true.

" 1.14 Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-
tems Research Group at the University of California at Berkeley. Historically this has
been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the
“BSD Networking Releases.” This source code has been the starting point for many
other implementations.

Figure 1.10 shows a chronology of the various BSD releases, indicating the impor-
tant TCP/IP features. The BSD Networking Releases shown on the left side are publicly
available source code releases containing all of the networking code: both the protocols
themselves and many of the applications and utilities (such as Telnet and FTP).

Throughout the text we'll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally
developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!
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4.2BSD (1983)
first widely available
release of TCP/IP

l

4.3BSD (1986)
TCP performance improvements

'

4.3BSD Tahoe (1988)
slow start,
/ congestion avoidance,
/ fast retransmit
BSD Networking Software L

Release 1.0 (1989). Net/1
4.3BSD Reno (1990)

fast recovery,
TCP header prediction,

/ SLIP header compression,
routing table changes

BSD Networking Software
Release 2.0 (1991): Net/2
4.4BSD (1993)

multicasting,
/ long fat pipe modifications

4.4BSD-Lite (1994)
also referred to as Net/3

Figure 1.10 Various BSD releases with important TCP/IP features.

Much of the original research in the Internet is still being applied to the Berkeley
system—new congestion control algorithms (Section 21.7), multicasting (Section 12.4),
“long fat pipe” modifications (Section 24.3), and the like.

1.15 Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP
protocols are called sockets and TLI (Transport Layer Interface). The former is some-
times called “Berkeley sockets,” indicating where it was originally developed. The lat-
ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport
Interface), recognizing the work done by X/Open, an international group of computer
vendors that produce their own set of standards. XTI is effectively a superset of TLI.
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This text is not a programming text, but occasional reference is made to features of
TCP/IP that we look at, and whether that feature is provided by the most popular API
(sockets) or not. All the programming details for both sockets and TLI are available in
[Stevens 1990].

1.16 Test Network

Figure 1.11 shows the test network that is used for all the examples in the text. This fig-
ure is also duplicated on the inside front cover for easy reference while reading the
book.

Internet

AIX3.22 Solaris 2.2 SunOS 4.1.1
solaris gemini
132 T.1.11
Ethernet l 1183
Telebit
netb NetBlazer

modem|

SLIP|(dialup)

BSD/386 1.0 BSD/3861.0  SunOS4.13 |.1. SVR4
. SLIP _
sliP ¢3365 Bee] 5 svrd
T.13.35 T.13.34

Ethernet

Figure 1.11 Test network used for all the examples in the text. All IP addresses begin with 140.252.

Most of the examples are run on the lower four systems in this figure (the author’s sub-
net). All the IP addresses in this figure belong to the class B network ID 140.252. All the
hostnames belong to the . tuc.noao.edu domain. (noao stands for “National Optical
Astronomy Observatories” and tuc stands for Tucson.) For example, the lower right
system has a complete hostname of svr4.tuc.noao.edu and an IP address of
140.252.13.34. The notation at the top of each box is the operating system running on
that system. This collection of systems and networks provides hosts and routers run-
ning a variety of TCP/IP implementations.
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1.17

It should be noted that there are many more networks and hosts in the noao.edu
domain than we show in Figure 1.11. All we show here are the systems that we'll
encounter throughout the text.

In Section 3.4 we describe the form of subnetting used on this network, and in Sec-
tion 4.6 we'll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIP in detail.

Summary

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many
of the terms and protocols that we discuss in detail in later chapters.

The four layers in the TCP/IP protocol suite are the link layer, network layer, trans-
port layer, and application layer, and we mentioned the different responsibilities of
each. In TCP/IP the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides a hop-by-hop service while the transport layers
(TCP and UDP) provide an end-to-end service.

An internet is a collection of networks. The common building block for an internet
is a router that connects the networks at the IP layer. The capital-I Internet is an internet
that spans the globe and consists of more than 10,000 networks and more than one mil-
lion computers.

On an internet each interface is identified by a unique IP address, although users
tend to use hostnames instead of IP addresses. The Domain Name System provides a
dynamic mapping between hostnames and IP addresses. Port numbers are used to
identify the applications communicating with each other and we said that servers use
well-known ports while clients use ephemeral ports.

Exercises

1.1 Calculate the maximum number of class A, B, and C network IDs.

1.2 Fetch the file nsfnet/statistics/history.netcount using anonymous FTP (Sec-
tion 27.3) from the host nic.merit.edu. This file contains the number of domestic and
foreign networks announced to the NSENET infrastructure. Plot these values with the year
on the x-axis and a logarithmic y-axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the values to estimate when the current addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

1.3 Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness
principle that applies to every layer of the TCP/IP protocol suite. What is the reference for
this principle?

1.4 Obtain a copy of the latest Assigned Numbers RFC. What is the well-known port for the
“quote of the day” protocol? Which RFC defines the protocol?
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1.5

1.6
1.7
1.8

If you have an account on a host that is connected to a TCP/IP internet, what is its primary
IP address? Is the host connected to the worldwide Internet? Is it multihomed?

Obtain a copy of RFC 1000 to learn where the term RFC originated.
Contact the Internet Society, isoc@isoc.org or +1 703 648 9888, to find out about joining.

Fetch the file about-internic/information-about-the-internic using anony-
mous FTIP from the host is.internic.net.
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2.2

Link Layer

Introduction

From Figure 1.4 (p. 6) we see that the purpose of the link layer in.the TCP/IP protocol
suite is to send and receive (1) IP datagrams for the IP module, (2) ARP requests and
replies for the ARP module, and (3) RARP requests and replies for the RARP module.
TCP/IP supports many different link layers, depending on the type of networking
hardware being used: Ethernet, token ring, FDDI (Fiber Distributed Data Interface),
RS-232 serial lines, and the like.

In this chapter we’ll look at some of the details involved in the Ethernet link layer,
two specialized link layers for serial interfaces (SLIP and PPP), and the loopback driver
that’s part of most implementations. Ethernet and SLIP are the link layers used for
most of the examples in the book. We also talk about the MTU (Maximum Transmission
Unit), a characteristic of the link layer that we encounter numerous times in the remain-
ing chapters. We also show some calculations of how to choose the MTU for a serial

line.

Ethernet and IEEE 802 Encapsulation

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment
Corp., Intel Corp., and Xerox Corp. It is the predominant form of local area network
technology used with TCP/IP today. It uses an access method called CSMA /CD, which
stands for Carrier Sense, Multiple Access with Collision Detection. It operates at 10
Mbits/sec and uses 48-bit addresses.

A few years later the JEEE (Institute of Electrical and Electronics Engineers) 802
Committee published a sightly different set of standards. 802.3 covers an entire set of

21
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CSMA /CD networks, 802.4 covers token bus networks, and 802.5 covers token ring net-
works. Common to all three of these is the 802.2 standard that defines the logical link
control (LLC) common to many of the 802 networks. Unfortunately the combination of
802.2 and 802.3 defines a different frame format from true Ethernet. ([Stallings 1987]
covers all the details of these IEEE 802 standards.)

In the TCP/IP world, the encapsulation of IP datagrams is defined in RFC 894
[Hornig 1984] for Ethernets and in RFC 1042 [Postel and Reynolds 1988] for IEEE 802
networks. The Host Requirements REC requires that every Internet host connected to a
10 Mbits/sec Ethernet cable:

1. Must be able to send and receive packets using RFC 894 (Ethernet) encapsula-
tion.

2. Should be able to receive RFC 1042 (IEEE 802) packets intermixed with RFC 894
packets.

3. May be able to send packets using RFC 1042 encapsulation. If the host can send
both types of packets, the type of packet sent must be configurable and the con-
figuration option must default to RFC 894 packets.

RFC 894 encapsulation is most commonly used. Figure 2.1 shows the two different
forms of encapsulation. The number below each box in the figure is the size of that box
in bytes.

Both frame formats use 48-bit (6-byte) destination and source addresses. (802.3
allows 16-bit addresses to be used, but 48-bit addresses are normal.) These are what we
call hardware addresses throughout the text. The ARP and RARP protocols (Chapters 4
and 5) map between the 32-bit IP addresses and the 48-bit hardware addresses.

The next 2 bytes are different in the two frame formats. The 802 length field says
how many bytes follow, up to but not including the CRC at the end. The Ethernet type
field identifies the type of data that follows. In the 802 frame the same type field occurs
later in the SNAP (Sub-network Access Protocol) header. Fortunately none of the valid
802 length values is the same as the Ethernet fype values, making the two frame formats
distinguishable.

In the Ethernet frame the data immediately follows the fype field, while in the 802
frame format 3 bytes of 802.2 LLC and 5 bytes of 802.2 SNAP follow. The DSAP (Desti-
nation Service Access Point) and SSAP (Source Service Access Point) are both set to
Oxaa. The ctrl field is set to 3. The next 3 bytes, the org code are all 0. Following this is
the same 2-byte type field that we had with the Ethernet frame format. (Additional type
field values are given in RFC 1340 [Reynolds and Postel 1992].)

The CRC field is a cyclic redundancy check (a checksum) that detects errors in the
rest of the frame. (This is also called the FCS or frame check sequence.)

There is a minimum size for 802.3 and Ethernet frames. This minimum requires
that the data portion be at least 38 bytes for 802.3 or 46 bytes for Ethernet. To handle
this, pad bytes are inserted to assure that the frame is long enough. We'll encounter this
minimum when we start watching packets on the wire.

In this text we'll display the Ethernet encapsulation when we need to, because this
is the most commonly used form of encapsulation.
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IEEE 802.2/802.3 Encapsulation (RFC 1042):

j¢——— 8023 MAC — >}« 8022 LLC —dj— 802.2 SNAP —»

destination| source IDSAPISSAP| cntl | org code
addr addr length AR AAT 03 00 type data CRC —l
6 6 2 ) 1 1 1 3 2 38-1492 X 4
[ |
l type
|
k 0800 IP datagram
\ 2 38-1492 ‘
I I
‘ type |
I !
| (0806 ARP request/reply PAD‘ \
! 2 28 10 !
I !
| , I
! ype i
: ‘ 8035 RARP request/reply PA]% |
1
) 2 28 10 I
| |
I I
| !
i I
Ethernet Encapsulation (RFC 894): :< —— 46-1500 bytes —M8 ———— - p!
|
destination| source .
addr addr type data CRC
6 6 2 46~-1500 4
type
0800 IP datagram
2 46-1500
type
080 JT\RP request/reply | PAD
2 28 18

type
8035 ‘fARI’ request/reply ‘ PAD

2 28 18

Figure 2.1 IEEE 802.2/802.3 encapsulation (RFC 1042) and Ethernet encapsulation (RFC 894).

2.3 Trailer Encapsulation

RFC 893 [Leffler and Karels 1984] describes another form of encapsulation used on
Ethernets, called trailer encapsulation. It was an experiment with early BSD systems on
DEC VAXes that improved performance by rearranging the order of the fields in the IP
datagram. The variable-length fields at the beginning of the data portion of the Ether-
net frame (the IP header and the TCP header) were moved to the end (right before the
CRC). This allows the data portion of the frame to be mapped to a hardware page,
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saving a memory-to-memory copy when the data is copied in the kernel. TCP data that
is a multiple of 512 bytes in size can be moved by just manipulating the kernel’s page
tables. Two hosts negotiated the use of trailer encapsulation using an extension of ARP.
Different Ethernet frame type values are defined for these frames.

Nowadays trailer encapsulation is deprecated, so we won’t show any examples of
it. Interested readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 1989] for
additional details.

SLIP: Serial Line IP

SLIP stands for Serial Line IP. It is a simple form of encapsulation for IP datagrams on
serial lines, and is specified in RFC 1055 [Romkey 1988]. SLIP has become popular for
connecting home systems to the Internet, through the ubiquitous RS-232 serial port
found on almost every computer and high-speed modems.

The following rules specify the framing used by SLIP.

1. The IP datagram is terminated by the special character called END (0xc0).
Also, to prevent any line noise before this datagram from being interpreted as
part of this datagram, most implementations transmit an END character at the
beginning of the datagram too. (If there was some line noise, this END termi-
nates that erroneous datagram, allowing the current datagram to be transmitted.
That erroneous datagram will be thrown away by a higher layer when its con-
tents are detected to be garbage.)

2. If a byte of the IP datagram equals the END character, the 2-byte sequence
Oxdb, Oxdc is transmitted instead. This special character, 0xdb, is called the
SLIP ESC character, but its value is different from the ASCII ESC character
(0x1Db).

3. If a byte of the IP datagram equals the SLIP ESC character, the 2-byte sequence
0xdb, 0xdd is transmitted instead.

Figure 2.2 shows an example of this framing, assuming that one END character and one
ESC character appear in the original IP datagram. In this example the number of bytes
transmitted across the serial line is the length of the IP datagram plus 4.

SLIP is a simple framing method. It has some deficiencies that are worth noting.

1. Each end must know the other’s IP address. There is no method for one end to
inform the other of its IP address.

2. There is no type field (similar to the frame type field in Ethernet frames). If a
serial line is used for SLIP, it can’t be used for some other protocol at the same
time.

3. There is no checksum added by SLIP (similar to the CRC field in Ethernet
frames). If a noisy phone line corrupts a datagram being transferred by SLIP,
it’s up to the higher layers to detect this. (Alternately, newer modems can detect
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2.5
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Figure 2.2 SLIP encapsulation.

and correct corrupted frames.) This makes it essential that the upper layers pro-
vide some form of CRC. In Chapters 3 and 17 we'll see that there is always a
checksum for the IP header, and for the TCP header and the TCP data. But in
Chapter 11 we'll see that the checksum that covers the UDP header and UDP
data is optional.

Despite these shortcomings, SLIP is a popular protocol that is widely used.

The history of SLIP dates back to 1984 when Rick Adams implemented it in 4.2BSD. Despite
its self-description as a nonstandard, it is becoming more popular as the speed and reliability
of modems increase. Publicly available implementations abound, and many vendors support
it today.

Compressed SLIP

Since SLIP lines are often slow (19200 bits/sec or below) and frequently used for inter-
active traffic (such as Telnet and Rlogin, both of which use TCP), there tend to be many
small TCP packets exchanged across a SLIP line. To carry 1 byte of data requires a
20-byte IP header and a 20-byte TCP header, an overhead of 40 bytes. (Section 19.2
shows the flow of these small packets when a simple command is typed during an
Rlogin session.)

Recognizing this performance drawback, a newer version of SLIP, called CSLIP (for
compressed SLIP), is specified in REC 1144 [Jacobson 1990a]. CSLIP normally reduces
the 40-byte header to 3 or 5 bytes. It maintains the state of up to 16 TCP connections on
each end of the CSLIP link and knows that some of the fields in the two headers for a
given connection normally don’t change. Of the fields that do change, most change by a
small positive amount. These smaller headers greatly improve the interactive response
time.

Most SLIP implementations today support CSLIP. Both SLIP links on the author’s subnet (see
inside front cover) are CSLIP links.
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2.6 PPP: Point-to-Point Protocol

PPP, the Point-to-Point Protocol, corrects all the deficiencies in SLIP. PPP consists of
three components.

1. A way to encapsulate IP datagrams on a serial link. PPP supports either an
asynchronous link with 8 bits of data and no parity (i.e., the ubiquitous serial
interface found on most computers) or bit-oriented synchronous links.

2. A link control protocol (LCP) to establish, configure, and test the data-link connec-
| tion. This allows each end to negotiate various options.

3. A family of network control protocols (NCPs) specific to different network layer
; protocols. RFCs currently exist for IP, the OSI network layer, DECnet, and
i AppleTalk. The IP NCP, for example, allows each end to specify if it can per-
H form header compression, similar to CSLIP. (The acronym NCP was also used
! for the predecessor to TCP)

: RFC 1548 [Simpson 1993] specifies the encapsulation method and the link control proto-
i col. RFC 1332 [McGregor 1992] specifies the network control protocol for IP.

The format of the PPP frames was chosen to look like the ISO HDLC standard
(high-level data link control). Figure 2.3 shows the format of PPP frames.

i flag | addr {control ) ) flag
i TE FF 03 protocol information CRC ; 7E r
: 1 1 1 2 up to 1500 bytes 2 1
A —
s protocol
! 0021 IP datagram
i
. protocol .
f | coz1 link contro] data
A 1
| protoco
, i 8021 network control data

Figure 2.3 Format of PPP frames.

Each frame begins and ends with a flag byte whose value is 0x7e. This is followed
by an address byte whose value is always 0xff, and then a control byte, with a value of
0x03.

Next comes the protocol field, similar in function to the Ethernet type field. A value
of 0x0021 means the information field is an IP datagram, a value of 0xc021 means the
information field is link control data, and a value of 0x8021 is for network control data.

CAVIUM-1008
Cavium, Inc. v. Alacritech, Inc.
Paae 050



Section 2.6 PPP: Point-to-Point Protocol 27

The CRC field (or FCS, for frame check sequence) is a cyclic redundancy check, to
detect errors in the frame.

Since the byte value 0x7e is the flag character, PPP needs to escape this byte when it
appears in the information field. On a synchronous link this is done by the hardware
using a technique called bit stuffing [Tanenbaum 1989]. On asynchronous links the spe-
cial byte 0x74d is used as an escape character. Whenever this escape character appears
in a PPP frame, the next character in the frame has had its sixth bit complemented, as
follows:

1. The byte 0x7e is transmitted as the 2-byte sequence 0x7d, 0x5e. This is the
escape of the flag byte.

2. The byte 0x7d is transmitted as the 2-byte sequence 0x7d, 0x5d. This is the
escape of the escape byte.

3. By default, a byte with a value less than 0x20 (i.e., an ASCII control character) is
also escaped. For example, the byte 0x01 is transmitted as the 2-byte sequence
0x7d, 0x21. (In this case the complement of the sixth bit turns the bit on,
whereas in the two previous examples the complement turned the bit off.)

The reason for doing this is to prevent these bytes from appearing as ASCII con-
trol characters to the serial driver on either host, or to the modems, which some-
times interpret these control characters specially. It is also possible to use the
link control protocol to specify which, if any, of these 32 values must be escaped.
By default, all 32 are escaped.

Since PPP, like SLIP, is often used across slow serial links, reducing the number of
bytes per frame reduces the latency for interactive applications. Using the link control
protocol, most implementations negotiate to omit the constant address and control fields
and to reduce the size of the protocol field from 2 bytes to 1 byte. If we then compare the
framing overhead in a PPP frame, versus the 2-byte framing overhead in a SLIP frame
(Figure 2.2), we see that PPP adds three additional bytes: 1 byte for the protocol field,
and 2 bytes for the CRC. Additionally, using the IP network control protocol, most
implementations then negotiate to use Van Jacobson header compression (identical to
CSLIP compression) to reduce the size of the IP and TCP headers.

In summary, PPP provides the following advantages over SLIP: (1) support for mul-
tiple protocols on a single serial line, not just IP datagrams, (2) a cyclic redundancy :
check on every frame, (3) dynamic negotiation of the IP address for each end (using the i
IP network control protocol), (4) TCP and IP header compression similar to CSLIF, and
(5) a link control protocol for negotiating many data-link options. The price we pay for i
all these features is 3 bytes of additional overhead per frame, a few frames of negotia-
tion when the link is established, and a more complex implementation.

Despite all the added benefits of PPP over SLIP, today there are more SLIP users than PPP
users. As implementations become more widely available, and as vendors start to support
PPP, it should (eventually) replace SLIP.
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2.7 Loopback Interface

Most implementations support a loopback interface that allows a client and server on the
same host to communicate with each other using TCP/IP. The class A network ID 127
is reserved for the loopback interface. By convention, most systems assign the IP
address of 127.0.0.1 to this interface and assign it the name localhost. An IP data-
gram sent to the loopback interface must not appear on any network.

Although we could imagine the transport layer detecting that the other end is the
loopback address, and short circuiting some of the transport layer logic and all of the
network layer logic, most implementations perform complete processing of the data in
the transport layer and network layer, and only loop the IP datagram back to itself
when the datagram leaves the bottom of the network layer.

Figure 2.4 shows a simplified diagram of how the loopback interface processes IP
datagrams.

IP output
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Figure 2.4 Processing of IP datagrams by loopback interface.
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2.8

The key points to note in this figure are as follows:

1. Everything sent to the loopback address (normally 127.0.0.1) appears as IP
input.

2. Datagrams sent to a broadcast address or a multicast address are copied to the
loopback interface and sent out on the Ethernet. This is because the definition
of broadcasting and multicasting (Chapter 12) includes the sending host.

3. Anything sent to one of the host’s own IP addresses is sent to the loopback
interface.

While it may seem inefficient to perform all the transport layer and IP layer process-
ing of the loopback data, it simplifies the design because the loopback interface appears
as just another link layer to the network layer. The network layer passes a datagram to
the loopback interface like any other link layer, and it happens that the loopback inter-
face then puts the datagram back onto IP’s input queue.

Another implication of Figure 2.4 is that IP datagrams sent to the one of the host’s
own IP addresses normally do not appear on the corresponding network. For example,
on an Ethernet, normally the packet is not transmitted and then read back. Comments
in some of the BSD Ethernet device drivers indicate that many Ethernet interface cards
are not capable of reading their own transmissions. Since a host must process IP data-
grams that it sends to itself, handling these packets as shown in Figure 2.4 is the sim-
plest way to accomplish this.

The 4.4BSD implementation defines the variable useloopback and initializes it to 1. If this
variable is set to 0, however, the Ethernet driver sends local packets onto the network instead
of sending them to the loopback driver. This may or may not work, depending on your Ether-
net interface card and device driver.

MTU

As we can see from Figure 2.1, there is a limit on the size of the frame for both Ethernet
encapsulation and 802.3 encapsulation. This limits the number of bytes of data to 1500
and 1492, respectively. This characteristic of the link layer is called the MTU, its maxi-
mum transmission unit. Most types of networks have an upper limit.

If IP has a datagram to send, and the datagram is larger than the link layer’s MTU,
IP performs fragmentation, breaking the datagram up into smaller pieces (fragments), so
that each fragment is smaller than the MTU. We discuss IP fragmentation in Sec-
tion 11.5.

Figure 2.5 lists some typical MTU values, taken from RFC 1191 [Mogul and Deering
1990]. The listed MTU for a point-to-point link (e.g., SLIP or PPP) is not a physical char-
acteristic of the network media. Instead it is a logical limit to provide adequate
response time for interactive use. In the Section 2.10 we'll see where this limit comes
from.

In Section 3.9 we'll use the net stat command to print the MTU of an interface.
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Network MTU (bytes)
Hyperchannel 65535
16 Mbits/sec token ring (IBM) 17914
4 Mbits/sec token ring (IEEE 802.5) 4464
FDDI 4352
Ethernet 1500
IEEE 802.3/802.2 1492
X.25 576
Point-to-point (low delay) 296

Figure 2.5 Typical maximum transmission units (MTUs).

29 Path MTU

When two hosts on the same network are communicating with each other, it is the MTU
of the network that is important. But when two hosts are communicating across multi-
ple networks, each link can have a different MTU. The important numbers are not the
MTUs of the two networks to which the two hosts connect, but rather the smallest MTU
of any data link that packets traverse between the two hosts. This is called the path
MTU.

The path MTU between any two hosts need not be constant. It depends on the
route being used at any time. Also, routing need not be symmetric (the route from A to
B may not be the reverse of the route from B to A), hence the path MTU need not be the
same in the two directions.

RFC 1191 [Mogul and Deering 1990] specifies the “path MTU discovery mecha-
nism,” a way to determine the path MTU at any time. We'll see how this mechanism
operates after we've described ICMP and IP fragmentation. In Section 11.6 we'll exam-
ine the ICMP unreachable error that is used with this discovery mechanism and in Sec-
tion 11.7 we’ll show a version of the traceroute program that uses this mechanism to
determine the path MTU to a destination. Sections 11.8 and 24.2 show how UDP and
TCP operate when the implementation supports path MTU discovery.

2.10 Serial Line Throughput Calculations

If the line speed is 9600 bits/sec, with 8 bits per byte, plus 1 start bit and 1 stop bit, the
line speed is 960 bytes/sec. Transferring a 1024-byte packet at this speed takes 1066 ms.
If we're using the SLIP link for an interactive application, along with an application
such as FTP that sends or receives 1024-byte packets, we have to wait, on the average,
half of this time (533 ms) to send our interactive packet.

This assumes that our interactive packet will be sent across the link before any fur-
ther “big” packets. Most SLIP implementations do provide this type-of-service queue-
ing, placing interactive traffic ahead of bulk data traffic. The interactive traffic is
normally Telnet, Rlogin, and the control portion (the user commands, not the data) of
FTP.
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2.1

This type of service queueing is imperfect. It cannot affect noninteractive traffic that is already
queued downstream (e.g., at the serial driver). Also newer modems have large buffers so non-
interactive traffic may already be buffered in the modem.

Waiting 533 ms is unacceptable for interactive response. Human factors studies
have found that an interactive response time longer than 100-200 ms is perceived as
bad [Jacobson 1990a]. This is the round-trip time for an interactive packet to be sent
and something to be returned (normally a character echo).

Reducing the MTU of the SLIP link to 256 means the maximum amount of time the
link can be busy with a single frame is 266 ms, and half of this (our average wait) is 133
ms. This is better, but still not perfect. The reason we choose this value (as compared to
64 or 128) is to provide good utilization of the line for bulk data transfers (such as large
file transfers). Assuming a 5-byte CSLIP header, 256 bytes of data in a 261-byte frame
gives 98.1% of the line to data and 1.9% to headers, which is good utilization. Reducing
the MTU below 256 reduces the maximum throughput that we can achieve for bulk
data transfers.

The MTU value listed in Figure 2.5, 296 for a point-to-point link, assumes 256 bytes
of data and the 40-byte TCP and IP headers. Since the MTU is a value that IP queries
the link layer for, the value must include the normal TCP and IP headers. This is how
IP makes its fragmentation decision. IP knows nothing about the header compression
that CSLIP performs.

Our average wait calculation (one-half the time required to transfer a maximum
sized frame) only applies when a SLIP link (or PPP link) is used for both interactive traf-
fic and bulk data transfer. When only interactive traffic is being exchanged, 1 byte of
data in each direction (assuming 5-byte compressed headers) takes around 12.5 ms for
the round trip at 9600 bits/sec. This is well within the 100-200 ms range mentioned
earlier. Also notice that compressing the headers from 40 bytes to 5 bytes reduces the
round-trip time for the 1 byte of data from 85 to 12.5 ms.

Unfortunately these types of calculations are harder to make when newer error cor-
recting, compressing modems are being used. The compression employed by these
modems reduces the number of bytes sent across the wire, but the error correction may
increase the amount of time to transfer these bytes. Nevertheless, these calculations
give us a starting point to make reasonable decisions.

In later chapters we'll use these serial line calculations to verify some of the timings
that we see when watching packets go across a serial link.

Summary

This chapter has examined the lowest layer in the Internet protocol suite, the link layer.
We looked at the difference between Ethernet and IEEE 802.2/802.3 encapsulation, and
the encapsulation used by SLIP and PPP. Since both SLIP and PPP are often used on
slow links, both provide a way to compress the common fields that don’t often change.
This provides better interactive response.

The loopback interface is provided by most implementations. Access to this inter-
face is either through the special loopback address, normally 127.0.0.1, or by sending IP
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datagrams to one of the host’s own IP addresses. Loopback data has been completely
processed by the transport layer and by IP when it loops around to go up the protocol
stack.

We described an important feature of many link layers, the MTU, and the related
{: concept of a path MTU. Using the typical MTUs for serial lines, we calculated the
i latency involved in SLIP and CSLIP links.

This chapter has covered only a few of the common data-link technologies used
with TCP/IP today. One reason for the success of TCP/IP is its ability to work on top of
almost any data-link technology.

Exercises

2.1 If your system supports the net stat(1l) command (see Section 3.9 also), use it to determine
the interfaces on your system and their MTUs.
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3.1

IP: Internet Protocol

Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and
IGMP data gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many
newcomers to TCP/IP, especially those from an X.25 or SNA background, is that IP pro-
vides an unreliable, connectionless datagram delivery service.

By unreliable we mean there are no guarantees that an IP datagram successfully gets
to its destination. IP provides a best effort service. When something goes wrong, such
as a router temporarily running out of buffers, IP has a simple error handling algorithm:
throw away the datagram and try to send an ICMP message back to the source. Any
required reliability must be provided by the upper layers (e.g., TCP).

The term connectionless means that IP does not maintain any state information about
successive datagrams. Each datagram is handled independently from all other data-
grams. This also means that IP datagrams can get delivered out of order. If a source
sends two consecutive datagrams (first A, then B) to the same destination, each is
routed independently and can take different routes, with B arriving before A.

In this chapter we take a brief look at the fields in the IP header, describe IP routing,
and cover subnetting. We also look at two useful commands: i fconfig and netstat.
We leave a detailed discussion of some of the fields in the IP header for later when we
can see exactly how the fields are used. RFC 791 [Postel 1981a] is the official specifica-
tion of IP.
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S

3.2 IP Header '

Figure 3.1 shows the format of an IP datagram. The normal size of the IP header is 20
bytes, unless options are present.

0 15 16 31
4-bit  |4-bit header| 8-bit type of service o .
version length (TOS) 16-bit total length (in bytes)
L I 3-bit .
16-bit identification f 13-bit fragment offset
ags
§-bit time to live 8-bit protocol . 16-bit header checksum 20 bytes |
(TTL) .
32-bit source IP address
32-bit destmation IP address
|
!
/ options (if any) ; 1
:
/ data /

Figure 3.1 IP datagram, showing the fields in the IP header.

i We will show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most sig-
1 nificant bit is numbered 0 at the left, and the least significant bit of a 32-bit value is num-
bered 31 on the right.

The 4 bytes in the 32-bit value are transmitted in the order: bits 0-7 first, then bits
8-15, then 16—23, and bits 24-31 last. This is called big endian byte ordering, which is
the byte ordering required for all binary integers in the TCP/IP headers as they traverse !
a network. This is called the network byte order. Machines that store binary integers in ‘
other formats, such as the little endian format, must convert the header values into the
network byte order before transmitting the data.

The current protocol version is 4, so IP is sometimes called IPv4. Section 3.10 dis-
cusses some proposals for a new version of IP.

The header length is the number of 32-bit words in the header, including any options.
! Since this is a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we'll see that this
limitation makes some of the options, such as the record route option, useless today.
The normal value of this field (when no options are present) is 5.

i The type-of-service field (TOS) is composed of a 3-bit precedence field (which is
ignored today), 4 TOS bits, and an unused bit that must be 0. The 4 TOS bits are: mini-
mize delay, maximize throughput, maximize reliability, and minimize monetary cost.
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Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service.
REC 1340 [Reynolds and Postel 1992] specifies how these bits should be set by all the
standard applications. RFC 1349 [Almquist 1992] contains some corrections to this RFC,
and a more detailed description of the TOS feature.

Figure 3.2 shows the recommended values of the TOS field for various applications.
In the final column we show the hexadecimal value, since that’s what we’ll see in the
tcpdump output later in the text.

Application Minimize Maximize Maximize Minimize Hex

PP delay throughput reliability monetary cost | value
Telnet/Rlogin 1 0 0 0 0x10
FTP

control 1 0 0 0 0x10

data 0 1 0 0 0x08
any bulk data 0 1 0 0 0x08
TFTP 1 0 0 0 0x10
SMTP

command phase 1 0 0 0 0x10

data phase 0 1 0 0 0x08
DNS

UDP query 1 0 0 0 0x10

TCP query 0 0 0 0 0x00

zone transfer 0 1 0 0 0x08
ICMP

error 0 0 0 0 0x00

query 0 0 0 0 0x00
any IGP 0 0 1 0 0x04
SNMP 0 0 1 0 0x04
BOOTP 0 0 0 0 0x00
NNTP 0 0 0 1 0x02

Figure 3.2 Recommended values for type-of-service field.

The interactive login applications, Telnet and Rlogin, want a minimum delay since
they’re used interactively by a human for small amounts of data transfer. File transfer
by FTP, on the other hand, wants maximum throughput. Maximum reliability is speci-
fied for network management (SNMP) and the routing protocols. Usenet news (NNTP)
is the only one shown that wants to minimize monetary cost.

The TOS feature is not supported by most TCP/IP implementations today, though
newer systems starting with 4.3BSD Reno are setting it. Additionally, new routing pro-
tocols such as OSPF and IS-IS are capable of making routing decisions based on this
field.

In Section 2.10 we mentioned that SLIP drivers normally provide type-of-service queueing,
allowing interactive traffic to be handled before bulk data. Since most implementations don’t
use the TOS field, this queueing is done ad hoc by SLIP, with the driver looking at the protocol
field (to determine whether it's a TCP segment or not) and then checking the source and desti-
nation TCP port numbers to see if the port number corresponds to an interactive service. One
driver comments that this “disgusting hack” is required since most implementations don’t
allow the application to set the TOS field.
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The total length field is the total length of the IP datagram in bytes. Using this field
and the header length field, we know where the data portion of the IP datagram starts,
and its length. Since this is a 16-bit field, the maximum size of an IP datagram is 65535
bytes. (Recall from Figure 2.5 [p. 30] that a Hyperchannel has an MTU of 65535. This
means there really isn’t an MTU—it uses the largest IP datagram possible.) This field
also changes when a datagram is fragmented, which we describe in Section 11.5.

Although it’s possible to send a 65535-byte IP datagram, most link layers will frag-
ment this. Furthermore, a host is not required to receive a datagram larger than 576
bytes. TCP divides the user’s data into pieces, so this limit normally doesn’t affect TCP.
With UDP we’ll encounter numerous applications in later chapters (RIP, TFTP, BOOTP,
the DNS, and SNMP) that limit themselves to 512 bytes of user data, to stay below this
576-byte limit. Realistically, however, most implementations today (especially those
that support the Network File System, NFS) allow for just over 8192-byte IP datagrams.

The total length field is required in the IP header since some data links (e.g., Ether-
net) pad small frames to be a minimum length. Even though the minimum Ethernet
frame size is 46 bytes (Figure 2.1), an IP datagram can be smaller. If the total length
field wasn’t provided, the IP layer wouldn’t know how much of a 46-byte Ethernet
frame was really an IP datagram.

The identification field uniquely identifies each datagram sent by a host. It normally
increments by one each time a datagram is sent. We return to this field when we look at
fragmentation and reassembly in Section 11.5. Similarly, we’ll also look at the flags field
and the fragmentation offset field when we talk about fragmentation.

REC 791 {Postel 1981a] says that the identification field should be chosen by the upper layer
that is having IP send the datagram. This implies that two consecutive IP datagrams, one gen-
erated by TCP and one generated by UDP, can have the same identification field. While this is
OK (the reassembly algorithm handles this), most Berkeley-derived implementations have the
IP layer increment a kernel variable each time an IP datagram 1s sent, regardless of which layer
passed the data to IP to send. This kernel variable is initialized to a value based on the time-of-
day when the system is bootstrapped.

The time-to-live field, or TTL, sets an upper limit on the number of routers through
which a datagram can pass. It limits the lifetime of the datagram. It is initialized by the
sender to some value (often 32 or 64) and decremented by one by every router that han-
dles the datagram. When this field reaches 0, the datagram is thrown away, and the
sender is notified with an ICMP message. This prevents packets from getting caught in
routing loops forever. We return to this field in Chapter 8 when we look at the Trace-
route program.

We talked about the protocol field in Chapter 1 and showed how it is used by IP to
demultiplex incoming datagrams in Figure 1.8. It identifies which protocol gave the
data for IP to send.

The header checksum is calculated over the IP header only. It does not cover any data
that follows the header. ICMP, IGMP, UDP, and TCP all have a checksum in their own
headers to cover their header and data.

To compute the IP checksum for an outgoing datagram, the value of the checksum
field is first set to 0. Then the 16-bit one’s complement sum of the header is calculated
(ie., the entire header is considered a sequence of 16-bit words). The 16-bit one’s
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3.3

complement of this sum is stored in the checksum field. When an IP datagram is
received, the 16-bit one’s complement sum of the header is calculated. Since the
receiver’s calculated checksum contains the checksum stored by the sender, the
receiver’s checksum is all one bits if nothing in the header was modified. If the result is
not all one bits (a checksum error), IP discards the received datagram. No error mes-
sage is generated. It is up to the higher layers to somehow detect the missing datagram
and retransmit.

ICMF, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP
and UDP include various fields from the IP header, in addition to their own header and
data. RFC 1071 [Braden, Borman, and Partridge 1988] contains implementation tech-
niques for computing the Internet checksum. Since a router often changes only the TTL
field (decrementing it by 1), a router can incrementally update the checksum when it
forwards a received datagram, instead of calculating the checksum over the entire IP
header again. RFC 1141 [Mallory and Kullberg 1990] describes an efficient way to do
this.

The standard BSD implementation, however, does not use this incremental update feature
when forwarding a datagram.

Every IP datagram contains the source IP address and the destination IP address.
These are the 32-bit values that we described in Section 1.4.

The final field, the options, is a variable-length list of optional information for the
datagram. The options currently defined are:

¢ security and handling restrictions (for military applications, refer to RFC 1108
[Kent 1991] for details),

* record route (have each router record its IP address, Section 7.3),
¢ timestamp (have each router record its IP address and time, Section 7.4),

¢ loose source routing (specifying a list of IP addresses that must be traversed by
the datagram, Section 8.5), and

e strict source routing (similar to loose source routing but here only the addresses
in the list can be traversed, Section 8.5).

These options are rarely used and not all host and routers support all the options.

The options field always ends on a 32-bit boundary. Pad bytes with a value of 0 are
added if necessary. This assures that the IP header is always a multiple of 32 bits (as
required for the header length field).

IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly
connected to the host (e.g., a point-to-point link) or on a shared network (e.g., Ethernet
or token ring), then the IP datagram is sent directly to the destination. Otherwise the
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host sends the datagram to a default router, and lets the router deliver the datagram to
its destination. This simple scheme handles most host configurations.

In this section and in Chapter 9 we'll look at the more general case where the IP
layer can be configured to act as a router in addition to acting as a host. Most multiuser
systems today, including almost every Unix system, can be configured to act as a router.
We can then specify a single routing algorithm that both hosts and routers can use. The
fundamental difference is that a host never forwards datagrams from one of its inter-
faces to another, while a router forwards datagrams. A host that contains embedded
router functionality should never forward a datagram unless it has been specifically
configured to do so. We say more about this configuration option in Section 9.4.

In our general scheme, IP can receive a datagram from TCP, UDP, ICMP, or IGMP
(that is, a locally generated datagram) to send, or one that has been received from a net-
work interface (a datagram to forward). The IP layer has a routing table in memory that
it searches each time it receives a datagram to send. When a datagram is received from
a network interface, IP first checks if the destination IP address is one of its own IP
addresses or an IP broadcast address. If so, the datagram is delivered to the protocol
module specified by the protocol field in the IP header. If the datagram is not destined
for this IP layer, then (1) if the IP layer was configured to act as a router the packet is for-
warded (that is, handled as an outgoing datagram as described below), else (2) the data-
3 gram is silently discarded.

Each entry in the routing table contains the following information:

* Destination IP address. This can be either a complete host address or a network
address, as specified by the flag field (described below) for this entry. A host
address has a nonzero host ID (Figure 1.5) and identifies one particular host,
while a network address has a host ID of 0 and identifies all the hosts on that
network (e.g., Ethernet, token ring).

g * IP address of a next-hop router, or the IP address of a directly connected network.
A next-hop router is one that is on a directly connected network to which we can
i send datagrams for delivery. The next-hop router is not the final destination, but
it takes the datagrams we send it and forwards them to the final destination.

* [Flags. One flag specifies whether the destination IP address is the address of a
network or the address of a host. Another flag says whether the next-hop router
field is really a next-hop router or a directly connected interface. (We describe i
each of these flags in Section 9.2.)

* Specification of which network interface the datagram should be passed to for
transmission.

IP routing is done on a hop-by-hop basis. As we can see from this routing table
information, IP does not know the complete route to any destination (except, of course,
those destinations that are directly connected to the sending host). All that IP routing
provides is the IP address of the next-hop router to which the datagram is sent. It is
assumed that the next-hop router is really “closer” to the destination than the sending
host is, and that the next-hop router is directly connected to the sending host.

T A
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IP routing performs the following actions:

1. Search the routing table for an entry that matches the complete destination IP
address (matching network ID and host ID). If found, send the packet to the
indicated next-hop router or to the directly connected interface (depending on
the flags field). Point-to-point links are found here, for example, since the other
end of such a link is the other host’s complete IP address.

2. Search the routing table for an entry that matches just the destination network
ID. If found, send the packet to the indicated next-hop router or to the directly
connected interface (depending on the flags field). All the hosts on the destina-
tion network can be handled with this single routing table entry. All the hosts
on a local Ethernet, for example, are handled with a routing table entry of this

type.
This check for a network match must take into account a possible subnet mask,
which we describe in the next section.

3. Search the routing table for an entry labeled “default.” If found, send the packet
to the indicated next-hop router.

If none of the steps works, the datagram is undeliverable. If the undeliverable data-
gram was generated on this host, a “host unreachable” or “network unreachable” error
is normally returned to the application that generated the datagram. : ;

A complete matching host address is searched for before a matching network ID. "
Only if both of these fail is a default route used. Default routes, along with the ICMP
redirect message sent by a next-hop router (if we chose the wrong default for a data-
gram), are powerful features of IP routing that we'll come back to in Chapter 9.

The ability to specify a route to a network, and not have to specify a route to every
host, is another fundamental feature of IP routing. Doing this allows the routers on the
Internet, for example, to have a routing table with thousands of entries, instead of a
routing table with more than one million entries.

Examples i

First consider a simple example: our host bsdi has an IP datagram to send to our host
sun. Both hosts are on the same Ethernet (see inside front cover). Figure 3.3 shows the
delivery of the datagram.

When IP receives the datagram from one of the upper layers it searches its routing
table and finds that the destination IP address (140.252.13.33) is on a directly connected
network (the Ethernet 140.252.13.0). A matching network address is found in the rout-
ing table. (In the next section we’ll see that because of subnetting the network address
of this Ethernet is really 140.252.13.32, but that doesn’t affect this discussion of routing.)

The datagram is passed to the Ethernet device driver, and sent to sun as an Ether-
net frame (Figure 2.1). The destination address in the IP datagram is Sun’s IP address
(140.252.13.33) and the destination address in the link-layer header is the 48-bit Ethernet
address of sun’s Ethernet interface. This 48-bit Ethernet address is obtained using ARP,
as we describe in the next chapter.
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destination network =
140.252.13.0

Ethernet, 140.252.13

T

|

1

|

1

v link | IP !
™| hdr | hdr Foo

! t--» dest IP = 140.252.13.33
«--» dest Enet = Enet of 140.252.13.33

Figure 3.3 Delivery of IP datagram from bsdi to sun. l

Now consider another example: bsdi has an IP datagram to send to the host
‘ ftp.uu.net, whose IP address is 192.48.96.9. Figure 3.4 shows the path of the data- !
| gram through the first three routers. First bsdi searches its routing table but doesn’t
' find a matching host entry or a matching network entry. It uses its default entry, which
tells it to send datagrams to sun, the next-hop router. When the datagram travels from
bsdi to sun the destination IP address is the final destination (192.48.96.9) but the link-
layer address is the 48-bit Ethernet address of sun’s Ethernet interface. Compare this
datagram with the one in Figure 3.3, where the destination IP address and the destina-
tion link-layer address specified the same host (sun).
When sun receives the datagram it realizes that the datagram’s destination IP
address is not one of its own, and sun is configured to act as a router, so it forwards the
datagram. Its routing table is searched and the default entry is used. The default entry
on sun tells it to send datagrams to the next-hop router netb, whose IP address is
140.252.1.183. The datagram is sent across the point-to-point SLIP link, using the mini-
b mal encapsulation we showed in Figure 2.2. We don’t show a link-layer header, as we
‘ do on the Ethernets, because there isn’t one on a SLIP link.
When netb receives the datagram it goes through the same steps that sun just did:
the datagram is not destined for one of its own IP addresses, and netb is configured to
act as a router, so the datagram is forwarded. The default routing table entry is used,
sending the datagram to the next-hop router gateway (140.252.1.4). ARP is used by ‘
netb on the Ethernet 140.252.1 to obtain the 48-bit Ethernet address corresponding to i
140.252.1.4, and that Ethernet address is the destination address in the link-layer header.
gateway goes through the same steps as the previous two routers and its default
routing table entry specifies 140.252.104.2 as the next-hop router. (We'll verify that this
is the next-hop router for gateway using Traceroute in Figure 8.4.)
A few key points come out in this example.

b B AN o S 110

i 1. All the hosts and routers in this example used a default route. Indeed, most
i hosts and some routers can use a default route for everything other than desti-
| nations on local networks.
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Internet
---» dest Enet = Enet of 140.252.1.4
A [ s destIP=192.4896.9
| H H
next hop = link [ IP
140.252.104.2 gateway [+~ 7] hdr | hdr
(default)
1.4
Ethernet, 140.252.1
Imw
SLIP : hdr
| H
Lo—-p dest IP = 192.48.96.9
next hop = next hop =
140.252.13.33 140.252.1.183
(default) (default)

Ethernet, 140.252.13

|
L
i
|
" i
i’\lmk P I

hdr | hdr

s destIP=19248969
L_» dest Enet = Enet of 140.252.13.33

Figure 3.4 Initial path of datagram from bsda to ftp.uu.net (192.48.96.9).

2. The destination IP address in the datagram never changes. (In Section 8.5 we’ll
see that this is not true only if source routing is used, which is rare.) All the
routing decisions are based on this destination address.

3. A different link-layer header can be used on each link, and the link-layer desti-
nation address (if present) always contains the link-layer address of the next
hop. In our example both Ethernets encapsulated a link-layer header containing
the next-hop’s Ethernet address, but the SLIP link did not. The Ethernet
addresses are normally obtained using ARP.

In Chapter 9 we'll look at IP routing again, after describing ICMP. We'll also look at
some sample routing tables and how they’re used for routing decisions.
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3.4 Subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel
1985]). Instead of considering an IP address as just a network ID and host ID, the host
ID portion is divided into a subnet ID and a host ID.

This makes sense because class A and class B addresses have too many bits allo-
cated for the host ID: 22 —2 and 2'¢ -2, respectively. People don't attach that many
hosts to a single network. (Figure 1.5 [p. 8] shows the format of the different classes of
IP addresses.) We subtract 2 in these expressions because host IDs of all zero bits or all
one bits are invalid. .

After obtaining an IP network ID of a certain class from the InterNIC, it is up to the
local system administrator whether to subriet or not, and if so, how many bits to allo-
cate to the subnet ID and host ID. For example, the internet used in this text has a
class B network address (140.252) and of the remaining 16 bits, 8 are for the subnet 1D
and 8 for the host ID. This is shown in Figure 3.5.

16 bits 8 bits 8 bits
Class B netid = 140.252 subnetid hostid 1

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet.

Many administrators use the natural 8-bit boundary in the 16 bits of a class B host

ID as the subnet boundary. This makes it easier to determine the subnet ID from a dot-
i ted-decimal number, but there is no requirement that the subnet boundary for a class A
i or class B address be on a byte boundary.
iy Most examples of subnetting describe it using a class B address. Subnetting is also
/ allowed for a class C address, but there are fewer bits to work with. Subnetting is rarely
‘ shown with a class A address because there are so few class A addresses. (Most class A
i addresses are, however, subnetted.)
; Subnetting hides the details of internal network organization (within a company or
i campus) to external routers. Using our example network, all IP addresses have the
; class B network ID of 140.252. But there are more than 30 subnets and more than 400
! hosts distributed over those subnets. A single router provides the connection to the
Internet, as shown in Figure 3.6.

In this figure we have labeled most of the routers as Rn, where 7 is the subnet num-
ber. We show the routers that connect these subnets, along with the nine systems from
the figure on the inside front cover. The Ethernets are shown as thicker lines, and the
point-to-point links as dashed lines. We do not show all the hosts on the various sub-
nets. For example, there are more than 50 hosts on the 140.252.3 subnet, and more than
100 on the 140.252.1 subnet.

The advantage to using a single class B address with 30 subnets, compared to 30
class C addresses, is that subnetting reduces the size of the Internet’s routing tables.
The fact that the class B address 140.252 is subnetted is transparent to all Internet
routers other than the ones within the 140.252 subnet. To reach any host whose IP

S U Y —
e s e A e S S T e i i

e — <t
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3.5

57.0
192.68.189.0  .82.0 R57
520 530 540 1.55.0 580  .60.0
R192 RS2 | l [ T
N ’ R52 )Rsa R54 R55 R58 R60
AN 7/
810 kpno 510
L
|
|
140.252.104.1 |gate-| sol-
Internet - alx .
arls
1.92 ‘.1432
| ) 1.183
| | N
/ \
20 8.0 9.0 100 110 / \
7129 \
1365 l
" I3E6 bsdi svré sun R12 |
1335 [.1334 [13.33
13.0 12.0

Figure 3.6 Arrangement of most of the noao . edu 140.252 subnets.

address begins with 140.252, the external routers only need to know the path to the IP
address 140.252.104.1. This means that only one routing table entry is needed for all the
140.252 networks, instead of 30 entries if 30 class C addresses were used. Subnetting,
therefore, reduces the size of routing tables. (In Section 10.8 we'll look at a new tech-
nique that helps reduce the size of routing tables even if class C addresses are used.)

To show that subnetting is not transparent to routers within the subnet, assume in
Figure 3.6 that a datagram arrives at gateway from the Internet with a destination
address of 140.252.57.1. The router gateway needs to know that the subnet number is
57, and that datagrams for this subnet are sent to kpno. Similarly kpno must send the
datagram to R55, who then sends it to R57.

Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specifica-
tion of the host’s IP address. Most systems have this stored in a disk file that’s read at
bootstrap time, and we’ll see in Chapter 5 how a diskless system can also find out its IP
address when it's bootstrapped.
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In addition to the IP address, a host also needs to know how many bits are to be
used for the subnet ID and how many bits are for the host ID. This is also specified at
bootstrap time using a subnet mask. This mask is a 32-bit value containing one bits for
the network ID and subnet ID, and zero bits for the host ID. Figure 3.7 shows the for-
mation of the subnet mask for two different partitions of a class B address. The top
example is the partitioning used at noao.edu, shown in Figure 3.5, where the subnet
ID and host ID are both 8 bits wide. The lower example shows a class B address parti-
tioned for a 10-bit subnet ID and a 6-bit host ID.

16 bits 8 bits 8 bits

ClassB | netid T subnetid | hostid
Subnetmask: 1 1 111111 111131111 11111111 0000000 0 =O0xfffEFF00
= 255.255.255.0

16 bits 10 bits 6 bits
Class B [ netid l subnetid ’ hostid
Subnetmask: 12111111 1111112111211111 11 000000 =0xffffffco

= 255.255.255.192

Figure 3.7 Example subnet masks for two different class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks
are often written in hexadecimal, especially if the boundary is not a byte boundary,
since the subnet mask is a bit mask.

Given its own IP address and its subnet mask, a host can determine if an IP data-
gram is destined for (1) a host on its own subnet, (2) a host on a different subnet on its
own network, or (3) a host on a different network. Knowing your own IP address tells
you whether you have a class A, B, or C address (from the high-order bits), which tells
you where the boundary is between the network ID and the subnet ID. The subnet
mask then tells you where the boundary is between the subnet ID and the host ID.

Example

Assume our host address is 140.252.1.1 (a class B address) and our subnet mask is
255.255.255.0 (8 bits for the subnet ID and 8 bits for the host ID).

o If a destination IP address is 140.252.4.5, we know that the class B network [Ds
are the same (140.252), but the subnet IDs are different (1 and 4). Figure 3.8
shows how this comparison of two IP addresses is done, using the subnet mask.

o If the destination IP address is 140.252.1.22, the class B network IDs are the same
(140.252), and the subnet IDs are the same (1). The host IDs, however, are differ-
ent.

e [f the destination IP address is 192.43.235.6 (a class C address), the network 1Ds
are different. No further comparisons can be made against this address.
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3.6

end of end of
class B specified
network ID subnet ID
16 bits + 8 bits + 8 bits
Class B L 140 | 252 l 1 | 1
Subnetmask::11111111 11111111:11111111:00000000:255.255.255.0
! network IDs equal ! subnet IDs !
o L ]
| ] not equal |
| | ]
Class B | 140 ] 252 | 4 | 5 ]

Figure 3.8 Comparison of two class B addresses using a subnet mask.

The IP routing function makes comparisons like this all the time, given two IP addresses
and a subnet mask.

Special Case IP Addresses

Having described subnetting we now show the seven special case IP addresses in Fig-
ure 3.9. In this figure, 0 means a field of all zero bits, ~1 means a field of all one bits, and
netid, subnetid, and hostid mean the corresponding field that is neither all zero bits nor all
one bits. A blank subnet ID column means the address is not subnetted.

1P address Can appear as L
T Description
netID | subnetID | hostID | source? | destination?
0 0 OK never this host on this net (see restrictions below)
0 hostid OK never specified host on this net (see restrictions below)
127 anything OK OK loopback address (Section 2.7)
-1 -1 never OK limited broadcast (never forwarded)
netid -1 never OK net-directed broadcast to netid
netid subnetid -1 never OK subnet-directed broadcast to netid, subnetid
netid -1 -1 never OK all-subnets-directed broadcast to netid

Figure 3.9 Special case IP addresses.

We have divided this table into three sections. The first two entries are special case
source addresses, the next one is the special loopback address, and the final four are the
broadcast addresses.

The first two entries in the table, with a network ID of 0, can only appear as the
source address as part of an initialization procedure when a host is determining its own
IP address, for example, when the BOOTP protocol is being used (Chapter 16).

In Section 12.2 we’ll examine the four types of broadcast addresses in more detail.

CAVIUM-1008
Cavium, Inc. v. Alacritech, Inc.
Paage 069



46

IP: Internet Protocol Chapter 3

3.7

i
i
i3

A Subnet Example

This example shows the subnet used in the text, and how two different subnet masks

are used. Figure 3.10 shows the arrangement.
Internet

1140.252.1041

gateway
T'4 Ethernet, subnet 140.252.1
e |
, 140.252.1.29 |
[ |
1 . SLIP |
| slip %5 subnet 66 bsdy sun svréd |
| |
140.252.13.64 * * L
| .35 33 34 ]
. | I |
| Ethernet, subnet 140.252.13.32 |
S 1

author’s subnet: 140.252.13

Figure 3.10 Arrangement of hosts and networks for author’s subnet.

If you compare this figure with the one on the inside front cover, you'll notice that
we’ve omitted the detail that the connection from the router sun to the top Ethernet in
Figure 3.10 is really a dialup SLIP connection. This detail doesn’t affect our description
of subnetting in this section. We'll return to this detail in Section 4.6 when we describe
proxy ARP.

The problem is that we have two separate networks within subnet 13: an Ethernet
and a point-to-point link (the hardwired SLIP link). (Point-to-point links always cause
problems since each end normally requires an IP address.) There could be more hosts
and networks in the future, but not enough hosts across the different networks to justify
using another subnet number. Our solution is to extend the subnet ID from 8 to 11 bits,
and decrease the host ID from 8 to 5 bits. This is called variable-length subnets since most
networks within the 140.252 network use an 8-bit subnet mask while our network uses
an 11-bit subnet mask.

RFC 1009 {Braden and Postel 1987] allows a subnetted network to use more than one subnet
mask. The new Router Requirements RFC {Almquist 1993] requires support for this.

The problem, however, is that not all routing protocols exchange the subnet mask along with
the destination network ID. We'll see in Chapter 10 that RIP does not support variable-length
subnets, while RIP Version 2 and OSPF do. We don’t have a problem with our example, since
RIP isn’t required on the author’s subnet.

Figure 3.11 shows the IP address structure used within the author’s subnet. The
first 8 bits of the 11-bit subnet ID are always 13 within the author’s subnet. For the
remaining 3 bits of the subnet ID, we use binary 001 for the Ethernet, and binary 010 for
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16 bits - 11bits——®  S5bits
Class B r net ID = 140.252 subnetD | host ID
1 L
12864 3216 8 4 2 1
8 bits = 13

Subnetmask: 11111111 11111111 11111111 111 0000 0=0xffffffeod
= 255255.255.224

Figure 3.11 Using variable-length subnets.

the point-to-point SLIP link. This variable-length subnet mask does not cause a prob-
lem for other hosts and routers in the 140.252 network—as long as all datagrams des-
tined for the subnet 140.252.13 are sent to the router sun (IP address 140.252.1.29) in
Figure 3.10, and if sun knows about the 11-bit subnet ID for the hosts on its subnet 13,
everything is fine.

The subnet mask for all the interfaces on the 140.252.13 subnet is 255.255.255.224, or
Oxffffffe0. This indicates that the rightmost 5 bits are for the host ID, and the 27 bits
to the left are the network ID and subnet ID.

Figure 3.12 shows the allocation of IP addresses and subnet masks for the interfaces
shown in Figure 3.10.

Host IP address Subnet mask Net ID/Subnet ID | Host ID Comment
sun 140.252.1.29 255.255.255.0 140.252.1 - 29 on subnet 1
140.252.13.33 | 255.255.255.224 140.252.13.32 1 on author’s Ethernet
svrd | 140.252.13.34 | 255255.255 224 140.252.13.32 2
bsdi | 140.252.13.35 | 255.255.255.224 140.252.13.32 3 on Ethernet
140.252.13.66 | 255.255.255.224 140.252.13.64 2 point-to-point
slip | 140252.13.65 | 255.255.255.224 140.252.13.64 1 point-to-point
140.252 13.63 | 255.255.255.224 140.252.13.32 31 broadcast addr on EtherneL

Figure 3.12 IP addresses on author’s subnet.

The first column is labeled “Host,” but both sun and bsdi also act as routers, since i
they are multihomed and route packets from one interface to another. ;

The final row in this table notes that the broadcast address for the bottom Ethernet i
in Figure 3.10 is 140.252.13.63: it is formed from the subnet ID of the Ethernet
(140.252.13.32) and the low-order 5 bits in Figure 3.11 set to 1 (16 +8+4+2+1 =31).
(We'll see in Chapter 12 that this address is called the subnet-directed broadcast
address.)

3.8 ifconfig Command

Now that we’ve described the link layer and the IP layer we can show the command
used to configure or query a network interface for use by TCP/IP. The ifconf ig(8)
command is normally run at bootstrap time to configure each interface on a host. !
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For dialup interfaces that may go up and down (such as SLIP links), i fconfig
must be run (somehow) each time the line is brought up or down. How this is done
each time the SLIP link is brought up or down depends on the SLIP software being
used.

The following output shows the values for the author’s subnet. Compare these val-
ues with the values in Figure 3.12.

sun % /usr/etc/ifconfig -a SunOS5 -a option says report on all interfaces

le0: flags=63<UP, BROADCAST, NOTRAILERS, RUNNING>

inet 140.252.13.33 netmask ffffffe0 broadcast 140.252.13.63
$10: flags=1051<UP, POINTOPOINT, RUNNING, LINKO>
inet 140.252.1.29 --> 140.252.1.183 netmask £Ef£££00

1lo0: flags=49<UP, LOOPBACK, RUNNING>
inet 127.0.0.1 netmask ££000000

The loopback interface (Section 2.7) is considered a network interface. Its class A
address is not subnetted.

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the
Ethernet, and that the Ethernet is capable of broadcasting, while the SLIP link is a point-
to-point link.

The flag LINKO for the SLIP interface is the configuration option that enables com-
pressed slip (CSLIP, Section 2.5). Other possible options are LINK1, which enables
CSLIP if a compressed packet is received from the other end, and LINK2, which causes
all outgoing ICMP packets to be thrown away. We'll look at the destination address of
this SLIP link in Section 4.6.

A comment in the installation instructions gives the reason for this last option: “This shouldn’t
have to be set, but some cretin pinging you can drive your throughput to zero.”

bsdi is the other router. Since the ~a option is a SunOS feature, we have to execute
ifconfig multiple times, specifying the interface name as an argument:
bsdi % /sbin/ifconfig wel
we0: flags=863<UP,BROADCAST, NOTRAILERS, RUNNING, SIMPLEX>
inet 140.252.13.35 netmask ffffffe0 broadcast 140.252.13.63
bsdi % /sbin/ifconfig sl0
$10: flags=1011<UP,POINTOPOINT, LINKO>
inet 140.252.13.66 --> 140.252.13.65 netmask ffffffel

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 4.4BSD flag
specifies that the interface can’t hear its own transmissions. It is set in BSD/386 for all
the Ethernet interfaces. When set, if the interface is sending a frame to the broadcast
address, a copy is made for the local host and sent to the loopback address. (We show
an example of this feature in Section 6.3.)

On the host slip the configuration of the SLIP interface is nearly identical to the
output shown above on bsdi, with the exception that the IP addresses of the two ends
are swapped:

slip % /sbin/ifconfig sl0

$10: flags=1011<UP,POINTOPOINT, LINKO>
inet 140.252.13.65 —-> 140.252.13.66 netmask ffffffel
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3.9

3.10

The final interface is the Ethernet interface on the host svr4. It is similar to the

Ethernet output shown earlier, except that SVR4’s version of ifconfig doesn’t print
the RUNNING flag:

svrd % /usr/sbin/ifconfig emd0
emd0: flags=23<UP, BROADCAST, NOTRAILERS>
inet 140.252.13.34 netmask ffffffel broadcast 140.252.13.63

The ifconfig command normally supports other protocol families (other than

TCP/IP) and has numerous additional options. Check your system’s manual for these
details.

netstat Command

The netstat(l) command also provides information about the interfaces on a system.

The -i flag prints the interface information, and the -n flag prints IP addresses instead
of hostnames.

sun % netstat -in

Name Mtu Net/Dest Address Ipkts TIerrs Opkts Oerrs Collis Queue

le0 1500 140.252.13.32 140.252.13.33 67719 0 92133 0 1 0
s10 552 140.252.1.183 140.252.1.29 48035 0 54963 0 -0 0
1lo0 1536 127.0.0.0 127.0.0.1 15548 0 15548 0 0 Y

This command prints the MTU of each interface, the number of input packets, input
errors, output packets, output errors, collisions, and the current size of the output
queue.

We'll return to the netstat command in Chapter 9 when we use it to examine the

routing table, and in Chapter 13 when we use a modified version to see active multicast
groups.

IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the
Internet over the past few years. (See Exercise 1.2 also.)

1. Over half of all class B addresses have already been allocated. Current estimates
predict exhaustion of the class B address space around 1995, if they continue to
be allocated as they have been in the past.

2. 32-bit IP addresses in general are inadequate for the predicted long-term growth
of the Internet.

3. The current routing structure is not hierarchical, but flat, requiring one routing
table entry per network. As the number of networks grows, amplified by the
allocation of multiple class C addresses to a site with multiple networks, instead
of a single class B address, the size of the routing tables grows.
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3.1

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will
extend the usefulness of the current version of IP (IP version 4) into the next century.
We discuss it in more detail in Section 10.8.

Four proposals have been made for a new version of IP, often called IPng, for the
next generation of IP. The May 1993 issue of IEEE Network (vol. 7, no. 3) contains
overviews of the first three proposals, along with an article on CIDR. RFC 1454 [Dixon
1993] also compares the first three proposals.

1. SIP, the Simple Internet Protocol. It proposes a minimal set of changes to IP that
uses 64-bit addresses and a different header format. (The first 4 bits of the
header still contain the version number, with a value other than 4.)

2. PIP. This proposal also uses larger, variable-length, hierarchical addresses with
a different header format.

3. TUBA, which stands for “TCP and UDP with Bigger Addresses,” is based on the
OSI CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It
provides much larger addresses: variable length, up to 20 bytes. Since CLNP is
an existing protocol, whereas SIP and PIP are just proposals, documentation
already exists on CLNP. REC 1347 [Callon 1992] provides details on TUBA.
Chapter 7 of [Perlman 1992] contains a comparison of IPv4 and CLNP. Many
routers already support CLNP, but few hosts do.

4. TP/IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses
64 bits for IP addresses, but it also changes the TCP and UDP headers: 32-bit
port number for both protocols, along with 64-bit sequence numbers, 64-bit
acknowledgment numbers, and 32-bit windows for TCP.

The first three proposals use basically the same versions of TCP and UDP as the trans-
port layers.

Since only one of these four proposals will be chosen as the successor to IPv4, and
since the decision may have been made by the time you read this, we won’t say any
more about them. With the forthcoming implementation of CIDR to handle the short-
term problem, it will take many years to implement the successor to IPv4.

Summary

We started this chapter with a description of the IP header and briefly described all the
fields in this header. We also gave an introduction to IP routing, and saw that host rout-
ing can be simple: the destination is either on a directly connected network, in which
case the datagram is sent directly to the destination, or a default router is chosen.

Hosts and routers have a routing table that is used for all routing decisions. There
are three types of routes in the table: host specific, network specific, and optional default
routes. There is a priority to the entries in a routing table. A host route will be chosen
over a network router, and a default route is used only when no other route exists to the
destination.
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IP routing is done on a hop-by-hop basis. The destination IP address never changes
as the datagram proceeds through all the hops, but the encapsulation and destination
link-layer address can change on each hop. Most hosts and many routers use a default
next-hop router for all nonlocal traffic.

Class A and B addresses are normally subnetted. The number of bits used for the
subnet ID is specified by the subnet mask. We gave a detailed example of this, using the
author’s subnet, and introduced variable-length subnets. The use of subnetting reduces
the size of the Internet routing tables, since many networks can often be accessed
through a single point. Information on the interfaces and networks is available through
the ifconfig and netstat commands. This includes the IP address of the interface,
its subnet mask, broadcast address, and MTU.

We finished the chapter with a discussion of potential changes to the Internet proto-
col suite—the next generation of IP.

Exercises

3.1 Must the loopback address be 127.0.0.1?
3.2 Identify the routers in Figure 3.6 with more than two network interfaces.

3.3 What's the difference in the subnet mask for a class A address with 16 bits for the subnet ID
and a class B address with 8 bits for the subnet ID?

34 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and
host IDs.

3.5 Is the subnet mask 255.255.0.255 valid for a class A address?
3.6 Why do you think the MTU of the loopback interface printed in Section 3.9 is set to 15367

3.7 The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other
protocol suites are built on a connection-oriented network technology. Read [Clark 1988] to
discover the three advantages the datagram network layer provides.
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4.1

ARP: Address Resolution
Protocol

Introduction

The problem that we deal with in this chapter is that IP addresses only make sense to
the TCP/IP protocol suite. A data link such as an Ethernet or a token ring has its own
addressing scheme (often 48-bit addresses) to which any network layer using the data
link must conform. A network such as an Ethernet can be used by different network
layers at the same time. For example, a collection of hosts using TCP/IP and another
collection of hosts using some PC network software can share the same physical cable.

When an Ethernet frame is sent from one host on a LAN to another, it is the 48-bit
Ethernet address that determines for which interface the frame is destined. The device
driver software never looks at the destination IP address in the IP datagram.

Address resolution provides a mapping between the two different forms of
addresses: 32-bit IP addresses and whatever type of address the data link uses. RFC 826
{Plummer 1982] is the specification of ARP.

Figure 4.1 shows the two protocols we talk about in this chapter and the next: ARP
(address resolution protocol) and RARP (reverse address resolution protocol).

32-bit Internet address

ARPl TRARP

48-bit Ethernet address

Figure 4.1 Address resolution protocols: ARP and RARP.
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4.2

ARP provides a dynamic mapping from an IP address to the corresponding hardware
address. We use the term dynamic since it happens automatically and is normally not a
concern of either the application user or the system administrator.

RARP is used by systems without a disk drive (normally diskless workstations or X
terminals) but requires manual configuration by the system administrator. We describe
it in Chapter 5.

An Example

Whenever we type a command of the form
% ftp bsdi

the following steps take place. These numbered steps are shown in Figure 4.2.

1. The application, the FTP client, calls the function gethostbyname(3) to convert
the hostname (bsdi) into its 32-bit IP address. This function is called a resolver
in the DNS (Domain Name System), which we describe in Chapter 14. This con-
version is done using the DNS, or on smaller networks, a static hosts file
(/etc/hosts).

2. The FTP client asks its TCP to establish a connection with that IP address.

3. TCP sends a connection request segment to the remote host by sending an IP
datagram to its IP address. (We'll see the details of how this is done in Chap-
ter 18.)

4. If the destination host is on a locally attached network (e.g., Ethernet, token
ring, or the other end of a point-to-point link), the IP datagram can be sent
directly to that host. If the destination host is on a remote network, the IP rout-
ing function determines the Internet address of a locally attached next-hop
router to send the IP datagram to. In either case the IP datagram is sent to a
host or router on a locally attached network.

5. Assuming an Ethernet, the sending host must convert the 32-bit IP address into
a 48-bit Ethernet address. A translation is required from the logical Internet
address to its corresponding physical hardware address. This is the function of
ARP.

ARP is intended for broadcast networks where many hosts or routers are con-
nected to a single network.

6. ARP sends an Ethernet frame called an ARP request to every host on the net-

work. This is called a broadcast. We show the broadcast in Figure 4.2 with
dashed lines. The ARP request contains the IP address of the destination host
(whose name is bsdi) and is the request “if you are the owner of this IP
address, please respond to me with your hardware address.”
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hostname

hostname

1P addr

@) establish connection
with IP address

TCP

send P datagram

(3)‘ to IP address
jigd
ARP 4)
)
1
®), A(8) ©
7
1 Ethernet
1 driver
\
ARP request (Ethernet broadcast) i
B i N —— =t = -
1 i
| 2
| e
! Ethernet ' Ethernet |
I . | )
| driver ) driver
| )
| 1
@) ]
ARP ARP 1P
|
TCP

Figure 4.2 Operation of ARP when user types “ftp hostname”.

The destination host's ARP layer receives this broadcast, recognizes that the
sender is asking for its hardware address, and replies with an ARP reply. This
reply contains the IP address and the corresponding hardware address.

The ARP reply is received and the IP datagram that forced the ARP
request-reply to be exchanged can now be sent.

The IP datagram is sent to the destination host.

T B S T LT i IS N TS
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4.3

4.4

The fundamental concept behind ARP is that the network interface has a hardware
address (a 48-bit value for an Ethernet or token ring interface). Frames exchanged at the
hardware level must be addressed to the correct interface. But TCP/IP works with its
own addresses: 32-bit IP addresses. Knowing a host’s IP address doesn’t let the kernel
send a frame to that host. The kernel (i.e., the Ethernet driver) must know the destina-
tion’s hardware address to send it data. The function of ARP is to provide a dynamic
mapping between 32-bit IP addresses and the hardware addresses used by various net-
work technologies.

Point-to-point links don’t use ARP. When these links are configured (normally at
bootstrap time) the kernel must be told of the IP address at each end of the link. Hard-
ware addresses such as Ethernet addresses are not involved.

ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache on each
host. This cache maintains the recent mappings from Internet addresses to hardware
addresses. The normal expiration time of an entry in the cache is 20 minutes from the
time the entry was created.

We can examine the ARP cache with the arp(8) command. The —a option displays
all entries in the cache:

bsdi % arp -a

sun (140.252.13.33) at 8:0:20:3:£6:42

svrd4 (140.252.13.34) at 0:0:c0:c2:9b:26

The 48-bit Ethernet addresses are displayed as six hexadecimal numbers separated by
colons. We discuss additional features of the arp command in Section 4.8.

ARP Packet Format

Figure 4.3 shows the format of an ARP request and an ARP reply packet, when used on
an Ethernet to resolve an IP address. (ARP is general enough to be used on other net-
works and can resolve addresses other than IP addresses. The first four fields following
the frame type field specify the types and sizes of the final four fields.)

hard size
(—> prot size
Ethernet Ethernet ramd hard | prot | ' | sender sender target target
destination addr|  source addr rtypj type | type P Ethernet addr | IPaddr | Ethemetaddr | IP ad;]
6 6 2 2 2 11 2 6 4 6 4

l-d-—‘ Ethernet header ~1: 28 byte ARP request/reply “—*———bl

Figure 4.3 Format of ARP request or reply packet when used on an Ethernet.

The first two fields in the Ethernet header are the source and destination Ethernet
addresses. The special Ethernet destination address of all one bits means the broadcast
address. All Ethernet interfaces on the cable receive these frames.
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4.5

The 2-byte Ethernet frame type specifies the type of data that follows. For an ARP
request or an ARP reply, this field is 0x0806.

The adjectives hardware and protocol are used to describe the fields in the ARP pack-
ets. For example, an ARP request asks for the hardware address (an Ethernet address in
this case) corresponding to a protocol address (an IP address in this case).

The hard type field specifies the type of hardware address. Its value is 1 for an Ether-
net. Prot type specifies the type of protocol address being mapped. Its value is 0x0800
for IP addresses. This is purposely the same value as the type field of an Ethernet frame
containing an IP datagram. (See Figure 2.1, p. 23.)

The next two 1-byte fields, hard size and prot size, specify the sizes in bytes of the
hardware addresses and the protocol addresses. For an ARP request or reply for an IP
address on an Ethernet they are 6 and 4, respectively.

The op field specifies whether the operation is an ARP request (a value of 1), ARP
reply (2), RARP request (3), or RARP reply (4). (We talk about RARP in Chapter 5.)
This field is required since the frame type field is the same for an ARP request and an
ARP reply.

The next four fields that follow are the sender’s hardware address (an Ethernet
address in this example), the sender’s protocol address (an IP address), the target hard-
ware address, and the target protocol address. Notice there is some duplication of infor-
mation: the sender’s hardware address is available both in the Ethernet header and in
the ARP request.

For an ARP request all the fields are filled in except the target hardware address.
When a system receives an ARP request directed to it, it fills in its hardware address,
swaps the two sender addresses with the two target addresses, sets the op field to 2, and
sends the reply.

ARP Examples

In this section we’ll use the tcpdump command to see what really happens with ARP
when we execute normal TCP utilities such as Telnet. Appendix A contains additional
details on the tcpdump program.

Normal Example

To see the operation of ARP we'll execute the telnet command, connecting to the dis-
card server.

bsdi % arp -a verify ARP cache 1s empty

bsdi % telnet svr4 discard connect to the discard server

Trying 140.252.13.34...

Connected to svr4.

Escape character is '"]’.

°1 type Control, right bracket to get Telnet client prompt
telnet> quit and terminate

Connection closed.

o 1 ey e
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While this is happening we run the tcpdump command on another system (sun) with
the —e option. This displays the hardware addresses (which in our examples are 48-bit
Ethernet addresses).

%, 1 0.0 0:0:c0:6£:2d:40 ff:ff:ff:££:€f:ff arp 60:
ff: arp who-has svrd tell bsdi
i 2 0.002174 (0.0022) 0:0:c0:c2:9b:26 0:0:c0:6£:2d:40 arp 60:
arp reply svrd4 is-at 0:0:c0:¢c2:9b:26 ]

3 0.002831 (0.0007) 0:0:c0:6£:2d:40 0:0:c0:c2:9b:26 ip 60:

i bsdi.1030 > svrd.dascard: S 596459521:596459521 (0)

! win 4096 <mss 1024> [tos 0x10]

‘ 4 0.007834 (0.0050) 0:0:c0:c2:9b:26 0:0:c0:6£:2d:40 1p 60:
svr4d.discard > bsdi.1030: S 3562228225:3562228225(0)
ack 596459522 win 4096 <mss 1024>

5 0.009615 (0.0018) 0:0:c0:6£:2d:40 0:0:¢0:¢c2:9b:26 ip 60:
bsd1.1030 > svréd.discard: . ack 1 win 4096 [tos 0x10]

Figure 44 ARP request and ARP reply generated by TCP connection request.

Figure A.3 in Appendix A contains the raw output from t cpdump used for Figure 4.4.
Since this is the first example of tcpdump output in the text, you should review that
appendix to see how we’ve beautified the output.

; We have deleted the final four lines of the tcpdump output that correspond to the
termination of the connection (which we cover in Chapter 18), since they’re not relevant
to the discussion here.

In line 1 the hardware address of the source (bsdi) is 0:0:c0:6f:2d:40. The
destination hardware addressis ff: ff:ff: ff: ff: ff, which is the Ethernet broadcast
address. Every Ethernet interface on the cable will receive the frame and process it, as
shown in Figure 4.2.

The next output field on line 1, arp, means the frame type field is 00806, specify-
ing either an ARP request or an ARP reply.

The value 60 printed after the words arp and ip on each of the five lines is the
length of the Ethernet frame. Since the size of an ARP request and ARP reply is 42 bytes
(28 bytes for the ARP message, 14 bytes for the Ethernet header), each frame has been
padded to the Ethernet minimum: 60 bytes.

Referring to Figure 1.7, this minimum of 60 bytes starts with and includes the
14-byte Ethernet header, but does not include the 4-byte Ethernet trailer. Some books
state the minimum as 64 bytes, which includes the Ethernet trailer. We purposely did
not include the 14-byte Ethernet header in the minimum of 46 bytes shown in Fig-
ure 1.7, since the corresponding maximum (1500 bytes) is what’s referred to as the
MTU —maximum transmission unit (Figure 2.5). We use the MTU often, because it lim-
! its the size of an IP datagram, but are normally not concerned with the minimum. Most
device drivers or interface cards automatically pad an Ethernet frame to the minimum
size. The IP datagrams on lines 3, 4, and 5 (containing the TCP segments) are all smaller |
than the minimum, and have also been padded to 60 bytes. i

The next field on line 1, arp who-has, identifies the frame as an ARP request with
the IP address of svr4 as the target IP address and the IP address of bsdi as the sender
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IP address. tcpdump prints the hostnames corresponding to the IP address by default.
(We'll use the -n option in Section 4.7 to see the actual IP addresses in an ARP request.)

From line 2 we see that while the ARP request is broadcast, the destination address
of the ARP reply is bsdi (0:0:c0:6£:2d:40). The ARP reply is sent directly to the
requesting host; it is not broadcast.

tcpdump prints arp reply for this frame, along with the hostname and hardware
address of the responder.

Line 3 is the first TCP segment requesting that a connection be established. Its des-
tination hardware address is the destination host (svr4). We'll cover the details of this
segment in Chapter 18. k-

The number printed after the line number on each line is the time (in seconds) when
the packet was received by tcpdump. Each line other than the first also contains the 1}
time difference (in seconds) from the previous line, in parentheses. We can see in this
figure that the time between sending the ARP request and receiving the ARP reply is 2.2
ms. The first TCP segment is sent 0.7 ms after this. The overhead involved in using ;
ARP for dynamic address resolution in this example is less than 3 ms. ;

A final point from the tcpdump output is that we don’t see an ARP request from !
svr4 before it sends its first TCP segment (line 4). While it’s possible that svr4 already ]
had an entry for bsdi in its ARP cache, normally when a system receives an ARP !
request addressed to it, in addition to sending the ARP reply it also saves the B
requestor’s hardware address and IP address in its own ARP cache. This is on the logi- |
cal assumption that if the requestor is about to send it an IP datagram, the receiver of |
the datagram will probably send a reply.

4

ARP Request to a Nonexistent Host

What happens if the host being queried for is down or nonexistent? To see this we spec-
ify a nonexistent Internet address—the network ID and subnet ID are that of the local
Ethernet, but there is no host with the specified host ID. From Figure 3.10 we see the
host IDs 36 through 62 are nonexistent (the host ID of 63 is the broadcast address). We'll
use the host ID 36 in this example.

telnet to an address this time, not a hostname
bsdi % date ; telnet 140.252.13.36 ; date
Sat Jan 30 06:46:33 MST 1993
Trying 140.252.13.36...
telnet: Unable to connect to remote host: Connection timed out
Sat Jan 30 06:47:49 MST 1993 76 seconds after previous date output

A SRR 3 2 DT PN DRI 1 12 A DT

bsdi % arp -a check the ARP cache
? (140.252.13.36) at (incomplete)

Figure 4.5 shows the tcpdump output.

1 0.0 arp who-has 140.252.13.36 tell bsdi 2
2 5.509069 ( 5.5091) arp who-has 140.252.13.36 tell bsdi #
3 29.509745 (24.0007) arp who-has 140.252.13.36 tell bsdi

Figure 4.5 ARP requests to a nonexistent host

o

g
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4.6

This time we didn’t specify the —e option since we already know that the ARP requests
are broadcast.

What's interesting here is to see the frequency of the ARP requests: 5.5 seconds after
the first request, then again 24 seconds later. (We examine TCP’s timeout and retrans-
mission algorithms in more detail in Chapter 21.) The total time shown in the t cpdump
output is 29.5 seconds. But the output from the date commands before and after the
telnet command shows that the connection request from the Telnet client appears to
have given up after about 75 seconds. Indeed, we'll see later that most BSD implemen-
tations set a limit of 75 seconds for a TCP connection request to complete.

In Chapter 18 when we see the sequence of TCP segments that is sent to establish
the connection, we’ll see that these ARP requests correspond one-to-one with the initial
TCP SYN (synchronize) segment that TCP is trying to send.

Note that on the wire we never see the TCP segments. All we can see are the ARP
requests. Until an ARP reply comes back, the TCP segments can’t be sent, since the des-
tination hardware address isn’t known. If we ran tcpdump in a filtering mode, looking
only for TCP data, there would have been no output at all.

ARP Cache Timeout

A timeout is normally provided for entries in the ARP cache. (In Section 4.8 we’ll see
that the arp command allows an entry to be placed into the cache by the administrator
that will never time out.) Berkeley-derived implementations normally have a timeout
of 20 minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an
incomplete entry in our previous example where we forced an ARP to a nonexistent
host on the Ethernet.) These implementations normally restart the 20-minute timeout
for an entry each time the entry is used.

The Host Requirements RFC says that this timeout should occur even if the entry is in use, but
most Berkeley-derived implementations do not do this—they restart the timeout each time the
entry is referenced.

Proxy ARP

Proxy ARP lets a router answer ARP requests on one of its networks for a host on
another of its networks. This fools the sender of the ARP request into thinking that the
router is the destination host, when in fact the destination host is ““on the other side” of
the router. The router is acting as a proxy agent for the destination host, relaying pack-
ets to it from other hosts.

An example is the best way to describe proxy ARP. In Figure 3.10 we showed that
the system sun was connected to two Ethernets. But we also noted that this wasn't
really true, if you compare that figure with the one on the inside front cover. There is in
fact a router between sun and the subnet 140.252.1, and this router performs proxy ARP
to make it appear as though sun is actually on the subnet 140.252.1. Figure 4.6 shows

the arrangement, with a Telebit NetBlazer, named netb, between the subnet and the
host sun.
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T 2
< — - A [T _ARPrequestfor140252129 _ ‘
Ethernet, subnet 140.252.1 ’L 1140.252.1.183 ]
. ARP reply ¢ Telebit NetBlazer
netb router configured to act as
proxy ARP agent for sun

EE] A1
modem -1

SLIP| (dialup) 4
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®
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slip bsdi sun svrd {
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i

Ethernet 140.252.13 :

Figure 4.6 Example of proxy ARP.

When some other host on the subnet 140.252.1 (say, gemini) has an IP datagram to ;
send to sun at address 140.252.1.29, gemini compares the network ID (140.252) and 8
subnet ID (1) and since they are equal, issues an ARP request on the top Ethernet in Fig-
ure 4.6 for IP address 140.252.1.29. The router netb recognizes this IP address as one
belonging to one of its dialup hosts, and responds with the hardware address of its
Ethernet interface on the cable 140.252.1. The host gemini sends the IP datagram to
netb across the Ethernet, and netb forwards the datagram to sun across the dialup
SLIP link. This makes it transparent to all the hosts on the 140.252.1 subnet that host
sun is really configured “behind” the router netb.

If we execute the arp command on the host gemini, after communicating with the %
host sun, we see that both IP addresses on the 140.252.1 subnet, netb and sun, map to i
the same hardware address. This is often a clue that proxy ARP is being used. g )

o

gemini % arp -a i
many lines for other hosts on the 140.252.1 subnet i

netb (140.252.1.183) at 0:80:ad:3:6a:80

sun (140.252.1.29) at 0:80:ad:3:6a:80

Another detail in Figure 4.6 that we need to explain is the apparent lack of an IP
address at the bottom of the router netb (the SLIP link). That is, why don’t both ends ‘
of the dialup SLIP link have an IP address, as do both ends of the hardwired SLIP link i
between bsdi and s1lip? We noted in Section 3.8 that the destination address of the E
dialup SLIP link, as shown by the ifconfig command, was 140.252.1.183. The Net- ?
Blazer doesn’t require an IP address for its end of each dialup SLIP link. (Doing so
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4.7

would use up more IP addresses.) Instead, it determines which dialup host is sending it
packets by which serial interface the packet arrives on, so there’s no need for each
dialup host to use a unique IP address for its link to the router. All the dialup hosts use
140.252.1.183 as the destination address for their SLIP link.

Proxy ARP handles the delivery of datagrams to the router sun, but how are the
other hosts on the subnet 140.252.13 handled? Routing must be used to direct data-
grams to the other hosts. Specifically, routing table entries must be made somewhere on
the 140.252 network that point all datagrams destined to either the subnet 140.252.13, or
the specific hosts on that subnet, to the router netb. This router then knows how to get
the datagrams to their final destination, by sending them through the router sun.

Proxy ARP is also called promiscuous ARP or the ARP hack. These names are from
another use of proxy ARP: to hide two physical networks from each other, with a router
between the two. In this case both physical networks can use the same network ID as
long as the router in the middle is configured as a proxy ARP agent to respond to ARP
requests on one network for a host on the other network. This technique has been used
in the past to “hide” a group of hosts with older implementations of TCP/IP on a sepa-
rate physical cable. Two common reasons for separating these older hosts are their
inability to handle subnetting and their use of the older broadcasting address (a host ID
of all zero bits, instead of the current standard of a host ID with all one bits).

Gratuitous ARP

Another feature of ARP that we can watch is called gratuitous ARP. It occurs when a
host sends an ARP request looking for its own IP address. This is usually done when
the interface is configured at bootstrap time.

In our internet, if we bootstrap the host bsdi and run tcpdump on the host sun,
we see the packet shown in Figure 4.7.

1 0.0 0:0:c0:6£:2d:40 ff:ff:ff:ff:ff:ff arp 60:
arp who-has 140.252.13.35 tell 140.252.13.35

Figure 4.7 Example of gratuitous ARP

(We specified the -n flag for tcpdump to print numeric dotted-decimal addresses,
instead of hostnames.) In terms of the fields in the ARP request, the sender’s protocol
address and the target’s protocol address are identical: 140.252.13.35 for host bsdi.
Also, the source address in the Ethernet header, 0:0:c0:6f:2d:40 as shown by
tcpdump, equals the sender’s hardware address (from Figure 4.4).

Gratuitous ARP provides two features.

1. It lets a host determine if another host is already configured with the same IP
address. The host bsdi is not expecting a reply to this request. But if a reply is
received, the error message “duplicate IP address sent from Ethernet address:
ab:c:d:e:f” is logged on the console. This is a warning to the system administra-
tor that one of the systems is misconfigured.
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4.8

4.9

2. If the host sending the gratuitous ARP has just changed its hardware address
(perhaps the host was shut down, the interface card replaced, and then the host
was rebooted), this packet causes any other host on the cable that has an entry
in its cache for the old hardware address to update its ARP cache entry accord-
ingly. A little known fact of the ARP protocol [Plummer 1982] is that if a host
receives an ARP request from an IP address that is already in the receiver’s
cache, then that cache entry is updated with the sender’s hardware address
(e.g., Ethernet address) from the ARP request. This is done for any ARP request
received by the host. (Recall that ARP requests are broadcast, so this is done by
all hosts on the network each time an ARP request is sent.)

[Bhide, Elnozahy, and Morgan 1991] describe an application that can use this
feature of ARP to allow a backup file server to take over from a failed server by
issuing a gratuitous ARP request with the backup’s hardware address and the
failed server’s IP address. This causes all packets destined for the failed server
to be sent to the backup instead, without the client applications being aware that
the original server has failed.

Unfortunately the authors then decided against this approach, since it depends on the
correct implementation of ARP on all types of clients. They obviously encountered client
implementations that did not implement ARP according to its specification.

Monitoring all the systems on the author’s subnet shows that SunOS 4.1.3 and 4 4BSD
both issue gratuitous ARPs when bootstrapping, but SVR4 does not.

arp Command

We’ve used this command with the -a flag to display all the entries in the ARP cache.
Other options are provided.

The superuser can specify the -d option to delete an entry from the ARP cache.
(This was used before running a few of the examples, to let us see the ARP exchange.)

Entries can also be added using the -s option. It requires a hostname and an Ether-
net address: the IP address corresponding to the hostname, and the Ethernet address are
added to the cache. This entry is made permanent (i.e., it won't time out from the
cache) unless the keyword temp appears at the end of the command line.

The keyword pub at the end of a command line with the -s option causes the sys-
tem to act as an ARP agent for that host. The system will answer ARP requests for the
IP address corresponding to the hostname, replying with the specified Ethernet address.
If the advertised address is the system’s own, then this system is acting as a proxy ARP
agent for the specified hostname.

Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally does its
work without the application or the system administrator being aware. The ARP cache

i
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is fundamental to its operation, and we’ve used the arp command to examine and
manipulate the cache. Each entry in the cache has a timer that is used to remove both
incomplete and completed entries. The arp command displays and modifies entries in
the ARP cache.

We followed through the normal operation of ARP along with specialized versions:
proxy ARP (when a router answers ARP requests for hosts accessible on another of the
router’s interfaces) and gratuitous ARP (sending an ARP request for your own IP
address, normally when bootstrapping).

Exercises

41 In the commands we typed to generate the output shown in Figure 4.4 (p. 58), what would
happen if, after verifying that the local ARP cache was empty, we type the command

bsdi % rsh svr4 arp -a

to verify that the ARP cache is also empty on the destination host? (This command causes
the arp —a command to be executed on the host svr4.)

4.2  Describe a test to determine if a given host handles a received gratuitous ARP request
correctly.

4.3 Step 7 in Section 4.2 can take a while (milliseconds) because a packet is sent and ARP then
waits for the response. How do you think ARP handles multiple datagrams that arrive
from IP for the same destination address during this period?

44 At the end of Section 4.5 we mentioned that the Host Requirements RFC and Berkeley-
derived implementations differ in their handling of the timeout of an active ARP entry.
What happens if we're on a Berkeley-derived client and keep trying to contact a server host
that’s been taken down to replace its Ethernet board? Does this change if the server issues a
gratuitous ARP when it bootstraps?
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5.1

5.2

RARP: Reverse Address
Resolution Protocol

{introduction

When a system with a local disk is bootstrapped it normally obtains its IP address from
a configuration file that’s read from a disk file. But a system without a disk, such as an
X terminal or a diskless workstation, needs some other way to obtain its IP address.

Each system on a network has a unique hardware address, assigned by the manu-
facturer of the network interface. The principle of RARP is for the diskless system to
read its unique hardware address from the interface card and send an RARP request (a
broadcast frame on the network) asking for someone to reply with the diskless system’s
IP address (in an RARP reply).

While the concept is simple, the implementation is often harder than ARP for rea-
sons described later in this chapter. The official specification of RARP is RFC 903 [Fin-
layson et al. 1984].

RARP Packet Format

The format of an RARP packet is almost identical to an ARP packet (Figure 4.3, p. 56).
The only differences are that the frame type is 0x8035 for an RARP request or reply, and
the op field has a value of 3 for an RARP request and 4 for an RARP reply.

As with ARF, the RARP request is broadcast and the RARP reply is normally
unicast.

65
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5.3

RARP Examples

In our internet we can force the host sun to bootstrap from the network, instead of its
local disk. If we run an RARP server and tcpdump on the host bsdi we get the output
shown in Figure 5.1. We use the —e flag to have tcpdump print the hardware addresses:

1 0.0 8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42

2 0.13 (0.13) 0:0:c0:6£:2d2:40 8:0:20:3:f6:42 rarp 42:
rarp reply 8:0:20:3:£6:42 at sun

3 0.14 (0.01) 8:0:20:3:f6:42 0:0:c0:6f:2d:40 1p 65:
sun.26999 > bsdi.tftp: 23 RRQ "8CFCOD21.SUN4C"

Figure 5.1 RARP request and reply.

The RARP request is broadcast (line 1) and the RARP reply on line 2 is unicast. The out-
put on line 2, at sun, means the RARP reply contains the [P address for the host sun
(140.252.13.33).

On line 3 we see that once sun receives its IP address, it issues a TFTP read-request
(RRQ) for the file 8CFCOD21 .5UN4C. (TFIP is the Trivial File Transfer Protocol. We
describe it in more detail in Chapter 15.) The eight hexadecimal digits in the filename
are the hex representation of the IP address 140.252.13.33 for the host sun. This is the IP
address that was returned in the RARP reply. The remainder of the filename, SUN4C,
indicates the type of system being bootstrapped.

tcpdump says that line 3 is an IP datagram of length 65, and not a UDP datagram
(which it really is), because we are running tcpdump with the —e flag, to see the hard-
ware-level addresses. Another point to notice in Figure 5.1 is that the length of the
Ethernet frame on line 2 appears to be shorter than the minimum (which we said was 60
bytes in Section 4.5.) The reason is that we are running t cpdump on the system that is
sending this Ethernet frame (bsdi). The application, rarpd, writes 42 bytes to the BSD
Packet Filter device (14 bytes for the Ethernet header and 28 bytes for the RARP reply)
and this is what t cpdump receives a copy of. But the Ethernet device driver pads this
short frame to the minimum size for transmission (60). Had we been running t cpdump
on another system, the length would have been 60.

We can see in this example that when this diskless system receives its IP address in
an RARP reply, it issues a TFTP request to read a bootstrap image. At this point we
won’t go into additional detail about how diskless systems bootstrap themselves.
(Chapter 16 describes the bootstrap sequence of a diskless X terminal using RARP,
BOOTP, and TFTP)

Figure 5.2 shows the resulting packets if there is no RARP server on the network.
The destination address of each packet is the Ethernet broadcast address. The Ethernet
address following who-is is the target hardware address, and the Ethernet address fol-
lowing tell is the sender’s hardware address.

Note the frequency of the retransmissions. The first retransmission occurs after 6.55
seconds and then increases to 42.80 seconds, then goes down to 5.34 seconds, then 6.55,
and then works its way back to 42.79 seconds. This continues indefinitely. If we
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54

8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42
8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
8:0:20:3:f£6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42

3 15.52 ( 8.97)
4 29.32 (13.80)
5 52.78 (23.46)
6 95.58 (42.80)
7 100.92 ( 5.34)
8 107.47 ( 6.55)
9 116.44 ( 8.97)
10 130.24 (13.80)
11 153.70 (23.46)

12 196.49 (42.79)

Figure 5.2 RARP requests with no RARP server on the network.

calculate the differences between each timeout interval we see a doubling effect: from
5.34 to 6.55 is 1.21 seconds, from 6.55 to 8.97 is 2.42 seconds, from 8.97 to 13.80 is 4.83
seconds, and so on. When the timeout interval reaches some limit (greater than 42.80
seconds) it’s reset to 5.34 seconds.

Increasing the timeout value like this is a better approach than using the same value
each time. In Figure 6.8 we’ll see one wrong way to perform timeout and retransmis-
sion, and in Chapter 21 we'll see TCP’s method.

RARP Server Design

While the concept of RARP is simple, the design of an RARP server is system depen-
dent and complex. Conversely, providing an ARP server is simple, and is normally part
of the TCP/IP implementation in the kernel. Since the kernel knows its IP addresses
and hardware addresses, when it receives an ARP request for one of its IP addresses, it
just replies with the corresponding hardware address.

RARP Servers as User Processes

The complication with an RARP server is that the server normally provides the map-
ping from a hardware address to an IP address for many hosts (all the diskless systems
on the network). This mapping is contained in a disk file (normally /etc/ethers on
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Unix systems). Since kernels normally don’t read and parse disk files, the function of an
RARP server is provided as a user process, not as part of the kernel’'s TCP/IP
implementation.

To further complicate matters, RARP requests are transmitted as Ethernet frames
with a specific Ethernet frame type field (0x8035 from Figure 2.1.) This means an
RARP server must have some way of sending and receiving Ethernet frames of this
type. In Appendix A we describe how the BSD Packet Filter, Sun’s Network Interface
Tap, and the SVR4 Data Link Provider Interface can be used to receive these frames.
Since the sending and receiving of these frames is system dependent, the implementa-
tion of an RARP server is tied to the system.

Multiple RARP Servers per Network

5.5

Another complication is that RARP requests are sent as hardware-level broadcasts, as
shown in Figure 5.2. This means they are not forwarded by routers. To allow diskless
systems to bootstrap even when the RARP server host is down, multiple RARP servers
are normally provided on a single network (e.g., a single cable).

As the number of servers increases (to provide redundancy), the network traffic
increases, since every server sends an RARP reply for every RARP request. The diskless
system that sent the RARP request normally uses the first RARP reply that it receives.
(We never had this problem with ARP, because only a single host sends an ARP reply.)
Furthermore, there is a chance that each RARP server can try to respond at about the
same time, increasing the probability of collisions on an Ethernet.

Summary

RARP is used by many diskless systems to obtain their IP address when bootstrapped.
The RARP packet format is nearly identical to the ARP packet. An RARP request is
broadcast, identifying the sender’s hardware address, asking for anyone to respond
with the sender’s IP address. The reply is normally unicast.

Problems with RARP include its use of a link-layer broadcast, preventing most
routers from forwarding an RARP request, and the minimal information returned: just
the system’s IP address. In Chapter 16 we’ll see that BOOTP returns more information
for the diskless system that is bootstrapping: its IP address, the name of a host to boot-
strap from, and so on.

While the RARP concept is simple, the implementation of an RARP server is system
dependent. Hence not all TCP/IP implementations provide an RARP server.

Exercises
51 Isaseparate frame type field required for RARP? Could the same value be used for ARP and
RARP 0x08067?

5.2 With multiple RARP servers on a network, how can they prevent their responses from col-
liding with each on the network?
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6.1

ICMP: Internet Control
Message Protocol

introduction

ICMP is often considered part of the IP layer. It communicates error messages and
other conditions that require attention. ICMP messages are usually acted on by either
the IP layer or the higher layer protocol (TCP or UDP). Some ICMP messages cause
errors to be returned to user processes.

ICMP messages are transmitted within IP datagrams, as shown in Figure 6.1.

lee »
- IP datagram >
P
header ICMP message
20 bytes

Figure 6.1 ICMP messages encapsulated within an IP datagram.

RFC 792 [Postel 1981b}] contains the official specification of ICMP.

Figure 6.2 shows the format of an ICMP message. The first 4 bytes have the same
format for all messages, but the remainder differs from one message to the next. We’ll
show the exact format of each message when we describe it.

There are 15 different values for the type field, which identify the particular ICMP

message. Some types of ICMP messages then use different values of the code field to
further specify the condition.

The checksum field covers the entire ICMP message. The algorithm used is the same

as we described for the IP header checksum in Section 3.2. The ICMP checksum is
required.

69
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6.2

0 7 8 15 16 31

8-bit type 8-bit code 16-bit checksum

Z (contents depends on type and code) /

Figure 6.2 ICMP message.

In this chapter we talk about ICMP messages in general and a few in detail: address
mask request and reply, timestamp request and reply, and port unreachable. We discuss
the echo request and reply messages in detail with the Ping program in Chapter 7, and
we discuss the ICMP messages dealing with IP routing in Chapter 9.

ICMP Message Types

Figure 6.3 lists the different ICMP message types, as determined by the type field and
code field in the ICMP message.

The final two columns in this figure specify whether the ICMP message is a query
message or an error message. We need to make this distinction because ICMP error
messages are sometimes handled specially. For example, an ICMP error message is
never generated in response to an ICMP error message. (If this were not the rule, we
could end up with scenarios where an error generates an error, which generates an
error, and so on, indefinitely.)

When an ICMP error message is sent, the message always contains the IP header
and the first 8 bytes of the IP datagram that caused the ICMP error to be generated.
This lets the receiving ICMP module associate the message with one particular protocol
(TCP or UDP from the protocol field in the IP header) and one particular user process
(from the TCP or UDP port numbers that are in the TCP or UDP header contained in the
first 8 bytes of the IP datagram). We’ll show an example of this in Section 6.5.

An ICMP error message is never generated in response to

1. An ICMP error message. (An ICMP error message may, however, be generated
in response to an ICMP query message.)

2. A datagram destined to an IP broadcast address (Figure 3.9) or an IP multicast
address (a class D address, Figure 1.5).

A datagram sent as a link-layer broadcast.

4. A fragment other than the first. (We describe fragmentation in Section 11.5.)
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type

code

Description

Query | Error

0

0

echo reply (Ping reply, Chapter 7)

3

RN W= O

= e
T W N = OO

destination unreachable:
network unreachable (Section 9.3)
host unreachable (Section 9.3)
protocol unreachable
port unreachable (Section 6.5)
fragmentation needed but don’t-fragment bit set (Section 11.6)
source route failed (Section 8.5)
destination network unknown
destination host unknown
source host isolated (obsolete)
destination network administratively prohibited
destination host administratively prohibited
network unreachable for TOS (Section 9.3)
host unreachable for TOS (Section 9.3)
communication administratively prohibited by filtering
host precedence violation
precedence cutoff in effect

<

source quench (elementary flow control, Section 11.11)

redirect (Section 9.5).
redirect for network
redirect for host
redirect for type-of-service and network
redirect for type-of-service and host

echo request (Ping request, Chapter 7)

10

OO W N~ O

router advertisement (Section 9.6)
router solicitation (Section 9.6)

1

time exceeded.
time-to-live equals O during transit (Traceroute, Chapter 8)
time-to-live equals 0 during reassembly (Section 11.5)

12

13
14

parameter problem:
IP header bad (catchall error)
required option missing

timestamp request (Section 6.4)
timestamp reply (Section 6.4)

15
16

information request (obsolete)
mformation reply (obsolete)

17
18

(=N o] NoNolRe el =

address mask request (Section 6.3)
address mask reply (Section 6.3)

Figure 6.3 ICMP message types.

5. A datagram whose source address does not define a single host. This means the
source address cannot be a zero address, a loopback address, a broadcast
address, or a multicast address.

These rules are meant to prevent the broadcast storms that have occurred in the past
when ICMP errors were sent in response to broadcast packets.
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6.3

ICMP Address Mask Request and Reply

The ICMP address mask request is intended for a diskless system to obtain its subnet
mask (Section 3.5) at bootstrap time. The requesting system broadcasts its JICMP
request. (This is similar to a diskless system using RARP to obtain its IP address at
bootstrap time.) An alternative method for a diskless system to obtain its subnet mask
is the BOOTP protocol, which we describe in Chapter 16. Figure 6.4 shows the format
of the ICMP address mask request and reply messages.

0 78 15 16 31

type (17 or 18) code (0) checksum

1dentifier sequence number 12 bytes

32-bit subnet mask

Figure 6.4 ICMP address mask request and reply messages.

The identifier and sequence number fields in the ICMP message can be set to anything
the sender chooses, and these values are returned in the reply. This allows the sender to
match replies with requests.

We can write a simple program (named icmpaddrmask) that issues an ICMP
address mask request and prints all replies. Since normal usage is to send the request to
the broadcast address, that's what we’ll do. The destination address (140.252.13.63) is
the broadcast address for the subnet 140.252.13.32 (Figure 3.12).

sun % icmpaddrmask 140.252.13.63

received mask = ffffffe0, from 140.252.13.33 from ourself
received mask = ffffffe0, from 140.252.13.35 frombsdi
received mask = ffff0000, from 140.252.13.34 ﬁﬂﬂlsvr4

The first thing we note in this output is that the returned value from svr4 is wrong. It

appears that SVR4 is returning the general class B address mask, assuming no subnets,

even though the interface on svr4 has been configured with the correct subnet mask:
svr4d % ifconfig emd0

emd0: flags=23<UP,BROADCAST, NOTRAILERS>
inet 140.252.13.34 netmask ffffffel broadcast 140.252.13.63

There is a bug in the SVR4 handling of the ICMP address mask request.
We'll watch this exchange on the host bsdi using tcpdump. The output is shown
in Figure 6.5. We specify the —e option to see the hardware addresses.
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1 0.0 8:0:20:3:£6:42 ff:ff:ff:ff:££:ff 1p 60:

sun > 140.252.13.63: icmp: address mask regquest
2 0.00 (0.00) 0:0:c0:6f£:2d:40 ff:ff:ff:ff:££:£f ip 46:

bsdi > sun: icmp: address mask 1s Oxffffffel

3 0.01 (0.01) 0:0:c0:c2:9b:26 8:0:20:3:£6:42 1p 60:
svr4 > sun: icmp: address mask is Oxffff0000

Figure 6.5 [ICMP address mask request sent to broadcast address.

Note that the sending host, sun, receives an ICMP reply (the output line with the com-
ment from ourself shown earlier), even though nothing is seen on the wire. This is a gen-
eral characteristic of broadcasting: the sending host receives a copy of the broadcast
packet through some internal loopback mechanism. Since by definition the term
“broadcast” means all the hosts on the local network, it should include the sending host.
(Referring to Figure 2.4 [p. 28] what is happening is that when the Ethernet driver rec-
ognizes that the destination address is the broadcast address, the packet is sent onto the
network and a copy is made and passed to the loopback interface.)

Next, bsdi broadcasts the reply, while svr4 sends the reply only to the requestor.
Normally the reply should be unicast unless the source IP address of the request is

0.0.0.0, which it isn’t in this example. Therefore, sending the reply to the broadcast
address is a BSD/386 bug.

The Host Requirements RFC says that a system must not send an address mask reply unless 1t
1s an authoritative agent for address masks. (To be an authoritative agent it must be specifi-
cally configured to send these replies. See Appendix E.) As we can see from this example,

however, most host implementations send a reply if they get a request. Some hosts even send
the wrong reply!

The final point is shown by the following example. We send an address mask
request to our own IP address and to the loopback address:

sun % icmpaddrmask sun
received mask = ££f000000, from 140.252.13.33

sun % icmpaddrmask localhost
received mask = f£f000000, from 127.0.0.1

In both cases the returned address mask corresponds to the loopback address, the
class A address 127.0.0.1. Again, referring to Figure 2.4 we see that [P datagrams sent to
the host’s own IP address (140.252.13.33 in this example) are actually sent to the loop-
back interface. The ICMP address mask reply must correspond to the subnet mask of
the interface on which the request was received (since a multihomed host can have dif-
ferent subnet masks for each interface), and in both cases the request is received from
the loopback interface.
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6.4

ICMP Timestamp Request and Reply

The ICMP timestamp request allows a system to query another for the current time.
The recommended value to be returned is the number of milliseconds since midnight,
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean
Time.) The nice feature of this ICMP message is that it provides millisecond resolution,
whereas some other methods for obtaining the time from another host (such as the
rdate command provided by some Unix systems) provide a resolution of seconds. The
drawback is that only the time since mldmght is returned—the caller must know the
date from some other means.
Figure 6.6 shows the formal of the ICMP timestamp request and reply messages.

78 15 16 31

0
—
type (13 or 14) code (0) checksum

]

identifier sequence number

32-bit onginate timestamp 20 bytes

32-but receive timestamp

32-bit transmit hmestamp

Figure 6.6 ICMP timestamp request and reply messages.

The requestor fills in the originate timestamp and sends the request. The replying sys-
tem fills in the receive timestamp when it receives the request, and the fransmit time-
stamp when it sends the reply. In actuality, however, most implementations set the
latter two fields to the same value. (The reason for providing the three fields is to let the
sender compute the time for the request to be sent, and separately compute the time for
the reply to be sent.)

Examples

We can write a simple program (named icmptime) that sends an ICMP timestamp
request to a host and prints the returned reply. We try it first on our small internet:

sun % icmptime bsdi

orig = 83573336, recv = 83573330, xmitv = 83573330, rtt = 2 ms
difference = -6 ms

sun % icmptime bsdi

orig = 83577987, recv = 83577980, xmit = 83577980, rtt = 2 ms
difference = -7 ms
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The program prints the three timestamps in the ICMP message: the originate (orig),
receive (recv), and transmit (xmit) timestamps. As we can see in this and the follow-
ing examples, all the hosts set the receive and transmit timestamps to the same value.
We also calculate the round-trip time (rtt), which is the time the reply is received
minus the time the request was sent. The difference is the received timestamp
minus the originate timestamp. Figure 6.7 shows the relationship between these values.

ongmate recerved transmuit
| request ] ] reply
i gl

’<7 RTT ”>‘

Figure 6.7 Relattonship between values printed by our 1cmpt 1me program.

X

If we believe the RTT and assume that one-half of the RTT is for the request, and the
other half for the reply, then the sender’s clock needs to be adjusted by difference
minus one-half the RTT, to have the same time as the host being queried. In the preced-
ing example, the clock on bsd1 was 7 and 8 ms behind the clock on sun.

Since the timestamp values are the number of milliseconds past midnight, UTC,
they should always be less than 86,400,000 (24 x 60 x 60 x 1000). These examples were
run just before 4:00 PM in a time zone that is 7 hours behind UTC, so the values being
greater than 82,800,000 (2300 hours) makes sense.

If we run this program several times to the host bsdi we see that the final digit in
the receive and transmit timestamp is always 0. This is because the software release
(Version 0.9.4) only provides a 10-ms clock. (We describe this in Appendix B.)

If we run the program twice to the host svr4 we see that the low-order three digits
of the SVR4 timestamp are always 0:

2

sun % icmptime svr4

orig = 83588210, recv = 83588000, xmit = 83588000, rtt = 4 ms
difference = -210 ms
sun % icmptime svr4
orig = 83591547, recv = 83591000, xmit = 83591000, rtt = 4 ms

difference = -547 ms

For some reason SVR4 doesn’t provide any millisecond resolution using the ICMP time-
stamp. This imprecision makes the calculated differences useless for subsecond adjust-
ments.

If we try two other hosts on the 140.252.1 subnet, the results show that one clock
differs from sun’s by 3.7 seconds, and the other by nearly 75 seconds:

o

sun % icmptime gemini
orig = 83601883, recv = 83598140, xmit
difference = -3743 ms

i

83598140, rtt = 247 ms
sun % icmptime aix

orig = 83606768, recv = 83532183, xmit = 83532183, rtt = 253 ms
difference = -74585 ms
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Another interesting example is to the router gateway (a Cisco router). It shows
that when a system returns a nonstandard timestamp value (something other than mil-
liseconds past midnight, UTC), it is supposed to turn on the high-order bit of the 32-bit
timestamp. Our program detects this, and prints the receive and transmit timestamps
in angle brackets (after turning off the high-order bit). Also, we can’t calculate the dif-
ference between the originate and receive timestamps, since they’re not the same units.

sun % icmptime gateway

orig = 83620811, recv = <4871036>, xmit = <4871036>, rtt = 220 ms

sun % icmptime gateway
orig = 83641007, recv = <4891232>, xmit = <4891232>, rtt = 213 ms

If we run our program to this host a few times it becomes obvious that the values do
contain millisecond resolution and do count the number of milliseconds past some
starting point, but the starting point is not midnight, UTC. (It could be a counter that’s
incremented every millisecond since the router was bootstrapped, for example.)

As a final example we’ll compare sun’s clock with a system whose clock is known
to be accurate—an NTP stratum 1 server. (We say more about NTP, the Network Time
Protocol, below.)

sun % icmptime clock.llnl.gov
orig = 83662791, recv = 83662919, xmit = 83662919, rtt = 359 ms
difference = 128 ms

sun % icmptime clock.llnl.gov
orig = 83670425, recv = 83670559, xmit = 83670559, rtt = 345 ms
difference = 134 ms

If we calculate the difference minus one-half the RTT, this output indicates that the clock
on sun is between 38.5 and 51.5 ms fast.

Alternatives

There are other ways to obtain the time and date.

1. We described the daytime service and time service in Section 1.12. The former
returns the current time and date in a human readable form, a line of ASCII
characters. We can test this service using the telnet command:

sun % telnet bsdi daytime
Trying 140.252.13.35 ...
Connected to bsdi.

Escape character is '"]’. first three lines output are from the Telnet client
Wed Feb 3 16:38:33 1993 here’s the daytime service output
Connection closed by foreign host. this is also from the Telnet client

The time server, on the other hand, returns a 32-bit binary value with the num-
ber of seconds since midnight January 1, 1900, UTC. While this provides the
date, the time value is in units of a second. (The rdate command that we men-
tioned earlier uses the TCP time service.)
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2. Serious timekeepers use the Network Time Protocol (NTP) described in
RFC 1305 [Mills 1992]. This protocol uses sophisticated techniques to maintain
the clocks for a group of systems on a LAN or WAN to within millisecond accu-

racy. Anyone interested in precise timekeeping on computers should read this
RFC.

3. The Open Software Foundation’s (OSF) Distributed Computing Environment
(DCE) defines a Distributed Time Service (DTS) that also provides clock syn-
chronization between computers. [Rosenberg, Kenney, and Fisher 1992] provide
additional details on this service.

4. Berkeley Unix systems provide the daemon timed(8) to synchronize the clocks
of systems on a local area network. Unlike NTP and DTS, t imed does not work
across wide area networks.

ICMP Port Unreachable Error

The last two sections looked at ICMP query messages—the address mask and time-
stamp queries and replies. We'll now examine an ICMP error message, the port
unreachable message, a subcode of the ICMP destination unreachable message, to see
the additional information returned in’an ICMP error message. We'll watch this using
UDP (Chapter 11).

One rule of UDP is that if it receives a UDP datagram and the destination port does
not correspond to a port that some process has in use, UDP responds with an ICMP port
unreachable. We can force a port unreachable using the TFIP client. (We describe TFTP
in Chapter 15.)

The well-known UDP port for the TFIP server to be reading from is 69. But most
TETP client programs allow us to specify a different port using the connect command.
We use this to specify a port of 8888:

bsdyr % tftp

tftp> connect svr4 8888 specify the hostname and port number
tftp> get temp.foo try to fetch a file

Transfer timed out. about 25 seconds later

tftp> quit

The connect command saves the name of the host to contact and the port number on
that host, for when we later issue the get command. After typing the get command a
UDP datagram is sent to port 8888 on host svr4. Figure 6.8 shows the t cpdump output
for the exchange of packets that takes place.

Before the UDP datagram can be sent to svr4 an ARP request is sent to determine
its hardware address (line 1). The ARP reply (line 2) is returned and then the UDP data-
gram is sent (line 3). (We have left the ARP request-reply in this tcpdump output to
remind us that this exchange may be required before the first IP datagram is sent from
one host to the other. In future output we'll delete this exchange if it’s not relevant to
the topic being discussed.)
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.0 arp who-has svr4 tell bsdi
.002050 (0.0020) arp reply svr4 is-at 0:0:c0:c2:90:26

.002723 (0.0007) bsdi.2%24 > svr4.8888: udp 20
.006399 (0.0037) svr4 > bsdi: icmp: svrd udp port 8888 unreachable

w o o o O

.000776 (4.9944) bsdi.2924 > svrd.8888: udp 20
5.004304 (0.0035) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

10.000887 (4.9966) bsdi1.2924 > svrd4.8888: udp 20
10.004416 (0.0035) svrd4 > bsdi: icmp: svr4 udp port 8888 unreachable

N U AW N

9 15.001014 (4.9966) bsdi.2924 > svr4.8888: udp 20
10 15.004574 (0.0036) svrd > bsdi: icmp: svrd udp port 8888 unreachable

11  20.001177 (4.9966) bsd1.2924 > svr4.8888: udp 20
12 20.004759 (0.0036) svr4 > bsdi: icmp: svrd4 udp port 8888 unreachable

Figure 6.8 ICMP port unreachable generated by TFTP request.

An ICMP port unreachable is immediately returned (line 4). But the TFTP client
appears to ignore the ICMP message, sending another UDP datagram about 5 seconds
later (line 5). This continues three more times before the client gives up.

Notice that the ICMP messages are exchanged between hosts, without a port num-
ber designation, while each 20-byte UDP datagram is from a specific port (2924) and to
a specific port (8888).

The number 20 at the end of each UDP line is the length of the data in the UDP
datagram. In this example 20 is the sum of the TFTP’s 2-byte opcode, the 9-byte null
terminated name temp. foo, and the 9-byte null terminated string netascii. (See
Figure 15.1 for the details of the TFTP packet layout.)

If we run this same example using the —e option of tcpdump we see the exact
length of each ICMP port unreachable message that’s returned to the sender. This
length is 70 bytes, and is allocated as shown in Figure 6.9.

|
r IP datagram —»{
‘4——&‘ ICMP message ,“_“,{
}4— data portion of ICMP message —»‘

Ethernet P ICMP IP header of datagram UDP
header header header that generated error header
14 bytes 20 bytes 8 bytes 20 bytes 8 bytes

Figure 6.9 ICMP message returned for our “UDP port unreachable” example.
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One rule of ICMP is that the ICMP error messages (see the final column of Fig-
ure 6.3, p. 71) must include the IP header (including any options) of the datagram that
generated the error along with at least the first 8 bytes that followed this IP header. In
our example, the first 8 bytes following the IP header contain the UDP header (Fig-
ure 11.2).

The important fact is that contained in the UDP header are the source and destina-
| tion port numbers. It is this destination port number (8888) that caused the ICMP port

unreachable to be generated. The source port number (2924) can be used by the system
receiving the ICMP error to associate the error with a particular user process (the TFTP
client in this example).
s One reason the IP header of the datagram that caused the error is sent back is
because in this IP header is the protocol field that lets ICMP know how to interpret the 8
bytes that follow (the UDP header in this example). When we look at the TCP header
‘ (Figure 17.2) we'll see that the source and destination port numbers are contained in the
first 8 bytes of the TCP header.
The general format of the ICMP unreachable messages is shown in Figure 6.10.

0 78 15 16 31
type (3) code (0~15) checksum T
8 bytes
Unused (must be 0)
| l
/ IP header (including options) + first 8 bytes of original IP datagram data /
I

Figure 6.10 ICMP unreachable message.

In Figure 6.3 we noted that there are 16 different ICMP unreachable messages, codes ()
through 15. The ICMP port unreachable is code 3. Also, although Figure 6.10 indicates
that the second 32-bit word in the ICMP message must be 0, the Path MTU Discovery
mechanism (Section 2.9) allows a router to place the MTU of the outgoing interface in
the Jow-order 16 bits of this 32-bit value, when code equals 4 (“fragmentation needed
but the don’t fragment bit is set”). We show an example of this error in Section 11.6.

Although the rules of ICMP allow a system to return more than the first 8 bytes of the data
portion of the IP datagram that caused the ICMP error, most Berkeley-derived implementa-
tions return exactly 8 bytes. The Solaris 2.2 ip_icmp_return_data_bytes option returns
the first 64 bytes of data by default (Section E.4).
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tcpdunp Time Line

0.0

0.002050 20‘0020;
0.002723 (0.0007

0.006399 (0.0037)
5.000776 (4.9944)

5.004304 (0.0035)

10.000887 (4.9966)

10.004416 (0.0035)

15.001014 (4.9966)

15.004574 (0.0036)

20.001177 (4.9966)

20.004759 (0.0036)

bsdi.2924

Throughout the text we’ll also display the tcpdump output in a time line diagram as
shown in Figure 6.11.

_ar -
P Who-has svryq tell bsdj
P Who-h; T
’ o 26
-at 00:c0:c29020 |

i
udp 20 bytes

88 unreachable

|CMP: svré udp port 8

udp 20 bytes

udp port 3888 unreachable

1CMP: svrd

udp 20 bytes

eachable

{CMP: svrd udp port 8888 unr

udp 20 bytes

ICMP: svréd udp port 8888 anreachable
- ’__’____/kA Y e

udp 20 bytes

ble

4 udp port 8888 unreacha
vrd udp pOT o A

JCMP: svr

Figure 6.11 Time line of TFTP request to an invalid port.

svr4.8888
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Time increases down the page and the labels on the far left of the figure are the
same time values as in our tcpdump output (Figure 6.8). The labels at the top are the
hostnames and port numbers for each side of the time line. Be aware that the y-axis
down the page is not exactly proportional to the time value. When there is a significant
time lag, as between each 5-second retransmission in this example, we’ll designate that
with a squiggle on both sides of the time line. When UDP or TCP data is being trans-
mitted, we show that packet with a thicker line.

Why does the TFTP client keep retransmitting its request when the ICMP messages
are being returned? An element of network programming is occurring in which BSD
systems don’t notify user processes using UDP of ICMP messages that are received for
that socket unless the process has issued a connect on that socket. The standard BSD
TFTP client does not issue the connect, so it never receives the ICMP error notification.

Another point to notice here is the poor retransmission timeout algorithm used by
this TFTP client. It just assumes that 5 seconds is adequate and retransmits every 5 sec-
onds, for a total of 25 seconds. We’ll see later that TCP has a much better algorithm.

This old-fashioned timeout and retransmission algorithm used by the TFTP client is forbidden
by the Host Requirements RFC. Nevertheless, all three systems on the author’s subnet, and
Solaris 2.2 still use 1t AIX 3.2 2 applies an exponential backoff to its tmeout, sending packets
at 0, 5, 15, and 35 seconds, which 1s the recommended way. We talk much more about time-
outs in Chapter 21.

Finally note that the ICMP messages are returned about 3.5 ms after the UDP data-
gram is sent, which we’ll see in Chapter 7 is similar to the round-trip times for Ping
replies.

4.4BSD Processing of ICMP Messages

Since ICMP covers such a wide range of conditions, from fatal errors to informational
messages, each ICMP message is handled differently, even within a given implementa-
tion. Figure 6.12 is a redo of Figure 6.3, showing the handling performed by 4.4BSD for
each of the possible ICMP messages.

If the final column specifies the kernel, that ICMP message is handled by the kernel.
If the final column specifies “user process”, then that message is passed to all user pro-
cesses that have registered with the kernel to read received ICMP messages. If there are
none of these user processes, the message is silently discarded. (These user processes
also receive a copy of all the other ICMP messages, even those handled by the kernel,
but only after the kernel has processed the message.) Some messages are completely
ignored. Finally, if the final column is a string in quotes, that is the Unix error message
corresponding to that condition. Some of these errors, such as TCP’s handling of a
source quench, we'll cover in later chapters.
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. H
1
[type  code Description Handled by '
0 0  echo reply user process ’
3 destination unreachable:
0 network unreachable “No route to host”
1 host unreachable “No route to host”
2 protocol unreachable “Connection refused”
3 port unreachable “Connection refused”
4 fragmentation needed but DF bit set "Message too long”
5 source route failed “No route to host”
6 destination network unknown “No route to host”
7 destination host unknown “No route to host”
8 source host isolated (obsolete) “No route to host”
9 dest. network administratively prohibited “No route to host”
i 10 dest. host administratively prohibited “No route to host”
11 network unreachable for TOS “No route to host”
i 12 host unreachable for TOS ”No route to host”
: 13 communication administratively prohibited | (1gnored)
i 14 host precedence violation (ignored)
15 precedence cutoff in effect (1gnored)
4 0  source quench kernel for TCP, ignored by UDPJ
: 5 redirect:
: 0 redirect for network kernel updates routing table
1 redirect for host kernel updates routing table
: 2 redirect for type-of-service and network kernel updates routing table
i 3 redirect for type-of-service and host kernel updates routing table N
B 8 0 echorequest  kernel generates reply
9 0 router advertisement user process
; 10 0  router solicitation user process
) 11 time exceeded:
1 0 TTL equals 0 during transit uSer process
i 1 TTL equals 0 during reassembly user process
| 12 parameter problem:
! 0 IP header bad (catchall error) “Protocol not available”
: 1 required option missing “Protocol not available”
; 13 0 timestamp request kernel generates reply
14 0  timestamp reply user process
! 15 0 information request (obsolete) (ignored)
| 16 0  information reply (obsolete) user process
§! / 17 0 address mask request kernel generates reply
: 18 0  address mask reply user process
i
P Figure 6.12 Handling of the ICMP message types by 4.4BSD.
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6.7

Summary

This chapter has been a Jook at the Internet Control Message Protocol, a required part of
every implementation. Figure 6.3 lists all the ICMP message types, most of which we'll
discuss later in the text.

We looked at the ICMP address mask request and reply and the timestamp request
and reply in detail. These are typical of the request-reply messages. Both have an iden-
tifier and sequence number in the ICMP message. The sending application stores a
unique value in the identifier field, to distinguish between replies for itself and replies
for other processes. The sequence number field lets the client match replies with
requests.

We also saw the ICMP port unreachable error, a common ICMP error. This let us
examine the information returned in an ICMP error: the IP header and the next 8 bytes
of the IP datagram that caused the error. This information is required by the receiver of
the ICMP error, to know more about the cause of the error. Both TCP and UDP store the
source and destination port numbers in the first 8 bytes of their headers for this reason.

Finally, we presented our first time line of tcpdump output, a presentation format

we’ll use in later chapters.

Exercises

6.1 At the end of Section 6.2 we listed five special conditions under which an ICMP error mes-
sage is not sent. What would happen if these five conditions weren't followed and we sent
a broadcast UDP datagram to an unlikely port on the local cable?

6.2 Read the Host Requirements RFC [Braden 1989a] to see if the generation of an ICMP port
unreachable is a “must,” “should,” or “may.” What section and page is this found on?

6.3 Read RFC 1349 [Almquist 1992] to see how the IP type-of-service field (Figure 3.2) should
be set by ICMP.

6.4 If your system provides the netstat command, use it to see what types of ICMP messages

are received and sent.
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7.2

Ping Program

Introduction

The name “ping” is taken from the sonar operation to locate objects. The Ping program
was written by Mike Muuss and it tests whether another host is reachable. The pro-
gram sends an ICMP echo request message to a host, expecting an ICMP echo reply to
be returned. (Figure 6.3 lists all the ICMP message types.)

Normally if you can’t Ping a host, you won’t be able to Telnet or FTP to that host.
Conversely, if you can’t Telnet to a host, Ping is often the starting point to determine
what the problem is. Ping also measures the round-trip time to the host, giving us some
indication of how “far away” that host is.

In this chapter we’ll use Ping as a diagnostic tool and to further explore ICMP. Ping
also gives us an opportunity to examine the IP record route and timestamp options.
Chapter 11 of [Stevens 1990] provides the source code for the Ping program.

Years ago we could make the unqualified statement that if we can’t Ping a host, we can’t Telnet
or FTP to that host. With the increased awareness of security on the Internet, routers that pro-
vide access control lists, and firewall gateways, unqualified statements like this are no longer
true. Reachability of a given host may depend not only on reachability at the IP layer, but also
on what protocol is being used, and the port numbers involved. Ping may show a host as
being unreachable, yet we might be able to Telnet to port 25 (the mail server).

Ping Program

We call the ping program that sends the echo requests the client, and the host being
pinged the server. Most TCP/IP implementations support the Ping server directly in the
kernel—the server is not a user process. (The two ICMP query services that we
described in Chapter 6, the address mask and timestamp requests, are also handled
directly by the kernel.)

85
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Figure 7.1 shows the ICMP echo request and echo reply messages.

0 78 15 16 31
type (0 or 8) code (0) checksum
8 bytes
identifier sequence number i
Z optional data /

Figure 7.1 Format of ICMP message for echo request and echo reply.

As with other ICMP query messages, the server must echo the identifier and sequence
number fields. Also, any optional data sent by the client must be echoed. These are pre-
sumably of interest to the client.

Unix implementations of ping set the identifier field in the ICMP message to the
process ID of the sending process. This allows ping to identify the returned responses
if there are multiple instances of ping running at the same time on the same host.

The sequence number starts at 0 and is incremented every time a new echo request is
sent. ping prints the sequence number of each returned packet, allowing us to see if
packets are missing, reordered, or duplicated. IP is a best effort datagram delivery ser-
vice, so any of these three conditions can occur.

Historically the ping program has operated in a mode where it sends an echo
request once a second, printing each echo reply that is returned. Newer implementa-
tions, however, require the -s option to operate this way. By default, these newer
implementations send only a single echo request and output “host is alive” if an echo
reply is received, or “no answer” if no reply is received within 20 seconds.

LAN Output

ping output on a LAN normally looks like the following:

bsdi % ping svr4

PING svr4 (140.252.13.34): 56 data bytes

64 bytes from 140.252.13.34: 1cmp_seq=0 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seg=1 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=2 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp seqg=3 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seg=4 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=5 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=6 ttl=255 time=0 ms
64 bytes from 140.252.13.34: 1cmp_seqg=7 ttl=255 time=0 ms
"? type interrupt key to stop
——- svrd ping statistics -—-

8 packets transmitted, 8 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
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When the ICMP echo reply is returned, the sequence number is printed, followed by the
TTL, and the round-trip time is calculated. (TTL is the time-to-live field in the IP
header. The current BSD ping program prints the received TTL each time an echo
reply is received—some implementations don’t do this. We examine the usage of the
TTL in Chapter 8 with the traceroute program.)

As we can see from the output above, the echo replies were returned in the order
sent (0, 1, 2, and so on).

ping is able to calculate the round-trip time by storing the time at which it sends
the echo request in the data portion of the ICMP message. When the reply is returned it
subtracts this value from the current time. Notice that on the sending system, bsdi, the
round-trip times are all calculated as 0 ms. This is because of the low-resolution timer
available to the program. The BSD/386 Version 0.9.4 system only provides a 10-ms
timer. (We talk more about this in Appendix B.) We’ll see later that when looking at the
tcpdump output from this ping example on a system with a finer resolution clock (the
Sun) the time difference between the ICMP echo request and its echo reply is just under
4 ms.

The first line of output contains the IP address of the destination host, even though
we specified its name (svr4). This implies that the name has been converted to the IP
address by a resolver. We examine resolvers and the DNS in Chapter 14. For now real-
ize that if we type a ping command, and a few seconds pass before the first line of out-
put with the IP address is printed, this is the time required for the DNS to determine the
IP address corresponding to the hostname.

Figure 7.2 shows the t cpdump output for this example.

1 0.0 bsdi > svr4: icmp: echo request
2 0.003733 (0.0037) svrd > bsdi: icmp: echo reply
3 0.998045 (0.9943) bsdi > svr4: icmp: echo request
4 1.001747 (0.0037) svrd > bsdi: 1cmp: echo reply
5 1.997818 (0.9961) bsdi > svr4: icmp: echo request
6 2.001542 (0.0037) svr4 > bsdi: 1cmp: echo reply
7 2.997610 (0.9961) bsdi > svr4: i1cmp: echo request
8 3.001311 (0.0037) svrd > bsdi: icmp: echo reply
9 3.997390 (0.9961) bsdi > svr4: icmp: echo request
10 4.001115 (0.0037) svr4 > bsdi: i1cmp: echo reply
11 4.997201 (0.9961) bsd1 > svrd: i1cmp: echo request
12 5.000904 (0.0037) svr4 > bsdi: icmp: echo reply
13 5.996977 (0.9961) bsd1l > svr4: 1cmp: echo request
14 6.000708 (0.0037) svrd > bsdi: 1cmp: echo reply
15 6.996764 (0.9961) bsdi > svr4: icmp: echo request
16 7.000479 (0.0037) svr4d > bsdi: icmp: echo reply

Figure 7.2 ping output across a LAN.

The time between sending the echo request and receiving the echo reply is always 3.7
ms. We can also see that echo requests are sent approximately 1 second apart.
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Often the first round-trip time is larger than the rest. This occurs if the destination’s
hardware address isn't in the ARP cache of the sender. As we saw in Chapter 4, send-
ing an ARP request and getting the ARP reply can take a few milliseconds before the
first echo request can be sent. The following example shows this:

3

sun % arp -a make sure ARP cache 1s empty

sun % ping svr4d

PING svr4: 56 data bytes

64 bytes from svrd4 (140.252.13.34): icmp_seqg=0. time=7. ms
64 bytes from svrd4 (140.252.13.34): i1cmp_seq=l. time=4. ms
64 bytes from svrd4 (140.252.13.34): icmp_seq=2. time=4. ms
64 bytes from svrd4 (140.252.13.34): icmp_ seqg=3. time=4. ms
°? type interrupt key to stop
——-——svr4 PING Statistics----—

4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 4/4/7

The additional 3 ms in the first RTT is probably for the ARP request and reply.

This example was run on the host sun, which provides a timer with microsecond
resolution, but the ping program prints the round-trip times with only millisecond res-
olution. The earlier example, run under BSD/386 Version 0.9.4, printed the round-trip
times as 0 ms, since the available timer provided only 10-ms accuracy. The following
output is from BSD/386 Version 1.0, which provides a timer with microsecond resolu-
tion and a version of ping that prints the higher resolution.

bsdi % ping svr4d

PING svrd4 (140.252.13.34): 56 data bytes

64 bytes from 140.252.13.34: icmp_seqg=0 ttl=255 time=9.304 ms
64 bytes from 140.252.13.34: icmp_seqg=1 ttl1=255 time=6.089 ms
64 bytes from 140.252.13.34: 1cmp_seq=2 ttl=255 time=6.079 nms
64 bytes from 140.252.13.34: icmp_seg=3 ttl=255 time=6.096 ms
"2 type interrupt key to stop

~-—— svrd ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 6.079/6.880/9.304 nms

WAN Output

On a wide area network the results can be quite different. The following example was
captured on a weekday afternoon, a time when the Internet is normally busy:

o

geminl % ping vangogh.cs.berkeley.edu

PING vangogh.cs.berkeley.edu: 56 data bytes

64 bytes from (128.32.130.2): icmp_seg=0. time=660. ms

64 bytes from (128.32.130.2): icmp seqg=5. time=1780. ms
64 bytes from (128.32.130.2): icmp_seg=7. time=380. ms

64 bytes from (128.32.130.2): icmp_seq=8. time=420. ms

64 bytes from (128.32.130.2): icmp_seqg=9. time=390. ms

64 bytes from (128.32.130.2): icmp_seg=14. time=110. ms
64 bytes from (128.32.130.2): icmp_seg=15. time=170. ms
64 bytes from (128.32.130.2): icmp_seg=16. time=100. ms
"2 type interrupt key to stop
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----~vangogh.CS.Berkeley.EDU PING Statistics----
17 packets transmitted, 8 packets received, 52% packet loss
round-trip (ms) min/avg/max = 100/501/1780

Either the echo requests or the echo replies for sequence numbers 1, 2, 3, 4, 6, 10, 11, 12,
and 13 were lost somewhere. Note also the large variance in the round-trip times. (This
high packet loss rate of 52% is an anomaly. This is not normal for the Internet, even on a
weekday afternoon.)

It is also possible across WAN’s to see packets duplicated (the same sequence num-
ber printed two or more times), and to see packets reordered (sequence number N +1
printed before sequence number N).

Hardwired SLIP Links

Let’s look at the round-trip times encountered over SLIP links, since they often run at
slow asynchronous speeds, such as 9600 bits/sec or less. Recall our serial line through-
put calculations in Section 2.10. For this example we'll set the speed of the hardwired
SLIP link between hosts bsdi and s1ip to 1200 bits/sec.

We can estimate the round-trip time as follows. First, notice from the example Ping
output shown earlier that by default it sends 56 bytes of data in the ICMP message.
With a 20-byte IP header and an 8-byte ICMP header this gives a total IP datagram size
of 84 bytes. (We can verify this by running tcpdump -e and seeing the Ethernet frame
sizes.) Also, from Section 2.4 we know that at least two additional bytes are added: the
END byte at the beginning and end of the datagram. It’s also possible for additional
bytes to be added by the SLIP framing, but that depends on the value of each byte in the
datagram. At 1200 bits/sec with 8 bits per byte, 1 start bit, and 1 stop bit, the rate is 120
bytes per second, or 8.33 ms per byte. Our estimate is then (86 x8.33 x 2), or 1433 ms.
(The multiplier of 2 is because we are calculating the round-trip time.)

The following output verifies our calculation:

o

svrd % ping -s slip

PING slip: 56 data bytes

64 bytes from slip (140.252.13.65): icmp_seg=0. time=1480. ms
64 bytes from slip (140.252.13.65): icmp_seg=1. time=1480. ms
64 bytes from slip (140.252.13.65): icmp_seg=2. time=1480. ms
64 bytes from slip (140.252.13.65): icmp_seg=3. time=1480. ms
~?

----slip PING Statistics----

5 packets transmitted, 4 packets received, 20% packet loss
round-trip (ms) min/avg/max = 1480/1480/1480

(The -s option is required for SVR4 to send one request every second.) The round-trip
time is almost 1.5 seconds but the program is still sending out each ICMP echo request
at I-second intervals. This means there are two outstanding echo requests (sent at time
0 and time 1) before the first reply comes back (at time 1.480). That’s also why the sum-
mary line says one packet has been lost. It really hasn’t been lost, it’s probably still on
its way back.

We'll return to this slow SLIP link in Chapter 8 when we examine the traceroute
program.
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Ping Program Chapter 7

Dialup SLIP Links

The conditions change with a dialup SLIP link since we now have modems on each end
of the link. The modems being used between the systems sun and netb provide what
is called V.32 modulation (9600 bits/sec), V.42 error control (also called LAP-M), and
V.42bis data compression. This means that our simple calculations, which were fairly
accurate for a hardwired link where we knew all the parameters, become less accurate.

Numerous factors are at work. The modems introduce some latency. The size of
the packets may decrease with the data compression, but the size may then increase to a
multiple of the packet size used by the error control protocol. Also the receiving
modem can’t release received data bytes until the cyclic redundancy character (the
checksum) has been verified. Finally, we're dealing with a computer’s asynchronous
serjal interface on each end, and many operating systems read these interfaces only at
fixed intervals, or when a certain number of characters have been received.

As an example, we ping the host gemini from the host sun:

sun % ping gemini

PING gemini: 56 data bytes

64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
~--—gemini PING Statistics—---
12 packets transmitted, 12 packets received, 0% packet loss
round-trip (ms)} min/avg/max = 280/314/373

.11): icmp_seg=0. time=373. ms
.11): 1cmp_seqg=1l. time=360. ms
.11): icmp_seq=2. time=340. ms
.11): 1cmp_seg=3. time=320. ms
.11): 1cmp_seq=4. time=330. ms
.11): icmp_seg=5. time=310. ms
.11): 1cmp_seg=6. time=290. ms
.11): icmp_seg=7. time=300. ms
.11) @ 1cmp_seg=8. time=280. ms
.11): icmp_seg=9. time=290. ms
.11): icmp_seq=10. time=300. ms
.11): 1cmp_seg=11l. time=280. ms

R e T = R A SR

Note that the first RTT is not a multiple of 10 ms, but every other line is. If we run this
numerous times, we see this property every time. (This is not caused by the resolution
of the clock on the host sun, because we know that its clock provides millisecond reso-
lution from the tests we run in Appendix B.)

Also note that the first RTT is larger than the next, and they keep decreasing, and
then they range between 280 and 300 ms. If we let it run for a minute or two, the RTTs
stay in this range, never going below 260 ms. If we calculate the expected RIT at
9600 bits/sec (Exercise 7.2) we get 180 ms, so our observed values are about 1.5 times
the expected value.

If we run ping for 60 seconds and look at the average RTT it calculates, we find that
with V.42 and V.42bis our average is 277 ms. (This is better than the average printed for
our preceding example, because we ran it longer to amortize the longer RTTs at the
beginning.) If we turn off just the V.42bis data compression our average is 330 ms. If
we turn off the V.42 error control (which also turns off the V.42bis data compression) our
average is 300 ms. These modem parameters do affect the RTTs, and using the error
control and data compression appears to be the best.
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7.3

IP Record Route Option

The ping program gives us an opportunity to look at the IP record route (RR) option.
Most versions of ping provide the -R option that enables the record route feature. It
causes ping to set the IP RR option in the outgoing IP datagram (which contains the
ICMP echo request message). This causes every router that handles the datagram to
add its [P address to a list in the options field. When the datagram reaches the final des-
tination, the list of IP addresses should be copied into the outgoing ICMP echo reply,
and all the routers on the return path also add their IP addresses to the list. When ping
receives the echo reply it prints the list of IP addresses.

As simple as this sounds, there are pitfalls. Generation of the RR option by the
source host, processing of the RR option by the intermediate routers, and reflection of
the incoming RR list in an ICMP echo request into the outgoing ICMP echo reply are all
optional features. Fortunately, most systems today do support these optional features,
but some systems don't reflect the IP list.

The biggest problem, howevey, is the limited yoom in the IP header for the list of IP
addresses. We saw in Figure 3.1 (p. 34) that the header length in the IP header is a 4-bit
field, limiting the entire IP header to 15 32-bit words (60 bytes). Since the fixed size of
the IP header is 20 bytes, and the RR option uses 3 bytes for overhead (which we
describe below), this leaves 37 bytes (60 —20-23) for the list, allowing up to nine IP
addresses. In the early days of the ARPANET, nine [P addresses seemed like a lot, but
since this is a round-trip list (in the case of the —R option for ping), it’s of limited use
today. (In Chapter 8 we'll look at the Traceroute tool for determining the route 