
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

258

Chapter 10CHAPTER 10

Interrupt Handling

Although some devices can be controlled using nothing but their I/O regions, most
real devices are a bit more complicated than that. Devices have to deal with the
external world, which often includes things such as spinning disks, moving tape,
wires to distant places, and so on. Much has to be done in a time frame that is differ-
ent from, and far slower than, that of the processor. Since it is almost always undesir-
able to have the processor wait on external events, there must be a way for a device
to let the processor know when something has happened.

That way, of course, is interrupts. An interrupt is simply a signal that the hardware
can send when it wants the processor’s attention. Linux handles interrupts in much
the same way that it handles signals in user space. For the most part, a driver need
only register a handler for its device’s interrupts, and handle them properly when
they arrive. Of course, underneath that simple picture there is some complexity; in
particular, interrupt handlers are somewhat limited in the actions they can perform
as a result of how they are run.

It is difficult to demonstrate the use of interrupts without a real hardware device to
generate them. Thus, the sample code used in this chapter works with the parallel
port. Such ports are starting to become scarce on modern hardware, but, with luck,
most people are still able to get their hands on a system with an available port. We’ll
be working with the short module from the previous chapter; with some small addi-
tions it can generate and handle interrupts from the parallel port. The module’s
name, short, actually means short int (it is C, isn’t it?), to remind us that it handles
interrupts.

Before we get into the topic, however, it is time for one cautionary note. Interrupt
handlers, by their nature, run concurrently with other code. Thus, they inevitably
raise issues of concurrency and contention for data structures and hardware. If you
succumbed to the temptation to pass over the discussion in Chapter 5, we under-
stand. But we also recommend that you turn back and have another look now. A
solid understanding of concurrency control techniques is vital when working with
interrupts.

,ch10.10847 Page 258 Friday, January 21, 2005 10:54 AM

EX. 2004.001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Installing an Interrupt Handler | 259

Preparing the Parallel Port
Although the parallel interface is simple, it can trigger interrupts. This capability is
used by the printer to notify the lp driver that it is ready to accept the next character
in the buffer.

Like most devices, the parallel port doesn’t actually generate interrupts before it’s
instructed to do so; the parallel standard states that setting bit 4 of port 2 (0x37a,
0x27a, or whatever) enables interrupt reporting. A simple outb call to set the bit is
performed by short at module initialization.

Once interrupts are enabled, the parallel interface generates an interrupt whenever
the electrical signal at pin 10 (the so-called ACK bit) changes from low to high. The
simplest way to force the interface to generate interrupts (short of hooking up a
printer to the port) is to connect pins 9 and 10 of the parallel connector. A short
length of wire inserted into the appropriate holes in the parallel port connector on
the back of your system creates this connection. The pinout of the parallel port is
shown in Figure 9-1.

Pin 9 is the most significant bit of the parallel data byte. If you write binary data to
/dev/short0, you generate several interrupts. Writing ASCII text to the port won’t
generate any interrupts, though, because the ASCII character set has no entries with
the top bit set.

If you’d rather avoid wiring pins together, but you do have a printer at hand, you can
run the sample interrupt handler using a real printer, as shown later. However, note
that the probing functions we introduce depend on the jumper between pin 9 and 10
being in place, and you need it to experiment with probing using our code.

Installing an Interrupt Handler
If you want to actually “see” interrupts being generated, writing to the hardware
device isn’t enough; a software handler must be configured in the system. If the
Linux kernel hasn’t been told to expect your interrupt, it simply acknowledges and
ignores it.

Interrupt lines are a precious and often limited resource, particularly when there are
only 15 or 16 of them. The kernel keeps a registry of interrupt lines, similar to the
registry of I/O ports. A module is expected to request an interrupt channel (or IRQ,
for interrupt request) before using it and to release it when finished. In many situa-
tions, modules are also expected to be able to share interrupt lines with other driv-
ers, as we will see. The following functions, declared in <linux/interrupt.h>,
implement the interrupt registration interface:

int request_irq(unsigned int irq,
 irqreturn_t (*handler)(int, void *, struct pt_regs *),
 unsigned long flags,

,ch10.10847 Page 259 Friday, January 21, 2005 10:54 AM

EX. 2004.002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 10: Interrupt Handling

 const char *dev_name,
 void *dev_id);

void free_irq(unsigned int irq, void *dev_id);

The value returned from request_irq to the requesting function is either 0 to indicate
success or a negative error code, as usual. It’s not uncommon for the function to
return -EBUSY to signal that another driver is already using the requested interrupt
line. The arguments to the functions are as follows:

unsigned int irq
The interrupt number being requested.

irqreturn_t (*handler)(int, void *, struct pt_regs *)
The pointer to the handling function being installed. We discuss the arguments
to this function and its return value later in this chapter.

unsigned long flags
As you might expect, a bit mask of options (described later) related to interrupt
management.

const char *dev_name
The string passed to request_irq is used in /proc/interrupts to show the owner of
the interrupt (see the next section).

void *dev_id
Pointer used for shared interrupt lines. It is a unique identifier that is used when
the interrupt line is freed and that may also be used by the driver to point to its
own private data area (to identify which device is interrupting). If the interrupt is
not shared, dev_id can be set to NULL, but it a good idea anyway to use this item
to point to the device structure. We’ll see a practical use for dev_id in the sec-
tion “Implementing a Handler.”

The bits that can be set in flags are as follows:

SA_INTERRUPT
When set, this indicates a “fast” interrupt handler. Fast handlers are executed
with interrupts disabled on the current processor (the topic is covered in the sec-
tion “Fast and Slow Handlers”).

SA_SHIRQ
This bit signals that the interrupt can be shared between devices. The concept of
sharing is outlined in the section “Interrupt Sharing.”

SA_SAMPLE_RANDOM
This bit indicates that the generated interrupts can contribute to the entropy pool
used by /dev/random and /dev/urandom. These devices return truly random num-
bers when read and are designed to help application software choose secure keys
for encryption. Such random numbers are extracted from an entropy pool that is
contributed by various random events. If your device generates interrupts at truly
random times, you should set this flag. If, on the other hand, your interrupts are

,ch10.10847 Page 260 Friday, January 21, 2005 10:54 AM

EX. 2004.003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Installing an Interrupt Handler | 261

predictable (for example, vertical blanking of a frame grabber), the flag is not
worth setting—it wouldn’t contribute to system entropy anyway. Devices that
could be influenced by attackers should not set this flag; for example, network
drivers can be subjected to predictable packet timing from outside and should not
contribute to the entropy pool. See the comments in drivers/char/random.c for
more information.

The interrupt handler can be installed either at driver initialization or when the
device is first opened. Although installing the interrupt handler from within the mod-
ule’s initialization function might sound like a good idea, it often isn’t, especially if
your device does not share interrupts. Because the number of interrupt lines is lim-
ited, you don’t want to waste them. You can easily end up with more devices in your
computer than there are interrupts. If a module requests an IRQ at initialization, it
prevents any other driver from using the interrupt, even if the device holding it is
never used. Requesting the interrupt at device open, on the other hand, allows some
sharing of resources.

It is possible, for example, to run a frame grabber on the same interrupt as a modem,
as long as you don’t use the two devices at the same time. It is quite common for
users to load the module for a special device at system boot, even if the device is
rarely used. A data acquisition gadget might use the same interrupt as the second
serial port. While it’s not too hard to avoid connecting to your Internet service pro-
vider (ISP) during data acquisition, being forced to unload a module in order to use
the modem is really unpleasant.

The correct place to call request_irq is when the device is first opened, before the
hardware is instructed to generate interrupts. The place to call free_irq is the last
time the device is closed, after the hardware is told not to interrupt the processor any
more. The disadvantage of this technique is that you need to keep a per-device open
count so that you know when interrupts can be disabled.

This discussion notwithstanding, short requests its interrupt line at load time. This
was done so that you can run the test programs without having to run an extra pro-
cess to keep the device open. short, therefore, requests the interrupt from within its
initialization function (short_init) instead of doing it in short_open, as a real device
driver would.

The interrupt requested by the following code is short_irq. The actual assignment of
the variable (i.e., determining which IRQ to use) is shown later, since it is not rele-
vant to the current discussion. short_base is the base I/O address of the parallel inter-
face being used; register 2 of the interface is written to enable interrupt reporting.

if (short_irq >= 0) {
 result = request_irq(short_irq, short_interrupt,
 SA_INTERRUPT, "short", NULL);
 if (result) {
 printk(KERN_INFO "short: can't get assigned irq %i\n",
 short_irq);

,ch10.10847 Page 261 Friday, January 21, 2005 10:54 AM

EX. 2004.004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 10: Interrupt Handling

 short_irq = -1;
 }
 else { /* actually enable it -- assume this *is* a parallel port */
 outb(0x10,short_base+2);
 }
}

The code shows that the handler being installed is a fast handler (SA_INTERRUPT),
doesn’t support interrupt sharing (SA_SHIRQ is missing), and doesn’t contribute to
system entropy (SA_SAMPLE_RANDOM is missing, too). The outb call then enables inter-
rupt reporting for the parallel port.

For what it’s worth, the i386 and x86_64 architectures define a function for query-
ing the availability of an interrupt line:

int can_request_irq(unsigned int irq, unsigned long flags);

This function returns a nonzero value if an attempt to allocate the given interrupt suc-
ceeds. Note, however, that things can always change between calls to can_request_irq
and request_irq.

The /proc Interface
Whenever a hardware interrupt reaches the processor, an internal counter is incre-
mented, providing a way to check whether the device is working as expected.
Reported interrupts are shown in /proc/interrupts. The following snapshot was taken
on a two-processor Pentium system:

root@montalcino:/bike/corbet/write/ldd3/src/short# m /proc/interrupts
 CPU0 CPU1
 0: 4848108 34 IO-APIC-edge timer
 2: 0 0 XT-PIC cascade
 8: 3 1 IO-APIC-edge rtc
 10: 4335 1 IO-APIC-level aic7xxx
 11: 8903 0 IO-APIC-level uhci_hcd
 12: 49 1 IO-APIC-edge i8042
NMI: 0 0
LOC: 4848187 4848186
ERR: 0
MIS: 0

The first column is the IRQ number. You can see from the IRQs that are missing that
the file shows only interrupts corresponding to installed handlers. For example, the
first serial port (which uses interrupt number 4) is not shown, indicating that the
modem isn’t being used. In fact, even if the modem had been used earlier but wasn’t
in use at the time of the snapshot, it would not show up in the file; the serial ports
are well behaved and release their interrupt handlers when the device is closed.

The /proc/interrupts display shows how many interrupts have been delivered to each
CPU on the system. As you can see from the output, the Linux kernel generally handles

,ch10.10847 Page 262 Friday, January 21, 2005 10:54 AM

EX. 2004.005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

