
United States Patent [19]
Baldwin

[54] SYSTEM AND METHOD USING
DOUBLE-BUFFER PREVIEW MODE

David R. Baldwin, Weybridge,
United Kingdom

[75] Inventor:

[73] Assignee: DuPont Pixel Systems Limited,
London, United Kingdom

[21] Appl. No.: 925,238
[22] Filed: Jul. 31, 1992

Related U.S. Application Data
[63) Continuation of Ser. No. 326,781, Mar. 21, 1989, aban

doned.

[30] Foreign Application Priority Data
Mar. 23, 1988 (GB) United Kingdom 8806850
Mar. 23, 1988 [GB] United Kingdom 8806856
Mar. 23, 1988 [GB} United Kingdom 8806864
Mar. 23, 1988 [GB] United Kingdom 8806865

[51] Int. Cl." .. G06F 12/06
[52] U.S. Cl. 395/425; 395/800;

364/DIG. 1; 364/228.1; 364/238.4; 364/242.6;
364/242.91; 364/244; 364/244.8; 364/245.5;

364/245.7; 364/284; 364/284.1
[58] Field of Search 395/425, 250, 325, 725
[56] References Cited

U.S. PATENT DOCUMENTS

3,623,017 11/1971 Lowell et al. 395/550
4,149,242 4/1979 Pirz 395/325
4,172,287 10/1979 Kawabe et al. 364/736
4,396,978 8/1983 Hammer et al. ...
4,443,846 4/1984 Adcock
4,495,567 1/1985 Treen
4,633,434 12/1986 Scheuneman 395/550
4,722,049 1/1988 Lahti 395/375
4,870,572 9/1989 Hosono et al. 364/200

FOREIGN PATENT DOCUMENTS

0186150 2/1986 European Pat. Off. .
0085435 10/1986 European Pat. Off. .
0284751 2/1988 European Pat. Off. .

2162406A 6/1985 United Kingdom .
WO86/07174 4/1986 World Int. Prop. O. .

... 364/200

... 364/200
. 364/200

FP Port

Mode

Access Mode

00 - Physical

01 - Logical
10 - Preview

|||||||||||||||||||||||||||||||||
USOO5329630A

[11] Patent Number:
[45] Date of Patent:

5,329,630
Jul. 12, 1994

OTHER PUBLICATIONS

David C. Wyland, “Dual-Port, Rams Simplify Com
munication in Computer Systems,” Integrated Device
Technology, Inc., 1986.
Bureaux D’Etudes Automatishmes, No. 32, Mar. 1987,
pp. 85–87; J. Gustafson: Un super-ordinateur vectoriel
homogene, p. 85, figure; p. 85, left-hand column. line
35—p. 87, middle column, line 9.
Conference Proceedings IEEE Southeastcon '87,
Tampa, Fla., Apr., 1987, vol. 1, pp. 225–228; M. C.
Ertem: A reconfigurable co-processor for microprocessor
systems, FIGS. 2–4; p. 226, left-hand column, line 6–p.
227, left hand column, line 25.

(List continued on next page.)
Primary Examiner—Paul V. Kulik
Attorney, Agent, or Firm—Robert Groover
[57] ABSTRACT
A novel double buffering subsystem, wherein a dual
port memory is partitioned in software so that the top
half of the memory is allocated to one processor, and
the bottom half to the other. (This allocation is switched
when both processors set respective flag bits indicating
that they are ready to switch.) On accesses to this mem
ory, additional bits tag the access as “physical,” “logi
cal,” or “preview.” A physical access is interpreted as a
literal address within the full memory, and the double
buffering is ignored. A logical access is supplemented
by an additional address bit, determined by the double
buffering switch state. A preview access is used for read
access only, and goes to the opposite bank of memory
from that which would be accessed in a logical access.
This double-buffer architecture is advantageously used,
in a multiprocessor system, at the interface between a
numeric processor and a cache bus. The preview access
can help to avoid data flow inefficiencies at synchroni
zation points in pipelined algorithms.

19 Claims, 59 Drawing Sheets
A1:A5 Addr

CP Port

Mode

SWAP
from FP

SWAP
from CP

5,329,630
Page 2

OTHER PUBLICATIONS

Proceedings of the Fourth Euromicro Symposium on
Microprocessing and Microprogramming, Munich,
Oct. 1978, pp. 358-365; F. B. Jorgensen et al.: A Bi-mi
croprocessor implementation of a variable topology multi
processor node, FIGS. 1–6, p. 358, right-hand column,
line 13—p. 362, right-hand column, line 21.
G. J. Myers: Digital system design with LSI bit-slice logic,
1980, pp. 230–239, John Wiley & Sons, Inc., US p. 237,
lines 1–4.

W. Lichtenstein, “The Architecture of the Culler”,
Mar. 1986, IEEE Coupon Spring 86, pp. 467–470.
Proceedings of the IEEE, vol. 73, No. 5, May 1985, pp.

852–873, IEEE, New York; J. Allen: “Computer archi
tecture for digital signal processing”.
Computer Design, vol. 16, No. 6, Jun. 1977, pp. 151–163;
A. J. Weissberger: “Analysis of multiple-microproces
sor system architectures”, FIGS. 7,8, p. 161.
IEEE Electro, vol. 8, Apr. 1983, pp. 3/31–5, New York;
B. J. New: “Address generation in signal/array proces
sors”.
Proceedings ICASSP, Dallas, Apr. 6th–9th, 1987, vol. 1,
pp. 531–534; D. M. Taylor, et al.; “A novel VLSI digi
tal signal processor architecture for high-speed vector
and transform operations”.
IBM Technical Disclosure Bulletin, vol. 27, No. 4A, Sep.
1984, pp. 2184—2186, New York; J. P. Beraud et al.:
“Fast fourier transform calculating circuit”.

U.S. Patent July 12, 1994 Sheet 1 of 59 5,329,630

D T P

DTP
MC I/F i :(#) #. P

C M i120 — 190

Data Cache GIP
Memory I/F
140 170

<!- | st
É Host
?º [- I/F
2 160
©
to
O

256

ºf /F
FP
130 150

Fig. 1

<~.9“.

.mwwmmo

x0209.:anENdam

E—E

mmmmmmmmm.‘ 9mm235
mm

5,329,630

58550

Fxoo_o3892.2x020
3N.mo;

Sheet 2 of 59

<_‘N

Nmm
’

:N

565mm

wocmw

M.3mM29w
Bfimm

viamm
335%m8manhwocozcmmxcflm:mamDo

49912.,1y.I.HJ

m:.m—
n.rm

/gm
25:8

222928oaNEQm
US. Patent

Sheet 3 of 59 5,329,630 July 12, 1994 U.S. Patent

- OSIWN

(ZE)

uO??Onu?SulŒ|| || || || || ||

az '61-I

§, | (c) boles | (*) logºs}} uol? puoo |Ja?s1608; • • • • ? ? ? ? ? • * * * * * * * ***

• = = * * * * * *
* * * * * * * * * *

a.3080«mm5m
mmwmmwFNm

5,329,630

FNF

ICE.

«mm83S5fin
'92mm

:m

mPE8.2%

Sheet 4 of 59

Nm.NNrmamDP

3u

hE

WEocmzcmmW
m5man595:.8

Lmk

Reg/buffer

wla052t5ch>953.)—

S'SJn/Zero
extend

3.15

,mw:mmEofcfimcoo:Em0y”

US. Patent

US. Patent July 12, 1994 Sheet 5 of 59 5,329,630

Sequencer TDBUS122

Constant

Field

:0
D
an

O
(I

.9
2

E

9.
u.

5,329,630 Sheet 6 of 59 July 12, 1994 U.S. Patent

5,329,630Sheet 6 of 59

20:386-:8:05-m2mama—um-
-83J

Q

$285265Ea:6:023arms@598areas3:023595.53n:0mm5:00955.<5595E..200980:86waste...
499121y1uTuUS. Patent

U.S. Patent July 12, 1994 Sheet 7 of 59 5,329,630

Transfer
clock Local transfer

geºlor clocks

CP
Extension

CD bus 112

CD Bus Trans- Local CP
CelVerS extension
444 registers

Fig. 4A

U.S. Patent July 12, 1994 Sheet 8 of 59 5,329,630

144

Cache bus

420

-— 434

431
-— 432

433

Fig. 4B

5,329,630

wDOOOm0=2

amwwwwwm$8.“.x09»=38“...mmmfiu<oczsobam.bab.

Sheet 9 of 5949912lV.lnJ

.mm2322

US. Patent

5,329,630

(6)

U.S. Patent

5,329,630Sheet 10 of 59

E6.28m<208:g62:8xomfimESofizmAmy6:808669.“.99:00Amv.268385E25

99.o89

6vmfimhnnmumQ995ucm9.2%ch
.8mm:mammam

E$93.4xg63:8umcoficom
E8922

2V:av2‘:63aria9586.8.Ema@828sz2:82;632.;$3“.2806800.:.92QOm___mmman:ommDE£80286022
US. Patent

NZ.was00

5,329,630

Ill—.IIIIImwm

v325mzomo

Sheet 11 of 5949912ly1nJ

mmm

3%.7};+x22

063
.§.vFF2029.52

US. Patent

omm060..Emcw;moole060..BEEN;nEb

5,329,630Sheet 12 of 5949912,1v.1HJUS. Patent

oma060.a2.95m=2>a5:058<20NNFmamQ...5..2.5«P

amboEwE82.25m:2>

0526.250
MB.82605$8.mfimmmmPE-92.).

.968BREE.ccmmifim25:25new<20
Mad38%$063m>m_m

882598ms;addDoom$238wasm=2>

8:92.00mamNa88%$923Emom
<oomman53‘m=2>

U.S. Patent

TD bus
122

Fig. 7

July 12, 1994 Sheet 13 of 59 5,329,630

Fifo full 770
DATA PIPE

Strobes 760 OUT
*=º- 730

~/

780

Emp
... Full DATA PIPE

Fifo IN § 1
720

740 Data

780

Empt
Full DATA PIPE

Fifo |N Nº 2
71

Y50 Data
Rd Wr

Sheet 14 of 59 5,329,630 July 12, 1994 U.S. Patent

Ou?uOO±?<!---*o | „BOSONA „BWASOMTILL TOE

5,329,630 Sheet 15 of 59 July 12, 1994

Data Cache
Memory
140

Cl O JE

?| || SnC|VO| –
Z? ? Snq ClO

U.S. Patent

150

DP

AA

Fig. 9A

Sheet 16 of 59 5,329,630 July 12, 1994 U.S. Patent

Õ?6 ETIH HELSIÐBH WÕT5

5,329,630

150

DP

ae@ D- |

Cl CD ŽE

?| || SnC|VO| –

Sheet 17 of 59 July 12, 1994

Data Cache

U.S. Patent

FP

Fig. 10

Sheet 18 of 59 5,329,630 July 12, 1994 U.S. Patent

ÕST?

5,329,630

a3.3a»::5022%3:35.moss.you

95f081teehSJuly 12, 1994

3'?F63:8ucmmoooou5:03.65IE
25:26ng

US. Patent

U.S. Patent July 12, 1994 Sheet 19 of 59 5,329,630

Internal Bus 1250

Bit Reverse
1240

Comparator

1230

1270
Fig. 12

5,329,630

.98a::Emm»:mm8925.
5:58_._3uEwaoia

Sheet 20 of 59

062:tm:32.92miH_

dvnw
a8*3285$23BEBE.

...mg.mmofigmm:=E=
xofim22.500

{

US. Patent

Sheet 21 of 59 5,329,630 July 12, 1994 U.S. Patent

N

ø?qeua ?nd?nO = EO
TES

U.S. Patent July 12, 1994 Sheet 22 of 59 5,329,630

TOETSELTOETSELTOETSEL
| Nooperation | z I - |z|-|z|-
|Eye Extend Enabel BT.7|Enable Etz Enable Bitz

Bytezero Fi? Enable zero Enable zero Enable zero
| Word Extend |ZT-Enable BºtsIEnableBitts
| Wordzero Fi? Z || - Enable zero Enable zero

Z = Hi Impedance

Fig. 14B

5,329,630 U.S. Patent

* * * * * =

* = * * * = = m = L

(ISOH uuou s?Ë L--------- +----------
§:

| | | SnC, VO lº

Z| | SnC, CO

U.S. Patent July 12, 1994 Sheet 24 of 59 5,329,630

Cache bus 144

256

DCM I/F 1620

430A
430D 433 32

Reg File
430

430B 430C

440A 440B 450A 450B
FMPY FALU
440 450

Fig. 16

Sheet 25 of 59 5,329,630 July 12, 1994 U.S. Patent

(1:2) XnW

ZL ‘61-I 9VTQ TOESn ?pOW T?s 8 T?s

5,329,630

<
O

3

Sheet 26 of 59

ÕIGT

July 12, 1994

gO;8 || SS3/ppW

U.S. Patent

Sheet 27 of 59 5,329,630 July 12, 1994 U.S. Patent

(Gviov) Jpp\/

Áuouaw ?u.Od lenC] OIGT

SsauppV (

dV/NWS

Sheet 28 of 59 5,329,630 July 12, 1994 U.S. Patent

?pOWN uppV/

d'O UUO]] dV/NWS

OZ "fil

epow SS000\/

?pOW
TES

TBS uod dº

Sheet 29 of 59 5,329,630 July 12, 1994 U.S. Patent

XOOIO 19?Sueu L
SENA

SS0/ppv/

?z "fil-l 992

Sheet 30 of 59 5,329,630 July 12, 1994 U.S. Patent

- LIVNA d'O LIVNA d=]

LIVNA CHO LIVM d=]
?UOC] d'O

LIVNA CHO LIVNA d-!

9.UOC.] CHO LIVWA CHO LIVNA d=] LIVNA d'O LIVNA d=] LIVM d'O LIVM d=]

LIVNA d'O LIVNA d-!

ZZ "61-I

Sheet 31 of 59 5,329,630 July 12, 1994 U.S. Patent

ÖZGZ

£Z "fil

ÖFT Å HOWEW B'HOVO V LVC]

U.S. Patent

U.S. Patent July 12, 1994 Sheet 33 of 59 5,329,630

FP Write
Mask
Logic
2510

Memo MUX º
530 510

Enable

Fig. 25

Sheet 34 of 59 5,329,630 July 12, 1994 U.S. Patent

ÕIGE

Sheet 35 of 59 5,329,630 July 12, 1994 U.S. Patent

ÁSng XIO C]

ZZ "fil ???JNA e?BO SOM peÐH ??BOJ SOM

- - - - - - - - - - 4 - J --- - - - - - - - - - - - 0–

Sheet 36 of 59 5,329,630 July 12, 1994 U.S. Patent

T CP 2 EXT WCS

3. CP 1 EXT WCS

8Z "fil

a565%8:35

5,329,630

.303322:9:8892:.3:5

Sogoo..mtmm

dwumwhemaom.9661a“.

c.32Exam

a>552;280San

US. Patent

Sheet 38 of 59 5,329,630 July 12, 1994 U.S. Patent

M5555DwDOOZm:2em5"fibwiofias
w32:5o:253&52mcooammoooz:

6mmgmm.mmmv

5,329,630

:2:20E:20E

6:80Em6.;395of.3802322—2.0550$8222

Sheet 38 of 59

.55qu_

m>_._.<4mm«
oSm:ofiEBE.053385a053mmuoocmzomfim5:6803528:680

w$5$3522

20:E9200

US. Patent

U.S. Patent July 12, 1994 Sheet 39 of 59 5,329,630

WWWW, }}}}}} |\ |\ i
ITIII || || ||

/X\/\\ /X\/\\
||||||||||||||||

O)

XXX C?. 3,

U.S. Patent July 12, 1994 Sheet 40 of 59 5,329,630

Read next Pixel from register file

Add pixel to base address of the
histogram table

Load address register with
histogram address

Read pixel count into ALU input
register

Increment pixel count by one

Write new pixel count into
histogram table

More pixels?

Fig. 32

U.S. Patent July 12, 1994 Sheet 41 of 59 5,329,630

CP MICROCODE i FP MICROCODE

Load FP start address reg
with microcode address
and start FP running. FS& Wait loop from & previous command

Transfer first 8 elements ; Nº,
of array A to register file : Z/Y. Cºstart D

Transfer first 8 elements : Request register file
of array B to register file : Swap

Set CP done and request –SS3 ses
register file swap sº §4. T to No

i sº

S

Yes - Do 8 calculations and
leave result in register file

Set CP done and
request register file

SW3C i
Transfer 8 result

elements from register No
file into arrary C

Transfer last 8 result
elements from register

file into arrary C

Fig. 33 C End D

Sheet 42 of 59 5,329,630 July 12, 1994 U.S. Patent

ve ‘61-I

ÕGIF

?GIF

?GIF

Ö?IF

OG?

ÖGT7

O?IF

U.S. Patent

5,329,630

a399%$92

Sheet 43 of 59

oe3mem=2>84m3%9.4mqua8.928258.982585.8%8.9282_wo_._mE:z335252825832.mo_.mE:z
US. Patent

Sheet 44 of 59 5,329,630 July 12, 1994 U.S. Patent

Sheet 44 of 59 5,329,630July 12, 1994US. Patent

m3920E

9.62mmeans—2E8265.06.?429282$39.521

85:55031dwdmheumhgmoo<

RotmEsz9.5893
9.59.0:oszhochF

a3.1m
4.29282Hoszzz

885.82825832

29.52%¥m0>>Qm
d9...“885.82.mo_5E:z

dNfim392wwwws.

Sheet 45 of 59 5,329,630 July 12, 1994 U.S. Patent

OTOGTF (?Ae?S)

ST18 EIVNA

ZE ‘61-I SSeW

Sheet 46 of 59 5,329,630 July 12, 1994 U.S. Patent

? ? *-+ - - - - - - - -, -, -,OG? -]/I ?d|d eyeO -------------[??ET)------ 08! =|/| OWN d1C] '804 || -/| dl50 ------- • - • • • •OZZ SONA d'O -------------- 029 SOM d_1C] --------- ºsô0HºsôæH • • • • • • • • -fiu|p|OH ------------------ 6u(pIOH ---------- d_LC] (8 d'Od_1C] '8 d'O [FOTEET):TÕT?TI - WO • æ • • • • • • • • • • •O 19 STIS WOCl -------------|:||---------- O?9 STIS WOCl -------------
WO

09? -|/|5|WA ---

Sheet 47 of 59 5,329,630 July 12, 1994 U.S. Patent

TUIGETI
|?=F===', ___0Z8€ TOE ----------

DOETUIGBOE)

g88 -61-I

Sheet 48 of 59 5,329,630 July 12, 1994 U.S. Patent

6& -61-I

'-- -p?91-J SS0/ppv/ 9S|B-?|

U.S. Patent July 12, 1994 Sheet 49 of 59 5,329,630

->
C)
Qi.)
*C.
O
O
9
.92
>

:

US. Patent July 12, 1994 Sheet 49 of 59 5,329,630

x
O
a:
'o
o
o
ot—

.9
2

U.S. Patent July 12, 1994 Sheet 50 of 59 5,329,630

INTERRUPT
interrupt service routine

Hold status
flag copy Generate test condition

and store in sequencer
flag

interrupt routine

Conditional Jump
True
path

Return from
interrupt and

restore sequencer
flag

Fig. 40B

U.S. Patent July 12, w - Sheet 51 of 59 5,329,630

Fig. 41

Host
Computer

4100

Mass
Memory

4160

Picture ProC

4140
o E
So H
* : C
2 : :- Mass
3 : l Storage
g : à
E = LL] 4170
.9 = >
0- i. >

Numeric Accel

4150

ei sã cr) : * E Interface
§ ?º

t 92 - : à E 4180
s ?ºl- >

H C :

Numeric Accel

4150
e;
cu -
§:

US. Patent July 12, 1994 Sheet 52 of 59 5,329,630

Request register file swap

Read A 0 and B 0

Read A 1 and B 1

Calculate R[0] = A[0]'Bl0]

Calculate R1 = A1 '3 1

Write R[0]

Read AB and B 3

Calculate R 2 = A 2 ‘B 2

ReadAO'andBO'

Calculate Fl 3 = A 3 ‘B 3

Write Fl{2]

ReadA1'andBt'

Calculate Fl 0 ' = A O "B 0'

Write R[3]

Set FP done and re swa

Flead A[0]' and B[0]‘

Write Rte]

Set FP done and re swa

U.S. Patent July 12, 1994 Sheet 53 of 59 5,329,630

i
#. P D T P

| |; i i

GIP
Data Cache I/F
Memory 140

|
170

Host <!
St g […] WF
º 160
+
O
co
O

DP
I/F

DCM Ext'n 150
4310

Fig. 43

wyty "fil

Sheet 54 of 59 July 12, 1994 U.S. Patent

Sheet 55 of 59 5,329,630 July 12, 1994 U.S. Patent

Gyv "fil-l EEEEE|É||Í||?||

U.S. Patent July 12, 1994 Sheet 56 of 59 5,329,630

:

US. Patent July 12, 1994 Sheet 56 of 59 5,329,630

Sheet 57 of 59 5,329,630 July 12, 1994 U.S. Patent

Giv "fil
Z ? ? Snq CJO HI ?ST)

Sheet 58 of 59 5,329,630 July 12, 1994 U.S. Patent

9v "fil

Sheet 59 of 59 5,329,630 July 12, 1994

|

U.S. Patent

|
SU00||

| |
Zv "fil-l

5,329,630
1

SYSTEM AND METHOD USING
DOUBLE-BUFFER PREVIEW MODE

This is a continuation of application Ser. No. 326,781, 5
filed Mar. 21, 1989, now abandoned.

PARTIAL WAIVER OF COPYRIGHT
All of the material in this patent application is subject

to copyright protection under the copyright laws of the
United Kingdom, the United States, and of other
countries. As of the first effective filing date of the
present application, this material is protected as unpub-
lished material.

However, permission to copy this material is hereby
granted to the extent that the copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or patent disclosure, as it appears in
official patent file or records of the United Kingdom or
any other country, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates to computer systems
and subsystems, and to computer-based methods for
data processing.

HIGH~SPEED MULTIPROCESSOR
ARCHITECTURES

It has long been realized that the use of multiple pro-
cessors operating in parallel might in principle be a very
convenient way to achieve very high net throughput.
Many such architectures have been preposed. How-
ever, the actual realization of such architectures is very
difficult. In particular, it is difficult to design an archi-
tecture of this kind which will be versatile enough to
satisfy a range of users and adapt to advances in tech-
nology.

Fully asynchronous multiprocessor architectures
have been proposed, but it is generally recognized in the
art that the problems of programming support in a mul-
tiprocessor architecture have not nearly been solved.

A very recent overview of some of the issues in-
volved in multiprocessor systems may be found in Du-
bois et al., “Synchronization, Coherence, and Event
Ordering in Multiprocessors,” Computer magazine,
February 1988, page 9, which is hereby incorporated by
reference. A recently proposed multiprocessor archi-
tecture for digital signal processing is described in Lang
et a1., “An Optimum Parallel Architecture for High-
Speed Real-Time Digital Signal Processing,” Computer
magazine, February 1988, page 47, which is hereby
incorporated by reference.

INTER-PROCESSOR SYNCHRONIZATION

Synchronization between processors is a continuing
critical issne in a very wide variety of multiprocessor
system. Often such inter-processor interfaces make use
of “processor-waiting” or “processor-ready” status
signals which can be set or cleared by either processor.
(Such signals are commonly known as “semaphores.")

INTER-PROCESSOR DATA ROUTING

Two general concepts of allocating work among
processors are pipelining and parallelism. “Pipelining”
is generally used to refer to data routings where a single
data set is successively operated on by more than one
processor. Parallelism refers to data routings where
different operations are concurrently performed by

2

separate processors. Of course, some algorithms can
profit by pipelining or parallelism to a much greater
degree than others.

The speed of a pipeline is limited by its slowest stage.
Moreover, the average efficiency of a pipelined system
will be diluted by two overhead requirements: the pipe-
line must be filled at the start of the operation, and must

be emptied at the end of the operation. The impact of
these overheads depends on ratio of the number of
elements which must be passed through the pipeline in
one run to the number of stages in the pipeline (referred
to as the length of the pipeline). Thus, these overheads
may be unimportant when the length of the pipeline is
short, and the number of elements per run is fairly long.
However, for a longer pipeline (or for shorter runs),
these overheads can be an important factor in through-
put.

INTER-PROCESSOR DATA EXCHANGE

The interface between two processors in a multipro-
cessor system often requires that data be passed back
and forth rapidly. Double buffering is a commonly used
technique to permit data transfer, without hangups, loss
of data synchronization, or data access collisions. Nor-
mally the memory space to be shared is divided into two
physical memories, and the accesses are arbitrated in
hardware so that, on any one cycle, each processor can
access only half the memory space (i.e. one of the physi-
cal memories).

FIG. 18 shows one example of a prior arrangement
for double buffering. The port select logic 1810 pro-
vides select signals to data buffers 1860, so that the two
data busses 1850A and 1850B (from the sides of the
double buffer) are connected to either the first or sec-
ond memory 1820. The port select logic 1810 also pro-
vides select signals to address multiplexers 1830, so that
the two address busses 1840A and 1840B are connected
to access either the first or second memory 1820.

FIG. 19 shows another example of a prior arrange-
ment for software-controlled double buffering. The

port select logic 1910 provides select signals directly to
the most significant address bit A6 of a dual port mem-
ory 1920. Thus, each port sees only half of the physical
address space, but the double buffering can be quite
transparent.

CACHE MEMORY ARCHITECTURES

Cache memory is a conventional way to increase the
net throughput of computing systems. If a large fraction
of memory accesses are expected to call on memory
locations already in cache, then every read from cache
can save an amount of time equal to the difference be-
tween the cache access time and the main memory
access time. Therefore, cache memory systems nor-

mally attempt to maximize the bandwidth to the cache.

MICROCODED ARCHITECTURES

An extremely important tool for developing high-
speed and/or flexible computer architectures is micro-
coding. See J. Mack & J . Brick, Bit-Slice Microprocessor
Design (1980), which is hereby incorporated by refer-
ence. Microcoded architectures are not only extremely
flexible, but also have the potential to provide ex—
tremely high speed.

In microcoded architectures the individual instruc-

tions are fairly long (e.g. 100 bits or so). Some fairly
low-level logic decodes the instructions, so that appro-

5,329,630
3

priate fields are sent to low-level devices (such as regis
ter files, adders, etc.).
The total number of bits in the instruction field will

typically be very much larger than the log2 of the total
number of instructions. This permits the decode opera
tion to be made very much simpler. Microcoded archi
tectures commonly use a sequencer to perform address
calculations and perform a first level of decode. (Alter
natively, a lower level of logic can be used to perform
the program sequencing function.) The sequencer ac
cesses microinstructions from a control store (memory),
and various portions of the microinstructions are pro
vided to additional decode logic, and/or applied di
rectly to devices. Since a single instruction can contain
many command fields (all of which will be executed
simultaneously), it is possible to write surprisingly short
microcode programs.

Since the individual instructions are quite low-level,
and fairly long, the total program storage required can
be quite significant. The data transfer requirements for
loading a microcode routine can be significant.

SUMMARY OF THE INVENTION
The present application provides a large number of

innovative teachings, which will be described in the
general context of a system like that shown in FIG. 1.
Among the innovative teachings set forth herein is a

multiprocessor numeric processing subsystem wherein
an extremely wide local bus connects the arithmetic
calculation subunit to a large data cache memory. This
cache is multiported, so that newly retrieved data can
be written into the cache at essentially the same time
that data transfer is occurring between the numeric
processing subunit and the cache.
To get a very high memory bandwidth, there are

only three basic strategies:
1. Use very fast memory devices: The problem here is
one of economics and size. Very fast memory de
vices are very expensive, sometimes as much as ten
times the cost of the slower counterparts, and the
number of storage bits per device is more limited.
The major advantage of this technique is that the
bandwidth improvement is independent of the data
layout in memory (assuming that the address gen
erator is fast enough).

2. Use interleaved memories: Interleaved memories
have traditionally been used with dynamic RAMs
(DRAMs), where the cycle times have been longer
than the access times. In this context, a significant
advantage can be gained by interleaving two or
more banks and offsetting the timing between
banks. The problem with this technique occurs
when successive accesses keep hitting the same
bank, or accesses through another port (in a multi
port memory)) disturbs the sequential accessing of
banks. This technique can be used with static mem
ories (SRAMs), but the equal access and cycle
times make it less attractive than with DRAMs.

3. Use a wide memory structure: Normally the mem
ory width would be the same as the word width.
For example, a system using 32-bit words would
typically use a 32-bit wide memory architecture.
However, several of the innovative teachings set
forth herein show how a system with a much wider
local bus to cache memory can be very advanta
geous.

A wide memory structure provides high bandwidth
by accessing many words in parallel. Such a structure

5

10

15

20

25

30

35

45

50

55

65

4
has much simpler timing requirements than an inter
leaved memory architecture would. (However, a large
percentage of non-sequential accesses will ultimately
reduce the bandwidth to that of a normal single-width
architecture.)

This memory architecture also has advantages in a
multi-port situation where some or all of the ports have
a much lower bandwidth than the memory itself. In
these cases there will be some intermediate storage
(normally registers) to capture the data for later access
ing over several cycles by the recipient. While such
time-multiplexed accesses are in progress, there is no
demand on the memory system for bandwidth.

In the preferred embodiment there are also some
significant novelties in the interface logic which con
trols the data interface to the cache from the numeric
processor. These features will be discussed in greater
detail below. -
A feature which helps to maximize the throughput of

the transfers in the transitional clock domain is a dou
ble-word interface on only one side of the fast register
file. That is, the register file appears, on the cache mem
ory side, as if it were 64 bits wide. However, on the
FPU side it only appears to be 32 bits wide. This results
in some odd/even structure in the word addresses, but
possible problem due to this odd/even structure are
avoided by several innovative features. Since these
problem can be avoided, the double-word interface
provides substantial advantages in the bandwidth of the
register file interface.
Some significant advantages are also derived from

the preferred scheme for arbitrating access of the con
trol processor and data-transfer processor to the cache
memory. In the presently preferred embodiment, the
cache is physically dual-ported, but it is used as if it
were triported.
The data cache memory is triported between the

control processor module, the data-transfer processor
module, and the numeric processor module(s), so some
form of arbitration is necessary to control access. The
control processor generates addresses and controls the
routing of data for itself and the floating-point proces
sor(s) under program control so the control processor
and floating-point processor access are mutually exclu
sive. The data-transfer processor, however, is totally
autonomous and can compete for access at any time.

In the presently preferred embodiment, the arbitra
tion is such that the control processor/floating-point
processor has access whenever it wishes, and the data
transfer processor makes use of any unused access cy
cles. To make use of the unused cycles, the data-transfer
processor includes extra hardware which will allow it
to use a single free cycle amongst many busy ones.
The control processor and data-transfer processor are

preferably autonomous but synchronized. This is ac
complished by letting them share a common microcode
clock. This synchrony simplifies the arbitration. The
control processor and data-transfer process granted
signal is available before the cycle in which the data
transfer process. This signal therefore has enough time
to propagate into the sequencer, thus allowing the data
transfer process is not granted, then the data-transfer
process cycles so the data-transfer processor will not
have long to wait. However, if the data-transfer proces
sor's program requires an end to waiting, the data-trans
fer processor can interrupt the control processor. On
receiving this interrupt the control processing the mem

5,329,630
5

ory, and let the data-transfer processor in for at least
one cycle.
The data-transfer process therefore accesses the

memory no more often than once every 8 cycles. Its
bandwidth demands are therefore very low.
The innovative teachings of the present application

also enable a multiprocessor numeric processing sys
tem, which bas a well-defined modular expansion inter
face. This system can be used with one or several nu
meric processing modules. The modular interface per
mits multiple numeric processing modules (of different
types if desired) to be connected in parallel.
A control processor controls data transfers into and

out of each of the numeric processing modules. Control
of these data transfers is accomplished by an extension
of the control processor's microcode. Extensions of the
control processor's writable control storage are located
on each of the numeric processing modules. Each of the
extensions includes its own decode logic, and stores its
own executable microinstructions. Since all of the con
trol processor extensions are clocked by the control
processor's microcode clock, coordination among mul
tiple numeric processors is readily accomplished, while
still allowing each of the numeric processing modules to
run fully asynchronously under its own clock. Prefera
bly the main part of the control processor also performs
address calculations, so that the routines executed by
the numeric processing modules can be pure calculation
routines, without reference to data sources and destina
tions. -

Among the innovative teachings set forth herein is a
novel subsystem for double buffering. A dual port mem
ory is used, and is partitioned in software so that the top
half of the memory is allocated to one processor, and
the bottom half to the other. (This allocation is switched
when both processors set respective flag bits indicating
that they are ready to switch.)
On accesses to this memory, additional bits tag the

access as “physical,” “logical,” or “preview.” A physi
cal access is interpreted as a literal address within the
full memory, and the double buffering is ignored. A
logical access is supplemented by an additional address
bit, determined by the double buffering switch state.
A preview access is used for read access only, and

goes to the opposite bank of memory from that which
would be accessed in a logical access. The use of pre
view access can be particularly advantageous in avoid
ing data flow inefficiencies at synchronization points in
pipelined algorithms.
For example, if the standard double buffering tech

niques (like those schematically shown in FIGS. 18 or
19) were used in a system like that shown in FIG. 1, it
would be necessary to refill the data pipeline after every
swap (and empty it before every swap). In this sample
embodiment, a simple vector operation requires the
floating-point processor to do 8 calculations for each
buffer's worth of data. This means that three cycles of
overhead are used, to fill and empty the pipeline, for
every eight words of data. Obviously, this adds a high
percentage onto the overall average processing time.
One of the innovative teachings set forth herein is

that “soft” double buffering can be used to overcome
this problem The preview mode (described above) al
lows one port to preview the data in the other half
before it is swapped. This later mode provides a means
for the floating-point processor pipeline to be kept full
when the control processor has finished its work and is
waiting to swap buffers before continuing.

10

15

20

25

30

35

45

50

55

65

6
Preferably double buffering is used in a register file at

the interface between a numeric processor and a large
data cache memory in a multiprocessor system. The
partitioning of the register file avoids data collisions in
the cache memory

In this sample embodiment, a 5-ported register file,
configured as two physically separate banks of high
speed memory, is used. However, a wide variety of
other implementations could be used instead.

This innovation provides much greater flexibility
than conventional systems which perform double buff
ering in hardware, at no loss in speed.
The “preview” mode permits this double-buffering

implementation to be used as a versatile interface archi
tecture in many pipelined environments.

BRIEF DESCRIPTION OF THE DRAWING

The present invention will be described with refer
ence to the accompanying drawings, which show im
portant sample embodiments of the invention and
which are incorporated in the specification hereof by
reference, wherein:
FIG. 1 shows a general overview of a numeric accel

erator subsystem having a novel three-processor archi
tecture. -

FIG. 2A generally shows the organization of some
key parts of the Control Processor module 110, in the
presently preferred embodiment. FIG. 2B schemati
cally shows the field allocations in the microinstruction
format used in the Control Processor module 110, in the
presently preferred embodiment.
FIG. 3A generally shows the organization of some

key parts of the Data Transfer Processor module, in the
presently preferred embodiment. FIG. 3B shows
greater detail of the logic used to selectably drive a
constant address onto the sequencer bus 315 in the Data
Transfer Processor module. FIG. 3C schematically
shows the field allocations in the microinstruction for
mat used in the Data Transfer Processor module 120, in
the presently preferred embodiment.
FIGS. 4A, 4B, 4C, and 4D generally show the orga

nization of some key parts of the numeric processing
module 130, which in the presently preferred embodi
ment is a Floating-Point Processor. FIG. 4A shows
some key parts of the interface to the Control Processor
module 110. FIG. 4B shows some key parts of the data
path in the Floating-Point Processor, in the presently
preferred embodiment. FIG. 4C shows some key parts
of the control logic in the Floating-Point Processor, in
the presently preferred embodiment. FIG. 4D schemat
ically shows the field allocations in the microinstruction
format used in the Numeric Processor module 130, in
the presently preferred embodiment.
FIG. 5 generally shows the organization of some key

parts of the Data Cache Memory, in the presently pre
ferred embodiment.
FIG. 6 generally shows the organization of some key

parts of the Host Interface Logic, in the presently pre
ferred embodiment.
FIG. 7 generally shows the organization of some key

parts of the Data Pipe Interface Logic, in the presently
preferred embodiment.
FIG. 8 generally shows the organization of some key

parts of the GIP Interface Logic, in the presently pre
ferred embodiment.
FIG. 9A shows a general overview of a numeric

accelerator subsystem including an application-custo
mized numeric processing module (“algorithm acceler

5,329,630
7

ator”) 130'. FIG. 9B schematically shows how the ar
chitecture of one example of an algorithm accelerator
130' differs from that of a general-purpose floating
point module 130.
FIG. 10 shows a subsystem including multiple nu- 5

meric processing sub-subsystems.
FIG. 11 generally shows the organization of some

key parts of the Integer Processor Unit, which is part of
the control processor (and of the data-transfer proces
sor) in the presently preferred embodiment. 10
FIG. 12 generally shows the organization of some

key parts of the Address generator, which is part of the
control processor in the presently preferred embodi
Inent.
FIG. 13 generally shows the organization of some 15

key parts of the Sequencer, which is part of the control
processor (and also of the data transfer processor) in the
presently, preferred embodiment.
FIG. 14A schematically shows the hardware used, in

the presently preferred embodiment, to permit a 16-bit 20
address generator (or other low-resolution subproces
sor) to be used in a 32-bit system. FIG. 14B shows the
inputs used in the different operating modes of the hard
ware used, in the presently preferred embodiment, to
use low-resolution data sources in a high-speed system. 25
FIG. 15 schematically shows the interface between

the control processing module and the data transfer
processing module, in the presently preferred embodi
ment.
FIG, 16 generally shows the organization of some 30

key parts of the primary data path for numeric opera
tions, within the floating-point processor in the pres
ently preferred embodiment.
FIG. 17 shows the logic used within the floating

point processor in the presently preferred embodiment, 35
to reduce the setup time for unregistered microcode
bits.
FIG. 18 shows how a conventional double buffer is

organized and controlled in hardware.
FIG. 19 shows another conventional method for 40

double buffering, where a dual port register file is used
with one of the bits controlled externally.
FIG. 20 schematically shows how the innovative

double buffer of the presently preferred embodiment is
organized and controlled in software, to provide multi- 45
ple optional access modes.
FIG. 21 schematically shows the logic used, in the

presently preferred embodiment, for data transfer
across a clock boundary between the holding registers,
which interface to the 256-bit wide cache bus, and the 50
Register File, which is only 64 bits wide.
FIG. 22 shows a state diagram of the handshaking

logic used, in the presently preferred embodiment, to
provide interfacing between the CP module 110 and the
FP module 130. 55

FIG. 23 schematically shows the control definitions
used, in the presently preferred embodiment, to select
among multiple FPs and/or multiple algorithm acceler
ators, in a system like that shown in FIGS. 9 or 10.
FIGS. 24, 25, and 26 show the architecture of the 60

data interfaces to the cache memory.
FIG. 27 schematically shows the hardware configu

ration used, in the presently preferred embodiment, to
permit efficient control of microcode transfer and load
ing in a serial loop which interfaces to the writable 65
control storage of several devices.
FIG. 28 schematically shows the serial loop configu

ration used, in the presently preferred embodiment, to

8
permit microcode loading to any one of several proces
sors, or to some groups of processors.
FIG. 29 schematically shows the logic used, in the

presently preferred embodiment, to permit either serial
or parallel write into the control store of a numeric
processor in a multi-processor system.

FIG. 30 schematically shows the microcode opera
tion used in the presently preferred embodiment to
provide multiway branching without address boundary
constraints.
FIG. 31 schematically shows a method of running a

discrete Fourier transform algorithm.
FIG. 32 shows a method of running a histogram

algorithm, in hardware like that shown in FIG. 16.
FIG. 33 shows a method of running a pipelined algo

rithm, in hardware which includes a software-con
trolled double buffer like that shown in FIG. 20.
FIGS. 34, 35, 36, and 37 schematically show configu-.

rations of multiple subsystems like that of FIG. 1, each
of which includes a data pipe interface like that shown
in FIG. 7.

FIG. 38A generally shows the preferred physical
layout of the main board, and FIG. 38B generally shows
the preferred physical layout of a daughter board which
nests onto the board of FIG. 38A. The board of FIG.
38B contains key components of FP module 130. The
two boards together provide a complete system like
that shown in FIG. 1.
FIG. 39 shows the preferred embodiment of the stack

register in the floating-point processor module 130.
FIG. 40A shows some support logic which is used, in

the presently preferred embodiment, with the sequencer
in the control processor module 110 (and in the data
transfer module 120). FIG. 40B schematically shows a
microinstruction sequence wherein an interrupt occurs
during a multiway branch operation.
FIG. 41 schematically shows a computer system in

cluding a host computer, a picture processor subsystem,
and at least two numeric accelerator subsystem linked
by a main bus and two high bandwidth backplane bus
SeS.
FIG. 42 schematically, shows the flow of steps, in a

system like that shown in FIG. 1, to multiply two arrays
together (on an element by element basis) and deposit
the results in a third array.
FIG. 43 shows a sample system which includes a

high-speed cache expansion memory on the same very
wide data bus as one or more numeric processing mod
ules.
FIGS. 44A, 44B, and 44C schematically indicate the

programming environment of the CP, DTP, and FP
modules respectively.
FIG. 45 shows logic for substituting the contents of

an instruction register for a field of microcode from
control store.
FIG. 46 shows how word address odd/even struc

ture results from the double-word transfer operations.
FIG. 47 shows the timing structure used for how

word address odd/even structure results from the dou
ble-word transfer operations.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The numerous innovative teachings of the present
application will be described with particular reference
to the presently preferred embodiment, wherein these
innovative teachings are advantageously applied to the
particular problems of sybsystems which can work

5,329,630
9

under the direction of a host computer to handle high
speed numeric computing. (Such subsystems are com
monly referred to as “accelerator boards.”) However, it
should be understood that this embodiment is only one
example of the many advantageous uses of the innova
tive teachings herein. For example, the various types of
the architectural innovations disclosed herein can op
tionally be adapted to a wide variety of computer sys
tem contexts. In general, statements made in the specifi
cation of the present application do not necessarily
delimit any of the various claimed inventions. More
over, some statements may apply to some inventive
features but not to others.

OVERVIEW

The present invention will be described with particu
lar reference to the context of a system embodiment like

5

10

15

that shown in FIG. 1 (or, alternatively, those of FIGS.
9A, 10, 41, or 43.) It should be understood that the
features of these embodiments are not all necessary
parts of the present invention, but they do provide the
context in which the preferred embodiment will be
described.
FIG. 1 generally shows an architecture for a numeric

processing system, which normally is used as a subsys
tem of a larger computer system. System like that of
FIG. 1 are commonly referred to as “accelerator
boards”. They are normally used as sub-systems. That
is, a supervisor processor will provide a high-level com
mand to the accelerator subsystem. For example, the
supervisor processor may order the accelerator subsys
tem to perform a vector add, a matrix inversion, or a
fast Fourier transform (FFT). The accelerator subsys
tem will then fetch the data from the location specified
by the supervisor processor, perform the number
crunching operations, and return the result to the super
visor processor.
FIG. 1 shows an architecture with three different

processor modules, all of which can run different tasks
concurrently. These three modules are the control pro
cessor (CP) module 110, the data transfer processor
(DTP) module 120, and the numeric processing module
130. (This numeric processing module is preferably a
floating-point processing module, and will therefore
often be referred to as the “FP’” module. Various other
types of numeric processing modules can be used, as
will be discussed below.) The numeric processor mod
ule 130 runs asynchronously to the other two proces
sors, i.e. with a completely independent clock. In addi
tion, the external interfaces 150, 160, 170, and 180 also
contain substantial amounts of logic. -
The structure of the data cache memory 140, and its

relation to the other blocks in the system, is quite signifi
cant. The data cache memory 140 is connected to the
floating point processor 130 by a wide cache bus 144. In
the presently preferred embodiment, the cache bus 144
includes 256 physical lines reserved for data.
The three types of processor modules permit easy

task allocation. The primary allocation of tasks is as
follows:

the data transfer processor manages the interface to
the outside world, through the external interfaces,
and also handles data transfer between the cache
memory and the outside world;

the control processor 110 performs address calcula
tions, and controls all data transfers to and from the
numeric processing module 130; and

20

10
the numeric processing module 130 performs data

calculations.
Designing an efficient high-speed system to support

this allocation of tasks requires that some significant
architectural difficulties be solved. However, the dis
closed innovations solve these difficulties, and the result
turns out to be surprisingly advantageous.
To facilitate realization of such an architecture, the

embodiment of FIG. 1 contains several notable hard
ware features. First, the control processor 110 includes
a very large capability for address calculation opera
tions. In the presently preferred embodiment, as gener
ally shown in FIG. 2, this processor includes not only a
sequencer, but also address generation logic and an
arithmetic-logic-unit (ALU).
The data transfer processor 120 supervises the opera

tion of the external interface controllers. In the pres
ently preferred embodiment, there are actually three
external interface controllers. These include a VME bus
interface 160, and also controllers for two backplane
busses. (One backplane bus is a “data pipe,” which pro
vides a high-bandwidth link between accelerators, and
the other is a “GIP bus,” which is optimized for trans
mission of image or graphics data.) Each of these three

5 bus interfaces includes its own control logic, preferably

30

35

45

50

55

65

including a controller. For example, the VME bus inter
face includes a direct-memory-access (DMA) control
ler, for expedited block data transfer. However, the data
transfer processor 120 provides a high-level supervision
for all of these interfaces.
A critical part of this architecture is the cache mem

ory 140. This cache memory is not only very wide (256
bits), large (preferably at least 2 megabytes), and fast
(100 nanoseconds access time as presently configured,
and preferably much faster), but is also effectively tri
ported. The memory is preferably only dual ported
physically, and arbitration between the control proces
sor 110 and the data transfer processor 120 is accom
plished in their microcoded instruction scheme.
Note also that the three ports of the cache memory

140 are quite different. In general, in most numeric
processing subsystems it has been found that the band
width between the cache memory and the number
crunching components is of critical importance. There
fore, in the presently preferred embodiment, the port to
numeric processor 130 is much wider (and therefore has
a much higher bandwidth) than the ports to the control
processor and data transfer processor. In the presently
preferred embodiment, the latter ports are only 32 bits
wide. Moreover, a set of fully parallel registers is used
at the 32-bit ports, so that all accesses to these ports are
seen by the cache memory 140 as fully parallel, i.e. as
256-bit parallel reads or writes.
The interface to the numeric processing module 130

is so defined that multiple modules 130 can be used in
parallel, all under the control of a single control proces
sor 110 and all accessing (preferably) a single data cache
module 140. The extremely high bandwidth of the
cache bus 144 is an important factor in achieving this
multi-module capability.
The interface between the control processor 110 and

the data transfer processor module 120 also provides
significant advantages in efficiently exploiting the
cache. In the presently preferred embodiment, some
significant features are used to improve the advantages
of this interaction. First, as is common in the art of
microprogrammed processors, both the control proces
sor 110 and the data transfer processor 120 preferably

5,329,630
11

use variable-duration instructions. That is, some instruc
tion types require substantially longer cycle times than
others. For example, to give extreme cases, a no-opera
tion instruction or an unconditional branch would re
quire far less processor time than a multiply instruction.
Thus, it has been common to use variable-duration
clocks for controlling processors, where the clock gen
erator looks at the instruction type being executed and
adjusts the duration of the clock interval accordingly,
on the fly.

In the presently preferred embodiment, both the con
trol processor 110 and the data-transfer processor 120
are clocked by a shared variable-duration clock. Thus,
the control processor 110 and the data transfer proces
sor 120 are enabled to run synchronously, even though
they are concurrently running separate streams of in
structions.
The control processor 110 is given priority on access

to the cache memory 140. That is, the data transfer
processor 120 must check before every cache access, to
ensure that cache access has not been preempted by the
control processor 110. However, to prevent lock-out,
the data transfer processor 120 has an interrupt signal
available to it, which will command the control proces
sor 110 to release control of the cache port for at least
one cycle.
The three types of processor modules will sometimes

be referred to by abbreviations in the following text.
For example, the microcode which runs in the data
transfer processor module 120 may be referred to as the
DTP microcode. Similarly, the microcode which runs
in the control processor 110 may be referred to as the
CP microcode, and the microcode which runs in the
numeric processing module 130 may be referred to as
FP microcode. These abbreviations will be used regard
ing other features as well.

DESIGN GOALS

The subsystem of the presently preferred embodi
ment has been designed to give a very high floating
point number crunching performance with small size
and at low cost.
Two system contexts have been targets for use of this

subsystem: this subsystem is well suited for use as a
floating point accelerator for a wide range of general
purpose host computers. (In particular, compatibility
with UNIX engines is desirable.)

It is also contemplated that the accelerator system of
FIG. 1 may be very advantageous in a specialized pic
ture processing system. An example of such a system
would be a graphics and image processing system, man
ufactured by benchMark Technologies Ltd., and re
ferred to as the “GIP” system. (The GIP system include
a number of features to give very high throughput in a
wide range of graphics and image applications.) Such a
system, including an accelerator subsystem like those
shown in FIGS. 1, 9A, 10, 43, etc., may be particularly
advantageous for running three-dimensional graphics
algorithms.

DIVISION OF ALGORITHMS
The architecture of FIG. 1 will be discussed in much

greater detail below, but first it will be informative to
look at how this multiprocessor structure can be used.
As noted above, most algorithms can be broken down

into four separate parts: Control, Data input and output,
Address calculations, and Data calculations.

10

15

20

25

30

35

45

50

55

12
The preferred architecture treats these as separate

tasks, and maps them onto the three processors. The
control and address calculations are handled by the
Control Processor (CP) Module 110, the data I/O tasks
are handled by the Data Transfer Processor (DTP)
Module 120, and the data calculations are handled by
the Floating-point Processor (FP) Module 130.
The division of an algorithm between the control

processor module 110 and the FP is illustrated by the
detailed descriptions below, regarding some specific
algorithm implementations. One good example is pro
vided by the Fast Fourier Transform (FFT) implemen
tation discussed below, with reference to FIG. 31. The
FFT algorithm is notoriously difficult to program effi
ciently.

In this example, the FFT algorithm is divided be
tween the control processor module 110 and floating
point processor module 130, by assigning the address
calculations for the data samples and phase coefficients
to the control processor module 110 and the butterfly
calculations to the floating-point processor module 130.
The portion of the FFT software which runs in the

CP module 110 calculates the address of the complex
data, as a function of the stage and butterfly numbers.
The complex phase coefficients are held in a table, and
thus part of the software will also calculate the position
of the needed coefficients in the table, as a function of
the stage and butterfly numbers. Once the addresses
have been calculated, the data and coefficients can be
fetched and transferred over to the floating-point pro
cessor module 130. When the floating-point processor
module 130 has completed the butterfly calculations,
the control processor module 110 will read the results
and save them before repeating the address calculations
for the next butterfly. Note that the control processor
module 110 does not have to track the actual butterfly
calculation; it merely interchanges data with the float
ing-point processor module 130 at synchronization
points. Note also that this software does not merely
calculate addresses, but also controls the actual data
transfers between the cache memory and the numeric
processor.
The portion of the FFT software which runs in the

floating-point processor module 130, calculates the but
terfly by a simple linear sequence of instructions to
implement the butterfly calculations for the data set at
each successive stage. It knows nothing of the compli
cated address calculations needed to provide the cor
rect data and coefficients for each stage. The code for
the data calculations can therefore be written without
reference to the code for the data transfer operations. In
fact, if it is desired to use a different design for floating
point processor module 130 (e.g. to use a different float
ing point chip set, or a low-level data path architecture
which is more optimized for FFTs), then only this (rela
tively simple) portion of the software will require

65

changing.
The execution of the CP and FP software occurs in

parallel, and is pipelined so that the speed at which an
algorithm runs is determined by the slowest part.

ARCHITECTURE DESCRIPTION
Some of the key parts of the subsystem of FIG. 1 will

now be described in greater detail. However, it should
be understood that this is still only a summary descrip
tion. Far greater detail will be provided below.

5,329,630
13

Brief Review of CP Module 110 (FIG. 2A)
The Control Processor (CP) module 110 includes a 32

bit integer processor unit (IPU) 240, a microcode se
quencer 210, an address generator (AG) 230, and mis
cellaneous items such as microprogram memory, clock
generator, bus control, etc.

In the presently preferred embodiment, the integer
processor unit 240 is a Weitek XL8137, the sequencer
210 is an Analog Devices ADSP-1401, and the address
generator 230 is an Analog Devices ADSP-1410. As
will be readily understood by those skilled in the art, a
wide variety of other components could be used in
stead, or equivalent functionality could be embodied in
other blocks instead.
The control processor module 110 has two main tasks

to undertake:
It controls the operation of the board (at a higher

level), by interpreting commands from the host,
requesting transfers by the DTP module 120, and
initializing the floating-point processor module 130
before it starts data calculations.

It generates addresses for the data cache memory,
and controls the transfer and routing of data be
tween the data cache memory and the FP module
130. This activity normally occurs repeatedly dur
ing the actual number crunching process, after the
high level control operations have been completed.
Loop control is handled by the sequencer, so that
the address generator and IPU can be used exclu
sively for generating addresses.

Communication with other blocks is via a 32 bit wide
data bus (CD bus 112), which allows the control proces
sor module 110 to read and write to the data cache
memory 140, command memory 190, and the control
registers of FP module 130. The control processor mod
ule 110 can be interrupted by the host (via the VME
interface 160), by the floating-point processor module
130, or by the data transfer processor module 120. In
normal operation (i.e. apart from program development
and debugging) the only interrupt source will be the
data transfer processor module 120.

Brief Review of DTP Module 120 (FIG. 3A)
The Data Transfer Processor (DTP) Module 120 is

very similar to the control processor module 110, from
the programmer's viewpoint, in that it uses the same 32
bit processor and sequencer. The bus control and inter
face control are obviously different. One other distin
guishing feature from the control processor module 110
is that the data transfer processor module 120 has a
microcode expansion port, which permits it to control
add-on boards (such as a bulk memory card or a net
work card).
The data transfer processor module 120 has three

main tasks to undertake:
It controls the transfer of data between the data cache
memory and the external interfaces. (It does this in
response to high-level commands from the control
processor module 110 (or from the host).)

It transfers commands from the external interfaces to
the command queues maintained in the command
memory 190, for subsequent processing by the
control processor module 110. Any of the external
interfaces can provide commands, but initially it is
expected that the VME interface will be the main
source. Suitable software will allow command lists
to be held in the data cache memory (or command

10

15

20

25

30

35

45

50

55

65

14 .
memory), and be called as macros. (This method is
sometimes called “vector chaining.”))

In the debug environment, the data transfer processor
module 120 is the main interface between the
debug monitor (running on the host) and the micro
code being debugged in the data transfer processor
module 120, control processor module 110 or float
ing-point processor module 130. It also gives the
debug monitor access to the various memories that
are not mapped into the VME address space.

The transfer of data and commands between the ex
ternal interfaces, the data cache memory, commend
memory, VME interface memory, and the data transfer
processor module 120 occurs over the 32 bit wide TD
bus 122. The external interfaces 150, 160, and 170 are
FIFO buffered, and interrupt the data transfer proces
sor module 120 when they require attention, i.e. when
they receive some data or are getting empty. Additional .
interrupt sources are the host (via the VME interface),
and the control processor module 110.

Access by the data transfer processor module 120 to
the data cache memory is limited to cycles that are not
used by the control processor module 110. (The CP
module 110 may be using the memory either for trans
fers to the floating-point processor module 130 or for
itself.) If the data transfer processor module 120 is
forced to wait too long for access, it can steal a cycle by
interrupting the control processor module 110.

Brief Review of FP Module 130 (FIGS. 4A-4C)
The Floating-point Processor Module 180 is located

on a separate board, which plugs into the main base
board. The operations of the floating-point processor
module 130 may be considered as having two distin
guishable parts:

(a) The microcoded floating point unit. This section
undertakes the floating point calculations. The unit
was designed to achieve one goal—to run as fast as
possible, in order to obtain maximum performance
from the floating point hardware devices. To meet
these design aims, a very simple architecture is
utilized. It includes a floating point multiplier, a
floating point ALU (arithmetic and logic unit), fast
multiport refer files, and a very fast, but simple,
sequencer. In addition, a scratchpad memory is
closely coupled to the inner data paths, to hold
lookup tables and provide histogram storage. The
floating point arithmetic units interface with the
register files via two read ports and one write port.
Another write port is connected to one of the read
ports, to provide a data shuffle and replication
capability. The final port is bidirectional, and is
used to pass data into and out of the register files.

(b) The data cache memory interface. This part of the
FP module interfaces data cache memory to the
bidirectional port of the register files. There is a set
of bidirectional registers between the register file
and the data cache memory which pipelines the
data transfers and also handles the data multiplex
ing and routing. The control for the transfer is
generated in the transfer logic. Note that many
parts of this interface, although physically located
together with the FP module 130, are clocked with
the CP module 110, and will generally be referred
to as an extension CP module 110 rather than as
part of the FP module 130.

A highly multi-ported fast register file is a key ele
ment in providing a clean interface between the control

5,329,630
15

processor module 110 and floating-point processor
module 130. One side of this register file runs synchro
nously to the control processor module 110, and the
other side runs synchronously to the floating point pro
cessor module 130. Thus, this clock boundary place
ment permits changes to be made on one side of the
boundary without affecting the other side. This pro
vides a migration path to faster, or more, integrated
floating point chip sets, and hence floating point device
independence.
Up to 4 floating-point processor modules 130 (or

algorithm-customized modules 130') can be included in
one such subsystem. Some examples of interest are
shown in FIGS. 9A and 10.

Brief Review of DCM 140 (FIG. 5)
The Data Cache Memory 140 is a very high band

width, multi-ported memory. The architecture of this
memory and its interfaces provides tremendous advan
tages in the overall performance of the system of the
preferred embodiment. The high bandwidth is neces
sary to keep the floating-point processor module 130
supplied with data (and to remove its results), when the
floating-point processor module 130 is undertaking sim
ple vector calculations. For example, a vector ‘add’
operation requires 3 number transfers per calculation; if
the floating-point processor module 130 is able to sus
tain a calculation rate of 20 Mflops, the memory band
width required to keep up will be 240 Mbytes per sec
ond.
The data cache memory has a memory bank made up

of 64K by 32 bit memory modules, providing 2 Mbytes
of on-board storage. This may be expanded by the use
of a remote memory expansion board 4310 which hangs
onto the cache bus 144. (Physically, this memory expan
sion module plugs into the same connectors as the float
ing-point processor module 130 modules.) This memory
expansion board, which will have the same bandwidth
as the on-board data cache memory, can be configured
to store an extra 12 Mbytes of memory in increments of
2 Mbytes. By using double capacity memory modules,
the on-board storage may be increased to 4 Mbytes and
the off-board to 24 Mbytes.
There are three ports to the data cache memory, one

to each of the processors. However, in many respects it
has been possible to treat the memory as only dual
ported, because the data transfers to the control proces
sor module 110 and floating-point processor module(s)
130 are all controlled by the CP microcode. Data trans
fers for the floating-point processor module 130 and
control processor module 110 have priority over I/O
transfers, so the data transfer processor module 120 may
be forced to wait until there is a free memory cycle. If
the data transfer processor module 120 is kept waiting
too long, it can interrupt the control processor module
110 and gain access to the memory. This is not likely to
be a problem, unless the control processor module 110
is undertaking random accesses. Even then, for block
I/O transfers, the data transfer processor module 120
will requires 8 cycles to transfer the data per memory
access, before it needs to request another block of data.

In order to obtain the high memory bandwidth with
reasonable cycle time memory devices, a wide memory
architecture has been chosen. The memory is 256 bits
wide, so that in a single access cycle, 32 bytes (8 F_.
words) are transferred. With the memory cycling in
periods of 100 ns, the memory bandwidth is 320 Mbytes

10

15

20

25

30

35

40

45

50

55

60

65

16
per second for block transfers and 40Mbytes per second
for random F_word accesses.
The data cache memory may also be used to hold

microcode overlays for the FP module 180. These can
be transferred into and out of the FP module's writable
control store (WCS) when the floating-point processor
module 180 microcode exceeds the WCS size. The re
loading of the WCS via this parallel load facility occurs
very much faster than the normal serial load under host
control. In fact, this capability is fast enough to allow
dynamic paging of the microcode.

Brief Review of CM 190

The Command Memory (CM) 190 is a small amount
(2K) of 32 bit wide memory, dual ported between the
control processor module 110 and data transfer proces
sor module 120. Command, control and status data are
passed between the control processor module 110 and .
DTP via software queues or FIFOs maintained in this
memory.
Half of this memory is reserved for use by the micro

code debug monitor, to hold the control processor mod
ule 110 and floating-point processor module 130 state
information (as well as some command structures).

Brief Review of External Interfaces

The preferred embodiment includes several smart
interfaces. The most important of these is the host inter
face 160 (also referred to as the VME interface). The
VME interface interfaces the subsystem of the pre
ferred embodiment to the VME bus and complies with
the full electrical and protocol specifications as defined
in the VME bus specification, revision C1.
The VME interface operates in slave mode when the

VME host is loading up microcode, accessing control
or status registers, accessing the VME Interface Mem
ory (VIM) or accessing the data FIFO. The slave inter
face does not support byte or word accesses; it supports
only 32 bit parallel accesses. However, the control and
status registers are 16 bits wide, and therefore a 16 bit
host can still control the subsystem of the preferred
embodiment.
The VME interface operates in master mode when it

is transferring data between the data FIFO and VME
memory under local DMA control. The DMA activity
is controlled and monitored by the data transfer proces
sor module 120 which can also initiate interrupt cycles
onto the VME bus.
The Data Pipe interface is designed to connect to a

high-bandwidth backplane bus. (Physically, this can be
configured simply using ribbon cable.) This bus pro
vides a convenient mechanism for private inter-subsys
tem communication. That is, the interface logic includes
two receiving ports and one sending port, so that sev
eral busses of this type can be used as short local busses,
to provide a wide variety of system dataflow architec
tures. The data transfers on this bus are buffered with
FIFOs (at the receiving end), and this architecture al
lows high speed, low overhead transfers. Multiple sub
systems can be connected in parallel or in series (e.g. in
a pipeline), which allows very high performance sys
tems to be implemented easily.
As an example, a high performance, real time 3 D

graphics system can be constructed with two accelera
tor subsystems and a picture processor, configured in a
pipeline. The first accelerator subsystem transforms and
clips the polygons for frame n, the second accelerator
sorts the polygons into drawing order (for hidden sur

5,329,630
17

face removal) for frame n—1, and the picture processor
draws the polygons for frame n–2.
The DTP microcode expansion interface is virtually

an extension of the DTP module 120 micro address and
data busses. It is 100% compatible (physically and elec
trically) with the GIP microcode expansion bus, and
can use any of the expansion cards, designed for GIP,
that use this type of interface. The external bulk mem
ory systems and network cards will connect to the sub
system of the preferred embodiment via this interface
port.
A Picture Data Bus Interface 170 (or “GIP Inter

face”) connects to another bus which is particularly
optimized for graphics and image data. This interface
also permits connection to the GIP microcode expan
sion bus, which allows a small mount of interface logic
on the subsystem of the preferred embodiment to be
controlled by the GIP microcode. This provides a bidi
rectional, 16 bit wide FIFO between the GIP and Sub
system of the preferred embodiment along which com
mands and data can travel Each side of the interface can
interrupt the other.
CONTROL PROCESSOR (CP) MODULE 110
The control processor is a 32 bit microcoded proces

sor based around a 32 bit Integer Processor Unit (IPU)
240, which in the presently preferred embodiment is a
Weitek XL8137. The IPU 240 is supported by a 16 bit
address generator (AG) 230 (which in the presently
preferred embodiment is an Analog Devices ADSP
1410), and a 16 bit sequencer 210 (which in the presently
preferred embodiment is an Analog Devices ADSP
1401). The main data path within the control processor
is the CD bus 112.
FIG. 2A provides a general overview of the organi

zation of a control processor 110, in the presently pre
ferred embodiment. A writable control store (WCS)
220 is a memory which contains a sequence of microin
structions. A sequencer 210 provides microinstruction
address commands 211 to fetch microinstructions from
control store 220. The stream of instructions thus
fetched from control store 220 is shown as 221. Note
that both an unregistered output and an output regis
tered through register 222 are preferably provided. The
registered output from 222 is provided to decoder 260.
Registers 222 and 223 are both configured as serial
shadow registers, and interface to a serial loop 225.
Note also that a portion of the microaddress stream is
also preferably provided on a line 211A, which will be
communicated to the floating point module 130. This
has advantages which will be discussed below.
Note also that the flow on line 221 is preferably bidi

rectional That is, this line can not only be used to read
out microinstructions from the writable control store,
but can also be used, under some circumstances, to
write instructions back into the control store 220. This
is an important capability, which has advantages which
will be discussed below,
The microcode output 221 is provided as an input to

decoder 260. In conventional fashion, this decoder sepa
rates the fields of a microinstruction and decodes them
as needed, with minimal low level decode logic. The
presently preferred microinstruction format is shown in
FIG. 2B, and will be discussed in greater detail below.
The outputs 261 of the decoder 260 are routed to all of
the major functional blocks, including the address gen
erator 230, the integer processing unit 240 and the se

10

15

20

25

30

35

45

50

55

65

18
quencer 210. Because these lines are so pervasive, they
are not separately shown.
Note that the sequencer 210 receives inputs not only

from the IPU 240 through link register (transceiver)
214, and from address generator 280 via sequencer local
bus 215, but also receives several other inputs:
A variety of interrupt lines are multiplexed through a

multiplexer 213, and these interrupts will generate
the various alterations in the program counter op
eration of a sequencer 210. Sequencer hardware for
handling interrupts appropriately is very well
known.

Another multiplexer (shown as 212) is used to select
among a variety of condition code signals, for input
into sequencer 210. These condition code signals
are used in the logic of the sequencer 210 in various
ways, as will be further discussed below.

A buffer 217 is used to route constants which may
have been specified by a field of the microinstruc
tions 221.

In addition, some further inputs and outputs are
shown to the writable control store 220 and microin
struction bus 221. A write enable line 224 is externally
controlled, e.g. from a host. In addition, a two-way
interface 211B permits the host to write or read to the
microaddress bus 211. This capability is useful for diag
nostics, and also for writing microinstructions into the
control store 220, as will be discussed below.
A clock generator 250 receives cycle-duration inputs

from both the control processor 110 and the data trans
fer processor 120. The duration of the current clock
cycle is selected on the fly, in accordance with the
longest duration specifier received from the CP and
DTP modules. This is preferably implemented using a
programmed logic array (PAL). As with decoder 260,
the outputs of the clock generator 250 are so perva
sively routed that they are generally not separately
shown.
FIG. 2B shows the microinstruction field allocation,

in the presently preferred embodiment. Note that the
allocation of fields in the CP extension logic is also
shown. The operation of this extension logic will be
discussed in great detail below. However, at this point it
should be noted that the additional bits of microinstruc
tion format in this extension field, and the WCS exten
sion which stores these additional fields for each in
struction in the primary WCS 220, and the logic which
decodes and executes these additional microinstruction
fields, are all replicated for each numeric processing
module 130 or algorithm accelerator in the subsystem.
Thus, the embodiment of FIG, 10 would include three
WCS extensions, and the total CP microcode field
would be 192 bits.
Note that separate instruction fields in the primary

instruction are allocated for the integer processing unit
240 (32 bits), for the address generator 230 (10 bits), and
also for the sequencer 210 (7 bits). In the extension fields
(which would be stored in each WCS extension), fields
are allocated for register select, condition select, and
transfer control. The use of these bits will be discussed
in greater detail below.

Other instruction fields are allocated in ways which
are fairly conventional in the art of microcoded archi
tectures. For example, a bit is used to indicate that a
breakpoint has been reached, several bits are used to
briefly describe the instruction type, two bits are used to
encode the clock control (to permit the variable-dura
tion clocks, as discussed above), etc.

5,329,630
19

The address generator 230 is an off-the-shelf address
generator unit. The calculations which can be per
formed by this unit enhance the rapid address computa
tion abilities of the control processor 110.

In addition, the integer processing unit (IPU) 240
provides still greater arithmetic capability. The IPU can
read and write from the CD bus 112, and can also out
put addresses onto the CA bus 111 (through the register
241). These addresses, as may be seen in the high level
diagram of FIG. 1, provide address information to the
cache memory 140, and also to the command memory
120.
The actual component used for the integer processing

unit 240, in the presently preferred embodiment, has
significant arithmetic capability, including the capabil
ity to do multiplies in hardware. Thus, units 230 and 240
together provide a large amount of arithmetic hardware
available for the purpose of address generation. In addi
tion, of course, the sequencer 210 includes some logic
which also performs the function of microinstruction
address generation.
Note that the address generator 230 has an output

231, which is buffered and connected back onto the CD

5

10

15

20

bus 112. The sequencer 210 can read the outputs of 25
integer processing unit 240 (through link register 214),
but the IPU 240 can also be commanded to drive the
CD bus 112. The cache memory 140, the FP module
130, or the command memory 190 can also access these
results, once they are put out on this bus.

Register 203 (shown at the top left of FIG. 2A) stores
several little-used control signals. These include signals
for diagnostics, LED control signals, etc.

INTEGER PROCESSOR UNIT (IPU) 240
The IPU 240 contains a 4 port register file 1110, an

ALU 1120, a field merge unit 1130, and a multiply/di
vide unit 1140. A simplified diagram showing these
components is shown in FIG. 11. The two external data
paths are shown in this figure as the D and AD buses
1101 and 1102. In the control processor module 110, the
AD bus 1102 is connected through register 241 to serve
as the address bus to the various memories, and the D
bus 1101 connects directly to the CD bus 112.
The IPU 240's four port register file 1110 allows, in a

single cycle, such operations as r1=r2+ r3, in addition
to a write into the register file via the fourth port. The
ALU 1120 provides all the usual arithmetic and logical
operations, as well as priority encoding and bit or byte
reversal instructions. The field merge unit 1130 pro
vides multi-bit shifts and rotates, variable bit field ex
tract, deposit and merge functions. The multiply/divide
unit 1140 runs separate from the rest of the IPU 240:
once it has started doing a multiply or divide operation,
any other non-multiply/divide instructions can be exe
cuted by the ALU 1120 or field merge unit 1130. The
multiply operation is 32 by 32 signed (8 cycles), and the
divide operation is 64 over 32 bits unsigned (20 cycles).

Register 241, external to the IPU 240, is used at the
interface to the CA bus 111. This introduces a pipeline
delay when accessing memory. (This register is neces
sary because, with the specific part used here, the AD
bus is not valid until 75–90 ns after the start of a cycle.)
The microcode instruction input to the IPU 240 (on a

“C” bus 1103) is registered internally (in a register
1151), so the microcode instruction is taken directly
from the writable control store (WCS).

30

35

40

45

50

55

65

20
ADDRESS GENERATOR (AG) 230

The configuration of the address generator 230 used
in the preferred embodiment is generally shown in FIG.
12. Key elements include a 16 bit wide ALU 1210, 30
internal registers (functionally grouped as 16 address
registers 1222, 4 offset registers 1224, 4 compare regis
ters 1226, and 4 initialization registers 1228. Also in
cluded are an address comparator 1230 and bit reverser
1240. An internal bus 1250 provides data routing, and a
“Y” bus 1270 provides address outputs 231 which are
fed back onto CD bus 112 (when output buffer 232 is
enabled). The “D” bus 1260 is connected to provide
inputs or outputs to the sequencer data bus 215, which
is separated from the CD bus 112 by link register/tran
sceiver 214. The actual device also includes an instruc
tion decoder and miscellaneous timing and glue logic,
not shown. -

These features allow the address generator 230, in a
single cycle, to:

output a 16 bit address,
modify this memory address by adding (or subtract

ing) an offset to it,
detect when the address value has moved to or be
yond a pre-set boundary, and conditionally re-ini
tialize the address value.

This latter step is particularly useful for implementing
circular buffers or module addressing.
The address generator 230 augments the address gen

erating capabilities of the IPU 240. However, the partic
ular chip used for the address generator 230 can only
generate 16 bit addresses, if operating directly. (Double
precision addresses would take two cycles, or two chips
can be cascaded.) In the presently preferred embodi
ment, the 16-bit address outputs of the address genera
tor 230 are passed through the IPU 240, where they can
be added to a base address and extended up to 32 bits.
The address generator's registers are accessed via its

16 bit wide D port, which is connected to the same local
portion 215 and link register 214 as the sequencer.
The addresses come out of the Yport 1270 (shown as

line 231 in FIG. 2A). The addresses are passed through
a three-state buffer 232 before connecting to the CD bus
112. When either the address generator's D or Yport is
read (i.e. is called on to drive the CD bus) the 16 bit
values can be zero extended or sign extended to the bus
width (32 bits). The logic which performs this is located
in sign/zero extend PAL 216, which is discussed in
greater detail below. Zero extension or sign extension is
controlled directly from the CP microcode. (This fea
ture is available when any of the 16 bit wide ports are
selected to drive the CD bus.)
The instruction set of the address generator 230 is

divided into the following groups:
Looping,
Register transfers,
Logical and shift operations,
Control operations, and
Miscellaneous operations.
The microcode instruction input to the address gener

ator is registered internally, so the microcode instruc
tion is taken directly from the WCS 220.
SEQUENCER 210 AND ASSOCIATED SUPPORT

LOGIC

In the presently preferred embodiment, sequencer
210 employs an ADSP 1401. Key elements of this par
ticular implementation are shown in FIG. 13. These

5,329,630
21

include a 16 bit adder 1310, a 64x16 bit RAM 1320,
interrupt logic 1330, interrupt vector storage 1340, and
four loop counters.
The internal RAM 1320 can be used in three ways:
As a register stack: This allows up to four addresses

to be saved on the stack when entering a subrou
tine. These can then be accessed by a 2 bit field in
the relevant instructions.

As a subroutine stack: This provides the normal re
turn address storage for subroutine linkage and
interrupts. It can also be used to save other parame
ters such as the status register or counters.

For indirect address storage: This allows an area to
be set aside to hold often used addresses. These are
accessed using the least significant 6 bits of the D
port.

Stack limit registers 1321 protect against one stack

10

15

area corrupting another, or stack overflow and under
flow situations. If one of these occurs then an internal
interrupt is generated, so an error condition can be
flagged or the stack extended off-chip (stack paging).
Ten prioritized interrupts are catered for—two inter

nal to the device, for stack errors and counter under
flow, and eight external. All the interrupt detection,
registering and masking is handled on-chip by logic
1330, and the corresponding vector is fetched from the
interrupt vector file 1340.
The instruction set is very comprehensive with a

wide variety of jumps, subroutine calls, and returns.
Most of these instructions can use absolute addresses,
relative addresses, or indirect addresses to specify the
target address. They can also be qualified by one of the
selected conditions:

Unconditional. Execute the instruction always.
Not flag. If the condition code input (called FLAG)

is false then execute the instruction, otherwise con
tinue (the usual fail instruction).

Flag. If the condition code input is true then execute
the instruction, otherwise continue (the usual fail
instruction).

Sign. Execution of the instruction depends on the
sign bit in the status register.

There are also instructions to do stack management,
status register operations, counter operations and inter
rupt control.
The microcode instruction input is registered inter

nally, so the microcode instruction is taken directly
from the WCS (unregistered).
The sequencer support logic falls into four categories:

interrupts, conditional code selection, micro address
bus, and constant/next address field.

Interrupts
The chip used for sequencer 210, in the presently

preferred embodiment, only has four interrupt input
pins. Therefore an external multiplexer 213 is used to
extend the number of available interrupts to eight. The
interrupts are mainly used for communication and to
support debugging tools.
The interrupt sources are (in order of highest priority

first):
Claw Logic

Within the debug environment there are, nominally,
two tasks running: the monitor task and the user task.
The claw logic allows the user task to be single stepped
without single stepping the monitor task as well. The
claw logic “claws back control” to the monitor task

20

25

30

35

45

50

55

65

22
after one instruction in the user task has been run. The
instruction that returns control back to the user task
requests a claw interrupt. Since this is delayed by one
cycle, the interrupt occurs on the first instruction exe
cuted in the user's task. Thus control is returned back to
the monitor task before the next (i.e. the second) in
struction in the user task is executed.

Breakpoint
This interrupt level is connected directly to a micro

code bit, so that whenever this bit is set an interrupt will
occur. This provides a convenient mechanism for im
plementing breakpoints. The instruction with the break
point bit set will be executed, and then control passed to
the breakpoint handler. Any number of breakpoints can
be set.

VME Bus

The VME bus interrupt is normally used only for
supporting the debug monitor and should not be used
during normal operation.

Floating Point Processor (breakpoint)
When the floating-point processor module 130 hits

one of the breakpoints set in its WCS, the FP clocks are
stopped. The FP module notifies the control processor
module 110 of its situation via this interrupt.*

DTP Memory access
This interrupt is used to force the control processor

module 110 to temporarily suspend accesses to the data
cache memory. This permits the data transfer processor
module 120 to gain access to cache 140.

DTP (command)
This interrupt is the normal method for the data

transfer processor to inform the control processor mod
ule 110 that there is a command in the cp_command
FIFO (in command memory 190).”

DTP (data transfer done)
This interrupt is used by the data transfer processor

module 120 to inform the control processor module 110
that a data transfer request has been finished.**

Floating Point Processor (general)
This interrupt can be generated as a result of the

CPWAIT, FPWAIT changing state, or the occurrence
of an error (whose type can be defined in software), or
a breakpoint in the floating-point processor module 130.
The active events are selected by a mask register, on the
FP module 130, which the control processor module
110 can load. This interrupt is not used at present, and is
reserved for future use. In systems using multiple FP
modules 130, the four FPs will share this interrupt. The
interrupt service routine will therefore need to identify
which FP(s) mused the interrupt, in order to service
them accordingly.”

Note: The interrupts marked with * can also be tested
by the normal condition code logic, so that if it is
more convenient for them to be polled then they
can be.

For the interrupts marked **, the situation that gener
ates the interrupt condition can be detected by
examining the control information in the software
FIFO data structures. This can be polled if inter
rupts are not used.

5,329,630
23

The use of multiplexer 213 to expand the number of
interrupts forces different timing requirements between
the four high priority interrupt levels and the four low
priority interrupts. For the four highest priority inter
rupts to be recognized, they must occur 25 ns before the
rising edge of the microcode clock. For the lower prior
ity interrupts, the time limit is 15 ns before the falling
edge.
To generate an interrupt, the corresponding interrupt

input is held high for one clock period. No hardware
interrupt acknowledge cycle is necessary, so the inter
rupt generating hardware is very simple.

Condition Code Logic
The sequencer has a single condition code input

called FLAG, and all of the testable status signals are
multiplexed into this pin. This is registered internally,
and has a normal set up time of 10 ns when IR0 is
masked (counter underflow interrupt), or 26 ns when
enabled. The polarity of the FLAG input can be
changed inside the sequencer.
As seen in FIG. 40A, some additional logic is prefera

bly used to preserve the state of the FLAG inputs out
side the sequencer 210. This permits the internal state of
the sequencer 210 to be fully restored after an interrupt.
A PAL 4021 is used to emulate the internal flip-flop

4020, inside the sequencer 210 (or 310). This PAL is
thus operated simply as a “mimic register.” The need
for this can arise under conditions as shown in FIG.
40B, -

When an interrupt occurs, the sequencer will divert
to an interrupt handling routine. During this routine the
mimic register PAL simply holds a copy of the status
flag condition which existed before the interrupt. At the
end of the interrupt handling routine, the multiplexer
212 is commanded to provide the output of the PAL
4021 as the FLAG input to sequencer 210. This restores
the internal state of flip-flop 4020. This permits instruc
tion flow to continue in the same sequence it would
have if the interrupt had not occurred. This is particu
larly important if the instruction following the interrupt
is a conditional branch. Correct restoration of the inter
nal state assures that the conditional branch will be
correctly executed.
Of course, this logic would not be necessary with

some sequencers. However, it is advantageous with the
particular sequencer used in the presently preferred
embodiment.
The testable status signals are:
IPU 240 condition code output: this relays the status

of the current instruction. Which condition is indi
cated by the IPU output on this pin is defined by
the microcode instruction.

Microcode loop: This is a status bit in the VME inter
face control register and is useful for diagnostic
Software.

Write flags 0 and 1: These two signals allow better
access to the internal state of the data cache mem
ory write logic and are only used by the state save
and restore microcode in the debug monitor.

Held status: This is tested when returning from an
interrupt, so that any conditional jump, etc., is
executed correctly even if it was displaced by a
jump to the interrupt service routine.

FP status signal CPWAIT. This is cleared when the
FP has finished its calculations and is waiting for
more data.

5

10

15

20

25

30

35

45

50

55

60

65

24
FP status signal FPWAIT. This is cleared when the

control processor module 110 has finished its calcu
lations and is waiting for more data.

FP status signal bank—select: This indicates which
half of the FP register file is allocated to the con
trol processor module 110, when the register files
are used in the double buffered (logical) mode.

FP status signal: Serial loop. This is extracted from
the end of the serial loop that runs through the
floating point chips on the FP. The interfaces to
this serial loop allow the control processor module
110 to extract (and insert) the internal status of
these devices.

FP status signals: cp-wait—interrupt and fp—wai
t_interrupt. These two status bits are set (if mask
ing permits) whenever their respective signals have
gone from high to low. The signals FPWAIT and
CPWAIT are directly tested, since they might.
return high again before the CP can identify the
interrupt source.

FP status signal fp breakpoint. This is only used for
debugging, and is set whenever the FP hits a break
point.

FP status signal: fp_error. This is set whenever an
error occurs in the floating-point processor module
130. It has been included for future use.

The FP status signals share a common line into the
sequencer, and the actual one to be tested is selected by
the portion of CP extension microcode.
The condition output from the IPU 240 is valid too

late to meet the sequencer's set up time (especially as it
will be delayed by a multiplexer), when cycling in 100
ns. When testing this condition the clock will need to be
stretched to 125 ns.

Implementing “for loops” is best done by using one of
the counters internal to the sequencer, thus freeing the
IPU 240 for address calculations. For-loops could be
done using the IPU 240, but this would impose extra
overhead due to a longer cycle time.
The condition codes are multiplexed via an 8 to 1

multiplexer 212 into the “FLAG” input in the se
quencer. The sequencer internally registers and selects
the polarity of the selected condition code signal.

Micro-address Bus
The micro-address bus 211 and 211A can be driven

from two sources: from the sequencer 210 during nor
mal program execution, and from the VME bus when
loading microcode. The VME bus can also read the
contents of the micro-address bus to see what address
the sequencer is at. This is done asynchronously to the
sequencer operation, and is mainly used for diagnostics.
The micro-address bus 211 is also routed onto the FP

module (shown as extension 211A) because 32 bits of
the control processor module 110 WCS is located on
each FP module. The micro address bus extension 211A
can also be used to drive the FPWCS. This capability
can be useful for two reasons:

1) As a means for the host to provide an address when
the FP microcode is down loaded.

2) As a mechanism which could be used for running
the FP microcode synchronously with the control
processor module 110, so that the address of the
sequencer 210 in the control processor module 110
is used rather than the internally generated one.
(This capability is not present in the principal pre
ferred embodiment, but is noted as a readily avail
able alternative.)

5,329,630
25

Constant Field

The 16 bit wide constant field of the microinstruction
is mainly used to provide addresses to the sequencer,
but can also hold constants for the address generator.
The sequencer 210 has a bidirectional connection to a

private local bus (the sequencer data bus 215). This
permits jumps, etc., to be done in parallel with actions
using the CD bus 112. The sequencer data bus is linked
to the CD bus 112 via a bidirectional link register/tran
sceiver 214. The timing of the clocks and the “feed
through” control to the link register 214 are varied,
depending on the transfer path and direction, because
the source and destinations all have different require
ments. Note that the address generator data input 1260
is connected to the sequencer side of this interface,
because the address generator 230 has the same timing
requirements as the sequencer for transfers on this bus.

This configuration allows the following routings:

Constant field — » Sequencer (Jumps)
Constant field -> CD bus (Register loading)
Sequencer — » CD bus (Diagnostics)
CD bus — » Sequencer (Computed Jumps)
Constant field --> Address generator
Address Generator — » CD bus (Diagnostics)
CD bus — » Address Generator (Computed addresses)

WRITABLE CONTROL STORE (WCS) 220
In the presently preferred embodiment, the WCS

memory bank uses microcode SIL modules. These pro
vide 8K by 32 bits of memory, together with serial
shadow registers 222 and 223 for loading microcode
and for diagnostics. The operation of these shadow
registers will be discussed in much greater detail be
low.) Two versions of the module are used: registered
or non-registered outputs. The IPU 240, and address
generator 230, and sequencer 210 have their own inter
nal pipeline registers, and so use the non-registered
outputs from WCS 220.

It should be noted that the control processor mod
ule's WCS is actually distributed. In addition to the
primary WCS portion 220 shown (which is physically
located on the base board), there are also one or more
other extensions of WCS 220. These extensions 490
receive the microaddress stream 211A, and physically
reside on each FP module. The instruction set stored in
the primary WCS 220 contains 96 bits of instruction at
each address. The WCS extensions 490 each span the
same range of addresses as the primary WCS 220, but
each of the WCS extensions (in each of the numeric
processor modules 130) contains an additional 32 bits of
instruction at each address.

WCS Interface Registers 222 and 223
The operation of the serial loop by which the host

(working through the VME Interface 160) can read
from and write to all of the control stores will be dis
cussed in detail below. At this point, hardware structure
and connections will be described. -
As noted, register 222 provides a registered microin

struction output, to the decoder 260 and to many other
logic and memory components. An unregistered micro
instruction output 221 is also provided, for components
which have internal instruction registering. (For exam
ple, the IPU 240 has internal instruction pipeline regis
ters. It also has sophisticated internal decode logic.
Note that the IPU 240 also receives some registered

10

15

20

25

30

35

45

50

55

65

26
control bits from the decoder 260, e.g. output enable
signals.)
The register 222 is actually a serial shadow register. It

not only provides a registered parallel throughput, but
also has a serial access mode. The serial access mode is
used for interface to the serial loop described below.
The other serial shadow register 223 shadows the

unregistered outputs 221. To provide a serial output
(when demanded) which corresponds to the complete
instruction 221 (or, conversely, to write the full width
of an instruction 221 back into the control store 220), all
bit fields must be accessed.
Of course, the connections just described provide

only a data interface to the WCS 220. That is, the regis
ters 222 and 228 see the content of locations in WCS
220, but do not see addresses explicitly associated with
the data. The address interface is a separate two-way
interface, which is shown as a bidirectional connection
211B. This is the CP microaddress bus, which is con
nected to the microcode load control logic 610 in the
VME Interface. This same bus provides the microad
dress interface to all of the control stores in the system,
except for the DTP control store. The microaddress
line in the DTP control store is connected to another
register/buffer pair in the VME Interface.

FP CONTROL LOGIC

An important feature of the architecture is that the
control processor module 110 is not merely a supervi
sory processor, but directly controls all data transfers to
and from the floating-point processor module 130. Most
of this logic is physically on the FP module, but is con
trolled by the microcode of the control processor mod
ule 110, and interfaces to the CD bus. This logic is
discussed in much greater detail below, where the data
operations of the FP module are reviewed.

MISCELLANEOUS LOGIC

Mode Registers 203
The mode registers 203 hold the value of little used

control signals which can not justify dedicated micro
code bits. The mode bits are:
Flow through or rear control of the read holding

registers 561.
Flow through or register control of the write holding

registers 561 (the registers shown as 561 in FIG. 5
are actually doubled, and include one read register
and one write register).

Loopback mode for the holding registers 560.
Two LED control signals.
Module select (3 bits): this address selects among the

multiple possible FP modules 130 and/or algorithm
accelerators 130'.

CD Bus Decode Logic
One of the functions of decoder 260 is to decode the

microcode CD source field to control the output ena
bles of devices that can drive the CD bus. It also de
codes the CD destination field to generate clock strobe
and write enable signals (which are qualified by write
gate signal from the clock generator). Most of the ports
on the CD bus can be read and written, so mimic regis
ters in the IPU 240 are not required. (Note that some of
the CD sources and destinations will be controlled by
decode logic in the CP Extension Logic 410, rather than
by that in the decoder 260.)

5,329,630
27

Possible CD bus sources and destinations include:
IPU 240; Command memory; Data cache memory
holding registers 560A; Mode register (8 bits); Transfer
control register * **; FP control register * **, Start
address register * **; Instruction register (8 bits) *;
Status register (source only)*; Address generator ad
dress port **; Address generator data port **; Se
quencer data port **; Constant/next address field
(source only)**. Registers marked * are part of the CP
Extension Logic 410, which is located on the FP mod
ule. These registers are selected by fields in the ex
tended CP microcode, which is stored in the WCS
extension 490. Only the selected module(s) respond to
the data transfer, and source or sink the data. Sources
marked ** only drive the lower 16 bits. When one of
them is selected, the sign/zero extend PAL 216 is also
activated, so that the data is either sign or zero extended
up to the bus width of 32 bits.
Note that only one source and one destination can be

selected, and that they must be different. The transfer of
data into the IPU 240 is under control of the IPU 240's
instruction field, so that it can take data from the CD
bus at the same time it is being loaded into another
destination.

CLOCK GENERATOR 250

The clock generator 250 produces the basic clock
signals used throughout the control processor module
110 (and the data transfer processor module 120). It
receives cycle-duration inputs from both the control
processor 110 and the data transfer processor 120. The
duration of the current clock cycle is selected on the fly,
in accordance with the longer duration of the two re
ceived from the CP and DTP modules.

This generator is preferably implemented using a
programmed logic array (PAL). This PAL generates
one of four predefined waveform sequences. These four
sequences have different periods, namely 4, 5, 6, and 7
times the input clock period. This translates to 100, 125,
150 and 175 ns, when a 40 MHz oscillator is used, as
presently preferred.
Four clock outputs are produced. All of these clocks,

except the time-two clock, will have the same duration,
depending on the cycle-duration inputs. These include a
microcode clock, a pipeline clock, a write-enable gate
signal, and a times-two clock.
The microcode clock is always high for 2 cycles (of

the oscillator), and then is low for 2, 3, 4 or 5 cy
cles, as selected by the cycle length inputs. The
microcode clock keeps the sequencer, integer pro
cessor unit address generator, registers, etc. run
ning synchronously.

The pipeline clock has the same waveform as the
microcode clock, but the microcode clock can be
disabled, leaving the pipeline clock running, for
microcode loading.

The write-enable gate signal goes low one cycle after
the microcode clock goes high, but returns high 1
cycle before the microcode clock does.

This signal provides the timing for write enables for
all of the memories and some of the registers.

The times-two clock runs at twice the frequency the
microcode clock does, and its rising edge occurs at the
same time as a the microcode clock edge. This is a
special clock, which is used only by the Integer Proces
sor Units 240 and 340. The IPUs use this clock to clock
their (internal) multiply/divide logic, in order to reduce
the time taken for these multi-cycle functions.

10

15

20

25

30

35

45

50

55

65

28
The cycle length of the clocks are adjusted for each

instruction, so that the time allocated to that instruction
is the minimum required by the data path routing speci
fied in the instruction. The cycle duration for each
instruction is preferably calculated by the microcode
assembler, and is included as part of the instruction.
This gives an increase in performance over the case
where a fixed cycle length is used, in which case all
instructions would have to take as long the slowest
instruction. In the presently preferred embodiment four
cycle lengths are supported, of 100, 125, 150 and 175 ns.
However, most instructions will use the shortest cycle
length.
The clock cycle can also be extended by a “wait

signal.” This wait signal is used when memories cannot
meet the normal access time, e.g. because they are busy,
or because they are off-board and their access times
must be extended due to the additional buffering. For
example, the VME interface memory, which is dual
ported, may suffer a clash on addresses and require one
port to wait. The data cache memory 140 can be ex
panded (as shown in FIG. 43) with a cache memory
expansion module, mounted on a memory board which
uses the same connectors as the FP module. However,
depending on the memory type used, accesses to the
cache expansion module may be slower than accesses to
the primary cache 140. In such cases the wait-state input
to the clock generator will permit the cycle length will
be automatically extended. This facility will allow
much slower, and hence cheaper, memory to be used on
the expansion module 4310, with only modest degrada
tion in performance.
The host can control the clock generator via the

VME bus interface. The host can thereby select
whether the clock generator 250 free runs or is stopped.
In the stopped condition, the host can single step the
clocks. Note that both the control processor module
110 and data transfer processor module 120 will be
single stepped together.
The final control into the clock generator is one that

inhibits all the clocks except the pipeline clock (which
behaves normally). This is used when loading (or read
ing) WCS, as it allows these actions to occur without
disturbing the internal state of the control processor
module 110 or data transfer processor module 120. For
example, this would be used when a breakpoint is set in
WCS during a microcode debugging session.

DEBUG HARDWARE

Most of the debug hardware included in the control
processor module 110 has already been mentioned in
various places above. Key features are summarized here
for convenience:
The host can take control of the microaddress bus

211, both for read and for write.
The host can load and read back the WCS 220.
The control processor module 110 recognizes a VME

generated interrupt (i.e. an interrupt from the host)
as a high priority interrupt.

Hardware breakpoint support is provided, with no
restriction on the number of breakpoints that are
set at any one time.

Claw logic is provided, so a user task can be single
stepped without single stepping the monitor task.

All registers are read/write, permitting many normal
data flows to be reversed for diagnostics.

A clock control input permits single stepping micro
code.

5,329,630
29

All interrupts can be selectively enabled or disabled.
The internal state of the critical logic groups can be

accessed. This allows a complete state save and
restore of the control processor module 110 hard
Ware.

MICROCODE WORD FORMAT

FIG. 2B shows schematically the organization of the
microinstructions stored in WCS 220 and in the WCS
extension(s) located on the FP module(s). The items
marked with a * come directly from the WCS, and are
pipelined internally in the devices they are controlling.
The other items are registered at the output of the WCS
220.
The fields marked ** are physically stored in the

WCS extension on the FP module, but are part of the
CP microcode word. Most of these microcode actions
are qualified by the module selection logic, and will
have no effect if the FP module hasn’t been selected.
The total number of microcode bits available are 96

plus an extra 32 per FP module installed. Most of the
bits are used, but there are also a few spare bits avail
able.
IPU opcode (32) * This field controls the data routing
and arithmetic or logical operation of the IPU 240
integer processor. The allocation of bits within the
field is encoded. All instructions are encoded in the
bottom 24 bits. The top 8 bits are only used during
the transfer of data into the IPU 240's register file.
(Further details of this field may be found in the
manufacturer's data sheets for the IPU.)

Sequencer opcode (7) * This field controls the gener
ation of the next address by the ADSP 1401. (Fur
ther details of this field may be found in the manu
facturer's data sheets for that part.)

Constant/next address field (16) * This field is mainly
used for providing address information to the se
quencer, but can also be used to place a 16 bit con
stant value onto the data bus. This can then be
loaded into any of the registers on this bus.

Address generator opcode (10) * This field controls
the ADSP 1410 address generator. (Further details
of this field may be found in the manufacturer's
data sheets for that part.)

Cycle length (2) This field selects the cycle length
appropriate to the instruction and data routing
selected.

Data cache access (1) * This bit is active whenever an
access to the data cache memory is required by the
control processor module 110 for its own use or to
transfer data to or from the FP. The access flag is
not pipelined so that the arbitration with the data
transfer processor module 120 data cache requests
can be sorted out before the start of the cycle the
request happens on.

Data cache write enable (1) This bit generates a write
cycle in the data cache memory.

Data cache write all (1) This bit overrides the normal
write enable gating that allows selective updating
of words in the data cache memory and forces
them all to be written. This is useful when setting
blocks of memory to a constant value.

Data cache port select (1). This bit selects either the
FP module holding registers or the control proces
sor module 110 holding registers to be the source
or destination for a data cache transfer.

Data cache memory length (3) These bits specify the
number of words from the FP holding register to

5

10

15

20

25

30

35

45

50

55

65

30
write into the data cache memory. The first word
in the holding register is specified by the least sig
nificant three bits of the data cache memory ad
dress.

Condition code select (3) This field selects one of the
following condition codes to be tested by the se
quencer during a conditional instruction: IPU 240
condition code output; fp_status (actual status
selected by a separate field); fp—breakpoint; micro
code loop; write flags (2 entries); hold status.

CD bus source (3) This field selects one of the follow
ing registers, buffers or devices to drive the CD
bus: IPU 240; Command memory 190; One of the
Data cache memory holding registers 561*; Mode
register; FP module”; Address generator address
port; Address generator data port; Sequencer data
port; Constant/next address field; (* Note that the
particular register or buffer to use as the source is
specified in another; field.)

CD bus destination (3) This field selects one of the
following registers, buffers or devices as the desti
nation of the data on the CD bus: Command mem
ory; Data cache memory holding register; Mode
register; FP module (the particular module to use
as the source is specified in another field); Address
generator address port; Address generator data
port; Sequencer data port.

The IPU 240 is not included because it can “grab” the
data on the CD bus at any time. (This function is con
trolled by the IPU instruction field.)

Address register control (2) One of these control bits
enables the loading of the address register and the
other bit enables readback of the register for use by
the diagnostics and debug monitor.

Module select (3) The most significant bit (broadcast
select) controls how the other two bits (module
ID) are interpreted. When broadcast select is 0 the
module (ID) selects the single module which is to
respond to a data transfer, either with the data
cache memory or the CD bus. When broadcast
select is 1 the module ID selects which group of
FPs (or algorithm accelerators) responds to a data
transfer. This allows the same data to be trans
ferred to multiple destinations at the same time and
hence is faster than individual writes. Note that this
is only valid for transfers to the modules, since
multiple transfers from the modules could cause
contention on the data bus.

Module select mode (1) Specifies whether the module
to select is defined by the microcode module select
field or by the mode register. This allows the mod
ule to be selected on a cycle by cycle basis or more
globally. The global method is used when the work
can be done on any of the FP modules present and
the control processor module 110 picks the FP to
use before it starts the transfer/calculate cycle. If
the global facility wasn't available then there
would be a different control processor module 110
routine to correspond to every FP module.

Breakpoint (1) (** Debug use only **) Set by the
debug monitor to place a breakpoint on an instruc
tion. This causes an interrupt to occur during the
instruction so that control is passed to the debug
monitor microcode after this instruction has fin
ished.

Claw (1) (** Debug use only **) Set to prime the
claw logic when single stepping a user task. This
causes an interrupt to occur during the next in

5,329,630
31

struction so that control is passed back to the debug
monitor microcode after one user task instruction
has been executed. This allows a user task to be
single stepped without physically switching the
clocks on and off.

Interrupt DTP (1) This generates an interrupt in the
data transfer processor module 120 to gets its atten
tion. The net result of this is to force the data trans
fer processor module 120 to examine a command
queue to find its next item of work.

Zero or Sign extend (1) This only has any effect when
a 16 bit wide register or device is read. This signal
selects whether the data is zero extended (bits
16–31 set to zero) or sign extended (bits 16–31 set to
the same as bit 15).

Held Status (1) This bit prevents the updating of the
mimic status register that normally follows the
state of the FLAG register inside the sequencer
210. Normally this mimic bit follows the internal
register's state, but during an interrupt service the
mimic bit is prevented from being updated. This
permits the FLAG register to be correctly restored
when the interrupt routine is exited.

FP condition code select (3) ** These bits select
which one of the internal FP module signals drive
the common condition code line to the control
processor module 110 sequencer. The following
can be selected: CPWAIT; FPWAIT, ban
k—select; serial loop; cp—wait—interrupt; fp—wai
t—interrupt; fp_breakpoint; and fp_error.

Register select (3) ** These bits select which one of
the internal registers 444 on the FP module are to
be read or written via the CD bus (bottom 16 bits
only). The registers and buffers are: Transfer con
trol register; FP control register; Start address
register; Instruction register (8 bits); Status register
(source only).

Register direction (1) ** This bit selects whether a
register is to be read or written.

Clear FP breakpoint (1) ** This bit clears the FP
breakpoint, which in turn allows the FP clocks to
run.

Jump start address (1) ** This bit causes the FP se
quencer to use the start address register 479 (loaded
by the control processor module 110) as the ad
dress to the next instruction to execute. This is a
“one shot” action, so after the FP has executed the
instruction at the start address the FP sequencer
reverts back to its normal mode of operation.

Transfer Control (20) ** This field controls the trans
fer of data between the holding registers 420 (on
the FP module) and the FP module's fast register
files 430. Only a brief description of each sub-field
is included here, because their use will only be
come apparent once the overall transfer mecha
nisms have been explored.
Direction (1) This bit determines the transfer direc

tion between the holding registers 420 and the
register fie 430. The direction is either holding
register to register file or register file to holding
register.

Transfer enable (1) This bit starts a transfer cycle,
as defined by the other microcode bits and the
registered control bits (in the transfer control
register).

Register file address (6) The address specified here
is the address of the first word in the register file
that data is read from or written to.

5

10

15

20

25

30

35

40

45

50

55

60

65

32
Register file address modifiers (2) These specify
how the register file address is to be modified to
implement physical, logical or preview mode of
addressing which are all concerned with how
the register file is shared between the control
processor module 110 and FP,

Holding register start address (3) This specifies the
first holding register to use in a transfer.

Holding register start address mode (2) The hold
ing register start address can be specified to
come from one of three sources:

1. From the CP microcode field mentioned in the previ
ous paragraph;

2. From a field held in the FP module's transfer register;
Or

3. From the least significant 3 bits of the address used in
the last CP access to cache.
Handshake mode (3) The handshake mode controls.

the handshaking between the control processor
module 110 and FP via the FPWAIT and
CPWAIT mechanism, and the bank selection.
Several of the modes override the normal hand
shaking procedures, so the main signals can be
initialized or set for debugging purposes. The
modes are: set CPDONE, request register file
swap; set CPDONE and request swap; clear
CPDONE; test mode (used only for diagnostics);
and no operation.

Double write enable (1) The double write enable
forces two words to be transferred into the register
file instead of the one that the length or start pa
rameters are requesting. This ensures that the valid
data is tagged with its data valid flag asserted and
that the invalid data is tagged with its valid data
flag disasserted. These flags are tested by the FP to
identify which data items are valid.

Clock All holding registers This bit overrides the
normal holding register clock sequencing when
transferring data from the register files into the
holding registers. When active this bit causes all
registers to be clocked together rather than sequen
tially which quadruplicates the register file data
into all holding registers.

DATA TRANSFER PROCESSOR MODULE 120

A block diagram of the data transfer processor mod
ule 120 is shown in FIG. 3. Note that it is very similar
to the control processor module 110, except that the
DTP module 120 does not include a separate address
generator like address generator 230. If the specialized
features in each processor were not used, the same mi
crocode (at source level) could in principle be run in
both processors.
The data transfer processor module 120 is a 32 bit

microcoded processor, based around a 32 bit Integer
Processor Unit (IPU) 340 controlled by a 16 bit se
quencer 310. The main data path within the data trans
fer processor module 120 is the Transfer Data bus (TD
bus) 122.
Many of the portions of DTP module 120, in this

embodiment, are closely analogous to portions of the
control processor module 110. In general, correspond
ing reference numerals have been used to indicate such
similarity. Thus, a sequencer 310 provides a sequence of
microinstruction addresses 311 to a writable control
store 320. The sequencer 310 not only interfaces with
the TD bus 122 through register 314, but also receives
condition codes through a multiplexer 312, and receives

5,329,630
33

interrupts through multiplexer 313. The microinstruc-
tions accessed from control store 320 are provided as
outputs 321, and a registered output is also provided
through register 322. Lines 311B and 225 provide ad-
dress and data interface from the host to this writable
control store 320, as will be described below. (Line 324
is a write enable line, used in serial access.) Serial/paral-
lel shift register 328 shadows the internal state of de-
vices which receive unregistered inputs. A 16-bit se-
quencer bus 315 also provides 16-bit inputs to the se-
quencer 310. This input is a buffered input, which can
be used, e.g., to input literal values.

The microinstructions 321 are provided as registered
input to decode logic 360 (via shadow register 322). The
outputs 361 of this decode logic are provided as control
inputs to the integer processing unit 340. the sequencer
310, and also to various of the interfaces 150, 160, and
170. In particular the outputs of decode logic 360 con- -
trol access to the TD bus 122. Note that the TD bus 122

provides a data interface to the external interfaces, and
also to the cache memory 140. As with decoder 260, the
outputs of decoder 360 are not separately shown, be-
cau5e they are so pervasive.

The integer processing unit 340 is preferably a Weitek
XL8137, as in the control processor. (However, note
that no separate address generator is needed in the data
transfer processor, since address generation is not so
critical in this module.) The integer processing unit 340
has a two way interface to the TD bus 122, and can also
provide address outputs, through register 341, onto the
TA bus 121.

CONTROL OF DATA TRANSFERS

In order to achieve one transfer per cycle between a
source port and a destination port, several factors are
catered for:

1. Either the source ondestination of the transfer may
be FIFO buffered, and the transfer control must
respond to the full and empty flags on the FIFO.
The timing of these signals, in combination with
the pipelining of the condition code input to the
sequencer, will sometimes cause the transfer to
overrun by one. For the transfers into a FIFO this
is not a problem, because the half full flag is used.
Use of the half full flag means that there is plenty of 45
spare capacity in the FIFO to accept one or two
words of overrun. When reading from the FIFO,
other strategies must be used. The options of using
FIFOs with “empty+ 1” flags, or delaying the
FIFO data in a pipeline stage, are not used in the
presently preferred embodiment, due to their cost
and space demands.

Two methods are provided to solve this possible
problem. Which of these methods is used depends on
whether the destination is a memory or a FIFO. The
difference is that a write operation can be undone on a
memory, but not on a FIFO. That is, if a data transfer
from FIFO to memory is continued for a word or two
after the FIFO goes empty, some erroneous data will be
written into the memory. However, this data can simply
be overwritten as soon as good data becomes available.

a. When reading a FIFO, the read signals are logi-
cally modified by the FIFO empty signals. The
result of this is that, if an attempt is made to read an
empty FIFO, no read action is actually performed.
This allows FIFO reads to overrun without any
consequences. The FIFOs protect themselves from
reads when they are empty, but this extra control is

34
necessary because the other side of the FIFO might
be Written to during the overrun read, and this
would lose data. Thus, when the data transfer pro-
cessor module 120 is transferring data into a mem-
ory, it will stop when the FIFO has gone empty. At
this point an overrun will have occurred. The DTP
module 120 can then backtrack the address, so that,
when data becomes available in the FIFO, the
transfer restarts as if nothing had happened.

b. When writing into a FIFO, the write Operation
cannot be undone. Therefore, a different method is
used. The microcode tests the status from the

source FIFO (and obviously the destination FIFO)
before every transfer. In this mode, the transfer
rate is much slower. However, if the source FIFO
ever gets more than half full, the microcode
switches to a fast transfer mode. The occurrence of

this condition guarantees that up to half the source
FIFO depth can be read out without going past the
empty mark. Therefore, in this mode, the DTP
module 120 can transfer a block of this size without

stopping to check the status. The status in the re-
ceiving FIFO will still need checking, unless it is
less than half full. This same technique of switching
between slow and fast transfer modes can obvi-

ously be used with memories as well.
2. A three way branch instruction in the sequencer

310 (called BRANCH) provides a convenient way
of keeping track of the number of words trans-
ferred and testing the FIFO status signals. This has
the advance of not using the IPU 340 in the condi-
tional path, and thereby minimizes the cycle
length.

. For optimum data transfers to or from the data
cache memory, the data interface to the TD bus
122 is buffered h a register bank 560B (seen in FIG.
5), which contains eight 32 bit registers. This al-
lows fully parallel reads and writes, as seen by the
DCM. This gives a natural break in any long trans-
fer (>8 floating-point words), because there is no
double buffering in this path. The data transfer
processor module 120 will therefore be forced to
suspend transfers until the memory cycle has oc—
curred. This break will happen more frequently
when contiguous transfers are not used and more
memory access cycles are needed.

. The arbitration of the data cache memory is de-
cided at the beginning of the CP module’s cycle. If
the data transfer processor module 120 were run-
ning asynchronous to the control processor module
110 (to allow instruction dependent cycle time), the
data transfer processor module 120 might have to
wait up to 100 ns of synchronization time, and then
another 100 us of access time. (The access time
could be much longer, because the control proces-
sor module 110 has priority, and the DTP module
120 must wait for a free memory cycle.) Moreover,
the pipelining of the microcode instructions and
FLAG input to the sequencer could introduce yet
another delay, while the DTP module was looping
to see if the transfer has been done.

To minimize these delays, the control processor mod-
ule 110 and data transfer processor module 120 share
the same microcode clock generator. Both processors
ask for their optimum cycle time, and the clock genera-
tor chooses the longest one. This should not greatly
degrade the average speed of either processor, because
the majority of instructions execute in the shortest cycle

5,329,630
35

time. To overcome the delay when looping, the arbitra
tion is done using non-registered microcode request
bits.
One very minor drawback of this approach is that

when the hardware single step is used it will affect both 5
processors.

5. Thus, when a FIFO is either the source or the
destination, the FIFO status signals (and, in some
cases, the data cache memory arbitration signals)
will need to be monitored during a transfer. So that
these four status signals (FIFO full, FIFO half-full,
FIFO empty, cache access granted) can be moni
tored within a single cycle, the data transfer pro
cessor module 120 has multiway branch capability.
This inserts the status to be tested into the jump
address, so that the address that is jumped to de
pends on the status during that cycle. The three
FIFO status conditions are encoded into two bits,
and the arbitration signal makes up the third bit. 20
This provides an 8 way branch. When only the
FIFO status is of interest, the arbitration signal can
be disabled, so the multiway branch is reduced to 4
ways.

6. To avoid the data transfer processor module 120 25
being locked out of the data cache memory 140
when the control processor module 110 (or FP
module 130) is using it on every cycle, an interrupt
has been provided. When the data transfer proces
sor module 120 is denied access, it starts looping on 30
the transfer acknowledge signal. A timeout under
this condition can easily be tested for. If a timeout
occurs, then the data transfer processor module 120
can interrupt the control processor module 110.
This will take the data transfer processor module 35
120 out of the memory access mode, and thus let
the data transfer processor module 120 in.

INTEGER PROCESSOR UNIT 340

The IPU 340, in the presently preferred embodiment, 40
is essentially the same as the IPU 240 of the control
processing module 110, which is extensively described
above.

SEQUENCER 310 AND ASSOCIATED SUPPORT 45
LOGIC

The sequencer 310, in the presently preferred em
bodiment, is essentially the same as the sequencer 210 of
the control processing module 110, which is extensively

- 50
described above.
The sequencer support logic falls into 4 categories:

interrupts, conditional code selection, micro address
bus and constant/next address field.

10

15

Interrupts 55

The sequencer only has 4 interrupt input pins. There
fore an external multiplexer 313 is used to extend the
number to 8. The interrupts are mainly used for commu
nication and to support debugging tools. 60
The interrupt sources are (in order of highest priority

first):
Claw Logic and Breakpoint: This interrupt level is

shared between the claw logic and the breakpoint
logic. The functions of these two interrupt types 65
are described above, in connection with the func
tion of the sequencer 210 in the control processor
module 110.

36
VME bus (debug). The VME bus interrupt is nor

mally used only for supporting the debug monitor
and should not be used during normal operation.

VME bus (command): This interrupt level is set
whenever a command is stored in the command
register.

Control processor (command): This provides the
normal method whereby the control processor
module 110 can inform the data transfer processor
module 120 that there is a command in the dtp
command FIFO.**

VME data FIFO: This interrupt level is used to no
tify the data transfer processor module 120 that the
data FIFO in the VME interface needs attention
because they have received some data (the input
FIFO) or have run out of data (the output FIFO).”

GIP interface: The GIP interrupt is generated by the
GIP FIFO status signals.” -

Data pipe interface: This interrupt level is used to
notify the data transfer processor module 120
whenever one of the FIFOs in the data pipe inter
face needs attention because they have received
some data.”

Microcode expansion interface: This interrupt is re
served for use by any of the expansion cards (e.g.
bulk memory card or network).”

Note: The interrupts marked with *can also be tested
by the normal condition code logic, so that they
can be polled if that is preferred.

For the interrupts marked **, the situation that gener
ates the interrupt condition can be detected by
examining the control information in the software
FIFO data structures. This can be polled if inter
rupts are not to be used.

The use of multiplexer 313 to expand the number of
interrupts forces different timing requirements between
the four higher priority interrupt levels and the four
low priority interrupts. For the higher priority inter
rupts to be recognized, they must occur 25 ns before the
rising edge of the microcode clock. For the lower prior
ity interrupts, the deadline is 15 ns before the falling
edge.
To generate an interrupt the corresponding interrupt

input is held high for one clock period. No hardware
interrupt acknowledge cycle is necessary, so the inter
rupting hardware is very simple.

Condition Code Logic
The sequencer has a single condition code input

called FLAG so all the testable status signals are multi
plexed into this pin. This is registered internally and has
the normal set up time of 10 ns when IR0 is masked
(counter underflow interrupt) or 26 ns when enabled.
The polarity of the FLAG input can be changed inside
the sequencer.
The DTP module, like the CP module, contains

mimic register logic like that shown in FIG. 40A. (This
avoids problems with returning from interrupt han
dling.)
The testable status signals are:
IPU 340 condition code output (COND); this signal

relays the status of the current instruction. The
specific condition that the IPU 340 outputs on this
pin is coded in the microcode instruction.

Microcode loop. This is a status bit in the VME inter
face control register, and is useful for diagnostic
software.

5,329,630
37

FIFO status signals for the following FIFOs: Data
pipe input #1 (half full and empty); Data pipe input
#2 (half full and empty); Data pipe output #1 (full)
*; Data pipe output #2 (full) *; VME data input
(half full and empty); VME data output (half full
and empty); GIP interface (input) (half full and
empty); GIP interface (output) (full, half full and
empty). Signals marked * come from the receiving
FIFOs on another subsystem.

Data cache memory cycle acknowledge. This indi
cates when the access to the data cache memory
has been granted.

Microcode expansion interface condition code signal.
This is used by any microcode extension interface
180 to pass back status to the data transfer proces
sor module's sequencer 310.

DMA bus error. This status bit goes active when the
DMA transfer on the VME bus gets aborted as a
result of a bus error occurring. The most likely
reason for this error is that non-existent memory
was addressed.

Write flags 0 and 1. These two signals allow better
access to the internal state of the data cache mem
ory write logic. They are only used by the state
save and restore microcode in the debug monitor.

Held status: This is tested when returning from an
interrupt, so that any conditional jump, etc., is
executed correctly even if it was displaced by a
jump to the interrupt service routine.

The COND output from the IPU 340 is valid too late
to meet the sequencer's set up time (especially as it will
be delayed by a multiplexer) when cycling in 100 ns.
When testing this condition, the clock will need to be
stretched to 125 ns.

Implementing “for loops” is best done by using one of
the counters internal to the sequencer, thus freeing the
IPU 340 for address calculations. Obviously they can be
done using the IPU 340, but with the extra overhead of
a longer cycle time.
The condition codes are multiplexed, via an 24 to 1

multiplexer 312, into the “FLAG” input in the se
quencer 310. The sequencer internally registers and
selects the polarity of the selected condition code sig
nal.

Microaddress Bus 311
The micro address bus 311 can be driven from two

sources: from sequencer 310 during normal program
execution, and from the VME bus when loading micro
code. The VME bus can also read the contents of the
microaddress bus 311, to see what address the sequencer
310 is at. This is done asynchronously to the sequencer
operation, and is mainly used for diagnostics. The exten
sion of this bus, shown as line 311B, is connected to the
Host Interface Logic 160.

Constant/Next Address Field
This is used in a fashion quite different from that

described above in connection with sequencer 210. In
the DTP module 120, some innovative logic is used to
provide an enhanced multiway branching capability.
This logic (and its use in multiway branching) will now
be described.

MULTIWAY BRANCHING
The embodiment shown in FIGS. 3A and 3B includes

some significant new capabilities for multiway branch
ing in microcoded system. FIG. 30 schematically shows

10

15

20

25

30

35

40

45

50

55

65

38
the microcode operation used in the presently preferred
embodiment to provide multiway branching without
address boundary constraints.

In FIG. 3A, note that the constant/next address field
(from a microinstruction field) is not only provided to
buffer 317, but is also provided as an input to multiway
branch logic 318. The multiway branch logic can ma
nipulate this signal in ways which provide a novel capa
bility in microcoded architectures. Other inputs to this
multiway branch logic include FIF status signals and
also a shift command (which will be used to vary the
increment between alternative destinations, in the multi
way branch step performed by sequencer 310).
FIG. 3B shows somewhat greater detail. The con

stant field (16 bits) from the microinstruction bus 311 is
split, to provide inputs both to PAL 318 and buffer 317.
A common enable signal is used to activate both of
these, when multiway branch operation is desired. (Of .
course, the sequencer bus 315 has many other uses as
well, and multiway branch operation will often not be
desired.) Moreover, the constant/next address field is
also used very often for simple jump operations, and in
such cases the multiway branch logic 318 is disabled.
FIG. 30 shows still greater detail regarding the inter

nal operation of the multiway branch logic 318. A vari
ety of condition and status signals are provided to con
dition select/encode logic 3010. This selects and en
codes these conditions to give a three bit signal which
can be used for branching.
The multiway branch logic is controlled by several

microinstruction bits, as described in detail below.
It is particularly advantageous to use such multiway

branching logic in a data transfer processor like module
120. In this case, device condition signals can be used as
the conditions input to select/encode logic 3010. This
permits a data transfer processor to exercise high-level
control over a quite complex interface. When a status
signal of interest occurs, the multiway branch logic can
very rapidly transfer to the appropriate routine for
handling the condition. The multiway branch capability
permits the sequencer to test the conditions of several
devices in a single cycle. This means that the DTP
module 120 can perform a data transfer on every cycle.
This also permits sequencers having only a single condi
tion code (FLAG) input to exercise complex control

In the presently preferred embodiment, the inputs to
select/encode logic 3010 include status bits from four
FIFOs, as detailed below. However, of course, a wide
variety of other input arrangements could be used.
Note that a shift input is provided to the shift and

merge logic. This permits the increment between the
destinations of the multiway branch to be varied.
The right side of FIG. 30 shows schematically that

the sequencer 310 has relative addressing capability.
This capability, in combination with the multiway
branch logic, means that address boundary constraints
can be ignored. This is particularly advantageous in a
data transfer processor. Since such a processor must be
able to perform a high fraction of data transfers, it may
be desired to include a large fraction of multiway
branch instructions. The lack of address boundary con
straints means that a high proportion of such instruc
tions can be used.
The presently preferred embodiment uses the pro

gram counter as an input to the jump destination. This is
different from many previous implementations of multi
way branching, where the base destination address was
supplied from a different source.

5,329,630
39

WRITABLE CONTROL STORE (WCS) 320
The WCS is made up using the microcode SIL mod

ules. These provide 8K by 32 bits of memory with a
serial scan pipeline register for loading microcode and
diagnostics. Two versions of the module are used: regis
tered or non-registered outputs. The IPU 340 and se
quencer 310 have their own internal pipeline registers
and so use the non-registered versions.
WCS interface registers 322 and 323 function analo

gously to the WCS interface registers 223 and 222 de
scribed above with regard to the control processor
module.

DMA CONTROLLER

An important function of the DTP module 120 is
controlling one or more DMA controllers, in the VME
interface 160 and possibly in one or more other inter
faces as well. This function will be described in greater
detail below, where those interfaces are discussed.

MISCELLANEOUS LOGIC

Mode Registers
The mode registers 303 hold the value of little used

control signals which can not justify dedicated micro
code bits. The mode bits are: Flow through or register
control of the read holding registers; Flow through or
register control of the write holding registers; External
interrupt acknowledge signal that drives the interrupt
acknowledge signal in the microcode expansion inter
face; GIP interrupt request; Loopback mode for the
holding registers; Two LED control signals.

TD BuS Decode

This logic (which is one of the most important func
tions of the decoder 360) decodes the microcode TD
source field, and accordingly controls the output ena
bles of devices that can drive the TD bus 122. It also
decodes the TD destination field (as qualified by a write
gate signal from the clock generator 250) to generate
strobe and write enable signals. Most of the ports on the
TD bus 122 can be read and written, so mimic registers
on the IPU are not required,

Possible TD bus sources and destinations include:
IPU 340; VME Interface Memory, Command memory;
Data cache memory holding registers 560B; Mode reg
ister (8 bits); Sequencer data port **; Constant/next
address field (source only)**; VME data FIFO; Data
pipe 1; Data pipe 2, GIP FIFO “; Interrupt vector
register (8 bits); DMA control register; DMA controll
er-address counter *; DMA controller-word counter *.
Sources marked * are decoded by the DMA controller
instruction and not as part of the normal TD bus control
field. Sources marked ** only drive the lower 16 bits.
When one of them is selected, the signal/zero extend
PAL 216 is also activated, so that the data is either sign
or zero extended up to the bus width of 32 bits.
Note that only one source and one destination can be

selected, and they must be different. The transfer of
data into the IPU 340 is under control of the IPU 340's
instruction field so it can take data from the TD bus 122
at the same time it is being loaded into another destina
tion.

10

15

20

25

30

35

45

50

55

65

40
Clock Generator

As noted above, the clock generator 250 produces the
basic clock signals used throughout the data transfer
processor module 120.

DEBUG HARDWARE

Most of the debug hardware included in the data
transfer processor module 120 has already been men
tioned in various places in the preceding description.
These are summarized here for convenience: Host con
trol of microaddress bus 311—both read and write; Host
loading and readback of the WCS; VME generated
interrupt to get the DTP's attention; Hardware break
point support with no restriction on the number of
breakpoints that are set at any one time; Claw logic,
which permits the user task to be single stepped without
single stepping the monitor task; All registers are read/
write; Hardware control of clocks for single stepping
microcode; All interrupts can be selectively enabled or
disabled; Access to the internal state of the critical logic
groups to allow the complete state save and restore of
the DTP module's hardware states.

MICROCODE WORD FORMAT

The microcode word format is generally shown in
FIG. 3C, and is defined below. Items marked with a *
come directly from the WCS, and are pipelined inter
nally in the devices they are controlling.
The total number of microcode bits available are 96.

Most of the bits are used, but there are a few spares that
have not been included in the following fields.
IPU opcode (32) * This field controls the data routing
and arithmetic or logical operation of the IPU 340
integer processor, The allocation of bits within the
field is encoded and details will be found in the
Weitek data sheets. All instructions are encoded in
the bottom 24 bits and the top 8 bits are only used
during the transfer of data into the IPU 340's regis
ter file,

Sequencer opcode (7) * This field controls the gener
ation of the next address by the ADSP 1401. See
data sheet for the instruction set.

Constant/next address field (16) * This field is mainly
used for providing address information to the se
quencer but can also be used to place a 16 bit con
stant value onto the data bus. This can then be
loaded into any of the registers on this bus.

Multiway branch select (2) * This field selects which
set of FIFO status signals are to be used during a
multiway branch operation. The choices are: VME
input FIFO; GIP input FIFO; Data Pipe 1 input
FIFO; and Data Pipe 2 input FIFO.

Multiway shift control (2) This selects that the multi
way branch status information is inserted from bit
position 0, bit position 1, but position 2 or not at all.
The various shift factors allow for each entry point
within a multiway branch to be 1, 2 or 4 instruc
tions long respectively.

Multiway branch transfer enable (1) This bit enables
or disables the data cache memory access granted
signal from being combined with the FIFO status.
When it is not used the multiway branch is 4-way
and when it is used it is 8-way.

Cycle length (2) This field selects the cycle length
appropriate to the instruction and data routing
selected.

5,329,630
41

Data cache access (1) * This bit is active whenever an
access to the data cache memory is required by the
data transfer processor module 120.

Data cache write enable (1) This bit generates a wire
cycle in the data cache memory is access to the
data cache memory has been granted.

Data cache write all (1) This bit overrides the normal
write enable gating that allows selective updating
of words in the data cache memory and forces
them all to be written. This only results in a data
cache memory write cycle when access has been
granted. This is useful when setting blocks of mem
ory to a constant value.

Condition code select (5) This field selects one of the
following condition codes to be tested by the se
quencer during a conditional instruction: IPU 340
condition code output; microcode loop; write flags
(2 entries); Data pipe input FIFO #1 (half full and
empty); Data pipe input FIFO #2 (half full and
empty); Data pipe output FIFO #1 (full); Data
pipe output FIFO #2 (full); VME data input FIFO
(half full and empty); VME data output FIFO (half
full and empty); GIP interface (input) (half full and
empty); GIP interface (output) (full, half full,
empty); Data cache memory cycle acknowledge;
Microcode expansion interface condition code sig
nal; DMA bus error; Hold status.

Hold Status (1) This bit prevents the updating of the
mimic status register that normally follows the
state of the FLAG register inside the sequencer
210. Normally this mimic bit follows the internal
register's state, but during an interrupt service the
mimic bit is prevented from being updated. This
permits the FLAG register to be correctly restored
when the interrupt routine is exited.

TD bus source (4) This field selects one of the follow
ing registers, buffers or devices to drive the TD
bus: IPU 340; Command memory; VME interface
memory; Data cache memory holding register;
Mode register; Sequencer data port; Constant/next
address field; Sequencer data port; Constant/next
address field; VME data FIFO Data pipe 1; Data
pipe 2, GIP FIFO; Interrupt vector register (8
bits); DMA control register; DMA controller -
address counter; or DMA controller - word
COunter.

TD bus destination (4) This field selects one of the
following registers, buffers or devices as the desti
nation of the data on the TD bus: Command mem
ory; VME interface memory; Data cache memory
holding register; Mode register; Sequencer data
port; Constant/next address field; Sequencer data
port; VME data FIFO Data pipe 1; Data pipe 2;
GIP FIFO; Interrupt vector register (8bits); DMA
control register; DMA controller - address
counter; DMA controller - word counter.

The IPU 340 is not included in this list, because it can
“grab” the data on the TD bus at any time. This func
tion is controlled by the IPU instruction field.
Address register control (2) One of these control bits

enables the loading of the address register and the
other bit enables readback of the register for use by
the diagnostics and debug monitor.

Breakpoint (1) (** Debug use only **) Set by the
debug monitor to place a breakpoint on an instruc
tion. This causes an interrupt to occur during the
instruction so that control is passed to the debug

10

15

20

25

30

35

45

50

55

65

42
monitor microcode after this instruction has fin
ished.

Claw (1) (** Debug use only **) Set to prime the
claw logic when single stepping a user task. This
causes an interrupt to occur during the next in
struction so that control is passed back to the debug
monitor microcode after one user task instruction
has been executed. This allows a user task to be
single stepped without physically switching the
clocks on and off.

Interrupt CP (2) This generates an interrupt in the
control processor module 110 at one of three lev
els. The levels are allocated as follows: New com
mand from host received; Data transfer finished;
Relinquish access to data cache memory.

Zero or Sign extend (1) This bit only has any effect
when a 16 bit wide register or device is read. In this
case it selects whether the data is to be zero ex
tended (bits 16–31 set to zero) or sign extended (bits
16–31 set to the same as bit 15).

DMA Controller instruction (3) This field controls
the instructions to the DMA controller. The in
structions available are concerned with reading
and writing the internal registers, re-initializing the
refers, and also the normal DMA operation of
incrementing (or decrementing the address and
decrementing the word counter.

MICROCODE EXPANSION BUS

The microexpansion bus extends the basic microcode
services off-board. This can be used to control some
interface logic on the expansion peripheral board, or to
control an entire peripheral board. Typical uses of this
might be to interface to a bulk memory card or network
interface card.
The expansion bus interface is electrically and me

chanically identical to the expansion interface on the
GIP so they can share any common expansion cards.
The expansion connector is a 96 way DIN connector,

and the signals on it are: Three bit slice clocks [Note 1];
Pipeline register clock [1]; Microaddress bus 311B (15
bits) [2]; TD bus 122 (32 bits) [3]; Reset; WCS output
enable; Pipeline register output enable; WCS write en
able 324; Pipeline register mode control; Serial clock,
Serial data in, and Serial data out (used for microcode
loading); External interrupt [4]; Interrupt acknowledge;
and Condition code [4]. All signals are single levels
except where noted: [1] These signals are differential
ECL levels. [2] These signals are single ended ECL
levels. [3] This bus is 32 bits wide, but can be considered
for some purposes as two 16 bit buses—called the pri
mary data bus and the secondary data bus. [4] These
signals are driven by open collector buffers.
The use of some ECL signals in this interface is useful

in minimizing the effects of clock skew between board.
NUMERIC PROCESSOR MODULE 130

The presently preferred embodiment of the numeric
processor module 130 is a floating-point processor.
Therefore, the module 130 will sometimes be referred
to as a floating-point processor module (or “FP mod
ule”). However, this module could optionally be config
ured for other data types, e.g. as a complex arithmetic
module or as a module for wide-integer arithmetic.
Therefore, this module will also sometimes be referred
to more generically, as a numeric processor module 130.

In the presently preferred embodiment, the floating
point processor module 130 is very closely coupled to

5,329,630
43

the control/interface logic which governs data transfers
between the floating point processor and the cache
memory. This control/interface logic is clocked by the
microcode clock of the control processor, and is prefer
ably controlled by an extension of the control processor
microinstructions. In the presently preferred embodi
ment, the Floating-point Processor Module 130 and the
control/interface logic (CP Extension logic) are located
together on a separate subboard, which plugs into the
main base board (where the cache memory 140 and the
main part of the control processor module 110 are lo
cated). If additional modules 130 are used, each of them
would contain a portion of the control/interface logic.

In the present application, this control/interface logic
is regarded as an extension of the control processor
module 110. However, whether or not this control/int
erface logic is regarded as part of module 110, the pres
ent application contains some significant teachings re
garding the timing and control characteristics of this
logic.
The presently preferred embodiment uses a 32 bit

data structure. Each floating-point number is repre
sented by 32 bits, and therefore 32-bit units are referred
to as floating-point words (or “F_words”). In the pres
ently preferred embodiment, the number format is 24
bits mantissa and 8 bits exponent. This can be, select
ably, either IEEE format or DEC format.
The internal operation of the floating point processor

module 130 will first be discussed. The features of the
interface to the control processor module 110 and to the
cache memory 140 will then be discussed in greater
detail.
FIGS. 4A through 4D show key portion of the nu

meric processing module 130, in the presently preferred
embodiment. FIG. 4A schematically shows the inter
face logic 410 which is used to interface to the control
processor module 110. FIG. 4B shows some key por
tions of the data path in the module 130. FIG. 4C shows
the logic used in the presently preferred embodiment,
for microcode access and decoding. FIG. 4D shows the
microinstruction format used in the floating-point mod
ule 130 in the presently preferred embodiment.
The floating-point arithmetic unit, where the actual

numeric calculations are preformed at high speed, will
be described first. The double-buffering operations, by
which data is transferred across the clock boundary
between the FP module 130 and the slower modules,
will then be described. Next, the further stages of data
transfer (largely controlled by extensions of the CP
module 110) will be described. Finally, the program
control which governs the arithmetic unit will be de
scribed.

FLOATING-POINT ARITHMETIC UNIT (FPU)
The floating-point arithmetic path of the presently

preferred embodiment is quite simple, and runs at high
speed. This path includes a floating point multiplier, a
floating point ALU (arithmetic and logic unit), and fast
multiport register files, all controlled by a very fast, but
simple, sequencer. In addition, a scratchpad memory is
closely coupled to the inner data paths, to hold lookup
tables and provide histogram storage or data stack oper
ations.
The topology of the low-level data path is seen most

clearly in FIG. 16, this low-level data path, and its
components, will be referred to as the Floating-Point
Arithmetic Unit (FPU). The FPU includes fast register

10

15

20

25

30

35

40

45

50

55

65

44
file 430, multiplier 440, ALU 450, scratchpad memory
1610, and local busses 431, 432, 433, and 434.

Arithmetic Calculation Units 440 and 450

The floating-point calculation units used in the float
ing-point processor module 130 are the floating-point
multiplier (FMPY) 440 and floating-point arithmetic
and logic unit (FALU) 450. Both parts have very simi
lar internal architectures. The only difference in their
data handling (apart from the different arithmetic oper
ations) is the extra feedback path in the FALU 450 for
accumulate operations.
The presently preferred embodiment uses integrated

circuits (floating point chip set and register files) from
Bipolar Integrated Technologies (BIT), as follows. The
BIT part numbers, and the equivalent Analog Devices
numbers, are: Multiplier 440; B2110 or ADSP7110;
ALU 450; B2120 or ADSP7120; Register File 430:
B2210 or ADSP7210. The multiplier 440 and ALU 450,
and the fast register files 430, actually use ECL gates
internally. However, their interfaces and power
supplies are TTL. These arithmetic chips have a full
64-bit data path internals, with 32-bit external interfaces.
Accordingly, these chips have the capability to do rapid
64-bit operations, using multiplexed data transfers as
necessary.
The FMPY 440 and FALU 450 each have two 32 bit

wide input ports X and Y for operands (connected to
local operand busses 431 and 432 respectively), and a 32
bit wide bidirectional port T for results (connected to
the local results bus 433). Each of the input ports of the
calculation units contains a latch and multiplexer, and
the output port contains a multiplexer, so 64 bit wide
numbers can be transferred in or out.
The result ports of the two calculation units are con

nected in parallel (to results bus 433, and thereby to
write port 430D of the register file). This permits the
calculation units to swap data without using external
multiplexers or routing data through the register file.
This is useful, for example, when sum of products calcu
lations are done. This capability is also useful in permit
ting rapid data transfer to and from the scratchpad
memory 1610. However, a restriction of this configura
tion is that both the FMPY 440 and FALU 450 can not
be active at the same time (except for a sum of products
operation), because the output ports are tied together.
Even if the ports were separate, then the problem could
exist on the input side, since both devices share the same
data path from the register files 430.
The actual arithmetic devices used offer a degree of

flexibility in configuring the input and output ports to
be registered or transparent. However, in the presently
preferred embodiment this capability is not used, and all
the ports are registered. The internal data paths and the
function unit of both calculation units are all 64 bits
wide, and can perform both single precision (SP) and
double precision (DP) calculations.
The function unit in the FMPY 440 supports 4 arith

metic instructions. The minimum cycle times (in nano
seconds) for both precisions are:

Single Double

Multiply 40 59
Divide 200 300
Square root 300 600
Pass 40 50

5,329,630
45

-continued
Single Double

Integer multiply 45 -

The function unit in the FALU 450 supports a very
wide range of floating point instructions, integer in
structions and conversion instructions. For further de
tails, the manufacturer's data sheet can be consulted. All
floating point instructions (single and double precision)
execute in a minimum cycle time of 25 ns; the integer
operations all take 12 ns and all the conversions take 25
IIS.

The more common instructions include:
Floating point: add and subtract (signed or absolute),

absolute, negate, scale, merge, normalize, and com
pare. -

Conversions: SP->32 bit integer, signed or un
signed; SP->64 bit integer, signed or unsigned; 20
SP3–32 bit integer, signed or unsigned;
SP-3–64 bit integer, signed or unsigned;
DP->32 bit integer, signed or unsigned;
DP– >64 bit integer, signed or unsigned;
DP3 – 32 bit integer, signed or unsigned; 25
DP.<–64 bit integer, signed or unsigned;
SP-> DP, DP– S-SP;

Integer: add (with 0, 1, carry); subtract (with 0, -1,
—carry); max(signed or unsigned); main (signed or
unsigned), logical; shift (logical or arithmetic); rotates; 30
and bit reverse.

Scratchpad Memory 1610
As seen in FIG. 16, the scratchpad memory 1610,

with its address counter 1611, hangs on the results bus 35
438. Since the calculation units 440 and 450 have bidi
rectional ports onto this bus, data can be read directly
from this memory by multiplier 440, ALU 450, or Reg
ister file 430.
The address counter 1611 permits several modes of 40

access to this memory. Depending on two mode bits,
the address counter may (at each read or write access)
increment the address, decrement the address, hold the
address, or permit the address to be specked. (For exam
ple, combinations of address incrementing and decre- 45
menting can readily be used for operation as a stack.)
The address generation capability of the counter 1611
permits the memory 1610 to function at one write per
cycle, under some conditions.
The operation of this memory as a stack is particu- 50

larly advantageous for scalar programming with com
pilers, as discussed above.
When running histogram algorithms, the previous

subtotal (of the parameter being tracked) can be read
out onto results bus 433. In one simple example of such 55
an operation, the memory 1610 is designated as data
source for results bus 433, and the ALU 450 is com
manded to read an operand value from the results bus,
while the multiplier 440 is working. When the multi
plier 440 finishes, it drives its result onto the results bus 60
433, and the ALU reads in that value as a second oper
and. The ALU then drives the sum onto the results bus
433, while the memory 1610 is commanded to write that
result. (Meanwhile, additional operands can be loaded
into multiplier 440.) 65

This table also provides a very convenient storage for
data-dependent parameters. This is particularly conve
nient when calculating transcendental functions.

10

15

46
Fast Register Files 430

The register files 430 form the main interface with the
data cache memory 140. One bank of the register files
runs in partial synchrony with the CP module 110, and
interfaces with the FP holding registers 420 through
local transfer bus 422 (connected to bidirectional port
430A (FIG. 16). The other bank runs synchronously
with the FP module, and interfaces with operand busses
431, 432 (read ports 430B and 430C), results bus 433
(read port 430D), and loopback connection 434 (write
port 430E).
FIG. 4B shows some key portions of the data path in

the module 130. The main cache bus 144 (which is 256
bits wide) is interfaced to a series of four FP holding
registers 420. (These holding registers are actually
paired, so that a read register is paralleled by a write
register. Thus, there are eight holding registers 420, .
each 64 bits wide, to provide a bidirectional 256-bit
interface.) The eight holding registers 420 receive sepa
rate enable signals 421. Thus, this bank of registers per
mits the 256 bit wide cache bus 144 to be multiplexed
into the 64 bit wide fast register file 430.

This multiplexing is performed primarily for cost
reasons. The fast register files 430 are very expensive
chips. Using four times as many of them would very
significantly increase the cost of the system. Moreover,
as may be seen from FIG. 38B, the footprint of these
devices is very significant (due to their very high pin
count), so that using sixteen of these packages rather
than four would add significant demands on board area.
There are actually four registers 430, and not merely

two. Each of the physically separate chips is 18 bits
wide, so four of them in parallel are used to provide a 64
bit interface to the local transfer bus 422. (Note that this
interface is two F_words wide.)

In the presently preferred embodiment, the register
files 430 are constructed from 5 port devices which are
18 bits wide by 64 locations deep. Thus, the 64-bit side
interface to local transfer bus 422 requires four devices
to be used in parallel. (For clarity, FIG. 4B shows the
register file as if it were two 32-bit wide files. This helps
to show the word address odd/even status structure
discussed below. FIG. 16 simply shows the register file
430 as a single file.) In the presently preferred best
mode, these devices have been actually constructed
using part number B2210 from BIT.

Ideally the register files would be 256 bits wide, to
permit a more direct interface to the cache bus 144, but
this would require significant added hardware expense.
The alternative used in the presently preferred embodi
ment is to use FP holding registers 420 (with associated
control logic), to multiplex the 256-bit interface to
cache bus 144 down onto a 64 bit wide port 430A. The
multiplexing and data routing is controlled by transfer
logic, shown generally in FIGS. 4A and 4B, which will
be discussed in greater detail below.
The interconnections of these files are preferably as

follows. (The ports are individually labelled in FIG.
16.)
Each of the files 430 has a bidirectional interface
430A, which connects to the registers 420, through
lines 422.

Each of the register files 430 has two transparent data
outputs. These outputs can be separately enabled,
so that they can represent different words from
within the register file 430. These outputs 430B and
430C drive local operand buses 431 and 432.

5,329,630
47

Each of the register files 430 has an input port 430D
which is connected to a third local data bus 433,
which will be referred to as the results bus. This
results bus is connected to the outputs of the calcu
lation units 440 and 450.

Each of the register files 430 has another input port
430E, which is tied to read port 430B by loopback
connection 434 to first operand bus 431. This write
port takes its address from the “results” write port
430D. This allows data to be copied from one regis
ter file address to another without having to go
through the ALU 450 or multiplier 440, thus saving
two cycles of delay. This means that data can be
rapidly reordered and shuffled as desired, without
using the calculation units 440 and 450 and incur
ring the delays associated with these parts. This
capability can be particularly advantageous in han
dling subroutines.

Thus, the five-port register files 430 each have two
read ports D and E, two write ports B and C, and one
bidirectional port A. The read ports feed operands to
the FMPY 440 and FALU 450, and the results are writ
ten back using write port 430D (or, if desired, write port
430E). The register files can store 128 F_words.
The data, address and write enables for write ports

430D and 430E (and the write part of the bidirectional
port 430A) are registered internally to the register file
430. An internal write pulse is automatically generated.
The two read ports can have their data paths regis

tered or latched (both must be the same), and their
addresses registered or latched. The configuration used
on the floating-point processor module 130 is to register
the addresses as these are driven directly from the mi
crocode and to hold the data latches transparent. The
data is registered internally to the FMPY 440 and
FALU 450.
The register files can operate in a “write through”

mode, when the read and write addresses are the same.
In this mode the written data appears on the read port in
the same cycle, but about 10 ns later than a normal read
operation. This is useful for recursive or scalar calcula
tions where it is advantageous to reduce the number of
pipeline stages.

Separate addresses for the read port 430B, read port
430C, and write port 430D, are supplied by fields of the
FP microcode. This allows r1=r2OPr3 type of calcula
tions to be performed within the constraints of the pipe
lining.

DOUBLE BUFFERING

The highly multi-ported fast register file 430 is a key
element in providing a clean interface between the con
trol processor module 110 and floating-point processor
module 130. The address space of this register file is
partitioned, to act as a double buffer. At any given time,
one bank of this register file runs quasi-synchronously
to the control processor module 110, and the other bank
runs synchronously to the floating point processor mod
ule 130. (The operations which are quasi-synchronous
to the CP module are dimmed in detail below. These
quasi-synchronous operations may be regarded as pro
viding a transitional clock domain, which helps in pro
viding a high-bandwidth interface.)
The assignments of the two banks are interchanged,

under the control of handshaking logic, at synchroniza
tion points. Thus, this clock boundary placement per
mits changes to be made on one side of the boundary
without affecting the other side.

10

15

20

25

30

35

40

45

50

55

60

65

48
This clean interface provides a migration path to

faster, or more, integrated floating point chip sets, and
hence provides floating point device independence.
(The function and use of the handshaking logic will be
described in greater detail below, with reference to
FIG. 22, where the interaction between the CP module
and the FP module is described.)

Thus, the register file 430 is double buffered for the
normal exchange of data and results. However, unlike
prior system such as that of FIG. 18 and 19, this double
buffering is not inflexible. Thus, both the control pro
cessor module 110 and floating-point processor module
130 can access any of the addresses in either bank of the
register files 430. The fact that the accesses are not
locked out of the opposite bank is used to great advan
tage, as will be seen below.

Since hardware access is not cut off, each access to
the register files must (at some level) specify the full 7.
bits of address (A0:A6). Where the double buffering
operation is being used, only six bits of address are
actually needed (to address a location within the cur
rently available bank). The double buffering operation
is actually achieved by modifying the top address bit on
the fly. A mode signal indicates how the top address bit
is to be modified.

Thus, the register file addresses specified in the mi
crocode are modified automatically by hardware. The
double buffering is controlled by a “bank select” signal
which determines which half of the register file the
floating-point processor module 130 has access to, and
which half the control processor module 110 has access
to. This bank select signal is not controlled directly by
the microcode fields, but is toggled (by separate logic)
only when both the control processor module 110 and
floating-point processor module 130 have requested a
swap.
The double buffering uses partitioning on the top

address bit (A6). (By contrast, FIG. 4B shows two files
side by side, to indicate double-word structure of the
file. This corresponds to partitioning on the bottom
address bit (A0).)
Each register file address (7 bits) is accompanied by a

two bit modifier, which selects one of the following
address modes:

Physical address: This uses the address specified
without any modification.

Logical address: This is selected when the automatic
soft double buffering is used, and it causes the most
significant bit of the address to be replaced by the
bank select bit. The control processor module 110
register file address would use the inverse of this
bit.

Preview: This allows the floating-point processor
module 130 to preview the data on the other side of
the bank, without having to swap the banks or use
physical addressing. To keep the calculation pipe
line full when crossing a synchronization point,
access to the new data is needed (if it has been
imported yet). However, there will normally be a
delay due to pipelining: the banks can not be
swapped over until all the results for the current
bank have been written. This access mode circum
vents that delay, since a read access can be taken
from the opposite bank of the register files 430,
before the bank swap is actually performed. This is
accomplished by replacing the most significant bit
of the address with the inverse of the bank select
bit.

5,329,630
49

FIG. 20 shows generally the logic used to accomplish
the address modification for double buffering. The right
side of this Figure shows the interface of register files
430 to the CP module 110, and the left side shows the
interface to the remainder of FP module 130. Thus, the
data connections on the right side would correspond to
port 430A (shown in FIG. 16), and thence to FP hold
ing registers 420 and cache bus 144. The data connec
tions on the left side would correspond to ports 430B,
C, D, and E (as shown in FIG. 16), and thence to multi
plier 440, FALU 450, etc. The address inputs on the
right side would correspond to data fields extracted
from the microinstructions called up from WCS exten
sion 490 by the CP microaddress bus 211A. The address
fields on the left would correspond to data fields ex
tracted from the microinstructions called up from FP
WCS 470 by the FP microaddress bus 473. (The register
file 430 has internal pipeline registers for the address
inputs, and therefore receives the microinstruction bits
unregistered.)
Two address modification logic units 2010 are shown.

They essentially identical, except that their connections
to SEL and SEL-bar are reversed. Thus, if both the CP
and FP attempt to access the same address in logical
mode, the address modification operations of their re
spective logic units 2010 would result in opposite A6 bit
output addresses, which neatly implements the double
buffer function. The address logic unit also receives the
top bit (A6) of a seven-bit address taken from one of the
CP or FP microcode fields. It also receives a 2-bit mode
signal.

In the actual implementation of the presently pre
ferred embodiment, three address modification logic
units 2010 are used on the FP side (one each for ports
430B, 430C, and 430D).
The complementary bank select signals SEL and

SEL-bar are provided from port select logic 2020.
These two signals are reversed whenever both the FP
module and CP module have requested a bank swap.
(The logic which accomplishes this is described in
much greater detail below.)

Reduced Setup Time for Unregistered Bits
In implementing the address modification logic 2010,

some additional logic, as shown in FIG. 17, has been
added. This additional logic solves a general problem,
and may usefully be adapted for use in many contexts.
Many manufactures of “bit slice” components are

including pipeline registers in their ICs. However, any
processing which is done on the microcode bits before
they reach the chip must be added to the chip's setup
time. This is the situation which occurred in implement
ing the soft double-buffering system just described. The
problem is that the address modification logic 2010, in
processing the most significant bit of the register file
address (the “A6” bit) to implement the logical, physi
cal and preview, modes of addressing, adds an extra 10
ns onto the cycle time. When (as in the presently pre
ferred embodiment) the cycle time can be less than 30
ns, this is a very significant overhead.

Therefore, some additional logic, as shown in FIG.
17, was introduced to remove the extra 10 ns from the
cycle time (on many cycles). The potential for doing
this occurs when the addressing mode remains the same
from one cycle to the next. In this situation, the setup
time has already been paid for in the earlier cycle. How
ever, as the microcode address changes and new data is
accessed in the writable control store (WCS), the un

10

15

20

25

30

35

45

50

55

50
registered microcode bits will not be stable. Therefore,
the setup time would have to be incurred again, unnec
essarily.
The logic shown in FIG. 17 holds the modified ad

dress bits constant in a separate register 1740. A special
microcode bit (called “useold A6”) is used to select
(using flip-flop 1720 to control multiplexer 1730) that
the old A6 value (fed back from register 1740) be used,
rather than the microcode derived one. (When using a
microcode assembler, the “useold A6” microcode bit
can be automatically set by the microcode assembler, so
the programmer doesn't need to worry about this opti
mization.)
The multiplexer 1730 is contained in the same PAL as

the address modification logic, so this multiplexer does
not introduce any additional delay.
CACHE BUS INTERFACE AND CONTROL
As discussed above, many aspects of the operation of

the numeric processor module are controlled by an
extension of the control processor module 110. Most of
this logic is physically on the FP module, but is con
trolled by the microcode of the control processor mod
ule 110, and interfaces to the CD bus. There are several
distinguishable parts of the cache bus interface, to man
age the transfers of data among the data cache memory
140, the FP holding registers 420, and the register files
430. The principal parts of this interface are: holding
registers 420; data cache transfer logic; and local trans
fer bus logic 2110.

Holding Registers 420
The holding registers 420 include eight 32-bit regis

ters. (These registers are bidirectional; each contains a
read side and a write side which, internally, are parallel)
These registers are arranged with 256 bits on the data
cache memory side, but only 64 on the register file side.
The output enables on the register file side select one of
the four groups of registers to drive the 64 bit local
transfer bus 422 to the register files 430. (The operation
of this interface will be discussed in greater detail be
low.)

Data Cache Transfer Logic
The data cache transfer logic is located on the main

board, and is part of the CP transfer logic 550. It pro
vides a module select address (3 bits), an output enable,
and a clock. This logic controls transfers between the
cache memory 140 and the holding registers 420. If this
module is selected, then the output enable signal, when
active, enables the holding registers 420 to transfer data
onto the cache bus 144.

Local Transfer Bus Control Logic
The local transfer bus control logic 2110 is shown in

FIG. 21. This logic is responsible for the data transfers
between the holding registers 420 and the register files
430. Within a single transfer cycle there are 4 minor
cycles, corresponding to the 4 pairs of F words that
can be transferred to or from the register file. These
minor cycles are generated by a dedicated clock, which
runs at very high speed.

65

Transfer Clock Generator 412
The transfer clock generator 412 provides the trans

fer clock outputs only during a major transfer cycle. It
is triggered to run when both the CP clock and a trans
fer enable bit indicate a “go” condition.

5,329,630
51

The transfer clock generator is partly, but not en
tirely, asynchronous to the CP clock generator 250. A
high-frequency ECL circuit is connected to a 70 MHz
oscillator, and, until the CP clock generator indicates a
“go” condition, the high-frequency circuit simply keeps
looping. Thus, on every edge of the high-frequency
clock, the “go” status will be checked. This means that
a “go” status will be detected within at most one period
of the high-frequency clock.
When the go condition is detected, the transfer clock

generator begins dividing down the high-frequency
oscillator input, to produce the transfer clock outputs
for a major transfer cycle. Depending on the particular
major transfer cycle being performed, between two and
five clock beats will be produced during a major trans
fer cycle. The clock beats are connected to all eight
holding registers 420. The sequential access to these
registers is “phased” by an overlaid walking zero pat
tern, as described below.
FIG. 47 schematically shows the timing relations

here. The high-speed variable-length clock 480, which
clocks the operation of the calculation; units 440 and
450 (as well as data ports 430A, 430B, 430C, 430D, and
430E of the register file 430) is shown at the bottom, for
reference. Above that is shown the high-speed ECL
loop of the transfer clock 412. Above that is shown the
enable signal which (with the CP microcode clock)
starts the transfer clock generator 412 on a major trans
fer cycle. Above that is shown the transfer clock.
Above that is shown the CP microcode clock, gener
ated by CP clock generator 250.

Thus, the transfer clock generator in effect provides
an intermediate clock zone, which expedites the transfer
between the data cache memory 140 (which is con
trolled by the CP clock generator 250) and the inner
bank of the Register File 430 (which is controlled by the
FP clock generator 480). .
The clock boundary between the FPU and the data

cache memory is a very important boundary. This
boundary crosses not merely a clock phase boundary,
but also a potentially drastic difference in clock fre
quency. Moreover, as noted above, net transfer
The presently preferred embodiment bridges this

boundary in two steps.
The double buffering of Register File interface pro

vides a transfer from the FP clock domain to the
transitional clock domain.

High-speed multiplexed transfer (from the outer bank
of Register File 430 into the FP interface of the FP
Holding Registers 420) occurs within the transi
tional clock domain.

Transfers from Holding Registers 420 into Data
Cache Memory 140 occur wholly within the CP
clock domain.

Some general points regarding this clock frequency
difference should be noted:
The relation between the minor transfer cycle dura

tion and the minimum FP cycle time is not acciden
tal. As noted above, the worst burden on cache
bandwidth comes from diadactic operations. For
example, in a vector add, two operands and one
result must be transferred between the register file
and the cache. On the FPU side of the register file,
the two operands will be read out in parallel, and
(pipelined with this) the result will simultaneously
be written back into the register file. Thus, in the
worst case, two words must be written into Regis
ter file 430 and one word must be read out, for

5

10

15

20

25

30

35

45

50

55

65

52
every calculation cycle of the calculation units.
Not all operations will be diadactic, but, in many
applications, the average may not be much more
favorable.

In embodiments using a transitional clock domain, as
discussed above, it is most preferable that: the minor
cycle duration, divided by the number of words trans
ferred per minor cycle, should preferably be in the
range of one-half to one-third times the minimum dura
tion of a calculation cycle in the FPU. However, the
advantages of the two-stage interface, using a transi
tional clock domain; can be largely obtained even if this
numeric relation is not met.
Note that the advantages of the transitional clock

domain are generally applicable to system where high
speed numeric calculation units are used. The clock
interface architecture described permits such units to be
isolated in their own clock domain, so that their clock.
can be run at the maximum possible. This teaching is
independent of the particular timings, and is indepen
dent of the device technologies used. For example, this
interface architecture could be used in the future to
integrate a limited number of calculation units in expen
sive high-speed technologies (such as Josephson junc
tion or III-V device technologies) into a large com
puter system.

Control Signals
To keep the number of control signals down (both on

the input and output sides) there are some restrictions
on how the 8 F_words are transferred from the holding
registers 420 into the register files 430. The need for this
is dearly demonstrated by considering the addresses.
Eight F_words would require 8 separate addresses, if
total flexibility was necessary; and, with each address
requiring 9 bits to specify it, there would be 72 bits of
address information in total.
The input control signals are:
Direction. Specifies whether data is transferred from

the register files to the holding registers or vice
VerSa

Register Address (6 bits). This specifies the start ad
dress where data is transferred to or from in the
register file. This address is incremented after
every minor transfer cycle and will wrap around
when it gets to 64. Note that from the FPU side the
register file addresses are 7 bits because they refer
ence 32 bit words rather than 64 bit ones.

Logical/physical address modifier. This selects
whether the address is modified to implement soft
double buffering.

Transfer length (3 bits). This determines the number
of F words transferred (1 ... 8).

Transfer start (3). This specifies the first F_word to
transfer out of the eight. These bits can be defined
by a microcode field, or a register field, or they can
be the least significant 3 bits of the CA bus 111. If
the transfer start--transfer length >8 then the F
word selection wraps around.

Transfer enable. Enables a transfer cycle to occur in
the current control processor module 110 cycle.

Module select. Selects one of the four floating-point
processor modules to take part in the transfer.

The control signals to the register files and the hold
ing registers are:

Holding register group output enables (4). Selects the
register group to drive the 64 bit data bus. If the
transfer direction is from the register file 430 to the

5,329,630
53

holding registers 420, then none of these enables
will be active.

Holding register group clocks (8). There are four
clock enables, which sequence through the pat
terns 1110, 1101, 1011, 0111 (a “walking low” pat
tern). These four clock enables select the 64 bit
group register. A static 8 bit clock mask selects
which two of the 32 bit registers will actually be
enabled to access the local transfer bus 422. (Note
that the start position within the pattern depends
on the transfer start, and the number of patterns
depends on the transfer start and transfer length
parameters.)

Register file address (7). Increments on every minor
cycle and is modified depending on the state of the
logical/physical address modifier.

Register file read/write control (2). There is a sepa
rate control for each pair of register files so an odd
number of writes can be done. These are decoded
from the transfer length and address.

Register file output enable. Derived from the transfer
direction control signals.

Constraints On Transfers (Double-Word Structuring)
The interface just described results in some con

straints on transfers. These restrictions are best ex
plained by showing how data maps between the data
cache memory 140, holding registers 420, local transfer
bus 422, and register files 430.
The register file 430 has some double-word structur

ing. That is, it appears to the FPU to be 32 bits wide, but
to the local transfer bus 422 the register file 430 appears
to be 64 bits wide.
The use of a two-words-wide interface from register

10

15

20

25

30

file 430 to local transfer bus 422, with a transfer clock of 35
(effectively) no more than four minor-cycle phases
being applied to the eight registers 420, is very advanta
geous in maximizing transfer speed (and in permitting
the use of a static clock mask). However, a side effect is
that some odd/even structure gets built into the file
address structure. This is shown schematically in FIG.
46. The eight F_words in the width of the FP holding
registers are hatched in opposite directions, to indicate
which is even and which is odd. The result of the dou
ble-word transfer is that any even F_words which are
transferred (W0, W2, W4 and W6) will map to the left
side of the register file 430. These will therefore map to
even register file addresses as seen by the FPU. Corre
spondingly, any odd F_words which are transferred
will map to the right side of the register file 430, and
will therefore map to even register file addresses as seen
by the FPU,
The less serious implication of this is that if (in a series

of scattered read accesses from cache memory 140) all
transfers are from even data cache addresses, then only
half of the addresses in the register file 430 can be used.
The more important consideration is that if a single

F—word (for example) is being transferred from a cal
culated address, then the data could end up at either the
even or odd address in the register file, and program
steps would need to be used to ensure that this data was
accessed (by the FPU) from the correct side.
The presently preferred embodiment provides the

user with five options which can be used to avoid such
problems:

1. The CP module 110 can shuffle data in the DCM.,
so that any data being transferred starts on an even
address in DCM.

45

50

55

65

54
2. Transfer logic carries a status bit, showing whether

the last transfer was to an even or odd address. The
FP logic can test this status bit. However, note that
this only supplies information for the very last
transfer.

3. Double write cycles could be used, with data valid
flags, to permit the odd/even characteristic of the
word address to be ignored at some points. That is,
the memory actually used in Register Files 430, in
the presently preferred embodiment, includes two
parity bit locations for every sixteen bits of data.
Since the presently preferred embodiment does not
use parity checking, these extra bits are available
for other uses. In particular, they can be used to
carry “data valid” flags along with the data.

Thus, all writes from the holding registers 420 would
write a pair of F words, from a pair of the holding
registers, into the two words on both sides of the regis
ter file 430.

4. A register bit, written by the CP module 110, can
be used to indicate the current word location odd
/even status. The FP module can then test this
register bit to do conditional branches.

5. The CP module 110 can change the FP program
ming, as a way to inform the FP of correct word
odd/even status, by changing the start address in
register 478.

A further alternative is that dedicated hardware
could be added, to perform word swapping on the fly.
This alternative is not preferred, since such dedicated
hardware would add delay to every transfer (whether
swapped or not).
The control of the transfer doesn’t allow non-con

tiguous addresses to be transferred within one major
transfer cycle. For example, it would take 2 major trans
fer cycles to transfer W0 and W2 from the holding
registers into the register file. However, if W1 could be
transferred as well (even if it is never used) then only
one major transfer cycle is necessary.
When transferring data from the Register File 430 to

the cache memory 140, similar considerations arise
when scattered writes are being performed. The pre
ferred approach in this case is to perform writes to both
sides of the Register File simultaneously. That is, as
shown in FIG. 4B, the two (physically separate) Regis
ter File portions 430 and 430' can both be enabled, so
that data written in from results bus 433 is written into
both the even and odd words. When this duplicated
data is written out to Holding Registers 420, it can be
written into all eight of them simultaneously. (This
function is activated by the HR Clock All bit in mi
crocode.)

Holding Register/transfer Clock Operation
As noted, a clock having at most four beats for trans

fer enable is used for the transfers between holding
registers 420 and register files 430. In the presently
preferred embodiment, this clock can actually have as
many as five beats per major transfer cycle. Four of the
these beats activate respective pairs of the holding regis
ter banks, and the fifth phase provides some margin for
pipeline overheads. As presently operated, the phases of
this clock are about 30 ns. Therefore, a major cycle is
about 150 ns. (Of course, these times could be changed.)

This clock structure shows a significant advantage of
the double-word transfer architecture used at the inter
face from the cache bus 144 to the holding registers 430.
Since the transfer logic sees the holding register 430 as

5,329,630
55

being two words wide, the transfer operation can be
treated as if it were only a 4:1 multiplexing, rather than
8:1 multiplexing.

FP Program Control
FIG. 4C shows the logic used, in the presently pre

ferred embodiment, for FP microcode access and de
coding.

Microinstruction Sequencing
In the presently preferred embodiment, the numeric

processing module 130 does not use a highly integrated
“sequencer”. Instead, the functions of defining the ad
dress for microinstructions to be executed, and of de
coding the microinstructions, are implemented using a
lower level of integration, to maximize speed. A writ
able control store 470 contains microinstructions which
are accessed by a microinstruction address input 473.
The microinstruction address source is selected by the
next-address logic 472, which receives condition code
inputs, as well as outputs from the decoding of the mi
crocode word.
The microaddress can come from one of four sources

during normal operation (i.e. apart from intervention by
the control processor module or by the host). These
sources are: “True” Address Register 474; “False.” Ad
dress Register 475; Stack Register 478; and Start Ad
dress Register 479.
Every instruction contains a “true” address field and

a “false” address field. The combination of the two
addresses permits conditional jumps. The true address
alone permits unconditional jumps and “continue” in
structions.
To accomplish this, certain fields of the microinstruc

tions 471 are fed into two registers 474 and 475. These
registers permits the “true” and “false” addresses to be
buffered, so that, depending upon the outcome of a
logical test, one or the other can be loaded back in as the
next microinstruction address 473. That is, these regis
ters provide rapid conditional branch capability.
Note that an additional register 476 is provided, for

the microcode bits that do not use on-chip pipeline
registers.

Stack Register 478
Stack register 478 provides some significant addi

tional capability for FP program control. This can pro
vide outputs on the microaddress bus 473, and can re
ceive inputs from certain bits of the microinstruction
bus 471, as will be discussed below.
However, the requirements of a stack to use with the

high-speed microcoded architecture of the FP module
are somewhat unusual. The presently preferred embodi
ment provides a stack which not only provides the
necessary last-in-fast-out (LIFO) operation at high
speed, but also provides additional flexibility which is
very useful for debugging. Achieving this functionality
required some new structure, as shown in FIG. 39.
The conventional way to implement a stack function

has been with a register file whose output enable and
write enable signals were tied to an address counter, so
that every “pop” (read) operation decremented the
counter and every “push” (write) operation incre
mented it.
The central portion 3920 is a multilevel pipeline regis

ter, which is a commercially available part from AMD
(AMD 29520). This part contains four pipelined regis
ters 3921, and an output multiplexer 3922 which can be

10

15

20

25

30

35

40

45

50

55

60

65

56
used to select one of the registers 3921 for output. (The
normal mode of operation of a device of this type would
be either as a FIFO, or to provide a fixed delay.)

In the embodiment shown, the control capabilities of
this register are used, under control of a PAL 3910, to
implement the LIFO operation. The PAL receives
command signals to pop or push the stack. A read—s
tack input is also provided, so that (primarily for diag
nostics) the state of the stack can be read without
changing it. For use in this mode, an offset input is
provided, which can be used to read out a stack level
which is relative to the top level.
The output of the stack register is connected to the

microaddress bus 473. The input to the stack register is
provided by the false address, for reasons which will
now be discussed.

Subroutine Operation
Stack register 478 provides a powerful capability for

subroutine operation. The microcode instruction which
calls a subroutine will state the subroutine address in the
true field, and the return address in the false field. A
short field of this instruction will also contain a push
command, so that the stack register saves the “false.”
address output. At the end of the subroutine a pop com
mand will enable the stack register to output the return
address onto the microinstruction bus 473.

Thus, the four levels of the stack register 478 permit
up to four levels of subroutines to be nested.

Clock Generator 480

The cycle times for different instructions in the
FMPY and FALU are different. It would be useful to
tailor the cycle time accordingly, to optimize the calcu
lation rate. The most important difference (15 ns) is
between the FALU operations and the single precision
multiply.
The FMPY has some very long instruction, such as

divide and square root, where their execution times are
200 ns and 300 ns respectively. Two options are pro
vided for these slower instructions:
Extend the cycle length by the appropriate amount.
Disable the clock enables to the FMPY while the

long instructions are in progress, but keep the in
struction and data streams going to the FALU at
the normal data rate. This will allow several
FALU operations to be hidden under a divide
operation, which might benefit some algorithms.

The clock generator produces two waveforms—the
microcode clock and a write gate for the scratchpad
memory. The minimum cycle length the clock genera
tor produces is 21 ns, and this can be varied in 7 ns steps,
up to a maximum cycle length of 98 ns. In the presently
preferred embodiment, the minimum practical cycle
length is 28 ns (since the WCS memory access time is
the limiting factor). The cycle time for FALU opera
tions is 28 ns, and 41 ns for single precision multiply
operations.
The clock generator is implemented as an ECL state

machine running with an input frequency of 140 MHz
to give the timing resolution. The use of this ECL state
machine in combination with TTL sequencing logic
and high-speed calculation units, turns out to be quite
advantageous. (As noted above, the register files 430
and the calculation units 440 and 450 have ECL inter
nals with TTL peripherals.)
The clock generator can receive the following con

trol inputs: a stop or start command may be received

5,329,630
57

from the VME interface (i.e. from the host), or from the
CP module 110; a length input field from the microin
struction bus 471; a stretch input will command a “wait
state” (or longer cycle length when the CP forces the
start address register to be the microaddress source for
the next FP microcycle; and the breakpoint bit is also
connected to the clock generator, and commands it to
stop instantly.
As noted above, there is also a transfer clock genera

tor 412 in the CP Extension Logic. This clock is not
related to the clock generator 280. (However, note that
both of these clock generators exploit the advantages of
using ECL logic in a clock generator which is driving
TTL logic parts.)

Microcode Compaction
One of the notable futures of operation of the FP

5

10

15

module 130 is the use of compacted microcode. That is, .
some logic is provided at the interface to WCS 470,
which permits a field of the microinstruction to be re
placed on the fly by a previously registered value.

In the presently preferred embodiment, the field
which can be replaced in this fashion is the operate
specifier. However, in other system it would be quite
possible to replace other microinstruction fields in this
fashion,

Thus, for example, for operations which mapped two
arrays onto a third array (e.g. Ci-Ai-i-Bi), the instruc
tion register could be loaded with an operation specifier
(e.g. “ADD”) before a sequence of such operations was
begun. The sequence of operations would then be stated
in code which did not specify the operation directly.

This logic is shown in FIG. 45. An instruction regis
ter 4510 is loaded with an operate specifier (8 bits). This
operate specifier corresponds to one of the fields of the
microinstructions stored in WCS 470.

In response to the “Use IR” bit (which is written
into a register by the CP module 110, and therefore
changes relatively infrequently), PAL 4520 selects
whether to enable the output memories 470B or Instruc
tion Register 4510.

If the “Use IR” bit were assigned to a field in the
microinstruction, it could change at every cycle. How
ever, in this case the extra delay in decoding which
specifier to use (and then enabling it) would increase the
cycle length on every cycle where a change was made.
WCS 470 is actually physically configured, in the

presently preferred embodiment, as 26 integrated cir

20

25

30

35

45

cuit memories, each 4 bits wide. Thus, two of these .
physical memories store the 8 bits of the operate speci
fier field. These two memories are shown as portion
470B, and the memories which store the other fields of
the WCS 470 are shown as 470A.
The instruction register 4510 can be read or written

from the CD bus 122, by specifying it (in CP micro
code) as the CD bus source or destination.
Note also that the PAL 4520 also receives another bit

of input, so that its bypass operation can be disabled
during microcode load operations.

Parallel Loading of Microcode
FIG. 29 schematically shows how the WCS 470 in

terfaces to the wide cache bus 144. The 64-bit local bus
422, which connects the FP holding registers 420 to
port 430A of the register file 430, is also connected to
the serial shadow registers 481 which hang on the mi
croinstruction data line 471. (As extensively discussed
elsewhere, these serial registers interface the control

50

55

65

58
store 470 to the serial loop used to transmit microin
structions from the host.)

This additional connection is particularly advanta
geous in the numeric processor module 130, since it
permits microcode overlays to be changed very rapidly.

In the presently preferred embodiment, the serial
shadow register 481 is actually configured as two physi
cally separate registers 481A and 481B. These registers
not only provide a bidirectional interface to the data
port of the control store 470, but also can receive data
from the local bus 422. As mentioned above, the micro
instruction fields in the CP Extension logic contain bits,
indicating the data destination of the local bus 422,
which can command this read.
As noted above, each FP microinstruction is 104 bits

wide. However, to conform to the automatic shifting of
data around the serial interface loop, the shift register
481 has been made 112 bits in length. That is, the num
ber of microinstruction bits has been rounded up to the
next even multiple of 16, to define the length of the shift
register at the interface. In the presently preferred em
bodiment, register 481A is 64 bits wide, and register
481B is 48 bits wide.

After the registers 481 have been loaded with a mi
croinstruction (in two minor transfer cycles of the local
transfer bus 422), they are driven to load the instruction
back into the WCS 470. This will require an address to
be placed on the FP microaddress bus 473, and will also
require a write enable signal to be transmitted to the
WCS 470.

In serial loading, the host uses the CP microaddress
register to hold the address of the FPWCS to lead (or
read), and routes this address to the FP WCS. (Note
that the input from CP microaddress bus 211A is fed
into FP microaddress bus 473 by the buffer shown at the
top of FIG. 4C)

In the parallel loading mode, the CP places the target
address in the start register 479.

Additional logic is also provided for interface to the
host. This logic permits microinstructions to be read
from or written to the control store 470. This function
will be discussed in greater detail below.

Starting An FP-microcode Routine Running
When the FP module starts up, it will normally go

into a wait rate, because of the FPWAIT/CPWAIT
handshaking logic described below. To start a routine
running in the FP module, one bit of the CP microcode
can force the microinstruction address held in start
register 479 to be used as the next microaddress on the
FP microinstruction address bus 473. This action is
qualified by the module selection, as described below.

Selecting an FP Module(s)
At the highest level, a floating-point processor mod

ule 130 must be selected before it can be controlled. In
a single-module configuration, the FP module is se
lected all the time, and some of the following comments
don't apply. However, in a multiple-module configura
tion, the desired FP module (or algorithm accelerator)
must be selected before it can be controlled. Several FP
modules can be selected at once, to allow data or con
trol information to be broadcast to a subset of the FP
modules. The FP modules can be selected in one of
three ways: a 3-bit value previously stored in a control
register can be used; a microcode field can be used; or,
less preferably, the CP Extension Logic portions 410 on
each of the different modules; can run their own streams

5,329,630
59

of microcode in synchrony, so that access arbitration
can be performed in microcode. The method that is
used can be changed on a per cycle basis.
Once an FP module(s) has been selected, the method

of controlling it is split between control registers 5
(loaded with long term control information), and dedi
cated microcode bits for cycle by cycle control. Most of
the cycle by cycle control is concerned with data trans
fers between the data cache memory interface and the
register files on the module, as described below. 10
The module selection is shown schematically in FIG.

23. Multiplexer 2340 selects which input to use for mod
ule ID. Decode logic 2310 (which is part of the CP
extension logic in one of the modules 130 or 130') tests
the broadcast module address against the switch set- 15
tings in the particular module. Qualification logic 2320
accordingly qualifies a side variety of microinstruction
fields from the local WCS extension 490, as described
below. -

- 20
Control Registers

The control processor module 110 can read and write
the following registers:

Transfer Control register: The transfer control regis
ter collects together the control signals that influ-25
ence the transfer of data from the holding registers
420 (in the data cache memory interface) into the
register files 430. A few miscellaneous signals are
also included to economize on hardware.

The control signals used include: 30
Transfer start (3) This field specifies which of the 8

registers in the holding register group is to be trans
ferred first. This can also be specified as part of the
microcode instruction or automatically based on
the data cache memory address that the data origi- 35
nated from.

Transfer length (3) This field specifies the number of
words to transfer between the holding register and
the register file. Between 1 and 8 words inclusive
can be transferred. 40

Transfer type (1) This bit selects the transfer to be
between the holding registers and the register file
(0), or from the holding registers to the FP mod
ule's WCS pipeline register (1). This latter function
is used during parallel loading of the FP's WCS 45
memory.

Loopback control (1) This bit allows the data in the
write holding registers to be copied directly into
the read holding registers without having to be
written into the register file first. The main use of 50
this is for diagnostic and state save and restore
operations.

Operation select (1) This bit has no hardwired func
tion and can be tested to the FP's sequencer. This
allows the control processor module 110 to tell the 55
FP to do one of two operations within the routine
it is currently executing. For example this bit could
be used to specify that the data at the even address
(as opposed to the data at the odd address) is to be
used for the calculation. 60

Select Instruction Register (1) This bit forces the
Instruction Register (see later) to be used instead of
the microcode instruction field in the WCS to con
trol the operation of the floating point ALU and
multiplier. 65

Mask Error (1) This bit inhibits an FPerror condition
(as determined by the FP microcode) from generat
ing an interrupt in the control processor module

60
110's sequencer. The FP error status can still be
tested via the normal condition code selection pro
cedures.

Stack position (2) During diagnostics and state save
and restore situations the host computer needs
access to the FP's subroutine stack. When access to
the stack has been enabled this field is used to select
which stack entry to read. Note that the stack entry
that is accessed is relative to the location pointed to
by the stack pointer.

FP control register. The FP control register collects
together the parallel microcode load controls, in
terrupt masking, clock control and microaddress
selection fields.

Clock control (2) This field allows the control pro
cessor module 110 to control the FP's clocks. The
FP clocks can either be running or stopped. The
extra bit in the clock control field was used to
select that the FP microcode clock uses the micro
code clock of the control processor module 110,
thus allowing the FP to run synchronously to the
control processor module 110.

FP microcode address source (2) This field allows the
control processor module 110 to select that the
microcode address used by the FP is one of:

FP sequencer output This is the normal micro ad
dress source when the FP is running microcode.

Start Address register This selects the start address
register during parallel microcode loading. (A dif
ferent mechanism is used to select the start address
register when the CP module 110 or the host is
commanding the FP module 130 to start running
microcode from a particular address.)

Force stack output This is used by the control proces
sor module 110 to gain access to the subroutine
stack during diagnostics and microcode debugging.

Interrupt mask (4) The 4 bits allow the control pro
cessor module 110 to select on which events in the
FP it is to be interrupted. The events are break
point CPWAIT, FPWAIT, register file swap, and
FP error. Once an interrupt has occurred the cor
responding mask bit is temporary cleared to reset
the interrupt request.

Parallel microcode load control (5) This field in
cludes separate bits to control the WCS write en
able, the WCS output enable, and the diagnostic
shift register mode, clock and semi data in signals.
The parallel microcode load is controlled by the
control processor module 110, as is described in
greater detail below.

Floating point serial access loop (3) Running through
the floating point ALU and multiplier is a semi
loop that can be used to gain access to the internal
state of both chip and also to load in some new state
information. All the internal registers and flags can
be accessed in this way. To control this semi loop
the control processor module 110 has three control
signals: semi mode, semi data in and a serial clock.
The semi clock is driven directly from this register
bit and must be toggled by the control processor
module 110 to generate the rising and falling edges
required.

Start address register The control processor module
110 loads the start address register with the address
of the microcode routine it wants the FP to start
running when the jump start address microcode bit
is used. This register is also used during parallel

5,329,630
61

microcode to hold the address of the WCS location
to load.

Instruction register (8 bits) The control processor
module 110 can override the floating point ALU
and multiplier instruction from the WCS and sub
stitute its own instruction. The Instruction register
4510 (shown in FIG. 45) holds this instruction. The
benefit of this is that the control processor module
110 can customize a generic microcode routine for
the particular type of calculation it requires which
leads to a very large reduction in the amount of
WCS used for very similar algorithms.

Status register (source only) This is only used for
diagnostics and microcode debugging to gain ac
cess to some internal information in the FP module.
The status that can be accessed includes the regis
ter file address and holding register start address
used during transfers and the sticky status.

MICROCODE WORD FORMAT

Key fields of the FP microcode format are generally
shown in FIG. 4D. The microcode word is defined
more precisely below. The items marked with a * come
directly from the WCS470, and use the internal pipeline
registers of the devices they are controlling. The num
ber of bits per field is indicated in parentheses.
True address (14) This field holds the next address to
jump to during normal sequential program execu
tion (i.e. continue instruction), the address to jump
to when a conditional test is true and the subroutine
address for a jump subroutine instruction.

False address (14) This field holds the next address to
jump to when a conditional test is false and the
return address for a jump subroutine instruction.

Read address X (9) * This field holds the 9 bits that
specify the address in the register files where data
is to be read from and placed on the “X” port. The
physical address is held in 7 of the 9 bits and the
other 2 bits select how the address is to be modi
fied. The options are no modification (physical),
and soft double buffering (either logical or pre
view).

Read address Y(9) * This field holds the 9 bits that
specify the address in the register files where data
is to be read from and placed on the “Y” port. The
physical address is held in 7 of the 9 bits and the
other 2 bits select how the address is to be modi
fied. The options are no modification (physical),
and soft double buffering (logical or preview).

Write address (8) * This field holds the 8 bits that
specify the address in the register files where data
is to be written to. The physical address is held in
6 of the 8 bits, and the other 2 bits select how the
address is to be modified. The options are no modi
fication (physical), soft double buffering (logical),
or soft double buffering (preview). The address
selects a pair of registers, one at the even address
and one at the odd address. The writing of the
register(s) is controlled by two separate write en
able bits. (This feature allows a result to be dupli
cated in both the odd and even sides of the register
file, as discussed above.) This address is also used
for the “loopback” write port which is used to
duplicate data in the register file.

Even Write enable (1) * When this bit is active data is
written into the even register file address.

Odd Write enable (1) * When this bit is active data is
written into the odd register fie address.

5

10

15

20

25

30

35

45

50

55

65

62
Floating point operation (8) * This specifies the float

ing point or integer operation to do and is shared
by both the FMPY 440 and the FALU 450. Full
details concerning the instruction set and opcodes
for the specific parts used can be found in the man
ufacturer's data sheets.

FMPY enable controls (4) This field controls the
internal multiplexing of data and the loading of the
input and output registers: X port multiplexer con
trol (the “X port” is the port connected to the first
operand bus 431); Enable X port register data load;
Enable Y port register data load (the “Y port” is
the port connected to the second operand bus 432);
Enable Z register load (the “Z port” is the port
connected to the results bus 433).

FALU 450 enable controls (5) This field controls the
internal multiplexing of data and the loading of the
input and output registers: X port multiplexer con
trol; Y port multiplexer control; Enable X port
register data load; Enable Y port register data load;
Enable Z register load.

Clock length (4) Defines the instructions cycle
length. These range from 28 ns to 98 ns in steps of
7 ns.

FMPY or FALU status select (1) * Selects either the
FMPY 440 of FALU 450 to drive the status bus.

Condition code select (5) Selects one of the following
conditions to test: force true (default condition);
FPWAIT; carry (FALU); divide by zero (FMPY);
sticky status (divide-by-zero; sticky status active;
CP option bit; X data valid; Y data valid; address
last data transferred (i.e., even or odd; microcode
loop; zero; negative; interrupt flag; not a number
(NAN); rounded up; sticky overflow; sticky under
flow; sticky inexact; sticky invalid operation; sticky
denormalized. The last ten of these may originate
from the FMPY 440 or FALU 450.

Breakpoint (1) Set to indicate that there is a break
point set on this instruction.

Set FPDONE (1) Sets the FPDONE status flag in the
control processor module 110 interface to tell the
control processor module 110 that the calculations
have been completed.

Swap (1) Requests that the soft double buffer in the
register file be swapped over. The swap doesn't
happen until both the control processor module
110 and floating-point processor module 130 have
requested the swap.

Scratchpad control (3) this field controls the opera
tion of the scratchpad memory and its address
counter. One bit is the write enable for the scratch
pad memory, and the other two bits select the
address counter operation out of load; increment;
decrement; hold.

Results bus output select (2) This field selects the
source that drives the results bus 433. The possible
sources are: FALU, FMPY 440; Scratchpad mem
ory data; Scratchpad memory address.

Stack control (2) The stack control field controls the
subroutine stack logic so that the return addresses
are: pushed, popped or held. -

Loopback write enable (1) This bit enables a write
cycle in the register file 430, through the loopback
port 430E. This copies whatever data is on first
operand bus 431 into the address specified for the
write port 430D. The odd and even write enables
select which bank of the register file 430 the data is
written to, or whether it is written to both.

MUL1:
MUL2:
MUL3:

MUL4:

-

MUL5;

-

MUL6:

5,329,630
63

Sticky status control (2) This field selects whether the
status generated in this cycle is to be incorporated
into the sticky status, the sticky status is to be
cleared or is to be held.

Double precision data transfer (2) These two bits 5
control the multiplexing of data into the X and Y
input registers in the FALU 450 and FMPY 440,
and the multiplexing of the double precision result
out from the Z port.

Use old A6: bit is set by the microcode assembler
when the most significant address bit to the register
files for all the ports remains the same over adja
cent cycles. This is used to reduce the cycle time
for these situations.

SAMPLE PROGRAM FLOW
Following is a short sample program (a multiply

routine) in pseudo-code. This example will help to show
how the innovative futures provide efficient execution.
The operation of this example is also shown schemati

cally in FIG. 42. In this example, it should be noted that:
Instructions grouped together within curly brackets {

} are executed in parallel
Normally 8 multiplies would be done per pass

through the routine. However, this has been cut
down to 4 to shorten the routine.

The double buffering is transparent to the microcode.
The calculation performed is C[n]=A[n]*B[n] where
n is in the range 0 . . .3, and the 8 operands and 4
results are at unique addresses in the register file.
Note that a ' (prime) on one of these references
indicates that the opposite of the corresponding
element, i.e. the element which is on the other side
of the double buffer before the buffers are
swapped. -

There is a three stage pipeline: read operands from
the register file, do calculation, write result back to
register file.

The control processor module 110 clears FPWAIT
which starts the floating-point processor module
130 running the routine.

The multiply routine is as follows:

10

15

20

25

30

35

FP Vector Multiply Routine (in pseudo-code) 45
{Test FPWAIT, if false jump to MUL1, else continue}
{Read A[0] and B[0] from register file.}
{Read A[1] and B[1] from register file,
Do calculation, result R[0] = A[0] *B[O].}
{Read A[2] and B[2] from register file,
Do calculation, result R[1] = A[1] *B[1],
Write value of result R[0] into register file at C(0)}
{Read A[3] and B[3] from register file,
Do calculation, result R?2} = A[2] *B[2],
Write value of result R[1] into register file at C(1},
Test FPWAIT, if true jump to MUL5, else continue}*
{Do calculation, result R[3] = A[3] *B[3],
Write value of result R[2] into register file at CI2]
Test FPWAIT, if true jump to MUL6 else continue}*
{Write value of result R[3] into register file at C[3]
Set FPDONE and swap buffers
Test FPWAIT flag, if true jump to MUL2 else jump
to MUL1}
{Read A'?]] and B'IO) from register file,
Do calculation, result R[3] = A?3}*B[3],
Write value of result R[2] into register file at C[2]}
{Read A'(1] and B'?]] from register file,
Do calculation, result R'?C) = A'[0] * B'[0],
Write value of result R[3] into register file at C[3]
Set FPDONE and swap buffers,
Jump to MUL4}
{Read A'(0) and B'?]] from register file,
Write value of result R3] into register file at C[3]

50

55

65

64
-continued

FP Vector Multiply Routine (in pseudo-code)
Set FPDONE and swap buffers,
Jump to MUL3}

There are several points to note about this routine:
The routine is heavily optimized to keep the FPU

busy on every cycle (providing there is data for it). A
simpler, less efficient, version would not include the
instructions MUL5 and onwards.
To extend this to multiply 8 pairs of numbers, the

instruction at MUL4 would be repeated 4 times
with different register addresses.

In order to keep the FPU operating on every cycle it
is necessary to access data from the other side of
the double buffer without having to do a swap.
This is used in instructions MUL5 and onwards. .

No time is wasted in synchronizing with the control
processor module 110 providing the next set of
data is available (i.e. FPWAIT is false).

DEBUG HARDWARE
The debug hardware on the floating-point processor

module 130 is much more limited than that included in
the control processor module 110 and data transfer
processor module 120, because the microcode that runs
here is very much simpler. Also, any debug hardware
must not degrade the cycle time.

Access to the register file is provided through the
local transfer bus 422, so it can be read and written by
the monitor microcode. The FMPY 440 and FALU 450
have built in serial scan logic, which permits their inter
nal pipeline registers and status/mode registers to be
accessed. The next microcode address can be read by
the control processor module 110, by accessing the start
address register 479.
The breakpoint logic uses a bit in the microcode

word to define a breakpoint. When an instruction is
encountered with the breakpoint bit set, the clock gen
erator is halted and the breakpoint status signal in the
control processor module 110 interface is set. To con
tinue from a breakpoint, the control processor module
110 clears the breakpoint input into the clock generator.
Once sufficient internal state has been saved immedi
ately after the breakpoint, the control processor module
110 starts some floating-point processor module 130
microcode running (via the start address register mech
anism) to gain access to the indirect access status and
the scratchpad memory.
The microcode can only be single stepped by setting

the breakpoint bit on every instruction within the
routine to single step.

Another feature supporting the debug capability is
that the subroutine stack can be read.

APPLICATION-CUSTOMIZED PROCESSOR
MODULE 130'

FIG. 9A shows a general overview of a numeric
accelerator subsystem including an application-custo
mized numeric processing module 130' (also referred to
as an “algorithm accelerator”). By using the powerful
control tools provided, the control processor 110 can
control a combination of one or more numeric process
ing modules 110 with one or more algorithm accelera
tors 130'.

It can be particularly advantageous to combine a
general-purpose floating-point unit 130 with one or

5,329,630
65

more algorithm accelerators 130'. In such a combined
system, the design of the algorithm accelerator 130' can
be freed from the constraints of the need for general
purpose floating-point operations. Therefore, the algo
rithm accelerator can be designed to be highly applica
tion-specific if desired.
One particularly advantageous combination may be

to include a complex arithmetic module as one of the
modules 130'.

Preferably the application-customized processor is an
application-customized numeric processor. However,
the application-customized processor could optionally
(and less preferably) be of a more exotic variety, such as
a symbolic processor (i.e. a processor which has the
extra data paths needed to run LISP or PROLOG with
high efficiency), or a neural network machine.
The control of multiple numeric processor modules

130 (including algorithm accelerators 130') is discussed
below.

FFT Accelerator Module

FIG.9B schematically shows how the architecture of
one example of an algorithm accelerator 130' differs
from that of a general-purpose floating-point module
130.
The module shown is particularly optimized to run

discrete integral transform operations. For example,
this module is particularly fast at executing the Fast
Fourier Transform (FFT) algorithm. An example of the
execution of this algorithm will be reviewed below.

In the embodiment of FIG. 9B, the register file 910 is
even more highly multiported than register file 430.
Register fie 910 includes four read ports and four write
ports, as well as a wide bidirectional port 910A which
interfaces to the cache bus 144.
The four lines shown as read ports 910B are actually

replicated. Since the multiplies performed will typically
not be random multiplies, but will be multiplication
with a coefficient (which changes less frequently than
the data words), only one complex word of input is
needed per cycle for most of the cycles. (However, this
is not true in the final cycle.)
The four multiply units 920 can be integer or floating

point units. They are most preferably similar to the
multiplier 440 described above, but of course other
calculation units could be substituted. These units will
hold the coefficients in registers, until they are com
manded to read new coefficients.

Thus, the four multipliers 920 and adders 930 config
ure a full complex multiplier 911. The complex multi
plier 911 is pipelined with two complex adders 912.
The inputs to the two complex adders 912 include not

only the outputs of complex multiplier 911, but also data
from read ports 910C, fed through delay block 940.
(This delay block can optionally be used to share ports
910B and 910C on the register file 910.) The outputs of
the complex adders is connected to write ports 910D.

Thus, this structure permits butterfly calculations to
be pipelined very efficiently.

DATA CACHE MEMORY MODULE 140

The data cache memory provides a large amount of
high bandwidth storage. The storage capacity currently
is 2 Mbytes, and the bandwidth is 320 Mbytes per sec
ond. This memory is multi-ported, to allow data
trsnsfers with the outside world to occur in parallel
with the floating point calculations. This helps prevent
the calculations from occurring in a “stop-start” fash

10

15

20

25

30

35

45

50

55

60

65

66
ion, with the floating-point processor module 130 stand
ing idle for long periods.
FIG. 5 shows key features at the data cache memory

module 140. Central to this module is a large block of
memory 510. In the presently preferred embodiment,
this memory block 510 is configured as 8 single-in-line
modules, each containing eight 32KX8 SRAMS, for a
total of 2 megabytes of memory. However, it will be
readily recognized by those skilled in the art that the
memory implementation could be changed, in accor
dance with the changing availability of advanced semi
conductor parts and the demands of a particular appli
cation.

In particular, it is contemplated that for some applica
tions it may be advantageous to have significantly more
memory. Note that the by-256 configuration preferably
used for this memory bank 510 means that the address
space is used economically, at least for fully parallel
accesses. Thus, in the presently preferred embodiment
24 bits of address information are provided to the mem
ory bank 510 at address input 511. Note that the write
enable input 512 is actually 8 bits wide, so that individ
ual 32-bit words, within one 256-bit block of memory,
can be selected for writing. This is advantageous, as will
be discussed below. The data port 513 is 256 bits wide.
Note that the functionality of block 510 does not yet
provide the multiport capability characteristic of mod
ule 140 as a whole. The logic for implementation of this
multiport capability, and for accessing the memory
bank 510, will now be described.
At the bottom of FIG. 5 are seen the 32-bit wide data

buses which connect to the control processor 110 (CD
bus 112) and to the data transfer processor 120 (the TD
bus 122). Each of these buses is first fed into a holding
register bank 560. Each of the register banks 560 con
tains eight 32-bit wide registers 561 in parallel (In the
presently preferred embodiment, these registers 561 are
each actually configured using four 74ALS652 devices,
configured to provide a write holding register 561' in
parallel with a read holding register 561". The structure
of the register sets 560A, 560B, and 420 is further shown
in FIG. 24.)
When the memory bank 510 is accessed, an address

must be provided at port 511. This address will be pro
vided through multiplexer 520, from either the CA bus
111 (which carries addresses originated by the control
processor) or the TA bus 121 (which carries addresses
originated by the data transfer processing module 120).
A select input 521 chooses which of these inputs is to be
provided to the address port 511.
The select signal 521 to the multiplexer 520 is gener

ated by arbitration logic 530. This simple logic grants
access to the DTP module 120 only if the DTP is re
questing access and the CP is not requesting access. The
select signal 521 is provided not only to address multi
plexer 520, but also to write mask multiplexer 530, and
to DTP transfer logic 540. -
As will be discussed below, the write mask input 512

is very advantageous during writes from the TD bus
122 or the CD bus 112. Since the write enable input 512
has 8 bits of resolution, the eight 32-bit words in each
block of memory 510 can be separately enable for writ
ing during a single fully parallel write operation. Thus,
for example, when the control processor 110 wants to
write less than eight words into one row of memory
bank 510, the registers of 561 for the desired word posi
tions will be loaded up with the desired data value. In
addition, 8 bits will be provided on write mask line 551,

5,329,630
67

to indicate which of the registers 561 contain informa
tion which should be written into the corresponding
words of memory bank 510 at the row indicated by
address 511 (from the CA bus 111). (As noted above,
transfer of an address from the CA bus 111 into the
multiplexer 520 is controlled by the output of the IPU
340.)
FIG. 25 provides a different view of the write mask

logic. In this figure the FP write mask logic 2510, CP
write monitor logic 2520, and DTP write monitor logic
2530 are broken out as three separate blocks, which
provide inputs to multiplexer 530. FIG. 26 provides a
more detailed view of the workings of the write moni
tor logic blocks. Inputs to the logic 2610 include Regis
ter Select, Write All, Write DCM, and Load Holding
Register. The output is eight flag bits, registered in
register 2620.
The transfer logic 540 is driven by microcode instruc

tion fields 542, which are part of the microcode instruc
tion sequence within the data transfer processor 120.
Similarly, the CP transfer logic 550 is driven by micro
code instruction bits 552, which are part of the micro
code instruction driven by the sequencer 210 of the
control processor module 110. (In fact, some of the
microcode driven by this sequencer is preferably dis
tributed. That is, some of the fields of the microinstruc
tion are stored separately from the control store 220, but
are clocked by the series of microinstruction addresses
211 which are the outputs of the sequencer 210. This
provides substantial advantages in the system context,
and will be discussed below.)
The other outputs 543 and 553 of the transfer logics

540 and 550 include Such control functions as control of
the respective register banks 560, including clocking
and output enable. (Note that each of the register banks
560 has two output enables, for the two sides of the
register bank; and two sets of clocks. Note also that one
of the functions controlled by the CP transfer logic 550
is the output enable line 514 of the memory bank 510.)

It will be noted that there is no direct input from the
FP module 130 to request access to the cache bank 510,
This is because such accesses are controlled by the
control processor module 110. This surprising twist
turns out to yield significant advantages, as will be de
scribed below.

MEMORY CONFIGURATION
The accelerator subsystem uses a wide memory ar

chitecture. On each access to the data cache memory
140, 256 bits are read or written. This represents 8 float
ing-point words per cycle.
The data cache memory 140 is tri-ported to the con

trol processor module 110, floating-point processor
module 130, and data transfer processor module 120,
but because the control processor module 110 and float
ing-point processor module 130 accesses are controlled
by control processor module 110 microcode the arbitra
tion and address multiplexing only needs to be done two
ways.

DATA PORTS

There are three ports into the data cache memory.
The port to the FP module(s) is 256 bits wide, and the
control processor module 110 and data transfer proces
sor module 120 each see respective 32 bit wide ports.
The data routing and storage for the 32 bit wide ports is
included as part of the data cache block 140.

10

15

20

25

30

35

45

50

55

65

68
The multiplexing of the 256 bits of data from the

memory array onto one of the 32 bit busses is imple
mented with 32 bidirectional registers, arranged as 8
groups of 4 registers. Each group stores 32 bits (i.e. one
floating-point word) in the read direction and 32 bits in
the write direction and is called a holding register. The
more specific naming of each register is read holding
register and the write holding register as seen from the
processor sides of the interface.
When data is read from the memory array, all 256 bits

are stored in the holding registers, and the output ena
bles of these registers are controlled to select the re
quired floating-point word onto the 32 bit port.
When data written to the memory array only those

registers that have been updated from the 32 bit port are
stored. This is controlled by the write mask logic and is
achieved by using 8 write enables, one per group.
Both 32 bit ports have identical data routing and

storage logic.
The 256 bit port to the floating-point processor mod

ule 130 module contains similar logic to the 32 bit ports,
but is located on the floating-point processor module
130 module. To allow future expansion of the data
cache memory, using modules, the address bus (24 bits)
and write enables (8) are taken to the module connec
tors 3810 (shown in FIGS. 38A and 38B.)

CP TRANSFER LOGIC

The CP transfer logic is responsible for the transfer of
data between the CP holding registers (or the FP hold
ing registers) and the data cache memory.
The data in the holding registers is accessed when the

CD source microcode field selects the read holding
register. The least significant 3 bits of the CP address
bus selects the 32 bit word to drive onto the bus. During
this process the data cache memory isn't used but it
could be accessing the hen set of data if necessary.
To write data into the write holding registers, the CD

destination microcode field selects the holding registers
as a group, and the least significant 3 bits of the CP
address bus CA 111 select the 32 bits to update. When a
write holding register is updated, a corresponding write
flag is set. Therefore, when a write to the data cache
memory is done, only the holding registers that have
been updated by the control processor module 110 are
actually written into the memory array. Those words in
the memory array for which the corresponding holding
register had not seen updated are not changed. The
write flags are all reset when the data cache memory is
written to (if the data some is the control processor
module 110). If the control processor module 110 had
been updating one of the write holding registers during
the same cycle that it had been writing into the data
cache memory, then that write flag bit would remain
Set.
Sometime it is advantageous to by-pass this selective

write mechanism, for example when clearing memory
to a constant value. In this case the control processor
module 110 can override the selective writing, and
force all words to be updated. Without this selective
write capability the write operation of the data cache
memory would be very slow, and would involve: read
ing the block of data (256 bits) into the read holding
registers, transfer the words that were not to change to
the write holding registers, update the write holding
register(s) with the new data, and then do a data cache
write cycle. In the current architecture the copying of

5,329,630
69

data from the read holding registers to the write holding
registers would take one cycle per word.
The state of the write flags can be extracted non

destructively by the control processor module 110, for
the purposes of state save during microcode debugging.
The read holding registers are separate from the

write holding register so multiple read cycles can be
done without disturbing the contents of the write hold
ing registers, and vice versa.
To control the transfer of data between the holding

register sets and the data cache memory the following
microcode bits are used:
Data Cache access (1) This bit is active whenever an

access to the data cache memory is required by the
control processor module 110 for its own use or to
transfer data to or from the floating-point proces
sor module 130. The access flag is not pipelined.

5

10

15

Therefore, arbitration with the data transfer pro
cessor module 120 data cache requests can be
sorted out before the start of the cycle the request
happens on.

Data cache write enable (1) This bit generates a write
cycle in the data cache memory.

Data cache write all (1) This bit overrides the normal
write enable gating that allows selective updating
of words in the data cache memory and forces
them all to be written. This is useful when setting
blocks of memory to a constant value.

Data cache port select (1) This bit selects either the
FP module holding registers or the control proces
sor module 110 holding registers to be the source
or destination for a data cache transfer.

There are three bits in the mode register that control
the holding registers. Two bits select whether the hold
ing registers are to be used or by-passed. The third bit
disables the data cache memory from driving the DCM
data bus so a loopback data path can be set up between
the write holding registers and the read holding regis
ters. These facilities are only present so the state save
and restore microcode can gain access to the write
holding registers without forcing a data cache memory
write operation first and also more precise diagnostics.
The control processor module 110 can use the data

cache memory in two ways:
The first way is to ignore the wide memory architec

ture and treat it as if it were just 32 bits wide. To do
this, the CP module 110 simply requests an access
cycle prior to every read access and afar every
write access. Using this method, the data cache
memory can be regarded as just a memory with
pipelined data accesses. This method simplifies
using the data cache memory, but does not make
efficient use of the memory’s ability to service the
data transfer processor module 120 port. This
method also introduces inefficiencies when the
control processor module 110 is accessing sequen
tial data. However, for non-sequential data ac
cesses the next method cannot be used in any case,
so this first method must be used.

When the control processor module 110 is doing
sequential memory accesses, it takes it 8 cycles of
reading or writing to all the holding registers 561
for each access to the memory bank 510. The data
cache memory access can be pipelined up with the
holding register accesses, so 7 out of 8 cycles are
free for data transfer processor module to use. The
data cache memory access does not occur automat
ically, so the microcode to specify an access cycle

20

25

30

35

45

50

55

60

65

70
every 8 cycles. This type of transfer is more likely
to occur in the data transfer processor module 120,
because I/O transfers to or from the external inter
faces will normally be sequential in nature.

The control processor module 110 is also responsible
for transferring data between the data cache memory
and the holding resisters on the FP module. In this case
the basic control is the same except for determining
which words within a block to update during a write to
the data cache memory. In this instance a different
approach is taken to the write flags as described above.
The differences arise because of several factors:
The transfer logic that governs the data flow between

the FP's register file and the holding registers have
some limitations so the more general write mask
generator used in the control processor module 110
is not necessary.

The normal data transfers from the FP's register file.
are usually blocks of data (i.e. part of a vector) and
as this happens in a single transfer cycle a number
of the write mask bits must be set in parallel rather
than individually as in the case of the control pro
cessor module 110.

The one FP write mask generator must cope with
multiple FP modules.

The FP write mask is generated by specifying the
word to update and the number of consecutive words
from the first word. The start position is supplied by the
least signifier 3 bits of the CP address and the length is
held as a field in the microcode instruction.

DTP TRANSFER LOGIC 540

The data transfer processor module 120 transfer logic
is responsible for the transfer of data between the data
transfer processor module 120 data bus (TD bus 122)
and the memory array. It is very similar to the CP trans
fer logic except:
The parts associated with the floating-point processor
module 130 are missing.

The output signals are qualified by the results of the
arbitration logic.

ARBITRATION LOGIC 535

The arbitration logic determines who has access to
the data cache memory on a per cycle basis. The two
competing ports are the CP/FP and the data transfer
processor module 120. The CP/FP has priority over the
data transfer processor module 120 so the data transfer
processor module 120 is rode to wait for a free memory
cycle. The data transfer processor module 120 can force
the control processor module 110 to inject a free mem
ory cycle by interrupting the control processor module
110.
The arbitration of the data cache memory has been

simplified by both port's access requests (or demand in
the CP/FP case) being synchronous. This has been
achieved by sharing the same clock generator between
the control processor module 110 and data transfer
processor module 120. Without this degree of synchro
nization, the control processor module 110 could never
assume it had access during a cycle, because the data
transfer processor module 120 might have just started
an acCeSS.

The cycle by cycle arbitration is done in the arbitra
tion logic. The arbitration logic takes two request sig
nals: CP request and DTP request. Both these are mi
crocode bits that are asserted whenever that port ac
cesses the data cache memory. These microcode bits are

5,329,630
71

non-registered so that the arbitration can be sorted out
on the cycle before the access occur. This allows
enough time for the data transfer processor module 120
grant signal to be tested by the data transfer processor
module 120 sequencer without incurring an extra cycles
delay due to the pipelining of the sequencer's FLAG
input.
The two output signals are the dtp-grant signal,

which informs the data transfer processor module 120
that it has access to the data cache memory, and a signal
that controls the address and write enable multiplexers.
The CP/FP accesses the data cache memory as if it

were a single ported device. The data transfer processor
module 120 however must go through the following
procedure every time it requires access. This procedure
is written in pseudo code.

{ do some writes to the holding registers 3
{ request write access to data cache memory
if access failed jump to WAIT else continue }
{ do some other work)

WAIT:

Some points to note regarding this example are:
This logic helps to maintain a large mount of work

going on in parallel.
If the access failed, then the write (or the loading of

the holding registers on a read access) is automati
cally inhibited.

The result of the test indicates whether the access
was successful or not. If it was not then the data
transfer processor module 120 tries again by loop
ing on the accessing instruction.

This example has shown the data transfer processor
module 120 waiting until access is granted. How
ever, it would normally wait only for a certain
number of cycles. If access still had not been
granted, the DTP module would then interrupt the
control processor module 110. During the few
cycles the control processor module 110 takes to
service the interrupt the data cache memory would
be free for the data transfer processor module 120
to acceSS.

COMMAND MEMORY 190

The command memory 190 provides communication
between the control processor module 110 and the data
transfer processor module 120. Both have equal access
to this memory. Dual port RAMs are used in the pres
ently preferred embodiment. The command memory is
32 bits wide by 2K deep.
FIG. 15 shows some significant features of the orga

nization of this memory. The operation of the command
queues is described in detail below, with reference to
FIG. 15, where the processor interface between the CP
module and the DIP module is discussed. However,
some key features of the organization of this memory
will be noted at this time.
These dual port RAMs allow unrestricted access by

both ports when the two addresses are different. If the
two addresses are equal, and if both sides are writing,
then the result is undefined. As discussed below, the
communication protocol between the two processors is
arranged so that both never need to write to the same
address. Therefore no arbitration is necessary.

Software controls how the control processor module
110 and data transfer processor module 120 will use the
command memory. In the presently contemplated best
mode, the allocations will include: command queue to

10

15

20

25

30

35

45

50

55

65

72
the CP module 110 (e.g. about 12% of memory space);
command queue to the DTP module 120 (e.g. about
38% of memory space); state save and restore data
structure (e.g. about 50% of memory space).
The state save and restore data structure is reserved

for use by the microcode debug monitor, to hold the
control processor module 110 and floating-point pro
cessor module 130 state information (as well as some
command structures).

HOST INTERFACE LOGIC 160

FIG. 6 shows principal components of the host inter
face logic, which is generally shown as block 160 in
FIG. 1. In the preferred embodiment, the system bus is
a VME bus, and therefore this interface logic is often
referred to in the present disclosure as the “VME Inter
face.” However, as will be apparent to those skilled in
the art, a wide variety of other system busses could be .
used instead, and the disclosed innovations can readily
be adapted to such systems.
A bus controller 650 interfaces to the VIE bus ser

vices lines, to provide such interface signals as bus
grant, bus request, reset, etc.
The interrupt logic 680 is used for interrupt handling,

to send interrupts to the host. (These interrupts will go
out on the VME bus services lines 600B.) In the pres
ently preferred embodiment, this is implemented using a
PAL, as described below.

In addition, a DMA controller 640 is also preferably
provided. This provides low level control of data han
dling between the VME bus and the FIFO 670, without
supervision of all intervening steps by the data transfer
processor 120. In the presently preferred embodiment,
the DMA controller is configured using a PAL, as
described below,
The VME interface provides four main services to

the host processor:
Microcode loading via a serial scan loop interface to

the three types of processor modules.
Command instigation and status monitoring.
Data transfer to/from the VME address space using
DMA access to the host memory so the subsystem
can transfer its own data.

Debug (hardware and software) facilities.
The internal connections of this interface logic in

clude: the TD bus 122, for data; the TA bus 121, for
address information; the CP microaddress bus 211B; the
DTP microaddress bus 311B; the serial microinstruc
tion loop 225; and numerous interrupt and status lines.
The external connections, in this embodiment, are to

a VME bus. The lines of this bus are depicted sepa
rately, in FIG. 6, as address lines 600A, data lines 600B,
and bus services lines (including status and control
lines) 600C,
The presently preferred embodiment conforms to the

electrical definitions in the VME interface specification,
which has been promulgated as IEEE standard
P1014/D1.2, and as IEC 821. The interface block 160
will accept 32 or 24 bit addresses and 32 or 16 bit data.
In the presently preferred embodiment, some minor
limitations have been imposed on the type of accesses
available, to keep the addressing and data routine sim
pler.

Alternatively, a wide variety of other bus configura
tions could be used instead. For example, VersaEus,
FutureBus, Multibus II or NuBus could be readily de
signed into the system if desired. For very high-speed

5,329,630
73

computing systems, it might be advantageous to use
optical busses, using modulated solid-state lasers on
optical fibers.
INTERFACE TO PHYSICAL LINES OF BUS
The logic blocks which interface most directly to the

VME bus will be described first. Other logic and mem
ory blocks will be described thereafter. The register
block 612 will be described last; the description of this
register block contains a wealth of detailed information
which further clarifies the operation of the other blocks.

Bus Controller 650
Bus controller 650 interfaces to the bus services lines

600C, and also receives an output from board address
decoder 652 which indicates whether this particular
board is being addressed.
The decoder 652 is constantly watching the board

address lines of the VME bus to provide this decode
output. The address of the subsystem, as specified by
the host system, is set by the user at installation, using
DIL switches. The actual decoding of the address and
function codes is done in PALs, so the subsystem can be
configured to fit into the target VME system easily.
The bus controller 650 provides enable signals to the

bidirectional data buffer 620 or the bidirectional address
buffer 630, in accordance with the VME control proto
cols.
The bus controller 650 is also connected to receive

status information from the DMA controller 640 and
the VME interrupt logic 680 (and also from other logic
blocks, as will be described in detail below). The bus
controller 650 is also connected to send control signals
to the DMA controller 640, the VME interrupt logic
680, and to many other blocks (as will be described in
detail below). Since the status and control connections
of the bus controller 650 are extensive, they are not all
separately shown, to avoid possible confusion. How
ever, their connections will be readily apparent to those
skilled in the art.

In the presently preferred embodiment, this is imple
mented as a VME bus controller device (Signetics
SCB68172). This handles all the bus protocols, includ
ing arbitration for the master interface and bus error
cycles.

Master And Slave Modes

The VME interface can be considered as two fairly
separate interfaces: a slave interface and a master inter
face. Implementation of the master mode is described
below, with reference to the DMA controller 640.
The slave mode is implemented using slave address

decoder 632. When the accelerator subsystem is operat
ing in slave mode (as shown by VME commands de
coded by bus controller 650), the controller 650 puts the
bidirectional buffers 630 in a pass-through mode, and
enables the slave address decoder. The slave address
decoder then decodes the address brought in from the
VME address lines 600A, and enables the appropriate
devices. Again, since the outputs of the slave address
decoder are widely connected, they are not separately
shown.
The slave address decoder also contains the necessary

DTACK generation logic, to comply with VME proto
cols.
Under the VME protocol, the current bus master

addresses a board, and that board can only respond in
slave mode, because only one active master is allowed

10

15

20

25

30

35

45

50

55

65

74
at any one time. (There can be many masters waiting to
be granted access to the bus and hence become active.)
The master then waits until the slave responds with
DTACK (data transfer acknowledge) to say it has taken
the data (write operation) or has provided the data (read
operation).

Data Buffer 620

This is a bidirectional buffer, which provides direct
interface to the VME data lines 600B.

Address Buffer 630

This is a bidirectional buffer, which provides direct
interface to the VME address lines 600B.

VME INTERFACE MEMORY 660
This memory provides a significant block of storage

in the interface 160. A number of uses of this are de-.
scribed above, in connection with the operations of the
DTP module 120.

MEMORY MAP

Each accelerator subsystem uses 8K bytes of VME
address space. The base address of this address space is
selected by 8 switches. The register addresses are given
as an offset from this base address. The memory map for
the accelerator subsystem can be broken into 2 areas:
A memory area which is 2K by 32 bit words in size.
The usage of this memory area is controlled by
software. Some of the data structures which this
area will typically contain will be mentioned.

A register area which occupies the bottom portion of
the memory space. This area is used for many im
portant functions, as will be explained in detail
below.

The memory area is shared between the microcode
debugger and the normal run time interface.
The debugger area will contain the state save infor

mation of the subsystem, as well as a command
queue which permits the monitor microcode to
read memory, FIFOs etc.

The run time interface consists mainly of a command
queue that the device driver can add to and the
blitz microcode remove commands from.

There are several restrictions on how the hardware
can be accessed. These restrictions are imposed primar
ily to keep the hardware simple, while still allowing 16
or 32 bit data bus interfaces. The restrictions are: Byte
accesses are not supported; and 16 bit accesses must
occur on long word (32 bit) boundaries.
The memory 660 and the data FIFO 670 are 32 bits

wide. If the host system is a 16 bit system, the top
16 bits are not accessible. For a 16 bit system to
write to consecutive addresses in the memory, the
address must be incremented by 4 to move onto the
next location.

The VME memory map used by the preferred sub
system is:

The VME memory map used by the preferred subsystem is:
Register Offset Width

Control register 0 16 read/write
Strobe buffer 4 16 write
Status register 4 8 read
WCS control register 0 8 16 read/write
WCS control register 1 i2 8 read/write
WCS data register 16 16 read/write
CP microaddress 20 16 read/write

5,329,630
75

-continued
The VME memory map used by the preferred subsystem is:
Register Offset Width
DTP microaddress 24 6 read/write
Data FIFO 28 32 read & write
IF memory 660 4096 32 read/write

DATA FIFO 670

The data FIFO 670 provides an important capability
in the data transfer operations.

In the normal mode of operation the data FIFOs are
never accessed by the host, because the DMA control
ler uses them exclusively. The host can gain access to
them by clearing the FIFO access bit in the control
register.
The block shown as FIFO 670 is physically imple

mented as two FIFOs, to gain the functionality of a
bidirectional FIFO. One of these FIFOs is read by the
host and the other is written by the host. The other ends
of the FIFOs are accessed by the DTP. (Thus, in gen
eral, if the host reads the FIFO after having written to
it, the read data would be different from the written
data.)
When the host is accessing the FIFOs it must monitor

the FIFO status, to ensure that FIFO is never read
when empty or written to when full. (The host might
need to access these FIFOs for diagnostics, or if polled
I/O rather than DMA was required.)

VME INTERRUPT LOGIC 680
The VME protocol provides for a number of inter

rupts. These interrupts can be triggered by the DTP
module 120.
The DTP module 120 also defines the interrupt vec

tor. The vector can be changed depending on the rea
son for the interrupt, or a single vector can be used,
with the cause(s) of the interrupt held in the VME
interface memory 660.

DMA CONTROLLER 640
Sequential or block mode transfers, between data

FIFO 670 and the VME bus, are supported by the
DMA controller 640. (This controller also supports the
more usual single word transfers.) The DMA address is
the full 32 bits, and the VME address modifiers and
LONG" signals used during a transfer are all set up by
the DTP module 120 in registers before the transfer
StartS. -

The opposite side of the FIFO 670 is filled or emptied
by the DTP module 120 (normally into the data cache
memory 140). When 16 bit transfers are used, the DTP
microcode packs/unpacks the data to/from the 32 bit
internal format.

This part is referred to as a DMA controller by anal
ogy, in that it can perform block data transfers to and
from the FIFO 670 in response to a single high-level
command from the DTP module 120. However, the
functioning of this logic is not quite the same as that of
commercially available DMA controller chips. Normal
DMA controllers will get their data and address infor
mation from the same bus as the one they use for DMA
access when active. However, the DMA controller 640
receives its address information from the DTP module
120, and uses this information to control the address and
data interface to the VME bus.

In the presently preferred embodiment, the DMA
controller 640 is actually implemented using four

10

15

20

25

30

35

45

50

55

60

65

76
Am2940 DMA bit slice chips, with some associated
logic in PALs as discussed below.
The setup of the DMA controller is done by the DTP

module 120, and the data is transferred between the
VME bus lines 600B and the data FIFO 670.
Three addressing modes are available. Which of these

is used will depend on the type of transfer or system
configuration.
Hold address constant. This addressing mode keeps

the same VME address for every DMA access to
the VME memory and this is used when accessing
I/O ports.

Increment address by 2 (or decrement). This address
ing mode is used when the VME memory being
accessed is only 16 bits wide. In this case the DTP
splits or merges the data between 32 bit words used
internally and 16 bits words used externally.

Increment Address by 4 (or decrement). This ad
dressing mode is used when the VME memory
being accessed is 32 bits wide.

Of course, multiple status signals are preferably used
to control data handling to the FIFOs, as is well known
to those skilled in the art. For example, such status
signals would include FIFO empty, FIFO half-full, etc.
MICROCODE LOAD CONTROL LOGIC 610
This logic provides the interface to the microaddress

busses 211B and 311B, and to the serial loop 225. (More
precisely, as shown in FIG. 28, this logic provides one
serial output line 225A, and receives four return lines
225B, 225C, 225D, and 225D.) The components of this
block, and the functions it performs, are discussed in
detail below (in connection with the operation of the
serial loop interface), with reference to FIGS. 27, 28,
and 29.
Note that this logic must access the CP and DTP

microaddress registers in the register block 612. It also
accesses the WCS specifier control register. These reg
isters are shown in register block 612, but could alterna
tively be regarded as part of the control logic 610.

This block includes a flip-flop 2720, a state machine
2740, a multiplexer 2710, and the WCS data register
2730 (which is a shift register).

REGISTER BLOCK 612

A large number of useful resisters are shown collec
tively as register block 612. The functions and signals
included in this block will now be discussed.

Control Register Bits
The host uses the control register to control the basic

operations of the subsystem hardware. These mainly
include hardware reset functions and clock control The
control bits are:
CP sequencer reset: This bit when set forces the CP

sequencer 210 to jump to address 0, and resets the
internal sequencer state.

DTP sequencer reset: This bit when set forces the
DTP sequencer 310 to jump to address 0 and resets
the internal sequencer state.

DTP reset: This bit when cleared places the DTP in
a safe state, so that all the buses are tristated. The
main use of this is when loading microcode to pre
vent bus contention on illegal microcode instruc
tions.

CP reset: This bit when cleared places the CP in a
safe state, so that all the buses are tristated. The

5,329,630
77

main use of this is when loading microcode to pre
vent bus contention on illegal microcode instruc
tions.

FP reset: This bit when cleared places the FP in a safe
state, so that all the buses are tristated. The main
use of this is when loading microcode to prevent
bus contention on illegal microcode instructions.

VME FIFO reset: This bit when cleared sets the
VME data FIFOs to the empty state.

Data Pipe FIFO reset: This bit when cleared sets the
Data Pipe FIFOs to the empty state.

GIP FIFO reset: This bit when cleared sets the GIP
interface FIFOs to the empty state, and initializes
the GIP interface.

Free run clocks: This bit controls the CP and DTP
microcode clocks, and either allows them to free
run or stops them. When the clocks are stopped
they can be single stepped by the host.

Disable Clocks: This bit disables all the microcode
clocks for the CP and DTP except the clock to the
pipeline registers. This is necessary to allow the
microcode to be read or written without disturbing
the state of the CP or DTP, for example when
setting breakpoints.

Free run FP clocks: This bit controls the FP micro
code clocks and either allows them to free run or
stop.

Fifo access: This bit controls the access to the VME
data FIFO. The normal option is to let the internal
DMA controller have exclusive access and control
rights but for diagnostics or in a VME shve only
environment the host can take control of these
FIFOs by setting this bit.

Microcode loop: This bit is only used by the diagnos
tics to cause a test to repeat itself at the microcode
level

Strobe Buffer

The host uses the strobe buffer to control aspects of
the subsystem that are edge or pulse related. If the
strobe buffer is written to, then for every bit that is set
a corresponding strobe line will be pulsed. This auto
matic strobing relieves the host from having to toggle a
strobe line by first setting it and then clearing it. This
action is used in the write mode one, if the host reads
this buffer, it will receive some alternative status infor
mation back.
The strobe lines are:
Single Step: This will single step the CP and DTP
microcode clocks through one cycle. This is used
when hardware single stepping and loading, read
ing or modifying the WCS.

FP pipeline clock: The FP pipeline clock signal is
only used as part of the serial microcode loop con
trol when reading back the contents of the FP's
WCS. The run time pipeline clock in the FP is the
same as the normal FP microcode clock.

CPWCS write enable: This signal causes the CP's
WCS 220 to be written with the data previously
loaded into the serial loop at the address specified
in the CP microaddress register. This is qualified
by the load WCS mask for the parts of the CP
WCS that lie on the FP modules. A similar signal is
used for write enable of the DTP WCS 320.

FP WCS write enable: This signal causes the FP's
WCS 470 to be written with the data previously
loaded into the serial loop at the address specified
in the CP microaddress register. Note that the CP

5

10

15

78
microaddress register is used. The writing into the
WCS 470 is qualified by a load-WCS mask, so that
only the selected FPs have their WCS updated.

CP debug interrupt: This strobe generates an inter
rupt in the CP. This is used by the microcode
debug monitor to force the CP to return to the
debug monitor.

DTP debug interrupt: This strobe generates an inter
rupt in the DTP. This is used by the microcode
debug monitor to force the DTP to return to the
debug monitor.

DTP interrupt: This strobe generates an interrupt in
the DTP. This is used by the device driver to notify
the DTP that a command has been loaded into its
command queue.

Status Register
The status register is read only and it is mainly used to .

allow the host to determine the VME data FIFO's
20 status when the host has access to them.

25

30

35

40

45

50

55

65

The status bits are:
VME Output FIFO status: The three status bits that

this FIFO produce are full, half full and empty.
These status bits are for the FIFO that the host
reads from (if its access is enabled).

VME input FIFO status: The three status bits that
this FIFO produce are full, half full and empty.
These status bits are for the FIFO that the host
writes to (if its access is enabled).

Here: This status bit allows the host to determine if
any FP modules are present. To do this it writes
each module's address into the WCS control regis
ter 1 and tests this status bit. If there is a module at
this address then this status bit will be cleared oth
erwise it will set.

WCS Control Register
Two registers are used to control the WCS interfaces.

The first one controls the reading and writing of the
various microcode memories in the CP, DTP and on
the FP module. More detail on the function and use of
these signals is included in the section on microcode
loading.
The control signals in this register are:
Serial loop output enable: This is the most significant

bit of a 3 bit field that selects which branch of the
parallel paths of the serial loop is to act as the re
turn path. The other 2 bits of the field are in WCS
control register 1.

FP WCS output enable: This bit output enables the
data out of the FP microcode memory which needs
to be enables for normal microcode execution and
microcode readback, but disabled when loading
microcode.

FP Pipeline output enable: In the presently preferred
embodiment, the FP WCS 470 is split into two
banks for optimal microcode loading (as discussed
below). The present signal controls the pipeline
registers 476 which interface to the output of these
two banks.

FP WCS mode: This controls the serial loop mode
and selects between shifting data around the loop
and the transfer of data to/from the WCS.

CP and DTP pipeline register output enable: This is
only used to disable the microcode instruction and
“force” all the bits to go high.

CPWCS output enable: This bit output enables the
data out of the CP microcode memory 220 which

5,329,630
79

needs to be enables for normal microcode execu-
tion and microcode readback, but disabled when

loading microcode. A similar signal controls the
DTP WCS320’s output enable.

CP WCS mode: This controls the serial loop mode
and selects between shifting data around the loop
and the transfer of data to/from the WCS.

DTP WCS mode: This controls the Serial loop mode
and selects between shifting data around the loop
and the transfer of data to/from the WCS.

CP microaddress select: This forces the CPS se-

quencer to tristate its address bus and enables the
CP microaddress register to drive the bus instead.

DTP microaddress select: This forces the DTP’s

sequencer to tristate its address bus and enables the
CP microaddress register to drive the bus instead.

FP microaddress select: This forces the CP microad-
dress bus to be used as the address source for the
FPS WCS. Normally the CP microaddress select
has been set up so that the host is supplying the
microcode address to the CP and hence the FP.

FP WCS select: The FP WCS must be treated as two
halves when reading because of the data routing
imposed by the parallel load feature. This bit se-
lects the lower 64 bits or the upper 40 bits.

Serial Loop Return Source (2): The serial loop return
path can be selected from one of 4 sources. (It must
be set up to select that source when the WCS con-
tents are read via the serial loop.) The possible
sources include: CP internal (on the base board

only); CP external (on the base board and the FP
module); DTP; and FF.

Serial loop Mode (2): These bits control how the
serial loop behave when data is written or read
from the WCS data register. The options are: Hold
data; Shift data; Pulse data. The effect of these are
discussed in the serial microcode load section.

The other register holds the fields to control the
loading and reading of microcode on the FP modules.
The two fields to control this are:

WCS load mask: Each bit of the mask enables the
loading of microcode into the corresponding mod-
ule. Any number of bits can be set so any like mod-
ules can be loaded with the same microcode in
parallel

Serial Loop Output Enable: These are the remaining
two bits that together with the third bit in WCS
control register 0 select which one of the modules
drives the CP external return path and the FP
return path of the serial 100p.

WCS Data Register

The WCS data register is the register the host reads
and writes to access the serial loop and hence the micro-
code memories. In order to make the microcode loading
more efficient this,register behaves in different ways
depending on how the serial loop mode field in the
WCS control register 0 is set up.

If the serial loop mode is set to “hold” then this regis-
ter is read and written like any other register.

If the serial loop mode is set to “shift” then after
every read or write operation to the WCS data register
the register is shifted 16 places which inserts the written
data into the serial loop and loads the “last” word in the
loop into the data register.

If the serial loop mode is set to “pulse,” then the
register is read and written like any other register, but

80

after the write operation some control signals are auto-
matically generated to control the serial loop.

CP Microaddress Register

This register holds the data which is to be driven onto
the CP microcode address bus 211B by the microcode
load control logic 610 during microcode loading of the
CP or FP modules. If the CP microaddress select bit is
set in the WCS control register 0, then reading this
register will return the last data written to it; otherwise
an asynchronous snap shot of the address the CPS se-
quencer is outputting is returned

DTP Microaddress Register

This register holds the data which is to be driven onto
the DTP microcode address bus 3118 by the microcode
load control logic 610 during microcode loading of the
DTP modules. If the DTP microaddress select bit is set .

in the WCS control register 0, then reading this register
will return the lest data written to it; otherwise an asyn-
chronous snap shot of the address the DTP’s sequencer
is outputting is returned.

DATA PIPE INTERFACE LOGIC 150

The data pipe concept provides a means for a number
of separate accelerator subsystem to be connected in a
wide variety of tepologies. This connection is done
using multiple local busses which are referred to as
“data pipes.” This connection is independent of the
backplane, and can be done over a reasonable distance.

In the presently preferred embodiment, each data
pipe local bus supports 32 bit wide transfers at 40
Mbytes per second, and is FIFO buffered at the receiv-
ing end. Each subsystem contains two input pipes and
one output pipe. The output pipe has separate clocks, so
when it is daisy chained to 2 input pipes the data can be
routed to each input pipe individually or together.

The data pipe interface 150 is shown in FIG. 7. The
data pipe output port 730 is 32 bits wide. This port can
be connected to the input port (710 or 720) of the data
pipe interface on another accelerator board 4140 (or to
a data pipe interface on another device of some other
type). The receiving end of a data pipe is FIFO buffered
(using FIFOs 740 and 750), so the output 731 just elec-
trically buffers the data. Two strobes 760 are provided,
so that one data pipe interface can write to two other
subsystems. To prevent data overrun in the receiving
subsystem, the FIFO full flags 770 from the receiving
system are available to the sending subsystem for moni-
toring. Two input FIFOs 74D and 750 are provided for
the two input ports 710 and 720, so two subsystems can
send data to the one receiving subsystem.

The FIFO output enables are controlled by the TD
source field in the DTP microcode, and the output
strobes are controlled by the TD destination field. The
input FlFO’s status signals 780 can be tested by the
condition code logic, or can generate an interrupt.

Using this interface structure, multiple subsystems
can be linked by local busses in a wide variety of topolo-
gies. This ability to do flexible subsystem reconfigura-
tion is particularly advantageous in combination with
subsystems as shown in FIG. 1, since an application-
customized macroscopic data transfer architecture can
be very advantageous for many applications. Some
examples of the topologies are shown in FIGS. 34, 35,
36, and 37.

Some algorithms or applications can benefit from a
parallel or pipelined arrangement of multiple subsys-

5,329,630
81

terns, to distribute the calculation workload. For exam-
ple, one example of a high performance 3 D graphics
workstation configuration is shown in FIG. 36.

A strait daisy chain of several subsystems (as shown
in FIG. 37) can be used to share data, where the “mas—
ter" subsystem 4150A acquires the data from the host
memory, for example, and shares it with all the other
subsystems 4150B, 4150C, 4150D via the data pipe con-
nections. This will save on the host bus 4110 bandwidth,
because only one subsystem will be fetching the data
rather that each one getting its own copy.

The data pipes could be connected into a ring (FIG.
35) to effectively form a token passing network similar
in concept to the Cambridge Ring.

The contents and meaning of the data sent on the data
pipes is under software control, but would normally be
message packets.

The data pipes were desired for inter-subsystem com- '
munication, but they can connect to other peripherals.
While the sustained 1/0 rate is 40 Mbytes per second,

the burst input rate is much higher. The burst input rate
is limited by the electrical aSpects of the cabling, but can
be as high as 160 Mbytes per second for one data pipe
input (or, when both inputs are paralleled, up to 320
Mbytes per second with suitable buffer cards.)

It should be recognized that a key advantage of this
interface capability is the wide variety of subsystem
interconnect topologies which can be used. Therefore,
it is particularly important to recognize that the sample
configurations shown are merely illustrative of the
great flexibility which is provided.

PICTURE PROCESSOR INTERFACE 170

This interface allows connection to an application-
customized bus. In the presently preferred embodiment,
this bus connects to a picture processor, which is partic-
ularly optimized for graphics and image data. In the
presently preferred embodiment, this picture bus is a
“GIP bus,” which has 160 data lines and runs at a data
clock period of 120—200 us. (This interface logic is
therefore referred to, in numerous places in the present

application, as the “GIP interface") However, other
picture data bus standards could (less preferably) be
used instead. Alternatively, other application-custo-
mized busses could be used, for applications having

special data-transfer requirements (such as seismic
work, or real-time systems).

The GIP interface allows the GIP and subsystem to

pass data and commands to each other. The interface is
shown in the block digram in FIG. 8.

All communication between the GIP and the subsys-

tem pass through a 16 bit wide bidirectional FIFO 810.
One side of the FIFO is controlled by the DTP micro-
code, and the other by the GIP microcode. The GIP
interface includes a microcode expansion port interface,
so the GIP actually runs microcode (8 bits) that is resi—
dent on the subsystem. The GIP microcode expansion
bus is identical to the DTP microcode expansion inter-
face described earlier.

The GIP interface provides the services necessary for
the GIP graphics processors to run some distributed
microcode in the sub-system. These services include the
GIP microcode clocks, the GIP microcode address and
data bus, interrupt and status signals and a means for
serially loading the extension GIP microcode.

The principal components in the GIP interface are
the WCS 830, the bidirectional FIFO 810 (constructed

82
out of unidirectional FIFOs), the status logic 820 and
interrupt

The resident GIP microcode allow the GIP to per-
form the following functions:

Read or write data from the FIFO 810.

Test the FIFO status signals via the status logic 820
and drive the result out on the open collector con-
dition code interface signal.

Set up the conditions that will muse the GIP to be
interrupted (for example, the FIFO becoming full
or empty) by the interrupt logic 840.

Generate an interrupt in the DTP
From the DTP side, the FIFO looks like any of the

other FIFOs except it is 16 bits wide rather than 32 bits
wide.

All the details on the format the communication take,
and on whether the accelerator subsystem or the GIP is
the master device, are totally decided by the microcode.
running in the two processors. In the 3 D workstation
environment, as shown in FIG. 36, the preferred hierar-
chy would be the host as master, the graphics subsystem
the slave, and the numeric accelerator subsystem in the
middle.

SERIAL LOOP INTERFACE

One advantageous part of the concurrent multipro-
cessor system shown in FIG. 1 (and elsewhere) is a
serial loop interface to the writable control stores
(WCSs) of the three or more processors present. The
topology of this loop, in the presently preferred em-
bodiment, is shown in FIG. 28. (The line shown as 225
in FIGS. 2A, 3A, 4C, and 6 is broken out, in FIG. 28, to
show one output line 225A and four return lines 225B,
225C, 225D, and 225E.)

The implementation of the interface to the serial loop
has been described above with respect to the various

processors individually, and in connection with the
VME interface 160. However, some of these features
will now be reviewed again, so that the higher-level
architecture of the serial loop can be explained more
dearly.

LOOP INTERFACE TO CONTROL STORES

The serial loop interface provides data access from
the host to all of the control stores. To maximize the net
bandwidth of this loop, each separate WCS (including
the WCS extensions 490) interfaces to the serial loop
through a bank of serial/parallel shadow registers.

The shadow registers which interface to FF WCS
470 are shown as registers 481A and 481B in FIG. 29
and in FIG. 4C. The shadow registers which interface
to CF WCS 220 are shown as registers 222 and 223 in
FIG. 2A. The shadow registers which interface to DTP
WCS 320 are shown as registers 322 and 323 in FIG.
3A. The registers which interface to the CP WCS Ex—
tension 490 are shown generally as part of the CP exten-
sion logic in FIG. 4A, but are not shown separately.

Each of these registers can load the instructions into
its respective control store, or clock the instruction
stream incrementally, or simply clock the instruction
stream along as fast as possible. Thus, the bandwidth of
this line is used efficiently, and only a minimal number
of instructions is required to access control storage for
a given processor.

LOOP CONTROL

In the presently preferred embodiment, some addi-
tional capability is provided for control and routing of

5,329,630
83

the serial loop, to provide adaptation to the wide range
of configuration and expansion options.

In the presently preferred embodiment, each subsys-
tem can have up to 6 microcoded processors (one con-
trol processor, one data~transfer processor, and as many
as four floating-point processors or algorithm accelera-
tors.) Each of these processors has its own WCS. Each
WCS must be written to, to load up microcode, and be
read from, for diagnostics, setting breakpoints, etc.

The main features which help provide this capability
include:

A return multiplexer: This collects the serial loop
from two internal sources (the control processor
and data-transfer processor), and from the two
external “return buses” (for the microcode of the
control processor extensions, and of the multiple
floating-point processors).

The return serial buses which collects the serial loops
from the floating-point processor modules where
the control processor and floating-point processor
microcode reside. A return loop address selects
which module drives the serial return.

Each floating-point processor module has a micro-
code load enable bit so that any combination of
modules can be loaded simultaneously.

The data-transfer processor serial loop expansion is
controlled by jumpers and wire links.

With the organization, the protocols to transfer data
around the serial loop and backload into the WCS are
quite complicated. Such protocols would normally be
done in software. In the presently preferred embodi-
ment, the time consuming parts of these protocols have
been implemented in hardware, which significantly
speeds up the downloading of microcode. As an added
benefit, the software overhead has also been reduced.

In the presently preferred embodiment, the host
writes (or reads) the microcode, a word at a time, to the
data register. (The data register, in this embodiment, is
constructed from two universal shift registers. The
remainder of the serial loop uses serial shadow registers,
such as the Am29818 made by AMD.) Depending on
the serial mode previously selected, one of three things
happens:

If the “hold” mode has been selected, then the data
transfer behaves just like any transfer to memory.

If the “shift” mode has been selected, then immedi—
ately after the read or write cycle ends the data is
data is shifted into (or out of) the serial loop. While
this is happening a busy signal delays further access
by the host to the data register.

If the “pulse” mode is selected, then about 500 us
after the write access the serial clock is pulsed, to
set the shadow register into the required mode.

LOOP TOPOLOGY

FIG. 28 shows the large-scale connectiOns of the
serial loop.

A single output line 225A is driven by the microcode
load logic 610 in the VME interface 160. (Alternatively,
this does not have to be only a single physical line, but
could be a bus instead, e.g. a four-bit-wide bus.) This
line is applied to each of the shadow registers at the
periphery of each of the three writable control stores
220, 320, and 470. (Note that the CP WCS extension 490
is not directly connected to the output line 225A, but
instead is connected to line 225C, downstream of the
primary WCS 220.)

65

84

Four return lines are provided, which can be selected
by multiplexer 2710. These return lines are primarily
useful for debugging.

Note that there is very little “snaking”. That is, there
are only two cases where the serial output of the serial
shadow registers on one WCS is used as input into the
interface of another WCS. In each of these cases the
WCS which is downstream in the serial loop is effec-

tively an extension of the upstream WCS. That is, series
connections of independent processors in the serial 100p
are generally avoided. The benefit of this is that the
independent microcode programs for different proces-
sor modules do not have to be merged together. This

helps programmers to take full advantage of the advan-
tageous partition of algorithms discussed above. This
also helps to provide faster loading. This also helps to
avoid any problem with merging programs which are
targeted for WCSs with different widths and/or depths. .

An advantage of the parallelism in the loop topology
is that parallel loads can easily be accomplished. For
example, if a common sequence of microcode is sought
to be loaded into each of the FP modules 130, all of the
shadow registers on all of the FP modules can be en-
abled simultaneously, and each will be loaded in accor-
dance with the serial data on line 225A and the microad-
dresses on bus 211B.

As may be seen from FIG. 28, the loop topology
includes multiple parallel branches:

CP branch: Output line 225 is provided as input to the
shadow register interface at CP primary WCS 220.
The return from the shadow register interface to
GP WCS 220 (line 225C) is fed back into multi-
plexer 2710.
CP Extension subbranch: Downstream of the inter-

face to CF WCS 220, return line 225C is also

provided as input to the shadow register inter-
faces at all of the CP WCS Extensions 490. The
returns from the shadow register interfaces to
the WCS extensions 490 are all connected to
return line 225D, and thereby fed back into mul-
tiplexer 2710. (Since the returns are connected in
parallel, the serial output commands are prefera-
bly qualified by an individual module address, to
prevent contention on the return line 225D.)

DTP Branch: Output line 225 is also connected to
provide a serial input to the shadow register inter-
face at DTP WCS 320. The return from the
shadow register interface to WCS 320 (line 225B) is
fed back into multiplexer 2710.
DTP Extension subbranch: Downstream of the

interface to DTP WCS 320, return line 225B is
also made available as an off-board output. This
connection can be exploited by users, if desired,
to provide DTP extension logic. The operation
of such logic is dimmed in greater detail below.

FP Branch: Output line 225 is also available as a serial
input to the shadow register interface at the WCS
470 on each of the numeric processor modules 130
or 130’. The returns from the shadow register inter-
faces are all connected to line 225E, and thereby
are fed back into multiplexer 2710. (Since the re-
turns are connected in parallel, the serial output
commands are preferably qualified by an individual
module address, to prevent contention on the re-
turn line 225E.)

FIG. 27 shows greater detail of the components of
microcode loading control logic 610. One important
component is the flip flop 2720, which resynchronizes

5,329,630
85

the return serial data. When the WCS is distributed,

controlling the clock skew between the shift register
clock and the shadow registers’ D clocks can be very
difficult, because of the many different serial loop con-
figurations. The inclusion of this flip flop takes care of 5
any clock skew (as long as the skew doesn’t exceed the
basic clock period that drives the controlling logic).
State machine 2740 provides D clock outputs, in re-
sponse to decoded signals from the host.

LOOP INTERFACE TO HOST

As discussed above with regard to FIGS. 6 and 27,
the microcode loading control logic 610 can read and
write data onto the serial loop 225. It can also write and
read to the CP and DTP microaddress busses 211B and
311B.

DTP MICROCODE EXPANSION LOOP

The presently preferred embodiment also provides
the capability to configure a second serial interface
loop, extending off-board. The connection to this loop
is shown as 2840 FIG. 28.

Optionally, the DTP module 120 can be extended
off-board, by building DTP WCS extensions, somewhat
analogous to the CP WCS extension 490, into additional
components. These WCS extensions provide microin-
struction outputs as selected by the DTP microaddress
bus 311B. The control of these DTP extensions is pref-

erably somewhat looser than that of the CP Extension
Logic, since the DTP extensions may be used in a some-
what wider range of environments. It is contemplated
that the DTP extension logic may be useful for interface
to closely-coupled high-speed I/O devices.

If this expansion option is used, the DTP extensions
(if any are used) are all in series with the DTP itself.
This prevents contention.

PARALLEL MICROCODE LOADING

As noted above, the presently preferred embodiment
provides two methods of loading microcode into the
floatingcpoint processor: either via a serial loop under
control of the host, or in parallel under control of the
control processor. The parallel loading of microcode is
useful because the mount of writable control storage

(“WCS”) available on the floating-point processor is
limited (4K or 16K instructions). When there are too
many floating—point processor routines to fit in WCS at
once, some form of overlaying is necessary. Using the
serial loop to load overlays is not practical, since the
host can load instructions only slowly (e.g. 100 micro—
second to 3 ms per instruction, depending on disk ac‘
cesses).

The parallel load Capability provided by .the pres-
ently preferred embodiment makes use of the very wide
data cache memory to hold the entire microcode in-
struction (currently 104 bits), and transfer it to the float-
ing-point processor write holding registers in one cycle.
This is then transferred into the diagnostic shift registers
(e.g. AMD 29818), used for the serial loading, by way of
the normal output port. These devices come with an 60
output port (which can also be used as an input port if
desired) for pipelining of microcode bits. However, in
the presently preferred embodiment, this capability is
not used, because it is too slow. (Many of the chips
resister the microcode bits internally anyway.) This
means that the parallel load route just described can
make use of this capability of the serial parallel registers,
and does not impose any penalty in speed or functional-

86

ity. The parallel load time is about 500 ns per instruc-
tion, which is a significant improvement over the serial
load time.

Another significant point is that the overlaying of
microcode in the floating-point processor can be con-
trolled entirely by the control processor, without re-
quiring any supervision by the host. Alternatively, if the
microcode overlay is not already present in the data
cache memory, the control processor can instruct the
data-transfer processor to go out to the host memory
and fetch it from there.

In the presently preferred embodiment, each subsys-
tem can have up to 6 microcoded processors (one con-
trol processor, one data-transfer processor, and as many
as four floating-point processors or algorithm accelera-
tors). Each of these processors has its OWn WCS. Each
WCS must be written to, to load up microcode, and be
read from, for diagnostics, setting breakpoints, etc.

MODULAR EXPANSION OPTIONS

As discussed in several places above, there are a num-
ber of options for modular expansion of the system
shown in FIG. 1. Some of these options will now be
summed, for convenience.

Two types of modules can be connected to the cache
bus 144:

The arithmetic processing type, as typified by the
floating-point processor module 130, or an algo-
rithm or application accelerator unit 130’.

A High Speed Data (HSD) module, typically used to
expand the data cache memory or to add a high
speed I/O channel. This method of expanding the
memory is very different from the use of a bulk
memory subsystem which interfaces to the acceler-
ator subsystem via the DTP microcode expansion
bus 2824. The HSD method will support the same
bandwidth as the data cache memory 140, but may
not have as much capacity as the bulk memory
subsystem.

The multi-module configuration allows for up to 4
floating-point processor module 130 type modules and 2
HSD modules. These figures have been chosen for
mechanical and electrical reasons rather than any limit-
ing architectural reason.

The PP 130 modules are selected by the module se-
lect bits. These are normally under control of the con-
trol processor module 110, but the VME interface can
override them. This would only be used for download-

ing microcode or during debugging. The module select
bits control every aspect of a module’s operation except
for resetting (which is controlled by the reset signal).

The HSD module is selected decoding the data cache
address bus.

MODULE CONNECTIONS

The connections to the modules are summarized be-

low. The list groups the connections into logical area
and identifies whirl of the two types of module would
use them.

The connections are made via six 96 way DIN con-
nectors. FIGS. 40A and 40B show the physical connec-

tion configuration of the presently preferred embodi-ment.

In the presently preferred embodiment, the module
connections include:

for Data cache transfers: 256 bits of data, 23 bits of
DCM address, 8 Write enables, a Holding Register
OE bit, a delayed access signal (to extend clock

5,329,630
87

cycles, e.g. accommodate slow memories), and 3
Holding Register CK bit;

for CP interface: 3 bits of CP address, 16 bits of data,
16 bits of CP sequencer address, the CP microcode
clock, the CP pipeline clock, and the CP write gate
clock, one interrupt line, and one Condition Code;

for microcode loading: separate lines for CP WCS
output enable, CP Pipeline output enable, CP WCS
write enable, CP Mode, CP serial data out, CP
serial data in, FF WCS output enable, FP Pipeline
output enable, FP Pipeline clock, FP WCS write
enable, FP Mode, FP microaddress select, FP up—
per/lower WCS select, FP serial data out, FP Se-
rial in, as well as a six bit Serial clock/WCS Load
Mask signal, and a 3 bit Serial Loop return select;

generally useful: 3 bits of Module select, and control
signals for Reset, Single step, Free run, FP Break-
point, Microcode Loop, FP Reset, CP Reset, Here;

DC lines: 21 lines for +5 Volts, 6 lines for —5 Volts,
and 161 Ground lines. a

Every module type has access to all the signals.

MULTIPLE NUMERIC PROCESSING MODULES

As shown in FIG. 10, one very useful class of em-
bodiments uses multiple numeric processing modules
130. In this embodiment, all of the modules 130 are

under high-level supervision by a control processor
module 110. The CP module 110 not only performs

high—level supervisory tasks, but also directly controls
all data transfers to and from the numeric processor
modules 131]. All of the numeric processor modules are
connected in parallel to a cache bus 144. Each of the
numeric processor modules 130 includes a CP Exten-

. sion Logic 410, as described above. Data-transfer pro-
cessor module 120 manages data transfers between the
cache 140 and the outside world, as discussed above.

The very high memory bandwidth between the data
cache memory 140 and the numeric processor modules
130 or 130' will, in many cases, allow a number of mod-
ules to be working in parallel without suffering data
starvation.

The number of numeric processor modules that can
operate usefully depends very much on the application
or algorithm mix. In the presently preferred embodi-
ment, this has been limited to four. This limitation has
been imposed primarily for electrical and mechanical
reasons. However, once all the memory bandwidth has
been used, there is no advantage in increasing the num-
ber of floating-point processor modules.

Since the numeric processors run autonomously, the
module interface doesn’t have to include any protocols
for floating—point processor to floating-point processor
synchronization or data exchange. This keep the inter-
faces very simple, as it removes the need for arbitration.

Preferably an instruction write bus is shared by the
numeric and/or application-customized processors.
Preferably the most significant address bits are decided
according to logic such that any one of the numeric
and/or application-customized processors can be ad-
dressed individually, all of these processors can be ad-
dressed together, or some (but not all) groups of these
processors can be addressed together.

That is, the control of multiple floating-point proces-
sors needs to take into account the fact that an algo-
rithm misfit run on any one of the floating-point'proces- 65

sors present, or parts of it might run on some or all of
the floating-point processors present. This may require
defining a long term or short term control relationship

88

between the control processor and the floating—point
processor. The control processor can select on a cycle
by cycle basis which floating-point processor to control
or transfer data between, or for a longer term relation-
ship this can be defined more globally.

In the presently preferred embodiment, this is
achieved by using a microcode bit that selects on a per
cycle basis the control mechanism which defines which
floating-point processor to use. The control mechanism
can be either the use of other microcode bits, or the use
of the contents of a register (which would have been
preloaded by the microcode). The bits in the microcode
instruction field can be used for definition in the short
term, i.e. on a per cycle basis, while the register defines
the long term usage.

Examples of the use of the two modes might be:
Short term - When doing an FFT with 4 floating-

’ point processors the control processor will Spend a‘
few cycles with one floating-point processor, load-
ing the next butterfly‘s data and collecting the
previous butterfly’s results, before moving on to
the next floating-point processor to deal with an-
other butterfly.

Long term - When doing a vector add the floating-
point processor to use is selected before the vector
add routine (in the control processor) is called.
This means that the control processor doesn’t need
to know which floating-point processor (or type of
floating-point processor) is being used to do the
calculations.

FIG. 23 schematically shows how the module ad-
dresses are decoded. The actual implementation of this

decoding is discussed in connection with the FP module
130, above.

CACHE MEMORY EXPANSION

As mentioned above, a large mount of expansion
memory can be directly attached to the cache bus 144.
This is a further advantage of the physical structure and
data transfer protocols used. An example of such a
structure is shown in FIG. 43.

PHYSICAL AND ELECTRICAL
IMPLEMENTATION

FIGS. 38A and 38B show key features of the physical

layout of the presently preferred embodiment. FIG.
38B is a daughter board, which is smaller than the main
board of FIG. 38A. FIG. 38B provides the hardware
for a floating-point processor module 130 (including the
accompanying control processor extension logic). FIG.
38A contains the data transfer processor 120, the pri-

mary portion of control processor 110, the data cache
memory 140, the command memory 190, and the inter-
faces 150, 160, 170, and 180. The two boards together
provide a complete system like that shown in FIG. 1.

The two boards have an identical pattern of six con-
nectors 3810. Since these connectors are male/female,
more boards may be stacked together. For example, the
configurations shown in FIG. 9 and FIG. 10 may be
achieved by stacking multiple floating-point modules
130 and/or algorithm accelerators 130’ together. (How-
ever, for future versions, it is contemplated that it may
be more advantageous to use a backplane for these
connections. This would give a more convenient me—
chanical configuration.)

The connectors 3810 are preferably each 96 pins
wide. Thus, although the full width of the cache bus 144

5,329,630
89

is routed through these connectors, there are ample pins
to spare

Expansions memory to enlarge the data cache mem-
ory 140 may also be stacked up, using this pattern of
connectors. As noted above, attaching additional ex-

pansion memory on the cache bus 144 provides a rela-
tively large memory space within a very short access
delay over a very high bandwidth channel. In the pres-
ently preferred embodiment, up to 12 Mbytes can be
accessed, within 100 ns, at 240 Mby‘te/sec.

FIG. 38A shows the locations of the largest individ-

ual components, and shows the general allocation some
functions in other areas. The board used in this embodi-

ment is a triple-height Eurocard. The VME interface
logic 160 is generally located at the edge of the board,
to minimize backplane stub length. (The VME interface
specification requires a short stub length.)

The memory banks 510 are generally located near the
connectors 3810, at the left and right comers shown at
the top of the drawing. The command memory 190 and
VME interface memory 660 are also located in thisarea.

A large portion of the center of the board is taken up
with the CP holding registers 560A and the DTP hold-
ing registers 5608.

The DTP and CP IPUs 340 and 240, the DTP and CP

sequencers 310 and 210, and the CP address generator
230 are all separately shown.

The DTP module’s writable control store 320 is gen-

erally shown below the connectors 3810 near the bot-
tom left of the drawing, and the CP module’s writable
control store 220 is generally shown below the connec-
tors 3810 near the bottom right. The GIP interface 170,
and the DTP microcode expansion interface 180, are

generally shown at the bottom left corner. (This area
also contains some DIN connectors, not shown, which

provide the physical connection which this logic is
available to support.) Similarly, the bottom right comer
contain not only the data pipe interface 150, but also its
associated connectors.

The daughter board, shown in FIG. 38B, is smaller.
(FIGS. 38A and 38B are not drawn to the same scale.)

The holding registers 420 are nested between the
connectors 3810, in the areas shown top right and top
left. In between these registers is an ECL neighborhood
3820, where ECL parts (which tend to have high power
dissipation) are located. (In the presently preferred
embodiment, the ECL parts include the transfer clock
generator 412, and the FP microcode clock generator
480.) The isolation of these pans also helps to minimize
the injection of TTL noise into the quieter ECL parts.

It may be seen that the chips used to construct the
Register File 430 are large, as are the ALU 450 and
multiplier 440. (In this embodiment, each of these chips
is in a pin-grid package).

The FP module’s WCS 470 is generally located in the
left middle portion of the FIG. Just below this is the FP
module’s next—address logic 477. Note that the scratch-

pad memory 1610, which the FP module’s control logic
can also use for a stack, is physically close to the next
address logic 477.

The CP extension logic, which is used to extend the
CP microcode for control of each of the daughter
boards 130 or 130', is largely located at the bottom edge
of the board as shown. In particular, the WCS expan-
sion memory 490 is shown at the bottom left.

It is particularly advantageous to separate the float-
ing-point processor module on a separate subboard.

90

(Note also that, if multiple numeric processor modules
are used, each processor module 130 is preferably iso-
lated on its own respective subboard.) The numeric
processor modules 130 are particularly likely to gener-
ate noise, since they include much high-speed logic, and
they are also significantly susceptible to noise, since
some of their liens and components use ECL levels.

Moreover, note that the holding registers 420, the
local transfer bus 422, the register files 430, and the
transfer clock 412 are all located on the subboard. This
is advantageous, since the highest-frequency lines are all
isolated on a common subboard. This is particularly

advantageous in embodiments using multiple numeric
processor modules, since some degree of isolation
among the various patches of very high-speed logic is
thereby provided.

PAL IMPLEMENTATION

In the presently preferred embodiment, the following
PALS (programmed logic arrays) are used. All of the
PALs presently used are 'ITL. Most are from the 16
and 20 series, but a few others are also used.

However, it will be readily be recognized by those
skilled in the art that a wide variety of other implemen-
tations could be used instead. The division of functions
into hardware blocks be changed, and the hardware

implementation for a given group of functions can also
be changed. Many of the functions presently embodied
in PALs could be implemented using MSI logic parts,
or as blocks in an ASIC or semi-custom integrated cir-
cuit, or by programming VLSI logic chip. However,
this implementation is given in great detail here to pro-
vide full disclosure of the presently preferred embodi-
ment, to ensure full compliance with the patent laws of
the United States.

CP PALS

Following are brief descriptions of some of the most
important PALs used in the control processor module110.

Clock Waveform Generator Pa] 250

This PAL generates the timing waveforms used by
the CP and the DIP. As discussed above, four clocks
are produced. These each follow one of 4 predefined
waveform sequences. The 4 sequences are character-
ized by different periods, namely 4, 5, 6 and 7 times the
input clock period. This translates to 100, 125, 150 and
175 ns, when a 40 MHz oscillator is used, as presently
preferred. The microcode clock and the pipeline clock
have identical waveforms, but the microcode clock can
be disabled, leaving the pipeline clock running, for mi-
crocode leading. The microcode clock is always high
for 2 cycles (of the oscillator), and then is low for 2, 3,
4 or 5 cycles, as selected by the cycle length inputs. The
cycle length is chosen from the maximum requested by
the CP (2 bits) and DTP (2 bits). Since the cycle length
is driven from a pipeline register (although it might
better have been designed to be unregistered), the cycle
length is sampled at the'last possible moment, to give
the maximum time for it to propagate around the loop.
This timing is more critical than first appears, because
the output clocks are active in the cycle immediately
following that in which they are generated.

The write-enable gate signal goes low one cycle after
the microcode clock goes high, but returns high 1 cycle
before the microcode clock does.

5,329,630
91

The times-two clock runs at twice the frequency the
microcode clock does, and its rising edge occurs at the
same time there is a the microcode clock edge.

When the write-enable gate signal is low, an input
from the VME interface memory 660 is sampled. If this
input shows that the memory is busy, the cycle length
will be extended until this input changes. This allows a
safety margin of access time for memories whose access
time may be slowed by access clash, offboard communi-
cation, etc. (The busy signal, from the PAL’s view-
point, simply inserts extra cycles when the write gate is
low.)

Another input selects whether the clocks free run or
are single stepped.

CD Bus Source PAL

This PAL decodes the CP microcode bits that select
which source drives the CD bus 112, and drives the

output enable lines of the appropriate device. Whenever
any 16 bit source is selected (such as address generator
230), this PAL also outputs a signal to activate the sign-
/zero extend PAL 216. When a reset signal is active, no
source is selected.

Similar PALS are used to decode the data source field
for the TD bus 122. The PAL which selects the TD
data bus source also contains logic to gate the FIFO
read with their corresponding FIFO empty status sig—
nals, to prevent the reading of an empty FIFO (which
could cause errors within the FIFO).

CD Bus Destination PAL

This PAL decodes the CP microcode bits that select
the destination for the data on the CD bus 112, and
drives the read enable line(s) of the appropriate device.

Similar PALs are used to decode the data destination
bits for the TD bus 122.

Whenever the source or destination device has chip
enable lines which must be driven, (e.g. the memory in
VME interface 160, or in command memory 190), the
respective chip enable lines are driven,

Sign/Zero Extend PAL 216

This PAL performs a sign or zero extend function,
depending on an enable signal and on the high bit of the
source data. Since the PALS preferably used are only 8
bits wide, a pair of them is used for every sign/zero
extend operation. This PAL is used in two places: one
pair hangs on the CD bus 112 (shown as block 216 in
FIG. 2A), and one pair (shown as block 316 in FIG. 3A)
hangs on the TD bus 122.

The bus source logic provides an enable bit to the
sign/zero extend logic when a 16-bit source is being
accessed.

FIGS. 14A and 14B show the structure and operation
of this PAL. More precisely, FIG. 14A shows a slightly
different embodiment, where three eight-bit multiplex—
ers are used for each sign/zero extend operation. This
permits single-byte sources to be used, which is not
possible with the presently preferred embodiment. FIG.
14B shows the command structure used with the hard-
ware of FIG. 14A.

Multiway Branch Addressing PAL 217

This PAL is used to implement the multiway branch-
ing capability of the sequencer 310. This PAL takes a
three—bit condition code and inserts it into the least

significant three bits of the microcode constant field.
The modified constant field is fed back onto the se-

92

quencer bus 315. A shift field input controls whether the
result is shifted O, l or 2 places left (i.e. multiplied by 1,
2 or 4), or whether the input constant field is routed
through unchanged. Another input enables the tristate
output drivers of this PAL.

As shown in FIG. 3A, this PAL is preferably con-

nected in parallel with a tristate buffer 318. Only the
least significant 8 bits of the constant field are routed
through the PAL 317. The most significant 8 bits are
routed through the buffer 318.

(Preferably the modified constant field is uSed with a
relative sequencer instruction, but it may alternatively
be used, with care, with absolute or indirect instruc-
tions.) The multiway branching operation is discussed
in greater detail below, in connection with FIG. 30.

Data Input Condition Code Select PAL

This PAL (located in the DTP module 120, and-
shown as multiplexer 312 in FIG. 3) selects a set of
FIFO status codes which can be tested by the DTP
microcode sequencer 310. The selected set is encoded,
and provided to the sequencer 310, to permit multiway
branching on these conditions. The source for these
status signals can be selected to be within one of four
bus input interfaces: the GIP interface 170, the two
input ports of the data pipe interface 150, and the VME
interface 160.

DTP and I/F PALS

Following are brief descriptions of some of the most
important PALS used in the data transfer processor
module 120 and in the interface units 160, 170, 180.

VME Address decode PALS

One PAL decodes the least significant bits of the
VME address, and the 5 address modifier bits. The
output goes active when the VME address and address
modifiers match the previously selected ones. (Up to 15
address and address modifier combinations can be pro-

grammed, and one of these can be selected by a 4 bit
switch signal) There is also an input from a VME inter-
rupt PAL, which indicates when an interrupt acknowl-
edge cycle is in progress. This is ORed with the address
decode to drive the output.

A similar PAL decodes the most significant address

bits (18—31) of the VME address bus. On this PAL, an
additional input selects whether the top 8 bits of the
address are used or ignored.

DMA FIFO Status and Clock Control PAL

This PAL controls the routing of the clock and status
signs, Is from the DMA FIFO 670. This PAL also
controls whether the clocks of these FIFOs are under
the control of the DMA controller 640 or decoded from
the VME interface.

VME read and write decode PALS 611

The read decode PAL decodes the 8 possible read
sources from the VME bus. The internal VME ad-
dresses are decoded and qualified by the data strobe,
write enable, and board select signals.

The write decode PAL decodes the 9 possible write
sources from the VME bus. The internal VME ad-
dresses are decoded and qualified by the data strobe,
write enable, board select, and a VME write enable
signal. The VME write enable signal can be used to
control the setup and hold requirements of the various

5,329,630
93

write enables or clocks, independent of the VME bus
timings.

VME Slave access timing PAL

This PAL generates the timing for data transfer ac- 5
knowledgements in the bus controller 650. The timing
can be tailored to the register or memory that is being
read or written, because essentially the same addresses
and qualifiers which the decoder 611 receives are also
inputs to this PAL. Another input delays the timing if 10
the dual ported VME memory 660 is busy. (If this oc-
curs, an extra cycle is also inserted after the busy signal
ends.)

Another input delays the timing if the serial loop is
busy shifting data. When data is written to the serial
loop register 680, a delay of three cycles is inserted after
the VME write enable signal goes high, so that the '
serial loop state machine (in a different PAL) has time
to latch in the data. ,

This PAL also generates an enable signal whenever
the VME interface memory 660 is being accessed.

Serial Loop Control PAL

The PAL implements multiplexer 2710 and state
machine 2740. The state machine function is connected
to control the 818 serial/parallel registers at the inter-
face to each of the writable control stores in the serial

loop. (These include the CP WCS 220 and the DTP
WCS 320, and also a PP WCS 470 and CP WCS exten-
sion 490 on each of the processor modules 130.)

The state machine controls a shift register and a serial
data clock. When a data transfer to or from the shift

register is occurring, the shift register and serial data
clock are controlled as a function of the access type (i.e.
read or write), and in accordance with a mode signal.
The serial loop mode signal specifies one of three access
modes:

DATA HOLD (00): read/write like a normal regis-
ter.

DATA SHIFT (10): read/write like a normal register
but then shift the data by 16 bits around the serial
loop while toggling the serial data clock.

DATA PULSE (11): read/write like a normal regis-
ter and pulse the serial data clock once.

In the DATA_SHIFT mode, the state machine con-

trols the shift register, so that on one cycle it shifts and
on the next it holds. This two cycle pattern repeats 16
times, so the contents of the shift register are inserted
into the serial loop. On the hold cycles the serial data
clock is asserted. While the data is being shifted, a busy

signal is active to hold off any further VME accesses to
the shift register until the shifting is finished.

In the DATA_PULSE mode, 300—400 ns after a

write operation, the serial data clock is pulsed high,
once. This pulse loads up the internal flip-flop inside the
“818” shadow register. (Each of these shadow registers
contains an internal flipflop, which controls its opera-
tion mode when backloading data into the respective
corresponding WCS.) No data is shifted around the
serial loop when this D clock is pulsed. (The delay
allows data to stabilize, i.e. to percolate around the
loop.) During this operation a busy signal is activated to
inhibit any VME accesses to the serial loop.

This PAL also contains multiplexer 2710, which col-
lects the four serial 100p return paths 225B, 225C, 225D,
and 225E, and resynchronizing flip-flop 2720.

94

DCM and DCM I/F PALs

Following are brief descriptions of some of the most
important PALs used in the data cache memory 140,
and in the CP Extension Logic, located on the FP mod-
ule 130 but controlled by the CP module 110, which
handles the data interface to the cache memory 140.

DCM Address Decode PAL

This PAL, together with a multiplexer, is shown as
block 560 in FIG. 5. This PAL decodes the data cache
memory address. Two address inputs are provided:
input 516 corresponds to bits 19—25 of the CA bus 111,
and input 517 corresponds to bits 19—25 of the TA bus
121. A control line 521, generated by arbitration logic
535, selects which address to decode.

DCM Holding Register Control PAL

This PAL (controlled by the CP and DTP microcode
streams) generates various control signals used to con-
trol the three banks of data holding registers 560A,
580B, and 420. Microcode bits are decoded to drive the
clock and output enable signals. The signals to control
bank 560A are controlled by the CP access signal 536.
The signals to control bank 580B are controlled by both
CP access signal 536 and DTP access signal 537, be-
cause the DTP port has a lower priority.

The signals to control register bank 420 (the FP hold-
ing registers on the floating point modules 130) are
ANDed with the appropriate module select signals. All
the clock signals are qualified by the write enable gate
clock signal, to control the timing of the positive clock
edges.

Another set of signals can disable the memory output
on access cycles. This allows the holding registers to be
read back without writing into the data cache memory.
(These signals are similarly used in another PAL to get
access to the write mask information.)

DCM Write Flag Register PALs

Several PALs are used to implement the write mask
logic 530 (which provides an 8 bit write mask signal 512
to the memory bank 510.)The PAL corresponding to
the DTP interface registers 560B will be described first.
A similar PAL is used to track the status of the other

register set 560A, which is accessed by the CP module
110.

The purpose of this PAL is to remember which of the
8 F_words in the holding register 580B have been
written to by the DTP. When a data cache memory
write is required, the outputs of this PAL mask the
parallel write from the DTP holding registers. Only
those F_words that have been updated are actually
written into the data cache memory bank 510. When-
ever a write to a holding register occurs, the corre-
sponding flag bit is set within the PAL. The flag bit to
set is decoded from the DTP address under these condi-
tions. The flag bits are cleared on a data cache write.
However, due to the pipelined operation, the DTP can
write to the holding register 56013 on the same cycle. In
this case the flag bit would remain set.)

In addition, all 8 flag bits can be set simultaneously (in
response to a microcode command). This allows block
writes. A reset signal clears the flags. The logic is com-
pletely synchronous and is clocked by the microcode
clock generated by clock generator 250.

Another input signal enables the read back mode. In
this mode the state of the flag register can be serially

5,329,630
95

output, via the two least significant bits. The microcode
can read the flag bits in the two least significant bits,
and, by swapping with the other flag bits, the micro-
code can read all the flag bits. The DTP address selects
which of the 3 flag bits are to be swapped with even
flags bits, and which with odd flag bits.

FP Write mask PAL

This PAL generates the write mask for transfers
between the FP holding register and the data cache
memory. The parameters that control the mask genera-
tion are the number of F_words to write, and the F_.
word to start from.

FP PALS

Following are brief descriptions of the programmed
array logic units (PALS) used in the FP module 130, in
the presently preferred embodiment.

WCS Load enable PAL

This PAL qualifies some of the signals used to load
microcode into the FP module’s own WCS 470, and/or
into the CP module’s extended WCS 490 (i.e. the WCS

portion located on the FP module), with a module se-
lect signal

Host-source Module select PAL

This PAL compares the module address inputs from
the host with local switch settings, to see if this module
has been selected. One set of inputs enables WCS loads
to occur. -

A one-bit-per-module address is provided. This per-
mits WCS writes to be independently controlled for all
of the modules 130. (By contrast, as discussed above,
data accesses use module addresses having fewer bits
than the maximum number of modules, so that not all
combinations of modules can be selected.)

As shown in FIG. 28, the preferred topology of the
serial command loop is such that two loop portions 2840
enter each numeric processing module 130: one portion
225A to provide input to that module’s own WCS 470,
and one portion 225C to provide input to the WCS
extension 490 on that module. Thus, two separate out-

put commands are provided (and further qualified by
the module address), so that the WCS 470 and the WCS
extension 490 can feed their outputs onto the common
return busses 225E and 225D (respectively), which any
of the modules can drive when selected.

CP Module select PAL

This PAL compares the module address selected by
the CP against the locally stored values. If a match is
found, then four outputs are asserted. Two of these
outputs enable the control signals to clock or output
enable the holding registers 420. Another output signal
drives an LED, to give a visual indication of which FP
module(s) have been selected. The final output enables
a condition code bit (“selected”) which is returned to
the main board. The final output is the qualification
signal to most of the logic controlled by the CP exten-
sion microcode, to enable the action defined by micro-
code fields (or registered values) to take place.

FP-WCS Control PALs

Two PALS are uSed to control the WCS 470. These
two PALs are located in separate areas, but they are
interlocked together because both affect the WCS. In
general, the first PAL is used to control the Instruction

96

Register (which is used for microcode compaction as
described above). The other controls parallel micro-
code loading.

The first PAL controls the output enables of the two
RAM chips in the WCS 470. In the presently preferred
embodiment, the WCS 470 is configured using two
RAM chips, to provide a better match to the interface
register set 420 for parallel loading. Since (in the pres-
ently preferred embodiment) the cache bus 144 is multi~
plexed down to a 64-bit data path into the FP module
130, the division of the WCS 470 into two portions
provides a better match for parallel loading of the mi-
croinstructions (which in the presently preferred em-
bodiment are 104 bits long).

When the host is loading microcode, the instruction
register is disabled. In this case the output of the instruc-
tion register is always disabled, and the RAM outputs
are controlled by a signal which is generated by the-
host.

The second PAL performs two separate functions.
These are combined only to achieve hardware compac—
tion.

The first function is to control which bank of pipeline

registers 476 to enable during the reading of the
WCS by the host.

The second function is to adjust the transfer length,
i.e. the number of words to transfer between the

holding resisters and the register file.
There are two pipeline register output enable signals,

and they are never active at the same time. (These sig-
nals are used to enable the two banks of register 476. As
discussed elsewhere, this structure corresponds to the
two banks of WCS 470.) For either of the pipeline regis-
ters to be output enabled, the busy signals must be inac-
tive, and the module select and PP pipeline register
output control (from the host) must be active.

The transfer length field is coded so that 1 represents
one word to transfer, 2 for two words etc. To specify
eight words to transfer, 0 is used. The transfer clock
generator (part of the cache bus interface logic 460)
needs to know the number of transfer cycles, and this is
the number of minor cycles+l (for pipeline startup),
The number of minor cycles is a function of the transfer
length and its start position.

Handshake Logic PAL

Two PALS are used to control the handshaking logic.
The first PAL performs two independent functions:
First, it controls the handshaking between the CP and
FF module 130. (In this function, it implements a state
machine having a state diagram as shown in FIG. 22.)
Secondly (and independently), it also controls bank
selection when the register file 420 is used in a double
buffered mode. (The principles of operation of this
mode are generally shown in FIG. 20, and are discussed
above.)

The handshaking state machine indicates the CP is to
wait for the FP by driving the CPWAIT output HI. If
the FF is to wait, the handshaking state machine indi-
cates this by driving FPWAIT H].

If both CPWAIT and FPWAIT are HI, and the CP

is the first processor to assert its done signal, then the
sequence is as follows:

1. When CPDONE is found to be HI, then FPWAIT
is driven LO.

2. CPWAIT stays HI and control remains in this state
until FPDONE goes HI.

5,329,630
97

3. When FPDONE has gone HI, CPWAIT is driven
LO.

4. Both CPWAIT and FPWAIT signals remain LO
until the corresponding DONE signals are disas-
serted.

The above sequence is duplicated, with the roles
reversed,if the FP asserts FPDONE first.

If CPDONE and FPDONE both arrive at the same

time (i.e. are both first sampled HI on the same clock
edge), then both CPWAIT and FPWAIT go L0 to-
gether.

The bank swap side of this PAL is separate from the
CP/FP handshaking just described. The two input sig-
nals that control this state machine are SCPBANKSEL
and FPSWAP. SCPBANKSEL specifies how the CP
wants the banks to be allocated when a swap point is
reached by the FP. When the FP reaches a swap point
it drives FPSWAP active until the swap point has been
passes. Note that the swap points are synchronized by
the CP/FP handshake logic. At the FPSWAP point the
state of SCPBANKSEL is the new state of the BANK-

SEL output, and outside the swap point the BANKSELstate

The first PAL runs synchronously to the FP, so an-
other PAL is used to capture the CP-synchronized
signals which indicate that the CP module 110 has fin-
ished, or that it wants to swap banks.

This second PAL is governed by three handshake
mode bits (subject to the module select signal). The
three handshake mode bits are allocated as follows: bits
0 and 1 are encoded to implement the following actions:
00 No operation; 01 Set CPDONE; 10 Clear CPDONE;
11 Test mode. Independently of this, bit 2 requests that
the register banks be swapped.

The CPDONE state remains unchanged across mi-
crocode cycles, unless the instruction is a set or clear
operation.

This PAL can detect a positive edge on bit 2 of the
mode field, by comparing the new input with the previ-
ously registered version. When the edge is detected this
toggles the state of the bank select output.

Interrupt Capture PAL

Another PAL is used to capture clock edges on
CPWAIT, FPWAIT, and several interrupt signals. The
error interrupt shares the same interrupt output as the
breakpoint interrupt, but has its owri mask bit. The
outputs are reset when the corresponding mask bit is
driven LO, but this mask bit must be returned to the HI
state for further interrupt edges to detected.

Microaddress And clock control PAL

This PAL performs two independent functions: con-
trol of the FP microaddress source, and control of the
FP clock.

The microaddress source is selected by two bits of

input, and can’be as follows: (00) FP Next Address
Logic 477; (01) CP microaddress 211A; 10 Start address
register 79 (continuous); (11) the output of stack 478.
Alternatively, another input permits the tw'o-bit select
command to be overridden. In this case the CP mi-
croaddress will be enabled whenever the module is
enabled. This input permits the host to get access to the
WCS 470 for startup or debug.

The outputs to control the FP clock generator 480
(which is ECL in the presently preferred embodiment)
can be selected as follows: (00) FP microcode clock is
free running;, (01) FP microcode clock stopped. An-

55

98

other logical condition permits the FP clock to be con-
trolled by a different input, so that the clock free runs
whenever this is asserted.

Serial/parallel load select

This PAL controls the loading of microcode from the
host or the CP into the FP module’s WCS 470. Micro-

code loaded by the host must use the serial loop, but the
CP can load microcode in parallel. To achieve this, this
PAL essentially implements a 2:1 multiplexer. There are
several points to note:

1. The pipeline registers used in WCS 470 do not have
separate output enables, so they are separately
enabled‘ to prevent contention on the data buses.

. The dependence of the two serial data clock signals
is switched, depending on whether the host or the
LIP is selected

. When the host is controlling the serial loop, then a.
mode signal selects whether both serial data clocks
are driven together (for normal data shift), or only
one of them is driven (as selected by another sig-
nal). The serial data clocks are controlled like this
during the read back of data from the WCS 470.

CP Write decode PAL

This PAL decodes microcode fields in the WCS
extension 490, to select which of the registers 420 is to
be accessed. The selected register is only written to
when RCREGDIR is LO. As well as selecting one out
of the XFREG, FPREG, UAREG or MREG to be
written to, two other functions are performed:

1. The direction and output enable controls to the CD
bus transceivers 444 are generated.

2. The microcode bit to clear a breakpoint is write-
enable-gated with the write-gate clock. The use of
a short pulse here prevents missing breakpoints
which occur immediately after a restart. (It could
pose problems if the CP were still holding a signal
low to clear the previous breakpoint when anew
breakpoint appeared.) We are therefore ORing this
signal (active—low AND) with the clock to keep it
short.

All the clocks/Strobes are qualified by CPMCCK and
CPMCCKWG to set their timings within a microcode
cycle, but are disabled if the module hasn’t been se-
lected.

CP Read decode PAL

This PAL decodes the CP microcode fields to select
which of the registers 420 is to be accessed. The se-
lected register is only read when RCREGDIR is HI.

Holding Register Control PALS 461

Two PALS are used to control outputs from the hold-
ing registers 420.

The first one generates the transfer sequence wave-
forms used to enable clocks to each pair of the registers
420. Each transfer cycle lasts from 1 to 4 minor cycles,
as specified by the transfer length. (The “minor cycle”
period is generated by the transfer clock 412, as dis-
cussed above.) On each minor cycle a pair of F__words
is transferred, although one of them may be inhibited by
another PAL. The transfer sequence waveforms appear
on four lines as a “walking L0."

The first line in the cyclic sequence to be asserted is
controlled by XFHRST <1:2> and only occurs when
XFINIT is HI.XFINIT is only active during the first
cycle and on subsequent cycles the current sequence

5,329,630
99

waveform is used to generate the next. UCXFDIR
disables HRCKENP“ <0z3> when the transfer direc—
tion is from holding registers 420 to register file 430,
unless the LOOPBACK mode is in operatiOn. The
HRCKALL overrides the normal start and length con-
trol and forces all clock enables to be active at the same
time thus quadruplicating the data into all register pairs
in the one cycle.

The XFTYPE input selects whether the waveform
sequence is for normal transfer cycles or a parallel mi-
crocode load cycle. In the latter case there are always 2
minor transfer cycles and the timing can be slightly
different. This input can inhibit all the clocks to the
holding registers.

The second PAL generates the transfer sequence
waveforms used to output enable each register pair.
These two PALs are used for opposite transfer direc-
tions.

A “clock mask” PAL generates the 8 clock enables
used to control the writing into the eight 32 bit registers
(F_registers) which make up the holding register 420.
In a single major transfer cycle up to 8 F_words can be
transferred into the 8 separate registers of the register
bank 420. The inputs show the first register which must
be updated (0 . . . 7), and the number of F_registers (1
. . . 8) to update. The PAL accordingly generates a mask
with a bit set for every register to be updated (within
the major transfer cycle). If the transfer direction is
from the holding registers 420 to the register file 430,
then all the mask bits are set HI, thus preventing any
writing to the holding register. Similarly, if a microcode
load cycle is occurring, then the clocks are disabled. If
all holding registers are to be cleared (as indicated by
yet another signal), then the enables are set low so all
the holding registers are updated.

Holding Register Start Address PAL

This PAL implements a 4:1 multiplexer followed by a
register. The 4 possible inputs to the multiplexer are:
holding register (HR) start address from a register; HR
start address from the microcode instruction; HR start
address from the CP address bus; The previous HE start
address. If the module is not selected, then the previous
HR start address is maintained.

Register File WE control
This PAL controls the write enables to the register

files 430. In a minor cycle 1 or 2 F_words can be writ-
ten into the register fie. Six bits of start position and
length are used to generate the write enable mask, in the
same way the clock enable mask is generated. The rele-
vant 2 bits from the mask are sequenced out of a lower-
half-write signal or an upper-half—write signal, depend-
ing on which minor cycle is in progress. When the
loopback mode is active, the write enable mask is dis-
abled. Another signal can be used to force both words
to be written on every minor cycle.

The lower-half—write signal and upper-half-write
signal are disabled if the transfer direction is wrong, or
if the transfer type is a microcode load function. The
input signals are also decoded to select the read/write
mode of the register file. A busy signal line is also pro—
vided, to indicate the holding register data bus 422 is inuse.

Register File address modification PAL

This PAL registers the register file address when the
module is selected; otherwise the previous address is

30

35

100

held. The most significant bit of the address is modified
to implement the soft double buffering. A two-bit signal
selects what type of modification will be made to the
most significant address bit. The Options are:

1. Use the input bit. This is the physical addressing
mode.

2. Use BANKSEL. This is the double buffered mode.
3. Use the inverse value of BANKSEL. This is the

preview mode, whereby the GP or FP can access
data on the other side of the double buffer without
having to swap banks.

Register File Address Incrementer

This PAL (when enabled) increments the Register
File pointer. Thus, the address can be incremented at
each minor cycle (of the transfer clock), to fetch out the
next pair of numbers from the register file 430, or write
the next pair in. A control input permits keeping the.
address constant during the first minor cycle of a trans-
fer from holding registers 420 to register file 430. This is
necessary because of the pipelining in the data path.

Data Valid control PAL

This PAL controls the data valid signals to the even
and odd sides of the register ties 430. In a minor cycle,
either 1 or 2 F-words can be written into the register
file. Depending of the start address and length, one or
two words of data will be valid in this minor cycle. Two

outputs (EVENVALID and ODDVALID“) indicate
which words are valid. This function is disabled for
transfers from the register file.

Microinstruction Address select PAL

This PAL selects the next microinstruction address to
be from the true address field (ie. the output of register
474) or the false address field (the output of register
475). An internal “always true” status can be selected
for unconditional jumps. Both can be disabled to allow
the start address register 479 to drive the microaddress
bus 473, or when STACKPOP or READSTACK‘
signals indicate that a stack operation is underway.
(STACKPOP is derived from FP microcode, while
READSTACK is controlled by the CP.)

As noted above, the FP module 130 does not have a

separate sequencer, in the same sense that the CP mod-
ule 110 and DTP module 120 do. In fact, the module
does not even have a separate program counter as
such;instead, the true and false outputs of registers 474
and 475 fill this function.

ALU Sticky Status PAL

This PAL remembers when one of the floating point
status bits has indicated a “sticky status” condition. (A
“sticky” status is used, in the presently preferred em—
bodiment, to monitor some fault conditions separately
from the primary error-handling mechanism. For exam—
ple, a test for overflow can be performed at the end of
a vector operation rather than on every element calcu-
lation. The multiplier 440 and the ALU 450 each have
several outputs for sticky status bits (to show overflow,
underflow, invalid operation, and similar errors). Two
microcode bits control the updating and the clearing of
the sticky status register on a per cycle basis.

A similar PAL performs this function for the FMPY
status. The logic in these PALS also provide encoded
outputs to indicate various sticky status conditions. The
clock timing used permits the presence of a stuck status
bit can be check in one cycle.

5,329,630
101

Stack Control PAL 3910

This PAL performs two separate functions: control
of the subroutine stack addressing and control of the
table address counters.

FIG. 39 shows the preferred embodiment of the stack
register 478 in the floating-point processor module 130.
The PAL 3910 controls a multilevel pipeline register
3920. (In the presently preferred embodiment, this is an
AMD 29520.) The multilevel register 3920 includes
four pipelined registers 3921. However, the output mul-
tiplexer 3922 can also select any one of these registers
for direct output. The output of this multiplexer is con-
nected to the microinstruction address bus 473 of the
FP module 130.

The PAL 3910 provides control inputs to multilevel
register 3920 which make it function as a LIFO (last-in-
first-out) memory. This permits the memory to operate
as a stock. The PAL 3910 provides transfer signals 3912
(which are ANDed with the microcode clock) to the
pipelined registers 3921. It also provides a select signal
3913 to the multiplexer 3922.

The PAL implements the usual push and pop func-
tions. In addition, it can also be commanded to enter a
read-stack mode, where any stack level can be read
without disturbing the stack status.

Register File Address Modifier PAL

This PAL modifies the most significant bit of the FP
register fie address fields as a function of address modi-
fier code and the currently selected bank of the double
buffer. There are three address fields (X, Y and T) to be

modified (corresponding to the first operand bus 431,
second operand bus 432, and results local bus 433), and
the logic is identical for each of them. The logic for one
of these address will now be described.

A modified most-significant address bit is derived
from the most significant bit of the input address, a
two-bit modifier code, and the bank select signal. The
modifications to the address bit are:

1. No modification—this is the physical addressing
mode.

2. Inverse of the bank select—This is the “logical”
mode, used for normal accesses in the double buff-
ered configuration. Note that the bank selection is
opposite to that used when data is transferred be-
tween the register file and the holding registers

. Equal to the bank select signal—This is the pre-
view mode. As discussed above, in this mode the
FP can access data on the other side of the double
buffer, without having to swap banks. This capabil-
ity helps to keep the floating point pipeline full.

The 3 modified address bits are registered externally
and fed back in as “old A6” bits (one for each address).
These are used to replace the “calculated” values for
these bits when a “use old A6” command is asserted.
This feature reduces the address setup time when the
address mode remains unchanged over several cycles.

Results Bus control PAL

This PAL decodes the results-bus source microcode
field, and output enables the required device (e.g.,
FMPY 440, FALU 450, or scratchpad memory 1610, in
the configuration of FIG. 16). This PAL also provides
a chip enable signal to the scratchpad memory 1610
when needed.

102

VME Interrupts PAL

This PAL implements the VME interrupt protocols
in a state machine. When GENVMEINT goes active

(high) IRQEN is driven high on the next positive VCK
edge. IRQEN remains active until the interrupt is ac-
knowledge so the cause of the interrupt (GENV-
MEINT) is removed by driving CLRIRQFF" low. The
VIACK‘ and VIACKIN‘ signals are monitored and
when an interrupt acknowledge cycle is detected for
the-interrupt being generated an internal interrupt ac-
knowledge cycle is started. The correct VME interrupt
acknowledge cycle is identified by these signals going
active (VIACKIN“ is part of a daisy chain) and
VMEIA <01 :03> being set to the same level the inter—
rupt was generated on. The internal interrupt acknowl-
edge cycle waits for VMEIDS to be asserted and then
over a number of cycles enables the interrupt vector-
onto the data bus (IVOE‘), sets IVDTACK and re-
moves IRQEN. Sometime later VMEIDS goes inactive
and the interrupt vector and IVDTACK are removed.
When an interrupt acknowledge cycle occurs VIN-
TACK is asserted which then starts the BUSCON (via
the address decode pals) on a slave cycle which will
allow the interrupt vector onto the bus. The interrupt
acknowledge daisy chain passes though this PAL un-
hindered when no interrupt requests are outstanding.

DMA/VME State machine

This PAL is only concerned with data transfers be-
tween the VME bus and the data FIFO. The direction
of the transfer is hidden from the state machine so the
clocks and status are switched externally. When a

DMARSTART goes active the state machine starts the
DMA transfer. It first waits for synchronized FIFO
status (SDMAFSTAT‘) to indicate there is data or
room in the FIFO for one transfer and SDMADONE
to indicate the DMA counters are ready. DMACK is
driven low to output enable the FIFO in case it is pro-
viding data. The state machine issues a request for the
bus (LBUSREQ‘) and waits for it to be granted
(SLBGRANT*). When the bus is granted, DMAAS“
and DMADS‘ are asserted in compliance with the
VME bus setup times. These two signals are held until
the VME shve device returns the data transfer
acknowledge(SLDTACK‘) and then DMACK is
driven high. One cycle later DMAAS‘ and DMADS"
are removed and a positive edge driven on DMA-
COUNT. If the transfer mode (DMARBLOCK) is

single transfers then LBUSREL is asserted to release
the bus and the above sequence repeats. If the transfer
mode is block(sequential) transfers then the bus is not
released unless the end of the block has been reached (as
indicated by BLOCKEND), FIFO is full/empty
(SDMAFSTAT*), DMA count is exhausted (SDMA-
DONE) or DMA has been aborted by the negation of
DMARSTART. Note that during a block transfer the
DMAAS‘is held active until released by BLOCK-
END.

The SLBUSERR’ input goes active when there has
been a bus error as a result of a DMA access. If this
occurs the current transfer is aborted and DMABERR
is driven. The state machine remains in this state until
DMATSTART is negated which will clear DMA-
BERR. The final input, DMATEST, allows the DMA
to occur without any VME bus cycles occurring. This
is useful in testing the basic operation of the state ma-

5,329,630
103

chine and also provides a means whereby the FIFOs
can be flushed in the event of a bus error.

A reset condition can be forced by using an unused
combination of DMARSTART, DMARBLOCK and
DMARTEST.

DMA Address control

The address bits (VMEIA <01:07>)are monitored
to detect when a 256 byte boundary is about to be
reached so that a block DMA transfer can be inter-

rupted briefly to allow VME arbitration. (This allows
compliance with the maximum block transfer length
constraint in the VME specification.) This is indicated
on BLOCKEND. The remainder of the PAL is con-
cerned with handling the DMA address incrementing.
Depending of the transfer size (16 or 32 bits) the DMA
address is incremented by l or 2 respectively whenever
DMAINC goes high. The incrementing of the DMA
address is controlled by DMARLONGINC which
selects whether DMACNTEN‘is active for one or two

cycles of the microcode clock. CLRFF“ resets the flip
flop that caught the edge of DMACOUNT.
VMEIRST‘ is available to reset the PAL, if necessary.

Interrupt Edge Catcher.

This PAL catches the positive edges on GI-
PIEMPTY“, VMEIFEMPTY“, DPlIEMPTY‘,
DPZIEMPTY“, VTPINTD and VTPINT, and nega-
tive edges on GIPOEMPTY‘ and VMEOFEMPTY‘.
This allows the interrupt signals to be edge triggered
and later synchronized to the microcode clock. When
an edge is detected the corresponding output is driven
low. The edge catching flip flops are reset in pairs:
TPINTGIP‘ resets the two GIP edges. TTIVMEF“
resets the two VME edges, TPINTVME“ resets the
two VTP edges and TPINTDPIPE“ resets the two DP
edges.

GIP Microcode Decode

This pal decodes the three microcode signals
UGIPRD", UGIPWR“ and UGIPFR to generate the
output enables, FIFO read and write clocks and the
register clock. The FIFO read clock is gated by the
FIFO empty status (GIPOE‘) to prevent the reading of
an empty FIFO causing errors within the FIFO. The 45
clock type signals are qualified with GIPCl or
GIPFRDCK.

GIP Interrupt Mask

This PAL performs two functions. First of all it se-
lects 4 out of the 7 possible interrupt sources and selec-
tively inverts where necessary so the interrupting ac-
tion results in a positive edge. Two sets of 4 interrupt
sources are allowed for and GIPSELI selects between
them. The second function is to mask the selected set by
the 4 mask bits (GIPIM <0:3>) before driving the
results out as GIPINT <0:3>. The GIPIACK“ signal
is simply inverted to give GIPIACK.

GIP Interrupt State Machine

This PAL looks for positive edges on the interrupt
inputs(GIPINT <0:3>) and when one or more occurs
GIPINT is driven. A specific interrupt is cleared by
selecting it with the microcode field UGIPCCS <0:1>
and asserting UGIPCLAI. All flip flops are cleared on
reset by GIPRST‘. The edges are detected by delaying
the interrupts by one cycle and comparing the delayed
and non-delayed versions. The non—tiered versions have

104 I

already been synchronized to the GIPCI clock that this
state machine runs off.

HOST COMPUTER

A system like that shown in FIG. 1 can be used in a
wide variety of computer architectures. The presently
preferred embodiment uses the system of FIG. 1 as a
numeric accelerator subsystem. The host computer is a
VAX 8800, running a VME operating system, and com—
municating with the system of FIG. 1 over a VME
interface and VME bus 4110. However, an immense
variety of other configurations could be used instead,
For example, there are a wide variety of UNIX ma-
chines which could be used, including e.g. units from
Sun Microsystems.

Moreover, other system bus structures could be used
instead. For example, the subsystem of FIG. 1 could be
used with a VAX running VMS, and linked through an
interface box. This subsystem can even be used with a
personal computer running MS-DOS, which communi-
cates via Ethernet (for example), with a simple VME-
bus interface box.

It should also be noted that, although the internal
architecture of the subsystem of FIG. 1 is primarily a
32-bit architecture, this subsystem can be used very
advantageously with 64-bit words or 48-bit words. One
factor in achieving this capability is the use of an inter-
nal data path in the floating-point processor module 130
which permits 64-bit operations to be performed in only
two cycles. Another factor in achieving this, again, is
the very wide cache bus 144, which permits multiple
64-bit words to be transmitted in parallel to the numeric

processor module 130. Thus, performing 64—bit calcula-
tions can usually be performed at nearly half of the
word rate (i.e. almost the same bit rate) as 32-bit opera-
tion.

Moreover, of course, the numerous inventive teach-
ings set forth herein can be adapted to a tremendous
variety of systems. These teachings can be adapted to
systems whose bus standards do not at all correspond to
those of the presently preferred embodiment. In fact,
the VME bus interface is not even especially advanta-

geous (aside from having reasonable total bandwidth),
and is disclosed simply to provide full compliance with
patentee’s duty of disclosure.

BUS INTERFACE TO HOST

As noted above, the presently preferred embodiment
uses a VME bus as the primary interface to the host.
This bus is well known, as discussed above.

A wide variety of other bus configurations could be
used instead. For example, VersaBus, FutureBus, or
NuBus could be readily designed into the system if
desired. For very high-speed computing systems, it
might be advantageous to use optical busses, using mod-
ulated solid-state lasers on optical fibers.

PICTURE PROCESSOR SUBSYSTEM

One advantageous system embodiment uses not only
a host communicating with one or more subsystems like
that shown in FIG. 1 (or 9A or 10), but also uses an
additional subsystem which is a specialized graphics
processor. The most preferred picture processor here is
known as a “GIP” processor, and is available from
benchMark Technologies Ltd., Kingston-upon-
Thames, England.

FIG. 41 provides one sample configuration, but of
course a wide variety of other topologies and system

5,329,630
105

architectures could be used instead. A host computer
4100 communicates with a picture processor subsystem
4140, and with at least two numeric accelerator subsys-
tems 4150 (which may be, for example, like those of
FIGS. 1, 9, 10), over a VME bus 4110. The VME bus
4110 also permits access to main memory 4160, mass
storage 4170 (e.g. a hard disk), and Optionally also one
or more device interfaces 4180 (which may be output
devices, gateways, other storage de_vices, etc.).

Two additional busses are used in this embodiment.

The picture data bus 4130 provides an application-cus-
tomized interface to a graphics processor. (This is a
wide bus, which is particularly useful for image or
graphics transmission.) In this sample embodiment, this
is the “GIP bus” (marketed by benchMark Technolo-
gies Ltd.). This application-optimized bus is well-
matched to the high-bandwidth I/O demands of the

5

picture processing subsystem 4140. It is a very wide bus, ~
with 160 data lines.

The other backplane bus is the data pipe bus 4120.
This bus permits multiple numeric accelerator subsys-
tems to be combined in topologies such as those shown
in FIGS. 34, 35, 36, or 37. In this sample embodiment,
this bus has 32 data lines.

OPERATION OF THE SYSTEM

Some important ways to use the various points of
invention, and some ways to use the disclosed system
architecture, will now be described. A number of the
methods described are believed to be separately innova-
tive.

REALIZATION OF A SAMPLE OPERATION

A small example of the use of the architecture will
now be described. In this example, the host processor
4100 issues a command to the numeric accelerator sub-

system 4150 (like that of FIGS. 1, 9, or 10) to multiply
two arrays together (on an element by element basis),
and deposit the results in a third array. All three arrays
reside in the VME memory space (e. g. in main memory
4160). Before the command is issued, the subsystem
4150 is in the idle state, and after the command has been
executed it returns to the idle state. This is also shown
diagrammatically in FIG. 42.

Two versions of the command scenario are given.
The first one details a system where the only memory
space used is physical memory. (Such an architecture
might be used where it is desired that the host offload as
much of the work as possible onto the accelerator sub-
system.) The second scenario is for a system that has
virtual memory, such as is found on a VAX running
VMS, or on a UNIX computer. In the second scenario
it will be seen how the dynamic memory allocation and
the paging of data to/from the disks are accommodated
in the processing operation.

FIG. 15 shows how the command memory 190 is

organized. It also shows some of the types of commands
and interrupts exchanged, and how some of those com-
mands and interrupts are handled. A key point to note is
that the command memory 190 is preferably partitioned
in software, so that it includes two command FIFOs. A
cp_command FIFO 1520 buffers commands addressed
to the CP module 110, and a dtp__eornmand FIFO 1510
buffers command addressed to the DTP module 120.

The command interface, interaction, and scheduling
of the work are controlled by software, and can be
tailored as required. Thus, the following example does
not define ways in which the system must be used. It is

25

106

provided simply to illustrate ways in which the system
may be used.

PHYSICAL MEMORY MODEL (CF/DTP
INTERACTION)

In this example, the host proeessor issues a command
to the accelerator subsystem to multiply two arrays
together (on an element by element basis) and deposit
the results in a third array. All three arrays reside in the
VME memory space. Before the command is issued the
accelerator subsystem is in the idle state, and after the
command has been executed it returns to the idle state.
This is also shown diagrammatically in FIG. 42.

The following steps occur during the execution of a
command:

(1) The host writes a vector multiply command into
the accelerator subsystem’s command queue (main-
tained in the VME interface memory), specifying .
the number of elements in the array, the address of
the two source arrays, and the address of the results
array. After the command and its parameters are
added to the queue, the host generates an interrupt
in the data transfer processor module 120. The host
is now free to do other work.

(2) On receiving the interrupt from the host, the data
transfer processor module 120 copies the command
and its parameters into a software maintained cp—
command FIFO in the command memory. An

interrupt is generated in the control processor
module 110 to notify it of the existence of this
command. The data transfer processor module 120
returns to its idle state.

(3) In response to the interrupt, the control processor
module 110 leaves its idle state, and reads the com-

mand and its parameters from the cp_cornmand
FIFO 1520 in the command memory 190. The

addresses given in the command are checked and
found to lie off-board (i.e. not in the data cache
memory 140). Thus, in this example, two data fetch
commands and an “interrupt CP when done" com-
mand are written to the dtp_command FIFO 1610
in the command memory 190. Each data fetch
command contains the some address of the array,

its length, and its destination address in the data
cache memory. The data transfer processor mod-
ule 120 is then interrupted, and the control proces-
sor module 110 returns to its idle state.

(4) In response to the interrupt, the data transfer
processor module 120 leaves its idle state, and reads
the first command (and its parameters) from the
dtp_command FIFO 1510. The data transfer pro-
cessor module 120 checks the address where data is
to be fetched from, and identifies that it lies within
the VME address space. The data transfer proces-
sor module 120 then sets up the DMA controller
640 in the VME interface 160 to fetch the array and
write it in to the data FIFO 670 in the VME inter-
face 160. (Note that this is actually a hardware
FIFO, unlike the command queue FIFOs 1510 and
1520, which implement the first-in-first-out func-
tionality in software.) As this data arrives, the data
transfer processor module 120 reads the data from
the data FIFO 670, and writes it into the data cache
memory 140. When the transfer is completed the
dtp_command FIFO is checked to see what the
next command is (if any). In this case another fetch-
data command is found, and is executed in an iden-
tical fashion to the first fetch command. When this

5,329,630
107

is finished the next command is read and executed.

This command generates an interrupt in the control
processor module 110. The dtp_command FIFO
1510 is now empty, and the data transfer processor
module 120 returns to its idle state.

(5) The interrupt informs the control processor mod-
ule 110 that the two arrays it requested are now
stored in the data cache memory. Since the destina-
tion address of the result array is off—board, the
control processor module 110 allocates a tempo-
rary array in the data cache memory 140 to hold
the results. The CP module 110 now begins the
calculation process. During the calculation pro-
cess, intermediate data sets will be fetched from
cache memory 140 into the register files of the FP
module 130 (under control of the CP module 110);
the FP module 130 will perform numeric opera-
tions, running its own microcode and interfacing
with the CP module 110 at synchronization points;
and the intermediate data sets will be transferred
from the register files of the FP module into the
cache memory 140 (under control of the CP mod-
ule 110). Thus, when the vector multiply has been
completed, the results will be left in the array in
cache 140 which was previously allocated by the
CP module 110.

(6) The control processor module 110 then writes a
store-data command and an “interrupt host when
done” command to the to the dtp_command FIFO
1510. The store-data command specifies the source
address of the result array in ‘the data cache mem-
ory, the destination address (as specified in the
original command), and the array length. The data
transfer processor module 120 is interrupted. If the
cp_command FIFO is empty, the control proces-
sor module 110 returns to its idle state.

(7) In response to the interrupt, the data transfer
processor module 120 leaves its idle state, and reads
the first command (and its parameters) from the
dtp_command FIFO. The data transfer processor
module 120 checks the address where data is to be
stored, and identifies that it lies within the VME
address space. The data transfer processor module
120 then sets up the DMA controller 640 in the
VME interface 160 to transfer the correct number
of F_words from the data FIFO 670 to the VME
main memory. The data transfer processor module
120 reads the data from the data cache memory and
writes it into the data FIFO 670. When the result

array has been transferred into the data FIFO, the

108

At any time during the above process, the host could
write a new command and its parameters into the
command queue, and interrupt the data transfer
processor module 120. The DTP module would
then generate an interrupt request to the control
processor module 110 to notify it of the new com-
mand(s). If possible, their execution will preferably
be started as outlined above. This attempts to keep
the control processor module 110 and data transfer
processor module 120 fully occupied in processing
commands or transferring data, but care needs to
be taken so that unwanted interactions between
commands do not occur.

The data address assignments provide considerable
flexibility. Each of the interfaces 150, 160, and 170
(and the local data cache memory 140) is assigned
a range of addresses that can be accessed through
it. This allows the data transfer processor module
120 to control the correct interface to satisfy the

data requirements for the command, without re—
quiring separate command definitions for different
data source or destination locations.

In the example above, the commands originated from
a host on the VME bus, but they could as easily
have come from any of the interfaces (or have been
stored as part of a command list) with very little
change to the foregoing description. The VME
host was chosen as an example.

When the total array sizes required for a command
exceed the free storage in the data cache memory,
the control processor module 110 will attempt to
process the command within the available storage
space by dividing the command into a number of
smaller operations. However, for some types of
command this will not be possible, and the host will
be notified of the command’s failure.

If the host sends commands too quickly, the internal
software FIFOs may become full. To prevent this
affecting the overall operation, the following pre-
cautions are taken. First, the dtp_command FIFO
1510 is at least 3 times the depth of the cp_com-
mand FIFO 1520. Since one host command will
rarely result in more than three data transfer com-
mands, the dtp_command FIFO can never com-
pletely fill as a reSult of host commands.

When the cp_command FIFO reaches the nearly full
mark, a status bit in the VME interface is set.

VIRTUAL MEMORY MODEL

The virtual memory situation introduces a number of
complications which necessitates more work being
done in the host. These complications arise because the
application has access to a virtual address space that is
very much larger than the physical memory. The total
virtual address space exists only on disk, and the por-
tions of the address space which the active software
currently needs are paged into memory at run-time as
required. This can cause several types of problem:

An array, or parts of an array, may be only on disk,
and not present in physical memory. Furthermore,-
parts of an array needed by the accelerator subsys-
tem may be swapped out by to make room for

data transfer processor module 120 notifies the
DMA controller, and then waits until the DMA
controller has finished the transfer to the VME
memory.

(8) The dtp_command FIFO is not empty, so the
next command is read and executed. This is the

“interrupt-host-when-finished command. In re-
Sponse to this command, the status of the command
just completed is written to the command queue in
the VME interface memory, and a host interrupt is
generated. The interrupt notifies the host that its
vector multiply command has ended, and it can
read its status from the status register in the VME
interface 160. The data transfer processor module
120 then returns to the idle state. This completes
the operation.

There are several points to note regarding the above
description:

other tasks running in the system.
The physical address the array is assigned to is not

predictable, since it is a function of all the process-
ing history since the computer was started.

Each virtual memory access goes through a transla-
tion procedure to determine a physical address in

5,329,630
109

order to access a particular data item. This results
in arrays being non-contiguous in memory or scat-
tered.

To avoid these problems, the arrays need to be locked
in physical memory while the data transfer processor
module 120 is transferring them to/from the data cache
memory. Ideally, the arrays should be made contiguous.
If the arrays cannot be made contiguous, then the data
transfer processor module 120 must perform a scatter/-
gather operation as part of the transfer. However, it will
need a scatter/gather table to know where the data is
distributed in physical memory.

Preferably the application software (running on the
host) is given the job of organizing the transfer of data
to/from the accelerator subsystem, and handling the
memory management functions that go with this. (In
practice the application software would not have to
concern itself with most of these issues, as the math
library routines and a device driver would handle them.
The industry standard array processor library routines
leave it up to the user to move data to and from the
array processor (using library routines). The different
layers of software are described below, but at this point
no distinctions are among them.)

In the array multiply example described above, the
application software undertakes seven steps.

1) Transfer array A to accelerator subsystem and
store at address AA (performed by accelerator).

2) Transfer array B to accelerator subsystem and
store at address BB (performed by accelerator).

3) Wait for accelerator subsystem to finish the trans-
fers (performed by host).

4) Multiply the arrays at addresses AA and BB to-
gether and store the result at CC (performed by
accelerator).

5) Wait for accelerator subsystem to finish the multi-
ply command (performed by host).

6) Transfer array at address CC into host address
space (performed by accelerator).

7) Wait for accelerator subsystem to finish the trans-
fer (performed by host).

Some important points to note about this sequenceare:

Multiple commands can be sent to the accelerator
subsystem. These are queued up and processed.

The host injects synchronization points between the
transfers and the multiplication, to ensure that mul-
tiplication does not start until all the data is present
in the data cache memory.

The host is free to do other work instead of waiting
for the accelerator subsystem. However, the host’s

operating system will normally require an explicit
wait operation in order to synchronize with the
accelerator subsystem.

Note that steps c and e could optionally be omitted,
since the Synchronization of transfer and calcula-
tion operations can easily be done within the accel-
erator subsystem as an option. However, this is
incompatible with industry de facto standards.

Memory allocation of the data cache memory is han-
dled at a higher level than the CP microcode exec-
utive. ’

The arrays are locked in memory, and the data frag-
mentation issues are handled by the interface soft-
ware between the application and the accelerator
subsystem. The frequent synchronization (or wait)
points result in blocks of memory being locked for

55

60

65

110 .

shorter periods of time, which places less strain on
a multi-user or multi-tasking environment.

To execute a command the following steps occur:

(1) Host writes the command (transfer or calculation)
into the accelerator subsystem’s command queue
(maintained in the VME interface memory), speci-
fying the command type and the corresponding
number of parameters. After the command and its
parameters are added to the queue, the host gener~
ates an interrupt in the data transfer processor mod-
ule 120. The host is now free to do other work.

(2) On receiving the interrupt from the host the data
transfer processor module 120 suspends its current
activity-(either idling or some transfer) and exam-
ines the command type. The command can be one
of three types:
If the command is for the control processor module

110 (i.e. is a calculation), the command and its-
parameters are copied into cp_command FIFO
1520 in the command memory 190. An interrupt

is generated in the control processor module 110
to notify it of the command. The data transfer
processor module 120 returns to its previous
activity.

If the command is for the data transfer processor
module 120 (i.e. is a transfer request), then the
command and its parameters are copied into a
software maintained dtp_command FIFO in the
command memory. The data transfer processor
module 120 returns to its previous activity.

If the command is a synchronization command, no
further commands are taken from the queue until
all outstanding commands have been completed.
To implement this, a “wait for all and notify
host” command is inserted in the dtp_command
queue.

(3) While in the idle state the data transfer processor
module 120 is continually checking the dtp_com-
mand FIFO. When this queue it becomes “not
empty," the command is fetched from it and the
operation carried out. In the case of a transfer from
host memory into the data cache memory, for ex-
ample, the data transfer processor module 120 sets
up the DMA controller in the VME interface to
fetch the array and write it in to the data FIFO.
The data transfer processor module 120 reads the
data from the data FIFO and writes it into the data
cache memory. When the transfer has finished, the
DTP module 120 removes the command from the

dtp_command queue. If another command is in the
FIFO, it is executed; if the dtp_command queue is
empty the data transfer processor module 120 re-
turns to the idle state.

(4) In response to the interrupt, the control processor
module 110 leaves its idle state and reads the com-
mand and its parameters from the software cp—
command FIFO in the command memory. The
vector multiply of the arrays at addresses AA and
BB is completed and the resulting array is left at
address CC in the data cache memory. When the
command has been executed it is removed from the

cp__comrnand FIFO 1520. If no other command
exists the control processor module 110 returns to
its idle State.

There are several points to note from the above de-
scription:

There is much less internal control and synchroniza—
tion between the control processor module 110 and

5,329,630
111

data transfer processor module 120 than in the
physical memory model. The data transfer proces-
sor module 120 performs more of a control (or
command routing) function than the control pro-
cessor module 110.

There are three queues active, one for the host com-
munication, one for the DTP’s work, and one for
the CPS work.

If any calculation requires more storage than is avail-
able on the accelerator subsystem in the data cache
memory, then it is the host’s responsibility to split
the calculation up into smaller parts.

CP AND FP INTERACTION

The control processor module 110 and floating-point
processor module 130 interact very closely in order to
implement an algorithm. The control processor module
110 calculates addresses and handles the data transfer
between the data cache memory and the floating-point

processor module 130, while the floating-point proces-
sor module 130 does the data calculations. This interac-
tion is independent of the type of interface between the
control processor module 110, data transfer processor
module 120 and host computer.

In the vector multiply command the floating-point
processor module 130 calculates the vector multiplies,
eight elements at a time. Thus, for a large array, there
could be several thousand interactions (called synchro-
nization points) between the control processor module
110 and floating-point processor module 130. The syn-
chronization points, in this example, occur about every
400 ns and it is therefore very important to make them
efficient.

In most cases the control processor module 110 is
able to do the address calculations and data transfers

more quickly than the floating-point processor module
130 can do the data calculations. If the reverse is true,
then the waiting role is also reversed.

As discussed above, two flags (CPWAIT and
FPWAIT) control the synchronization between both
processors. The FPWAIT flag is cleared by the control
processor module 110 when it has transferred the next
set of data to or from the floating-point processor mod-
ule 130. By testing this flag the floating-point processor
module 130 can tell whether it can proceed through the

synchronization point or needs to wait for the control
processor module 110. The CPWAIT flag is cleared by
the floating-point processor module 130 when it has
finished the data calculations and is monitored by the
control processor module 110. The hardware is ar-
ranged so that when a flag has been cleared to allow a
processor through the synchronization point, it is auto-
matically set once the synchronization point has been
passed.

FIG. 22 is a state diagram which shows how the
FPWAIT, CPWAIT, FPDONE, and CPDONE flags
are used to regulate the data interface between the CP
module 110 and the FP module 130.

There have been many different implementations of
handshaking logic and semaphoring between proces— 60
sors. However, the state diagram shown in FIG. 22 is
very advantageous, and is believed to be novel.

The data transfers between the control processor
module 110 and floating-point processor module 130 are
double buffered, so that while the floating-point proces-
sor module 130 is working on one set of data the control
processor module 110 can be working on the other. The
double buffering is accomplished in software, as de-

112

scribed above. Both processors have signals to control
the swapping of the buffer, and these are “ANDed”
together so the swap only occurs when both are active.

The vector multiply will take place in the following
steps: (steps with the same number occur in parallel).
These steps are also schematically represented in the
flow chart of FIG. 33.

(l) The control processor module 110 sets the
FPWAIT flag, and starts the floating-point proces-
sor module 130 running the vector multiply micro-
code. The tloating-point processor module 130
waits for the FPWAIT flag to be cleared.

(2) The control processor module 110 transfers the
first 8 elements from both arrays into the double
buffer (which, physically, is provided by the two
banks of the register files 430, as described above).
The CP module then swaps the double buffer over
to give the floating-point processor module 130,
access to the data, and clears the FPWAIT flag.

(3) The control processor module 110 transfers the
next 8 elements from both arrays into the double
buffer and clears the FPWAIT flag. It then waits
for the CPWAIT flag to be cleared (by the float-
ing-point processor module 130).

(3b) The floating-point processor module 130, on
detecting the FPWAIT flag being cleared, starts
calculating the vector multiply for the 8 pairs of
elements stored on floating-point processor module
130 side of the double buffer. The 8 results are
written back into the double buffer and the
CPWAIT flag is cleared. In this example, the con-
trol processor module 110 has already finished and
cleared the FPWAIT flag, so the floating-point

processor module 180 can change the buffers over
and start the next set of calculations immediately.

(4a) The control processor module 110 transfers the 8
results from the double buffer into the data cache
memory and then transfers the next 8 elements
from both arrays into the double buffer and clears
the FPWAIT flag. It then waits for the CPWAIT
flag to be cleared (by the floating-point processor
module 130).

(4b) The floating-point processor module 130, on
detecting the FPWAIT flag being cleared, starts
calculating the vector multiply for the 8 pairs of
elements stored on its side of the double buffer. The
8 results are written back into the double buffer,
and the CPWAIT flag is cleared. In this example,
the control processor module 110 has already fin-
ished and cleared the FPWAIT flag, so the float-

ing-point processor module 130 can swap the buff-
ers over and start the next set of calculations.

(5) Steps (4a) and (4b) are repeated until the complete
vector multiply has been completed.

(6) At the end of step (5) the final set of results are still
stored on the FPS side of the double buffer, so the
control processor module 110 swaps the buffers
over and transfers the last results into the data
cache memory,

SOFTWARE HIERARCHY

In the operation of systems like that of FIG. 1, prefer-
ably the overall run time software environment is sepa-
rated into several very distinct levels. Some of the levels
exist because they are distinct modules of code that run
on separate processors, and other levels exist to divide
the different levels of interfacing required. All these
levels and the inter-level interfacing are under software

5,329,630
113

control, and can be changed if they do not fit into the
application’s requirements.

This software organization is generally quite conven-
tional. However, it is explicitly set out here to provide
a clear picture of the preferred use of the described
innovations.

FIGS. 44A, 44B, and 44C show the programming
environment of a system like that shown in FIG. 1.
Note that many of the functional blocks shown have
reference numerals corresponding to those of hardware
elements in other figures, but FIGS. 44A, 448, and 44C
are intended to show these blocks in the relation they

might appear to a programmer. Therefore, it should be
noted that these figures do not necessarily correspond
exactly to the actual electrical and logical connections.

Application And Library Software

The following description assumes that the applica-
tion software will be written in a high level language,

typically FORTRAN or ‘C’, and will call standard
library routines to use the accelerator subsystem. The
calls conform to the de facto industry standard (i.e. are

generally compatible with the instruction set of prod-
ucts from Floating Point Systems). They include rou-
tines to transfer data between the applications data area
and the accelerator subsystem’s data cache memory, a
wide variety of calculations, and some synchronization
routines.

The software at this level runs on the host computer

system and implements the desired application. It is
linked to the libraries to gain access to accelerator sub-
system.

The libraries are the interface to the accelerator sub-

system system that the application software sees. The
libraries consist of several hundred common arithmetic~

/algorithmic functions, as well as routines to initialize
the accelerator subsystem system and initiate data trans-
fers of the application’s arrays or data sets. Most library
routines will do little more that pass the input parame-
ters and a function number onto a device driver, but
some form of parameter validation could be imple—
mented if desired. In the presently preferred embodi-
ment the interface to the device driver is via system
calls. However, in some operating systems system calls
carry heavy overheads because the calling task is sub-
mitted for rescheduling.

Device Driver

The device driver can be considered as part of the

operating system, and runs at a more privileged level
than the application software. Its main responsibilitiesare:

1) Transferring the commands and parameters from
the library routines into the command queue main-
tained in the accelerator subsystem’s VME inter-
face memory. This entails some queue management
and handling of the situation when the queue is full

2) Making sure that any data to be transferred (in
virtual memory systems) is locked in memory. This
requires that the transfers have been split into con-
tiguous blocks and multiple small transfers have
actually taken place, or scatter/gather tables have
been built and given to the accelerator subsystem.

3) loading microcode into the multiple processors,
and generally bringing the hardware and micro-
code up to a known state (either after power-on, or
in preparation for a new application to use it).

114

One of the most difficult aspects of porting the librar-
ies and device driver onto a new host is the device
driver. These tend to be very operating-system specific,
and require an intimate knowledge of the host system.
Optionally, to avoid such problems, the libraries can
interface to the hardware directly, if physical memory
accesses are allowed. This bypasses the need for a
driver. This method of accessing the accelerator subsys-
tem will be much faster than using the device driver.
However, it will also be less secure, especially in a
multi-user environment.

Microcode Executive

The microcode executive handles the residue of tasks,
other than transfer and calculation, in the accelerator
subsystem. Its main tasks are communication with the
host, distribution of work between the control proces-
sor module 110 and data transfer processor module 120,-
and internal and external synchronization.

The executive is positioned on the other end of the
queue from the device driver, and takes work off the
queue. (This entails some queue management to ensure
that work is not taken from an empty queue.)

The level of complexity will decide on which proces-
sor(s) are used, and will depend largely on how much of
the work the host wants to, or can, offload onto the
accelerator subsystem. The description of the vector
multiply command with the physical and virtual mem-
ory models demonstrated the different approaches the
executive could take.

In a physical memory architecture, the executive is
split between the data transfer processor module 120
and the control proceSsor module 110. The data transfer
processor module 120 part does little more than com-
mand routing, because the host and control processor
module 110 cannot exchange information directly. The
control processor module 110 organizes the distribution
of work and the handshaking.

Note that this split is somewhat arbitrary. In an alter-
native (and less preferred) architecture, the control
processor module 110 could act as a slave processor to
the data transfer processor module 120, rather than the
other way around.

In the virtual memory model the data transfer proces-
sor module 120 was the master and the control proces-
sor module 110 acted as the slave. Most of the control

aspects are handled in the host so the DTP’s part of the
executive only concerns itself with command routing.
The control processor module 110 contributes a small
amount of queue management.

Microcode Transfer Routines (DTP)

These routines concern themselves with the transfer
of data between one of the external interfaces and the
data cache memory. The interface will primarily be to
the VME bus (and hence to the host memory).

Most of the transfers between the host memory and
the data cache memory will fit into a very narrow range
of different types, such as: contiguous block transfer;
transfer with scatter/gather collection; every nth word;
row/column 2-D array accesses.

Any types of transfers that do not fall into one of
these categories can easily be added as required. An
important point to nOte here is that a vector add will use
the same transfer routines as a vector multiply. This is
useful, as discussed above, since the data transfer rou-
tines (as opposed to the calculation routines) do not

5,329,630
115

have to distinguish between a vector add and a vector
multiply.

Microcode Transfer Routines (CP)

These routines concern themselves with the transfer
of data between one of the data cache memory and the
fast register files of the floating-point processor module
130.

Again, most of the transfers between the data cache
memory and the register files will fit into a small range
of different types, such as: one vector in, one vector out;
two vectors in, one vector out; one vector in, a scalar(s)
out. These transfer types can be further classified ac-
cording to their data type. The vectors could be simple
or complex data types, and there are a number of more
specialized transfer types (such as FFI‘, convolution,
etc.) that are more efficient if the general routines are
not used.

The important thing to note here is that the same
transfer routines can be used for different operations: a
vector add will use the same transfer routines as a vec-
tor multiply, for example.

Microcode Calculation Routines (FP)

For each calculation type, there is a routine to per-
form the eight (for example) adds, subtracts or what—
ever is necessary. The data transfers govemed by such
routines would be only those within the deser coupled
data path which includes the fast register files 430, the
multiplier 450, the adder 440, and the scratchpad mem-
ory 1610. (This data path also includes several looal
busses, including the first operand local bus 431, the
second operand local bus 432, the results local bus 433,
and the loopback connection 434.)

Again, many of the required routines fall into a small
number of standard data-format categories. One exam-

ple of such a category is diadactic vector operations
(two vectors in, one vector out; e.g. vector add or vec-
tor multiply). Thus, standard templates can be set up for
each calculation type within a category. This allows the
rapid production of FF microcode to implement many
of the basic vector operations.

As discussed above, a registered operation specifier
may be used to supplement the microcode operation
commands. This permits all the separate routines in a
category of calculation types to be formally written as a
single routine. In this case the control processor module
110 must load the operation register to specify the cal-
culation type.

COMPACTED MICROCODE

Note that the system described above has the capabil-
ity to use compacted microcode, wherein an operation
specifier held in a register can be combined with the
remainder of the microcode instruction. This is actually
used in the FP module 130, in the presently preferred
embodiment, as described above.

Such a compacted microcode is particularly advanta-
geous in a numeric processing portion of a multiproces-
sor subsystem. In this case, the use of Operation-Specifi—
er-compacted microcode helps to reduce the need for
overlaying operations.

Thus, for example, for operations which rapped two
arrays onto a third array (e.g. Ci=Ai+Bi), the instruc-
tion register could be loaded with an operation specifier
(e. g. “ADD”) before a sequence of such operations was
begun. The sequence of operations would then be stated
in code which did not specify the operation directly.

116

Thus, this capability for real-time expansion of micro-
code makes the interface between two microcoded

processors, in a multiprocessor system, much moreflexible.

This also greatly simplifies the bandwidth require—
ments of loading instructions into the numeric process-
ing portion. Thus, algorithm switching and re-partition-
ing of tasks generally become more efficient.

MULTIWAY BRANCHING

As discussed above regarding FIGS. 3A and 3B, the
present invention provides significant new capabilities
for multiway branching in microcoded systems. FIG.
30 schematically-shows the microcode operation used
in the presently preferred embodiment to provide multi-
way branching without address boundary constraints.

As described above, the present invention provides
an architecture for microcoded computer systems with
no address constraints on multiway branching. More-
over, the increment between alternative destinations is
variable. A sequencer with relative addressing capabil-
ity is used.

The presently preferred embodiment uses the pro-
gram counter as an input to the jump destination. This is
different from many previous implementations of multi-
way branching, where the base destination address is
supplied from a different source.

DISCRETE FOURIER TRANSFORM
IMPLEMENTATION

FIG. 31 diagrammatically shows some key features of
an innovative implementation of a discrete integral
transform. In this example, the transform being imple-
mented is a fast Fourier transform (FFT).

The example shown is a 16 point radix—2 complex
FFT. Of course, real-world FFT implementations will
use many more data points, but this example dearly
shows some important points. An n-point FFT nor—
mally requires logzn stages, so that a 1024-point FFI‘
would require 10 stages. Each stage requires n/2 butter-
fly calculations to be performed.

The butterfly calculation is given by:
r0 = r4 + [(r6‘r8) + (r7“r9)]
r1=r5+{(r7“r8)—(r6‘r9)}
r2 =r4 — [(r6‘r8) + (r7*r9)]
r3 =r5 — {(r7‘r8) -— (r6*r9)},

where:

r0 and r1 are the real and imaginary parts of result C
r2 and r3 are the real and imaginary parts of result D
r4 and r5 are the real and imaginary parts of input A
r6 and r7 are the real and imaginary parts of input B
r8 and r9 are the real and imaginary parts of coeffici-

ent it.

(Note that the subexpressions enclosed in square brack-
ets [] are formally identical, and the subexpressions
enclosed in curly brackets {} are also formally identical)

FIG. 31 represents a four-stage FFT operation dia-
grammatically, with each circle representing one but-
terfly calculation. The lines connecting to the left of
each circle show where the complex input samples (A
and B) to the butterfly calculation come from, and the
lines connecting to the right indicate where the com-
plex results (C and D) are written to. The numbers
within the circles are the complex phase coefficients
“k”.

In the presently preferred embodiment of this
method, the FFT algorithm is implemented by being
partitioned, in an architecture like that shown in FIG. 1,

5,329,630
117

between the control processor module 110 and floating-
point processor module 130. As FIG. 31 shows, the
address calculations are not insignificant, especially
where a large number of data points is needed, The
control processor module 110 performs the address
calculations, to provide the correct stream of data sam-
ples and phase coefficients for the butterfly calculations.
The butterfly calculations are actually performed by the
floating-point processor module 130.

The shaded bars marked on some of the data points,
at each stage, show the innovative data handling pro—
vided by this embodiment. The shaded bars shown at
each stage show one intermediate set of data transfers.
Thus, for example, at the very beginning of the process,
8 complex words (C_words) of input data are loaded
in. This amount of data provides sufficient input to
perform four butterfly calculations. (Coefficients must
also be provided.) The shaded bars indicate that (for ,
example) for the first set of four butterflies, C__words
X0, X1, X2, X3, X4, X8, X9, X10, and X11 would be
loaded in. Four butterfly calculations are performed,
and eight C-words of result are then transferred out. In
addition, loading the correct set of phase coefficients
may require some additional transfers. (Only one phase
coefficient is used at the first stage, but note that the
number of different phase coefficients k doubles at each
stage.) Thus, at least four full cycles of bus 144 will be
required for each set of four butterflies: two full cycles
to bring in eight C_words of input, and two full cycles
to remove eight C_.words of results. (In addition, a fifth
major cycle may be necessary to transfer in the coeffici-
ents.)

Eight C..words is equal to 512 bits, or sixteen F__.
words, so it may be seen that this is a quite significant
block of data. However, this method has proven to be
an advantageous way to make u5e of the high-band-
width interface provided by the presently preferred
embodiment.

Moreover, transferring data in blocks of this size
turns out to work very well with the CP/FP handshak-
ing logic used at synchronization points.

Thus, the FFT software is partitioned into two parts:
The control processor module 110 runs software

running which calculates the address of the com-
plex data, and the phase coefficient position in a
table sequence, as a function of the stage and but—
terfly numbers. Once the addresses have been cal-
culated, the process running in the control proces-
sor module also controls the transfer of the data
and coefficients into the floating-point processor
module 130. When the floating-point processor
module 130 has completed the butterfly calcula-
tions (and sets flags to indicate that it is at a syn-
chronization point), the control processor module
110 reads the results and saves them. Note that the

control processor module 110 has no knowledge of
the butterfly calculation; it merely interchanges
data with the floating-point processor module 130
at synchronization points.

The FP module 130 runs software which calculates
the butterfly by a simple linear sequence of instruc-
tions that implements the equations as defined
above. This routine does not need to take account

of the complicated address calculations needed to
provide the correct input data and coefficients.
This routine can therefore be written in total isola-
tion from the software running on the CP module
110.

118

An advantageous feature of this partition is that the
FP procedure at each stage can be exactly the same,
until the last two stages. (The butterfly calculations
preformed during the last two stages use C_word in-
puts which fall more closely together, so that some
intermediate results can be carried forward inside the
FP, as data held in register 430.)

This example also demonstrates the capability for
processor independence. The procedures executed by
the FP module 130 are so simply defined that, if the
floating-point processor module 130 were redesigned
around a different calculation unit chip set, then only
this simple butterfly routine would require changing.
This may well be confined to a re—assembly operation.

The execution of the CP and FF software occurs in

parallel and is pipelined so that the speed at which an
algorithm runs is determined by the slowest part.

Note that the FP instruction sequence, in implement- ‘
ing this butterfly calculation, remains the same for all
except the last two butterflies in the FFT. Thus, for
example, in a 1024-point complex FFT, the FP module
would execute the same instruction sequence 512, to do
the calculations for the first eight stages. Only then
would the FFT begin running a different instruction
sequence, for the last two stages.

FFT with Multiple FP Modules

Alternatively, a particularly attractive configuration
is a system, like that shown in FIG. 10, which contains
four FP modules 130.

There are two key factors which affect performance:
the butterfly calculation time, and the data transfer
bandwidth to the “butterfly calculator” (e.g. the FP
module 130). The achieved performance is determined
by whichever of these parameters is not met. The fol-
lowing sample calculation relates to a 1K complex
FFT, radix 2.

Butterfly Calculation Throughput

The basic radix 2 FFT butterfly equations consist of
ten operations (4 multiplies and 6 add/subtracts) when
partial results can be reused. With a system like that of
FIG. 1 (or FIG. 10) this calculation takes 10 cycles,
because the equations don’t lend themselves to using the
ALU and Multiplier in parallel. Using a 42 ns cycle
time, the butterfly calculation will take 420 ns. The true
cycle times of 28 ns for the 6 ALU Operations and 42 us
for the four multiplies (3 30 us in total) have been dented
to 400 ms for this estimate, to cover overheads such as

synchronization, pipeline startup, etc. Thus, one FP
module 130 can calculate a butterfly in 400 ns.

Transfer Bandwidth

Each radix 2 butterfly calculation requires 2 complex
samples, and a complex coefficient (or twiddle factor).
It produces 2 complex results. In total 5 complex num-
bers or ten floating point words need to be transferred
per butterfly between the data cache memory 140 and
the FPU. The cache memory bandwidth is 320,Mbytes
per second, or 80M floating point words per second.
This data rate is only achieved when 8 consecutive
words can be transferred in one memory cycle (100 us).
However, when executing an FFT this can always be
done. The most efficient way to use the memory band-
width is to transfer data for 4 butterflies per memory
cycle. Thus four butterfly calculations require 5 mem-
ory transfer cycles.

5,329,630
119

A 1K complex FFT (radix 2) contains 5120 butter~
flies. The minimum time permitted by the data transfer
rate for this FFI‘ is therefore given by:. (5120/4)*5*100
ns=640 microseconds.

However, this throughput estimate must be modified,
by considering the effect of the last two stages. Each
data set (8 C_words) of results from a set of four butter-
fly calculations at stage n—2 is sufficient to calculate 4
butterflies for stage n and 4 butterflies for stage n+1,
without returning the intermediate results back to mem-
ory. An additional set of coefficients will, however, be
needed for the second stage. The net result of this is that
8 butterflies can be calculated with only 6 memory

cycles. (This technique is further described at pages 577
and 599 of L. Rabiner and B. Gold, Theory and applica—
tion of digital signal processing.)

A 1K complex FFT (radix 2) contains 5120 butterflies
so the minimum time as governed by the data transfer
rate with this two stage FFT algorithm is:
(5120/8)‘6"100 ns=384 microseconds.
This time is less than the estimated transfer time of 400
microseconds. Therefore, the available memory band-
width is well matched to a set of four FP modules work-

ing together to achieve an FFT in 400 microseconds.
There are several techniques that can be used to re-

duce the bandwidth requirements further:
1. The number of different coefficients used within a

stage varies. For example stage 1 uses 1 coefficient
value for all butterflies, stage 2 uses 2 coefficients,

stage 3 uses four coefficients, etc, and stage 10 uses
512 coefficients.

For the earlier stages, there are big savings to be
made in the memory bandwidth by initializing the coef-
ficients at the beginning of the stage and not on every
butterfly.

2. If four FFTs are performed in parallel (so that each
of four FP modules 130, in a single accelerator

subsystem, is used to calculate a separate FFT,
rather than one quarter of one FFT, then the coef-
ficients can be broadcast to all four FPs. This re-
duces the memory bandwidth used by the coeffici-
ent part of the transfers.

. The two stage butterfly calculation can be ex-
tended to three or four stages, the limiting factor

being the size of the FPS register files to hold the
new data, the current data, and any intermediate
storage. For example, a four stage algorithm re-
quires 16 samples and 8 coefficients, and produces
16 results after 32 butterfly calculations. This gives
a ratio of 10 memory cycles per 32 butterflies,
which will allow the cache memory bandwidth to

support an FFT calculation every 160 microsec-
onds

All these ideas can be used with a radix 4 or radix 8
FFT if desired. In fact, the very wide cache bus archi-

tecture provided may be particularly advantageous
with higher-radix algorithms.

It should also be noted that other integral transforms
can be similarly partitioned into stages of multiple but-
terfly calculations, although the butterfly definitions
and the relations of the stages may be different. Thus,
the foregoing teachings regarding data manipulation
can be applied to other discrete integral transforms as
well.

120

HISTOGRAM ALGORITHM
IMPLEMENTATION

FIG. 32 shows a method of running a histogram

5 algorithm, in hardware like that shown in FIG. 16.
As FIG. 16 shows, the data path, in the calculation

portion of the numeric processor subsystem 130, prefer-
ably includes not only a multiplier 440 and an adder 450,
but also a scratchpad memory 1610 which is very
closely coupled to this portion of the data path. (This
memory includes address logic 1611.)

This scratchpad memory 1611 gives the module 130
the ability to calculate an address and fetch the data
locally. Without the memory 1610, the FP module 130
would have to give the address to the CP module 110,
which in turn would do the lookup function and return
the result back to the FP module 130. Note that this
would require significant additional handshaking, .
which would be very inefficient. Thus, the architecture
of this small—scale data-path portion also cooperates
advantageously with the large-scale data-handling ar-
chitecture used for interface to the numeric processing
module, as described above.

In the presently preferred embodiment, the scratch-
pad memory 1610 can be used in three ways: it can be
used as a table memory, for algorithms such as calcula-
tion of transcendental functions; it can be used as a local
stack; or it can be used in histogram algorithms, to
collect results.

The ability to use this scratchpad memory as a stack
is particularly advantageous, since this permits the data
interface, at the edge of the calculation portion of the
subsystem, to be defined in a way which is very advan-
tageous for the overall architecture, without requiring
that the register files at that interface be capable of
utilization as a stack.

Compilation of routines from common high-level
languages (such as FORTRAN) into microcode is im-
portant way of generating microcode programs. Com-
pilation of vector operations into efficient microcode is
relatively easy. However, there will nearly always be a
significant fraction of scalar operations as well, and
compilation of these is a significantly trickier.

It has been discovered that compilation of scalar
routines into microcode proceeds particularly well if a
stack-based architecture can be used as the virtual ma-
chine. (The conventional procedure for doing this uses
translation into reverse Polish logic.)

The use of this scratchpad memory to accumulate
results is particularly advantageous with histogram
algorithms. When histogram algorithms are run, the
histogram data can be accumulated in the table mem—
ory. This avoids adding access load to the data cachebus.

The use of a closely coupled local memory to collect
histogram data is particularly advantageous in image
processing algorithms. Many known image processing
algorithms use histogram computations, but the massive
volumes of data which must be handled means that
cache bandwidth is at a premium. This innovative
teaching helps make the use of histogram algorithms
more useful.

FIG. 32 shows a simple example of a fairly typical
histogram procedure which is applicable to many image
processing problems. Note that the histogram table is
accessed at every iteration of the inner loop of this
procedure. Therefore, providing a Very closely coupled
storage for the histogram table will tremendously re-

5,329,630
121

duce the bandwidth requirements for a procedure of
this kind.

PIPELINED ALGORITHM WITH PREVIEW

A significant teaching contained herein is a method of
running a pipelined algorithm, using a software-con—
trolled double buffer with a preview mode to maintain
average throughput through synchronization points.

FIG. 33 shows a method of running a pipelined algo—
rithm, in hardware which includes a software-con-
trolled double buffer like that shown in FIG. 20.

As noted above, the use of a software-controlled
double buffer is very useful in crossing a clock bound-
ary between high-speed calculation units and a higher
level of control. However, it should be noted that the

advantages of a software-controlled double buffer ex-
tend to a very wide variety of pipelined algorithms.

The preferred subsystem for double buffering uses a
dual port memory, partitioned in software so that the
top half of the memory is allocated to one processor,
and the bottom half to the other. (This allocation is
switched when both processors set reSpective flag bits
indicating that they are ready to switch.)

0n accesses to this memory, additional bits tag the
access as “physical,” “logical,” or “preview.” A physi-
cal access is interpreted as a literal address within the
full memory, and the double buffering is ignored. A
logical access is supplemented by an additional address
bit, determined by the double buffering switch state.

A preview access is used for read access only, and
goes to the opposite bank of memory from that which
would be accessed in a logical access. The use of pre-
view access can be particularly advantageous in avoid-
ing data flow inefficiencies at synchronization points in
pipelined algorithms.

For example, if the standard double buffering tech-
niques were used in a system like that shown in FIG. 1,
it would be necessary to refill the data pipeline after
every swap and empty it before. In this sample embodi-
ment, a simple vector operation require the floating.
point processor to do 8 calculations for each buffer’s
worth of data. This means that three cycles of overhead
are used, to fill and empty the pipeline, for every eight
words of data. Obviously, this adds a high percentage
on to the overall average processing time.

One of the innovative teachings set forth herein is
that “soft” double buffering can be used to overcome
this problem. The preview mode (described above)
allows one port to preview the data in the other half
before it is swapped. This later mode provides a means
for the floating-point processor pipeline to be kept full
when the control processor has finished its work and is
waiting to swap buffers before continuing.

Preferably double buffering is used in a register file at
the interface between a numeric processor and a large
data cache memory in a multiprocessor system. The
partitioning of the register file avoids data collisions in
the cache memory 14-0.

In this sample embodiment, a 5—ported register file
430 is used to implement the memory for the double
buffer. However, a wide variety of other implementa-
tions could be used instead.

This innovation provides much greater flexibility
than conventional systems which perform double buff-
ering in hardware, at no loss in speed.

In particular, the “preview” mode permits this dou-
ble-buffering implementation to be used as a versatile
interface architecture in many pipelined environments.

5

50

65

122 _

FACTORS LIMITING PERFORMANCE

There are six fundamental factors that can limit maxi-

mum performance. They are:
The I/O bandwidth (which in the presently preferred

embodiment is 40 Mbytes per second);
The data cache memory bandwidth (which in the

presently preferred embodiments 320 Mbytes per
second);

The data transfer rate between the floating-point

processor module 130 holding registers and the
register file. This is currently less than the data
cache memory bandwidth.

Address calculation rate (which in the presently pre-
ferred embodiments typically 10 million per sec—
ond, but this is very dependent on the algorithm
being run). _

The sustained floating point calculation rate. In the
presently preferred embodiment, for a single preci-
sion ‘add’ this is less than 28 ns cycle time (and

likely to improve as faster components become
available), and for a single precision multiply it is
less than 42 ns cycle time.

The number of numeric processing modules used in
parallel.

Performance Assessment

The factor which determines the performance for a

particular algorithm depends very much on which of
the following conditions apply:

Where the source data and results are stored: The

best performance is achieved when the data is
stored in the data cache memory. If the data is
stored off-board, then it is very likely that the data
I/O transfer rate will be the limiting factor. The
achievable 1/0 rate will usually be determined by

the peripherals involved and the type of transfers
supported (single or block). An I/O rate of 40
Mbytes per second will limit the calculation rate to
3.3 Mflops, for a calculation where three numbers
are involved in every calculation.

The ratio of data to arithmetic operations. This deter—
mines whether the floating point calculation rate or
the data transfer rate is the bottle-neck. Algorithms

which require relatively little data for the mount of
calculations (e.g. FFTs) will be limited by the float-
ing-point processor module 130 speed. An example
of an algorithm that is data transfer limited is vec-
tor add which requires 3 data values per arithmetic
operation.

The layout of data in data cache memory: The maxi-
mum transfer rate between the data cache memory

and the floating-point processor module 130 is only
achievable when 8 contiguous F_words (i.e. float-
ing-point words, of 32 bits each) are transferred
together. If the data for an algorithm cannot make
use of this block transfer ability, then the net data
transfer rate will drop.

_______________—_——————-
Number Of F words Transfer rate________.___———-—————

8 80 MF_words per second
4 40
2 20
l 10—________.———-—_-—

5,329,630
123

Most algorithms can make use of the higher transfer
rates. (In fact, even the FFT can make use of higher
transfer rates, as discussed above.)

Overlapped operations: This allows off-board 1/0
transfers to occur in parallel to the floating point
calculations. If the algorithms (or sequence of algo-
rithms) can use this facility then the relatively slow
I/O transfer rate might not effect the overall calcu-
lation rate.

Multiple FPs: When an algorithm is calculation
bound and not limited by the memory or I/O band-
width then multiple FPs can give a multiple of the
single floating-point processor module 130 perfor-
mance, providing the memory bandwidth is not
exceeded. For example, with 4 FPS there is no
increase in the vector add performance but an FFT
is calculated 4 times faster.

As will be appreciated by those skilled in the art, the
innovations disclosed herein can be applied in a wide
variety of contexts, and are subject to a wide range of 20
modification and variation. Therefore, the full scope of
claimed patent protection is not defined by any of the
sample embodiments set forth herein, nor by any state-
ments made herein concerning those embodiments, but
is defined solely by the claims appended hereto.

What is claimed is:

l. A subsystem for double buffering, comprising;
first and second interface ports;

a dual port memory having first and second parts;
a memory access controller, which

is connected to receive one or more bank-switch
request signals, and

maintains an allocation of said two parts of said
memory between said interface ports, and condi-
tionally changes said allocation in accordance
with said bank-switch signals, and

is connected to receive-a mode signal, and
is connected and configured to arbitrate access to said

two parts of said memory from said interface ports,
in accordance with said allocation and with the
mode selected by said mode signal, such that:

when a first mode has been selected by said
mode signal, any part of said memory may be
read or written to by either of said ports, re-
gardless of said allocation; and

when a second mode has been selected by said
mode signal, each said port can read or write
to only the respective part of said memory
defined by said allocation; and

when a third mode has been selected by said
mode signal, said memory access controller
arbitrates access to said two parts of said mem~
ory from said interface ports such that each
said port can read the opposite part of said
memory, which said allocation has assigned to
the other respective one of said ports.

2. A subsystem for double buffering according to
claim 1, wherein said memory access controller is con-
nected to reverse said allocation upon receipt of a first
bank-switch request corresponding to said first port and
a second bank-switch request corresponding to said
second port.

3. A subsystem according to claim 1, further compris-
ing means associated with said memory access control-
ler for reversing said allocation upon receipt of a first
bank-switch request corresponding to said first port and
a second bank-switch request corresponding to said
second port.

124

4. The subsystem of claim 1, wherein said access
controller can receive said mode signal from either of
said ports.

5. The subsystem of claim 1, wherein, when said
second mode has been selected, said access controller

generates an address bit which is supplied to said dual—
port memory at a predetermined address bit position for
access thereto.

6. A system comprising:
a first processor and a second processor, connected

and programmed to operate concurrently and
asynchronously;
subsystem for double buffering, which includes:
first and second interface ports; a dual port mem-

ory connected to be accessible through said first
and second ports and which comprises first and
second parts; and a memory access controller,
which ,
maintains an allocation of two parts of said mem-

ory between said interface ports, and
is connected to receive a mode signal, and
is connected and configured to arbitrate access to

two parts of said memory from said interface
ports, in accordance with said allocation and
with the mode selected by said mode signal, such
that:
when a first mode has been selected by said

mode signal, any part of said memory may be
read or written to by either of said ports, re-
gardless of said allocation; and

when a second mode has been selected by said
mode signal, each said port can read or write
to only the respective part of said memory
defined by said allocation; and

when a third mode has been selected by said
mode signal, said memory access controller
arbitrates access to said two parts of said mem-

ory from said interface ports such that each
said port can read the opposite part of said
memory, which said allocation has assigned to
the other respective one of said ports; and

wherein said memory controller is connected to arbi-
trate access to said first and second ports between
said first and second processors, and is connected
to receive one or more bank-switch signals from
one or more of said processors and alter said alloca-
tion accordingly.

7. The system of claim 6, wherein said first processor
and said second processor are connected and pro-
grammed so that said first processor can perform ad-
dress calculations for an algorithm concurrently while
said second processor executes data calculations for the
algorithm.

8. The system of claim 6, wherein said first processor
is a control processor and said second processor is a
numeric processor; and wherein said memory com-
prises a cache memory which contains at least a mega-
byte of memory and is not on the same chip as said
numeric processor; and wherein said cache memory is
operativer connected to said numeric processor
through a high-bandwidth data bus which has a physi-
cal net width of more than 128 data lines.

9. The system of claim 8, wherein said data bus has a
net bandwidth which is at least 3 times larger than the
maximum net bandwidth between said numeric proces-
sor and the host system.

10. The system of claim 9, wherein said data bus has
more than 4 times as many physical lines as the number

5,329,630
125

of bits in the standard word width of Operations in said

numeric processor, connecting said numeric processor
to said data cache memory.

11. The system of claim 9, wherein said data bus has
at least four times as many physical lines as the number
of bits of the data resolution of the highest-precision
instruction in the instruction set of said numeric proces-
sor into said data cache memory.

12. The system of claim 9, further comprising at least
one data cache memory expansion module, which is
connected to said high-bandwidth bus in parallel with
said data cache memory and said numeric processor,
and which is configured to extend the memory space of
said data cache memory.

13. The system of claim 12, wherein said memory
expansion module is mounted on a subboard which does
not include said data cache memory.

14. The system of claim 12, wherein said memory
expansion module is mounted on a first subboard which
does not include said data cache memory, and wherein
said numeric processor is mounted on a second sub-
board which does not include said data cache memory,
and said first and second subboards are both connected
to said bus at an expandable connector stack.

15. A method of using a computer system which
includes first and second processors corrected and pro-
grammed to operate concurrently and asynchronously,
comprising the steps of:

providing a dual-port memory having first and sec-
ond parts, a memory access controller which is
connected to arbitrate access to said first and sec-
ond parts of said dual-port memory between said
first and second processors, and which maintains
an allocation of two parts of said dual-port memory
between said processors, and which is connected to
receive a mode signal, and which is connected to
receive one or more bank—switch signals, and
which is connected to receive access requests from

said processors, and which arbitrates access by said
processors to said two parts of said memory, in
accordance with the mode selected by said mode

signal and in accordance with the allocation, such
that: when a first mode has been selected by said
mode signal, any part of said memory may be read
or written to by either of said processors, regard-
less of said allocation; and when a second mode has
been selected by said mode signal, each said pro-
cessor can read or write to only the respective part
of said memory defined by said allocation; and
when a third mode has been selected by said mode

signal, such that each said port can read the oppo-
site part of said memory, which said allocation has
assigned to the other said port;

providing a multiprocessing program which includes
synchronization points;

providing input data to be operated on in accordance
with steps of said program;

executing a first set of steps of the program on said
first processor, and concurrently, executing a sec-
ond set of steps of the program on said second
processor, data inputs and outputs of said proces-

15

20

55

60

65

126

sors being connected to provide a pipelined data
flow;

operating said access controller primarily in said sec-
ond mode thereof, so that said first processor reads
and writes primarily to said first part of said mem-
ory and said second processor reads and writes
primarily to said second part;

and, when both said processors have reached respec-
tive synchronization points in said respective pro-
gram steps, reversing said allocation of said parts of

. said address space between said first and second
processors;

wherein, prior to said step of reversing the assign-
ment, at least said first processor reads at least some
data from said memory in said third mode; and

providing an output corresponding to the results of
said program steps on said input data.

16. A subsystem for double buffering, comprising:
first and second interface ports;

a dual port memory which comprises first and second
parts and which is accessible to said first and sec-
ond ports;

a memory access controller, which
is connected to receive one or more bank-switch

request signals, and maintains an allocation of
said two parts of said memory between said in-
terface ports, and conditionally changes said
allocation in accordance with said bank-switch
signals, and

is connected to receive a mode signal, and
is connected and configured to arbitrate access to

two parts of said memory from said interface
ports, in accordance with the mode selected by
said mode signal, such that:
when a first mode has been selected by said

mode signal, any part of said memory may be
read or written to by either of said ports, re-
gardless of said allocation;

when a second mode has been selected by said
mode signal, each said port can read or write
to only the respective part of said memory
defined by said allocation;

when a third mode has been selected by said

mode signal, said memory access controller
arbitrates access to said two parts of said mem-
ory from said interface ports such that each
said port can read the opposite part of said
memory, which said allocation has assigned to
the other respective one of said ports. '

17. The subsystem of claim 16, wherein said access
controller can receive said mode signal from either of
said ports.

18. The subsystem of claim 16, wherein, when said
second mode has been selected, said access controller

generates an address bit which is supplied to said dual-
port memory at a predetermined address bit position foraccess thereto.

19. The subsystem of claim 16, wherein, when said
third mode has been selected, said access controller

generates an address bit which is supplied to said dual-
port memory at a predetermined address bit position for
access thereto. I t t t t

