

:
:
J

WN.uns&s
wey /O -o/-O

acermeat

Attorney: Docket No. ‘UTILITY PATENT APPLICATION TRANSMITTAL 20/12/60
 CS Fs hag ‘“ALA-006E *:

(New Nonprovisional Applicatioiis Under 37 CFR § 1.53(b))°% lye SS Rt o
Bees

TO THE COMMISSIONER FOR PATENTS: . woo~——oo

Transmitted herewith is a patent application idcntificd as follows: =
First-named inventor: Laurence B. Boucher eo Sai i a= =o
Assignee: Alacritech, Inc. 2 ==
Filing Date: September 27, 2002
Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION

This application claims the benefit under 35 USC §120 (prior application not abandoned)of:
x

; (PriorApplication: “Fast-Path Apparatus For ReceivingDataCorrespondingtoa TCPConnection
, ‘| Serial No.: 10/092,967__ f

“FilingDate:March 6, 2002
Atty, Docket:ALA-006C

(Examiner: Zami Maung\

a

This application claims the benefit under 35 USC §120 of Application Serial No. 10/092,967, filed March6,
2002, whichin turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240, filed December
15, 2001, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/464,283, filed
December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/439,603,
filed November 12, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No.
09/067,544, filed April 27, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application
Serial No. 60/061,809, filed October 14, 1997.

This application also claims the hencfit under 35 USC §120 of Application Serial No. 09/384,792, filed
August 27, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application Serial No.
60/098 ,296, filed August 27, 1998.

. - This application also claims the benefit under 35 U.S.C. §120 of the following:
U.S. Patent Application Serial No. 09/416,925 (ALA-005), filed October 13, 1999;
US. Patent Application Serial No; 09/514,425 (ALA-007), filed February 28, 2000;

i USS. Patent Application Serial No. 09/675,484 (ALA-010A),filed September 29, 2000;
U.S. Patent Application Serial No. 09/675,700 (ALA-010B),filed September 29, 2000;
US. Patent Application Serial No. 09/789,366 (ALA-013), filed February 20, 2001;
US. Patent Application Serial No. 09/801,488 (ALA-011), filed March 7, 2001;
U.S. Patent Application Serial No. 09/802,551 (ALA-012), filed March 9, 2001;
U.S. Patent Application Serial No. 09/802,426 (ALA-014), filed March 9, 2001;
U.S. Patent Application Serial No. 09/802,550 (ALA-015), filed March 9, 2001;
U.S. Patent Application Serial No. 09/855,979 (ALA-016), filed March 14, 2001; and
U.S. Patent Application Serial No. 09/970,124 (ALA-020), filed October 2, 2001.

(X) The specification contains a statement claiming priority under 35 USC § 120 and claiming the benefit under
35 U.S.C. §119.

The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
09/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/801,488; 09/802,551; 09/802,426; 09/802,550; 09/855,979; 09/970,124) 1s considered as being part of the
disclosure of the accompanying application and is hereby incorporated byreferencetherein.

(X) The entire disclosure of each ofthe prior provisional applications (60/061,809; 60/098,296) is considered as
being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.

(x)

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 001

y
b a o Bomb oy oe ip

ah BBS Hee hb Le

Enclosedare:

page Terminal Disclaimer Over A Prior Patent
A checkfor filing fee ($ 922.00)
Return Receipt Postcard

2 pages Application Transmittal Letter
145 pages Specification
5 pages Claims
1 page Abstract
89 pages Drawings

~
4 pages Declaration/Powerof Attorney from prior

application 10/092,967 (signed - copy)
4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed - copy)
page CD Appendix Transmittal Letter

° x CD Appendix (two copies)

Ne

Ss
Newly Executed Declaration Not Required:

A newly executed declaration is not filed in this application because, under 37 CFR 1.63(d)(1), a newly exccuted
declaration is not required because: ihe prior application containcd a declaration as prescribed by 37 CFR 1.63; the
continuation application (this application) is filed by all of the inventors namedin the prior application; the specification
and drawingsin the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two) in the prior application is being submitted in the
continuation application (this application).

Thefiling fee is calculated as follows:

CLAIMS AS FILED

FOR NO. EXTRA
Total Claims

Independent Claims 3884.00$0100
Multiple Dependent Claims (if applicable)
Assignment Recording Fee

Terminal Disclaimer Fee (37 CFR 1.20(d)) $110.00
Basic Filing Fee $740.00

$922.00

 Total Filing Fce e

I herebycertify that this is being deposited with the U.S. Postal Respectfully submitted,
Service “Express Mail Post Office to Addressee” service under

37-CFR§ 1.10 on the date indicated below and1s addressed to: By: gee
ae Mark Lauer

Box Patent Application .
: Attorney for ApplicantsAssistant Commissionerfor Patents

Reg. No. 36,578Washington, D.C. 20231 ao
— Customer No. 24,5017~~

By - Date: GS-27 -22.
Typed Name: Mark Lauer

Correspondence Address:

Express Mail Label No.: EL928548779US., Mark Lauer, Patent Attorney
. > _ 7041 Koll Center Parkway, Suite 280Date of Deposit: P-~a2P-L Pleasanton, California 94566

Phone: (925) 484-9295
Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 002

TO THE ASSISTANT COMMISSIONER FOR PATENTS:

Inventors: Laurence B. Boucher,et al. Atty Docket: ALA-OO6E

Filing Date: September 27, 2002 Serial No.: Unknown

Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO
A TCP CONNECTION

Compact Disk Transmittal Letter per 37 CFR 1.52(e)3(ii))

Sir:

Transmitted herewith are:

Two Labeled Compact Discs — Recordable (CD-R) “Copy !” and “Copy2,” each in a

CD case and contained in a padded envelope.

The content on the two discsis identical

The machine format is: IBM-PC

The operating system is: MS-Windows

The creation date of the CDs is: September 26, 2002

The name,date and size of the files on the CDsare listed below:

There are three folders on each disc: 1) CD Appendix A,

2) CD Appendix B,and

3) CD Appendix C.

Folder Appendix A contains twofiles:

CD Appendix A Title Page.txt. Its size is 370 bytes. It was created 9/26/02.

Rev.v. Its size is 84.4KB. It was created 1/7/99.

Folder Appenidix B contains twofiles:

CD Appendix B Title Page.txt. Its size is 495 bytes. It was created 9/26/02.

Microcode.txt. Its size is 105 KB. It was created 10/1/99.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 003

Folder Appendix C containsthree files:

CD Appendix C Title Page.txt. Its size is 416 bytes. It was created 9/26/02.

atcpsource.wrd.txt. Its size is 778 KB. It was created (written to disc) 2/19/02.?

simbasource.wrd.txt. Its size is 262 KB. It was created (written to disc) 2/19/02.

CERTIFICATE OF MAILING

I hereby certify that this correspondencets being deposited with
the United States Postal Service as Express Mail Label No.

EL928365779USin an envelope addressed to: Box PATENT

APPLICATION,Assistant Commissionerfor Patents,

Washington, D.C. 20231, on September 27, 2002.

Mark Lauer

Date: 2 2? m2 Se

Respectfully submitted,

Sf—
Mark Lauer

Reg. No. 36,578
7041 Koll Center

Parkway
Suite 280

Pleasanton, CA 94566

Tel: (925) 484-9295
Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 004

ALA-006E

TERMINAL DISCLAIMER OVER A PRIOR PATENT

[: 10/03/2002 BTESSEM 00000026 10260878
In re Application of: Laurence B. Boucheret al. 93 FC=148

110.00 op

Application No.: Unknown

Filed: September 27, 2002

Title: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Express Mail No.: EL928365779US

The owner, Alacritech, Inc., of a one hundred percentinterest in the instant
_ application hereby disclaims, except as provided below, the terminalpart of the statutory
’ term of any patent grantedon the instant application, which would extend beyondthe

expiration date of the full statutory term defined in 35 U.S.C. 154 to 156 and 173, as
presently shortened by any terminal disclaimer, of prior U.S. Patent Nos. 6,226,680 and
6,247,060. The owner hereby agrees that any patent so granted on the instant application
shall be enforceable only for and during such periodthat it and the prior patents are
commonly owned. This agreement runs with any patent granted on the instant application
and is binding upon the grantce, its successors or assigns.

In making the above disclaimer, the owner does not disclaim the terminal part of
any patent granted on the instant application that would extend to the expiration date of
the full statutory term as defined in 35 U.S.C. 154 to 156 and 173 ofthe prior patents, as
presently shortened by any terminal disclaimer, in the eventthat they later: expire for
failure to pay a maintenancefee, are held unenforceable, are found invalid by a court of
competent jurisdiction, are statutorily disclaimed in whole or terminally disclaimed under
37 CFR 1.321, haveall claims canceled by a reexaminationcertificate, are reissued, or
are in any mannerterminated prior to the expiration ofits full statutory term as presently
shortened by any terminal disclaimer.

I hereby declare that all statements made herein of my own knowledgeare true
and that all statements made on informationand belief are believed to be true; and further
that these statements were made with the knowledge that willful false statements and the
like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title
18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

The undersigned is an attorney or agent of record.

Date: 7 ~2 7-2, GE _—_
Mark Lauer

Registration No. 36,578

The terminal disclaimer fee under 37 CFR 1.20(d) is included.
ae

No See

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 005

1 |
otae

*

4
ee
BAY\

1 ALA-006E

10

20

25

30

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M. Philbrick

Daryl D. Starr

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §120 of U.S. Patent Application Serial

No. 10/092,967, entitled “FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION,”filed March 6, 2002, by Laurence B.

Boucheret al., which in tur claimsthe benefit under 35 U.S.C. §120 of U.S. Patent

Application Serial No. 10/023,240 (Attorney Docket No. ALA-006A), entitled “TRANSMIT

FAST-PATH PROCESSING ON TCP/IP OFFLOAD NETWORK INTERFACE DEVICE,”

filed December 15, 2001, by Laurence B. Boucheret al., which in turn claimsthe benefit
under 35 U.S.C. §120 of U.S. Patent Application Serial No. 09/464,283 (Attorney Docket No.

ALA-006), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM

FOR ACCELERATED COMMUNICATION”,filed December 15, 1999, by LaurenceB.

Boucheret al., which in turn claims the benefit under 35 U.S.C. §120of U.S. Patent

Application Serial No. 09/439,603 (Attorney Docket No. ALA-009), entitled “INTELLIGENT

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING’,filed November 12, 1999, by Laurenee B. Boucheret al., which in turn

claims the benefit under 35 U.S.C. §120 of U.S. Patent Application Serial No. 09/067,544

(Attorney Docket No. ALA-002), entitled “INTELLIGENT NETWORK INTERFACE

SYSTEM AND METHOD FOR ACCELERATED PROTOCOL PROCESSING”,filed April

27, 1998, which in turn claimsthe benefit under 35 U.S.C. § 119(e)(1) of the Provisional

Application filed under 35 U.S.C. §111(b) entitled “INTELLIGENT NETWORK

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 006

JME Foe Meoe ene
Pans aoa Hed “35

ALA-006E

10

15

20

25

30

INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING,”Serial No.

60/061,809 (Attomey Docket No. ALA-001), filed on October 14, 1997.

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application

Serial No. 09/384,792 (Attorney Docket No. ALA-008), entitled “INTELLIGENT

NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED

COMMUNICATION,”filed August 27, 1999, which in turn claims the benefit under 35

U.S.C. §120 of U.S, Patent Application Serial No. 09/141,713 (Attorney Docket No, ALA-

003), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED PROTOCOL PROCESSING”, filed August 28, 1998, which both claim the

benefit under 35 U.S.C. § 119(e)(1) of the Provisional Application filed under 35 U.S.C.

§111(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED COMMUNICATION,”Serial No. 60/098,296 (Attorney Docket No. ALA-

004), filed August 27, 1998.

This application also claimsthe benefit under 35 U.S.C. §120 of U.S. Patent Application

Serial No. 09/416,925 (Attorney Docket No. ALA-005), entitled “QUEUE SYSTEM FOR
- MICROPROCESSORS,”filed October 13, 1999, U.S. Patent Application Serial No.

09/514,425 (Attorney Docket No. ALA-007), entitled “PROTOCOL PROCESSING STACK

FOR USE WITH INTELLIGENT NETWORK INTERFACE CARD,”filed February 28,

2000, U.S. Patent Application Serial No. 09/675,484 (Attorney Docket No. ALA-O10A),

entitled “INTELLIGENT NETWORK STORAGE INTERFACESYSTEM,”filed September

29, 2000, U.S. Patent Application Serial No. 09/675,700 (Attorney Docket No. ALA-010B),

entitled “INTELLIGENT NETWORK STORAGE INTERFACE DEVICE,”filed September

29, 2000, U.S. Patent Application Serial No. 09/789,366 (Attorney Docket No. ALA-013),

entitled “OBTAINING A DESTINATION ADDRESS SO THAT A NETWORK

INTERFACE DEVICE CAN WRITE NETWORK DATA WITHOUT HEADERS

DIRECTLY INTO HOST MEMORY,”filed February 20, 2001, U.S. Patent Application

Serial No, 09/801,488 (Attorney Docket No. ALA-011), entitled “PORT AGGREGATION

FOR NETWORK CONNECTIONS THAT ARE OFFLOADED TO NETWORK

INTERFACE DEVICES,”filed March 7, 2001, U.S. Patent Application Serial No. 09/802,551

(Attorney Docket No. ALA-012), entitled “INTELLIGENT NETWORK STORAGE

INTERFACE SYSTEM,”filed March 9, 2001, U.S. Patent Application Serial No. 09/802,426

(Attorney Docket No. ALA-014), entitled “REDUCING DELAYS ASSOCIATED WITH
2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 007

ALA-006E

10

20

25

30

INSERTING A CHECKSUM INTO A NETWORK MESSAGE,”filed March 9, 2001, U.S.
Patent Application Serial No. 09/802,550 (Attorney Docket No. ALA-015), entitled

“INTELLIGENT INTERFACE CARD AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING,”filed March 9, 2001, U.S. Patent Application Serial No. 09/855,979

(Attorney Docket No. ALA-016), entitled “NETWORK INTERFACE DEVICE

EMPLOYING DMA COMMANDQUEUE,”filed March 14, 2001, U.S. Patent Application

Serial No. 09/970,124 (Attorney Docket No. ALA-020), entitled “NETWORK INTERFACE

DEVICE THAT FAST-PATH PROCESSES SOLICITED SESSION LAYER READ

COMMANDS,”filed October 2, 2001.

The subject matter ofall of the above-identified patent applications (including the

subject matter in the Microfiche Appendix of U.S. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), whichis a part of the presentdisclosure,

includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on

the compact disc. CD Appendix A contains a hardware description language (verilog code)

description of an embodiment of a receive sequencer. CD Appendix B contains microcode

executed by a processor that operates in conjunction with the receive sequencer of CD

Appendix A. CD Appendix C contains a device driver executable on the host as well as ATCP

code executable on the host. A portion of the disclosure of this patent document contains

material (other than any portion of the “free BSD” stack included in CD Appendix C) whichis

subject to copyright protection. The copyright owner of that material has no objection to the

facsimile reproduction by anyone of the patent documentor the patent disclosure, as it appears

in the Patent and Trademark Office patent files or records, but otherwise reservesall copyright

rights.

TECHNICAL FIELD

The present invention relates generally to computer or other networks, and more

particularly to processing of information communicated between hosts such as computers

connected to a network.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 008

oa thay 5
tee Eo ut BY

ALA-006E

10

15

20

25

30

BACKGROUND

The advantages of network computing are increasingly evident. The convenience and

efficiency of providing information, communication or computational power to individuals at

their personal computer or other end user devices has led to rapid growth of such network
computing, including internet as well as intranet devices and applications.

Asis well known, most network computer communication is accomplished with the aid of

a layered software architecture for moving information between host computers connected to

the nctwork. The layers help to segregate information into manageable segments, the general

functions of each layer often based on an international standard called Open Systems

Interconnection (OSI). OST sets forth seven processing layers through which information may

pass when received by a host in order to be presentable to an end user. Similarly, transmission

of information from a host to the network may pass through those seven processing layers in

reverse order. Each step of processing and service by a layer may include copying the

processed information.. Another reference modelthat is widely implemented, called TCP/IP

(TCPstands for transport control protocol, while IP denotes internet protocol) essentially

employsfive of the seven layers of OSI.

Networks may include, for instance, a high-speed bus such as an Ethernet connection or an

internet connection between disparate local area networks (LANs), each of which includes

multiple hosts, or any ofa variety of other known meansfor data transfer between hosts.

According to the OSI standard, physical layers are connected to the network at respective

hosts, the physical layers providing transmission and receipt of raw data bits via the network.

A data link layer is serviced by the physical layer of each host, the data link layers providing

framedivision and error correction to the data received from the physical layers, as well as

processing acknowledgmentframessent by the recciving host. A nctwork layer of each hostis

serviced by respective data link layers, the network layers primarily controlling size and

coordination of subnets of packets of data.

A transport layer is serviced by each network layer andasession layer is serviced by each

transport layer within each host. Transport layers accept data from their respective session

layers and split the data into smaller units for transmission to the other host’s transport layer,

which concatenates the data for presentation to respective presentation layers. Session layers

allow for enhanced communication control between the hosts. Presentation layers are serviced

by their respective session layers, the presentation layers translating bctwecn data semantics
4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 009

ALA-006E

10

15

20

25

30

and syntax which maybepeculiar to each host and standardizedstructures of data

representation. Compression and/or encryption of data may also be accomplished at the

presentation level. Application layers are serviced by respective presentation layers, the

application layers translating between programsparticular to individual hosts and standardized

programsfor presentation to either an application or an end user. The TCP/IP standard

includes the lower four layers and application layers, but integrates the functions of session

layers and presentation layers into adjacent layers. Generally speaking, application,

presentation and session layers arc defined as upper layers, while transport, network and data

link layers are defined as lowerlayers.

Therules and conventions for each layer are called the protocol of that layer, and since the

protocols and general functions of each layer are roughly equivalent in various hosts, it is

useful to think of communication occurring directly between identical layers of different hosts,

even though these peer layers do not directly communicate without information transferring

sequentially through each layer below. Each lower layer performsa service for the layer

immediately above it to help with processing the communicated information. Each layer saves

~ the information for processing and scrvicc to the next layer. Due to the multiplicity of

hardware and software architectures, devices and programs commonly employed, each layer is

necessary to insure that the data can makeit to the intended destination in the appropriate

form, regardless of variations in hardware and software that may intervene.

In preparing data for transmission fromafirst to a second host, some control data is added

at each layer of thefirst host regarding the protocol of that layer, the control data being

indistinguishable from the original (payload) data for all lower layers of that host. Thus an

application layer attaches an application header to the payload data and sends the combined

data to the presentation layer of the sending host, which receives the combined data, operates

on it and addsa presentation headerto the data, resulting in another combined data packet.

The data resulting from combination of payload data, application header and presentation

header is then passed to the session layer, which performs required opcrations including

attaching a session headerto the data and presenting the resulting combination of data to the

transport layer. This process continues as the information movesto lower layers, with a

transport header, network header and data link header andtrailer attached to the data at each of

those layers, with each step typically including data moving and copying, before sending the

data as bit packets over the network to the second host.
5

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 010

ALA-006E

10

15

20 -

25

30

The receiving host generally performs the converse of the above-described process,

beginning with receiving the bits from the network, as headers are removed and data processed

in order from the lowest (physical) layer to the highest (application) layer before transmission

to a destination of the receiving host. Each layer of the receiving host recognizes and

manipulates only the headers associated with that layer, since to that layer the higher layer

control data is included with and indistinguishable from the payload data. Multiple interrupts,

valuable central processing unit (CPU) processing time and repeated data copies may also be

necessary for the receiving hostto place the data in an appropriate form at its intended
destination.

The above description of layered protocol processing is simplified, as college-level

textbooks devoted primarily to this subject are available, such as Computer Networks, Third

Edition (1996) by Andrew S. Tanenbaum, which is incorporated herein by reference. As

defined in that book, a computer network is an interconnected collection of autonomous

computers, such as internet and intranet devices, including local area networks (LANs), wide

. area networks (WANs), asynchronoustransfer mode (ATM),ring or token ring, wired,

wireless, satellite or other means for providing communication capability between separate

processors. A computeris defined herein to include a device having both logic and memory

functions for processing data, while computers or hosts connected to a network are said to be

heterogencousif they function according to different operating devices or communicate via

different architectures.

Asnetworks grow increasingly popular and the information communicated thereby

becomesincreasingly complex and copious, the need for such protocol processing has

increased. It is estimated that a large fraction of the processing power of a host CPU may be

devoted to controlling protocol processes, diminishing the ability of that CPU to perform other

tasks. Network interface cards have been developed to help with the lowest layers, such as the

physical and data link layers. It is also possible to increase protocol processing speed by

simply adding more processing power or CPUs according to conventional arrangements. This

solution, however, is both awkward and expensive. But the complexities presented by various

networks, protocols, architectures, operating devices and applications gencrally require

extensive processing to afford communication capability between various network hosts.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 011

ALA-006E

10

15

20

25

30

SUMMARYOF THE INVENTION

The current invention provides a device for processing network communicationthat greatly
increases the speedofthat processing and the efficiency of transferring data being
communicated. The invention has been achieved by questioning the long-standing practice of
performing multilayered protocol processing on a general-purpose processor. The protocol
processing methodand architecture that results effectively collapses the layers of a connection-
based, layered architecture such as TCP/IP into a single wider layer which is able to send
network data moredirectly to and from a desired location or buffer on a host. This accclerated

processing is provided to a host for both transmitting and receiving data, and so improves
performance whetherone or both hosts involved in an exchangeof information have such a
feature.

The accelerated processing includes employing representative control instructions for a

given message that allow data from the message to be processed via a fast-path which accesses
messagedata directly at its source or deliversit directly to its intended destination. This fast-

path bypasses conventional protocol processing of headers that accompanythe data. Thefast-
path employsa specialized microprocessor designed for processing network communication,
avoiding the delays andpitfalls of conventional software layer processing, such as repeated
copying andinterrupts to the CPU. Ineffect, the fast-path replaces the states that are

traditionally found in several layers of a conventional network stack with a single state
machine encompassingall thoselayers, in contrast to conventionalrules that require rigorous
differentiation and separation of protocol layers. The hostretains a sequential protocol
processing stack which can be employed forsetting up a fast-path connection or processing
message exceptions. The specialized microprocessor and the host intelligently choose whether

a given messageorportion of a messageis processed by the microprocessor or the host stack.
One embodiment is a method of generating a fast-path response to a packet reccived onto a

network interface device where the packet is received over a TCP/IP network connection and

where the TCP/IP network connectionis identified at least in part by a TCP source port, a TCP
destination port, an IP source address, and an IP destination address. The method comprises:
1) Examining the packet and determining from the packet the TCP source port, the TCP
destination port, the IP source address, and the IP destination address; 2) Accessing an
appropriate template header stored on the network interface device. The template header has
TCP fields and IP fields; 3) Employing a finite state machinethat implements both TCP

7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 012

3ot.

ALA-006E

10

15

20°

25

30

protocol processing and IP protocol processingto fill in the TCP fields and IP fields of the

template header; and 4) Transmitting the fast-path response from the network interface device.

Thefast-path response includesthefilled in template header and a payload. Thefinite state

machine doesnot entail a TCP protocol processing layer and a discrete IP protocol processing

layer where the TCPand IP layers are executed one alter another in sequence. Rather, the

finite state machine covers both TCP andIP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted are pushed

onto a plurality of transmit queues. A transmit sequencer popsthe transmit queues and obtains

the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers

where the packets are stored. The retrieved packets are then transmitted from the network

interface device. In one embodiment, there are two transmit queues, one having a higher

transmission priority than the other. Packets identified by buffer descriptors on the higher

priority transmit queue are transmitted from the network interface device before packets

identified by the lower priority transmit queue.

Other structures and methodsare disclosed in the detailed description below. This

summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view diagram ofa device of the present invention, including a host

computer having a communication-processing device for accelerating network

communication.

FIG.2 is a diagram of information flow for the host of FIG. 1 in processing network

communication, including a fast-path, a slow-path and a transfer of connection context

between the fast and slow-paths.

FIG.3 is a flow chart of message receiving according to the present invention.

FIG.4A is a diagram of information flow for the host of FIG. | receiving a message packet

processed by the slow-path.

FIG.4B is a diagram of information flow for the host of FIG. 1 receiving an initial message

packet processed by the fast-path.

FIG. 4C is a diagram of information flow for the host of FIG. 4B receiving a subsequent

message packet processed by the fast-path.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 013

ALA-006E

10

15

20

25

30

FIG. 4D is a diagram of information flow for the host of FIG. 4C receiving a message

packet having an error that causes processing to revert to the slow-path.

FIG.5 is a diagram of information flow for the host of FIG. 1 transmitting a message by

either the fast or slow-paths.

FIG.6 is a diagram of information flow for a first embodiment of an intelligent network

interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG.7 is a diagram of hardware logic for the INIC embodiment shownin FIG.6, including

a packet control sequencer and a fly-by sequencer.

FIG.8 is a diagram ofthe fly-by sequencer of FIG. 7 for analyzing header bytes as they are

received by the INIC.

FIG.9 is a diagram of information flow for a second embodiment of an INIC associated

with a server having a TCP/IP processing stack.

FIG. 10 is a diagram of a commanddriverinstalled in the host of FIG. 9 for creating and

controlling a communication control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and command driver of FIG. 10 configured for
NetBios communications.

FIG. 12 is a diagram of a communication exchange between the client of FIG. 6 and the

server of FIG.9,

FIG. 13 is a diagram of hardware functions included in the INIC of FIG.9.

FIG. 14 is a diagram ofa trio of pipelined microprocessors included in the INIC of FIG. 13,

including three phases with a processor in each phase.

FIG. 15A is a diagram ofa first phase of the pipelined microprocessor of FIG. 14.

FIG. 15B is a diagram of a second phaseofthe pipelined microprocessor of FIG. 14.

FIG. 15C is a diagram ofa third phase of the pipelined microprocessor of FIG. 14.

FIG. 16 is a diagram of a plurality of queue storage units that interact with the

microprocessor of FIG. 14 and include SRAM and DRAM.

FIG. 17 1s a diagram ofa set of status registers for the queues storage units of FIG. 16.

FIG.18 is a diagram of a queue manager, which interacts, with the queue storage units and

status registers of FIG. 16 and FIG. 17.

FIGs. 19A-D are diagramsofvariousstages of a least-recently-used register that is

employed for allocating cache memory.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 014

ALA-006E

10

20

25

30

FIG, 20 is a diagram of the devices used to operate the least-recently-used register of FIGs.
19A-D.

FIG. 21 is another diagram ofIntelligent Network Interface Card (INIC) 200 of Figure 13.

FIG. 22 is a diagram of the receive sequencer of FIG. 21.
FIG.23 is a diagram illustrating a “‘fast-path” transfer of data of a multi-packet message

from INIC 200 to a destination 2311 in host 20.
FIGS. 24-107 are associated with the description below entitled “Disclosure From

Provisional Application 60/061 ,809.”

DETAILED DESCRIPTION

FIG. 1 showsa host 20 of the present invention connected by a network 25 to a remote host

22. The increase in processing speed achieved by the present invention can be provided with

an intelligent network interface card (INIC)thatis easily and affordably added to an existing

host, or with a communication processing device (CPD) that is integrated into a host, in either

case freeing the host CPU from most protocol processing and allowing improvements in other

tasks performed by that CPU. The host 20 in a first embodiment contains a CPU 28 and a

- CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

processing communication data and memory buffers controlled by a direct memory access

(DMA) unit. Also connected to the host bus 33 is a storage device 35, such as a

semiconductor memory ordisk drive, along with any related controls.

Referring additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44

housedin storage 35, the stack including a data link layer 36, nctwork layer 38, transport layer

40, upper layer 46 and an upper layer interface 42. The upper layer 46 may represent a

session, presentation and/or application layer, depending upon the particular protocol being

employed and message communicated. The upper layer interface 42, along with the CPU 28

and anyrelated controls can sendorretrieve a file to or from the upper layer 46 or storage 35,

as shown by arrow 48. A connection context 50 has been created, as will be explained below,

the context summarizing various features of the connection, such as protocol type and source
and destination addresses for each protocol layer. The context may be passed between an

interface for the session layer 42 and the CPD 30, as shownby arrows 52 and 54, and stored as

a communication control block (CCB) ateither CPD 30 or storage 35.

10

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 015

ALA-006E

10

15

20

25

30

Whenthe CPD 30 holds a CCB defining a particular connection, data received by the CPD

from the network andpertaining to the connection is referenced to that CCB and can then be

sent directly to storage 35 according to a fast-path 58, bypassing sequential protocol

processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,
such as sendinga file from storage 35 to remote host 22, can also occur via the fast-path 58, in
which case the context for thefile data is added by the CPD 30 referencing a CCB,rather than

by sequentially adding headers during processing by the transport 40, network 38 and data link

36 layers. The DMAcontrollers of the CPD 30 perform these transfers between CPD and

storage 35.

The CPD30 collapses multiple protocol stacks each having possible separate states into a

single state machine for fast-path processing. As a result, exception conditions may occurthat

are not provided for in the single state machine, primarily because such conditions occur

infrequently and to deal with them on the CPD would providelittle or no performancebenefit

to the host. Such exceptions can be CPD 30 or CPU 28initiated. An advantage of the

invention includes the manner in which unexpected situations that occur on a fast-path CCB

are handled. The CPD 30 deals with these rare situations by passing back or flushing to the

- host protocol stack 44 the CCB and any associated message frames involved, via a control

negotiation. The exception condition is then processed in a conventional mannerby the host

protocol stack 44. At somelater time, usually directly after the handling of the exception

condition has completed and fast-path processing can resume, the host stack 44 hands the CCB

_ back to the CPD.

This fallback capability enables the performance-impacting functions of the host protocols

to be handled by the CPD network microprocessor, while the exceptions are dealt with by the

host stacks, the exceptions being so rare as to negligibly effect overall performance. The

custom designed network microprocessor can have independent processors for transmitting

and receiving network information, and further processors for assisting and queuing. A

preferred microprocessor embodimentincludesa pipelined trio of receive, transmit andutility

processors. DMAcontrollers are integrated into the implementation and work in close concert

with the network microprocessor to quickly move data between buffers adjacentto the .

controllers and other locations such as long term storage. Providing buffers logically adjacent

to the DMAcontrollers avoids unnecessary loads on the PCI bus.

11

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 016

ALA-006E

FIG. 3 diagramsthe general flow of messages received according to the current invention.
A large TCP/IP message such asa file transfer may be received by the host from the network

in a number of separate; approximately 64 KB transfers, each of which maybesplit into many,
approximately 1.5 KB frames or packets for transmission over anetwork. Novell NetWare

5 protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol

(NCP) over Internetwork Packet Exchange (IP) work in a similar fashion. Another form of
data communication which can be handled by thefast-path is Transaction TCP (hereinafter

T/TCP or TTCP), a version of TCP whichinitiates a connection with an initial transaction

request after which a reply containing data may be sent according to the connection, rather
10 than initiating a connection via a several-messageinitialization dialogue and then transferring

data with later messages. In any ofthe transfers typified by these protocols, each packet

conventionally includes a portion of the data being transferred, as well as headers for each of

the protocol layers and markers for positioning the packetrelative to the rest of the packets of
this message. .

15 When a message packetor frame is received 47 from a network by the CPD,it is first
validated by a hardware assist. This includes determining the protocol typesof the various

layers, verifying relevant checksums, and summarizing 57 these findings into a status word or

words. Included in these words is an indication whetheror not the frameis a candidate for

fast-path data flow. Selection 59 offast-path candidates is based on whetherthe host may

20 benefit from this message connection being handled by the CPD, which includes determining

‘whether the packet has header bytes indicating particular protocols, such as TCP/IP or

SPX/IPX for example. The small percent of frames that are not fast-path candidates are sent

61 to the host protocol stacks for slow-path protocol processing. Subsequent network

microprocessor work with each fast-path candidate determines whethera fast-path connection

25 such as a TCP or SPX CCBis already extant for that candidate, or whether that candidate may

be used to set up a new fast-path connection, such as for a TTCP/IP transaction. The
validation provided by the CPD provides acceleration whether a frame is processed by the fast-
path or a slow-path, as only error free, validated frames are processed by the host CPU even

for the slow-path processing.

30 All received message frames which have been determined by the CPD hardwareassist to be

fast-path candidates are examined 53 by the network microprocessor or INIC comparator

circuits to determine whether they match a CCB held by the CPD. Upon confirming such a
12

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 017

Mn wn yh otPad Me Mend

ALA-006E

10

15

20

25

30

match, the CPD removes lower layer headers and sends 69 the remaining application data from

the framedirectly into its final destination in the host using direct memory access (DMA) units

ofthe CPD. This operation may occur immediately upon receipt of a message packet, for

example when a TCP connection already exists and destination buffers have becn negotiated,

or it mayfirst be necessary to process an initial header to acquire a newset offinal destination

addresses for this transfer. In this latter case, the CPD will queue subsequent messagepackets

while waiting for the destination address, and then DMA the queued application data to that

destination.

A fast-path candidate that does not match a CCB maybe usedto set up a new fast-path

connection, by sending 65 the frameto the host for sequential protocol processing. In this

case, the host uses this frame to create 51 a CCB, whichis then passed to the CPD to control

subsequent frames on that connection. The CCB, which is cached 67 in the CPD,includes

control and statc information pertinent to all protocols that would have been processed had

conventional software layer processing been employed. The CCB also contains storage space

for per-transfer information used to facilitate moving application-level data contained within

subsequent related message packets directly to a host application in a form available for

immediate usage. The CPD takes command of connection processing upon receiving a CCB

for that connection from the host.

As shown morespecifically in FIG. 4A, when a message packet is received from the remote

host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which

checksumsheaders and data, and parses the headers, creating a word or words which identify

the message packet and status, storing the headers, data and word temporarily in memory 60.

’ As well as validating the packet, the receive logic 32 indicates with the word whetherthis

packet is a candidate for fast-path processing. FIG. 4A depicts the case in which the packet is

not a fast-path candidate, in which case the CPD 30 sends the validated headers and data from

memory 60 to data link layer 36 along an internal bus for processing by the host CPU, as

shown by arrow 56. The packet is processed by the host protocol stack 44 of data link 36,

network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

" sent to storage 35, as shownby arrow 65.

FIG. 4B, depicts the case in which the receive logic 32 of the CPD determinesthat a

message packet is a candidate for fast-path processing, for example by deriving from the

packct’s headers that the packct belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A
13

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 018

ALA-006E

10

15.

20

25

30

processor 55 in the CPD 30 then checks to see whether the word that summarizes the fast-path

candidate matches a CCB held in a cache 62. Uponfinding no match for this packet, the CPD

sends the validated packet from memory 60to the host protocol stack 44 for processing. Host

stack 44 may use this packet to create a connection context for the message, including finding

and reserving a destination for data from the message associated with the packet, the context

taking the form of a CCB. The present embodiment employs a single specialized host stack 44

for processing both fast-path and non-fast-path candidates, while in an embodiment described

below fast-path candidates are processed by a different host stack than non-fast-path

candidates. Some data (D1) 66 from that initial packet may optionally be sent to the

destination in storage 35, as shown by arrow 68. The CCBis then sent to the CPD 30 to be

saved in cache 62, as shown by arrow 64. Fora traditional connection-based message such as

typified by TCP/IP, the initial packet may be part of a connectioninitialization dialogue that

transpires between hosts before the CCB is created and passed to the CPD 30.

Referring now to FIG. 4C, when a subsequent packet from the same connection as the

initial packet is received from the network 25 by CPD 30,the packet headers and data are
validated by the receive logic 32, and the headers are parsed to create a summary of the

message packet and a hash for finding a corresponding CCB,the summary and hash contained

in a word or words. The word or words are temporarily stored in memory 60 along with the

packet. The processor 55 checks for a match between the hash and each CCB thatis stored in
the cache 62 and, finding a match, sendsthe data (D2) 70 via a fast-path directly to the

destination in storage 35, as shownby arrow 72, bypassing the session layer 42, transport layer

40, network layer 38 and data link layer 36. The remaining data packets from the message can

also be sent by DMAdirectly to storage, avoiding the relatively slow protocol layer processing

and repeated copying by the CPU stack 44.

FIG. 4D showsthe procedure for handling the rare instance when a message for which a

fast-path connection has been established, such as shown in FIG.4C,has a packet that is not

easily handled by the CPD. In this case the packetis sent to be processed by the protocol stack

44, which is handed the CCBfor that message from cache 62 via a control dialogue with the

CPD,as shownbyarrow 76, signaling to the CPU to take over processing ofthat message.

Slow-path processing by the protocol stack then results in data (D3) 80 from the packct being

sent, as shown by arrow 82, to storage 35. Once the packet has been processed and the error

situation corrected, the CCB can be handed back via a control dialogue to the cache 62,so that
14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 019

. tty attay tty Ta pea sei,WP dae hadT EP Hever oP MH

ALA-006E

10

15

20.

25

30

payload data from subsequent packets of that message can again be sentvia the fast-path of the

CPD 30. Thus the CPU and CPD together decide whether a given messageis to be processed

according to fast-path hardware processing or more conventional software processing by the

CPU. .

Transmission of a message from the host 20 to the network 25 for delivery to remote host 22

also can be processed by either sequential protocol software processing via the CPU or

accelerated hardware processing via the CPD 30, as shown in FIG.5. A message (M) 90 that

is sclected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack

44, as shown by arrows 92 and 96. For the situation in which a connection exists and the CPD

30 already has an appropriate CCB for the message, however, data packets can bypass host

stack 44 and be sent by DMAdirectly to memory 60, with the processor 55 adding to each

data packet a single header containing all the appropriate protocol layers, and sending the

_ resulting packets to the network 25 for transmission to remote host 22. This fast-path

transmission can greatly accelerate processing for even a single packet, with the acceleration

multiplied for a larger message.

A message for which a fast-path connection is not extant thus may benefit from creation of

aCCB with appropriate control and state information for guiding fast-path transmission. For a
traditional connection-based message, such as typified by TCP/IP or SPX/IPX, the CCBis

created during connection initialization dialogue. For a quick-connection message, such as

typified by TTCP/IP, the CCB can be created with the same transaction that transmits payload

data. In this case, the transmission of payload data may be a reply to a request that was used to

set up the fast-path connection. In any case, the CCB provides protocol and status information

regarding cach ofthe protocol layers, including which useris involved and storage space for

per-transfer information. The CCBis created by protocol stack 44, which then passes the CCB

to the CPD 30 by writing to a commandregister of the CPD, as shown by arrow 98. Guided

by the CCB,the processor 55 moves network frame-sized portions of the data from the source

in host memory 35 into its own memory 60 using DMA,as depicted by arrow 99. The

processor 55 then prepends appropriate headers and checksumsto the data portions, and

transmits the resulting frames to the network 25, consistent with the restrictions of the

associated protocols. After the CPD 30 has received an acknowledgementthat all the data has

reachedits destination, the CPD will then notify the host 35 by writing to a response buffer.

15

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 020

ALA-006E

10

20

25

30

Thus, fast-path transmission of data communications also relieves the host CPU of per-frame
processing. A vast majority of data transmissions can be sent to the network by the fast-path.

Both the input and output fast-pathsattain a huge reduction in interrupts by functioning at an
upperlayer level, i.e., session level or higher, and interactions between the nctwork

microprocessor and the host occur using the full transfer sizes which that upper layer wishes to

make. For fast-path communications, an interrupt only occurs (at the most) at the beginning
and end of an entire upper-layer message transaction, and there are no interrupts for the

sendingor receiving of each lower layer portion or packet ofthat transaction.

A simplified intelligent network interface card (INIC) 150 is shownin FIG. 6 to provide a
network interface for a host 152. Hardware logic 171 of the INIC 150 is connected to a

network 155, with a peripheral bus (PCI) 157 connecting the INIC andhost.

this embodiment has a TCP/IP protocol stack, which provides a slow-path 15

The host 152 in

8 for sequential

software processing of message frames received from the network 155. The host 152 protocol
stack includes a data link layer 160, network layer 162, a transport layer 164 and an

application layer 166, which provides a source or destination 168 for the communication data

in the host 152, Other layers which are not shown, such as session and presentation layers,
mayalso be included in the hoststack 1 52, and the source or destination may vary depending
uponthe nature of the data and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages
along a slow-path 158 that includes the protocolstack of the host, or along a fast-path 159 that

bypassesthe protocol stack of the host. Each réceived packet is processed on the fly by
hardware logic 171 contained in INIC 150, so that all of the protocol headers for a packet can

be processed without copying, moving or storing the data between protocol layers. The

hardware logic 171 processes the headers of a given packet at one time as packet bytes pass
through the hardware, by categorizing selected header bytes. Results of processing the

selected bytes help to determine which other bytes of the packet are categorized, until a

summary ofthe packet has beencreated, including checksum validations. The processed

headers and data from the received packet are then stored in INIC storage 185, as well as the

word or words summarizing the headers and status of the packet. For a network storage
configuration, the INIC 150 may be connected to a peripheral storage device such as a disk

drive which has an IDE, SCSIor similar interface, with a file cache for the storage device

16

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 021

ALA-006E

20°

25

30

residing on the memory 185 of the TINIC 150. Several such network interfaces may exist for a
host, with each interface having an associated storage device.

The hardware processing of message packets received by INIC 150 from network 155 is

shown in more detail in FIG. 7. A received message packet first enters a media access

controller 172, which controls INIC access to the network and receipt of packets and can

providestatistical information for network protocol management. From there, data flows one

byte at a time into an assembly register 174, which in this example is 128 bits wide. The data

is categorized by a fly-by sequencer 178, as will be explained in more detail with regard to

FIG.8, which examinesthe bytes of a packet as they fly by, and generates status from those

. bytes that will be used to summarize the packet. The status thus created is merged with the

data by a multiplexor 180 and the resulting data stored in SRAM 182. A packet control

sequencer 176 oversees the fly-by sequencer 178, examines information from the media access
controller 172, counts the bytes of data, generates addresses, moves status and manages the

movementof data from the assembly register 174 to SRAM 182 and eventually DRAM 188.

The packet control sequencer 176 manages a buffer in SRAM 182 via SRAM controller 183,

and also indicates toa DRAM controller 186 when data needs to be moved from SRAM 182 to

a buffer in DRAM 188. Once data movementfor the packet has been completed and all the

data has been movedto the buffer in DRAM 188,the packet control sequencer 176 will move

the status that has been generated in the fly-by sequencer 178 out to the SRAM 182 and to the
beginning of the DRAM 188 buffer to be prepended to the packet data. The packet control

sequencer 176 then requests a queue manager184 to enter a receive buffer descriptor into a

receive queue, which in turn notifies the processor 170 that the packet has been processed by

hardware logic 171 and its status summarized.

FIG. 8 showsthat the fly-by sequencer 178 has several tiers, with each tier generally

focusing on a particular portion of the packet header and thus on a particular protocol layer, for

generating status pertaining to that layer. The fly-by sequencer 178 in this embodiment

includes a media access control sequencer 191, a network sequencer 192, a transport sequencer
194 and a session sequencer 195. Sequencers pertaining to higher protocol layers can

additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer

176 and given pointers by the packet control sequencerthat tell the fly-by sequencer whether a

given byte is available from the assembly register 174. The media access control sequencer

191 determines, by looking at bytes 0-5, that a packet is addressed to host 152 rather than or in
17

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 022

ALA-006E

10

20

25

30

addition to another host. Offsets 12 and 13 of the packet are also processed by the media

access control sequencer 191 to determinethe typefield, for example whether the packetis

Ethernet or 802.3. If the type field is Ethernet those bytes alsotell the media access control

sequencer 191 the packet’s network protocol type. For the 802.3 case, those bytes instead

indicate the length ofthe entire frame, and the media access control sequencer 191 will check

eight bytes furtherinto the packet to determine the network layer type.
For most packets the network sequencer 192 validates that the header length received has

the correct length, and checksumsthe network layer header. For fast-path candidates the
network layer header is known to be IP or IPX from analysis done by the media access control

sequencer 191. Assuming for example that the type field is 802.3 and the network protocolis

IP, the network sequencer 192 analyzesthe first bytes of the network layer header, which will

begin at byte 22, in order to determine IP type. Thefirst bytes of the IP header will be

processed by the network sequencer 192 to determine what IP type the packet involves.

Determining that the packet involves, for example, IP version 4, directs further processing by

the network sequencer 192, which also looks at the protocol type located ten bytes into the IP

header for an indication of the transport header protocol of the packet. For example, for IP

over Ethernet, the IP header beginsat offset 14, and the protocol type byte is offset 23, which

will be, processed by network logic to determine whether the transport layer protocol is TCP,
for example. From the length of the network layer header, whichis typically 20-40 bytes,

network sequencer 192 determines the beginning of the packet’s transport layer headerfor

validating the transport layer header. Transport sequencer 194 may generate checksumsfor

the transport layer header and data, which may include information from the IP headerin the

case of TCPatleast.

Continuing with the example of a TCP packet, transport sequencer 194 also analyzes the

first few bytes in the transport layer portion of the header to determine, in part, the TCP source _

and destination ports for the message, such as whether the packet is NetBios or other

‘protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine

and validate the TCP header length. Byte 13 of the TCPheader contains flags that may, aside
from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

cause the processorto categorize this packet as an exception. TCP offset bytes 16 and 17 are

the checksum, which is pulled out and stored by the hardware logic 171 while the rest of the

frameis validated against the checksum.
18

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 023

ALA-006E

10

15

20.

25

30

Session sequencer 195 determines the length of the session layer header, which in the case

ofNetBiosis only four bytes, two of whichtell the length of the NetBios payload data, but

which can be muchlarger for other protocols. The session sequencer 195 can also be used to

categorize the type of message as read or write, for example, for which the fast-path may be

particularly beneficial. Further upper layer logic processing, depending upon the message

type, can be performed by the hardware logic 171 of packet control sequencer 176 and fly-by

sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the

headers by categorization of sclected bytes from a single stream of bytes, with the status of the

packet being built from classifications determined on the fly. Once the packet control

sequencer 176 detects that all of the packet has been processed by the fly-by sequencer 178,

the packet control sequencer 176 adds the status information generated by the fly-by sequencer

- 178 and any status information generated by the packet control sequencer 176, and prepends

(adds to the front) that status information to the packet, for convenience in handling the packct

by the processor 170. The additional status information generated by the packet control

sequencer 176 includes media access controller 172 status information and anyerrors

discovered, or data overflow in cithcr the assembly register or DRAM buffer,or other
miscellaneous information regarding the packet. The packet control sequencer 176 also stores

entries into a receive buffer queue and a receive statistics queue via the queue manager 184.

An advantage of processing a packet by hardware logic 171 is that the packet does not, in

contrast with conventional sequential software protocol processing,have to be stored, moved,
copied or pulled from storage for processing each protocol layer header, offering dramatic

increases in processing efficiency and savings in processing time for each packet. The packets

can be processed at the rate bits are received from the network, for example 100

megabits/second for a 100 baseT connection. The time for categorizing a packet received at

this rate and having a length of sixty bytes is thus about 5 microseconds. The total time for

processing this packet with the hardware logic 171 and sending packet data to its host

destination via the fast-path may be about 16 microsecondsor less, assuming a 66 MHz PCI

bus, whereas conventional software protocol processing by a 300 MHz Pentium [J® processor

may take as much as 200 microsecondsin a busy device. More than an order ofmagnitude

decrease in processing time can thus be achieved with fast-path 159 in comparison with a

high-speed CPU employing conventional sequential software protocol processing,

demonstrating the dramatic acceleration provided by processing the protocol headers by the
19

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 024

ALA-006E

10

15

20

25

30

hardware logic 171 and processor 170, without even considering the additional time savings

afforded by the reduction in CPU interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message packet held in storage 185, whether

that packet is a candidate for the fast-path 159 and, if so, checks to see whether a fast-path has

already been set up for the connection that the packet belongs to. To do this, the processor 170

first checks the header status summary to determine whether the packet headers are of a

protocol defined for fast-path candidates. If not, the processor 170 commands DMA

controllers in the INIC 150 to send the packet to the host for slow-path 158 processing. Even

for a slow-path 158 processing of a message, the INIC 150 thus performsinitial procedures

such as validation and determination of message type, and passes the validated messageat

least to the data link layer 160 of the host.

Forfast-path 159 candidates, the processor 170 checks to see whether the headerstatus

summary matches a CCB held by the INIC. If so, the data from the packet is sent along fast-

path 159 to the destination 168 in the host. Ifthe fast-path 159 candidate’s packet summary

does not match a CCBheld bythe INIC, the packet maybe sent to the host 1 52 for slow-path

processing to create a CCB for the message. Employmentofthe fast-path 159 may also not be

needed or desirable for the case of fragmented messages or other complexities. For the vast

majority of messages, however, the INIC fast-path 159 can greatly accelerate message

processing. The INIC 150 thus provides a single state machine processor 170 that decides

whetherto send data directly to its destination, based upon information gleaned onthefly, as

opposed to the conventional employmentof a state machine in each of several protocol layers

for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver of the host

selects the processing route based upon whether the indication is fast-path or slow-path, A

TCP/IP or SPX/IPX message has a connection that is set up from which a CCBis formed by

the driver and passed to the INIC for matching with and guiding the fast-path packet to the

connection destination 168. For a TTCP/IP message, the driver can create a connection

context for the transaction from processing an initial request packet, including locating the

message destination 168, and then passing that context to the INIC in the form of a CCB for

providing a fast-path for a reply from that destination. A CCB includes connection andstate

information regarding the protocol layers and packets of the message. Thus a CCB can

include source and destination media access control (MAC) addresses, source
20

e and destination

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 025

grt Wi ory oA Bo Tywe fo ah oy reTRA at ek TOP Bo Mad? Beepe PR Ae er ESwedTell Bene 283 Beat

ALA-006E

10

15

20

25

30

IP or IPX addresses, source and destination TCP or SPX ports, TCP variables such astimers,

receive and transmit windowsfor sliding window protocols, and information indicating the

session layer protocol.

Caching the CCBsinahash table in the INIC provides quick comparisons with words

summarizing incoming packets to determine whether the packets can be processedvia the fast-

path 159, while the full CCBsare also held in the INIC for processing. Other waysto

accelerate this comparison include software processes such as a B-tree or hardwareassists

such as a content addressable memory (CAM). When INIC microcode or comparatorcircuits

detect a match with the CCB, a DMAcontroller places the data from the packet in the

destination 168, without any interrupt by the CPU,protocol processing or copying. Depending

upon the type of messagereceived, the destination of the data may be the session, presentation

or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed as a file server. This

INIC provides a network interface for several network connections employing the 802.3u

standard, commonly knownas Fast Ethernet. The INIC 200is connected by a PCI bus 205 to
the server 202, which maintains a TCP/IP or SP-X/IPX protocol stack including MAClayer

212, network layer 215, transport layer 217 and application layer 220, witha

source/destination 222 shown abovethe application layer, although as mentioned earlier the

application layer can be the source or destination. The INIC is also connected to network lines

210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial
cable or other lines each allowing data transmission of 100 Mb/s, while faster and slower data

rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated

row of hardwarecircuits which can each validate and summarize message packets received

from their respective network line. Thus line 210 is connected with a first horizontal row of

sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line

242 is connected with a third horizontal row of sequencers 262 and line 244 is connected with

a fourth horizontal row of sequencers 264. After a packet has been validated and summarized

by one of the horizontal hardware rowsit is stored along with its status summary in storage
270.

A network processor 230 determines, based on that summary and a comparison with any

CCBsstored in the INIC 200, whether to send a packet along a slow-path 231 for processing

by the host. A large majority of packets can avoid such sequential processing and have their
21

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 026

ALA-006E

10

15

20

25

30

data portions sent by DMA alonga fast-path 237 directly to the data destination 222 in the

server according to a matching CCB. Similarly, the fast-path 237 provides an avenue to send

data directly from the source 222 to any of the network lines by processor 230 division of the

data into packets and addition of full headers for network transmission, again minimizing CPU

processing and interrupts. For clarity only horizontal sequencer 250 is shown active; in

actuality each of the sequencer rows 250, 260, 262 and 264offers full duplex communication,

concurrently with all other sequencer rows. The specialized INIC 200 is much faster at

working with message packets than even advanced general-purposc host CPUsthat processes

those headers sequentially according to the software protocol stack. .

One of the most commonly used network protocols for large messages such as file transfers
is server message block (SMB) over TCP/IP. SMB can operate in conjunction with redirector

software that determines whether a required resource for a particular operation, such as a

printer or a disk upon whicha file is to be written, resides in or is associated with the host from

which the opcration was generated or is located at another host connected to the network, such
as a file server. SMB andserver/redirector are conventionally serviced by the transport layer;

in the present invention SMB andredirector can instead be serviced by the INIC. Inthis case,

sending data by the DMA controllers from the INIC buffers when receiving a large SMB

transaction maygreatly reducc intcrrupts that the host must handle. Moreover, this DMA
generally movesthe data toits final destination in the file device cache. An SMBtransmission

ofthe present invention follows essentially the reverse of the above described SMBreceive,
with data transferred from the host to the INIC and stored in buffers, while the associated

" protocol headers are prepended to the data in the INIC, for transmission via a network line to a

remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, NetBios

and SMBprotocol layers via custom hardware and without repeated interrupts of the host can

greatly increase the speed of transmitting an SMB message to a networkline.

As shownin FIG. 10, for controlling whether a given message is processed by the host 202

or by the INIC 200, a message command driver 300 maybeinstalled in host 202 to work in

concert with a host protocol stack 310. The command driver 300 can intervene in message

reception or transmittal, creatc CCBs and send or receive CCBsfrom the INIC 200, so that

functioning of the INIC, aside from improved performance, is transparent to a user. Also

shown is an INIC memory 304 and an INIC miniport driver 306, which can direct message

packets received from network 210 to either the conventional protocol stack 310 or the
22

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 027

ALA-006E

.10

15

20

25

command protocol stack 300, depending upon whether a packet has been labeled as a fast-path

candidate. The conventional protocol stack 310 has a data link layer 312, a network layer 314
and a transport layer 316 for conventional, lower layer processing of messagesthat are not

labeled as fast-path candidates and therefore not processed by the commandstack 300.

Residing above the lower layer stack 310 is an upper layer 318, which represents a session,

presentation and/or application layer, depending upon the message communicated. The

commanddriver 300 similarly has a data link layer 320, a network layer 322 and a transport

layer 325. |
The driver 300 includes an upperlayer interface 330 that determines, for transmission of

messages to the network 210, whether a message transmitted from the upper layer 318 is to be
processed by the commandstack 300 and subsequently. the INIC fast-path, or by the

conventional stack 310. When the upper layer interface 330 receives an appropriate message

from the upper layer 318 that would conventionally be intended for transmission to the

network after protocol processing by the protocol stack of the host, the message is passed to

driver 300. The INIC then acquires network-sized portions of the message data for that

transmission via INIC DMAunits, prepends headers to the data portions and sends the

resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or
similar message packet from the network 210 to be usedin setting up a fast-path connection,

miniport driver 306 diverts that message packet to commanddriver 300 for processing. The

driver 300 processes the message packet to create a context for that message, with the driver

302 passing the context and commandinstructions back to thé INIC 200 as a CCBfor sending

data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,

TTCP, SPX or similar CCB connections may be held indefinitely by theINIC, althoughaleast

recently used (LRU) algorithm is employed for the case when the INIC cacheis full. The
driver 300 can also create a connection context for a TTCP request which is passed to the INIC

200 as a CCB,allowing fast-path transmission of a TTCP reply to the request. A message

having a protocol that is not accelerated can be processed conventionally by protocol stack

310.

FIG. 11 shows a TCP/IP implementation of commanddriver software for Microsoft®

protocol messages. A conventional host protocol stack 350 includes MAC layer 353, IP layer

355 and TCP layer 358. A command driver 360 works in concert with the host stack 350 to

process network messages. The commanddriver 360 includes a MAClayer 363, an IP layer
23

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 028

_ALA-006E

15

20

25

- 30

366 and an Alacritech TCP (ATCP) layer 373. The conventional stack 350 and command
driver 360 share a network driver interface specification (NDIS) layer 375, which interacts

with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications

for processing by either the conventional host stack 350 or the ATCPdriver 360. A TDIfilter

driver and upperlayer interface 380 similarly determines whcther messages sent from a TDI

user 382 to the network are diverted to the commanddriver and perhapsto the fast-path of the

INIC,or processed by the host stack.

FIG. 12 depicts a typical SMB exchange between a client 190 and server 290, both of

which have communication devices of the present invention, the communication devices each

holding a CCB defining their connection for fast-path movement of data. The client 190

includes INIC 150, 802.3 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios

layer 166, and SMBlayer 168. The client has a slow-path 157 and fast-path 159 for

communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data
link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and SMB 222. Theserveris

connected to network lines 240, 242 and 244, as well as line 210 which is connected to client

190. The server also has a slow-path 231 and fast-path 237 for communication processing.

Assuming that the client 190 wishes to read a 100KB file onthe server 290, the client may

begin by sending a Read Block Raw (RBR) SMB commandacross network 210 requesting the

first 64 KB of that file on the server 290. The RBR command maybeonly 76 bytes, for
example, so the INIC 200 ontheserver will recognize the message type (SMB) andrelatively

small message size, and send the 76 bytes directly via the fast-path to NetBios of the server.

NetBios will give the data to SMB,which processes the Read request and fetches the 64KB of

data into server data buffers. SMB then calls NetBios to send the data, and NetBios outputs
the data for the client. In a conventional host, NetBios would call TCP output and pass 64 KB
to TCP, which would divide the data into 1460 byte segments and output each segment via IP

and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP

driver along with an indication regarding the client-server SMBconnection, which indicates a
CCBheld by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the

host buffers, add the appropriate headers for TCP, IP and MACatonetime, and send the

completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the

whole 64KB transfer has been sent. Usually after receiving acknowledgement from the client

24

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 029

ALA-006E

10

15

20

25

30

that the 64KB has been received, the INIC will then send the remaining 36KB also by the fast-

path 237.

With TINIC 150 operating on the client 190 whenthis reply arrives, the INIC 150 recognizes

from thefirst frame received that this connection is recciving fast-path 159 processing

(TCP/IP, NetBios, matching a CCB), and the ATCP mayusethisfirst frame to acquire buffer

space for the message. This latter case is done by passingthefirst 128 bytes of the NetBios

portion of the frame via the ATCP fast-path directly to the host NetBios; that will give

NetBios/SMBall of the frame’s headers. NetBios/SMBwill analyze these headers, realize by

matching with a requestID that this is a reply to the original RawRead connection, and give

the ATCP a 64Klist of buffers into which to place the data. At this stage only one frame has
arrived, although more may arrive while this processing is occurring. As soon asthe client

buffer list is given to the ATCP,it passes that transfer information to the INIC 150, and the

INIC 150 starts DMAing any framedata that has accumulated into those buffers.
FIG. 13 provides a simplified diagram of the INIC 200, which combinesthe functions ofa

network interface controller and a protocol processor in a single ASIC chip 400. The INIC

. 200 in this embodimentoffers a full-duplex, four channel, 10/100-Megabit per second (Mbps)

intelligent network interface controller that is designed for high speed protocol processing for

server applications. Although designed specifically for server applications, the INIC 200 can

be connected to personal computers, workstations, routers or other hosts anywherethat
TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200 is connected with four network lines 210, 240, 242 and 244, which may

transport data along a numberofdifferent conduits, such as twisted pair, coaxial cable or
optical fiber, each of the connections providing a media independentinterface (MII) via

commercially available physical layer chips, such as model 80220/80221 Ethernet Media

Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,

CA 94538. The lines preferably are 802.3 compliant and in connection with the INTC
constitute four complete Ethernet nodes, the INIC supporting 10Base-T, 10Base-T2, 100Base-

TX, 100Base-FX and 100Base-T4 as well as future interface standards. Physical layer

identification and initialization is accomplished through host driverinitialization routines. The

connection between the nctwork lines 210, 240, 242 and 244 and the INIC 200 is controlled by

MAC units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408which contain logic

circuits for performing the basic functions of the MAC sublayer, cssentially controlling when
25

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 030

ALA-006E

10

20

25

30

the INIC accesses the network lines 210, 240, 242 and 244. The MAC units 402-408 may act
in promiscuous, multicast or unicast modes, allowing the INIC to function as a network

monitor, receive broadcast and multicast packets and implement multiple MAC addresses for
each node. The MACunits 402-408also providestatistical information that can be used for

simple nctwork management protocol (SNMP).

The MACunits 402, 404, 406 and 408 are each connected to a transmit and receive

sequencer, XMT & RCV-A 418, XMT & RCV-B 420, XMT & RCV-C 422 and XMT &

RCV-D 424, by wires 410, 412, 414 and 416, respectively. Each of the transmit and receive

sequencers can perform several protocol processing steps on the fly as message frames pass

through that sequencer, In combination with the MAC units, the transmit and receive

sequencers 418-422 can compile the packet status for the data link, network, transport, session

and, if appropriate, presentation and application layer protocols in hardware, greatly reducing

the time for such protocol processing compared to conventional scquential software engines.

The transmit and receive sequencers 410-414 are connected, by lines 426, 428, 430 and 432 to

an SRAM and DMAcontroller 444, which includes DMA controllers 438 and SRAM

controller 442. Static random access memory (SRAM)buffers 440 are coupled with SRAM

controller 442 by line 441. The SRAM and DMAcontrollers 444 interact across line 446 with

external memory control 450 to send and receive frames via external memory bus 455 to and

from dynamic random access memory (DRAM)buffers 460, which is located adjacentto the

IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 MB,

and may optionally be disposed on the chip. The SRAM and DMAcontrollers 444 are

connected via line 464 to a PCI BusInterface Unit (BIU) 468, which managestheinterface

between the INIC 200 and the PCI interface bus 257. The 64-bit, multiplexed BIU 468

provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC

200 is capable ofoperating in either a 64-bit or 32-bit PCT environment, while supporting 64-

bit addressingin either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMAcontrollers 444,

and connected via line 475 to the PCI BIU 468. Microprocessor 470instructions and register

files reside in an on chip control store 480, which includes a writable on-chip control store

(WCS) of SRAM and a read only memory (ROM), and is connected to the microprocessor by

line 477, The microprocessor 470 offers a programmable state machine which is capable of

processing incoming frames, processing host commands, dirccting network traffic and
26

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 031

oe Bat aie
ALA-006E

10

15

20

25

30

directing PCIbustraffic. Three processors are implemented using shared hardware in a three

level pipelined architecture that launches and completes a single instruction for every clock

cycle. A receive processor 482 is primarily used for receiving communications while a

transmit processor 484 is primarily used for transmitting communications in orderto facilitate

full duplex communication, while a utility processor 486 offers various functions including
overseeing and controlling PCI register access.

Theinstructions for the three processors 482, 484 and 486 reside in the on-chip control-

store 480. Thus the functions of the three processors can be easily redefined, so that the

microprocessor 470 can adapted for a given environment. Forinstance, the amount of

processing required for receive functions may outweighthat required for either transmit or

utility functions. In this situation, some receive functions may be performed by the transmit

processor 484 and/ortheutility processor 486. Alternatively, an additional level of pipelining

can be created to yield four or morevirtual processorsinstead of three, with the additional

level devoted to reccive functions.

The INIC 200 in this embodiment can support up to 256 CCBs which are maintained ina

table in the DRAM 460. There is also, however, a CCB index in hash order in the SRAM 440

to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,

with up to sixteen cached CCBs in SRAMinthis example. Allocation of the sixteen CCBs

cached in SRAM is handled bya least recently used register, described below. Vhesc cache

locations are shared between the transmit 484 and receive 486 processors so that the processor

with the heavier load is able to use more cache buffers. There arc also eight header buffers

‘and eight commandbuffers to be shared between the sequencers. A given header or command

buffer is notstatically linked to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 showsan overview of the pipelined microprocessor 470, in which instructions for

the receive, transmit and utility processors are executed in three alternating phases according

to Clock incrementsI, IT andIII, the phases corresponding to each ofthe pipeline stages. Each

phase is responsible for different functions, and each of the three processors occupies a

different phase during each Clock increment. Each processorusually operates uponadifferent

instruction stream from the control store 480, and each carries its own program counter and

status through each ofthe phases.

27

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 032

ALA-006E |

10

15

20

25

30

In general, a first instruction phase 500 of the pipelined microprocessors completes an
instruction andstores the result in a destination operand, fetches the next instruction, and

stores that next instruction in an instruction register. A first register set 490 provides a number

of registers including the instruction register, and a sct of controls 492 forfirst register set

provides the controls for storageto the first register set 490. Somcitems pass throughthefirst

phase without modification by the controls 492, and instead are simply copicdinto thefirst

register set 490 or a RAMfile register 533. A second instruction phase 560 has an instruction

decoder and operand multiplexer 498 that gcncrally decodes the instruction that was stored in

the instruction register of the first register set 490 and gathers any operands which have been

generated, which are then stored in a decode register of a second register set 496. The first

register set 490, second register set 496 and a third register set S01, which is employed in a

third instruction phase 600, include many of the sameregisters, as will be seen in the more

detailed views of FIGs. 15A-C. Theinstruction decoder and opcrand multiplexer 498 can read
from two address and data ports of the RAM file register 533, which operates in boththe first

phase 500 and second phase 560. A third phase 600 of the processor 470 has an arithmetic

logic unit (ALU) 602 which generally performs any ALU operations on the operands from the

secondregister set, storing the results in a results register included in thethird register set 501.

A stack exchange 608 can reorderregister stacks, and a quéue manager 503 can arrange

queuesfor the processor 470, the results of which are stored in the third register set.

Theinstructions continue with the first phase then following the third phase, as depicted by a
circular pipeline 505. Note that various functions have been distributed across the three phases

of the instruction execution in order to minimize the combinatorial delays within any given

phase. With a frequency in this embodiment of 66 MHz, each Clock increment takes 15

nanoseconds to complete, for a total of 45 nanoseconds to complete oneinstruction for each of

the three processors. The rotating instruction phases are depicted in more detail in FIGs. 15A-

C, in which each phaseis showninadifferent figure.

Moreparticularly, FIG. 15A shows somespecific hardware functionsofthefirst phase 500,

which generally includesthe first register set 490 and related controls 492. The controls for the

first register set 492 includes an SRAM control 502, whichis a logical control for loading

address and write data into SRAM address and data registers 520. Thus the output of the ALU

602 from the third phase 600 may be placed by SRAM control 502 into an address register or

- data register of SRAM address and data registers 520. A load control 504 similarly provides
28

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 033

ALA-006E

10

15.

20

25

30

Sty PIs Eb ote sPBS Bath PUA oe Baw

ays om

controls for writing a context for a file to file context register 522, and another load control

506 provides controls for storing a variety of miscellaneous data to flip-flop registers 525.

ALUcondition codes, such as whethera carried bit is set, get clocked into ALU condition

codes register 528 without an operation performedinthefirst phase 500. Flag decodes 508

can perform various functions, such as setting locks, that get stored in flag registers 530.

The RAMfile register 533 has a single write port for addresses and data and two read ports

for addresses and data, so that more than one register can be read from at one time. As noted

above, the RAM filc register 533 essentially straddles the first and second phases,asit is

written in the first phase 500 and read from in the second phase 560. A control store

instruction 510 allows the reprogramming of the processors duc to new data in from the

control store 480, not shownin this figure, the instructions stored in an instruction register

535. The address for this is generated in a fetch control register 511, which determines which

address to fetch, the address stored in fetch address register 538. Load control 515 provides

instructions for a program counter 540, which operates muchlike the fetch address for the

control store. A last-in first-out stack 544 of three registers is copied to the first register set

without undergoing other opcrations in this phase. Finally, a load control 517 for a debug

address 548 is optionally included, which allows correction of errors that may occur.

FIG. 15B depicts the second microprocessor phase 560, which includes reading addresses

and data out of the RAM file register 533. A scratch SRAM 565is written from SRAM

address and data register 520 ofthefirst register set, which includes a register that passes

throughthe first two phases to be incremented in the third. The scratch SRAM 565is read by

the instruction decoder and operand multiplexer 498, as are mostof the registers from the first

register set, with the exception of the stack 544, debug address 548 and SRAM address and

data register mentioned above. The instruction decoder and operand multiplexer 498 looksat

the various registers of set 490 and SRAM 565, decodesthe instructions and gathers the

operands for operation in the next phase, in particular determining the operandsto provideto

the ALU 602 below. The outcomeofthe instruction decoder and operand multiplexer 498is

stored to a numberofregisters in the second register set 496, including ALU operands 579 and

582, ALU condition code register 580, and aqueue channel and command 587 register, which
in this embodiment can control thirty-two queues. Several of the registers in set 496 are

loadedfairly directly from the instruction register 535 above without substantial decoding by

the decoder 498, including a program control 590, a literal field 589, a test select 584 and a
29

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 034

ALA-006E

-20

25

30

flag select 585. Other registers such as the file context 522 ofthe first phase 500 are always

stored in a file context 577 of the second phase 560, but mayalso be treated as an operandthat

_ 1s gathered by the multiplexer 572. The stack registers 544 are simply copied in stack register
594, The program counter 540 is incremented 568 in this phase andstored in register 592.

Also incremented 570 is the optional debug address 548, and a load control 575 maybefed

from the pipeline SOS at this point in order to allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALUand qucue

operations. The ALU 602 includes an adder,priority encoders and other standard logic

functions. Results of the ALUare stored in registers ALU output 618, ALU condition codes

620 and destination operand results 622. A file context register 616, flag sclect register 626

_andliteral field register 630 are simply copied from the previous phase 560. A test multiplexer

. 604 is provided to determine whethera conditional jumpresults in a jump, with the results

stored in a test results register 624. The test multiplexer 604 may instead be performedin the

first phase 500 along with similar decisions such as fetch control 511. A stack exchange 608

shifts a stack up or downby fetching a program counter from stack 594 or putting a program

counter onto that stack, results of whichare stored in program control 634, program counter

638 and stack 640 registers. The SRAM address may optionally be incrementedin this phase

600. Another load control 610 for another debug address 642 may be forced from the pipeline
505 at this point in orderto allow error control in this phase also. A QRAM & QALU606,
shown togetherin this figure, read from the queue channel and commandregister 587, store in
SRAMandrearrange queucs, adding or removing data and pointers as needed to manage the

queuesofdata, sending results to the test multiplexer 604 and a queueflags and queue address
register 628. Thus the QRAM & QALU 606 assumethe duties of managing queuesfor the
three processors, a task conventionally performed sequentially by software on a CPU, the

queue manager 606 instcad providing accelerated and substantially parallel hardware queuing.

FIG. 16 depicts two ofthe thirty-two hardware queues that are managed by the queue

manager 606, with each of the queues having an SRAM head, an SRAMtail andthe ability to

queue information in a DRAM bodyaswell, allowing expansion and individual configuration

of each queue. Thus FIFO 700 has SRAMstorage units, 705, 707, 709 and 711, each

containing eight bytes for a total of thirty-two bytes, although the numberand capacity of

these units may vary in other embodiments. Similarly, FIFO 702 has SRAMstorage units
30

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 035

ALA-006E

15

20

25

30

- 713, 715, 717 and 719. SRAM units 705 and 707 are the head of FIFO 700 and units 709 and

711 are the tail of that FIFO, while units 713 and 715 are the head of FIFO 702 and units 717

and 719 are the tail of that FIFO. Information for FIFO 700 may be written into head units

705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shown by arrow

725. A particular entry, however, may be both written to and read from head units 705 or 707,

or may be both written to and read from tail units 709 or 711, minimizing data movement and

latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as

shown by arrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may

instead be read from the samehead ortail unit to which it was written.

The SRAM FIFOS700 and 702 are both connected to DRAM 460, which allowsvirtually

unlimited expansion of those FIFOSto handlc situations in which the SRAM headandtail are

full. For exampleafirst of the thirty-two queues, labeled Q-zcro, may queuean entry in

DRAM 460,as shownby arrow 727, by DMA units acting under direction of the qucuc

manager, instead of being qucued in the head ortail of FIFO 700. Entries stored in DRAM

460 return to SRAM unit 709, as shown by arrow 730, extending the length and fall-through

time of that FIFO. Diversion from SRAM to DRAMistypically reserved for when the SRAM

is full, since DRAM is slower and DMA movementcauses additional latency. Thus Q-zero

may comprise the entries stored by queuc manager 606 in both the FIFO 700 and the DRAM

460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,

for example, can be moved by DMA into DRAM 460, as shownby arrow 735. The capacity

for queuing in cost-effective albeit slower DRAM 460is user-definable duringinitialization,

allowing the queues to change in size as desired. Information queued in DRAM 460is

retumed to SRAM unit 717, as shown by arrow 737.

Status for each of the thirty-two hardware queues is conveniently maintained in and

accessed from a set 740 offour, thirty-two bit registers, as shown in FIG. 17, in which a

specific bit in each register correspondsto a specific queue. Theregisters are labeled Q-

Out_Ready 745, Q-In_Ready 750, Q-Empty 755_and Q-Full 760. Ifa particular bit is set in

the Q-Out_Ready register 750, the queue correspondingto that bit contains information that is

ready to be read, while the setting of the samebit in the Q-In_Ready 752 register meansthat

the queueis ready to be written. Similarly, a positive sctting ofa specific bit in the Q-Empty

register 755 meansthat the queue correspondingto that bit is empty, while a positive setting of

a particular bit in the Q-Full register 760 meansthat the queue correspondingto that bit is full.
31

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 036

wey PeA gee ga avyfee AS ARR UP oa Rad

ALA-006E

10

15

20

25

30

Thus Q-Out_Ready 745 contains bits zero 746 through thirty-one 748, including bits twenty-
seven 752, twenty-cight 754, twenty-nine 756 and thirty 758. Q-In_Ready 750 contains bits
zero 762 through thirty-one 764, including bits twenty-seven 766, twenty-eight 768, twenty-
nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 through thirty-one 776,

including bits twenty-seven 778, twenty-eight 780, twenty-nine 782 and thirty 784, and Q-full

760 containsbits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-

eight 792, twenty-nine 794 and thirty 796.

Q-zero, corresponding to FIFO 700, is a free buffer queue, which holdsa list of addresses

for all available buffers. This queue is addressed when the microprocessor or other devices

need a free buffer address, and so commonly includes appreciable DRAM 460. Thusa device

needing a free buffer address would check with Q-zero to obtain that address. Q-twenty-

seven, corresponding to FIFO 702, is a receive buffer descriptor queue. After processing a

received frame by the receive sequencer the sequencerlooksto store a descriptor for the frame

in Q-twenty-scven. Ifa location for such a descriptor is immediately available in SRAM,bit

twenty-seven 766 of Q-In_Ready 750 will be sect. If not, the sequencer must wait for the queue

managerto initiate a DMA move from SRAM to DRAM,thereby frecing space to store the

receive descriptor.

Operation of the queue manager, which manages movementofqueue entries between

SRAMandthe processor, the transmit and reccive sequencers, and also between SRAM and

DRAM,is shown in more detail in FIG. 18. Requests which utilize the queues include

Processor Request 802, Transmit Sequencer Request 804, and Receive Sequencer Request

806. Other requests for the qucues are DRAM to SRAM Request 808 and SRAM to DRAM

Request 810, which operate on behalf of the qucue manager in moving data back and forth

between the DRAM and the SRAM headortail of the queues. Determining which of these

various requests will get to use the queue manager in the next cycle is handled by priority logic

Arbiter 815. To cnable high frequency operation the queue manageris pipelined, with

Register A 818 and Register B 820 providing temporary storage, while Status Register 822
maintains status until the next update. The queue managerreserves even cycles for DMA,

receive and transmit sequencer requests and odd cycles for processor requests. Dual ported

QRAM825stores variables regarding cach of the queues, the variables for each queue

including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer

32

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 037

ALA-006E

10

15

20

25

30

corresponding to the queue’s SRAM condition, and a Body Write Pointer and Body Read
Pointer corresponding to the queue’s DRAM condition and the queue’s size.

After Arbiter 815 has selected the next operation to be performed, the variables of QRAM

825 are fetched and modified according to the selected operation by a QALU 828, and an

SRAM Read Request 830 or an SRAM Write Request 840 may be generated. The variables
are updated and the updatedstatus is stored in Status Register 822 as well as QRAM 825. The

status is also fed to Arbiter 815 to signal that the operation previously requested has been

fulfilled, inhibiting duplication of requests. The Status Register 822 updates the four queue
registers Q-Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760 to reflect the new

status of the queue that was accessed. Similarly updated are SRAM Addresses 833, Body

Write Request 835 and Body Read Requests 838, which are accessed via DMA to and from

SRAM head andtails for that queue. Alternatively, various processes may wish to write to a

queue, as shown by Q Write Data 844, which are selected by multiplexor 846, and pipelined to

SRAM Write Request 840. The SRAM controller services the read and write requests by

writing the tail or reading the head of the accessed qucue and returning an acknowledge. In

this mannerthe various queuesareutilized andtheir status updated. .

FIGs. 19A-C showa lcast-recently-used register 900 that is employed for choosing which

contexts or CCBs to maintain in INIC cache memory. The INIC in this embodiment can cache

up to sixteen CCBs in SRAMat a given time, and so when a new CCBis cached an old one
mustoften be discarded, the discarded CCB usually chosen accordingto this register 900 to be

the CCBthat has been uscd Icast recently. In this embodiment, a hash table for up to two

hundredfifty-six CCBs is also maintained in SRAM, while up to two hundredfifty-six full

CCBsare held in DRAM. Theleast-recently-used register 900 contains sixteen four-bit blocks

labeled RO-R15, cach of which corresponds to an SRAM cache unit. Uponinitialization, the

blocks are numbered 0-15, with number 0 arbitrarily stored in the block representing the least
recently used (LRU) cache unit and number15 stored in the block representing the most

recently used (MRU)cache unit. FIG. 19A showsthe register 900 at an arbitrary time when

the LRU block RO holds the number 9 and the MRU block R15 holds the number6.

Whena different CCB than is currently being held in SRAMis to be cached, the LRU

block RO is read, which in FIG. 19A holds the number9, and the new CCBis stored in the

SRAM cacheunit corresponding to number 9. Since the new CCBcorresponding to number

‘9 is now the most recently used CCB, the number9 is stored in the MRU block, as shown in
33

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 038

ALA-006E

10

- 20

25

30 -

FIG. 19B. The other numbersare all shifted one register block to the left, leaving the number

1 in the LRU block. The CCBthat had previously been cached in the SRAM unit

corresponding to number 9 has been moved to slower but more cost-effective DRAM.

FIG. 19C showsthe result when the next CCB used had already been cached in SRAM.In

this example, the CCB was cached in an SRAM unit corresponding to number 10, and so after

employmentof that CCB, number10 is stored in the MRU block. Only those numbers which

had previously been more recently used than number10 (register blocks R9-R15) are shifted

to the left, leaving the number 1| in the LRU block. In this manner the INIC maintains the

most active CCBs in SRAM cache.

In somecases a CCB being used is one that is not desirable to hold in the limited cache

memory. For example, it is preferable not to cache a CCB for a context that is known to be

closing, so that other cached CCBscan remain in SRAM longer. In this case, the number

representing the cache unit holding the decacheable CCBis stored in the LRU block RO rather

than the MRU block R15, so that the decacheable CCB will be replaced immediately upon

employment of a new CCBthat is cached in the SRAM unit corresponding to the number held

in the LRU block RO. FIG. 19D showsthe case for which number8 (which had been in block

R9 in FIG. 19C) corresponds to a CCBthat will be used and then closed. In this case number
8 has been removed from block R9 and stored in the LRU block RO. All the numbersthat had

previously been storedto the left ofblock R9 (RI-R8)are then shified one block to the right.

FIG. 20 shows someofthe logical units employed to operate the least-recently-used

register 900. An array of sixteen, three or four input multiplexors 910, of which only

multiplexors MUX0, MUX7, MUX8, MUX9 and MUX15 are shownfor clarity, have outputs

fed into the corresponding sixteen blocks of least-recently-used register 900. For example, the

output of MUX0is stored in block RO, the output of MUX7is stored in block R7, etc. The

value of cach of the register blocks is connected to an input for its corresponding multiplexor

and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For
instance, the numberstored in R8 is fed into inputs for MUX7, MUX8 and MUX9. MUXO

and MUX15 each have only one adjacent block, and the extra input for those multiplexorsis

used for the selection of LRU and MRUblocks, respectively. MUX15 is shown as a four-

input multiplexor, with input 915 providing the numberstored on RO.

Anarray of sixteen comparators 920 each receives the valuc stored in the corresponding

block of the least-recently-used register 900. Each comparator also receives a signal from
34

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 039

iddete

ALA-006E

10

15

20

25

30

processor 470 along line 935 so that the register block having a number matchingthat sent by

processor 470 outputs true to logic circuits 930 while the other fifteen comparators output

false. Logic circuits 930 control a pair of select lines leading to each of the multiplexors, for
selecting inputs to the multiplexors and therefore controlling shifting of the register block

numbers. Thusselect lines 939 control MUXO,select lines 944 control MUX7,select lines

949 control MUX8,select lines 954 control MUX9andselect lines 959 control MUX15.

When a CCBis to be used, processor 470 checks to see whether the CCB matches a CCB

currently held in one of the sixteen cache units. If a match is found, the processor sends a

signal along line 935 with theblock numbercorrespondingto that cache unit, for example
number 12. Comparators 920 compare the signal from that line 935 with the block numbers

and comparator C8 providesa true output for the block R8 that matches the signal, while all

the other comparators output false. Logic circuits 930, under control from the processor 470,

usc select lines 959 to choose the input from line 935 for MUX15, storing the number 12 in th

c

MRUblock R15. Logic circuits 930 also send signals along the pairs of select lines for MUX8

and higher multiplexors, aside from MUX15,to shift their output one block to theleft, by

selecting as inputs to each multiplexor MUX8and higherthe value that had been stored in

register blocks one block to the right (R9-R15). The outputs of multiplexors that are to the left

of MUX8areselected to be constant.

If processor 470 does not find a match for the CCB amongthe sixteen cache units, on the
other hand, the processor reads from LRU block RO along line 966 to identify the cache

corresponding to the LRU block, and writes the data stored in that cache to DRAM. The

numberthat was stored in RO, in this case number3, is chosen by’select lines 959 as input 915

to MUX15 for storage in MRU block R15. The other fifteen multiplexors output to their

respective register blocks the numbers that had been stored each register block immediately to

the right.:

For the situation in which the processor wishes to remove a CCB from the cacheafter use,

the LRU block RO rather than the MRU block R15 is selected for placementof the number
corresponding to the cache unit holding that CCB. The number corresponding to the CCB to

be placed in theLRU block RO for removal from SRAM (for example number1, held in block

R9) is sent by processor 470 along line 935, which is matched by comparator C9. The

processor instructs logic circuits 930 to input the number 1 to RO, by selecting with lines 939

input 935 to MUX0. Select lines 954 to MUX9 chooseas input the numberheld in register
35

CAVIUM-1002

Cavium, Inc.v. Alacriitech, Inc.
Page 040

ALA-006E

10

15

20

25

30

block R8, so that the number from R8is stored in R9. The numbersheld by the otherregister

blocks between RO and R9are similarly shifted to the right, whereas the numbersin register

blocksto the right of R9 are left constant. This frees scarce cache memory from maintaining

closed CCBsfor many cycles while their identifying numbers move through register blocks
from the MRU to the LRUblocks. |

Figure 21 is another diagram ofIntelligent Network Interface Card (INIC) 200 of Figure

13. INIC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and

Dynamic Random Access Memory (DRAM) 460. PHY chip 2100 couples INIC card 200 to

network line 210 via a nctwork connector 2101. INIC card 200 is coupled to the CPU ofthe

host (for example, CPU 28 of host 20 of Figure 1) via card edge connector 2107 and PCI bus

257. ASIC chip 400 includes a Media Access Control (MAC) unit 402, a sequencers block
2103, SRAM control 442, SRAM 440, DRAM control 450, a queue manager 2103, a

. processor 470, and a PCI businterface unit 468. Structure and operation of queue manager

2.103 is described above in connection with Figure 18 and in U.S. Patent Application Serial

Number 09/416,925, entitled “Queue System For Microprocessors”, attorncy docket no. ALA-

005, filed October 13, 1999, by Daryl D. Starr and Clive M.Philbrick (the subject matter of

whichis incorporated herein by reference). Sequencers block 2102 includes a transmit

sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC

destination address is stored in configuration register 2106. Part of the program code executed
by processor 470 is contained in ROM (not shown) andpart is located in a writeable control

" store SRAM (not shown). The program is downloadedinto the writeable control store SRAM
at initialization from the host 20.

Figure 22 is a more detailed diagram of receive sequencer 2105. Receive sequencer 2105

includes a data synchronization buffer 2200, a packet synchronization sequencer 2201,a data

assembly register 2202, a protocol analyzer 2203, a packet processing sequencer 2204, a queue

manager interface 2205, and a Direct Memory Access (DMA)control block 2206. The packet

synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network-

synchronized clock of MAC 402, whereas the remainderof the receive sequencer 2105 utilizes

a fixed-frequency clock. Dashed line 2221 indicates the clock domain boundary.
CD Appendix A contains a complete hardware description (verilog code) of an embodiment

of receive sequencer 2105. Signals in the verilog code are namedto designate their functions.

Individual sections of the verilog code are identified and labeled with comment lines. Each of
36

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 041

ALA-006E

these sections describes hardware in a block of the receive sequencer 2105 as set forth below

in Table 1.

SECTION OF VERILOG CODE BLOCK OF FIG, 22

Synchronization Interface

Sync-Buffer Read-Ptr Synchronizers

Packet-Synchronization Sequencer

Data Synchronization Buffer

Synchronized Status for Link-Destination-Address

Synchronized Status-Vector

Synchronization Interface
Receive Packet Control and Status

Buffer-Descriptor

Ending Packet Status

AssyRegshift-in. Mac -> AssyReg. and 2204

Fifo shift-in. AssyReg -> Sram Fifo

Fifo ShiftOut Burst. SramFifo -> DramBuffer

Fly-By Protocol Analyzer; Frame, Network and Transport Layers

Link Pointer

| Mac address detection

Magic pattern detection

Link layer and network layer detection

Network counter

Control Packet analysis

Network header analysis

Transport layer counter

Transport header analysis

Pseudo-headerstuff

Free-Descriptor Fetch

Receive-Descriptor Store

Receive-Vector Store

Qucue-managerinterface-mux

37

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 042

ALA-006E

15

20

25

Pause Clock Generator

Pause Timer

TABLE1

et Bay ey
 id owe Balt

Opcration of receive sequencer 2105 of Figures 21 and 22 is now described in connection

with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At

initialization time, processor 470 partitions DRAM 460 into buffers. Receive sequencer 2105

uses the buffers in DRAM 460 to store incoming network packet data as well as status

information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A

buffer descriptor indicates the size and location in DRAM ofits associated buffer. Processor

470 places these buffer descriptors on a “free-buffer queuc” 2108 by writing the descriptors to
the queue manager 2103. Queue manager 2103 maintains multiple queues including the “free-

buffer queue” 2108. In this implementation, the heads andtails of the various queucsare

located in SRAM 440, whereas the middle portion ofthe queues are located in DRAM 460.

Lines 2229 comprise a request mechanism involving a request line and addresslines.

Similarly, lines 2230 comprise a request mechanism involving a request line and addresslines.

Queuc manager 2103 uses lines 2229 and 2230 to issue requests to transfer queue information

from DRAM to SRAM or from SRAM to DRAM.

The queue managerinterface 2205 of the reccive sequencer always attempts to maintain a

free buffer descriptor 2207 for use by the packet processing sequencer 2204. Bit 2208 is a

readybit that indicates that free-buffer descriptor 2207 is available for use by the packet

processing sequencer 2204. If queue managerinterface 2205 docs not have a free buffer

descriptor (bit 2208 is not set), then queue managerinterface 2205 requests one from queue

manager 2103 via request line 2209. (Request line 2209 is actually a bus which communicates
the request, a queue ID, a read/write signal and data if the operation is a writc to the queue.)

In response, queue manager 2103 retrievesa free buffer descriptor from thetail of the “free

buffer queue” 2108 and then alerts the queue managerinterface 2205 via an acknowledge

signal on acknowledge line 2210. When queue managerinterface 2205 receives the

acknowledgesignal, the queue managerinterface 2205 loadsthe free buffer descriptor 2207

and sets the ready bit 2208. Because the free buffer descriptor was in the tail of the free buffer

queue in SRAM 440, the queuc managerinterface 2205 actually receives the free buffer

38

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 043

ALA-006E

20

25

30

descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet

processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When
the queuc managerinterface 2205 retrieves the free buffer descriptor 2207 and the free buffer

descriptor 2207 is available for use by the packet processing sequencer, the queue manager
interface 2205 informsthe packet processing sequencer 2204 via grant line 2212. By this

process, a free buffer descriptor is madeavailable for use by the packet processing sequencer

2204 and the receive sequencer 2105 is ready to processes an incoming packet.

Next, a TCP/IP packet is received from the network line 210 via network connector 2101

__and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC 402 via a
Media IndependentInterface (MII) parallel bus 2109. MAC 402 beginsprocessing the packet

andasserts a “start of packet“ signal on line 2213 indicating that the beginning of a packetis

being received. Whenabyte ofdata is received in the MACandis availableat the MAC

outputs 2215, MAC402 asserts a “data valid”signal on line 2214. Upon receiving the “data
valid” signal, the packet synchronization sequencer 2201 instructs the data synchronization
buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data

synchronization buffer 2200is four bytes deep. The packet synchronization sequencer 2201

then incrementsa data synchronization buffer write pointer. This data synchronization buffer

write pointer is made available to the packet processing sequencer 2204 via lines 2216.

Consecutive bytes of data from data lines 2215 are clocked into the data synchronization

buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained bythe

packet processing sequencer 2204. The packet processing sequencer 2204 determinesthat
data is available in data synchronization buffer 2200 by comparing the data synchronization

buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines
2219.

Data assembly register 2202 contains a sixteen-byte long shift register 2217. This register

2217 is loaded serially a single byte at a time andis unloadedin parallel. When data is loaded

into register 2217, a write pointer is incremented. This write pointer is made available to the

packet processing sequencer 2204 via lines 2218. Similarly, when data is unloaded from

register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.
This read pointer is available to the data assembly register 2202 via lines 2220. The packet

39

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 044

ALA-006E

10

15

20

25

30

processing sequencer 2204 can therefore determine whether room is available in register 2217

by comparing the write pointer on lines 2218 to the read pointer on lines 2220.

If the packet processing sequencer 2204 determines that room is available in register 2217,

then packet processing, sequencer 2204 instructs data assembly register 2202 to load a byte of

data from data synchronization buffer 2200. The data assembly register 2202 increments the

data assembly register write pointer on lines 2218 and the packet processing sequencer 2204

increments the data synchronization buffer read pointer on lines 2219. Data shifted into

register 2217 is cxamincdat the register outputs by protocol analyzer 2203 which verifies

checksums, and generates “status” information 2223.

DMAcontrol block 2206 is responsible for moving information from register 2217 to

buffer 2114 via a sixty-four byle receive FIFO 2110. DMA control block 2206 implements

receive FIFO 2110 as two thirty-two byte ping-pong buffers using sixty-four bytes of SRAM

440. DMA control block 2206 implements the receive FIFO using a write-pointer and a read-

pointer. When data to be transferred is available in register 2217 and space is available in

FIFO 2110, DMA control block2206 asserts an SRAM write request to SRAMcontroller 442

via lines 2225. SRAM controller 442 in turn moves data from register 2217 to FIFO 2110 and

asserts an acknowledgesignal back to DMAcontrol block 2206 via lines 2225. DMAcontrol

block 2206 then increments the receive FIFO write pointer and causes the data assembly
. register read pointer to be incremented.

Whenthirty-two bytes of data has been deposited into receive FIFO 2110, DMAcontrol

block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This

write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for

the DRAM request address, and the receive FIFO read pointer for the SRAM read address.

Using the receive FIFO read pointer, the DRAM controller 450 asserts a read request to

SRAMcontroller 442. SRAM controller 442 responds to DRAM controller 450 by returning

the indicated data from the receive FIFO 2110 in SRAM 440andasserting an acknowledge

signal. DRAM controller 450 stores the data in a DRAM write data register, stores a DRAM

request address ina DRAM addressregister, and asserts an acknowledge to DMA control

block 2206. The DMAcontrol block 2206 then decrements the reccive FIFO read pointer.

Then the DRAM controller 450 movesthe data from the DRAM write data register to buffer

2114. In this way, as consecutive thirty-two byte chunks of data are stored in SRAM 440,

DRAMcontrol block 2206 moves those thirty-two byte chunksof data oneat a time from
40

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 045

ALA-006E

“10

15

20.

25

30

SRAM 440to buffer 2214 in DRAM 460. Transferring thirty-two byte chunks of data to the

DRAM 460in this fashion allows data to be written into the DRAM usingthe relatively

efficient burst mode of the DRAM.

Packet data continues to flow from network line 210 to buffer 2114 untilall packet data has

been received. MAC 402 then indicates that the incoming packet has completed byasserting

an “end of frame”(i.e., end of packet) signal on line 2227 and by presenting final packet status
(MACpacketstatus) to packet synchronization sequencer 2204. The packet processing

sequencer 2204 then movesthe status 2223 (also called “protocol analyzer status’) and the

MACpacketstatus to register 2217 for eventual transfer to buffer 2114. After all the data of

the packet has been placed in buffer 22 14, status 2223 and the MACpacketstatus is
transferred to buffer 2214 so that it is stored prependedto the associated data as shownin

Figure 22.

After all data and status has been transferred to buffer 2114, packet processing sequencer

2204 creates a summary 2224(alsocalled a “receive packet descriptor’’) by concatenating the

free buffer descriptor 2207, the buffer load-count, the MACID,anda statusbit (also called an

“attention bit”). If the attention bit is a one, then the packet is not a “fast-path candidate”;

whereasifthe attention bit is a zero, then the packetis a “fast-path candidate”. The value of

the attention bit represents the result of a significant amount ofprocessing that processor 470

would otherwise have to do to determine whether the packetis a “fast-path candidate”. For

example,the attention bit being a zero indicates that the packet ‘employs both TCP protocol

and IP protocol. By carrying out this significant amount of processing in hardware beforehand

_ and then encodingtheresult in the attention bit, subsequent decision making by processor 470

as to whether the packet is an actual “fast-path packet” is accelerated. A complete logical

description ofthe attention bit in verilog codeis sct forth in CD:AppendixAin the lines

following the heading “Ending Packet Status”.

Packet processing sequencer 2204 then sets a ready bit (not shown)associated with

summary 2224 and presents summary 2224 to queue managerinterface 2205. Queue manager

interface 2205 then requests a write to the head of a “summary queue” 2112 (also called the

“receive descriptor queue”). The queue manager 2103 receives the request, writes the

summary 2224 to the head of the summary queue 2212,and asserts an acknowledgesignal

back to queue managerinterface via line 2210. When qucue managerinterface 2205 receives

the acknowledge, queue managerinterface 2205 informs packet processing sequencer 2204
41

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 046

20

25

.

30—

ALA-006E

that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with thei

summary. Packet processing sequencer 2204 also generates additional status information (also

called a “vector’’) for the packet by concatenating the MAC packet status and the MACID.

Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and

presents this vector to the queue managerinterface 2205. The queue managerinterface 2205

and the queue manager 2103 then cooperate to write this vector to the head of a “vector queue”

2113 in similar fashion to the way summary 2224 was written to the head of summary queue

2112 as described above. When the vector for the packet has been written to vector queue

2113, queue manager interface 2205 resets the ready bit associated with the vector.

Once summary 2224 (including a buffer descriptor that points to buffer 2114) has been

placed in summary queue 2112 and the packet data has been placed in buffer 2144, processor

470 can retrieve summary 2224 from summary queue 2112 and examinethe “attention bit”.

If the attention bit from summary 2224is a digital one, then processor 470 determinesthat

the packetis not a “fast-path candidate” and processor 470 need not examine the packet

_ headers. Only the status 2223 (first sixteen bytes) from buffer 2114 are DMAtransferred to

SRAMsoprocessor 470 can examineit. If the status 2223 indicates that the packet is a type

of packet that is not to be transferred to the host (for example, a multicast frame that the host is

not registered to receive), then the packet is discarded (i.e., not passed to the host). If status

2223 does not indicate that the packet is the type ofpacket that is not to be transferred to the

host, then the entire packet (headers and data) is passed to a buffer on host 20 for “‘slow-path”’

transport and network layer processing by the protocol stack of host 20.
If, on the other hand, the attention bit is a zero, then processor 470 determinesthat the

packetis a “fast-path candidate”. If processor 470 determines that the packetis a “fast-path

candidate”, then processor 470 uses the buffer descriptor from the summary to DMAtransfer

the first approximately 96 bytes of information from buffer 2114 from DRAM 460 into a

portion of SRAM 440 so processor 470 can examineit. This first approximately 96 bytes

contains status 2223 as well as the IP source address of the IP header, the JP destination

address of the IP header, the TCP source address of the TCP header, and the TCP destination

address of the TCP header. The IP source address of the IP header, the IP destination address

of the IP header, the TCP source address of the TCP header, and the TCP destination address

of the TCP header together uniquely define a single connection context (TCB) with which the

packet is associated. Processor 470 examines these addresses of the TCP and IP headers and
42

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 047

ALA-006E

20

25

30

determines the connection context of the packet. Processor 470 then checksa list of

connection contexts that are under the control of INIC card 200 and determines whether the

packet is associated with a connection context (TCB) under the control of INIC card 200.

Ifthe connection contextis not in thelist, then the “fast-path candidate” packet is

determined notto be a “‘fast-path packet.” In such a case, the entire packet (headers and data)

is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack of host 20.
If, on the other hand, the connection contextis in the list, then software exccuted by

processor 470 including software state machines 2231 and 2232 checks for one of numerous

exception conditions and determines whether the packetis a “fast-path packet”or is not a

“fast-path packet”. These exception conditions include: 1) IP fragmentation is detected; 2) an

IP option is detected; 3) an unexpected TCP flag (urgent bit set, resct bit set, SYN bit set or

FIN bit set) is detected; 4) the ACK field in the TCP headeris before the TCP window,or the

ACKfield in the TCP headeris after the TCP window,or the ACK field in the TCP header

shrinks the TCP window; 5) the ACK field in the TCP header is a duplicate ACK and the

ACKfield exceeds the duplicate ACK count (the duplicate ACK countis a user settable

. value); and 6) the sequence number of the TCP headeris out of order (packet is received out of

sequence). If the software executed by processor 470 detects one of these exception

conditions, then processor 470 determines.that the “fast-path candidate”is not a “fast-path

packet.” In such a case, the connection context for the packet is “flushed” (the connection

context is passed back to the host) so that the connection context is no longer present in thelist

of connection contexts under control of INIC card 200. The entire packet (headers and data) is

transferred to a buffer in host 20 for “slow-path”transport layer and network layer processing

by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such exception condition, then the “‘fast-path

candidate” packet is determined to be an actual “fast-path packet”. The receive state machine

2232 then processes of the packet through TCP. The data portion of the packet in buffer 2114

is then transferred by another DMAcontroller (not shown in Figure 21) from buffer 2114 to a

host-allocated file cache in storage 35 of host 20. In one embodiment, host 20 does no

analysis of the TCP and IP headersofa “‘fast-path packet”. All analysis of the TCP and IP

headersof a “‘fast-path packet” is donc on INIC card 20.

Figure 23 is a diagram illustrating the transfer of data of “‘fast-path packets” (packets of a

64k-byte session layer message 2300) from INIC 200 to host 20. The portion of the diagram
43

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 048

ALA-006E

10

15

20

25

30

to the left of the dashed line 2301 represents INIC 200, whereas the portion of the diagram to

the right of the dashed linc 2301 represents host 20. The 64k-byte session layer message 2300

includes approximately forty-five packets, four of which (2302, 2303, 2304 and 2305) are

labeled on Figure 23. The first packet 2302 includes a portion 2306 containing transport and

network layer headers (for example, TCP and IP headers), a portion 2307 containing a session

layer header, and a portion 2308 containing data. Ina first step, portion 2307,the first few
bytes of data from portion 2308, and the connection context identifier 2310 of the packet 2300

are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a sccond step, host 20

examinesthis information and returns to INIC 200 a destination (for example, the location of a

file cache 2311 in storage 35) for the data. Host 20 also copies the first few bytes of the data
from buffer 2309 to the beginning of a first part 2312 of file cache 2311. Ina third step, INIC

200 transfers the remainderof the data from portion 2308 to host 20 such that the remainder of

the data is stored in the remainderoffirst part 2312 offile cache 2311. No network, transport,

or session layer headersare stored in first part 2312 of file cache 2311. Next, the data portion

2313 of the second packet 2303 is transferred to host 20 such that the data portion 2313 ofthe

second packet 2303 is stored in a second part 2314 of file cache 2311. The transport layer and

network layer header portion 2315 of second packet 2303 is not transferred to host 20. There

is no network,transport, or session layer header stored in file cache 2311 between the data

portion offirst packet 2302 and the data portion of second packct 2303. Similarly, the data

portion 2316 of the next packet 2304 of the session layer messageis transferred to file cache

2311 so that there is no network, transport, or session layer headers between the data portion

of the second packct 2303 andthe data portion ofthe third packet 2304 in file cache 2311. In

this way, only the data portions of the packets of the session layer messageare placed in the

file cache 2311. The data from the session layer message 2300 is present in file cache 2311 as

a block such that this block contains no network, transport, or session layer headers.

In the case of a shorter, single-packet session layer message, portions 2307 and 2308 ofthe

session layer message are transferred to 256-byte buffer 2309 of host 20 along with the

connection context identifier 2310 as in the case of the longer session layer message described

above. In the case of a single-packet session layer message, however, the transfer is completed

at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does not transfer

subsequent data to such a destination.

44

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 049

ALA-006E

10

15

20

25

30

CD Appendix B includesalisting of software executed by processor 470 that determines

whether a “‘fast-path candidate”packetis or is not a “fast-path packet”. An example of the

instruction set of processor 470 is found starting on page 79 of the Provisional U.S. Patent

Application Serial No. 60/061,809, entitled “Intelligent Network Interface Card And System

For Protocol Processing”, filed October 14, 1997 (the subject matter of this provisional

application is incorporated herein by reference).

CD Appendix C includes device driver software executable on host 20 that interfaces the

host 20 to INIC card 200. There is also ATCP code that executes on host 20. This ATCP

code includes: 1) a “free BSD”stack (available from the University of California, Berkeley)
that has been modified slightly to makeit run on the NT4 operating system (the “free BSD”

stack normally runs on a UNIX machinc), and 2) code added to the free BSD stack between

the session layer above and the device driver below that enables the BSD stack to carry out

“fast-path” processing in conjunction with INIC 200.

TRANSMIT FAST-PATH PROCESSING: The following is an overview of one

embodimentof a transmit fast-path flow once a commandhasbeenposted (for additional

information, see provisional application 60/098,296, filed August 27, 1998). The transmit
request may be a segmentthat is less than the MSS,or it may be as much asa full 64K session

layer packet. The former request will go out as one segment, the latter as a number of MSS-

sized segments. The transmitting CCB musthold on to the request until all data in it has been

transmitted and ACKed. Appropriate pointers to do this arc kept in the CCB. To create an

output TCP/IP segment, a large DRAM buffer is acquired from the QFREEL queue. Then

data is DMAdfrom host memory into the DRAMbufferto create an MSS-sized segment.

This DMAalso checksums the data. The TCP/IP headeris created in SRAM and DMAdto

. the front of the payload data. It is quicker and simpler to kccp a basic frame header(i.e., a

template header) permanently in the CCB and DMAthis directly from the SRAM CCBbuffer

into the DRAMbuffer each time. Thus the payload checksum is adjusted for the pseudo-

header(i.e., the template header) and placed into the TCP header prior to DMAing the header

from SRAM. Then the DRAM buffer is queued to the appropriate QUXMTtransmit queue.

The final step is to update various windowfields etc in the CCB. Eventually cither the entire

request will have been sent and ACKed,or a retransmission timer will expire in which case the

context is flushed to the host. In either case, the INIC will place a commandresponsein the

45

CAVIUM-1002

Cavium, Inc.v. Alacriitech, Inc.
Page 050

ALA-006E

10

15

20

25

30

response queue containing the command buffer from the original transmit command and

appropriate status.

The above discussion has dealt with how an actual transmit occurs. Howeverthe real

challenge in the transmit processor is to determine whetherit is appropriate to transmit at the

time a transmit request arrives, and then to continue to transmit for as long as the transport

protocol permits. There are many reasonsnot to transmit: the receiver’s window size is less

than or equal to zero, the persist timer has expired, the amountto sendis less than a full

segment and an ACKis expected/outstanding, the recciver’s windowis not half-open, etc.

Muchoftransmit processing will be in determining these conditions.

The fast-path is implemented as a finite state machine (FSM)that covers at least three

layers of the protocol stack, i.e., IP, TCP, and Session. The following summarizes the steps

involved in normalfast-path transmit command processing: 1) get control of the associated

CCB (gotten from the command): this involves locking the CCB to stop other processing(e.g.

Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into

an SRAM CCBbuffer. There are sixteen of these buffers in SRAM andthey are not flushedto

DRAMuntil the buffer space is needed by other CCBs. Acquisition and flushing of these

CCB buffers is controlled by a hardware LRU mechanism. Thus getting into a buffer may

(EX_SCMD)event against the CCB’s FSM.’

_involve flushing another CCB from its SRAM buffer. 3) Process the send command

Each eventand state intersection provides an action to be executed and a new state. The

following is an example ofthe state/event transition, the action to be executed and the new

state for the SEND commandwhilein transmit state IDLE (SX_IDLE). The action from this

state/event intersection is AX_NUCMDand the next state is XMIT COMMAND ACTIVE

(SX_XMIT). To summarize, a commandto transmit data has been received while transmit is

currently idle. The action performs the following steps: 1) Store details of the command into

the CCB. 2) Check thatit is okay to transmit now (e.g. send windowis not zero). 3) If output

is not possible, send the Check Output event to QEVENT1 queue for the Transmit CCB’s

FSM andexit. 4) Geta DRAM 2K-bytc buffer from the Q-FREEL queueinto which to move

the payload data. 5) DMA payload data from the addresses in the scatter/gather lists in the

commandinto an offset in the DRAM bufferthat leaves space for the frame header. These

DMaAswill provide the checksum of the payload data. 6) Concurrently with the above DMA,

fill out variable details in the frame header template in the CCB. Also get the IP and TCP
46

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 051

ALA-006E

10

15

20

© 25

30

header checksumswhile doing this. Notethat base IP and TCP headers checksumsare kept in

the CCB,and these are simply updated for fields that vary per frame, viz. IP Id, IP length, IP

checksum, TCP sequence and ACK numbers, TCP windowsize, TCP flags and TCP

checksum. 7) When the payload is complete, DMA the frame header from the CCBto the

front of the DRAM buffer. 8) Queue the DRAM buffer (i.e., queuc a buffer descriptor that

points to the DRAM buffer) to the appropriate QUXMTqueueforthe interface for this CCB.

9) Determineif there is more payload in the command. If so, save the current command

transfer address details in the CCB and send a CHECK OUTPUTevent via the QEVENT1

queueto the Transmit CCB. If not, send the ALL COMMANDDATASENT (EX_ACDS)

event to the Transmit CCB. 10) Exit from Transmit FSM processing.

Code that implements an embodiment of thc Transmit FSM (transmit software state

machine 2231 of Figure 21) is’ found in CD Appendix B., In one embodiment, fast-path

transmit processing is controlled using write only transmit configuration register (XmtCfg).

Register XmtCfg has the following portions: 1) Bit 31 (name: Reset). Writing a onc (1) will
force reset asserted to the transmit sequencerof the channel selected by XcvSel. 2) Bit 30

(name: XmtEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)

causesthe transmit sequencerto halt after completion of the current packet. 3) Bit 29 (name:
PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission, after

completion ofthe current packet, whenever the reccive sequencer detects an 802.3X pause

command packet. 4) Bit 28 (mame: LoadRng). Writing a one (1) causes the data in

RevAddrB[1 0:00] to be loaded in to the Mac’s random number register for use during

collision back-offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15 (name: FreeQId). Selects

the qucue to which the freed buffer descriptors will be written once the packet transmission

has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: XmtQId).

Selects the queue from which the transmit buffer descriptors will be fetched for data packets.

8) Bits 09:05 (name: CtrlQId). Selects the queue from whichthe transmit buffer descriptors

will be fetched for control packets. These packets have transmission priority overthe data

packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:

VectQId). Selects the queue to which the transmit vector data is written after the completion

of each packet transmit. In some embodiments, transmit sequencer 2104 of Figure 21 retrieves

- buffer descriptors from two transmit queues, one of the queucs having a higher transmission

priority than the othcr. The higher transmission priority transmit queueis used for the
47 -

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 052

ALA-006E

10

15

20

25

30

transmission of TCP ACKs, whereas the lower transmission priority transmit queue is used for

the transmission of other types of packets. ACKs may be transmitted in accordance with

techniquesset forth in U.S. Patent Application Serial No. 09/802,426 (the subject matter of

which is incorporated herein by reference). In some embodiments, the processor that executes

the Transmit FSM,the receive and transmit sequencers, and the host processor that executes

the protocol stack are all realized on the sameprinted circuit board. The printed circuit board

may, for example, be a card adapted for coupling to anothcr computer.

All told, the above-described devices and systems for processing of data communication

result in dramatic reductions in the time and host resources required for processing large,

connection-based messages. Protocol processing speed andefficiency is tremendously

accelerated by specially designed protocol processing hardware as compared with a general
purpose CPU running conventional protocol software, and interrupts to the host CPU are also

substantially reduced. These advantages can be provided to an existing host by addition of an

intelligent network interface card (INIC), or the protocol processing hardware may be

integrated with the CPU. In either case, the protocol processing hardware and CPU

intelligently decide which device processes a given message, and can changethe allocation of

that processing based upon conditions of the message.

 DISCLOSURE FROM PROVISIONAL APPLICATION 60/061,809,

BACKGROUNDOF THE INVENTION.

Network processing as it cxists today is a costly and inefficient use of system

resources. A 200 MHz Pentium-Prois typically consumed simply processing network data

from a 100Mb/second-network connection. The reasonsthat this processing is so costly are
described here.

TOO MANY DATA MOVES.

When networkpacket arrives at a typical network interface card (NIC), the NIC moves

the data into pre-allocated network buffers in system main memory. From there the datais

read into the CPU cacheso that it can be checksummed (assumingof course that the protocol

in use requires checksums. Some, like IPX, do not.). Oncethe data has been fully processed

by the protocol stack, it can then be movedinto its final destination in memory. Since the
48

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 053

ALA-006E

15

20

25

30

CPUis moving the data, and must read the destination cacheline in beforeit can fill it and

write it back out, this involves at a minimum two moretrips across the system memory bus. In

short, the best one can hope for is that the data will get moved across the system memory bus

four times beforeit arrivesin its final destination. It can, and does, get worse. If the data

happensto get invalidated from system cacheafter it has been checksummed, then it must get

pulled back across the memory bus before it can be movedtoits final destination. Finally, on

some systems, including WindowsNT 4.0, the data gets copied yet another time while being

moved up the protocol stack. In NT 4.0, this occurs between the miniport driver interface and

the protocol driver interface. This can add up to a whoppingeight trips across the system

memory bus(the fourtrips described above, plus the moveto replenish the cache, plus three
more to copy from the miniport to the protocol driver). That’s enough to bring even today’s

advanced memory bussesto their knees.

TOO MUCH PROCESSING BY THE CPU. .

In all but the original move from the NIC to system memory, the system CPU is

responsible for moving the data. This is particularly expensive because while the CPU is

movingthis data it can do nothing else. While moving the data the CPUistypically stalled

waiting for the relatively slow memory to satisfy its read and write requests. A CPU, which

" can execute an instruction every 5 nanoseconds, must now wait as long as several hundred

nanosecondsfor the memory controller to respond before it can begin its next instruction.

Even today’s advanced pipelining technology doesn’t help in these situations becausethat

relies on the CPU being able to do useful work while it waits for the memory controller to

respond. Ifthe only thing the CPU hasto look forward to for the next several hundred

instructions is morc data moves, then the CPU ultimately gets reduced to the speed of the

memory controller.

Movingall this data with the CPU slows the system down even after the data has been

moved. Since both the source and destination cache lines must be pulled into the CPU cache

when the data is moved, more than 3k of instructions and or data resident in the CPU cache

mustbe flushed or invalidated for every 1500 byte frame. This is of course assuming a

combined instruction and data second level cache, as is the case with the Pentium processors.

After the data has been moved, the former resident of the cache will likely need to be pulled

backin, stalling the CPU even when weare not performing network processing. Ideally a
49

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 054

ALA-006E

10

15

20

25

30

system would never have to bring network frames into the CPU cache, instead reserving that

precious commodity for instructions and data that are referenced repeatedly and frequently.

But the data movementis not the only drain on the CPU. Thereis also a fair amount of

processing that must be done by the protocol stack software. The most obvious expenseis

calculating the checksum for each TCP segment (or UDP datagram). Beyond this, however,

there is other processing to be done as well. The TCP connection object must be located when

a given TCP segmentarrives, IP header checksums must be calculated, there are buffer and

memory managementissues, and finally there is also the significant expense of interrupt

processing which wewill discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMBrequest (write or read-reply) is typically made up of 44 TCP segments

when running over Ethernet (1500 byte MTU). Each of these segments may result in an

interrupt to the CPU. Furthermore, since TCP must acknowledgeall of this incoming data,it’s

possible to get another 44 transmit-complete interrupts as a result of sending out the TCP

acknowledgements, While this is possible, it is not terribly likcly. Delayed ACK timers allow

us to acknowledge more than one segment at a time. And delays in interrupt processing may

mean that we are able to process more than one incoming network frameper interrupt.

Nevertheless, even if we assume four incoming framesper input, and an acknowledgement for

every two segments(asis typical per the ACK-every-other-segment property of TCP), we are

still left with 33 interrupts per 64k SMBrequest.

Interrupts tend to be very costly to the system. Often when a system is interrupted,

important information must be flushed or invalidated from the system cache so that the

interrupt routine instructions, and needed data can be pulled into the cache. Since the CPU

will return to its prior location after the interrupt, it is likely that the information flushed from

the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While

the processor pipeline is an extremely efficient way of improving CPU performance,it can be

expensive to get going after it has been flushed.

Finally, each ofthese interrupts results in expensive register accesses across the

peripheral bus (PC1). This is discussed morein the following section.

50

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 055

ALA-006E

10

15

20

25

30

INEFFICIENT USE OF THE PERIPHERAL BUS(PCI).

Wenotedearlier that when the CPU hasto access system memory, it may bestalled for

several hundred nanoseconds. Whenit has to read from PCI, it maybestalled for many

microseconds. This happens every time the CPU takes an interrupt from a standard NIC. The

first thing the CPU must do whenit receives oneofthese interrupts is to read the NIC Interrupt

Status Register (ISR) from PCI to determine the cause of the interrupt. The mosttroubling

thing aboutthis is that since interrupt lines are shared on PC-based systems, we may have to

perform this expensive PCT read even whenthe interrupt is not meantfor us.

There are other peripheral bus inefficiencies as well. Typical NICs operate using

descriptor rings. When a framearrives, the NIC reads a receive descriptor from system

memory to determine where to place the data. Once the data has been moved to main

memory, the descriptor is then written back out to system memory with status about the

received frame. Transmit operates in a similar fashion. The CPU mustnotify that NIC thatit

has a new transmit. The NIC will read the descriptor to locate the data, read the data itself, and

then write the descriptor back with status about the send. Typically on transmits the NIC will

then read the next expected descriptor to see if any morc data needsto be sent. In short, each

receive or transmit frame results in 3 or 4 separate PCI reads or writes (not counting the status

register read).

SUMMARYOFTHE INVENTION.

Alacritech was formed with the idea that the network processing described above could

be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the

Alacritech INIC, we address each of the above problems,resulting in the following

advancements:

1. The vast majority of the data is moved directly from the INIC into its final

destination. A single trip across the system memory bus.

2. There is no header processing, little data copying, and no checksumming

required by the CPU. Becauseofthis, the data is never moved into the CPU cache, allowing
the system to keep important instructions and data resident in the CPU cache.

3. Interrupts are reduced toaslittle as 4 interrupts per 64k SMB read and 2 per

64k SMBwrite.

51

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 056

ALA-006E

10°

15

20

25

30

4. There are no CPU reads over PCI and there are fewer PCI operations per

receive or transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

PERFORM TRANSPORT LEVEL PROCESSING ON THEINIC.

In order to keep the system CPU from havingto process the packet headers or

checksumthe packet, we must perform this task on the INIC. This is a daunting task. There

are more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.

Clearly this is more code than could be efficiently handled by a competitively priced network

card. Furthermore, as noted above, the TCP/IP protocol stack is complicated enough to

consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive

card, we need special network processing hardware as opposed to simply using a general

purpose CPU.

ONLY SUPPORT TCP/IP.

In this section we introduce the notion of a "context". A context is required to keep

track of information that spans many, possibly discontiguous, pieces of information. When

processing TCP/IP data, there are actually two contexts that must be maintained. Thefirst

context is required to reassemble IP fragments. It holds information about the status of the IP

reassembly as well as any checksum information being calculated across the IP datagram
(UDP or TCP). This context is identified by the IP_ID ofthe datagram as well as the source

and destination IP addresses. The second contextis required to handle the sliding window

protocol of TCP. It holds information about which segments have been sent or received, and

which segments have been acknowledged, andis identified by the IP source and destination

addresses and TCP source and destination ports.

If we were to chooseto handle both contexts in hardware, we would have to potentially

keep track of many pieces of information. One such example is a case in which a single 64k

SMBwrite is broken downinto 44 1500 byte TCP segments, which are in turn broken down

into 131 576 byte IP fragments, all of which can come in any order (though the maximum

windowsize is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection

establishment time, which should prevent IP fragmentation in nearly all TCP connections. The
52

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 057

ALA-006E

10

15

20

25

30

only time that we should end up with fragmented TCP connectionsis whenthereis a router in

the middle of a connection which must fragment the segments to support a smaller MTU. The

only networks that use a smaller MTU than Etheretare serial linc interfaces such as SLIP and

PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we

had 256 of these connections, we would still only need to support 34Mb/sec,ora little over

three 10bT connections worth of data. This is not enough to justify any performance

enhancements that the INIC offers. If this becomes an issue at some point, we may decide to

implement the MTU discovery algorithm, which should prevent TCP fragmentation on all

connections (unless an ICMPredirect changes the connection route while the connection is

established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP

segments on the INIC. UDP is another matter. Since UDP doesnot support the notion of a

Maximum SegmentSize, it is the responsibility of IP to break down a UDP datagram into

MTUsized packets. Thus, fragmented UDP datagrams are very common. The most common

UDPapplication running today is NFSV2 over UDP. While this is also the most common

version ofNFS running today, the current version of Solaris being sold by Sun Microsystems

runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDPtraffic start to

decrease over the coming years. In summary, we will only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLETCP “EXCEPTIONS”.

As noted above, we won’t provide support for fragmented TCP segments on the INIC.

Wehavealso opted to not handle TCP connection and breakdown.Hereis a list of other TCP

“exceptions” which we have elected to not handle on the INIC:

Fragmented Segments —Discussed above.

Retransmission Timeout — Occurs when we do not get an acknowledgement for

previously sent data within the expected time period.

Out of order segments — Occurs when wereceive a segment with a sequence number

other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have now eliminated support for so many different code paths, it might secm

hardly worth the trouble to provide any assistance by the card at all. This is not the case.

53 ‘

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 058

ALA-006E

10

15

20

25

30

According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated Volume

2”, TCP operates without experiencing any exceptions between 97 and 100 percentofthe time
in local area networks. As network, router, and switch reliability improve this numberis likely

to only improve with time.

TWO MODESOF OPERATION.

So the next question is what to do about the network packets that do notfit our criteria.

The answer shownin Fig. 24 is to use two modes of operation: One in which the network
frames are processed on the INIC through TCP and one in whichthe card operateslike a

typical dumb NIC. Wecall these two modes fast-path, and slow-path. In the slow-path case,
network frames are handed to the system at the MAClayer and passed up throughthe host

protocol stack like any other network frame. In the fast path case, network data is given to the

host after the headers have been processed and stripped.

The transmit case works in much the same fashion. In slow-path modethe packets are

given to the INIC with all of the headers attached. The INIC simply sends these packets out as
if it were adumb NIC. In fast-path mode, the host gives raw data to the INIC which it must
carve into MSS sized segments, add headers to the data, perform checksums on the segment,

and then send it out on the wire.

THE TCB CACHE.

Consider a situation in which a TCP connection is being handled by the card and a

fragmented TCP segment for that connection arrives. In this situation, it will be necessary for

the card to turn control of this connection overto the host.

This introducesthe notion of a Transmit Control Block (TCB) cache. A TCB is a

structure that contains the entire context associated with a connection. This includes the

source and destination IP addresses and source and destination TCP ports that define the

connection. It also contains information about the conncction itself such as the current send

and receive sequence numbers, and the first-hop MACaddress, etc. The complete set of TCBs

exists in host memory,but a subset of these may be "owned" by the card at any given time.
This subset is the TCB cache. The INIC can own up to 256 TCBsat any given time.

TCBsareinitialized by the host during TCP conncction setup. Oncc the connection has

achieved 4 “steady-state” of operation, its associated TCB can then be turned over to the INIC,
54

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 059

ALA-006E

10

15

20

25

30

putting us into fast-path mode. From this point on, the INIC ownsthe connection until either a

FIN arrives signaling that the connection is being closed, or until an exception occurs which

the INIC is not designed to handle (such as an out of order segment). When any of these

conditions occur, the INIC will then flush the TCB back to host memory, and issue a message

to the hosttelling it that it has relinquished control of the connection, thus putting the

connection back into slow-path mode. From this point on, the INIC simply hands incoming

scements that are destined for this TCB off to the host with all of the headers intact.

Note that when a connection is owned by the INIC,the host is not allowed to reference

the corresponding TCBin host memory asit will contain invalid information about the state of

the connection.

TCP HARDWAREASSISTANCE.

Whena frameis received by the INIC,it must verify it completely before it even .
determines whetherit belongs to onc of its TCBs ornot. This includes all header validation (is
it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum correct, etc), Once

this is done it must compare the source and destination IP address and the source and

destination TCP port with those in each of its TCBsto determineif it is associated with one of |

its TCBs. This is an expensive process. To expedite this, we have added several features in

hardware to assist us. The headeris fully parsed by hardware and its type is summarized in a

single status word. The checksum is also verified automatically in hardware, and a hash keyis

created out of the IP addresses and TCP ports to expedite TCB lookup. Forfull details on

these and other hardware optimizations, refer to the INIC Hardware Specification sections

(Heading 8).

With the aid of these and other hardware features, much of the work associated with

TCP is doneessentially for frec. Since the card will automatically calculate the checksum for

TCP segments, we can pass this on to the host, even when the segmentis for a TCB that the .
INIC does not own.

TCP SUMMARY. ,

By moving TCP processing downto the INIC we have offloaded the host ofa large

amount of work. The host no longer hasto pull the data into its cache to calculate the TCP

55

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 060

ALA-006E

10

15

20

25

checksum. It docs not have to process the packet headers, and it does not have to generate

TCP ACKs. Wehave achieved most of the goals outlined above, but we are not doneyet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relation to the hosts transport layer interface (Called

TDIor Transport Driver Interface in Windows NT). For full details on this interface, refer to

the Alacritech TCP (ATCP) driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing

the data in its final destination. Somehow the host hasto tell the INIC where to put the data.

This is a problem in that the host cannot do this without knowing whatthe data actually is.

Fortunately, NT has provided a mechanism by whicha transport driver can “indicate”a small

amount of data to a client aboveit while telling it that it has more data to come. Theclient,

having then received enough of the data to know whatit is, is then responsible for allocating a

block of memory and passing the memory address or addresses back downto the transport

driver, which is in turn responsible for moving the data into the provided location.

Wewill make usc ofthis feature by providing a small amountof any received data to

the host, with a notification that we have more data pending. When this small amount of data

is passed up to the client, and it returns with the address in which to put the remainder of the

data, our host transport driver will pass that address to the INIC which will DMAthe

remainderof the data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small

amount of data (500 bytes for example), with a push flag set indicating that the data must be

. delivered to the client immediately, it does not make sense to deliver someof the data directly

while waiting for the list of addresses to DMAthe rest. Under these circumstances, it makes

more sense to deliver the 500 bytes directly to the host, and allow the host to copyit into its

final destination. While various ranges are feasible, it is currently preferred that anything less

than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while

anything more will be delivered as a small picce which may be128 bytes, while waiting until

receiving the destination memory address before movingtherest.

56

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 061

2h th MER AE
Skaak:ah, Bad Ba a UF

ALA-006E

10

15

20

30

Thetrick then is knowing whenthe data should be delivered to the client or not. As

we’ve noted, a push flag indicates that the data should be delivered to the client immediately,

but this alone is not sufficient. Fortunately, in the case ofNetBIOS transactions (such as

SMB), weare explicitly told the length of the session message in the NetBIOS headeritself.

With this we can simply indicate a small amount of data to the host immediately upon

receiving the first segment. The client will then allocate enough memory for the entire

NetBIOStransaction, which we can then use to DMAthe remainder ofthe data into as it

arrives. In the case of a large (S6k for example) NetBIOS session message,all but the first

couple hundred bytes will be DMA’d to their final destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not

rely on a session level protocolto tell us the length of the transaction. Under these

circumstances we will buffer the data as it arrives until A) we have receive some

‘predetermined number of bytes such as 8k, or B) some predetermined period of time passes

between segments or C) we get a push flag. If after any of these conditions occur we will then

indicate someorall of the data to the host depending on the amount of data buffered. If the

data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be retumed from the host so that we may then DMAthe remainder of the data.

TRANSMIT.

The transmit case is much simpler. In this case the client (NetBIOS for example) issues

a TDI Send with a list of memory addresses which contain data that it wishes to send along

with the length. The host can then passthis list of addresses and length off to the INIC. The

INIC will then pull the data from its source location in host memory,as it needsit, until the

complete TDI requestis satisfied.

AFFECTS ON INTERRUPTS.

Note that when we receive a large SMBtransaction, for example, that there are two

interactions between the INIC and the host. Thefirst in which the INIC indicates a small

amountof the transaction to the host, and the second in which the host provides the memory

location(s) in which the INIC places the remainder of the data. This results in only two

interrupts from the INIC. The first when it indicates the small amount of data and the second

after it has finished filling in the host memory given to it. A drastic reduction from the 33/64k
57

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 062

WOR TR at SER tk HA
Re BoP Booue EPR ae

ALA-006E

10

15

20

25

30

SMBrequest that we estimate at the beginning of this section. On transmit,

Sox abe
Boe og BL”

weactually only

receive a single interrupt when the send commandthat has been given to the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having now established our interaction with Microsoft’s TDI interface, we have

achieved our goal of landing most of our data directly into its final destination in host memory.

Wehave also managed to transmit all data from its original location on host memory. And

finally, we have reduced ourinterrupts to 2 per 64k SMB read and | per 64k SMB write. The

only thing that remains in ourlist of objectives is to design an efficient host

HOST(PCD INTERFACE.

(PCI) interface.

In this section we define the host interface. For a more detailed description, refer to the

“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

AVOID PCI READS.

One of our primary objectives in designing the host interface of the INIC was to

eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they

completely stall the reader until the transaction, completes. As noted above, this could hold a

CPU up for several microseconds, a thousand timesthe time typically required to execute a

single instruction. PCI writes on the other hand, are usually buffered by the

bus@PC]-bridge allowing the writer to continue on with other instructions.

’ knownas “posting”.

MEMORY-BASED STATUSREGISTER.

memory-

This technique is

The only PCI read that is required by most NICsis the read of the interrupt status

register. This register gives the host CPU information about what event has caused an

interrupt (if any). In the design of our INIC we haveelected to place this necessary status

register into host memory. Thus, when an event occurs on the INIC,it writes the status

register to an agreed upon location in host memory. The corresponding driver on the host

reads this local register to determine the causc of the interrupt. The interrupt lines are held

high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadowregisters are maintained on the INIC to ensure that events are notlost.
38

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 063

‘

ALA-006E

10

20

25

30

BUFFER ADDRESSES ARE PUSHED TO THEINIC.

Since it is imperative that our INIC operate as efficiently as possible, we must also

avoid PCI reads from the INIC. We do this by pushing our receive buffer addresses to the

INIC, As mentioned at the beginning ofthis section, most NICs work on a descriptor queue

algorithm in which the NIC reads a descriptor from main memory in order to determine where

to place the next frame. We will instead write receive buffer addresses to the INIC as receive

buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the host to pass off a pages worth (4k) of buffers in a single write.

SUPPORT SMALL AND LARGE BUFFERSON RECEIVE.

In order to reduce further the numberofwrites to the INIC, and to reduce the amount of

memory being used by the host, we support two different buffer sizes. A small buffer contains

roughly 200 bytes of data payload, as well as extra fields containing status about the received

data bringing the total size to 256 bytes. We can therefore pass 16 of these small buffers at a
time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path

data that does notfit in a small buffer. Note that when we havea large fast-path receive, a

small buffer will be used to indicate a small piece of the data, whilc the remainder of the data

will be DMA’d directly into memory. Large buffers are never passed to the host by

themselves, instead they are always accompanied by a small buffer which contains status about

the receive along with the large buffer address. By operating in the manner, the driver must

only maintain and process the small buffer queue. Large buffers are returned to the host by

virtue of being attached to small buffers. Since large buffers are 2k in size they are passed to

the INIC 2 buffers at a time.

COMMAND ANDRESPONSE BUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we

also need a mannerby which wecan instruct the INIC to send data. Plus, when the INIC

indicates a small amount of data in a large fast-path receive, we need a method of passing back

the address or addresses in which to put the remainder of the data. We accomplish both of

-these with the use of a commandbuffer. Sadly, the command bufferis the only place in which

we must violate our rule of only pushing data across PCI. For the commandbuffer, we write
59

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 064

ALA-006E

15

20

25

30

the address of commandbuffer to the INIC. The INIC then reads the contents of the command
buffer into its memory so that it can execute the desired command. Since a command may
take a relatively long time to complete,it is unlikely that command buffers will complete in

order. For this reason we also maintain a response buffer queue. Like the small and large

receive buffers, a page worth of response buffers is passed to the INIC at atime. Response

buffers are only 32 bytes, so we have to replenish the [NIC’s supply of them relatively

infrequently. The response buffers only purposcis to indicate the completion of the

designated command buffer, and to pass status about the completion.

EXAMPLES.

In this section we will provide a couple of examples describing someofthe differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOS session message is reccived on the INIC, The first segment

will contain the NetBIOSheader, which containsthe total NetBIOS length. A small chunk of
this first segment is provided to the host by filling in a small receive buffer, modifying the

interrupt status register on the host, and raising the appropriate interrupt line. Upon receiving

the interrupt, the host will read the ISR,clear it by writing back to the INIC’s Interrupt Clear

Register, and will then process its small receive buffer queue looking for receive buffers to be

processed. Upon finding the small buffer, it will indicate the small amountof data up to the

client to be processed by NetBIOS.It will also, if necessary, replenish the receive buffer pool

on the INIC by passing off a pages worth of small buffers. Meanwhile, the NetBIOS client

will allocate a memory poollarge enoughto hold the entire NetBJOS message, and will pass

this address or set of addresses downto the transport driver. The transport driver will allocate

an INIC commandbuffer, fill it in with the list of addresses, set the commandtypeto tell the

INIC that this is where to put the receive data, and then pass the command off to the INIC by

writing to the command register. When the INIC receives the command buffer, it will DMA

the remainderof the NetBIOSdata, as it is received, into the memory address or addresses

designated by the host. Once the entire NetBIOStransaction is complete, the INIC will

complete the commandby writing to the response buffer with the appropriate status and

commandbuffer identifier.

60

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 065

stat eos Akob eb ay &be tb ealHao

ALA-006E

10

15

20

25

30

In this example, we have twointerrupts, and all but a couple hundred bytes are DMA’d.

directly to their final destination. On PCI we have twointerrupt status register writes, two

interrupt clear register writes, a commandregister write, a commandread, and a response

- buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register

reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get

moved anywherefrom 4 to 8 times across the system memory bus.

\

SLOW-PATH RECEIVE.

If the INIC receives a framethat does not contain a TCP segment for one ofits 'CB’s,

it simply passesit to the host as if it were a dumb NIC. Ifthe framefits into a small buffer

(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the host.

Otherwiseit places the data in a large buffer, writes the address of the large buffer into a small

buffer, and again notifies the host. The host, having received the interrupt and found the

completed small buffer, checks to see if the data is contained in the small buffer, and if not,

locates thelarge buffer. Having found the data, the host will then pass the frame upstream to

be processed by the standard protocol stack. It must also replenish the INIC’s small and large

receive buffer pool if necessary.

With the INIC,this will result in one interrupt, one interrupt status register write and

oneinterrupt clear register write as well as a possible small and or large receive buffer register

write. The data will go through the normalpath although ifit is TCP data then the host will

not have to perform the checksum.

With a standard NICthis will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assumethat the client has a small amountofdata to send. It will

issue the TDI Sendto the transport driver which will allocate a commandbuffer, fill it in with

the address of the 400 byte send, and set the commandto indicatethat it is a transmit. It will

then pass the command off to the INIC by writing to the commandregister. The INIC will

then DMAthe 400 bytes into its own memory, prepare a frame with the appropriate
61

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 066

~ ALA-006E

checksumsand headers, and send the frame out on the wire. After it has received the

acknowledgementit will then notify the host of the completion by writing to a responsc buffer.

With the INIC,this will result in one interrupt, one interrupt status register write, one

interrupt clear register write, a command buffer register write a commandbuffer read, and a

5 response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write. The data would get moved

across the system bus a minimum of 4 times. The resulting TCP ACKofthe data, however,

would add yet anotherinterrupt, anotherintcrrupt status register read, interrupt clear register

10 write, a descriptor read and writc, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECHINIC.

This section describes the host interface strategy for the Alacritech Intelligent Network

Interface Card (INIC). The goalof the Alacritech INIC is to not only process network data

15 through TCP,butalso to provide zero-copy support for the SMP upper-layer protocol.It

achieves this by supporting two paths for sending and receiving data, the fast-path and the

slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,

while slow-path traffic correspondsto network data for which the NIC does not have a

connection. The fast-path flow works by passing a header to the host and subsequently holding

20 further data for that connection on the card until the host responds via an INIC command with

a set of buffers into which to place the accumulated data. In the slow-path data flow, the INIC

will be operating as a “dumb”NIC,so that these packets are simply dumped into frame buffers

onthe host as they arrive. To do either path requires a pool of smaller buffers to be used for

headers and a poolof data buffers for frames/datathat are too large for the header buffer, with

25 both pools being managed by the INIC. This section discusses how these two pools of data are

managedas well as how buffers are associated with a given context.

RECEIVE INTERFACE.

The varying requirements ofthe fast and slow paths and a desire to save PCI bandwidth

30 are the driving forces behind the host interface that is described herein. As mentioned above,
the fast-path flow puts a header into a header bufferthat is then forwarded to the host. The host
uses the header to determine whatfurther data is following, allocates the necessary host

62

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 067

ALA-006E

15

20

25

30 ©

buffers, and these are passed back to the INIC via a commandto the INIC. The INICthenfills

these buffers from data it was accumulating on the card and notifies the host by sending a

response to the command. Alternatively, the fast-path may receive a header and data that is a

complete request, but that is also too large for a header buffer. This results in a header and data

buffer being passedto the host. This latter flow is identical to the slow-path flow, which also

puts all the data into the header buffer or, if the header is too small, uses a large (2K) host

buffer for all the data. This means that on the unsolicited receive path, the host will only sce

either a header buffer or a header and at most, one data buffer. Note that data is neversplit

between a header and a data buffer.

Fig. 25 illustrates both situations. Since we wantto fill in the header buffer with a

single DMA, the header mustbethe last piece of data to be writtcn to the host for any received

transaction.

RECEIVE INTERFACE DETAILS.

HEADER BUFFERS.

Header buffers in host memory are 256 bytes long, and are.aligned on 256 byte

boundaries. There will be a field in the header buffer indicating it has valid data. This field

will initially be reset by the host before passing the buffer descriptor to the INIC. A set of

header buffers are passed from the host to the INIC by the host writing to the “Header Buffer

Address Register” on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory ofthe first of a set of contiguous

header buffers.

Bits 7-0 Numberofheader buffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and passall 16 buffers to

the INIC with onc register writc. The [NIC will maintain a queue of these header descriptors

in the SmallHType queueinit’s own local memory, adding to the end of the queue every time

the host writes to the Header Buffer Address Register. Note that the single entry is added to

the queue; the eventual dequeuerwill use the countafter extracting that entry.

The header buffers, will be uscd and returncd to the host in the sameorder that they

were given to the INIC. The valid field will be set by the INIC before returning the buffer to

the host. In this way a PCIinterrupt, with a single bit in the interrupt register, may be

gencrated to indicate that there is a header buffer for the host to process. When servicing this
63

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 068

ALA-006E

10

15°

20

25

30

interrupt, the host will look at its queuc of header buffers, reading the valid field to determine

how many headerbuffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory arc aligned to page boundaries, assumed here to be

2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In ordcr to pass receive

data buffersto the INIC,the host must write to two registers on the INIC. Thefirst register to

be written is the “Data Buffer Handle Register.” The buffer handle is not significantto the
INIC,but will be copied back to the host to return the buffer to the host. The secondregister

written is the Data Buffer Address Register. This is the physical address of the data buffer.

Whenboth registers have been written, the INIC will add the contents of these two registers to

FreeType qucuc of data buffer descriptors. Note that the INIC hostdriver sets the handle

register first, then the address register. There needs to be some mechanism put in place to

ensure the readingof these registers docs not get out of sync with writing them. Effectively the

INIC can read the addressregister first and saveits contents, then rcad the handleregister.It

can then lock the register pair in some manner such that another write to the handle register is

not permitted until the current contents have been saved. Both addresses extracted from the

registers are to be written to the FrecType queue. The INIC will extract 2 entrics cach time

when dequeuing.

Data buffers will be allocated and used by the INIC as needed. For each data buffer

used by a slow-path transaction, the data buffer handle will be copied into a header buffer.

Then the header buffer will be rcturned to the host.

TRANSMIT INTERFACE.

. TRANSMIT INTERFACE OVERVIEW.

The transmit interface shownin Fig. 26, like the receive interface, has been designed to

minimize the amount of PCI bandwidth andlatencies. In order to transmit data, the host will

transfer a command buffer to the INIC. This commandbuffer will include a command buffer

handle, a commandfield, possibly a TCP context identification, anda list of physical data

pointers. The command buffer handle is defined to be the first word of the command buffer

andis used bythe hostto identify the command. This word will be passed backto the hostin

a responsebuffer, since commands may complete outof order, and the host will need to know
64

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 069

ALA-006E

18

20

25

30.

which commandis complete. Commandswill be used for many reasons, but primarily to cause

the INIC to transmit data, or to pass a sct of buffers to the INIC for input data on the fast-path

as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the

sameorder as they were givento it by the host. This cnables the host to know which response

buffer(s) to next look at when the [NIC signals a command completion.

TRANSMIT INTERFACE DETAILS.

COMMANDBUFFERS.

Commandbuffers in host memory arc a multiple of 32 bytes, up to a maximum of 1K

bytes, and are aligned on 32 byte boundaries. A command bufferis passed to the INIC by
writing to one of five “Command Buffer Address Registers.” These registers are defined as

follows:

Bits 31-5 Physical address in host memory of the commandbuffer.

. Bits 4-0 Length of command buffer in bytes / 32 (i.e. number of multiples of 32
bytes).

This is the physical address of the command buffer. The register to which the command

is written predetermines the XMT interface number, orif the commandis for the RCV CPU;

hencethere will be 5 of them, 0 — 3 for XMTand 4 for RCV. Whenoneofthese registers has

been written, the TINIC will add the contents of the register to it’s own internal queue of
command buffer descriptors. The first word of all command buffers is defined to be the

command butfer handle. It is the job of the utility CPUto extract a command from its local

queuc, DMA the ‘commandinto a small INIC buffer (from the FreeSType queue), and queue

_ that buffer into the Xmit#Type queue, where # is 0 — 3 depending on the interface, or the

appropriate RCV queue. The receiving CPU will service the queues to perform the commands.

When that CPU has completed a command,it extracts the command buffer handle and passes

it back to the host via a response buffer.

RESPONSE BUFFERS.

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.

They are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. This field will initially be reset by the host before
65

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 070

ALA-006E

~ 10

20

- 25

30

passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to

register is defined as follows:

_ the INIC by the host writing to the “Response Buffer Address Registcr” on the INIC. This

Bits 31-8 Physical address in host memory ofthefirst of a set of contiguous

response buffers.

Bits 7-0 Numberofresponse buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, andpass all 128 buffers

to the INIC with one register write. The INIC will maintain a queue of these header

descriptors in it’s ResponseType queue, adding to the end of the queue every time the host

writes to the “Response Buffer Address Register’. The INIC writes the cxtracted contents

including the count, to the queue in exactly the same mannerasfor the header buffers.

The response buffers can be used and returned to the host in the same order that they

were given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a response buffer for the host to process. Whenservicing
this interrupt, the host will look at its queue of response buffers, reading the valid ficld to

determine how manyresponsebuffers are to be processed.

INTERRUPT STATUS REGISTER/ INTERRUPT MASKREGISTER.

Fig. 27 showsthe general formatofthis register. The setting of any bits in the ISR will

causean interrupt, provided the corresponding bit in the Interrupt Mask Registeris set. The

default setting for the IMRis 0.

The INIC is configured so that the host should never needto directly read the ISR from

the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host

memory into which the ISR is dumped. The addressandsize ofthat arca ca be passed to the
INIC via a command on the XMT interface. That command will also specify the setting for the

IMR. Until the INIC receives this command,it will not DMA the ISR to host memory, and no

events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC

in this case.

For the host to never haveto actually read the register from the INIC itself, it is

necessary for the INIC to updatethis host copy ofthe register whenever anything in it changes.

66
- The hostwill Ack (or deassert) events in the register by writing the register with 0’s in

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 071

ALA-006E

15

20

25

30

appropriate bit fields. So that the host does not miss events, the following scheme has been

developed:

The INIC keepsa local copy of the register whenever it DMAsit to the host i.e. after

some event(s). Call this COPYA Then the INIC starts accumulating any new events not

reflected in the host copy in a separate word. Call this NEWA.Asthe host clears bits by

writing the register back with those bits set to zero, the INIC clears these bits in COPYA (or

the host write-back goes directly to COPYA). If there are new events in NEWA,it ORs them

with COPYA, and DMAsthis new ISRto the host. This new ISR then replaces COPYA,

NEWAis cleared and the cycle then repeats.

. REGISTER ADDRESS.

For the sake of simplicity, in this example of Fig. 28 the registers are at 4-byte

increments from whatever the base addressis.

ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.

This section outlines the design specification for the Alacritech TCP (ATCP)transport

driver. The ATCP driver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.

This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the
driver.

2. At the top of the protocol stack we introduce an NTfilter driver used to

intercept TDI requests destined for the Microsoft TCP driver.

3. At the bottom of the protocol stack we include an NDIS protocol-driver

interface which allows us to communicate with the INIC miniport NDISdriver beneath the

ATCPdriver.

This section covers each of these topics, as well as issucs commonto the entire ATCP

driver.

CODING STYLE.

Tn order to ensure that our ATCP driver is written in a consistent manner, we have

- adopteda set of coding guidelines. These guidelinesare introduced with the philosophy that

we should write code in a Microsoft style since we are introducing an NT-based product. The

67

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 072

ALA-006E

10

15

20

25

30

guidelines below apply to all code that we introduce into our driver. Since a very large portion

of our ATCP driver will be based on FreeBSD, and since we are somewhat time-constrained

on our driver development, the ported FreeBSD code will be exempt from these guidelines.

1. Global symbols — All function names and global variables in the ATCP driver

should begin with the “ATK”prefix (ATKSendQ for instance).

2. Variable names — Microsoft seemsto use capital letters to separate multi-word

variable namesinstead of underscores (VariableNameinstead of variablename). We should

adhereto this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure

types are alwayscapitals and they typedef a pointer to the structure as ‘“P”<name> as follows:

typedef struct FOO {

INT_bar;

} FOO, *PFOO;

Wewill adhereto this style.

4. Function calls — Microsoft separates function call arguments on separatelines:

X = foobar(

argument,

argumentz2,

);

Wewill adhereto this style. .

5. Comments — While Microsoft seemsto alternatively use // and /* */ comment

notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that

describe the function, its arguments, and its return value. We will also include these

comments, but will move them from within the function itself to just prior to the function for

better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when

defining function arguments. These keywords denote whether the function argument is used

as an input parameter, or alternatively as a placeholder for an output parameter. Wewill

include these keywords.

68

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 073

ALA-006E

8. Function prototypes ~ We will include function prototypes in the most logical

headerfile correspondingto the .c file. For example, the prototype for function foo() found in

foo.c will be placed in foo.h.

9. Indentation — Microsoft code fairly consistently uses a tabstop of 4. We will

5 do likewise.

10. Headerfile #ifndef — each headerfile should contain a #ifndef/#define/#endif

which is used to prevent recursive header file includes. For example, foo.h would include:

#ifndefFOOH__

#define FOOH__

10 <foo.h contents..>

#endif/* FOO_H_ */

Note the NAMEH__ format.

69

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 074

ALA-006E

11. Each file must contain a comment at the beginning which includes the Id as

follows:

LF

* Id

5 */

CVS (RCS)will expand this keyword to denote RCSrevision, timestamps,author, etc.

SMP

This section describes the process by which we will make the ATCP driver SMPsafe. .

10 ‘The basic rule for SMP kernel codeis that any access to a memory variable must be protected

by a lock that prevents a competing access by code running on anotherprocessor. Spinlocks

are the normal locking method for code paths which do not take a long time to execute (and

which donot sleep.)

In general each instance ofa structure will include a spinlock, which must be acquired

15. before members of that structure are accessed, and held while a function is accessing that

instance of the structure. Structures which are logically grouped together may be protected by

a single spinlock: for example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and ‘socket’ structure

which together constitute the administrative information for a TCP connection will probably

be collectively managedby a single spinlock in the ‘socket’ structure.

20 In addition, every global data structure such asa list or hash table must also have a

protecting spinlock which must be held while the structure is being accessed or modified. The

NT DDKin fact provides a number of convenient primitives for SMP-safe list manipulation,

and it is recommendedthat these’be used for any new lists. Existing list manipulations in the

FreeBSDcode can probably beleft as-is to minimize code disturbance, except of course that

- 25 the necessary spinlock acquisition and release must be added around them.

Spinlocks should not be held for long periods of time, and most especially, must not be

held during a sleep, since this will lead to deadlocks. Thereis a significant deficiency in the

NT kernel support for SMP systems:it does not provide an operation which allows a spinlock

to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX

30 environment where muchofthe processing occurs in the context of the user process which

initiated the operation. (The spinlock would haveto be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)
70

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 075

Ny eeau oh TR Hh,

ALA-006E

10

15

20

25

30

The NT approach is more asynchronous, however: IRPs are simply marked as

‘PENDING?’whenan operation cannot be completed immediately. The calling thread does

NOT sleep at that point: it returns, and may go on with other processing. Pending IRPsare

later completed, not by waking up the thread which initiated them, but by an

“ToCompleteRequest”call which typically rans at DISPATCHlevel in an arbitrary context.
Thus we havenot in fact used sleep locks anywherein the design of the ATCP driver,

hoping the above issue will not arise.

DATA FLOW OVERVIEW.

The ATCP driver supports two paths for sending and receiving data, the fast-path and
the slow-path. The fast-path data flow corresponds to connectionsthat are maintained on the

INIC, while slow-path traffic corresponds to network data for which the INIC does not have a

connection. In order to set some groundwork for the rest of this section, these two data paths

are summarized here.

-FAST-PATH INPUT DATA FLOW.

There are 2 different cases to consider:

1, NETBIOS traffic (identifiable by port number.)
2. Everythingelse.

NETBIOS INPUT.

. As soon as the INIC has received a segment containing a NETBIOSheader, it will

forward it up to the TCP driver, along with the NETBIOSlength from the header. (in

principle the host could get this from the headeritself, but since the INIC has already done the

decode, it seem reasonable to just passit.)

From the TDI spec, the amount of data in the buffer actually sent must be at least 128

bytes. For small SMBs, all of the received SMB should be forwarded;it will be absorbed

directly by the TDI client without any further MDL cxchange. Experiments tracing the TDI
data flow show that the NETBIOSclient directly absorbs up to 1460 bytes: the amount of

payload data in a single Ethernet frame. Thusthe initial system specifies that the INIC will

indicate anything up to a complete segmentto the ATCPdriver. [Sce note (1)].

7

c

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 076

ALA-006E

10

‘15

20

25

30

Once the INIC has passed up an indication with an NETBIOSlength greater than the

amount of data in the packet it passed, it will continue to accumulate further incoming data in

DRAMonthe INIC. Overflow of INIC DRAM buffers will be avoided by using a receive

windowon the INIC at this point, which can be 8K.

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDIclient for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the NETBIOSlength as "bytes available." [See note

(2)].

In the "large data input" case, where "bytes available" exceeds the packet length, the

‘IDI client will then provide an MDL,associated with an IRP, which must be completed when
this MDTis filled. (This IRP/MDL may comebackeitherin the response to TCP'scall ofthe

receive handler, or as an explicit TDIRECEIVErequest.)

The ATCP driver will build a “receive request” from the MDL information, and pass

this to the INIC. This request will contain:

1) The TCP context:identifier; 2) Size and offset information; 3) A list of physical

addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to

identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must copy any remaining data (which wasnot taken by the

receive handler) from the segment indicated by the INIC to the start of the MDL, and must

adjust the size & offset information in the request passed to the INIC to accountforthis.

The INIC will fill the given page(s) with incoming data up to the requested amount,

and respond to the ATCP driver when this is done [See note (3)]. If the MDLis large, the INIC

may open upits advertised receive window for improved throughput while filling the MDL.

On receiving the response from the INIC, the ATCP driver will complete the IRP associated

with this MDL,to tell the TDI client that the data is available. At this point the cycle of events

is complete, and the ATCPdriver is now waiting for the next header indication.

OTHER TCP INPUT.

In the general case we do not have a higher-level protocol header to enable us to

predict that more data is coming. So on non-NETBIOSconnections, the INIC will just

72

~ accumulate incoming data in INIC DRAMup to a quantity of 8K in this example. Again, a

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 077

ALA-006E

10

15

20

25

30

maximum advertised window size, which may be 16K, will be used to prevent overflow of

INIC DRAMbuffers.

When the prescribed amount has been accumulated, or when a PSHflag is seen, the

INIC will indicate a small packet which may be.128 bytes of the data to the ATCP driver,

along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the reccive handler

registered by the TDIclient for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated” and the total INIC-buffer length as "bytes available."

As in the NETBIOScase, if "bytes available" exceeds "bytes indicated", the TDI client

will provide an IRP with an MDL. The ATCPdriverwill pass the MDLto the INIC to be

filled, as before. The INIC will reply to the ATCP driver, which in turn will complete thc IRP

to the TDI client.

Using an MDLfrom the client avoids a copy step. However, if we can only buffer 8K

and delay indicating to the ATCP driver until we have donc so, a question arises regarding

further segments coming in, since INIC DRAMisascarce resource. We do not want to ACK

with a zero-size window advertisement: this would cause the transmitting end to go into persist

state, which is bad for throughput. If the transmitting end is also our INIC,this results in

having to implementthe persist timer on the INIC, which we do not wish to do. Instead for

large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the

MDL,and also, to avoid stopping the transmitting end, we will use a receive window oftwice

the amount wewill buffer beforc calling the host. Since thc host comes back with the MDL

quite quickly (measured at < 100 microseconds), we do not expect to experience significant
Overruns.

INIC RECEIVE WINDOW UPDATES.

If the TNIC “owns” an MDL provided by the TDI client (sent by ATCPasa receive

request), it will treat this as a “‘promise” by the TDIclient to accept the data placed in it, and

may therefore ACK incoming dataasit is filling the pages.

However, for small requests, there will be no MDL returned by the TDIclient:it

absorbsall of the data directly in the receive callback function. We need to update the INIC’s

view of data which has been accepted, so that it can update its receive window. In order to be

73

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 078

Se Sp stat Bip poh eeBeet Be PY AD a Bat OB tte

' ALA-006E

able to do this, the ATCP driver will accumulate a count of data which has been accepted by

the TDI client receive callback function for a connection.

From the INIC’s point of view, though, segments scnt up to the ATCP driver are just

“thrown over the wall”; there is no explicit reply path. We will therefore “piggyback”the

5 update on requests sent out to the INIC. Whenever the ATCPdriver has outgoing data for that
connection,it will place this count in a field in the send request (and then clear the counter.)

Any receive request (passing a receive MDLto the INIC) may also be used to transport

window update info in the same way.

Note: we will probably also need to design a message path whereby the ATCP driver

10 can explicitly send an update ofthis “bytes consumed”information (either when it exceeds a

preset threshold orif there are no requests going out to the INIC for more than a given time

interval), to allow for possible scenarios inwhich the data stream is entirely one-way.

NOTES.

1501) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed “bytes available" from the NT TCP driverto its client's callback

in this case is always 1460. The NETBIOS-aware TDI client presumably calculates the size of

the MDLit will return from the NETBIOSheader. Sostrictly speaking we do not need the

NETBIOSheaderlength at this point: just an indication that this is a header for a "large" size.

20 However, we *do* need an actual “bytes available" value for the non-NETBIOScase, so we

may as well passit.

3) Weobservethat the PSH flagis set in the segment completing each NETBIOStransfer.

The INIC can use this to determine whenthe current transfer is complete and the MDL should

be returned. It can, at least in a dcbug mode, sanity check the amount of received data against

25 what is expected, though.

FAST-PATH OUTPUT DATA FLOW.

Thefast-path output data flow is similar to the input data-flow, but simpler. In this

case the TDIclient will provide a MDL to the ATCP driver along with an IRP to be completed

30 when the data is sent. The ATCP driver will then give a request (corresponding to the MDL)

to the INIC. This request will contain:

74

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 079

ALA-006E

10

15

20

25

30

1) The TCP context identifier; 2) Size and offset information; 3) A list ofphysical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driverto

identify the request on completion; 5) “Piggybacked” window update information (as

discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the

corresponding network frames onto the network. Whenall of the data is sent, the INIC will

notify the host of the completion, and the ATCP driver will complete the IRP.

Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, we will have

to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we will

port the FreeBSD protocol stack. In this mode, the INIC will be operating as a “dumb NIC”;

the packets which pass over the NDISinterface will just contain MAC-layer frames. —

The MBUFsin the incomingdirection will in fact be managing NDIS-allocated

packets. In the outgoing direction, we need protocol-allocated MBUFsin which to assemble

the data and headers. The MFREE macro mustbe cognizantof the various types ofMBUFs,

and “do the right thing”for cach type. .
Wewill retain a (modified) socket structure for each connection, containing the socket

buffer fields expected by the FreeBSD code. The TCP codethat operates on socket buffers

(adding/removing MBUFsto & from queues, indicating acknowledged & received dataetc)

will remain essentially unchanged from the FreeBSD base (though mostof the socket

functions & macros usedto do this will need to be modified; these are the functions in

kern/uipe_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS movesdata in and

out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, instead of

sosend(), there will be a function that copies data from the MDL provided in a TDI_SENDcall

into socket buffer MBUFs.Instead of soreceive(), there will be a handler that calls the TDI

client receive callback function, and also copies data from socket buffer MBUFsinto any

MDLprovided by the TDIclient (either explicitly with the callback responseor as a separate

TDI_RECEIVEcall.)
75

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 080

ALA-006E

10

15

20

25

30

Wemust note that there is a semantic difference between TDISENDand a writeQ on

a BSD socket. The latter may complete back to its caller as soon as the data has been copied

into the socket buffer. The completion of a TDISEND, however, implies that the data has

actually been sent on the connection. Thus we will need to keep the TDISEND IRPs (and

associated MDLs) in a queue on the socket until the TCP code indicates that the data from

them has been ACK’d.

. DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler

function registered. This has not been observed, but we can probably just ASSERT for a

missing handler for the moment. If it should happen, however, we must assume that the TDI

client will be doing TDI_RECEIVEcalls on the connection. If we can’t makea callup at the
time that the indication from the INIC appears, we can queucthe data and handle it when a

TDI_RECEIVEdoesappear.

2. NThas a notion of "canceling" IRPs. It is possible for us to get a “cancel" on an IRP

corresponding to an MDL which has been “handed”to the INIC by a send or receive request.

" We can handlethis by being able to force the context back off the INIC, since IRPs will only
‘get cancelled when the connection is being aborted.

CONTEXT PASSING BETWEEN ATCP ANDINIC.

FROM ATCPTO INIC.

There is a synchronization problem that must be addressed here. The ATCP driver will

make a decision on a given connection that this connection should now bepassed to the INIC.

It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensurethat no slow-path outgoing data is outstanding. This is

not difficult; it simply pends and queues any new TDI_SENDrequests and waits for any

unacknowledged slow path output data to be acknowledgedbefore initiating the context pass

operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pas

in a single command handshake,there is a window during which the ATCPdriver has send th

context command,but the INIC has not yet seen this (or has not yet completed setting up its

context.) During this time, slow-path input data frames could arrive and be fed into the slow-
76

s

€

CAVIUM-1002

Cavium, Inc.v. Alacriitech, Inc.
Page 081

ALA-006E

10

15

20

25

30

path ATCPprocessing code. Should that happen, the context information which the ATCP

driver passed to the INIC is no longer correct. We can simply abort the outward pass of the

context in this event, but it seemsbetter to have a reliable handshake.

Therefore, the commandto pass context from ATCP driver to INIC will be split into

two halves, and there will be a two-exchange handshake.

Theinitial command from ATCPto INIC expresses an “intention” to hand out the .

context. It will include the source and destination IP addresses and ports, which will allow the

INICto establish a “provisional” context. Onceit has this “provisional” context in place, the

INIC will not send any more slow-path input frames for that srce/dest IP/port combination (it

will queue them,if any are reccived.)

When the ATCP driver receives the responseto this initial “intent” command,it knows

that the INIC will send no more slow-path input. The ATCP driver then waits for any

remaining unconsumed slow-path input data for this connection to be consumed by the clicnt.

(Generally speaking there will bc none, since the ATCP driver will not initiate a context pass

while there is unconsumed slow-path input data; the handshake is simply to close the _

crossover window.)
Once any such data has been consumed, we know thingsare in a quiescent state. The

ATCPdriver can then send the second, “commit” command tohand out the context, with
confidence that theTCB valuesit is handing out (sequence numbersetc) are reliable.

Note |: it is conceivable that there might be situations in which the ATCP driver

decides, after having sent the original “intention” command, that the context is not to be

passcd after all. (E.g. the local client issues a close.) So we must allow for the possibility that

the second command maybe a “abort”, which should cause the INIC to deallocate and clear up

its “provisional” context.

Note 2: to simplify the logic, the ATCPdriver will guarantee that only one context may

be in process of being handed out at a time: in other words, it will never issue another initial

“intention” command until it has completed the second half of the handshake for the first one.

FROM INIC TO ATCP.

There are two possible cases for this: a context transfer may be initiated either by the

ATCPdriver or by the INIC. However the machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
77

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 082

ALA-006E

10

15

20

25

30

message to the INIC specifying the context numberto be flushed. Once the INIC receives

this, it will proceed with the same steps as for the case wherethe flush is initiated by the INIC

itself: | .

1) The INIC will send an error response to any current outstanding receive requestit is

working on (corresponding to an MDLinto which data is being placed.) Before sending the

response, it updates the receive command“length”field to reflect the amount of data which

has actually been placed in the MDL buffersat the time ofthe flush.

2) Likewise it will send an error response for any current send request, again reporting

the amountof data actually sent from the request.

3) The INIC will DMA the TCBfor the context back to the host. (Note: part of the

information provided with a context must be the address of the TCBin the host.)

4) The INIC will send a “flush”indication to the host (very preferably via the regular

input path as a special type of frame) identifying the context which is being flushed. Sending

this indication via the regular input path ensuresthat it will arrive before any following slow-

_ path frames.

Atthis point, the INIC is no longer doing fast-path processing, and any further

incoming frames for the connection will simply be sent to the host as raw framesfor the slow

input path. The ATCP driver may not be able to complete the cleanup operations needed to

"resume normalslow path processing immediately on receipt of the “flush frame”, since there

may be outstanding send and receive requests to which it has not yet received a response. If

this is the case, the ATCP driver must set a “pend incoming TCP frames”flag in its per-

connection context. The effect of this is to change the behavior of tcpinput(). This runs as a

function call in the context of ip_input(), and normally retums only when incoming frames
have been processed as far as possible (queued on the socket receive buffer or out-of-sequence

reassembly queue.) However, if there is a flush pending and we have not yet completed

resynchronization, we cannot do TCP processing and must instead queue input frames for TCP
on a “holding queue” for the connection, to be picked up later when context flush is complete

and normal slow path processing resumes. (This is why we wantto send the “flush” indication

via the normal input path: so that we can ensureit is seen before any following frames of slow-

path input.)

Next we need to wait for any outstanding ‘“‘send”’ requests to be errored off: ©

78

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 083

ALA-006E

10

15

» 20

25

30

: Tw wi eek ak ase tpke eaCBP ace aC FLBoece

1) The INIC maintains its context for the connection in a“zombie”state. As “send”

requests for this connection comeout of the INIC queue,it sends error responses for them

back to the ATCP driver, (It is apparently difficult for the INIC to identify all command

requests for a given context; simpler for it to just continue processing them in order, detecting

ones that are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the number of outstanding requests it has sent to

the INIC. Aserror responses for these are received, it decrements this count, and when it

_teaches zero, the ATCPdriver sendsa “flush complete” messageto the INIC.

3) Whenthe INIC receivesthe ‘flush complete” message, it dismantles its “zombie”

context. From the INIC perspective, the flush is now completed.

4) When the ATCP driver has received error responsesfor all outstanding requests,it

has all the information needed to complete its cleanup. This involves completing any IRPs

corresponding to requests which have entirely completed and adjusting ficlds in partially-

completed requests so that send and receive of slow path data will resumeat the right point in

the byte streams.

5) Onceall this cleanup is complete, the ATCP driver will loop pulling any “pended”

TCP input framesoff the “pending queue” mentioned above and feeding them into the normal

TCP input processing. Onceall input frames on this queue have been cleared off, the “pend

incoming TCP frames”flag can be cleared for the connection, and we are back to normal

slow-path processing.

FREEBSD PORTING SPECIFICATION.

The largest portion of the ATCPdriveris either derived, or directly taken from the

FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this

code, the FreeBSD codeitself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP

driver. It contains code to handle a variety of interface types and many different kinds of

protocols. To mect this requirement the code is often written in a sometimes confusing, over-

complex manner. General-purposestructures are overlaid with other interface-specific

structures so that different interface types can coexist using the same gencral-purpose code.
79

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 084

ALA-006E

10

15

20

25

30

For our purposes much ofthis complexity is unnecessary since we are only supporting a single

interface type and a few specific protocols. It is therefore tempting to modify the code and

data structurcs in an effort to make it more readable, and perhapsa bit more efficient. There

are, however, some problems with doing this. First, the more we modify the original

FreeBSD, the more changes we will have to make. This is especially true with regard to data

structures. If we collapse two data structures into one we might improve the cleanliness of the

code a bit, but we will then have to modify every reference to that data structure in the entire

protocol stack. Another problem with attempting to “clean up” the code is that we might later

discover that we need something that we had previously thrown away. Finally, while we

might gain a small performance advantage in cleaning up the FreeBSD code, the FreeBSD

TCP code will mostly only run in the slow-path connections, which are not our primary focus.

Ourpriority is to get the slow-path code functional and reliable as quickly as possible.

For the reasons above wehave adopted the philosophy that we should initially keep the

data structures and codeat close to the original FreeBSD implementation as possible. The

code will be modified for the following reasons:

1) As required for NT interaction — Obviously we can’t expect to simply “drop-in”the
FreeBSD codeasis. The interface of this code to the NT system will require somesignificant

code modifications. This will mostly occur at the topmost and bottommostportions of the

protocol stack, as well as the “ioctl” sections of the code. Modifications for SMP issues are

also needed. ,

2) Unnecessary code can be removed — While we will keep the code as close to the

original FreeBSDas possible, we will nonetheless remove code that will never be used (UDP

is a good exampleofthis).

UNIX © NT CONVERSION.

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These

include beopy to copy memory, malloc to allocate memory, timestamp functions, etc. These

will not be itemized in detail since the conversion to the corresponding NTcalls is a fairly

trivial and mechanical operation.

An area which will nced non-trivial support redesign is MBUFs.

80

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 085

epat te,
 Bow Rae SPR Be

ALA-006E

10

15

20

25

30

NETWORK BUFFERS.

Under FreeBSD,network buffers are mapped using mbufs. Under NT network buffers

are mapped using a combination of packet descriptors and buffer descriptors (the buffer

descriptors are really MDLs). There are a couple of problems with the Microsoft method.

First it does not provide the necessary fields which allow usto easily strip off protocol

headers. Second, converting all of the FreeBSD protocol code to speak in terms ofbuffer

descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our

own mbuf structurcs and remap the NT packets as shownin Fig. 29.

The mbufstructure will provide the standard fields provided in the FreeBSD mbuf

including the data pointer, which points to the current location of the data, data length fields

and flags. In addition each mbuf will point to the packet descriptor which is associated with

the data being mapped. Once an NT packet is mapped, our transport driver should never have

to refer to the packet or buffer descriptors for any information except when weare finished and

are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a

packet header should neverbe split across multiple buffers. Thus, we should never require the
equivalent of the “m_pullup” routine included in Unix. Also note that there are circumstances

in which we will be accepting data that will also be accepted by the Microsoft TCP/IP. One

such exampleof this is ARP frames. Wewill need to build our own ARP cacheby lookingat
ARP replies as they comeoff the network. Under these circumstances,it is absolutely

imperative that we do not modify the data, or the packet and buffer descriptors. We will

discuss this further in the following sections.

Wewill allocate a pool of mbuf headers at ATCP initialization time. It is important to

rememberthat unlike other NICs, we can not simply drop data if we run out of the system

resources required to manage/map the data. The reason forthis is that we will be receiving
data from the card that has already been acknowledged by TCP. Becauseofthis it is essential

that we never run out of mbuf headers. To solve this problem we will statically allocate mbuf

headers for the maximum numberofbuffers that we will ever allow to be outstanding. By

doing so, the card will run out of buffers in which to put the data before we will run out of

mbuts, and as a result, the card will be forced to drop data at the link layer instead of us

droppingit at the transport layer. DhXXX: as we’ve discussed, | don’t think this is really true

anymore. The INIC won’t ACK data until either it’s gotten a window update from ATCP to
81

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 086

ALA-006E

15

20

25

30

tell it the data’s been accepted, orit’s got an MDL. Thusit seems workable, though

undesirable, if we can’t accept a frame from the INIC & retum anerrorto it saying it was not
taken.

Wewill also require a pool of actual mbufs (not just headers). These mbufs are

required in order to build transmit protocol headers for the slow-path data path, as well as

other miscellaneous purposessuch as for building ARP requests. Wewill allocate a pool of.

these at initialization time and wewill add to this pool dynamically as needed. Unlike the

mbufheaders described above, which will be used to map acknowlcdged TCP data coming

from the card,the full mbufs will contain data that can be dropped if we can not get an mbuf.

_THE CODE.

In this section we describe each section of the FreeBSD TCP/IP port. These sections

include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACEINITIALIZATION.
STRUCTURES..

There are a variety of structures, which represent a single interface in FreeBSD. These
structures include: ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl.

Fig. 30 showsthe relationship between all of these structurcs:

In the example of Fig. 30 we showa single interface with a MAC address of

00:60:97:DB:9B:A6 configured with an IP address of 192.100.1.2. Asillustrated above, the

in_ifaddr is actually an ifaddr structure with some extra fields tacked on to the end. Thus the

ifaddr structure is used to represent both a MAC address and an IP address. Similarly the

sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address type.

Aninterface can be configured to multiple IP addresses by simply chaining in_ifaddr

structures after the in_ifaddr structure shownin Fig. 30.

As mentioned in the Porting Philosophy section, many of the above structures could

likely be collapsed into fewer structures. In order to avoid making unnecessary modifications

to FreeBSD,for the time being we will lcave these structures mostly as is. We will however

eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.

82

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 087

ALA-006E

10

20

25

Wealso show abovea structure called iface. This is a structure that we define. It

contains the arpcom structure, which in turn contains the ifnet structure. It also containsfields

that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle used to call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeBSD initializes the above structures in two phases. First when a network interface

is found, the ifnet, arpcom,andfirst ifaddr structures are initialized first by the network layer

driver, and then viaacall to the if_attach routine. The subsequentin_ifaddrstructure(s) are

- initialized when a user dynamically configuresthe interface. This occurs in the inioctl and

the in_ifinit routines. Since NT allows dynamic configuration of a network interface we will

continue to perform the interface initialization in two phases, but we will consolidate these two

phases as described below:

' IFINIT.

The IfInit routine will be called from the ATKProtocolBindAdapterfunction. The

[fInit function will initialize the Iface structure and associated arpcom andifnetstructures. It

will then allocate and initialize an ifaddr structure in which to contain link-level information

about the interface, and a sockaddr_dl structure to contain the interface name and MAC

address. Finally it will add a pointer to the ifaddrstructure into the ifnet_addrs array (using

the if_index field of the ifnet structure) contained in the extended device object. [fInit will
then call IfConfig for each IP address thatit finds in the registry entry for the interface.

IFCONFIG.

IfConfig is called to configure an IP address for a given interface. It is passed a pointer

to the ifnet structure for that interface along with all the information required to configure an

IP addressfor that interface (such as IP address, netmask and broadcast info, etc). IfConfig

will allocate an in_ifaddr structure to be used to configure the interface. It will chain it to the

total chain of in_ifaddr structures contained in the extended device object, and will then

configure the structure with the information givento it. After that it will addastatic route for

the newly configured network and then broadcast a gratuitous ARP request to notify others of

our.Mac/IP address and to detect duplicate IP addresses on the net.
83

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 088

' ALA-006E

~ 10

15

20

25

30

ARP.

Wewill port the FreeBSD ARP code to NT mostly as-is. For some reason, the

FreeBSD ARP codeis located in a file called if_ether.c. While the functionality ofthis file

will remain the same, we will renameit to a more logical arp.c. The main structures used by

ARP are the Ilinfo_arp structure and the rtentry structure (actually part of route). These

structures will not require major modifications. The functions that will require modification

are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARP frame caneither

be an ARP request or an ARP reply. ARPrequests are broadcast, so we will see every ARP

request on the network, while ARP replies are directed so we should only see ARPreplies that

are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP

would reply to this ARP request with an ARP reply containing our MAC address. Since ARP

requests will also be passed up to the Microsoft TCP/IP driver, we need not reply. Note

however, that FreeBSD also creates or updates an ARP cache entry with the information

derived from the ARP request. It does this in anticipation of the fact that any host that wishes
to know our MACaddressis likely to wish to talk to us soon. Since we will need to know his

MACaddress in order to talk back, we might as well add the ARP information now rather than

issuing our own ARP requestlater.

2. ARP request trying to resolve someone else’s IP address — Since ARP requests are

broadcast, we see every one on the network. When wereceive an ARP request of this type, we

simply check to sce if we have an entry for the host that sent the request in our ARP cache. If

we do, wecheck to see if westill have the correct MAC address associated with that host. If it

is Incorrect, we update our ARP cache entry. Note that we do not create a new ARP cache

entry in this case,

3. ARP reply — In this casc we add the new ARP entry to our ARP cache. Having

resolved the address, we checkto see if there is any transmit requests pending for the resolve

IP address, and if so, transmit them.

84

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 089

ALA-006E

10

15

20

25

30

Given the abovethree possibilities, the only major changeto the in_arpinput codeis

that we will remove the code which generates an ARP reply for ARP requests that arc meant
for our interface.

ARPINTR.

This is the FreeBSD codethat delivers an incoming ARP frame to in_arpinput. We

will be calling in_arpinput directly from our ProtocolReceiveDPCroutine (discussed in the

NDISsection below) so this function is not needed.

ARPWHOHAS.

This is a single linc function that serves only as a wrapper around arprequest. We will

removeit and replaceall calls to it with direct calls to arprequest.

ARPREQUEST.

This code simply allocates a mbuf, fills it in with an ARP header, and then passesit

‘ down to the ethernet output routine to be transmitted. For us, the code remains essentially the

same except for the obvious changes related to how weallocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interfaceis initialized to broadcast a gratuitous ARP

request (described in the interface initialization section) and to set some ARP related fields in

the ifaddr structure for the interface. We will simply movethis functionality into the interface

initialization code and removethis function.

ARPTIMER.

This is a timer-based function that is called every 5 minutes to walk through the ARP

table looking for entries that have timed out. Although the time-out period for FreeBSD is 20

minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can

modify this value or delete the timer altogether to suit our needs. Either way the function

won’t require any major changes. All other functions in if_ether.c will not require any major

changes.
85

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 090

ALA-006E

10

20

25

ROUTE.

Onfirst thought, it might seem that we have no need for routing support since our

ATCP driver will only reccive IP datagrams whosedestination IP address matchesthat of one

of our owninterfaces. Therefore, we will not “route” from oneinterface to another. Instead,

the MICROSOFT TCP/IPdriver will provide that scrvice. We will, however, need to maintain

an up-to-date routing table so that we know a) whether an outgoing connection belongs to one
of our interfaces, b) to which interface it belongs, and c) whatthe first-hop IP address

(gateway) is if the destination is not on the local network.

Wediscuss four aspects on the subject of routing in this section. They are as follows:

1. The mechanics of how routing information is stored.

The manner in which routes are added or deleted from the route table.

Whenand how route information is retrieved from the route table.-YON
Notification of route table changes to interested parties.

THE ROUTE TABLE.

In FreeBSD,the route table is maintained using an algorithm known as PATRICIA

(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated

algorithm thatis a bit costly to set up, but is very efficient to reference. Since the routing table

should contain the same information for both NT and FreeBSD,andsince the key used to

search for an entry in the routing table will be the same for each (the destination IP address),

weshould be ableto port the routing table software to NT without any major changes.

The software which implements the route table (via the PATRICIA algorithm)is

located in the FreeBSDfilc, radix.c. This file will be ported directly to the ATCP driver with
no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added or deleted in a numberofdifferent ways. The kernel adds or

deletes routes whenthestate of an interface changes or when an ICMPredirect is received.

User space programssuch as the RIP daemon,or the route command also modify the route
table.

86

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 091

ALA-006E

10

20

25

30

Lk

For kemel-based route changes, the changes can be madebya direct call to the routing

software. The FreeBSD softwarethat is responsible for the modification of route table entries

is found in route.c. The primary routine forall route table changes is called rtrequest(). It

takes as its arguments, the request type (ADD, RESOLVE, DELETE), the destination IP

address for the route, the gateway for the route, the netmask for the route,the flags for the

route, and a pointer to the route structure (struct rtentry) in which wewill place the added or

resolved route, Other routines in the route.c file include rtinitQ), which is called during

interface initialization time to addastatic route to the network, rtredirect, which is called by

ICMP whenwereceive a ICMP redirect, and an assortment of support routines used for the
modification of route table entries. All of these routines found in route.c will be ported with

no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD,route

changes are sent downto the kernel from user-space applications via a special route socket.

This code is found in the FreeBSDfile, rtsock.c. Obviously this will not work for our ATCP

driver. Instead thefilter driver portion of our driver will intercept route changes destined for

the Microsoft TCP driver and will apply those modifications to our ownroute table via the

rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddr_in) expected by the rtrequest routine.

Obviously, none of the code from rtsock.c will be ported to the ATCP driver. This same

procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FreeBSD,the route table is consulted in ip_output when an IP datagram is being

sent. In order to avoid a complete route table search for every outgoing datagram,the route is

stored into the in_pcb for the connection. For subsequent calls to ipoutput, the route entry is

then simply checked to ensure validity. While we will keep this basic operation as is, we will

require a slight modification to allow us to coexist with the Microsoft TCP driver. When an

active connection is being set up, our filter driver will have to determine whether the

connection 1s going to be handled by oneof the INIC interfaces. To do this, we will have to

consult the route table from the filter driver portion of our driver. This is done viaacall to the

rtallocl function (found in route.c). Ifa valid route table entry is found, then wewill take

87

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 092

ALA-006E

15

20

25

30 .

control of the connection and set a pointer to the rtentry structure returned by rtallocl in our

in_pebstructure.

WHAT TO DO WHEN A ROUTE CHANGES.

When a route table entry changes, there may be connections that have pointers to a

stale route table entry. These connections will need to be notified of the new route. FreeBSD

_ Solves this by checking the validity of a route entry during every call to ip_output. If the entry

is no longervalid,its reference to the stale route table entry is removed, and an attemptis

madeto allocate a new route to the destination. For our slow path, this will work fine.

Unfortunately, since our IP processing is handled by the INIC for our fast path, this sanity

check method will not be sufficient. Instead, we will need to perform a review ofall of our

‘fast path connections during every route table modification. If the route table changeaffects

our connection, we will need to advise the INIC with a new first-hop address, orif the

destination is no longer reachable, close the connection entirely.

ICMP.

Like the ARP code above, we will need to process certain types of incoming ICMP

frames. Of the 10 possible ICMP message types, there are only three that we need to support.

These include ICMP_REDIRECT, ICMP_UNREACH,and ICMP_SOURCEQUENCH. Any

FreeBSD codeto deal with other types of ICMPtraffic will be removed. Instead, we will

simply return NDIS_STATUS_NOT_ACCEPTEDforall but the above ICMP frametypes.

This section describes how we will handle these ICMP frames.

ICMP_REDIRECT.

Under FreeBSD, an ICMP_REDIRECTcauses two things to occur, First, it causes the

route table to be updated with the route given in the redirect. Second, it results in a call back

to TCP to cause TCPto flush the route entry attached to its associated in_pcb structures. By

doingthis, it forces ip_output to search for a new route. As mentioned in the Route section

above, we will also require a call to a routine which will review all of the TCP fast-path

connections, and update the route cntries as needed (in this case because the route entry has

been zeroed). The INIC will then be notified of the route changes.

88

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 093

ALA-006E

10

15

20

25

ICMP_UNREACH.

In both FreeBSD and Microsoft TCP, theICMP_UNREACHresults in no morethan a

simple statistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quenchis sent to cause a TCP senderto close its congestion window to a

single segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD

code as-is for slow-path connections. For fast path connections we will send a notification to

the card that the congestion window for the given connection has been reduced. The INIC will

then be responsible for the slow-start algorithm.

TP.

The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

IP INITIALIZATION.

During initialization time, ip_init is called to initialize the array of protosw structures.

These structures contain all the information needed by IP to be able to pass incoming data to

the correct protocol above it. For example, when a UDP datagramarrives, IP locates the

protosw entry corresponding to the UDP protocol type value (0x11) and calls the input routine

specified in that protosw entry. Wewill keep the array of protosw structures intact, but since

we are only handling the TCP and ICMPprotocols aboveIP, wewill strip the protosw array

down substantially.

IP INPUT.

Following are the changes required for IP input (function ip_intr()).

NO IP FORWARDING.

Since wewill only be handling datagrams for which wearethe final destination, we

should never be required to forward an IP datagram. All references to IP forwarding, and the

ipforward function itself, can be removed.

89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 094

ALA-006E

10

15

20

25

30

IP OPTIONS.

The only options supported by FreeBSDat this time include record route, strict and

loose source and record route, and timestamp. For the timestamp option, FreeBSD only logs

the current time into the IP headerso that before it is forwarded. Since we will not be

forwarding IP datagrams, this seemsto be oflittle use to us. While FreeBSD supports the

remaining options, NT essentially does nothing useful with thern. For the moment, we will not

bother dealing with IP options. They will be addedin later if needed.

IP REASSEMBLY.

There is a small problem with the FreeBSD IP reassembly codec. The reassembly code

~- reuses the IP headerportion of the IP datagram to contain IP reassembly queue information. It

can do this because it no longer requires the original IP header. This is an absolute no-no with

- the NDIS 4.0 method of handling network packets. The NT DDK explicitly states that we
must not modify packets given to us by NDIS. This is not theonly place in which the
FreeBSD code modifies the contents of a network buffer. It also does this when performing
endian conversions. At the momentwewill leave this code as is and violate the DDKrules.

Webelieve we can do this because we are going to ensure that no other transport driver looks

‘moving the IP reassembly fields into the mbuf header.

IP OUTPUT.

at these frames. If this becomes a problem wewill have to modify this code substantially by

There are only two modifications required for IP output. Thefirst is that since, for the

moment, weare not dealing with IP options, there is no need for the code that inserts the IP

options into the IP header. Second, we maydiscoverthat it is impossible for us to ever receive

an output request that requires fragmentation. Since TCP performs Maximum ScgmentSize

MTU.

NDIS PROTOCOL DRIVER.

negotiation, we should theoretically never attempt to send a TCP segmentlarger than the

This section defines protocol driver portion of the ATCP driver. The protocol driver

portion of the ATCP driveris defined by the set of routines registered with NDISvia a call to

90
‘ NdisRegisterProtocol. Thesc routines are limited to those that are called (indirectly) by the

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 095

ALA-006E

10

15-

20

25

30

INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so
that when the INIC driver calls NdisMIndicateReceivePacketit will result in a call from NDIS

to our driver. Strictly speaking, the protocol driver portion of our driver does not include the

method by which ourdriver calls down to the miniport (for example, the method by which we
- send network packets). Nevertheless, we will describe that method here for lack of a better

place to put it. That said, we cover the following topics in this section of the document: 1)

Initialization; 2) Receive; 3) Transmit; 4) Query/Set Information; 5) Status indications;

6) Reset; and 7) Halt.

INITIALIZATION.

The protocoldriverinitialization occurs in two phases. Thefirst phase occurs whenthe

ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs the

following: |

1. Allocate resources — We attemptto allocate many of the required resources as soon

as possible so that we are morelikely to get the memory we want. This mostly applies to

allocating andinitializing our mbuf and mbufheaderpools.

2. Register Protocol — Wecall NdisRegisterProtocol to register our set ofprotocol
driver routines.

3. Locate and initialize bound NICs — Weread the Linkage parametersofthe registry
to determine which NIC devices we are bound to. For each of these devices we allocate and

initialize a IFACEstructure (defined above). We then read the TCP parameters out of the
registry for each bound device andset the correspondingfields in the IFACEstructure.

After the underlying INIC devices have completedtheirinitialization, NDIS will call

our driver’s ATKBindAdapterfunction for cach underlying device. It will perform the
following:

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACEstructure that was created in ATKProtoSetup forthis device.

3. Query the miniport for adapter information. This includes such things as link speed

and MACaddress. Save relevant information in the IFACEstructure.

4. Performthe interface initialization as specified in the section on Interface

Initialization.

91

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 096

ALA-006E

10

15

20

25

30

RECETVE.

Receive is handled by the protocol driver routine ATKReceivePacket. Before we

describe this routine, it is important to consider each possible receive type and howit will be

handled.

RECETVE OVERVIEW.

Our INIC miniport driver will be bound to our transport driver as well as the generic

Microsoft TCP dnver (and possibly others). The ATCP driver will be bound exclusively to

INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as other

types of NICs. This is illustrated in Fig. 31. By binding the driver in this fashion, we can

. choose to direct incoming network data to our own ATCPtransport driver, the Microsoft TCP

driver, or both. We do this by playing with the ethernet “type”field as follows.

To NDISandthe transport drivers aboveit, our card is going to be registered as a

normal ethernet card. Whenatransport driver receives a packet from our driver, it will expect

the data to start with an ethernet header, and consequently, expects the protocol type field to be

in byte offsct 12. If Microsoft TCP finds that the protocol type field is not equal to either IP,

or ARP,it will not accept the packet. So, to deliver an incoming packet to our driver, we must

simply map the data such that byte 12 contains a non-recognized ethernet type field. Note that

we must choose a value that is greater than 1500 bytes so that the transport drivers do not

confuse it with an 802.3 frame. We must also choose a value that will not be accepted by

other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to

Microsoft TCP, we can then simply leave the ethernet type field set to IP (or ARP). Note that

since wewill also see these frames we can choose to accept or not-accept them as necessary.

Incoming packets are delivered as follows:

A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCPpackets destined for one of our IP addresses. This includes both slow-

path frames and fast-path frames. In the slow-path case, the TCP frames are given in there

entirety (headers included). In the fast-path case, the ATKReceivePacket is given a header

buffer that contains status information and data with no headers (except those above TCP).

Moreonthis later.

B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-TCP packets.
92

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 097

ALA-006E

10

20

25

30

2. All packets that are not destined for one of our interfaces (packets that will be

routed). Continuing the above example,if there is an IP address 144.48.252.4 associated with

the 3com interface, and we receive a TCP connect with a destination IP address of

144.48.252.4, we will actually want to send that request up to the ATCP driver so that we

create a fast-path connection {orit. This meansthat we will need to know every IP address in
the system and filter frames based on the destination IP address in a given TCP datagram.

This can be donein the INIC miniport driver. Since it will be the ATCP driver that learns of

dynamic IP address changes in the system, we will need a methodto notify the INIC miniport

ofall the IP addresses in the system. More onthis later.

C. Packets delivered to both:

1. All ARP frames.

2. All ICMPframes.

TWO TYPES OF RECEIVE PACKETS.

There are several circumstances in which the INIC will need to indicate extra |
information about a receive packet to the ATCP driver. One such exampleis a fast path

receive in which the ATCPdriver will need to be notified of how much data the card has

buffered. To accomplish this, the first (and sometimes only) buffer in a received packet will

actually be an [NIC header buffer. The header buffer contains status information about the

receive packet, and may or maynot contain network data as well. The ATCPdriver will

recognize a header buffer by mappingit to an ethernet frame and inspecting the type field

found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames

that are destined for both our driver and the Microsoft TCP driver (ARP, ICMP) will be

~ indicated without a header buffer. Fig. 32 shows an example of an incoming TCP packet. Fig.

33 shows an cxample of an incoming ARP frame.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIS has been designed such that all packets indicated via

NdisMIndicateReceivePacket by an underlying miniport are delivered to the

ProtocolReceivePacket routine for all protocol drivers boundto it. These protocol drivers can

choose to accept or not accept the data. They can either accept the data by copying the data

. out of the packetindicated to it, or alternatively they can keep the packet and return it later via
93

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 098

ALA-006E

10

15

20

25

a call to NdisReturnPackets. By implementingit in this fashion, NDIS allows more than one

protocol driver to accept a given packet. For this reason, whena packetis delivered to a

protocol driver, the contents of the packet descriptor, buffer descriptors and data mustall be

treated as read-only. At the moment, we intend to violate this rule. We chooseto violate this

because much of the FreeBSD code modifies the packet headers as it examines them (mostly

for endian conversion purposes). Rather than modify all of the FreeBSD code, we will instead

"ensure that no other transport driver accepts the data by making sure that the ethernet type field

is unique to us (no oncelse will wantit). Obviously this only works with data that is only

delivered to our ATCP driver. For ARP and ICMPframes wewill instead copy the data out of

the packet into our own buffer and return the packet to NDIS directly. While this is less

. efficient than keeping the data and returning it later, ARP and ICMPtraffic should be small

enough, and infrequent cnough, that it doesn’t matter.

The DDK specifies that when a protocol driver chooses to keep a packet, it should

return a value of 1 (or more) to NDISin its ProtocolReceivePacket routine. The packet is then

later returned to NDIS via the call to NdisReturnPackets. This can only happen after the

‘ProtocolReceivePacket has returned control to NDIS. This requires that the call to

NdisReturnPackets must occur in a different execution context. We can accomplish this by

scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our own. For
brevity in this section, we will assumeit is a done through a DPC. In any case, we will require

a queue of pending receive buffers on which to place and fetch receive packets.

After a receive packet is dequeued by the DPCit is then either passed to TCP directly

for fast-path processing, or it is sent through the FreeBSD path for slow-path processing. Note

that in the case of slow-path processing, we may be working on data that needs to be returned

to NDIS (TCP data) or we may be working on our own copy of the data (ARP and ICMP).

Whenwefinish with the data we will need to figure out whether or not to return the data to

NDISor not. This will be donevia fields in the mbuf header used to map the data. When the

mfreem routine is called to free a chain of mbufs, the ficlds in the mbuf will be checked and, if

required, the packet descriptor pointed to by the mbuf will be returned to NDIS.

94

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 099

ALA-006E

20

25

MBUF <> PACKET MAPPING.

Asnoted in the section on mbufs above, we will map incoming data to mbufsso that

our FreeBSD port requires fewer modifications. Depending onthe type ofdata received,this

mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data for a TCP fast-path connection. In this example,

the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf

and sent upstream for fast-path TCP processing. In this caseit is required that the header

buffer be mapped andsent upstream becausethe fast-path TCP code will need information

contained in the header buffer in order to perform the processing. When the mbufin this

example is freed, the mfreem routine will determine that the mbuf mapsa packet that is owned

by NDISand will then frec the mbuf header only and call NdisReturnPacketsto free the data.

In Fig. 34B, we show incoming data for a TCP slow-path connection. In this example

the mbufpoints to the start of the TCP data directly instead of the hcader buffer. Since this

buffer will be sent up for slow-path FreeBSD processing, we can not have the mbufpointing to

a header buffer (FreeBSD would get awfully confused). Again, when mfreem is called to free

the mbuf,it will discover the mapped packct, frec the mbuf header, and call NDIS to free the

packet and return the underlying buffers. Note that even though we do not directly map the
header buffer with the mbuf we do not lose it because of the link from the packet descriptor.

Note also that we could alternatively have the INIC miniport driver only pass us the TCP data

buffer whenit receives a slow-path receive. This would work fine except that we have

determined that even in the case of slow-path connections we are going to attemptto offer

some assistance to the host TCP driver (most likely by checksum processing only). In this
‘case there may be somespecial fields that we need to pass up to the ATCP driver from the

INIC driver. Leaving the header buffer connected seems the most logical way to dothis.

Finally, in Fig. 34C, we show a received ARP frame. Recall that for incoming ARP

and ICMP frames we.are going to copy the incoming data out of the packet and return it

directly to NDIS. In this case the mbuf simply points to our data, with no corresponding

packet descriptor. When wefree this mbuf, mfreem will discover this and free not only the

mbufheader, but the data as well.

95

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 100

ALA-006E

“10

15

20

25

30

OTHER RECEIVE PACKETS.

Weuse this receive mechanism for other purposes besides the reception of network

data. It is also used as a method of communication between the ATCP driver and the INIC.

One such example is a TCP context flush from the INIC. When the INIC determines, for

whatever reason, that it can no longer manage a TCP connection, it must flush that connection

to the ATCPdriver. It will do this by filling in a header buffer with appropriate status and

delivering it to the INIC driver. The [NIC driver will in turn deliver it to the protocol driver

which will treat it essentially like a fast-path TCP connection by mapping the header buffer

with an mbuf header and delivering it to TCP for fast-path processing. There are two

advantages to communicating in this manner. First, it is already an established path, so no’

extra coding or testing is required. Sccond, since a context flush comesin, in the same manner

as received frames,it will prevent us from getting a slow-path frame before the context has

been flushed.

SUMMARY

Having covered all of the various types of receive data, following are the stcps that arc

taken by the ATKProtocolReceivePacket routine.

1.

2,

3.

Mapincoming data to an ethernet frame and check the typefield;

If the type field contains our custom INIC type then it should be TCP;

If the header buffer specifies a fast-path connection, allocate one or more mbufs headers

to map the header and possibly data buffers. Set the packet descriptor field of the mbuf

to point to the packet descriptor, set the mbuf flags appropriately, queue the mbuf, and

return 1;

If the header buffer specifies a slow-path connection, allocate a single mbuf headerto

map the network data, set the mbuffields to map the packet, queue the mbufandreturn

1. Note that we design the INIC such that we will never get a TCP segment split across

more than onebuffer;

If the type field of the frame indicates ARP or ICMP;

Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.

Queuc the mbuf, and return 0 (not accepted); and

If the type field is not either the INIC type, ARP or ICMP, we don’t wantit. Return 0.

96

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 101

ALA-006E

10

15

20

25

The receive processing will continue when the mbufs are dequeued. At the moment

this is done by a routine called ATKProtocolReceiveDPC. It will do the following:

1. Dequeue a mbuf from the queue; and

2. Inspect the mbufflags. If the mbuf is meant for fast-path TCP, it will call the fast-path

routine directly. Otherwise it will call the ethernet input routine for slow-path
processing.

TRANSMIT.

In this section we discuss the ATCP transmitpath.

’ NDIS 4 SEND OPERATION.

The NDIS4 send operation works as follows. Whena transport/protocol driver wishes

_ to send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets with

an array of packet descriptors to send. Assoon asthis routineis called, the transport/protocol

driver relinquishes ownership of the packets until they are returned, one by one in any order,

via a NDIScall to the ProtocolSendComplete routine. Since this routine is called

asynchronously, our ATCP driver must save any required context into the packet descriptor

headerso that the appropriate resources can befreed. This is discussed further in the

following sections.

TYPES OF “SENDS”.

Like the Reccive path described above, the transmit path is used not only to send

network data, but is also used as a communication mechanism between the host and the INIC.

Here are some examplesof the types of sends performed by the ATCPdriver.

FAST-PATH TCP SEND.

When the ATCPdriver receives a transmit request with an associated MDL,it will

package up the MDLphysical addresses into a command buffer, map the command buffer

with a buffer and packet descriptor, and call NdisSendPackets with the corresponding packet.

The underlying INIC driver will issue the command buffer to the INIC. When the

corresponding response buffer is given back to the host, the INIC miniport will call

NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete

97

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 102

ALA-006E

10

15

20

25

30

(ATKSendComplete) routine, at which point the resources associated with the send can be

freed. We will allocate and use a mbuf to hold the commandbuffer. By doing this we can

store the context necessary in order to clean up after the send completes. This context includes

a pointer to the MDL and presumably some other connection context as well. The other

advantage to using a mbufto hold the commandbuffer is that it eliminates having another

special set of code to allocate and return commandbuffer. We will store a pointer to the mbuf

in the reserved section of the packet descriptor so we can locate it when the send is complete.

Fig. 35 illustrates the relationship between the client?’s MDL, the commandbuffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

As described in the Fast-Path Input Data Flow section above, the receive process

typically occurs in two phases. First the INIC fills in a host receive buffer with a relatively

small amountofdata, but notifies the host of a large amount of pending data (either through a

large amount of buffered data on the card, or through a large amount of expected NetBios

data). This small amountof data is delivered to the client through the TDI interface. The

client will then respond with a MDL in which the data should be placed. Like the Fast-path

TCP send process, the receive portion of the ATCP driver will then fill in a command buffer

with the MDL information from the client, map the buffer with packet and buffer descriptors

and sendit to the INIC via a call to NdisSendPackets. Again, when the response bufferis

returned to the INIC miniport, the ATKSendComplete routine will be called and the receive

will complete. This relationship between the MDL, command buffer and buffer and packet

descriptors are the same as shownin the Fast-path send section above.

SLOW-PATH (FREEBSD).

Slow-path sends pass through the FreeBSDstack until the ethernet header is prepended

in ether_output and the packet is ready to be sent. At this point a commandbuffer will be

filled with pointers to the ethernet frame, the command buffer will be mapped with a packet

and buffer descriptor and NdisSendPackets will be called to hand the packet off to the

miniport. Fig. 36 showsthe relationship between the mbufs, command buffer, and buffer and

packet descriptors. Since we will use a mbuf to map the command buffer, we can simply link

98

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 103

ALA-006E

10

15

20

25

30

the data mbufsdirectly off of the commandbuffer mbuf. This will makethe freeing of

resources muchsimpler.

NON-DATA COMMANDBUFFER.

The transmit path is also used to send non-data commandsto the card. As shown in

Fig. 37, for example, the ATCP driver gives a context to the INIC byfilling in a command

buffer, mapping it with a packet and buffer descriptor, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.

Given the abovedifferent types of sends, the ATKProtocolSendComplete routine will

perform various types of actions whenit is called from NDIS. First it must examine the

- reserved area of the packet descriptor to determine what type of request has completed. In the

casc of a slow-path completion, it can simply free the mbufs, command buffer, and descriptors

and return. In the case of a fast-path completion, it will need to notify the TCP fast path

routines of the completion so TCP can in turn complete the client’s IRP. Similarly, when a

non-data command buffer completes, TCP will again be notified that the commandsentto the

INIC has completed.

TDI FILTER DRIVER.

In a first embodimentof the product, the INIC handles only simple-case data transfer

operations on a TCP connection. (These of course constitute the large majority of CPU cycles

consumed by TCP processing in a conventional driver.)

There are many other complexities of the TCP protocol which muststill be handled by

host driver software: connection setup and breakdown,out-of-order data, nonstandardflags,
etc.

The NT OScontains a fully functional TCP/IP driver, and one solution would be to

enhancethis sothat it is able to detect our INIC and take advantageofit by "handing off" data-

path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.

Thusthe solution above, while a goal, cannot be done immediately. We instead provide our

own custom driver software on the host for those parts of TCP processing whichare not

handled by the INIC.
99

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 104

ALA-006E

10

20

25

This presents a challenge. The NT network driver framework does makeprovision for

, multiple types ofprotocol driver: but it does not easily allow for multiple instances of drivers
handling the SAMEprotocol.

For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow

for routing of IP packets between our driver (handling our INICs) and the Microsoft driver

(handling other NICs).

Our approachto this is to retain the Microsoft driver for all non-TCP network

processing (even for traffic on our INICs), but to invisibly "steal" TCP traffic on our

connections and handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driveris

unaware of TCP connections on interfaces we handle.

The network "bottom end"of this artifice is described earlier in the document. In this

section we will discuss the "top end": the TDI interface to higher-level NT network client
software.

We make use of an NTfacility called a filter driver. NT allows a special type of driver

("filter driver") to attach itself "on top" of another driver in the system. The NT I/O manager

then arrangesthat all requests directed to the attached driver are sentfirst to the filter driver;

this arrangement is invisible to the rest of the system.

Thefilter driver may then either handle these requestsitself, or pass them downto the

underlying driver it is attached to. Provided the filterdriver completely replicates the

(externally visible) behavior of the underlying driver when it handles requests itself, the

existence ofthe filter driver is invisible to higher-level software.

Thefilter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the

basic mechanism whereby wecan intercept requests for TCP operations and handle them in

our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we wantto

achieve, there are some significant technical problems to be solved. The basic issueis that

setting up a TCP connection involves a sequence of several requests from higher-level

software, and it is not always possibleto tell, for requests early in this sequence, whether the

connection should be handled by our driver or by the Microsoft driver.

‘Thus for many requests, we store information about the request in case we needitlater,

but also allow the request to be passed downto the Microsoft TCP/IP driver in case the

connection ultimately turns out to be one which that driver should handle.
100

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 105

ALA-006E

10

iS

20

25

30

Let us look at this in more detail, which will involve some examination of the TDI

interface: the NT interface into the top end of NT network protocol drivers. Higher-level TDI

client software which requires services from a protocol driver proceeds by creating various

types of NT FILE_OBJECTs, and then making various DEVICEIOCONTROLrequests on

these FILE_OBJECTs.

There are two types of FILE_OBJECTofinterest here. Local IP addresses that are

represented by ADDRESSobjects, and TCP connections that are represcnted by

CONNECTIONobjects. The steps involved in setting up a TCP connection (from the "active"

client side, for a CONNECTIONobject) are:

1) Create an ADDRESSobject; 2) Create a CONNECTIONobject; 3) ‘Issue a

TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTIONobject with the

ADDRESSobject; and 4) Issue a TDI.CONNECTio-control on the CONNECTIONobject,

specifying the remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we wouldtell, on the

basis of the address given when creating the ADDRESS object, whether the connection is for

one of our interfaces or not. After which, it would be easy to arrange for handling entirely by

our code, or entirely by the Microsoft code: we would simply examine the ADDRESSobject

to see if it was "one of ours"or not.

There are two main difficulties, however. First, when the CONNECTIONobjectis

created, no addressis specified: it acquires a local address only later when the

TDLASSOCIATE_ADDRESSis done. Also, when a CONNECTIONobject is created, the

caller supplies an opaque "context cookic" which will be needed for later communications

with that caller. Storage of this cookie is the responsibility of the protocol driver: it is not

. directly derivable just by examination of the CONNECTIONobjectitself. If we simply

passed the "create" call down to the Microsoft TCP/IP driver, we would have no way of

obtaining this cookie later if it turns out that we need to handle the connection. Therefore, for

every CONNECTIONobject which is created we allocate a structure to keep track of

information about it, and store this structure in a hash table keyed by the addressof the

CONNECTIONobject itself, so that we can locateit if we later need to process requests on

this object. Werefer to this as a “shadow”object: it replicates information about the object

stored in the Microsoft driver. (We must, of course, also pass the create request down to the

Microsoft driver too, to allow it to set-up its own administrative information about the object.)
101

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 106

ALA-006E

10

15

20

25

30

A second major difficulty arises with ADDRESS objects. These are often created with

the TCP/IP "wildcard" address(all zeros); the actual local address is assigned only later during

connection setup (by the protocol driveritself.) Of course, a "wildcard" address does not

allow us to determine whether connections that will be associated with this ADDRESSobject

should be handled by our driver or by the Microsoft one. Also, as with CONNECTION

objects, there is "opaque" data associated with ADDRESSobjects that cannot be derived just

from examination of the object itself. (In this case addresses of callback functions set on the

object by TDI_SET_EVENTio-controls.)

Thus, as in the CONNECTIONobject case, we create a "shadow"object for each

ADDRESSobject which is created with a wildcard address. In this we store information

(principally addresses of callback functions) which we will need if we arehandling
connections on CONNECTIONobjects associated with this ADDRESSobject. We store

similar information, of course, for any ADDRESSobject which is explicitly for one of our

interface addresscs; in this case we don't need to also pass the create request down to, the
Microsoft driver.

With this concept of "shadow"objects in place, let us revisit the steps involved in

setting up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS object. Assumingthatthis is

a "wildcard" address, we create a "shadow" object before passing the call downto the

Microsoft driver.

‘The next step (omitted in the earlierlist for brevity) is normally that the client makes a

number of TDI_SET_EVENTio-control calls to associate various callback functions with the
ADDRESSobject. These are functions that should be called to notify the TDI client when

certain events (such arrival of data or disconnection requests etc) occur. Westore these

callback function pointers in our "shadow" address object, before passing the call downto the
Microsoft driver.

Next, the TDI client makes a call to create a CONNECTIONobject. Again, we create

‘our "shadow"ofthis object.

Next, the client issues the TDLASSOCIATEADDRESS io-control to bind the

CONNECTIONobject to the ADDRESS object. We note the association in our "shadow"

’ . objects, and also pass the call down to the Microsoft driver. -

102

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 107

“ALA-006E

10

15

20.

25

30

Finally the TDI client issues a TDI_LCONNECTio-control on the CONNECTION

object, specifying the remote IP address (and port) for the desired connection. At this point,

we examine ourrouting tables to determine if this connection should be handled by one ofour

interfaces, or by someother NIC.If it is ours, wc mark the CONNECTION object as "one of

ours" for future reference (using an opaquefield which NT FILE_OBJECTSprovidefor driver

use.) We then proceed with connection setup and handling in our driver, using information

stored in our "shadow"objects. The Microsoft driver does not see the connection request or
any subsequenttraffic on the connection.

If the connection request is NOT for one of our interfaces, we pass it downto the

Microsoft driver. Note carefully, however, that we can not simply discard our "shadow"

objects at this point. The TDI interface allows re-use of CONNECTIONobjects: on

termination ofa connection,it is legal for the TDIclient to dissociate the CONNECTION

object from its current . Thus our "shadow"objects mustbe retained for thelifetime

ADDRESS object, re-associate it with another, and useit for another connection of the NT

FILE_OBJECTS: the subsequent connection could turn outto be via oneofourinterfaces.

TIMERS.

KEEPALIVE TIMER.

Wedon’t want to implement keepalive timers on the INIC. It would in any case be a

very poor use of resources to have an INIC contextsitting idle for two hours.

IDLE TIMER.

Wewill keep an idle timer in the ATCP driver for connections that are managed by the

INIC (resctting it whenever wesee activity on the connection), and causeaflush of context

back to the host if this timer expires. We may want to make the threshold substantially lower

than 2 hours, to reclaim INIC context slots for useful work sooner. May also want to make

that dependent on the number of contexts which have actually been handed out: don’t need to

reclaim them if we haven’t handed out the max.
\

RECEIVE AND TRANSMIT MICROCODEDESIGN.

This section provides a general description of the design of the microcodethat will

execute on two of the sequencers of the Protocol Processor on the INIC. The overall
103

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 108

ALA-006E

10

15

20

25

30

philosophy of the INIC is discussed in other sections. This section will discuss the INIC

microcodein detail.

DESIGN OVERVIEW.

As specified in other sections, the INIC supplics a set of 3 custom processors that will

provide considerable hardware-assist to the microcode running thereon. The paragraphs

immediately following list the main hardware-assist features:

1) Header processing with specialized DMA enginesto validate an input header and

generate a context hash, movethe headerinto fast memory and do header comparisons on a

DRAM-based TCPcontrol block;

2) DRAMfifos for free buffer queues (large & small), receive-frame qucucs, cvent

queuesetc.;

3) Header comparelogic;

4) Checksum generation;

5) Multiple register contexts with register access controlled by simply setting a context
register. The Protocol Processor will provide 512 SRAM-basedregisters to be shared among

the 3 sequencers;

6) Automatic movement of input frames into DRAM buffers from the MAC Fifos;

7) Run receive processing on one sequencer and transmit processing on the other. This

was chosen as opposed to letting both sequencers run receive and transmit. One of the main

reasonsfor this is that the header-processing hardware can not be shared and interlocks would

be needed to do this. Another reason is that interlocks would be necded on the resources used

exclusively by receive and by transmit;

8) The INIC will support up to 256 TCP connections (TCB’s). A TCBis associated

with an input frame whenthe frame’s source anddestination IP addresses and source and

destination ports match that of the TCB. For speed of access, the TCB’s will be maintained in

a hash table in NIC DRAM to save sequential searching. There will however, be an index in

hash order in SRAM. Once a hash has been generated, the TCB will be cached in SRAM.

There will be up to 8 cached TCBs in SRAM. These cache locations can be shared between

both sequencers so that the sequencer with the heavier load will be able to use more cache

buffers. There will also be 8 header buffers to be shared between the sequencers. Note that

each header buffer is not statically linked to a specific TCB buffer. In fact the link is dynamic
104

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 109

ALA-006E

15

20

25

30

La Re

- onaper-frame basis. The need for this dynamiclinking will be explained in later sections.

Suffice to say here that if there is a free header buffer, then somewherethere is also a free TCB

SRAMbuffer;

9) There were 2 basic implementation options considered here. The first was single-

stack and the second was a process model. The process model was chosen here because the

custom processor design is providing zero-cost overhead for context switching through the use

of a context base register, and because there will be more than enough proccssslots (or

contexts) available for the peak load. It is also expected that all “local” variables will be held

permanently in registers whilst an event is being processed;

10) The features that provide this arc 256 of the 512 SRAM-basedregisters that will

be used for the register contexts. This can be divided up into 16 contexts (or processes) of 16

registers each. Then 8 ofthese will be reserved for receive and 8 for transmit. A Little’s Law

analysis has shownthat in order to support 512 byte frames at maximum arrival rate of 4 * 100

Mbits, requires more than 8 jobs to be in process in the NIC. However each job requires an

SRAMbuffer for a TCB context and at present, there are only 8 of these currently specified

duc to SRAMspacelimits. So more contexts(e.g. 32 * 8 regs each) do not seem worthwhile.

Refer to the section entitled “LOAD CALCULATIONS”for moredetails of this analysis. A

context switch simply involves reloading the context base register based on the context to be °

restarted, and jumping to the appropriate address for resumption; |

11) To better support the process model chosen, the code will lock an active TCB into

an SRAMbuffer while either sequencer is operating on it. This implies there will be no

swapping to and from DRAM of a TCB onceit is in SRAM and an opcration is started onit.

Morespecifically, the TCB will not be swapped after requesting that a DMA be performed for

it. Instead, the system will switch to another active “process”. Then it will resume the former

process at the point directly after where the DMA was requested. This constitutes a zero-cost

switch as mentioned above;

12) Individual TCB state machines will be run from within a “process”. There will be

a state machine for the receive side and onefor the transmit side. The current TCBstates will

be stored in the SRAM TCBindextable entry;

13) The INIC will have 16 MB of DRAM. The current specification calls for dividing

a large portion of this into 2K buffers and control allocation / deallocation of these buffers

105

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 110

ALA-006E

10

20

30

through one of the DRAM fifos mentioned above. These fifos will also be used to control

small host buffers, large host buffers, command buffers and commandresponsebuffers;

14) For events from one sequencerto the other (i.e. RCV <> XMT), the current

specification calls for using simple SRAM CIO buffers, one for each direction;

15) Each sequencer handlesits own timers independently of the others;

16) Contexts will be passed to the INIC through the Transmit command and response

buffers. INIC-initiated TCB releases will be handled through the Receive small buffers. Host-

initiated releases will use the Command buffers. There needs to bestrict handling of the

acquisition and release of contexts to avoid windows where for example, a frame is received

on a context just after the context was passed to the INIC, but before the INIC has “accepted”

it; and

17) T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections.

This is because they are typically used for the HTTP protocol and the client for that protocol .
typically connects, sends a request and disconnects in one segment. The server sends the

connect confirm, reply and disconnect in his first segment. Then the client confirms the

disconnect. Thisis a total of 3 segments for the life of a context. Typical data lengths are on

the order of 300 bytes from the client and 3K from the server. The INIC will provide as good
an assist as seems necessary here by checksumming the frame and splitting headers and data.

Thelatter is only likely when data is forwarded with a request such as whena filled-in form is

sent by theclient.

SRAM REQUIREMENTS.

SRAM requirements for the Receive and Transmit engines are shownin Fig. 38.
Depending uponthe available space, the number of TCB buffers may be increased to 16.

GENERAL PHILOSOPHY.

The basic plan is to have the host determine when a TCP connection is able to be

handed to the INIC, setup the TCB andpassit to the card via a command in the Transmit

queue. TCBsthat the INIC owns can be handed back to the host via a request from the Receive

or Transmit sequencers or from the hostitself at any time.

Whenthe INIC receives a frame, one of its immediate tasks is to determineif the frame

is for a TCB that it controls. If not, the frame is passed to the host on a generic interface TCB.
106

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 111

“ALA-006E

10

20

25

30

Ontransmit, the transmit request will specify a TCB hash numberif the request is on a INIC-

controlled TCB. Thustheinitial state for the INIC will be transparent modein whichall

received framesare directly passed through andall transmit requests will be simply thrown on

the appropriate wire. This state is maintained until the host passes TCBsto the INIC to control.

Note that frames received for which the INIC has no TCB(orit is with the host) will still have

the TCP checksum verified if TCP/IP, and may split the TCPIP headeroff into a separate
buffer.

. REGISTER USAGE.

There will be 512 registers available. The first 256 will be used for process contexts.

The remaining 256 will be split between the three sequencers as follows: 1) 257 — 320: 64 for
RCV general processing / main loop; 2) 321 - 384: 64 for XMT general processing / main

RECEIVE PROCESSING.

MAIN LOOP.

Fig. 39 is a summary of the main loop of Receive.

RECEIVE EVENTS.

The events that will be processed on a given contextare:

1) accept a context;

2) release a context command(from the host via Transmit);

3) release a context request (from Transmit);

loop; and 3) 385 — 512: 128 for three sequenceruse.

4) reccive a valid frame; this will actually become 2 events based on the received

frame - receive an ACK, receive a segment;

5) receive an “invalid” frame i.e. one that causes the TCB to be flushedto the host;

6) a valid ACK needsto be sent (delayed ACKtimer expiry); and

7) There are expected to be the following sources of events: a) Receive input queue:

it is expected that hardware will automatically DMAarriving frames into frame buffers and

queue an event into a RCV-event queue; b) Timer cvent queue: expiration of a timer will

queue an event into this queue; and c) Transmit sequencer queue: for requests from the

transmit processor.
107

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 112

wort
oa. Cael B,

ALA-006E

10

15

20

25

30

For the sake of brevity the following only discusses receive-frame processing.

RECEIVE DETAILS — VALID CONTEXT.

The base for the receive processing done by the INIC on an existing context is the fast-

path or “header prediction” code in the FreeBSD release. Thus the processing is divided into

three parts: header validation and checksumming, TCP processing and subsequent SMB

processing.

HEADER VALIDATION.

There is considerable hardwareassist here. The first step in receive processingis to

DMAthe frame header into an SRAM headerbuffer. It is useful for header validation to be

implemented in conjunction withthis DMAby scanningthe dataasit flies by. The following

tests need to be “passed”:

1) MACheader: destination address is our MAC address (not MC or BCtoo), the
Ethertype is IP; 2) IP header: header checksum is valid, header length = 5, IP length > header

length, protocol ~ TCP, no fragmentation, destination IP is our IP address; and’3) TCP header:

checksumis valid (incl. pseudo-header), header length = 5 or 8 (timestamp option), length is

‘ valid, dest port = SMB or FTP data, no FIN/SYN/URG/PSH/RSTbitsset, timestampoption is

valid if present, segmentis in sequence, the windowsize did not change,this is not a

retransmission, it is a pure ACK or a pure receive segment, and most important, a valid

context exists. The valid-context test is non-trivial in the amount of work involved to

determine it. Also note that for pure ACKs, the window-size test will be relaxed. This is

becauseinitially the output PERSISTstate is to be handled on the INIC.

Many but perhapsnotall of these tests will be performed in hardware — depending

upon the embodiment.

TCP PROCESSING.

Once a frame has passed the header validation tests, processing splits based on whether

the frame is a pure ACKora pure received segment.

108

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 113

ALA-006E

10

20

25

PURE RCV PACKET.

The design is to split off headers into a small header buffer and pass the aligned data in

separate large buffers. Since a frame has been received, eventually somereceiver process on

the host will need to be informed. In the case of FTP, the frameis pure data andit is passed to

the host immediately. This involves getting large buffers and DMAingthedata into them,

then setting the appropriate details in a small buffer that is used to notify the host. However for

SMB,the INIC is performing rcasscmbly of data when the frame consists of headers and data.

So there may not yet be a complete SMBto passto the host. In this casc, a small buffer will be

acquired and the header movedintoit. If the received segment completes an SMB, then the

proceduresare pretty much as for FTP. If it does not, then the schemeis to at least move the

’ received data (not the headers) to the host to free the INIC buffers and to save latency. Thelist
of in-progress host buffers is maintained in the TCB and moved to the header buffer when the

SMBis complete.

Thefinal part of pure-receive processingis to fire off the delayed ACK timer for this

segment.

~ PURE ACK.

Pure ACK processing implies this TCBis the sender, so there may be transmit buffers

that can be returned to the host. If so, send an cvent to the Transmit processor (or do the

processing here). If there is more output available, send an event to the transmit processor.

Then appropriate actions need to be taken with the retransmission timer.

SMB PROCESSING.

Fig. 40 showsthe format of the SMB header of an SMB frame. The LENGTHfield of

the NetBIOS header will be used to determine when a complete SMBhas been received and

the header buffer with appropriate details can be posted to the host. The interesting commands

are the write commands: SMBwrite (0xB), SMBwriteBraw (Ox1D), SMBwriteBmpx (0x1),

SMBwriteBs (0x1F), SMBwriteclose (0x2C), SMBwriteX (Ox2F), SMBwriteunlock (0x14).
These are interesting because they will have data to be aligned in host memory. The point to

note about these commandsis that they each have a different WCTfield, so that the start offset

of the data depends on the command type. SMB processing will thus nced to be cognizant of

these types.
109

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 114

ALA-006E

10

15

20

25

30

RECEIVE DETAILS — NO VALID CONTEXT.

The design here is to provide as muchassist as possible. Frames will be checksummed

and the TCPIP headers may besplit off.

RECEIVE NOTES.

1, PRU_RCVDorthe equivalent in Microsoft language: the host application has to

tell the INIC when he has accepted the received data that has been queued. Thisis so that the

INIC can update the receive window.It is an advantage for this mechanism to beefficient.

This may be accomplished by piggybacking these on transmit requests (not necessarily for the

same TCB).

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this timer.

This leaves the host with the job of determining that the TCBis still active.

3. Timestampoption: it is useful to support this option in the fast path because the

BSD implementation does. Also, it can be very helpful in getting a much better estimate of the

round-trip time (RTT) which TCP needsto use.

4. Idle timer: the INIC will not maintain this timer (see Note 2 above).

5. Frame with no valid context: The FNIC may split TCP/IP headers into a separate
header buffer.

TRANSMIT PROCESSING.

MAIN LOOP.

Fig. 41 is a summary of the main loop of Transmit.

TRANSMIT EVENTS.

The events that will be processed on a given context and their sources are: 1) accept a

context (from the Host); 2) release a context command (from the Host); 3) release a context

command (from Receive); 4) valid send request and window > 0 (from host or RCV

sequencer); 5) valid send request and window = 0 (from host or RCV sequencer); 6) send a
window update (host has accepted data); 7) persist timer expiration (persist timer); 8)

context-release event e.g. window shrank (XMTprocessing or retransmission timer); and 9)

receive-release request ACK(from RCV sequencer).
, 110

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 115

 ae

ALA-006E ~

10

15

20

25

30

TRANSMIT DETAILS — VALID CONTEXT.

Pon e
fara teth o en

“yy ehh gp cep

Boe hae Beal URE sas al

The following is an overview ofthe transmit flow: The host posts a transmit request to

the INIC by filling in a commandbuffer with appropriate data pointers ete and postingit to the

INIC via the Command Buffer Address register. Note that there is one host command buffer

queue, but there are four physical transmit lines. So each request needsto includean interface

numberas well as the context number. The INIC microcode will DMAthe command in and

place it in one offour internal command queues which the transmit sequencer will work on.

This is so that transmit processing can round-robin service these four queues to keep all four

interfaces busy, andnotlet a highly-active interface lock out the others (which would happen

with a single queue). The transmit request may be a segmentthat is less than the MSS,orit

may be as muchasa full 64K SMB READ.Obviously the former request will go out as one

segment, the latter as a number of MSS-sized segments. The transmitting TCB must hold on‘to

the request until all data in it has been transmitted and acked. Appropriate pointers to do this

will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC and

TCP/IP headersare created in it. It may be quicker/simpler to keep a basic frame header set up

in the TCB and either DMA directly this into the frame each time. Then data is DMA’d from

host memory into the frame to create an MSS-sized segment. This DMAalso checksumsthe

data. Then the checksum is adjusted for the pseudo-header and placed into the TCP header,

-and the frame is queued to the MACtransmit interface which may bé controlled by the third

sequencer. The final step is to update various windowfields etc in the TCB. Eventually either

the entire request will have been sent and acked, or a retransmission timer will expire in which

case the contextis flushed to the host. In either case, the INIC will place a commandresponse

in the Response queue containing the commandbuffer handle from the original transmit

commandand appropriatc status.

The above discussion has dealt how an actual transmit occurs. Howeverthereal

challenge in the transmit processor is to determine whetherit is appropriate to transmit at the

time a transmit request arrives. There are many reasonsnotto transmit: the receiver’s window

size is <= 0, the Persist timer has expired, the amountto sendis less than a full segment and an

ACKis expected / outstanding, the receiver’s window is not half-open etc. Much ofthe

transmit processing will be in determining these conditions.

111

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 116

 ALA-006E

10

a)

20

25

TRANSMIT DETAILS — NO VALID CONTEXT.

The main difference between this and a context-based transmit is that the queued

request here will already have the appropriate MAC and TCP/IP (or whatever) headersin the

frame to be output. Also the request is guaranteed not to be greater than MSS-sized in length.

So the processing is fairly simple. A large buffer is acquired and the frame is DMAedintoit,

at which time the checksum is also calculated. If the frame is TCP/IP, the checksum will be

appropriately adjusted if necessary (pscudo-headeretc) and placed in the TCP header. The

frame is then queued to the appropriate MACtransmit interfacc. Then the commandis

immediately responded to with appropriate status through the Response queue.

TRANSMIT NOTES.

1) Slow-start: the INIC will handle the slow-start algorithm that is now a part of the

TCP standard. This obviates waiting until the connection is sending a full-rate before passing

it to the INIC. .

2) Window Probe vs Window Update - an explanation for posterity. A Window Probe

is sent from the sending TCBto the receiving TCB, and it meansthe sender has the recciver in

PERSISTstate. Persist state is entered when the receiver advertises a zero window.It is thus

the state of the transmitting TCB.In this state, he sends periodic window probesto the receiver

in case an ACK from the receiver has been lost. The recciver will retum his latest window size
in the ACK. A Window Update is sent from the receiving TCB to the sending TCB, usually to

tell him that the receiving windowhasaltered. It is mostly triggered by the upper layer when it

accepts some data. This probably meansthe sending TCB is viewing the receiving TCB as

being in PERSISTstate. ,

3) Persist state: it is designed to handle Persist state on the INIC. It seems

unreasonable to throw a TCB back to the host just because its receiver advertised a zero
window. This would normally be a transient situation, and would tend to happen mostly with

clients that do not support slow-start. Alternatively, the code can casily be changed to throw

the TCB backtothe host as soon asa receiver advertises a zero window.

4) MSS-sized frames: the INIC code will expectall transmit requests for which it has

no TCB to not be greater than the MSS.If any request is, it will be dropped and an

appropriate responsestatus posted.

112

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 117

ALA-006E

10

15

20

25

30

ait Pha. He * ep
PoP RB a Mad

ye seat

5) Silly Window avoidance:as a receiver, the INIC will do the right thing here and not

advertise small windows— this is easy. Howeverit is necessary to also do things to avoid this

as a sender, for the cases where a stupid client does advertise small windows. Without getting

into too much detail here, the mechanism requires the INIC code to calculate the largest

window advertisementever advertised by the other end. It is an attempt to guess the size ofthe

other end’s receive buffer and assumesthe other end never reducesthesize of its receive

buffer. See Stevens, ‘TCP/IP Illustrated”, Vol. 1, pp. 325-326 (1994).

THE UTILITY PROCESSOR.
SUMMARY.

Thefollowing is a summary ofthe main functionsofthe utility sequencer of the

microprocessor:

1) Lookat the event queues: Event13Type & Event23Type (we assumethere will be

an eventstatusbitforthis - USE_EV13 and USE_EV23)in the events register; these are
events from sequencers | and 2; they will mainly be XMIT requests from the XMT sequencer.

Dequeue request and place the frame on the appropriateinterface.

2) RCV-frame support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver,andis called at dispatch-level. This routine calls

VinicTransferDataComplete() to check if the xfer (possibly DMA) ofthe frameinto host

buffers is complete. Thelatter rtne is also called at dispatch level on a DMA-completion

interrupt. It queues complete buffers to the RCV sequencer via the normal queue mechanism.

3) Other processes may also be employed here for supporting the RCV scquencer.

4) Service the following registers (this will probably involve micro-interrupts):
a) Header Buffer Address register:

Buffers are 256 bytes long on 256-byte boundaries.

31-8 - physical addr in host of a set of contiguous hddr buffers.

7-0 - number of hddr buffers passed.

Use contents to add to SmallHType qucuc.

b) Data Buffer Handle & Data Buffer Addressregisters:

Buffers are 4K long aligned on 4K boundaries.

Use contents to add to the FreeType queue.

c) Command Buffer Address register:
113

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 118

ALA-006E

10

15

20

25

30

Buffers are multiple of 32 bytes up to 1K long (2**5 * 32).

31-5 - physical addr in host of cmd buffer.

4-0 - length of cmdin bytes/32(i.e. multiples of 32 bytes).

Points to host cmd; get FreeSType buffer and move.

commandinto it; queue to Xmit0-Xmit3Type queues.

d) Response Buffer Addressregister:

Buffers are 32 bytes long on 32-byte boundaries.

31-8 - physical addrin host of a sct of contiguousresp buffers.

7-0 - numberof resp buffers passed.

Use contents to add to the ResponseType queuc.
5) Low buffer threshold support: set approp bits in the TSR when the available-buffers

count in the various queuesfilled by the host falls below a threshold.

FURTHER OPERATIONS OF THE UTILITY PROCESSOR.

The utility processor of the microprocessor housed on the INIC is responsible for
setting up and implementing all configuration space and memory mapped operations, and also

as described below, for managing the debug interface.

All data transfers, and other INIC initiated transfers will be donc via DMA.

Configuration space for both the network processor function and theutility processor function

will define a single memory space for each. This memory spacewill definethe basic

communication structure for the host. In general, writing to onc of these memory locations

will perform a request for service from the INIC. This is detailed in the memory description

for each function. This section defines much of the operation of the Host interface, but should

be read in conjunction with the Host Interface Strategy for the Alacritech INIC to fully define
the Host/INIC interface. ‘

Tworegisters, DMA hardwareand an interrupt function comprise the INIC interface to

the Host through PCI. The interrupt function is implemented via a fourbit register (PCI_INT)

tied to the PCI interrupt lines. This register is directly accessed by the microprocessor.

THE MICROPROCESSORusestworegisters, the PCI_DataReg and the

PCI_Address_Reg, to enable the Host to access Configuration Space and the memory space

allocated to the INIC. These registers are not available to the Host, but are used by THE

114

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 119

ALA-006E

10.

15

20

25

30

MICROPROCESSORto cnable Host reads and writes. The function of these two registers is
as follows.

1) PCI_Data_Reg: This register can be both read and written by THE

MICROPROCESSOR.Onwrite operations from the host, this register contains the data being
sent from the host. On read operations, this register contains the data to be sent to the host.

2) PCI_AddressReg: This is the control register for memory reads and writes from

the host. The structure of the register is shown in Fig. 42. During a write opcration from the

Host the PCI_Data_Reg containsvalid data after Data Valid is set in the PCI_Address_Reg.

Bothregisters are locked until THE MICROPROCESSORwrites the PCI_DataReg, which

resets Data Valid. All read operationswill be direct from SRAM. Memory space based reads

will return 00. Configuration space reads will be mapped as showninFig. 43.

CONFIGURATION SPACE.

The INIC is implemented as a multi-function device. Thefirst device is the network

controller, and the second device is the debuginterface. An alternative production

embodiment may implementonly the nctwork controller function. Both configuration space

headerswill bc the same, except for the differences noted in the following description.
Vendor ID — This field will contain the Alacritech Vendor ID. Onefield will be used

for both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. Oneficld will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.

Thoscthat are enabled will be set to 0 or 1 dependingonthestate of the system. Each

function (network and debug) will have its own commandfield, as shown in Fig. 44.

Status — This is not initialized to zero. Each function will have its own field. The

configuration is as shownin Fig. 45.

Revision ID.The revision ficld will be shared by both functions.

Class Code — This is 02 00 00 for the nctwork controller, and for the debuginterface.
The field will be shared.

Cache Line Size — Thisis initialized to zero. Supported sizes arc 16, 32, 64 and 128

bytes. This hardware register is replicated in SRAM and supported separatcly for cach

115

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 120

A geeaty HAGA ttn >
Ba BPG oPoa Be

ALA-006E

10

15

20

25

function, but THE MICROPROCESSORwill implementthe valucset in Configuration Space

1 (the network processor).

Latency Timer — This is initialized to zero. The function is supported. This hardware

register is replicated in SRAM. Each function is supported separately, but THE

MICROPROCESSORwill implement the valuc sct in Configuration Space 1 (the network

processor).

Header Type — This is sct to 80 for both functions, but will be supported separately.

BIST -- Is implemented. In addition to responding to a requestto runselftest, if test

after reset fails, a code will be set in the BIST register. This will be implemented separately
for cach function.

Base Address Register — A single base address register is implemented for cach

function. It is 64 bits in length, and the bottom four bits are configured as follows: Bit 0 ~ 0,

indicates memory base address; Bit 1,2 — 00, locate base address anywhere in 32 bit memory
space; and Bit 3 — 1, memory is prefetchable.

CardBusCIS Pointer — Not implemented—initialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for
each function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller,

and 02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_Gnt — This can beset at a valuc in the range of 10, to allow reasonably long bursts

on the bus. This is implemented separately for each function.

Max_Lat — This can beset to 0 to indicate no particular requirement for frequency of

access to PCI. This is implemented separately for each function.

MEMORYSPACE.

Because each ofthe following functions may or may notreside in a single location, and

may or may not need to be in SRAMatall, the address for eachis really only used as an

identifier (label). There is, therefore, no control block anywhere in memory that represents
116

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 121

ALA-006E

10

15

20

25

30

this memory space. Whenthe host writes oneoftheseregisters, the utility processor will

construct the data required and transfer it. Reads to this memory will generate 00 for data.

NETWORK PROCESSOR.

The following four byte registers, beginning at location h00 ofthe network processor’s

allocated memory, are defined.

00 —

04 —

08 —

0c —

10—

Interrupt Status Pointer -- Initialized by the host to point to a four byte arca where
status is stored.

Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be ORed until the host writes the Interrupt

Status Register. New status will be ored with any remaining

unclcared status (as defined by the contentsofthe returnedstatus)

and stored again at the Interrupt Status Pointer location. Bits are

as follows: .

Bit 31—ERR -- Errorbits are set;

Bit 30 — RCV — Receive has occurred;

Bit 29 - XMT — Transmit command complete; and

Bit 25 — RMISS — Receive drop occurred due to no buffers.

Interrupt Mask — Written by the host. Interrupts are masked for each

ofthe bits in the interrupt status when the samebit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status

to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

Header Buffer Address — Written by host to pass a set of header buffers to the INIC.

Data Buffer Handle — First register to be written by the Host to transfer a receive data

buffer to the INIC. This data is Host reference data. It is not used by the INIC,it is

returned with the data buffer. However, to insure integrity of the buffer, this register

must be interlocked with the Data Buffer Address register. Once the
117

Data Buffer

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 122

 bs Rs

ALA-006E

Address register has been written, neither register can be written until after the Data

Buffer Handle register has been read by THE MICROPROCESSOR.

14— Data Buffer Address — Pointer to the data buffer being sent to the INIC by the Host.

Must be interlocked with the Data Buffer Handle register.

5 18— Command Buffer Address XMTO — Pointer to a set of command
buffers sent by the Host. THE MICROPROCESSORwill DMAthebuffers to local
DRAMfound on the FreeSType queue and queue the Command

Buffer Address XMTOwith the local address replacing the host Address.
1C— Command Buffer Address SMT1.

10 20— Command Buffer Address SMT2.

24— Command Buffer Address SMT3.

28— Response Buffer Address -- Pointer to a set of response buffers sent

by the Host. These will be treated in the same fashion as the Command Buffer Address

registers.

15

UTILITY PROCESSOR.

Endingstatus will be handled by the utility processor in the samefashionasit is

handled by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30-—- error. When endstatus is stored an interrupt is generated.

20 Two additional registers are defined, CommandPointer and Data Pointer. The Hostis

responsible for insuring that the Data Pointer is valid and points to sufficient memory before
storing a command pointer. Storing a command pointer initiates command decode and
execution by the debug processor. The Host must not modify either command or Data Pointer

until ending status has been received, at which point a new command maybeinitiated.

25 Memory space is write only by the Host, reads will receive 00. The formatis as follows:

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

04— Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

30 new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining

118

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 123

* .

ALA-006E

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — CC - Command Complete;

5 Bit 30 — ERR — Error;

Bit29 — Transmit Processor Halted;

Bit28 — Receive Processor Halted; and

Bit27 — Utility Processor Halted.

08— Interrupt Mask — Written by the host. Interrupts are masked for each

10 of the bits in the interrupt status when the samebit in the mask
register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is gencrated. Also,

whenthe Interrupt Status Register is written, enabling new status
to be stored, whenit is stored if a bit is stored that is not masked

15 by the Interrupt Mask,an interrupt is generated.

OC — CommandPointer — Points to commandto be executed. Storing

this pointer initiates command decode and execution.

10— Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

20

- DEBUG INTERFACE.

In order to provide a mechanism to debug the microcode running on the microprocessor

sequencers, a dcbug process has been defined which will run on the utility sequencer. This

processorwill interface with a control program on the host processor over PCI.

25

PCI INTERFACE.

This interface is defined in the combination of the Utility Processor and the Host

Interface Strategy sections, above.

119

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 124

ALA-006E

10

20

25

30

COMMANDFORMAT.

eats

wTon

Thefirst byte of the command, the commandbyte, defines the structure of the remainder
of the command.

COMMANDBYTE.

The first five bits of the command byte are the commanditsclf. The next bit is used to

specify an altcrnate processor, and the last two bits specify which processors are intended for
the command.

PROCESSORBITS.

00 — Any Processor;

01 — Transmit Processor;

10 — Receive Processor; and

11 — Utility Processor.

ALTERNATE PROCESSOR.

This bit defines which processor should handle debug processingif the utility

processoris defined as the processor in debug.

0 — Transmit Processor; and

1 -- Receive Processor.

SINGLE BYTE COMMANDS.

00 — Halt - This command asynchronously halts the processor.

08 — Run - This commandstarts the processor.

10 — Step - This commandstepsthe processor.

EIGHT BYTE COMMANDS.

18 — Break

0 1

Command Reserved

120

2-3

Count

4-7

Address

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 125

ALA-006E

10

15

20

25

30

This commandsets a stop at the specified address. A count of 1 causes the specified

_ processorto halt the first time it executes the instruction. A count of 2 or more causes the

processorto halt after that number of executions. The processoris halted just before executing

the instruction. A count of 0 does not halt the processor, but causcs a syncsignal to be

generated. If a second processoris set to the same break address, the count data from thefirst

break request is used, and each time either processor executes the instruction the countis

decremented.

20 — Reset Break

0 1-3 ~ 4—7

Command Reserved Address

This commandresets a previously set break point at the specified address. Reset break

fully resets that address. If multiple processors wereset to that break point, all will be reset.

28 — Dump

07 1 2-3 4-7

Command Descriptor Count Address

This commandtransfers to the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the addressfield is specified.

DESCRIPTOR.

00 -

o1—

02 —

Register - This descriptor uses both count and addressfields. Both fields are

four byte based (a count of 1 transfers four bytes).

Sram - This descriptor uses both count and addressfields. Countis in four byte

blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

DRAM- This descriptor uses both count and addressfields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

_ the lower four byte aligned address.
121

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 126

ALA-006E

03— Cstore - This descriptor uses both count and address fields. Countis in four

byte blocks. Addressis in bytes, butif it is not four byte aligned, it is forced to

the lower four byte aligned address.

5 Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04— CPU_STATUS;

OS- PC;

06— ADDR_REGA;

10 07-— ADDR_REGB;

08— RAMBASE;

09-— FILEBASE;

OA— INSTR_REGL;

0B— INSTR_REG_H;

15 0C— MACDATA;

0D-— DMA_EVENT;

OE— MISCEVENT;

OF— QINRDY;

10—- QOUT_RDY;

20 11— LOCK STATUS;

12— STACK- This returns 12 bytes; and

13-- SENSEREG.

This register contains four bytes of data. If error status is posted for a command,if the

next commandthat is issued reads this register, a code describing the error in more detail may

25 * be obtained. If any command other than a dumpofthis register is issued after crror status,

sense information will be reset.

30 — Load

0 1 2-3 4-7

30 Command Descriptor Count Address

122

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 127

ALA-006E

20

25

This commandtransfers from the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an addressthe addressfield is specified.

DESCRIPTOR.

O0O0-— Register - This descriptor uses both count and address fields. Both fields are

four byte based.

01-— Sram - This descriptor uscs both count and address fields. Countis in four byte

blocks. Addressis in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

02-— DRAM-This descriptor uses both count and address ficlds. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned,it is forced to

the lower four byte aligned address.

03— Cstore- This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address. This applies to WCSonly.

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents ofthe referenced register.

04— ADDR_REGA;

05— ADDR_REGB;

06 RAMBASE;

07— FILEBASE;

08— MACDATA;

09- QINRDY;

OA— QOUT_RDY;

0B-— DBG_ADDR;and

38— MAP.

This command allows an instruction in ROM to bereplaced by an instruction in WCS.

The new instruction will be located in the Host buffer. It will be stored in the first eight bytes

of the buffer, with the high bits unused. To reset a mapped out instruction, map it to location

_ 0.

123

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 128

ALA-006E

0 1-3 4-7

Command Address to Address to

Map To Map Out

5 HARDWARE SPECIFICATION.

FEATURES: .

1) PERIPHERAL COMPONENTINTERCONNECT(PCI) INTERFACE.

a) Universal PCI interface supports both 5.0V and 3.3V signaling environments;

b) Supports both 32-bit and 64 bit PCI interface;

10 c) Supports PCI clock frequencies from 15MHz to 66MHz,

d) High performance bus mastering architecture;

e) Host memory based communications reduce register accesses;

f) Host memory based interrupt status word reduces register reads;

g) Plug and Play compatible;

15 h) PCI specification revision 2.1 compliant;

i) PCI bursts up to 512 bytes;

j) Supports cache line operations up to 128 bytes;

k) Both big-endian andlittle-endian byte alignments supported; and

1) Supports Expansion ROM.

20

-2) NETWORK INTERFACE.

a) Fourinternal 802.3 and ethernet compliant Macs;’

- b) Media IndependentInterface (MII) supports external PHYs;

c) 1OBASE-T, 100BASE-TX/FX and 100BASE-T4 supported;
25 d) Full and half-duplex modes supported;

e) Automatic PHYstatus polling notifies system of status change;

f) Provides SNMPstatistics counters; .
g) Supports broadcast and multicast packets;

h) Provides.promiscuous modefor network monitoring or multiple unicast address

30 detection;

i) Supports “huge packets” up to 32KB;

j) Mac-layer loop-back test mode; and
124

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 129

ALA-006E

20.

25

30

k) Supports auto-negotiating Phys.

3) MEMORY INTERFACE.

a) External DRAM buffering of transmit and receive packets;

b) Buffering configurable as 4MB, 8MB, 16MB or 32MB;
¢) 32-bit interface supports throughput of 224MB/s;

d) Supports external FLASH ROMupto 4 MB,for diskless boot applications; and

e) Supports external serial EEPROM for custom configuration and Macaddresses.

4) PROTOCOL PROCESSOR.

a) High speed, custom, 32-bit processor executes 66 million instructions per second;

b) Processes IP, TCP and NETBIOSprotocols;

c) Supports up to 256 resident TCP/IP contexts; and

d) Writable control store (WCS)allowsfield updates for feature enhancements.

5) POWER.

a) 3.3V chip operation; and

b) PCI controlled 5.0V/3.3V I/O cell operation.

6) PACKAGING.

a) 272-pin plastic ball grid array;

b) 91 PCI signals;

c) 68 MII signals;

d) 58 external memory signals;

e) 1 clock signal;

f) 54 signals split between power and ground; and

g) 272 total pins.

GENERAL DESCRIPTION.

The microprocessor(see Fig. 46) is a 32-bit, full-duplex, four channel, 10/100-Megabit

per second (Mbps),Intelligent Network Interface Controller (INIC), designed to provide high-

speed protocol processing for server applications. It combines the functionsof a standard
125

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 130

ALA-006E

10

15 .

20

25

30

network interface controller and a protocol processor within a single chip. Although designed

specifically for server applications, the microprocessor can be uscd by PCs, workstations and

routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous DRAM

(SDRAM), the INIC comprises four complete ethernet nodes. It contains four 802.3/ethernet

compliant Macs, a PCI BusInterface Unit (BIU), a memory controller, transmit fifos, receive

fifos and a custom TCP/IP/NETBIOSprotocol processor. The INIC supports 10Base-T,

' 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of appropriate

Phys.

The INIC Macsprovidestatistical information that may be used for SNMP. The Macs

operate in promiscuous modeallowing the INIC to function as a network monitor, receive

broadcast and multicast packets and implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can beutilized, allowing the INIC to support 10BASE-
T, 1OBASE-T2, l1OOBASE-TX, 100Base-FX and 1OOBASE-T4 as well as future interface
standards. PHY identification and initialization is accomplished through host driver

initialization routines. PHY status registers can be polled continuously by the INIC and

detected PHY status changes reported to the host driver. The Mac can be configured to support

a maximum framesize of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave
and master functions. The INIC is capable of operating in either a 64-bit or 32-bit PCI

environment, while supporting 64-bit addressing in either configuration. PCI bus frequencies

up to 66MHzare supported yielding instantaneousbustransfer rates of 533MB/s. Both 5.0V
and 3.3V signaling environments can be utilized by the INIC. Configurable cache-line size up
to 256B will accommodate future architectures, and Expansion ROM/Flash support allowsfor

diskless system booting. Non-PC applications are supported via programmable big andlittle
endian modes. Host based communication has been utilized to provide the best system
performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration

space. External pull-up and pull-downresistors, on the memory I/O pins, allow selection of

various features during chip reset. Support of an external eeprom allowsfor local storage of
configuration information such as Mac addresses.

126

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 131

ALA-006E

15

20

25

30

External SDRAM provides frame buffering, whichis configurable as 4MB, 8MB, 16MB
or 32MBusing the appropriate SIMMs.Useof -10 speed grades yields an external buffer

bandwidth of 224MB/s. The buffer provides temporary storage of both incoming and outgoing
frames. The protocol processor accesses the frames within the buffer in order to implement
TCP/IP and NETBIOS. Incoming frames are processed, assembled then transferred to host

memory underthe control of the protocol processor. For transmit, data is moved from host

memory to buffers where various headers are created before being transmitted out via the Mac.

~ 1) CORES/CELLS.

a) LSI Logic Ethernet-110 Core, 100Base and 10Base Mac with MII interface;
b) LSI Logic single port SRAM,triple port SRAM and ROM available;
c) LST Logic PCI 66MHz, 5V compatible I/O cell; and

d) LSI Logic PLL.

2) DIE SIZE / PIN COUNT.

LSI Logic G10 process. Fig. 47 showsthe area on the die of each module.

3) DATAPATH BANDWIDTH(SeeFig. 48).

4) CPU BANDWIDTH(SeeFig, 49).

5) PERFORMANCEFEATURES.

a) 512 registers improve performance through reduced scratch ram accesses and reduced
instructions;

b) Register windowingeliminates context-switching overhead;

c) Separate instruction and data paths eliminate memory contention;

d) Totally resident control store eliminatesstalling during instruction fetch;

¢) Multiple logical processors eliminate context switching and improvereal-time
response;

f) Pipelined architecture increases operating frequency;

g) Shared register and scratch ram improve inter-processor communication;

h) Fly-by state-Machineassists address compare and checksum calculation;
i) TCP/IP-context caching reduces latency;

J) Hardware implemented queues reduce CPU overhead and latency;
k) Horizontal microcode greatly improvesinstruction efficiency;

1) Automatic frame DMAandstatus between Mac and DRAM buffer; and
127 :

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 132

ALA-006E

m) Deterministic architecture coupled with context switching eliminates processorstalls.

128

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 133

ALA-006E

PROCESSOR.

The processor is a convenient means to provide a programmable state-machine which

is capable of processing incoming frames, processing host commands, directing network

5 traffic and directing PCIbustraffic. Three processors are implemented using shared hardware

in a three-level pipelined architecture which launches and completes a single instruction for

every Clock cycle. The instructions are executedin three distinct phases corresponding to each
of the pipeline stages where cach phaseis responsible for a different function.

Thefirst instruction phase writes the instruction results of the last instruction to the

10 destination operand, modifies the program counter(Pc), selects the address source for the

instruction to fetch, then fetches the instruction from the control store. The fetched instruction

is then stored in the instruction register at the end of the clock cycle.

The processorinstructionsreside in the on-chip control-store, which is implemented as

a mixture of ROM and SRAM.The ROMcontains 1K instructions starting at address 0x0000

15. andaliases each 0x0400 locations throughoutthefirst 0x8000 of instruction space. The SRAM
(WCS)will hold up to 0x2000 instructionsstarting at address 0x8000 and aliasing each
0x2000 locations throughout the last 0x8000 ofinstruction space. The ROM and SRAM are

both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate mapping
ram providesbits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM

20_basedinstructions. The mapping ram has a configuration of 128x7 which is insufficientto

allow a separate map addressfor each of the 1K ROM locations. To allow re-mapping ofthe

entire 1K ROM space, the map ram addresslines arc connected to the address bits Fetch[9:3].
The result is that the ROM is re-mappedin blocks of 8 contiguous locations.

The secondinstruction phase decodesthe instruction which wasstored in the

25 instructionregister. It is at this point that the map address is checked for a non-zero value

which will cause the decoder to force a Jmpinstruction to the map address. If a non-zero value

is detected then the decoder selects the source operands for the Alu operation based on the
; values of the OpdASel, OpdBSel and AluOpfields. These operandsare then stored in the

decoderegister at the end of the clock cycle. Operands mayoriginate from File, SRAM,or

30 ‘flip-flop based registers. The secondinstruction phaseis also wheretheresults of the previous
instruction are written to the SRAM.

129

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 134

ALA-006E

10

15

20

25

30

Thethird instruction phase is when the actual Alu operation is performed,the test

condition is selected and the Stack push and pop are implemented. Results of the Alu

operation are stored in the results register at the end of the clock cycle.

Fig. 50 is a block diagram of the CPU. Fig. 50 shows the hardware functions

associated with each of the instruction phases. Note that various functions have becn

distributed across the three phasesof the instruction execution in order to minimize the

combinatorial delays within any given phase.

INSTRUCTION SET.

The micro-instructions are divided into six types according to the program control

directive. The micro-instruction is further divided into sub-fields for which the definitions are

dependent uponthe instruction type. The six instruction types are listed in Fig. 51.

All instructions (see Fig. 51) include the Alu operation (AluOp), operand “A”select

the instruction type.

. (OpdASel), operand “B” select (OpdBSel) and Literal fields. Other field usage depends upon

The “jump condition code” (Jcc) instruction causes the program counterto be altered if

the condition selected by the “test select” (TstSel) field is asserted. The new program counter

(Pc) value is loaded from either the Literal field or the AluOut as described in the following

section and the Litcral ficld may be used as a source for the Alu or the ram address if the new

Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counterto be altered unconditionally.

The new program counter (Pc) value is loaded from either the Literal field or the AluOutas .
described in the following section. The format allows instruction bits 23:16 to be used to

perform a flag operation and the Literal field may be used as a source for the Alu or the ram

addressif the new Pcvalue is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counterto be altered

unconditionally. The new program counter (Pc) value is loaded from either the Literal field or

the AluOut as described in the following section. The old program counter value is stored on

the top location of the Pc-Stack which is implemented as a LIFO memory. The format allows

instruction bits 23:16 to be used to performa flag operation andthe Literal field may be used

as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

130

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 135

ALA-006E

10

15

20,

25

30

pee

The “Nxt” (Nxt) instruction causes the program counter to increment. The format

allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be

used as a source for the Alu or the ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction

in which the‘flag operation” (FlgScl) ficld is set to a value of Ohff. The current Pc valueis

replaced with the last valuc stored in the stack. The Literal field may be used as a source for

the Alu or the ram address.

The Mapinstruction is provided to allow replacementof instructions which have been

stored in ROMandis implemented any time the “map enable” (MapEn)bit has been set and

the content of the “map address” (MapAddr)field is non-zero. The instruction decoder forces a

jumpinstruction with the Alu operation and destination fields set to pass the MapAddrfield to

the program control block.

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and

TstSel. The behavior of the program control is defined with the "C-like" description in Fig. 52.

Figs. 53-61 show ALU operations, selected operands, selected tests, and flag operations.

SRAM CONTROL SEQUENCER(SramCtrl).

SRAMisthe nexus for data movement within the INIC. A hierarchy of sequencers,

working in concert, accomplish the movement ofdata betwcen DRAM, SRAM,CPU,ethernet
and the Pci bus. Slave sequencers, provided with stimulus from master sequencers, request

data movementoperations by way of the SRAM,Pci bus, DRAM andFlash. The slave

sequencersprioritize, service and acknowledgethe requests.

The dataflow block diagram of Fig. 62 showsall of the master and slave sequencers of

the INIC product. Request information suchas r/w, address, size, endian and alignmentare

represented by each requestline. Acknowledge information to master sequencers include only

the size of the transfer being acknowledged.

The block diagram of Fig. 63 illustrates how data movement is accomplishedfor a Pci

slave write to DRAM. Note that the Psi (Pci slave in) module functions as both a master
sequencer. Psi sends a write request to the SramCtrl module. Psi requests Xwr to move data

from SRAM to DRAM. Xwrsubsequently sends a read request to the SramCtrl module then

writes the data to the DRAM via the Xctrl module. As each piece of data is moved from the

SRAM to Xwr, Xwr sends an acknowledgeto the Psi module.
131

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 136

ALA-006E

15

20

25°

30

The SRAM control sequencerservices requests to store to, or retrieve data from an

- SRAM organized as 1024 locations by 128 bits (16KB). The sequencer operates at a frequency

of 133MHz, allowing both a CPU access and a DMAaccess to occur during a standard

66MHz CPUcycle. One 133MHzcycleis reserved for CPU accesses during each 66MHz

cycle while the remaining 133MHz cycle is reserved for DMAaccesses on a prioritized basis.

The block diagram of Fig. 64 shows the major functions of the SRAM control

sequencer. A-slave sequencer begins by asserting a request along with 1/w, ram address,

endian, data path size, data path alignment and request size. SramCtrl prioritizes the requests.

The request parameters are then selected by a multiplexer which feeds the parameters to the

- SRAMvia a register. The requestor provides the SRAM address which when coupled with the

other parameters controls the input and output alignment. SRAM outputsare fed to the output

aligner via a register. Requests are acknowledgedin parallel with the returned data.
Fig. 65 is a timing diagram depicting two ram accesses during a single 66MHz clock

cycle.

EXTERNAL MEMORY CONTROL(Xctrl).

Xctrl (See Fig. 66) provides the facility whereby Xwr, Xrd, Defg and Eectrl access

external Flash and DRAM.Xctrl includes an arbiter, i/o registers, data multiplexers, address

multiplexers and control multiplexers. Ownership ofthe external memory interace is requested

by each block and granted to each of the requesters by the arbiter function. Once ownership

has been granted the multiplexers select the address, data and control signals from owner,

allowing access to external memory.

EXTERNAL MEMORY READ SEQUENCER(Xrd).

The Xrd sequenceracts only as a slave sequencer. Servicing requests issued by master

sequencers, the Xrd sequencer movesdata from external SDRAMorflash to the SRAM,via

the Xctrl module, in blocks of 32 bytes or less. The nature of the SDRAM requires fixed burst

sizes for each ofit's internal banks with ras precharge intervals between each access. By

selecting a burst size of 32 bytes for SDRAM readsand interleaving bank accesses on a 16

byte boundary, we can ensurethat the ras precharge interval for the first bank is satisfied

before burst completion for the second bank, allowing usto re-instruct the first bank and

continue with uninterrupted DRAM access. SDRAMsrequire a consistent burst size be
132

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 137

ALA-006E

10

5

20

25

30

utilized each and every time the SDRAMis accessed. For this reason, if an SDRAMaccess

does not begin or end on a 32 byte boundary, SDRAM bandwidth will be reduced dueto less

than 32 bytes of data being transferred during the burst cycle.

Fig. 67 depicts the major functional blocks of the Xrd external memory read sequencer.

The first stép in servicing a request to movedata from SDRAM to SRAMisthe prioritization

of the master sequencer requests. Next the Xrd sequencer takes a snapshot of the DRAM read

address and applies configuration information to determinethe correct bank, row and column

address to apply. Oncesufficient data has been read, the Xrd sequencer issucs a write request
to the SramCtrl sequencer which in turn sends an acknowledgeto the Xrd sequencer. The Xrd

sequencer passes the acknowledge along to the level two master with a size code indicating

how much data was written during the SRAM cycle allowing the update of pointers and

counters. The DRAM read and SRAM writecycles repeat until the original burst request has

been completed at which point the Xrd sequencerprioritizes any remaining requests in

preparation for the next burstcycle.

Contiguous DRAM burst cycles are not guaranteed to the Xrd sequencer as an

algorithm is implemented which ensures highestpriority to refresh cycles followed by flash

accesses, DRAM writes then DRAMreads.

Fig. 68 is a timing diagram illustrating how data is read from SDRAM. The DRAM has

been configured for a burst of four with a latency of two clock cycles. BankAis first
selected/activated followed by a read command twoclock cycles later. The bank

select/activate for bankBis next issued as read data begins returning two clocksafter the read

command was issued to bank A. Two clock cycles before we need to receive data from bank B

weissue the read command. Once all 16 bytes have been received from bank A we begin

receiving data from bank B.

EXTERNAL MEMORY WRITE SEQUENCER(Xwr).

The Xwr sequenceris a slave sequencer. Servicing requests issued by master

sequencers, the Xwr sequencer moves data from SRAMto the external SDRAM or flash, via
the Xctrl module, in blocks of 32 bytes or less while accumulating a checksum ofthe data

moved. The nature of the SDRAM requiresfixed burst sizes for each ofit's internal banks with

ras prechargeintervals between each access. By selecting a burst size of 32 bytes for SDRAM

writes and interleaving bank accesses on a 16 byte boundary, we can ensurethatthe ras
133

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 138

ALA-006E

10

15

20

25

30

prechageintervalfor the first bank is satisfied before burst completion for the second bank,
allowing us to re-instructthe first bank and continue with uninterrupted DRAM access.

‘SDRAMsrequire a consistent burst size be utilized each and every time the SDRAM is
accessed. For this reason, if an SDRAM accessdoesnot begin or end on a 32 byte boundary,

SDRAM bandwidth will be reduced due to less than 32 bytes of data being transferred during

the burst cycle.

Fig. 69 depicts the major functional blocks of the Xwr sequencer. Thefirst step in

servicing a request to move data from SRAM to SDRAMis the prioritization of the level two

master requests. Next the Xwr sequencer takes a Snapshot of the DRAM write address and
applies configuration information to determinethe correct DRAM,bank, row and column
address to apply. The Xwr sequencer immediately issues a read commandto the SRAM to

whichthe SRAM respondswith both data and an acknowledge. The Xwr sequencerpasses the

acknowledge to the level two master along with a size code indicating how much data was

read during the SRAM cycle allowing the update of pointers and counters. Once sufficient data
has been read from SRAM,the Xwr sequencerissues a write commandto the DRAMstarting

the burst cycle and computing a checksum asthe data flys by. The SRAMread cycle repeats

until the original burst request has been completed at which point the Xwr sequencer

prioritizes any remaining requests in preparation for the next burst cycle.
Contiguous DRAM burst cycles are not guarantced to the Xwr sequencer as an

algorithm is implemented which ensures highest priority to refresh cycles followed by flash
accesses then DRAM writes.

Fig.70 is a timing diagram illustrating how data is written to SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. Bank A is first
selected/activated followed by a write command two clock cycles later. The bank

select/activate for bank B is next issued in preparation for issuing the second write command.

As soon asthefirst 16 byte burst to bank A completes we issuethe write command for bank B

and begin supplying data.

PCI MASTER-OUT SEQUENCER(Pmo).

The Pmo sequencer(See Fig. 71) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmo sequencer movesdata from an SRAMbased fifo to a Pci
target, via the PciMstrlO module,in bursts of up to 256 bytes. The nature of the PCI bus

134

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 139

ALA-006E

10

15

20

25

30

dictates the use of the write line commandto ensure optimal system performance. The write

line commandrequires that the Pmo sequencerbe capable oftransferring a whole multiple

(1X, 2X, 3X,...) of cache lines of which the sizeis set through the Pci configuration registers.

To accomplish this end, Pmo will automatically perform partial bursts until it has aligned the

transfers on a cache line boundary at whichtimeit will begin usage of the write linc command.

The SRAM fifo depth, of 256 bytes, has been chosen in order to allow Pmo to accommodate

cacheline sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmo will

perform multiple, contiguous cacheline bursts until it has exhausted the supply ofdata.
Pmoreceives requests from two separate sources; the DRAM to Pci (D2p) module and

the SRAMto Pci (S2p) module. An operation first begins with prioritization of the requests
where the S2p module is given highest priority. Next, the Pmo module takes a Snapshotof the

SRAM fifo address and uses this to generate read requests for the SramCtrl sequencer. The

Pmo module then proceedsto arbitrate for ownership of the Pci bus via the PciMstrIO module.

Once the Pmo holding registers have sufficient data and Pci bus mastership has been granted,

the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo

sends an acknowledge and encodedsize to the master sequencer, allow it to updateit's internal

pointers, counters and status. Once the Pci burst transaction has terminated, Pmo parks on the

Pci bus unless another initiator has requested ownership. Pmo again prioritizes the incoming
requests and repeats the process.

PCI MASTER-OUT SEQUENCER(Pmi).

The Pmi sequencer (See Fig. 72) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmi sequencer movesdata from a Pci target to an SRAM

based fifo, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus

dictates the use of the read multiple commandto ensure optimal system performance. The read

multiple command requires that the Pmi sequencer be capable of transferring a cache line or

more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts

until it has aligned the transfers on a cache line boundary at which timeit will begin usage of

the read multiple command. The SRAM fifo depth, of 256 bytes, has been chosen in order to

allow Pmi to accommodate cacheline sizes up to 128 bytes. Provided the cachelinesizeis

less than 128 bytes, Pmi will perform multiple, contiguous cache line bursts until it has filled

the fifo.

135

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 140

ALA-006E

10

15

20

25

30

Pmi receive requests from two separate sources; the Pci to DRAM (P2d) module and

the Pci to SRAM (P2s) module. An operation first begins with prioritization of the requests

where the P2s moduleis given highest priority. The Pmi module then proceedsto arbitrate for

ownership of the Pei bus via the PciMstrlO module. Once the Pci bus mastership has been
granted and the Pmi holding registers have sufficient data, the Pmi module begins transferring

data to the SRAMfifo. For each successful transfer, Pmi sends an acknowledge and encoded
size to the master sequencer, allowingit to updateit's internal pointers, counters andstatus.

Once the Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator

has requested ownership. Pmi again prioritizes the incoming requests and repeats the process.

DRAM TO PCI SEQUENCER (D2P).

The D2p sequencer (See Fig. 73) acts is a master sequencer. Servicing channel requests

issued by the CPU, the D2p sequencer manages movementofdata from DRAM tothe Pci bus

by issuing requests to both the Xrd sequencer and the Pmo sequencer. Data transfer is
accomplished using an SRAM based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, D2p fetches a DMA deseriptor from an SRAM location

dedicated to the requesting channel which includes the DRAM address, Pci address, Pci endian

and request size. D2p then issues a request to the D2s sequencer causing the SRAM‘based fifo

to fill with DRAM data. Oncethefifo contains sufficient data for a Pci transaction, D2s issues
a request to Pmo which in turn movesdata from thefifo to a Pci target. The process repeats

until the entire request has been satisfied at which time D2p writes ending status in to the

SRAM DMAdescriptor area and sets the channel done bit associated with that channel. D2p

then monitors the DMA channels for additional requests. Fig. 74 is an illustration showing the

major blocks involved in the movement of data from DRAM to Pcitarget.

PCI TO DRAM SEQUENCER(P2d).

The P2d sequencer (See Fig. 75) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P2d sequencer manages movementof data
from Pci bus to DRAM byissuing requests to both the Xwr sequencer and the Pmi sequencer.

Data transfer is accomplished using an SRAMbasedfifo through which datais staged.

136

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 141

ALA-006E

10

20.

25

30

P2d can reccive requests from any of the processor's thirty-two DMAchannels. Once a

commandrequesthas been detected, P2d, operating as a slave sequencer, fetches a DMA
descriptor from an SRAMlocation dedicated to the requesting channel which includes the
DRAMaddress,Pci address, Pci endian and request size. P2d then issues a request to Pmo
which in turn moves data from the Pcitarget to the SRAM fifo. Next, P2d issues a request to

the Xwr sequencer causing the SRAM basedfifo contents to be written to the DRAM. The
process repeats until the entire request has been satisfied at which time P2d writes ending
status in to the SRAM DMAdescriptorarea and sets the channel doncbit associated with that

channel. P2d then monitors the DMA channels for additional requests. Fig. 76 is an illustration

showing the major blocks involved in the movement of data from a Pci target to DRAM-

SRAM TO PCI SEQUENCER(S2p).

The S2p sequencer (See Fig. 77) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the S2p sequencer manages movement of data
from SRAM to the Pci bus by issuing requests to the Pmo sequencer

S2p canreceive requests from any ofthe processor's thirty-two DMA channels. Once a
commandrequest has been detected, S2p, operating as a slave sequencer, fetches a DMA
descriptor from an SRAMlocation dedicated to the requesting channel which includesthe
SRAMaddress, Pci address, Pci endian and request size. S2p then issues a request to Pmo
which in turn moves data from the SRAMto a Pci target. The process repeats until the entire
request has beensatisfied at which time S2p writes ending status in to the SRAM DMA
descriptor area and sets the channcl donebit associated with that channel. S2p then monitors
the DMA channels for additional requests. Fig. 78 is an illustration showing the major blocks

involved in the movementof data from SRAM to Pcitarget.

PCI TO SRAM SEQUENCER(P2s).

The P2s sequencer (See Fig. 79) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by thc CPU,the P2s sequencer manages movementofdata
from Pci bus to SRAM byissuing requests to the Pmi sequencer.

P2s can receive requests from any ofthe processor's thirty-two DMAchannels. Once a

commandrequest has been detected, P2s, operating as a slave sequencer, fetches a DMA
descriptor from an SRAMlocation dedicatedto the requesting channel which includesthe

137

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 142

' ALA-006E

SRAMaddress, Pci address, Pci endian and request size. P2s then issues a request to Pmo
which in turn movesdata from the Pci target to the SRAM.The process repeats until the entire

request has beensatisfied at which time P2s writes ending status in to the DMA descriptor area
of SRAM andscts the channel done bit associated with that channel. P2s then monitors the

5 DMAchannelsfor additional requests. Fig. 80 is an illustration showing the major blocks
involved in the movementofdata from a Pcitarget to DRAM.

DRAM TO SRAM SEQUENCER(D2s).

The D2s sequencer (See Fig. 81) acts as both a slave sequencer and a master sequencer.

10°. Servicing channel requests issued by the CPU, the D2s sequencer manages movementofdata
from DRAM to SRAMbyissuing requests to the Xrd sequencer.

D2s can receive requests from any of the processor's thirty-two. DMA channels. Once a
commandrequest has been detected, D2s, operating as a slave sequencer, fetches a DMA

. descriptor from an SRAMlocation dedicated to the requesting channel which includesthe
/ 1S DRAMaddress, SRAM address and request size. D2s then issues a request to the Xrd
: sequencercausingthe transfer of data to the SRAM. The process repeats until the entire

request has been satisfied at which time D2s writes ending status in to the SRAM DMA
descriptor area andsets the channel donebit associated with that channel. D2s then monitors
the DMA channelsfor additional requests. Fig. 82 is an illustration showing the major blocks

20-involved in the movementof data from DRAM to SRAM.

SRAM TO DRAM SEQUENCER(82d).

The $2d sequencer(See Fig. 83) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the S2d sequencer manages movementof data
25 from SRAM to DRAMbyissuing requests to the Xwr sequencer. :

S2d can receive requests from any ofthe processor's thirty-two DMA channels. Once a

commandrequest has been detected, S2d, operating as a slave sequencer, fetches a DMA
descriptor from an SRAMlocation dedicated to the requesting channel which includes the
DRAMaddress, SRAM address, checksum reset and request size. S2d then issues a request to

30 the Xwr sequencercausing the transfer of data to the DRAM.Theprocessrepeats until the
entire request has been satisfied at which time S2d writes ending status in to the SRAM DMA
descriptor area andsets the channel done bit associated with that channel. S2d then monitors

138

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 143

yrtgaes
tae- woe , wade

ALA-006E

the DMA channels for additional requests. Fig. 84 is an illustration showing the major blocks
involved in the movement of data from SRAM to DRAM.

PCI SLAVE INPUT SEQUENCER(Psi).

5 The Psi sequencer (See Fig. 85) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pci master, the Psi sequencer manages movementof data from

Pci bus to SRAM and Pci bus to DRAM via SRAMbyissuing requests to the SramCtrl and

Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, DRAM, SRAM and

10 memory mapped registers. Psi separates these Pci bus operations in to two categories with

different action taken for each. DRAM accessesresult in Psi generating write request to an

SRAM buffer followed with a write request to the Xwr sequencer. Subsequent write or read

DRAMoperationsare retry terminated until the buffer has been emptied. An event notification

is set for the processor allowing message passing to occur through DRAM space.

415 All other Pci write transactions result in Psi posting the write information including Pci

address, Pci byte marks and Pci data to a reserved location in SRAM,then setting an event flag

which the event processor monitors. Subsequent writes or reads of configuration, expansion

rom, SRAM orregisters are terminated with retry until the processor clears the event flag. This

allows the INIC pipclining levels to a minimum for the posted write and give the processor

20 ample time to modify data for subsequent Pci read operations.

Fig. 85 depicts the sequence of events when Psiis the target of a Pci write operation.

Note that events 4 through 7 occur only when the write operation targets the DRAM.

PCI SLAVE OUTPUT SEQUENCER(Pso).

25 The Pso sequencer (See Fig. 86) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pci master, the Pso sequencer manages movementof data to Pci

bus from SRAM and to Pci bus from DRAM via SRAMbyissuing requests to the SramCtrl

and Xrd sequencers.

Pso managesread requests to configuration space, expansion rom, DRAM, SRAM and

‘30 memory mappedregisters. Pso separates these Pci bus operations in to two categorics with

different action taken for each. DRAM accessesresult in Pso generating read request to the

' Xrd sequencer followed with a read request to SRAM buffer. Subsequent write or read DRAM
139

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 144

ALA-006E

10

15

20

25

operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information

including Pci address and Pci byte marks to a reserved location in SRAM,thensetting an

event flag which the event processor monitors. Subsequent writes or reads of configuration,

expansion rom, SRAM orregisters are terminated with retry until the processor clears the

event flag. This allows the INIC to use a microcoded response mechanism to return data for

the request. The processor decodes the request information, formulates or fetches the requested

data and stores it in SRAM then clears the event flag allowing Pso to fetch the data and return

it on the Pci bus.

Fig. 78 depicts the sequence of events when Psois the target of a Pci read operation.

FRAME RECEIVE SEQUENCER(RevX).

The receive sequencer (See Fig, 87) (RevSeq) analyzes and manages incoming packets,

stores the result in DRAM buffers, then notifies the processor through the receive queue

(RcvQ) mechanism. The process begins when a buffer descriptor is available at the output of

the FreeQ. RcvSeq issues a request to the Qmg which responds by supplying the buffer

descriptor to RevSeq. RevSeq then waits for a reccive packet. The Mac, network, transport and

session information is analyzed as each byte is received and stored in the assembly register

(AssyReg). When four bytes of information is available, RcvSeq requests a write of the data to

the SRAM. When sufficient data has been stored in the SRAM based receive fifo, a DRAM

write request is issued to Xwr. The process continuesuntil the entire packet has been reccived

at which point RevSeq stores the results of the packet analysis in the beginning of the DRAM

buffer. Once the buffer and status have both been stored, RevSeq issues a write-queue request

to Qmg. Qmg respondsbystoring a buffer descriptor and a status vector provided by RevSeq.

The process then repeats. If RcvSeq detects the arrival of a packet before a free buffer is

available, it ignores the packet and sets the FramcLoststatus bit for the next received packet.

Fig. 88 depicts the sequence of events for successful reception of a packet followed by

a definition of the receive buffer and the buffer descriptor as stored on the RevQ. Fig. 89

shows the Reccive Buffer Descriptor. Figs. 90-92 show the Receive Buffer Format.

140

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 145

vate

ALA-006E

10

20

25

FRAME TRANSMIT SEQUENCER (XmtX).

The transmit sequencer (See Fig. 93) (XmtSeq) analyzes and managesoutgoing

packets, using buffer descriptors retrieved from the transmit qucue (XmtQ)then storing the
descriptor for the freed buffer in the free buffer queue (FreeQ). The process begins when a
butter descriptor is available at the output of the XmtQ. XmtSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to XmtSeq. XmtSeq then issues a read
request to the Xrd sequencer. Next, XmtSeq issues a read request to SramCtrl then instructs
the Macto begin frame transmission. Once the frame transmission has completed, XmtSeq
stores the buffer descriptor on the FreeQ thereby recycling the buffer.

Fig. 94 depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ. Fig. 95
shows the Transmit Buffer Descriptor. Fig. 96 shows the Transmit Buffer Format. Fig. 97

showsthe Transmit Status Vector.

QUEUE MANAGER(Omg).

The INIC includes special hardware assist for the implementation of message and

pointer queues. The hardware assist is called the queue manager (See Fig. 98) (Qmg) and
manages the movement of queueentries between CPU and SRAM,between DMAsequencers
and SRAM aswell as between SRAM and DRAM.Queues comprise three distinct entities; the

queue head (QH4), the queuetail (QTI) and the queue body (QBdy). QHdresides in 64 bytes
of scratch ram and provides the area to which entries will be written (pushed). QT]resides in
64 bytes of scratch ram and contains queuc locations from which entries will be read (popped).
QBdyresides in DRAM and contains locations for expansion of the queue in orderto
minimize the SRAM space requirements. The QBdysize depends upon the queue being
accessed andtheinitialization parameters presented during queueinitialization.

141

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 146

- 10

15

20

25

30

ithe WT Poke,

Oo Baal b) Beet

' ALA-006E

Qmg accepts operations from both CPU and DMAsources (See Fig. 99). Executing

these operations at a frequency of 133MHz, Qmgreserves even cycles for DMA requests and

reserves odd cycles for CPU requests. Valid CPU operations include initialize queuc (InitQ),

write queue (WrQ)and read queue (RdQ). Valid DMA requests include read body (RdBdy)

and write body (WrBdy). Qmg working in unison with Q2d and D2q generate requests to the

Xwr and Xrd sequencers to control the movement of data between the QHd, QT] and QBdy.
Fig. 98 shows the major functions of Qmg. The arbiter sclects the next operation to be

performed. The dual-ported SRAM holds the queuc variables HdWrAddr, HdRdAddr,

TlWrAddr, TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmgaccepts an operation request,

fetches the queue variables from the queue ram (Qram), modifies the variables based on the
. current state and the requested operation then updates the variables and issues a read or write

request to the SRAM controller. The SRAM controller services the requests by writing the tail

or reading the head and returning an acknowledge.

- DMA OPERATIONS.

DMAoperations are accomplished through a combination of thirtytwo DMA channels

(DmaCh) and seven DMA sequencers (DmaSeq). Each DMA channel provides a mechanism

whereby a CPU can issue a commandtoany of the seven DMA sequencers. Whereas the

DMAchannels are multi-purpose, the DMA sequencers they commandare single purpose as

shown in Fig. 100.

The processors manage DMAinthe following way. The processor writes a DMA

descriptor to an SRAM location reserved for the DMA channel. The format of the DMA

' descriptor is dependent upon the targeted DMA sequencer. The processor then writes the

DMAsequencer numberto the channel commandregister.

Each of the DMA sequencerspolls all thirtytwo DMA channels in search of commands

to execute. Once a command request has been detected, the DMA sequencer fetches a DMA

descriptor from a fixed location in SRAM. The SRAM locationis fixed and is determined by

the DMA channel number. The DMA sequencer loads the DMAdescriptorinto it's own

registers, executes the command, then overwrites the DMA descriptor with ending status.

Once the command has halted, due to completion or error, and the ending status has been

written, the DMA sequencersets the donebit for the current DMA channel.

142

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 147

ALA-006E

10

15

20

25

The done bit appears in a DMAevent register which the CPU can examine, The CPU

fetches ending status from SRAM,then clears the done bit by writing zeroes to the channel

command (ChCmd)register. The channel is now ready to accept another command.

The format of the channel commandregister is as shown in Fig. 101. The format of the

P2d or P2s descriptor is as shown in Fig. 102. The format of the S2p or D2p descriptoris as

shown in Fig. 103. The format of the S2d, D2d or D2s descriptor is as shownin Fig. 104. The

format of the ending status of all channels is as shown in Fig. 105. The format of the ChEvnt

register is as shownin Fig. 106. Fig. 107 is a block diagram of MAC CONTROL(Macctrl).

LOAD CALCULATIONS.

The following load calculations are based on the following basic formulae:

N=X*R_ (Little’s Law) where:

N = numbcrofjobsin the system (either in progress or in a queue),

X = system throughput,

R = response time (which includes time waiting in queues).

U=X *S (from Little’s Law) where:

S = service time,

U = utilization.

R=S/(1-U) for exponential service times (whichis the worst-case assumption).

A 256-byte frame at 100Mb/sec takes 20 usec per frame.

4 * 100 Mbit ctherncts receiving at full frame rate is:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame,

102000 frames/sec @ 512 bytes/frame,

204000 frames/sec @ 256 bytes/frame.

143

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 148

ALA-006E

The following calculations assume 250 instructions/frame, 45nsec clock. Thus

S = 250 * 45 nsecs = 11.2 usecs.

Av Frame Size Thruput

(X)

Nbrin system

(N)

1.3

Utilization

(U)

0.57

Response

(R)

26 usecs

 1024

 102000

204000

256

5 Lets look at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Per|Service Thruput Utilization|Response

Frame Time (S) (X) (U) (R)

| 250 102000 >] --

250 85000 (*) 0.95 224 usecs

250 80000 (**) 0.89 101

225 102000 1.0 --

225 95000 (#) | 0.95 200

‘89000 (**) 0.89 90

102000 , 0.9 90

102000 : 0.68 20
(*) shows what framerate can be supported to get a utilization of less than 1.
(**) shows what frame rate can be supported with 8 SRAM CCBbuffers andat least 8 process

contexts.

10 If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support 256

byte frames:

100 45 | 204000 0.91 50 | 10

Note that these calculations assumethat response times increase exponentially as

utilization increases. This is the worst-case assumption, and probably may not be true for our

144

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 149

ALA-006E

system. Thefigures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system, assuming

250 instructions per frame. Due to SRAM limitations, the current design specifics 8 SRAM

buffers for active TCBs, and not to swap a TCB out of SRAM onceit is active. So under these
limitations, the INIC will not be able to keep up with the full frame rate. Note that the initial

implementation is trying to use only 8KB of SRAM,although 16KB maybe available, in

which case 19 TCB SRAMbuffers could be used. This is a cost trade-off. The real point here

is the effect of instructions/frame on the throughput that can be maintained. If the

instructions/frame drops to 200, then the INIC is capable ofhandling the full theoretical load

(102000 frames/second) with only 9 active TCBs.If it drops to 100 instructions per frame,

then the INIC can handle full bandwidth at 256 byte frames (204000 frames/second) with 10

active CCBs. The bottom lineis that all hardware-assist that reduces the instructions/frameis

really worthwhile. If header-assist hardware can save us 50 instructions per frame then it goes

straight to the throughput bottom line.

145

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 150

ALA-006E

CLAIMS

1. A method for network communication, the method comprising:

receiving a plurality of packets from the network, each ofthe packets including

a media access control layer header, a network layer header andatransport layer header;

processing the packets byafirst mechanism,so that for each packet the

network layer header and the transport layer headerare validated without an interrupt dividing

the processing of the network layer header and the transport layer header;

sorting the packets, dependent uponthe processing, into first and second types

ofpackets, so that the packets ofthe first type each contain data,
sendingthe data from each packctofthe first type to a destination without

sending any of the media access control layer headers, network layer headers or transport layer
“headers to the destination.

2. The method of claim 1, wherein processing the packets by a first mechanism further

comprises:

processing the media access control layer header for each packet without an

interrupt dividing the processing of the media access control layer header and the network

layer header.

3. The methodof claim 1, further comprising:

processing an upper layer headerofat Icast one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header corresponds

to a protocol layer above the transport layer.

4. The method of claim 1, further comprising:

processing an upper layer headerofat least one of the packets of the second

type by a second mechanism,thereby determining the destination.

146

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 151

aeMe

ee
aeoak

ALA-006E

5. The method of claim 1, further comprising:

processing a transport layer header of another packet by a second mechanism,

prior to receiving the plurality of packets from the network, thereby establishing a Transport

Control Protocol (TCP) connection for the packets ofthefirst type.

6. The method of claim 1, wherein sorting the packets includesclassifying each of the

packets of the first type as having an Internet Protocol (IP) header and a Transport Control

Protocol (TCP).

7. The method of claim 1, further comprising:

transmitting a second plurality of packets to the network, each of the second

plurality of packets containing a media access control layer header, a network layer header and

a transport layer header, including processing the second plurality of packets by thefirst

mechanism, so that for each packet the media access control layer header, the network layer

header andthe transport layer header are processed without an interrupt dividing the

processing of the media access control layer header, the nctwork layer header and the transport

layer header.

8. The method of claim 1, whercin the first mechanism is a sequencer running microcode.

9. A method for communicating information over a network, the method comprising:

obtaining data from a sourceallocated by a first processor;

dividing the data into multiple segments;

> prepending a packet header to each of the segments by a sccond processor,

thereby forming a packet corresponding to each segment, each packet header containing a

media access control layer header, a network layer header andatransport layerheader,

_ wherein the prepending of each packet header occurs without an interrupt dividing the

prepending of the network layer header and the transport layer header; and

transmitting the packets to the network.

147

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 152

 %

ALA-006E

10. The method of claim 9, wherein prepending a packet header to each of the segments by

a second processor further comprises: ;

prepending the media access control layer header for each packet without an

interrupt dividing the prepending of the media access control layer header and the network

layer header.

11. The method of claim 9, whercin cach packct header contains an Internet Protocol (IP)

header and a Transport Control Protocol (TCP) header.

the media access control layer header,

12, The method ofclaim 9, further comprising establishing a Transport Control Protocol
. (TCP) connection by the first processor and using the connection to prepend the packet header

to each of the segments by the second processor.

13. The method of claim 9, further comprising creating a template header and forming each

packet header based upon the template header.

14. The method of claim 9, wherein obtaining data from the source in memory allocated by

the first processor is performed by a Direct Memory Access (DMA) unit controlled by the

second processor.

15. The method of claim 9, further comprising prepending an upper layer headerto the

data, prior to dividing the data into multiple segments.

16. The method ofclaim 9, further comprising: ;

receiving another packet from the network, the other packet containing a

receive header including information corresponding to a network layer and a transport layer;

and

selecting whether to process the other packet by the first processor or by the

second processor,

148

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 153

ALA-006E

17. A method for communicating information over a network, the method comprising:

providing multiple segments of data; ,

prepending an outbound packet headerto cach of the segments, thereby
forming an outbound packet corresponding to each segment, the outbound packet header
containing an outbound media access control layer header, an outbound network layer header

and an outboundtransport layer header, wherein the prepending of each outbound packet

header occurs without an interrupt dividing the prepending of the outbound media access
control layer header, the outbound network layer header and the outbound transport layer

header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network, each of the inbound

packets including an inbound media access control layer header, an inbound network layer
header and an inboundtransport layer header; ,

processing the inboundpackets, so that for each packet the inbound network

layer header and the inbound transport layer header are validated without an interrupt dividing

the processing of the inbound network layer header and the inbound transport layer header.

18. The method of claim 17, wherein the processing the inbound packets is performed

simultaneously with the prepending thie outbound packct header to cach of the segments.

19. The method of claim 17, further comprising creating a template header and using the

template header to form cach outbound packet header.

~ 20. The methodofclaim 17, wherein providing multiple segments of data includes

dividing a block of data into the segments.

21. The method of claim 20, further comprising prepending an upperlayer headerto the

block of data, prior to dividing the block of data into multiple segments.

149

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 154

eo ae
Oe bicwee aly

ALA-006E

22. The method of claim 17, further comprising:

sending data from each inbound packet to a destination without sending any of

the media access control layer headers, network layer headers or transport layer headers to the
destination.

23. The methodof claim 17, further comprising:

__ processing an upper layer headerof at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header corresponds

to a protocol layer above the transport layer.

24. The method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to receiving

the plurality of packets from the network, thereby establishing a Transport Control Protocol

(TCP) connection for the inbound packets.

150

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 155

WBEvl, Male
 Cede

iEE — ALA-006E

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

5 . Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M. Philbrick

Daryl D.Starr

10

ABSTRACT OF THE DISCLOSURE

A system for protocol processing in a computer network has an intelligent network
interface card (INIC) or communication processing device (CPD)associated with a host

computer. The INIC provides a fast-path that avoids protocol processing for most large multi-
15 packet messages,greatly accelerating data communication. The INIC also assists the host for

those message packets that are chosen for processing by host software layers. A
communication control block for a message is defined that allows DMAcontrollers of the

INIC to movedata, free of headers, directly to or from a destination or source in the host. The

context is stored in the INIC as a communication control block (CCB) that can be passed back

20 to the host for message processing by the host. The INIC contains specialized hardware
circuits that are muchfaster at their specific tasks than a general purpose CPU. A preferred

embodiment includesa trio of pipelined processors with separate processors devoted to

transmit, receive and management processing, with full duplex communication for four fast

Ethernet nodes.

151

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 156

QESR aepep gee een step ste oy oradie Mal Bloc Ranet Fad Waa PURE oad RB CSSAIRI 3) ELA Base

UPPER

LAYER

UPPER LAYER

INTERFACE

TRANSPORT

NETWORK

DATA LINK

INIC/CPD

FIG. 2

CONTEXT STORAGE| °
52

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 157

67

apoeethote = ok:adh, QE Bu Ma a PA as Bae

2/89

RECEIVE PACKET

FROM NETWORK

BY CPD

VALIDATE PACKET,

SUMMARIZE 57

HEADERS

61

59-—~. ,
FAST PATH NO SEND PACKET TO

CANDIDATE? STACK FOR SLOW-
: PATH PROCESSING

65

YES 5, ~

NO SEND PACKET TO

MATCH WITH STACK FOR SLOW-

CCB? PATH PROCESSING

YES 69

SEND TO

DESTINATION CREATE CCB FOR

IN HOST VIA MESSAGE
FAST-PATH

5]

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 158

OSPReR ety sey mRwe ippip nth eg ete oenil Holt Bo BT EB Pt UR Pn, eB B..

PROCESSOR}

RECEIVE LOGIC] |
| 4

49_ort 56

REMOTE

HOST

REMOTE

HOST

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 159

any SRE opts FEh ST tay em ey Dany

gh ed Ce RSS OG eeOP

4/89
}

1
!

; {

62: !
PROCESSOR 36—“DnINE|Ot‘|=----|I

ro! X96 35 -"
~~ BIG. 5 44

1S2-s 5 — eeeEE——
FAST-PATH

(
|
|
|

|

150 ~. 170 !
| pa

162 !
PROCESSOR !

S 160 !
HARDWARE LOGIC !

I

FIG. 6

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 160

5/89

MEDIA ACCESS 172
CONTROLLER

ASSEMBLY 176
REGISTER

FLY BY CONTROL
| SEQUENCER SEQUENCER

MULTIPLEXOR

SRAM

DRAM CONTROL

QUEUE |
184°-™ ‘MANAGER

FIG. 7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 161

6/89

174

PACKET ASSEMBLY
176 CONTROL SINTER

SEQUENCER

MAC

SEQUENCER

192
NETWORK

SEQUENCER

178

TRANSPORT 194
SEQUENCER

SESSION 195
SEQUENCER

-
MULTIPLEXOR

FIG. 8

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 162

7/89

 FAST-PATH

270

200. 230 ~.264
\ _

PROCESSOR|

HARDWARE LOGIC 2

HARDWARE LOGIC1)

 262

242

240

TDI USERS

aT TDI FILTER DRIVER
& UPPER LAYER INTERFACE

360

355 350

353

375

I
377 INIC MINIPORT DRIVER

FIG. 11

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 163

AGP erydiye eR te ig eee eywthe Hod McSt Had UE PCR tn ECO

8/89

TRANSPORT

NETWORK

DATA LINE

INIC
304MEMORY|~~

FIG. 10

a te
2 Sha.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 164

ClOldOe0rz“
bbe{|

|—Y—__¥_yy||——_____FI-||00%1OINIOleifSINI1-06|||||I||SLee«ct“4ie]LIZaldolNaasadol|vl|:|||001|SOTALAN!SOISLAN|991||.||:_.7,060s—-"YAAAS|LNAITOp-~~*061

CAVIUM-1002

Page 165
Cavium, Inc. v. Alacritech, Inc.

REG FILE

WCS

“EXTERNAL

MEMORY

CTRL

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 166

CLOCK

oaaee—
| .

! 492_| CONTROLS FOR FIRST REGISTER SET
I .

| o 505
00 490

) 533
|
{

i : FIRST REGISTER SET

\

ce -L-—---4------- --- ---4-
498

|
t

I INSTRUCTION DECODER
AND

Vv OPERAND MULTIPLEXER
5608. 496_ aee

[

rm SONDREGISTERSETSONDREGISTERSETSET
a

l

|
STACK ~

| EXCHANGE ARITHMETIC LOGIC UNIT QUEUE
|

ft 608
600-

‘
I

ait THIRD REGISTER SETa |
l

(\ 501
ATQ TINTTNTTTRTTRTTT ay

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 167

12/89

VSTDIAaddvwddvLNOdLNOdYALSIDaadOvssesataWa

addv;Oda5+JLAARLLSNI
 NIGwWdadv

\

OS

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 168

dst‘OJ
 WeEee=——eesedid-_——_ee—_

¢gc}zes|oss}zs}7):+l96b

(°°$656S06S}68S]-L8S8o|wv
||

uddvTaloCW90)THS|TAS|dO|SOO|SddO}XLOongadv4sdWddjanfaseOVI!LSAL|NIV|ATV|ATV|ATI
—--J

aX, guy Pe Ue aeEAP BaP Bad 2
Ho, aair a Ne

wets BaP Hace

SLS86PoOTO:YVAXATdILTINWUNVadogOavoCNV©UWHGOOACNOLLOOALSNI

COS

OLSQg¢YONIYONI

YALSIOMaATLAVYO9NIG’wadav

CAVIUM-1002

Page 169
Cavium, Inc. v. Alacritech, Inc.

Eeeadl Bees
an NY FET, WHEE StatsMr PME eR CE Penp RA 2 ln,Sha

MPU ty AU eth bey a sey
tmltes Boel? Fitcee FLAY Welt HB!

14/89

|

.|
YAWsrs5aTUL|4wacoTAS|LISU‘Cao.S90|}Ino|XLO||

|

OngadWOdSODOV1A|LSALtsaq|STV|Av|ata
|}||

O19809709Z09!
||

TULOavoXn:!Vao!
||

ADNVHOXA‘IVSIOVLS

dadvotLSALfVIvW

~---+P-4--

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 170

15/89

 os]|| WL J. | JL

“-CTTCTI...F
y 1 Jt 1h 778 .

760 -

796 792 790 786

740

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 171

SOE NY TtaE ey ue gtghee gee phy ity ety es
vedhe Walt Bak ROG PR Pad, ROP GEPra.

16/89

ARBITER |

REGISTER A

REGISTER B

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 172

17/89

9099 LRU MRU
RO! RI|R2 R7|R8|RO RI3)RI4/ RIS

{9 [1] 7] . £2]12] 1] [13] 4|6

FIG. 19A

990 LRU | MRU
RO] RI! R2 R7|R8|RO R13/R14/ R15

1}, 7 {5} .|w}i0o}] 3}. -| 4] 6] 9

FIG. 19B

999 LRU | MRU
| RO|RI|R2 R7|R8|RO R13] R141 RI5

1 {745 |. +|12] 3 18]. -} 6+ 9|10

~ FIG. 19C

900 LRU MRU
RO] RI|R2 R7|R8|RO R13|R14/ R15

gs|1 |7{. .-!2|a2] 3 |e -} 6|9|10 4.

FIG. 19D

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 173

18/89

St6OC6—»

WOsSsAIOWd

SLINOYIDSINT

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 174

19/89

NETWORK

er2101 INIC 2007

 PHYSICAL

LAYER

INTERF.

 2100

 PROCESSOR

470

TX fT] RX

2231||2232

 2113 2106

SEQUENCERS [CONFIG a

2102 468
RXSEQ TXSEQ

2105 2104

2228 44

STATUS

2223 } BUFFERee 2114

STORAGE

35

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 175

QUEUE

MAC MANAGER
2213 2214 2227

2215 2 22214 2210|2209

8 [2105

!
|
I
!

QUEUE

MANAGER
|
|
\
\

 PACKET

!
I

: {
I

||BUFFER SYNC INTERFACE
| SEQUENCER 2205 | 2230
I |
I |
| \ I
| } |
I 3 / |
[oe ----e-eee LoL e- |aor 5219 2212 - 2211

PACKET

! PROCESSING|SUMMARY]] |
! SEQUENCER 2224| |
! 2204 !
/ |

| !

2228
| |
I l
I |

! PROTOCOL |
ANALYZER

| 2203
I I
i |
| I
| I
I |LeeLL Seay ee Re eeeeeee —-—-4

a] aP9996

SRAM DRAM
CONTROLLER CONTROLLER

2214

[STATUS] DATA r

2223

FIG. 22

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 176

21/89

INIC 200 HOST 20

530] DESTINATION
(FILE CACHE)

2311

2306 2307

> 42302

WH,

2315

re

TCPAP] DATA].
MULTI- 2313. 2303

PACKET i
MESSAGE 2304

9300. TCP/IP DATA x
2316

e

205
TCP/IP DATA x

FIG. 23

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 177

22/89

Header buffer descriptors Header buffers

Data buffer descriptors

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 178

id) TR SM gy gra BEE ate, tewobl, Mol? TE cP RUEPOOgO, ‘

23/89

buffer queue Command buffers bufferqueue

Command

buffer handle

TCP context

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 179

SE) 7 Bop op ip oe Lt ER et ee eb
vat RDB Ee heaBU me PR

24/89

31 0

Errorbits are sent
RCV has occured.

ERR Command has been completed
RCV
XMT

Rev drop occured due to no buffers

RMISS

ISR Ox0 Interrupt Status
IMR Ox4 Interrupt Mask
HBAR Ox8 Header Buffer Address

DBHR . OxC Data Buffer Handle

DBAR 0x10 Data Buffer Address

CBARO 0x14 Command Buffer Address XMT0

CBARI Ox18 Command Buffer Address XMTI

CBAR2 OxIC Command Buffer Address XMT2

CBAR3 0x20 Command Buffer Address XMT3

CBAR4 0x24 Command Buffer Address RCV

RBAR 0x28 Response Buffer Address

KS

HG. 28

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 180

passa+ sockaddrdl

ifnet | _ 00:60:97:DB-9B:A6
sockaddrin

---------Ld 192.100.1.2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 181

Filter Driver

Example of incoming TCP pkt Example of incommg ARP Frame

FIG. 32 FIG. 33

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 182

Bae RR EE IPeee ee aoe,fe
& i) 38%, Bek

g uva oFup5
wath BooedBete

977/89

FG.34C.

3
ee

&ora

S FIG.34B

FIG.34A

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 183

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 184

29/89

SRAM requirements for the Receive and Transmit engines:

TCB buffers 256 bytes«=* 16 4096
Header buffers 128 bytes=* 16 2048
TCB hash index 16 bytes=¥ 256 4096
Timers 128

DRAM Fifo queues 128 bytes=¥ (16 2048

~12K bytes
OO /

HG. 38

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 185

Summary of the main loop of Receive:

forever {
while there are any Receive events {

if (a new event) {
if (no new context available)

ignore the event;
}
call appropriate event handler fo service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

}
while any process contexts are runable {

Tun them by jumping to the startresume address;
if (process complete)

free the context;
}

}

Nae CY

FIG. 39

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 186

ey FPS Se ae Me UN pth gto th ML groaE. BPreER oa BaCreeBO.

31/89

- Formatof the SMB héader of an SMB frame:

NetBIOS header

SMB header

BOC pi

Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command

WCT Count (16 bit) of parameter words in VWV[]
VWV Variable number of parameter words
BCC Bytes of data following

QO a,

HG. 40

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 187

Summary of the main loop of Transmit:

forever {
while there are any Transmit events {

if (a new event) {
if (no new context available)

ignore the event;
}
call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process fo be run (get free context, hddr buffer,
TCB buffer, set the context up).

}
while any process contexts are runable {

tun them by jumping to the start/resume address;
if (process complete)

free the context;

Ko

FIG. 41

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 188

33/89

~~ Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
oe valid for 32. bit addressing mode.
“Bit 23 - 0 Memory access’

os 1 Configuration access
Bit 22 - 0 Read (to Host)

1 Write (to Host) ;
Bit 21-1 Data Valid

Bit 20 - 16 Reserved
- Bit 15- 0 Address -

Ks U

FIG, 42

Configuration Space 1 SRAM Address Offset

00 00
04 04
08 08
0C OC
10 10
3C 14

Configuration Space 2

00 00
04 18
08 08
0c IC
10 20
3C 24

All other reads to configuration space will retum 00. 7
AN eC

FIG. 4B

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 189

SES gtgave te a aegis te tetSw BD BeOe BR Peat Ba OT oe Po Baa? Bat

34/89

BitO-0 1/0 accesses are not enabled

Bit 1-1 Memory accesses are enabled
Bit2-1 Bus master is enabled

Bit 3-0 Special Cycle is not enabled
Bit 4-1 Memory Write and Invalidate is enabled
Bit 5-0 VGApalette snooping is not enabled
Bit 6-1 Parity checking is enabled
Bit7-0 Address data stepping is not enabled
Bit 8 - SERR# is enabled

Bit 9-0 Fast back to back is not enabled

FIG, 44

Bit 5 - 1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz onreset

Bit 6 - 0 User Definable Features is not enabled

Bit 7 - | Fast Back-to-Back slave transfers enabled

Bit 8 - 1 Parity Error enabled - This bit is initialized to 0
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

01 - Medium device select will be set if we are at 66 MHz

Bit 11-1 Target Abort is implemented. Initialized to 0.
Bit 12-1 Target Abort is implemented. Initialized to 0.
Bit 13-1 Master Abort is implemented. Initialized to 0.
Bit 14-1 SERR# is implemented. Initialized to 0.
Bit 15-1 Parity error is implemented. Initialized to 0.

FIG. 45

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 190

35/89

cagheeA hy aban aR gan, Bib pte Tey Aeoop ny
gettBott BaOT DE ae Btog, BR de ae Be el

Mact

XmiD

RevD

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 191

36/89

MODULE DESCR SPEED AREA

Scratch RAM, 1Kx128 sport, 437 ns nom, 06.77 mm
WCS,. 8Kx49 sport, 6.40 ns nom, 18.29 mm”
MAP, 128x7 sport, 3,50 ns nom, 00.24 mm?
ROM, 1Kx49 32col, 500 ns nom, 0045 mm?
REGs, §12x32._tport, 6.10 ns nom, 03.49 mn?
Macs, 5 mm? x 4= 03:30 mm?
PLL, 5 mm? = 00.55 mm?
MISC LOGIC, 117,260 gates / (5035 gates / mm?) = | 23.29 mn?
TOTAL CORE 5622 mm”

“1y2 2
(Core side) = 56.22 mm
Core side = 07.50 mm

Die side = core side + 1.0 mm (1/0 cells) = 08.50 mm
Die area = 85 mmx 85 mm = 1225 mm?

Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA - 272 pins

QO a,

FIG. 47

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 192

BE = it 8 f Be fzf
Sax?

= i
BE ad

37/89

(10MB/s/100Base) x 2 (full duplex) x heconnections = 80 MBs
Average frame size . = 512B
Frame rate = 80MB/s / 512B . = 156,250 frames / s

Cpu overhead / frame = (256B context read) + (64B header read) +

(128B context write) + (128B misc.) = 512B/ frame

Total bandwidth = (512B in) + (512B out) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s ~

‘Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MB/s
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MBis

PCI Bandwidth required = 80MB/s

PCI Bandwidth available @ 30 MHz, 32b, average = 46MBis

PCI Bandwidth available @ 33 MHz, 32b,average = 4SOMB/s
PCI Bandwidth available @ 60 MHz, 32b, average = 92MB/s

PCI Bandwidth available @ 66 MHz, 32b, average = JQ0MB/s

PCI Bandwidth available @ 30 MHz, 64, average = 92MB/s

PCI Bandwidth available @ 33 MHz, 64b,average = 100MB/s
PCI Bandwidth available @ 60 MHz, 64b, average = 184MB/s
PCI Bandwidth available @ 66 MHz, 64b, average = 00MBis

\ Y J

FIG. 48

Receive frame interval = 512B / 40MB/s = 128us

Instructions / frame @ 60MHz = (12.8us/frame) / (SOns/instruction) = 256
instructions/frame

Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) = 284
instructions/frame

Required instructions / frame = 250 instructions/frame

L . J

FIG, 49

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 193

Dea wah ag oe peg eenN obey eer St ety at pA
wets OB AP PO na CD22 Ma a Bel? nee

38/89

ff££ fEb-tee ffLOAD
Try i.Ly HY Aw FLAG 41 ioDEBUG

STAckPeel cs REGS REG|Add Thy AGE Ad
ST ia

ade

 aALU bLTEST|FLAG OS Lasth4

wie CCs RSLT| SEL onde BASE Ad
'i‘
. x x

ee

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 194

39/89

INSTRUCTION-WORD FORMAT

TYPE : [55:49] [48:47] [46:42] [41:33] [32:24] [23:16] [15:00]
Jec 0b0000000=0b00, AluOp, OpdASel, OpdBSel, TstSel, Literal

Jmp 0b0000000 Ob01, AluOp, OpdASel, OpdBsSel, FlgSel, Literal

Jsr 0b0000000=O0b10, AluOp, OpdASel, OpdBSel, FigSel, Literal

Rts Ob0000000=0b11,~AluOp, OpdASel, OpdBSel, Ohff, Literal

Nxt Ob0000000 =Obil, AluOp, OpdASel, OpdBSel, FlgSel, Literal

Map MapAddr OBXX, OBXXXXX, OBKXXXXXXKXX, OBKXXXXXKKX, ONXX, ONXXXX

FIG. 51

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 195

‘40/89

SEQUENCER BEHAVIOR

if (MapEn& (MapAddr != 060000000)){
Stacke = Stacke;
StackB = StackB;
StackA = StackA;

InstrAddr = 0h8000 | Pe[2:0} | (MapAddr << 3);
Pe = InstrAddr + (Execute & ~DbgMd);

Fetch = DbgMd ? DbgAddr:InstrAdadr;
DbgAddr — DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jcc){
Stacke = Stackc;
StackB = StackB;
StackA = StackA;

oped

/fre-map instr

‘conditional jump

InstrAddr = ~Tst@TstSel ? Pc:(AluDst==Pc) ? AluOut:Literal,;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (PgmCtrl == Jjmp){
Stacke = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pe = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAdadr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jsr){
Stacke = StackB;
StackB = StackA:
StackA = Pc;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pe = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (FlgSel == Rts){
InstrAddr = StackA;

StackA = StackB;
StackB = Stackce;
Stacke = ErrVec;

Pe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAdedr+ (Execute & DbgMd);}

else {
InstrAddr = Pc;

StackA = StackA;
StackB = StackB;
Stacke = Stacke;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr - DbgAddr + (Execute & DbgMad);}

FIG. 52

‘jump

//jump subroutine

/freturn subroutine

//continue

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 196

"41/89

-ALU OPERATIONS

AluOp

0b00000

0b00001

0b00010

0b00011

0b00100

0b00101

0b00110

0b00111

0b01000

0b01001

0b01010

0b01011

0b01100

0b01101

0b01110

0b01111

OPERATION

A= (A & ~(1 << BY:
C= 0; V =(B >= 32) 7 1:0;

A= (A.&Bp'C=0;V=0;

A= caver& B);C=

A= (~Literal & B);
C=0; V=0;

elG << B));C= 0; V= (B>= 32) ? 1:0;

ooC= 0; 0;

A = (Literal | B);
C=0; V=0;

A = (Literal| B);
C-0; V=0;

for G=31; i>=0; raeif B[i] continue; A=i;C=0;V=(B)? 0:1

= (ASB):ay V=0;
A= ({Literal} * B);
C=0; V=0;

A= ({-Literal} * B);
C=0; V=0;

A=B;
C=0; V=0;

A = B[31:24] * B[23:16] © B[15:08] * B[07:00];
C=0;V=0;

A= {B[23:16],B[3 1:24],B[07:00],B[15:08]};
C=0; V=0;

A= {B[15:00], B[31:16]};
C=0; V=0;

FIG. 53

//bit clear

/flogical and

/Nogical and

/Aogical and not

//bit set

/Aogical or

/logical or

Mogical or not

//priority enc

/Nogical xor

/Nogical xor

/Nogical xor not

//{move

‘hash

//swap bytes .

//swap doublets

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 197

Aluop

0b10000

0b10001

0b10010

0b10011

0610100

0b10101

0b10110

0b10111

0b11000

0b11001

0b11010

0b11011

0b11100

0b11101

0b11110

0b11111

- FUNCTION—__—_—

A=(A+B);
C=(A + B)[32]; V = 0;

A=(A+B+C);
C=(A+B+ C)B2]; V=0:

A = (Literal + B);
’ C= (Literal + B)[32]; V = 0;

A = (-Literal + B);
C = (Literal + B)[32]; V =0;

A=(A -B);
C =(A - B)[32]; V=0;

A=(A-B-~C);
C= (A -B-~C)[32]; V = 0;

A=(-A+B);
C=(-A + BY[32]; V - 0;

A=(-A+B-~C);
C=(-A+B-~C)[32}; V =0:

A=(A <<B);
C= A[31]; V = (B >= 32) 70:1;

A= (B << Literal);
C= B[31]; V = (Literal >= 32) ? 0:1:

A= (B << 1);
C= BB1]; V=0;

n=(A -B);
C=(A- B32]; V=0;

A=(A>> B);
C= A[0]; V =(B >= 32) ? 1:0;

A = (B >> Literal);
C= A[0]; V = (Literal >= 32) ? 1:0;

A=(B>> 1);
C= A[0]; V=0;

n=(B- A);
C=(B- A)[32]; V=0;

FIG. 54

/add B

/fadd B, carry

/fadd constant

//sub constant

//sub B

//sub B, borrow

//sub A

//sub A, borrow

//shift left A

//shift left B

//shift left B

//compare

/shift right A

shift right B

//shift right B

/fcompare

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 198

OpdSel SELECTED OPERANDS

Ob0000aaaaa File File@(OpdSel[4:0} | FileBase);
Allows paged access to any part ofthe register filc.

Ob0O0laaaaa«=CrpuReg File@{2'b11, Cpuld, OpdSel[4:0]}:
Allows direct access to Cpu specific registers.

Ob00IXXXXXX reserved Reserved for future expansion.

0b0100000XXK CpuStatus 0b0000000000000BHD00000000000000CC
This is a read-only register providing information about the Cpu executing
(OpdSel[1:0}) cycles after the current cycle. ''CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, | and 2 are returned.
"H"represents the current state of Ht, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

Ob0100001XX reserved Reserved for future expansion.

Ob0100010XX Pe Ox0000AAAA

Writing to this address causes the program control logic to use AluOutas the
new Pcvalue in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pe for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

0b0100011XX% DbgAddr OxDOOODAAAA
Writing to this registcr alters the contents of the debug address register
(DbgAddr)for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddrprovides the fetch address for the control-store when
DbgMdhas been selected and the Cpu is executing. DbgAddris also used
as the control-store address when performing a WrWes@DbgAddror
RdWes@DbgAdaroperation. “D” represents bit 31 of the register. It is a general
purposeflag that is used for event indication during simulation. Readingthis
register returns a value of 0x00000000.

0b01001XXXX reserved Reserved for future expansion.

0b010100000 RamAddr {0b1CCC, 0x000, 0b1, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC =AluOut[3!]? CCC : AWCC;

A read/write register. Whenreading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description
31 Always 1.
30 PrevC Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
15S Always1.
14:0 RamAddr Contents of last Sram address used.

Whenwritingthis register, if alu_out{31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluOut. Jf AluOuf[15] is set, bits 14:0 will be written to the RamAddr.If AluOut[15]
is not set, bits 14:0 will be ored with the contents of the RamBaseand written to the RamAddr

FIG. 55

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 199

OpdSel . SELECTED OPERANDs

0b010100001 AddrRegA Ox0000A AAA

AddrRegA = AluQut;

A read/write operand which loads AddrRegA usedto provide the address for read and write
operations. en AddrRegA([15] is set, the contents will be presented directly to the ram. When
AddrRegA[15] is reset, the contents will first be ored with the contents of the RamBaseregister
before presentationto the ram. Writing to this register takes priority overLiteral loads usingFigOp. Reading this register returns t i€ current value of the register.

0b010100010 AddrRegB 0x0000AAAA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and writeoperations.

en AddrRegB[15] is set, the contents will be presented directly to the ram. WhenAdd rRegB[15{is reset, the contents will first be ored with the contents of the RamBase
register before presentation to the ram. Writing to this register takes priority over Literal loads
using FlgOp. Readingthis register returns the currentvalue ofthe register.

0b010100011 AddrRegAb Ox0000AAAA
AddrRegaA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegAusedto provide the address
for read and write operations Writing to this resister takesPriority over Literal loads usingFigOp. Readingthis register returns the value 8x00000000.

0b0!0100100 Ram Base Ox0000AAAA
RamBase = AluOut;

A read/write register which providesthe base address for ram read and writc cycles. When
RamAdadr{15] isset, the contents will not be used. When RamAddr[15] is reset, the contents
will first be oredwith the contents of the RamBaseregister before presentation to the ram.
Reading this register returns the value for the current pu.

0b01010010! FileBase O0b00000000000000000000000AAAAAAAAAFileBase = AluOut;
FileAddr = OpdSel[8} ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base addressforfile read and write cycles. WhenOpdSells] is set, the contents will not be used and OpdSel will be presented irectly to theaddress lines ofthe file. When OpdSel[8]is reset, the contents will first beored with thecontents of the FileBaseregister before presentationto the file. Reading this register returns the
value for the current Cpu.

0b010100110 InstrRegL OxITNTIT

This is a read-only register whichreturns the contents of InstrReg(3 1:0]. Writing tothis register has no eftect.

0b010100111 InstrRegH OxOOTIII

This is a read-only register which returns the contents of InstrReg[55:32]. Writing to thisregister has no effect.

FIG. 56

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 200

OpdSel SELECTED OPERANDs

0b010101000 Minus] Oxfttttit

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

0b010101001 FreeTime A free-runningtimer with a resolution of 1.00 microseconds anda maximum count
of 71 minutes. This timeris cleared duringreset.

0b010101010=LiteralL Instr[15:0]
A read-only register. Writing to this register has no effect

0b010101011 LiteralH Instr[15:0]<<16;
A read-only register. Writing to this register has no effect

0b010101100 MacData - Writingto this address loads the AluOutdata into the MacData register for use
during Macoperations. The Macoperation, resulting from writing to the MacOpregister,
determinesthe definition of the MacData register contents as follows.

MacOp MacData definition
Mstop ODXXXKXXXXXXXKXXKXKXKXXKXKKXKKXXXKKXXKK

MacDatais not used for the StopM operation.
WrMcfg ,

hrstl, rsvd, rsvd, ercen, fulld, hrstl, hugen, nopre, paden, prtyl, xdlJ0,
ipgr1/[6:0],
ipgr2[6:0], ipgt[6:0].
Loads the MacCfgregister with the contents of the MacDataregister. Refer to
LSI Logic's Ethernet-/ 10 Core Technical Manualfor detailed definitions ofthese
bits.

WrMrng ObDXXXXKXXXXXKXKXKKXXXXKXKSSSSSSSSSSS

Loads seed[10:0] into the Mac's random numbergenerator.

RdPhy ObXXXXRRRRXXXXKPPPPXXXXXXKKXXXKXXKX
Reads register[R] of phy[P].

WrPhy ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD

Writes register[R] ofphy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Macat the completion of a RdPhy command.This datais invalid while MacBsyis asserted
as a result of a RdPhy command.Referto the appropriate phy technical manual for a
definition ofthe phy register contents.

FIG, 57

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 201

46/89 ©

FIG. 58A

HG. 58B

FIG, 38

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 202

OpdSel

ObO10101 101

b010101110

SELECTED OPERANDs

MacOp- A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut * description
OxXXXXX0XM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for

MacBsy to be deasserted before issuing another command or changing the
contents of MacData. |

OxXXXXX1KM WrMcfg - Writes the contents of MacData to the MacCfgregister of MadM|].
The user must wait for MacBsyto be deasscrted before issuing another command
or changing the contents of MacData.

OxXXXXX2XM WrMrng- Writes the contents ofMacDatato the seed register of Mac[M]. The
user must wait for MacBsyto be deasserted before issuing another command or

changing the contents of MacData.

OxXXXXK3KM RdPhy- Readsthe contents of reg[R] for phy|P| on the MII management bus of
Mac|M]. The contents may be read from MacData after MacBsy has been de-asserted. .

OxXXXXX4XM WrPhy- Writes the contents ofMacData[15:0] toc reg[R] of phy[P| on the MIT
management bus of Mac[M]. The user must wait for MacBsyto be deasserted
before issuing another commandor changing the contents of MacData.

OxXXXXX8XM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA [15:0] for Mac[M].
OxXXXXXXOXM WrAddrAH - Writes the contents ofMacData[11:0] to MacAddrA[47:16] for Mac[M].
OxXXXXXaXM WrAddrBL- Writes the contents of MacData{15:0] to MacAddrB[15:0] for Mac[M].
OxXXXXXbXM WrAddrBH - Writes the contents ofMacData[1 1:0] to MacAddrB[47:16] for Mac[M].

ChCmd A write-only register.

bit name description

31:11 reserved Data written to these bits is ignored.
10:8 command 0 - Stops execution of the current operation and clears the

corresponding eventflag.
] - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.

3 - Transfer data from ExtMemto Pci.

4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.

6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.

07:05 reserved Data written to these bits is ignored.
04:00 ChId Provides the channel numberfor the channel command.

FIG. 58A

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 203

0b010101110

Ob010101111

0b0101 10000

Eachbit represents the done flag for the respective dma channel. These
bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding

Indicates that a PCI initiator is attempting to read a mproc.

Indicates that a PCIinitiator has posted a write to a mproc.,

ChEvnt A read-only register.

bit name description
31:00 ChDn

ChCmdregister.

GenEvnt A read-only register.

bit name description
31 PciRdEvnt

: register.
30 PciWrEvnt

register.
29 TimeEvnt
28:00 reserved

Qctl

bit name

10:8 QSsz

7:5 QOp

A write-only register used to select and manipulate a Q.

description
31:11 reserved Data written to thesebits are ignored.

An event which occurs once every 2.00 milliseconds.
Reserved for future use.

Used only during InitQ operations to specify the size of the QBdy in Dram.
7 — Queue depth is 32K entries (128KB).
6 — Queue depth is 16K entries (64KB).

entries (32KB).
entries (16KB).

5 — Queue depth is 8K
4— Queue depth is 4K
3 — Queue depth is 2K
2 ~— Queue depth is [K
1 — Queuedepth is 512
0 ~ Queue depth is 256
Specifies the queuc operation to perform.

entries (8KB).
entries (4KB).
entries (2KB).
entries (1 KB).

7—DbIQ Disables all queues.
6—EnQ_Enablesall queues.
5~—RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr.
4—WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3—RdQ__Returns a queueentry in register QData..
2—rsvd Reserved. Not to be used.

1—InitQ_Set the queuestatus to empty andinitializes QSz.
0—SelQ Selects the Qld to be utilized during writes to QData.

FIG. 58B

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 204

4:0

0b010110001

*_ 0b010110010

0b010110011

0b010110100

0b010110101

0b010111000

0b010111001

0b010111010

ObO10111011

O0b0101111XX

Ob0110XXXXX

ObO1LIOXXXX

Qld Specifies the queue on which to perform all operations except DbIQ or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data popped off during
the previous RdQ operation.

reserved Reserved for future expansion.

XevCtrl A write-only register used to enable and disable Mac transmit and receive
sub-channels.

bit name description

31:09 reserved Data written to these bits are ignored.
8 enable Whenset, indicates to the Mactransmit or reccive sequencerthat the subchannel

containsa transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.
04 RevCh Selects a Mac receive subchannel whenset. Selects a Mac transmit subchannel

when cleared.

03 reserved Data written to this bit are ignored.
02 SubCh Selects subchannel B when set or A whenreset.
01:00 Macld Provides the Mac numberfor the subchannel enable bit.

Mru

QImRdy

QOoutRdy

QEmpty

QFull

reserved

Constants

reserved

0x0000000A

A read/write operand indicating which of the 16 entries is least recently used.
When Reading Thisregister the least recently used entry is returned, after which
it is automatically made the mostrecently used entry. This register should only be
read in conjunction with a 'Move'operation of the ALU,else the results are
unpredictable. Writing to this register forces the addressed entry to become the
least recently used entry.

0x0000000A

A write only operand forcing the addressed entry to become the most recently
used entry.

A read-only register comprising QHdnot full flags for each ofthe 32 queues.

A read-onlyregister comprising QT! not empty flags for cach of the 32 queues.

A read-only register comprising QEmpty flags for each of the 32 queues.

A read-only register comprising QFull flags for each of the 32 queues.

Reserved for future expansion.

{0b000, OpdSel[4:0]}

Reserved for future expansion.

FIG. 58C

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 205

 aad

50/89

OpdSel SELECTED OPERANDs

0b01111XXXX Sram OPERATIONS

OpdSelf3 - PostAddrOp0 nop
1 RamAddr= RamAddr + (OpdSel[1:0]);

OpdSel[2]_ transpose Ctrl0 , don't transpose

1 ’ transpose bytes

- OpdSelf1:0 RamOpdSz
0 quadlet
1 triplet
2 doublet
3 byte

RAM READ ATTRIBUTES SOURCE OPERAND

endian trans- byte Sram
mode _pose_ offs data sz=Q sz=T sz=D sz=B

little 0 0 abed abcd =Obcd O00cd 000d
little 0 1 abcX trap Oabc 00be 000c
little 0 2 abXX trap trap 00ab=:000b
little 0 3 aXXX trap trap trap 000a
little 1 0 abcd dcba Odcb 00dce 000d
little 1 1 abcX trap Ocha O00cb 000c
little 1 2 abXX trap trap O00ba 000b
little 1 3 aXXX trap trap trap 000a
BIG 0 0 abcd abcd Oabce O0ab 000a
BIG 0 1 Xbed trap Obcd O00bc 000b
BIG 0 2 XXcd_— trap trap 00cd=000c
BIG 0 3 XXXd~~trap trap trap 000d
BIG 1 0 abed dcba Ocba 00ba 000a
BIG 1 I Xbed trap Odcb O00cb 000b
BIG 1 2 XXed=trap trap 00de 000c
BIG 1 3 XXXd_~ trap trap trap 000d

RAM WRITE ATTRIBUTES SOURCE OPERAND

endian trans- Opd Alu
mode pose_ size out OF=0 OF=1 OF=2 OFs3

little 0 Q abed abcd trap trap trap

little 0 T Xbed~~-bed bed- trap trap
little 0 D XXed_=--cd -cd- cd-- trap
little 0 B XXXd --d --d- -d-- d---
little 1 Q abcd dcba trap trap trap
little 1 T Xbced=-dcb dcb- trap trap
little 1 D XXced-— --de ~de- dc-- trap
little 1 B XXXd=---d --d- -d-- d---
big 0 Q abcd abcd trap trap trap
big 0 T Xbed—bed- ~bed trap trap
big 0 D XXed_—cd-- -cd- ~-ed trap
big 0 B XXXd_ d--- -d-- --d- ---d
big 1 Q abcd dcba trap trap trap
big 1 T Xbed=deb- -dcb trap trap
big 1 D XXed=de-- -de- --de trap
big 1 B XXXd_= d--- -d-- --d- ---d

Oblaaaaaaaa File File@OpdSel[8:0];
Allowsdirect, non-paged,access to the top half ofthe registerfilc.

FIG. 59

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 206

‘SELECTED TEST

‘TstSel__

ObXOOXXXXKX Tst = TstSel[7] * AluOut[TstSel[4:0]] //Alu bit

0bX0100000 Tst = TstSel[7] * C Heatry
0bX0100001 Tst = TstSel[7] * V //error

0bX0100010 Tst = TstSel[7] “AZ ‘zero

0bX0100011 Tst = TstSel[7] * (Z| ~C) /Hess or equal

0bX0100100 Tst = TstSel[7] * PrevC /{previous carry

0bX0100101 Tst = TstSel[7] * PrevV //previous error

0bX0100110 Tst = TstSel[7] * PrevZ, //previous zero

0bX0100111 Tst = TstSel[7] “ (PrevZ & Z) //64b zero

0bX0101000 Tst = TstSel(7] * QOpDn /fqueue op okay

0bX0101001 Tst = reserved

ObX010101X Tst = reserved

ObX01011XX Tst = reserved

ObX0110XXX Tst = TstSel[7] “ Lock[TstSel[2:0]] //tests the current value of
Lock(TstSel[2:0]) = 1; //the Lock then setit.

ObX011 1 XXX Tst = TstSel[7] * Lock[TstSel[2:0]] /{tests the value of Lock.

ObX01XXXXKX Tst = reserved

ObDKIXXXXXKX Tst = reserved

FIG. 60

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 207

FigSel
0b00000000

0b00000001

0b00000010

0b0000001 1

0b00000100

0b00000101

Ob000001 1X

ObOOODIXXX

Ob00010XX*K

0b0001 1XXX

0b0010XXXX

Ob0011XKXX

0b0 1000000

0b01000001

0b01000010

0601000011

0b0 1000100

0b010001XX

0b010010KX

0b010011XX

0b010100KX

ObO010101XX

ObO101 XXX
ObO1IXXKXXK
ObDIXXXKXXX

52/89

FLAG OPERATION

Nooperation.

SelfRst

SelBigEnd

SelLitEnd

DbiIMap

EnbMap
reserved

reserved

ClrLck

reserved

AddrOp

FigSelf3 2

WN=Oy

FigSelf]

WheoO)

Forces a self reset for the entire chip excluding the PCI configurationregisters

Selects big-endian modefor ram accesses for the current Cpu.

Selects little-endian mode for ram accesses for the current Cpu.

Disable instruction re-mapping for the current Cpu.

Enableinstruction re-mapping for the current Cpu.

Lock[FigSel[2:0]] = 0;
Clears the semaphoreregister bit for the current Cpu only.

AddrSelect
RamAddr= Literal[15] ? Literal (Literal | RamBase)};
RamAddr = addeneeBH ? AddrRegA ° (AddrRegA | RamBase),RamAddr= AddrRegB/15 ? AddrRegB (AddrRcgB | RamBase);if (OpdA == RamAddr)
RamAddr — AluOut[15] > AluOut . (AluOut | RamBase);else if (OpdA = ram)

RamAddr = AddrRegB[15] ? AddrRegB : (AddrRcgB | RamBase);else

RamAddr * AddrRegA[15] ° AddrRegA . (AddrRegA | RamBase);
addr reg loadnop
AddrRega= Literal,
AddrRegB = Literal,
AddrRegA=Literal; AddrRegB=Literal,

note: When specifying the sameregister for both the loud andselectfields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.
reserved

WrWesL@Dbg

WrWcsH@Dbg

RdWcsL@Dbg

RdWesH@Dbg
reserved

Step

PcMd

DbgMd

Hit

Run

reserved
reserved
reserved

Causesthe bits [31:0] of the control-store at address DbgAddrto bewritten with the current AluOut data.

Causes the bits [63:32] of the control-store at address DbgAddrto bc
written with the current AluOut data then increments DbgAddr.

Causcsthebits [3 1:0] of the control-store at address DbgAddrto bemovedto file address Ox1ff.

Causesthe bits [63:32] of the control-store at address DbgAddrto b
movedto file address 0x1 ff then increments DbgAddr.

ie

Allows the Cpu (FlgSel[1:0}) cycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. An offset of 0

Selects the Pc as the address source for the control-store during

1s not allowed.

instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.

Selects the DbgAddr addressregister as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle.

Halts the Cpu (FlgSel[1:0]) cycles after the current cycle.

Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.

FIG. 61

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 208

53/89

 f

eRELEpad|
zgg

raE

2teeo.

i=ff

ut é

FIG.62

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 209

54/89

FIG.63
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 210

CR RE ET ey Maa EO AR See py Bp tp tat byte BE Soe at Be ha Re gngene

Reqd = ++ RegN Addr! Addr!

Data 0 "Data N

133MHz

a

—{
133MHz

CLK Register

7Addr DIN
133MHz WE .

Sram

CLK Register DOut

Partial Align

133MHz

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 211

56/89

BPCME)OYNUL(AYNOMICVIC’NLSCNOFT.BTNURQANIVCgOlyeedYMCPoyALAAYO.VAYmedmM)PoYOVAY|FRCVACSTAUTHYOGv;tecnd1]20OaALUNNCPAYihtANONPqJNeNIYCSINOTTY|CLS|NOMYPYVNCPYATEYfyKI¥}BYVACEIXTdevBIAdnd)YOUZSPYCNYOYHYYNCS]YONaSBYCRYEYTyYOKAZISPYGAYHYCOATESSURREYINCPur|iCLOTTASSURREY15]|masWCPeQLINVACALOATASsumeregndypoz}EONVACSIOLIN|CALOATASsuregndya
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 212

XwiReq
XwrAddr

XwrState

XwiCol

XwrData

DefgReq

DefgAddr

DefgState

DefgCtl

DefgData

EectrlReq
EectrlAddr

EectriState

EectrICud

EectrlData

57/89

TO requestors

TO Xmem

TO Xmem

TO Xmen

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 213

oe’ YUE ekee Toaes By doe hy Be ge sy
sole Tae? Ble WE BP MP ot? I go AP OTP Bt BoP Be,

58/89

TO Requester
D2p
Ds

Did
_a

XAddr TO Xetrl
AS

EN
SramGnt

XData > SramData
Pso

XmiC

eg5 Te
XCtl 4 TO Xctl

SEQ TO Xctl
E.

XctlDin Ack To requester

XcetlGnt XetrReq
SramReq

SramGnt

SramAck

SramAckSz SramGnt

> SramParams

FIG. 67

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 214

59/89

 89OlXXX$$$nameKEXAXKAKAXKEXEXKENzm)pa.
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 215

 TO Requester
P2p
§2s

Dd TO Xctl

Qdq .
Psi XData > TO Xetl

RevB)
RevC XCtl

D2dChkSum a TO Dad

gE TO Xetrl

XctrlGnt

Ack TO requester

> XctrlReq
SramGnt SramReq

SramAck

SramAckSz SramGnt

SramRdData > SramParams

FIG. 69

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 216

61/89

 0LDiLEXEXEXXOXaXXoX—eppewXOXBXEXHKEXEXENXENepa
CAVIUM-1002

Page 217
Cavium, Inc. v. Alacritech, Inc.

. 62/89

FIG.7]

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 218

 8 oFty Bey gpey eeav HAR ay Ba CP Bale 3M

HG,72

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 219

64/89

PTR TO Pmo

- ™ - —
i - 5 ”

WRC 4 TO Xrd
i XFR D

XidAck - OPTIONS
Xrd Status SEQ

State

Pmo Ack FifoCnt

Pmo Status Pmo Req
XrdReq

Stam Ack x SramReq
From Sram

Sram Rd Data > SramParams

FIG. 73

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 220

 Ei Ley AT,a
Bao Sar he ah of up

ey

65/89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 221

“XwaChksun

XwrAck

Xwrstatus

PmiAck

PmiStatus

SramAck

SramRdData

EN

>
FIG. 75

TO Xwr

> TO Pmi

TO Pm

TO Pmi

TO Xwr

FifoCat

Pmi Req
XwrReq
SramReq

From Sram

SramParams

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 222

67/89

CAVIUM-1002

omNEn-Oo$22a
iOo&<x>3££a>wooO

68/89 |

TO Pmo

> TO Pmo

TO Pmo

PmoAck PmoReq
PmoStatus

SramReq

SramAck

From Sram

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 224

HG,78

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 225

oe MyseeTwb esae ep ee
ole Med? Bc Gad Bu nAko MaOE BaatheeBhan

70/89

SramAck

SramRdData

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 226

71/89

o8&no=N-OoS5D22a>5qsOg>S£Ea>woOo

SGpChe 8 Sob waeaapee Fig pty toa ee me .
(RS Balt flat Ha Be ER Po Be ge BB Bn

72/89

XrdAck

XrdStatus

SramAck

SramRdData

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 228

FIG,82
CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 229

' 74/89

XwrAck

XwrReq

XwrStatus

SramReq
SramAck

L From Sram
SramRdData

SramParams

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 230

75/89

CAVIUM-1002

Page 231
Cavium, Inc. v. Alacritech, Inc.

76/89

SdDdWATINGATAALLONINAS

CAVIUM-1002

Page 232
Cavium, Inc. v. Alacritech, Inc.

77/89

Wa)LNAgMAILONINAAd

CAVIUM-1002

Page 233
Cavium, Inc. v. Alacritech, Inc.

MacDataln

MacCtrlln

MacStatusIN

viesS|?5s phEU sl
as

wa
BS

,tt|ppAUMacAddrA

| FIFO RD
a ae TO Xwr

SramAck Stale
SramRdData &Saiel UUUT:SPORTFREEQID

- RCVQD
Cxl_QID

PauseDetEn

ptity 2

PAYLO
:=CT
SaE

aHH

XwrReq
PauseDet

QmigkReq
SramReq

From Sram

SramParams\VHIG. 87

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 234

booAmy toy sly aan, fey
eS ete OEit:

ry
ia3 Be oa fF's & Rha Ee +

79/89

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 235

RECEIVE BUFFER DESCRIPTOR

description

A copyofthe bits in the FreeBufDser.
Represents the last address +1 to which frame data was transferred. The address
wraps aroundat the boundary dictated by the S bits. This can be used to determinethe size of the frame received.

bit name
31:30 reserved
29:28 size
27:00 address

TIME STAMP

bit name
31:00 RevTime

CHECKSUM

bit name

31:16=[pChksum

15:00=‘TepChksum

RESERVED

FRAMEData

80/89

FIG. 89

OFFSET0x0008:0x000B

description

‘The contents of FreeCikat the completion of the frame receive Operation.

FIG. 90

OFFSET 0x000C:0x000F

description

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram wasnot detected, the checksum providesa total for
the entire data portion ofthe received frame. The dataareais defined as those bytes
receivedafter the typefield of an ethernet frame, the LLC header of an 802.3 frame
or the SNAPheaderof an 802.3-SNAPframe.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

FIG. 91

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 236

ooBpOS Ee

solic Nudt Teac Bat? Fi

81/89 :,

RECEIVE BUFFER FORMAT

FRAMEStatus A OFFSET 0x0000:0x0003

bit name description
31 attention , Indicates one or moreof the followmg: CompositeErr, !IpDn, [MacADet &

!MackDet, IpMest, IpBest, !ethernet & !802.3Snap, !Ip4, 'Tep .
30 CompositeErr Set when anyofthe errorbits of ErrStatus are set or if frame processing stops

while receiving a Tcp or Udp header.
29 CtrlFrame A control frame wasreceived at our unicast or special MltCst address.
28 IpDa Frame processing Hlted due to exhaustion of the IP4 length counter.
27 802.3Dn ' Frameprocessing Hlted due to exhaustion of the 802.3 length counter.
26 MacADet Frame's destination address matched the contents of MacAddrA.

. 25 MacBDet Frame's destination address matched the contents of MacAddrB.
24 MacMest The Macdetected a MitCst address.
23 MacBest The Mac detected a BrdCst address.
22 IpMcst The frame processor detected an IP MltCst address.
21 IpBest The frame processor detected an IP BrdCst address.
20 Frag The frame processordetected a Frag IP datagram.
19 IpOffst The frame processor detected a non-zero IP datagramoffset.
18 IpFlgs The frame processor detected flags within the IP datagram.
17 IpOpts The frameprocessor detected a header length greater than 20 for the IP datagram.
16 TepFlgs The frame processor detected an abnormal header flag for the TCP segment.
1S TcepOpts The frame processor detected a header length greater than 20 for the TCP segment.
14 TepUrg The frame processor detected a non-zero urgent pointer for the TCP segment.
13 CarrierEvat Refer to £110 Technical Manual.
12 LongEvnt Refer to E110 Technical Manual.
11 FrameLost Set whenan incomingframecould not be processed asa result ofan outstanding frame completion

event not yet serviced by the utility processor.10 reserved

10 NoAck The frame processor detected a
09:08 FrameTyp 00 - Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
07:06 NwkTyp 00- Unknown. 01- Ip4. 10 - Ip6é 1] - ip other.
05:04 TrnsptTyp 00 - Unknown. 01- reserved. 10 - Tcp 11 - Udp
03 NetBios A NetBios frame wasdetected.
02 reserved
01:00 channel The Mac on which this frame wasreceived.

FRAMEStatus B_ OFFSET 0x0004:0x0007
bit name description

31 802.3Shrt End of frame was encountered before the 802.3 length count was exhausted.
30 BufOvr The frame length exceded the buffer space available.
29 BadPkt Refer to E110 Technical Manual.
28 InvidPrmbi Refer to £110 Technical Manual.
27 CrcErr Refer to £110 Technical Manual.
26 DrbINbbl Refer to E710 Technical Manual.
25 CodeErr Refer to £110 Technical Manual.
24 IpHdrShrt The IP4 headerlength ficld contained a value less than 0x5.
23 IpIncmplt The frame terminated before the IP length counter was exhausted.
22 ~ IpSumErr The IP header checksum wasnotOxffffat the completion of the IP headerread.
21 TepSumErr The session checksum wasnotOxffff at the terminationof session processing.
20 TepHdrshrt The TCP header length field contained a value less than 0x5.
19:16 PressCd Thestate of the frame processor atthe time the frame processing terminated.

O0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Processing IP header.
0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header(IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.0b1001 Reserved.
Ob101x Reserved.
Obl1ixx Reserved.

15:08 MacHsh The Mac destination-address hash. Refer to £//0 Technical Manual.
07:00 CtxHsh The 8-bit context-hash generated by exclusive-oring all bytes of the IP source

address, IP destination-address, transport sourceport and the transport destination port.

FIG. 92

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 237

82/89

7
TO QmngR

| COMMAND |]MacData IN BUFFER~ | DESCR - From Sram
MacCtlIN SraWR TO Stam| | From Sram
va Sise

| | From Xwr
aee

ot ae
MacAddrB mR A TO Xwrere

P| novo ns »
SramAck 7 XmSEQ ~
SramRdData ANYZER »aa POINTER ~P

can ae
CelQD - TRANORTPwm Hc

PAYLOAD
CHECKSUM

PauseCir XmiData
XwiReq

PauseDet PauseD)

CpuPauseReq QmgRReq
SramReq

From Sram

- FIG. 93 [> Soke

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 238

ye ete Mp ok ee Be ye te 20m BER My TE Fo Pe
eathe RelBelvo BaPPOBo

83/89

From PROCESSOR

From RCVSEQ

FROM PROCESSOR

TO PROCESSOR

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 239

- TRANSMIT BUFFER DESCRIPTOR

bit name description

31 ChksumEn Whenset, XmtSeq will insert acalculated checksum. When reset, XmtSeq will
not alter the outgoing data stream.30 reserved :

29:28 size Represents the size of the buffer by indicating at what boundarythe buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer:

S=0 256B boundary. A[7:0] ignored.
-] 2KB boundary. A[10:0] ignored.

2 4KB boundary. A[11:0] ignored.
3 32KB boundary. A[14:0] ignored.

27:00 EndAddr The address ofthe last byte to transmit plus one.

FIG. 95

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name description

31:00 Primer A value to be added during checksum accumulation. For IPV4,this should include
the psuedo-header values, protocol and Tcp-length.

RESERVED OFFSET0x0004:0x0005

FRAMEData OFFSET 0x0006:END OF BUFFER

FIG. 96

TRANSMITStatus VECTOR

bit name description
31 LnkErr Indicates that a link status error occured before or during transmit.30:15 reserved
14 ExcessDeferral Refer to £//0 Technical Manual.
13 LateAbort Refer to £710 Technical Manual.
12 ExcessColl Refer to E//0 Technical Manual,
11 UnderRun Refer to E/10 Technical Manual.
10 ExcessLgth Refer to £/10 Technical Manual.
09 Okay Refer to £710 Technical Manual.
08 deferred Refer to E/10 Technical Manual,
07 BrdCst Refer to E/ 10 Technical Manual.
06 MitCst Refer to E710 Technical Manual.
05 CreErr Refer to E//0 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E//0 Technical Manual.

FIG, 97

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 240

85/89

Fe]boyboyAQAadaMaWM1ndNlTyAdapyboyWegAcOd=RO0000WEGweg
86DIXme

boy=boy=boy)boyboyAbasdasbes)ogy0AMwxpedbq
ZHNEE!ZHWEEIZHNEET

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 241

86/89 «©

 Pepyndsu)yoCNYPann)ZN99‘om.dnd);yIM|+JO}IAAwe)|wey)But)onJyRysadomme 11qyfu|dq10}boys\dgndsoyboyuraging)fond)IO}YoyeyBU)|™nyoySapam40)eySugae=“omSuund)40}mePusemHD)amR)+JO}rep):||fa
anaM|Fep)uynid)Jo}eyepe)mM|

CAVIUM-1002

Page 242
Cavium, Inc. v. Alacritech, Inc.

. DMA OPERATIONS

dmaseq # name
0 none

1 D2dSeq
2 D2sSeq
3 D2pSeq
4 S2dSeq
5 S2pSeq
6 P2dSeq
7 P2sSeq

bit name
31:1 reserved
10:8 ChCmd

07:05 reserved
04:00 ChId

bit hame
127:96 PciAddrH
95:64 PciAddrL
59:32 MemAddr
31 PciEndian
30 WideDbi
22 DstFlash
15:00 XfrSz

87/89

description

This is a no operation address.
Movesdata from ExtMem to ExtMem.
Moves data from ExtMem bus to sram.
Movesdata from ExtMemto Pci bus.
Movesdata from sram to ExtMem.
Movesdata from sram to Pci bus.
Moves data from Pci bus to ExtMem.
Movesdata from Pci bus to sram.

FIG. 100

description
Data written to these bits is ignored.
0 - Stops executionof the current operation and clears the corresponding eventflag.1 - Transfer data from ExtMem to ExtMem.
2 ~ Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data fromsram to Pci bus.
6 - Transfer data from Pci bus to ExtMem. ‘
7 - Transfer data from Pci bus to Sram.
Data written to these bits is ignored.
Provides the channel number for the channel command.

FIG. 101

description "
Bits [63:32] of the Pci address.
Bits [31:00] of the Pci address.
Bits [27:00] of the ExtMemaddressorbits [15:00] of the Sram address.
Whenset, selects big endian mode for Pcitransfers.
Whenset, disables Pci 64-bit mode.
Selects Flash for the external memory destination of P2d.
Bits [15:00] ofthe requested dma size expressed in bytes.

FIG. 102

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 243

bit name
{23:96 MemAddr
95:64 PciAddrH
63:32 PciAddrL
30 SreFlash
23 PeiEndian
22 WideDblI
15:00 XfrSz

bit name
127:124 reserved
123:96 SreAddr
95:60 reserved
59:32 DstAddr
30 FlashSel
22 FlashSel
15:00=XfrSz

bit=name
127:64 reserved
63:32 ChkSum

31:24 reserved
23:20 SrcStatus
19:16 DstStatus
15:00 XfrSz

bit name
31:60 ChDn

88/89

description

Bits [27:00] of the ExtMem address or bits [15-00] of the Sram address.
Bits [63:32] of the Pci address.
Bits [31:00] of the Pci address.
Selects Flash for the external memory source of D2p.
Whenset, selects big endian mode for Pci transfers.
Whenset, disables Pci 64-bit mode.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 103

description
Reserved for future use.
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Reserved for future use.
Bits [27:00] of the ExtMem addressor bits [15:00] of the Sram address.
Selects Flash for the external memory source of D2d or D2s.
Selects Flash for the external memory destination of S2p or D2d.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 104

description
Not used.

Represents the t's compliment sum ofall halfwords transferred during a P2d or D2d
operation only.Reserved for future use.
TBD.
TBD.

Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the
dmaoperation was successful

FIG. 105

description

Eachbit represents the done flag for the respective dma channel. These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmdregister ChCmdOpfield.

FIG. 106

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 244

Sesad Bae

89/89

LOIDIInd)OLASnd jO|tCTCSd”|7pbey[gboyQbey|qboy|WMWAa|WND1)|ONYAMd|AHd

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 245

Attorney Docket No.: ALA-006C

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below namedinvenior, I hereby declarethat:

I believe I am the original, first and soleMy residence, post-officeaddress, and citizenship are as stated below next to my name.
ural names are listed below) of the subjectinventor (if only one name is listed below), or an original, first and joint inventor (if pl

matter which 1s claimed and for which a patentis sought by wayofthe application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) x is attached hereto.

and 1s amended by the Preliminary Amendmentattached hereto.
was filed on , as Application Serial No.
and was amended on (if applicable). -

identified specification, including the claims, as amended1 hereby state that I have reviewed and understood the contents of the above-

nformation which is material to patentability as defined inby any amendmentreferred to above. I acknowledgethe duty to discloseall i
37 CFR 1.56.

Forcign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at lcast one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
intemational application(s) designating at least one country other than the United States
matter having a filing date before that of the application(s) on which priority is claimed:

of America filed by me on the same subject

Provisional Application ;
I hereby claim the benefit under Title 35, United States Code Section 119
below: (¢) of any United States provisional application(s) listed

U.S. Priority Claim /
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCTinternational filing date of this application:

Declaration and Power of Attorney

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 246

x Byothe Bast B,

Powerof Attorney

As a named inventor,I hereby appointthe following attorney(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and ‘Trademark Office connected therewith.

Mark A.Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declare that all statements made herein of my own knowledgeare tie and that all statements made on information and belief
are belicved to be true; and further that these statements were made with the knowledge that willful false statements and the like so’
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patentissued thereof.

Full Name of Inventor: Laurence B. Boucher Citizenship: United States of America

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

Post Office Address: Same as above

Inventor’s Signature / , Date :

Declaration and Power of Attorney 2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 247

Full Nameof Inventor:

Residence:

Post Office Address:

see

Stephen E. J. Blightman

3733 Arlen Court
San Jose, CA 95132.

Same as above

Inventor’s Signature

t

Full Nameof Inventor:

Residence:

Post. Office Address:

Peter K. Craft

156 Henry Street
San Francisco, CA 94114

Same as above

Inventor’s Signature

Full Nameof Inventor:

Residence:

Post Office Address:

Pay
Inventor’s Signature

David A. Higgen

17880 Los Alamos Drive

Saratoga, CA 95070 -

Same as above

fy Pye

Declaration and Power of Attomey

Date

 LR oy Dal
egy

Attorney Docket No.: ALA-Q06C

Citizenship: United Kingdom

Citizenship: United States of America

 Date

Date

Citizenship: United Kingdom

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 248

Full Nameof Inventor:

Residence:

Post Office Address:

Clive M. Philbrick

1170 Roycott Way
San Jose, CA 95125

Same as above

Inventor’s Signature

Full Nameof Inventor:

Residence:

Post Office Address:

Daryl! D. Starr

446 Folsom Court

Milpitas, CA 95035

Same as above _

Date

Inventor’s Signature Date

Declaration and Power of Attorney

okBaeSe
PLP Meee

Citizenship: Australia

Citizenship: United States of America

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 249

Soom.
(ae

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

Myresidence, post-office address, and citizenship are as stated below next to my name. I believe I am the original, first and sole
inventor Gf only one nameis listed below), or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for whichapatentis sought by way of the application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) x is attached hereto.

and is amended by the Preliminary Amendmentattached hereto.
wasfiled on _, as Application Serial No.
and was amended on (if applicable).

I hereby state that | have reviewed and understood the contents of the above-identified specification, including the claims, as amended
by any amendmentreferred to above. I acknowledgethe duty to disclose all information which is material to patentability as defined in37 CFR 1.56.

Foreign Application(s) and/or Claimof Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT

° international application(s) designating at least one country other than the United States of America filed by me on the same subject
matter having a filing date before that of the application(s) on which priority is claimed:

Provisional Application .

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listedbelow:

NN

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCTinternational filing date of this application:

Declaration and Power of Attorney

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 250

a Paes
oe Bs Td OE

Powerof Attorney
As a namedinventor, I hereby appornt the following attorney(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith.

Mark A.Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

T hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patent issued thereof.

Full Name of Inventor: Laurence B. Boucher Citizenship: United States of Amenca

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

Post Office Address: Same as above

221 loz

Date fiventor’s Signature

Declaration and Power of Attorney 2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 251

” ¥ 3

Nee

Full Nameof Inventor: Stephen E. J. Blightman

Residence: 3733 Arlen Court
San Jose, CA 95132

Same as above

L2—
Full Name of Inventor: Peter K. Craft

Residence: 156 Henry Street

San Francisco, CA 94114

Post Office Address:

Inventor’s Signature

Full Name of Inventor: David A. Higgen

Residence: 17880 Los Alamos Drive

, Saratoga, CA 95070

Post Office Address: Same as above

Inventor’s Signature

Declaration and Power of Attorney

ba # =F(og f, FF Reeaser

Attorney Docket No.: ALA-006C

Citizenship: United Kingdom

Citizenship: United States of America

Date

Citizenship: United Kingdom

Date

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 252

seta peay

\ ‘ ” Attorney Docket No.: ALA-006C

Full Nameof Inventor: Clive M. Philbrick Citizenship: Australia

Residence: 1170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

linphWO-£. a[:26Joa

Inventor’s Signature Date

Full Nameof Inventor: Daryl D. Starr Citizenship: United States of America

Residence: 446 Folsom Court

_ Milpitas, CA 95035

Post Office Addptss:

} DALA \. 225[oz 7Inventor’s Siomaibre Datc

~

Declaration and Power of Attorney

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 253

° ‘ 4« ts t‘ -s

ry | ¢
«

“, -

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

10/03/2002 DTESSEM 00000026 10260878

1 FCs101 740.00 OP
02 FC: OP

PTO-1556

(5/87)

*U.S. GovernmentPrinting Office: 2002 — 489-267/69033 aagit

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 254

PATENT APPLICATION FEE DETERMINATION RECORD

Effective October 1, 2001

CLAIMS AS FILED - PART|

TOTAL CLAIMS é—

ranaar
TOTAL CHARGEABLE CLAIMS|>(/minus20|

MULTIPLE DEPENDENT CLAIM PRESENT CJ

SMALL ENTITY OTHER THAN

TYPE CW OR SMALL ENTITY

* If the difference in column 1 is less than zero, enter “0” in column 2

CLAIMS AS AMENDED - PARTIl OTHER THAN
SMALL ENTITY OR SMALL ENTITY

REMAINING NUMBER
AFTER PREVIOUSLY

AMENDMENT |:

<
b=
=z
W
a
a
=
Ww
=
gf

TOTAL
OR ADDIT. FEE

HIGHEST
REMAINING NUMBER

AFTER PREVIOUSLY

|_ AMENDMENT | PAID FORAMENDMENTB
HIGHEST

REMAINING NUMBER
AFTER PREVIOUSLY

AMENDMENT PAID FORAMENDMENTC
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

* [If the entry in column 1 is less than the entry in column 2, write “0” in column 3.
** If the “Highest Number Previously Paid For” IN THIS SPACEis less than 20, enter “20.”
‘If the “Highest Number Previously Paid For” IN THIS SPACEis less than 3, enter °3."

The “Highest NumberPreviously Paid For” (Total or Independent)is the highest number found in the appropriate box in column 1.

FORM PTO-875 (Rev. 8/01) Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCEyrus GPO.2001 482-124 459197

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 255

 onAeTTT

é

»5Ssto)<1woelole4r~)epee)elewelteSS518oSSIFSg.
=1b3

NT at comMaeacc

FILING DATESERIAL NO.

APPLICANTI(S

CLAIMS
TOTAL

“MAY BE USED FOR ANNITINNG© crainicne sweynucure U.S. DEPARTME

=<&°or

arer]a

TOTAL

FEE CALCULATION SHEET
(FOR USE WITH FORM PTO-875)

Pyéa)olcal=wlLo

$

MULTIPLE DEPENDENT CLAIM

PTO-1360 (3-78)

haeeBata ”iwe

 CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 256

ARTIFACT SHEET

Enter artitact number below. Artifact numberis application number +
artifacttype code(seelist below) + sequentialletter (A, B, C ...). Thefirst
artifact folder for an‘artifact type receivesthe letter A, the second B,etc..
Examples: IEEee59123456ZA, 59123456ZB
Indicate quantity of a single type of artifact received butnot scanned. Create
individualartifact folder/box andartifact numberfor each Artifact Type.

PhOOOO
[|

iT CD(s) containing: cH
computer program listing
Doc Code: Computer Artifact Type Code: P
pages of specification

and/or sequencelisting[«|
and/ortable
Doc Code: Artifact Artifact Type Code: Scontent unspecified or combined ei
Doc Code:Artifact Artifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
Doc Code:Artifact. Artifact Type Code: C

Microfilm(s)
Doc Code: Artifact Artifact Type Code: F

Video tape(s) _
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact - Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents
marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02, etc.

Doc Code:Artifact Artifact Type Code X

’ Other, description:
Doc Code Artifact Artifact Type Code: Z

‘March8, 2004

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 257

DIS1g

Z
Sp

7-23-02

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

RECEIVED
July 11, 2003

JUL 17 2003
Commissioner for Patents TechP.O. Box 1450 nology Center 2100
Alexandria, VA 22313-1450

Information Disclosure Statement per 37 C.F.R. §1.98

Sir: ;

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring one hundred and

forty-six documentslisted on the enclosed fourteen-page form PTO-1449 to the attention

of the Examinerin the above-identified application.

Citation of these documents shall not be construed as an admission that the

documents are prior art with respectto the instant invention, a representation that a search

has been made, or an admissionthat the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b). Copies of the documents

listed on the enclosed fourteen-page form PTO-1449 are not submitted because they were

submitted in an earlier application (09/801,488,) which is relied uponfor anearlierfiling

date under 35 U.S.C. §120.

Respectfully submitted,

CERTIFICATE OF MAILING

[hereby certify that this correspondenceis being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissionerfor Patents, P.O. Box 1450, 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on July 11, 2003. Suite 245

Pleasanton, CA 94566Date: 7-47-03 $e Tel: (925) 484-9295
Mark Lauer Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 258

Attorney Docket No.: ALA-006EpeLAY \

. U.S. Patent Documents

mar|[Rcame™[one[vane [cas iare

re[asenias[asiare|Davsetat [a6 [m0
[TreFsassnse[tones[inet |_| 0RECEIVE
fe[snan[osm[wate fs

93 ology Garter 21

oo

Foreign Patent Documents
Translation

WO 00/13091 03/09/00 PCT/US98/24943 po
M|WO 99/65219 12/16/99 PCT/US99/13184 po

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

°

Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinberg is working on), 1 page,
printed | 1/25/98.

Zilog product Brief entitled "Z85C30 CMOS SCC Serial Communication Controller", Zilog Inc., 3 pages, 1997.

Internet pages of Xpoint Technologies, Inc. entitled “Smart LAN Work Requests”, 5 pages, printed 12/19/97.

Internet pages entitled: Asante and 1OOBASE-T Fast Ethernet, 7 pages, printed 5/27/97.

*EXAMINER:Initial if reference considered, whether ornot citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 259

oh

| . . U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878
K<8FSQMATION DISCLOSURE STATEMENT BY_|Filing date: September 27, 2002

. . APPLICANT Inventors: Laurence Boucher,etal.

Group Art Unit: 2154
;

ir raPAST-PATH APPARATUSFOR RECEIVING DATA Examiner name: Unknown
CORRESPONDINGTO A TCP CONNECTION

U.S. Patent Documents

D t

é
- ere

|l|! !| |ll|i || | | |

Attomey Docket No.: ALA-006E

*Examiner
Initial

Filing Date,
Subclass If Appropriate
200.12

5

395

95

395

370

395

395

2

2 RECEIVED

200.15

60

67

200.02

4

Tectinology Center 2100

fafsmoe_[osiner[pepe—_—|
[Tse[rosary[antewserar|
fkfseaia7_Losarer[emserar

Foreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pagesentitled: A Guide to the Paragon XP/S-A7 Supercomputerat Indiana University, 13 pages, printed
N|12/21/98. :

Ff| Richard Stevens, “TCP/IP Illustrated, Volume 1, The Protocols”, pages 325-326 (1994).
pe Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

Gigabit Ethernet Technical Brief, Achieving End-to-End Performance, Alteon Networks,Inc., First Edition,
September 1996.

l

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy ofthis form with your communicationto applicant.

1

200.07

68

0

80

280

5

1

0

Translation

Subclass Yes F°

Sheet 2 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 260

&

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

DISCLOSURE STATEMENTBY

APPLICANT
Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: UnknownPe moo T-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION Attorney Docket No.: ALA-006E

U.S. Patent Documents

roam[oe[same[cas[sues|na
x

"seniass_[osmsor[cats[29s[3002|RECEIVED

[5937[anes[sareerat_|595[23005Teohlgy Carr 2709
.

:

:

:

*Examiner
Initial

6

K

Foreign Patent Documents

4

4a

84

842

14]

35

827

z[-[-|=/o/e}elelol=|>|
Translation

L|WO 01/05123 Al 01/18/01 PCT/US00/1 8976 ef
WO 01/40960A1 06/07/01 PCT/US00/32660 Pf

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com, 14 pages,

Zz°

printed 3/15/97.

VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4", pagesi-iv, 1-11, cover and copyright page,
revision 1.3, Feb. 1, 2000.

iReady NewsArchives article entitled "iReady Rounding Out Management Team with Two Key Executives",
http://www. ireadyco.con/archives/keyexec.html, 2 pages, printed 11/28/98.

“Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based On iReady’s Design,” Press
Release October, 1998, 3 pages, printed 11/28/98.

|

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line throughcitation if not |
in conformanceand not considered. Include copy of this form with your communication to applicant.

Sheet 3of14.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 261

| i} |

«| wm| :ao Saa|a=|oO 2 a5| 3Qaee| ~~| 2a= 22a 4aaa3Ba oO3aa

|

Application No.: 10/260,878

ETRRORMATION DISCLOSURE STATEMENTBY_|Filing date: September 27, 2002
S. APPLICANT Inventors: Laurence Boucher, etal.

ns to
Group Art Unit: 2154

&;goFAST-PATH APPARATUSFOR RECEIVING DATA Examiner name: Unknown
é _..’ CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

Fe [aseass [esse 208

ee [wsRECEIVED _|

395

395

395

395

395

PF|senna [omnia 9

395fFKI 5,815,646 09/29/98 Purcell etal.
Foreign Patent Documents

86

200.43

hnology Center 2100

Translation

L|WO 01/04770 A2 01/18/01 PCT/US00/18939 Pf|
S|] WO0/98/19412 05/07/98 PCT/US97/17257 Pf

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.)

Internet pages from iReady Products, web sitehttp://www.ireadyco.com/products,html, 2 pages, downloaded
11/25/98.

Document Number

°

p>feo]=| iReady News Archives, Toshiba, iReady shippingInternet chip, 1 page, printed 11/25/98.

Interprophetarticle entitled "Technology", http://www. interprophet.com/technology.html, 17 pages, printed 3/1/00.

aiReady Corporation,article entitled “The I-1000 Internet Tuner", 2 pages, date unknown.

*EXAMINER:Initial if reference considered, whether ornot citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 4 of 14.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 262

ome”Nenaatee~

cngASTPATH APPARATUSFOR RECEIVING DATA& TRAVE CORRESPONDINGTO A TCP CONNECTION
Attomey Docket No.: ALA-006E|

U.S. Patent Documents

= a
A

g

c

95

0

09

*Examiner
Initial

ze= , J“TI qMTQOm< =m7 im|O
g logy Cri7700

i

[5950277[ovine|soiuirar[o_o

k

Foreign Patent Documents

an

Translation

[ocastaiber[BaeConyac

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

iReady article entitled “About Us Introduction", Internet pages fromhttp://www.iReadyco.com/about.html, 3 pages,
printed I 1/25/98.

éwn E°

iReady NewsArchive article entitled “Revolutionary Approach to ConsumerElectronics Internet Connectivity
Funded”, San Jose, CA, November 20,1997. 2 pages, printed 11/2/98.

iReady NewsArchivearticle entitled “Seiko Instruments Inc. (SII) INTRODUCES WORLD’S FIRST INTERNET-
READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY,”Santa Clara, CA and Chiba,
Japan, October 26, 1998, 2 pages, printed 11/2/98.

NEWSwatcharticle entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November5, 1996,printed
11/2/98.

Examiner

 *EXAMINER.:Initial if reference considered, whether ornot citation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet5of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 263

plication No.: 10/260,878

E FORMATION DISCLOSURE STATEMENT BY Filing date: September 27, 2002
2 APPLICANT Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

&FAST-PATH APPARATUSFOR RECEIVING DATA Examiner name: Unknown
" CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

U.S. Patent Documents

Document Filing Date,

122199|2

2

*Examiner
Initial

A

rar|
hao|

5

5

Cc

76

50

6

6,044,438 03/28/00 130 NUE re

5335|ovmeroncat[m1[>Tonner20
20

5

114

Q

x=

Foreign Patent Documents

J

K

Translation

Sseseeeeee

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

EETimesarticle entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner", by David Lammers, 2 pages,
printed | 1/02/98.|e
|"Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages,printed 4/10/98.
Se Adaptec article entitled "AEA-71 10C-a DuraSAN product", 11 pages, printed 10/1/01.

iSCSI HBA article entitled "iSCSI and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic, Adaptec, |
JNI", 8 pages, printed 10/01/01.

Zz°

Examiner Date Considered

*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

"Sheet 6 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 264

Filing date: September 27, 2002

2

Inventors: Laurence Boucher, etal.APPLICANT \PIAEORMATION DISCLOSURE STATEMENTBY

«
:

ysFAST-PATH APPARATUSFOR RECEIVING DATATRADE CORRESPONDING TO A TCP CONNECTION
Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

Group Art Unit: 2154

ra[ase|os201|Comey al

Po[eonssz0|_| soteva

rs
Psp
af
op
or
op

07/18/97

QO

=

Zz°

pe
Technplogy Center 2100

J

Se
OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Lr

={=||

 “Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukaset al., IEEE

Transactions on Networking, vol. 6, no. 6, December 1998.

 IReady Newsarticle entitled "Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based on

iReady Design”, Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98.

 *EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communicationto applicant.

“Sheet7 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 265

Application No.: 10/260,878

| |

c|oOe| paSssf a3

i

2| QoO35a30 ~~ mwa2 pp2 a 4+if a|aofF3 ge|xn oO3aa

| ll | ! | | | | | |

ATION DISCLOSURE STATEMENT BY

APPLICANT

Filing date: September 27, 2002

Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

Filing Date,

fo~n uv2 =a3 = og8Qcaa3 =uw

*Examiner Document
Initial Number

a < w

1 7 2003

UY og

J

mi

‘at cD cD

™°52. = ~~ 2=o3> QO°a<3@= >a

Translation

Yes

U

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

United States Patent Application No. 08/964,304, by Napolitano,et al., entitled “File Array Storage Architecture”,

=e|
o

filed 11/04/97.
“File System Design For An NFS File Server Appliance”, Article by D. Hitz, et al., 13 pages.

Adaptec Press Releasearticle entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May 4, 2000,
printed 6/14/00.

Adaptec article entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.ate
Examiner Date Considered

 *EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

- Sheet 8 of 14,

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 266

 Filing date: September 27, 2002

Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

|examinernane:Unknown|
Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner
Initial

 AST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Foreign Patent Documents

Translation

ei-[=[=/ol=[e[elole=|>|
°

f={eq|
OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.)

Adaptecarticle entitled “EtherStorage White Paper”, 7 pages, printed 7/19/00.

CIBC World Marketsarticle entitled “Computers; Storage”, by J. Berlino et al., 9 pages, dated August 7, 2000.

Merrill Lyncharticle entitled “Storage Futures”, by S. Milunovich, 22 pages, dated May 10, 2000.

CBS Market Watcharticle entitled ’Montreal Start-Up Battles Data Storage Botttleneck”, by S. Taylor, dated March :
5, 2000,2 pages, printed 3/7/00.

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citation if not

in conformance and not considered. Include copy of this form with your communication to applicant. |

Sheet 9 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 267

Filing date: September 27, 2002

Inventors: Laurence Boucher, etal.

Group Art Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

U.S. Patent Documents

Document

\

*Examiner
Initial

Filing Date,
If Appropriate

RECEIVED |

Technology Center 2100a[-[-[=/ol{lelofe|>|
Foreign Patent Documents

Document Number Date Subclass

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

Internet-draft article entitled “SCSI/TCP (SCSI over TCP)”, by J. Satran et al., 38 pages, dated February 2000,
printed 5/19/00.

Translation

<& Zz°

|

Internet pages entitled “Technical White Paper-Xpoint’s Disk to LAN Acceleration Solution for Windows NT
Server,” 16 pages, printed 6/5/97.
Jato Technologiesarticle entitled “Network Accelerator Chip Architecture,” twelve-slide presentation, printed
8/19/98.pelsfete
EETimesarticle entitled “Enterprise System Uses Flexible Spec,” dated August 10,1998, printed 11/25/98.

Examiner Date Considered

*EXAMINER: Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copyof this form with your communication to applicant.

Sheet 10 of14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 268

ORMATION DISCLOSURE STATEMENT BY Filing date: September 27, 2002
. APPLICANT Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

éisT-PATH APPARATUSFOR RECEIVING DATA Examiner name: Unknowna

tape? =CORRESPONDING TO A TCP CONNECTION

on B
et

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Documentiat|[Numberfae|Name|as
pf

Filing Date,
Subclass If Appropriate

<J |

UL 1 7 2003

|me,A rn|ry Aau,s ans aesa aSCH eay ii s

 Foreign Patent Documents

 pete]|

 es, Etc.

Internet pages entitled “Smart Ethernet Network Interface Cards”, which Berend Ozceri is developing, printed
11/25/98.

Internet pages of Xaqti corporation entitled “GigaPower Protocol Processor Product Review,” printed 11/25/99.

 Internet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert J. Walsh,
printed 6/3/99.

pe |
|
|

Examiner Date Considered

*EXAMINER: Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet11 of14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 269

 +

J

 Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

Attorney Docket No.: ALA-006E |= |

U.S. Patent Documents

*Examiner Document Filing Date, |

pf

Pc

pe

Filing date: September 27, 2002

Te

u

oO95Sso2< ea® 2 nN —t 2

Foreign Patent Documents

[Beaman[Saecoais ¥e

poe
aCeeeeeee

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

F°

L|Internet pages of InterProphet entitled “Frequently Asked Questions”, by Lynne Jolitz, printed 6/14/00.

Internet pages entitled “iReady Products,” printed | 1/25/98.

Andrew S. Tanenbaum,“Computer Networks,” Third Edition, 1996, ISBN 0-13-349945-6.

0|Form 10-K for Exelan,Inc., for the fiscal year ending December 31, 1987 (10 pages).
se Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1988 (10 pages).

 “Second Supplemental Information Disclosure Statement per 37 C.F.R. §1.97(i)”, dated July 29, 2002 relating to
Exelan Inc. as submitted in Application Serial No. 09/464,283.

I

|
|

||

Sheet 12 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 270

Application No.: 10/260,878

Filing date: September 27, 2002

APPLICANT Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: Unknownfe maneFAST-PATH APPARATUS FOR RECEIVING DATA
i CORRESPONDING TO A TCP CONNECTION

ttorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

2001/0025315A1ra 01/10/01

01/10/01

~<a _]

JUL 1 7 2003
>ye fF-[=[e)=/=/2)

Foreign Patent Documents
Translation

°

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.)

 WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks”, Copyright Wind
River Systems, 2002, 7 pages.

Examiner

 *EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawlinethrough citation if not

in conformance and not considered. Include copy of this form with your communication to applicant.
- Sheet ‘13of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 271

* US. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher, etal.

Group Art Unit: 2154

Examiner name: UnknownBAST-PATH APPARATUS FOR RECEIVING DATA
€Tave*"”|CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document N / cl Subel Filing Date,
Initial Number ame ass ubclass If Appropriate

Pa [santas|eno

|D|6,389,468 05/14/02|Muller etal.
Pe [amie|ornoma

7

oust [Gene70|260RECEIVED

Pi sassa60|oon

af
Co

hnology Center 2700-
—_
a

Foreign Patent Documents
Translation

ecir[BateConnyYS[es]

ep

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

Article from Rice University, Department of Computer Scienceentitled “Lazy Receiver Processing (LRP): A New
Network Subsystem Architecture for Server Systems”, by Peter Druschel and Gaurav Banga,|5 pages.

Internet RFC/STD/FY1/BCP Archivesarticle with heading “RFC2140”entitled “TCP Control Block
Interdependence”, web addresshttp://www.faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

Examiner Date Considered

“EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communicationto applicant.

Sheet 14 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 272

2/S¥,

IN THEUNITED STATES PATENT AND TRADEMARK OFFICE

Application of Laurence B. Boucher,etal. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

June 7, 2004

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Supplemental Information Disclosure Statement per 37 C.F.R. §1.98

Sir: /

Pursuant to 37 C.F.R. §§ 1.56, 1.97 (e)(1), 1.98, applicants bring the following

document to the Examiner’s attention. Included with this letter is one U.S. Patent

documentthat wasfirst cited in a communication from a foreign patent office in a

counterpart foreign application not more than three monthspriorto thefiling ofthis

information disclosure statement. Also included is a one-page form PTO-1449listing

this document.

Citation of this documentshall not be construed as an admissionthat the

documentis prior art withrespect to the instant invention, a representation that a search
has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING FE=
I hereby certify that this correspondenceis being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on June 7, 2004. Suite 245

Pleasanton, CA 94566
Date. 6-Pw A Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

a

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 273

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher, et al.

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

al—Saa Name Class|Subclass If Appropriate

NTAL INFORMATION DISCLOSURE

2STATEMENT BY APPLICANT

ao 2 ATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

Foreign Patent Documents

_- Translation

|DocumentNumberNumber|Date||Country

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

 *EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line throughcitation if not

in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet|of1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 274

DISg
LAY

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
ee ‘Application of Laurence B. Boucher,etal. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E - GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

June 21, 2004

Commissionerfor Patents

P.O. Box 1450

Alexandria, VA 22313-1450

nd Supplemental Information Disclosure Statement per 37 C.F.R. §1.98

Sir: . ;

- - Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring the following

documentto the Examiner’s attention. Included is one U.S.Patent reference document

and a one-page form PTO-1449listing this document.

Citation of this documentshall not be construed as an admission that the

documentis prior art with respect to the instant invention, a representation that a search

has been made,or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING

Thereby certify that this correspondence is being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,5 78
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on June 21, 2004. Suite 245

Pleasanton, CA 94566
Date:_§ 22/7 2Y £eE— Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 275

 Application No.: 10/260,878

Filing date: September 27, 2002

’ Group Art Unit: 2154 |

__ggSP-PATH APPARATUS FOR RECEIVINGDATA——|Evaminersane:Unknown|
&Ipp™” CORRESPONDING TO A TCP CONNECTION

Attomey Docket No.: ALA-006E

U.S. Patent Documents

*Examiner SS Document|Date|Filing Date,Initial Number Date Name Class Subclass If Appropriate

pT
apo Pp
pep
po
a
po |

|
Foreign Patent Documents

Translation

Sa2

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.

|

*EXAMINER:Initialif reference considered, whetherornot citation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy of this form with your communicationto applicant.

Sheet1of 1

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 276

Sy

Ser.No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154 |

For: FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

February 24, 2005

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

34 Supplemental Information Disclosure Statement

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring sixteen documents

to the Examiner’s attention. Included are copies of nine non-patent reference documents,

and a one-page form PTO-1449listing these documents separately from seven U.S.

Patent reference documents. Copies of the seven U.S. Patent reference documentsare not

enclosed.

Citation of these documents shall not be construed as an admission that the

documentsare prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information citedherein is, or is considered to
be, material to patentability as defined in 37 CER.§ 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING Ze
I hereby certify that this correspondenceis being deposited with Mark Lauer
the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on February 24, 2005. Suite 245 ‘

Pleasanton, CA 94566
Date:_ 2-24-a5s~ Bo Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 277

Sheet 1 of 1

*BPRLEMENTAL INFORMATION DISCLOSURE ..

3 ma Inventors: Laurence Boucher,etal.

NoJaap2056a, c Group Art Unit: 2154

Cea‘cutmmsUaeSUROEP ATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown

CORRESPONDING TO A TCP CONNECTION|xtomeyDocketNoxALAOOGE|. : Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,
Initial Number If Appropriate

a[ss2n250[ane[rmanee|
a
Pesree[arose[creeies
a
Peeon[vere|eetafs
feetmisor|aroo[oeie
Teeowrace|wet[eee0er
oe

(Including Author, Title, Date, Pertinent Pages, Etc.)

 Schwadereret al., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
Decomposition for ASIC Implementation’, from 15"" Conference on Local Computer Networks, 5
pages, Sept. 30 — Oct. 3, 1990.

Beach, Bob, IEEE Computer Society Press publication entitled, “UltraNet: An Architecture for
Gigabit Networking”, from 15" Conference on Local Computer Networks, 18 pages, Sept. 30 —
Oct. 3, 1990.

Chessonetal., IEEE Syposium Record entitled, “The Protocol Engine Chipset’, from Hot ChipsIII,
16 pages, Aug. 26-27, 1991.

Macleanetal., IEEE Global Telecommunications Conference, Globecom ‘91, presentation
entitled, “An Outboard Processor for High Performance Implementation of Transport Layer
Protocols”, 7 pages, Dec. 2-5, 1991. .

Rosset al., IEEE article entitled “FX1000: A high performancesingle chip Gigabit Ethernet NIC’,
from Compcon ’97 Proceedings, 7 pages, Feb. 23-26, 1997.

Strayer et al., “Ch. 9: The Protocol Engine” from XTP: The Transfer Protocol, 12 pages, July 1992.

7 Publication entitled “Protocol Engine Handbook”, 44 pages, Oct. 1990.

 Koufopavlouet al., IEEE Global Telecommunications Conference, Globecom ‘92, presentation

entitled, “Parallel TCP for High Performance Communication Subsystems’, 7 pages, Dec. 6-9,

Lilienkampetal., Publication entitled “Proposed Host-Front End Protocol”, 56 pages, Dec. 1984.

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 278

eeaatace
:i

L6

L7

L8

L9

L13

L14

Li5

L16
L17

$5

Search History

Search Query

(((session OR application OR
presentation OR upper) AD) layer)
NEAR2 header) AND ((tcp OR
“transport control") NEAR2
connection) AND (header NEAR2
(template OR default))

86|(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) AND ((tcp OR
"transport control") NEAR2
connection)

9|(((transport OR tcp) ADJ layer)
NEAR2 header) SAME ((tcp OR
"transport control") NEAR2
connection)

155|(((transport OR tcp) ADJ layer)
NEAR2 header) AND ((tcp OR
"transport control") NEAR2
connection)

157|(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) SAME (destination
OR address)

269|(((session OR application OR
presentation OR upper) ADJ layer)
NEAR2 header) AND ((destination
OR address) WITH header)

120|(((session OR application OR
presentation OR upper) AD) layer)
NEAR2 header) AND ((destination
OR address) WITH header) NOT L9

1920|(header WITH (template OR
default))

8|((prepend OR append ORattach)
WITH header WITH (template OR
default))

121|((write OR form) WITH header
WITH (template OR default))

= "260878".apn.

1/18/2006 2:34:29 PM Page 1

US-PGPUB;
USPAT;
EPO;JPO;
1BM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
1BM_TDB

US-PGPUB;
USPAT;
EPO;.JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

OR

OR

OR

OR

OR

OR

OR

Default

Operator

ON

ON

ON

ON

ON

ON

ON

ON

ON

Plurals|Time Stamp

 2006/01/18 09:30

 2006/01/18 10:14

2006/01/18 10:03

2006/01/18 10:03

2006/01/18 13:23

2006/01/18 11:27

2006/01/18 11:27

2006/01/18 13:24

2006/01/18 13:37

2006/01/18 13:37

2006/01/13 13:59

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 279

("5983271" "6141705" "5937169"
"6161123" "5619650" "5841764"

"5898713" "5940598" "6219697"
"6226680" "6219697" "6226680"

"6247060" "6400712" "6405247"
"6415313" "6424650" "6591302"
"6963921" "6965941" "5684954"

"5309437" "5805572" "5706508"
"5727142" "5931916" "5941988"

"6021507" "6032183" "6073180"
"6078733" "6324183" "6356951"
"6389468" *6434620" "6453360"
"6480489" "6483804" "6606301"
"6650640" "6658002" "6721806"
"6751665" "6823437" "6907042"
"6920493" "6938092" "6947430"

"5995741" "6370599").pn.

("6904519" "6208620" "6134245"
"6229823" "5307413" "5682534"

"5764645" "5793958" "5923659"
"6084892" "6091710" "6097719"

"6181695" "6195425" "6236652"
"6246683" "6262976" "6292479"
"6330250" "6430595" "6571272"
"6625170" "6697352" "6714541"
"6738361" "6771673" "6779033"
"6826620" "6850495" "6880017"
"6885678" "6956853" "5434976"

"5274768" "6065064" "6208651"
"5574919" "5706429" "6134244"

"6208650" "5235644" "5303344"
"5386542" "5594869" "5903724"
"5920703" "5983259" "5983274"

"6081846" "6085215").pn.

("6088777" "6108782" "6263444"
"6334153" "6353619" "6389479"

"6393487" "6427173" "6449631"
"6470391" "6625662" "6658480"
"6798743" "6006268" "6226267"
"6226267" "6463470" "6466984"

"6675218" "6760304" "5740371"
"6535509" "6920484" "6049833"
"5619645" "6055237" "6192411"
"4893307" "5021949" "5815516"
"5950195" "6148410" "5777989"
"5867636" "5898830" "6021263"

"6052788" "6098108" "6097697"
"6119170" "6122276" "6128662"

"6151300" "6185617" "6195705"
"5278955" "5412654" "5442633"

"5550984" "5636371").pn.

$7 50

S38 49

Search History 1/18/2006 2:34:29 PM Page 2

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

 2006/01/13 15:25

2006/01/13 16:28

2006/01/15 16:33

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 280

("5650993" "5664116" "5673322" US-PGPUB;|OR ON 2006/01/15 16:34
"5699361" "5757924" "5764756" USPAT;
"5774640" "5799016" "5822523" EPO; JPO;
"5838682" "5907610" "5917997" IBM_TDB
"5931913" "5935215" "5944783"
"5951650" "5964891" "6006264"
"6018766" "6041041" "6061341"
"6075796" "6104716" "6115385"

"6119171" "6137792" "6147976"
"6151679" "6169795" "6212175"
"6226686" "6212175" "6226686"
"6233249" "6233626" "6240513"
"6249294" "6252857" "6263371"

"6266701" "6269099" "6286047"
"6314284" "6321267" "6324161"
"6324582" "6345301" "6351775"

"6353891" "6370144").pn.

S10 81|("20010004354"|"20010025315"|"43|US-PGPUB;|OR ON 2006/01/15 18:18
66538"|"4991133"|"5056058"|"5058|USPAT;
110"|"5097442"|"5163131"|"521277|EPO; JPO;
8"|"5280477"|"5289580"|"5303344"|IBM_TDB
"5412782" |"5448566"|'"5485579"|"
5506966"|"5511169"|"5548730"|"55
66170"|"5588121"|"5590328"|"5592
622"|"5629933"|"5634099"|"563412
7"|"5642482"|"5664114"|"5671355"
"5678060"|"5692130"|"5699317"|"
5701434"|"5701516"|"5749095"|"57
51715"|"5752078"|"5758084"|"5758
089"|"5758186"|"5758194"|"577134
9"|"5790804"|"5794061"|"5802580"
|"5809328"|"5812775"|"5815646" |"
5878225"|"5913028"|"5930830"|"59
31918"|"5935205"|"5937169"|"5941
969"|"5941972"|"5950203"|"599129
9"|"5996024"|"6005849"|"6009478"
1"6016513"|"6021446"|"6026452"|"
6034963"|"6044438"|"6047356"|"60
57863"|"6061368"|"6065096"|"6141
705" |"6173333"|"6226680"|"624668
3"|"6247060"|"6247169"}"6345301"
1"6356951"|"6389468"|"6434651"|"
6449656"|"6453360").PN.

Search History 1/18/2006 2:34:29 PM Page 3
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 281

$11

$12

$13

$14

$15

$16

$17

Search History

66

36

28

33

174

("4366538"}"4991133"|"5056058"|"
5097442"|"5163131"|"5212778"|"52
80477"|"5289580"|"5303344"|"5412
782"|"5448566"|"5485579"|"550696
6"|"5511169"|"5548730"|"5566170"
{558812 1"|"5590328"|"5592622"|"
5629933" |"5634127"]"5642482"|"56
64114"}"5671355"|"5678060"|"5692
130"|"5699317"|"5701516"|"574909
5"|"5751715"|"5752078"|"5758084"
15758089"|"5758194"|"5771349"|"
5790804"|"5794061"|"5802580"}"58
09328"|"5812775"|'"5815646"|"5878
225"|"5913028"|"5930830"|"593191
8"|"5935205"|"5937169"|'"5941972"
{"5950203"|'"5991299"|"5996024"|"
6005849"}"6009478"|"6016513"|"60
26452"|"6034963"|"6044438"|"6047
356"|"6057863" |"6061368"]"606509
6"|"6141705"|"6226680"|"6246683"
|"6247060"|"6345301").PN.

("5598410").PN.

("5517668").PN.

(interrupt WITH header) AND
(network ADJ layer) AND (transport
AD] layer) AND (header WITH
validat$4) AND (header WITH
prepend$4)

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (header WITH
validat$4) AND (header WITH
prepend$4)

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (header WITH
validat$4)

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (header WITH
(validat$4 OR check OR checksum
OR "crc"))

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

OR

OR

OR

OR

OR

ON

ON

ON

ON

ON

ON

ON

2006/01/15 18:27

2006/01/15 18:15

2006/01/15 18:17

2006/01/16 12:36

2006/01/16 12:38

2006/01/16 12:43

2006/01/16 13:04

1/18/2006 2:34:29 PM Page 4
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 282

$20

$21

$22

$23

$24

40

45

2427

549

15

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (((mac OR "media
access" OR datalink OR "data link")
AD] fayer) WITH header) AND
(header WITH(validat$4 OR check
OR checksum OR"crc"))

((network ADJ layer) WITH header)
AND((transport ADJ layer) WITH
header) AND (((mac OR "media
access control" OR datalink OR

"data link") ADJ layer) WITH
header)

("5077732"| "5428615" | "5651002"
| "5729543" | "5732081"|
"5825774").PN. OR ("5991299").
URPN.

("5088090"| "5274631" | "5406643"
| "5452294"| "5473599"|
"5504866" | "5570466"|
"5583996").PN. OR ("5845091").
URPN.

(network ADJ layer) AND (transport
AD) layer) AND ((mac OR "media
access control" OR datalink OR

"data link") ADJ layer)

(network ADJ layer) AND (transport
AD) layer) AND ((mac OR "media
access control" OR datalink OR

"data link") ADJ layer) AND
(protoco! WITH header WITHlayer)

(network ADJ layer) AND (transport
AD] layer) AND ((mac OR "media
access control” OR datalink OR

"data link") ADJ layer) AND
(protocol WITH header WITHlayer)
AND (inbound SAME outbound
SAME header)

Search History 1/18/2006 2:34:29 PM PageS
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

OR

OR

OR

OR

OR
ON

ON

ON

ON

ON

2006/01/16 14:20

 2006/01/16 19:20

2006/01/16 16:42

2006/01/16 16:50

2006/01/16 17:16

2006/01/16 17:29

2006/01/18 09:27

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 283

("4652874" | "4807111" | "4850042"
| "4899333" | "4922503" |
"4933938" | "5150358" | "5210746"
| "5220562" | "5231633"|
"5251205" | "5278830" | "5291482"
| "5293379"| "5301333"|
"5309437" | "5313454" | "5343471"
| "5386413" | "5392432" |
"5394402" | "5410540" | "5410722"
| "5422838" | "5425028" |
"5426736" | "5450399" | "5455820"
1 "5457681" | "5459714"|
"5459717" | "5461611" | "5461624"
| "5473607" | "5477537"|
"5481540" | "5485455" | "5485578"
| "5490139" | "5490252" |
"5500860" | "5515376"| "5535202"
| "5555405" | "5561666"|
"5570365" | "5572522" | "5583981"
| "5592476" | "5594727"|
"5600641" | "5602841" | "5608726"
| "5610905" | "5619500"|
"5619661" | "5633865" | "5636371"
| "5640605" | "5649109"|
"5651002" | "5675741" | "5684800"
| "5691984" | "5706472"|
"5720032" | "5724358" | "5726977"
| "5734865" | "5740171" |
"5740175" | "5740375" | "5742604"
| "5742760" | "5745048"|
"5748905" | "5751967" | "5754540"
| "5754801" | "5757771"|
"5757795" | "5764634" | "5781549"
| "5784573" | "5790546"|
"5802047" | "5802052").PN. OR
("5920566").URPN.

$25 AND header AND layer AND
protocol!

$26

US-PGPUB;

 2006/01/16 18:03

Search History 1/18/2006 2:34:29 PM Page 6
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

USPAT;
USOCR

US-PGPUB;|OR ON 2006/01/16 18:03
USPAT;

USOCR |

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 284

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450www.uspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

10/260,878 09/27/2002 Laurence B. Boucher ALA-006E 9902

24501 7590 01/27/2006 EXAMINER

MARK A LAUER KUIPER, ERIC J
6601 KOLL CENTER PARKWAY
SUITE 245 PAPER NUMBER

PLEASANTON, CA 94566 2154

DATE MAILED:01/27/2006

Please find below and/orattached an Office communication concerningthis application or proceeding.

PTO-90C (Rev. 10/03)

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 285

Application No. Applicant(s)

10/260,878 BOUCHER ETAL.

’ Office Action Summary Examiner

aa-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY(30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available underthe provisions of 37 CFR 1.136(a). In no event, however, maya reply betimely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply andwill expire SIX (6) MONTHSfrom the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED(35 U.S.C. § 133).

Anyreply received by the Office later than three months.after the mailing date of-this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)] Responsive to communication(s) filed on 27 September 2002.
2a) This action is FINAL. 2b)KX] This action is non-final.
3) Since this application is in condition for allowance exceptfor formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-24 is/are pendingin the application.

4a) Of the above claim(s) is/are withdrawn from consideration.

5)L) Claim(s) is/are allowed.
6) Claim(s) 1-24 is/are rejected.
7)] Claim(s) 11 is/are objectedto.

8)L] Claims) are subjectto restriction and/or election requirement.

Application Papers

9)L_] The specification is objected to by the Examiner.
10)C0 The drawing(s) filed on is/are: a)[_] accepted or b)[] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)[_] Acknowledgmentis madeof a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or(f).
a)_] Al b)L_] Some * c)[Noneof:

1.0] Certified copies of the priority documents have been received.
2.1] Certified copies of the priority documents have been received in Application No.
3.0] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) X] Notice of References Cited (PTO-892) 4) CJ Interview Summary (PTO-413)
2) LJ Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. __.
3) EX] Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) 5) L] Notice of informal Patent Application (PTO-152)

Paper No(s)/Mail Date . 6) LJ other:

U.S. Patent and Trademark Office

PTOL-326 (Rev. 7-05) Office Action Summary Part of Paper No./Mail Date 01162006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 286

Application/Control Number: 10/260,878 Page 2
Art Unit: 2154

DETAILED ACTION

1. Claims 1-24 have been presented for examination.

Claim Objections

2. Claim 11 is objected to because of the following informalities: line 3 contains only the

phrase “the media access control layer header,” which appearsto be a typographicalerrorin the

addition of this phrase to the claim. Appropriate correction is required.

Claim Rejections - 35 USC § 102

3. The followingis a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections underthis section made in this Office action:

A personshall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by anotherfiled
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for
patent by anotherfiled in the United States before the invention by the applicant for patent, exceptthat an
international application filed under the treaty defined in section 351(a) shall have the effects for purposesofthis
subsection of an application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

4, Claims 1, 2, 6 and 7 are rejected under 35 U.S.C. 102(e) as being anticipated by Hendel

et al. (US 5,920,566, hereinafter Hendel).

5, As per claim 1, Hendel teaches a method for network communication (e.g. Hendel, col.4,

lines 53-55), the method comprising:

receiving a plurality of packets from the network, each of the packets including a media

accesscontrol layer header, a network layer header anda transport layer header(e.g. Hendel, col.

4, lines 56-67; col. 5, lines 1-8);

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 287

v

. ’ Application/Control Number: 10/260,878 Page 3
Art Unit: 2154

processing the packets byafirst mechanism,so that for each packet the network layer

headerandthe transport layer header are validated without an interrupt dividing the processing

of the network layer header and the transport layer header (e.g. Hendel, col. 12, lines 66-67; col.

13, lines 1-16);

sorting the packets, dependent uponthe processing,into first and second types of packets,

so that the packets of the first type each contain data (e.g. Hendel,col. 5, lines 26-33);

sending the data from each packetofthefirst type to a destination without sending any of

the media access control layer headers, network layer headers or transport layer headersto the

destination (e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

6. As per claim 2, Hendel teaches the method of claim 1, wherein processing the packets by

a first mechanism further comprises:

processing the media access control layer header for each packet without an interrupt

dividing the processing of the media access control layer header and the network layer header

(e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

7. Asperclaim 6, Hendel teaches the method of claim 1, wherein sorting the packets

includes classifying each of the packetsofthe first type as having an Internet Protocol (IP)

header and a Transport Control Protocol (TCP) (e.g. Hendel, col. 6, lines 50-61).

8. As per claim 7, Hendel teaches the method of claim 1, further comprising:

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 288

Application/Control Number: 10/260,878 Page 4
Art Unit: 2154

transmitting a secondplurality of packets to the network, each of the secondplurality of

packets containing a media access controllayer header, a network layer header and a transport

layer header, including processing the second plurality of packets by the first mechanism, so that

for each packet the media accesscontrol layer header, the network layer header and the transport

layer header are processed without an interrupt dividing the processing of the media access

control layer header (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

Claim Rejections - 35 USC § 103

9. The following is a quotation of 35 U.S.C. 103(a) which formsthe basis forall

obviousnessrejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 ofthistitle, if the differences between the subject matter sought to be patented and the priorart are
such that the subject matter as a whole would have been obviousat the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the
mannerin which the invention was made.

10. The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459

(1966), that are applied for establishing a background for determining obviousness under 35

U.S.C. 103(a) are summarizedas follows:

Determining the scope and contentsof the priorart.
Ascertaining the differences between the prior art and the claims atissue.
Resolving the level of ordinary skill in the pertinentart.
Considering objective evidence presentin the application indicating obviousness
or nonobviousness.

FYwNr
11. Claims 3 and 4 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hendelet

al. (US 5,920,566, hereinafter Hendel) in view of Ota et al. (US 6,115,615, hereinafter Ota).

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 289

 Application/Control Number: 10/260,878 Page 5
Art Unit: 2154

12. As perclaim 3, Hendel teaches the method ofclaim 1, but fails to teach the method

further comprising: processing an upperlayer headerofat least one of the packets by a second

mechanism, thereby determining the destination, wherein the upperlayer header corresponds to a

protocol layer above the transport layer.

However,in a similar art, Ota teaches a network communications system that uses an

application layer level address to indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Ota with Hendelbecause ofthe advantages of using an upperlayer header to determine

the destination of packets in a network. Network layer and transport layers also generally

include addressesor indications of destination for the packets and including this feature into the

application layer as well provides another fail-safe step for the network in the even ofa failure in

someportion of the network. Havingfail-safe routes for information decreases the amountof

network downtimesince routes can be switched almost instantaneously upon the realization of a

fault or error. This is a benefit in any communications network system.

13. Asperclaim 4, Hendel teaches the methodofclaim 1, butfails to teach the method

further comprising: processing an upperlayer headerofat least one of the packets of the second

type by a second mechanism, thereby determining the destination.

However, in a similar art, Ota teaches a network communications system that uses an

application layer level address to indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 290

" ‘Application/Control Number: 10/260,878 Page6
Art Unit: 2154

It would have been obviousto one skilled in the art at the time the invention was made to

combine Ota with Hendelfor similar reasons as stated above in regardsto claim 3.

14, Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hendelet al. (US

5,920,566, hereinafter Hendel) in view of Klaus (US 5,892,903, hereinafter Klaus).

15. As per claim 5, Hendel teaches the methodofclaim 1, further comprising:

processinga transport layer headerof another packet by a second mechanism,prior to

receiving the plurality of packets from the network (e.g. Hendel, col. 12, lines 66-67; col. 13,

lines 1-16).

Hendel fails to teach establishing a Transport Control Protocol (TCP) connection for the

packetsofthe first type.

However, in a similar art, Klaus teaches the use of a transport layer header to create a

TCP connection over a network(e.g. Klaus, col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Klaus with Hendel becauseof the advantages of using a transport layer headerto

provide a TCP connection over a network. Theuse transport layer, included in the well-known

OSI model, is advantageous because it provides segregation of communication functions across

the various layers of the protocol stack and modularizes the functions required to implement

network communication, which simplifies computer communication operation and maintenance

(e.g. Klaus, col. 2, lines 14-23). The use of the OSI modelalso allows for communication across

various systems and platforms without the need for conversion or modification of the

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 291

'. ” Application/Control Number: 10/260,878 Page 7
Art Unit: 2154

communication method. This can greatly increase the efficiency of communication across a

network, which is beneficial in any communications network system.

16. Claim8is rejected under 35 U.S.C. 103(a) as being unpatentable over Hendelet al. (US

5,920,566, hereinafter Hendel) in view of Radognaet al. (US 5,991,299, hereinafter Radogna).

17. As per claim 8, Hendel teaches the methodofclaim 1, but fails to teach the method

wherein the first mechanism is a sequencer running microcode.

However, in a similar art, Radogna teaches a dedicated sequencer using microcode to

perform network communication and headertranslation and processing (e.g. col. 4, lines 25-30).

It would have been obvious to one skilledin the art at the time the invention was madeto

combine Radognawith Hendel because ofthe benefits of using a specialized processor to handle

various tasks in a communications system. Using a sequencerfor processing header information

can greatly accelerate a frame or packet through a network since the central processing unit does

not become overburdened when manypackets need to be processed. This frees up the central

processorto handle other networking tasks, therefore increasing the speed andefficiency of

transmissions through the network. The use of software microcode for this processing easily

accommodates new protocols and can bypass hardware processing in the event of a hardware

failure. These are beneficial in any computer network system.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 292

" Application/Control Number: 10/260,878 Page8
Art Unit: 2154

18. Claims 9, 10, 14, 16-18, 20 and 22 are rejected under 35 U.S.C. 103(a) as being

unpatentable over Radognaet al. (US 5,991,299,hereinafter Radogna) in view of Hendeletal.

(US 5,920,566, hereinafter Hendel).

19. As perclaim 9, Radogna teaches a method for communicating information over a

network (e.g. Radogna,col. 2, lines 63-67), the method comprising:

obtaining data from a sourceallocated bya first processor (e.g. Radogna, col. 3, lines 50-

59);

dividing the data into multiple segments (e.g. Radogna,col. 3, lines 50-59),

prepending a packet headerto each of the segments by a second processor, thereby

forming a packet corresponding to each segment(e.g. Radogna,col. 14, lines 22-36);

transmitting the packets to the network (e.g. Radogna, col. 5, lines 9-17).

Radognafails to teach the method comprising each packet header containing a media

access control layer header, a network layer header anda transport layer header, wherein the

prependingofeach packet header occurs without aninterrupt dividing the prepending of the

network layer header and the transport layer header.

However, inasimilar art, Hendel teaches a network communications system based on

packets utilizing media access control layer headers, network layer headers andtransport layer

headers, the processing of these headers all occurring without interrupts between each layer(e.g.

Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obviousto oneskilled in the art at the time the invention was made to

combine Hendel with Radogna because of the advantages of including headers for each ofthe

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 293

" Application/Control Number: 10/260,878 Page 9
Art Unit: 2154

MAC(data link) layer, network layer and transport layer when communicating over a packetized

network conforming to the OSI model. The use of each ofthese layers is well known in the art

since the OSI model was developed. Prepending a header associated with each layeris a

common methodfor allowing the network to process the packets layer by layer, in accordance

with the OSI model. Performing the processing and prepending of headers without the use of an

interrupt between layers provides the benefit of speeding up the entire processing method and

increasing the efficiency of packet transmission across a network. Thisis beneficial in any

computer network system.

20. As per claim 10, Radogna and Hendel teach the method of claim 9, wherein prepending a

packet header to each of the segments by a second processor further comprises:

prepending the media access control layer header for each packet without an interrupt

dividing the prepending of the media access control layer header and the network layer header

(e.g. Radogna, col. 14, lines 22-36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

21. As per claim 11, Radogna and Hendel teach the method of claim 9, wherein each packet

header contains an Internet Protocol (IP) header and a Transport Control Protocol (TCP) header

(e.g. Hendel, col. 6, lines 50-61).

22.~~As perclaim 14, Radogna and Hendel teach the method of claim 9, wherein obtaining

data from the source in memory allocated bythe first processor is performed by a Direct

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 294

~ Application/Control Number: 10/260,878 Page 10
Art Unit: 2154

Memory Access (DMA)unit controlled by the second processor(e.g. Radogna, col.5, lines 5-

17).

23. Asperclaim 16, Radogna and Hendelteach the method of claim 9, further comprising:

receiving another packet from the network, the other packet containing a receive header

including information corresponding to a network layer and a transport layer (e.g. Hendel, col. 4,

lines 56-67; col. 5, lines 1-8); and

selecting whether to process the other packet bythe first processor or by the second

processor(e.g. Hendel, col. 5, lines 26-33).

24. As per claim 17, Radogna teaches a method for communicating information over a

network(e.g. Radogna,col. 2, lines 63-67), the method comprising:

providing multiple segmentsofdata (e.g. Radogna,col. 3, lines 50-59);

prepending an outbound packet header to each of the segments, thereby forming an

outbound packet corresponding to each segment(e.g. Radogna,col. 14,lines 22-36);

transmitting the outbound packetsto the network (e.g. Radogna, col. 5, lines 9-17); and

receiving multiple inbound packets from the network (e.g. Radogna,col. 3, lines 50-59).

Radognafails to teach the method comprising the outbound packet headercontaining an

outbound media access control layer header, an outbound network layer header and an outbound -

transport layer header, wherein the prepending of each outbound packet header occurs without an

interrupt dividing the prepending of the outbound media access control layer header, the

outbound network layer header and the outboundtransport layer header; processing the inbound

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 295

" Application/Control Number: 10/260,878 Page 11
Art Unit: 2154

packets, so that for each packet the inbound network layer header and the inboundtransport layer

headerare validated withoutan interrupt dividing the processing of the inbound network layer

headerand the inboundtransport layer header.

However,in a similar art, Hendel teaches a network communications system based on

packetsutilizing media access control layer headers, network layer headers andtransport layer

headers, the processing and validating of these headersall occurring withoutinterrupts between

each layer (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obviousto one skilled in the art at the time the invention was madeto

combine Hendel with Radognabecauseofthe advantages of including headers for each ofthe

" MAC (data link) layer, network layer and transport layer when communicating over a packetized

network conforming to the OSI model. The use of each ofthese layers is well known in the art

since the OSI model was developed. Prepending a header associated with each layer is a

common methodfor allowing the network to process the packets layer by layer, in accordance

with the OSI model. Performing the processing and prepending of headers without the use of an

interrupt between layers provides the benefit of speeding up the entire processing method and

increasingthe efficiency of packet transmission across a network. This is beneficial in any

computer network system.

25. As per claim 18, Radogna and Hendel teach the method of claim 17, wherein the

processing the inbound packets is performed simultaneously with the prepending the outbound

packet header to each of the segments (e.g. Radogna, separate processors for receive

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 296

Application/Control Number: 10/260,878 Page 12
Art Unit: 2154

functionality and transmit functionality, col. 3, lines 50-59; col. 5, lines 9-17; col. 14; lines 22-

36).

26. As per claim 20, Radogna and Hendel teach the method of claim 17, wherein providing

multiple segments of data includes dividing a block of data into the segments (e.g. Radogna,col.

3, lines 50-59).

27. As per claim 22, Radogna and Hendelteach the method of claim 17, further comprising:

sending data from each inbound packet to a destination without sending any of the media

access control layer headers, network layer headersor transport layer headers to the destination

(e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

28. Claims 12 and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendelet al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9 and 17 above, and further in view of Klaus (US

5,892,903, hereinafter Klaus).

29. Asper claim 12, Radogna and Hendelteach the method of claim 9, comprising

prependingthe packet headerto each of the segments by the second processor(e.g. Radogna,

col. 14, lines 22-36).

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 297

Application/Control Number: 10/260,878 Page 13
Art Unit: 2154

Radognaand Hendelfail to teach the method further comprising establishing a Transport

Control Protocol (TCP) connection by the first processor and using the connection to prepend the

packet headerto each of the segments by the second processor.

However,in a similar art, Klaus teaches the use of a transport layer headerto create and

utilize a TCP connection over a communications network (e.g. Klaus, col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Klaus with Radogna and Hendel because of the advantages of using a transport layer

header to provide a TCP connection over a network. The use transport layer, included in the

well-known OSI model, is advantageous becauseit provides segregation of communication

functions across the various layers of the protocol stack and modularizes the functions required

to implement network communication, which simplifies computer communication operation and

maintenance(e.g. Klaus, col. 2, lines 14-23). The use of the OSI modelalso allows for

communication across various systems and platforms without the need for conversion or

modification of the communication method. This can greatly increase the efficiency of

communication across a network, whichis beneficial in any communications network system.

30. Asper claim 24, Radogna and Hendel teach the method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to receiving the

plurality of packets from the network (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

Radogna and Hendelfail to teach the method further comprising establishing a Transport

Control Protocol (TCP) connection for the inbound packets.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 298

Application/Control Number: 10/260,878 Page 14

Art Unit: 2154

However,in a similar art, Klaus teaches the use of a transport layer header to create and

utilize a TCP connection over a communications network (e.g. Klaus, col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Klaus with Radogna and Hendelfor similar reasons as stated above in regards to claim

12.

31. Claims 15, 21 and 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendelet al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9, 20 and 17, respectively, above, and further in view of

Ota et al. (US 6,115,615, hereinafter Ota).

32. As perclaim 15, Radogna and Hendelteach the methodofclaim 9, but fail to teach the

method further comprising prepending an upperlayer headerto the data, prior to dividing the

data into multiple segments.

However,in a similar art, Ota teaches a network communication system that attaches and

uses a headerin the application layer (e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in the art at the time the invention was made to

combine Ota with Radogna and Hendel because of the advantagesofattaching a headerto an

upper layer, such asthe application layer, along with the other layers well-known by the OSI

model. The use of an upper layer header can providea great deal offlexibility to the system

since it is able to transmit more data with the packet itself. The OSI modelis designedto attach

and process headers from eachofthe sevenlayersefficiently to ensure that the data within the

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 299

Application/Control Number: 10/260,878 Page 15
Art Unit: 2154

packet is transmitted properly across the network. Including an application layer header further

ensures the properreceipt of the data. This is beneficial in any communication network system.

33. As per claim 21, Radogna and Hendelteach the method ofclaim 20, but fail to teach the

method further comprising prepending an upper layer header to the block ofdata, prior to

dividing the block of data into multiple segments.

However,in a similar art, Ota teaches a network communication system that attaches and

uses a headerin the application layer(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Ota with Radogna and Hendel for similar reasons as stated above in regards to claim

15.

34. As per claim 23, Radogna and Hendelteach the method of claim 17, but fail to teach the

method further comprising: processing an upper layer headerof at least one of the packets by a

second mechanism, thereby determining the destination, wherein the upper layer header

correspondsto a protocol layer abovethe transport layer.

However,in a similar art, Ota teaches a network communications system that uses an

application layer level addressto indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilledin the art at the time the invention was madeto

combine Ota with Hendel because of the advantages of using an upper layer header to determine

the destination of packets in a network. Network layer and transport layers also generally

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 300

Application/Control Number: 10/260,878 Page 16
Art Unit: 2154

include addressesor indications of destination for the packets and including this feature into the

application layer as well provides anotherfail-safe step for the networkin the evenofa failure in

someportion of the network. Havingfail-safe routes for information decreases the amount of

network downtimesince routes can be switched almost instantaneously uponthe realization of a

fault or error. This is a benefit in any communications network system.

35. Claims 13 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendelet al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9 and 17 above, and further in view of Hansenetal. (US

5,778,419, hereinafter Hansen).

36. Asper claim 13, Radogna and Hendel teach the method of claim 9, but fail to teach the

method further comprising creating a template header and forming each packet header based

upon the template header.

However, in a similar art, Hansen teaches the use of a header template from which all

packet headers are based (e.g. Hansen,col. 6, lines 4-21).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Hansen with Radogna and Hendelbecause of the advantages of using a template when

creating a similar header for each packet. A template is a well-known method forcreatingfiles,

or in this case, a header, which needsto be attached to many packets containing altogether the

same, or very similar data. Thestructure of each packet header should alwaysconsist of the

same elements in the same arrangementso a processor doesnot have to locate the informationit

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 301

“

Application/Contro! Number: 10/260,878 Page 17
Art Unit: 2154

needs prior to performing processing functions. When a template is used, a large amount oftime

can be saved when performinga large numberof transmissions,since it is not necessary to create

an entire packet header during eachiteration. This increases the overall speed and efficiency of

the network, which is beneficial in any communication network system.

37. Asper claim 19, Radogna and Hendel teach the method of claim 17, but fail to teach the

method further comprising creating a template header and using the template header to form each

outbound packet header.

However, in a similar art, Hansen teaches the use of a header template from whichall

packet headersare based (e.g. Hansen, col. 6, lines 4-21).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Hansen with Radognaand Hendelfor similar reasonsas stated above in regards to

claim 13.

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Eric Kuiper whose telephone numberis (571) 272-0953. The

examiner can normally be reached on Mondaythrough Friday, 8:00am to 4:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, John Follansbee can be reached on (571) 272-3964. The fax phone numberforthe

organization where this application or proceedingis assigned is 571-273-8300.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 302

a

Application/Control Number: 10/260,878 Page 18
Art Unit: 2154

Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Eric Kuiper
18 J 2006 LLANSBEE“me JOHN TENT EXAMINER

ENTER 2100

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 303

Application/Control No. Applicant(s)/Patent Under
Reexamination

10/260,878 BOUCHER ETAL. Notice of References Cited - -Examiner Art Unit

Eric Kuiper 2154 Page 1 of 1
U.S. PATENT DOCUMENTS

Document Number Date . .
Country Code-Number-Kind Code MM-YYYY . Classification

L*|a|US-5,920,566 07-1999|Hendelet al. 370/401
i*|8|US-5,991,299 11-1999|Radognaet al. 370/392

*
US-5,892,903 04-1999 Klaus, Christopher W. 709/227

i*|0|US-6,115,615 09-2000|Otaetal 455/422.1
fe [ussiraas a ran

FOREIGN PATENT DOCUMENTS

Document Number Date
Country Code-Number-Kind Code MM-YYYY

*A copyof this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U.S. Patent and Tradamark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 01162006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 304

wn aeo ow w oO oh -

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002FSPALEMENTAL INFORMATION DISCLOSURE * STATEMENTBY APPLICANT
: Inventors: Laurence Boucher,etal.a -1is

v - =
gNecrops 215a

g Cc 5

 >=4Qo3a 9gQanrg Zz6 e°oa m™

U.S. Patent Documents
*Examiner Document
Initial Number Date Name Class Subclass

ese[A|earen|a =

5,898,713 4127199 |, Melzeretal.

Filing Date,
If Appropriate

nr

vl’ +1

€

oa

OTHER ART—NONPATENTLITERATURE DOCUMENTS

=fei>frfefelo|>|

*Examiner
Initial (Including Author, Title, Date, Pertinent Pages, Etc.)

Schwadereret al., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
Decomposition for ASIC Implementation’, from 15" Conference on Local Computer Networks, 5
pages, Sept. 30 — Oct. 3, 1990.

Beach, Bob, IEEE Computer Society Press publication entitled, “UltraNet: An Architecture for
Gigabit Networking”, from 15" Conference on Local Computer Networks, 18 pages, Sept. 30 —
Oct. 3, 1990.

Chessonet al., IEEE Syposium Record entitled, “The Protocol Engine Chipset’, from Hot ChipsIIl,
16 pages, Aug. 26-27, 1991.

Macleanet al., IEEE Global Telecommunications Conference, Globecom ‘91, presentation
entitled, “An Outboard Processor for High Performance Implementation of Transport Layer
Protocols", 7 pages, Dec. 2-5, 1991. , .

Rosset al., IEEE article entitled “FX1000: A high performance single chip Gigabit Ethernet NIC’,
from Compcon '97 Proceedings, 7 pages, Feb. 23-26, 1997.

ES Strayeret al., “Ch. 9: The Protocol Engine” from XTP: The Transfer Protocol, 12 pages, July 1992.

esc 7 Publication entitled “Protocol Engine Handbook", 44 pages, Oct. 1990.

et nK

 Koufopavlou et al., IEEE Global Telecommunications Conference, Globecom ‘92, presentation

entitled, “Parallel TCP for High Performance Communication Subsystems’, 7 pages, Dec. 6-9,

 Lilienkampetal., Publication entitled “Proposed Host-Front End Protocol”, 56 pages, Dec. 1984.

Examiner / - (- Date Considered i 13/2006
*EXAMINER:Initialif reference considered, whetherornotcitation is in conformance with MPEP 609; Draw line throughcitationif not
in conformance and not considered. Include copyof this form with your communication to applicant.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 305

:
|

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

 Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

RAST-PATH APPARATUS FOR RECEIVING DATA
< apes” CORRESPONDINGTO A TCP CONNECTION

Examiner name: Unknown

>a3 oga z6: -006E

U.S, Patent Documents

*Examiner ’ Document Filing Date,iti Number Date Name|class|subctass If AppropriateEBE

Foreign Patent Documents
Translation

Yes

6

pet|
OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Examiner - hy - Date Consideredbon eet al 08
*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copyofthis form with your communication to applicant.

Sheet 1] of |

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 306

U.S. Department ofCommerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher, etal.

Group Art Unit: 2154

Examiner name: Unknown

>aS3 Og8Eyg Zzé >
t

a O06E .

U.S. Patent Documents

Initial Number Name Class If Appropriate
5,598,410 1/28/1997 tae 2°

j=[=[efo]=[=lela]|
: . Foreign Patent Documents

Translation

a

*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Draw line throughcitation if not
in conformance and not considered. Include copyof this form with your communication to applicant.

Sheet 1 of I

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 307

. U.S. Department ofCommerce, Patent and Trademark Office

U.S. Patent Documenis

peeimet|ae|Name|Class

ras|
a0|

Filing Date,
If Appropriate

f

200

230 A
78

5,212,778 nology Center 2100 |

: Pa 950
Ci P0338

«| ps1|

364

709

365

395

395

370

|Class

Foreign Patent Documents
Translation

Yes °o

WO 00/1309 03/09/00 PCT/US98/24943

WO 99/65219 12/16/99 PCT/US99/13184 P|
OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages entitled "Hardware Assisted Protocol Processing”, (which Eugene Feinberg is working on), | page,
printed 11/25/98.re

pefo! Zilog product Briefentitled "Z85C30 CMOS SCCSerial Communication Controller”, Zilog Inc., 3 pages, 1997.
pak|e|Internet pages of Xpoint Technologies,Inc. entitled “Smart LAN Work Requests”, 5 pages, printed 12/19/97.
=i Internet pages entitled: Asante and 1OOBASE-T Fast Ethernet, 7 pages, printed 5/27/97.

Examiner ~ lL ‘ Date Considered i 12/100¢
*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copyofthis form with your communicationto applicant.

Sheet 1 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 308

a

oe . U.S. Department ofCommerce, Patent and Trademark Office Application No.: 10/260,878

K<PrrSgMATION DISCLOSURE STATEMENT BY
|g APPLICANT

Filing date: September 27, 2002

 Inventors: Laurence Boucher,et al. aos

Group Art Unit: 2154

Examiner name: Unknown

CORRESPONDING TO A TCP CONNECTION
Attomey Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document . Filing Date,Nenber”|Datefame|clase|subclass|Tearbanine
A|5,485,579 01/16/96

5,506,966 04/09/96 Ban

She

icedos[ama
06fanisso

[sini[ovasns[sue_—_—isss fa

[356170|onsns|saaeetar[370|«0__Tobpology Cater 2700
g

‘(Tex_]

:

Foreign Patent Documents

250

CEIVED
0

680

Pay

ele a[-[-[=[ol=|e[elolel>|| No Q oS;

Translation

0 01/05107 Al 01/18/01 PCT/US00/19006 pp

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

N Internet pages entitled: A Guide to the Paragon XP/S-A7 Supercomputerat Indiana University, 13 pages, printed12/21/98.

o z°

i
Zale L
\

a~

Edt

Ext Richard Stevens, ‘TCP/IP Illustrated, Volume 1, The Protocols”, pages 325-326 (1994).

Et | Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.
. Gigabit Ethernet Technical Brief, Achieving End-to-End Performance, Alteon Networks,Inc., First Edition,
Esk September 1996.

Examiner ~ eho. Date Considered \[12)0%
*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Drawline through citation if not

in conformanceandnot considered. Include copy of this form with your communication to applicant.
Sheet 2 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 309

U.S. Department of Commerce, Patent and Trademark Office

\9NFGRMATION DISCLOSURE STATEMENT BY Filing date: September27, 2002
By “ APPLICANT Inventors: Laurence Boucher, etal.

i no

|creup arti 2158
T-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown

CORRESPONDINGTO A TCP CONNECTION

Initial

E.

€

&

E.

|ese
|ex|¢
|eak|
|ask_|

Application No.: 10/260,878

74 rave
Attorney Docket No.: ALA-006E

U.S. Patent Documents

DocumentNumber|ae|Name
5,642,482 Pardillos

5,664,114 Krech, Jr. et al.

5,671,355 Collins

5,678,060 Yokoyama etal.

5,692,130 Shobuet al.

5,699,317 Sartoreet al.

5,701,434 Nakagawa

5,701,516 Chengetal.

5,749,095 Hagersten

5,751,715 Chanetal. 370

5,752,078 Delp et al. 395

Foreign Patent Documents

WO 01/05123 Al 01/18/01 PCT/US00/18976

WO 01/40960A1 06/07/01 PCT/US00/32660

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

N Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com, 14 pages,ESIC printed 3/15/97.

VIA Technologies,Inc. article entitled "VT8501 Apollo MVP4", pagesi-iv, 1-11, cover and copyright page,
revision 1.3, Feb. 1, 2000.|exfo .

esefe iReady News Archivesarticle entitled "iReady Rounding Out Management Team with Two Key Executives”,

Filing Date,
Class If Appropriate
395

395

395

709

395

395

395

395

200.2

200.64

200.2

212
RECEIVED

J

3

J

3

‘Oo

230.06 Technology Center 2100
=]Cex

E.

> oa
J

J

~ _

i

E

k

k

|ese|F
k

k

k

X

EJ

ay

eS

[exe [ek
> wa wa

oo tN ~J]

Translation

Sifa FSo

L

M

wT

http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed | 1/28/98. EIk “Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based On iReady’s Design,” PressJ Release October, 1998, 3 pages, printed 11/28/98.

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet 3 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 310

a

” . U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

ORMATION DISCLOSURE STATEMENTBY
" APPLICANT Filing date: September 27, 2002

Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

 Examiner name: Unknown\ 3SFAST-PATH APPARATUS FOR RECEIVING DATA
_1' CORRESPONDING TO A TCP CONNECTION

es

Attomey Docket No.; ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,Initial Number fae|Name|Chass|Subclass|If Appropriate

sasuise[osaase|Kwai[esRECEIVED

579406 logy Centar 2700

w

ae

Elec

Tt

Cc
\nm'Na G

H

-

[al

Je

Esic

om

J

K

Foreign Patent Documents
Translation

“<& F°Document Number

EIk L|wo 01/04770 A2 01/18/01|PCT/US00/18939 po
E M|WO/98/19412 05/07/98|PCT/US97/17257 |

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

_ Internet pages from jReady Products, web sitehttp://www.ireadyco.com/products,html, 2 pages, downloaded

A

pe|

11/25/98.

So iReady News Archives, Toshiba, iReady shipping Internet chip, | page, printed 11/25/98.

 Interprophetarticle entitled "Technology", http://www.interprophet.comv/technology.html, 17 pages, printed 3/1/00.

vr iReady Corporation,article entitled "The I-1000 Internet Tuner", 2 pages, date unknown.

5|om|moc
Examiner = > . Date Considered ,

*EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered, Include copy ofthis form with your communicationto applicant.

Sheet 4 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 311

6 pFENEQRMATION DISCLOSURE STATEMENT BY9

5,937,169 08/10/99|Connery etal.

” . U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

APPLICANT Inventors: Laurence Boucher, et al.

SO|par vis 2156

OY
, SAST-PATH APPARATUSFOR RECEIVING DATA

4 mayer CORRESPONDING TO A TCP CONNECTION
Examiner name: Unknown

Attomey Docket No.; ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,
Initial Number Date Name Class Subclass If Appropriate

ee[2|san|091509|wangera 9

ese[2[ssa|ommnse—|Rowe 709 [300 RECEIVED —]
exe|E|5935205fogo9 Murayamaetal. 709 216

Rameva ix Teg HAY Caer ZOD

Tere[wfsenior|ovzans|vos ea
ene[1Psesoan|oom|siaa arfo
exe[1[90125|waa|raora

Foreign Patent Documents

wo

Translation

ee[x[venice [aa enone|[||
OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

ra iReady article entitled "About Us Introduction", Internet pages fromhttp://www.iReadyco.com/about.html, 3 pages,

 printed | 1/25/98.

iReady News Archive article entitled “Revolutionary Approach to ConsumerElectronics Internet Connectivity
Funded”, San Jose, CA, November 20,1997. 2 pages, printed | 1/2/98.

iReady News Archivearticle entitled “Seiko Instruments Inc. (SII) INTRODUCES WORLD’S FIRST INTERNET-

EFI READY INTELLIGENT LCD MODULESBASED ON IREADY TECHNOLOGY,”Santa Clara, CA and Chiba,
Japan, October 26, 1998, 2 pages, printed 11/2/98.

Examiner . ‘ Date Considered |

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline through citation if not

NEWSwatch article entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November5, 1996, printed
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 5 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 312

Filing Date,
If Appropriate*Examiner|subclassInitial Number

130

i
a

é

&

E.

3 ,005,

J 009,

5 i

‘

}

k A
k tsJiPEe *|-[-|=[o/=[>]o[o]=|>|pa c[sne7356[owowoo|andesoneiai[70.29Tedhmogy Contr 210|

Pune

p

C

EKper
Foreign Patent Documents

On u rng

Translation

Document Number

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Esk N EETimesarticle entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner", by David Lammers, 2 pages,cy printed 11/02/98.

ESK

ESE je Adaptecarticle entitled "AEA-71 10C-a DuraSAN product", 11 pages, printed 10/1/01.
Esk iSCSI HBAarticle entitled "iSCS! and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic, Adaptec,

JNI", 8 pages, printed 10/01/01. |

Examiner . Date Considered

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citation if not
in conformanceand not considered. Include copyofthis form with your communication to applicant.

"Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages, printed 4/10/98.
Sheet 6 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 313

. - U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

\PINRORMATION DISCLOSURE STATEMENT BY_|Filing due: September 27, 2002
“ APPLICANT Inventors: Laurence Boucher, etal.

u
, (sam Group Art Unit: 2154

gSFAST-PATH APPARATUSFOR RECEIVING DATA
TRAOEY” CORRESPONDING TO A TCP CONNECTION

Examiner name: Unknown

 2o3a oO9°a= zi) >cm>Soan mi

U.S. Patent Documents

*Examiner Document

Initial Number Date Name Class
Filing Date,
If Appropriate

OK

cok

A

c
\

a 07/18/97

709 230

370 392

709 238

709 230

Technplogy Center 2100z[-|-/=/o]=[e]efol=[>|
Foreign Patent Documents

OTHERART(Including Author,Title, Date, Pertinent Pages, Etc.

Translation

YesSubclass -

ete1|
°o

iReady Design”, Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98.

Examiner - Le _ Date Considered l / (2 [10%
*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

iSCSI HBAarticle entitled "FCE-3210/6410 32 and 64-bit PCI-to-Fibre Channel HBA", 6 pages,printed 10/01/01.

exe|0 ISCSI.com article entitled "iSCSI Storage", 2 pages, printed 10/01/01.
“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukas et al., IEEE

esgic Transactions on Networking,vol. 6, no. 6, December 1998.

eat | IReady Newsarticle entitled “Toshiba Delivers First Chips to Make Consumer Devices Intemet-Ready Based on

Sheet 7 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 314

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

ATION DISCLOSURE STATEMENT BY Filing date: September27, 2002

APPLICANT Inventors: Laurence Boucher,et al.

S Group Art Unit: 2154
, Jf

< meanttAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

Attomey Docket No.: ALA-006E

*Examiner Filing Date,
Initial If Appropriate

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

United States Patent Application No. 08/964,304, by Napolitano,et al., entitled “File Array Storage Architecture”,
filed 11/04/97.

“File System Design For An NFS File Server Appliance”, Article by D. Hitz, et al., 13 pages.

Adaptec Press Releasearticle entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May 4, 2000,
printed 6/14/00.

ao6 Adaptec article entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.

Examiner /. ~ lee~ Date Considered | (3 [2006
*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609, Drawline through citation if not
in conformance and not considered. Include copyofthis form with your communication to applicant.

Sheet 8 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 315

4c

6

. - U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

S TION DISCLOSURE STATEMENT BYar
Filing date: September 27, 2002

APPLICANT Inventors: Laurence Boucher,et al.

dismay2158
aPAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown

Attorney Docket No.: ALA-006E

DocumentNumber Powe |tomecs

Filing Date,
If Appropriate

*Examiner
Initial

1 7 2003ebf
f

‘y 4 rba"
&

Cy

iD =es
esee
po
po
eees
po
pO
eses
po
po
Po
es

Foreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

|Trasation

N_|Adaptec article entitled “EtherStorage White Paper”, 7 pages, printed 7/19/00.

CIBC World Markets article entitled “Computers; Storage”, by J. Berlino et al., 9 pages, dated August 7, 2000.

”

Merrill Lynch article entitled “Storage Futures”, by S. Milunovich, 22 pages, dated May 10, 2000.
aa|=

CBS Market Watcharticle entitled "Montreal Start-Up Battles Data Storage Botttleneck”, by S. Taylor, dated March
5eat , 2000, 2 pages, printed 3/7/00.

Examiner ¢. \ : Date Considered \| 13 | 2eDe
*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet 9 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 316

 }_* + U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher, et al.

Group Art Unit: 2154

FAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

U.S. Patent Documents

Filing Date,
lf Appropriate

*Examiner Document
Initial Number

RECEIVED _|

nology Center 2100=[~|-|=[o]~]e[e[o]=[>
Foreign Patent Documents

Translation

[BeareNaber oi No

ey

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

esk N Internet-draft article entitled “SCSI/TCP (SCSI over TCP)”, by J. Satran etal., 38 pages, dated February 2000,
printed 5/19/00.

 Esk Internet pages entitled “Technical White Paper-Xpoint’s Disk to LAN Acceleration Solution for Windows NT

Server,” 16 pages, printed 6/5/97.

EETimesarticle entitled “Enterprise System Uses Flexible Spec,” dated August 10,1998, printed 1 1/25/98.
 jest| Jato Technologies article entitled “Network Accelerator Chip Architecture,” twelve-slide presentation, printed8/19/98.

*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered, Include copy ofthis form with your communication to applicant.

Sheet 10 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 317

” » U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

ORMATION DISCLOSURE STATEMENTBY
6. APPLICANT Inventors: Laurence Boucher,et al.

Mism|spai 25
PAST-PATH APPARATUSFOR RECEIVING DATA

: mane’ CORRESPONDINGTO A TCP CONNECTION

Filing date: September 27, 2002

Examiner name: Unknown

Attorney Docket No.: ALA-006E

U.S. Patent Documents

* Examiner Document
Initial Number

Filing Date,
If Appropriate

|
pfSUL 1 7 2003=[~|-]=[o]=[>/olo]=|>|

Foreign Patent Documents

||

||
||

||

Translation

[—Couney——[Giss[Siblas[Yer[No]

OTHER ART(Including Author,Title, Date, Pertinent Pages,Etc.

est Internet pages entitled “Smart Ethernet NetworkInterface Cards”, which Berend Ozceri is developing, printed

Document Number

11/25/98.

Internet pages of Xaqti corporation entitled “GigaPower Protoco] Processor Product Review,”printed 11/25/99.

printed 6/3/99.| Internet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert J. Walsh,
Examiner Lv. I - Date Considered Y 3 200
*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copyof this form with your communication to applicant.

Sheet |] of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 318

1]
~<a

‘@)

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

RKAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

Examiner name: Unknown

{>
54nn 9g3pale& z9 >c?SSo Nnler]

U.S. Patent Documents

Initial Number

pfat
fat
ect
pf
ef
eeaee
fet
PT
PU

Foreign Patent Documents

Filing Date,Fctass|Subclass If Appropriate

tr
=

D

cp =D

Technology Center 210

' l

Yes

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

etic Internet pages of InterProphetentitled “Frequently Asked Questions”, by Lynne Jolitz, printed 6/14/00.

Internet pages entitled “iReady Products,” printed 11/25/98.

Andrew S. Tanenbaum, “Computer Networks,” Third Edition, 1996, ISBN 0-13-349945-6.
Form 10-K for Exelan,Inc., for the fiscal year ending December 31, 1987 (10 pages).

exe|r| Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1988 (10 pages).
Exelan Inc. as submitted in Application Serial No. 09/464,283.

Examiner 7” k . Date Considered y 13/ 20&G
*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Drawline through citationif not

“Second Supplemental Information Disclosure Statement per 37 C.F.R. §1.97(i)”, dated July 29, 2002 relating to

in conformance and not considered. Include copy of this form with your communication to applicant.
Sheet 12 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 319

|

| + U.S. Deparment of Commerce, Patent and Trademark Office Application No.: 10/260,878

IRRMATION DISCLOSURE STATEMENT BY
APPLICANT

Filing date: September 27, 2002 .z

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: UnknownG raagt¥FAST-PATH APPARATUSFOR RECEIVING DATA
"CORRESPONDING TO A TCP CONNECTION Attomey Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,
If Appropriate

2001/0025315A1

C|2001/0004354A1

01/10/01

Stes
oT
TT

—
4
oT

,
a a

|
||
|| JUL 17 2003 |

PE

ie

[=/o}=[[elole[>|
Foreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Translation

WindRiverarticle entitled “Tornado:For Intelligent Network Acceleration”, copyright Wind River Systems, 2001, 2
ESic L pages.

WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks”, Copyright Wind
River Systems, 2002, 7 pages.

dw

 Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation, 1999, 8qwT petet=fezte|
Examiner A —— 0Dwa QO Oo ag,aao3Qa — wyS

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline through citationifnot
in conformance and not considered. Include copyof this form with your communication to applicant,

Sheet 13 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 320

SeoerOaEas - —_—

: © U.S, Department of Commerce, Patent and Trademark Office|ApplicationNo:10760878
“INFORMATION DISCLOSURE STATEMENT BY
Lt 5 0 Group Art Unit: 2154

Attomey Docket No.: ALA-006E

Filing Date,
If Appropriate

APPLICANT

 ¢ ,fAST-PATH APPARATUSFOR RECEIVING DATA
Mmaot®" CORRESPONDING TO A TCP CONNECTION

__ U.S. Patent Documents; ;

aa

Ew [oefoimiaes[oan|Gey__—*+dt>_|

.

:

.

'200‘RECEIVED _|
wiz|

OU

[D
PE
Gi

ae |e|
|exe||653.360|onrivioz__|Mutleretal.

potoreTTT
psp
pep

i}

Foreign Patent Documents

a

OTHERART(Including Author, Title, Date, Pertinent Pag

es, Etc.

 Article from Rice University, Department ofComputerScience entitled “Lazy Receiver Processing (LRP): A New
Network Subsystem Architecture for Server Systems”, by Peter Druschel and Gaurav Banga, 15 pages.

Internet RFC/STD/FYI/BCP Archives article with heading “RFC2140”entitled “TCP Control Block Interdependence”, web address http://www.faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet14 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 321

Page 1 of 2

UNITED STATES PATENT AND TRADEMARK OFFIGE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTSP.O, Box 1450

Alexandria, Virginia 22313-1450govwww. upto,

BIBDATASHEET CONFIRMATION NO. 9902
Bib Data Sheet

FILING OR 371(c)

SERIAL NUMBER DATE GROUP ART UNIT
10/260,878 09/27/2002 ob

RULE

ATTORNEY
DOCKET NO.

ALA-O06E

APPLICANTS

LaurenceB. Boucher, Saratoga, CA;
Stephen E. J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;
David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;
Daryl D. Starr, Milpitas, CA;

te CONTINUING DATA RREERRERERRRERKEREKRAEKEE

This application is a CIP of 10/092,967 03/06/2002 PAT 6,591,302
which is a CIP of 10/023,240 12/17/2001 PAT 6,965,941
and is a CIP of 09/464,283 12/15/1999 PAT 6,427,173
which is a CIP of 09/439,603 11/12/1999 PAT 6,247,060
which is a CIP of 09/067,544 04/27/1998 PAT 6,226,680
which claims benefit of 60/061 ,809 10/14/1997
and said 10/092,967 03/06/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620
which claims benefit of 60/098,296 08/27/1998
and is a CIP of 09/141,713 08/28/1998 PAT 6,389,479
which claims benefit of 60/098,296 08/27/1998
and said 10/092,967 03/06/2002
is a CIP of 09/514,425 02/28/2000 PAT6,427,171
and is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
andis a CIP of 09/675,484 09/29/2000 PAT 6,807,581
andis a CIP of 09/675,700 09/29/2000
andis a CIP of 09/789,366 02/20/2001 PAT 6,757,746
andis a CIP of 09/801,488 03/07/2001 PAT 6,687,758
and is a CIP of 09/802,551 03/09/2001
andis a CIP of 09/802,426 03/09/2001
andis a CIP of 09/802,550 03/09/2001 PAT 6,658,480
and is a CIP of 09/855,979 05/14/2001 *
and is a CIP of 09/970,124 10/02/2001
(*)Data provided by applicant is not consistent with PTO records.

FOREIGN APPLICATIONS **#*####+4104+0+s

1F REQUIRED, FOREIGN FILING LICENSE GRANTED

Foreign Priority claimed Q yes no

85usc 119 (a-d) conditions C) yes L) no CD met after
Allowance CA 89 3

STATE OR|SHEETS INDEPENDEN
COUNTRY|DRAWING CLAIMS

Examiner's Signature Initials

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 322

Page 2 of 2

Fast-path apparatus for receiving data corresponding to a TCP connection

C] Ati Fees

.16 Fees(Filing)

FILING FEE |FEES: Authority has been given in Paper Q 1.17 Fees (Processing Ext. of
RECEIVED _sINo. to charge/credit DEPOSIT ACCOUNT jitime }

for following:
r following C) 1.48 Fees (Issue)

Q) credit

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 323

Applicant(s)/Patent under
Reexamination

9z°°to-—_c9oOg<2—w2£aa_<

Index of Claims

BOUCHERETAL.
Examiner Art Unit

Eric Kuiper 2154

10/260,878il

(Through numeral) ;Cancelled Non-ElectedRejected

ObjectedInterference

Eeeckctckteletstalslatctelalselalislalstcstats
8s83

Part of Paper No. 01162006U.S. Patent and Trademark Office

CAVIUM-1002

onNfa-Oo$22a
iOo&<x>3££a>wooO

Application/Control No. Applicant(s)/Patent under
Reexamination

BOUCHERETAL.10/260,878

Eric Kuiper 2154

SEARCH NOTES

SEARCHED (INCLUDING SEARCH STRATEGY)

1/13/2006

1/16/2006

1/6/2006 EJK

 Search Notes

Subclass

Performed inventor search in PALM

Searched EAST Databases
See attached Search History

Conducted PLUS search

U.S. Patent and Trademark Office Part of Paper No. 01162006

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 325

Application No.: 10/260,878

Filing date: September 27, 2002 -

Inventors: Laurence Boucher, et al. .

: caAPPARATUS FOR RECEIVING DATA~ CORRESPONDINGTOATCPCONNECTTO A TCP CONNECTION song one:Aue—_____ Docket No.: ALA-006E

| U.S. Patent Documents
ooinitial Number

LY)
ON
Lda!|€|2001/0004354A1

Filing Date,
ifAppropriate

O1/tO/0t

O/tO/0rNSH
JUL 1 7 2003-! ii u oaj

CT

q 5

A

EXE

pop
ep
jr]
[of
pep
iy

Translation

OTHER ART{Including Author, Title, Date, Pertinent Pages, Etc.

WindRiveranicle entitled “Tomado: For Intelligent Network Acceleration”, copyright Wind River Systems, 2001, 2
pages.

WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks", Copyright Wind
River Systems, 2002, 7 pages.

Inte] article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation, 1999, 8
pages. ,

Examiner aL a Date Considered 1 |[200% S/[25j06
| EXAMINER: Initialif reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not
| in conformance and not considered. Include copyofthis form with your communication to applicant,

Sheet {3 of 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 326

 —

Sy THE UNITED STATES PATENT AND TRADEMARK OFFICE

SSication of Laurence B. Boucher,etal. Ser, No: 10/260,878
Filing Date: September 27, 2002 Examiner: Eric J. Kuiper

Atty. Docket No: ALA-006E GAU: 2154

For: FAST-PATH APPARATUSFOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

April 23, 2006

MS Amendment

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Amendment

Sir:

In response to an Office Action dated January 27, 2006, please enter the following

Amendment to the Claims and consider the following Remarks.

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 327

Amendmentto the Claims

1. (currently amended) A method for network communication, the method
comprising:

receiving a plurality of packets from the network, each ofthe packets
including a media access control layer header, a network layer header and a transport
layer header;

processing the packets by a first mechanism,so that for each packet the

network layer header and the transport layer header are validated without an interrupt

dividing the processing of the network layer header andthe transport layer header;

sorting the packets, dependent uponthe processing,into first and second

types of packets, so that the packetsof the first type each contain data;

sending the data from each packetofthe first type to a destination in

memory allocated to an application without sending any of the media access control layer

headers, network layer headers or transport layer headers to the destination.

2. (original) The method of claim 1, wherein processing the packets byafirst

mechanism further comprises: .

processing the media access control layer header for each packet without

an interrupt dividing the processing of the media access control layer header and the

network layer header.

3. (original) The methodofclaim 1, further comprising:

processing an upper layer headerofat least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header

correspondsto a protocol layer above the transport layer.

4:~ (original) The methodofclaim 1, further comprising:

processing an upperlayer headerofat least one of the packets of the

second type by a second mechanism,thereby determining the destination.

Amendmentof App. Ser. No. 10/260,878 2

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 328

5. (currently amended) The method of claim 1, further comprising:

processing a transport layer header of another packet by a second

mechanism,prior to receiving the plurality of packets from the network, thereby

establishing a Franspert Transmission Control Protocol (TCP) connection for the packets

ofthe first type.

6. (currently amended) The method of claim 1, wherein sorting the packets

includes classifying each of the packetsofthe first type as having an Internet Protocol

(IP) header and a Franspert Transmission Control Protocol (TCP).

7. (original) The methodofclaim 1, further comprising:

transmitting a secondplurality of packets to the network, each of the second

plurality of packets containing a media access control layer header, a network layer

header and a transport layer header, including processing the second plurality of packets

by the first mechanism,so that for each packet the media access control layer header, the

network layer header and the transport layer header are processed without an interrupt

dividing the processing of the media access control layer header, the network layer

header andthe transport layer header.

8. (original) The methodofclaim 1, wherein the first mechanism is a sequencer

running microcode.

9. (currently amended) A method for communicating information over a network,

the method comprising: |
obtaining data from a sourceallocated by a first processor;

dividing the data into multiple segments;

prepending a packet header to each of the segments by a second processor,

thereby forming a packet corresponding to each segment, each packet header containing a

media access control layer header, a network layer header and a transport layer header,

wherein the network layer header is Internet Protocol (IP), the transport layer headeris

AmendmentofApp. Ser. No. 10/260,878 3

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 329

Transmission Control Protocol (TCP) and the prepending of each packet header occurs

without an interrupt dividing the prepending of the network layer header and the transport

layer header; and

transmitting the packets to the network.

10.—(original) -The method of claim 9, wherein prepending a packet headerto

each of the segments by a second processorfurther comprises:

prepending the media access control layer header for each packet without

an interrupt dividing the prepending of the media access control layer header and the

networklayer header.

11. (currently amended) The method of claim 9, wherein each packet header

contains an Internet Protocol (IP) header and a Franspert Transmission Control Protocol

(TCP) header.

themedia-access-controHayerheader,

12. (currently amended) The methodof claim 9, further comprising establishing a

Franspert Transmission Control Protocol (TCP) connectionbythefirst processor and

using the connectionto prepend the packet header to each of the segments by the second

processor.

13. (original) The methodof claim 9, further comprising creating a template

header and forming each packet header based upon the template header.

14. (original) The method of claim 9, wherein obtaining data from the source in

memory allocated bythe first processoris performed by a Direct Memory Access (DMA)

unit controlled by the second processor.

15. (original) The methodofclaim 9, further comprising prepending an upper

layer headerto the data, prior to dividing the data into multiple segments.

Amendment of App. Ser. No. 10/260,878 4

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 330

16. (original) The method of claim 9, further comprising:

receiving another packet from the network,the other packet containing a

receive header including information corresponding to a network layer and a transport

layer; and

selecting whether to process the other packet by thefirst processor or by

the second processor.

17. (original) A method for communicating information over a network,the
method comprising:

providing multiple segments of data;

prepending an outbound packet header to each of the segments, thereby

forming an outbound packet corresponding to each segment, the outbound packet header

containing an outbound media access control layer header, an outbound network layer

header and an outboundtransport layer header, wherein the prepending of each outbound

packet header occurs without an interrupt dividing the prepending of the outbound media

access control layer header, the outbound network layer header and the outbound

transport layer header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network, each of the inbound

packets including an inbound media access control layer header, an inbound network

layer header and an inboundtransport layer header;

processing the inbound packets, so that for each packet the inbound

network layer header and the inboundtransport layer headerare validated without an

interrupt dividing the processing of the inbound network layer header and the inbound

transport layer header.

18. (original) The method of claim 17, wherein the processing the inbound

packets is performed simultaneously with the prepending the outbound packet headerto

each of the segments.

Amendmentof App. Ser. No. 10/260,878 5

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 331

19. (original) . The method of claim 17, further comprising creating a template

header and using the template header to form each outbound packet header.

20. (original) The methodof claim 17, wherein providing multiple segments of

data includes dividing a block of data into the segments.

21. (original) The method of claim 20, further comprising prepending an upper

layer headerto the block ofdata, prior to dividingthe block of data into multiple

segments.

22. (currently amended) The methodofclaim 17, further comprising:

sending data from each inbound packetto a destination in memory

allocated to an application without sending any of the media access control layer headers,

network layer headers or transport layer headers to the destination.

23, (currently amended) The method of claim +4 22, further comprising:

processing an upperlayer headerofat least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header

correspondsto a protocol layer abovethe transport layer.

24. (currently amended) The method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to

receiving the plurality of packets from the network, thereby establishing a Franspert

Transmission Control Protocol (TCP) connection for the inbound packets.

AmendmentofApp. Ser. No. 10/260,878 6

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 332

Remarks

I. Claim Objections

Applicants have amended claim 11 to remove the phrase: “the media access

control layer header,”. Applicants respectfully assert that claim 11, as amended,is no

longer objectionable.

II. Claim Rejections

A. 35 U.S.C. §102

The Office Action rejects claims 1, 2, 6 and 7 under 35 U.S.C. §102(e) as being

anticipated by U.S. Patent No. 5,920,566 to Hendel etal. (hereinafter “Hendel”).

Regarding claim 1, the Office Actionstates:

As per claim 1, Hendel teaches a method for network
communication (e.g. Hendel, col. 4, lines 53-55), the method comprising:

receiving a plurality of packets from the network, each of the
packets including a media access control layer header, a network layer
header and a transport layer header (e.g. Hendel, col. 4, lines 56-67; col. 5,
lines 1-8); :

processing the packets by a first mechanism, so that for each
packet the network layer header and the transport layer header are
validated without an interrupt dividing the processing of the network layer
header and the transport layer header (e.g. Hendel, col. 12, lines 66-67;
col. 13, lines 1-16);

sorting the packets, dependent upon the processing, into first and
second types of packets, so that the packets of the first type each contain
data (e.g. Hendel, col. 5, lines 26-33);

sending the data from each packetofthe first type to a destination
without sending any of the media access control layer headers, network
layer headers or transport layer headers to the destination (e.g. Hendel,
col. 13, lines 63-67; col. 14, lines 1-9).

Applicants respectfully disagree with the Office Action assertion that Hendel

teaches “processing the packets byafirst mechanism,so that for each packet the network

layer header andthe transport layer header are validated without an interrupt dividing the

processing of the network layer header andthe transport layer header (e.g. Hendel,col.

12, lines 66-67; col. 13, lines 1-16).” Column 12, lines 66-67 and column 13, lines 1-16

of Hendelstate: .

An innovative structure and methodfor transmitting the packet and
control information across the internal link will now be described with

Amendmentof App. Ser. No. 10/260,878 7

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 333

reference to FIGS. 8A and 8B. FIG. 8A is a simplified diagram of the
packetstructure utilized. More particularly, as the inbound subsystem has
determined certain information regarding the packet, e.g., routing, it is
advantageous to simply convey this information to the outbound
subsystem so that subsequent processing, such as the header field
replacement, can easily be performed without reperforming the same steps
performed by the inbound subsystem. Furthermore, it is desirable to
maintain end-to-end error robustness. Thus, the inbound subsystem
encapsulates the packet 800 with control information 805 and a cycle
redundancy code (CRC) 810. The outbound system receives the
encapsulated packet, determines frame validity using CRC 810,strips the
CRC 810 and removes the control information 805 to determine the

subsequentprocessing to be performedto output the packet.

This paragraph does not teach any processing of a network layer header or a

transport layer header, let alone “processing the packets by a first mechanism,so that for

each packet the network layer header and the transport layer header are validated without

an interrupt dividing the processing of the network layer header and the transport layer

header.” As noted in column 2, lines 24-25 of Hendel, “Layer 2 provides for

transmission of frames of data and error detection.” The “outbound system”that

“determines frame validity using: CRC 810” appears to be directed to layer 2 rather than

layer 3 (network layer)or layer 4 (transport layer), in contrast to claim 1. For example,

IP and TCP (network andtransport layer protocols) headers each have checksumsthat

would be checked to validate the IP and TCP headers of a packet. Applicants
respectfully assert that Hendel does not teach such validation, and further does not teach

such validation “without an interrupt dividing the processing of the network layer header

and the transport layer header.”

Applicants also respectfully disagree with the Office Action assertion that Hendel

teaches “sending the data from each packetofthe first type to a destination without

sending any of the media access control layer headers, network layer headersor transport

layer headers to the destination (e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).”

Column 13, lines 63-67 and column 14, lines 1-9 of Hendelstate:

The input interface 845 outputs to the cascading input process
(CIP) 850 the packet stripped of the CRC and the CIP 850 removesthe
control information and forwardsthe packet, stripped of the encapsulating
CRC and control information, to the packet memory 855. The control
information is stored in the control field 857 corresponding to the packet

AmendmentofApp. Ser. No. 10/260,878 8

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 334

stored in the memory 855. The output port process 860 retrieves the
packet and the control information from the packet memory 855 and based
upon the control information, selectively performs modifications to the
packet and issues control signals to the outputinterface 865 (i.e., MAC).

Applicants respectfully assert that this paragraph does not teach “sending the data
from each packetofthe first type to a destination without sending any of the media
access control layer headers, network layer headers or transport layer headers to the

destination.” As shown in FIG. 8A of Hendel, stripping the “control information 805”

and “CRC 810”that “encapsulates the packet 800” leaves the header and data that form
the “packet 800”intact. .

Forat least these reasons, applicants respectfully assert that Hendel does not

anticipate claim 1 or any claim that depends from claim 1.

Regarding claim 2, the Office Actionstates:

As per claim 2, Hendel teaches the method of claim 1, wherein
processing the packets by a first mechanism further comprises:

processing the media access control layer header for each packet
without an interrupt dividing the processing of the media access control
layer header and the network layer header (e.g. Hendel, col. 12, lines 66-
67; col. 13, lines 1-16).

Column 12, lines 66-67 and column 13,'lines 1-16 of Hendel are quoted above.

Applicants respectfully assert that this paragraph does not teach any processing of a

network layer header, let alone “processing the media access control layer header for

each packet without an interrupt dividing the processing of the media access control layer

headerand the network layer header.” Forat least this reason, applicants respectfully

assert that Hendeldoes notanticipate claim 2.

Regarding claim 6, the Office Actionstates:

As per claim 6, Hendel teaches the method of claim 1, wherein
sorting the packets includesclassifying each ofthe packetsof the first type
as having an Internet Protocol (IP) header and a Transport Control
Protocol (TCP) (e.g. Hendel, col. 6, lines 50-61).

Column 6, lines 50-61 of Hendelstate:

The MLDNE's distributed architecture can be configured to route
messagetraffic in accordance with a number of knownrouting algorithms
such as RIP and OSPF. In a preferred embodiment, the MLDNEis
configured to handle messagetraffic using the Internet suite of protocols,

Amendment of App. Ser. No. 10/260,878 9

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 335

and morespecifically the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) over the Ethernet LAN standard and medium access
control (MAC) data link layer. The TCP is also referred to here as an
exemplary Layer 4 protocol, while the IP is referred to repeatedly as a
Layer 3 protocol. However, other protocols can be used to implement the
concepts of the invention.

Applicants respectfully assert that this paragraph does not teach “wherein sorting

the packets includesclassifying each of the packets of thefirst type as having an Internet

Protocol (IP) header and a Transport Control Protocol (TCP).” Forat least this reason,

applicants respectfully assert that Hendel does notanticipate claim 6.

Regarding claim 7, the Office Actionstates:

As per claim 7, Hendel teaches the method of claim 1, further
comprising:

transmitting a second plurality of packets to the network, each of
the second plurality of packets containing a media access control layer
header, a network layer header and a transport layer header, including
processing the secondplurality of packets by the first mechanism, so that
for each packet the media access control layer header, the network layer
header and the transport layer header are processed without an interrupt
dividing the processing of the media access control layer header, the
network layer header and the transport layer header (e.g. Hendel, col. 12,
lines 66-67; col. 13, lines 1-16).

Column 12, lines 66-67 and column 13, lines 1-16 of Hendel are quoted above.

Applicants respectfully assert that this paragraph does not teach any processing of a

network layer header ora transport layer header, let alone “transmitting a second plurality

of packets to the network,each ofthe second plurality of packets containing a media

access control layer header, a network layer header anda transport layer header,

including processing the secondplurality of packets by the first mechanism,so that for

each packet the media access control layer header, the network layer header and the

transport layer header are processed without aninterrupt dividing the processing of the

media access control layer header, the network layer header and the transport layer

header.” Forat least this reason, applicants respectfully assert that Hendel does not

anticipate claim 7.

Amendment of App. Ser. No. 10/260,878 10

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 336

B. 35 U.S.C. §103

The Office Action rejects claims 3 and 4 under 35 U.S.C. §103(a) as being

unpatentable over Hendelin view of U.S. Patent No. 6,115,615 to Otaet al. (hereinafter

“Ota”). Regarding claim 3, the Office Action states:

As per claim 3, Hendel teaches the method of claim 1, butfails to
teach the method further comprising:

processing an upperlayer headerofat least one of the packets by a
second mechanism, thereby determining the destination, wherein the upper
layer header correspondsto a protocol layer above the transport layer.

However, in a similar art, Ota teaches a network communications
system that uses an application layer level address to indicate the
destination and route packets through the network (e.g. Ota, col. 7, lines
18-25, 40-53).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Ota with Hendel because of the

advantages of using an upper layer header to determine the destination of
packets in a network. Network layer and transport layers also generally
include addresses or indications of destinations for the packets and
including this feature into the application layer as well provides another
fail-safe step for the network in the event of a failure in some portion of
the network. Havingfail-safe routes for information decreases the amount
of network downtime since routes can be switched almost instantaneously
upon the realization of a fault or error. This is a benefit in any
communications network system.

Applicants have amended claim | torecite, in part, “sending the data.from each

packetofthe first type to a destination in memory allocated to an application without

sending any of the media access control layer headers, network layer headers or transport

layer headers to the destination.” Applicants respectfully assert that Ota does not teach

“sending the data from each packetofthefirst type to a destination in memory allocated

to an application without sending any of the media access control layer headers, network

layer headers or transport layer headers to the destination.” Ota instead allegedly “gives

a unique application layer level address to a mobile station, and regards a network layer

level address (IP address in this embodiment) as an address indicating a route.” Ota,

column 7, lines 40-43. Forat least this reason, applicants respectfully assert that claim 3

is nonobvious over the combination of Ota and Hendel proposed by the Office Action.

Amendment of App. Ser. No. 10/260,878 11

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 337

Regarding claim 4, the Office Actionstates:

Asper claim 4, Hendel teaches the method of claim 1, butfails to
teach the method further comprising:

processing an upperlayer header of at least one of the packets of
the second type by a second mechanism, thereby determining the
destination.

However, in a similar art, Ota teaches a network communications
system that uses an application layer level address to indicate the
destination and route packets through the network (e.g. Ota, col. 7, lines
18-25, 40-53).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Ota with Hendel for similar reasons as

stated above in regardsto claim 3.

Applicants respectfully assert that claim 4 is nonobvious over the combination of

Ota and Hendel proposed by the Office Action for similar reasons as stated above in

regardsto claim 3.

The Office Actionrejects claim 5 under 35 U.S.C. §103(a) as being unpatentable

over Hendel in view of U.S. Patent No. 5,892,903 to Klaus (hereinafter “Klaus”.

Regarding claim 5, the Office Actionstates:

As per claim 5, Hendel teaches the method of claim 1, further
comprising:

processing a transport layer header of another packet by a second
mechanism,prior to receiving the plurality of packets from the network
(e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

Hendel fails to teach establishing a Transport Control Protocol
(TCP) connection for the packets ofthefirst type.

However, in a similar art, Klaus teaches the use of a transport layer
headerto create a TCP connection over a network(e.g. Klaus, col. 5, lines
8-23).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Klaus with Hendel because of the

advantages of using a transport layer header to provide a TCP connection
over a network. The use transport layer, included in the well-known OSI
model, is advantageous because it provides segmentation of
communication functions across the various layers of the protocol stack
and modularizes the functions required to implement network
communication, which simplifies computer communication operation and
maintenance (e.g. Klaus, col. 2, lines 14-23). The use of the OSI model
allows for communication across various systems and platforms without
the need for conversion or modification of the communication method.

This can greatly increase the efficiency of communication across a
network, which is beneficial in any communications network system.

Amendment of App. Ser. No. 10/260,878 12

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 338

Applicants respectfully disagree with the Office Action assertion that “It would
have. been obviousto oneskilledin the art at the time the invention was made to combine

Klaus with Hendel because of the advantages of using a transport layer header to provide

a TCP connection over a network.”

Hendelis directed to “an apparatus and related methodfor relaying packets by a

multi-layer distributed network element according to knownrouting protocols.” Hendel,

column 4, lines 53-55. “The network element should be able to operate at bridge-like

speeds, yet be capable of routing packets across different subnetworksand provide upper

layer functionalities such as quality of service.” Hendel, column4, lines 47-50.

Establishing a TCP connection, which is complicated and performedin software, would

contradict Hendel’s “need for a network element that can handle changing network

conditions such as topology and messagetraffic yet makeefficient use of high

performance hardware to switch packets based on their Layer 2, Layer 3, and Layer 4

headers.” Hendel, column 4,lines 53-55.

Moreover,as noted in column3, lines 29-49 of Klaus, “In the TCP/IP protocol, a

communication connection is established through a three handshake open network

protocol. The first handshake or data message is from a source computerand istypically

called a "synchronization" or "sync" message. In response to a sync message, the

destination computer transmits a synchronization-acknowledgment("sync-ack") message.

The source computerthen transmits an acknowledgment("ack") message and a

communication connection between the source and destination computer is established.”

This multi-step procedure, performed in software and over a network, would appear to

one of ordinary skill to slow the routing and switching of packets that Hendelis directed

to.

In addition, it is not asserted in the Office Action, andit is certainly not apparent

from the cited references, what computerthe “network element” of Hendel would

establish a TCP connection with, if combined with Klaus as proposed by the Office

Action. Stated differently, applicants respectfully assert that the combination of Klaus

and Hendelthat is proposed by the Office Action maybe inoperable, teaching one of

ordinary skill in the art away from making such a combination.

AmendmentofApp. Ser. No. 10/260,878 13

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 339

Applicants respectfully assert that these disadvantages of establishing a TCP

connection would far outweigh the advantages alleged by the Office Action, which for

the most part would not even be applicable to the proposed combination of Klaus and
Hendel.

Forat least this reason, applicants respectfully assert that claim 5 is nonobvious

over the combination of Klaus and Hendel proposed by the Office Action.

The Office Action rejects claim 8 under 35 U.S.C. §103(a) as being unpatentable

over Hendel in view of U.S. Patent No. 5,991,299 to Radognaet al. (hereinafter

“Radogna”). Regarding claim 8, the Office Actionstates:

Asper claim 8, Hendel teaches the method of claim 1, butfails to
teach the method wherein the first mechanism is a sequencer running
microcode.

However, in a similar art, Radogna teaches the use of a dedicated
' sequencer running microcode to perform network communication and

headertranslation and processing(e.g. col. 4, lines 25-30).
It would have been obviousto oneskilled in the art at the time the

invention was made to combine Radogna with Hendel because of the
benefits of using a specialized processor to handle various tasks in a
communications system. Using a sequencer for processing header
information can greatly accelerate a frame or packet through a network
since the central processing unit does not become overburdened when
many packets need to be processed. This frees up the central processorto
handle other networking tasks, therefore increasing the speed and
efficiency of transmissions through the network. The use of software
microcode for this processing easily accommodates new protocols and can -
bypass hardware processing in the event of a hardware failure. This is
beneficial in any communications network system.

Applicants respectfully assert that, assuming arguendo Radogna and Hendel were

combinedas proposed by the Office Action, the resulting device would not be processing

the packets by a sequencer running microcode, so that for each packet the network layer

header andthe transport layer header are validated without an interrupt dividing the

processing of the network layer header and the transport layer header, in contrast to claim

8. There is, for example, no teaching in Radogna or Hendelofvalidating a transport

layer header,let alone the limitation of “for each packet the network layer header and the

transport layer header are validated without an interrupt dividing the processing of the

network layer header andthe transport layer header.” Radogna, like Hendel, is directed

AmendmentofApp. Ser. No. 10/260,878 14

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 340

to high speed headertranslation processing for bridges and routers. Validating transport

layer headers would not only be a waste of time in such devices, but may cause

unnecessary errors if, for example, checksums were removedas is typical for such

validation, to be replaced with new checksumson retransmission.

Forat least this reason, applicants respectfully assert that claim 8 is nonobvious

over the combination of Radogna and Hendel proposed by the Office Action.

The Office Action rejects claims 9, 10, 14, 16-18 and 22 under 35 U.S.C. §103(a)

as being unpatentable over Radogna in view of Hendel. Regarding claim 9, the Office

Action states:

As per claim 9, Radogna teaches a method for communicating
information over a network(e.g. Radogna,col. 2, lines 63-67), the method
comprising:

obtaining data from a source allocated by a first processor (e.g.
Radogna,col. 3, lines 50-59);

dividing the data into multiple segments (e.g. Radogna, col. 3,
lines 50-59);

prepending a packet header to each of the segments by a second
processor, thereby forming a packet corresponding to each segment(e.g.-
Radogna,col. 14, lines 22-36);

transmitting the packets to the network (e.g. Radogna, col. 5, lines
9-17). :

Radognafails to teach the method comprising each packet header
containing a media access control layer header, a network layer header and
a transport layer header, wherein the prepending of each packet header
occurs without an interrupt dividing the prepending of the network layer
headerandthe transport layer header.

However, in a similar art, Hendel teaches a_network
communications system teach the method comprising each packet header
containing a media access control layer header, a network layer header and
a transport layer header, wherein the prepending of each packet header
occurs without an interrupt dividing the prepending of the network layer
header and the transport layer header (e.g. Hendel, col. 12, lines 66-67;
col. 13, lines 1-16).

It would have been obviousto oneskilled in the art at the time the

invention was made to combine Radogna with Hendel because of the
advantages of including headers for each of the MAC (data link) layer,
network layer and transport layer when communicating over a packetized
network conforming to the OSI model. The use of these layers is well
known since the OSI model was developed. Prepending a header
associated with each layer is a common method for allowing the network
to process the packets layer by layer, in accordance with the OSI model.
Performing the processing and prepending of headers without an interrupt

AmendmentofApp. Ser. No. 10/260,878 15

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 341

between layers provides the benefits of speeding up the entire processing
method and increasing the efficiency of packet transmission across a
network. This is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “Hendel

teaches a network communications system teach the method comprising each packet

header containing a media access control layer header, a network layer header and a

transport layer header, wherein the prepending of each packet header occurs without an

interrupt dividing the prepending ofthe network layer header andthe transport layer

header(e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).” Column 12, lines 66-67

and column 13, lines 1-16 of Hendelstate:

An innovative structure and method for transmitting the packet and
control information across the internal link will now be described with

reference to FIGS. 8A and 8B. FIG. 8A is a simplified diagram of the
packet structure utilized. More particularly, as the inbound subsystem has
determined certain information regarding the packet, e.g., routing, it is
advantageous to simply convey this information to the outbound
subsystem so that subsequent processing, such as the header field
replacement, can easily be performed without reperforming the same steps
performed by the inbound subsystem. Furthermore, it is desirable to
maintain end-to-end error robustness. Thus, the inbound subsystem
encapsulates the packet 800 with control information 805 and a cycle
redundancy code (CRC) 810. The outbound system receives the
encapsulated packet, determines frame validity using CRC 810,strips the
CRC 810 and removes the control information 805 to determine the

subsequentprocessing to be performed to output the packet.

This paragraph does not teach any processing of a network layer header or a

transport layer header, let alone “processing the packets by a first mechanism, so that for

each packet the network layer headerand the transport layer headerare validated without

an interrupt dividing the processing of the network layer header andthe transport layer

header.” As noted in column 2, lines 24-25 of Hendel, “Layer 2 provides for

transmission of framesof data and error detection.” The “outbound system”that

“determines frame validity using CRC 810”appearsto be directed to layer 2 rather than

layer 3 (network layer) or layer 4 (transport layer), in contrast to claim 1. For example,

IP and TCP (network and transport layer protocols) headers each have checksumsthat

would be checkedto validate the IP and TCP headers of a packet. Applicants

respectfully assert that Hendel does not teach such validation, and further does not teach

AmendmentofApp. Ser. No. 10/260,878 16

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 342

such validation “without an interrupt dividing the processing of the network layer header

and the transport layer header.” As shownin FIG. 8A of Hendel, adding and stripping

the “control information 805” and “CRC 810”that “encapsulates the packet 800” leaves

the header and data that form the “packet 800”intact.

For at least these reasons, applicants respectfully assert that claim 9 and any claim

that depends from claim 9 is nonobvious over the combination of Radogna and Hendel

proposed by the Office Action.

Regarding claim 10, the Office Actionstates:

Asper claim 10, Radogna and Hendel teach the method of claim 9,
wherein prepending a packet header to each of the segments by a second
processor further comprises:

prepending the media access control layer header for each packet
without an interrupt dividing the prepending of the media access control
layer header and the network layer header (e.g. Radogna,col. 14, lines 22-
36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendelteach the methodofclaim 9, wherein prepending a packetheaderto each of

the segments by a second processorfurther comprises: prepending the media access

control layer header for each packet without an interrupt dividing the prepending ofthe

media access control layer header and the network layer header (e.g. Radogna, col. 14,

lines 22-36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).” Column 12, lines 66-67

and column 13, lines 1-16 of Hendel are quoted above and do not teach this. Column 14,

lines 22-36 of Radognastate:

The method of operation of the hardware microsequencer 100 and
associated support hardware comprising the THP engine is generally
illustrated in FIGS. 6a-6c. Framesare delivered to Transmit Segmentation
Unit (TSEG) FIFOs 59 from the Buffer RAM 22 based upon per port
queues maintained within the MBAasdepicted in step 200. The Transmit
Segmentation Unit (TSEG) 58 queues transmit vectors from the Master
Buffer ASIC (MBA) 32, which indicate where in the Buffer RAM 22,
respective segments of transmit frames are stored. The frames are packed
into the TSEG FIFO 59 so that there are no spaces between bytes.
Information needed by the THP 60 to identify and execute the proper
translation routine is contained within the transmit vector which is

prepended to each frame presented to the THP for headertranslation.

AmendmentofApp. Ser. No. 10/260,878 17

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 343

Ascan be seen, this paragraph also does not teach the limitations of claim 10. For

at least these reasons, applicants respectfully assert that claim 10 is nonobviousoverthe

combination of Radogna and Hendel proposed by the Office Action.

Regarding claim 14, the Office Action states:

As per claim 10, Radogna and Hendel teach the method of claim 9,
wherein obtaining data from the source in memory allocated by the first
processor is performed by a Direct Memory Access (DMA)unit controlled
by the second processor(e.g. Radogna,col. 5, lines 5-17).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the method of claim 9, wherein obtaining data from the source in
memory allocated by the first processor is performed by a Direct Memory Access (DMA)

unit controlled by the second processor.(e.g. Radogna,col. 5, lines 5-17).” Column 14,

lines 22-36 of Radognastate:

The RSEG 50 comprises a DMAcontroller which controls storage
of received frame data within appropriate Buffer RAM 22locations.

The Transmit ASIC

The transmit ASIC includes a Transmit Segmentation Unit (TSEG)
58, a plurality of Transmit Segment Unit (TSEG) FIFOs 59, a Transmit
Header Processor (THP) 60, a Transmit State Machine ("TXSM") 62 and
Transmit State Machine FIFOs 64. The TSEG 58 comprises a DMA
controller which. serves to move frame data segments’ from locations
within the Buffer RAM 22 into an input FIFO designated as the TSEG
FIFO 59. The TSEG FIFO 59 comprises an input to the THP 60.

As can be seen, these paragraphs do not teach the limitations of claim 14. Thatis,

although a DMAcontroller is mentioned, these paragraphs do not teach “wherein

obtaining data from the source in memory allocated by the first processor is performed by

a Direct Memory Access (DMA)unit controlled by the second processor.” Forat least

this reason, applicants respectfully assert that claim 14 is nonobviousoverthe

combination of Radogna and Hendel proposed by the Office Action.

Regarding claim 16, the Office Action states:

As per claim 16, Radogna and Hendel teach the method of claim 9,
further comprising:

receiving another packet from the network, the other packet
containing a receive header including information corresponding to a
network layer and a transport layer (e.g. Hendel, col. 4, lines 56-67; col. 5,
lines 1-8); and

Amendment of App. Ser. No. 10/260,878 18

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 344

selecting whether to process the other packet by the first processor
or by the second processor(e.g. Hendel, col. 5, lines 26-33).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendelteach the methodofclaim 9, further comprising: ...selecting whetherto

process the other packet bythe first processor or by the second processor.(e.g. Hendel,

col. 5, lines 26-33).” Column5, lines 26-33 of Radognainsteadstate:

When the packet is received over the internal link by a second
subsystem,the packet is forwarded to the neighbor node in responseto the
packet's new first header portion matching a type 1 entry in the second
forwarding memory. The type 1 entry in the second subsystem contains
the address of the neighbor node or endstation and had been created
independently of the matching type 2 entry of the inbound subsystem.

Ascan beseen, this paragraph doesnotteach the limitations of claim 16. Thatis,

this paragraph doesnotteach “selecting whether to process the other packet by thefirst

processor or by the second processor.” Forat least this reason, applicants respectfully

assert that claim 16 is nonobvious over the combination ofRadogna and Hendel proposed
by the Office Action.

Regarding claim 17, the Office Action states:

As per claim 17, Radogna teaches a method for communicating
information over a network, the method comprising:

providing multiple segments of data (e.g. Radogna,col. 3, lines 50-
59); .

prepending an outbound packet header to each of the segments,
thereby forming an outbound packet corresponding to each segment(e.g.
Radogna,col. 14, lines 22-36);

transmitting the outbound packets to the network (e.g. Radogna,
col. 5, lines 9-17);

receiving multiple inbound packets from the network, each of the
inbound packets including an inbound media access control layer header,
an inbound network layer header and an inboundtransport layer header
(e.g. Radogna,col. 3, lines 50-59).

Radognafails to teach the method comprising the outbound packet
header containing an outbound media access control layer header, an
outbound network layer header and an outboundtransport layer header,

‘wherein the prepending of each outbound packet header occurs without an
interrupt dividing the prepending of the outbound media access control
layer header, the outbound network layer header and the outbound
transport layer header;

Amendmentof App. Ser. No. 10/260,878 19

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 345

However, in a similar art, Hendel teaches a_network
communications system based on packets utilizing media access control
layer headers, network layer headers and transport layer headers, the
processing and validating of these headers all occurring without interrupts
between each layer(e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Hendel with Radogna because of the
advantages of including headers for each of the MAC (data link) layer,
network layer and transport layer when communicating over a packetized
network conforming to the OSI model. The use of these layers is well
known since the OSI model was developed. Prepending a header
associated with each layer is a common methodfor allowing the network
to process the packets layer by layer, in accordance with the OSI model.
Performing the processing and prepending of headers without an interrupt
between layers provides the benefits of speeding up the entire processing
method and increasing the efficiency of packet transmission across a
network. This is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “Hendel

teaches a network communications system based on packets utilizing media access

control layer headers, network layer headers and transport layer headers, the processing

and validating of these headersall occurring without interrupts between each layer(e.g.

Hendel, col. 12, lines 66-67; col. 13, lines 1-16).” As discussed above for claim 1 and

claim 9, Hendel teaches no such thing. Moreover, applicants respectfully note that the

Office Action does not assert that Hendel and Radogna teach, and Hendel and Radogna

do not teach, “processing the inbound packets, so that for each packet the inbound

network layer header and the inboundtransport layer header are validated without an

interrupt dividing the processing of the inbound network layer header and the inbound

transport layer header,” in contrast to claim 17.

Forat least these reasons, applicants respectfully assert that claim 17 and any

claim that depends from claim 17 is nonobvious over the combination of Radogna and

Hendel proposed by the Office Action.

Regarding claim 18, the Office Action states:

As per claim 18, Radogna and Hendel teach the method of claim
17, wherein the processing the inbound packets is performed
simultaneously with the prepending the outbound packet header to each of
the segments (e.g. Radogna, separate processors for receive functionality
and transmit functionality, col. 3, lines 50-59; col. 5, lines 9-17; col. 14,
lines 22-36).

AmendmentofApp. Ser. No. 10/260,878 20

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 346

Asnoted above, the proposed combination Radogna and Hendel does not process
inbound packets or prepend outbound packet headers,as recited, so assuming arguendo

that Radogna has separate processors for receive functionality and transmit functionality

is immaterial to the claim. Forat least this reason, applicants respectfully assert that

claim 18 is nonobvious over the combinationofRadogna and Hendel proposed by the

Office Action.

Regarding claim 22, the Office Action states:

As per claim 22, Radogna and Hendel teach the method of claim
17, further comprising:

sending data from each inbound packet to a destination without
sending any of the media access control layer headers, network layer
headers or transport layer headers to the destination (e.g. Hendel, col. 12,
lines 66-67; col. 13, lines 1-16; col. 14, lines 1-9).

Applicants respectfully assert that Hendel does not teach, in column 12-14 or

elsewhere, “sending data from each inbound packet to a destination without sending any

of the media access control layer headers, network layer headersor transport layer

headers to the destination,” as recited in claim 22. Forat least this reason, applicants

respectfully assert that claim 22 is nonobvious overthe combination of Radogna and

Hendel proposed by the Office Action.

The Office Action rejects claims 12 and 24 under 35 U.S.C. §103(a) as being

unpatentable over Radogna in view of Hendel and Klaus. Regarding claim 12, the Office

Actionstates:

As per claim 12, Radogna and Hendel teach the method of claim 9,
comprising prepending the packet header to each of the segments by the
second processor(e.g. Radogna,col. 14, lines 22-36).

Radogna and Hendel fail to teach the method further comprising
establishing a Transport Control Protocol (TCP) connection by the first
processor and using the connection to prepend the packet header to each of
the segments by the second processor.

However,in a similar art, Klaus teaches the use of a transport layer
header to create and utilize a TCP connection over a network (e.g. Klaus,
col. 5, lines 8-23).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Klaus with Radogna and Hendel because
of the advantages of using a transport layer header to provide a TCP
connection over a network. The use transport layer, included in the well-
known OSI model, is advantageous because it provides segmentation of

AmendmentofApp. Ser. No. 10/260,878 21

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 347

communication functions across the various layers of the protocol stack
and modularizes the functions required to implement network
communication, which simplifies computer communication operation and
‘maintenance(e.g. Klaus, col. 2, lines 14-23). The use of the OSI model
allows for communication across various systems and platforms without
the need for conversion or modification of the communication method.

This can greatly increase the efficiency of communication across a
network, whichis beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “It would

have been obviousto oneskilled in the art at the time the invention was made to combine

Klaus with Radogna and Hendel because of the advantages ofusing a transport layer

headerto provide a TCP connection over a network.”

Hendelis directed to “an apparatus and related method for relaying packets by a

multi-layer distributed network element according to knownrouting protocols.” Hendel,

~ column 4, lines 53-55. “The network element should be able to operate at bridge-like

speeds, yet be capable of routing packets across different subnetworks and provide upper ~

layer functionalities such as quality ofservice.” Hendel, column 4, lines 47-50.

Establishing a TCP connection, which is complicated and performed in software, would

contradict Hendel’s “need for a network element that can handle changing network

conditions such as topology and messagetraffic yet make efficient use of high

performance hardwareto switch packets based on their Layer 2, Layer 3, and Layer 4

headers.” Hendel, column4,lines 53-55.

Radogna,like Hendel, is directed to high speed headertranslation processing for

bridges and routers. Establishing a TCP connection, which is complicated and performed

in software, would contradict Radogna’sdesire “to be able to perform headertranslations

in a network device, such as a router, at or near the frame reception rate for the device.”

Radogna, column1, lines 63-65.

Moreover,as noted in column 3, lines 29-49 of Klaus, “In the TCP/IP protocol, a

communication connection is established through a three handshake open network

protocol. The first handshake or data messageis from a source computerandis typically

called a "synchronization" or "sync" message. In response to a sync message,the

destination computer transmits a synchronization-acknowledgment("sync-ack") message.

The source computer then transmits an acknowledgment("ack") message and a

Amendmentof App. Ser. No. 10/260,878 22

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 348

communication connection between the source and destination computer is established.”
This multi-step procedure, performed in software and over a network, would appear to

one ofordinary skill to slow the routing and switching of packets that Hendel is directed
to.

In addition, it is not asserted in the Office Action, andit is certainly not apparent
from the cited references, what computerthe “network element” of Hendel would

establish a TCP connection with, if combined with Radogna and Klaus as proposed by

the Office Action. Stated differently, applicants respectfully assert that the combination

of Klaus and Radogna and Hendelthat is proposed by the Office Action may be

inoperable, teaching one of ordinary skill in the art away from making such a

combination.

Applicants respectfully assert that these disadvantages of establishing a TCP

connection would far outweigh the advantages alleged by the Office Action, which for

the most part would not even be applicable to the proposed combination of Klaus and
Radogna and Hendel.

Forat least this reason, applicants respectfully assert that claim 12 isnonobvious

over the combination of Klaus and Radogna and Hendel proposed by the Office Action.

Regarding claim 24, the Office Action states:

As per claim 24, Radogna and Hendel teach the method of claim
17, further comprising:

processing a transport layer header of another inbound packet,
prior to receiving the plurality of packets from the network (e.g. Hendel,
col. 12, lines 66-67; col. 13, lines 1-16),

Radogna and Hendel fail to teach the method further comprising
establishing a Transport Control Protocol (TCP) connection for the
inboundpackets.

However,in a similar art, Klaus teaches the use of a transport layer
headerto create and utilize a TCP connection over a network (e.g. Klaus,
col. 5, lines 8-23).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Klaus with Radogna and Hendel for
similar reasons as stated abovein regards to claim 12.

Applicants respectfully assert that Hendel does not teach, in column 12,lines 66-

67; column 13, lines 1-16, or elsewhere, “processing a transport layer header of another

inbound packet”asrecited in claim 24, for similar reasons as stated abovein regards to

AmendmentofApp. Ser. No. 10/260,878 23

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 349

claim 12.. Applicants also respectfully assert that it would not have been obvious to one

skilled in the art at the time the invention was made to combine Klaus with Radogna and

Hendel, for similar reasons as stated above in regards to claim 12. Forat least these

reasons, applicants respectfully assert that claim 24 is nonobvious over the combination

of Radogna and Hendel proposedby the Office Action.

The Office Action rejects claims 15, 21 and 23 under 35 U.S.C. §103(a) as being

unpatentable over Radogna in view of Hendel and Ota. Regarding claim 15, the Office

Action states:

As per claim 15, Radogna and Hendel teach the method of claim 9,
but fail to teach the method further comprising prepending an upper layer
headerto the data, prior to dividing the data into multiple segments.

However, in a similar art, Ota teaches a network communication
system that attaches and uses a header in the application layer (e.g. Ota,
col. 7, lines 18-25, 40-53).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Ota with Radogna and Hendel because of
the advantages of attaching a header to an upper layer, such as the
application layer, along with the other layers of the well-known OSI
model. The use of an upper layer header can provide a great deal of
flexibility to the system since it is able to transmit more data with the
packet itself. The OSI model is designed to attach and process headers
from each of the seven layersefficiently to ensure that the data within the
packet is transmitted properly across the network. Including an
application layer header further ensures the proper receipt of the data.
This is beneficial in any communications network system.

Applicants respectfully note that the Office Action does notassert, and even the

combination of the references proposed by the Office Action would not teach,

“prepending an upper layer headerto the data, priorto dividing the data into multiple

segments,” as recited in claim 15. This may be because the advantagesalleged by Ota

| and the Office Action would not work in this case. That is, Ota allegedly “gives a unique
application layer level address to a mobile station, and regards a network layer level

address (IP address in this embodiment) as an address indicating a route.” Ota, column 7,

lines 40-43. But should such a “unique application layer level address” be prepended as

“an upper layer header to the data,prior to dividing the data into multiple segments,”that

header would presumably only be attached to the first segment of the multiple segments,

after dividing the data into multiple segments. In other words, the upper layer addressing

AmendmentofApp. Ser. No. 10/260,878 24

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 350

scheme proposed by Ota wouldfail for all but the first packet of multiple packets,
resulting in multiple problems and showing how useless the upper layer addressing

scheme proposed by Otareally is. Because the OSI model does not have any mechanism

for providing upper layer headers to each packet for blocks of data that are divided for

transmission over a network, and the addressing scheme of Ota reduces network layer

level addresses such as IP addresses as merely “indicating a route,” Ota is probably

inoperable, teaching one of ordinary skill in the art away from using Ota or combiningit

with any functional reference.

Forat least these reasons, applicants respectfully assert that claim 15 is

nonobviousover the combination of Radogna, Hendel and Ota proposedby the Office

Action.

Regarding claim 21, the Office Action states:

As per claim 21, Radogna and Hendel teach the method of claim
20, but fail to teach the method further comprising prepending an upper
layer headerto the data,prior to dividing the data into multiple segments.

However, in a similar art, Ota teaches a network communication
system that attaches and uses a header in the application layer (e.g. Ota,
col. 7, lines 18-25, 40-53).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Ota with Radogna and Hendelfor similar
reasonsas stated abovein regards to claim 15.

Applicants respectfully note that the Office Action does not assert, and even the

combination of the references proposed by the Office Action would not teach,

“prepending an upperlayer header to the data, prior to dividing the data into multiple

segments,” as recited in claim 21. This may be because the advantagesalleged by Ota

and the Office Action would not workin this case. That is, Ota allegedly “gives a unique

application layer level address to a mobile station, and regards a networklayerlevel

address (IP address in this embodiment) as an address indicating a route.” Ota, column7,

lines 40-43. But should such a “uniqueapplication layer level address” be prepended as

“an upper layer headerto the data, prior to dividing the data into multiple segments,” that

header would presumably onlybe attachedto the first segment of the multiple segments,

after dividing the data into multiple segments. In other words, the upper layer addressing

scheme proposed by Ota wouldfail for all but the first packet of multiple packets,

Amendment of App. Ser. No. 10/260,878 25

CAVIUM-1002

Cavium, Inc. v. Alacritech, Inc.
Page 351

