
A Host Interface Architecture for High-Speed Networks 

Peter A. Steenkistea, Brian D. Zilla, H.T. Kunga, Steven J. Schlicka, Jim Hughesb, 
Bob Kowalskib, and John Mullaneyb 

a School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 
PA 15213-3890, USA 

b Network Systems Corporation, 7600 Boone Avenue North, Brooklyn Park, MN 55428, USA 

Abstract 
This paper describes a new host interface architecture for high-speed networks operating 

at 800 of Mbit/second or higher rates. The architecture is targeted to achieve several lOOs 
of Mbit/second application-to-application performance for a wide range of host architectures. 
The architecture achieves the goal by providing a streamlined execution environment for the 
entire path between host application and network interface. In particular, a acommunication 
AcceleratorBlock0 (CAB)isusedtominimizedatacopies,reducehostinterrupts,supportDMA 
and hardware checksumming, and control network access. 

This host architecture is applicable to a large class of hosts with high-speed I/O busses. Two 
implementations for the 800 Mbit/second HIPPI network are under development. One is for a 
distributed-memorysupercomputer(iW arp )and theotheris forahigh-performanceworkstation 
(DECstation 5000). We describe and justify both implementations. 

Keyword Codes: B.4.1; C.2.1 
Keywords: Data Communications Devices; Network Architecture and Design 

1 Introduction 

Recent advances in network technology have made it feasible to build high-speed networks 
using links operating at 100s of Mbit/second or higher rates. HIPPI networks based on 
the ANSI High-Performance Parallel Interface (HIPPI) protocol [1] are an example. HIPPI 
supports a data rate of 800 Mbit/second or 1.6 Gbit/second and almost all commercially 
available supercomputers have a HIPPI interface. As a result, HIPPI networks have become 
popular in supercomputing centers. In addition to HIPPI, there are a number of high-speed 
network standards in various stages of development by standards bodies. These include ATM 
(Asynchronous Transfer Mode) [2] and Fibre Channel [3]. 

Asnetworkspeeds increase, it isimportantthathost interfacespeeds increaseproportionally, 
so that applications can bene<Et from the increased network performance. Several recent 
developments should simplify the task of building host interfaces that can operate at high 
rates. First, most computer systems, including many workstations, have I/O busses with 
raw hardware capacity of 100 MByte/second or more. Second, existing transport protocols, 

DEFS-ALA0009962 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


in particular Transmission Control Protocol/Internet Protocol (TCP/IP), can be implemented 
ef&:iently [4, 5]. Finally, special-purpose high-speed circuits, such as the AMCC HIPPI chip 
set, can be used to handle low-level, time-critical network interface operations. 

However, these elements do not automatically translate into good network performance for 
applications. The problem is that the host interface involves several interacting functions such 
as data movement, protocol processing and the operating system, and it is necessary to take a 
global, end-to-end view in the design of the network interface to achieve good throughput and 
latency. Optimizing individual functions is not suf&:ient. 

W ehavedesignedahost-networkinterfacearchitectureoptimizedtoachievehighapplication
to-applicationthroughput. Our interface architecture is based on a CommunicationAccelerator 
Block (CAB) that provides support for key communication operations. The CAB is a network 
interface architecturethatcanbeusedforawiderangeofhosts,asopposedtoan implementation 
fora speci&:host. TwoCAB implementationsforHIPPinetworksareunderdevelopment. One 
is for the iWarp parallel machine [6] and the other one is for the DEC workstation using the 
TURBOchannel bus [7]. These two CAB implementations should allow applications to use a 
high percentage of the I 00 MByte/second available on HIPPI. The interfaces will be used in 
the context of the Gigabit Nectar testbed at Carnegie Mellon University [8]. The goal of the 
testbed isto distributelarge scienti@tapplicationsacrossa numberofcomputersconnectedby a 
high-speed network. The network tram will consist of both small control messages for which 
latency is important, and large data transfers, for which throughput is critical. 

In the remainderof the paper we ®:-st discuss the requirementsforthe host interface (Section 
2). We then present the motivation and hardware and software architecture of the CAB-based 
interface(Section3) andthe design decisionsforthe twoCAB implementations(Sections4 and 
5). We conclude with a comparison with earlier work. 

2 Requirements for a Network Interface Design 

Inlocalareanetworks,throughputandlatencyistypicallylimitedbyoverheadonthesending 
and receiving systems, i.e. it is limited by CPU or memory bandwidth resource constraints on 
the hosts. This means that the ef&:iency of the host-network interface plays a central role. 
Consuming fewer CPU and bus cycles will not only make it possible to communicate at higher 
ratessincethecommunicationbottleneckhasbeenreduced,butforthesamecommunicationload 
morecycleswillbeavailablefortheapplication. Ef&:iencyiscriticalbothforapplicationswhose 
only task iscommunication( e.g. ftp )and forapplicationsthat are communicationintensive, but 
for which communication is not the main task. 

Since host architecture has a big impact on communication performance, we considered the 
communication bottlenecks for different classes of computer systems. A ®:-st class consists of 
workstations, currently characterized by one or a few CPUs, and a memory bandwidth of a few 
I 00 MByte/second. Existing network interfaces typically allow these workstations to achieve 
a throughput of a few MByte/second, without leaving any cycles to the application. Some 
projectshave been successful at improvingthroughputover FDDI,but these effortsconcentrate 
onachievingupto I 00 MB it/ secondforworkstations only [9]. Thiscommunicationperformance 
is not adequate for many applications [1 O]. 

General-purpose supercomputers such as Cray also have a small number of processors 
accessing a sharedmemory. They havehowevera veryhighmemoryand computingbandwidth 
and they have I/O subsystems to manage I/O devices with minimal involvement from the CPU. 
These resources allow them to communicate at near gigabit rates while using only a fraction of 

DEFS-ALA0009963 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


their computing resources [5]. 
Special-purpose supercomputers such as iWarp [6] and the Connection Machine [11] have 

a very different architecture. Although these systems have a lot of computing power, the 
computingcycles are spread out over a large number of relatively slow processors, and they are 
not suited to support communication over general-purpose networks. A single cell (for iWarp ), 
or a front-end (for CM) can do the protocol processing, but the resulting network performance 
will match the speed of a single processor, and will not be su-f\&:ient for the entire system. The 
issue is the e-f\&:iency of the network interface: can we optimize the interface so that a single 
processor can manage the network communication for a parallel machine? 

Our goal is to de:IDne a "Communication Acceleration Block" that can support e-f\&:ient 
communication on a variety of architectures. Speci@:tally, this architecture must have the 
following properties: 

1. High-throughput, while leaving sujEcient computing resources to the application. The 
goal is to demonstrate that applications on high-performance workstations can achieve 
several 100 Mbits/second end-to-end bandwidth. It is not acceptable to devote most of 
the CPU and memory resources of a host to network related activities, so the network 
interface should use the resources of the host as e-f\&:iently as possible, and brute-force 
solutionsthatmightworkforsupercomputersshouldbeavoided. Theexactperformance 
will depend on the capabilities of the host. 

2. Modular architecture. The portions of the architecture that depend on speci@:t host 
busses (such as TURBOchannel) and network interfaces (such as HIPPI), should be 
contained in separate modules. By replacing these modules, other hosts and networks 
can be supported. For example, by using different host interfacing modules, the CAB 
architecture can interface with the TURBOchannel or to an iWarp parallel machine. 

3. Inherently low-cost architecture. The host interface should cost only a small fraction 
of the host itself It is essential that eventually the host interface can be cheaply 
implemented using ASICs, similar to existing Ethernet or FDDI controller chips. 
Early implementations may be more expensive, but the interface architecture should 
be amenable to low-cost ASIC implementation. 

4. Use of standards. We concentrate on the implementation of the TCP and UDP internet 
protocols since they are widely used and have been shown to work at high transfer 
rates [5]. We use UNIX sockets as the primary communication interface for portability 
reasons. Wealso wanttobetterunderstandhowprotocolandinterfacefeaturesin - uence 
the performance and complexity of the host-network interface, and other interfaces that 
are more appropriate for network-based multicomputer applications will be developed 
in parallel or on top of sockets. 

3 The Host-Network Interface Architecture 

Many papershave beenpublished thatreportmeasurementsoftheoverheadsassociated with 
communicatingovernetworks [ 12, 4, 13, 14, 15, 16]. Eventhoughitisdi-f\&:ulttocomparethese 
resultsbecausethemeasurementsaremadefordifferentarchitectures,protocols,communication 
interfaces, and benchmarks, there is a common pattern: there is no single source of overhead. 
The time spent on sending and receiving data is distributed over several operations such as 

DEFS-ALA0009964 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Copy data to 
system buffers 

TCP Protocol 
Processing 

Access 
Device 

Application 

Network 

Copy data to 
user space 

Figure I: Network data processing overheads 

copyingdata, buffermanagement,protocolprocessing, interrupthandlingand system calls, and 
differentoverheadsdominatedependingonthecircumstances (e.g. packetsize ). Theconclusion 
is that implementing an efEcient network interface involves looking at all the functions in the 
network interface, and not just a single function such as, for example, protocol processing. 

Figure I shows the operations involved in sending and receiving data over a network using 
the socket interface. These operations fall in different categories. First, there are overheads 
associated with every application write (socket call± white), and with every packet sent over 
the network (TCP, IP, physical layer protocol processing and interrupt handling ± light grey); 
these operations involve mainly CPU processing. There is also overhead that scales with the 
number of bytessent (copying and checksumming± dark grey );this overhead is largely limited 
by memory bandwidth. In the remainder of this section we ®-st look at how we can minimize 
both types of overhead. We then present the CAB architecture, and we describe how the CAB 
is seen and used by the host. 

3.1 Optimizing per-byte operations 
As networks get faster, data copying and checksumming will become the dominating 

overheads, both because the other overheads are amortized over larger packets and because 
these operations make heavy use of a critical resource: the memory bus. Figure 2 shows the 
data - ow when sending a message using a traditional host interface; receives follow the inverse 

DEFS-ALA0009965 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Application 
Network Interface 

Figure 2: Data-ow in traditional network interface 

path. The dashed line is the checksum calculation. There are a total of ®ve bus transfers for 
every word sent. On some hosts there is an additional CPU copy to move the data between 
asystem buffers 0 and adevice buffers 0

, which results in two more bus transfers. 
We can reduce the number of bus transfers by moving the system buffers that are used to 

buffer the data outboard, as is shown in Figure 3. The checksum is calculated while the data 
is copied. The number of data transfers has been reduced to three. This interface corresponds 
to the aWITLESS 0 interface proposed by Van Jacobson [17]. Besides using the bus more 
e-E&:iently, outboard buffering also allows packets to be sent over the network at the full media 
rate, independent of the speed of the internal host bus. 

Figure 4 shows how the number of data transfers can be further reduced by using DMA 
for the data transfer between main memory and the buffers on the CAB. This is the minimum 
number with the socket interface. Checksumming is still done while copying the data, i.e. 
checksumming is done in hardware. Besides reducing the load on the bus, DMA has the 
advantage that it allows the use of burst transfers. This is necessary to get good throughput 
on today's high-speed I/O busses. For example, the DEC TURBOchannel throughput is about 
11.1 MByte/second for single word transfers, but 76.0 MByte/second for 32 word transfers. 
However, on some systems, DMA addsenough overhead that it is sometimesmore attractive to 
copy and checksum the data using the CPU (see Section 5). 

Application 
Network Interface 

Network 

Figure 3: Data-ow in network interface with outboard buffering 

DEFS-ALA0009966 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


