
Pipelining 319

Instruction type Pipe Stages

Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

FIGURE 6.46 $uperscalar pipeline in operation. The integer and floating-point instructions are issued at the same
time, and each executes at its own pace through the pipeline. This scheme will only improve the performance of programs
with a fair amount of floating point.

By issuing an integer and a floating-point operation in parallel, the need for
additional hardware is minimized-integer and floating-point operations use dif
ferent register sets and different functional units. The only conflict arises when
the integer instruction is a floating-point load, store, or move. This creates con
tention for the floating-point register ports and may also create a hazard if the
floating-point operation uses the result of a floating-point load issued at the same
time. Both problems could be solved by detecting this contention as a structural
hazard and delaying the issue of the floating-point instruction. The contention
could also be eliminated by providing two additional ports, a read and a write,
on the floating-point register file. We would also need to add several additional
bypass paths to avoid performance loss.

There is another difficulty that may limit the effectiveness of a superscalar
pipeline. In our simple DLX pipeline, loads had a latency of one clock cycle;
this prevented one·· instructi.on from using the result without stalling. In the
superscalar pipeline, the result of a load instruction cannot be used on the same
clock cycle or on the next clock cycle. This means that the next three instruc
tions cannot use the load result without stalling; without extra ports, moves
between the register sets are similarly affected. The branch delay also becomes
three instructions. To effectively exploit the parallelism available in a super
scalar machine, more ambitious compiler-scheduling techniques, as well as more
complex instruction decoding, will need to be implemented. Loop unrolling
helps generate larger straightline fragments for scheduling; more powerful
compiler techniques are discussed near the end of this section.

Let's see how well loop unrolling and scheduling work on a superscalar ver
sion of DLX with the same delays in clock cycles.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 351

320

Example

Answer

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

How would the unrolled loop on page 317 be scheduled on a superscalar pipe
line for DLX? To schedule it without any delays, we will need to unroll it to
make five copies of the body.

The resulting code is shown in Figure 6.47.

Integer instruction FP instruction Clock cycle

Loop: LD FO,O(Rl) 1

LD F6,-8(Rl) 2

LD F10,-16(Rl) ADDD F4,FO,F2 3

LD F14,-24(Rl) ADDD F8,F6,F2 4

LD F18, -32 (Rl) ADDD Fl2,F10,F2 5

SD 0(Rl),F4 ADDD F16,F14,F2 6

SD -8(Rl),F8 ADDD F20,Fl8,F2 7

SD -16(Rl),F12 8

SD -24(Rl),F16 9

SUB Rl,Rl,#40 10

BNEZ Rl,LOOP 11

SD 8 (Rl) , F20 12

FIGURE 6.47 The unrolled and scheduled code as it would look on a superscalar
DLX.

This unrolled superscalar loop now runs in 12 clock cycles per iteration, or 2.4
clock cycles per element, versus 3.5 for the scheduled and unrolled loop on the
ordinary DLX pipeline. In this example, the performance of the superscalar
DLX is limited by the balance between integer and floating-point computation.
Every floating-point instruction is issued together with an integer instruction, but
there are not enough floating-point instructions to keep the floating-point
pipeline full. When scheduled, the original loop ran in 6 clock cycles per
iteration. We have improved on that by a factor of 2.5, more than half of which
came from loop unrolling, which took us from 6 to 3.5, with the rest coming
from issuing more than one instruction per clock cycle.

Ideally, our superscalar machine will pick up two instructions and issue them
both if the first is an integer and the second is a floating-point instruction. If they
do not fit this pattern, which can be quickly detected, then they are issued
sequentially. This points to one of the major advantages of a general superscalar
machine: There is little impact on code density, and even unscheduled programs
can be run. The number of issues and classes of instructions that can be issued
together are the major factors that differentiate superscalar processors.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 352

Example

Pipelining

Multiple Instruction Issue with
Dynamic Scheduling

321

Multiple instruction issue can also be applied to dynamically scheduled
machines. We could start with either the scoreboard scheme or Tomasulo's
algorithm. Let's assume we want to extend Tomasulo's algorithm to support
issuing two instructions per clock cycle, one integer and one floating point. We
do not want to issue instructions in the queue out of order, since this makes the
bookkeeping in the register file impossible. Rather, by employing data structures
for the integer and floating-point registers, both types of instructions can be
issued to their respective reservation stations, as long as the two instructions at
the head of the instruction queue do not access the same register set.
Unfortunately, this approach bars issuing two instructions with a dependence in
the same clock cycle. This is, of course, true in the superscalar case, where it is
clearly the compiler's problem. There are three approaches that can be used to
achieve dual issue. First, we could use software scheduling to ensure that depen
dent instructions do not appear adjacent. However, this would require pipeline
scheduling software, thereby defeating one of the advantages of dynamically
scheduled pipelines.

A second approach is to pipeline the instruction-issue stage so that it runs
twice as fast as the basic clock rate. This permits updating the tables before pro
cessing the next instruction; then the two instructions can begin execution at
once.

The third approach is based on the observation that if multiple instructions
are not being issued to the same functional unit, then it will only be loads and
stores that will create dependences among instructions that we wish to issue
together. The need for reservation tables for loads and stores can be eliminated
by using queues for the result of a load and for the source operand of a store.
Since dynamic scheduling is most effective for loads and stores, while static
scheduling is highly effective in register-register code sequences, we could use
static scheduling to eliminate reservation stations completely and rely only on
the queues for loads and stores. This style of machine organization has been \,
called a decoupled architecture.

For simplicity, let us assume that we have pipelined the instruction issue logic
so that we can issue two operations that are dependent but use different
functional units. Let's see how this would work with our example.

Consider the execution of our simple loop on a DLX pipeline extended with
Tomasulo's algorithm and with multiple issue. Assume that both a floating-point
and an integer operation can be issued on every clock cycle, even if they are
related. The number of cycles of latency per instruction is the same. Assume that
issue and write results take one cycle each, and ·that there is dynamic branch
prediction hardware. Create a table showing when each instruction issues, begins
execution, and writes its result, for the first two iterations of the loop. Here is the
original loop:

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 353

322

Answer

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

Loop: LD FO,O(Rl)

ADDD F4,FO,F2

SD 0(Rl),F4

SUB Rl,Rl,#8

BNEZ Rl,LOOP

The loop will be dynamically unwound and, whenever possible, instructions will

be issued in pairs. The result is shown in Figure 6.48. The loop runs in 4 + Z
n

clock cycles per result for n iterations. For large n this approaches 4 clock cycles
per result.

Iteration Instructions Issues at Executes at Writes
number clock-cycle clock-cycle result at

number number clock-cycle
number

1 LD FO,O(Rl) 1 2 4

1 ADDD F4,FO,F2 1 5 8

1 SD 0(Rl),F4 2 9

1 SUB Rl,Rl,#8 3 4 5

1 BNEZ Rl,LOOP 4 5

2 LD FO,O(Rl) 5 6 8

2 ADDD F4,FO,F2 5 9 12

2 SD 0(Rl),F4 6 13

2 SUB Rl,Rl,#8 7 8 9

2 BNEZ Rl,LOOP 8 9

FIGURE 6.48 The time of issue, execution, and writing result for a dual-issue
version of our Tomasulo pipeline. The write-result stage does not apply to either stores
or branches, since they do not write any registers.

The number of dual issues is small because there is only one floating-point
operation per iteration. The relative number of dual-issued instructions would be
helped by the compiler partially unwinding the loop to reduce the instruction
count by eliminating loop overhead. With that transformation, the loop would
run as fast as on a superscalar machine. We will return to this transformation in
Exercises 6.16 and 6.17.

The VLIW Approach

Our superscalar DLX machine can issue two instructions per clock cycle. That
could perhaps be extended to three or at most four, but it becomes difficult to

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 354

Example

Answer

Memory
reference 1

LD FO,O(Rl)

LD FlO, -16 (Rl)

LD F18, -32 (Rl)

LD F26, -48 (Rl)

SD 0(Rl),F4

SD -16(Rl),Fl2

SD -32(Rl),F20

SD -0(Rl),F28

Pipelining 323

determine whether three or four instructions can all issue simultaneously without
knowing what order the instructions could be in when fetched and what depen
dencies might exist among them. An alternative is an LIW (Long Instruction
Word) or VLIW (Very Long Instruction Word) architecture. VLIWs use multi
ple, independent functional units. Rather than attempting to issue multiple, inde
pendent instructions to the units, a VLIW packages the multiple operations into
one very long instruction, hence the name. A VLIW instruction might include
two integer operations, two floating-point operations, two memory references,
and a branch. An instruction would have a set of fields for each functional
unit-perhaps 16 to 24 bits per unit, yielding an instruction length of between
112 and 168 bits. To keep the functional units busy there must be enough work
in a straightline code sequence to keep the instructions scheduled. This is
accomplished by unrolling loops and scheduling code across basic blocks using
a technique called trace scheduling. In addition to eliminating branches by un
rolling loops, trace scheduling provides a method to move instructions across
branch points. We will discuss trace scheduling more in the next section. For
now, let's assume we have a technique to generate long, straightline code
sequences for building up VLIW instructions.

Suppose we have a VLIW that could issue two memory references, two FP
operations, and one integer operation or branch in every clock cycle. Show an
unrolled version of the vector sum loop for such a machine. Unroll as many
times as necessary to eliminate any stalls. Ignore the branch-delay slot.

The code is shown in Figure 6.49. The loop has been unrolled 6 times, which
eliminates stalls, and runs in 9 cycles. This yields a running rate of 7 results in 9
cycles, or 1.28 cycles per result.

Memory FP
operation 1

FP
operation 2

Integer operation
I branch reference 2

LD F6,-8(Rl)

LD Fl4,-24(Rl)

LD F22,-40(Rl)

SD -8(Rl),F8

SD -24(Rl),Fl6

SD -40(Rl),F24

ADDD F4,FO,F2

ADDD Fl2,Fl0,F2

ADDD F20,Fl8,F2

ADDD F28,F26,F2

ADDD F8,F6,F2

ADDD Fl6,Fl4,F2

ADDD F24,F22,F2

SUB Rl,Rl,#48

BNEZ Rl,LOOP

FIGURE 6.49 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes
nine cycles assuming no branch delay; normally the branch would also be scheduled. The issue rate is 23 operations in 9
clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an operation, is
about 60%. To achieve this issue rate requires a much larger number of registers than DLX would normally use in this
loop.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 355

324 6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

What are the limitations and costs of a VLIW approach? If we can issue 5
operations per clock cycle, why not 50? Three different limitations ar:e encoun
tered: limited parallelism, limited hardware resources, and code size explosion.
The first is the simplest:. There is a limited amount of parallelism available in in
struction sequences. Unless loops are unrolled very large numbers of times,
there may not be enough operations to fill the instructions. At first glance, it
might appear that 5 instructions that could be executed in parallel would be suf
ficient to keep our VLIW completely busy. This, however, is not the case. Sev
eral of these functional units-the memory, the branch, and the floating-point
units-will be pipelined, requiring a much larger number of operations that can
be executed in parallel. For example, if the floating-point pipeline has 8 steps,
the 2 operations being issued on a clock cycle cannot depend on any of the 14
operations already in the floating-point pipeline. Thus, we need to find a number
of independent operations roughly equal to the average pipeline depth times the
number of functional units. This means about 15 to 20 operations would be
needed to keep a VLIW with 5 functional units busy.

The second cost, the hardware resources for a VLIW, seem quite straight
forward; duplicating the floating-point and integer functional units is easy and
cost scales linearly. However, there is a large increase in the memory- and
register-file bandwidth. Even with a split floating-point and integer register file,
our VLIW will require 5 read ports and 2 write ports on the integer register file
and 4 read ports and 2 write ports on the floating-point register file. This
bandwidth cannot be supported without some substantial cost in the size of the
register file and possible degradation of clock speed. Our 5-unit VLIW also has
2 data memory ports. Furthermore, if we wanted to expand it, we would need to
continue adding memory ports. Adding only arithmetic units would not help,
since the machine would be starved for memory bandwidth. As the number of
data memory ports grows, so does the complexity of the memory system. To
allow multiple memory accesses in parallel, the memory must be broken into
banks containing different addresses with the hope that the operations in a single
instruction do not have conflicting accesses. A conflict will cause the entire
machine to stall, since all the functional units must be kept synchronized. This
same factor makes it extremely difficult to use data caches in a VLIW.

Finally, there is the problem of code size. There are two different elements
that combine to increase code size substantially. First, generating enough opera
tions in a straightline code fragment requires ambitiously unrolling loops, which
increases code size. Second, whenever instructions are not full, the unused func
tional units translate to wasted bits in the instruction encoding. In Figure 6.49,
we saw that only about 60% of the functional units were used; almost half of
each instruction was empty. To combat this problem, clever encodings are
sometimes used. For example, there may be only one large immediate field for
use by any functional unit. Another technique is to compress the instructions in
main memory and expand them when they are read into the cache or are
decoded.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 356

Example

Pipelining 325

The major challenge for these machines is to try to exploit large amounts of
instruction-level parallelism. When the parallelism comes from unrolling simple
loops, the original loop probably could have been run efficiently on a vector
machine (see the next chapter). It is not clear that a VLIW is preferred over a
vector machine for such applications; the costs are similar, and the vector
machine is typically the same speed or faster. The open question in 19.90 is
whether there are large classes of applications that are not suitable for vector
machines, but still offer enough parallelism to justify the VLIW approach rather
than a simpler one, such as a superscalar machine.

Increasing Instruction-Level Parallelism with
Software Pipelining and Trace Scheduling

We have already seen that one compiler technique, loop unrolling, is used to
help exploit parallelism among instructions. Loop unrolling creates longer
sequences of straightline code, which can be used to exploit more instruction
level parallelism. There are two other more general techniques that have been
developed for this purpose: software pipelining and trace scheduling.

Software pipelining is a technique for reorganizing lo~ps such that each itera
tion in the software-pipelined code is made from instruction sequences chosen
from different iterations in the original code segment. This is most easily under
stood by looking at the scheduled code for the superscalar version of DLX. The
scheduler essentially interleaves instructions from different loop iterations,
putting together all the loads, then all the adds, then all the stores. A software
pipelined loop interleaves instructions from different iterations without unrolling
the loop. This technique is the software counterpart to what Tomasulo's algo
rithm does in hardware. The software-pipelined loop would contain one load,
one add, and one store, each from a different iteration. There is also some startup
code that is needed before the loop begins as well as code to finish up after the
loop is completed. We will ignore these in this discussion.

Show a software-pipelined version of this loop:

Loop: LD FO,O(Rl)

ADDD F4,FO,F2

SD 0(Rl),F4

SUB Rl,Rl,#8

BNEZ Rl,LOOP

You may omit the start-up and clean-up code.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 357

326

Answer

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

Given the vector Min memory, and ignoring the start-up and finishing code, we
have:

Loop: SD 0(Rl),F4 ;stores into M[i]
ADDD F4,FO,F2 ;adds to M[i-1]
LD F0,-16(Rl) ;loads M[i-2]
BNEZ Rl,LOOP
SUB Rl,Rl,#8 ;subtract in delay slot

This loop can be run at a rate of 5 cycles per result, ignoring the start-up and
clean-up portions. Because the load fetches two array elements beyond the
element count, the loop should run for two fewer iterations. This would be
accomplished by decrementing Rl by 16 prior to the loop.

Software pipelining can be thought of as symbolic loop unrolling. Indeed,
some of the algorithms for software pipelining use loop unrolling to figure out
how to software pipeline the loop. The major advantage of software pipelining
over straight loop unrolling is that software pipelining consumes less code space.
Software pipelining and loop unrolling, in addition to yielding a better scheduled
inner loop, each reduce a different type of overhead. Loop unrolling reduces the
overhead of the loop-the branch and counter-update code. Software pipelining
reduces the tim~ when the loop is not running at peak speed to once per loop at
the beginning and end. If we unroll a loop that does 100 iterations a constant
number of times, say 4, we pay the overhead 100/4 = 25 times-every time the
inner unrolled loop is reinitiated. Figure 6.50 shows this behavior graphically.
Because these techniques attack two different types of overhead, the best
performance comes from doing both.

The other technique used to generate additional parallelism is trace schedul
ing. This is particularly useful for VLIWs, for which the technique was origi
nally developed. Trace scheduling is a combination of two separate processes.
The first process, called trace selection tries to find the most likely sequence of
operations to put together into a small number of instructions; this sequence is
called a trace. Loop unrolling is used to generate long traces, since loop
branches are taken with high probability. Once a trace is selected, the second
process, called trace compaction, tries to squeeze the trace into a small number
of wide instructions. Trace compaction attempts to move operations as early as it
can in a sequence (trace), packing the operations into as few wide instructions as
possible.

There are two different considerations in compacting a trace: data depen
dences, which force a partial order on operations, and branch points, which cre
ate places across which code cannot be easily moved. In essence, the code wants
to be compacted into the shortest possible sequence that preserves the data
dependences; branches are the main impediment to this process. The major
advantage of trace scheduling over simpler pipeline-scheduling techniques is
that it includes a method to move code across branches. Figure 6.51 shows a
code fragment, which may be thought of as an iteration of an unrolled loop, and
the trace selected.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 358

Pipelining

Number
of

overlapped
operations

Number
of

overlapped
operations

327

(a) Software pipelining Time

(b) Loop unrolling Time

FIGURE 6.50 This shows the execution pattern for (a) a software-pipelined loop and (b)
an unrolled loop. The shaded areas are the times when the loop is not running with
maximum overlap or parallelism among instructions. This occurs once at loop beginning

and once at the end for the software-pipelined loop. For the unroll~d loop it occurs m times
n

if the loop has a total of m executions and is unrolled n times. Each block represents an
unroll of n iterations. Increasing the number of unrolls will reduce the start-up and clean-up
overhead.

x

FIGURE 6.51 A code fragment and the trace selected shaded with gray. This trace
would be selected first, if the probability of the true branch being taken were much higher
than the probability of the false branch being taken. The branch from the decision (A[i]=O}
to X is a branch out of the trace, and the branch from X to the assignment to C is a branch
into the trace. These branches are what make compacting the trace difficult.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 359

328

6.9 I

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

Once the trace is selected as shown in Figure 6.51, it must be compacted so as
to fill the wide instruction word. Compacting the trace involves moving the
assignments to variables B and C up to the block before the branch decision.
Let's first consider the problem of moving the assignment to B. If the assign
ment to Bis moved above the branch (and thus out of the trace), the code in X
would be affected if it used B, since moving the assignment would change the
value of B. Thus, to move the assignment to B, B must not be read in X. One
could imagine more clever schemes if B were read in X-for example, making a
shadow copy and updating B later. Such schemes are generally not used, both
because they are complex to implement and because they will slow down the
program if the trace selected is not optimal and the operations end up requiring
additional instructions. Also, because the assignment to B is moved before the if
test, for this schedule to be valid either X also assigns to B or B is not read after
the if statement.

Moving the assignment to Cup to before the first branch requires first mov
ing it over the branch from X into the trace. To do this, a copy is made of the
assignment to C on the branch into the trace. A check must still be done, as was
done for B, to make sure that the assignment can be moved over the branch out
of the trace. If C is successfully moved to before the first branch and the "false"
direction of the branch-the branch off the trace-is taken, the assignment to C
will have been done twice. This may be slower than the original code, depending
on whether this operation or other moved operations create additional work in
the main trace. Ironically, the more successful the trace-scheduling algorithm is
in moving code across the branch, the higher the penalty for misprediction.

Loop unrolling, trace scheduling, and software pipelining all aim at trying to
increase the amount of local instruction parallelism that can be exploited by a
machine issuing more than one instruction on every clock cycle. The effective
ness of each of these techniques and their suitability for various architectural
approaches are among the most significant open research areas in pipelined-pro
cessor design.

Putting It All Together: A Pipelined VAX

In this section we will examine the pipeline of the VAX 8600, a macropipelined
VAX. This machine is described in detail by DeRosa et al. [1985] and Troiani et
al. [1985]. The 8600 pipeline is a more dynamic structure than the DLX integer
pipeline. This is because the processing steps may take multiple cycles in one
stage of the pipeline. Additionally, the hazard detection is more complicated
because of the possibility that stages progress independently and because
instructions may modify registers before they complete. Techniques similar to
those used in the DLX FP pipeline to handle variable-length instructions are
used in the 8600 pipeline.

The 8600 is macropipelined-the pipeline understands the structure of VAX
instructions and overlaps their execution, checking the hazards on the instruction

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 360

Pipelining 329

operands. By comparison, the VAX 8800 is micropipelined-microinstructions
are overlapped and hazard detection occurs in the microprogram unit. A differ
ent issue of the Digital Technical Journal [Digital 1987] describes this machine,
and Clark [1987] describes the pipeline and its performance. The designs are
interesting to compare.

Figure 6.52 shows the 8600 partitioned into four major structural compo
nents. The MBox is responsible for address translation and memory access (see
Chapter 8). The IBox is the heart of the 8600 pipeline; it is responsible for
instruction fetch and decode, operand address calculation, and operand fetch.
The EBox and FBox are responsible for execution of integer and floating-point
operations, and their primary function is to implement the opcode portion of an
instruction. (Because the FBox is optional, the EBox also contains microcode to
do the floating point, albeit at much lower performance. The optional presence
of the FBox further complicates the operand processing in the EBox.) Since the
EBox and FBox are not pipelined, we will focus our attention primarily on the
IBox. In explaining the IBox function we will refer to the EBox occasionally;
usually the same comments apply to the FBox.

Figure 6.53 breaks the execution of a VAX instruction into four overlapped
steps. The number of clock cycles per step may vary widely, though each step in
the pipeline takes at least one clock.

A VAX instruction may take many clock cycles in a given step. For example,
with multiple memory operands, the instruction will take multiple clock cycles
in the Opfetch step. Because of this, an instruction that takes many cycles at a

EVA

Operand buses

WBus

FIGURE 6.52 The basic structure of the 8600 consists of an MBox {responsible for
memory access), IBox {handles instruction and operand processing), EBox {all
opcode interpretation except floating point), and FBox (performs floating-point
operations). These four units are connected by six major buses. The IVA and EVA carry
the address for a memory access to the MBox from the IBox and EBox. The MD bus
carries memory data to or from the MBox; all such data flows through the I Box. The EBox
initiates memory access directly with the MBox only under unusual conditions (e.g.,
misaligned references). The operand buses carry operands from the IBox (where they are
fetched from memory or registers) to the EBox and FBox. Finally, the W Bus carries results
to be written from the EBox and FBox to the GPRs and to memory, via the IBox.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 361

330 6.9 Putting It All Together: A Pipelined VAX

Step Function Located in

1. If etch Prefetch instruction bytes and decode them !Box

2. Op fetch Operand address calculation and fetch !Box

3. Execution Execute opcode and write result EBox, FBox

4. Result store Write result to memory or registers EBox, !Box

FIGURE 6.53 The basic structure of the 8600 pipeline has four stages, each taking
from 1 to a large number of clock cycles. Up to four VAX instructions are being
processed at once.

stage may cause a back up in the pipeline; this back up may eventually reach the
!fetch step, where it will cause the pipeline to simply stop fetching instructions.
Additionally, several resources (e.g., the W Bus and GPR ports) are contended
for by multiple stages in the pipeline. In general, these problems are resolved on
the fly using a fixed-priority scheme.

Operand Decode and Fetch

Much of the work in interpreting a VAX instruction is in the operand specifier
and decode process, and this is the heart of the IBox. Substantial effort is de
voted to decoding and fetching operands as fast as possible to keep instructions
flowing through the pipeline. Figure 6.54 shows the number of cycles spent in
Opfetch under ideal conditions (no cache misses or other stalls from the memory
hierarchy) for each operand specifier. If the result is a register, the EBox stores

Specifier Cycles

Literal or immediate 1

Register 1

Deferred 1

Displacement 1

PC-relative and absolute 1

Autodecrement 1

Autoincrement 2

Autoincrement deferred 5

Displacement deferred 4

PC-relative deferred 4

FIGURE 6.54 The minimum number of cycles spent in Opfetch by operand specifier.
This shows the data for an operand of type byte, word, or longword that is read. Modified
and written operands take an additional cycle, except for register mode and immediate or
literal, where writes are not allowed. Quadword and octaword operands may take much
longer. If any stalls are encountered, the cycle count will increase.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 362

Pipelining 331

the result. If the result is a memory operand, Opfetch calculates the address and
waits for the EBox to signal ready, then the IBox stores the result during the
Result store step. If an instruction result is to be stored in memory, the EB ox
signals to the IBox when it enters the last cycle of execution for the instruction.
This allows Opfetch to overlap the first cycle of a two-cycle memory write with
the last cycle of execution (even if the operation only takes one cycle).

To maximize the performance of the machine, there are three copies of the
GPRs-in the IBox, EBox, and FBox. A write is broadcast from the FBox,
EBox, or IBox (in the case of autoincrement or autodecrement addressing) to the
other two units, so that their copies of the registers can be updated.

Handling Data Dependences

Register hazards are tracked in Opfetch by maintaining a small table of registers
that will be written. Whenever an instruction passes through Opfetch, its result
register is marked as busy. If an instruction that uses that register arrives in
Opfetch and sees the busy flag set, it stalls until the flag is cleared. This prevents
RAW hazards. The busy flag is cleared when the register is written. Because
there are only two stages after Opfetch (execute and write memory result), the
busy flag can be implemented as a two-entry associative memory. Writes are
maintained in order and always at the end of the pipeline, and all reads are done
in Opfetch. This eliminates all explicit WA W and WAR hazards. The only
possible remaining hazards are those that can occur on implicit operands, such
as the registers written by a MOVC3. Hazards on implicit operands are prevented
by explicit control in the microcode.

Opfetch optimizes the case when the last operand specifier is a register by
processing the register operand specifier at the same time as the next-to-last
specifier. In addition, when the result register of an instruction is the source
operand of the next instruction, rather than stall the dependent instruction,
Opfetch merely signals this relationship to the EBox, allowing execution to
proceed without a stall. This is like the bypassing in our DLX pipeline.

Memory hazards between reads and writes are easily resolved because there
is a single memory port, and the IBox decodes all operand addresses.

Handling Control Dependences

There are two aspects to handling branches in a VAX: synchronizing on the
condition code and dealing with the branch hazard. Most of the branch process
ing is handled by the IBox. A predict-taken strategy is used; the following steps
are taken when the IBox sees a branch:

1. Compute the branch target address, send it to the MBox, and initiate a fetch
from the target address. Wait for the EBox to issue CCSYNC, which indi
cates that the condition codes will be available in the next clock cycle.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 363

332 6.9 Putting It All Together: A Pipelined VAX

2. Evaluate the condition codes from the EBox to check the prediction. If the
prediction was incorrect, the access initiated in the MBox is aborted. The
current PC points at the next instruction or its first operand specifier.

3. Assuming the branch was taken, the IBox flushes the prefetch and decode
stages and begins loading the instruction register and processing the new tar
get stream. If the branch was not taken, the access to the potential target has
already been killed and the pipeline can continue just using what is in the
prefetch and decode stages.

Simple conditional branches (BEQL, BNEQ), the unconditional branches
(BRB, BRW), and the computed branches (e.g., AOBLEQ) are handled by the
IBox. The EBox handles more complex branches and also the instructions used
for calls and returns.

An Example

To really understand how this pipeline works, let's look at how a code sequence
executes. This example is somewhat simplified, but is sufficient to demonstrate
the major pipeline interactions. The code sequence we will consider is as follows
(remember that for consistency the result of the ADDL3 is given first):

ADDL3 Rl,R2,56(R3)

CMPL 45(Rl),@54(R2)

BEQL target

MOVL

target: SUBL3

Figure 6.55 shows an annotated pipeline diagram of how these instructions
would progress through the 8600 pipeline.

Dealing with Interrupts

The 8600 maintains three program counters so that instruction interruption and
restart are possible. These program counters and what they designate are:

• Current Program Counter-points to the next byte to be processed and
consumed in Opfetch.

• IBox Starting Address-points to the instruction currently in Opfetch.

• EBox Starting Address-points to the instruction executing in the EBox or
FBox.

In addition, the prefetch unit keeps an address to prefetch from (the VIBA,
Virtual Instruction Buffer Address), but this does not affect interrupt handling.
When an exception is caused by a prefetch operation, ihe byte in the instruction
buffer is marked. When Opfetch eventually asks fot the byte, it will see the
exception, and the Current Program Counter will have the address of the byte
that caused the exception.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 364

Pipelining 333

Clock Cycle
Instr. 1 2 3 4 5 6 7 8 9

ADDL3 IF: Fetch IF: IF: IF: IF: OP: OP: Start WR:
ADDL. Continue Decode Decode Decode Compute write. Store.

pre fetch Rl. R2. 56 (R3). 56+ (R3) ·EX: Add.
if space OP: Fetch OP: EX: get
andMBox Rl. Fetch R2. first
available. operand.

CMPL IF: IF: De- OP: Fetch
Decode code 54 (R2).
45 (Rl). @54 (R2).

OP: Fetch
45 (Rl).

BEQL IF:
Decode
BEQL
displace.

SUBL

Clock Cycle
Instr. 10 11 12 13 14 15 16 17 18

ADDL3

CMPL OP: stall. OP: get OP: Fetch EX:

EX: get indirect @54 (R2). compare

first address. and set

operand. cc.

BEQL OP: Load OP: Fetch OP: Fetch
VA. branch target +4;

target. load
VIBA;
flush
!Buffer.

SUBL IF: OP: OP:
Decode Fetch first Fetch
SUBL3. operand. second

operand.

FIGURE 6.55 The VAX 8600 executing a code sequence. The top portion shows the events on clock ticks 1-9, while
the bottom portion shows the events on clock ticks 10-18. The pipeline stages are abbreviated as IF (Instruction Fetch),
OP (Opfetch), EX (Execution), and WR (Write Result) and are shown in bold. Each instruction passes through the 8600
pipeline as soon as the pipe stage is empty and the required data is available. Note that an instruction can be in both the
IF and OP stages at the same time. This figure assumes that at the beginning of cycle 1, the prefetch buffer is empty.
The prefetch in the IF stage continues to fetch instructions as long as there is room in the prefetch buffer and an available
MBox cycle. It is omitted from the diagram for simplicity. The action "stall" indicates a stall for a memory operand during
Opfetch. In total, the three VAX instructions executed take 15 cycles, assuming no stalls from the memory system. This
sequence was chosen to demonstrate the functioning of the pipeline-it is not necessarily typical.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 365

334

&.10 I

6.9 Putting It All Together: A Pipelined VAX

These PCs are updated when an instruction enters the corresponding pipeline
stage. Hence, if an interrupt occurs in a given stage, the PC can be set back to
the beginning of that instruction. These PCs are needed because the length of
VAX instructions is variable and can only be determined by finding the opcode
byte.

In addition to restoring the starting address of the instruction that caused the
interrupt, we must unwind any register updates done by addressing modes pro
cessed in Opfetch for instructions that are after the instruction that interrupts the
processor. The IBox maintains a log of updates to the register file done on behalf
of multiple instructions, as we did in Section 5.6. The effects of any changes are
undone and the PC is restored. This allows the operating system to have a clean
machine state to work from.

Final Remarks

The 8600 uses a four-step pipeline. The theoretical peak performance with the
80-ns clock is 12.5 million VAX instructions per second. Some simple
sequences of instructions can actually attain this peak performance with a CPI of
1. Typically, the performance on integer code is about 1.75 million VAX
instructions per second for a CPI of about 7. This yields about 3.5 times the
performance of a V AX-11/780.

Fallacies and Pitfalls

Fallacy: Instruction set design has little impact on pipelining.

This is perhaps the most prominent misconception about pipelining and one that
was widely held until recently. Many of the difficulties of pipelining arise
because of instruction set complications. Here are some examples, many of
which are mentioned in the chapter:

• Variable instruction lengths and running times can lead to imbalance among
pipeline stages causing other stages to back up. They also severely compli
cate hazard detection and the maintenance of precise interrupts. Of course,
there are exceptions to every rule. For example, caches cause instruction run
ning times to vary when they miss; however, the performance advantages of
caches make the added complexity acceptable. To minimize the complexity,
most machines freeze the pipeline on a cache miss. Other machines try to
continue running parts of the pipeline; though this is very complex, it may
overcome some of the performance losses from cache misses.

• Sophisticated addressing modes can lead to different sorts of problems. Ad
dressing modes that update registers, such as post autoincrement, complicate

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 366

Pipelining 335

hazard detection. They also slightly increase the complexity of instruction
restart. Other addressing modes that require multiple memory accesses sub
stantially complicate pipeline control and make it difficult to keep the
pipeline flowing smoothly.

• Architectures that allow writes into the instruction space (self-modifying
code) can cause trouble for pipelining (as well as for cache designs). For
example, if an instruction in the pipeline can modify another instruction, we
must constantly check if the address being written to by an instruction cor
responds to the address of an instruction further on in the pipeline. If so, the
pipeline must be flushed or the instruction in the pipeline somehow updated.

• Implicitly set condition codes increase the difficulty of finding wh~n a branch
has been decided and the difficulty of scheduling branch delays. The former
problem occurs when the condition-code setting is not uniform, making it
difficult to decide which instruction sets the condition code last. The latter
problem occurs when the setting of the condition code is not under program
control. This makes it hard to find instructions that can be scheduled between
the condition evaluation and the branch. Many newer architectures avoid
condition codes or set them explicitly under program control to eliminate the
pipelining difficulties.

As a simple example, suppose the DLX instruction format were more com
plex, so that a separate, decode pipe stage were required before register fetch.
This would increase the branch delay to two clock cycles. At best, the second
branch-delay slot would be wasted at least as often as the first. Gross [1983]
found that a second delay slot was only used half as often as the first. This
would lead to a performance penalty for the second delay slot of more than 0.1
clock cycles per instruction.

Pitfall: Unexpected execution sequences may cause unexpected hazards.

At first glance, WA W hazards look like they should never occur because no
compiler would ever generate two writes to the same register without an inter
vening read. But they can occur when the sequence was unexpected. For exam
ple, the first write might be in the delay slot of a taken branch when the
scheduler thought the branch would not be taken. Here is the code sequence that
could cause this:

BNEZ

DIVD

foo: LD

Rl,foo

FO,F2,F4

FO,qrs

; moved into delay slot

from fall through

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 367

336 6.1 O Fallacies and Pitfalls

If the branch is taken, then before the D IVD can complete the LD will reach WB,
causing a WA W hazard. The hardware must detect this and may stall the issue
of the LD. Another way this can happen is if the second write is in a trap routine.
This occurs when an instruction that traps and is writing results continues and
completes after an instruction that writes the same register in the trap handler.
The hardware must detect and prevent this as well.

Fallacy: Increasing the depth of pipelining always increases performance.

Two factors combine to limit the performance improvement gained by pipe
lining. Data dependences in the code mean that increasing the pipeline depth
will increase the CPI, since aJarger percentage of the cycles will become stalls.
Second, clock skew and latch overhead combine to limit the decrease in clock
period obtained by further pipelining. Figure 6.56 shows the tradeoff between
pipeline depth and performance for the first 14 of the Livermore Loops (see
Chapter 2, page 43). The performance flattens out when the pipeline depth
reaches 4 and actually drops when the execution portion is pipelined 16 deep.

3.0

2.5

2.0

Relative
performance 1 ·5

1.0

0.5

0.0
2 4

Pipeline depth
8 16

FIGURE 6.56 The depth of pipelining versus the speedup obtained. This data is
based on Table 2 in Kunkel and Smith [1986]. The x axis shows the number of stages in
the EX portion of the floating-point pipeline. A single-stage pipeline corresponds to 32
levels of logic, which might be appropriate for a single FP operation.

Pitfall: Evaluating a scheduler on the basis of unoptimized code.

Unoptimized code-containing redundant loads, stores, and other operations that
might be eliminated by an optimizer-is much easier to schedule than "tight"
optimized code. In GCC running on a DECstation 3100, the frequency of idle
clock cycles increases by 18% from the unoptimized and scheduled code to the
optimized and scheduled code. TeX shows a 20% increase for the same
measurement. To fairly evaluate a scheduler you must use optimized code, since
in the real system you will derive a good performance from other optimizations
in addition to scheduling.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 368

6.11

Pipelining 337

Pitfall: Extensive pipelining can impact other aspects of a design, leading to
overall lower cost/performance.

The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. We discussed the instruction pipeline of the 8600
in Section 6.9. When the 8600 was initially delivered, it had a cycle time of 80
ns. Subsequently, a redesigned version, called the 8650, with a 55-ns clock was
introduced. The 8700 has a much simpler pipeline that operates at the
microinstruction level. The 8700 CPU is much smaller and has a faster clock
rate, 45 ns. The overall outcome is that the 8650 has a CPI advantage of about
20%, but the 8700 has a clock rate that is about 20% faster. Thus, the 8700
achieves the same performance with much less hardware.

Concluding Remarks

Figure 6.57 shows how the various pipelining approaches affect both clock
speed and CPI. This figure does not account for instruction-count differences.
Since performance is clock speed divided by CPI (ignoring instruction-count
differences), machines in the top left comer will be slowest, and machines in the
bottom right corner will be fastest. However, the machines that move towards
the lower right comer will probably achieve their maximum performance on the
narrowest range of applications.

Machines that are underpipelined lump multiple DLX pipestages into one.
The clock cannot be run as fast, and the CPI will be only marginally lower. The
DLX pipeline achieves a CPI very close to 1 (ignoring memory-system stalls) at
a reasonable clock speed. Architectural simplicity and efficient pipelining are
two of the most important attributes of the RISC (Reduced Instruction Set Com
puter) machines. DLX constitutes an example of such a machine. We have
chosen to use the term load/store architecture because the ideas apply to a broad
range of machines, and not just to the machines that identify themselves as
RISCs. Much of the discussion in the first part of this chapter centered around
the key ideas developed by the RISC projects.

Machines with higher clock rates and deeper pipelines have been called
superpipelined. Superpipelined machines are characterized by pipelining all
functional units. A superpipelined version of DLX might have a 10-stage
pipeline, rather than the 5-stage pipeline described earlier. Other than increasing
the complexity of pipeline scheduling and pipeline control, superpipelined
machines are not fundamentally different from the machines we have already
examined in/this chapter. Due to limited instruction-level parallelism, a super
pipelined machine will have a slightly higher CPI than a DLX-style pipeline, but
its advantage in clock cycle time should be larger than the disadvantage in CPI.

Superscalar processors can have clock cycle times very close to that of a
DLX pipeline and maintain a smaller CPI. The VLIW machines can have a

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 369

338 6.11 Concluding Remarks

substantially lower CPI, but tend to have a significantly higher clock cycle time
for the reasons discussed in this chapter. The vector machines effectively use
both techniques. They are usually superpipelined and have powerful vector
operations that can be considered equivalent to issuing multiple independent
operations on a machine like DLX. We will explore vector machines in detail in
the next chapter.

Going out from the top left comer on either axis in Figure 6.57, the require
ment to exploit more instruction-level parallelism increases; at the same time, of
course, fewer programs will run at maximum speed.

L
0

w
e
r

c
p
I

Faster clock rate

Superpipelined
Underpipelined DLX
machine pipeline

Superscalar

VLIW Vector Machines

FIGURE 6.57 Increasing the instruction-issue rate lowers the CPI, while a deeper
pipeline increases the clock rate. Various machines combine these techniques.

6.1 2 I Historical Perspective and References

This section describes some of the major advances in pipelining and ends with
some of the recent literature on high-performance pipelining.

The first general-purpose pipelined machine is considered to be Stretch, the
IBM 7030. Stretch followed on the IBM 704 and had a goal of being 100 times
faster than the 704. The goals were a stretch from the state of the art at that
time-hence the nickname. The plan was to obtain a factor of 1.6 from overlap
ping fetch, decode, and execute, using a 4-stage pipeline. Bloch [1959] and
Bucholtz [1962] describe the design and engineering tradeoffs, including the use
of ALU bypasses.

In 1964 CDC delivered the first CDC 6600. The CDC 6600 was unique in
many ways. In addition to introducing scoreboarding, the CDC 6600 was the
first machine to make extensive use of multiple functional units. It also had

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 370

Pipelining 339

peripheral processors that used a timeshared pipeline. The interaction between
pipelining and instruction set design was understood, and the instruction set was
kept simple to promote pipelining. The CDC 6600 also used an advanced pack
aging technology. Thornton [1964] describes the pipeline and I/0 processor
architecture, including the concept of out-of-order instruction execution.
Thornton's book [1970] provides an excellent description of the entire machine,
from technology to architecture, and includes a foreword by Cray.
(Unfortunately, this book is currently out of print.) The CDC 6600 also has an
instruction scheduler for the FORTRAN compilers, described by Thorlin [1967].

The IBM 360/91 introduced many new concepts, including tagging of data,
register renaming, dynamic detection of memory hazards, and generalized for
warding. Tomasulo's algorithm is described in his 1967 paper. Anderson,
Sparacio, and Tomasulo [1967] describe other aspects of the machine, including
the use of branch prediction. Patt and his colleagues have described an approach,
called HPSm, that is an extension of Tomasulo's algorithm [Hwu and Patt
1986].

A series of general pipelining descriptions that appeared in the late 1970s and
early 1980s provided most of the terminology and described most of the basic
techniques used in simple pipelines. These surveys include Keller [1975],
Ramamoorthy and Li [1977], Chen [1980], and Kogge's book [1981], devoted
entirely to pipelining. Davidson and his colleagues [1971, 1975] developed the
concept of pipeline reservation tables as a design methodology for multicycle
pipelines with feedback (also described in Kogge [1981]). Many designers use a
variation of these concepts, as we did in Figures 6.3 and 6.4.

The RISC machines refined the notion of compiler-scheduled pipelines in the
early 1980s. The concepts of delayed branches and delayed loads-common in
microprogramming-were extended into the high-level architecture. The Stan
ford MIP~ architecture made the pipeline structure purposely visible to the
compiler and allowed multiple operations per instruction. Schemes for schedul
ing the pipeline in the compiler were described by Sites [1979] for the Cray, by
Hennessy and Gross [1983], (and in Gross's thesis [1983]) and by Gibbons and
Muchnik [1986]. Rymarczyk [1982] describes the interlock conditions that pro
grammers should be aware of for a 360-like machine; this paper also shows the
complex interaction between pipelining and an instruction set not designed to be
pipelined.

J. E. Smith and his colleagues have written a number of papers examining
instruction issue, interrupt handling, and pipeline depth for high-speed scalar
machines. Kunkel and Smith [1986] evaluate the impact of pipeline overhead
and dependences on the choice of optimal pipeline depth; they also have an
excellent discussion of latch design and its impact on pipelining. Smith and
Plezkun [1988] evaluate a variety of techniques for preserving precise interrupts,
including the future file concept mentioned in Section 6.6. Weiss and Smith
[1984] evaluate a variety of hardware pipeline scheduling and instruction-issue
techniques.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 371

340 6.12 Historical Perspective and References

Dynamic hardware branch-prediction schemes are described by J. E. Smith
[1981] and by A. Smith and Lee [1984]. Ditzel [1987] describes a novel branch
target buffer for CRISP. McFarling and Hennessy [1986] is a quantitative com
parison of a variety of compile-time and run-time branch-prediction schemes.

A series of early papers, including Tjaden and Flynn [1970] and Foster and
Riseman [1972], concluded that only small amounts of parallelism could be
available a~ the instruction level without investing an enormous amount of
hardware. These papers dampened the appeal of multiple instruction issue for
more than ten years. Nicolau and Fisher [1984] published a paper asserting the
presence of large amounts of potential instruction-level parallelism.

Charlesworth [1981] reports on the Floating Point Systems AP-120B, one of
the first wide-instruction machines containing multiple operations per instruc:.
tion. Floating Point Systems applied the concept of software pipelining-albeit
by hand, rather than with a compiler-by writing assembly language libraries to
use the machine efficiently. Weiss and J. E. Smith [1987] compare software
pipelining versus loop unrolling as techniques for scheduling code on a
pipelined machine. Lam [1988] presents algorithms for software pipelining and
evaluates their use on Warp, a wide-instruction-word machine. Along with his
colleagues at Yale, Fisher [1983] proposed creating a machine with a very wide
instruction (512 bits), and named this type of machine a VLIW. Code was
generated for the machine using trace scheduling, which Fisher [1981] had
developed originally for generating horizontal microcode. The implementation
of trace scheduling for the Yale machine is described by Fisher, et. al. [1984]
and by Ellis [1986]. The Multiflow machine (see Colwell et. al. [1987])
commercialized the concepts developed at Yale.

Several researchers proposed techniques for multiple instruction issue.
Agerwala and Cocke [1987] proposed this approach as an extension of the RISC
ideas, and coined the name "superscalar." IBM described a machine based on
these ideas in late 1989 (see Bakoglu et al. [1989]). In 1990, the IBM was
announced as the RS/6000. The implementation can issue up to four instructions
per clock. A good description of the machine, its background, and software
appears in IBM [1990]. The Apollo DN 10000 and the Intel i860 both offer
multiple instruction issue, though the requirements for multiple issue are rather
rigid. The Intel i860 should probably be considered a LIW machine because the
program must explicitly indicate whether instruction pairs should be dual issued.
Although the pairs are ordinary instructions, there are substantial limitations on
what can appear as a member of a dual-issued pair. The Intel 960CA and
Tandem Cyclone are examples of superscalar machines with complex instruction
sets.

J. E. Smith and his colleagues at Wisconsin [1984] proposed the decoupled
approach that included multiple issue with dynamic pipeline scheduling. The
Astronautics ZS-1 described by Smith et al. [1987] embodies this approach and
uses queues to connect the load/store unit and the operation units. J. E. Smith
[1989] also describes the advantages of dynamic scheduling and compares that
approach to static scheduling. Dehnert, Hsu, and Bratt [1989] explain the

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 372

Pipelining 341

architecture and performance of the Cydrome Cydra 5, a machine with a wide
instruction word that provides dynamic register renaming. The Cydra 5 is a
unique blend of hardware and software aimed at extracting instruction-level
parallelism.

Recently there have been a number of papers exploring the tradeoffs among
alternative pipelining approaches. Jouppi and Wall [1989] examine the perfor
mance differences between superpipelined and superscalar systems, concluding
that their performance is similar, but that superpipelined machines may require
less hardware to achieve the same performance. Sohi and Vajapeyam [1989]
give measurements of available parallelism for wide-instruction-word machines,
Smith, Johnson, and Horowitz [1989] recount studies of available instruction
level parallelism in nonscientific code using an ambitious hardware scheme that
allows multiple-instruction execution.

References

AGERWALA, T. AND J. COCKE [1987]. "High performance reduced instruction set processors,"
IBM Tech. Rep. (March).

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967]. "The IBM 360 Model 91:
Machine philosophy and instruction handling," IBM J. of Research and Development 1I:1
(January) 8-24.

BAKOGLU, H.B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAHLE, C.R. MOORE, D. P. TUTTLE:
W. E. MAULE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T.
GLOVER, ANDS. DHAWAN [1989]. "IBM second-generation RISC machine organization," Proc.

· lnt'l Conf. on Computer Design, IEEE (October) Rye, N.Y., 13~-142.

BLOCH, E. [1959]. "The engineering design of the Stretch computer," Proc. Fall Joint Computer
Conf, 48-59.

BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.

CHARLESWORTH, A. E. [1981]. "An approach to scientific array processing: The architecture
design of the AP-120B/FPS-164 family," Computer 14:12 (December) 12-30.

CHEN, T. C. [1980]. "Overlap and parallel processing" in Introduction to Computer Architecture, H.
Stone, ed., Science Research Associates, Chicago, 427-486.

CLARK, D. W. [1987]. "Pipelining and performance in the VAX 8800 processor," Proc. Second
Conj. on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 173-177.

COLWELL, R. P., R. P. NIX, J. J. O'DONNELL, D. B. PAPWORTH, AND B. K. RODMAN [1987]. "A
VLIW architecture for a trace scheduling compiler," Proc. Second Conf on Architectural Support
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif., 180-
192.

DAVIDSON, E. S. [1971]. "The design and control of pipelined function generators," Proc. Conj. on
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19-21.

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. "Effective control for
pipelined processors," COMPCON, IEEE (March), San Francisco, 181-184.

DEHNERT, J.C., P. Y.-T. HSU, AND J.P. BRATT [1989]. "Overlapped loop support on the Cydra 5,"
Proc. Third Conf on Architectural Support for Programming Languages and Operating Systems
(April), IEEE/ACM, Boston, 26-39.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 373

342 6.12 Historical Perspective and References

DEROSA, J., R. GLACKEMEYER, AND T. KNIGHT [I985]. "Design and implementation of the VAX
8600 pipeline," Computer I8:5 (May) 38-48.

DIGITAL EQUIPMENT CORPORATION [I987]. Digital Technical J. 4 (March), Hudson, Mass. (This
entire issue is devoted to the VAX 8800 processor.)

DITZEL, D.R. AND H. R. MCLELLAN [I987]. "Branch folding in the CRISP microprocessor:
Reducing the branch delay to zero," Proc. 14th Symposium on Computer Architecture (June),
Pittsburgh, 2-7.

EARLE, J. G. [1965]. "Latched carry-save adder," IBM Technical Disclosure Bull. 7 (March) 909-
910.

ELLIS, J. R., [1986]. Bulldog: A Compiler for VLIW Architectures, The MIT Press,I986.

EMER, J. S. AND D. W CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.

FISHER, J. A. [I98I]. "Trace Scheduling: A Technique for Global Microcode Compaction," IEEE
Trans. on Computers 30:7 (July), 478-490.

FISHER, J. A. [1983]. "Very long instruction word architectures and ELl-512," Proc. Tenth Sympo
sium on Computer Architecture (June), Stockholm, Sweden., I40-150.

FISHER J. A., J. R. ELLIS, J.C. RUTTENBERG, AND A. NICOLAU [1984]. "Parallel processing: A
smart compiler and a dumb machine," Proc. SJGPLAN Conj. on Compiler Construction (June),
Palo Alto, CA, 11-16.

FOSTER, C. C. AND E. M. RISEMAN [I972]. "Percolation of code to enhance parallel dispatching
and execution," IEEE Trans. on Computers C-2I:12 (December) 14I 1-I4I5.

GIBBONS, P. B. ANDS. S. MUCHNIK [1986]. "Efficient Instruction Scheduling for a Pipelined
Processor," SIGPLAN '86 Symposium on Compiler Construction, ACM (June), Palo Alto, CA,
1 I-I6.

GROSS, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December),
·Computer Systems Lab., Stanford Univ.

HENNESSY, J. L. AND T. R. GROSS [1983]. "Postpass code optimization of pipeline constraints,"
ACM Trans. on Programming Languages and Systems 5:3 (July) 422-448

HWU, W.-M. ANDY. PATT [1986]. "HPSm, a high performance restricted data flow architecture
having minimum functionality," Proc. 13th Symposium on Computer Architecture (June), Tokyo,
297-307.

IBM [1990]. "The IBM RISC System/6000 processor," collection of papers, IBM lour. of Research
and Development 34: 1, (January), I I 9 pages.

JOUPPI N. P. AND D. W. WALL [I989]. "Available instruction-level parallelism for superscalar and
superpipelined machines," Proc. Third Conj. on Architectural Support for Programming Lan
guages and Operating Systems, IEEE/ACM (April), Boston, 272-282.

KELLER R. M. [I975]. "Look-ahead processors," ACM Computing Surveys 7:4 (December) 177-
I95.

KOGGE, P. M. [I98I]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

KUNKEL, S. R. AND J.E. SMITH [I986]. "Optimal pipelining in supercomputers," Proc. 13th Sym
posium on Computer Architecture (June), Tokyo, 404-4I4.

LAM, M. [I988]. "Software pipelining: An effective scheduling technique for VLIW machines,"
SIGPLAN Conj. on Programming Language Design and Implementation, ACM (June), Atlanta,
Ga., 3I8-328.

MCFARLING, S. AND J. HENNESSY [I986]. "Reducing the cost of branches," Proc. 13th Sym
posium on Computer Architecture (June), Tokyo, 396-403.

NICOLAU, A. AND J. A. FISHER [I984]. "Measuring the parallelism available for very long
instruction work architectures," IEEE Trans. on Computers C-33: I I (November) 968-976.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 374

Pipelining 343

RAMAMOORTHY, C. V. AND H.F. LI [1977). "Pipeline architecture," ACM Computing Surveys 9:1
(March) 61-102.

RYMARCZYK, J. [1982). "Coding guidelines for pipelined processors," Proc. Symposium on Archi
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo
Alto, Calif., 12-I9.

SITES, R. [I979]. Instruction Ordering for the CRAY-I Computer, Tech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego.

SMITH, A. AND J. LEE [1984). "Branch prediction strategies and branch target buffer design," Com
puter I7:I (January) 6-22.

SMITH, J. E. [I98I]. "A study of branch prediction strategies," Proc. Eighth Symposium on
Computer Architecture (May), Minneapolis, 135-I48.

SMITH, J.E. [I984]. "Decoupled access/execute computer architectures," ACM Trans. on Computer
Systems 2:4 (November), 289-308.

SMITH, J.E. [1989). "Dynamic instruction scheduling and the Astronautics ZS-1," Computer 22:7
(July) 21-35.

SMITH, J.E. AND A. R. PLEZKUN [1988). "Implementing precise interrupts in pipelined proces
sors," IEEE Trans. on Computers 37:5 (May) 562-573.

SMITH, J.E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L.
FOWLER, K. R. SCIDMORE, J.P. LAUDON [I987]. "The ZS-1 central processor," Proc. Second
Conf on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., I 99-204.

SMITH, M. D., M. JOHNSON, ANDM. A. HOROWITZ [1989). "Limits on multiple instruction issue,"
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, Mass., 290-302.

SOHi, G. S., ANDS. VAJAPEYAM [I989]. "Tradeoffs in instruction format design for horizontal
architectures," Proc. Third Conf. on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (April), Boston, Mass. I5-25.

THORLIN, J. F. [I967]. "Code generation for PIE (parallel instruction execution) computers," Spring
Joint Computer Conf. (April), Atlantic City, N.J.

THORNTON, J.E. [1964). "Parallel operation in the Control Data 6600," Proc. Fall Joint Computer
Conf. 26, 33-40.

THORNTON, J.E. [1970). Design of a Computer, the Control Data 6600, Scott, Foresman,
Glenview, Ill.

TJADEN, G. S. AND M. J. FLYNN [1970). "Detection and parallel execution of independent instruc
tions," IEEE Trans. on Computers C-19:10 (October) 889-895.

TOMASULO, R. M. [I967]. "An efficient algorithm for exploiting multiple arithmetic units," IBM J.
of Research and Development I I: I (January) 25-33.

TROIANI, M., S.S. CHING, N. N. QUA YNOR, J.E. BLOEM, AND F. C. COLON OSORIO [I985].
"The VAX 8600 I Box, a pipelined implementation of the VAX architecture," Digital Technical J.
1 (August) 4-I9.

WEISS, S. AND J.E. SMITH [I984]. "Instruction issue logic for pipelined supercomputers," Proc.
11th Symposium on Computer Architecture (June), Ann Arbor, Mich., l IO-I I8.

WEISS, S. AND J.E. SMITH [I987]. "A study of scalar compilation techniques for pipelined super
computers," Proc. Second Conf on Architectural Support for Programming Languages and
Operating Systems (March), IEEE/ACM, Palo Alto, Calif., I05-I09.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 375

344 Exercises

EXERCISES

6.1 [12/12/15/20/15/15] <6.2-6.4> Consider an architecture with two instruction formats:
a register-register format and a register-memory format. There is a single memory
addressing mode (offset+ base register).

There is a set of ALU operations with format:

ALUop Rdest, Rsrc1, Rsrc2

or

ALUop Rdest, Rsrc 1, MEM

Where the ALU op is one of the following: Add~ Subtract, And, Or, Load (Rsrc1 ignored),
Store (Rdest ignored). Rsrc or Rdest are registers. MEM is a base register and offset pair
and is a source for any ALU op, except a store instruction where it is the destination.

Branches use a full compare of two registers and are PC-relative. Assume that this
machine is pipelined so that a new instruction is started every clock cycle. The following
pipeline structure-similar to that used in the VAX 8800 micropipeline-is used:

IF RF ALUl MEM ALU2 WB
IF RF ALUl MEM ALU2 WB

IF RF ALUl MEM ALU2 WB
IF RF

IF
ALUl MEM ALU2 WB
RF ALUl MEM ALU2 WB
IF RF ALUl MEM ALU2 WB

The first ALU stage is used for effective address calculation for memory references and
branches. The second ALU cycle is used for operations and branch comparison. RF is
both a decode and register-fetch cycle. Assume reading in RF and writing in WB occur as
in Figure 6.8 (page 262).

a. [12] Find the number of adders needed, counting any adder or incrementer; show a
combination of instructions and pipe stages that justify this answer. You need only
give one combination that maximizes the adder count.

b. [12] Find the number of register read and write ports and memory read and write ports
required. Show that your answer is correct by showing a combination of instructions
and pipeline stage indicating the instruction and the number of read ports and write .
ports required for that instruction.

c. [15] Determine any data forwarding between the two separate ALUs used for the
ALUl and ALU2 pipe stages. Put in all forwarding of ALU to ALU needed to avoid
or reduce stalls. Show the relationship between the two instructions involved in
forwarding.

d. [20] Show any other data-forwarding requirements for the units listed below by giving
an example of the source instruction and destination instruction of the forwarding.
Each example should show the maximum separation of the two instructions. How
many instructions can each example forward across? You need only consider the fol
lowing units: MDRin (memory data in register), MDRout (memory-data register for
outgoing data), ALU1, and ALU2. Include any forwarding that is required to prevent

or reduce stalls.

e. [15] Give an example of all remaining hazards after all forwarding of parts C and D
above has been implemented. What is the maximum number of stalls for each hazard?

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 376

Pipelining 345

f. (15] Show all control hazard types by example and state the length of the stall. The
control hazards should be resolved as early as possible (but not using a delayed
branch).

6.2 (12] <6.1-6.4> A machine is called "underpipelined" if additional levels of pipelining
can be added without changing the pipeline-stall behavior appreciably. Suppose that the
DLX pipeline was changed to four stages by merging ID and EX and lengthening the
clock cycle by 50%. How much faster would the convent~onal DLX pipeline be versus
the underpipelined DLX on integer code only? Make sure you include the effect of any
change in pipeline stalls using the data in Figure 6.24 (page 278).

6.3 (15] <6.2-6.4> We know that a four-deep pipelined implementation has the following
hazard frequencies and stall requirements between an instruction i and its successors:

i + 1 (and not on i + 2) 20% 2 cycle stall
i + 2 5% 1 cycle stall

Assume that the clock rate of the pipelined machine is four times the clock rate of the
nonpipelined implementation. What is the effective performance increase from pipelining
if we ignore the effect of hazards? What is the effective performance increase from
pipelining if we account for the effect of pipelining hazards?

6.4 (15] <6.3> Suppose the branch.frequencies (as percentages of all instructions) are as
follows:

Conditional branches
Jumps and calls
Conditional branches

20%
5%
60% are taken

We are examining a four-deep pipeline where the branch is resolved at the end of the
second cycle for unconditional branches, and at the end of the third cycle for conditional
branches. Assuming that only the first pipe stage can always be done independent of
whether the branch goes and ignoring other pipeline stalls, how much faster would the
machine be without any branch hazards?

6.S. [20] <6.4> Several designers have proposed the concept of canceling branches (also
called squashing or nullifying), as a way to improve the performance of delayed
branches. (Several of the machines discussed in Appendix E have this capability.) The
idea is to allow the branch to indicate that the instruction in the delay slot should be
aborted if the branch is mispredicted. The advantage of canceling branches is that the
delay slot can always be filled, since the branch can abort the contents of the delay slot if
mispredicted. The compiler need not worry about whether the instruction is OK to
execute when the branch is mispredicted.

A simple version of canceling branches cancels if the branch is not taken; assume this
type of canceling branch. Use the data in Figure 6.18 (page 272) for branch frequency.
Assume that 27% of the branch-delay slots are filled using strategy (a) of Figure 6.20
(page 274) with standard delayed branches, and that the rest of the slots are filled using
canceling branches and strategy (b). U~ing the taken/not taken data for Spice from Figure
3.22 on page 107, show the effectiveness of this scheme with canceling branches for
Spice using the same format as the graph in Figure 6.22 (page 276). How much faster on
Spice would a machine with canceling branches run, assuming there is no clock-speed
penalty compared to a machine with only delayed branches? Assume CPI without branch
stalls is 1.

6.6 [20/15/20] <6.2-6.4> Suppose that we have the following pipeline layout:

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 377

346 Exercises

Stage Function

1 Instruction fetch

2 Operand decode

3 Execution or memory access (branch resolution)

All data dependences are between the register written in Stage 3 of instruction i and a
register read in Stage 2 of instruction i + 1, before instruction i has completed. The
probability of such an interlock occurring is 1/p.

We are considering a change in the machine organization that would write back the result
of an instruction during an effective 4th pipe stage. This would decrease the length of the
clock cycle by d (i.e., if the length of the clock cycle was T, it is now T-d). The prob
ability of a dependence between instruction i and instruction i +2 is p-2. (Assume that
the value of p-I excludes instructions that would interlock on i +2.) The branch would
also be resolved during the fourth stage.

a. [20] Considering only the data hazard, find the lower bound on d that makes this a
profitable change. Assume that each result has exactly one use and that the basic
clock cycle has length T.

b. [15] Suppose that the probability of an interlock between i and i+n were 0.3 - O.ln
for l~n~3. What increase in the clock rate is needed so that this change improves per
formance?

c. [20] Now assume that we have used forwarding to eliminate the extra hazard intro
duced by the change. That is, for all data hazards the pipeline length is effectively 3.
This design may still not be worthwhile because of the impact of control hazards
coming from a four-stage versus a three-stage pipeline. Assume that only Stage 1 of
the pipeline can be safely executed before we decide whether a branch goes or not and
that all branches are conditional. We want to know what the impact of branch hazards
can be before this longer pipeline does not yield high performance. Find an upper
bound on the percent of conditional branches in programs in terms of the ratio of d to
the original clock-cycle time, so that the longer pipeline has better performance. What
if d is a 10% reduction, what is the maximum percentage of conditional branches,
before we lose with this longer pipeline? Assume the taken-branch frequency for
conditional branches is 60%.

6.7 [12] <6.7> A shortcoming of the scoreboard approach occurs when multiple func
tional units that share input buses are waiting for a single result. The units cannot start
simultaneously, but must serialize. This is not true in Tomasulo's algorithm. Give a code
sequence that uses no more than 10 instructions and shows this problem. Use the FP
latencies from Figure 6.29 (page 289) and the same functional units in both examples.
Indicate where the Tomasulo approach can continue, but the scoreboard approach must
stall.

6.8 [15] <6.7> Tomasulo's algorithm also has a disadvantage versus the scoreboard: only
one result can complete per clock, due to the CDB. Using the FP latencies from Figure
6.29 (page 289) and the same functional units in both cases, find a code sequence of no
more than 10 instructions where scoreboard does not stall, but Tomasulo's algorithm
must. Indicate where this occurs in your sequence.

6.9 [15] <6.7> Suppose we have a deeply pipelined machine, for which we implement a
branch-target buffer for the conditional branches only. Assume that the misprediction

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 378

Pipelining 347

penalty is always 4 cycles and the buffer miss penalty is always 3 cycles. Assume 90%
hit rate and 90% accuracy, and the branch statistics in Figure 6.18 (page 272). How much
faster is the machine with the branch-target buffer versus a machine that has a fixed 2-
cycle branch penalty? Assume a base CPI without branch stalls of 1.

6.10 [15) <6.7> Some designers have proposed using branch-target buffers to obtain a
zero-delay unconditional branch (see Ditzel and McLellan [1987)). The buffer simply
caches the target instruction rather than the target PC. On an unconditional branch that
hits in the branch-target buffer, the target instruction is fetched and sent to the pipeline in
place of the unconditional branch. Assuming a 90% hit rate, a base CPI of 1, and the data
in Figure 6.18 (page 272), how much improvement is gained by this enhancement versus
a machine whose effective CPI is 1.1.

6.11-6.19 For these problems we will look at how a common vector loop runs on a
variety of pipelined versions of DLX. The loop is the so-called SAXPY loop (discussed
extensively in Chapter 7). The loop implements the vector operation Y = a*X+Y for a
vector of length 100. Here is the DLX code for the loop:

foo: LD Jo'.A(/L F2,0(Rl)f\ ;load X(i)

MULTD F4,F2,FO ;multiply a*X(i)

LD F6,0(R2) ;load Y(i)

ADDD F6,F4,F6 ;add aX(i) + Y(i)

SD
1

0(R2),F6\~ ;store Y(i)
I

ADD I ;,,,,,,.,ii Rl, Rl, 8 ;increment X index

ADDI R2,R2,8 ;increment Y index

SGTI R3,Rl,done ;test if done

BEQZ R3,foo ; loop if not done

For these problems, assume that the integer operations issue and complete in one clock
cycle and that their results are fully bypassed. Ignore the branch delay. You will use the
FP latencies shown in Figure 6.29 (page 289) unless stated otherwise. Assume the FP
units are not pipelined unless the problem states otherwise.

6.11 [20] <6.2-6.6> For this problem use the pipeline constraints shown in Figure 6.29
(page 289). Show the number of stall cycles for each instruction and what clock cycle the
instruction begins execution (i.e., enters its first EX cycle) on the first iteration of the
loop. How many clock cycles does each loop iteration take?

6.12 [22) <6.7> Using the DLX code for SAXPY above, show the state of the scoreboard
tables (as in Figure 6.32) when the SGTI instruction reaches Write result. Assume that
issue and read operands each take a cycle. Assume that there are three integer functional
units and they take only a single execution cycle (including loads and stores). Assume the
functional unit count described in Section 6.7 with the FP latencies of Figure 6.29. The
branch should not be included in the scoreboard.

6.13 [22) <6.7> Use the DLX code for SAXPY above and the latencies of Figure 6.29.
Assuming Tomasulo's algorithm for the hardware with the functional units described in
Section 6.7, show the state of the reservation stations and register-status tables (as in

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 379

348 Exercises

Figure 6.37) when the SGTI writes its result on the CDB. Make the same assumptions
about 'latencies and functional units as Exercise 6.12.

6.14 [22] <6.7> Using the DLX code for SAXPY above, assume a scoreboard with the
functional units described in the algorithm for the hardware, plus three integer functional
units (also used for load/store). Assume the following latencies in clock cycles:

FP multiply 10

FP add 6

FP load/store 2

All integer operations 1

Show the state of the scoreboard (as in Figure 6.32) when the branch issues for the
second time. Assume the branch was correctly predicted taken and took one cycle. How
many clock cycles does each loop iteration take? You may ignore any register port/bus
conflicts.

6.15 [25] <6.7> Use the DLX code for SAXPY above. Assume Tomasulo's algorithm for
the hardware using the functional-unit count shown in Section 6.7. Assume the following
latencies in clock cycles:

FP multiply 10

FP add 6

FP load/store 2

All integer operations 1

Show the state of the reservation stations and register status tables (as in Figure 6.37)
when the branch is executed for the second time. Assume the branch was correctly pre
dicted as taken. How many clock cycles does each loop iteration take?

6.16 [22] <6.8> Unwind the DLX code for SAXPY three times and schedule it for the
standard DLX pipeline. Assume the FP latencies of Figure 6.29. When unwinding, you
should optimize the code as in Section 6.8. Significant reordering of the code will be
needed to maximize performance. What is the speedup over the original loop?

6.17 [25] <6.8> Assume a superscalar architecture that can issue any two independent
operations in a clock cycle (including two integer operations). Unwind the DLX code for
SAXPY three times and schedule it assuming the FP latencies of Figure 6.29. Assume
one fully-pipelined copy of each functional unit (e.g., FP adder, FP multiplier). How
many clock cycles will each iteration on the original code take? When unwinding, you
should optimize the code as in Section 6.8. What is the speedup versus the original code?

6.18 [25] <6.8> In a superpipelined machine, rather than have multiple functional units,
we would fully pipeline all the units. Suppose we designed a superpipelined DLX that
had twice the clock rate of our standard DLX pipeline and could issue any two unrelated
operations in the same time that the normal DLX pipeline issued one operation. Unroll
the DLX SAXPY code three times and schedule it for this superpipelined machine
assuming the FP latencies of Figure 6.29. How many clock cycles does each loop
iteration take? Remember that these clock cycles are half as long as those on a standard
DLX pipeline or a superscalar DLX.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 380

Pipelining 349

6.19 [20] <6.8> Start with the SAXPY code and the machine used in Figure 6.49. Unroll
the SAXPY loop three times, performing simple optimizations (as on page 315). Fill in a
table like Figure 6.49 for the unrolled loop. How many clock cycles does each loop
iteration take?

6.20 [35] <6.1-6.4> Change the DLX instruction simulator to be pipelined. Measure the
frequency of empty branch-delay slots, the frequency of load delays, and the frequency of
PP stalls for a variety of integer and PP programs. Also,' measure the frequency of for
warding operations. Determine what the performance impact of eliminating forwarding
and stalling would be.

6.21 [35] <6.6> Using a DLX simulator, create a DLX pipeline simulator. Explore the
impact of lengthening the PP pipelines, assuming both fully pipelined and nonpipelined
PP units. How does clustering of PP operations affect the results? Which PP units are
most susceptible to changes in the PP pipeline length?

6.22 [40] <6.4-6.6> Write an instruction scheduler for DLX that works on DLX
assembly language. Evaluate your scheduler using either profiles of programs or with a
pipeline simulator. If the DLX C compiler does optimization, evaluate your scheduler's
performance both with and without optimization.

6.23 [35] <6.4-6.6> Write a DLX pipeline simulator that uses Tomasulo's algorithm with
the functional units described. Evaluate the performance of this machine compared to the
straightforward DLX pipeline.

6.24 [Discussion] <6.7> Dynamic instruction scheduling requires a considerable invest
ment in hardware. In return, this capability allows the hardware to run programs that
could not be run at full speed with only compile-time, static scheduling. What tradeoffs
should be taken into account in trying to decide between a dynamically and a statically
scheduled scheme? What sort of situations in both hardware technology and program
characteristics are likely to favor one approach or the other?

6.25 [Discussion] <6.7> There is a subtle problem that must be considered when imple
menting Tomasulo's algorithm. It might be called the "two ships passing in the night
problem." What happens if an instruction is being passed to a reservation station during
the same clock period as one of its operands is going onto the common data bus? Before
an instruction is in a reservation station, the operands are fetched from the register file;
but once it is in the station, the operands are always obtained from the CDB. Since the
instruction and its operand tag are in transit to the reservation station, the tag cannot be
matched against the tag on the CDB. So there is a possibility that the instruction will then
sit in the reservation station forever waiting for its operand, which it just missed. How
might this problem be solved? You might consider subdividing one of the steps in the
algorithm into multiple parts. (This intriguing problem is courtesy of J.E. Smith.)

6.26 [Discussion] <6.8> Discuss the advantages and disadvantages of a superscalar
implementation, a superpipelined implementation, and a VLIW approach in the context
of DLX. What levels of instruction-level parallelism favor each approach? What other
concerns would you consider in choosing which type of machine to build?

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 381

I'm certainly not inventing vector machines. There are three kinds
that I know of existing today. They are represented by the
Illiac-IV, the (CDC) Star machine, and the TI (ASC) machine.
Those three were all pioneering machines One of the
problems of being a pioneer is you always make mistakes and
I never, never want to be a pioneer. It's always best to come
second when you can look at the mistakes the pioneers made.

7.1

7.2
7.3
7.4

7.5
7.6

7.7

7.8

7.9
7.10

· Seymour Cray, Public Lecture at Lawrence Livermore Laboratories on the
Introduction of the CRAY-I (1976)

Why Vector Machines? 351

Basic Vector Architecture 353

Two Real-World Issues: Vector Length and Stride 364

A Simple Model for Vector Performance 369

Compiler Technology for Vector Machines 371

Enhancing Vector Performance 37'.?'

Putting It All Together: Evaluating the
Performance of Vector Processors 383

Fallacies and Pitfalls 390

Concluding Remarks 392

Historical Perspective and References 393

Exercises 397

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 382

7

7.1

Vector Processors

Why Vector Machines?

In the last chapter we looked at pipelining in detail and saw that pipeline
scheduling, issuing multiple instructions per clock cycle, and more deeply
pipelining a processor could as much as double the performance of a machine.
Yet there are limits on the performance improvement that pipelining can
achieve. These limits are set by two primary factors:

• Clock cycle time-The clock cycle time can be decreased by making the
pipelines deeper, but a deeper pipeline will increase the pipeline dependences
and result in a higher CPI. At some point, each increase in pipeline depth has
a corresponding increase in CPI. As we saw in Section 6.10, very deep
pipelining can slow down a processor.

• Instruction fetch and decode rate-This limitation, sometimes called the
Flynn bottleneck (based on Flynn [1966]), prev--ents fetching and issuing of
more than a few instructions per clock cycle. We saw that for most pipelined
machines the average number of instruction issues per clock was less than
one.

The dual limitations imposed by deeper pipelines and issuing multiple instruc
tions can be viewed from the standpoint of either clock rate or CPI: It is just as

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 383

352 7.1 Why Vector Machines?

difficult to schedule a pipeline that is n times deeper as it is to schedule a
machine that issues n instructions per clock cycle.

High-speed, pipelined machines are particularly useful for large scientific and
engineering applications. A high-speed pipelined machine will usually use a
cache to avoid forcing memory reference instruct\ons to have very long latency.
However, big, long-running, scientific programs often have very large active
data sets that are often accessed with low locality, yielding poor performance
from the memory hierarchy. The resulting impact is a decrease in cache
performance. This problem could be overcome by not caching these structures if
it were possible to determine the memory-access patterns and pipeline the
accesses efficiently. Compiler assistance may help address this problem in the
future (see Section 10.7).

Vector machines provide high-level operations that work on vectors-linear
arrays of numbers. A typical vector operation might add two 64-entry, floating
point vectors to obtain a single 64-entry vector result. The vector instruction is
equivalent to an entire loop, with each iteration computing one of the 64
elements of the result, updating the indices, and branching back to the.
beginning.

Vector operations have several important properties that solve most of the
problems mentioned above:

• The computation of each result is independent of the computation of previous
results, allowing a very deep pipeline without generating any data hazards.
Essentially, the absence of data hazards was determined by the compiler or
programmer when they decided that a vector instruction could be used.

• A single vector instruction specifies a great deal of work-it is equivalent to
executing an entire loop. Thus, the instruction bandwidth requirement is
reduced, and the Flynn bottleneck is considerably mitigated.

• Vector instructions that access memory have a known access pattern. If the
vector's elements are all adjacent, then fetching the vector from a set of
heavily interleaved memory banks works very well. The high latency of
initiating a main memory access versus accessing a cache is amortized
because a single access is initiated for the entire vector rather than to a single
word. Thus, the cost of the latency to main memory is seen only once for the
entire vector, rather than once for each word of the vector.

• Because an entire loop is replaced by a vector instruction whose behavior is
predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

For. these reasons, vector operations can be made faster than a sequence of scalar
operations on the same number of data items, and designers are motivated to
include vector units if the applications domain can use them frequently.

As mentioned above, vector machines pipeline the operations on the individ
ual elements of a vector. The pipeline includes not only the arithmetic operations
(multiplication, addition, and so on), but also memory accesses and effective

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 384

Vector Processors 353

address calculations. In addition, most high-end vector machines allow multiple
vector operations to be done at the same time, creating parallelism among the
operations on different elements. In this chapter, we focus on vector machines
that gain performance by pipelining and instruction overlap. In Chapter 10, we
discuss parallel machines that operate on many elements in parallel rather than
in pipelined fashion.

7 .21 Basic Vector Architecture

A vector machine typically consists of an ordinary pipelined scalar unit plus a
vector unit. All functional units within the vector unit have a latency of several
clock cycles. This allows a shorter clock cycle time and is compatible with long
running, vector operations that can be deeply pipelined without generating
hazards. Most vector machines allow the vectors to be dealt with as floating
point numbers (FP), as integers, or as logical data, though we will focus on
floating point. The scalar unit is basically no different from the type of pipelined
CPU discussed in Chapter 6.

There are two primary types of vector architectures: vector-register machines
and memory-memory vector machines. In a vector-register machine, all vector
operations-except load and store-are among the vector registers. These
machines are the vector counterpart of a load/store architecture. All major vector
machines being shipped in 1990 use a vector-register architecture; these include
the Cray Research machines (CRAY -1, CRA Y-2, X-MP, and Y-MP), the
Japanese supercomputers (NEC SX/2, Fujitsu VP200, and the Hitachi S820),
and the mini-supercomputers (Convex C-1 and C-2). In a memory-memory
vector machine all vector operations are memory to memory. The first vector
machines were of this type, as were CDC's machines. From this point on we will
focus on vector-register architectures only; we will briefly return to memory
memory vector architectures at the end of the chapter (Section 7 .8) to discuss
why they have not been as successful as vector-register architectures.

We begin with a vector-register machine consisting of the primary com
ponents shown in Figure 7.1 (page 354). This machine, which is loosely based
on the CRA Y-1, is the foundation for discussion throughout most of this chapter.
We will call it DLXV; its integer portion is DLX, and its vector portion is the
logical vector extension of DLX. The rest of this section examines how the basic
architecture of DLXV relates to other machines.

The primary components of the instruction set architecture of DLXV are:
-----.._./

• Vector registers-Each vector register is a fixed-length bank holding a single
vector. DLXV has eight vector registers, and each vector register holds 64
doublewords. Each vector register must have at least two read ports and one
write port in DLXV. This will allow a high degree of overlap among vector
operations to different vector registers. (The CRA Y-1 manages to implement
the register file with only a single port per register using some clever imple
mentation techniques.)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 385

354 7.2 Basic Vector Architecture

Vector
registers,__ ___ __

Scalar
registers

FIGURE 7.1 The basic structure of a vector-register architecture, DLXV. This
machine has a scalar architecture just like DLX. There are also eight 64-element vector
registers, and all the functional units are vector functional units. Special vector operations
and vector loads and stores are defined. We show vector units for logical and intege,r oper
ations. These are included so that DLXV looks like a standard vector machine, which usu
ally includes these units. However, we will not be discussing these units except in the Exer
cises. In Section 7.6 we add chaining, which will require additional interconnect capability.

• Vector functional units-Each unit is fully pipelined and can start a new
operation on every clock cycle. A control unit is needed to detect hazards,
both on conflicts for the functional units (structural hazards) and on conflicts
for register accesses (data hazards). DLXV has five functional units, as
shown in Figure 7.1. For simplicity, we will focus exclusively on the floating
point functional units.

• Vector load/store unit-A vector memory unit that loads or stores a vector to
or from memory. The DLXV vector loads and stores are fully pipelined, so
that words can be moved between the vector registers and memory with a
bandwidth of one word per clock cycle, after an initial latency.

• A set of scalar registers-These can also provide data as input to the vector
functional units, as well as compute addresses to pass to the vector load/store
unit. These are the normal 32 general-purpose registers and 32 floating-point
registers of DLX.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 386

Machine Year
announced

CRAY-1 1976

CRAYX-MP 1983
CRAYY-MP 1988

CRAY-2 1985

Fujitsu 1982
VPl00/200

Hitachi 1983
S810/820

Convex C-1 1985

NEC SX/2 1984

DLXV 1990

Vector Processors 355

Figure 7 .2 shows the characteristics of some typical vector machines, including
the size and count of the registers, the number and types of functional units, and
the number of load/store units.

In DLXV, the vector operation has the same name as the DLX name with the
letter "V" appended. These are double-precision, floating-point, vector opera
tions. (We have omitted single-precision FP operations and integer and logical
operations for simplicity.) Thus, ADDV is an add of two double-precision vec
tors. The vector operations take as their input either a pair of vector registers
(ADDV) or a vector register and a scalar register designated by appending "SV"
(ADDSV). In the latter case, the value in the scalar register is used as the input
for all operations-the operation ADDSV will add the contents of a scalar regis
ter to each element in a vector register. Vector operations always have a vector
destination register. The names LV and sv denote vector load and vector store,
and load or store an entire vector of double-precision data. One operand is

Vector Elements per Vector functional units Vector
registers vector register load I

(64-bit elements) store units

8 64 6: add, multiply, reciprocal, integer add, 1
logical, shift

8 64 8: FP add, FP multiply, FP reciprocal, integer 2 loads
add, 2 logical, shift, population count/parity 1 store

8 64 5: FP add, FP multiply, FP reciprocal/sqrt, 1
integer (add shift, population count), logical

8-256 32-1024 3: FP or integer add/logical, multiply, divide 2

32 256 4: 2 integer add/logical, 1 multiply-add and 1 4
multiply/divide-add unit

8 128 4: multiply, add, divide, integer/logical 1

8 + 8192 256 variable 16: 4 integer add/logical, 4 FP 8
multiply/divide, 4 FP add, 4 shift

8 64 5: multiply, divide, add, integer add, logical 1

FIGURE 7.2 Characteristics of several vector-register architectures. The vector functional units include all operation
units used by the vector instructions. The functional units are floating point unless stated otherwise. If the machine is a
multiprocessor, the entries correspond to the characteristics of o_ne proceSSQL,-Each vector load/store unit represents the
ability to do an independent, overlapped transfer to or from the vector registers. The Fujitsu VP200's vector registers are
configurable: The size and count of the BK 64-bit entries may be varied inversely to one another (e.g., B registers each 1 K
elements long, or 12B registers each 64 elements long). The NEC SX/2 has B fixed registers of length 256, plus BK of
configurable 64-bit registers. The reciprocal unit on the CRAY machines is used to do division (and square root on the
CRAY-2). Add pipelines perform floating-point add and subtract. The multiply/divide-add unit on the Hitachi SB10/200
performs an FP multiply or divide followed by an add or subtract (while the multiply-add unit performs a multiply followed
by an add or subtract). Note that most machines use th.e vector FP multiply and divide units for vector integer multiply and
divide, just like DLX, and.several of the machines use the same units for FP scalar and FP vector operations.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 387

356

Vector instruction

ADDV

ADDSV

SUBV

SUB VS

SUBSV

MULTV

MULTSV

DIVV

DIVVS

DIVSV

LV

sv
LVWS

svws
LVI

SVI

CVI

s_v
s sv -

POP

CVM

MOVI2S

MOVS2I

MOVF2S

MOVS2F

7.2 Basic Vector Architecture

the vector register to be loaded or stored; the other operand, which is a DLX
general-purpose register, is the starting address of the vector in memory. Figure
7.3 lists the DLXV vector instructions. In addition to the vector registers, we
need two additional special-purpose registers: the vector-length and vector-mask
registers. We will discuss these registers and their purpose in Sections 7.3 and
7 .6, respectively.

Operands Function

Vl,V2,V3 Add elements of V2 and V3, then put each result in Vl.

Vl, FO, V2 Add FO to each' element of V2, then put each result in Vl.

Vl,V2,V3 Subtract elements of V3 from V2, then put each result in Vl.

Vl,V2,FO Subtract F 0 from elements of V2, then put each result in Vl.

Vl,FO,V2 Subtract elements of V2 from F 0, then put each result in Vl.

Vl,V2,V3 Multiply elements of V2 and V3, then put each result in Vl.

Vl,FO,V2 Multiply F 0 by each element of V2, then put each result in Vl.

Vl,V2,V3 Divide elements of V2 by V3, then put each result in Vl.

Vl,V2,FO Divide elements of V2 by F 0, then put each result in Vl.

Vl,FO,V2 Divide FO by elements of V2, then put each result in Vl.

Vl,Rl Load vector register Vl from memory starting at address Rl.

Rl,Vl Store vector register Vl into memory starting at address Rl.

Vl, (Rl, R2) Load Vl from address at Rl with stride in R2, i.e., Rl+i *R2.

(Rl, R2), Vl Store Vl from address at Rl with stride in R2, i.e., Rl+i *R2.

Vl, (Rl+V2) Load Vl with vector whose elements are at Rl +V2 (i) , i.e., V2 is an index.

(Rl+V2), Vl Store Vl with vector whose elements are at Rl + V2 (i) , i.e., V2 is an index.

Vl,Rl Create an index vector by storing the values 0, 1 *Rl, 2 *Rl, ... , 6 3 * Rl
into Vl.

Vl,V2 Compare (EQ, NE, GT, LT, GE, LE) the elements in Vl and V2. If condition is

FO,Vl true put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit
vector in vector-mask register (VM). The instruction s_sv performs the same
compare but using a scalar value as one operand.

Rl,VM Count the ls in the vector-mask register and store count in Rl.

Set the vector-mask register to all ls.

VLR,Rl Move contents of Rl to the vector-length register.

Rl,VLR Move the contents of the vector-length register to Rl.

VM,FO Move contents of F 0 to the vector-mask register.

FO,VM Move contents of vector-mask register to F 0.

FIGURE 7.3 The DLXV vector instructions. Only the double-precision FP operations are shown. In addition to the
vector registers there are two special registers VLR (discussed in Section 7.3) and VM (discussed in Section 7.6). The
operations with stride are explained in Section 7.3, and the use of the index creation and indexed load/store operations
are explained in Section 7.6.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 388

Example

Answer

Vector Processors 357

A vector machine is best understood by looking at a vector loop on DLXV.
Let's take a typical vector problem, which will be used throughout this chapter:

Y = a * X + Y

x and Y are vectors, initially resident in memory, and a is a scalar. This is the
so-called SAXPY or DAXPY (Single-precision or Double-precision A*X Plus
Y) loop that forms the inner loop of the Linpack benchmark. Linpack is a collec
tion of linear algrebra routines; the Gaussian elimination portion of Linpack is
the segment used as a benchmark. SAXPY represents a small piece of the
program, though it takes most of the time in the benchmark.

For now, let us assume that the number of elements, or length, of a vector
register (64) matches the length of the vector operation we are interested in.
(This restriction will be lifted shortly.)

Show the code for DLX and DLXV for the DAXPY loop. Assume that the start
ing addresses of X and Y are in Rx and Ry, respectively.

Here is the DLX code.

LD FO,a
ADDI R4,Rx,#512 ;last address to load

loop:
LD F2,0(Rx) ;load x (i)

MULTD F2,F0,F2 ;a*X(i)
LD F4, 0 (Ry) ;load Y(i)
ADDD F4,F2,F4 ;a*X(i) + Y(i)
SD F4,0(Ry) ; store into Y(i)

ADDI Rx,Rx,#8 ;increment index to x
ADDI Ry,Ry,#8 ;increment index to y

SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

Here is the code for DLXV for DAXPY.

LD FO,a ;load scalar a

LV Vl,Rx ;load vector X

MULTSV V2,FO,Vl ;vector-scalar multiply
LV V3,Ry ;load vector Y.
ADDV V4,V2,V3 ';-add
sv Ry,V4 ;store the result

There are some interesting comparisons between the two code segments in
the example above. The most dramatic is that the vector machine greatly reduces
th_e dynamic instruction bandwidth, executing only 6 instructions versus almost
600 for DLX. This reduction occurs both because the vector operations work on

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 389

358

Example

Answer

7.2 Basic Vector Architecture

64 elements, and because the overhead instructions that constitute nearly half the
loop on DLX are not present in the DLXV code. .

Another important difference is the frequency of pipeline interlocks. In the
straightforward DLX code every ADDD must wait for a MULTD, and every SD

must wait for the ADDD. On the vector machine, each vector instruction operates
on all the vector elements independently. Thus, pipeline stalls are required only
once per vector operation, rather than once per vector element. In this example,
the pipeline-stall frequency on DLX will be about 64 times higher than it is on
DLXV. The pipeline; stalls can be eliminated on DLX by using software
pipelining or loop unrolling (as we saw in Chapter 6, Section 6.8). However, the
large difference in instruction bandwidth cannot be reduced.

Vector Start-up Time and Initiation Rate

Let's investigate the running time of this vector code on DLXV. The running
time of each vector operation in the loop has two components-the start-up time
and the initiation rate. The start-up time comes from the pipelining latency of
the vector operation and is principally determined by how deep the pipeline is
for the functional unit used. For example, a latency of 10 clock cycles means
both that the operation takes 10 clock cycles and that the pipeline is 10 deep. (In
discussions of the performance of vector operations, clock cycles are
customarily used as the metric.) The initiation rate is the time per result once a
vector instruction is running; this rate is usually one per clock cycle for
individual operations, though some supercomputers have vector operations that
can produce 2 or more results per clock, and others have units that may not be
fully pipelined. The completion rate must at least equal the initiation rate
otherwise there is no place to put results. Hence, the time to complete a single
vector operation of length n is:

Start-up time + n * Initiation rate

Suppose the start-up time for a vector multiply is 10 clock cycles. After start-up
the initiation rate is one per clock cycle. What is the number of clock cycles per
result (i.e., one element of the veGtor) for a 64-element vector?

Clock cycles per result
Total time

= Vector length

=
Start-up time+ 64 * Initiation rate

64

10+64 =
64

= 1.16 clock cycles.

Figure 7.4 shows the effect of start-up time and initiation rate on vector per
formance. The effect of increasing start-up time on a slow-running vector is

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 390

Vector Processors 359

small, while the same increase in start-up time on a system with an initiation rate
of one per clock decreases performance by a factor of nearly two.

325

300

275

250
Total clock
cycles for a 225
64-element

vector 200

175

150

125

100

75

50

25

6 1 0 14 18 22 26 30 34 38 42 46 50

Start-up cost in clock cycles

4 clock cycles
per result

2 clock cycles
per result

1 clock cycle
per result

FIGURE 7.4 Total running time increases with start-up cost from 2 to 50 clock cycles
per operation on the x axis. The impact of start-up time is much greater for fast-running
than for slow-running vectors. The operation running at one clock cycle per result increases
its run time by 75%, while the operation running at four clock cycles per result increases by
less than 20%.

What determines the start-up and initiation rates? Let's first consider the
operations that do not involve a memory access. For register-register operations
the start-up time (in clock cycles) is equal to the depth of the functional unit
pipeline, since this is the time to get the first result. In the earlier example, the
depth of 10 gave a start-up time of 10 clock cycles. In the next few sections, we
will see that there are other costs involved that increase the start-up time. The
initiation rate is determined by how often the corresponding vector functional
unit can accept an operand. If it is fully pipelined, then it can start an operation
on new operands every clock cycle, yielding an initiation rate of one per clock
(as in the earlier example). I

Start-up time for an operation comprises the \otal latency for the functional
unit implementing that operation. If the initiation rate is to be kept at 1 clock per
result, then

p· r d h l Total functional unit timel
ipe me ept = I Clock cycle time .

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock. Pipeline depth, then, is determined

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 391

360

Example

Answer

7.2 Basic Vector Architecture

by the complexity of the operation and the clock cycle time of the machine. The
pipeline depths of functional units vary widely-from 2 to 20 stages is not
uncommon-though the most heavily used units have start-up times of 4 to 8
clocks.

For DLXV, we will choose the same pipeline depths as the CRAY-1. All
functional units are fully pipelined. Pipeline depths are six clock cycles for float
ing-point add and seven clock cycles for floating-point multiply. If a vector
computation depends on an uncompleted computation and will need to be
stalled, it adds an extra 4-clock-cycle start-up penalty. This penalty is typical on
vector machines and arises due to the lack of bypassing: the penalty is the time
to write and then read the operands and is only seen when there is a dependence.
Thus, back-to-back dependent vector operations will see the full latency of a
vector operation. On DLXV, as on most vector machines, independent vector
operations using different functional units can issue without any penalty or
delay. Independent vector operations may also be fully overlapped, and each
instruction issue only takes one clock. Thus, when the operations are indepen
dent and different, DLXV can overlap vector operations, just as DLX can over
lap integer and floating-point operations.

Because DLXV is fully pipelined, the initiation rate for a vector instruction is
always 1. However, a sequence of vector operations will not be able to run at
that rate, due to start-up costs. The term sustained rate is applied to this situation
and refers to the time per element for a collection of related vector operations.
Here an element is not the result of a single vector operation, but one result of a
series of vector operations. The time per element, then, is the time required for
each operation to produce an element. For example, in the SAXPY loop, the
sustained rate will be the time to compute and store one element of the result
vector Y.

For a vector length of 64 on DLXV and the following two vector instructions,
what is the sustained rate for the sequence, and the effective number of floating
point operations per clock for the sequence?

MULTV Vl,V2,V3
ADDV V4,V5,V6

Let's look at the start and completion times of these independent operations
(remember that the start-up times are 7 cycles for multiply and 6 cycles for add):

Operation

MULTV

ADDV

Start

0

1

Complete

7 + 64 = 71

1+6 + 64 =71

The sustained rate is one element per clock-remember that sustained rate
requires all vector operations to produce a result. The sequence executes 128

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 392

Vector Processors 361

FLOPs (FLoating-point OPerations) in 71 clock cycles, for a rate of 1.8 FLOPs
per clock. A vector machine can sustain a throughput of more than one operation
per clock cycle by issuing independent vector operations to different vector
functional units.

The behavior of the load/store vector unit is significantly more complicated.
The start-up time for a load is the time to get the first word from memory into a
register. If the rest of the vector can be supplied without stalling, then the vector
initiation rate is equal to the rate at which new words are fetched or stored.
Typically, penalties for start-ups on load/store units are higher than for
functional units-up to 50 clock cycles on some machines. For DLXV we will
assume a low start-up time of 12 clock cycles, since the CRAY-1 and CRAY X
MP have load/store start-up times of between 9 and 17 clock cycles. For stores,
we will not usually care about the start-up time, since stores do not directly
produce results. However, when an instruction must wait for a store to complete
(as a load might have to with only one memory pipeline), the load may see part
or all of the 12-cycle latency of a store. Figure 7.5 summarizes the start-up
penalties for DLXV vector operations.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

FIGURE 7.5 Start-up penalties on DLXV. These are the start-up penalties in clock
cycles for DLXV vector operations. When a vector instruction depends on another vector
instruction that has not completed at the time the second vector instruction issues, the
start-up penalty is increased by 4 clock cycles.

To maintain an initiation rate of one word fetchedJor stored per clock, the
memory system must be capable of producing or accepting this much data. This
is usually done by creating multiple memory banks. Each memory bank is like a
small, separate memory that can access different addresses in parallel with other
banks. The words are then transferred from the memory at the maximum rate
(one per clock in DLXV).

There are two possible implementation techniques for memory banks. One
approach is to synchronize all the banks and to access them in parallel, latching
the result in each bank. Once the result is latched, the next access can begin
while the words are transferred. An alternative implementation technique uses
independent bank phasing. On the first access, all the banks are accessed in
parallel, and then the words are transferred one at a time from the banks. Once a

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 393

362

Example

Answer

7.2 Basic Vector Architecture

bank has transmitted or stored its data, it begins the next access immediately.
The first approach (synchronized accesses) requires more latches, but has sim
pler control than an approach that uses independent bank phasing. The concept
of memory banks is similar to but not identical to interleaving, as we will see in
Figure 7.6. We discuss interleaving extensively in Chapter 8, Section 8.4.

Assuming each bank is one double-precision-word wide, if an initiation rate
of one per clock is to be maintained, the following must hold:

Number of memory banks;::: Memory-bank access time in clock cycles

To see why this relationship exists, think about a vector load of 64 double
precision words. Let the addresses of the vector elements be given by ki, where

ki =Starting address of the vector+ (i-1) * Distance between vector elements.

For doubJe-precision vector elements that are adjacent, the distance between
elements will be 8 bytes. The addresses of the vector elements to be accessed by
a bank will be the values of ki such that

ki mod number of banks = Bank number

Let's look at the first access by each bank. After a time equal to the memory
access time, all the memory banks will have fetched a double-precision word,
and the words can begin returning to the vector registers. (This requires, of
course, that the accesses be aligned on doubleword boundaries.) Words are sent
serially from the banks, starting with the bank fetching from the lowest address.
If the banks are synchronized, the next accesses start immediately; if the banks
are phased, then the next access begins after an element is transmitted from the
bank. In either case, a bank begins its next access at a byte address that is (8 *
number of banks) higher than the last byte address. Because the memory-access
time in clock cycles is less than the number of memory banks and because the
words are transferred from the banks in round-robin order at a rate of one trans
fer per clock cycle, a bank will complete the next access before its turn to trans
mit data comes again. To simplify addressing, the number of memory banks is
usually made a power of two. As we will see shortly, designers will probably
want to have more than the minimum number of required banks so as to mini
mize memory stalls.

Suppose we want to fetch a vector of 64 elements starting at byte address of 136,
and a memory access takes 6 clocks. How many memory banks must we have?
With what addresses are the banks accessed? When will the various elements
arrive at the CPU?

Six clocks per access require at least 6 banks, but because we want the number
of banks to be a power of two, we choose to have 8 banks. Figure 7.6 shows
what byte addresses each bank accesses within each time period. Remember that
a bank begins a new access as soon as it has completed the old access.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 394

Vector Processors 363

Beginning Bank
at clock no. 0 1 2 3 4 5 6 7

0 192 136 144 152 160 168 176 184

6 256 200 208 216 224 232 240 248
14 320 264 272 280 288 296 304 312
22 384 328 336 344 352 360 368 376

FIGURE 7.6 Memory addresses (in bytes) by bank number and time slot at which
access begins. The exact time when a bank transmits its data is given by the address it
accesses minus the starting address divided by 8 plus the memory latency (6 clocks). It is
important to observe that Bank O accesses a word in the next block (i.e., it accesses 192
rather than 128 and then 256 rather than 192, and so on). If Bank O were to start at the
lower address we would require an extra cycle to transmit the data, and we would transmit
one value unnecessarily. While this problem is not severe for this example, if we had 64
banks, up to 63 unnecessary clock cycles and transfers could occur. The fact that Bank O
does not access a word in the same block of 8 distinguishes this type of memory system
from interleaved memory. Normally, interleaved memory systems combine the bank
address and the base starting address by concatenation rather than addition. Also, inter
leaved memories are almost always implemented with synchronized access. Memory
banks require address latches for each bank, which are not normally needed in a system
with only interleaving.

Figure 7. 7 shows the timing for the first few sets of accesses for an 8-bank
system with a 6-clock-cycle access latency. Two important observations about
these two figures are these: First, notice that the exact address fetched by a bank
is largely determined by the lower-order bits in the bank number; however, the
initial access to a bank is always within 8 doublewords of the initial address.
Second, notice that once the initial latency is overcome (6 clocks in this case),
the pattern is to access a bank every n clock cycles, where n is the total number
of banks (n=8 in this case).

Next access Next access
. Memory + deliver last

Action access 8 words
+ deliver last Last
8 words • • • access

Time •••
0 6 14 22 62 70

FIGURE 7.7 Access timing for the first 64 double-precision words of the load. After
the 6-clock-cycle initial latency, 8 double-precision words are returned every 8 clock cycles.

The number of banks in the memory system and the pipeline depth in the)
functional units are essentially counterparts, since they determine the initiation
rates for operations using these units. The processor cannot access memory
faster than the memory cycle time. Thus, if memory is built from DRAM, where
cycle time is about twice the access time, the processor will usually need twice
as_ many banks as the computations above would give. This characteristic of
DRAM is discussed further in Chapter 8, Section 8.4.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 395

364 7.3 Two Real-World Issues: Vector Length and Stride

7 .3 I Two Real-World Issues:
Vector Length and Stride

This section deals with two issues that transpire in real programs. These are what
to do when the vector length in a program is not exactly 64, and how to deal
with nonadjacent elements in vectors when a matrix is laid out in memory. First,
let's deal with the issue of vector length.

Vector-Length Control

A vector-register machine has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for DLXV, is un
likely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example,
consider this code:

do 10 i = 1,n
10 Y(i) =a* X(i) + Y(i)

The size of all the vector operations depends on n, which may not even be
known until run-time! The value of n might also be a parameter to the procedure
and therefore be subject to change during execution.

The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be any greater than the length of
the vector registers. This solves our problem as long as the real length is less
than the maximum vector length (MVL) defined by the machine.

What if the value of n is not known at compile time, and thus may be greater
than MVL? To tackle this problem, a technique called strip mining is used. Strip
mining is the generation of code such that each vector operation is done for a
size less than or equal to the MVL. The strip-mined version of the SAXPY loop
written in FORTRAN, the major language used for scientific applications, is
shown with C-style comments:

low = 1

VL (n mod MVL) /*find the odd size piece*/

do 1 j = 0, (n I MVL) /*outer loop*/

do 10 i

y (i)

10 continue

low,low+VL-1 /*runs for length VL*/

a*X(i) + Y(i) /*main operation*/

low = low+VL /*start of next vector*/

VL = MVL /*reset the length to max*/

1 continue

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 396

Vector Processors 365

The term n I MVL represents truncating integer division (which is what
FORTRAN does) and is used throughout this section. The effect of this loop is
to block the vector into segments which are then processed by the inner loop.
The length of the first segment is (n mod MVL) and all subsequent segments are
of length MVL. This is depicted in Figure 7 .8.

Value of j 0 2

Range of i 1 .. m (m+1) .. (m+
m+MVL MVL+1)

.. m+2*
MVL

3

(m+2 *
MVL+1)
.. m+3 *

MVL

n/MVL

(n-MVL
+1) .. n

FIGURE 7.8 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector machine. In this figure, the
variable mis used for the expression (n mod MVL).

The inner loop of the code above is vectorizable with length VL, which is
equal to either (n mod MVL) or MVL. The VLR register must be set twice
once at each place where the variable VL in the code is assigned. With multiple
Vector operations executing in parallel, the hardware must copy the value of
VLR when a vector operation issues, in case VLR is changed for a subsequent
vector operation.

In the previous section, start-up overhead could be computed independently
for each vector operation. With strip mining, a significant percentage of the
start-up cost will be the strip-mining overhead itself; and, therefore, computing
the start-up overhead will be more complex.

Let's see how significant these added overheads are. Consider a simple loop:

dolOi 1,n

10 A (i) B(i)

The compiler will generate two nested loops for this code, just as our earlier
example does. The inner loop contains a sequence of two vector operations, L V

(load vector) followed by SV (store vector). Each loop iteration of the original
vector operation would require two clocks if there were no start-up penalties of
any kind. The start-up penalties consist of two types: vector start-up overhead
and strip-mining overhead. For DLXV the vector start-up overhead is 12 clock
cycles for the vector load plus a 4-clock-cycle delay because the store depends
on the load, for a total of 16 clock cycles. We can ignore the store latency, since
nothing depends on it. Figure 7 .9 (page 366) shows the impact of the vector
start-up cost alone as the vector grows from length 1 to length 64. This start-up
CQSt can decrease the throughput rate by a factor of as much as 9, depending on
the vector length.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 397

366 7.3 Two Real-World Issues: Vector Length and Stride

Time 1 o +1·:··.:.:.·,::.;;:"'"'·"'·':'·i:'-·:·"·:::'··'':.-,-:·:;::.::··'·'.·:"·'·:,:.i:" .. :·'····:::,·: .. ; .. :,,c; ... :.,:,:,: ... ,,., • .,6'·'~'':.':".':·''""''':··, ... , .. ,,:·'·"'':·::'""'.'.·''.-.-:::,:.,.,: .. ::;.:., ... h,. ..

per
element a

6

4

2

5 9 13 17 21 2£1 29 33 37 41 45 49 53 57 61

Vector length

FIGURE 7.9 The impact of just the vector start-up cost on a loop consisting of a
vector assignment. For short vectors, the impact of the 16-cycle start-up cost is enor
mous, decreasing performance by up to nine times. The strip-mining overhead has not
been included.

In Section 7.4, we will see a unified performance model that incorporates all
the start-up and overhead costs. First, let's examine how to implement vectors
with nonsequential memory accesses.

Vector Stride

The second problem this section addresses is that the position in memory of
adjacent elements in a vector may not be sequential. Consider the straight
forward code for matrix multiply:

10

do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

A(i,j) = A(i,j)+B(i,k)*C(k,j)

At the statement labeled 10 we could vectorize the multiplication of each row of
B with each column of C and strip-mine the inner loop with k as the index vari
able. To do so, we must consider how adjacent elements in B and adjacent ele
ments in C are addressed. When an array is allocated memory it is linearized and
must be laid out in either row-major or column-major order. Row-major order,
used by most languages except FORTRAN, lays out the rows first, making ele
ments B(i,j) and B(i,j+ 1) adjacent. Column-major order, used by FORTRAN,

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 398

Vector Processors 367

makes B(i,j) and B(i+ 1,j) adjacent. Figure 7 .10 illustrates these two alternatives.
Let's look at the accesses to B and C in the inner loop of the matrix multiply. In
FORTRAN, the accesses to the elements of B will be nonadjacent in memory,
and each iteration will access an element that is separated by an entire row of the
array. In this case, the elements of B that are accessed by iterations in the inner ·
loop are separated by the row size times 8 (the number of bytes per entry) for a
total of 800 bytes.

Two-dimensional 100x100 array

1 2 3 4 5 6 7 100

Row-major layout

(1, 1) (1, 2) . . . (1, 100) (2, 1) (2, 2) (100, 1) (100, 2) (100, 100)

Increasing addresses

Column-major layout

(1, 1) (2, 1) . . . (100, 1) (1, 2) (2, 2) (1, 100) (2, 100) . .. (100, 100)

FIGURE 7.10 Matrix for a two-dimensional array and corresponding layouts in one
dimensional storage. In row-major order, successive row elements are adjacent in
storage, while in column-major order, successive column elements are adjacent. It is easy
to imagine extending this to arrays with more dimensions.

This distance separating elements that are to be merged into a single vector is
called the stride. In the current example, using column-major layout for the
matrices means that matrix Chas a stride of 1, or 1 doubleword (8 bytes), sepa
rating successive elements, and matrix B has a stride of 100, or 100 doublewords
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically adja
cent elements. This enables a vector-register machine to handle strides greater
than one, called nonunit strides, by making more general vector-load and vector
store operations. For example, if we could load a row of B into a vector register,
we could then treat the row as logically adjacent.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 399

368

Example

Answer

7.3 Two Real-World Issues: Vector Length and Stride

Thus, it is desirable for the vector load and store operations to specify a stride
in addition to a starting address. On a DLXV, where the addressable unit is a
byte, the stride for our example would be 800. The value must be computed
dynamically, since the size of the matrix may not be known at compile time,
or-just like vector length-may change for different executions of the same
statement. The vector stride, like the vector starting address, can be put in a
general-purpose register, where it is used for the life of the vector operation.
Then the DLXV instruction L VW S (Load Vector With Stride) can be used to
fetch the vector into a vector register. Likewise, when a nonunit stride vector is
being stored, SVWS (Store Vector With Stride) can be used. In some vector
machines the loads and stores always have a stride value stored in a register, so
there is only a single instruction.

Memory-unit complications can occur from supporting strides greater than
one. Earlier, we saw that a vector-memory operation could proceed at full speed
if the number of memory banks was at least as large as the memory-access time
in clock cycles. However, once nonunit strides are introduced it becomes pos~
sible to request accesses from the same bank at a higher rate than the memory
access time. This situation is called memory-bank conflict and results in each
load seeing a larger portion of the memory-access time. A memory-bank conflict
occurs whenever the same bank is asked to do an access before it has completed
another. Thus, a bank conflict, and hence a stall, will occur if:

Least common multiple (Stride,Number of banks) M
1

S "d < emory-access atency tn e .

Suppose we have 16 memory banks with an access time of 12 clocks. How long
will it take to complete a 64-element vector load with a stride of 1? With a stride
of 32?

Since the number of banks is larger than the load latency, for a stride of 1, the
load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element. The worst
possible stride is a value that is a multiple of the number of memory banks, as in
this case with a stride of 32 and 16 memory banks. Every access to memory will
collide with the previous one. This leads to an access time of 12 clock cycles per
element and a total time for the vector load of 768 clock cycles.

Memory bank conflicts will not occur if the stride and number of banks are
relatively prime with respect to each other and there are enough banks to avoid
conflicts in the unit-stride case. Increasing the number of memory banks to a
number greater than the minimum to prevent stalls with a stride of length 1 will
decrease the stall frequency for some other strides. For example, with 64 banks,
a ,stride of 32 will stall on every other access, rather than every access. If we
originally had a stride of 8 and 16 banks, every other access would stall; while
with 64 banks, a stride of 8 will stall on every eighth access. If we have multiple
memory pipelines, we will also need more banks to prevent conflicts. In the

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 400

Vector Processors 369

1990s, most vector supercomputers have at least 64 banks, and some have as
many as 512.

7 .4 I A Simple Model for Vector Performance

This section presents a model for understanding the performance of a vectorized
loop. There are three key components of the running time of a strip-mined loop
whose body is a sequence of vector instructions:

1. The time for each .vector operation in the loop to process one element, ignor
ing the start-up costs, which we call Tetement· The vector sequence often has a
single result, in which case T element is the time to produce an element in that
result. If the vector sequence produces multiple results, T element is the time to
produce one element in each result. This time depends only on the execution of
vector instructions. We will see an example shortly.

2. The overhead for each strip-mined block of vector instructions. This over
head consists of the cost of executing the scalar code for strip mining of each
block, Ttoop• plus the vector start-up cost for each block, Tstart·

3. The overhead from computing the starting addresses and setting up the vec
tor control. This occurs once for the entire vector operation. This time, T base•

consists solely of scalar overhead instructions.

These components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

The values of Tstart and T100P are both compiler and machine dependent, while
the value of T element depends mainly on the hardware. The exact vector sequence
affects all three values; the effect on T element is probably the most pronounced,
with T start and T100P less affected.

For simplicity, we will use constant values for Tbase and for T1oop on DLXV.
Based on a variety of measurements of CRAY -1 vector execution, the values
chosen are 10 for Tbase and 15 for T1oop· At first glance, you might think that
these values, especially T1oop• are too small. The overhead in each loop requires:
setting up the vector starting addresses and the strides, incrementing counters,
and executing a loop branch. However, these scalar instructions can be over
lapped with the vector instructions, minimizing the time spent on these overhead
functions. The values of T base and T1oop of course depend on the loop structure,
but the dependence is slight compared to the connection between the vector code
and the values of T element and T start·

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 401

370

Example

Answer

7.4 A Simple Model for Vector Performance

What is the execution time for the vector operation A = B * s, where s is a scalar
and the length of the vectors A and B is 200?

Here is the strip-mined DLXV code, assuming the addresses of A and B are
initially in Ra and Rb, and s is in F s:

ADDI R2,R0,#1600 ;no. bytes in vector
ADD R2,R2,Ra ;end of A vector
ADDI Rl,R0,#8 ;strip-mined length
MOVI2S VLR,Rl ;load vector length
ADDI Rl,R0,#64 ;length in bytes
ADDI R3,R0,#64 ;vector length of other pieces

loop: LV Vl,Rb ;load B
MULTSV V2,Fs,Vl ;vector * scalar
sv Ra,V2 ;store A
ADD Ra,Ra,Rl ;next segment of A
ADD Rb,Rb,Rl ;next segment of B
ADDI Rl,R0,#512 ;full vector length (bytes)
MOVI2S VLR,R3 ;set length to 64
SUB R4,R2,Ra ;at the end of A?
BNZ R4,LOOP ;if not, go back

From this code, we can see that: Telement = 3, for the load, multiply and store of
each value of the vector. Furthermore, our assumptions for DLXV are T1oop = 15
and Tbase =10. Let's use our basic formula:

Tn = Tbase + I M~L l* (T1oop + Tstart) + n * Telement

T200 = 10 + (4) * (15 + Tstart) + 200 * 3

T200 = 10 + 4 * (15 + Tstart) + 600 = 670 + 4 * Tstart

The value of T start is the sum of

• The vector load start-up of 12 clock cycles,

• The 4-clock-cycle stall due to the dependence between the load and multiply,

• A 7-clock-cycle start-up for the multiply, plus

• A 4-clock-cycle stall due to the dependence between the multiply and store.

Thus, the value of T start is given by:

Tstart = 12 + 4 + 7 + 4 = 27

So, the overall value becomes

T 200 = 670 + 4 * 27 = 778

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 402

Vector Processors 371

778
The execution time per element with all start-up costs is then

200
= 3.9,

compared with an ideal case of 3.

Figure 7.11 shows the overhead and effective rates per element for the above
example (A = B*s) with various vector lengths. Compared to the simpler model
of start-up, illustrated in Figure 7 .9 on page 366, we see that the overhead
accounting for all sources is higher. In this example, the vector start-up cost,
which is what is plotted in Figure 7.9, accounts for only about half the total
overhead per element.

9

8

7

6

5
Clock
cycles 4

3

2

30 50 70 90 110 130 150 170 190

Vector size

Total time
per element

Total
overhead
per element

FIGURE 7.11 This shows the total execution time per element and the total overhead
time per element, versus the vector length for the example on page 370. For short
vectors the total start-up time is more than one-half of the total time, while for long vectors it
reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase T n by T100P + Tstart·

7 .5 I Compiler Technology for Vector Machines

To make effective use of a vector machine a compiler must be able to recognize
that a loop (or part of a loop) is vectorizable and generate the appropriate vector
code. This involves determining what dependences exist among the operands in
the loop. For now, we will consider only dependences that occur when an
operand is written at one point and read at a later point. These correspond to
RAW (read after write-see page 264) hazards. Consider a loop like this one:

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 403

372 7.5 Compiler Technology for Vector Machines

1

2

10

do 10 i=l,100

A(i+l) A(i) + B(i)

B(i+l)

continue

B(i) + A.(i+l)

Call the numbered statements 1 and 2 in the loop body S 1 and S2, respectively.
The possible different types of dependences are

1. S 1 uses a value computed by S 1 in an earlier iteration. This is true for S 1
since iteration i+ 1 uses the value A (i) that was computed in iteration i as
A (i + 1) . The same is true of S2 for B (i) and B (i + 1) .

2. S 1 uses a value computed by S2 in an earlier iteration. This is true since
S 1 uses the value of B (i + 1) in iteration i+ 1 that is computed by S2 in
iteration i.

3. S2 uses a value computed by S 1 in the same iteration. This is true for the
value A (i + 1) .

Because the vector operations are pipelined and the latency may be quite long,
an early iteration may not complete before a later iteration begins: Thus, the
values that will be written by the early iteration may not have been written
before the later iteration begins. Consequently, if situation 1 or 2 exists, vectoriz
ing the loop will introduce a RAW hazard-a hazard that a vector machine does
not check for. This means that if any of the three dependences in situation 1 and
2 exist, the loop is not vectorizable, and the compiler will not generate vector
instructions for this code. In situation 3, the normal hazard-detection hardware
could handle the situation. A loop containing only dependences like those in
situation 3 can therefore be vectorized, as we will see soon. The dependences in
the first two situations, which involve the use of values computed on earlier loop
iterations, are called loop-carried dependences.

The first task of the compiler is to determine whether there are any loop-car
ried dependences within the loop body. The compiler accomplishes this with a
dependence-analysis algorithm. Because the statements in the loop body involve
arrays, dependence analysis is complex. (If there weren't arrays, there would be
nothing to vectorize.) The simplest case occurs when an array name appears
only on one side of an assignment statement. Take, for example, this variation of
our earlier loop:

do 10 i=l,100

A(i) B(i) + C(i)

D(i) = A(i) * E(i)

10 continue

If the arrays A, B, C, D, and E are different, then no loop-carried dependence can
exist. There is a dependence between the two statements for the vector A. If the
compiler realized that there were two accesses to A, it might try not to reload A

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 404

Vector Processors 373

the second statement, instead doing the vector multiply using the result register
from the vector add. In this case, the processor would see the potential RAW
hazard and stall the issue of the vector multiply. If the compiler stored A and
reloaded it, then the loads and stores would occur in order, yielding correct
execution.

Often the same name appears as both a source and destination within a loop,
as it did in the SAXPY loop. There, Y appears on both sides of the assignment:

do 10 i=l,100

Y(i) = a*X(i) + Y(i)

10 continue

In this case there is still no loop-carried dependence because the assignment to Y
does not depend on a value of Y computed in an earlier iteration. However, the
following loop, which is called a recurrence, does contain a loop-carried
dependence:

do 10 i=2,100

Y(i) = Y(i-1) + Y(i)

10 continue

The dependence can be seen by unwinding the loop: In iteration j the value of
Y(j-1) is used, but that element is stored in iterationj-1, creating a loop-carried
dependence.

How does the compiler detect dependences in general? Suppose we have
written to an array element with index value a * i + b and accessed with index
value c * i + d, where i is the for-loop index variable that runs from m ton. A
dependence exists if two conditions hold:

1. There are two iteration indices, j and k, both within the limits of the for loop.

2. The loop stores into an array element indexed by a* j+b and later fetches
from that same array element when it is indexed by c*k+d. That is, a*j+b =
c*k+d.

In general, we may not be able to determine whether a dependence exists at
compile time. For example, the values of a, b, c, and d may not be known,
making it impossible to tell if a dependence exists. In other cases, the depen
dence testing may be very expensive but decidable at compile time. For exam
ple, the accesses may depend on the iteration indices of multiply nested loops.
Many programs do not contain these complex structures, but instead contain
simple indices where a, b, c, and d are all constants. For these cases, it is
possible to devise reasonable tests for dependence.

A simple and sufficient test used to detect dependences is the greatest com
mon divisor, or GCD. It is based on the observation that if a loop-carried depen
dence exists, then GCD (c,a) must divide (d-b). (Remember that an integer, x,

divides another integer, y, if there is no remainder when we do the division}'. and
x

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 405

374

Example

Answer

Example

Answer

7.5 Compiler Technology for Vector Machines

get an integer result.) The GCD test is sufficient to guarantee that no dependence
exists (see Exercise 7 .10); however, there are cases where the GCD test
succeeds, but no dependence exists. For example, this can arise because the
GCD test does not take the loop bounds into account. A more complex test is the
Banerjee test, named after U. Banerjee [1979], that accounts for loop bounds,
but is still not exact. An exact test can always be done by solving equations for
integer values, but this can be expensive for complex loop structures.

Use the GCD test to determine whether dependences exist in the following loop:

do 10 i=l,100

10 X(2*i+3) = X(2*i) * 5.0

Given the values a=2, b=3, c=2, and d=O, then GCD(a,c) = 2, and d-b = -3.
Since 2 does not divide -3, no dependence is possible.

A true data dependence arises from a RAW hazard and will prevent vector
ization of the loop as a single vector sequence. There are cases where the loop
can be vectorized as two separate vector sequences (see Exercise 7.11). There
are also dependences corresponding to a WAR (write after read) hazard, called
an antidependence, and to a WAW (write after write) hazard, called an output
dependence. Antidependences and output dependences are not true data
dependences. They are name conflicts and can be eliminated by renaming of
registers in the compiler in a method similar to how Tomasulo's algorithm
renames registers at run time (see Section 6.7 in Chapter 6). Vectorizing
compilers often use compile-time renaming to eliminate antidependences and
output dependences.

The following loop has an antidependence (WAR) and an output dependence
(WA W). Find all the true dependences, output dependences, and antidepen
dences, and eliminate the output dependences and antidependences by renaming.

do 10 i=l,100

1 y (i) x (i) I s

2 x (i) x (i) + s

3 z (i) y (i) + s

4 y (i) s - y (i)

10 continue

There are true dependences from statement 1 to statement 3 and from statement
1 to statement 4 because of Y (i) . These are not loop carried, so they will not
prevent vectorization. However, the dependences will force statements 3 and 4
to wait for statement 1 to complete, even though statements 3 and 4 use a differ
ent functional unit than statement 1. In the next section we will see a technique
for eliminating this serialization.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 406

Vector Processors 375

There is an antidependence from statement 1 to statement 2, and an output
dependence from statement 1 to statement 4. The following version of the loop
eliminates these false (or pseudo) dependences.

c
1

c
2

3

4

10

do 10 i=l,100

Y renamed to T to remove output dependence

T(i) = X(i) Is
X renamed to Xl to remove antidependence

Xl(i) = X(i) + s

Z(i) T(i) + s

Y(i) s - T(i)

continue

After the loop the variable X has been renamed X 1. In code that follows the
loop, the compiler can simply replace. the name X by X 1. Renaming does not
require an actual copy operation; it can be done by substituting names or by reg
ister allocation.

Besides deciding which loops are vectorizable, the compiler must generate
strip-mining code and allocate vector registers. Most vectorization transforma
tions are done at the source level, although some optimizations involve coordi
nating high-level source transformations with lower-level, machine-dependent
transformations. Efficient allocation of vector registers is such an optimization
and is perhaps the most difficult optimization-one that many vectorizing com
pilers do not attempt.

Effectiveness of Vectorization Techniques

Two factors affect the success with which a program can be run in vector
mode. The first factor is the structure of the program itself: do the loops have
true data dependences, or can they be restructured so as not to have such depen
dences? This factor is influenced by the alg()rithms chosen and, to some extent,
how they are coded. The second factor is the capability of the compiler. While
no compiler can vectorize a loop where no parallelism among the loop iterations
exists, there is tremendous variation in the ability of compilers to determine
whether a loop can be vectorized.

As an indication of the level of vectorization that can be achieved in scientific
programs, let's look at the vectorization levels observed for the Perfect Club
benchmark~, discussed in Section 2. 7 of Chapter 2. These benchmarks are large,
real scientific applications. Figure 7.12 (page 376) shows the percentage of
floating-point operations in each benchmark and the percentage executed in
vector mode on the CRAY X-MP. The wide variation in level of vectorization
has been observed by several studies of the performance of applications on

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 407

376 7.5 Compiler Technology for Vector Machines

vector machines. While better compilers might improve the level of
vectorization in some of these programs, most will require rewriting to achieve
significant increases in vectorization. For example, let's look at our version of
the Spice benchmark in detail. In Spice with the input chosen we found that only
3.7% of the floating-point operations are executed in vector mode on the CRAY
X-MP, and the vector version runs only 0.5% faster than the scalar version.
Clearly, a new program or a significant rewrite will be needed to obtain the
benefits of a vector machine on Spice.

Benchmark name FP operations FP operations executed in
vector mode

.ADM 23% 68%

DYFESM 26% 95%

FL052 41% 100%

MDG 28% 27%

MG3D 31% 86%

OCEAN 28% 58%

QCD 14% 1%

SPICE 16% 7%

TRACK 9% 23%

TRFD 22% 10%

FIGURE 7.12 Level of vectorization among the Perfect Club benchmarks when
executed on the CRAY X-MP. The first column contains the percentage of operations that
are floating point, while the second contains the percentage of FP operations executed in
vector instructions. Note that this run of Spice with different inputs shows a higher
vectorization ratio.

There is also tremendous variation in how well compilers do in vectorizing
programs. As a summary of the state of vectorizing compilers, consider the data
in Figure 7.13, which shows the extent of vectorization for different machines
using a test suite of 100 hand-written FORTRAN kernels. The kernels were
designed to test vectorization capability and can all be vectorized by hand; we
will see several examples of these loops in the Exercises.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 408

Vector Processors 377

Machine Compiler Completely Partially Not
vectorized vectorized vectorized

Ardent Titan- I FORTRAN Vl.O 62 6 32

CDCCYBER- VAST-2 V2.21 62 5 33
205

Convex C-series FC5.0 69 5 26

CRAYX-MP CFT77 V3.0 69 3 28

CRAYX-MP CFT Vl.15 50 1 49

CRAY-2 CFT2 V3.la 27 1 72

ETA-10 FTN 77 Vl.O 62 7 31

Hitachi FORT77/HAP 67 4 29
S810/820 V20-2B

IBM 3090/VF VS FORTRAN 52 4 44
V2.4

NECSX/2 FORTRAN77 I 66 5 29
SXV.040

Stellar GS 1000 F77 prerelease 48 11 41

FIGURE 7.13 Result of applying vectorizing compilers to the 100 FORTRAN test
kernels. For each machine we indicate how many loops were completely vectorized,
partially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. The machines shown are those mentioned at some point in this chapter.
Two different compilers for the CRAY X-MP show the large dependence on compiler
technology.

7 .6 I Enhancing Vector Performance

Three techniques for improving the performance of vector machines are
discussed in this section. The first deals with making a sequence of dependent
vector operations run faster. The other two deal with expanding the class of
loops that can be run in vector mode. The first technique, chaining, originated in
the CRA Y-1, but is now supported on many vector machines. The techniques
discussed in the second and third parts of this section are taken from a variety of
machines an'd are, in general, more extensive than the capabilities provided on
the CRAY-1 or CRAY X-MP architectures.

Chaining-The Concept of Forwarding Extended
to Vector Registers

Consider the simple vector sequence

MULTV
ADDV

Vl, V2, V3

V4,Vl,V5

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 409

378 7.6 Enhancing Vector Performance

In DLXV as it currently stands these two instructions run in time equal to

Telement *Vector length+ Start-up timeADDV +stall time+ Start-up timeMULTV

= 2 * Vector length + 6 + 4 + 7

= 2 *Vector length+ 17

Because of the dependence, the MULTV must complete before the ADDV can
begin. However, if the vector register, Vl in this case, is treated not as a single
entity but as a group of individual registers, then the pipelining concept of for
warding can be extended to work on individual elements of a vector. This idea,
which will allow the ADDV to start earlier in this example, is called chaining.
Chaining allows a vector operation to start as soon as the individual elements of
its vector source operand become available: The results from the first functional
unit in the chain are forwarded to the second functional unit. (Of course, they
must be gifferent units to avoid using the same unit twice per clock!) In a
chained sequence the initiation rate is equal to one per clock cycle if the func
tional units in the chained operations are all fully pipelined. Even though the
operations depend on one another, chaining allows the operations to proceed in
parallel on separate elements of the vector. A sustained rate (ignoring start-up)
of two floating-point operations per clock cycle can be achieved, even though
the operations are dependent!

The total running time for the above sequence becomes

Vector length+ Start-up timeADDV +Start-up timeMULTV

Figure 7 .14 shows the timing of a chained and an unchained version of the
above pair of vector instructions with a vector length of 64. In Figure 7 .14, the
total time for chained operation is 77 clock cycles. With 128 floating-point
operations done in that time, 1.7 FLOPs per clock cycle are obtained, versus a
total time of 145 clock cycles or 0.9 FLOPs per clock cycle for the unchained
version.

We will see in Section 7.7 that chaining plays a major role in boosting vector
performance.

7 64 46 64
Unchained ~t-----Ht-il....,lf-------il Total= 145

MULTV ADDV

Chained

FIGURE 7.14 Timings for a sequence of dependent vector operations ADDV and
MULTV, both unchained and chained. The 4-clock-cycle delay comes from a stall for
dependence, described earlier; the 6- and 7-clock-cycle delays are the latency of the
adder and multiplier.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 410

Vector Processors

Conditionally Executed Statements
and Sparse Matrices

379

In the last section, we saw that many programs only achieved low to moderate
levels of vectorization. Because ·of Amdahl's Law, the speedup on such pro
grams will be very limited. Two reasons why higher levels of vectorization are
not achieved are the presence of conditionals (if statements) inside loops and the
use of sparse matrices. Programs that contain if statements in loops cannot be
run in vector mode using the techniques we have discussed so far because the if
statements introduce control flow into a loop. Likewise, sparse matrices cannot
be efficiently implemented using any of the capabilities we have seen so far; this
is a major factor in the lack of vectorization for Spice. This section discusses
techniques that allow programs with these structures to execute in vector mode.
Let's start with conditional execution.

Consider the following loop:

do 100 i = 1, 64

if (A(i) .ne. 0) then

A(i) = A(i) - B(i)

endif

100 continue

This loop cannot normally be vectorized because of the conditional execution of
the body. However, if the inner loop could be run for the iterations for which
A(i) t:. 0, then the subtraction could be vectorized.

Vector-mask control helps us do this. The vector-mask control takes a
Boolean vector of length MVL. When the vector-mask register is loaded with
the result of a vector test, any vector instructions to be executed operate only on
the vector elements whose corresponding entries in the vector-mask register are
1. The entries in the destination vector register that correspond to a 0 in the mask
register are unaffected by the vector operation. Clearing the vector-mask register
sets it to all ls, making subsequent vector instructions operate on all vector ele
ments. The following code can now be used for the above loop, assuming that
the starting addresses of A and B are in Ra and Rb respectively:

LV

LV

LD

Vl,Ra

V2,Rb

F0,#0

SNESV FO,Vl

SUBV Vl,Vl,V2

CVM

sv Ra,Vl

;load vector A into Vl

;load vector B

;load FP zero into FO

;sets the VM to 1 if Vl(i)t:.FO

;subtract under vector mask

;set the vector mask to all ls

;store the result in A

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 411

380 7.6 Enhancing Vector Performance

Most modem vector machines provide vector-mask control. The vector-mask
capability described here is available on some machines, but others allow the use
of the vector mask with only a small number of instructions.

Using a vector-mask register does, however, have disadvantages. First,
execution time is not decreased, even though some elements in the vector are not
operated on. Second, in some vector machines the vector mask serves only to
disable the storing of the result into the destination register, and the actual opera
tion still occurs. Thus, if the operation in the above example were a divide rather
than a subtract and the test was on B rather than A, false floating-point
exceptions might result since the operation was actually done. Machines that
mask the operation as well as the result store avoid this problem.

Now, let's tum to sparse matrices; later we will show another method for
handling conditional execution. We have dealt with vectors in which the ele
ments are separated by a constant stride. If an application called for a sparse
matrix, we might see code that looks like:

do 100 i = 1,n
10.0 A(K(i)) = A(K{i)) + C (M(i))

This code implements a sparse vector sum on the arrays A and C, using index
vectors K and M to designate to the nonzero elements of A and C. (A and C
must have the same number of nonzero elements-n of them.) Another common
representation for sparse matrices uses a bit vector to say which elements exist,
and often both representations exist in the same program. Sparse matrices are
found in many codes, and there are many ways to implement them, depending
on the data structure used in the program.

The primary mechanism for supporting sparse matrices is scatter-gather
operations using index vectors. A gather operation takes an index vector, and
fetches the vector whose elements are at the addresses given by adding a base
address to the offsets given in the index vector. The result is a nonsparse vector
in a vector register. After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter store, using the same
index vector. Hardware support for such operations is called scatter-gather and
appeared on the CDC STAR-100. The instructions LVI (Load Vector Indexed)
and SVI (Store Vector Indexed) provide these operations in DLXV. For exam
ple, assuming that Ra, Re, Rk, and Rm contain the starting addresses of the vec
tors in the above sequence, the inner loop of the sequence can be coded with
vector instructions such as:

LV Vk,Rk ;load K

LVI Va, (Ra+Vk) ;load A(K(I))

LV Vm,Rm ;load M

LVI Ve, (Re+Vm) ;load C (M(I))

ADDV Va, Va, Ve ;add them

SVI (Ra+Vk), Va ;store A(K(I))

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 412

Vector Processors 381

This technique allows code with sparse matrices to be run in vector mode.
The source code above would never be automatically vectorized by a compiler
because the compiler cannot know that the elements of Kare distinct values, and
thus that no dependences exist. Instead, a programmer directive would tell the
compiler that it could run the loop in vector mode.

A scatter/gather capability is included on many of the newest super
computers. Such operations rarely run at one element per clock, but they are still
much faster than the alternative, which may be a scalar loop. If the sparsity
properties of a matrix change, a new index vector must be computed. Many
machines provide support for computing the index vector quickly. The CVI
(Create Vector Index) instruction in DLXV creates an index vector given a stride
(m), where the values in the index vector are O,m,2*m, ... ,63*m. Some machines
provide an instruction to create a compressed index vector whose entries cor
respond to the positions with a 1 in the mask register. Other vector architectures
provide a method to compress a vector. In DLXV, we define the CVI instruction

0 , to always create a compressed index vector using the vector mask. When the
vector mask is all ones a standard index vector will be created.

The indexed loads/stores and the CVI instruction provide an alternative
method to support conditional execution. Here is a vector sequence that imple
ments the loop we saw on page 379:

LV Vl,Ra
LD F0,#0
SNESV FO,Vl
ADDI

CVI
POP

Rc,#8
V2,Rc
Rl, VM

MOVI2S VLR,Rl
CVM

;load vector A into Vl
;load FP zero into FO
;sets the VM to 1 if Vl(i):;tFO

;generates indices in V2
;find the number of l's in VM
;load vector length register

LVI
LVI
SUBV
SVI

V3, (Ra+V2) ;load the nonzero A elements
V4, (Rb+V2) ;load corresponding B elements
V3,V3,V4 ;do the subtract
(Ra+V2),V3 ;store A back

Whether the implementation using scatter/gather is better than the condition
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the first
version (on page 379) is Sn+ c1. The running time of the second version using
indexed loads and stores with a running time of one element per clock is 4n +
4*f*n + c2, where f is the fraction of elements for which the condition is true
(i.e., A :;t 0). If we assume that the values of c1 and c2 are comparable, or that
they are much smaller than,n, we can find when this second technique is better.

Time1 = Sn

Time2 = 4n + 4*f*n

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 413

382

Example

7.6 Enhancing Vector Performance

We want Time I ~ Time2, so

Sn ~ 4n + 4*f*n

l>f 4 -

That is, the second method is faster if less than one-quarter of the.elements are
nonzero. In many cases the frequency of execution is much lower. If the index
vector can be reused, or if the number of vector statements within ,the if state
ment grows, the advantage of the scatter/gather approach will increase sharply.

Vector Reduction

As we saw in Section 7 .5, some loop structures are not easily vectorized. One
common structure is a reduction-a loop that reduces an array to a single value
by repeated application of an operation. This is a special case of a recurrence. A
common example occurs in dot product:

dot = 0.0

do 10 i=l,64

10 dot =dot + A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recur
rence and perhaps rewrite the loop as:

do 10 i=l,64

10 dot (i) = A (i) * B (i)

do 20 i=2,64
20 dot(l) = dot(l) + dot(i)

The variable dot has been expanded into a vector; this transformation is called
scalar expansion.

One simple scheme for compiling the loop with the recurrence is to add ,
sequences of progressively shorter vectors-two 32-element vectors, then two
16-element vectors, and so on. This technique has been called recursive
doubling. It is faster than doing all the operations in scalar mode. Many vector
machines provide hardware assist for doing reductions, as we will see next.

Show how the FORTRAN code would look for execution of the second loop in
the code fragment above using recursive doubling.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 414

Answer

Vector Processors 383 .

Here is the code:

len = 32

do 100 j=l,6

do 10 i=l,len

10 dot(i) = dot(i) + dot(i+len)

...
\

len

100 continue

len I 2

When the loop is done, the sum is in dot(l).

In some vector machines, the vector registers are addressable, and another
technique, sometimes called partial sums, can be used. This is discussed in
Exercise 7 .12. There is an important caveat in the use of vector techniques for

, reduction. To make reduction work, we are relying on the associativity of the
operator being used for the reduction. Because of rounding and finite range,
however, floating-point arithmetic is not strictly associative. For this reason,
most compilers require the programmer to indicate whether associativity can be
used to more efficiently compile reductions.

7. 7 I Putting It All Together: Evaluating the
Performance of Vector Processors

In this section we look at different measures of performance for vector machines
and what they tell us about the machine. To determine the performance of a
machine on a vector problem we must look at the start-up cost and the sustained
rate. The simplest and best way to report the performance of a vector machine
on a loop is to give the execution time of the vector loop. For vector loops peo
ple often give the MFLOPS (Millions FLoating point Operations Per Second)
rating rather than execution time. We use the notation Rn for the MFLOPS rating
on a vector of length n. Using the measurements T n (time) or Rn (rate) is equiva
lent if the number of FLOPs is agreed upon (see Chapter 2, Section 2.2, page 35
for an extensive discussion on MFLOPS). In any event, either measurement
should include the overhead.

In this section we examine the performance of DLXV on our SAXPY loop by
looking at performance from different viewpoints. We will continue to compute
the execution time of a vector loop using the equation developed in Section 7.4.
At the same time, we will look at different ways to measure performance using
the computed time. The constant values for T1oop and Tbase used in this section
introduce some small amount of error, which will be ignored.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 415

384 7.7 Putting It All Together: Evaluating the Performance of Vector Processors

Measures of Vector Performance

Because vector length is so important in establishing the performance of a
machine, length-related measures are often applied in addition to time and
MFLOPs. These length-related measures tend to vary dramatically across differ
ent machines and are interesting to compare. (Remember, though, that time is
always the measure of interest when comparing the relative speed of two
machines.) Three of the most important length-related measures are:

R
00
-The MFLOPS rate on an infinite-length vector. Although this measure may

be of interest when estimating peak performance, real problems do not have un
limited vector lengths, and the overhead penalties encountered in real problems
will be larger. (Rn is the MFLOPS rate for a vector of length n.)

N 1;2-The vector length needed to reach one-half of R00 • This is a good measure
of the impact of overhead.

N v-The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let's look at these measures for our SAXPY problem running on DLXV.
When chained, the inner loop of the SAXPY code looks like this (assuming that
Rx and Ry hold starting addresses):

LV Vl,Rx ;load the vector X

MULTSV V2,Sl,Vl ;vector* scalar-chained to LV X

LV V3,Ry ;vector load y

ADDV V4,V2,V3 ;sum ax + Y, chained to LV Y

sv Ry,V4 ;store the vector Y

Recall our performance equation for the execution time of a vector loop with
n elements, Tn:

Tn= Tbase + r M~L l * (T1oop + Tsrart) + n * T element

Since there are three memory references and only one memory pipeline, the
value of Telement must be at least 3, and chaining allows it to be exactly 3. If
T element were a complete indication of performance, the loop would run at a

MFLOPS rate of ~ * clock rate (since there are 2 FLOPS per iteration). Thus,

based only on the Telement time, an 80-MHz DLXV would run this loop at 53
MFLOPS. But the Unpack benchmark, whose core is this computation, runs at
only 13 MFLOPS (without some sophisticated compiler optimization we discuss
in the Exercises) on an 80-MHz CRAY-1, DLXV's cousin! Let's see what
accounts for the difference.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 416

Operation

LV Vl,Rx

MULTV a,Vl

LV V2,Ry

ADDV V3, Vl, V2 c_

sv Ry,V3

Vector Processors 385

The Peak Performance of DLXV on SAXPY

First, we should determine what the peak performance, R
00

, really is, since we
know it differs from the ideal 53-MFLOPS rate. Figure 7.15 shows the timing
within each block of strip-mined code.

Starts at clock Completes at clock Comment
number number

0 12 + 64 = 76 Simple latency

12 + 1=13 13 + 7 + 64 = 84 Chained to L v

76 + 1=77 77 + 12 + 64 = 153 Starts after first L v done (memory
contention)

77 + 1+12 = 90 90+6+64=160 Chained to MULTV and LV

160 + 1 + 4 = 165 165 + 12 + 64 = 241 Must wait on ADDV; not chained
(memory contention)

FIGURE 7.15 The SAXPY loop when chained in DLXV. There are three distinct types of delays: 4-clock-cycle delays
when a nonchained dependence occurs, latency delays that occur when waiting for a result for the pipeline (6 for add, 7
for multiply, and 12 for memory access), and delays due to contention for the memory pipeline. The last cause is what
makes the time per element at least 3 clocks.

From the data in Figure 7.15 and the value of Telement• we know that

Tstart = 241 - 64 * Telement = 241 - 192 = 49

This value is equal to the sum of the latencies of the functional units: 12 + 7 +
12 + 6 + 12 = 49.

Using MVL = 64, T1oop = 15, Tbase = 10, and Telement = 3 in the performance.
equation, the time for an n-element operation is

Tn = 10 + I :41*(15+49) + 3n

Tn = 10+n+64+3n=4n+74

The sustained rate is actually over 4 clock cycles per iteration, rather than the
theoretical rate of 3 clocks per iteration, which ignores overhead. The major part
of the difference is the cost of the overhead for each block of 64 elements. The

basic start-up overhead, Tbase• adds only
10

to the time for each element. This
n

overhead disappears with long vectors.
We can now compute R

00
for an 80-MHz clock as

R = lim (Operations per iteration * Clock rate)
00 n~= Clock cycles per iteration

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 417

386 7.7 Putting It All Together: Evaluating the Performance of Vector Processors

The numerator is indtrpendent of n, hence

R = Operations per iteration * Clock rate
00

lim (Clock cycles per iteration)
n-?oo

1. (Tn) l" (4n + 74) lim (Clock cycles per iteration) = im -;; = 1m n = 4
n-?oo n-?oo n-700

R = 2 * 80 MHz= 40 MFLOPS
00 4

Sustained Performance of Linpack on DLXV

The Linpack benchmark is a Gaussian elimination on a lOOx 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used
k times. Thus, the average vector length is given by:

99
I iz
i=l 99 =66.3

L,i
i=l

Now we can obtain an accurate estimate of the performance of SAXPY using a
vector length of 66.

T66 = 10 + 2 * (15 + 49) + 66 * 3 = 10 + 128 + 198 = 336

R66 =
2 * ~~6*

80
MFLOPS = 31.4 MFLOPS

In reality, Linpack does not spend all its time in the inner loop. The bench
mark's actual performance can be found by taking the weighted harmonic mean
of the MFLOPS ratings inside the inner loop (31.4 MFLOPS) and outside that
loop (about 0.5 MFLOPS). We can compute the weighting factors by knowing
the percentage of the time inside the inner loop after vectorization.

The percentage in the inner loop after vectorization can be obtained using
Amdahl's Law if we know the percentage in scalar and the speedup from vec
torization. In scalar mode, about 75% of the execution time is spent in the inner
loop, and the speedup from vectorization is about 5 times. With this information
the percentage of time in the inner loop after vectorization can be computed:

Total relative time after vectorization = 0.
75 + 0.25
5

= 0.15 + 0.25 = 0.40

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 418

Example

Answer

Example

Vector Processors

P f . . . 1 f . . O.l5 37 5m ercentage o time m mner oop a ter vectonzat1on = 0.40 = . -10

387

The remaining 62.5% of the time is spent outside the main loop. Thus, the
overall MFLOPS rating is

Percentageinner * MFLOPSinner + Percentage0 ther * MFLOPSother

= 37.5% * 31.4 + 62.5% * 0.5 = 12.1 MFLOPS

This is comparable to the rate at which the CRA Y-1 runs this benchmark.

What is N112 for just the inner loop of SAXPY for DLXV with an 80-MHz

clock?

Using R
00

as the peak rate, we want to know the vector length that will achieve

about 20 MFLOPS. So,

FLOPS *Clocks
Clock cycles Iteration Second

= Iteration FLOPS
Second

2 * 80MHz
= 20 MFLOPS = 8

Hence, a rate of 20 MFLOPS means that a loop iteration completes every 8

clock cycles on average, or that Tn = 8. Using our equation and assuming that n
n

S64,

T =10+1*64+3*n n

Substituting for T n in the first equation, we obtain

8 n = 74 + 3 * n

5n = 74

n = 14.8

So N 112 = 15; that is, a vector oflength 15 gives approximately one-half the peak

performance for the SAXPY loop on DLXV.

What is the vector length, Nv, such that the vector operation runs faster than the

scalar?

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 419

388

Answer

Example

Answer

Operation

LV Vl,Rx

MULTV a,Vl

LV V2,Ry

ADDV y3, Vl, V2

sv Ry,V3

7.7 Putting It All Together: Evaluating the Performance of Vector Processors

Again, we know that Nv < 64. The time to do one iteration in scalar mode can be

estimated as 10 + 12 + 12 + 7 + 6 = 47 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead.
In the last problem, we showed that this vector loop runs in vector mode in time
T n = 74 + 3*n clock cycles for a vector of length:::; 64. Therefore,

74 + 3n = 47n

74
n - 44

NV = 2

For the SAXPY loop, vector mode is faster than scalar as long as the vector has
at least two elements. This number is surprisingly small, as we will see in the
next section (Fallacies and Pitfalls).

SAXPY Performance on an Enhanced DLXV

SAXPY, like many vector problems, is memory limited. Consequently, per
formance could be improved by adding more memory-access pipelines. This is
the major architectural difference between the CRAY X-MP and the CRAY-1.
The CRAY X-MP has three memory pipelines, compared to the CRAY-l's sin
gle memory pipeline, and the X-MP has more flexible chaining. How does this
affect performance?

What would be the value of T 66 for SAXPY on DLXV if we added two more
memory pipelines?

Figure 7.16 is a version of Figure 7.15 (page 385), adjusted for multiple memory
pipelines.

Starts at clock number Completes at clock Comment
number

0 12 + 64 = 76 Simple latency

12 + 1=13 13 + 7 + 64 = 84 Chained to L v

2 2 + 12 + 64 = 78 Starts immediately

13 + 1+7 = 21 21+6 + 64 = 91 Chained to MULTV and LV

21+1+6 = 28 28 + 12 + 64 = 104 Chained to ADDV

FIGURE 7.16 The SAXPY loop when chained in DLXV with three memory pipelines. The only delays are latency
delays that occur when waiting for a result for the pipeline (6 for add, 7 for multiply, and 12 for each memory access).

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 420

Example

Answer

Vector Processors 389

With three memory pipelines, the performance is greatly improved. Here's
our standard performance equation:

Tn = Tbase + I M~L l * (T1oop + Tstart) + n * Telement

With three memory pipelines the value of T element becomes 1, so that

Tstart =104- 64 * Telement = 104- 64 = 40

The reduction in stalls reduces the start-up penalty for each sequence. The
values of T1oop and T base' 15 and 10, remain the same. Therefore, for an average
vector length of 66, we have:

T 66 = T base + I~~ l * (T1oop + T start) + 66 * T element

T66 = 10+2*(15+40)+66*1=186

With three memory pipelines, we have reduced the clock-cycle count for sus
tained performance from 336 to 186, a factor of 1.8. Note the effect of Amdahl's
Law: We improved the theoretical peak rate, as measured by Telement• by a factor
of 3, but only achieved an overall improvement of a factor of 1.8 in sustained
performance. Because the speedup outside the inner loop is likely to be less than
1.8, the overall improvement in run time for the benchmark will also be less.

Another improvement could come from allowing the start-up of one
loop iteration before another completes. This requires that one vector operation
be allowed to begin using a functional unit, before another operation has com
pleted. This complicates the instruction issue logic substantially, but has the ad
vantage that the start-up overhead will only occur once, independent of the vec
tor length. On a long vector the overhead per block (T1oop + T start) can be com
pletely amortized. In this way a machine with vector registers can have both low
start-up overhead for short vectors and high peak performance for very long
vectors.

What would be the values of R00 and T 66 for SAXPY on DLXV if we added two
more memory pipelines and allowed the strip-mining and start-up overhead to be
fully overlapped?

R = lim (Operations per iteration * Clock rate)
00 n-?oo Clock cycles per iteration

'· . (T)
lim (Clock cycles per iteration) = lim nn

n-?oo n-?oo

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 421

390 7.7 Putting It All Together: Evaluating the Performance of Vector Pn:>cessors

Since Tn = n + 40 + 10 + 15 = n + 65,

lim (Tn) = lim (n + 65) = 1
n~oo n n~oo n

R = 2 * 80 MHz= 160 MFLOPS
00 1

Thus, adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T 66 = 131, so for
shorter vectors, the sustained performance improvement is about 40%.

In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Te1ement as

Number of FLOPS per iteration * Clock rate
Telement

By including the loop overhead, we can calculate values for peak performance
for an infinite-length vector (Roo), and also for sustained performance Rn for a
vector of length n, which is computed as:

Rn = Number of FLOPS per iteration * n * Clock rate
Tn

Using these measures we also can find N 1/2 and Nv, which give us another way
of looking at the start-up overhead for vectors and the ratio of vector to scalar
speed. A wide variety of measures of performance of vector machines are useful
in understanding the wide range of performance that applications may see on a
vector machine.

7 .8 J Fallacies and Pitfalls

Pitfall: Concentrating on peakpe1formance and ignoring start-up overhead.

Early vector machines such as the TI ASC and the CDC STAR-100 had long
start-up times. For some vector problems, Nv could be greater than 100! Today,

the Japanese supercomputers often have higher sustained rates than the Cray
Research machines. But with start-up overheads that are 50-100% higher, the
faster sustained rates often provide no real advantage. On the CYBER-205 the
start-up overhead for SAXPY is 158 clock cycles, substantially increasing the
break-even point. With a single vector unit, which contains 2 memory pipelines,
the CYBER-205 can sustain a rate of 2 clocks per iteration. The time for
SAXPY for a vector of length n is therefore roughly 158 + 2n. If the clock rates

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 422

Machine

MIPS M/120-5

Stardent-1500

Vector Processors 391

of the CRAY-1 and the CYBER-205 were identical, the CRAY-1 would be
faster until n > 64. Because the CRAY-1 clock is also faster (even though the
205 is newer), the crossover point is over 100. Comparing a four-vector-pipeline
CYBER-205 (the maximum-size machine) to the CRAY X-MP that was deliv
ered shortly after the 205, the 205 completes two results per clock cycle-twice
as fast as the X-MP. However, vectors must be longer than about 200 for the
CYBER-205 to be faster. The problem of start-up overhead has been the major
difficulty for the memory-memory vector architectures.

Pitfall: Increasing vector performance, without comparable increases in
scalar performance.

This is another area where Seymour Cray rewrote the rules. Many of the early
vector machines had comparatively slow scalar units (as well as large start-up
overheads). Even today, machines with higher peak vector performance, can be
outperformed by a machine with lower vector performance but better scalar
performance. Good scalar performance keeps down overhead costs (strip min
ing, for example) and reduces the impact of Amdahl's Law. A good example of
this comes from comparing a fast scalar machine and a vector machine with
lower scalar performance. The Livermore FORTRAN kernels are a collection of
24 scientific kernels with varying degrees of vectorization (see Chapter 2; Sec
tion 2.2). Figure 7.17 shows the performance of two different machines on this
benchmark. Despite the vector machine's higher peak performance, its low scalar
performance makes it slower than a fast scalar machine. The next fallacy is
closely related.

Minimum rate for any loop Maximum rate for any loop Harmonic mean of all 24 loops

0.80MFLOPS 3.89MFLOPS 1.85 MFLOPS

0.41 MFLOPS 10.08 MFLOPS l.72MFLOPS

FIGURE 7.17 Performance measurements for the Livermore FORTRAN kernels on two different machines. Both
the MIPS M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16. 7-MHz MIPS R2000 chip for the main
CPU. The Stardent-1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the
minimum rate) of the MIPS M/120, which uses the MIPS R201 O FP chip. The vector machine is more than a factor of 2.5
times faster for a highly vectorizable loop (maximum rate). However, the lower scalar performance of the Stardent-1500
negates the higher vector performance when total performance is measured by the harmonic mean on all 24 loops.

Fallacy: The scalar performance of the best supercomputers is low.

The supercomputers from Cray Research have always had good scalar perfor
mance. Measurements of the CRAY Y-MP running (the nonvectorizable) Spice
benchmark sho'.w this. When our Spice benchmark is run on the CRAY Y-MP in
scalar mode it executes 665 million instructions, with a CPI of 4.1. By compari
son, the DECstation 3100 executes 738 million instructions with a CPI of 2.1.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 423

392 7.8 Fallacies and Pitfalls

Although the DECstation uses fewer cycles, the Y-MP uses fewer instructions
and is much faster overall, since it has a clock cycle .one-tenth as long.

Fallacy: You can get vector performance without providing memory band
width.

As we saw with the SAXPY loop, memory bandwidth is quite impor
tant. SAXPY requires 1.5 memory references per floating-point operation, and
this ratio is typical of many scientific codes. Even if the floating-point operations
took no time, a CRAY -1 could not increase the performance of the vector
sequence used, since it is memory limited. Recently, the CRAY-1 performance
on Linpack has jumped because the compiler used clever transformations to
change the computation so that values could be kept in the vector registers. This
lowered the number of memory references per FLOP and improved the perfor
mance by nearly a factor of 2! Thus, the memory bandwidth on the CRA Y-1
became sufficient for a loop that formerly required more bandwidth.

7 .9 I Concluding Remarks

In the late 1980s rapid performance increases in efficiently pipelined scalar
machines lead to a dramatic closing of the gap between vector supercomputers,
costing millions of dollars, and fast, pipelined; VLSI microprocessors costing
less than $100,000. The basic reason for this was the rapidly decreasing CPI of
the scalar machines.

For scientific programs, an interesting counterpart to CPI is clock cycles per
FLOP, or CPF. We saw in this chapter that for vector machines this number was
typically in the range of 2 (for a CRAY X-MP style machine) to 4 (for a CRAY-
1 style machine). In the last chapter, we saw that the pipelined machine varied
from about 6 (for DLX) down to about 2.5 (for a superscalar DLX with no
memory system losses running a SAXPY-type loop).

Recent trends in vector machine design have focused on high peak-vector
performance and multiprocessing. Meanwhile, high-speed scalar machines con
centrate on keeping the ratio of peak to sustained performance near one. Thus, if
the peak rates advance comparably, the sustained rates of the scalar machines
will advance more quickly, and the scalar machines will continue to close the
CPF gap. These multiple-issue scalar machines can rival or exceed the perfor
mance of vector machines with comparable clock speeds, especially for levels of
vectorization below 70%. Furthermore, the differences in clock rate are largely
technology driven-the low-end, microprocessor-based vector machines have
clock rates comparable to the pipelined machines using microprocessor technol
ogy. (In fact, they often use the same microprocessors!) In the future, we can
expect high-speed pipelined scalar machines to be built with clock rates that will
rival those of the current vector supercomputers. However, the vector machines

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 424

Vector Processors 393

should retain a performance advantage for problems with very long vectors that
can use multiple memory pipelines and achieve performance close to the peak.

' The 1990s will be interesting as the pipelined scalar machines that exploit
more instruction-level parallelism and are usually much cheaper (because their
peak performance and hence total hardware is much less) begin to offer perfor
mance levels for many applications that are difficult to distinguish from those of
vector machines.

7. 1 0 I Historical Perspective and References

The first vector machines were the CDC STAR-100 (see Hintz and Tate [1972])
and the TI ASC (see Watson [1972]), both announced in 1972. Both were mem
ory-memory vector machines. They had relatively slow scalar units-the ST AR
used the same units for scalars and vectors-making the scalar pipeline
extremely deep. Both machines had high start-up overhead and worked on vec
tors of several hundred to several thousand elements. The crossover between
scalar and vector could be over 50 elements. It appears that not enough attention
was paid to the role of Amdahl's Law on these two machines.

Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research
and introduced the CRAY-1in1976 (see Russell [1978]). The CRAY-1 used a
vector-register architecture to significantly lower start-up overhead. He also had
efficient support for nonunit stride and invented chaining. Most importantly, the
CRAY -1 was also the fastest scalar machine in the world at that time. This
matching of good scalar and vector performance was probably the most signifi
cant factor in making the CRA Y-1 a success. Some customers bought the
machine primarily for its outstanding scalar performance. Many subsequent vec
tor machines are based on the architecture of this first commercially successful
vector machine. Baskett and Keller [1977] is a good evaluation of the CRA Y-1.

In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The
205 had the same basic architecture as the STAR, but offered improved perfor
mance all around as well as expansibility of the vector unit with up to four vec
tor pipelines, each with multiple functional units and a wide load/store pipe that
provided multiple words per clock. The peak performance of the CYBER-205
greatly exceeded the performance of the CRA Y-1. However, on real programs,
the performance difference was much smaller.

/

The CDC STAR machine and its descendant, the CYBER-205, were mem
ory-memory vector machines. To keep the hardware simple and support the
high bandwidth requirements (up to 3 memory references per FLOP), these
machines did not efficiently handle nonunit stride. While most loops have unit
stride, a nonunit stride loop had poor performance on these machines because
memory-to.:memory data movements were required to gather together (and
scatter back) the nonadjacent vector elements.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 425

394 7.10 Historical Perspective and References

Schneck [1987] described several of the early pipelined machines (e.g.,
Stretch) through the first vector machines including the 205 and CRA Y-1.
Dongarra [1986] did another good survey, focusing on more recent machines.

In 1983, Cray shipped the first CRAY X-MP (see Chen [1983]). With an
improved clock rate (9.5 ns versus 12.5 on the CRAY-1), better chaining sup
port, and multiple memory pipelines, this machine maintained the Cray Research
lead in supercomputers. The CRA Y-2, a completely new design configurable
with up to four processors, was introduced later. It has a much faster clock than
the X-MP, but also much deeper pipelines. The CRAY-2 lacks chaining, has an
enormous memory latency, and has only one memory pipe per processor. In
general, it is only faster than the CRAY X-MP on problems that require its very
large main memory.

In 1983, the Japanese computer vendors entered the supercomputer market
place, starting with the Fujitsu VPlOO and VP200 (Miura and Uchida [1983]),
and later expanding to include the Hitachi S810, and the NEC SX/2 (see
Watanabe [1987]). These machines have proved to be close to the CRAY X-MP
in performance. In general, these three machines have much higher peak per
formance than the CRAY X-MP, though because of large start-up overhead,
their typical performance is often lower than the CRAY X-MP (see Figure 2.24
in Chapter 2). The CRAY X-MP favored a multiple-processor approach, first
offering a two-processor version and_ later a four-processor machine. In contrast,
the three Japanese machines had expandable vector capabilities. In 1988, Cray
Research introduced the CRAY Y-MP-a bigger and faster version of the
X-MP. The Y-MP allows up to 8 processors and lowers the cycle time to 6 ns.
With a full complement of 8 processors, the Y-MP is generally the fastest super
computer, though the single-processor Japanese supercomputers may be faster
than a one-processor Y-MP. In late 1989 Cray Research was split into two
companies, both aimed at building high-end machines available in the early
1990s. Seymour Cray continues to head the spin-off, which is now called Cray
Computer Corporation.

In the early 1980s, CDC spun out a group, called ETA, to build a new super
computer, the ETA-10, capable of' 10 GigaFLOPs. The ETA machine delivered
in the late 1980s (see Fazio [1987]) used low-temperature CMOS in a configu
ration with up to 10 processors. Each processor retained the memory-memory
architecture based on the CYBER-205. Although the ETA-10 achieved enor
mous peak performance, its scalar speed was not comparable. In 1989 CDC, the
first supercomputer vendor, closed ETA and left the supercomputer design
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extends the System/370 architecture with 171 vector instructions. The 3090NF
is integrated into the 3090 CPU. Unlike most other vector machines, the
3090NF routes its vectors through the cache.

The 1980s also saw the arrival of smaller-scale vector machines, called mini
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($0.5 to

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 426

Vector Processors 395

$1 million versus $5 to $10 million), these machines caught on quickly.
Although many companies joined the market, the two companies that have been
most successful are Convex and Alliant. Convex started with a uniprocessor
vector machine (C-1) and now offers a small multiprocessor (C-2); they
emphasize Cray software capability. Alliant [1987] has concentrated more on
the multiprocessor aspects; they build an eight-processor machine, with each
processor offering vector capability.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University
of Illinois. Banerjee [1979] developed the test named after him. Padua and Wolf
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers including attempts to under
stand the performance differences have been undertaken by Lubeck, Moore and
Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 2, we discussed
several benchmark suites aimed at scientific usage and often employed for
supercomputer benchmarking, including Linpack, the Lawrence Livermore
Laboratories FORTRAN kernels, and the Perfect Club suite.

In the late 1980s, graphics supercomputers arrived on the market from Stellar
[Sporer, Moss, and Mathais 1988] and Ardent [Miranker, Rubenstein, and
Sanguinetti 1988]. The Stellar machine used a timeshared pipeline to allow high
speed vector processing and efficient multitasking. This approach was used ear
lier in a machine designed by B. J. Smith [1981] called the HEP and built by
Denelcor in the mid-1980s. This approach does not yield high-speed scalar per
formance, as evident in the scalar benchmarks of the Stellar machine. The
Ardent machine combines a RISC processor (the MIPS R2000) with a custom
vector unit. These vector machines, which cost about $1 OOK, brought vector
capabilities to a new potential market. In late 1989, Stellar and Ardent wen"
merged to form Stardent, and the Ardent architecture is being shipped from the
combined company.

From this overview we can see the progress vector machines have made. In
less than 20 years they have gone from unproven, new architectures to playing a
significant role in the goal to provide engineers and scientists with ever larger
amounts of computing power.

References

ALLIANT COMPUTER SYSTEMS CORP. [1987]. Alliant FX!Series: Product Summary (June), Acton,
Mass.

BANERJEE, U. [1979]. Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign (October).

BASKETT, F. AND T. W. KELLER [1977]. "An Evaluation of the CRAY-1 Computer," in High
Speed Computer and Algorithm Organization, Kuck, D. J., Lawrie, D. H. and A. H. Sameh, eds.,
Academic Press, 71-84.

BUCHER, I. Y. [1983]. "The computational speed of supercomputers," Proc. SIGMETRICS Conf on
Measuring and Modeling of Computer Systems, ACM (August) 151-165.

CALLAHAN, D., J. DONGARRA, AND D. LEVINE [1988]. "Vectorizing compilers: A test suite and
results," Supercomputing '88, ACM/IEEE (November), Orlando, Fla., 98-105.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 427

396 7 .1 O Historical Perspective and References

CHEN, S. [1983]. "Large-scale and high-speed multiprocessor system for scientific applications,"
Proc. NATO Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
"Supercomputers: Design and applications," IEEE (August) 1.984.

DONGARRA, J. J. [1986]. "A survey of high performance computers," COMPCON, IEEE (March)
8-11.

FAZIO, D. [1987]. "It's really much more fun building a supercomputer than it is simply inventing
one," COMPCON, IEEE (February) 102-105.

FLYNN, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909.

HINTZ, R. G. AND D. P. TATE [1972]. "Control data STAR-100 processor design," COMPCON,
IEEE (September) 1-4.

JORDAN, K. E. [1987]. "Performance comparison of large-scale scientific computers: Scalar main
frames, mainframes with vector facilities, and supercomputers," Computer 20:3 (March) 10-23.

KUCK, D., P. P. BUDNIK, S.-C. CHEN, D. H. LAWRIE, R. A. TOWLE, R. E. STREBENDT, E.W.
DAVIS, JR., J. HAN, P. W. KRASKA, Y. MURAOKA [1974]. "Measurements of parallelism in ordi
nary FORTRAN programs," Computer 7: 1 (January) 37-46.

LINCOLN, N. R. [1982]. "Technology and design trade offs in the creation of a modern super
computer," IEEE Trans. on Computers C-31 :5 (May) 363-376.

LUBECK, 0., J. MOORE, AND R. MENDEZ [1985]. "A benchmark comparison of three super
computers: Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2," Computer 18:1 (January) 10-
29.

MIRANKER, G. S., J. RUBENSTEIN, AND J. SANGUINETTI [1988]. "Squeezing a Cray-class
supercomputer into a single-user package," COMPCON, IEEE (March) 452-456.

MIURA, K. AND K. UCHIDA [1983]. "FACOM vector processing system: VPl00/200," Proc. NATO
Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
"Supercomputers: Design and applications," IEEE (August 1984) 59-73.

MOORE, B., A. PADEGS, R. SMITH, AND W. BUCHOLZ [1987]. "Concepts of the System/370 vector
architecture," Proc. 14th Symposium on Computer Architecture (June), ACM/IEEE, Pittsburgh,
Pa., 282-292. -

PADUA, D. AND M. WOLFE [1986]. "Advanced compiler optimizations for supercomputers,"
Comm. ACM 29:12 (December) 1184--1201.

RUSSELL, R. M. [1978]. "The CRA Y-1 computer system," Comm. of the ACM 21:1 (January)
63-72.

SCHNECK, P. B. [1987]. Supercomputer Architecture, Kluwer Academic Publishers, Norwell, Mass.

SMITH, B. J. [1981]. "Architecture and applications of the HEP multiprocessor system," Real-Time
Signal Processing N 298 (August) 241-248.

SPORER, M., F. H. MOSS AND C. J. MATHAIS [1988]. "An introduction to the architecture of the
Stellar Graphics supercomputer," COMPCON, IEEE (March) 464-467.

WATANABE, T. [1987]. "Architecture and performance of the NEC supercomputer SX system,"
Parallel Computing 5, 247-255.

WATSON, W. J. [1972]. "The TI ASC-A highly modular and flexible super computer architecture,"
Proc. AFIPS Fall Joint Computer Conj., 221-228.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 428

Vector Processors 397

EXERCISES

In these Exercises assume DLXV has a clock rate of 80 MHz and that T base= 10 and
Tioop = 15. Also assume that the store latency is always included in the running time.

7.1 [10] <7.1-7.2> Write a DLXV vector sequence that achieves the peak MFLOPS
performance of the machine (use the functional unit and instruction description in Section
7.2). Assuming an 80-MHz clock rate, what is the peak MFLOPS?

7.2 [20/15/15] <7.1-7.6> Consider the following vector code run on an 80-MHz version
of DLXV for a fixed vector length of 64:

LV Vl,Ra

MULTV V2,Vl,V3

ADDV V4,Vl,V3

sv Rb,V2

sv Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be included in
the time to perform the loop. The entire sequence produces 64 results.

a. [20] Assuming no chaining and a single memory pipeline, how many clock cycles per
result (including both stores as one result) does this vector sequence require?

b. [15] If the vector sequence is chained, how many clock cycles per result does this
sequence require?

c. [15] Suppose DLXV had three memory pipelines and chaining. If there were no
bank conflicts in the accesses for the above loop, how many clock cycles are required
per result for this sequence?

7.3 [20/20/15/15/20/20/20] <7.2-7.7> Consider the following FORTRAN code:

do 10 i=l,n

A(i) A(i) + B(i)

B(i) x * B(i)

10 continue

Use the techniques of Section 7.7 to estimate performance throughout this exercise
assuming an 80-MHz version of DLXV.

a. [20] Write the best DLXV vector code for the inner portion of the loop. Assume x is
in PO and the addresses of A and B are in Ra and Rb, respectively.

b. [20] Find the total time for this loop on DLXV (T100). What is the MFLOP rating for
the loop (R 100)?

c. [15] Find R
00

for this loop.

d. [15] Find N 112 for this loop.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 429

398 Exercises

e. [20) Find Nv for this loop. Assume the scalar code has been pipeline scheduled so
that each memory reference takes six cycles and each FP operation takes 3 cycles.
Assume the scalar overhead is also Tioop·

f. [20) Assume DLXV has two memory pipelines. Write vector code that takes advan
tage of the second memory pipeline.

g. [20) Compute T 100 andR100 for DLX with two memory pipelines.

7.4 [20/10) <7.3> Suppose we have a version of DLXV with eight memory banks (each a
doubleword wide) and a memory-access time of eight cycles.

a. [20) If a load vector of length 64 is executed with a stride of 20 doublewords, how
many cycles will the load take to complete?

b. [10) What percentage of the memory bandwidth do you achieve on a 64-element load
at stride 20 versus stride 1?

7.5 [12/12/20] <7.4-7.7> Consider the following loop:

c = 0.0

do 10 i=l,64

A(i) = A(i) + B(i)

C = C + A(i)

10 continue

a. [12) Split the loop into two loops: one with no dependence and one with a depen
dence. Write these loops in FORTRAN-as a source-to-source transformation. This
optimization is called loop fission.

b. [12) Write the DLXV vector code for the loop without a dependence.

c. [20) Write the DLXV code to evaluate the dependent loop using recursive doubling.

7.6 [20/15/20/20) <7.5-7.7> The compiled Linpack performance of the CRAY-1
(designed in 1976) was almost doubled by a better compiler in 1989. Let's look at a sim
ple example of how this might occur. Consider the "SAXPY-like" loop (where k is a
parameter to the procedure containing the loop): ·

do 10 i=l,64

do 10 j=l,64

Y(k,j) = a*X(i,j) + Y(k,j)

10 continue

a. [20) Write the straightforward code sequence for just the inner loop in DLXV vec
tor instructions.

b. [15) Using the techniques of Section 7.7, estimate the performance of this code on
DLXV by finding T 64 in clock cycles. You may assume that T base applies once and
Tioop of overhead is incurred for each iteration of the outer loop. What limits the per
formance?

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 430

Vector Processors 399

c. [20] Rewrite the DLXV code to reduce the performance limitation; show the
resulting inner loop in DLXV vector instructions. (Hint: think about what establishes
T element; can you affect it?) Find the total time for the resulting sequence.

d. [20] Estimate the performance of your new version using the techniques of Section
7. 7 and finding T 64 .

7.7 [15/15/25] <7.6> Consider the following code.

do 10 i=l,64

if (B(i) .ne. 0) then

A(i) = A(i) I B(i)

endif

10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that PO
contains 0.

a. [15] Write the DLXV code for this loop using the vector-mask capability.

b. [15] Write the DLXV code for this loop using scatter/gather.

c. [25] Estimate the performance (T100 in clock cycles) of these two vector loops
assuming a divide latency of 20 cycles. Assume that all vector instructions run at one
result per clock, independent of the setting of the vector-mask register. Assume that
50% of the entries of B are 0. Considering hardware costs, which would you build if
the above loop was typical?

7.8 [15/20/15/15] <7.1-7.7> In Figure 2.24 of Chapter 2 (page 75), we saw that the dif
ference between peak and sustained performance could be large: For one problem, a
Hitachi S810 had a peak speed twice as high as the CRAY X-MP, while for another more
realistic problem the CRAY X-MP was twice as fast as the Hitachi machine. Let's exam
ine why this might occur using two versions of DLXV and the following code sequences:

C Code sequence 1

do 10 i=l,10000

A(i) = x * A(i) + y * A(i)

10 continue

C Code sequence 2

do 10 i=l,100

A(i) = x * A(i)

10 continue

Assume there is a version of DLXV (call it DLXVII) that has two copies of every
floating-point functional unit with full chaining among them. Assume that both DLXV
and DLXVII have two load/store units. Because of the extra functional units and the
increased complexity of assigning operations to units, all the overheads (Tbase• T1oop• and
the start-up overheads per vector operation) are doubled.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 431

400 Exercises

a. [15] Find the number of clock cycles for code sequence 1 on DLXV.

b. [20] Find the number of clock cycles on code sequence 1 for DLXVII. How does this
compare to DLXV?

c. [15] Find the number of clock cycles on code sequence 2 for DLXV.

d. [15] Find the number of clock cycles on code sequence 2 for DLXVII. How does this
compare to DLXV?

7.9 [15/15/20] <7.5> In this problem we will examine some of the vector loop tests dis
cussed in Section 7.5 and summarized in Figure 7.13 (page 377).

a. [15] Here is a simple code fragment:

do 400 i = 2,100,2

a(i-1) = a(50*i+l)

4 0 0 continue

To use the GCD test this loop must first be "normalized"-written so that the index
starts at 1 and increments by 1 on every iteration. Write a normalized version of the
loop (change the indices as needed), then use the GCD test to see if it vectorizes.

b. [15] Here is another loop:

do 400 i = 2,100,2

a(i) = a(i-1)

4 0 0 continue

Normalize the loop and use the GCD test to detect a dependence. Is there a real
dependence in this loop?

c. [20] Here is a tricky piece of code with two-dimensional arrays. Can it be
vectorized? If so, how? Rewrite the source code so that it is clear that the loop can
be vectorized, if possible.

do 290 j = 2,n

do 290 i = 2,j

aa(i,j)=aa(i-1,j)*aa(i-1,j)+bb(i,j)

290 continue

7.10 [25] <7.5> Show that if for two array elements A(a*i +b) and A(c*i+d) there is a
true dependence, then GCD(c,a) divides (d-b).

7.11 [12/15] <7.5> Consider the following loop:

do 10 i 2,n

10

A(i)

c (i)

B

A(i-1)

a. [12] Show there is a loop-carried dependence in this code fragment.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 432

Vector Processors 401

b. [15) Rewrite the code in Fortran so that it can be vectorized as two separate vector
sequences.

7.12 [25] <7.6> Because the difference between vector and scalar modes is so large on a
supercomputer and the machines often cost tens of millions of dollars, programmers are
frequently willing to go to extraordinary effort to achieve good performance. This often
includes tricky assembly language programming. An interesting problem is to write a
vectorizable sort for floating-point numbers-a task sometimes required in scientific
code. Choose a sorting algorithm and write a version for DLXV that uses vector
operations as much as possible. (Hint: One good choice is quicksort where the vector
compares and compress/expand capability can be used.)

7.13 [25) <7.6> In some vector machines, the vector registers are addressable, and the
operands to a vector operation may be two different parts of the same vector register. This
allows another solution for the reduction shown on page 382. The key idea in partial sums
is to reduce the vector to m sums where m is the total latency through the vector
functional unit including the operand read and write times. Assume that the DLXV vector
registers are addressable (e.g., you can initiate a vector operation with the operand
V1(16), indicating that the input operand began with element 16). Also, assume that the
total latency for adds including operand read and write is eight cycles. Write a DLXV
code sequence that reduces the contents of Vl to eight partial sums. It can be done with
one vector operation.

7.14 [40] <7.2-7.6> Extend the DLX simulator to be a DLXV simulator including the
ability to count clock cycles. Write some short benchmark program~ in DLX and DLXV
assembly language. Measure the speedup on DLXV, the percentage of vectorization, and
usage of the functional units.

7.15 [50) <7.5> Modify the DLX compiler to include a dependence checker. Run some
scientific code and loops through it and measure what percentage of the statements could
be vectorized.

7.16 [Discussion] Some proponents of vector machines might argue that the vector pro
cessors have provided the best path to ever-increasing amounts of computer power by
focusing their attention on boosting peak vector performance. Others would argue that the
emphasis on peak performance is misplaced because an increasing percentage of the pro
grams are dominated by nonvector performance. (Remember Amdahl's Law?) The pro
ponents would respond that programmers should work to make their programs vectoriz
able. What do you think about this argument?

7.17 [Discussion] Consider the points raised in the Concluding Remarks (Section 7.9).
This topic-the relative advantages of pipelined scalar machines versus FP vector
machines-is the source of much debate in the early 1990s. What advantages do you see
for each side? What would you do in this situation?

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 433

Ideally one would desire an indefinitely large memory
capacity such that any particular ... word would be im-
mediately available We are ... forced to recognize the
possibility of constructing a hierarchy of memories, each of
which has greater capacity than the preceding but which is
less quickly accessible.

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

A. W. Burks, H. H. Goldstine, and J. von Neumann,
Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument (1946)

Introduction: Principle of Locality 403

General Principles of Memory Hierarchy 404

Caches 408

Main Memory 425

Virtual Memory 432

Protection and Examples of Virtual Memory 438

More Optimizations Based on Program Behavior 449

Advanced Topics-Improving Cache-Memory
Performance 454

Putting It All Together: The VAX·11n8o Memory
Hierarchy 475

Fallacies and Pitfalls 480

Concluding Remarks 484

Historical Perspective and References 485

Exercises 490

~

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 434

8.1

Memory-Hierarchy
Design

Introduction: Principle of Locality

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. As the 90/10 rule in the first chapter predicts, most
programs fortunately do not access all code or data uniformly (see Section 1.3,
pages 8-12). The 90/10 rule can be restated as the principle of locality. This
hypothesis, which holds that all programs favor a portion of their address space
at any instant of time, has two dimensions:

• Temporal locality (locality in time)-If an item is referenced, it will tend to
be referenced again soon.

• Spatial locality (locality in space)-If an item is referenced, nearby items will
tend to be referenced soon.

A memory hierarchy is a natural reaction to locality and technology. The
principle of locality and the guideline that smaller hardware is faster yield the
concept of a hierarchy based on different speeds and sizes. Since slower memory
is cheaper, a memory hierarchy is organized into several levels--each smaller,
faster, and more expensive per byte than the level below. The levels of the
hierarchy subset one another; all data in one level is also found in the level
below, and all data in that lower level is found in the one below it, and so on
until we reach the bottom of the hierarchy.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 435

404 8.1 Introduction: Principle of Locality

This chapter includes a half-dozen examples that demonstrate how taking
advantage of the principle of locality can improve performance. All these
strategies map addresses from a larger memory to a smaller but faster memory.
As part of address mapping, the memory hierarchy is usually given the
responsibility of address checking; protection schemes used for doing this are
covered in this chapter. Later we will explore advanced memory hierarchy topics
and trace a memory access through three levels of memory on the V AX-11/780.

8.2 I General Principles of Memory Hierarchy

Before proceeding with examples of the memory hierarchy, let's define some
general terms applicable to all memory hierarchies. A memory hierarchy
normally consists of many levels, but it is managed between two adjacent levels
at a time. The upper level-the one closer to the processor-is smaller and faster
than the lower level (see Figure 8.1). The minimum unit of information that can
be either present or not present in the two-level hierarchy is called a block. The
size of a block may be either fixed or variable. If it is fixed, the memory size is a
multiple of that block size. Most of this chapter will be concerned with fixed
block sizes, although a variable block design is discussed in Section 8.6.

Success or failure of an access to the upper level is designated as a hit or a
miss: A hit is a memory access found in the upper level, while a miss means it is
not found in that level. Hit rate, or hit ratio-like a batting average-is the
fraction of memory accesses found in the upper level. This is sometimes repre
sented as a percentage. Miss rate (1.0 - hit rate) is the fraction of memory
accesses not found in the upper level.

Upper
level

Lower
level

FIGURE 8.1 Every pair of levels in the memory hierarchy can be thought of as
having an upper and lower level. Within each level the unit of information that is present
or not is called a block.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 436

Memory-Hierarchy Design 405

Since performance is the major reason for having a memory hierarchy, the
speed of hits and misses is important. Hit time is the time to access the upper
level of the memory hierarchy, which includes the time to determine whether the
access is a hit or a miss. Miss penalty is the time to replace a block in the upper
level with the corresponding block from the lower level, plus the time to deliver
this block to the requesting device (normally the CPU). The miss penalty is
further divided into two components: access time-the time to access the first
word of a block on a miss; and transfer time-the additional time to transfer the
remaining words in the block. Access time is related to the latency of the lower
level memory, while transfer time is related to the bandwidth between the lower
level and upper-level memories. (Sometimes access latency is used to mean
access time.)

The memory address is divided into pieces that access each part of the
hierarchy. The blockjrame address is the higher-order piece of the address that
identifies a block at that level of the hierarchy (see Figure 8.2). The block-offset
address is the lower-order piece of the address and identifies an item within a
block. The size of the block-offset address is log2 (size of block); the size of the
block-frame address is then the size of the full address at this level less the size
of the block-offset address.

Block-frame address Block-offset address

FIGURE 8.2 Example of the frame address and offset address portions of a 32-bit
lower-level memory address. In this case the block size is 512, making the size of the
offset address 9 bits and the size of the block-frame address 23 bits.

Evaluating Performance of a Memory Hierarchy

Because instruction count is independent of the hardware, it is tempting to
evaluate CPU performance using that number. As we saw in Chapters 2 and 4,
however, such indirect performance measures have waylaid many a computer
designer. The corresponding temptation for evaluating memory-hierarchy
performance is to concentrate on miss rate, for it, too, is independent of the
speed of the hardware. As we shall see, miss rate can be just as misleading as
instruction count. A better measure of memory-hierarchy performance is the
average time to access memory:

Average memory-access time = Hit time + Miss rate * Miss penalty

The components of average access time can be measured either in absolute
~time-say, 10 nanoseconds on a hit-or in the number of clock cycles that the

/
CAVIUM-1035

Cavium, Inc. v. Alacritech, Inc.
Page 437

406 8.2 General Principles of Memory Hierarchy

CPU waits for the memory-such as a miss penalty of 12 clock cycles.
Remember that average memory-access time is still an indirect measure of
performance; so while it is a better measure than miss rate, it is not a substitute
for execution time.

The relationship of block size to miss penalty and miss rate is shown
abstractly in Figure 8.3. These representations assume that the size of the upper
level memory does not change. The access-time portion of the miss penalty is
not affected by block size, but the transfer time does increase with block size. If
access time is large, initially there will be little additional miss penalty relative
to access time as block size increases. However, increasing block size means
fewer blocks in the upper-level memory. Increasing block size lowers the miss
rate until the reduced misses of larger blocks (spatial locality) are outweighed
by the increased misses as the number of blocks shrinks (temporal locality).

Miss
penalty

Block size

Miss
rate

Block size

FIGURE 8.3 Block size versus miss penalty and miss rate. The transfer-time portion of
the miss penalty obviously grows with increasing block size. For a fixed-size upper-level
memory, miss rates fall with increasing block size until so much of the block is not used that
it displaces useful information in the upper level, and miss rates begin to rise. The point on
the curve on the right where miss rates begin to rise with increasing block size is
sometimes called the pollution point.

Average
access

time

Block size

FIGURE 8.4 The relationship between average memory-access time and block size.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 438

Memory-Hierarchy Design 407

The goal of a memory hierarchy is to reduce execution time, not misses.
Hence, computer designers favor a block size with the lowest average access
time rather than the lowest miss rate. This is related to the product of miss rate
and miss penalty, as Figure 8.4 shows abstractly. Of course, overall CPU
performance is the ultimate performance test, so care must be taken when re
ducing average memory-access time to be sure that changes to clock cycle time
and CPI improve overall performance as well as average memory-access time.

Implications of a Memory Hierarchy to the CPU

Processors designed without a memory hierarchy are simpler because memory
accesses always take the same amount of time. Misses in a memory hierarchy
mean that the CPU must be able to handle variable memory-access times. If the
miss penalty is on the order of tens of clock cycles, the processor normally waits
for the memory transfer to complete. On the other hand, if the miss penalty is
thousands of processor clock cycles, it is too wasteful to let the CPU sit idle; in
this case, the CPU is interrupted and used for another process during the miss
handling. Thus, avoiding the overhead of a long miss penalty means any
memory access can result in a CPU interrupt. This also means the CPU must be
able to recover any memory address that can cause such an interrupt, so that the
system can know what to transfer to satisfy the miss (see Section 5.6). When the
memory transfer is complete, the original process is restored, and the instruction
that missed is retried.

The processor must also have some mechanism to determine whether or not
information is in the top level of the memory hierarchy. This check happens on
every memory access and affects hit time; maintaining acceptable performance
usually requires the check to be implemented in hardware. The final implication
of a memory hierarchy is that the computer must have a mechanism to transfer
blocks between upper- and lower-level memory. If the block transfer is tens of
clock cycles, it is controlled by hardware; if it is thousands of clock cycles, it
can be controlled by software.

Four Questions for Classifying Memory Hierarchies

The fundamental principles that drive all memory hierarchies allow us to use
terms that transcend the levels we are talking about. These same principles allow
us to pose four questions about any level of the hierarchy:

Ql: Where can a block be placed in the upper level? (Block placement)

Q2: How is a block found if it is in the upper level? (Block identification)

Q3: Which block should be replaced on a miss? (Block replacement)

Q4: What happens on a write? (Write strategy)

These questions will help us gain an understanding of the different tradeoffs
_demanded by the relationships of memories at different levels of a hierarchy.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 439

408

8.3 I

8.3 Caches

Caches

Cache: a safe place for hiding or storing things.

Webster's New World Dictionary of the American Language,
, Second College Edition (1976)

Cache is the name first chosen to represent the level of the memory hierarchy
between the CPU and main memory, and that is the dominant use of the term.
While the concept of caches is younger than the IBM 360 architecture, caches
appear today in every class of computer and in some computers more than once.
In fact, the word has become so popular that it has replaced "buff er" in many
computer-science circles.

The general terms defined in the prior section can be used for caches,
although the word line is often used instead of block. Figure 8.5 shows the
typical range of memory-hierarchy parameters for caches.

Block (line) size 4- 128 bytes

Hit time 1 - 4 clock cycles (normally 1)

Miss penalty 8 - 32 clock cycles

(Access time) (6 - 10 clock cycles)

(Transfer time) (2- 22 clock cycles)

Miss rate 1%-20%

Cache size 1 KB-256KB

FIGURE 8.5 Typical values of key memory~hierarchy parameters for caches in 1990
workstations and minicomputers.

Now let's examine caches in more detail by answering the four memory
hierarchy questions.

Ql: Where Can a Block Be Placed in a Cache?

Restrictions on where a block is placed create three categories of cache
organization:

• If each block has only one place it can appear in the cache, the cache is said
to be direct mapped. The mapping is usually (block-frame address) modulo
(number of blocks in cache).

• If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 440

Memory-Hierarchy Design 409

• If a block can be placed in a restricted set of places in the cache, the cache is
said to be set associative. A set is a group of two or more blocks in the cache.
A block is first mapped onto a set, and then the block can be placed anywhere
within the set. The set is usually chosen by bit selection; that is, (block-frame
address) modulo (number of sets in cache). If there are n blocks in a set, the
cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a
continuum of levels of set associativity: Direct mapped is simply one-way set
associative and a fully associative cache with m blocks could be called m-way
set associative. Figure 8.6 shows where block 12 can be placed in a cache
according to the block-placement policy.

Fully associative:
block 12 can go
anywhere

Block 01234567 Block
no. no.

Block-frame address

Direct mapped:
block 12 can go
only into block 4
(12mod8)

0 1 2 3 4 5 6 7 Block
no.

Set associative:
block 12 can go
anywhere in set O
(12mod4)

0 1 2 3 4 5 6 7

Set Set Set Set
0 1 2 3

Block 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
n~ 01234567890123456789012345678901

FIGURE 8.6 The cache has 8 blocks, while memory has 32 blocks. The set
associative organization has 4 sets with 2 blocks per set, called two-way set associative.
(Real caches contain hundreds of blocks and real memories contain hundreds of thousands
of blocks.) Assume that there is nothing in the cache and that the block-frame address in
question identifies lower-level block 12. The three options for caches are shown left to right.
In fully associative, block 12 from the lower level can go into any of the 8 blocks of the
cache. With direct mapped, block 12 can only be placed into block 4 (12 modulo 8). Set
associative, which has some of both features, allows the block to be placed anywhere in set
o (12 modulo 4). With two blocks per set, this means block 12 can be placed either in block
O or block 1 of the cache.

/ ', I

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 441

410 8.3 Caches

Q2: How Is a Block Found If It Is in the Cache?

Caches include an address tag on each block that gives the block-frame address.
The tag of every cache block that might contain the desired information is
checked to see if it matches the block-frame address from the CPU. Figure 8.7
gives an example. Because speed is of the essence, all possible tags are searched
in parallel; serial search would make set associativity counterproductive.

Fully associative Direct mapped Set associative

Block O 1 2 3 4 5 6 7 Block O 1 2 3 4 5 6 7 Block O 1 2 3 4 5 6 7
-no. no.

Data

•

-r--r-- r-- -r--r-- no.

Set Set Set Set
0 1 2 3

T~- - -
Search tttttttt t tt

FIGURE 8.7 In fully associative placement, the block for block-frame address 12 can
appear in any of the 8 blocks; thus, all 8 tags must be searched. The desired data is
found in cache block 6 in this example. In direct-mapped placement there is only one cache
block where memory block 12 can be found. In set-associative placement, with 4 sets,
memory block 12 must be in set O (12 mod 4); thus, the tags of cache blocks O and 1 are
checked. In this case the data is found in cache block 1. Speed of cache access dictates
that se.arching must be performed in parallel for fully associative and set-associative
mappings.

There must be a way to know that a cache block does not have valid
information. The most common procedure is to add a valid bit to the tag to say
whether or not this entry contains a valid address. If the bit is not set, there
cannot be a match on this address.

A common omission in finding the cost of caches is to forget the cost of the
tag memory. One tag is required for each block. An advantage of increasing
block sizes is that the tag overhead per cache entry becomes a smaller fraction of
the total cost of the cache.

I

Before proceeding to the next question, let's explore the relationship of a
CPU address to the cache. Figure 8.8 shows how an address is divided into three
fields to find data in a set-associative cache: the block-offset field used to select
the desired data from the block, the index field used to select the set, and the tag
field used for the comparison. While the comparison could be made on more of
the address than the tag, there is no need:

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 442

Memory-Hierarchy Design 411

• Checking the index would be redundant, since it was used to select the set to
be checked (an address stored in set 0, for example, must have 0 in the index
field or it couldn't be stored in set 0).

• The offset is unnecessary in the comparison because all block off sets match
and the entire block is present or not.

If the total size is kept the same, increasing associativity increases the number of
blocks per set, thereby decreasing the size of the index and increasing the size of
the tag. That is, the tag/index boundary in Figure 8.8 moves to the right with
increasing associativity.

Tag Index Block :
offset !

FIGURE 8.8 The 3 portions of an address in a set-associative or direct-mapped cache.
The tag is used to check all the blocks in the set and the index is used to select the set. The
block offset is the address of the desired data within the block.

Q3: Which Block Should Be Replaced on a Cache Miss?

If the choice were between a block that has valid data and a block that doesn't,
then it would be easy to select which block to replace. Alas, the high hit rate of
caches means that the overwhelming decision is between blocks that have valid
data.

A benefit of direct-mapped placement is that hardware decisions are
simplified. In fact, so simple that there is no choice: Only one block is checked
for a hit, and only that block can be replaced. With fully associative or set
associative placement, ·there are several blocks to choose from on a miss. There
are two primary strategies employed for selecting which block to replace:

• Random-To spread allocation uniformly, candidate blocks are randomly
selected. Some systems use a scheme for spreading data across a set of blocks
in a pseudorandomized manner to get reproducible behavior, which is
particularly useful during hardware debugging.

• Least-recently used (LRU)-To reduce the chance of throwing out informa
tion that .will be needed soon, accesses to blocks are recorded. The block
replaced is the one that has been unused for the longest time. This makes use
of a corollary of temporal locality: If recently used blocks are likely to be
used again, then the best candidate for disposal is the least recently used.
Figure 8.9 (page 412) shows which block is the least-recently used for a

~, sequence of block-frame addresses in a fully associative memory hierarchy.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 443

412 8.3 Caches

A virtue of random is that it is simple to build in hardware. As the number of
blocks to keep track of increases, LRU becomes increasingly expensive and is
frequently only approximated. Figure 8.10 shows the difference in miss rates
between LRU and random replacement. Replacement policy plays a greater role
in smaller caches than in larger caches where there are more choices of what to
replace.

Block-frame addresses 3 2 1 0 0 2 3 1 3 0

LRU block number 0 0 0 0 3 3 3 1 0 0 2

FIGURE 8.9 Least-recently used blocks for a sequence of block-frame addresse~ in
a fully associative memory hierarchy. This assumes that there are 4 blocks and that in
the beginning the LRU block is number 0. The LRU block number is shown below each
new block reference. Another policy, First-in-first-out (FIFO), simply discards the block that
was used N unique accesses before, independent of its reference pattern in the last N - 1
references. Random replacement generally outperforms FIFO and it is easier to implement.

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random

16KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

FIGURE 8.10 Miss rates comparing least-recently used versus random replacement
for several sizes and associativities. This data was collected for a block size of 16 bytes
using one of the VAX traces containing user and operating system code (SAVEO). This
trace is included in the software supplement for course use. There is little difference
between LRU and random for larger size caches in this trace.

Q4: What Happens on a Write?

Reads dominate cache accesses. All instruction accesses are reads, and most
instructions don't write to memory. Figure 4.34 (page 181) suggests a mix of 9%
stores and 17% loads for four DLX programs, making writes less than 10% of
the memory traffic. Making the common case fast means optimizing caches for
reads, but Amdahl's Law reminds us that high-performance designs cannot
neglect the speed of writes.

Fortunately, the common case is also the easy case to make fast. The block
can be read at the same time that the tag is read and compared, so the block read
begins as soon as the block-frame address is available. If the read is a hit, the
block is passed on to the CPU immediately. If it is a miss, there is no benefit
but also no harm.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 444

)

Memory-Hierarchy Design 413

Such is not the case for writes. The processor specifies the size of the write,
usually between 1 and 8 bytes; only that portion of a block can be changed. In
general this means a read-modify-write sequence of operations on the block:
read the original block, modify one portion, and write the new block value.
Moreover, modifying a block cannot begin until the tag is checked to see if it is
a hit. Because tag checking cannot occur in parallel, then, writes normally take
longer than reads.

Thus, it is the write policies that distinguish many cache designs. There are
two basic options when writing to the cache:

• Write through (or store through)-The information is written to both the
block in the cache and to the block in the lower-level memory.

• Write back (also called copy back or store in)-The information is written
only to the block in the cache. The modified cache block is written to main
memory only when it is replaced.

Write-back cache blocks are called clean or dirty, depending on whether the
information in the cache differs from that in lower-level memory. To reduce the
frequency of writing back blocks on replacement, a feature called the dirty bit is
commonly used. This status bit indicates whether or not the block was modified
while in the cache. If it wasn't, the block is not written, since the lower level has
the same information as the cache.

Both write back and write through have their advantages. With write back,
writes occur at the speed of the cache memory, and multiple writes within a
block require only one write to the lower-level memory. Since every write
doesn't go to memory, write back uses less memory bandwidth, making write
back attractive in multiprocessors. With write through, read misses don't result
in writes to the lower level, and write through is easier to implement than write
back. Write through also has the advantage that main memory has the most
current copy of the data. This is important in multiprocessors and for I/0, which
we shall examine in Section 8.8. Hence, multiprocessors want write back to
reduce the memory traffic per processor and write through to keep the cache and
memory consistent.

When the CPU must wait for writes to complete during write throughs, the
CPU is said to write stall. A common optimization to reduce write stalls is a
write buffer, which allows the processor to continue while the memory is
updated. As we shall see in Section 8.8, write stalls can occur even with write
buffers.

There are two options on a write miss:

• Write allocate (also called/etch on write)-The block is loaded, followed by
the write-hit actions above. This is similar to a read miss.

• No write allocate (also called write aro1&nd)-The block is modified in the
lower level and not loaded into the cache.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 445

414 8.3 Caches

While either write-miss policy could be used with write through or write back,
generally write-back caches use write allocate (hoping that subsequent writes to
that block will be captured by the cache) and write-through caches often use no
write allocate (since subsequent writes to that block will still have to go to
memory).

An Example Cache: The VAX-11/780 Cache

To give substance to these ideas, Figure 8.11 shows the organization of the
cache on the VAX-11/780. The cache contains 8192 bytes of data in 8-byte
blocks with two-way-set-associative placement, random replacement, write
through with a one-word write buffer, and no write allocate on a write miss.

Let's trace a cache hit through the steps of a hit as labeled in Figure 8.11.
(The five steps are shown as circled numbers.) The address coming into the
cache is divided into two fields: the 29-bit block-frame address and 3-bit block
offset. The block-frame address is further divided into an address tag and cache
index. Step 1 shows this division.

The cache index selects the set to be tested to see if the block is in the cache.
(A set is one block from each bank in Figure 8.11.) The size of the index
depends on cache size, block size, and set associativity. In this case, a 9-bit
index results:

Blocks= Cache size = 8192 = 512 = 29
Bank Block size * Set associativity 8 * 2

In a two-way-set-associative cache, the index is sent to both banks. This is
step 2.

After reading an address tag from each bank, the tag portion of the block
frame address is compared to the tags. This is step 3 in the figure. To be sure the
tag contains valid information, the valid bit must be set, or the results of the
comparison are ignored.

Assuming one of the tags does match, a 2:1 multiplexer (step 4) is set to
select the block from the matching set. Why can't both tags match? It is the job
of the replacement algorithm to make sure that an address appears in only one
block. To reduce the hit time, the data is read at the same time as the address
tags; thus, by the time the block multiplexer is ready, the data is also ready.

This step is needed in set-associative caches, but it can be omitted from
direct-mapped caches since there is no selection to be made. The multiplexer
used in this step can be on the critical timing path, endangering the clock cycle
time of the CPU. (The example on pages 418-419 and the fallacy on page 481
explore the trade-off of lower miss rates and higher clock cycle time.)

In the final step the word is sent to the CPU. All five steps occur within a
single CPU clock cycle.

What happens on a miss? The cache sends a stall signal to the CPU telling it
to wait, and two words (eight bytes) are read from memory. That takes 6 clock
cycles on the VAX-11/780 (ignoring bus interference). When the data arrives,

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 446

)

Memory-Hierarchy Design 415

the cache must pick a block to replace; the VAX-11/780 selects one of the two
blocks at random. Replacing a block means updating the data, the address tag,
and the valid bit. Once this is done, the cache goes through a regular hit cycle
and returns the data to the CPU.

Writes are more complicated in the V AX-11/780, as they are in any cache. If
the word to be written is in the cache, the first four steps are the same. The next
step is to write the data in the block, then write the changed-data portion into the

Block-frame Block
address offset

<20> <9> <3> ...

I Tag I Index I

Valid Tag
<1> <20>

Data
1

<64> '

rs~~k o • @MMt&@llMfWM!mWWfnifl\til@ftffmliWM

blocks) •••
r-+-~1---~T"1--~~~~~~

Bank 1
(512
blocks)

• •
J__

- 2:1 . ~
-i-

1

I

CPU
address

Data Data
in out

Write
buffer

Memory

FIGURE 8.11 The organization of the VAX-11/780 cache. The 8-KB cache is two-way
set associative with 8-byte blocks. It has 512 sets with two blocks per set; the set is
selected by the 9-bit index. The five steps of a read hit, shown as circled numbers in order
of occurrence, label this organization. The line from memory to the cache is used on a miss
to load the cache. Multiplexing as found in step 4 is not needed in a direct-mapped cache.
Note that the offset is connected to chip select of the data SRAMs to allow the proper
words to be sent to the 2:1 multiplexer.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 447

416 8.3 Caches

cache. The VAX-11/780 uses no write allocate. Consequently, on a write miss
the CPU writes "around" the cache to lower-level memory and does not affect
the cache.

Since this is a write-through cache, the process isn't yet over. The word is
also sent to a one-word write buffer. If the write buffer is empty, the word and
full address are written in the buffer, and we are finished. The CPU continues
working while the write buffer writes the word to memory. If the buffer is full,
the cache (and CPU) must wait until the buffer is empty.

Cache Performance

CPU time can be divided into the clock cycles the CPU spends executing the
program and the clock cycles the CPU spends waiting for the memory system.
Thus,

CPU time= (CPU-execution clock cycles+ Memory-stall clock cycles)* Clock cycle time

To simplify evaluation of cache alternatives, sometimes designers assume
that all memory stalls are due to the cache. This is true for many machines; on
machines where this is not true, the cache still dominates stalls that are not
exclusively due to the cache. We use this simplifying assumption here, but it is
important to account for all memory stalls when calculating finai performance!

The formula above raises the question whether the clock cycles for a cache
access should be considered part of CPU-execution clock cycles or part of mem
ory-stall clock cycles. While either convention is defensible, the most widely
accepted is to include hit clock cycles in CPU-execution clock cycles.

Memory-stall clock cycles can then be defined in terms of the number of
memory accesses per progra"m, miss penalty (in clock cycles), and miss rate for
reads and writes:

Memory-stall clock cycles = p Reads * Read miss rate * Read miss penalty
rogram

Writes W . . W . . 1 + p * nte miss rate. * nte miss pena ty rogram ,

We simplify the complete formula by combining the reads and writes together:

Memory accessess . .
Memory-stall clock cycles = p * Miss rate * Miss penalty

rogram

Factoring instruction count (IC) from execution time and memory stall
cycles, we now get a CPU-time formula that includes memory accesses per
instruction, miss rate, and miss penalty:

(
Memory accesses . · .) .

CPU time = IC * CPIE . +
1

. . * Miss rate * Miss penalty * Clock cycle time
xecut10n nstructlon

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 448

'Example

Answer

Example

Answer

Memory-Hierarchy Design 417

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference:

Misses Memory accesses M'
. = . * iss rate

Instruction Instruct10n

The advantage of this measure is that it is independent of the hardware
implementation. For example, the VAX-11/780 instruction unit can make
repeated references to a single byte (see Section 8.7), which can artificially
reduce the miss rate if measured as misses per memory reference rather than per
instruction executed. The drawback is that this measure is architecture
dependent, thus it is most popular with architects working with a single
computer family. They then use this version of the CPU-time formula:

CPU time = IC * (cPIE
1
. + I Misse~ * Miss penalty) * Clock cycle time

xecu ion nstruct10n

We can now explore the consequences of caches on performance.

Let's use the VAX-11/780 as a firstexample. The cache miss penalty is 6 clock
cycles, and all instructions normally take 8.5 clock cycles (ignoring memory
stalls). Assume the miss rate is 11 %, and there is an average of 3.0 memory
references per instruction. What is the impact on performance when behavior of
the cache is included?

CPU . , IC (cPI Memory-stall clock cycles) Cl k 1 time = * , . + . * oc eye e
Execution Instruction

time
The performance, including cache misses, is

CPU time 'th h =IC* (8.5 + 3.0 * 11 % * 6) *Clock cycle time
w1 cac e

= Instruction count * 10.5 * Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 8.5 to 10.5. Hence, the impact of
the memory hierarchy is to stretch the CPU time by 24%.

Let's now calculate the impact on performance when behavior of the cache is
included on a machine with a lower CPI. Assume that the cache miss penalty is
10 clock cycles and, on average, instructions take 1.5 clock cycles; the miss rate
is 11 %, and there is an average of 1.4 memory references per instruction.

CPU . -IC* (cPI Memory-stall clock cycles)* Cl k 1 . time - E
1
. + - I . oc eye e time]{ecu ion nstruction

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 449

418

Example

Answer

8.3 Caches

Making the same assumptions as in the previous example on cache hits, the per
formance, including cache misses, is

CPU time .th h =IC* (1.5 + 1.4*11 %*10) *Clock cycle time
w1 cac e

=Instruction count*3.0*Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 1.5 to 3.0. Including cache
behavior doubles execution time.

As these examples illustrate, cache-behavior penalties range from significant
to enormous. Furthermore, cache misses have a double-barreled impact on a
CPU with a low CPI and a fast clock:

1. The lower the CPI, the more pronounced the impact is.

2. Independent of the CPU, main memories have similar memory-access times,
since they are built from the same memory chips. When calculating CPI, the
cache miss penalty is measured in CPU clock cycles needed for a miss.
Therefore, a higher CPU clock rate leads to a larger miss penalty, even if
main memories are the same speed.

The importance of the cache for CPUs with low CPI and high clock rates is thus
greater; and, consequently, greater is the danger of neglecting cache behavior in
assessing performance of such machines.

While minimizing average memory-access time is a reasonable goal and we
will use it in much of this chapter, keep in mind that the final goal is to reduce
CPU execution time.

What is the impact of two different cache organizations on the performance of a
CPU? Assume that the CPI is normally 1.5 with a clock cycle time of 20 ns, that
there are 1.3 memory references per instruction, and that the size of both caches
is 64 KB. One cache is direct mapped and the other is two-way set associative.
Since the speed of the CI_U is tied directly to the speed of the caches, assume the
CPU clock cycle time mu-st be stretched 8.5% to accommodate the selection
multiplexer of the set-associative cache (step 4 in Figure 8.11 on page 415.) To
the first approximation, the cache miss penalty is 200 ns for either cache
organization. (In practice it must be rounded up or down to an integer number of
clock cycles.) First, calculate the average memory-access time, and then CPU
performance.

Figure 8.12 on page 421 shows that the miss rate of a direct-mapped 64-KB
cache is 3.9% and the miss rate for a two-way-set-associative cache of the same
size is 3.0%. Average memory-access time is

Average memory-access time = Hit time + Miss rate * Miss penalty

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 450

Memory-Hierarchy Design

Thus, the time for each organization is

Average memory-access time1-way = 20 + .039*200 = 27.8 ns

Average memory-access time2-way = 20*1.085 + .030*200 = 27.7 ns

419

The average memory-access time is better for the two-way-set-associative
cache.

CPU performance is

CPU time = IC * (cPIExecution + I Misse~ * Miss penalty) * Clock cycle time
nstruction

= IC * (CPIExecution * Clock cycle time +

Memory accesses . . .)
I t

. * Miss rate * Miss penalty * Clock cycle time
ns ruct10n

Substituting 200ns for (Miss penalty * Clock cycle time), the performance of
each cache organization is

CPU time1-way = IC*(l.5*20 + l.3*0.039*200) = 40.l*IC

CPU time2-way = IC*(l.5*20*1.085 + l.3*0.030*200) = 40.4* IC

and relative performance is

CPU time2-way _ 40.4 * Instruction count
CPU time1-way - 40.1 *Instruction count

In contrast to-the results of average access-time comparison, the direct-mapped
cache leads to slight!¥ better performance. Since CPU time is our bottom-line
evaluation (and direct mapped is simpler to build), the preferred cache is direct
mapped in this example. (See the fallacy on page 481 for more on this kind of
trade-off.)

The Three Sources of Cache Misses: Compulsory,
Capacity, and Conflicts

An intuitive model of cache behavior attributes all misses to one of three
sources:

• Compulsory-The first access to a block is not in the cache, so the block
must be brought into the cache. These are also called cold start misses or first
reference misses.

• Capacity-If the cache cannot-contain all the blocks needed during execution
of a program, capacity misses will occur due to blocks being discarded and
later retrieved.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 451

420 8.3 Caches

• Conflict-If the block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur
because a block can be discarded and later retrieved if too many blocks' map
to its set. These are also called collision misses.

Figure 8.12 shows the relative frequency of cache misses, broken down by
the "three Cs." To show the benefit of associativity, conflict misses are divided
into misses caused by each decrease in associativity. The categories are labeled
n-way, meaning the misses caused by going to the lower level of associativity
from the next one above. Here are the four categories:

8-way: from fully associative (no conflicts) to 8-way associative

4-way: from 8-way associative to 4-way associative

2-way: from 4-way associative to 2-way associative

1-way: from 2-way associative to 1-way associative (direct mapped)

Figure 8.13 (page 422) presents the same data graphically. The top graph shows
absolute miss rates; the bottom graph plots percentage of all the misses by cache
size.

Having identified the three Cs, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
conflict misses. Associativity is expensive in hardware, however, and may slow
access time (see the example above or the second fallacy in Section 8.10),
leading to lower overall performance. There is little to be done about capacity
except to buy larger memory chips. If the upper-level memory is much smaller
than what is needed for a program, and a significant percentage of the time is
spent moving data between two levels in the hierarchy, the memory hierarchy is
said to thrash. Because so many replacements are required, thrashing means the
machine runs close to the speed of the lower-level memory, or maybe even
slower due to the miss overhead. Making blocks larger reduces the number of
compulsory misses, but it can increase conflict misses.

The three C's give insight into the cause of misses, but this simple model has
its limits. For example, increasing cache size reduces conflict misses as well as
capacity misses, since a larger cache spreads out references. Thus, a miss might
move from one category to the other as parameters change. Three C's ignore
replacement policy, since it is difficult to model and since, in general, it is of less
significance. In specific circumstances the replacement policy can actually lead
to anomalous behavior, such as poorer miss rates for larger associativity, which
is directly contradictory to the three C's model.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 452

Memory-Hierarchy Design 421

Cache size Degree Total Miss-rate components (relative percent)
associative miss (Sum= 100% of total miss rate)

~ rate Compulsory Capacity Conflict

1 KB 1-way 0.191 0.009 5% 0.141 73% 0.042 22%

1 KB 2-way 0.161 0.009 6% 0.141 87% 0.012 7%

1 KB 4-way 0.152 0.009 6% 0.141 92% 0.003 2%

1 KB 8-way 0.149 0.009 6% 0.141 94% 0.000 0%

2KB 1-way 0.148 0.009 6% 0.103 70% 0.036 24%

2KB 2-way 0.122 0.009 7% 0.103 84% 0.010 8%

2KB 4-way 0.115 0.009 8% 0.103 90% 0.003 2%

2KB 8-way 0.113 0.009 8% 0.103 91% 0.001 1%

4KB 1-way 0.109 0.009 8% 0.073 67% 0.027 25%

4KB 2-way 0.095 0.009 9% 0.073 77% 0.013 14%

4KB 4-way 0.087 0.009 10% 0.073 84% 0.005 6%

4KB 8-way 0.084 0.009 11% 0.073 87% 0.002 3%

8KB 1-way 0.087 0.009 10% 0.052 60% 0.026 30%

8KB 2-way 0.069 0.009 13% 0.052 75% 0.008 12%

8KB 4-way 0.065 0.009 14% 0.052 80% 0.004 6%

8KB 8-way 0.063 0.009 14% 0.052 83% 0.002 3%

16KB 1-way 0.066 0.009 14% 0.038 57% 0.019 29%

16KB 2-way 0.054 0.009 17% 0.038 70% 0.007 13%

16KB 4-way 0.049 0.009 18% 0.038 76% 0.003 6%

16KB 8-way 0.048 0.009 19% 0.038 78% 0.001 3%

32KB 1-way 0.050 0.009 18% 0.028 55% 0.013 27%

32KB 2-way 0.041 0.009 22% 0.028 68% 0.004 11%

32KB 4-way 0.038 0.009 23% 0.028 73% 0.001 4%

32KB 8-way 0.038 0.009. 24% 0.028 74% 0.001 2%

64KB 1-way 0.039 0.009 23% 0.019 50% 0.011 27%

64KB 2-way 0.030 0.009 30% 0.019 65% 0.002 5%

64KB 4-way 0.028 0.009 32% 0.019 68% 0.000 0%

64KB 8-way 0.028 0.009 32% 0.019 68% 0.000 0%

128KB 1-way 0.029 0.009 34% 0.004 16% 0.013 50%

128KB 2-way 0.020 0.009 46% 0.004 21% 0.006 33%

128KB 4-way 0.016 0.009 55% 0.004 25% 0.003 20%

128KB 8-way 0.015 0.009 59% 0.004 27% 0.002 14%

FIGURE 8.12 Total miss rate for each size cache and percentage of each according to the "three Cs." Compul
sory misses are independent of cache size, while capacity misses decrease as capacity increases. Hill [1987) measured
this trace using 32-byte blocks and LRU replacement. It was generated on a VAX-11 running Ultrix by mixing three
systems' traces, using a multiprogramming workload and three user traces. The total length was just over a million
addresses; the largest piece of data referenced during the trace was 221 KB. Figure 8.13 (page 422) shows the same
information graphically. Note that the 2:1 cache rule-:-of thumb (inside front cover) is supported by the statistics in this
table: a direct-mapped cache of size N has about the same miss rate as a 2-way-set-associative cache of size N/2.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 453

422 8.3 Caches

20%

18%
Conflict: 1-way

16% Conflict: 2-way

14%
Conflict: 4-way

Conflict: 8-way

12%

Miss 10%
rate
per

8%
miss
type

6%

4%
Capacity

2%

0%
2 4 8 16 32 64 128

Cache size in K bytes

100

90 Conflict:
1-way

80

70 Conflict:
2-way

60 Conflict:
4-way

Percentage 50
Conflict:

of direct-
8-way

mapped 40
misses

30

20

10

0
2 4 8 16 32 64 128

Cache size in K bytes

FIGURE 8.13 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache according to three Cs for the data in Figure 8.12 (page 421). The top
diagram is the actual miss rates, while the bottom diagram is scaled to the direct-mapped
miss ratio.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 454

Memory-Hierarchy Design 423

Choices for Block Sizes in Caches

Figures 8.3 and 8.4 (page 406) showed the abstract tradeoff of block size versus
miss rate and memory-access time. Figures 8.14 and 8.15 (page 424) show the
specific numbers for a set of programs and cache sizes. Larger block sizes
reduce compulsory misses, as the principle of spatial locality suggests. At the
same time, larger blocks also reduce the number of blocks in the cache,
increasing conflict misses.

40%

35%

30%
1 KB

25%

Miss
rate 20%

15%

10%
8 KB

5% 16 KB

64KB
0% 256 KB

4 16 64 256

Block size (bytes)

FIGURE 8.14 Miss rate versus block size. Note that for a 1-KB cache, 256-byte
blocks have a higher miss rate than either 16- or 64-byte blocks. (The smallest block is
4 bytes.) In this particular example, the cache would have to be 256 KB in order for
increasing block size to always result in decreased misses. This data was collected for a
direct-mapped cache using one of the VAX traces containing user and operating system
code, which is distributed with this book (SAVEO).

Instruction-Only or Data-Only Caches Versus
Unified Caches

Unlike other levels of the memory hierarchy, caches are sometimes divided into
instruction-only and data-only caches. Caches that can contain either instructions
or data are unified caches, or mixed caches. The CPU knows whether it is issuing
an instruction address or a data address, so there can be separate ports for both,
thereby doubling the bandwidth between the cache arid the CPU. (Section 6.4 in
Chapter 6 shows the advantages of dual memory ports for pipelined execution.)
Separate caches also offers the opportunity of optimizing each cache separately:
different capacities, block sizes, and associativities may lead to better
performance. Splitting thus affects the cost and performance far beyond what is
indicated by the'-change in miss rates. We limit our discussion to that point now
simply to show how miss rates for instructions differ from miss rates for data. ·

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 455

424 8.3 Caches

12

10
Average
memory- 8
access
time in 6
clock
cycles 4

2

4 16 64
Block size (bytes)

1 KB

8 KB
16 KB

64KB
~~~~ 256KB 

256 

FIGURE 8.15 Average access time versus block size using the miss rates in Figure 
8.14. This assumes an 8-clock-cycle latency and that the memory and bus can transfer 4 
bytes per clock cycle. On a miss all the blocks are loaded into the cache before the requested 
word is sent to the CPU. The lowest average memory-access time is either for 16-byte or 64-
byte blocks, and 256-byte blocks are better than 4-byte blocks only for the largest cache. 

Figure 8.16 shows that instruction-only caches have lower miss rates than 
data-only caches. Separating instructions and data removes misses due to 
conflicts between instruction blocks and data blocks, but the split also fixes the 
cache space devoted to each type. A fair comparison of separate instruction and 
data caches to unified caches requires the total cache size to be the same. 
Therefore, a separate 1-KB instruction cache and 1-KB data cache should be 
compared to a unified 2-KB cache. Calculating the average miss rate with 
separate instruction-only and data-only caches necessitates knowing the 
percentage of memory references to each cache. 

Size Instruction only Data only Unified 

0.25 KB 22.2% 26.8% 28.6% 

0.50KB 17.9% 20.9% 23.9% 

lKB 14.3% 16.0% 19.0% 

2KB 11.6% 11.8% 14.9% 

4KB 8.6% 8.7% 11.2% 

8KB 5.8% 6.8% 8.3% 

16KB 3.6% 5.3% 5.9% 

32KB 2.2% 4.0% 4.3% 

64KB 1.4% 2.8% 2.9% 

128KB 1.0% 2.1% 1.9% 

256KB 0.9% 1.9% 1.6% 

FIGURE 8.16 Miss rates for instruction-only, data-only, and unified caches of different 
sizes. The data are for a 2-way-associative cache using LAU replacement with 16-byte 
blocks for an average of user/system traces on the VAX-11 and system traces on the IBM 
370 [Hill 1987]. The percentage of instruction references in these traces is about 53%. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 456



Example 

Answer 

Memory-Hierarchy Design 425 

Which has the lower miss rate: a 16-KB instruction cache with a 16-KB data 
cache or a 32-KB unified cache? Assume 53% of the references are instructions. 

As stated in the legend of Figure 8.16, 53% of the memory accesses are 
instruction references. Thus, the overall miss rate for the split caches is 

53% * 3.6% + 47% * 5.3% = 4.4% 

A 32-KB unified cache has a slightly lower miss rate of 4.3%. 

Main Memory 

... the one single development that put computers on their feet was the invention 
of a reliable form of memory, namely, the core memory, ... Its cost was 
reasonable, it was reliable and, because it was reliable, it could in due course 
be made large. 

Maurice Wilkes, Memoirs of a Computer Pioneer (1985, p. 209) 

Provided there is only one level of cache, main memory is the next level down in 
the hierarchy. Main memory satisfies the demands of caches and vector units, 
and serves as the 1/0 interlace as it is the destination of input as well as the 
source for output. Unlike caches, performance measures of main memory 
emphasize both latency and bandwidth. Generally, main memory latency (which 
affects the cache miss penalty) is the primary concern of the cache, while main
memory bandwidth is the primary concern of 1/0 and vector units. As cache 
blocks grow from 4-8 bytes to 64--256 bytes, main memory bandwidth becomes 
important to · caches as well. The relationship of main memory and 1/0 is 
discussed in Chapter 9. 

Memory latency is traditionally quoted using two measures-access time and 
cycle time. Access time is the time between when a read is requested and when 
the desired word arrives, while cycle time is the minimum time between requests 
to memory. In the 1970s, as DRAMs grew in capacity the cost of a package with 
all the necessary address lines became an issue. The solution was to multiplex 
the address lines, thereby cutting the number of address pins in half. The top half 
of the address comes first, during the row-access strobe, or RAS. This is fol
lowed by the second half of the address during the column-access strobe, or 
CAS. These names come from the internal chip organization, for the memory is 
organized as a rectangular matrix addressed by rows and columns. 

An additional requirement of DRAMs derives from the property signified by 
its first letter, D, for dynamic. Every DRAM must have every row accessed 
within a certain time window, such as 2 milliseconds, or the information in the 
DRAM can be lost. This requirement means that the memory system is 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 457



426 8.4 Main Memory 

occasionally unavailable because it is sending a signal telling every chip to 
refresh. The cost of a refresh is typiCally a full memory access (RAS and CAS) 
for each row of the DRAM. Since the memory matrix in a DRAM is likely to be 
square, the number of steps in a refresh is usually the square root of the DRAM 
capacity. 

In contrast to DRAMs are SRAMs-the first letter standing for "static." The 
dynamic nature of the circuits for DRAM require data to be written back after 
being read, hence the difference between the access time and the cycle time and 
also the need to refresh. SRAMs use more circuits per bit to prevent the 
information from being disturbed when read. Thus, unlike DRAMs, there is no 
difference between access time and cycle time and there is no need to refresh 
SRAM. In DRAM designs the emphasis is on capacity, while SRAM designs are 
concerned with both capacity and speed. (Because of this concern, SRAM 
address lines are not multiplexed.) For memories designed in comparable 
technologies, the capacity of DRAMs is roughly 16 times that of SRAMs, and 
the cycle time of SRAMs is 8 to 16 times faster than DRAMs. 

The main memory of virtually every computer sold in the last decade is 
composed of semiconductor DRAMs (and virtually all caches use SRAM). 
Amdahl suggested a rule of thumb that memory capacity should grow linearly 
with CPU speed to keep a balanced system (see Section 1.4), and CPU designers 
rely on DRAMs to supply that demand: they expect a four-fold improvement in 
capacity every three years. Unfortunately, the performance of DRAMs is 
growing at a much slower rate. Figure 8.17 shows a performance improvement 
in row-access time of about 22% per generation, or 7% per year. As noted in 
Chapter 1, CPU performance improved 18% to 35% per year prior to 1985, and 
since that time has jumped to 50% to 100% per year. Figure 8.18 plots these 
optimistic and pessimistic CPU performance projections against the steady 7% 
performance improvement in DRAM speeds. 

Row access (RAS) Column 
Year of Chip size Slowest Fastest access Cycle 

introduction DRAM DRAM (CAS) time 

1980 64 Kbit 180 ns 150 ns 75 ns 250ns 

1983 256 Kbit 150 ns 120ns 50ns 220ns 

1986 1 Mbit 120 ns lOOns 25 ns 190ns 

1989 4Mbit 100 ns 80ns 20ns 165 ns 

1992? 16 Mbit ::::85 ns ::::65 ns ::::15 ns ::::140 ns 

FIGURE 8.17 Times of fast and slow DRAMs with each generation. The improvement 
by a factor of two in column access accompanied the switch from NMOS DRAMs to CMOS 
DRAMs. With three years per generation, the performance improvement of row access time 
is about 7% per year. Data in the last row represent predicted performance for 16-Mbit 
DRAMs, which are not yet available. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 458



Memory-Hierarchy Design 

p 
e 

100000% 

r 10000% 
f 
0 

r 
m 
a 1000% 
n 
c 
e 

427 

CPU (fast) 

CPU (slow) 

FIGURE 8.18 Starting with 1980 performance as a baseline, the performance of 
DRAMs and CPUs are plotted over time. The DRAM baseline is 64 KB in 1980, with 
three years to the next generation. The slow CPU line assumes a 19% improvement per 
year until 1985 and a 50% improvement thereafter. The fast CPU line assumes a 26% 
performance improvement between 1980 and 1985 and 100% per year thereafter. Note 
that the vertical axis must be on a logarithmic scale to record the size of the CPU-DRAM 
performance gap. 

The CPU-DRAM performance gap is clearly a problem on the horizon
Amdahl' s Law warns us what will happen if we ignore one portion of the 
computation while trying to speed up the rest. Section 8.8 will describe what can 
be done with cache organization to reduce this performance gap, but simply 
making caches larger cannot eliminate it. Innovative organizations of main 
memory are needed as well. In the rest of this section we will examine tech
niques for organizing memory to improve performance, including techniques 
especially for DRAMs. 

Organizations for Improving Main Memory 
Performance 

While it is generally easier to improve memory bandwidth with new organ
izations than it is to reduce latency, a bandwidth improvement does allow cache
block size to increase without a corresponding increase in the miss penalty. 

Let's illustrate these organizations with the case of satisfying a cache miss. 
Assume the performance of the basic memory organization is 

1 clock cycle to send the address 

6 clock cycles for the access time per word 

1 clock cycle to send a word of data 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 459



428 8.4 Main Memory 

Given a cache block of four words, the miss penalty is 32 clock cycles, with a 
memory bandwidth of one-half byte per clock cycle. 

Figure 8.19 shows some of the options to faster memory systems. The \ 
simplest approach to increasing memory bandwidth, then, is to make the 
memory wider. 

(a) One-word-wide (b) Wide memory organization (c} Interleaved 
memory organization memory organization 

Memory Memory Memory Memory Memory 
bank o bank 1 bank 2 bank 3 

Memory 

FIGURE 8.19 Three examples of bus width, memory width, and memory interleaving 
to achieve higher memory bandwidth. (a) is the simplest design, with everything the 
width of one word; (b) shows a wider memory, bus, and cache; while (c) shows a narrow 
bus and cache with an interleaved memory. 

Wider Main Memory 

Caches are often organized with a width of one word because most CPU 
accesses are that size. Main memory, in tum, is one word wide to match the 
width of the cache. Doubling or quadrupling the width of the memory will 
therefore double or quadruple the memory bandwidth. With a main memory 
width of two words the miss penalty in our example would drop from 4*8 or 32 
clock cycles to 2*8 or 16 clock cycles. At four words wide the miss penalty is 
just 1*8 clock cycles. The bandwidth is then one byte per clock cycle at two 
words wide and two bytes per clock cycle when the memory is four words wide. 

There is cost in the wider bus. The CPU will still access the cache a word at a 
time, so there now needs to be a multiplexer between the cache and the CPU
and that multiplexer may be on the critical timing path. (If the cache is faster 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 460



Example 
/ 

Memory-Hierarchy Design 429 

than the bus, however, the multiplexer can be placed between the cache and the 
bus.) Another drawback is that since main memory is traditionally expansible by 
the customer, the minimum increment is doubled or quadrupled. Finally, 
memories with error correction have difficulties with writes to a portion of the 
protected block (e.g., a write of a byte); the rest of the data must be read so that 
the new error correction code can be calculated and stored when the data is 
written. If the error correction is done over the full width, the wider memory will 
increase the frequency of such "read-modify-write" sequences because more 
writes become partial block writes. Many designs of wider memory have 
separate error correction every 32 bits since most writes are that size. One 
example of wider main memory was a computer whose cache, bus, and memory 
were all 512 bits wide. 

Interleaved Memory 

Memory chips can be organized in banks to read or write multiple words at a 
time rather than a single word. The banks are one word wide so that the width of 
the bus and the cache need not change, but sending addresses to several banks 
permits them all to read simultaneously. For example, sending an address to four 
banks (with access times shown on page 427) yields a miss penalty of 1+6+4*1 
or 11 clock cycles, giving a bandwidth of about 1.5 bytes per clock cycle. Banks 
'are also valuable on writes. While back-to-back writes would normally have to 
wait for earlier writes to finish, banks allow one clock cycle for each write, 
provided the writes are not destined to the same bank. 

The mapping of addresses to banks affects the behavior of the memory 
system. The example above assumes the addresses of the four banks are 
interleayed at the word level-bank 0 has all words whose address modulo 4 is 
0, bank 1 has all words whose address modulo 4 is 1, and so on. This mapping is 
referred to as the interleaving factor; interleaved memory normally means banks 
of memory that are word interleaved. This optimizes sequential memory 
accesses. A cache-read miss is an ideal match to word-interleaved memory, as 
the words in a block are read sequentially. Write-back caches make writes as 
well as reads sequential, getting even more efficiency from interleaved memory. 

What can. interleaving and a wide memory buy? Consider the following 
description of a machine arid its cache performance: 

Block size = 1 word 

Memory bus width = 1 word 

Miss rate = 15% 

Memory accesses per instruction = 1.2 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 461



430 

Answer 

8.4 Main Memory 

Cache miss penalty= 8 cycles (as above) 

Average cycles per instruction (ignoring cache misses)= 2 

If we change the block size to two words, the miss rate falls to 10%, and a four
word block has a miss rate of 5%. What is the improvement in performance of 
interleaving two ways and four ways versus doubling the width of memory and 
the bus, assuming the access times on page 427. 

The CPI for the base machine using one-word blocks is 

2 + (l.2*15%*8) = 3.44 

Since the clock cycle time and instruction count won't change in this example, 
we can calculate performance improvement by just comparing CPI. 

Increasing the block size to two words· gives the following options: 

32-bit bus and memory, no interleaving = 2 + (l.2*10%*2*8) = 3.92 

32-bit bus and memory, interleaving = 2 + (l.2*10%*(1+6+2)) = 3.08 

64-bit bus and memory, no interleaving = 2 + (l.2*10%*1*8) = 2.96 

Thus, doubling the block size slows down the straightforward implementation 
(3.92 versus 3.44), while interleaving or wider memory is 12% or 16% faster, 
respectively. If we increase the block size to four, the following is obtained: 

32-bit bus and memory, no interleaving = 2 + (l.2*5%*4*8) = 3.92 

32-bit bus and memory, interleaving = 2 + (l.2*5%*(1 +6+4)) = 2.66 

64-bit bus and memory, no interleaving = 2 + (l.2*5%*2*8) = 2.96 

Again, the larger block hurts performance for the simple case, although the 
interleaved 32-bit memory is now fastest-29% versus 16% for the wider 
memory and bus. 

The original motivation for memory banks was interleaving sequential 
accesses. A further reason is to allow multiple independent accesses. Multiple 
memory controllers allow banks (or sets of word-interleaved banks) to operate 
independently. For example, an input device may use one controller and its 
memory, the cache may use another, and a vector unit may use a third. To 
reduce the chances of conflicts many banks are needed; the NEC SX/3, for 
instance, has up to 128 banks. 

As capacity per memory chip increases, there are fewer chips in the same
sized memory system, making multiple banks much more expensive. For exam
ple, a 16-MB main memory takes 512 memory chips of 256 K (262,144) x 1 
bits, easily organized into 16 banks of 32 memory chips. But it takes only 32 4-
M (4,194,304) x 1-bit memory chips for 16 MB, making one bank the limit. This 
is the main disadvantage of interleaved memory banks. Even though the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 462



Memory-Hierarchy Design 431 

Amdahl/Case rule of thumb for balanced computer systems recommends 
increasing memory capacity with increasing CPU performance, the 60% growth 
in DRAM capacity exceeded the rate of increase in CPU performance in the past 
(page 17 of Chapter 1). If the rate of increase of CPU speeds seen in the late 
1980s can be maintained (Figure 8.18, page 427) and these systems follow the 
Amdahl/Case rule of thumb, then the number of chips may not be reduced. 

A &econd disadvantage of interleaving is again the difficulty of main memory 
expansion. Since memory-control hardware will likely need equal-sized banks, 
doubling the main memory will probably be the minimum increment. 

DRAM-Specific Interleaving for Improving Main 
Memory Performance 

DRAM access times are divided into row access and column access. DRAMs 
buffer a row of bits inside the DRAM for the column access. This row is usually 
the square root of the DRAM size-1024 bits for 1 Mbit, 2048 for 4 Mbits, and 
so on. All DRAMs come with optional timing signals that allow repeated 
accesses to the buffer without a row-access time. There are three versions for 
this optimization: 

• Nibble mode-The DRAM can supply three extra bits from sequential 
· locations for every row access. 

• Page mode-The buffer acts like a SRAM; by changing column address, 
random bits can be accessed in the buffer until the next row access or refresh 
time. 

• Static column-Very similar to page mode, except that it's not necessary to 
hit the column-access strobe line every time the column address changes; this 
option has been nicknamed SCRAM, for static column DRAM. 

Starting with the 1-Mbit DRAMs, most dies can perform any of the three 
options, with the optimization selected at the time the die is packaged by 
choosing which pads to wire up. These operations change the definition of cycle 
time for DRAMs. Figure 8.20 (page 432) shows the traditional cycle time plus 
the fastest speed between accesses in the optimized mode. 

The advantage of these optimizations is that they use the circuitry already on 
the DRAMs, adding little cost to the system while achieving almost a fourfold 
improvement in bandwidth. For example, nibble mode was designed to take 

/ advantage of the same program behavior as interleaved memory. The chip reads 
four bits at a time internally, supplying four bits externally in the time of four 
optimized cycles. Unless the bus transfer time is faster than the optimized cycle 
time, the cost of four-way interleaved memory is only more complicated timing 
control. Page mode and static column could also be used to get even higher 
interleaving with slightly more complex control. DRAMs also tend to have weak 
tristate buffers, implying traditional interleaving with more memory chips must 
include buff er chips for each memory bank. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 463



432 

a.s I 

8.4 Main Memory 

Chip Row access Column Cycle Optimized 
size Slowest Fastest access time time nibble, 

DRAM DRAM page, static 
column 

64 Kbits 180ns 150 ns 75 ns 250ns 150 ns 

256 Kbits 150 ns 120ns 50ns ~ 220 'ns 100 ns 

1 Mbits 120ns 100 ns 25 ns 190 ns 50ns 

4 Mbits lOOns 80ns 20ns 165 ns 40ns 

16 Mbits =85 ns =65 ns =15 ns =140 ns =30ns 

FIGURE 8.20 DRAM cycle time for the optimized accesses. This is Figure 8.17 (page 
426) with a column added to show the optimized cycle time for the three modes. Starting 
with the 1-Mbit DRAM, optimized cycle time is about four times faster than unoptimized 
cycle time. It is so much faster that page mode was renamed fast page mode. The 
optimized cycle time is the same no matter which of the 3 optimized modes is selected. 

Thus, the authors expect that most main memory systems in the future will 
use such techniques to reduce the CPU-DRAM performance gap. Unlike 
traditional interleaved memories, there are no disadvantages using these DRAM 
modes as DRAMs scale upward in capacity, nor is there the problem of the 
minimum expansion increment in main memory. 

One possibility that recently arrived is DRAMs that do not multiplex the 
address lines. At the cost of a larger package, a full random access falls between 
a row-access time and a column-access time in Figure 8.20. If unencoded 
DRAMs can stay close to the price per bit of the high volume encoded DRAMs, 
the computer architect will have another option in his bag of tricks for memory 
design. 

Virtual Memory 

... a system has been devised to make the core drum combination appear to the 
programmer as a single level store, the requisite transfers taking place 
automatically. 

Kilburn et al. [1962] 

At any instant in time computers are running multiple processes, each with its 
own address space. (Processes are described in the next section.) It would be too 
expensive to dedicate a full-address-space worth of memory for each process, 
especially since many processes use only a small part of their address space. 
Hence, there must be a means of sharing a smaller amount of physical memory 
between many processes. One way to do this, virtual memory, divides physical 
memory into blocks and allocates them to different processes. Inherent in such 
an approach must be a protection scheme that restricts a process to the blocks 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 464



Memory-Hierarchy Design 433 

belonging just to that process. Most forms of virtual memory also reduce the 
time to start a program, since not all code and data need be in physical memory 
before a program can begin. 

While virtual memory is essential for current computers, sharing is not the 
reason virtual memory was invented. In former days if a program became too 
large for physical memory, it was up to the programmer to make it fit. 
Programmers divided programs into pieces and then identified the pieces that 
were mutually exclusive. These overlays were loaded or unloaded under user 
program control during execution, with the programmer ensuring that the 
program never tried to access more physical main memory in the machine. As 
one can well imagine, this responsibility eroded programmer productivity. 
Virtual memory, invented to relieve programmers of this burden, automatically 
managed the two levels of the memory hierarchy represented by main memory 
and secondary storage. 

In addition to sharing protected memory space and automatically managing 
the memory hierarchy, virtual memory also simplifies loading the program for 
execution. Called relocation, this procedure allows the same program to run in 
any location in physical memory. (Prior to the popularity of virtual memory, 
machines would include a relocation register just for that purpose.) An 
alternative to a hardware solution would be software that changed all addresses 
in a program each time it was run. 

Several general memory-hierarchy terms from Section 8.3 apply to virtual 
memory, while some other terms are different. Page or segment is used for 
block, and page fault, or address fault, is used for miss. With virtual memory, 
the CPU produces virtual addresses that are translated by a combination of 
hardware and software to physical addresses, which can be used to access main 
memory. This process is called memory mapping or address translation. Today, 
the two memory hierarchy levels controlled by virtual memory are DRAMs and 
magnetic disks. Figure 8.21 shows a typical range of memory hierarchy 
parameters for virtual memory. 

Block (page) size 512- 8192 bytes 

Hit time 1-10 clock cycles 

Miss penalty 100,000 - 600,000 clock cycles 

(Access time) (100,000-500,000 clock cycles) 

(Transfer time) (10,000-100,000 clock cycles) 

Miss rate 0.00001 %-0.001 % 

Main memory size 4MB-2048MB 

FIGURE 8.21 Typical ranges of parameters for virtual memory. These figures, 
contrasted with the values for caches in Figure 8.5 (page 408), represent increases of 10 to 
100,000 times. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 465



434 8.5 Virtual Memory 

There are further differences between caches and virtual memory beyond 
those quantitative ones seen by comparing Figure 8.21 (page 433) to Figure 8.5 
(page 408): 

• Replacement on cache misses is primarily controlled by hardware, while 
virtual memory replacement is primarily controlled by the operating system; 
the longer miss penalty means the operating system can afford to get involved 
and spend more time deciding what to replace. 

• The size of the processor address determines the size of virtual memory, but 
the cache size is normally independent of the processor address. 

• In addition to acting as the lower-level memory for main memory in the 
hierarchy, secondary storage is also used for the file system that is not 
normally part of the address space; most of secondary storage is in fact taken 
up by the file system. 

Virtual memory encompasses several related techniques. Virtual memory 
systems can be categorized into. two classes: those with fixed-size blocks, called 
pages, and those with variable size blocks, called segments. Pages are typically 
fixed at 512 to 8192 bytes, while segment size varies. The largest segment 
supported on any machine ranges from 216 bytes up to 232 bytes; the smallest 
segment is one byte. 

The decision to use paged virtual memory versus segmented virtual memory 
affects the CPU. Paged addressing has a single, fixed-size address divided into 
page number and offset within a page, analogous to cache addressing. A single 
address does not work for segmented addresses; the variable size of segments 
requires one word for a segment number and one word for an offset within a 
segment, for a total of two words. An unsegmented address space is simpler for 
the compiler. 

The pros and cons of these two approaches have been well documented in 
operating systems textbooks; these are summarized in Figure 8.22. Because of 
the replacement problem (the third line of the figure), few machine~ today use 
pure segmentation. Some machines use a hybrid approach, called paged 
segments, in which a segment is an integral number of pages. This simplifies 
replacement because memory need not be contiguous, and the full segments 
need not be in main memory. 

We are now ready to answer the four memory-hierarchy questions for virtual 
memory. 

Ql: Where Can a Block Be Placed in Main Memory? 

The miss penalty for virtual memory involves access to a rotating magnetic 
storage device and is therefore quite high. Given the choice of lower miss rates 
or a simpler placement algorithm, operating systems designers always pick 
lower miss rates because of the horrendous cost of a miss. Thus, operating 
systems allow blocks to be placed anywhere in main memory. According to the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 466



Memory-Hierarchy Design 435 

terminology in Figure 8.6 (page 409), this strategy would be labeled fully 
associative. 

Q2: How Is a Block Found If It Is in Main Memory? 

Both paging and segmentation rely on a data structure that is indexed by the 
page or segment number. This data structure contains the physical address of the 
block. For paging, the offset is simply concatenated to this physical page address 
(see Figure 8.23, page 436). For segmentation, the offset is added to the 
segment's physical address to obtain the final virtual address. 

Page Segment 

Words per One Two (segment and offset) 
address 

Programmer Invisible to application May be visible to application 
visible? programmer programmer 

Replacing a Trivial (all blocks are the Hard (must find contiguous, 
block same size) variable-size, unused portion of 

main memory) 

Memory use Internal fragmentation External fragmentation (unused 
inefficiency (unused portion of page) pieces of main memory) 

Efficient disk Yes (adjust page size to Not always (small segments may 
traffic balance access time and transfer just a few bytes) 

transfer time) 

FIGURE 8.22 Paging versus segmentation. Both can waste memory, depending on the 
block size and how well the segments fit together in main memory. Programming 
languages with unrestricted pointers require both the segment and the address to be 
passed. A hybrid approach, called paged segments, shoots for the best of both worlds: 
segments are composed of pages, so replacing a block is easy, yet a segment may be 
treated as a logical unit. 

This data structure containing the physical page addresses usually takes the 
form of a page table. Indexed by the virtual page number, the size of the table is 
the number of pages in the virtual-address space. Given a 28-bit virtual address, 
4 KB pages, and 4 bytes per page-table entry, the size of the page table would be 
256 KB. To reduce the size of this data structure, some machines apply a 
hashing function to the virtual address so that the data structure need only be the 
size of the number of physical pages in main memory; this number would be 
much smaller than the number of virtual pages. Such a structure is called an 
inverted page table. Using the example above, a 64-MB physical memory would 
only need 64 KB (4*64 MB/4 KB) for an inverted page table. 

To reduce address translation time, computers use a cache dedicated to these 
address translations, called a translation-lookaside buffer, or simply translation 
buffer. They are described in more detail shortly. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 467



436 8.5 Virtual Memory 

Virtual address 

I Virtual page number 

Page 
table 

Page offset I 

Physical address 

Main 
memory 

FIGURE 8.23 The mapping of a virtual address to a physical address via a page 
table. 

Q3: Which Block Should Be Replaced on a Virtual Memory Miss? 

As mentioned above, the overriding operating system guideline is minimizing 
page faults. Consistent with this, almost all operating systems try to replace the 
least-recently used (LRU) block, because that is the one least likely to be 
needed. To help the operating system estimate LRU, many machines provide a 
use bit or reference bit, which is set whenever a page is accessed. The operating 
system periodically clears the use bits and later records them so it can determine 
which pages were touched during a particular time period. By keeping track in 
this way, the operating system can select a page that is among the least-recently 
referenced. 

Q4: What Happens on a Write? 

The level below main memory contains rotating magnetic disks that take 
hundreds of thousands of clock cycles to access. Because of the great 
discrepancy in access time, no one has yet built a virtual memory operating 
system that can write through main memory straight to disk on every store by 
the CPU. (This remark should not be interpreted as an opportunity to become 
famous by being the first to build one!) Thus, the write strategy is always write 
back. Since the cost of an unnecessary access to the next-lower level is so high, 
virtual memory systems include a dirty bit so that the only blocks written to disk 
are those that have been altered since they were loaded from the disk. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 468



Memory-Hierarchy Design 437 

Selecting a Page Size 

The most obvious architectural parameter is the page size. Choosing the page is 
a question of balancing forces that favor a larger page size versus those favoring 
a smaller size. The following favor a larger size: 

• The size of the page table is inversely proportional to the page size; memory 
(or other resources used for the memory map) can therefore be saved by 
making the pages bigger. 

• Transferring larger pages to or from secondary storage, possibly over a 
network, is more efficient than transferring smaller pages. 

(The larger page size may also help in address translation of cache addresses; 
see Section 8.8.) 

The main motivation for a smaller page size is conserving storage. A small 
page size will result in less wasted storage when a contiguous region of virtual 
memory is not equal in size to a multiple of the page size. The term for this 
unused memory in a page is internal fragmentation. Assuming that each process 
has three primary segments (text, heap, and stack), the average wasted storage 
per process will be 1.5 times the page size. This is negligible for machines with 
megabytes of memory and page sizes in the range of 2 KB to 8 KB. Of course, 
when the page sizes become very large (more than 32 KB), lots of storage (both 
main and secondary) may be wasted, as well as I/O bandwidth. A final concern 
is process start-up time; many processes are small, so larger page sizes would 
lengthen the time to invoke a process. 

Tech~iques for Fast Address Translation 

Page tables are usually so large that they are stored in main memory and often 
paged themselves. This means that every memory access takes at least twice as 
long, with one memory access to obtain the physical address and a second access 
to get the data. This cost is far too dear. 

One remedy is to remember the last translation, so that the mapping process 
is skipped if the current address refers to the same page as the last one. A more 
general solution is to again rely on the principle of locality; if the references 
have locality, then the address translations for the references must also have 
locality. Bye keeping these address translations in a special cache, a memory 
access rarely requires a second access to translate the data. This special address 
translation cache is referred to as a translation-lookaside buffer or TLB, also 
called a "translation buffer," or TB. A TLB entry is like a cache entry where the 
tag holds portions of the virtual address and the data portion holds a physical 
page-frame number, protection field, use bit, and dirty bit. To change the 
physical page-frame number or protection of an entry in the page table the 
operating system must make sure the old entry is not in the TLB; otherwise, the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 469



438 

a.& I 

8.5 Virtual Memory 

system won't behave properly. Note that this dirty bit means the corresponding 
page is dirty, not that the address translation in the TLB is dirty nor that a 
particular block in the data cache is dirty. Figure 8.24 shows typical parameters 
forTLBs. 

Block size 4 - 8 bytes (1 page-table entry) 

Hit time 1 clock cycle 

Miss penalty 10 - 30 clock cycles 

Miss rate 0.1%-2% 

TLB size 32- 8192 bytes 

FIGURE 8.24 Typical values of key memory-hierarchy parameters for TLBs. TLBs 
are simply caches for the virtual-to-physical address translations found in the page tables. 

One architectural challenge stems from the difficulty of combining caches 
with virtual memory. The virtual address must first go through the TLB before 
the physical address can access the cache, meaning that the cache hit time must 
be stretched to allow for address translation (or the pipeline could be stretched as 
in Chapter 6). One way to reduce hit time is to access the cache with the page 
offset, the portion of the virtual address that does not need to be translated. 
While the cache address tags are being read, the virtual portion of the address 
(the page-frame address) is sent to the TLB to be translated. The address 
comparison is then between the physical address from the TLB and the cache 
tag. Since the TLB is usually smaller and faster than the cache-address-tag 
memory, simultaneous TLB reading need not slow down cache hit times. The 
drawback with this scheme is that a direct-mapped cache can be no bigger than a 
page. Another option, virtually addressed caches, is discussed in Section 8.8. 

Protection and Examples of Virtual Memory 

The invention of multiprogramming led to new demands for protection and 
sharing between programs. These are closely tied to virtual memory in 
computers today, and so we cover the topic here along with two examples of 
virtual memory. 

Multiprogramming lead to the concept of a process. Metaphorically, a 
process is a program's breathing air and living space; that is, a running program 
plus any state needed to continue running the program. Timesharing means 
sharing the CPU and memory with several users at the same time to give the 
appearance that every user has his own machine. Thus, at any instant it must be 
possible to switch from one process to another. This is called a process switch or 
context switch. Figure 8.25 shows the frequency of these switches on the VAX 
8700. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 470



Memory-Hierarchy Design 439 

Instructions between process switches 19,353 

Clock cycles between process switches 170,113 

Time between process switches 7.7ms 

FIGURE 8.25 Frequency of process switches on VAX 8700 for timesharing 
workload. Most switching occurs on interrupts caused by 1/0 events or by the interval timer 
(see Figure 5.10, page 216). Since neither the latency of the 1/0 device nor the timer is af
fected by the speed of the CPU clock, faster machines generally execute more clock cycles 
and instructions between process switches. 

A process must operate correctly whether it executes continuously from start 
to finish or is interrupted repeatedly and switched with other proces'ses. The 
responsibility for maintaining correct process behavior is shared by the computer 
designer, who must ensure that the CPU portion of the process state can be 
saved and restored, and the operating system designer, who must guarantee that 
processes do not interfere with each others' computations. The safest way to 
protect the state of one process from another would be to copy the current 
information to disk. But a process switch would then take seconds-far too long 
for a timesharing environment. The problem is solved by operating systems 
partitioning main memory so that several different processes have their state in 
memory at the same time. This means that the operating system designer needs 
help from the computer designer to provide protection so that one process cannot 
modify another. Besides protection, the computers also provide for sharing of 
code and data between processes, to allow communication between processes or 
to save memory by reducing the number of copies of identical information. --
Protecting Processes 

The simplest protection mechanism is a pair of registers that checks every 
address to be sure that it falls between the two limits traditionally called base 
and bound. An address is valid if 

Base :5: Address :5: Bound 

In some systems the address is considered an unsigned number that is always 
added to the base, so the valid test is just 

(Base + Address) :5: Bound 

For user processes to be protected from each other, they can't change the base 
and bounds registers, yet the operating system must be able to change the 
registers so that it can switch processes. Hence, the computer designer has three 
more responsibilities in helping the operating system designer protect processes 
from each other: 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 471



440 8.6 Protection and Examples of Virtual Memory 

1. Provide at least two modes indicating whether the running process is a user 
process or an operating system process, sometimes called a kernel process, a 
supervisor process or an executive process. 

2. Provide a portion of the CPU state that a user process can use but not write. 
This includes the base/bound registers, a user/supervisor mode bit(s), and the 
interrupt enable/disable bit. Users are prevented from writing this state because 
the operating system cannot control user processes if users can change the 
address-range checks, disable interrupts, or give themselves supervisor 
privileges. 

3. Provide mechanisms whereby the CPU can go from user mode to supervisor 
mode and vice versa. The first direction is typically accomplished by a system 
call, implemented as a special instruction that transfers control to a dedicated 
location in supervisor code space. The PC from the point of the system call is 
saved, and the CPU is placed in supervisor mode. The return to user mode is like 
a subroutine return that restores the previous user/supervisor mode. 

Base and bound constitute the minimum protection system. Virtual memory 
provides an alternative to this simple model. As we have seen, the CPU address 
must go through a mapping from virtual to physical address. This provides the 
opportunity for the hardware to check further for errors in the program or to 
protect processes from each other. The simplest way of doing this is to add 
access permission flags to each page or segment. For example, since few 
programs today intentionally modify their own code, an operating system can 
detect accidental writes to code by offering read-only protection to pages. This 
can be extended by adding a user/kernel bit to prevent a user program from 
trying to access pages that belong to the kernel. As long as the CPU provides a 
read/write signal and a user/kernel signal, it is easy for the address translation 
hardware to detect stray memory accesses before they can do damage. As seen 
in Section 5.6 of Chapter 5, such reckless behavior interrupts the CPU. Obvious
ly, user programs cannot be allowed to modify the page table. 

Protection can be escalated, depending on the apprehension of the computer 
designer or the purchaser. Rings added to the CPU-protection structure expand 
memory-access protection from two levels (user and kernel) to many more. Like 
a military classification system of top secret, secret, classified, and unclassified, 
concentric rings of security levels allow the most trusted to access anything, the 
second most trusted to access everything except the innermost level, and so on 
down to "civilian" programs which are the least trusted and, hence, have the 
most limited range of accesses. There may also be restrictions on the entrance 
point between the levels. The 80286 protection structure, which uses rings, is 
described later in this section. It is not clear today whether rings are an 
improvement on the simple system of user and kernel modes. 

As the designer's apprehension escalates to trepidation, these simple rings 
may not suffice. The fact that a program in the inner sanctum can access 
anything calls for a new classification system. Instead of a military model, the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 472



Memory-Hierarchy Design 441 

analogy of this next model is to keys and locks: A program can't unlock access 
to the data unless it has the key. For these keys, or capabilities, to be useful, the 
hardware and operating system must be able to explicitly pass them from one 
program to another without allowing a program itself to forge them. Such 
checking requires a great deal of hardware support. 

A Paged Virtual Memory Example: 
VAX·11 Memory Management and the VAX·11/780 TLB 

The VAX architecture uses a combination of segmentation and paging. This 
combination provides protection while minimizing page-table size. The address 
space is first divided into two segments: process (bit 31 = 0) and system (bit 
31=1). Every process has its own private space and shares system space with 
every other process. The process address space is further subdivided into two 
regions called PO and Pl, using bit 30 to distinguish them. Area PO (bit 30 = 0) 
grows from address 0 upward while Pl (bit 30 = 1) grows downward to 0. 
Figure 8.26 shows the layout of PO and Pl. The two segments can grow until 
one exceeds its 230 address-space size and its virtual memory is exhausted. 
Many systems today use some such combination of predivided segments and 
paging. The approach provides many advantages: Segmentation divides system 
and process address space and conserves page-table space, while paging 
provides virtual memory, relocation, and protection. 

FIGURE 8.26 The organization of PO and P1 in the VAX. This is the process half of the 
address space, selected with a O in bit 31 of a virtual address. Bit 30 of the address divides 
PO and P1. Operating systems put the text and heap areas into PO and a downward 
growing stack into P1. 

To conserve page-table space, each of the three regions-PO process, Pl 
process, and system-is provided with a pair of base-bound registers that 
indicate the start and limit of the page table for each region. The alternative 
would be to have a single page table that covers the full address space, 
independent of the program's actual size. The small size of the VAX pages-
512 bytes, yielding large page tables-makes such conservation especially 
important. 

Figure 8.27 (page 442) shows the mapping of a VAX address. The two most
significant bits of an address select which segment or base-bound-register pair 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 473



442 8.6 Protection and Examples of Virtual Memory 

to use in selecting a page table and checking the reference. A one in the first bit 
selects the system page table, whose base and length are found respectively in 
the system base register and in the system length register. A zero in the first bit 
of an address (as in the figure) selects page table PO or Pl, found by the PO or Pl 
base registers and checked by the PO or Pl limit (bound) registers. The PO and 
Pl page tables are in the system-space virtual memory, while the system page 
table is in physical memory. 

This offers an interesting way to conserve physical memory. Since the PO and 
Pl page tables are also in virtual memory, this means the page tables can be 
paged. Just as some code and data can remain on disk during program execution, 
the page-table translation entries for that code and data can remain on disk until 
they are used. This is especially important for programs whose memory size 
varies dynamically during execution, as page tables can be increased as PO or Pl 
space grows. In the worst case, then, a process page fault can result in a second 
page fault bringing in the missing piece of the process page table needed to 
complete the address translation. What prevents all pages tables from being 

Virtual address 

21-page number 

System/user PO/P1 
bit selector 

PX page table 

Page-table entry 

9-page offset 

PX page-table base 

PX page-table limit 

Page index 
exceeds page

table size 

Physical address 

21-page-frame number 9-page offset 

Main memory 

FIGURE 8.27 The mapping of a VAX virtual address. PX refers to either PO or P1. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 474



Memory-Hierarchy Design 443 

migrated to secondary storage? Some system page tables are loaded into 
physical memory when the operating system is booted and are prevented from 
migrating to disk. Thus, eventually a series of faults must cross an address stored 
in the system page table that is "frozen" into main memory. 

While this explains translation of legal addresses, what prevents the user from 
creatingjllegal address translations and getting into mischief? The page tables 
themselves are protected from being written to by user programs. Thus, the user 
can try any virtual address, but by controlling the page-table entries the 
operating system controls what physical memory is accessed. Sharing of 
memory between processes is accomplished by having a page-table entry in each 
address space point to the same physical-memory page. 

A page-table entry (PTE) on the VAX is straightforward. Other than the 
physical page-frame number these are the only architecture-defined fields: 

M-the modify bit indicating the page is dirty 

V-" the valid bit indicating this PTE has a valid address 

PR OT-four protection bits 

Note that there is no reference or use bit. Hence, a page-replacement 
algorithm such as LRU must rely on the modify bit or some software technique 
to measure usage. Rather than simply a kernel/user protection structure, th~ 
VAX uses a four-level structure consisting of kernel, executive, supervisor, and 
user. The four protection bits in the PTE contain 16 encodings of selected 
combinations of no access, read-only access, and read-write access, with the four 
security levels. For example, 1001 means read-write access for kernel and 
executive-level processes, read access for supervisor-level processes, and no 

...-access for user-level processes. To further isolate these four levels, each has its 
own stack and its own copy of the stack pointer (R15). • 

The first implementation of this architecture was the V AX-11/780, which 
employs a TLB to reduce address-translation time. Figure 8.28 shows the key 
parameters of this TLB. 

Block size 1 PTE (4 bytes) 

Hit time 1 clock cycle 

Miss penalty (average) 22 clock cycles 

Miss rate 1%-2% 

Cache size 128 PTEs (512 bytes) 

Block selection Random 

Write strategy (Not applicable) 

Block placement 2-way set associative 

FIGURE 8.28 Memory hierarchy parameters of the VAX-11/780 TLB. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 475



444 8.6 Protection and Examples of Virtual Memory 

Figure 8.29 shows the VAX-11/780 TLB organization, with each step of a 
translation labeled. The TLB uses two-way-set-associative placement; thus, the 
translation begins (steps 1 and 2) by sending a portion of the virtual address 
("index") to both sets to select the two tags that are to be compared. Of course, 
the tag must be marked valid to allow a match. At the same time, the type of 
memory access is checked for a violation (also in step 2) against protection 
information in the TLB. 

For reasons similar to those in the cache case, there is no need to include the 
9 bits of the VAX page offset in the TLB; nor is there reason to include the 6 
address bits to index the TLB. The remaining bits are used in the comparison 
(step 3). The matching address tag sends the corresponding physical address 
through the multiplexer (step 4). The page offset is then combined with the 
physical page frame to form a full physical address (step 5). 

System Page-frame Page 
process address offset 
<1> <17> <5> <9> 

Ta Index 

<1 x1 x1> <17> <21> 
V P M Tag Ph sical address 

I I 

<21> 

Banko 
(64 
blocks) 

(low-order 9 bits 
<9> of address) 

------ 30-bit 
• physical 

--------.address 

(high-order 21 bits 
of address) 

FIGURE 8.29 Operation of the VAX-11/780 TLB during address translation. The five 
steps of a TLB hit are shown as circled numbers. 

There is one unusual feature of the V AX-11/780 TLB: The TLB is further 
subdivided to make sure the process portion of the address occupies no more 
than 50% of the TLB entries. The top 32 entries of each bank are reserved for 
system space, and the bottom 32 are reserved for process space. The most 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 476



Memory-Hierarchy Design 445 

significant bit of the address is used to select the appropriate half of the TLB 
(step 1). Since the system portion of the address space is the same for all pro
cesses, a process switch invalidates only the lower 32 entries of each bank for 
the VAX-11/780 TLB. This restriction had two goals. The first was to reduce the 
process-switch time by reducing the number of TLB entries that had to be inval
idated; the second was to improve performance by preventing the system or user 
process from throwing out the other's translations when process switches were 
frequent. Splitting the TLB will usually lead to higher overall TLB miss rate, but 
may reduce the peak TLB miss rate in heavily process-switching environments. 

A Segmented Virtual Memory Example: Protection 
in the Intel 80286/80386 

The second system is the most dangerous system a man ever designs . ... The 
general tendency is to over-design the second system, using all the ideas and 
frills that were cautiously sidetracked on the first one. 

F. P. Brooks, Jr., The Mythical Man-Month (1975) 

The original 8086 used segments for addressing, yet it provided nothing for 
virtual memory or for protection. Segments had base registers but no bound 
registers and no access checks; and before a segment register could be loaded 
the corresponding segment had to be in physical memory. Intel's dedication to 
virtual memory and protection is evident in subsequent models, with a few fields 
extended to support larger addresses. 

Like the VAX, the 80286 has four levels of protection. The innermost level 
(0) corresponds to VAX kernel mode, and the outermost level (3) corresponds to 
VAX user mode. The 80286 also follows the VAX by having separate stacks for 
each level to avoid security breaches between the levels. There are also data 
structures analogous to VAX page tables that contain the physical addresses for 
segments, as well as a list of checks to be made on translated addresses. 

The Intel designers did not stop there. The 80286 divides the address space, 
allowing both the operating system and the user access to the full space. The 
80286 user can call an operating system routine in this space and even pass pa
rameters to it retaining full protection. This is not a trivial action, since the stack 
for the operating system is different from the user's stack. Moreover, the 80286 
allows the operating system to maintain the protection level of the called routine 
for the parameters that are passed to it. This potential loophole in protection is 
prevented by not allowing the user to ask the operating system to access 
something indirectly that he would not have been able to access himself. Such 
security loopholes are called Trojan horses. 

The 80286 designers were guided by the principle of trusting the operating 
system as little as possible, while supporting sharing and protection. As an 
example of the use of such protected sharing, suppose a payroll program writes 
checks and also updates the year-to-date information on total salary and benefits 
payments. Thus, we want to give the program the ability to read the salary and 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 477



446 8.6 Protection and Examples of Virtual Memory 

year-to-date information and modify the year-to-date information but not the 
salary. We shall see the mechanism to support such features shortly. In the rest 
of this section we will look at the big picture of the 80286 protection and exam
ine its motivation. Readers interested in the detailed picture can find it in a com
prehensive book by Crawford and Gelsinger [1987]. 

Adding Bounds Checking and Memory Mapping 

The first step in enhancing the 80286 was getting the segmented addressing to 
check bounds as well as supply a base. Rather than a base address, as in the 
8086, segment registers in the 80286 contain an index to a virtual memory data 
structure called a descriptor table. Descriptor tables play the role of page tables 
in the VAX. On the 80286 the equivalent of a page-table entry is a segment 
descriptor. It contains fields found in PTEs: 

A present bit-equivalent to the PTE valid bit, used to indicate this is a valid 
translation 

A base field-equivalent to a page-frame address, containing the physical 
address of the first byte of the segment 

An access bit-like the reference bit or use bit in some architectures that is 
helpful for replacement algorithms 

An attributes field-like the protection field in the VAX PTE, which speci
fies the valid operations and protection levels for operations that use this 
segment 

There is also a limit field, not found in paged systems, which establishes the 
upper bound of valid offsets for this segment. Figure 8.30 shows examples of 
80286 segment descriptors. 

Adding Sharing and Protection 

The Intel designers' next step was to provide for protected sharing. Like the 
VAX, half of the address space is shared by all processes and half is unique to 
each process, called global address space and local address space, respectively. 
Each half is given a descriptor table with the appropriate name. A descriptor 
pointing to a shared segment is placed in the global-descriptor table, while a 
descriptor for a private segment is placed in the local-descriptor table. 

A program loads an 80286 segment register with an index to the table and a 
bit saying which table it desires. The operation is checked according to the 
attributes in the descriptor, the physical address being formed by adding the off
set in the CPU to the base in the descriptor, provided the offset is less than the 
limit field. Unlike the encoding of operations and levels in the VAX PTE, every 
segment descriptor has a separate two-bit field to give the legal access level of 
this segment. A violation occurs only if the program tries to use a segment with 
a lower protection level in the segment descriptor. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 478



Memory-Hierarchy Design 447 

We can now show how to invoke the payroll program to update the year-to
date information without allowing it to update salaries. The program could be 
given a descriptor to the information that has the writable field clear, meaning it 
can read but not write the data. A trusted program can then be supplied that will 
only write the year-to-date information and is given a descriptor with the 
writable field set (Figure 8.30). The payroll program invokes the trusted code 
using a code-segment descriptor with the conforming field set (Figure 8.30). 
This means the called program takes on the privilege level of the code being 
called rather than the privilege level of the caller. Hence, the payroll program 
can read the salaries and call a trusted program to update the year-to-date totals, 
yet the payroll program cannot modify the salaries. If a Trojan horse exists in 
this system, to be effective it must be located in the trusted code whose only job 
is to update the year-to-date information. The argument for this style of protec
tion is that limiting the scope of the vulnerability enhances security. 

8 bits 24bits 

Base 

Code segment 

Present DPL 11 Conforming 

Present DPL 1 O Expand down 

8 bits 8 bits 

Word 
count 

16 bits 

Destination selector 

Present DPL O 

16 bits 

Limit 

Readable Accessed 

Writable Accessed 

16 bits 

Destination offset 

00100 

FIGURE 8.30 The 80286 segment descriptors are all 48 bits long and are distin
guished by bits in the attributes field. Base, limit, present, readable, and writable are all 
self-explanatory. DPL means descriptor privilege level-this is checked against the code 
privilege level to see if the access will be allowed. Conforming says the code takes on the 
privilege level of the code being called rather than the privilege level of the caller; it is used 
for library routines. The expand-down field flips the check to let the base field be the high
water mark and the limit field be the low-water mark. As one might expect, this is used for 
stack segments that grow down. Word count controls the number of words copied from the 
current stack to the new stack on a call gate. The other two fields of the call-gate descriptor, 
destination selector and destination offset, select the descriptor of the destination of the call 
and the offset into it. There are many more than these three segment descriptors in the 
80286. The principal change in the 80386 was to lengthen the base by eight bits and the 
limit by four bits. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 479



448 8.6 Protection and Examples of Virtual Memory 

Adding Safe Calls from User to OS Gates and 
Inheriting Protection Level for Parameters 

Allowing the user to jump into the operating system is a bold step. How, then, 
can a hardware designer increase the chances of a safe system without trusting 
the operating system or any other piece of code? The 80286 approach is to 
restrict where the user can enter a piece of code, to safely place parameters on 
the proper stack, and to make sure the user parameters don't get the protection 
level of the called code. 

To restrict entry into others' code, the 80286 provides a special segment 
descriptor, or call gate, identified by a bit in the attributes field. Unlike other 
descriptors, call gates are full physical addresses of an object in memory; the 
offset supplied by the CPU is ignored. As stated above, their purpose is to pre
vent the user from randomly jumping anywhere into a protected or more- privi
leged code segment. In our programming example, this means the only place the 
payroll program can invoke the trusted code is at the proper boundary. This is 
needed to make conforming segments work as intended. 

What happens if caller and callee are "mutually suspicious," so that neither 
trusts each other? The solution is found in the word-count field in the bottom 
descriptor in Figure 8.30 (page 447). When a call instruction invokes a call-gate 
descriptor, the descriptor will copy the number of words specified in the 
descriptor from the local stack onto the stack corresponding to the level of this 
segment. This allows the user to pass parameters by first pushing them onto the 
local stack. The hardware then safely transfers them onto the correct stack. A 
return from a call gate will pop the parameters off both stacks and copy any 
return values to the proper stack. 

This still leaves open the potential loophole of having the operating system 
use the user's address, passed as parameters, with the operating system's secu
rity level, instead of with the user's level. The 80286 solves this problem by 
dedicating two bits in every CPU segment register to the requested protection 
level. When an operating system routine is invoked, it can execute an instruction 
that sets this two-bit field in all address parameters with the protection level of 
the user that called the routine. Thus, when these address parameters are loaded 
into the segment registers, they will set the requested protection level to the 
proper value. The 80286 hardware then uses the requested protection level to 
prevent any foolishness: No segment can be accessed from the system routine 
using those parameters if it has a more-privileged protection level than 
requested. 

Summary: Protection on the VAX Versus the 80286 

If the 80286 protection model looks harder to build than the VAX model, that's 
because it is. This effort must be especially frustrating for the 80286 engineers, 
since most customers just use the 80286 as a fast 8086 and don't exploit the 
elaborate protection mechanism. Also, the fact that the protection model is a 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 480



Memory-Hierarchy Design 449 

mismatch for the simple paging protection of UNIX means it will be used only 
by someone writing an operating system specially for this computer. OS/2 from 
Microsoft is the best candidate, but only time will tell whether the performance 
cost of such protection is justified for a personal-computer operating system. 
Two questions remain: Will the considerable protection-engineering effort, 
which must be borne by each generation of the 80x86 family, be put to good use, 
and will it prove any safer in practice than a paging system? 

8. 7 I More Optimizations Based on 
Program Behavior 

Making the frequent case fast is the inspiration for almost all inventions aimed at 
improving performance. In this section are two more examples of hardware 
optimized to program behavior. The first fetches instructions before they are 
needed, and the second avoids saving registers to memory on procedure calls. 

lnstruction-Prefetch Buffers 

Many machines use an instruction-pref etch buffer to take advantage of the nor
mal sequential execution of instructions. Typically, an instruction buffer con
tains two to eight sequential instructions; as each instruction is consumed by the 
CPU, a subsequent instruction word is prefetched. Prefetching only makes sense 
if the memory system can deliver instructions much faster than the CPU can 
consume them; otherwise the buffer cannot get ahead of the CPU. This can be 
accomplished by having a wider path that fetches more than one instruction at a 
time, or by simply having a faster memory system than the CPU. The drawback 
to instruction buffers is that they increase memory traffic by requesting words of 
instructions that may never be needed by the CPU, as is the case when a branch 
is taken. Instruction-prefetch buffers are also useful for aligning variable-sized 
instructions. 

The 8-byte instruction-prefetch buffer (IB) of the VAX-11/780, shown in 
Figure 8.31 (page 450), will serve as an example. The opcode of the current 
instruction is in the high-order byte of the IB; as pieces of the instruction are 
consumed, the whole buffer is shifted to the left by the appropriate amount. The 
left-most byte can correspond to any byte address, while the rest of the bytes in 
the IB must be sequential. The Vs in the figure represent a valid bit per byte of 
the instruction buffer and indicate the sequential bytes that contain valid instruc
tions. 

The IB tries to stay ahead of the PC. Whenever at least one byte is free in the 
IB, a read is requested for an aligned 32-bit word that contains that byte; only 
32-bit words are prefetched from the memory. When the 32-bit prefetched word 
arrives, the IB loads as much of it as it has space for. A 32-bit instruction word 
therefore takes between one and four fetches from memory, depending on luck. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 481



450 8. 7 More Optimizations Based on Program Behavior 

When the PC changes due to a branch or interrupt, the IB may have 
prefetched one or two unneeded instructions. The PC change causes all the valid 
bits to be turned off, and the IB is reloaded. Section 8.9 examines the perfor-
mance impact of the IB. · 

PC 18 address 

\) 
v v v v v v v v 

Cache 

FIGURE 8.31 The VAX-11/780 instruction-prefetch buffer. Every byte has a valid bit to 
determine the number of consecutive bytes that have valid instructions. The instruction 
decoder can read the top four bytes of the buffer in a single clock cycle. 

Registers and Register Windows 

Figures 3.28 and 3.29 (pages 117-118) in Chapter 3 show that saving registers 
on procedure calls and restoring them on returns can account for 5% to 40% of 
the data memory references. As an alternative, several banks of registers can be 
used, with a new one allocated on each call. Although this could limit the depth 
of procedure calls, the limitation is avoided by operating the banks as a circular 
buffer, providing unlimited depth. !his technique has been termed register 
windows. 

Figure 8.32 shows the essence of the idea. On the x axis is time, measured in 
procedure calls or returns; on the y axis is the depth or nesting of procedure 
calls. Each call moves down the y axis, and each return moves up. The boxes 
show memory being accessed to save some of the buffer, either when it is full 
and is followed by a call (window overflow) or when it is empty and is followed 
by a return (window underflow). The figure shows eight window overflows and 
two window underflows during this section of program execution. Over the life 
of the program the number of overflows and underflows will equalize. 

One might well ask what the trade-off is between buffer size and overflows or 
underflows. Figure 8.33 shows the shape of the curve for several programs writ
ten in several programming languages. The knee of the curve seems to be six to 
eight banks. While this holds for most programs, the optimization is based on 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 482



Memory-Hierarchy Design 451 

t Time (in units of procedure call/returns) 

Return 

call 

i 
Nesting 
depth 

FIGURE 8.32 Change in procedure nesting depth over time. The boxes show proce
dure calls and returns inside the buffer before a window overflow or underflow. The pro
gram starts with three calls, a return, a call, a return, three calls, and then a window 
overflow. 

I 

Percentage of 
calls that 

60% 

50% 

40% 

overflow 30% 

20% 

10% 

0% 
2 4 6 8 10 12 14 16 

Number of register banks 

FIGURE 8.33 Number of banks or windows of registers versus overflow rate for 
several programs in C, LISP, and Smalltalk. The programs measured for C include a C 
compiler, a Pascal interpreter, troff, a sort program, and a few UNIX utilities [Halbert and 
Kessler 1980].The LISP measurements include a circuit simulator, a theorem prover, and 
several small LISP benchmarks [Taylor et al. 1986]. The Smalltalk programs come from the 
Smalltalk macro benchmarks [McCall 1983] which include a compiler, browser, and decom
piler [Blakken 1983 and Ungar 1987]. 

program-specific patterns of calls and returns that might be quite different in. 
some other programs. The worst case for register windows would be hundreds of 
calls followed by hundreds of returns. This would make Figure 8.32 look like 
seismograph output during an earthquake, and the performance impact would be 
just as devastating! 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 483



452 8.7 More Optimizations Based on Program Behavior 

Window 
number: 

n -1 

r31 

r26 

r25 

..... 
r16 
r15 

r10 

r9 

rO 

n 

r31 

r26 

r25 

..... 
r16 
r15 

r10 

r9 

rO 

n + 1 

Windown overlaps with caller 

Windown I ocals 

r31 Window n overlap with callee 

r26 

r25 

..... 
r16 
r15 

r10 

r9 
Globals 

rO 

FIGURE 8.34 Parameters can be passed in registers if there are common registers 
between two banks or windows. This scheme divides registers into globals, which don't 
change on a procedure call, and locals, which do change. By having an overlap between 
locals for adjacent procedure calls and renumbering the registers on a call, the outgoing 
parameters of the caller become the incoming parameters of the callee. For example, a 
value placed in register 15 before a call is in register 31 after the call. 

The difficulty of passing parameters in registers presents a drawback: If each 
procedure has its own unique set of registers, then nothing is common. This can 
be overcome by overlapping the register banks or windows such that there is a 
common area in which to pass parameter~. Figure 8.34 shows one such design. 
Six registers overlap each window, with R15 to RlO of the caller's registers 
]?ecoming R31 to R26 after the call. Ten registers are not included in the win
dows, so there are 16 (32 - 10 - 6) registers per window even though each 
procedure sees 32 registers at a time. 

From Figure 8.33 we can estimate the percentage of calls that overflow the 
windows or returns that underflow them, but to understand the impact on per
formance we must know the cost an overflow or underflow. With an overlapping 
register design, like the one on SP ARC, the cost is saving 16 registers on an 
overflow (or restoring 16 registers on an UIJ.derflow) plus the cost of interrupt. 
On the Sun 4 today it takes about 60 clock cycles for an overflow or underflow. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 484



I 

Memory-Hierarchy Design 453 

The Pros and Cons of Register Windows 

Depending on the application, programming language, and user practices, the 
compiler can close the gap between machines with and without register win
dows. Most machines, for example, have separate floating-point registers, which 
means that floating-point-intensive programs will be unaffected by register win
dows. Also, many data references are to objects that cannot be allocated in regis
ters, like arrays or structures (see Figures 3.28 and 3.29 on pages 117-118 of 
Chapter 3). 

An optimization called interprocedural register allocation allows more intel
ligent allocation of registers across procedure boundaries. Unfortunately, inter
procedural register allocation works best when procedures are compiled or 
linked at the same time. Long compilation and link time do not match the em
phasis on a rapid debug-edit-compile cycle in current dynamic languages like 
LISP and Smalltalk. Interprocedural register allocation is not generally appli
cable to object-oriented languages like Objective C and Smalltalk because in the 
dynamic equivalent of a procedure call the compiler doesn't know which proce
dure will be invoked on such calls. Register windows also simplify some com
piler decisions, since there is no extra cost in using a register that will not be 
saved or restored separately. 

GCC TeX 

Percentage of DLX instructions call or return 1.8% 3.6% 

Registers stored per call 2.3 3.2 

LoadsDLX 3,928,710 2,811,545 

Loads SPARC 3,313,317 2,736,979 

Ratio loads DLX I SP ARC 1.20 1.03 

Stores DLX 2,037,226 1,974,078 

Stores SP ARC 1,246,538 1,401,186 

Ratio stores DLX I SPARC 1.60 1.41 

FIGURE 8.35 Benefits of register windows on loads and stores for non-floating
point programs. The first row shows the percentage of DLX instructions executed that are 
calls or returns. The second row shows the average number of register saves and restores 
per call on the DLX architecture with optimization level 02. The following rows show the 
total number of loads and stores for each optimization and for the SPARC architecture, 
which has register windows. The data below includes the loads and stores due to window 
overflow and window underflow. GCC executes about 20% more loads and 60% more 
stores on DLX than on a machine with register windows, while TeX executes about 3% 
more loads and 41 % more stores. These savings correspond to about 7% of the instruction 
count for GCC and 5% for TeX. How this translates into memory-system performance 
depends on the details of the rest of the memory hierarchy. lnterprocedural register alloca
tion closes this gap. For example, using 03 optimization on TeX reduces the number of 
DLX loads by 5% to 2,671,631 and the number of stores by 10% to 1,791,831. Note that 
the inputs for these programs were not the same as those used in Chapters 2 or 4. (Spice 
was not included because register windows offer no benefit for floating-point programs.) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 485



454 8.7 More Optimizations Based on Program Behavior 

The danger of register windows is that the larger number of registers could 
slow down the clock rate. So far, this has not been the case for commercial 
machines. The SPARC architecture (with register windows) and the MIPS 
R2000 architecture (without) are contemporary machines built in several tech
nologies. The SP ARC clock rate has not been slower than MIPS for implementa
tions in similar technologies, probably because cache-access times dominate 
register-access times in implementations to date of either architecture. A second 
concern is the impact of register windows on process-switch time. Sun Micro
systems has found that UNIX operating system vagaries dominate process
switch time, and less than 20% of the process-switch time is spent on saving or 
restoring registers. Figure 8.35 (page 453) compares some measures of the 
benefits of register windows on our benchmark programs. 

8.8 I Advanced Topics-Improving Cache-Memory 
Performance 

This section covers advanced topics in cache memories, going through new 
ideas at a much quicker pace than previous sections. The central points of this 
chapter are not lost if this section is skipped; in fact, the Putting It All Together 
section that follows is independent of this material. 

The increasing gap between CPU and main memory speeds has attracted the 
attention of many architects. After making some easy decisions in the beginning, 
the architect faces a threefold dilemma when attempting to further reduce aver
age access time: 

• Increasing block size doesn't improve average access time; the lower miss 
rate doesn't offset the higher miss penalty. 

• Making the cache bigger would make it slower, jeopardizing the CPU clock 
rate. 

• Making the cache more associative would also make it slower, again jeopar-
dizing the CPU clock rate. 

Moreover, the miss rate calculated from user programs paints too rosy a picture. 
Figure 8.36 shows the real cache miss rate for a running program, including the 
operating system code invoked by the programs. This reveals the average access 
time to be worse than expected. 

This section covers a plethora of techniques for improving cache perfor
mance: subblock placement, write buffers, out-of-order fetching, virtually 
addressed caches, two-level caches, and issues relating to cache coherency. The 
cache-coherency sections include an example of the stale-data problem, a survey 
of coherency alternatives, an example cache protocol, a synchronization 
algorithm used in cache coherent multiprocessors, a timeline showing multi
processor synchronization, and comments about the impact of memory consis
tency on parallel processors. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 486



Memory-Hierarchy Design 

14% 

12% 

10% 

0% 

\ 

5.6% 

4K SK 16K 32K 64K 128K 256K 512K 1024K 

Cache size 

• System miss rate D System-user conflict lllJ User miss rate 
miss rate 

455 

FIGURE 8.36 The miss rate of a program, including the operating system code it 
invokes, versus cache size. The top category is what would be measured from a user 
trace; the bottom category is the miss rate for the operating system code; and the middle 
category is the miss rate due to conflicts between the user code and system code. Agarwal 
[1987] collected these statistics for the Ultrix operating system running on a VAX, assuming 
direct-mapped caches with a block size of 16 bytes. 

Reducing Hit Times-Making Writes Faster 

As mentioned before, writes usually take more than one clock cycle because the 
tag must be checked before writing the data. There are two ways to do faster 
writes. 

~ 
CAVIUM-1035 

Cavium, Inc. v. Alacritech, Inc. 
Page 487



456 8.8 Advanced Topics-Improving Cache-Memory Performance 

The first, used on the VAX 8800, pipelines the writes for a write-through 
cache. Tags and data are split so that they can be addressed independently. As 
usual, the cache compares the tag with the current write address. The difference 
is that the memory access during this comparison uses the address and data from 
the previous write. Therefore, writes can be performed back to back at one per 
clock cycle because the CPU does not have to wait for the write to the cache if 
the first stage is a hit. The 8800 pipeline does not affect read hits-the second 
stage of the write occurs during the first stage of the next write or during a cache 
miss. 

Another way of reducing writes to one clock cycle involves caches that must 
be direct mapped, using a technique known as subblock placement. Like the 
V AX-11/780 instruction buffer, there is a valid bit on units smaller than the full 
block, called subblocks. The valid bits specify some parts of the block as valid 
and some parts as invalid. A match of the tag doesn't mean the word is necessar
ily in the cache, as the valid bits for that word must also be on. Figure 8.37 gives 
an example. Note that for caches with subblock placement a block can no longer 
be defined as the minimum unit transferred between cache and memory. For 
such caches a block is defined as the unit of information associated with an 
address tag. 

Tag v v v v 

100 

300 

200 

204 

FIGURE 8.37 In this example there are four subblocks per block. In the first block 
(top) all the valid bits are on, equivalent to the valid bit being on for a block in a normal 
cache. In the last block (bottom), the opposite is true; no valid bits are on. In the second 
block, locations 300 and 301 are valid and will be hits, while locations 302 and 303 will be 
misses. For the third block, locations 201 and 203 are hits. If, instead of this organization, 
there were 16 blocks the size of the subblock, 16 tags would be needed instead of 4. 

Subblock placement was invented to reduce the long miss penalty of large 
blocks (since only a part of a large block need be read) and to reduce the tag 
storage for small caches. It can also help write hits by always writing the word 
(no matter what happens with the tag match), turning the valid bit on, and then 
sending the word to memory. Let's look at the cases to see why this trick works: 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 488



Example 

Answer 

Memory-Hierarchy Design 457 

• Tag match and valid bit already set. Writing the block was the proper action, 
and nothing was lost by setting the valid bit on again. 

• Tag match and valid bit not set. The tag match means that this is the proper 
block; writing the data into the block makes it appropriate to tum the valid bit 
on. 

• Tag mismatch. This is a miss and will modify the data portion of the block. 
However, as this is a write-through cache, no harm was done; memory still 
has an up-to-date copy of the old value. Only the tag to the address of the 
write need be changed because the valid bit has already been set. If the block 
size is one word and the store instruction is writing one word, then the write 
is complete. When the block is larger than a word or if the instruction is a 
byte or halfword store, then either the rest of the valid bits are turned off 
(allocating the subblock without fetching the rest of the block) or memory is 
requested to send the missing part of the block (write allocate). 

This trick isn't possible with a write-back cache because the only valid copy of 
the data may be in the block, and it could be overwritten before checking the tag. 

Reducing Miss Penalty-Making Write Misses 
Faster 

Now that we have seen how to make write hits faster, let's look at write misses. 
With a write-through cache the most important improvement is a write buffer 
(page 416) of the proper size (see the fallacy on page 482 in Section 8.10). Write 
buffers, however, do complicate things in that they might have the updated value 
of a location needed on a read miss. 

Look at this code sequence: 

SW 512 (RO) ,R3 ; M[512] f- R3 (cache index 0) 

LW Rl, 1024 (RO) ; Rl f-M[1024] (cache index 0) 

LW R2, 512 (RO) ; R2 f-M[512] (cache index 0) 

Assume a direct-mapped cache that maps 512 and 1024 to the same block, and a 
four-word write buffer. Will R3 always equal R2? 

Let's follow the cache to see the danger. The data in R3 is placed into the write 
buffer after the store. The following load uses the same cache index and is there
fore a miss. We then try to load the data from location 512 into register R2; this 
also results in a miss. If the write buffer hasn't completed writing to location 512 
in memory, the read of location 512 will put the old, wrong value into the cache 
block, and then into R2. Without proper precautions, R3 would not be equal to 
R2! 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 489



458 8.8 Advanced Topics-Improving Cache-Memory Performance 

The simplest way out of this dilemma is for the read miss to wait until t11e 
write buffer is empty. However, a write buffer of a few words in a write-through 
cache will almost always have data in the buffer on a miss, thereby increasing 
the read miss penalty. The designers of the MIPS M/1000 estimated that waiting 
for a four-word buffer to empty would have increased the average read miss 
penalty by 50%. The alternative is to check the contents of the write buffer on a 
read miss, and if there are no conflicts and the memory system is available, let 
the read miss continue. 

The cost of writes in a write-back cache can also be reduced. By just adding a 
full block buffer to store a dirty block, the read can happen first. After the new 
data is loaded into the block, the CPU continues execution. The buffer then 
writes in parallel with the CPU. Similar to the situation above, if a read miss 
occurs the CPU can stall until the buffer is empty. 

Reducing Miss Penalty-Making Read Misses 
Faster 

Making writes faster is helpful, but it is reads that dominate cache accesses. The 
strategy to making read misses faster is to be impatient: Don't wait for the full 
block to be loaded before sending the requested word to the CPU. Here are two 
specific strategies: 

• Early restart-As soon as the requested word of the block arrives, send it to 
the CPU and let the CPU continue execution. 

• Out-of-order fetch-Request the missed word first from memory and send it 
to the CPU as soon as it arrives; let the CPU continue execution while filling 
the rest of the words in the block. Out-of-order fetch is also called wrapped 
fetch. 

Alas, these read tricks are not as important as they sound. Spatial locality-the 
reason for big blocks in the first place-dictates that the next cache request is 
likely to be to the same block. Also, handling another request while trying to fill 
the rest of a block quickly gets complicated. 

A more subtle reason why out-of-order fetch will not be as rewarding as one 
might think is that not all the words of a block have an equal likelihood of being 
accessed first. With a 16-word block in an instruction cache, for example, the 
average block entry point is 2.8 words from the left-most byte. If entries were 
evenly distributed, the average would be 8 words. The high-order word is the 
most likely one, due to sequential accesses from prior blocks on instruction 
fetches and sequentially stepping through arrays for data caches. 

For pipelined machines that allow out-of-order completion using a scoreboard 
or Tomasulo-style control (Section 6.7 of Chapter 6), the CPU need not stall on 
a cache miss, offering another way to reduce memory stalls. Spatial locality sug
gests this optimization (called a lock-up free cache) may be limited in praCtice, 
since again the next reference is likely to be to the same block. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 490



Memory-Hierarchy Design 459 

Making Cache Hits Faster-Virtually Addressed Caches 

Miss penalty is an important part of average access time, but hit time affects 
both the average access time and the clock rate of the CPU. Helping the hit time 
may therefore help everything. A solution mentioned earlier is to use the physi
cal part of the address to index the cache while sending the virtual address 
through the TLB. The limitation is that a direct-mapped cache can be no bigger 
than the page size. To allow large cache sizes with the 4-KB pages in the Sys
tem/370, IBM uses high associativity so that they can still access the cache with 
a physical index. The IBM 3033, for example, is 16-way set associative, even 
though studies show there is little benefit to miss rates above 4-way set 
associativity. 

20% 0.6% 
0.4% 

18% 

16% 

M 
14% 

s 
12% 

s 

R 10% 
a 
t 
e 8% 

6% 

4% 

2% 

0.3% 

0% 
0.3% 

2K 4K BK 1i3K 32K 64K 128K 256K 512K 1024K 

Cache size 

• Uniprocess DPIDs • Purge I 
FIGURE 8.38 Miss rate versus cache size of a program measured three ways: 
without process switches (uniprocess), with process switches using a process
identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs 
increase the uniprocess absolute miss rate by 0.3 to 0.6 and save 0.6 to 4.3 over purging. 
Agarwal [1987] collected these statistics for the Ultrix operating system running on a VAX, 
assuming direct-mapped caches with a block size of 16 bytes. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 491



460 8.8 .Advanced Topics-Improving Cache-Memory Performance 

One scheme for fast cache hits without this size restriction is go to a more 
heavily pipelined memory access where the TLB is just one step of the pipeline. 
The TLB is a distinct unit that is smaller than the cache, and thus easily 
pipelined. This scheme doesn't change memory latency, but relies on the effi
ciency of the CPU pipeline to achieve higher memory bandwidth. 

Another alternative is to match on virtual addresses directly. Such caches are 
termed virtual caches. This eliminates the TLB translation time from a cache hit. 
Why doesn't everyone build virtually addressed caches? One reason is that 
every time a process is switched, the virtual addresses refer to different physical 
addresses, requiring the cache to be flushed. Figure 8.38 (page 459) shows the 
impact on miss rates of this flushing. One solution is to increase the width of the 
cache-address tag.with a process-identifier tag (PID). If the operating system 
assigns these tags to processes, it only need flush the cache when a PID is 
recycled (the PID provides protection). Figure 8.38 shows that improvement. 

Another reason why virtual caches are not more universally adopted has to do 
with operating systems and user programs that use two different virtual 
addresses for the same physical address. These duplicate addresses, called 
synonyms or aliases, could result in two copies of the same data in a virtual 
cache; if one is modified, the other will have the wrong value. With a physical 
cache this wouldn't happen, since the accesses would first be translated to the 
same physical cache block. There are hardware schemes, called anti-aliasing, 
that can guarantee every cache block a unique physical address, but software can 
make this much easier by forcing aliases to share some address bits. The version 
of UNIX from Sun Microsystems, for example, requires all aliases to be identi
cal in the last 18 bits of their addresses. Thus, a direct-mapped cache that is 218 

(256K) bytes or smaller can never have duplicate physical addresses for blocks. 
This requirement also simplifies anti-aliasing hardware for larger caches or for 
set-associative cach~s. (Of course, the best software solution from the hardware 
designers perspective is to do away with aliases!) 

The final area of concern with virtual addresses is 1/0. 1/0 typically uses 
physical addresses and thus would require mapping to virtual addresses to inter
act with a virtual cache. (The impact of 1/0 on caches is further discussed 
below.) 

Reducing Miss Penalty-Two-Level Caches 

Let's return our attention to miss penalty. CPUs are getting faster and main 
memories are getting larger, but slower relative to the faster CPUs. The question 
facing the architect is: Should I make the cache faster to keep pace with the 
speed of CPUs, or make the cache larger to overcome the widening gap between 
the CPU and main memory? One answer is: Both. By adding another level of 
cache between the original cache and memory, the first-level cache can be small 
enough to match the clock cycle time of the CPU while the second-level cache 
can be large enough to capture many accesses that would go to main memory. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 492



Example 

Answer 

Memory-Hierarchy Design 461 

Definitions for a second level of cache are not always straightforward. Let's 
start with the definition of average memory-access time for a two-level cache. 
Using the subscripts Ll and L2 to refer respectively to a first-level and a second
level cache, the original formula is 

Average memory-access time= Hit timeu +Miss rateu *Miss penaltyu 

and 

Miss penaltyu = Hit timeL2 + Miss rateL2 * Miss penaltyL2 
so 

Average memory-access time = Hit timeu + Miss rateu * 

(Hit timeL2 + Miss rateL2 * Miss penaltyL2) 

In this formula, the success of the second-level miss rate is measured on the left
overs from the first-level cache. To avoid ambiguity, these terms are adopted 
here for a two-level cache system: 

• Local miss rate-The number of misses in the cache divided by the total 
number of memory accesses to this cache; this is miss rateL2 above. 

• Global miss rate-The number of misses in the cache divided by the total 
number of memory accesses generated by the CPU; using the terms above, 
this is miss rateu *miss rateL2· 

Suppose that in 1000 memory references there are 40 misses in the first-level 
cache and 20 misses in the second-level cache. What are the various miss rates? 

\ 
The miss rate for the first-level cache is 40/1000 or 4%. The local miss rate for 
the second-level cache is 20/40 or 50%. The global miss rate of the second-level 
cache is 20/1000 or 2%. 

Figure 8.39 (page 462) and Figure 8.40 (page 463) show how miss rates and 
relative execution time change with the size of a second-level cache. Figure 8.41 
(page 463) shows typical parameters of second-level caches. 

With these definitions in place, we can consider the parameters of second
level caches. The foremost difference between the two levels is that the speed of 
the first-level cache affects the clock rate of the CPU, while the speed of the 
second-level cache only affects the miss penalty of the first-level cache. Thus, 
we can consider many alternatives in the second-level cache that would be ill 
chosen for the first-level cache. There is but one consideration for the design of 
the second-level cache: Will it lower the average memory-access-time portion 
of the CPI? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 493



462 8.8 Advanced Topics-Improving Cache-Memory Performance 

80.0% 

70.0% 

60.0% 
M 
i 50.0% 
s 
s 40.0% 

r 30.0% 
a 
t 20.0% 
e 

10.0% 

100.0% 

M 10.0% 
i 
s 
s 

r 
a 

t 1.0% 
e 

0.1% 

5% 
Local miss rate 

0 

Single cache miss rate 
64 128 256 512 1024 2048 4096 Global miss rate 

Cache size (KB) 

Local miss rate 

Single cache miss rate 
Global miss rate 

4 8 16 32 64 128 256 512 1024 2048 4096 

Cache size (KB) 

FIGURE 8.39 Miss rates versus cache size. The top graph shows the results plotted 
on a linear scale as we have done with earlier figures, while the bottom graph shows 
the results plotted on a log scale. As miss rates shrink the log scale makes the differ
ences easier to follow. The miss rate of a single-level cache versus size is plotted 
against the local miss rate and global miss rate of a second-level cache using a 32-KB 
first-level cache. Second-level caches smaller than the 32-KB first level have high miss 
rates (at least for similar block sizes), as this figure illustrates. After 256 KB the single 
cache and global miss rates are virtually identical. Przybylski [1990] collected these 
data using traces available with this book: four traces from the VAX system and user 
programs and four user programs from the MIPS R2000 that were randomly interleaved 
to duplicate the effect of process switches. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 494



Memory-Hierarchy Design 

4096 

2048 

1024 

512 

Level two 
cache 256 
size 
(KB) 128 

64 

32 

16 

8 

4 

1.5 

1.62 

1.62 

1.62 • Level two hit = 4 clock cycles 

Ill Level two hit = 8 clock cycles 
1.64 

1.68 

1.75 

1.84 

2 

2.19 

2.69 

2 2.5 3.0 

Relative execution time 

463 

FIGURE 8.40 Relative execution time by second-level-cache size. Przybylski [1990) 
collected these data using a 32-KB, first-level, write-back cache, varying the size of the 
second-level cache. The two bars are for different clock cycles for a level two cache hit. 
The reference execution time of 1.00 is for a 4096-KB, second-level cache with a one
clock-cycle latency on a second-level hit. He used four traces from the VAX system and 
user programs (available with this book) and four user programs from the MIPS R2000 that 
were randomly interleaved to duplicate the effect of process switches. 

I 

Block (line) size 32 - 256 bytes 

Hit time 4 - 10 clock cycles 

Miss penalty 30 - 80 clock cycles 

(Access time) (14- 18 clock cycles) 

(Transfer time) ( 16 - 64 clock cycles) 

Local miss rate 15%-30% 

Cache size 256KB-4MB 

FIGURE 8.41 Typical values of key memory-hierarchy parameters for second-level 
caches. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 495



464 

Example 

Answer 

8.8 Advanced Topics-Improving Cache-Memory Performance 

The initial choice for second-level caches is size. Since everything in the 
first-level cache is likely to be in the second-level cache, the second-level cache 
should be bigger. If second-level caches are just a little bigger, the local miss 
rate will be high. This observation inspires design of huge second-level caches
the size of main memory in recent computers! If the second-level cache is much 
larger than the first-level cache, then the global miss rate is about the same as a 
single-level cache of the same size (see Figure 8.39, page 462). Large size 
means that the second-level cache may have practically no capacity misses, 
leaving compulsory and a few conflict misses for our attention. One question is 
whether set associativity makes more sense for second-level caches. 

Given the data below, what is the impact of second-level-cache associativity on 
the miss penalty? 

• Two-way set associativity increases hit time by 10% of a CPU clock cycle 

• Hit timeL2 for direct mapped = 4 clock cycles 

• Local miss rateL2 for direct mapped = 25 % 

• Local miss rateL2 for two-way set associative= 20% 

• Miss penaltYL2 = 30 clock cycles 

For a direct-mapped, second-level cache, the first-level-cache miss penalty is 

Miss penaltyu = 4 + 25%*30 = 11.5 clock cycles 

Adding the cost of associativity increases the hit cost only 0.1 clock cycles, mak
ing the new first-level-cache miss penalty 

Miss penaltyu = 4.1 + 20%*30 = 10.1 clock cycles 

In reality, second-level caches are almost always synchronized with the first
level cache and CPU. Accordingly, the second-level hit time must be an integrak 
number of clock cycles. If we are lucky, we can shave the second-level hit time 
to four cycles; if not, we can round up to five cycles. Either choice is an im
provement over the direct-mapped, second-level cache: 

Miss penaltyu = 4 + 20%*30 = 10.0 clock cycles 

Miss penaltyu = 5 + 20%*30 = 11.0 clock cycles 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 496



Memory-Hierarchy Design 465 

512 1.95 

256 

Block size of 
128 

second-level 
cache (bytes) 64 

32 

16 

1.00 1.25 1.50 1.75 2.00 

Relative CPU execution time 

FIGURE 8.42 Relative execution time by block size for a two-level cache. Przybylski 
[1990] collected these data using a 512-KB second-level cache. He used four traces from 
the VAX system and user programs (available with this book) and four user programs from 
the MIPS R2000 that were randomly interleaved to duplicate the effect of process switches. 

Higher associativity is worth considering because it has small impact on the 
second-level hit time and because so much of the average access time is due to 
misses. However, for these very large caches the benefits of associativity dimin
ish because larger size has eliminated many conflict misses. 

As long as spatial locality holds there may be a benefit in increasing block 
size. Increasing block size can increase conflict misses with small caches since 
there may ;not be enough places to put data, therefore increasing miss rate. 
Because this is not an issue in large, second-level caches, and because memory
access time is relatively longer, larger block sizes are popular. Figure 8.42 
shows the variation in execution time as the second-level block size changes. 

One final consideration concerns whether all data in the first-level cache is 
always in the second-level cache. If so, the second-level cache is said to have the 
multilevel inclusion property. Inclusion is desirable because consistency 
between 1/0 and caches (or between caches in a multiprocessor) can be deter
mined just by checking the second-level cache. 

The drawback to this natural inclusion is that the lower average memory
access times can suggest smaller blocks for the smaller first-level cache and 
larger blocks for the larger second-level cache. Inclusion can still be maintained 
in this case with a little extra work on a second-level miss: The second-level 
cache must invalidate all first-level blocks that map onto the second-level block 
to be replaced, causing a slightly higher first-level miss rate. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 497



466 8.8 Advanced Topics-Improving Cache-Memory Performance 

Reducing Miss Rate by Reducing Cache Flushes-1/0 

Although there is little more that can improve CPU execution time, there are 
issues in cache design to improve system performance, particularly for in
put/output. Because of caches, data can be found in memory or in the cache. As 
long as the CPU is the sole device changing or reading the data and the cache 
stands between the CPU and memory, there is little danger in the CPU seeing 
the old or stale copy. 1/0 means the opportunity exists for other devices to cause 
copies to be inconsistent or for other devices to read the stale copies. Figure 8.43 
illustrates the problem. This is generally referred to as the cache-coherency 
problem. 

A' 

B' 

A 

B 

[:.=J 
Cache 

100 

200 

Memory 

100 

200 

CJ 
(a) Cache and 
memory coherent: 
A'=A & B'= B 

A' 

B' 

A 

B 

[:.=J 
Cache 

550 

200 

Memory 

100 

200 

1/0 
Output A 
gives 100 

(b) Cache and 
memory incoherent: 
A'.:A (A stale) 

A' 

B' 

A 

B 

CPU 

Cache 

100 

200 

Memory 

100 

440 

1/0 
Input 

440 to B 

I 

(c) Cache and 
memo·ry incoherent: 
B'.:B (B' stale) 

FIGURE 8.43 The cache-coherency problem. A' and B' refer to the cached copies of A 
and B in memory. (a) shows cache and main memory in a coherent state. In (b) we assume 
a write-back cache when the CPU writes 550 into A. Now A' has the value but the value in 
memory has the old, stale value of 100. If an output used the value of A from memory, it 
would get the stale data. In (c) the 1/0 system inputs440 into the memory copy of B, so 
now B' in the cache has the old, stale data. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 498



Memory-Hierarchy Design 467 

The question is this: Where does the 1/0 occur in the computer-between the 
··· 1/0 device and the cache or between the 1/0 device and main memory? If input 

puts datainto the cache and output reads data from the cache, both 1/0 and the 
CPU see the same data, and the problem is solved. The difficulty in this 
approach is that it interferes with the CPU. 1/0 competing with the CPU for 
cache access will cause the CPU to stall for 1/0. Input will also interfere with the 
cache by displacing some information with the new data that is unlikely to be 
accessed by the CPU soon. For example, on a page fault the CPU may need to 
access a few words in a page, but a program is not likely to access every word of 
the page if it were loaded into the cache. 

The goal for the 1/0 system in a computer with a cache is to prevent the stale
data problem while interfering with the CPU as little as possible. Many systems, 
therefore, prefer that 1/0 occur directly to main memory, acting as an 1/0 buffer. 
If a write-through cache is used, then memory has an up-to-date copy of the 
information, and there is no stale-data issue for output. (This is the reason many 
machines use write through.) Input requires some extra work. The software solu
tion is to guarantee that no blocks of the 1/0 buff er designated for input are in 
the cache. In one approach, a buffer page is marked as noncacheable; the operat
ing system always inputs to such a page. In another approach, the operating sys
tem flushes the buffer addresses from the cache after the input occurs. A hard
ware solution is to check the 1/0 addresses on input to see if they are in the 
cache. If so, the cache entries are invalidated to avoid stale data. All these 
approaches can also be used for output with write-back caches. More about this 
is found in the next chapter. 

Reducing Bus Traffic-Multiprocessor Cache 
Coherency 

The cache-coherency problem applies to multiprocessors as well as 1/0. Unlike 
1/0, where multiple data copies is a rare event-one to be avoided whenever 
possible-a program running on multiple processors will want to have copies of 
the same data in several caches. Performance of a multiprocessor program 
depends on the performance of the system when sharing data. The protocols to 
maintain coherency for multiple processors are called cache-coherency proto
cols. There are two classes of protocols followed to maintain cache coherency: 

• Directory based-The information about one block of physical memory is 
kept in just one location. 

• Snooping-Every cache that has a copy of the data from a block of physical 
memory also has a copy of the information about it. These caches are usu
ally on a shared-memory bus, and all cache controllers monitor or snoop on 
the bus to determine whether or not they have a copy of the shared block. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 499



468 8.8 Advanced Topics-Improving Cache-Memory Performance 

In directory-based protocols there is logically a single directory that keeps the 
state of every block in main memory. Information in the directory can include 
which caches have copies of the block, whether it is dirty, and so on. Of course 
directory entries can be distributed so that different requests can go to different 
memories, thereby reducing contention. However, they retain the characteristic 
that the sharing status of a block is always in a single known location. 

Snooping protocols became popular with multiprocessors using microproces
sors and caches on a shared memory because they can use a preexisting physical 
connection: the bus to memory. Snooping has an edge over directory protocols 
in that the coherency information is proportional to the number of blocks in a 
cache rather than the number of blocks in main memory. Directories, on the 
other hand, do not require a single bus going to all caches and, hence, may scale 
to more processors. 

The coherency problem is for a processor to have exclusive access to write an 
object and to have the most recent copy when reading an object. Thus, both 
directory-based and snooping protocols must locate all the caches that share the 
object to be written. The consequence of a write to shared data is either to 
invalidate all other copies or to broadcast the write to the shared copies. Because 
of write-back caches, coherency protocols must also help read misses determine 
who has the most up-to-date value. 

For the remainder of this section we concentrate on snooping caches; the 
same ideas apply to directory-based caches except the state of the caches is 
tracked differently, and caches are involved only if the directory says they have 
a copy of a block whose status must change. 

Sharing information is added to the status bits already in a cache block for 
snooping protocols, and that information is used in monitoring bus activities. On 
a read miss all caches check to see if they have a copy of the requested block and 
take the appropriate action, such as supplying the data to the cache that missed. 
Similarly, on a write all caches check to see if they have a copy and then act, 
perhaps invalidating their copy or changing their copy to the new value. 

Since every bus transaction checks cache-address tags, one might assume that 
it interferes with the CPU. It would, were it not for duplicating the address-tag 
portion of the cache (not the whole cache) to get an extra read port for snooping. 
This way, snooping interferes with the CPU's access to the cache only when 
there is a coherency problem (although on a miss with snooping the CPU must 
arbitrate with the bus to change the snoop tags as well as the normal tags). When 
a coherency operation occurs in the cache the CPU will likely stall, since the 
cache is unavailable. In multilevel caches, if the coherency check can be limited 
to the lower cache because of multilevel inclusion, duplicating the address tags 
will probably not be necessary. 

Snooping protocols are of two types, depending on what happens on a write: 

• Write invalidate-The writing processor causes all copies in other caches to 
be invalidated before changing its local copy; it is then free to update the data 
until another processor asks for it. The writing processor issues an invalida-

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 500



Memory-Hierarchy Design 469 

tiori signal over the bus, and all caches check to see if they have a copy; if so, 
they must invalidate the block containing the word. Thus, this scheme allows 
multiple readers but only a single writer. 

• Write broadcast-Rather than invalidate every block that is shared, the writ
ing processor broadcasts the new data over the bus; all copies are then 
updated with the new value. This scheme continuously broadcasts writes to 
shared data while write invalidate deletes all other copies so that there is only 
one local copy for subsequent writes. Write-broadcast protocols usually allow 
blocks to be tagged as shared (broadcast) or private (local). One way to think 
of this protocol is it acts like a write-through cache for shared data 
(broadcasting to other caches) and a write-back cache for private data (the 
modified data leaves the cache only on a miss). 

Most cache-based multiprocessors use write back caches because it reduces 
bus traffic and thereby allows more processors on a single bus. Write-back 
caches use either invalidation or broadcast, and numerous variations exist for 
both alternatives (see the next section). So far, there is no consensus on which is 
the superior scheme. Some programs have less coherency overhead with write 
invalidate, and some with write broadcast. A later section shows how 
synchronization can be implemented in coherency-based multiprocessors; the 
accesses for synchronization seem to favor write broadcast. 

One early insight has been that block size plays an important role in cache 
coherency. Take, for example, the case of snooping on a second-level cache with 
a block size of eight words, and a single word is alternatively written and read -.... 
by two processors. Whether write invalidation or write broadcast is used, the 
protocol that only broadcasts or sends a word has an advantage over a scheme 
that transfers the full block. Another concern of large blocks is called false shar
ing: two different shared variables are located in the same cache block, causing 
the block to be exchanged between processors even though the processors are 
accessing different variables. Compiler research is working to reduce cache miss 
rates by allocating data with high processor locality to the same blocks. Success 
in this field could increase the desirability of large blocks for multiprocessors. 

Measurements to date indicate that shared data has lower spatial and temporal 
locality than observed for other types of data, independent of the coherency 
policy. 

An Example Protocol 

To illustrate the complexities of a cache-coherency protocol, Figure 8.44 (page 
470) shows a finite-state transition diagram for a write-invalidation protocol 
based on write- back policy. The three states of the protocol are duplicated to 
represent transitions based on CPU actions, as opposed to transitions based on 
bus operations. This is done only for purposes of this figure; there is only one 
finite-state machine per cache, with stimuli coming either from the attached 
CPU or from the bus. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 501



470 8.8 Advanced Topics-Improving Cache-Memory Performance 

CPU 
write 
miss 

CPU 
read 
miss 

Read miss or write 
miss on bus for block 
(write-back block) 

Read only 
(clean) 

Cache state transistions 
using signals from CPU 

Invalidate or 
write miss 
on bus for 
this block 

Cache state transitions 
using signals from bus 

FIGURE 8.44 A write-invalidate, cache-coherency protocol. The upper part of the 
diagram shows state transitions based on actions of the CPU associated with this cache; 
the lower part shows transitions based on operations on the bus. There is only one state 
machine in a cache, although there are two represented here to clarify when a transition 
occurs. The black arrows and states would be in a normal cache, with the gray arrows 
added to get cache coherency. In contrast to what is shown here, some protocols call 
writes to clean data a "write miss," so that there is no separate signal for invalidation. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 502



Name 

Write Once 

Synapse N+l 

Berkeley 

Illinois 

Firefly 

Dragon 

Memory-Hierarchy Design 471 

Transitions happen on read misses, write misses, or write hits; read hits do 
not change cache state. When the CPU has a read miss, it will change the state of 
that block .to Read only and write back the old block if it was in the Read/Write 
state (dirty). All the caches snoop on the read miss to see if this block is in their 
cache. If one has a copy and it is in the Read/Write state, then the block is writ
ten to memory and that block is changed to the invalid state. (An optimization 
not shown in the figure would be to change the state of that block to Read only.) 
When a CPU writes into a block, that block goes to the Read/Write state. If the 
write was a hit, an invalidate signal goes out over the bus. Because caches 
monitor the bus, all check to see if they have a copy of that block; if they do, 
they invalidate it. If the write was a miss, all caches with copies go to the invalid 
state. 

\ As you might imagine, there are many variations on cache coherency that are 
much more complicated than this simple model. The variations include whether 
or not the other caches try to supply the block if they have a copy, whether or 
not the block must be invalidated on a read miss, as well as write invalidate ver
sus write broadcast as discussed above. Figure 8.45 summarizes several snoop
ing cache-coherency protocols. 

Category Memory~write policy Unique feature 

Write invalidate Write back after first write 

Write invalidate Write back Explicit memory ownership 

Write invalidate Write back Owned shared state 

Write invalidate Write back Clean private state; can supply data from 
any cache with a clean copy 

Write broadcast Write back for private, Memory updated on broadcast 
Write through for shared 

Write broadcast Write back for private, Memory not updated on broadcast 
Write through for shared 

FIGURE 8.45 Six snooping protocols summarized. Archibald and Baer [1986] use these names to describe the six 
protocols, and Eggers [1989] summarizes the similarities and differences as shown above. Figure 8.44 (page 470) is 
simpler than any of these protocols. 

Synchronization Using Coherency 

One of the major requirements of a shared-memory multiprocessor is being able 
to coordinate processes that are working on a common task. Typically, a pro
grammer will use lock variables to synchronize the processes. 

The difficulty for the architect of a multiprocessor is to provide a mechanism 
to decide which processor gets the lock and to provide the operation that locks a 
variable. Arbitration is easy for shared-bus multiprocessors, since the bus is the 
only path to memory: The processor that gets the bus locks out all other proces
sors from memory. If the CPU and bus provide an atomic swap operation, pro
grammers can create locks with the proper semantics. The adjective atomic is 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 503



472 8.8 Advanced Topics-Improving Cache-Memory Performance 

key, for it means that a processor can both read a location and set it to the 
locked value in the same bus operation, preventing any other processor from 
reading or writing ,memory. 

Figure 8.46 shows a typical procedure for locking a variable using an atomic 
swap instruction. Assume that 0 means unlocked and 1 means locked. A proces
sor first reads the lock variable to test its state. A processor keeps reading and 
testing until the value indicates that the lock is unlocked. The processor then 
races against all other processes that were similarly "spin waiting" to see who 

No 

Load lock 
variable 

Try to lock variable using swap: 
Read lock variable and then set 

variable to locked value (1) 

No 

Enter critical 
section 

Exit critical 
section 

Unlock: 
Set lock variable to O 

FIGURE 8.46 Steps to acquire a lock to synchronize processes and then to release 
the lock on exit from the key section of code. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 504



Memory-Hierarchy Design 473 

Step Processor PO Processor Pl Processor P2 Bus activity 

1 Has lock Spins, testing if lock = 0 Spins, testing if lock = 0 None 

2 Set lock to 0 and Write invalidate of lock 
0 sent over bus variable from PO 

3 Cache miss Cache miss Bus decides to service P2 
cache miss 

4 (Waits while bus busy) Lock= 0 Cache miss for P2 satisfied 

5 Lock= 0 Swap: read lock and set Cache miss for Pl satisfied 
to 1 

6 Swap: read lock and set Value from swap = 0 and Write invalidate of lock 
to 1 1 sent over bus variable from P2 

7 Value from swap = 1 and Enter critical section Write invalidate of lock 
1 sent over bus variable from Pl 

8 Spins, testing if lock = 0 None 

FIGURE 8.47 Cache-coherency steps and bus traffic for three processors, PO, P1, and P2. This figure assumes 
write-invalidate coherency. PO starts with the lock (step 1 ). PO exits and unlocks the lock (step 2). P1 and P2 race to see 
which reads the unlocked value during the swap (steps 3-5). P2 wins and enters the critical section (steps 6 and 7), while 
P1 spins and waits (steps 7 and 8). 

can lock the variable first. All processes use a swap instruction that reads the old 
value and stores a 1 into the lock variable. The single winner will see the 0, and 
the losers will see a 1 that was placed there by the winner. (The losers will con
tinue to set the variable to the locked value, but that doesn't matter.) The win
ning processor executes the code after the lock and then stores a 0 into the lock 
variable when it exits, starting the race all over again. Testing the old value and 
then setting to a new value is why the atomic swap instruction is called test and 
set in some instruction sets. 

Let's examine how the "spin lock" scheme of Figure 8.46 works with bus
based cache coherency. One advantage of this algorithm is that it allows proces
sors to spin wait on a local copy of the lock in their caches. This reduces the 
amount of bus traffic versus lock algorithms that loop trying to perform a test 
and set. (Figure 8.47 shows the bus and cache operations for multiple processes 
trying to lock a variable.) Once the processor with the lock stores a 0 into the 
lock, all other caches see that store and invalidate their copy of the lock variable. 
They then get the new value for the lock of 0. (With write-broadcast cache 
coherency as on page 469, the caches would update their copy rather than first 
invalidate and then load from memory.) This new value starts the race to see 
who can set the lock first. The winner gets the bus and stores a 1 into the lock; 
the other caches replace their copy of the lock variable containing 0 with a 1. 
They read that the variable is already locked and must return to testing and 
spinning. This scheme has difficulty scaling up to many processors because of 
the communication traffic generated when the lock is released. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 505



474 8.8 Advanced Topics-Improving Cache-Memory Performance 

Models of Memory Consistency 

When we introduce cache coherency to maintain the consistency of multiple 
copies of an object, we raise a new question: How consistent must the values 
seen by two processors be kept? The problem is best understood with an exam
ple: Here are two code segments from processes Pl and P2 shown side by side: 

Pl: A = 0; P2: B = i'Q; 

A = 1; B = 1; 

Ll: if (B == 0) L2: if (A == 0) 

Assume the processes are running on different processors, and that locations A 

and B are originally cached by both processors with the initial value of 0. If 
memory is always consistent, it will be impossible for both if statements 
(labeled Ll and L2) to evaluate their conditions as true (either A=l or B=l). But 
suppose write invalidates have a delay, and the processor is allowed to continue 
during this delay, then it is possible that both Pl and P2 have not seen the inval
idations for B and A (respectively) before they attempt to read the values. The 
question that is raised by this example is: How consistent a picture of memory 
must different processors see? 

One approach, called sequential consistency, requires that ·the result of any 
execution is the same as if the accesses of each processor were kept in order and 
the accesses among different processors were arbitrarily interleaved. In this case, 
the apparent anomaly in the above example cannot occur. Implementing sequen
tial consistency usually requires a processor to delay any memory access until all 
the invalidations caused by all previous writes are completed. Although this 
model presents a simple programming paradigm, it reduces potential perfor
mance, especially in a machine with a large number of processors, or long inter
connect delays. 

Alternative models provide a weaker model of memory consistency. For 
example, the programmer may be required to use synchronization instructions to 
order memory accesses to the same variable. Now, instead of delaying all ac
cesses until invalidations complete, only synchronization accesses need to be 
delayed~ 

Whether programmers expect sequential consistency or some weaker form of 
consistency is still an open issue in 1990. The example above would work 
"correctly" with sequential consistency, but not with a weaker model. For weak 
consistency to produce the same results as sequential consistency, the program 
would have to be modified to include synchronization operations that order the 
accesses to variables A and B. It is natural to expect synchronization if you want 
processes to see the latest data independent of execution rates. Some machines 
choose to implement sequential consistency as the programming model, while 
others opt for a weaker consistency. In the future, as attempts are made to build 
larger multiprocessors, the issue of memory consistency will become 
increasingly performance critical. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 506



Memory-Hierarchy Design 

Putting It All Together: The VAX·11 /780 
Memory Hierarchy 

475 

The challenge for the memory-hierarchy designer is in choosing parameters that 
work well together, not in inventing new techniques or simulating a cache in a 
well-understood configuration. A full example using the VAX-11/780 memory 
hierarchy is presented here in detail to illuminate the interactions. Although 
V AX-11/780 is not a very recent machine, measurements and design documen
tation are available on all aspects of its memory hierarchy. Figure 8.48 gives the 
overall picture. 

Let's start with an instruction fetch just after a branch, when the instruction 
pre fetch buffer is empty. The virtual address in the PC is first sent to the TLB. 
The most significant bit and the lower five bits of the page-frame address index 
an entry in each bank of the TLB. Including the most-significant bit, used to dis
tinguish system space from process space, guarantees that half of each bank 
contains system translations and half contains process translations. The 
addresses in the tags are compared to see if the entry is a match to the page ad
dress requested by the TLB. If the valid bit of the entry is not set then there is no 
match no matter what the tag comparison says, and a miss is indicated. 

If there is a match, the physical address is formed by concatenating the phys
ical page-frame address of the TLB page-table entry with the page-offset portion 
of the address. To save time, the portion of the TLB containing the PTE is read 
at the same time as the tags, and a 2: 1 multiplexer controlled by the tag-match
ing logic picks the proper PTE. Whiie the address is being formed, the protection 
bits of the PTE are checked. Since this is an instruction fetch, there is no prob
lem as long as the page can be read by a process at this level. If there are no 
protection violations, this physical address is sent to the cache. 

At the same time the physical address is sent to the cache, two registers in the 
CPU instruction-prefetch buffer get the new values. The virtual-instruction
buffer address register (VIBA) is given the virtual page frame of the PC, and the 
physical-instruction-buffer address register (PIBA) is given the corresponding 
physical address. This trick, which was originally used in the first machine with 
virtual memory, avoids the instruction-prefetch buffer's accessing the TLB as 
long as the instructions are from the same page. The PIBA is actually given the 
PC address plus 4, so that it can begin prefetching the next instruction. It contin
ues trying to prefetch ahead of the PC until a jump (a frequent occurrence in the 
VAX) or until the PIBA tries to cross a page boundary; in either case the VIBA 
and PIBA are no longer used for translating instruction addresses. 

Meanwhile, the cache has just received the physical address of the instruc
tion. With 8-byte blocks, a two-way-set-associative cache, and 512 blocks per 
set, nine bits of the address are needed to index both banks simultaneously. The 
partial addresses in the tags are compared with the corresponding bits of the 
physical PC address to see if there is a match. Of course, there are valid bits in 
each tag that must be turned on, or there can be no match. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 507



476 8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 

CPU 

Pref etch 

p~~ Data write 

Data Data 
Instr ti· 

'- Address t \/\/\/\/\/ /\/\/ 
- II I 11 I I Ill 

~ p Data read 

(Pref etch 
using PIBA) 

' TLB 
System Page-frame Page 
process address offset 

<1> <17> <5> <9> 
I Tan I lndexl -

<1 ><1 ><1 > <17> <21> 
VI ... Address 
' • 

I • Banko 

... ... (64 
I I I .. blocks) 

~-
J_ 
2:1 1<21> '-- 30-bit 

~ • M physical • u 
~ -+ 

address 

--
I . 
I Bank 1 

I I (64 
blocks) ... 

I I I ···1 I I 

Block-frame Block 
Cache 

address offset 
<20> <9> <3> 

I Tao I Index I .. 
<1> <20> <64> '" 

-
Data 

I write I 

Banko 
(512 I 1 Write buffer I 
blocks) I I .. Cache I 

"l;~ IG, 
miss • 

Main 
~ 

... M memory . Cache u 

lLt hit 

11 
11 

Bank 1 
(512 

I 

blocks) 
... ... 

I I ... 
• 

FIGURE 8.48 The overall picture of the VAX-11/780 memory hierarchy. Individual 
components can be seen in greater detail in Figures 8.11 (page 415), 8.29 (page 444), and 
8.31 (page 450). 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 508



Memory-Hierarchy Design 477 

If there is a match, the lower bits of the physical PC address select the word 
from the cache block to be sent to the instruction-prefetch unit. Once again, 
reading data and tags together obviates any additional time delay. 

When the word arrives at the prefetch unit, it is placed in the high-order four 
bytes of the buffer, and those bytes are marked valid. The PIBA immediately 
begins accessing the cache with the PC address plus 4 to prefetch the next word. 
As mentioned above, as long as the page-frame address in the PC matches the 
VIBA, the PIBA bypasses the TLB and goes directly to the cache. 

Let's assume this instruction writes a register into memory.· The first step will 
be to send the effective memory address to the TLB for translation. Since this is 
a write, the modify bit of the matching PTE must also be turned on; this results 
in a microcode-level trap of the instruction storing the register if the modify bit 
isn't set already, taking another clock cycle to write the new value in the TLB. 
The physical address is then sent to the cache. We then go through the same pro
cess as before (excluding the read), except that this time it takes an extra clock 
cycle to modify the portion of the block selected by the write and to write it back 
into the cache. 

In a write-through cache the data must be written to main memory. To avoid 
the seven-cycle delay of main memory on every write, the V AX-11/780 uses a 
one-word write buffer. If the buffer is empty, the word is written and the CPU is 
given the signal to continue. If it is full, the CPU stalls until the buffer is empty. 

How well does the 780 work? The bottom line in this evaluation is the per
centage of time lost while the CPU is waiting for the memory hierarchy. In one 
timesharing workload the average number of clock cycles per 780 instruction is 
10.6 clock cycles. The breakdown by category is 

Compute: 7 .3 clock cycles 

Read: 0.8 clock cycles 

Read stall: 1.0 clock cycles 

Write: 0.4 clock cycles 

Write stall: 0.4 clock cycles 

Instruction-prefetch-buffer stall: 0.7 clock cycles 

About 20% of the time the V AX-11/780 stalls while waiting for memory. When 
the base CPI is 8.5 (compute+ read+ write), 2.1 clock cycles for the memory 
hierarchy (read stall + write stall + prefetch stall) may be satisfactory~ but it 
would devastate the performance of a machine with a CPI of 1 to 2. 

Let's analyze each unit of the 780 meinory hierarchy. An instruction
prefetch-buffer stall means that the buffer is empty, waiting for the cache to 
supply instructions because of a cache miss, a branch, too many data accesses 
(they have priority), not enough bytes to decode the instruction, or some com
bination of the above. The PIBA loadings due to branches versus page crossings 
vary with the benchmark, but branching is the cause 64% to 91 % of the time 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 509



478 

Example 

Answer 

8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 

(median= 76% ). The prefetch unit references the cache 2.2 times on average per 
VAX instruction. The average instruction size is 3.8 bytes, making the effective 
size of the average prefetch just 1. 7 bytes. 

Figure 3.33 in Chapter 3 (page 123) shows that the VAX executes many fewer 
bytes of instructions than DLX. This ignores the instruction-prefetch buffer. 
How much should we increase the instruction bytes fetched from the cache to 
include the effect of prefetching? 

We can answer this in a couple of ways. Every prefetch access to the cache 
actually returns 4 bytes, and the average VAX instruction size is 3.8 bytes; the 
increase could therefore be 

2·~.; 4 
= 2.32 

since the prefetch unit references the cache 2.2 times per instruction. This sug
gests that the bytes fetched from the cache should be increased by 132%. 
Because the same code may be fetched multiple times by the prefetcher, how
ever, the bandwidth between the cache and memory may not change since the 
prefetcher cannot cause cache misses. 

The question can also be answered in terms of the number of bytes discarded 
because of a taken branch. About 25% of instructions change the PC on the 
VAX, and there could be from zero to eight bytes in the prefetch unit when a 
branch.is taken. Assuming an optimistic two bytes, we get a 13% increase: 

3.8 + J~i%*2) = 1.13 

Assuming six bytes, we get a 39% increase: 

3.8 + i~i%*6) = 1.39 

While the variable size of VAX instructions does improve the bytes fetched 
in comparison to DLX, a fairer evaluation of the VAX would increase the bytes 
fetched from the cache by at least 13% to 39%. 

With the instruction-prefetch buffer performing many translations via the 
PIBA and VIBA, how should TLB misses be measured? The TLB instruction 
and data-stream miss rates provide one definition: 

. . . Misses caused by IB 
TLB mstruction-stream miss rate = R 1 d' f PIBA e oa mgs o_ 

. Misses 
TLB data-stream miss rate = R t ""' 32 b' d f d eques s ior - it wor s o ata 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 510



Memory-Hierarchy Design 479 

The data-stream definition means references to data objects larger than four 
bytes count as multiple accesses, as do accesses to unaligned data. Figure 8.49 
shows the TLB miss rates. 

TLB miss rates Instruction stream Data stream Total 

Process 0.7% 0.6% 0.7% 

System 15.4 % 5.4 % 7.2% 

Total 3.5 % 1.6 ~ 1.9 % 

FIGURE 8.49 Miss rates for the VAX-11/780 TLB, ignoring the impact of instructions 
not translated by the TLB. This data was measured on a different timesharing workload 
than earlier VAX measurements [Clark and Erner 1985]. 

Overall references to the TLB after filtering by the PIBA are divided into 
20% user instruction stream, 62% user data stream, 3% system instruction 
stream, and 15% system data stream. To account for the filtering of addresses by 
the PIBA optimization, TLB misses can also be counted as a rate per instruction 
executed, as in Figure 8.50. 

TLB misses per 100 Instruction stream Data stream Total 
instructions 

Process 0.18 0.50 0.68 

System 0.62 1.03 1.65 

Total 0.80 1.53 2.33 

FIGURE 8.50 Misses per hundred instructions for the VAX-11/780 TLB. Unlike Figure 
8.49, this overall TLB evaluation accounts for the effect of the PIBA. 

The VAX TLB spends on average 21.6 clock cycles on a miss (including 3.5 
clock cycles for cache misses for some page-table entries), adding a total of 0.7 
clock cycles per instruction for TLB misses to the average instruction. Thus, 
about a third of the memory-system stalls are due to TLB misses. 

The same study by Erner and Clark [1984] showed a significant variation on 
cache miss rates: 

• Data-stream, cache miss rates varied over the day from 12% to 25%, with a 
mean of 17%. 

• Instruction-buffer-stream, cache miss rates varied from 4% to 13%, with a 
meanof8%. 

• The distribution of accesses to the cache from the CPU was instruction
prefetch-buffer-stream reads, 68%, data-stream reads, 20%, and data-stream 
writes, 12%. Calculated per instruction, there are about 2.2 references from 
the instruction-prefetch buffer, 0.8 data reads per instruction, and 0.4 data 
writes per instruction. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 511



480 

Example 

Answer 

Example 

Answer 

8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 

According to the V AX-11/780 Architecture Handbook, for the workload mea
sured in 1978 the TLB miss rate was about 3%. What do the measurements say 
for the timesharing workload measured in 1984? 

Assuming just one memory reference to get the average VAX instruction of 3.8 
bytes, the miss rate is 1 %: 

2.3 TLB misses 
100 instructions 2 3 

-1 +-0-.-8+_0_.-4-re-£-er-e-nc_e_s_ = 100~2.2 = O.Ol 

Instruction 

Including the VIBA-PIBA, Figure 8.49 on page 479 shows a 1.9% miss rate. 

According to the V AX-11/780 Architecture Handbook, for the workload mea
sured in 1978 the cache miss rate was about 5%. What do the measurements say 
for the timesharing workload measured in 1984? 

The cache miss rate varies. The mean miss rate is 

68%*8% + 20%*17% + 12%*17% = 11% 

In the best case, the answer is 

68%*4% + 20%*12% + 12%*12% = 7% 

In the worst case, 

68%*13% + 20%*25% + 12%*25% = 17% 

8.10 1· Fallacies and Pitfalls 

As the most naturally quantitative of the computer architecture disciplines, 
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet 
the authors were limited here not by lack of warnings, but by space. 

Pitfall: Too small an address space. 

Just five years after DEC and Carnegie-Mellon University collaborated to design 
the new PDP-11 computer family, it was apparent that their creation had a fatal 
flaw. An architecture announced by IBM six years before the PDP-11 is still 
thriving, with minor modifications, 25 years later. And the DEC VAX, criticized 
for including unnecessary functions, has sold 100,000 units since the PDP-11 
went out of production. Why? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 512



Memory-Hierarchy Design 481 

The fatal flaw of the PDP-11 was the size of its addresses as compared to the 
IBM 360 and the VAX. Address size limits the program length, since the size of 
a program and the amount of data needed by the program must be less than 
2address size. The reason the address size is so hard to change is that it determines 
the minimum width of anything that can contain an address: PC, register, mem
ory word, and effective-address arithmetic. If there is no plan to expand the 
address from the start, then the chances of successfully changing address size are 
so slim that it normally means the end of that computer family. Bell and Strecker 
[1976] put it like this: 

There is only one mistake that can be made in computer design that is difficult to 
recover from-not having enough address bits for memory addressing and 
memory management. The PDP-11 followed the unbroken tradition of nearly 
every known computer. [p. 2] 

A partial list of successful machines that eventually starved to death for lack of 
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel 
80186, Intel 80286, AMI 6502, Zilog Z80, CRAY-1, and CRAY X-MP. 

Fallacy: Given the hardware resources, the computer designer who selects a 
set-associative cache over a direct-mapped cache of the same size will get a 
faster computer. 

The question here is whether the extra logic of the set-associative cache affects 
the hit time, and therefore possibly the CPU clock rate. (See Figure 8.11.) If it 
does affect hit time, then the question is whether the advantage in lower miss 
rate offsets the slower hit time. In the mid-1980s many recognized this danger 
and selected direct-mapped placement; for example, the MIPS M/500, Sun 
3/260, and VAX 8800. Hill [1988] makes an eloquent case for ditect-mapped 
caches, including lower costs, faster hit times, and therefore smaller average 
access times for large, direct-mapped caches. Direct-mapped caches also allow 
the data read to be sent to the CPU and used even before hit/miss is determined, 
particularly useful with a pipelined CPU. Hill found about a 10% difference in 
hit times for TTL or ECL board-level caches and 2% difference for custom 
CMOS caches, with an absolute change in the miss rates of less than 1 % for 
large caches. Since a direct-mapped cache hit can be accessed faster and hit time 
typically sets the clock cycle time of the processor, a CPU with a direct-mapped 
cache can be as fast as or faster than a CPU with a two-way-set-associative 
cache of the same size. Przybylski, Horowitz, and Hennessy [1988] show several 
examples of such tradeoffs. 

Fallacy: A memory system can be designed using traces from a different 
architecture. 

Figure 8.51 (page 482) shows instruction and data cache miss rates for the same 
programs on two different architectures. This data is from the first portion of 
execution of Spice on DLX and the VAX. The shift from data accesses in the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 513



482 8.1 O Fallacies and Pitfalls 

VAX to instruction accesses on DLX seen in Figure 3.33 (page 123) of Chapter 
3 is reflected here: 61 % of the VAX references and 52% of the misses are to 
data. Note that while DLX has only three-quarters of the absolute number of 
data misses, its data miss rate is three times higher. 

VAX DLX 

Instruction references 576,169 918,537 

Instruction misses 2,033 3,188 

Instruction miss rate 0.4% 0.3% 

Data references 923,831 264,453 

Data misses 2,200 1,595 

Data miss rate 0.2% 0.6% 

Total references 1,500,000 1,182,990 

Percentage of instructions of total 38% 78% 
references 

Total misses 4,233 4,782 

Percentage of instruction misses of 48% 67% 
total misses 

Average miss rate 0.3% 0.4% 

FIGURE 8.51 Miss rates for VAX and DLX for an initial phase of Spice. The simulation 
assumes separate instruction and data caches. Each cache is direct mapped, uses 16-byte 
blocks, and contains 64 KB. Both use write through with write allocate. (Note that unlike 
Chapter 2, this data was collected using the F77 compiler and was for a portion of the 
Spice program). 

Pitfall: Basing the size of the write buffer on the speed of memory and the 
average mix of writes. 

This seems like a reasonable approach: 

. . Memory references . . 
Wnte-buffer size= Cl k 

1 
* Wnte percentage* Clock cycles to wnte memory 

oc eye e 

If there is one memory reference per clock cycle, 10% of the memory references 
are writes, and Writing a word of memory takes 10 cycles, then a one-word 
buffer is added (1*10%*10=1). Calculating for the VAX-11/780 using data from 
the last section, 

3.4 memory references * 0.4 writes * 6 clock cycles= 
0 22 

10.6 clock cycles 3.4 memory references Write · 

Thus, a one-word buffer seems sufficient. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 514



Memory-Hierarchy Design 483 

The pitfall is that when writes come close together, the CPU must stall until 
the prior write is completed. The single-word write buffer of the VAX-11/780 is 
the major reason for its write stalling (about 20% of all stalls). The proper ques
tion to ask is how large a buffer is needed to keep CPU write stalls to a small 
amount. The impact of write-buffer size can be established by simulation or 
estimated with a queuing model. 

Pitfall: Extending an address space by adding segments on top of a flat 
address space. 

During the 1970s, many programs grew to the point they couldn't address all of 
the code and dat~ with just a 16-bit address. Machines were then revised to offer 
32-bit addresses, either through a flat 32-bit address space or by adding 16 bits 
of segment to the existing 16-bit address. From the point of view of marketing, 
adding segments solves the addressing problem. Unfortunately, there is trouble 
any time a programming language wants an address that is larger than one seg
ment, such as indices for large arrays, unrestricted pointers, or reference 
parameters. Moreover, adding segments can turn every address into two 
words-one for the segment number and one for the segment offset-causing 
problems in the use of addresses in registers. In the 1990s, 32-bit addresses will 
be exhausted, and it will be interesting to see if history will repeat itself on the 
consequences of going to larger flat addresses versus adding segments. 

Fallacy: Caches are as fast as registers. 

This fallacy is important, because if caches were as fast as registers, there would 
be no need for registers. Without registers there would be no need for a register 
allocator, and so compilers could be simpler. The fallacy is difficult to prove 
quantitatively, yet example after example can be cited. Lampson [1982] summa
rized this experience: 

A register bank is faster than a cache, both because it is smaller, and because 
the address mechanism is much simpler. Designers of high performance 
machines have typically found it is possible to read one register and write 
another in a single cycle, while two cycles [latency] are needed for a cache 
access . ... Also, since there are not too many registers it is feasible to duplicate 
or triplic.ate them, so that several registers can be read out simultaneously. 
[p. 74] 

As mentioned in Chapter 3, the short addresses of registers allow more compact 
instruction encoding. It seems to the authors that the deterministic access of 
multiported register banks will always offer lower latency or higher bandwidth, 
or both, when compared to the nondeterministic access of caches. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 515



484 8.11 Concluding Remarks 

8.11 Concluding Remarks 

Block size 

Hit time 

Miss penalty 

Miss rate 
(local) 

Size 

Backing 
store 

Ql: block 
placement 

Q2: block 
identification 

Q3: block re-
placement 

Q4: write 
strategy 

The difficulty of building a memory system to keep pace with faster CPUs is 
underscored by the fact that the raw material for main memory is the same as 
that found in the cheapest computer. It is the principle of locality that saves us 
here-its soundness is demonstrated at all levels of the memory hierarchy in 
current computers, from disks to instruction buffers. 

Register Instruction- TLB First-level Second-level Virtual 
windows pref etch cache cache memory 

buffer 

64 bytes 1 byte 4-8 4-128 bytes 32-256 512- 8192 
(1 PTE) bytes bytes 

1 clock cycle 1 clock cycle 1 clock cycle 1-4 clock 4-10 clock 1-10 clock 
cycles cycles cycles 

32-64 clock 2-6 clock 10-30 clock 8-32 clock 30-80 clock 100,000-
cycles cycles cycles cycles cycles 600,000 

clock cycles 

1%-3% 10%-25%. 0.1%-2% 1%-20% 15%-30% 0.00001%-
0.001% 

512 bytes 6-12 bytes 32-8192 1 KB- 256KB- 4MB-
(8-1024 256KB 4MB 2048 MB 
PTEs) 

First-level First-level First-level ,Second-level Static- Disks 
cache cache cache cache column 

DRAM 

Circular N.A. Set asso- Direct Set asso- Fully 
buffer (Queue) ciative mapped ciative associative 

2 registers: Valid bits+ Tag/ Tag/ Tag/ Table 
high and low 1 register block block block 

First in- N.A. Random N .A. (Direct Random LRU 
first out (Queue) mapped) 

Write back Flush on Flush on Write Write Write back 
write to in- write to page through or through or 
struction table write back write back 
buffer 
(if possible) 

FIGURE 8.52 Summary of the memory-hierarchy examples in this chapter. 

Misses in every level can be categorized by three causes-compulsory, 
capacity, and conflict-and different techniques work for each case. Figure 8.52 
summarizes the attributes of the memory-hierarchy examples described in this 
chapter. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 516



Memory-Hierarchy Design 485 

There tends to be a knee in the curve of memory-hierarchy cost/performance: 
Above that knee is wasted performance and below that knee is wasted hardware. 
Architects find that knee by simulation and quantitative analysis. 

8.1 2 I Historical Perspective and References 

While the pioneers of computing knew of the need for a memory hierarchy and 
coined the term, the automatic management of two levels was first proposed by 
Kilburn, et al. [1962] and demonstrated with the Atlas computer at the Univer
sity of Manchester. This was the year before the IBM 360 was announced. 
While IBM planned for its introduction with the next generation (System/370), 
the operating system wasn't up to the challenge in 1970. Virtual memory was 
announced for the 370 family in 1972, and it was for this machine that the term 
"translation-lookaside buffer" was coined (see Case and Padegs [1978]). The 
only computers today without virtual memory are a few supercomputers and 
personal computers. 

Both the Atlas and the IBM 360 provided protection on pages, and over time 
machines evolved more elaborate mechanisms. The most elaborate mechanism 
was capabilities, which reached its highest interest in the late 1970s and early 
1980s [Fabry 1974 and Wulf, Levin, and HariJison 1981]. Wilkes [1982], one of 
the early workers on capabilities, had this to say about capabilities: 

Anyone who has been concerned with an implementation of the type just 
described [capability system], or has tried to explain one to others, is likely to 
feel that complexity has got out of hand. It is particularly disappointing that the 
attractive idea of capabilities being tickets that can be freely handed around has 
become lost .... 

Compared with a conventional computer system, there will inevitably be a cost 
to be met in providing a system in which the domains of protection are small and 
frequently changed. This cost will manifest itself in terms of additional hard
ware, decreased runtime speed, and increased memory occupancy. It is at 
present an open question whether, by adoption of the capability approach, the 
cost can be reduced to reasonable proportions. 

Today there is little interest in capabilities either from the operating systems or 
the computer architecture communities, although there is growing interest in 
protection and security. 

Bell and Strecker [1976] reflected on the PDP-11 and identified a small 
address space as the only architectural mistake that is difficult to recover from. 
At the time of the creation of PDP-11, core memories were increasing at a very 
slow rate, and the competition from 100 other minicomputer companies meant 
that DEC might not have a cost-competitive product if every address had to go 
through the 16-bit datapath twice. Hence, the decision to add just 4 more address 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 517



486 8.12 Historical Perspective and References 

bits than the predecessor of the PDP-11. The architects of the IBM 360 were 
aware of the importance of address size and planned for the architecture to 
extend to 32 bits of address. Only 24 bits were used in the IBM 360, however, 
because the low-end 360 models would have been ev.en slower with the larger 
addresses. Unfortunately, the architects didn't reveal their plans to the software 
people, and the expansion effort was foiled by programmers who stored extra 
information in the upper eight "unused" address bits. 

A few years after the Atlas paper, Wilkes published the first paper describing 
the concept of a cache (1965]: 

The use is discussed of a fast core memory of, say, 32,000 words as slave to a 
slower core memory of, say, one million words in such a way that in practical 
cases the effective access time is nearer that of the fast memory than that of the 
slow memory. [p. 270] 

This two-page paper describes a direct-mapped cache. While this is the first 
publication on caches, the first implementation was probably a direct-mapped 
instruction cache built at the University of Cambridge. It was based on tunnel 
diode memory, the fastest form of memory available at the time. Wilkes states 
that G. Scarott suggested the idea of a cache memory. 

Subsequent to that publication, IBM started a project that led to the first 
commercial machine with a cache, the IBM 360/85 [Liptay 1968]. Gibson 
(1967] describes how to measure program behavior as memory traffic as well as 
miss rate and shows how the miss rate varies between programs. Using a sample 
of 20 programs (each with 3,000,000 references!), Gibson also relied on average 
memory-access time to compare systems with and without caches. This was over 
20 years ago, and yet many used miss rates until recently. 

Conti, Gibson, and Pitkowsky [ 1968] describe the resulting performance of 
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 programs in 
the paper, even though the 360/85 has a slower clock cycle time (80 ns versus 60 
ns), smaller memory interleaving (4 versus 16), and a slower main memory 
(1.04 µsec versus 0.75 µsec). This is the first paper to use the term "cache." 
Strecker (1976] published the first comparative cache-design paper examining 
caches for the PDP-11. Smith (1982] later published a thorough survey paper, 
using the terms "spatial locality" and "temporal locality"; this paper has served 
as a reference for many computer designers. While most studies have relied on 
simulations, Clark (1983] used a hardware monitor to record cache misses of the 
V AX-11/780 over several days. Section 8.9 reports these findings, along with 
the work Clark did with Erner on TLBs (1984, 1985]. A similar study was per
formed on the VAX 8800 [Clark et al. 1988]. Agarwal, Sites, and Horowitz 
[ 1986] changed the microcode of a VAX to make traces of system and user 
code. These traces are used in this book (and are available through the 
publisher). Hill (1987] proposed the three Cs used in Section 8.4 to explain 
cache misses. Caches remain an active area of research, as Smith (1986] has 
recorded in his extensive bibliography. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 518



Memory-Hierarchy Design 487 

Many of the ideas in the advanced cache section have only been tried 
recently. The inclusion of caches on microprocessors such as the Motorola 
68020 gave rise to two-level cache machines; the Sun 3/260 in 1986 was perhaps 
the first. In 1988, the Silicon Graphics 4D/240 had two levels of caches for data 
and instructions, with the second level added primarily for cache coherency to 
allow four-way multiprocessing. The MIPS RC 6280 is probably the first 
machine to go to two-level caches for the reasons given on page 465 [Roberts, 
Taylor, and Layman 1990]. Goodman and Chiang [1984] were the first to 
publish an investigation of static-column DRAM in a memory hierarchy, while 
Kelly [1988] refined the idea by using virtual addresses. Goodman [1987] 
showed that aliases can be handled at cache-miss time, and Wang, Baer, and 
Levy [1989] show that the extra control for this does not look too bad for two 
levels of cache. 

In comparison to the other ideas in the advanced section, cache-coherency 
research is much older. Tang [1976] published the first cache-coherency proto
col using directories, and this approach was implemented in the IBM 3081. 
Censier and Feautrier [1978] describe a technique with status tags in memory. 
The first machine to use snooping caches was the Synapse N+l [Frank 1984]; 
the first publication on snooping caches was by Goodman [1983]. Archibald and 
Baer [1986] survey the wide variety of schemes for cache coherency. References 
on the protocols mentioned in their paper and in Figure 8.45 are Frank [1984] 
for Synapse; Goodman [1983] for Write Once; Katz et al. [1985] for Berkeley; 
McCreight [1984] for Dragon; Papamarcos and Patel [1984] for Illinois; and 
Thacker and Stewart [1987] for Firefly. Baer and Wang [1988] discuss 
multilevel inclusion. Eggers' s [ 1989] nomenclature for categorizing snooping 
caches is adopted in this text. Chapter 10, Section 10.7 mentions the use of 
pre fetching to improve cache performance, and Kroft [ 1981] describes the 
design of a cache that allows the cache to service subsequent requests while the 
requested data is prefetched. Przybylski [ 1990] and the dissertations by Agarwal 
[1987], Eggers [1989], and Hill [1987] investigate many aspects of the advanced 
cache topics in more depth. 

Papers on another use of locality, register windows or stack caches, are by 
Patterson and Sequin [1981], Ditzel and McClellan [1982], and Lampson 
[1982]. Sites wrote an earlier paper [1979] suggesting one way to use the 
expanding resources of VLSI was to get higher performance by using a lot of 
registers, and these schemes are one interpretation of that recommendation. 

References 

AGARWAL, A. [1987]. Analysis of Cache Performance for Operating Systems and 
Multiprogramming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May). 

AGARWAL, A., R. L. SITES, AND M. HOROWITZ [1986]. "ATUM: A new technique for capturing 
address traces using microcode," Proc. 13th Annual Symposium on Computer Architecture (June 
2-5), Tokyo, Japan, 119-127. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 519



488 8.12 Historical Perspective and References 

ARCHIBALD, J. AND J.-L. BAER [1986]. "Cache coherence protocols: Evaluation using a 
multiprocessor simulation model," ACM Trans. on Computer Systems 4:4 (November) 273-298. 

BAER, J.-L. AND W.-H. WANG [1988]. "On the inclusion property for multi-level cache hier
archies," Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu, 73-80. 

BELL, C. G. AND W. D. STRECKER [1976]. "Computer structures: What have we learned from the 
PDP-11 ?,"Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, Penn., 
1-14. 

BLAKKEN, J. [1983]. "Register windows for SOAR," in Smalltalk On A RISC: Architectural 
Investigations, Proc. of CS 292R (April) 126-140, University of California. 

CASE, R.P. AND A. PADEGS [1978]. "The architecture of the IBM System/370," Communications of 
the ACM 21:1, 73-96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer 
Structures: Principles and Examples (1982), McGraw-Hill, New York, 830--855. 

CENSIER, L. M. AND P. FEAUTRIER [1978]. "A new solution to the coherence problem in 
multicache systems," IEEE Trans. on Computers C-27:12 (December) 1112-1118. 

CLARK, D. W. [1983]. "Cache performance of the VAX-11/780," ACM Trans. on Computer 
Systems 1:1, 24-37. 

CLARK, D. W. AND J. S. EMER [1985]. "Performance of the VAX-11/780 translation buffer: 
Simulation and measurement," ACM Trans. on Computer Systems 3:1, 31-62. 

CLARK, D. W, P. J. BANNON, AND J.B. KELLER [1988]. "Measuring VAX 8800 Performance with 
a Histogram hardware monitor," Proc. 15th Annual Symposium on Computer Architecture (May
June), Honolulu, Hawaii, 176-185. 

CONTI, C., D. H. GIBSON, ANDS. H. PITOWSKY [1968]. "Structural aspects of the Systetn/360 
Model 85, part I: General organization," IBM Systems J. 7:1, 2-14. 

CRAWFORD, J. HAND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif. 

DITZEL, D.R., AND H.R. MCCLELLAN [1982]. "Register allocation for free: The C machine stack 
cache" Symposium on Architectural Support for Programming Languages and Operating Systems 
(March 1-3), Palo Alto, Calif., 48-56. 

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph. 
D. Thesis, Univ. of California, Berkeley, Computer Science Division Tech. Rep. UCB/CSD 
89/501 (April). 

EMER, J. S. AND D. W. CLARK [1984]. "A characterization of processor performance of the VAX-
11/780," Proc. 11th Annual Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-
310. 

FABRY, R. S. [1974]. "Capability based addressing," Comm. ACM 17:7 (July) 403-412. 

FRANK, S. J. [1984].' "Tightly coupled multiprocessor systems speed memory access times," 
Electronics 57: 1 (January) 164-169. 

GIBSON, D. H. [1967]. "Considerations in block-oriented systems design," AF/PS Conf Proc. 30, 
SJCC, 75-80. 

GOODMAN, J. R. [1983]. "Using cache memory to reduce processor memory traffic," Proc. Tenth 
Annual Symposium on Computer Architecture (June 5-7), Stockholm, Sweden, 124-131. 

GOODMAN, J. R. and M.-C. Chiang [1984]. "The use of static column RAM as a memory 
hierarchy," Proc. 11th Annual Symposium on Computer Architecture (June 5-7), Ann Arbor, 
Mich., 167-174. 

GOODMAN, J. R. [1987]. "Coherency for multiprocessor virtual address caches," Proc. Second Int' l 
Con/. on Architectural Support for Programming Languages and Operating Systems, Palo Alto, 
Calif., 71-81. 

HALBERT, D. C. AND P. B. KESSLER [1980]. "Windows of overlapping register frames," CS 292R 
Final Reports (June) 82-100. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 520



Memory-Hierarchy Design 489 

HILL, M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis, 
Univ. of California at Berkeley Computer Science Division, Tech. Rep. UCB/CSD 87/381 
(November). 

HILL, M. D. [1988]. "A case for direct mapped caches," Computer 21:12 (December) 25-40. 

HUGUET, M. AND T. LANG [1985]. "A reduced register file for RISC architectures," Computer 
Architecture News 13:4 (September) 22-31. 

KATZ, R., S. EGGERS, D. A. WOOD, C. PERKINS, AND R. G. SHELDON [1985]. "Implementing a 
cache consistency protocol," Proc. 12th Annual Symposium on Computer Architecture, 276-283. 

KELLY, E. [1988]. '"SCRAM Cache' in Sun-4/110 beats traditional caches," Sun Technology 1:3 
(Summer) 19-21. 

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, F. H. SUMNER [1962]. "One-level·storage 
system," IRE Transactions on Electronic Computers EC-11 (April) 223-235. Also appears in D. P. 
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982), 
McGraw-Hill, New York, 135-148. 

KROFT, D. [1981]. "Lockup-free instruction fetch/prefetch cache organization," Proc. Eighth 
Annual Symposium on Computer Architecture (May 12-14), Minneapolis, Minn., 81-87. 

LAMPSON, B. W. [1982). "Fast procedure calls," Symposium on Architectural Support for 
Programming Languages and Operating Systems (March 1-3), Palo Alto, Calif., 66-75. 

LIPTAY, J. S. [1968]. "Structural aspects of the System/360 Model 85, part II: The cache," IBM 
Systems J. 7:1, 15-21. 

MCCALL, K. [1983]. "The Smalltalk-80 benchmarks," Smalltalk 80: Bits of History, Words of 
Advice, G. Krasner, ed., Addison-Wesley, Reading, Mass., 153-174. 

MCCREIGHT, E. [1984]. "The Dragon computer system: An early overview," Tech. Rep. Xerox 
Corp. (September). 

MCFARLING, S. [1989]. "Program optimization for instruction caches," Proc. Third International 
Conj. on Architectural Support for Programming Languages and Operating Systems (April 3-6), 
Boston, Mass., 183-191. 

PAPAMARCOS, M. AND J. PATEL [1984]. "A low coherence solution for multiprocessors with 
private cache memories," Proc. of the 11th Annual Symposium on Computer Architecture (June), 
Ann Arbor, Mich., 348-354. 

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann 
Publishers, San Mateo, Calif. 

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. "Performance tradeoffs in cache 
design," Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu, Hawaii, 
290-298. 

ROBERTS, D., G. TAYLOR, AND T. LAYMAN [1990]. "An ECL RISC microprocessor designed for 
two-level cache," !!}EE Compean (February). 

SAMPLES, A. D. AND P. N. HILFINGER [1988]. "Code reorganization for instruction caches," Tech. 
Rep. UCB/CSD 88/447 (October), Univ. of Calif., Berkeley. 

SITES, R. L., [1979]. "How to use 1000 registers," Caltech Conf on VLSI (January). 

SMITH, A. J. [1982]. "Cache memories," Computing Surveys 14:3 (September) 473-530. 

SMITH, A. J. [1986]. "Bibliography and readings on CPU cache memories and related topics," 
Computer Architecture News (January) 22-42. 

SMITH, J. E. AND J. R. QOODMAN [1983). "A study of instruction cache organizations and 
replacement policies," Proc. Tenth Annual Symposium on Computer Architecture (June 5-7), 
Stockholm, Sweden,, 132-137. 

STRECKER, W. D. [1976]. "Cache memories for the PDP-11?," Proc. Third Annual Symposium on 
Computer Architecture (January), Pittsburgh, Penn., 155-158. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 521



490 8.12 Historical Perspective and References 

TANG, C. K. [1976). "Cache system design in the tightly coupled multiprocessor system," Proc. 
1976 AFJPS National Computer Conj., 749-753. 

TAYLOR, G. S., P. N. HILFINGER, J. R. LARUS, D. A. PATTERSON, AND B. G. ZORN [1986). 
"Evaluation of the SPUR Lisp architecture," Proc. 13th Annual Symposium on Computer 
Arc_hitecture (June 2-5), Tokyo, Japan, 444-452. 

THACKER, C. P. AND L. C. STEWART [1987). "Firefly: a multiprocessor workstation," Proc. 
Second Int' l Conj. on Architectural Support for Programming Languages and Operating Systems, 
Palo Alto, Calif., 164--172. 

UNGAR, D. M. [1987). The Design of a High Pe1formance Smalltalk System, The MIT Press 
Distinguished Dissertation Series, Cambridge, Mass. 

WANG, W.-H., J.-L. BAER, AND H. M. LEVY [1989). "Organization and performance of a two-level 
virtual-real cache hierarchy," Proc. 16th Annual Symposium on Computer Architecture (May 28-
June 1), Jerusalem, Israel, 140-148. 

WILKES, M. [1965). "Slave memories and dynamic storage allocation," IEEE Trans. Electronic 
Computers EC-14:2 (April) 270-271. 

WILKES, M. V. [1982). "Hardware support for memory protection: Capability implementations," 
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems 

(March 1-3), Palo Alto, Calif., 107-116. 

WULF, W. A., R. LEVIN ANDS. P. HARBISON [1981). Hydra!C.mmp: An Experimental Computer 
System, McGraw-Hill, New York. 

EXERCISES 

8.1 [15/15/12/12] <2.2,8.4> Let's try to show how you can make unfair benchmarks. 
Here are two machines with the same processor and main memory but different cache 
organizations. Assume the miss time is 10 times a cache-hit time for both machines. 
Assume writing a 32-bit word takes 5 times as long as a cache hit (for the write-through 
cache), and that writing a whole 16-byte block takes 10 times as long as a cache-read hit. 
(for the write-back cache). The caches are unified; that is, they contain both instructions 
and data. 

Cache A: 64 sets, 2 elements per set, each block is 16 bytes, and it uses write through. 

Cache B: 128 sets, 1 element per set, each block is 16 bytes, and it uses write back. 

a. [15] Describe a program that makes machine A run as much faster as possible than 
machine B. (Be sure to state any further assumptions you need, if any.) 

b. [15] Describe a program that makes machine B run as much faster as possible than 
machine A. (Be sure to state any further assumptions you need, if any.) 

c. [12] Approximately how much faster is the program in Part a on machine A than 
machine B? 

d. [12] Approximately how much faster is the program in Part b on machine B than 
machine A? 

8.2 [20] <2.2,6.4,8.4> To simplify pipelined execution, some machines insert NOP 
instructions rather than interlock the pipeline (see pages 273-275 in Chapter 6). Ignoring 
cache misses, assume that the Spice code takes 2,000,000 clocks in either case (since the 
version without NOPS still interlocks, which takes an extra clock each time.) Figure 8.53 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 522



Memory-Hierarchy Design 491 

shows data collected for a portion of Spice execution with a 64-KB, direct-mapped, 
instruction-only cache with one-word blocks. 

With NOPS Without NOPS Ratio with/without 

Total references 1,500,000 1,180,000 1.27 

Cache misses 34,153 24,908 1.37 

Miss rate 2.28 2.10 1.09 

FIGURE 8.53 Spice miss rates with and without NOPs. 

The conclusion of a study based on Figure 8.53 was that a 9% increase in the miss rate of 
the program with NOPS will have a small but measurable impact on performance. What 
is the actual impact on performance assuming a 10-clock miss penalty? 

8.3 [15/15] <8.4> You purchased an Acme computer with the following features: 

1. 90% of all memory accesses are found in the cache; 

2. Each cache block is two words, and the whole block is read on any miss; 

3. The processor sends references to its cache at the rate of 107 words per second; 

4. 25% of the references of (3) are writes; 

5. Assume that the bus can support 107 words per second, reads or writes; 

6. The bus reads or writes a single word at a time (the bus cannot read or write two 
words at once); 

7. Assume at any one time, 30% of the blocks in the cache have been modified; 

8. The cache uses write allocate on a write miss/r,;,):c ~" k-

You are considering adding a peripheral to the bus, and you want to know how much of 
the bus bandwidth is already used. Calculate the percentage of bus bandwidth used on the 
average in the two cases below. The percentage is called the traffic ratio in the literature. 
Be sure to state your assumptions. 

a. [15] The cache is write through. 

b. [15] The cache is write back. 

8.4 [20] <8.4> One drawback to the write-back scheme is that writes will probably take 
two cycles. During the first cycle, we detect whether a hit will occur, and during the 
second (assuming a hit) we actually write the data. Let's assume that 50% of the blocks 
are dirty for a write-back cache. Using statistics for loads and stores from DLX in Figure 
C.4 in Appendix C, estimate the performance of a write-through cache with a one-cycle 
write versus a write-back cache with a two-cycle write for each of the programs. For this 
question, assume that the write buffer for write through will never stall the CPU (no 
penalty). Assume a cache hit takes 1 clock cycle, the cache miss penalty is 10 clock 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 523



492 Exercises 

cycles, and a block write from the cache to main memory takes 10 clock cycles. Finally, 
assume the instruction-cache miss rate is 2% and the data-cache miss rate is 4%. 

8.5 [15/20/10] <8.4> To save development time, the Sun 3/280 and the Sun 4/280 used 
identical memory systems, even though the CPUs were quite different. Assume the same 
case exists for a new machine, one board using a VAX CPU and the other a DLX CPU. 
For now assume the miss-rate information in Figure 8.12 and 8.16 (pages 421 and 424) 
apply to both architectures. Use the average column in Figure C.4 in Appendix C as 
needed for DLX instruction mix, and the caption of Figure 8.16 (page 424) for VAX 
instruction/data mix. Assume the following: 

Miss penalty is 12 clock cycles. 

A perfect write buffer that never stalls the CPU. 

The base CPI assuming a perfect memory system is 6.0 for the VAX and 1.5 for DLX. 

A unified cache adds 1 extra clock cycle to each load and store of DLX (since there is 
a single memory port) but not for the VAX. 

You are considering three options: 

1. A 4-way-set-associative unified cache of 64 KB. 

2. Two 2-way-set-associative caches of 32 KB each, one for instructions and one for 
data. 

3. A direct-mapped unified cache of 128 KB. Assume that clock rate is 10% faster in 
this case since the mapping is direct and the CPU address does not need to drive two 
caches, nor does the data bus need to be multiplexed. This faster clock rate increases the 
miss penalty to 13 clock cycles. 

a. [15] What is the average memory-access time in clock cycles for each organization? 

b. [20] What is the CPI for each machine and cache organization? 

c. [10] What cache organization gives the best average performance for the two CPUs? 

8.6 [25/15] <2.3,8.4,8.8> Some microprocessors have custom single-chip caches as 
companions to the CPU. For example, the Motorola 88100 CPU can have up to 8 of the 
88200 cache chips. These chips tend to be more expensive than off-the-shelf static RAM 
chips. The MIPS R3000 includes a comparator on the CPU chip so that cache tags and 
data can be built from off-the-shelf static RAMs. 

a. [25] Using the program that analyzes cache miss rates how many 16K-by-4 cache 
RAMs must the R3000 use to get the same performance as two 88200 chips? Both 
designs use separate instruction and data caches. The MIPS design assumes a block 
size of 16 bytes with subblock placement for each word. The cache is write through 
with a 4-word write buffer. The Motorola 88200 is 4-way set associative with 16 KB 
per chip and a 16-byte block using LRU replacement. 

b. [15] Here is the data on the price of each chip (quantity 1 as of 8/1/89): 

Motorola 88100: $697 

Motorola 88200: $875 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 524



Memory-Hierarchy Design 

MIPS R3000 (25 MHz): $300 

MIPS R3010 FPU (25 MHz): $350 

16K by 4 SRAM (for 25 MHz R3000): $21 

Which system will be cheaper and by how much? 

493 

8.7 [15/25/15/15) <2.3,8.4> The Intel i860 has its caches on chip and its die size is 
1.2 cm* 1.2 cm. It has a 2-way-set-associative,_ 4-KB instruction cache and a 2-way-set
associative, 8-KB data cache using write through or write back. Both caches use 32-byte 
blocks. There are no write buffers or process identifiers to reduce cache flushing. The 
i860 also includes a 64-entry, 4-way-set-associative TLB to map its 4-KB pages. Address 
translation occurs before the caches are accessed. The Cypress 7C601 CPU chip size is 
0.8 cm by 0.7 cm and has no on-board cache-a cache controller chip (7C604) and two 
16K * 16 cache chips (7C157) are offered to form a 64-KB unified cache. The controller 
includes a TLB with 64 entries managed fully associatively with 4096 process identifiers 
to reduce flushing. It supports 32-byte blocks with direct-mapped placement, and either 
write through or write back. There is a one-block write buffer for write back and a four
word write buffer for write through. The chip sizes are 1.0 cm by 0.9 cm for the 7C604 
and 0.8 cm by 0.7 cm. for the 7C157. 

a. [15) Using the cost model of Chapter 2, what is the cost of the Cypress chip set 
versus the Intel chip? (Use Figure 2.11 on page 62 to determine chip costs by finding 
the closest die size in that table to the Intel and Cypress die area.) 

b. [25) Use the DLX cache traces and cache simulator to determine the average 
memory-access time for each cache organization. Assume a miss takes 6 clocks 
latency plus 1 clock for each 32-bit word. Assume both systems run at the same clock 
rate and use write allocate. 

c. [15) What is the comparative cost/performance of these chips using average memory
access time as the measure? 

d. [15) What is the percent increase in cost of a color workstation that uses the more 
expensive chips? 

8.8 [25/10/15) <8.4> The CRAY X-MP instruction buffers can be thought of as an 
instruction-only cache. The total size is 1 KB, broken into 4 blocks of 256 bytes per 
block. The cache is fully associative and uses a first-in/first-out replacement policy. The 
access time on a miss is 10 clock cycles, with the transfer time of 64 bytes every clock 
cycle. The X-MP takes 1 clock cycle on a hit. Use the cache simulator and the DLX 
traces to determine: 

a. [25) Instruction miss rate 

b. [10) Average instruction memory-access time measured in clock cycles 

c. [15) What does the CPI of the CRAY X-MP have to be for the portion due to 
instruction cache misses to be 10% or less? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 525



494 Exercises 

8.9 [25] <8.4> Traces from a single process give too-high estimates for caches used in a 
multiprocess environment. Write a program that merges the uniprocess DLX traces into a 
single reference stream. Use the process-switch statistics in Figure 8.25 (page 439) as the 
average process-switch rate with an exponential distribution about that mean. (Use 
number of clock cycles rather than instructions, and assume the CPI of DLX is 1.5.) Use 
the cache simulator on the original traces and the merged trace. What is the miss rate for 
each assuming a 64-KB direct-mapped cache with 16-byte blocks? (There is a process
identified tag in the cache tag so that the cache doesn't have to be flushed on each 
switch.) 

8.10 [25] <8.4> One approach to reducing misses is to prefetch the next block. A simple 
but effective strategy is when block i is referenced to make sure block i+ 1 is in the cache, 
and if not, to prefetch it. Do you think prefetching is more or less effective with 
increasing block size? Why? Is it more or less effective with increasing cache size? Why? 
Use statistics from the cache simulator and the traces to support your conclusion. 

8.11 [20/25] <8.4> Smith and Goodman [1983] found that for a small-instruction-only 
cache, a cache using direct mapping could consistently outperform one using fully 
associative with LRU replacement. 

a. [20] Explain why this would be possible. (Hint: you can't explain this with the 3C 
model because it ignores replacement policy.) 

b. [25] Use the cache simulator to see if their results hold for the traces. 

8.12 [Discussion] <8.4> If you look at conflict misses for a given associativity in Figure 
8.12, as capacity increases the conflict misses go up and down. For example, for 2-way
set-associative mapping the miss rate for 2-KB cache is .010, a 4-KB cache is .013, and 
an 8-KB cache is .008. Why in the world would this happen? 

8.13 [30l <8.5> Use the cache simulator and traces to calculate the effectiveness of a 4-
bank versus 8-bank interleaved memory. Assume each word transfer takes one clock on 
the bus and a random access is 8 clocks. Measure the bank conflicts and memory 
bandwidth for these cases: 

a. No cache and no write buffer. 

b. A 64-KB, direct-mapped, write-though cache with four-word blocks. 

c. A 64-KB, direct-mapped, write-back cache with four-word blocks. 

d. A 64-KB, direct-mapped, write-though cache with four-word blocks but the 
"interleaving" comes from a page-mode DRAM. 

e. A 64-KB, direct-mapped, write-back cache with four-word blocks but the 
"interleaving" comes from a page mode DRAM. 

8.14 [20] <8.6> If the base CPI with a perfect memory system is 1.5, what is the CPI for 
these cache organizations? Use Figure 8.12 (page 421): 

a. Direct-mapped, 16-KB unified cache using write back. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 526



Memory-Hierarchy Design 495 

b. Two-way-set-associative, 16-KB unified cache using write back. 

c. Direct-mapped, 32-KB unified cache using write back. 

Assume the memory latency is 6 clocks, the transfer rate is 4 bytes per clock cycle and 
that 50% of the transfers are dirty. There are 16 bytes per block and 20% of the 
instructions are data-transfer instructions. The caches fetch words of the block in address 
order and the CPUs stall until all words of the block arrive. There is no write buffer. Add 
to the assumptions above a TLB that takes 20 clock cycles on a TLB miss. A TLB does 
not slow down a cache hit. For the TLB, make the simplifying assumption that 1 % of all 
references aren't found in TLB, either when addresses come directly from the CPU or 
when addresses come from cache misses. What is the impact on performance of the TLB 
if the cache above is physical or virtual? 

8.15 [30] <3.8,8.9> The example in Section 8.9 (page 478) refines the instructions 
fetched into the CPU from the cache due to the instruction-prefetch buffer. How does this 
increase of 13% to 39% in instruction words fetched affect the difference in the 
instruction words fetched from DLX versus VAX? The extra instruction fetches of the 
VAX hurt only when they bring something into the cache that is not used before it is 
displaced, while DLX would seem to need a larger cache for its larger program. Write a 
simulator emulating the instruction-prefetch buffer to measure the increase in cache 
misses using the VAX address traces and see if prefetching is a significant increase in 
cache misses. 

8.16 [25-40] <8.7> Study the impact of adding register windows to DLX. This study can 
range from simply estimating the register-traffic savings to modifying the DLX compiler 
and simulator to measure costs and benefits directly. 

8.17 [10] <8.8> Data General described the design of a three-level cache for an ECL 
implementation of the 88000 architecture. What is the formula for average access time for 
a three-level cache? 

8.18 [20] <8.8> What is the performance loss for a four-way multiprocessor with I/O 
devices? Suppose 1 % of all data references to the cache cause invalidation to the other 
data caches and that all CPUs stall four clocks on an invalidation. Assume a 64-KB, 
direct-mapped cache for data and a 64-KB, direct-mapped cache for instructions with a 
block size of 32 bytes yields a 1 % miss rate for instructions and a 2% miss rate for data, 
with 20% of all CPU memory references being for data. The CPI of the CPU is 1.5 with a 
perfect memory system and it takes 10 clocks on a cache miss whether the data is dirty or 
clean. 

8.19 [25] <8.8> Use the traces to calculate the effectiveness of early restart and out-of
order fetch. What is the distribution of first accesses to a block as block size increases 
from 2 words to 64 words by factors of two for: 

a. A 64-KB, instruction-only cache? 

b. A 64-KB, data-only cache? 

c. A 128-KB unified cache? 

Assume direct-mapped placement. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 527



496 Exercises 

8.20 [30] <8.8> Use the cache simulator and traces with a program you write yourself to 
compare the effectiveness schemes for fast writes: 

a. 1-word buffer and the CPU stalls on a data-read cache miss with a write-through 
cache. 

b. 4-word buffer and the CPU stalls on a data-read cache miss with a write-through 
cache. 

c. 4-word buffer and the CPU stalls on a data-read cache miss only if there is a potential 
conflict in the addresses with a write-through cache. 

d. A write-back cache that writes dirty data first and then loads the missed block. 

e. A write-back cache with a one-block write buffer that loads the miss data first and 
then stalls the CPU on a clean miss if the write buffer is not empty. 

f. A write-back cache with a one-block write buffer that loads the miss data first and 
then stalls the CPU on a clean miss only if the write buffer is not empty and there is 
a potential conflict in the addresses. 

Assume a 64-KB, direct-mapped cache for data and a 64-KB, direct-mapped cache for 
instructions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect 
memory system and it takes 14 clocks on a cache miss and 7 clocks to write a single word 
to memory. 

8.21 [30] <8.8> Use the cache simulator and traces with a program you write yourself to 
create a two-level cache simulator. Use this program to see at what cache size is the 
global miss rate of a second-level cache approximately the same as a single-level cache of 
the same capacity. 

8.22 [Discussion] <8.6> Some people have argued that with increasing capacity of 
memory storage per chip, virtual memory is an idea whose time has passed, and they 
expect to see it dropped from future computers. Find reasons for and against this 
argument. 

8.23 [Discussion] <8.6> So far, few computer systems take advantage of the extra 
security available with gates and rings found in a machine like the Intel 80286. Construct 
some scenario whereby the computer industry would switch over to this model of 
protection. 

8.24 [Discussion] <8.4> Recent research has tried to use compilers to improve cache 
performance (see McFarling [1989] and Samples and Hilfinger [1988]): 

a. Which of the 3C's are compilers trying to improve and which are they not? Why? 

b. Which mapping is best for compiler improvement? Why? 

8.25 [Discussion] <8.3> Many times a new technology has been invented that is expected 
to make a major change to the memory hierarchy. For the sake of this question, let's 
suppose that biological computer technology becomes a reality. Suppose biological 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 528



Memory-Hierarchy Design 497 

memory technology has an unusual characteristic: It is as fast as the fastest 
semiconductor DRAMs, and it can be randomly accessed; but it only costs as much as 
magnetic-disk memory. It has the further advantage of not being any slower no matter 
how big it is. The only drawback is that you can only Write it Once, but you can Read it 
Many times. Thus it is called a "WORM" memory. Because of the way it is 
manufactured, the WORM- memory module can be easily replaced. See if you can come 
up with several new ideas to take advantage of WORMs to build better computers using 
"bio-technology." 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 529



110 certainly has been lagging in the last decade. 

Seymour Cray, Public Lecture (1976) 

Also, 110 needs a lot of work. 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

9.10 

David Kuck, Keynote Address, 
15th Annual Symposium on Computer Architecture (1988) 

Introduction 499 

Predicting System Performance 501 

1/0 Performance Measures 506 

Types of 1/0 Devices 512 

Buses-Connecting 1/0 Devices to CPU/Memory 528 

Interfacing to the CPU 533 

Interfacing to an Operating System 535 

Designing an 1/0 System 539 

Putting It All Together: 
The IBM 3990 Storage Subsystem 546 

Fallacies and Pitfalls 554 

9.11 Concluding Remarks 559 

9.12 Historical Perspective and References 560 

Exercises 563 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 530



9.1 

Input/Output 

Introduction 

Input/output has been the orphan of computer architecture. Historically 
neglected by CPU enthusiasts, the prejudice against I/0 is institutionalized in the 
most widely used performance measure, CPU time (page 35). Whether a 
computer has the best or the worst I/O system in the world cannot be measured 
by CPU time, which by definition ignores I/O. The second class citizenship of 
I/0 is even apparent in the label "peripheral" applied to I/O devices. 

This attitude is contradicted by common sense. A computer without I/O 
devices is like a car without wheels-you can't get very far without them. And 
while CPU time is interesting, response time-the time between when the user 
types a command and when she gets results-is surely a better measure of 
performance. The customer who pays for a computer cares about response time, 
even if the CPU designer doesn't. Finally, as rapid improvements in CPU perfor
mance compress traditional classes of computers together, it is I/O that serves to 
distinguish them: 

• The difference between a mainframe computer and a minicomputer is that a 
mainframe can support many more terminals and disks. 

• The difference between a minicomputer and a workstation is that a 
workstation has a screen, a keyboard, and a mouse. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 531



500 9.1 Introduction 

• The difference between a file server and a workstation is that a file server has 
disks and tape units but no screen, keyboard, or mouse. 

• The difference between a workstation and a personal computer is that 
workstations are always GOnnected together on a network. 

It may come to pass that computers from high-end workstations to low-end 
supercomputers will use the same "super-microprocessors." Differences in cost 
and performance would be determined only by the memory and 1/0 systems 
(and the number of processors). 

I/O's revenge is at hand. Suppose we have a difference between CPU time 
and response time of 10%, and we speed up the CPU by a factor of 10, while 
neglecting 1/0. Amdahl's Law tells us that we will get a speedup of only 5 
times, with half the potential of the CPU wasted. Similarly, making the CPU 100 
times faster without improving the 1/0 would obtain a speedup of only 10 times, 
squandering 90% of the potential. If, as predicted in Chapter 1, performance of 
CPUs improves at 50% to 100% per year, and 1/0 does not improve, every task 
will become 1/0 bound. There would be no reason to buy faster CPUs-and no 
jobs for CPU designers. 

While this single chapter cannot fully vindicate 1/0, it may at least atone for 
some of the sins of the past and restore some balance. 

Are CPUs Ever Idle? 

Some suggest that the prejudice is well founded. 1/0 speed doesn't matter, they 
argue, since there is always another process to run while one process waits for a 
peripheral. · 

There are several points to make in reply. First, this is an argument that 
performance is measured as throughput-more tasks per hour-rather than as 
response time. Plainly, if users didn't care about response time,., interactive 
software never would have been invented, and there would be no workstations 
today. (The next section gives experimental evidence on the importance of 
response time.) It may also be expensive to rely on processes while waiting for 
1/0, since main memory must be larger or else the paging traffic from process 
switching would actually increase 1/0. Furthermore, with desktop computing 
there is only one person per CPU, and thus fewer processes than in timesharing; 
many times the only waiting process is the human being! And some 
applications, such as transaction processing (Section 9.3), place strict limits on 
response time as part of the performance analysis. 

But let's accept the argument at face value and explore it further. Suppose the 
difference between response time and CPU time today is 10%, and a CPU that is 
ten times faster can be achieved without changing 1/0 performance. A process 
will then spend 50% of its time waiting for 1/0, and two processes will have to 
be perfectly aligned to avoid CPU stalls while waiting for 1/0. Any further CPU 
improvement will only increase CPU idle time. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 532



Input/Output 501 

Thus, I/O throughput can limit system throughput, just as 1/0 response time 
limits system response time. Let's see how to predict performance for the whole 
system. 

9.2 I Predicting System Performance 

System performance is limited by the slowest part of the path between CPU and 
1/0 devices. The performance of a system can be limited by the speed of any of 
these pieces of the path, shown in Figure 9 .1: 

• TheCPU 

• The cache memory 

• The main memory 

• The memory-I/O bus 

• The 1/0 controller or 1/0 channel 

• The 1/0 device 

• The speed of the 1/0 software 

• The efficiency of the software's use of the 1/0 device 

Processor 
Interrupts 

1/0 1/0 1/0 

Main 
controller controller controller 

memory 

Graphics Network 

output 

FIGURE 9.1 Typical collection of 1/0 devices on a computer. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 533



502 9.2 Predicting System Performance 

If the system is not balanced, the high performance of some components may be 
lost due to the low performance of one link in the chain. The art of 1/0 design is 
to configure a system such that the speeds of all components are matched. 

In earlier chapters we have assumed that the fastest CPU is the single object 
of our desire, but CPU performance is not the same as system performance. For 
example, suppose we have two workloads, A and B. Both workloads take 10 
seconds to run. Workload A does so little 1/0 that it is not worth mentioning. 
Workload B keeps 1/0 devices busy four seconds, and this time is completely 
overlapped with CPU activities. Suppose the CPU is replaced by a newer model 
with five times the performance. Intuitively, we realize that workload A takes 
two seconds-fully five times faster-but workload Bis 1/0 bound and cannot 
take less than four seconds. Figure 9.2 illustrates our intuition. 

Cid CPU, I/Clime 

workload A CPU time 10 

Cid CPU, I/Clime 

workload B CPU time 10 

New CPU, l/Olime 
workload A CPU lime 

New CPU, I/Clime 

workload B CPU lime 

0 2 3 4 5 6 7 8 9 10 
Time (secs) 

FIGURE 9.2 The overlapped execution of the two workloads with the original CPU 
and then a CPU with five times the performance. We can see that the elapsed time for 
workload A is indeed 1/5 of the time with the new CPU, but it is limited to four seconds in 
workload B because 1/0 speed is not improved. 

Determining the performance of such cases requires a new formula. The 
elapsed execution time of a workload can be broken into three pieces 

Timeworkload = Timecpu + Time110 - Time0verlap 

where Timecpu means the time the CPU is busy, Timel/o means the time the 
1/0 system is busy, and Time0 verlap means the time both the CPU and the 1/0 
system are busy. Using workload B with the old CPU in Figure 9.2 as an 
example, the times in seconds are: 

10 for Timeworkload• 

10 for Timecpu, 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 534



Example 

Answer 

Input/Output 

4 for Time1;0. and 

4 for Time0 verlap· 

503 

Assuming we speed up only the CPU, one way to calculate the time to 
execute the workload is: 

Timecpu . Time0 verlap 
Timeworkload = S d + Time1;0 - d pee upcpu Spee upcpu 

Since the CPU time is shrunk, it stands to reason that the overlap time is also 
shrunk. The system speedup when we want to improve 1/0 is equivalent: 

. . Timeuo 
Timeworkload = Timecpu + s d 

pee UPif O 

Timeoverlap 
Speedup1;0 

Let's try an example before explaining a limitation of these formulas. 

One workload takes 50 seconds to run, with the CPU being busy 30 seconds and 
the 1/0 being busy 30 seconds. How much time will the workload take if we 
replace the CPU with one that has four times the performance? 

The total elapsed time is 50 seconds, yet the sum of CPU time and 1/0 time is 60 
seconds. Thus the overlap time must be 10 seconds. Plugging into the formula: 

. Timecpu . Timeoverlap 30 10 
Timeworkload = Speedupcpu + Time1;0 - Speedupcpu = 4 + 30 - 4 = 35 

This example uncovers a complication with this formula: How,much of the 
time that the workload is busy on the faster CPU is overlapped wit~ 1/0? Figure 
9 .3 (page 504) sho~s three options. Depending on the resulting overlap after 
speedup, the time for the workload varies from 30 to 37 .5 seconds. 

In reality we can't know which is correct without measuring the workload on 
the faster CPU to see what overlap occurs. The formulas above assume option 
(c) iri Figure 9.3; the overlap scales by the same speedup as the CPU, so we will 
call it Timescaled (rather than Timeworkload). Maximum overlap assumes that as 
much of the overlap as possible is maintained, but that the new overlap cannot 
be larger than the original overlap or the CPU time after speedup. Minimum 
overlap assumes that as much of the overlap as possible is eliminated, but that 
the overlap time will not shrink by more than the time removed from the CPU or 
1/0 time. If we introduce the abbreviations Newcpu = Timecpu I Speedupcpu 
and Newvo = Timevo I Speedup1;0, the time of the workload for maximum 
overlap (Timebest) and minimum overlap (Timeworst) can be written as: 

Timebest = Newcpu + Time1;0 - Minimum (Time0 verlap•Newcpu) 

Timeworst = Newcpu + Time1;0 - Maximum (O;Timeoverlap- (Timecpu-Newcpu)) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 535



504 

Example 

Answer 

9.2 Predicting System Performance 

(a) Before (50 secs) 

Time overlap 
Time 110 r-1 -...,..------,! I 

(c) After: "Scaled overlap" (35 secs) 

Time overlap 

Time 110 I ._ _ _.____,_l_ ... I 

(b) After: "Maximum overlap" (30 secs) 

Time overlap 

Time110 .-----.---,-,I I I 
.Timecpu 

(d) After: "Minimum overlap" (37.5 secs) 

Time 110 ..... I _......._____._ _ __. 

D Timecpu 

FIGURE 9.3 The original overlap in the example above (a) and three interpretations 
of overlap after speedup. Each block represents 1 O seconds, except that the block for the 
new CPU time is 7.5 seconds. The overlapped portions of Timecpu and Time110 are 
shaded. (b) shows the new Timecpu overlapping completely with 1/0, giving a time of the 
workload of 30 seconds. (c) shows the overlap of the Timecpu is scaled with SpeedupcPU• 
giving a total of 35 seconds, with 2.5 seconds of overlapped execution. (d) shows no 
overlap with 1/0, so the total is 37.5 seconds. 

Calculate the three time predictions for workload B in Figure 9 .2 

Timebest = ~O + 4 - Minimum (~O , 4) = 2 + 4-' 2 = 4 

. 10 4 . 
Timescaled = 5 + 4 - 5 = 2 + 4 - 0.8 = 5.2 

Timeworst = ~O + 4-Maximum (0,4-(10--'~0)) = 2 + 4-0 = 6 

Sometimes changes will be made to both the CPU and the 1/0 system. The 
formulas become: 

T
. N N . Timeoverlap 
1me al d = ewcpu + ewl/o - . sc e Max1mum(Speedupcpu,Speedupl/o) 

Timebest = Newcpu + Newl/o -Minimum(Time0verlap.Newcpu,Newlfo) 

Timeworst = Newcpu + New1;0 - Max (O,Time0 verlap-Max (Timecpu~Newcpu,Time1;0-New110)) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 536



Example 

Answer 

Input/Output 505 

The formula for scaled overlap says that the overlap period is reduced by the 
larger of the two speedups. The formula for maximum overlap (Timebest) says 
that as much overlap as possible is retained, but the new overlap cannot be larger 
than the original overlap or the CPU or 1/0 time after speedup. Finally, the 
formula for minimum overlap (Timeworst) says that the overlap is reduced by 
the larger of the time removed from the CPU time and the time removed from 
the 1/0 time (but that the overlap time cannot be less than 0). Figure 9.4 shows 
the three examples of speedup where both the 1/0 and CPU are improved. 

(a) Before (50 secs) (b) After: "Maximum overlap" (15 secs) 

Time overlap 

Time11ol M Time 110 I.____._ _ _, 

,__.._ _ _._____.I TimecPu • Timecpu 

(c) After: "Scaled overlap" (20 secs) (d) After: "No overlap" (22.5 secs) 

Time overlap 

Time110 I 11 Time110 ._I -J........J 

IJ D TlmeCPU 
Time CPU 

FIGURE 9.4 Time for workload in Figure 9.3(a) with Speedupcpu = 4 and 
SpeedUP110 = 2. 

Let's look at a detailed example showing speedup of both the CPU and 1/0. 

Suppose a workload on the current systems takes 64 seconds. The CPU is busy 
the whole time, and the channels connecting the 1/0 devices to the CPU are busy 
36 seconds. The computer manager is considering two upgrade options: either a 
single CPU that has twice the performance, or two CPUs that have twice the 
throughput and twice as many channels. The time of the actual 1/0 devices is so 
small it can be ignored. For the dual CPU option assume that the workload can 
be evenly spread between the CPUs and channels. What is the performance 
improvement for each option? 

Since there ·is no change to the 1/0 system with the single faster CPU, time for 
the workload assuming scaled overlap is then simply 

Timecpu T. Time0 verlap 
Timescaled = S d + 1me1;0 - S d pee upcpu pee upcpu 

= 64 
+ 36 -

36 = 32 + 36 - 18 = 50 2 2 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 537



506 9.2 Predicting System Performance 

For the dual CPU with more channels, 

Timescaled = 
Timecpu Timel/o Time0 verlap 

+ Speedupcpu Speedup110 Maximum(Speedupcpu, Speeduplfo) 

64 36 36 = -2 + -2 - _M_a_x-im-um-(2-,-2-) = 32 + 18 - 18 = 32 

Assuming scaled overlap, the dual CPU is more than 50% faster. Using best
case scaling, the dual CPU is 13% faster, while worst-case scaling suggests it is 
39% faster. 

As these examples demonstrate, we need improvement in 1/0 performance to 
match the improvement in CPU performance if we are to achieve faster com
puter systems. We can now examine metrics of I/O devices to understand how to 
improve their performance and thus the whole system. 

9.3 I 110 Performance Measures 

I/0 performance has measures that have no counterparts in CPU design. One of 
these is diversity: Which I/0 devices can connect to the computer system? 
Another is capacity: How many I/O devices can connect to a computer system? 

In addition to these unique measures, the traditional measures of perfor
mance, response time and throughput also apply to I/0. (I/O throughput is 
sometimes called "1/0 bandwidth" and response time is sometimes called "la
tency.") The next two figures offer insight into how response time and 
throughput trade off against each other. Figure 9.5 shows the simple producer
server model. The producer creates tasks to be performed and places them in the 
queue; the server takes tasks from the queue and performs them. 

Queue 

1111 

FIGURE 9.5 The traditional producer-server model of response time and throughput. 
Response time begins when a task is placed in the queue and ends when it is completed by 
the server. Throughput is the number of tasks completed by the server in unit time. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 538



lnpuVOutput 507 

Response time is defined as the time a task takes from the moment it is placed 
in the queue until the server finishes the task. Throughput is simply the average 
number of tasks completed by the server over a time period, To get the highest 
possible throughput, the server should never be idle, and thus the queue should 
never be empty. Response time, on the other hand, counts time spent in the 

· queue and is therefore minimized by the queue being empty. 
Another measure of 1/0 performance is the interference of 1/0 with CPU 

execution. Transferring data may interfere with the execution of another process. 
There is also overhead due to handling 1/0 interrupts. Our concern here is how 
many more clock cycles a process will take because of 1/0 for another process. 

Throughput Versus Response Time 

Figure 9.6 shows throughput versus response time (or latency), for a typical 1/0 
system. The knee of the curve is the area where a little more throughput results 
in much longer response time or, conversely, a little shorter response time results 
in much lower throughput. 

Response time 
(latency) 
in ms 

0% 20% 40% 60% 80% 100o/o 

Percent of maximum throughput (bandwidth) 

FIGURE 9.6 Throughput versus response time. Latency is normally reported as 
response time. Note that absolute minimum response time achieves only 11 % of the 
throughput while the response time for 100% throughput takes seven times the minimum 
response time. Chen [1989] collected these data for an array of magnetic disks. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 539



508 9.3 1/0 Performance Measures 

Life would be simpler if improving performance always meant improvements 
in both response time and throughput. Adding more servers, as in Figure 9.7, 
increases throughput: By spreading data across two disks instead of one, tasks 
may be serviced in parallel. Alas, this does not help response time, unless the 
workload is held constant and the time in the queues is reduced because of more 
resources. 

Queue 

1111 

FIGURE 9.7 The single-producer, single-server model of Figure 9.5 is extended with 
another server and queue. This increases 1/0 system throughput and takes less time to 
service producer tasks. Increasing the number of servers is a common technique in 1/0 
systems. There is a potential imbalance problem with two queues; unless data is placed 
perfectly in the queues, sometimes one server will be idle with an empty queue while the 
other server is busy with many tasks in its queue. 

How does the architect balance these conflicting demands? If the computer is 
interacting with human beings, Figure 9.8 suggests an answer. This figure 
presents the results of two studies of interactive environments, one keyboard 
oriented and one graphical. An interaction or transaction with a computer is 
divided into three parts: 

1. Entry time: The time for the user to enter the command. In the graphics 
system in Figure 9.8 it took 0.25 seconds on average to enter the command 
versus 4.0 seconds for the conventional system. 

2. System response time: The time between when the user enters the command 
and the complete response is displayed. 

3. Think time: The time from the reception of the response until the user begins 
to enter the next command. 

The sum of these three parts is called the transaction time. Several studies report 
that user productivity is· inversely proportional to transaction time; transactions 
per hour measures the work completed per hour by the user. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 540



Input/Output 

Workload 

Conventional interactive workload 
(1.0 sec. system response time) 

Conventional interactive workload 
(0.3 sec. system response time) 

High-function graphics workload 
(1.0 sec. system response time) 

High-function graphics workload 
(0.3 sec. system response time) 

0 

~ 
-70%total 
(-81 % think) 

5 10 

Time (seconds) 

-34%total 
(-70% think) 

15 

• Entry time D System response time • Think time 

509 

FIGURE 9.8 A user transaction with an interactive computer divided into entry time, 
system response time, and user think time for a conventional system and graphics 
system. The entry times are the same independent of system response time. The entry 
time was 4 seconds for the conventional system and 0.25 seconds for the graphics system. 
(From Brady [1986].) 

The results in Figure 9.8 show that reduction in response time actually 
decreases transaction time by more than just the response time reduction: 
Cutting system response time by 0.7 seconds saves 4.9 seconds (34%) from the 
conventional transaction and 2.0 seconds (70%) froni the graphics transaction. 
This implausible result is explained by human nature; people need less time to 
think when given a faster response. 

Whether these results are explained as a better match to the human attention 
span or getting people "on a roll," several studies report this behavior. In fact, as 
computer responses drop below a second, productivity seems_ to make a more 
than linear jump. Figure 9.9 (page 510) compares transactions per hour (the 
inverse of transaction time) of a novice, an average engineer, and an expert 
performing physical design tasks at graphics displays. System response time 
magnified talent: a novice with subsecond response time was as productive as an 
experienced professional with slower response, and the experienced engineer in 
turn could outperform the expert with a similar advantage in response time. In 
all cases the number of transactions per hour jumps more than linearly with 
subsecond response time. 

Since humans may be able to get much more work done per day with better 
response time, it is possible to attach an economic benefit to the customer of 
lowering response time into the subsecond range [IBM 1982], thereby helping 
the architect decide how to tip the balance between response time and 
throughput. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 541



510 9.3 1/0 Performance Measures 

4500 

4000 

3500 

3000 
Transactions 
per user 2500 
hour 
(productivity) 

2000 

1500 

1000 

500 

0 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

System response time (secs) 

FIGURE 9.9 Transactions per hour versus computer response time for a novice, 
experienced engineer, and expert doing physical design on a graphics system. 
Transactions per hour is a measure of productivity. (From IBM (1982].) 

Examples of Measurements of 1/0 Performance
Magnetic Disks 

Benchmarks are needed to evaluate I/O performance, just as they are needed to 
evaluate CPU performance. We begin with benchmarks for magnetic disks. 
Three traditional applications of disks are with large-scale scientific problems, 
transaction processing, and file systems. 

Supercomputer 1/0 Benchmarks 

Supercomputer 1/0 is dominated by accesses to large files on magnetic disks. 
For example,. Bucher and Hayes [1980] benchmarked supercomputer 1/0 using 
8-MB sequential file transfers. Many supercomputer installations run batch jobs, 
each of which may last for hours. In these situations, 1/0 consists of one large 
read followed by writes to snapshot the state of the computation should the 
computer crash. As a result, supercomputer 1/0 in many cases consists of more 
output than input. Some models of Cray Research computers have such limited 
main memory that programmers must break their programs into overlays and 
swap them to disk (see Section 8.5 of Chapter 8), which also causes large 
sequential transfers. Thus, the overriding supercomputer I/0 measure is data 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 542



Input/Output 511 

throughput: number of bytes per second that can be transferred between 
supercomputer main memory and disks during large transfers. 

Transaction Processing 1/0 Benchmarks 

In contrast, transaction processing (TP) is chiefly concerned with //0 rate: the 
number of disk accesses per second, as opposed to data rate, measured as bytes 
of data per second. TP generally involves changes to a large body of shared 
information from many terminals, with the TP system guaranteeing proper be
havior on a failure. If, for example, a bank's computer fails when a customer 
withdraws money, the TP system would guarantee that the account is debited if 
the customer received the money and that the account is unchanged if the money 
was not received. Airline reservations systems as well as banks are traditional 
customers for TP. 

Two dozen members of the TP community conspired to form a benchmark 
for the industry and, to avoid the wrath of their legal departments, published the 
report anonymously [1985]. This benchmark, called DebitCredit, simulates bank 
tellers and has as its bottom line the number of debit/credit transactions per 
second (TPS); in 1990, the TPS for high-end machines is about 300. The 
DebitCredit performs the operation of a customer depositing or withdrawing 
money. The performance measurement is the peak TPS, with 95% of the 
transactions having less than a one-second response time. The DebitCredit 
computes the cost per TPS, based on the five-year cost of the computer-system 
hardware and software. Disk 1/0 for DebitCredit is random reads and writes of 
100-byte records along with occasional sequential writes. 

Depending on how cleverly the transaction-processing system is designed, 
each transaction results· in between two and ten disk I/Os and takes between 
5,000 and 20,000 CPU instructions per disk 1/0. The variation largely depends 
on the efficiency of the transaction processing software, although in part it 
depends on the extent to which disk accesses can be avoided by keeping 
information in main memory. The benchmark requires that for TPS to increase, 
the number of tellers and the size of the account file must also increase. Figure 
9.10 shows this unusual relationship in which more TPS requires more users. 

TPS Number of A TMs Account-file size 

10 1,000 0.1 GB 

100 10,000 1.0GB 

1,000 100,000 10.0 GB 

10,000 1,000,000 100.0 GB 

FIGURE 9.10 Relationship among TPS, tellers, and account-file size. The DebitCredit 
benchmark requires that the computer system handle more tellers and larger account files 
before it can claim a higher transaction-per-second milestone. The benchmark is supposed 
to include "terminal handling" overhead, but this metric is sometimes ignored. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 543



512 9.3 1/0 Performance Measures 

This is to ensure that the benchmark really measures disk I/O; otherwise a large 
main memory dedicated to a database cache with a small number of accounts 
would unfairly yield a very high TPS. (Another perspective is the number of 
accounts must grow since a person is not likely to use the bank more frequently 
just because the bank has a faster computer! ) 

File System 1/0 Benchmarks 

File systems, for which disks are mainly used in timesharing systems, have a 
different access pattern. Ousterhout et al. [1985] measured a UNIX file system 
and found that 80% of accesses to files of less than 10 KB and 90% of all file 
accesses were sequential. The distribution by type of file access was 67% reads, 
27% writes, and 6% read:..write accesses. In 1988, Howard et al. [1988] proposed 
a file-system benchmark that is becoming popular. Their paper describes five 
phases of the benchmark, using 70 files with a total size of 200 KB: 

MakeDir-Constructs a target subtree that is identical in structure to the source 
subtree. 

Copy--Copies every file from the source subtree to the target subtree. 

ScanDir--R.ecursively traverses the target subtree and examines the status of 
every file in it. It does not actually read the contents of any file. 

ReadAll--Scans every byte of every file in the target subtree once. 

Make-Compiles and links all the files in the target subtree. [p. 55] 

The file-system measurements of Howard et al. [1988], like those of Ousterhout 
et al. [ 1985], found the ratio of disk reads to writes to be about 2: 1. This 
benchmark reflects that measure. 

9.4 I Types of 1/0 Devices 

Now that we have covered measurements of 1/0 performance, let's describe the 
devices themselves. While the computing model has changed little since 1950, 
1/0 devices have become rich and diverse. Three characteristics are useful in 
organizing this disparate conglomeration: 

• Behavior-input (read once), output (write only, cannot be read), or storage 
(can be reread and usually rewritten) 

• Partner-either a human or a machine is at the other end of the I/O device, 
either feeding data on input or reading data on output 

• Data rate-the peak rate at which data can be transferred between the 1/0 
device and the main memory or CPU 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 544



Input/Output 513 

Using these characteristics, a keyboard is an input device used by a human with 
a peak data rate of about 10 bytes per second. Figure 9 .11 shows some of the 1/0 
devices connected to computers. 

The advantage of designing 1/0 devices for humans is that the performance 
target is fixed. Figure 9.12 shows the 1/0 performance of people. 

Device Behavior Partner Data rate 
(KB/sec) 

Keyboard Input Human 0.01 

Mouse Input Human 0.02 

Voice input Input Human 0.02 

Scanner Input Human 200.00 

Voice output Output Human 0.60 

Line printer Output Human 1.00 

Laser printer Output Human 100.00 

Graphics display Output Human 30,000.00 

(CPU to frame buffer) Output Human 200.00 

Network-terminal Input or output Machine 0.05 

Network-LAN Input or output Machine 200.00 

Optical disk Storage Machine 500.00 

Magnetic tape Storage Machine 2,000.00 

Magnetic disk Storage Machine 2,000.00 

FIGURE 9.11 Examples of 1/0 devices categorized by behavior, partner, and data 
rate. This is the raw data rate of the device rather than the rate an application would see. 
Storage devices can be further distinguished by whether they support sequential access 
(e.g., tapes) or random access (e.g., disks). Note that networks can act either as input or 
output devices but, unlike storage, cannot reread the same information. 

Human organ 1/0 rate (KB/sec) 1/0 latency (ms) 

Ear 8.000-60.000 10 

Eye-reading text 0.03~.375 10 

Eye-pattern recognition 125.000 10 

Hand-typing O.Ol~.020 100 

Voice. 0.003-0.015 100 

FIGURE 9.12 Peak 1/0 rates for people. Input via seeing patterns is our highest 1/0 rate; 
hence the popularity of graphic output devices. Maberly [1966] says the average reading 
speed is 28 bytes per second and the maximum is 375 bytes per second. The telephone 
company sets a 170-ms limit to the time between when an operator pushes a button to 
accept a call until a voice path must be established. The phone company transmits voice at 
8 KB per second. (None of these parameters are expected to change, unless anabolic 
steroids become a breakfast supplement!) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 545



514 9.4 Types of 1/0 Devices 

To put the data rates of each device into perspective, Figure 9.13 shows the 
relative peak memory bandwidth needed to support each device, assuming a 
computer had exactly one of each device transferring at its peak rate. 

Rather than discuss the characteristics of all I/0 devices, we will concentrate 
on the three devices with the highest data rates: magnetic disks, graphics 
displays, and local area networks. These are also the devices that have the 
highest leverage on user productivity. In this chapter we are not talking about 
floppy disks, but the original "hard" disks. These magnetic disks are what IBM 
calls DASDs, for Direct-Access Storage Devices. 

Magnetic Disks 

I t~ink Silicon Valley was misnamed. If you look back at the dollars shipped in 
products in the last decade there has been more revenue from magnetic disks 
than from silicon. They ought to rename the place Iron Oxide Valley. 

Al Hoagland, one of the pioneers of magnetic disks (1982) 

In spite of repeated attacks by new technologies, magnetic disks have dominated 
secondary storage since 1965. Magnetic disks play two roles in computer 
systems: 

• Long-term, nonvolatile storage for files, even when no programs are running 

• A level of the memory hierarchy below main memory used for virtual 
memory during program execution (see Section 8.5 in Chapter 8) 

Keyboard 0.01 
Mouse 0.02 

Voice input 0.02 
Network-terminal 0.05 

Voice output 0.60 
Line printer 1 

Laser printer 
Device Scanner 

Network-LAN 200 

Display (frame buffer) 200 
Optical disk 500 

Magnetic tape 

Magnetic disk 

0 1000 2000 

Data rate (KB/s) 

FIGURE 9.13 1/0 devices sorted from lowest data rate to highest. The data rate for the 
graphics display is from the CPU to the frame buffer b,ecause the CPU isn't involved in the 
transfer from the frame buffer to the display (see Graphics Displays subsection below). 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 546



Input/Output 515 

As descriptions of magnetic disks can be found in countless books, we will 
only list the key characteristics with the terms illustrated in Figure 9.14. A mag
netic disk consists of a collection of platters (1 to 20), rotating on a spindle at 
about 3600 revolutions per minute (RPM). These platters are metal disks 
covered with magnetic recording material on both sides. Disk diameters vary by 
a factor of five, from 14 to 2.5 inches. Traditionally, the widest disks have the 
highest performance, and the smallest disks have the lowest cost per disk drive. 

:~p''""' 

Platter 

~Sectors 

I 
Track 

FIGURE 9.14 Disks are organized into platters, tracks, and sectors. Both sides of a 
platter are coated so that information can be stored on both surfaces. , 

Each disk surface is divided into concentric circles, designated tracks. There 
are typically 500 to 2000 tracks per surface. Each track in tum is divided into 
sectors that contain the information; each track might have 32 sectors. The 
sector is the smallest unit that can be read or written. The sequence recorded on 
the magnetic media is a sector number, a gap, the information for that sector 
including error correction code, a gap, the sector number of the next sector, and 
so on. Traditionally all tracks have the same number of sectors; the outer tracks, 
which are longer, record information at a lower density than the inner tracks. 
Recording more sectors on the outer tracks than on the inner tracks, called 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 547



516 9.4 Types of 1/0 Devices 

constant bit density, is becoming more widespread with the advent of intelligent 
interface standards such as SCSI (see Section 9.5). IBM mainframe disks allow 
users to select the size of the sectors, while almost all other systems fix the size 
of the sector. 

To read and write information into a sector, a movable arm containing a 
read/write head is located over each surface. Bits are recorded using a run
length limited code, which improves the recording density of the magnetic 
media. The arms for each surface are connected together and move in 
conjunction, so that every arm is over the same track of every surface. The term 
cylinder is used to refer to all the tracks under the arms at a given point on all 
surfaces. 

To read or write a sector, the disk controller sends a command to move the 
arm over the proper track. This operation is called a seek, and the time to move 
the arm to the desired track is called seek time. Average seek time is the subject 
of considerable misunderstanding. Disk manufacturers report minimum seek 
time, maximum seek time, and average seek time in the manuals. The first two 
are easy to measure, but average was open to wide interpretation. The industry 
decided to calculate average seek time as the sum of the time for all possible 
seeks divided by the number of possible seeks. Average seek times are 
advertised to be 12 ms to 20 ms, but depending on the application and operating 
system the actual average seek time may be only 25% to 33% of the advertised 
number, due to locality of disk references. Section 9.10 has a detailed example. 

The time for the requested sector to rotate under the head is the rotation 
latency or rotational delay. Most disks rotate at 3600 RPM, and an average 
latency to the desired information is halfway around the disk; the average 
rotation time for most disks is therefore 

Average rotation time= 360~~M= 0.0083 sec= 8.3 ms 

The next component of a disk access, transfer time, is the time to transfer a 
block of bits, typically a sector, under the read-write head. This is a function of 
the block size, rotation speed, recording density of a track, and speed of the 
electronics connecting disk to computer. Transfer rates in 1990 are typically 1 to 
4 MB per second. 

In addition to the disk drive, there is usually also a device called a disk 
controller. Between the disk controller and main memory is a hierarchy of 
controllers and data paths, whose complexity varies with the cost of the 
computer (see Section 9.9). Since the transfer time is often a small portion of a 
full disk access, the controller in higher performance systems disconnects the 
data paths from the disks while they are seeking so that other disks can transfer 
their data to memory. 

Thus, the final component of disk-access time is controller time, which is the 
overhead the controller imposes in performing an 1/0 access. When referring to 
performance of a disk in a computer system, the time spent waiting for a disk to 
become free (queueing delay) is added to this time. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 548



Example 

Answer 

lnpuVOutput 517 

What is the average time to read or write a 512-byte sector for a typical disk 
today? The advertised average seek time is 20 ms, the transfer rate is lMB/sec, 
and the controller overhead is 2 ms. Assume the disk is idle so that there is no 
queuing delay. 

Average disk access is equal to average seek time + average rotational delay + 
transfer time + controller overhead. Using the calculated, average seek time, the 
answer is 

0.5KB 
20 ms + 8.3 ms + l .O MB/sec + 2 ms = 20 + 8.3 + 0.5 + 2 = 30.8 ms 

Assuming the measured, average seek time is 25% of the calculated number, the 
answer is 

5 ms + 8.3 ms + 0.5 ms + 2 ms = 15.8 ms 

Figure 9.15 shows characteristics of magnetic disks for four manufacturers. 
Large-diameter drives have many more megabytes to amortize the cost of 
electronics, so the traditional wisdom was that they had the lowest cost per 
megabyte. But this advantage is offset for the small drives by the much higher 
sales volume, which lowers manufacturing costs: 1990 OEM prices are $2 to $3 

Characteristics IBM3380 Fujitsu Imprimis Conner 
M2361A Wren IV CP3100 

Disk diameter (inches) 14 10.5 5.25 3.5 

Formatted data capacity (MID 7500 600 344 100 
MTTF (hours) 52,000 20,000 40,000 30,000 

Number of arms/box 4 1 1 1 

Maximum I/Os/second/arm 50 40 35 30 

Typical I/Os/second/arm 30 24 28 20 

Maximum I/Os/second/box 200 40 35 30 

Typical I/Os/second/box 120 24 28 20 

Transfer rate (MB/sec) 3 2.5 1.5 1 

Power/box (W) 1,650 640 35 10 

MB/W 1.1 0.9 9.8 10.0 

Volume (cu. ft.) 24 3.4 0.1 .03 

MB/cu. ft. 310 180 3440 3330 

FIGURE 9.15 Characteristics of magnetic disks from four manufacturers. Compar
ison of IBM 3380 disk model AK4 for mainframe computers, Fujitsu M2361A "Super Eagle" 
disk for minicomputers, lmprimis Wren IV disk for workstations, and Conner Peripherals 
CP3100 disk for personal computers. Maximum I/Os/second signifies maximum number of 
average seeks and average rotates for a single sector access. (Table from Katz, Patterson, 
and Gibson [1990].) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 549



518 9.4 Types of 1/0 Devices 

per megabyte, almost independent of width. The small drives also have 
advantages in power and volume. The price of a megabyte of disk storage in 
1990 is 10 to 30 times cheaper than the price of a megabyte of DRAM in a 
system. 

The Future of Magnetic Disks 

The disk industry has concentrated on improving the capacity of disks. 
Improvement in capacity is customarily expressed as areal density, measured in 
bits per square inch: 

. Tracks . Bits 
Areal density = Inch on a disk surface * Inch on a track 

Areal density can be predicted according to the maximum areal density (MAD) 
formula: 

(year-1971)/10 . . . 
MAD = 10 million bits per square inch 

Thus, storage density improves by a factor of 10 every decade, doubling density 
every three years. 

Cost per megabyte has dropped consistently at 20% to 25% per year, with 
smaller drives playing the larger role in this improvement. Because it is easier to 

105' SAAM 
: (chip) DRAM 

1980 (board) 
[!] 1980 

104: • 1985 1
•

5 
DRAM [!] 

103' 
(chip) 

1990 1990 .1980 

Cost [!] • 
($/MB) .1985 

102: 
Access Time Gap Disk 

.1990 
01980 

101: 01985 

01990 

100 
"I "I "I "I "I '"I "I 

101 102 103 104 105 106 107 108 

Access time (ns) 

FIGURE 9.16 Cost versus access time for SAAM, DRAM, and magnetic disk in 1980, 
1985, and 1990. (Note the difference in cost between a DRAM chip and DRAM chips 
packaged on a board and ready to plug into a computer.) The two-order-of-magnitude gap 
in cost and five-order-of-magnitude gap in access times between semiconductor memory 
and rotating magnetic disk has inspired a host of competing technologies to try to fill it. So 
far, such attempts have been made obsolete before production by improvements in 
magnetic disks, DRAMs, or both. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 550



Input/Output 519 

spin the smaller mass, smaller diameter disks save power as well as volume. 
Smaller drives also have fewer cylinders so the seek distances are shorter. In 
1990, 5.25-inch or 3.5-inch drives are probably the leading technology, while 
the future may see even smaller drives. We can expect significant savings in 
volume and power, but little in speed. Increasing density (bits per inch on a 
track) has improved transfer times, and there has been some small improvement 
in seek speed. Rotation speeds have been steady at 3600 RPM for a decade, but 
some manufacturers plan to go to 5400 RPM in the early 1990s. 

As mentioned earlier, magnetic disks have been challenged many times for 
supremacy of secondary storage. One reason has been the fabled Access Time 
Gap as shown in Figure 9.16. Many a scientist has tried to invent a technology 
to fill that gap. Let's look at some of the recent attempts. 

Using DRAMs as Disks 

A current challenger to disks for dominance of secondary storage is solid state 
disks (SSDs), built from DRAMs with a battery to make the system nonvolatile; 
and expanded storage (ES), a large memory that allows only block transfers to 
or from main memory. ES acts like a software-controlled cache (the CPU stalls 
during the block transfer) while SSD involves the operating system just like a 
transfer from magnetic disks. The advantages of SSD and ES are trivial seek 
times, higher potential transfer rate, and possibly higher reliability. Unlike just a 
larger main memory, SSDs and ESs are autonomous: They require special 
commands to access their storage, and thus are "safe" from some software errors 
that write over main memory. The block-access nature of SSD and ES allows 
error correction to be spread over more words, which means lower cost or 
greater error recovery. For example, IBM's ES uses the greater error recovery to 
allow it to be constructed from less reliable (and less expensive) DRAMs 
without sacrificing product availability. SSDs, unlike main memory and ES, 
may be shared by multiple CPUs because they function as separat_e units. 
Placing DRAMs in an 1/0 device rather than memory is also one way to get 
around the address-space limits of the current 32-bit computers. The 
disadvantage of SSD and ES is cost, which is at least ten times per megabyte the 
cost of magnetic disks. · 

Optical Disks 

Another challenger to magnetic disks is optical compact disks or CDs. The 
CD/ROM is removable and inexpensive to manufacture, but it is a read-only 
media. The newer CD/writable is also removable, but has a high cost per 
megabyte and low performance. A common misperception about write-once 
optical disks is that once they are written, the information cannot be destroyed; 
in fact, write once means one reliable write and then a "fuzzy" bitwise ORing of 
the previous and new data. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 551



520 9.4 Types of 1/0 Devices 

So far, magnetic disk challengers have never had a product to market at the 
right time. By the time a new product ships, disks have made advances as pre
dicted by MAD formula, and costs have dropped accordingly. Optical disks, 
however, may have the potential to compete with new tape technologies for 
archival storage. 

Disk Arrays 

One other future candidate for optimizing storage is not a new technology, but a 
new organization of disk storage-arrays of small and inexpensive disks. The 
argument for arrays is that since price per megabyte is independent of disk size, 
potential throughput can be increased by having many disk drives and, hence, 
many disk arms. Simply spreading data over multiple disks automatically forces 
accesses to several disks. (While arrays improve throughput, latency is not 
necessarily improved.) The drawback to arrays, is that with more devices, 
reliability drops: N devices generally have l/N the reliability of a single device. 

Reliability and Availability 

This brings us to 'two terms that are often confused-reliability and availability. 
The term reliability is commonly used incorrectly to mean availability; if 
something breaks, but the user can still use the system, it seems as if the system 
still "works," and hence it seems more reliable. Here is the proper distinction: 

Reliability-is anything broken? 

Availability-is the system still available to the user? 

Adding hardware can therefore improve availability (for example, ECC on 
memory), but it cannot improve reliability (the DRAM is still broken). 
Reliability can only be improved by bettering environmental conditions, by 
building from more reliable components, or by building with fewer components. 
Another term, data integrity, refers to always reporting when information is lost 
when a failure occurs; this is very important to some applications. 

So, while a disk array can never be more reliable than a smaller number of 
larger disks when each disk has the same failure rate, availability can be 
improved by adding redundant disks. That is, if a single disk fails, the lost 
information can be reconstructed from redundant information. The only danger 
is in getting another disk failure between the time a disk fails and the time it is 
replaced (termed mean time to repair or MTTR). Since the mean time to failure 
(MTTF) of disks is three to five years, and the MTTR is measured in hours, 
redundancy can make the availability of 100 disks much higher than that of a 
single disk. 

Since disk failures are self-identifying, information can be reconstructed from 
just parity: The good disks plus the parity disk can be used to calculate the 
information that is on the failed disk. Hence, the cost of higher availability is 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 552



Input/Output 521 

1/N, where N is the number of disks protected by parity. Just as direct-mapped 
associative placement in caches can be considered a special case of set
associative placement (see Section 8.4), the mirroring or shadowing of disks can 
be considered the special case of one data disk and one parity disk (N=l). Parity 
can be accomplished by duplicating the data, so mirrored disks have the 
advantage of simplifying parity calculation. Duplicating data also means that the 
controller can improve read performance by reading from the disk of the pair 
that has the shortest seek distance, although this optimization is at the cost of 
write performance because the arms of the pair of disks are no longer always 
over the same track. Of course, the redundancy of N = 1 has the highest 
overhead for increasing disk availability. 

The higher throughput, measured either as megabytes per second or as I/Os 
per second, and the ability to recover from failures make disk arrays attractive. 
When combined with the advantages of smaller volume and lower power of 
small-diameter drives, redundant arrays of small or inexpensive drives may play 
a larger role in future disk systems. The current drawback is the added 
complexity of a controller for disk arrays. 

Graphics Displays 

Through computer displays I have landed an airplane on the deck of a moving 
carrier, observed a nuclear particle hit a potential well,flown in a rocket at 
nearly the speed of light and watched a computer reveal its innermost workings. 

Ivan Sutherland (the "father" of computer graphics), quoted in 
"Computer Software for Graphics," Scientific American (1984) 

While magnetic disks may dominate throughput and cost of 1/0 devices, the 
most fascinating 1/0 device is the graphics display. Based on television 
technology, a raster cathode ray tube (CRT) display scans an image out one line 
at a time, 30 to 60 times per second. At this refresh rate the human eye doesn't 
notice a "flicker" on the screen. The image is composed of a matrix of picture 
elements, or pixels, which can be represented as a matrix of bits, called a bit 
map. Depending on size of screen and resolution, the display matrix consists of 
340*512 to 1560*1280 pixels. For black and white displays, often 0 is black and 
1 is white. For displays that support over 100 different shades of black and 
white, sometimes called gray-scale displays, 8 bits per pixel are required. A 
color display might use 8 bits for each of the three primary colors (red, blue, and 
green), for 24 bits per pixel. 

The hardware support for graphics consists mainly of a raster refresh buffer, 
or frame buffer, to store the bit map. The image to be represented on screen is 
stored into the frame buffer, and the bit pattern per pixel is read out to the 
graphics display at the refresh rate. Figure 9 .17 (page 522) shows a frame buffer 
with four bits per pixel and Figure 9.18 (page 522) shows how the buffer is 
connected to the bus. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 553



522 9.4 Types of 1/0 Devices 

Frame buffer 
Raster scan 
CRT display 

I 

Y1 ----1-· I I 
I 

FIGURE 9.17 Each coordinate in the frame buffer on the left determines the shade of 
the corresponding coordinate for the raster scan CRT display on the right. Pixel 
(x0,y0) contains the bit pattern 0011, which is a lighter shade of gray on the screen than the 
bit pattern 1101 in pixel (x1 .Y1 ). 

A 

/ 1/0 
bus 0.2MB 30MB 

/sec Frame /sec I CRT - buffer - I display 

"' 
FIGURE 9.18 The frame buffer is connected to both the 1/0 bus and the display. 
Because of the high data rate from the buffer to the display, the frame buffer is frequently 
dual ported. 

The goal of the bit map is to faithfully represent what is on the screen. As the 
computer switches from one image to another, the screen may look "splotchy" 
during the change. Here are two ways of dealing with this: 

• Change the frame buffer only during the "vertical blanking interval." This is 
the time the gun in the raster CRT display takes to go back to the upper-left
hand corner before starting to paint the pixels of the next image. This takes 1 
to 2 ms of every 16 ms at the 60-Hz refresh rate each time the screen is 
painted. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 554



Input/Output 523 

• If the vertical blanking interval is not long enough, the frame buffer can be 
double buffered, so that one is read while the other is being written. This way, 
images in sequence (as in animation) are drawn in alternate frame buffers. 
Double buffering, of course, doubles the cost of the memory in the frame 
buffer. 

From the point of view of the CPU, graphics is logically output only. But the 
frame buffer is capable of being read as .well as written, permitting operations to 
be performed directly on the screen images. These operations are called bit bits, 
for bit block transfer. Bit bits are commonly used for operations such as moving 
a window or changing the shape of the cursor. A current debate in graphics 
architecture is whether reading the frame buffer is limited to the operating 
system or should user programs be able to read it as well. 

Cost of Computer Graphics 

The CRT monitor itself is based on television technology and is sensitive to 
consumer demand. Today prices vary from $100 for a black-and-white monitor 
to $15,000 for a large studio color monitor, not including memory. The amount 
of memory in a frame buffer depends directly on the size of the screen and the 
bits per pixel: 

340*512*1 bits = 21.5 KB 

1280*1024*24 bits = 3840 KB 

(By the way, this bottom dimension is the proposed size for high-definition 
television.) Note that the memory cost is doubled if double buffering is used. 

To reduce costs of a color frame buffer, many systems use a two-level 
representation that takes advantage of the fact that few pictures need the full 
pallet of possible colors (see Figure 9.19 on page 524). 

The intermediate level contains the full color width of, say, 24 bits and a 
large collection of the possible colors that can appear on the screen-256 
different colors, for example. While this collection is large, it is still much 
smaller than 224. This intermediary table has been variously named a color map, 
color table, or video look-up table. Each pixel need have only enough bits to 
indicate a color in the color map. As a simple example, Figure 9.19 uses a 4-
word color map, which means the frame buffer needs only 2 bits per pixel. The 
savings for a full-sized color display with a 256-color map is 

1280*1024*24- (1280*1024*8 + 256*24) 

= 3,840 KB - (1280 KB + .75 KB) "" 2560 KB 

This amounts to a threefold reduction in memory size. In 1990 a 256- by 24-bit 
color map and an analog interface to a color CRT fit in a single chip. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 555



524 9.4 Types of 1/0 Devices 

Frame buffer Raster scan 
Color map CRT display 

Red Blue Green 

100 101 010 

Yo - 000 111 010 II 
100 101 010 Y1 • 110 111 011 

Xo Xi Xo Xi 

FIGURE 9.19 An example of a color map to reduce the cost of the frame buffer. 
Suppose only nine bits per color are needed. Rather than store the full nine bits per pixel in 
the frame buffer, just enough bits per pixel are stored to index the table containing the 
unique colors in a picture. Only the color map has the nine bits for the colors in the display. 
Near photographic color pictures can be produced with about 125 colors using the right 
shades of the color spectrum; but at least 24 bits are needed to get the right shades! The 
color map is loaded by the application program, offering each picture its own palette of 
colors to chose from. 

Performance Demands of Graphics Displays 

The performance of graphics is determined by the frequency an application 
needs new images and by the quality of those images. The amount of 
information transferred from memory to the frame buffer depends on complexity 
of image, with a full color display requiring almost four megabytes. The transfer 
rate depends on the speed with which the image should be changed as well as 
the amount of information. Animation requires at least 15 changes per second 
for movement to appear smooth on a screen. For interactive graphics, the time to 
update the frame buffer measures the effectiveness of the application; for people 
to feel comfortable the total reaction time must be less than a second (see Figure 
9.9, page 510). With a drawing system, the portion of the screen one is working 
on must change almost immediately, as human visual perception is on the order 
of 0.02 seconds. Figure 9.20 shows some sample graphics tasks and their 
performance requirements. Note that the frame buffer must have enough 
bandwidth to refresh the display and to allow the CPU to change the image 
being refreshed. 

The high data rate-and the large market of graphics displays-has made a 
dual-ported DRAM chip popular. This chip has a serial 1/0 port and internal 
shift register that is connected to the display in a graphics application in addition 
to the traditional randomly addressed data port. This chip is so widely used in 
frame buffers that it is called a video DRAM. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 556



Input/Output 525 

Graphics tasks Bandwidth requirements 

Text editor-Scrolling text in window means moving 0.8 MB/sec 
all bits in half the frame buff er about 10 times per 
second. 
VLSI design-Moving a portion of the design means 6.3 MB/sec 
moving all bits in half of a color frame buffer in less 
than 0.1 second. 

Television commercial-Showing movie-quality 90.0MB/sec 
images means changing 24 times per second. 

Visualization of scientific data-About the same as a 90.0MB/sec 
television commercial. 

FIGURE 9.20 Graphics tasks and their performance requirements. VLSI design uses 
8 bits of color while the television commercial and visualization use 24 bits. Bandwidth is 
measured at. the frame buffer. 

Future Directions in Graphics Displays 

It is safe to predict that people will want better pictures in the future. They will 
want, for example, more lines on a screen and more bits per inch on a line to 
make sharper images, more bits per color to make more colorful images, and 
more bandwidth to allow animation. 

To simplify the display of three-dimensional images, a z dimension per pixel 
can be added to the x and y coordinates. It says where the pixel is located from 
the viewer along a z axis (e.g., into the CRT). A 3D image starts with z set to the 
furthest possible location from the viewer and the color set to the background 
color. To get a proper 3D perspective, the z coordinate stored with the pixel in 
the frame buffer is checked before placing a color in a pixel. If the new color is 
closer, the old color is replaced and the z coordinate is updated; if it is further 
away, the new color is discarded. This scheme is called a z buffer approach to 
hidden surface elimination. It adds at least 8 bits per pixel, plus the performance 
cost of reading and comparing before writing a pixel. The Silicon Graphics 4D 
series of graphics workstations uses 16 bits for the z dimension in its pixels, 
meaning objects are assigned 3; 16-bit number to show how close they are to the 
viewer. 

The increasing number of bits per DRAM chip reduces the number of chips 
needed in the frame buffer, as well as the number of chips that can 
simultaneously transfer bits to the screen. This is why video DRAMS are so 
popular. As capacity increases, the serial ports of video DRAMs will have to 
become faster and wider to match the demands of future graphics systems. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 557



526 9.4 Types of 1/0 Devices 

Networks 

There is an old network saying: Bandwidth problems can be cured with money. 
Latency problems are harder because the speed of light is fixed-you can't bribe 
God. 

David Clark, M.I.T. 

Networks are the backbone of current computer systems; a new machine without 
an optional network interface would be ridiculed. By connecting computers 
electronically, networked computers have these advantages: 

• Communication-Information is exchanged between computers at high 
speeds. 

• Resource sharing-Rather than each machine having its own 1/0 devices, 
devices can be shared by computers on the network. 

• Nonlocal access-By connecting 1/0 devices over long distances, users need 
not be near the computer they are using. 

Figure 9.21 shows the characteristics of networks. These characteristics are 
illustrated below with three examples. 

Distance 0.01 to 10,000 kilometers 

Speed 0.001 MB/sec to 100 MB/sec 

Topology Bus, ring, star, tree 

Shared lines None (point-to-point) or shared (multidrop) 

FIGURE 9.21 Range of network characteristics. 

The RS232 standard provides a 0.3- to 19.2-Kbits-per-second terminal 
network. A central computer connects to many terminals over slow but cheap 
dedicated wires. These point-to-point connections form a star from the central 
computer, with each terminal ranging from 10 to 100 meters in distance from the 
computer. 

The local area network, or LAN, is what is commonly meant today when 
people mention a network, and Ethernet is what most people mean when they 
mention a LAN. (Ethernet has in fact become such a common term that it is 
often used as a generic term for LAN.) The Ethernet is essentially a 10,000 
Kbits-per-second bus that has no central control. Messages or packets are sent 
over the Ethernet in blocks that vary from 128 bytes to 1530 bytes and take 0.1 
ms and 1.5 ms to send, respectively. Since there is no central control, all nodes 
"listen" to see if there is a message for that node. Without a central arbiter to 
decide who gets the bus, a computer first listens to make sure it doesn't send a 
message while another message is on the network. If the network is idle the node 
tries to send. Of course, some other node may decide to send at the same instant. 
Luckily, the computer can detect any resulting collisions by listening to what is 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 558



Input/Output 527 

sent. (Mixed messages will sound like garbage.) To avoid repeated head-on 
collisions, each node whose packet was trashed backs off a random time before 
resending. If Ethernets do not have high utilization, this simple approach to 
arbitration works well. Many LANs become overloaded through poor capacity 
planning, and response time and throughput can degrade rapidly at higher 
utilization. 

The success of LANs has led to multiples of them at a single site. Connecting 
computers to separate Ethernets becomes necessary at a certain point because 
there is a limit to the number of nodes that can be active on a bus if effective 
communication speeds are to be achieved; one limit is 1024 nodes per Ethernet. 
There is also a physical limit to the distance of an Ethernet, usually about 1 
kilometer. To allow Ethernets to work together, two kinds of devices have been 
created: 

• A bridge connects two Ethernets. There are still two independent buses that 
can simultaneously send messages, ,but the bridge acts as a filter, allowing 
only those messages from nodes on one bus to nodes on the other bus to cross 
over the bridge. 

• A gateway typically connects several Ethernets. It receives a message, looks 
up the destination address in a table, and then routes the message over the 
appropriate network to the proper node. This routing table can be changed 
during execution to reflect the state of the networks. Some use the term router 
instead of gateway since it is closer to the fonction performed. 

When Ethernets are connected together with gateways they form an Internet. 
Long-haul networks cover distances of 10 to 10,000 kilometers. The first and 

most famous long-haul network was the ARP ANET (named after its funding 
agency, the Advanced Research Projects Agency of the U.S. government). It 
transferred at 50 Kbits per second and used point-to-point dedicated lines leased 
from telephone companies. The host computer talked to an interface message 
processor (IMP), which communicated over the telephone lines. The IMP took 
information and broke it into 1-Kbit packets. At each hop the packet was stored 
and then forwarded to the proper IMP according to the address in the packet. 
The destination IMP reassembled the packets into a message and then gave it to 
the host. Fragmentation and reassembly, as it was called, was done to reduce the 
latency due to the store and forward delay. Most networks today use this packet 
switched approach, where packets are individually routed from source to 
destination. Figure 9.22 (page 528) summarizes the performance, distance, and 
costs of these various networks. 

While these networks have been presented here as alternatives, a computer 
system is really a hierarchy of networks, as Figure 9.23 (page 528) shows. To 
deal with this hierarchy of networks connecting machines that communicate 
differently, there must be a standard software interface to handle messages. 
These are called protocols, and are typically layered to interface with different 
levels of software in computer systems. The overhead of these protocols can eat 
up a significant portion of the network bandwidth. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 559



528 . 9.4 Types of 1/0 Devices 

Just as with disks in Figure 9.6 (page 507), there is a tradeoff of latency and 
throughput in networks. Small messages give the lowest latency in most 
networks, but they also result in lower network bandwidth; similarly, a network 
can achieve higher bandwidth at the cost of longer latency. 

Network Performance Distance Cable Connect to Connector to 
(Kbits I sec) (km) cost network cost computer cost 

RS232 19 0.1 $0.25 $1-$5 $5 
/foot /connector /serial port chip 

Ethernet 10,000 1 $1-$5 $100 $50 /Ethernet 
/foot /transceiver interlace chip 

ARPANET 50 10,000 $10,000 $50,000- $5 ,000-$10,000 
/month $100,000/ IMP /IMP connection 

FIGURE 9.22 The performance, maximum distance, and costs of three example 
networks. An Internet is simply multiple Ethernets and a bridge, which costs about $2,000 
to $5,000, or a gateway, which costs about $20,000 to $50,000. 

Computer 

Computer 

Computer 

FIGURE 9.23 A computer system today participates in a hierarchy of networks. 
Ideally, the user is not aware of what network is being used in performing tasks. The 
gateway routes packets to a particular network, a network routes packets to a particular 
host computer, and the host computer routes packets to a particular process. 

9.5 I Buses-Connecting 1/0 Devices to 
CPU/Memory 

In a computer system, the various subsystems must have interfaces to one 
another; for instance, the memory and CPU need to communicate, as well as the 
CPU and 1/0 devices. This is commonly done with a bus. The bus serves as a 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 560



Input/Output 529 

shared communication link between the subsystems. The two major advantages 
of the bus organization are low cost and versatility. By defining a single 
interconnection scheme, new devices can easily be added, and peripherals may 
even be ported between computer systems that use a common bus. The cost is 
low, since a single set of wires is shared multiple ways. 

The major disadvantage of a bus is that it creates a communication bot
tleneck, possibly limiting the maximum 1/0 throughput. When I/0 must pass 
through a central bus this bandwidth limitation is as real as-and sometimes 
more severe than-memory bandwidth. In commercial systems, where 1/0 is 
very frequent, and in supercomputers, where the necessary I/O rates are very 
high because the CPU performance is high, designing a bus system capable of 
meeting the demands of the processor is a major challenge .. 

One reason bus design is so difficult is that the maximum bus speed is largely 
limited by physical factors: the length of the bus and the number of devices (and, 
hence, bus loading). These physical limits prevent arbitrary bus speedup. The 
desire for high I/0 rates (low latency) and high I/0 throughput can also lead to 
conflicting design requirements. 

Buses are traditionally classified as CPU-memory buses or 110 buses. I/0 
buses may be lengthy,,may have many types of devices connected to them, have 
a wide range in the data bandwidth of the devices connected to them (see Figure 
9.1 on page 501), and normally follow a bus standard. CPU-memory buses, on 
the other hand, are short, generally high speed, and matched to the memory 
system to maximize memory-CPU bandwidth. During the design phase, the de
signer of a CPU-memory bus knows all the types of devices that must connect 
together, while the I/0 bus designer must accept devices varying in latency and 
bandwidth capabilities. To lower costs, some computers have a single bus for 
both memory and I/0 devices. 

Let's consider a typical bus transaction. A bus transaction includes two parts: 
sending the address and receiving or sending the data. Bus transactions are 
usually defined by what they do to memory: A read transaction transfers data 
from memory (to either the CPU or an I/0 device), and a write transaction writes 
data to the memory. In a read transaction, the address is first sent down the bus 
to the memory, together with the appropriate control signals. indicating a read. 
The memory responds by returning the data on the bus with the appropriate 
control signals. A write transaction requires that the CPU or I/0 device send 
both address and data and requires no return of data. Usually the CPU must wait 
between sending the address and receiving the data on a read, but the CPU often 
does not wait on writes. 

The design of a bus presents several options, as Figure 9 .24 (page 530) 
shows. Like the rest of the computer system, decisions will depend on cost and 
performance goals. The first three options in the figure are clear choices
separate address and data lines, wider data lines, and multiple-word transfers all 
give higher performance at more cost. 

The next item in the table concerns the number of bus masters. These are 
devices that can initiate a read or write transaction; the CPU, for instance, is al-

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 561



530 

Option 

Bus width 

Data width 

Transfer size 

Bus masters 

Split 
transaction? 

Clocking 

9.5 Buses-Connecting 1/0 Devices to CPU/Memory 

ways a bus master. A bus has multiple masters when there are multiple CPUs or 
when 1/0 devices can initiate a bus transaction. If there are multiple masters, an 
arbitration scheme is required among the masters to decide who gets the bus 
next. Arbitration is often a fixed priority, as is the case with daisy-chained 
devices or an approximately fair scheme that randomly chooses which master 
gets the bus. 

With multiple masters a bus can offer higher bandwidth by going to packets, 
as opposed to holding the bus for the full transaction. This technique is 
designated split transactions. (Some systems call this ability connect/disconnect 
or a pipelined bus.) The read transaction is broken into a read-request transaction 
that contains the address, and a memory-reply transaction that contains the data. 
Each transaction must now be tagged so that the CPU and memory can tell what 
is what. Split transactions make the bus available for other masters while the 
memory reads the words from the requested address. It also normally means that 
the CPU must arbitrate for the bus to send the data and the memory must 
arbitrate for the bus to return the data. Thus, a split-transaction bus has higher 
bandwidth, but it usually has higher latency than a bus that is held during the 
complete transaction. 

The final item, clocking, concerns whether a bus is synchronous or 
asynchronous. If a bus is synchronous it includes a clock in the control lines and 
a fixed protocol for address and data relative to the clock. Since little or no logic 
is needed to decide what to do next, these buses can be both fast and inexpen
sive. However, they have two major disadvantages. Everything on the bus must 
run at the same clock rate, and because of clock-skew problems, synchronous 
buses cannot be long. CPU-memory buses are typically synchronous. 

An asynchronous bus, on the other hand, is not clocked. Instead, self-timed, 
handshaking protocols are used between bus sender and receiver. This scheme 
makes it much easier to accommodate a wide variety of devices and to lengthen 
the bus without worrying about clock skew or synchronization problems. If a 
synchronous bus can be used, it is usually faster than an asynchronous bus 
because of the overhead of synchronizing the bus for each transaction. The 
choice of synchronous versus asynchronous bus has implications not only for 
data bandwidth but also for an 1/0 system's capacity in terms of physical 

High performance Low cost 

Separate address and data lines Multiplex address and data lines 

Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits) 

Multiple words has less bus overhead Single-word transfer is simpler 

Multiple (requires arbitration) Single master (no arbitration) 

Yes-separate Request and Reply packets gets No-continuous connection is cheaper and 
higher bandwidth (needs multiple masters) has lower latency 

Synchronous Asynchronous 

FIGURE 9.24 The main options for a bus. The advantage of separate address and data buses is primarily on writes. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 562



Input/Output 531 

distance and number of devices that can be connected to the bus; asynchronous 
buses scale better with technological changes. l/O buses are typically asynch
ronous. Figure 9 .25 suggests the relationship of when to use one over the other. 

Bus Standards 

The number and variety of I/0 devices are not fixed on most computer systems_, 
permitting customers to tailor computers to their needs. As the interface to 
which devices are connected, the I/0 bus can also be considered an expansion 
bus for adding I/0 devices over time. Standards that let the computer designer 
and 1/0-device designer work independently, therefore, play a large role in 
determining the choice of buses. As long as both the computer-system designer 
and the 1/0-device designer meet the requirements, any l/0 device can connect 
to any computer. In fact, an I/0 bus standard is the document that defines how to 
connect them. 

Machines sometimes grow to be so popular that their I/0 buses become de 
facto standards; examples are the PDP-11 Unibus and the IBM PC-AT Bus. 
Once many I/0 devices have been built for the popular machine, other computer 
designers will build their I/O interface so that those devices can plug into their 
machines as well. Sometimes standards also come from an explicit standards 
effort on the part of I/0 device makers. The intelligent peripheral interface (IPI) 

Long 

Clock skew 
(function of 
bus length) 

Short 

Asynchronous better 

Synchronous better 

Similar 
Mixture of 1/0 
device speeds 

Varied 

FIGURE 9.25 Preferred bus type as a function of length/clock skew and variation in 
1/0 device speed. Synchronous is best when the distance is short and the 1/0 devices on 
the bus all transfer at similar speeds. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 563



532 

Bus width (signals) 

Address/data multiplexed? 

Data width (primary) 

Transfer size 

Number of bus masters 

Split transaction? 

Clocking 

9.5 Buses-Connecting 1/0 Devices to CPU/Memory 

and Ethernet are examples of standards from cooperation of manufacturers. If 
standards are successful, they are eventually blessed by a sanctioning body like 
ANSI or IEEE. Occasionally, a bus standard comes top-down directly from a 
standards committee-the FutureBus is one example. 

Figure 9.26 summarizes characteristics of several bus standards. Note that the 
bandwidth entries in the figure are not listed as single numbers for the CPU
memory buses (VME, FutureBus, and Multibus II). Because of the bus 
overhead, the size of the transfer affects bandwidth significantly. Since the bus 
usually transfers to or from memory, the speed of the memory also affects the 
bandwidth. For example, with infinite transfer size and infinitely fast (0 ns) 
memory, FutureBus is 240% faster than VME, but FutureBus is only about 20% 
faster than VME for single-word transfers from a 150-ns memory. 

VMEbus FutureBus Multibus II IPI SCSI 

128 96 96 16 8 

Not multi- Multiplexed Multiplexed NIA NIA 
plexed 

16 to 32 bits 32 bits 32 bits 16 bits 8 bits 

Single or Single or Single or Single or Single or 
multiple multiple multiple multiple multiple 

Multiple Multiple Multiple Single Multiple 

No Optional Optional Optional Optional 

Asynchronous Asynchronous Synchronous Asynchronous Either 

Bandwidth, 0-ns access memory, 25.0MB/sec 37.0 MB/sec 20.0MB/sec 25.0MB/sec 5.0 MB/sec or 
single word 1.5 MB/sec 

Bandwidth, 150-ns access 12.9 MB/sec 15.5 MB/sec 10.0MB/sec 25.0 MB/sec 5.0 MB/sec or 
memory, single word 1.5 MB/sec 

Bandwidth, 0-ns access memory, 27.9 MB/sec 95.2MB/sec 40.0MB/sec 25.0 MB/sec 5.0 MB/sec or 
multiple words (infinite block 1.5 MB/sec 
length) 

Bandwidth, 150-ns access 13.6 MB/sec 20.8 MB/sec 13.3 MB/sec 25.0 MB/sec 5.0 MB/sec or 
memory, multiple words (infinite 1,5 MB/sec 
block length) 

Maximum number of devices 21 20 21 8 7 

Maximum bus length 0.5 meter 0.5 meter 0.5 meter 50 meters 25 meters 

Standard IEEE 1014 IEEE 896.1 ANSI/IEEE ANSIX3.129 ANSIX3.131 
1296 

FIGURE 9.26 Information on five bus standards. The first three were defined originally as CPU-memory buses and 
. the last two as 1/0 buses. For the CPU-memory buses the bandwidth calculations assume a fully loaded bus and are 
given for both single-word transfers and block transfers of unlimited length; measurements are shown both ignoring mem
ory latency and assuming 150-ns access time. Bandwidth assumes the average distance of a transfer is one-third of the 
backplane length. (Data in the first three columns is from Borrill [1986].) The bandwidth for the 1/0 buses is given as their 
maximum data-transfer rate. The SCSI standard offers either asynchronous or synchronous 1/0; the asynchronous 
version transfers at 1 .5 MB/sec and the synchronous at 5 MB/sec. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 564



Input/Output 533 

9.6 I interfacing to the CPU 

Having described I/0 devices and looked at some of the issues of the connecting 
bus, we are ready to discuss the CPU end of the interface. The first question is 
how the physical connection of the 1/0 bus should be made. The two choices are 
connecting it to memory or to the cache. In the following section we will discuss 
the pros and cons of connecting an I/0 bus directly to the cache; in this section 
we examine the more usual case in which the 1/0 bus is· connected to the main 
memory bus. Figure 9.27 shows a typical organization. In low-cost systems, the 
1/0 bus is the memory bus; this means an 1/0 command on the bus could 
interfere with a CPU instruction fetch, for example. 

Once the physical interface is chosen, the question becomes how does the 
CPU address an 1/0 device that it needs to send or receive data. The most 
common practice is called memory-mapped I/0. In this scheme, portions of the 
address space are assigned to I/0 devices. Reads and writes to those addresses 
may cause data to be transferred; some portion of the I/0 space may also be set 
aside for device control, so commands to the device are just accesses to those 
memory-mapped ap.dresses. The alternative practice is to use dedicated 1/0 
opcodes in the CPU. In this case, the CPU sends a signal that this address is for 
I/0 devices. Examples of computers with 1/0 instructions are the Intel 80x86 
and the IBM 370 computers. No matter which addressing scheme is selected, 
each I/0 device has registers to provide status and control information. Either 

CPU 

1/0 
controller 

1/0 
controller 

Graphics 
output 

1/0 
controller 

FIGURE 9.27 A typical interface of 1/0 devices and an 1/0 bus to the CPU-memory 
bus. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 565



534 9.6 Interfacing to the CPU 

through loads and stores in memory-mapped 1/0 or through special instructions, 
the CPU sets flags to determine the operation the 1/0 device will perform. 

1/0 is rarely a single operation. For example, the DEC LPl 1 line printer has 
two 1/0 device registers: one for status information and one for data to be 
printed. The status register contains a done bit, set by the printer when it has 
printed a character, and an error bit, indicating that the printer is jammed or out 
of paper. Each byte of data to be printed is put into the data register; the CPU 
must then wait until the printer sets the done bit before it can place another 
character in the buffer. 

This simple interface, in which the CPU periodically checks status bits to see 
if it is time for the next 1/0 operation, is called polling. As one might expect, the 
fact that CPUs are so much faster than 1/0 devices means polling may waste a 
lot of CPU time. This was recognized long ago, leading to the invention of 
interrupts to notify the CPU when it is time to do something for the 1/0 device. 
Interrupt-driven 1/0, used by most systems for at least some devices, allows the 
CPU to work on some other process while waiting on the 1/0 device. For 
example, the LPl 1 has a mode that allows it to interrupt the CPU whenever the 
done bit or error bit is set. In general-purpose applications, interrupt driven 1/0 
is the key to multitasking operating systems and good response times. 

The drawback to interrupts is the operating system overhead on each event. In 
real-time applications with hundreds of 1/0 events per second, this overhead can 
be intolerable. One hybrid solution for real-time systems is to use a clock to 
periodically interrupt the CPU, at which time the CPU polls all 1/0 devices. 

Delegating 1/0 Responsibility from the CPU 

Interrupt-driven 1/0 relieves the CPU from waiting for every 1/0 event, but there 
are still many CPU cycles spent in transferring data. Transferring a disk block of 
2048 words, for instance, would require at least 2048 loads and 2048 stores, as 
well as the overhead for the interrupt. Since 1/0 events so often involve block 
transfers, direct memory access (DMA) hardware is added to many computer 
systems to allow transfers of numbers of words without intervention by the 
CPU. 

DMA is a specialized processor that transfers data between memory and an 
1/0 device, while the CPU goes on with other tasks. Thus, it is external to the 
CPU and must act as a master on the bus. The CPU first sets up the DMA 
registers, which contain a memory address and number of bytes to be 
transferred. Once the DMA transfer is complete, the controller interrupts the 
CPU. There may be multiple DMA devices in a computer system; for example, 
DMA is frequently part of the controller for an 1/0 device. 

Increasing the intelligence of the DMA device can further unburden the CPU. 
Devices called J/O processors, (or I/O controllers, or channel controllers) 
operate from either fixed programs or from programs downloaded by the 
operating system. The operating system typically sets up a queue of 110 control 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 566



Input/Output 535 

blocks that contain information such as data location (source and destination) 
and data size. The I/O processor then takes items from the queue, doing 
everything requested and sending a single interrupt when the task specified in 
the I/O control blocks is complete. Whereas the LPl 1 line printer would cause 
4800 interrupts to print a 60-line by 80-character page, an I/0 processor could 
save 4799 of those interrupts. 

I/O processors can be compared to multiprocessors in that they facilitate 
several processes executing simultaneously in the computer system. I/O 
processors are less general than CPUs, however, since they have dedicated tasks, 
and thus parallelism is also much more limited. Also, an I/0 processor doesn't 
normally change information, as a CPU does, but just moves information from 
one place to another. 

Interfacing to an Operating System 

In a manner analogous to the way compilers use an instruction set (see Section 
3.7 of Chapter 3), operating systems control what I/0 techniques implemented 
by the hardware will actually be used. For example, many I/O controllers used in 
early UNIX systems were 16-bit microprocessors. To avoid problems with 16-
bit addresses in controllers, UNIX was changed to limit the maximum I/O 
transfer to 63 KB or less; at the time of this book's publication, that limit is still 
in effect. Thus, a new I/O controller designed to efficiently transfer 1-MB files 
would never see more than 63 KB at a time under UNIX, no matter how large 
the files. 

Caches Cause Problems for Operating Systems
Stale Data 

The prevalence of caches in computer systems has added to the responsibilities 
of the operating system. Caches imply the possibility of two copies of the data
one each for cache and main memory-while virtual memory can result in three 
copies-for cache, memory and disk. This brings up the possibility of stale data: 
the CPU or I/0 system could modify one copy without updating the other copies 
(see Section 8.8 in Chapter 8). Either the operating system or the hardware must 
make sure that the CPU reads the most recently input data and that I/0 outputs 
the correct data, in the presence of caches and virtual memory. Whether the 
stale-data problem arises depends in part on where the I/O is connected to the 
computer. If it is connected to the CPU cache, as shown in Figure 9.28 (page 

· 536), there is no stale-data problem; all I/O devices and the CPU see the most 
accurate version in the cache, and existing mechanisms in the memory hierarchy 
ensure that other copies of the data will be updated. The side effect is lost CPU 
performance, since I/0 will replace blocks in the cache with data that are 
unlikely to be needed by the process running in the CPU at the time of the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 567



536 9.7 Interfacing to an Operating System 

transfer. In other words, all 1/0 data goes through the cache but little of it is 
referenced. This arrangement also requires arbitration between CPU and 1/0 to 
decide who accesses the cache. If 1/0 is connected to memory, as in Figure 9.27 
(page 533), then it doesn't interfere with CPU, provided the CPU has a cache. In 
this situation, however, the stale-data problem occurs. Alternatively, 1/0 can just 
invalidate data-either all data that might match (no tag check) or only data that 
matches. 

There are two parts to the stale-data problem: 

1. The 1/0 system sees stale data on output because memory is not up to date. 

2 The CPU sees stale data in the cache on input after the 1/0 system has 
updated memory. 

The first dilemma is how to output correct data if there is a cache and 1/0 is 
connected to memory. A write-through cache solves this by ensuring that 
memory will have the same data as the cache. A write-back cache requires the 
operating system to flush output addresses to make sure they are not in the 
cache. This takes time, even if the data is not in the cache, since address checks 
are sequential. Alternatively, the hardware can check cache tags during output to 
see if they are in a write-back cache, and only interact with the cache if the 
output tries to read data that is in the cache. 

The second problem is ensuring that the cache won't have stale data after 
input. The operating system can guarantee that the input data area can't possibly 

CPU 

1/0 
controller 

1/0 
controller 

FIGURE 9.28 Example of 110 connected directly to the cache. 

Main 
memory 

1/0 
controller 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 568



Input/Output 537 

be in the cache. If it can't guarantee this, the operating system flushes input 
addresses to make sure they are not in the cache. Again, this takes time, whether 
or not the input addresses are in the cache. As before, extra hardware can be 
added to check tags during an input and invalidate the data if there is a conflict. 
These problems are basically the same as cache coherency in a multiprocessor, 
discussed in Section 8.8 of Chapter 8; 1/0 can be thought of as a second 
dedicated processor in a multiprocessor. 

DMA and Virtual Memory 

Given the use of virtual memory, there is the matter of whether DMA should 
transfer using virtual addresses or physical addresses. Here are some problems 
with DMA using physically mapped I/0: 

• Transferring a buffer that is larger than one page will cause problems, since 
the pages in the buffer will not usually be mapped to sequential pages in 
physical memory. 

• Suppose DMA is ongoing between memory and a frame buffer, and the 
operating system removes some of the pages from memory (or relocates 
them). The DMA would then be transferring data to or from the wrong page 
of memory. 

One answer to these questions is virtual DMA. It allows the DMA to use 
virtual addresses that are mapped to physical addresses during the DMA. Thus, a 
buffer must be sequential in virtual memory but the pages can be scattered in 
physical memory. The operating system could update the address tables of a 
DMA if a process is moved using virtual DMA, or the operating system could 
"lock" the pages in memory until the DMA is complete. Figure 9.29 (page 538) 
shows address-translation registers added to the DMA device. 

Caches Helping Operating Systems
File or Disk Caches 

While the invention of caches made the life of the operating systems· designer 
more difficult, operating systems designers' concern for performance led them 
to cache-like optimizations, using main memory as a "cache" for disk traffic to 
improve I/O performance. The impact of using main memory as a buffer or 
cache for file or disk accesses is demonstrated in Figure 9.30 (page 538). It 
shows the change in disk I/Os for a cacheless system measured as miss rate (see 
Section 8.2 in Chapter 8). File caches or disk caches change the number of disk 
I/Os and the mix of reads and writes; depending on cache size and write policy, 
between 50% to 70% of all disk accesses could become writes with such caches. 
Without file or disk caches, between 15% and 33% of all accesses are writes, 
depending on the environment. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 569



538 9.7 Interfacing to an Operating System 

TLB 

CPU 

Address
translation 
registers 

Graphics 
output 

Main 
memory 

FIGURE 9.29 Virtual OMA requires a register for each page to be transferred in the 
OMA controller, showing the protection bits and the physical page corresponding to 
each virtual page. 

60% 

50% 

40% 
Disk/file 
cache 
miss rate 30% 

20% 

10% 

0% 

0 4 8 12 16 20 24 28 32 

Cache size (MB) 

FIGURE 9.30 The effectiveness of a file cache or disk cache on reducing disk I/Os 
versus cache size. Ousterhout et al. [1985] collected the VAX UNIX data on VAX-11/785s 
with 8 MB to 16 MB of main memory, running 4.2 BSD UNIX using a 16-KB block size. 
Smith [1985] collected the IBM SVS and IBM MVS traces on IBM 370/168 using a one
track block size (which varied from 7294 bytes to 19254 bytes, depending on the disk). The 
difference between a file cache and a disk cache is that the file cache uses logical block 
numbers while a disk cache uses addresses that have been mapped to the physical sector 
and track on a disk. This difference is similar to the difference between a virtually 
addressed and a physically addressed cache (see Section 8.8 in Chapter 8). 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 570



9.8 I 
Input/Output 539 

Designing an 1/0 System 

The art of 1/0 is finding a design that meets goals for cost and variety of devices 
while avoiding bottlenecks to 1/0 performance. This means that components 
must be balanced between main memory and the I/O device because perfor
mance-and hence effective cost/performance-can only be as good as the 
weakest link in the I/0 chain. The architect must also plan for expansion so that 
customers can tailor the I/O to their applications. This expansibility, both in 
numbers and types of 1/0 devices, has its costs in longer backplanes, larger 
power supplies to support I/0 devices, and larger cabinets. 

In designing an I/0 system, analyze performance, cost, and capacity using 
varying 1/0 connection schemes and different numbers of 1/0 devices of each 
type. Here is a series of six steps to follow in designing an 1/0 system. The 
answers in each step may be dictated by market requirements or simply by 
cost/performance goals. 

1. List the different types of 1/0 devices to be connected to the machine, or a 
list of standard buses that the machine will support. 

2. List the physical requirements for each 1/0 device. This includes volume, 
power, connectors, bus slots, expansion cabinets, and so on. 

3. List the cost of each 1/0 device, including the portion of cost of any 
controller needed for this device. 

4. Record the CPU resource demands of each 1/0 device. This should include: 

Clock cycles for instructions used to initiate an 1/0, to support operation 
of an I/O device (such as handling interrupts), and complete 1/0 

CPU clock stalls due to waiting for I/O to finish using the memory, bus, or 
cache 

CPU clock cycles to recover from an I/0 activity, such as a cache flush 

5. List the memory and 1/0 bus resource demands of each 1/0 device. Even 
when the CPU is not using memory, the bandwidth of main memory and the 
1/0 bus are limited. 

6. The final step is establishing performance of the different ways to organize 
these 1/0 devices. Performance can only be properly evaluated with 
simulation, though it may be estimated using queuing theory. 

You then select the best organization, given your performance and cost goals. 
Cost and performance goals affect the selection of the 1/0 scheme and 

physical design. Performance can be measured either as megabytes per second 
or I/Os per second, depending on the needs of the application. For high per
formance, the only limits should be speed of 1/0 devices, number of 1/0 devices, 
and speed of memory and CPU. For low cost, the only expenses should be those 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 571



540 

Example 

Answer 

9.8 Designing an 1/0 System 

for the 1/0 devices themselves and for cabling to the CPU. Cost/performance 
design, of course, tries for the best of both worlds. 

To make these ideas clearer, let's go through several examples. 

First, let's look at the impact on the CPU of reading a disk page directly into the 
cache. Make the following assumptions: 

Each page is 8 KB and the cache-block size is 16 bytes. 

The addresses corresponding to the new page are not in the cache. 

The CPU will not access any of the data in the new page. 

90% of the blocks that were displaced from the cache will be read in again, 
an.d each will cause a miss. 

The cache uses write back, and 50% of the blocks are dirty on average. 

The 1/0 system buffers a full cache block before writing to the cache (this is 
called a speed-matching buffer, matching transfer bandwidth of the 1/0 
system and memory). 

The accesses and misses are spread uniformly to all cache blocks. 

There is no other interference between the CPU and 1/0 for the cache slots. 

There are 15,000 misses every one million clock cycles when there is no 1/0. 

The miss penalty is 15 clock cycles, plus 15 more cycles to write the block if 
it was dirty. 

Assuming one page is brought in every one million clock cycles, what is the 
impact on performance? 

Each page fills 8192/16 or 512 blocks. 1/0 transfers do not cause cache misses 
on their own because entire cache blocks are transferred. However, they do 
displace blocks already in the cache. If half of the displaced blocks are dirty it 
takes 256*15 clock cycles to write them back to memory. There are also misses 
from 90% of the blocks displaced in the cache because they are referenced later, 
adding another 90%*512, or 461 misses. Since this data was placed into the 
cache from the 1/0 system, all these blocks are dirty and will need to be written 
back when replaced. Thus, the total is 256*15 + 461*30 more clock cycles than 
the original 1,000,000 + 15,000* 15. This turns into a 1 % decrease in 
performance: 

256*15 + 461*30 17670 
1000000+15000*15 = 1225000 = 0·

014 

Now let's look at the cost/performance of different 1/0 organizations. A 
simple way to perform this analysis is to look at maximum throughput assuming 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 572



Example 

Answer 

Input/Output 541 

that resources can be used at 100% of their maximum rate without side effects 
from interference. A later example takes a more realistic view. 

Given the following performance and cost information: 

a 50-MIPS CPU costing $50,000 

an 8-byte-wide memory with a 200-ns cycle time 

80 MB/sec 1/0 bus with room for 20 SCSI buses and controllers 

SCSI buses that can transfer 4 MB/sec and support up to 7 disks per bus 
(these are also called SCSI strings) 

a $2500 SCSI controller that adds 2 milliseconds (ms) of overhead to perform 
a disk 1/0 

an operating system that uses 10,000 CPU instructions for a disk 1/0 

a choice of a large disk containing 4 GB or a small disk containing 1 GB, 
each costing $3 per MB 

both disks rotate at 3600 RPM, have a 12-ms average seek time, and can 
transfer 2MB/sec 

the storage capacity must be 100 GB, and 

the average 1/0 size is 8 KB 

Evaluate the cost per 1/0 per second (IOPS) of using small or large drives. 
Assume that every disk 1/0 requires an average seek and average rotational 
delay. Use the optimistic assumption that all devices can be used at 100% of 
capacity and that the workload is evenly divided between all disks. 

1/0 performance is limited by the weakest link in the chain, so we evaluate the 
maximum performance of each link in the 1/0 chain for each organization to 
determine the maximum performance of that organization. 

Let's start by calculating the maximum number of IOPS for the CPU, main 
memory, and 1/0 bus. The CPU 1/0 performance is determined by the speed of 
the CPU and the number of instructions to perform a disk 1/0: 

. 50MIPS 
Maximum IOPS for CPU= lOOOO . . l/O = 5000 mstructions per 

The maximum performance of the memory system is determined by the memory 
cycle time, the width of the memory, and the size of the 1/0 transfers: 

. . (1/200 ns)*8 
Maximum IOPS for mam memory = 8 KB per l/O ""' 5000 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 573



542 9.8 Designing an 1/0 System 

The 1/0 bus maximum performance is limited by the bus bandwidth and the size 
of the 1/0: 

. 80 MB/sec 
Maximum IOPS for the 1/0 bus = 8 KB per l/O :::: 10000 

Thus, no matter which disk is selected, the CPU and main memory limits the 
maximum performance to no more than 5000 IOPS. 

Now its time to look at the performance of the next link in the 1/0 chain, the 
SCSI controllers. The time to transfer 8 KB over the SCSI bus is 

SCSI bus transfer time = 4 ~~fsec = 2 ms 

Adding the 2-ms SCSI controller overhead means 4 ms per 1/0, making the 
maximum rate per con.troller 

Maximum IOPS per SCSI controller= -
4 

1 
= 250 IOPS 

ms 

All the organizations will use several controllers, so 250 IOPS is not the limit for 
the whole system. 

The final link in the chain is the disks themselves. The time for an average 
disk 1/0 is 

1/0 time= 12 ms+ 360~·~PM + 2 ~~fsec = 12+8.3+ 4 = 24.3 ms 

so the disk performance is 

Maximum IOPS (using average seeks) per disk= 24.~ ms:::: 41 IOPS 

The number of disks in each organization depends on the size of each disk: 100 
GB can be either 25 4-GB disks or 100 1-GB disks. The maximum number of 
I/Os for all the disks is: 

Maximum IOPS for 25 4-GB disks = 25 * 41=1025 

Maximum IOPS for 100 1-GB disks = 100 * 41=4100 

Thus, provided there are enough SCSI strings, the disks become the new limit to 
maximum performance: 1025 IOPS for the 4-GB disks and 4100 for the 1-GB 
disks. 

While we have determined the performance of each link of the 1/0 chain, we 
still have to determine how many SCSI buses and controllers to use and how 
many disks to connect to each controller, as this may further limit maximum 
performance. The 1/0 bus is limited to 20 SCSI controllers and the SCSI 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 574



Input/Output 543 

standard limits disks to 7 per SCSI string. The minimum number of controllers is 
for the 4-GB disks 

Minimum number of SCSI strings for 25 4-GB disks = ;
5 

or 4 

and for 1-GB disks 

Minimum number ofSCSI strings for 100 1-GB disks= l~O or 15 

We can calculate the maximum IOPS for each configuration: 

Maximum IOPS for 4 SCSI strings = 4 * 250 = 1000 IOPS 

Maximum IOPS for 15 SCSI strings = 15 * 250 = 3750 IOPS 

The maximum performance of this number of controllers is slightly lower 
than the disk I/0 throughput, so let's also calculate the number of controllers so 
they don't become a bottleneck. One way is to find the number of disks they can 
support per string: 

Number of disks per SCSI string at full bandwidth = ~~O = 6.1 or 6 

and then calculate the number of strings: 

Number of SCSI strings for full bandwidth 4-GB disks = ~5 = 4.1 or 5 

Number of SCSI strings for full bandwidth 1-GB disks= l~O = 16.7 or 17 

This establishes the performance of four organizations: 25 4-GB disks with 4 
or 5 SCSI strings and 100 1-GB disks with 15 to 17 SCSI strings. The maximum 
performance of each option is limited by the bottleneck (in boldface): 

4-GB disks, 4 strings = Min(5000,5000,10000,1025,1000) = 1000 IOPS 

4-GB disks, 5 strings = Min(5000,5000,10000,1025,1250) = 1025 IOPS 

1-GB disks, 15 strings = Min(5000,5000,10000,4100,3750) = 3750 IOPS 

• 
1-GB disks, 17 strings = Min(5000,5000,10000,4100,4250) = 4100 IOPS 

We can now calculate the cost for each organization: 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 575



544 

Example 

Answer 

9.8 Designing an 1/0 System 

4-GB disks, 4 strings = $50,000 + 4*$2,500 + 25 * (4096*$3) = $367,200 

4-GB disks, 5 strings = $50,000 + 5*$2;500 + 25 * (4096*$3) = $369,700 

1-GB disks, 15 strings = $50,000 + 15*$2,500 + 100 * (1024*$3) = $394,700 

1-GB disks, 17 strings = $50,000 + 17*$2,500 + 100 * (1024*$3) = $399,700 

Finally, the cost per IOPS for each of the four configurations is $367, $361, 
$105, and $97, respectively. Calculating maximum number of average I/Os per 
second assuming 100% utilization of the critical resources, the best 
cost/performance is the organization with the small disks and the largest number 
of controllers. The small disks have 3.4 to 3.8 times better cost/performance than 
the large disks in this example. The only drawback is that the larger number of 
disks will affect system availability unless some form of redundancy is added 
(see pages 520-521). 

This above example assumed that resources can be used 100%. It is 
instructive to see what is the bottleneck in each organization. 

For the organizations in the last example, calculate the percentage of utilization 
of each resource in the computer system. 

Figure 9.31 gives the answer. 

Resource 4-GB disks, 4-GB disks, 1-GB disks, 1-GB disks, 
4 strings 5 strings 15 strings 17 strings 

CPU 20% 21% 75% 82% 

Memory 20% 21% 75% 82% 

1/0 bus 10% 10% 38% 41% 

SCSI buses 100% 82% 100% 96% 

Disks 98% 100% 91% 100% 

FIGURE 9.31 The percentage of utilization of each resource given the four 
organizations in the previous example. Either the SCSI buses or the disks are the 
bottleneck. 

In reality buses cannot deliver close to 100% of bandwidth without severe 
increase in latency and reduction in throughput due to contention. A variety of 
rules of thumb have been evolved to guide I/0 designs: 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 576



Example 

Answer 

Input/Output 

No 1/0 bus should be utilized more than 75% to 80%; 

No disk string should be utilized more than 40%; 

No disk arm should be seeking more than 60% of the time. 

545 

Recalculate performance in the example above using these rules of thumb, and 
show the utilization of each component. Are there other organizations that 
follow these guidelines and improve performance? 

Figure 9.31 shows that the 1/0 bus is far below the suggested guidelines, so we 
concentrate on the utilization of seek and SCSI bus. The utilization of seek time 
per disk is 

Time of average seek 
= Time between I/Os 

12 ms = 12 = 5001 
1 24 

70 

41 IOPS 

which is below the rule of thumb. The biggest impact is on the SCSI bus: 

Suggested IOPS per SCSI string = -
4 

l * 40% = 100 IOPS. 
ms 

With this data we can recalculate IOPS for each organization: 

4-GB disks, 4 strings = Min(5000,5000,7500,1025,400) = 400 IOPS 

4-GB disks, 5 strings = Min(5000,5000,7500,1025,500) = 500 IOPS 

1-GB disks, 15 strings = Min(5000,5000,7500,4100,1500) = 1500 IOPS 

1-GB disks, 17 strings = Min(5000,5000,7500,4100,1700) = 1700 IOPS 

Under these assumptions, the small disks have about 3.0 to 4.2 times the 
performance of the large disks. 

Clearly, the string bandwidth is the bottleneck now. The number of disks per 
string that would not exceed the guideline is 

Number of disks per SCSI string at full bandwidth= ~~O = 2.4 or 2 

and the ideal number of strings is 

Number of SCSI strings for full bandwidth 4-GB disks = ~ = 12.5 or 13 

Number of SCSI strings for full bandwidth 1-GB disks= l~O = 50 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 577



546 9.8 Designing an 1/0 System 

This suggestion is fine for 4-GB disks, but the I/O bus is limited to 20 SCSI 
controllers and strings so that becomes the limit for 1-GB disks: 

4-GB disks, 13 strings= Min(5000,5000,7500,1025,1300) = 1025 IOPS 

1-GB disks, 20 strings= Min(5000,5000,7500,4100,2000) = 2000 IOPS 

We can now calculate the cost for each organization: 

4-GB disks, 13 strings= $50,000 + 13*$2,500 + 25 * (4096*$3) = $389,700 

1-GB disks, 20 strings= $50,000 + 20*$2,500 + 100 * (1024*$3) = $407,200 

In this case the small disks cost 5% more yet have about twice the performance 
of the large disks. The utilization of each resource is shown in Figure 9.32. It 
shows that following the rule of thumb of 40% string utilization sets the 
performance limit in all but one case. 

Resource 4-GB 4-GB 1-GB 1-GB 4-GB 1-GB 
disks, 4 disks, 5 disks, 15 disks, 17 disks, 13 disks, 20 
strings strings strings strings strings strings 

CPU 8% 10% 30% 34% 21% 40% 

Memory 8% 10% 30% 34% 21% 40% 

I/O bus 5% 7% 20% 23% 14% 27% 

SCSI buses 40% 40% 40% 40% 32% 40% 

Disks 39% 49% 37% 41% 100% 49% 

Seek utilization 19% 24% 18% 20% 49% 24% 

IOPS 400 500 1500 1700 1025 2000 

FIGURE 9.32 The percentage of utilization of each resource given the six 
organizations in this example, which tries to limit utilization of key resources to the 
rules of thumb given above. 

Putting It All Together: 
The IBM 3990 Storage Subsystem 

If computer architects were polled to select the leading company in I/O design, 
IBM would win hands down. A good deal of IBM's mainframe business is 
commercial applications, known to be I/O intensive. While there are graphic 
devices and networks that can be connected to an IBM mainframe, IBM's 
reputation comes from disk performance. It is on this aspect that we concentrate 
in this section. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 578



Input/Output 547 

The IBM 360/370 I/O architecture has evolved over a period of 25 years. 
Initially, the I/0 system was general purpose, and no special attention was paid 
to any particular device. As it became clear that magnetic disks were the chief 
consumers of I/0, the IBM 360 was tailored to support fast disk I/0. IBM's 
dominant philosophy is to choose latency over throughput whenever it makes a 
difference. IBM almost never uses a large buffer outside the CPU; their goal is 
to set up a clear path from main memory to the I/O device so that when a device 
is ready, nothing can get in the way. Perhaps IBM followed a corollary to the 
quote on page 526: you can buy bandwidth, but you need to design for latency. 
As a secondary philosophy, the CPU is unburdened as much as possible to allow 
the CPU to continue with computation while others perform the desired I/O 
activities. 

The example for this section is the high-end IBM 3090 CPU and the 3990 
Storage Subsystem. The IBM 3090, models 3090/100 to 3090/600, can contain 
one to six CPUs. This 18.5-ns-clock-cycle machine has a 16-way interleaved 
memory that can transfer eight bytes every clock cycle on each of two 
(3090/100) or four (3090/600) buses. Each 3090 processor has a 64-K.B, 4-way
set-associative, write-back cache, and the cache supports pipelined access taking 
two cycles. Each CPU is rated about 30 IBM MIPS (see page 78), giving at 
most 180 MIPS to the IBM 3090/600. Surveys of IBM mainframe installations 
suggest a rule of thumb of about 4 GB of disk storage per MIPS of CPU power 
(see Section 9.12). 

It is only fair warning to say that IBM terminology may not be self-evident, 
although the ideas are not difficult. Remember that this I/O architecture has 
evolved since 1964. While there may well be ideas that IBM wouldn't include if 
they were to start anew, they are able to make this scheme work, and make it 
work well. 

The 3990 1/0 Subsystem Data-Transfer Hierarchy 
and Control Hierarchy 

The I/0 subsystem is divided into two hierarchies: 

1. Control-This hierarchy of controllers negotiates a path through a maze of 
possible connections between the memory and the I/O device and controls 
the timing of the transfer. 

2. Data-This hierarchy of connections is the path over which data flows 
between memory and the I/O device. 

After going over each of the hierarchies, we trace a disk read to help understand 
the function of each component. 

For simplicity, we begin by discussing the data-transfer hierarchy, shown in 
Figure 9.33 (page 548). This figure shows one section of the hierarchy that con
tains up to 64 large IBM disks; using 64 of the recently announced IBM 3390 
disks, this piece could connect to over one trillion bytes of storage! Yet this 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 579



548 

3090 CPU 
+cache 

0 

• 
• 
• 

3090 CPU 
+cache 

5 

Channel 
controller 

9.9 Putting It All Together: The IBM 3990 Storage Subsystem 

piece represents only one-sixth of the capacity of the IBM 3090/600 CPU. This 
ability to expand from a small I/0 system to hundreds of disks and terabytes of 
storage is what gives IBM mainframes their reputation in the I/O world. 

The best-known member of the data hierarchy is the channel. The channel is 
nothing more than 50 wires that connect two levels on the 1/0 hierarchy 
together. Only 18 of the 50 wires are used for transferring data (8 data plus 1 
parity in each direction), while the rest are for control information. For years the 
maximum data rate was 3 MB per second, but it recently was raised to 4.5 MB 
per second. Up to 48 channels can be connected to a 3090/100 CPU, and up to 

Main memory 

bankO 

• 
• 
• 

Main memory 

bank 15 

N 

~ 
Speed-matching 

buffers 
0 

Speed-matching 
buffers 

• 

Storage 
director 

Head of 
string 

Storage 
director 

Head of 
string 

• 
• 
• 

Storage 
director 

Head of 
string 

• 
• • • • 

Storage 
director 

Head of 
string 

• • • 

FIGURE 9.33 The data-transfer hierarchy in the IBM 3990 1/0 Subsystem. Note that all the channels are connected 
to all the storage directors. The disks at the bottom represent the quad-ported IBM 3380 disk drives, with the maximum of 
64 disks. The collection of disks on the same path to the head-of-string controller is called a string . 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 580



Input/Output 549 

96 channels to a 3090/600. Because they are "multiprogrammed," channels can 
actually service several disks. For historical reasons, IBM calls this block 
multiplexing. 

Channels are connected to the 3090 main memory via two speed-matching 
·buffers, which funnel all the channels into a single port to main memory. Such 
buffers simply match the bandwidth of the I/O device to the bandwidth of the 
memory system. There are two 8-byte buffers per channel. 

The next level down the data hierarchy is the storage director. This is an 
intermediary device that allows the many channels to talk to many different I/0 
devices. Four to sixteen channels go to the storage director depending on the 
model, and two or four paths come out the bottom to the disks. These are called 
two-path strings or four-path strings in IBM parlance. Thus, each storage 
director can talk to any of the disks using one of the strings. At the top of each 
string is the head of string, and all communication between disks and control 
units must pass through it. 

At the bottom of the datapath hierarchy are the disk devices themselves. To 
increase availability, disk devices like the IBM 3380 provide four paths to 
connect to the storage director; if one path fails, the device can still be 
connected. 

The redundant paths from main memory to the I/0 device not only improve 
availability, but also can improve performance. Since the IBM philosophy is to 
avoid large buffers, the path from the I/0 device to main memory must remain 
connected until the transfer is complete. If there were a single hierarchical path 
from devices to the speed-matching buffer, only one I/0 device in a subtree 
could transfer at a time. Instead, the multiple paths allow multiple devices to 
transfer simultaneously through the storage director and into memory. 

The task of setting up the datapath connection is that of the control hierarchy. 
Figure 9.34 shows both the control and data hierarchies of the 3990 1/0 
subsystem. The new device is the I/0 processor. The 3090 channel controller 
and 1/0 processor are load/store machines similar to DLX, except that there is no 
memory hierarchy. In the next subsection we see how the two hierarchies work 
together to read a disk sector. 

Tracing a Disk Read in the IBM 3990 1/0 
Subsystem 

The 12 steps below trace a sector read from an IBM 3380 disk. Each of the 12 
steps is labeled on a drawing of the full hierarchy in Figure 9.34 (page 550). 

1. The user sets up a data structure in memory containing the operations that 
should occur during this I/0 event. This data structure is termed an //0 control 
block, or IOCB, which also points to a list of channel control words (CCWs). 
This list is called a channel program. Normally, the operating system provides 
the channel program, but some users write their own. The operating system 
checks the IOCB for protection violations before the I/0 can continue. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 581



550 

3090 CPU 
+cache 

® • • • 
3090 CPU 
+cache 

® 

0 

5 

1/0 

9.9 Putting It All Together: The IBM 3990 Storage Subsystem 

2. The CPU executes a START SUBCHANNEL instruction. The actual request 
is defined in the channel program. A channel program to read a record might 
look like Figure 935. 

CD 
Main memory 

bank O 

• 
• • 

Main memory 

bank 15 

processor 

® 
® 

Storage 
director 

© 
Head of 
string 

© 

Speed-matching 
buffers 

Storage 
director 

® 
Head of 
string 

• 
• 
• 

Storage 
director 

® 

® Speed-matching 
buffers 

• 
• 

• • • • 

Storage • • • director 

Head of 
string 

5 

FIGURE 9.34 The control and data hierarchies in the IBM 3990 1/0 Subsystem labeled with the 12 steps to read a 
sector from disk. The only new box over Figure 9.33 (page 548) is the 1/0 processor. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 582



Input/Output 551 

Location ccw Comment 

CCWl: Define Transfers a 16-byte parameter to the storage director. The 
Extent channel sees this as a write data transfer. 

CCW2: Locate Transfers a 16-byte parameter to the storage director as 
Record above. The parameter identifies the operation (read in this 

case) plus seek, sector number, and record ID. The channel 
again sees this as a write data transfer. 

CCW3: Read Data Transfers the desired disk data to the channel and then to 
the main memory. 

FIGURE 9.35 A channel program to perform a disk read, consisting of three channel 
command words (CCWs). The operating system checks for virtual memory access 
violations of CCWs by simulating them to check for violations. These instructions are linked 
so that only one START SUBCHANNEL instruction is needed. 

( 

3. The I/O processor uses the control wires of one of the channels to tell the 
storage director which disk is to be accessed and the disk address to be read. The 
channel is then released. 

4. The storage director sends a SEEK command to the head-of-string controller 
and the head-of-string controller connects to the desired disk, telling it to seek to 
the appropriate track, and then disconnects. The disconnect occurs between 
CCW2 and CCW3 in Figure 9.35. 

Upon completion of these first four steps of the read, the arm on the disk 
seeks the correct track on the correct IBM 3380 disk drive. Other I/O operations 
can use the control and data hierarchy while this disk is seeking and the data is 
rotating under the read head. The I/O processor thus acts like a multipro
grammed system, working on other requests while waiting for an I/O event to 
complete. 

An interesting question arises: When there are multiple uses for a single disk, 
what prevents another seek from screwing up the works before the original 
request can continue with the I/O event in progress? The answer is the disk 
appears busy to the programs in the 3090 between the time a s TART 
SUBCHANNEL instruction starts a channel program (step 2) and the end of that 
channel program. An attempt to execute another START SUBCHANNEL 

instruction would receive busy status from the channel or from the disk device. 
After both the seek completes and the disk rotates to the desired point relative 

to the read head, the disk reconnects to a channel. To determine the rotational 
position of the 3380 disk, IBM provides rotational positional sensing (RPS), a 
feature that gives early warning when the data will rotate under the read head. 
IBM essentially extends the seek time to include some of the rotation time, 
thereby tying up the datapath as little as possible. Then the I/0 can continue: 

5. When the disk completes the seek and rotates to the correct position, it 
contacts the head-of-string controller. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 583



552 9.9 Putting It All Together: The IBM 3990 Storage Subsystem 

6. The head-of-string controller looks for a free storage director to send the 
signal that the disk is on the right track. 

7. The storage director looks for a free channel so that it can use the control 
wires to tell the I/0 processor that the disk is on the right track. 

8. The 1/0 processor simultaneously contacts the storage director and I/0 
device (the IBM 3380 disk) to give the OK to transfer data, and tells the channel 
controller where to put the information in main memory when it arrives at the 
channel. 

There is now a direct path between the I/0 device and memory and the 
transfer can begin: 

9. When the disk is ready to transfer, it sends the data at 3 megabytes per 
second over a bit-serial line to the storage director. 

10. The storage director collects 16 bytes in one of two buffers and sends the 
information on to the channel controller. 

11. The channel controller has a pair of 16-byte buffers per storage director and 
sends 16 bytes over a 3-MB or 4.5-MB per second, 8-bit-wide datapath to the 
speed-matching buffers. 

12. The speed-matching buffers take the information corning in from all 
channels. There are two 8-byte buffers per channel that send 8 bytes at a time to 
the appropriate locations in main memory. 

Since nothing is free in computer design, one might expect there to be a cost 
in anticipating the rotational delay using RPS. Sometimes a free path cannot be 
established in the time available due to other I/0 activity, resulting in an RPS 
miss. An RPS miss means the 3990 I/0 Subsystem must either: 

• Wait another full rotation-16.7 ms-before the data is back under the head, 
or 

• Break down the hierarchical datapath and start all over again! 

Lots of RPS misses can ruin response times. 
As mentioned above, the IBM 1/0 system evolved over many years, and 

Figure 9.36 shows the change in response time for a few of those changes. The 
first improvement concerns the path for data after reconnection. Before the 
Systern/370-XA, the data path through the channels and storage director (steps 5 
through 12) had to be the same as the path taken to request the seek (steps 1 
through 4). The 370-XA allows the path after reconnection to be different, and 
this option is called dynamic path reconnection (DPR). This change reduced the 
time waiting for the channel path and the time waiting for disks (queueing 
delay), yielding a reduction in the total average response time of 17%. The 
second change in Figure 9.36 involved a new disk design. Improvements to the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 584



Input/Output 553 

microcode control of the 3380D made slight improvements in seek time plus 
removed a restriction that disk arms that were on the same internal path were 
prevented from operating at the same time. IBM calls this option Device Level 
Select (DLS). This change reduced internal path delays to 0. This had little 
impact since there was not much time waiting on internal delays because 
customers intentionally placed data on disks trying to' avoid internal path delays. 
This second change reduced response time another 9%. The final change was 
addition of a 32-MB write-through disk cache to a 3380D, called the IBM 3880-
23. The disk cache reduced average rotational latency, seek time, and queueing· 
delays, giving another 41 % reduction in response time. 

One indication of the effectiveness of DPR is the number of disk devices 
connected to a string. Studies of IBM systems using DPR, which average 16 
disk devices per string versus 12 without DPR, suggest dynamic reconnect 
allows 

/ 
a higher I/O rate with comparable response time [Henly and McNutt 

1989]. 

Summary of the IBM 3990 1/0 Subsystem 

Goals for I/0 systems consist of supporting the following: 

• Low cost 

• A variety of types of I/0 devices 

40 

35 

30 

25 
Response 

time 20 
(ms) 

15 

10 

5 

0 
3380D . DPR 

Changes to 3380D 

DLS 

• Queuing (wait for disk) 
Ill Delay (channel path) 
• Delay (internal path) 
Ill Direct (channel working) 
•Seek 
Ill Rotational latency 

Cache 

FIGURE 9.36 Changes in response time with improvements in 33800 broken into six 
categories [Friesenborg and Wicks 1985]. Queueing delay refers to the time when the 
program waits for another program to finish with the disk. Channel-path delay is the time 
the operation waits due to the channel path and storage director being busy with another 
task. Internal-path delay is similar to channel-path delay except it refers to internal paths in 
the 33800. Direct means the time the channel path is busy with the operation. Seek time 
and rotational latency are the standard definitions. Robinson and Blount [1986] report in the 
study of the 3880-23 that the read hit rate for the 32-MB write-through cache in some large 
systems averages about 90%, with reads accounting for 92% of the disk accesses. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 585



554 9.9 Putting It All Together: The IBM 3990 Storage Subsystem 

• A large number of 1/0 devices at a time 

• High performance 

• Low latency 

Substantial expendability and lower latency are hard to get at the same time. 
IBM channel-based systems achieve the third and fourth goals by utilizing 
hierarchical data paths to connect a large number of devices. The many devices 
and parallel paths allow simultaneous transfers and, thus, high throughput. By 
avoiding large buffers and providing enough extra paths to minimize delay from 
congestion, channels offer low-latency 1/0 as well. To maximize use of the 
hierarchy, IBM uses rotational positional sensing to extend the time that other 
tasks can use the hierarchy during an 1/0 operation. 

Therefore, a key to performance of the IBM 1/0 subsystem is the number of 
rotational positional misses and congestion on the channel paths. A rule of 
thumb is that the single-path channels should be no more than 30% utilized and 
the quad-path channels should be no more than 60% utilized, or too many 
rotational positional misses will result. This 1/0 architecture dominates the 
industry, yet it would be interesting to see what, if anything, IBM would do 
differently if given a clean slate. 

9.10 I Fallacies and Pitfalls 

Fallacy: 110 plays a small role in supercomputer design 

The goal of the Illiac IV was to be the world's fastest. computer. It may not have 
achieved that goal, but it showed 1/0 as the Achilles' Heel of high-performance 
machines. In some tasks, more time was spent in loading data than in computing. 
Amdahl's Law demonstrated the importance of high performance in all the parts 
of a high-speed computer. (In fact, Amdahl made his comment in reaction to 
claims for performance through parallelism made on behalf of the Illiac IV.) The 
Illiac IV had a very fast transfer rate (60 MB/sec), but very small, fixed-head 
disks (12-MB capacity). Since they were not large enough, more storage was 
provided on a separate computer. This led to two ways of measuring 1/0 
overhead: 

Warm start-Assuming the data is on the fast, small disks, 1/0 overhead is 
the time to load the Illiac IV memory from those disks. 

Cold start-Assuming the data is in on the other computer, 1/0 overhead 
must include the time to first transfer the data to the Illiac IV fast disks. 

Figure 9.37 shows ten applications written for the Illiac IV in 1979. Assuming 
warm starts, the supercomputer was busy 78% of the time and waiting for 1/0 
22% of the time; assuming cold starts, it was busy 59% of the time and waiting 
for 1/0 41 % of the time. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 586



Input/Output 

98% 

99% 

99% 

98% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

• CPU % cold start Ill CPU % warm start 

555 

FIGURE 9.37 Feierback and Stevenson [1979] summarized the important llliac IV 
applications and the percentage of time spent computing versus waiting for 1/0. The 
arithmetic means of the 10 programs are 78% computing for warm start and 59% 
computing for cold start. 

Pitfall: Moving functions from the CPU to the 110 processor to improve 
peiformance. 

There are many examples of this pitfall, although 1/0 processors can enhance 
performance. A problem inherent with a family of computers is that the mi
gration of an 1/0 feature usually changes the instruction set architecture or 
system architecture in a programmer-visible way, causing all future machines to 
have to live with a decision that made sense in the past. If CPUs are improved in 
cost/performance more rapidly than the 1/0 processor (and this will likely be the 
case) then moving the function may result in a slower machine in the next CPU. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 587



556 9.1 O Fallacies and Pitfalls 

The most telling example comes from the IBM 360. It was decided that the 
performance of the ISAM system, an early database system, would improve if 
some of the record searching occurred in the disk controller itself. A key field 
was associated with each record, and the device searched each key as the disk 
rotated until it found a match. It would then transfer the desired record. For the 
disk to find the key, there had to be an extra gap in the track. This scheme is 
applicable to searches through indices as well as data. 

The speed a track can be searched is limited by the speed of the disk and of 
the number of keys that can be packed on a track. On an IBM 3330 disk the key 
is typically 10 characters, but the total gap between records is equivalent to 191 
characters if there were a key. (The gap is only 135 characters if there is no key, 
since there is no need for an extra gap for the key.) If we assume the data is also 
10 characters and the track has nothing else on it, then a 13165-byte track can 
contain 

13165 
191+lO+10 = 62 key-data records 

This performance is 

16.7 ms (1 revolution)_ 25 /k h 
62 

- . ms ey searc 

In place of this scheme, we could put several key-data pairs in a single block and 
have smaller inter-record gaps. Assuming there are 15 key-data pairs per block 
and the track has nothing else on it, then 

13165 13165 . 
135+15*(l0+10) = 135+300 = 30 blocks of key-data parrs 

The revised performance is then 

16.7 ms (1 revolution) _ 04 /k h 
30*15 - . ms ey searc 

Yet as CPUs gotfaster, the CPU time for a search was trivial. While the strategy 
made early machines faster, programs that use the search-key operation in the 
I/0 processor run six times slower on today's machines! 

Fallacy: Comparing the price of media versus the price of the packaged 
system. 

This happens most frequently when new memory technologies are compared to 
magnetic disks. For example, comparing the DRAM-chip price to magnetic-disk 
packaged price in Figure 9.16 (page 518) suggests the difference is less than a 
factor of 10, but its much greater when the price of packaging DRAM is 
included. A common mistake with removable media is to compare the media 
cost not including the drive to read the media. For example, optical media: costs 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 588



Input/Output 557 

only $1 per MB in 1990, but including the cost of the optical drive may bring the 
price closer to $6 per MB. 

Fallacy: The time of an average seek of a disk in a computer system is the 
time for a seek of one-third the number of cylinders. 

This fallacy comes from confusing the way manufacturers market disks with the 
expected performance and with the false assumption that seek time~ are linear in 
distance. The 1/3 distance rule of thumb comes from calculating the distance of 
a seek from one random location to another random location, not including the 
current cylinder and assuming there are a large number of cylinders. In the past, 
manufacturers listed the seek of this distance to offer a consistent basis for 
comparison. (As mentioned on page 516, today they calculate the "average" by 
timing all seeks and dividing by the number.) Assuming (incorrectly) that seek 
time is linear in distance, and using the manufacturers reported minimum and 
"average" seek times, a common technique to predict seek time is: 

T. T' Distance (T' T' ) 1meseek = 1meminimum + D' * 1meaverage - 1meminimum 1stanceaverage 

The fallacy concerning seek time is twofold. First, seek time is not linear 
with distance; the arm must accelerate to overcome inertia, reach its maximum 
traveling speed, decelerate as it reaches the requested position, and then wait to 
allow the arm to stop vibrating (settle time). Moreover, in recent disks 
sometimes the arm must pause to control vibrations. Figure 9.38 (page 558) 
plots time versus seek distance for an example disk. It also shows the error in 
the simple seek-time formula above. For short seeks, the acceleration phase 
plays a larger role than the maximum traveling speed, and this phase is typically 
modeled as the square root of the distance. Figure 9.39 (page 558) shows 
accurate formulas used to model the seek time versus distance for two disks. 

The second problem is the average in the product specification would only be 
true if there was no locality to disk activity. Fortunately, there is both temporal 
and spatial locality (page 403 in Chapter 8): disk blocks get used more than once 
and disk blocks near the current cylinder are more likely to be used than those 
farther away. For example, Figure 9.40 (page 559) shows sample measurements 
of seek distances for two workloads: a UNIX timesharing workload and a 
business-processing workload. Notice the high percentage of disk accesses to the 
same cylinder, labeled distance 0 in the graphs, in both workloads. 

Thus, this fallacy couldn't be more misleading. The Exercises debunk this 
fallacy in more detail. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 589



558 

IBM3380D 
Ran2e for formula 

;::: ::; 

1 50 

51 100 

101 500 

501 884 

9.1 O Fallacies and Pitfalls 

14 

12 

10 

Time (ms) 

8 

6 

Formula: T = T min+( DID avg)* (Tavg -T min ) 
4 

2 

0 20 40 60 80 100 120 140 160 180 200 

Seek distance 

FIGURE 9.38 Seek time versus seek distance for the first 200 cylinders. The 
lmprimis Sabre 97209 contains 1.2 GB using 1635 cylinders and has the IPl-2 interface 
[lmprimis 1989]. This is an 8-inch disk. Note that longer seeks can take less time than 
shorter seeks. For example, a 40-cylinder seek takes almost 1 O ms, while a 50-cylinder 
seek takes less than 9 ms. 

IBM3380J 
Formulas Ran2e for formula Formulas 

;::: ::; 

Distance 1 50 Distance 
1.9 +~Distance - 2.48 + ~Distance -

50 20 

8.1 + 0.044 * (Distance-50) 51 130 7 .28 + 0.0320 * (Distance-50) 

10.3 + 0.025 * (Distance-100) 131 500 10.08 + 0.0166 * (Distance-130) 

20.4 + 0.017 * (Distance-500) 501 884 16.00 + 0.0114 * (Distance-500) 

FIGURE 9.39 Formulas for seek time in ms for two IBM disks. Thisquen [1988] measured these disks and proposed 
these formulas to model them. The two columns on the left show the range of seek distances in cylinders to which each 
formula applies. Each disk has 885 cylinders, so the maximum seek is 884. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 590



195 

180 

165 

150 

135 

Seek 120 

distance 105 

90 

75 

60 

45 

30 

15 

0 

Input/Output 

8% •••llll 23% 
24% 

0% 10% 20% 30% 40% 50% 60% 70% 

Percentage of seeks (UNIX timesharing workload) 

Seek 
distance 

559 

208 0% 
192 0% 
176 0% 

160 0% 

144 

128 

112 

96 

80 

64 

48 

32 

16 11% 

0 61% 

0% 10% 20% 30% 40% 50% 60% 70% 

Percentage of seeks (business workload) 

FIGURE 9.40 Sample measurements of seek distances for two systems. The left measurements were taken on a 
UNIX timesharing system. The right measurements were taken from a business processing application in which the disk 
seek activity was scheduled. Seek distance of O means the access was made to the same cylinder. The rest of the 
numbers show the collective percentage for distances up between numbers on they axis. For example, 11% for the bar 
labeled 16 in the business graph means that the percentage of seeks between 1 and 16 cylinders was 11 %. The UNIX 
measurements stopped at 200 cylinders, but this captured 85% of the accesses. The total was 1000 cylinders. The 
business measurements tracked all 816 cylinders of the disks. The only seek distances with 1 % or greater of the seeks 
that are not in the graph are 224 with 4% and 304, 336, 512, and 624 each having 1 %. This total is 94%, with the 
difference being small but nonzero distances in other categories. The measurements are courtesy of Dave Anderson of 
lmprimis. 

9.11 Concluding Remarks 

1/0 systems are judged by the variety of 1/0 devices, the maximum number of 
1/0 devices, cost, and performance, measured both in latency and in throughput. 
These common goals lead to widely varying schemes, with some relying 
extensively on buffering and some avoiding buffering at all costs. If one is 
clearly better than the other, it is not obvious today. Perhaps this situation is like 
the instruction set debates of the 1980s, and the strengths and weaknesses of the 
alternatives will become apparent in the 1990s. 

According to Amdahl's Law, ignorance of 1/0 will lead to wasted 
performance as CPUs get faster. Disk performance is growing at 4% to 6% per 
year, while CPUs are growing at a much faster rate. The future demands for 1/0 
include better algorithms, better organizations, and more caching in a struggle to 
keep pace. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 591



560 9.12 Historical Perspective and References 

9.1 2 I Historical Perspective and References 

The forerunner of today's workstations was the Alto developed at Xerox Palo 
Alto Research Center in 1974 [Thacker et al. 1982]. This machine reversed 
traditional wisdom, making instruction set interpretation take back seat to .the 
display: the display used half the memory bandwidth of the Alto. In addition to 
the bit-mapped display, this historic machine had the first Ethernet [Metcalfe 
and Boggs 1976] and the first laser printer. It also had a mouse, invented earlier 
by Doug Engelhart of SRI, and a removable cartridge disk. The 16-bit CPU 
implemented an instruction set similar to the Data General Nova and· offered 
writable control store (see Chapter 5, Section 5.8). In fact, a single micropro
grammable engine drove the graphics display, mouse, disks, network, and, when 
there was nothing else to do, interpreted the instruction set. 

The attraction of a personal computer is that you don't have to share it with 
anyone. This means response time is predictable, unlike timesharing systems. 
Early experiments in the importance of fast response time were performed by 
Doherty and Kelisky [1979]. They showed that if computer-system response 
time increased a second that user think time did also. Thadhani [1981] showed a 
jump in productivity as computer response times dropped to a second and 
another jump as they dropped to a half-second. His results inspired a flock of 
studies, and they supported his observations [IBM 1982]. In fact, some studies 
were started to disprove his results! Brady [1986] proposed differentiating entry 
time from think time (since entry time was becoming significant when the two 
were lumped together) and provided a cognitive model to explain the more than 
linear relationship between computer response time and user think time. 

The ubiquitous microprocessor has inspired not only personal computers in 
the 1970s, but the current trend to moving controller functions into 1/0 devices 
in the late 1980s and 1990s. For example, microcoded routines in a central CPU 
made sense for the Alto in 1975, but technological changes soon made separate 
microprogrammable controller 1/0 devices economical. These were then 
replaced by the application-specific integrated circuits. 1/0 devices continued 
this trend by moving controllers into the devices themselves. These are called 
intelligent devices, and some bus standards (e.g., IPI and SCSI) have been 
created just for these devices. Intelligent devices can relax the timing constraints 
by handling many of the low-level tasks and queuing the results. For example, 
many SCSI-compatible disk drives include a track buffer on the disk itself, 
supporting read ahead and connect/disconnect. Thus, on a SCSI string some 
disks can be seeking and others loading their track buffer while one is 
transferring data from its buffer over the SCSI bus. 

Speaking of buses, the first multivendor bus may have been the PDP-11 
Unibus in 1970. DEC encouraged other companies to build devices that would 
plug into their bus, and many companies did. A more recent example is SCSI, 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 592



Input/Output 561 

which stands for small computer systems interface. This bus, originally called 
SASI, was invented by Shugart and was later standardized by the IEEE. 
Sometimes buses are developed in academia; the NuBus was developed by Steve 
Ward and his colleagues at MIT and used by several companies. Alas, this open
door policy on buses is in contrast to companies with proprietary buses using 
patented interfaces, thereby preventing competition from plug-compatible 
vendors. This practice also raises costs and lowers availability of 1/0 devices 
that plug into proprietary buses, since such devices must have an interface 
designed just for thatbus. Levy [1978] has a nice survey on issues in buses. 

We must also give a few references to specific 1/0 devices. Readers 
- interested in the ARPANET should see Kahn [1972]. As mentioned in one of 
the section quotes, the father of computer graphics is Ivan Sutherland, who 
received the ACM Turing Award in 1988. Sutherland's Sketchpad system 
[1963] set the standard for today's interfaces and displays. See Foley and Van 
Dam [1982] and Newman and Sproull [1979] for more on computer graphics. 
Scranton, Thompson, and Hunter [1983] were among the first to report the 
myths concerning seek times and distances for magnetic disks. 

Comments on the future of disks can be found in several sources. Goldstein 
[1987] projects the capacity. and 1/0 rates for IBM mainframe installations in 
1995, suggesting that the ratio is no less than 3.7 GB per IBM mainframe MIPS 
today, and that will grow to 4.5 GB per MIPS in 1995. Frank [1987] speculated 
on the physical recording density, proposing the MAD formula on disk growth 
that we used in Section 9.4. Katz, Patterson, and Gibson [1990] survey current 
high-performance disks and 1/0 systems and speculate about future systems. The 
possibility of achieving higher-performance 1/0 systems using collections of 
disks is found in papers by Kim [1986], Salem _and Garcia-Molina [1986], and 
Patterson, Gibson, and Katz [1987]. 

Looking backward rather than forward, the first machine to extend interrupts 
from detecting arithmetic abnormalities to detecting asynchronous 1/0 events is 
credited as the NBS DYSEAC in 1954 [Leiner and Alexander 1954]. The 
following year the first machine with DMA was operational, the IBM SAGE. 
Just as today's DMA, the SAGE had address counters that performed block 
transfers in parallel with CPU operations. The first 1/0 channel may have been 
on the IBM 709 in 1957 [Bashe et al. 1981 and 1986]. Smotherman [1989] 
explores the history of 1/0 in more depth. 

References 

ANON ET AL. [1985]. "A measure of transaction processing power," Tandem Tech. Rep. TR 85.2. 
Also appeared in Datamation, Aprill, 1985. 

BASHE, C. J., W. BUCHHOLZ, G .V. HAWKINS, J .L. INGRAM, AND N. ROCHESTER [1981]. "The 
architecture of IBM's early computers," IBM J. of Research and Development 25:5 (September) 
363-375. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 593



562 9.12 Historical Perspective and References 

BASHE, C. J., L. R. JOHNSON, J. H. PALMER, AND E.W. PUGH [1986]. IBM's Early Computers, 
MIT Press, Cambridge, Mass. 

BORRILL, P. L. [1986]. "32-bit buses-An objective comparison," Proc. Buscon 1986 West, San Jose, 
Calif., 138-145. 

BRADY, J. T. [1986]. "A theory of productivity in the creative process," IEEE CG&A (May) 25-34. 

BUCHER, I. V. ANDA. H. HAYES [1980]. "1/0 Performance measurement on Cray-1 and CDC 7000 
computers," Proc. Computer Performance Evaluation Users Group, 16th Meeting, NBS 500-65, 
245-254. 

CHEN, P. [1989]. An Evaluation of Redundant Arrays of Inexpensive Disks Using an Amdahl 5890, 
M. S. Thesis, Computer Science Division, Tech. Rep. UCB/CSD 89/506. 

DOHERTY, W. J. AND R. P. KELISKY [1979]. "Managing VM/CMS systems for user effectiveness," 
IBM Systems]. 18:1, 143-166. 

FEIERBACK, G AND D. STEVENSON [1979]. "The Illiac-IV," in Infotech State of the Art Report on 
Supercomptuers, Maidenhead, England. This data also appears in D. P. Siewiorek, C. G. Bell, and 
A. Newell, Computer Structures: Principles and Examples (1982), McGraw-Hill, New York, 268-
269. 

FOLEY, J. D. AND A. VAN DAM [1982]. Fundamentals of Interactive Computer Graphics, Addison
Wesley, Reading, Mass. 

FRANK, P. D. [1987]. "Advances in Head Technology," presentation at Challenges in Winchester 
Technology (December 15), Santa Clara Univ. 

FRIESENBORG, S. E. AND R. J. WICKS [1985]. "DASD expectations: The 3380, 3380-23, and 
MVS(XA," Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center. 

GOLDSTEIN, S. [1987]. "Storage performance-an eight year outlook," Tech. Rep. TR 03.308-1 
(October), Santa Te.resa Laboratory, IBM, San Jose, Calif. 

HENLY, M. AND B. MCNUTT [1989]. "DASD 1/0 characteristics: A comparison of MVS to VM," 
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif. 

HOWARD, J. H. ET AL. [1988]. "Scale and performance in a distributed file system," ACM Trans. on 
Computer Systems 6:1, 51-81. 

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0 White Plains, N.Y., 11-
82. 

IMPRIMIS [1989]. "Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2 
GB," Document No. 64402302 (May). 

KAHN, R. E. [1972]. "Resource-sharing computer communication networks," Proc. IEEE 60:11 
(November) 1397-1407. 

KATZ, R.H., D. A. PATTERSON, AND G. A. GIBSON [1990]. "Disk system architectures for high 
performance computing," Proc. IEEE 78:2 (February). 

KIM, M. Y. [1986]. "Synchronized disk interleaving," IEEE Trans. on Computers C-35:11 
(November). 

LEINER, A. L. [1954]. "System specifications for the DYSEAC," J. ACM 1:2 (April) 57-81. 

LEINER, A. L. ANDS. N. ALEXANDER [1954]. "System organization of the DYSEAC," IRE Trans. 
of Electronic Computers EC-3:1(March)1-10. 

LEVY, J. V. [1978]. "Buses: The skeleton of computer structures," in Computer Engineering: A DEC 
View of Hardware Systems Design, C. G. Bell, J.C. Mudge, and J.E. McNamara, eds., Digital 
Press, Bedford, Mass. 

MABERLY, N. C. [1966]. Mastering Speed Reading, New American Library, Inc., New York. 

METCALFE, R. M. AND D.R. BOGGS [1976]. "Ethernet: Distributed packet switching for local 
computer networks," Comm. ACM 19:7 (July) 395-404. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 594



Input/Output 563 

NEWMAN, W. N. AND R. F. SPROULL [1979]. Principles of Interactive Computer Graphics, 2nd 
ed., McGraw-Hill, New York. 

OUSTERHOUT, J~ K. ET AL. [1985]. "A trace-driven analysis of the UNIX 4.2 BSD file system," 
Proc. Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Wash., 15-24. 

PATTERSON, D. A., G. A. GIBSON, AND R.H. KATZ [1987]. "A case for redundant arrays of 
inexpensive disks (RAID)," Tech. Rep. UCB/CSD 87 /391, Univ. of Calif. Also appeared in ACM 
SIGMOD Conj. Proc., Chicago, Illinois, June 1-3, 1988, 109-116. 

ROBINSON, B. AND L. BLOUNT [1986]. "The VM!HPO 3880-23 performance results," IBM Tech. 
Bulletin, GG66-0247-00 (April), Washington Systems Center, Gathersburg, Md. 

SALEM, K. AND H. GARCIA-MOLINA [1986]. "Disk striping," IEEE I986 Int'! Conj. on Data 
Engineering. 

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. "The access time myth," Tech. 
Rep. RC 10197 (45223) (September21), IBM, Yorktown Heights, N.Y. 

SMITH, A. J. [1985]. "Disk cache-miss ratio analysis and design considerations," ACM Trans. on 
Computer Systems 3:3 (August) 161-203. 

SMOTHERMAN, M. [1989]. "A sequencing-based taxonomy ofl/0 systems and review of historical 
machines," Computer Architecture News 17:5 (September) 5-15. 

SUTHERLAND, I.E. [1963]. "Sketchpad: A man-machine graphical communication system," Spring 
Joint Computer Conj. 329. 

THACKER, C. P., E. M. MCCREIGHT, B. W. LAMPSON, R. F. SPROULL, AND D.R. BOGGS [1982]. 
"Alto: A personal computer," in Computer Structures: Principles and Examples, D. P. Siewiorek, 
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549-572. 

THADHANI, A. J. [1981]. "Interactive user productivity," IBM Systems J. 20:4, 407--423. 

THISQUEN, J. [1988]. "Seek time measurements," Amdahl Peripheral Products Division Tech. Rep. 
(May). 

EXERCISES 

9.1 <9.10> [10/25/10] Using theformulas in Figure 9.39 (page 558): 

a. [10] Calculate the seek time for moving the arm one-third of the cylinders for both 
disks. 

b. [25] Write a program to calculate the "average" seek time by estimating the time for 
all possible seeks using these formulas and then dividing by the number of seeks. 

c. [10] How close does (a) approximate (b)? 

9.2 <9.10> [15/20] Using the formulas in Figure 9.39 (page 558) and the statistics in 
Figure 9.40 (page 559), calculate the average seek distance and the average seek time on 
the IBM 3380J. Use the midpoint of a range as the seek distance. For example, use 98 as 
the seek distance for the entry representing 91-105 in Figure 9.40. For the business 
workload, just ignore the missing 5% of the seeks. For the UNIX workload, assume the 
missing 15% of the seeks have an average distance of 300 cylinders. 

a. [15] If you were misled by the fallacy, you might calculate the average distance as 
884/3. What is the measured distance for each workload? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 595



564 Exercises 

b. [20] The time to seek 884/3 cylinders on the IBM 3380J is about 12.8 ms. What is 
the average seek time for each workload on the IBM 3380J using the measurements? 

9.3 <1.4,8.4,9.4> [20/10/Discussion] Assume the improvements in density of DRAMs 
and magnetic disks continue as predicted in Figure 1.5 (page 17). Assuming that the 
improvement in cost per megabyte tracks the density improvements and that 1990 is the 
start of the 4-megabit DRAM generation, when will the cost per megabyte of DRAM 
equal the cost per megabyte of magnetic disk given: 

• The cost difference in 1990 is that DRAM is 10 times more expensive. 

• The cost difference in 1990 is that DRAM is 30 times more expensive. 

a. [20] Which generation of DRAM chip-measured in bits per chip-will reach equity 
for each cost difference assumption? What year will that occur? 

b. [10] What will be the difference in cost in the previous generation? 

c. [Discussion] Do you think the cost difference in the previous generation is sufficient 
to prevent disks being replaced by DRAMs? 

9.4 <9.2> [12/12/12] Assume a workload takes 100 seconds total, with the CPU taking 
70 seconds and I/O taking 50 seconds. 

a. [12] Assume that the floating-point unit is responsible for 25 seconds of the CPU 
time. You are considering a floating-point accelerator that goes five times faster. 
What is the time of the workload for maximum overlap, scaled overlap, and no 
overlap? ' 

b. [12] Assume that seek and rotational delay of magnetic disks are responsible for 10 
seconds of the I/0 time. You are considering replacing the magnetic disks with solid 
state disks that will remove all the seek and rotational delay. What is the time of the 
workload for maximum overlap, scaled overlap, and no overlap? 

c. [12] What is the time of the workload for scaled overlap if you make both changes? 

9.5-9.9 Transaction-processing performance. The I/0 bus and memory system of a 
computer are capable of sustaining 100 MB/sec without interfering with the performance 
of an 80-MIPS CPU (costing $50,000). Here are the assumptions about the software: 

• Each transaction requires 2 disk reads plus 2 disk writes. 

• The operating system uses 15,000 instructions for each disk read or write. 

• The database software executes 40,000 instructions to process a transaction. 

• The transfer size is 100 bytes. 

You have a choice of two different types of disks: 

• A 2.5-inch disk that stores 100 MB and costs $500. 

• A 3.5-inch disk that stores 250 MB and costs $1250. 

• Either disk in the system can support on average 30 disk reads or writes per second. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 596



Input/Output 565 

Answer the questions below using the TP-1 benchmark in Section 9.3. Assume that 
the requests are spread evenly to all the disks, that there is no waiting time due to busy 
disks, and that the account file must be large enough to handle 1000 TPS according to the 
benchmark ground rules. 

9.5 <9.3,9.4> [20] How many TP-1 transactions per second are possible with each disk 
organization, assuming that each uses the minimum number of disks to hold the account 
file? 

9.6 <9.3,9.4> [15] What is the system cost per transaction per second of each alternative 
for TP-1? 

9.7 <9.3,9.4> [15] How fast a CPU makes the 100 MB/sec I/0 bus a bottleneck for TP-
1? (Assume that you can continue to add disks.) 

9.8 <9.3,9.4> [15] As manager of MTP (Mega TP), you are deciding whether to spend 
your development money building a faster CPU or improve the performance of the 
software. The database group says they can reduce a transaction to 1 disk read and 1 disk 
write and cut the database instructions per transaction to 30,000. The hardware group can 
build a faster CPU that sells for the same amount of the slower CPU with the same 
development budget. (Assume you can add as many disks as needed to get higher 
performance.) How much faster does the CPU have to be to match the performance gain 
of the software improvement? 

9.9 <9.3,9.4> [15/15] The MTP I/0 group was listening at the door during the software 
presentation. They argue that advancing technology will allow CPUs to get faster without 
significant investment, but that the cost of the system will be dominated by disks if they 
don't develop new faster 2.5-inch disks. Assume the next CPU is 100% faster at the same 
cost and that the new disks have the same capacity as the old ones. 

a. [15] Given the new CPU and the old software, what will be the cost of a system with 
enough old 2.5-inch disks so_thatthey do not limit the.TPS of the system ? 

b. [15] Now assume you have as many new di.sks as you had old 2.5 inch disks in the 
original design. How fast must the new disks be (I/Os per second) to achieve the 
same TPS rate with the new CPU as the system in part a? What will the system cost? 

9.10 <9.4> [20/20/20] Assume that we have the following two magnetic-disk 
configurations: a single disk and an array of four disks. Each disk has 20 surfaces, 885 
tracks per surface with 16 sectors/track, each sector holds lK bytes, and it revolves at 
3600 RPM. Using the seek-time formula, for the IBM 33800 in Figure 9.39 (page 558). 
The time to switch between surfaces is the same as to move the arm one track. In the disk 
array all the spindles are synchronized-sector 0 in every disk rotates under the head at 
the exact same time-and the arms on all four disks are always over the same track. The 
data is "striped" across all 4 disks, so four consecutive sectors on a single disk system 
will be spread one sector per disk in the array. The delay of the disk controller is 2 ms per 
transaction, either for a single disk or for the array. Assume the performance of the I/0 
system is limited only by the disks and that there is a path to each disk in the artay. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 597



566 Exercises 

Compare the performance in both I/Os per second and megabytes per second of these two 
disk organizations assuming the following request patterns: 

a. [20] Random reads of 4 KB of sequential sectors. Assume the 4 KB are aligned 
under the same arm on each disk in the array. 

b. [20] Reads of 4 KB of sequential sectors where the average seek distance is 10 tracks. 
Assume the 4 KB are aligned under the same arm on each disk in the array. 

c. [20] Random reads of 1 MB of sequential sectors. (If it matters, assume the disk 
controller allows the sectors to arrive in any order.) 

9.11 [20] <9.4> Assume that we have one disk defined as in Exercise 9.9. Assume that 
we read the next sector after any read and that all read requests are one sector in length. 
We store the extra sectors that were read ahead in a disk cache. Assume that the 
probability of receiving a request for the sector we read ahead at some time in the future 
(before it must be discarded because the disk-cache buffer fills) is 0.1. Assume that we 
must still pay the controller overhead on a disk-cache read hit, and the transfer time for 
the disk cache is 250 ns per word. Is the read-ahead strategy faster? (Hint: Solve the 
problem in the steady state by assuming that the disk cache contains the appropriate 
information and a request has just missed.) 

9.12-9.14 Assume the following information about our DLX machine: 

Loads 2 cycles 

Stores 2 cycles 

All other instructions are 1 cycle. Use the summary instruction mix information in Figure 
C.4 in Appendix C on DLX for GCC. 

Here are the cache statistics for a write-through cache: 

• Each cache block is four words, and the whole block is read on any miss. 

• Cache miss takes 13 cycles. 

• Write through takes 6 cycles to complete, and there is no write buffer. 

Here are the cache statistics for a write-back cache: 

• 
• 
• 

Each cache block is four words, and the whole block is read on any miss . 

Cache miss takes 13 cycles for a clean block and 21 cycles for a dirty block . 

Assume that on a miss, 30% of the time the block is dirty . 

Assume that the bus 

• is only busy during transfers, 

• transfers on average 1 word I clock cycle, and 

• must read or write a single word at a time (it is not faster to read or write two at 
once). 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 598



lnpuVOutput 567 

9.12 [20/10/20/20] <9.4,9.5,9.6> Assume that DMA I/O can take place simultaneously 
with CPU cache hits. Also assume that the operating system can guarantee that there will 
be no stale-data problem in the cache due to I/O. The sector size is 1 KB. 

a. [20] Assume the cache miss rate is 5%. On the average, what percentage of the bus is 
used for each cache write policy? This measured is called the traffic ratio in cache 
studies. 

b. [10] If the bus can be loaded up to 80% of capacity without suffering severe 
performance penalties, how much memory bandwidth is available for I/O for each 
cache write policy? The cache miss rate is still 5%. 

c. [20] Assume that a disk sector read takes 1000 clock cycles to initiate a read, 100,000 
clock cycles to find the data on the disk, and 1000 clock cycles for the DMA to 
transfer the data to memory. How many disk reads can occur per million instructions 
executed for each write policy? How does this change if the cache miss rate is cut in 
half? 

d. [20] Now you can have any number of disks. Assuming ideal scheduling of disk 
accesses, what is the maximum number of sector reads that can occur per million 
instructions executed? 

9.13 [20/20] <9.4,9.5> Most machines today have a separate frame buffer to update the 
screen to avoid slowing down the memory system. An interesting issue.is the percentage 
of the memory bandwidth that would be used if there were no frame buffer. Assume that 
all accesses to the memory are the size of a full cache block and they all take the time of a 
cache miss. The refresh rate is 60 Hz. Using the information in Section 9.4, calculate the 
memory traffic for the following graphics devices: 

I. A 340 by 540 black-and-white display. 

2. A 1280 by 1024 color display with 24 bits of color. 

3. A 1280 by 1024 color display using a 256-word cqlor map. 

Assume the clock rate of the CPU is 60 MHz. 

a. [20] What percentage of the memory/bus bandwidth do each of the three displays 
consume? 

b. [20] Suppose instead of the bus and main memory being 32 bits wide that both are 
512 bits wide. How long should a memory access take now using the wider bus? 
What percentage of memory bandwidth is now used by each display? 

9.14 [20] <9.4,9.9> The IBM 3990 I/O Subsystem storage director can have a large cache 
for reads and writes. Assume the cache costs the same as four 3380D disks. What hit rate 
must the cache achieve to get the same performance as four more 3380D disks? (See 
Figure 9.15 (page 517) for 3380 performance.) Assume the cache could support 5000 I/Os 
per second if everything hit the cache. 

9.15 [50] <9.3, 9.4> Take your favorite computer and write three programs that achieve 
the following: 

1. Maximum bandwidth to and from disks 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 599



568 Exercises 

2. Maximum bandwidth to a frame buffer 

3. Maximum bandwidth to and from the local area network 

What is the percentage of the bandwidth that you achieve compared to what the I/0 
device manufacturer claims? Also record CPU utilization in each case for the programs 
running separately. Next run all three together and see what percentage of maximum 
bandwidth you achieve for three I/0 devices as well as the CPU utilization. Try to 
determine why one gets a larger percentage than the others. 

9.16 [40] <9.2> The system speedup formulas are limited to one or two types of devices. 
Derive simple to use formulas for unlimited numbers of devices, using as many different 
assumptions on overlap that you can handle. 

9.17 [Discussion] <9.2> What are arguments for predicting system performance using 
maximum overlap, scaled overlap, and nonoverlap? Construct scenarios where each one 
seems most likely and other scenarios where each interpretation is nonsensical. 

9.18 [Discussion] <9.11> What are the advantages and disadvantages of a minimal buffer 
I/0 system like that used by IBM versus a maximal buffer I/0 system on I/0 system 
cost/performance? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 600



CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 601



The turning away from the conventional organization came in 
the middle 1960' s, when the law of diminishing returns began 
to take effect in the effort to increase the operational speed of 
a computer . ... Electronic circuits are ultimately limited in 
their speed of operation by the speed of light ... and many of 
the circuits were already operating in the nanosecond range. 

Bouknight et al. [1972] 

... sequential computers are approaching a fundamental 
physical limit on their potential computational power. Such a 
limit is the speed of light ... 

A. L. DeCegama, The Technology of Parallel Processing, 
Volume I (1989) 

... today's machines ... are nearing an impasse as technol
ogies approach the speed of light. Even if the components of 
a sequential processor could be made to work this fast, the 
best that could be expected is no more than a few million 
instructions per second. 

Mitchell [1989] 

10.1 Introduction 571 

10.2 Flynn Classification of Computers 572 

10.3 SIMD Computers-Single Instruction 
Stream, Multiple Data Streams 572 

10.4 MIMD Computers-Multiple Instruction 

Streams, Multiple Data Streams 574 

10.5· The Roads to El Dorado 576 

10.6 Special-Purpose Processors 580 

10.7 Future Directions for Compilers 581 

10.8 Putting It All Together: The Sequent Symmetry 
Multiprocessor 582 

10.9 Fallacies and Pitfalls 585 

10.10 Concluding Remarks-Evolution Versus 
Revolution in Computer Architecture 587 

10.11 Historical Perspective and References 588 

Exercises 592 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 602



10.1 

Future Dire_ctions 

Introduction 

In the first nine chapters we limited ourselves to ideas that have proven 
themselves in the marketplace. Yet the principles of these chapters can be found 
in the first paper on stored-program computers. The quotes on the facing page 
suggest that the days of the traditional computer are numbered. For a dated 
model of computation it has surely demonstrated its viability! Today it is 
improving in performance faster than at any time in its history, and the 
improvement in cost and performance since 1950 has been five orders of 
magnitude. Had the transportation industry kept pace with these advances, we 
could travel from San Francisco to New York in one minute for one dollar! 

In this last chapter we abandon our conservative perspective and speculate 
about the future of computer architecture and compilers. The goal of innovative 
designs is dramatic improvements in cost/performance, or highly scalable 
performance with good cost/performance. Many of the ideas covered here have 
led to machines that are beginning to compete in the computer marketplace 
today. Some of them may not be around for the next edition of this book, while 
others may need their own chapters. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 603



572 10.2 Flynn Classification of Computers 

10.2 I Flynn Classification of Computers 

Flynn [1966] proposed a simple model of categorizing all computers. He looked 
at the parallelism in the instruction and data streams called for by the 
instructions at the most constrained component of the machine, and placed all 
computers in one of four categories: 

1. Single instruction stream, single data stream (SISD, the uniprocessor) 

2. Single instruction stream, multiple data streams (SIMD) 

3. Multiple instruction streams, single data stream (MISD) 

4. Multiple instruction streams, multiple data streams (MIMD) 

This is a coarse model, as some machines are hybrids of these categories. Yet in 
this chapter we stick with this classic model because it is simple, easy to 
understand, gives a good first approximation, and-perhaps because of ease of 
understanding-is also the most widely used scheme. 

Your first question about the model should be, "Single or multiple compared 
to what?" A machine that can add a 32-bit number in one clock cycle would 
seem to have multiple data streams when compared to a bit-serial computer that 
takes 32 clock cycles for the same operation. Flynn chose popular computers of 
that day, the IBM 704 and IBM 7090, as the model of SISD, although today any 
of the machines in Chapter 4 would serve as the example. 

Having thus established the reference point for SISD, the next class is SIMD. 

1 0.3 I SIMD Computers-Single Instruction Stream, 
Multiple Data Streams 

The cost of a general multiprocessor is, however, very high and further design 
options were considered which would decrease the cost without seriously 
degrading the power or efficiency of the system. The options consist of 
recentralizing one of the three major components .... Centralizing the [control 
unit] gives rise to the basic organization of [an]. .. array processor such as the 
Illiac IV. 

Bouknight et al. [1972) 

We have already seen typical instructions for a SIMD machine, yet the machine 
is not SIMD. The vector instructions of Chapter 7 operate on several data 
elements within a single instruction, executing in pipelined fashion in a single 
functional unit. Unlike SIMD, many functional units are not being invoked by a 
single instruction. A true SIMD would have, say, 64 data streams simultaneously 
going to 64 ALUs to form 64 sums within the same clock cycle. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 604



Future Directions. 573 

The virtues of SIMD are that all the parallel execution units are synchronized 
and that they all respond to a single instruction from a single PC. From a 
programmer's perspective, this is close to the already familiar SISD. The 
original motivation for SIMD was to amortize the cost of the control unit over 
dozens of execution units. A more recently observed advantage is the reduced 
size of program memory-SIMD needs only one copy of the code being 
simultaneously executed, while MIMD needs a copy in every processor. Hence, 
the cost of program memory for a large number of execution units is less for 
SIMD. 

Like vector machines, real SIMD computers have a mixture of SISD and 
SIMD instructions. There is a SISD host computer to perform operations such as 
branches or address calculation that do not need massive parallelism. The SIMD 
instructions are broadcast to all the execution units, each of which has its own 
set of registers. Also, as in vector machines, individual execution units can be 
disabled during a SIMD instruction. Unlike vector machines, massively parallel 
SIMD machines rely on interconnection or communication networks to 
exchange data between processing elements. 

SIMD works best when vector instructions work best-in dealing with arrays 
in for-loops. Hence, to have the opportunity for massive parallelism in SIMD 
there must be massive amounts of data, or data parallelism. SIMD is at its 
weakest in case statements, where each execution unit must perform a different 
operation on its data, depending on what data it has. The execution units with the 

. wrong data are disabled so that the proper units can continue. Such situations 
essentially run at l/nth performance, where n is the number of cases. 

The basic tradeoff in SIMD machines is performance of a processor versus 
number of processors. The machines in the marketplace today emphasize a large 
degree of parallelism over performance of the individual processors. The. 
Connection Machine 2, for example, offers 65,536 single bit-wide processors 
while the ILLIAC IV had 64 64-bit processors. 

While MISD fills out Flynn's classification, it is difficult to envision. A 
single instruction stream is simpler than multiple instruction streams, but 
multiple instruction streams with multiple data str~ams are easier to imagine 
than multiple instructions with a single data stream. A few of the architectures 
we have covered might be considered MISD: superscalar and VLIW 
architectures of Chapter 6 (Section 6.8) often have a single data stream and 
multiple instructions, although these machines have a single program counter. 
Perhaps closer to the mark are the decoupled architectures (pages 321-322), 
which have two instruction streams with independent program counters and a 
single data stream. Systolic architectures, covered in Section 10.6, might also be 
considered MISD. 

While we can find examples of SIMD and MISD, their number is dwarfed by 
the multitude of MIMD machines. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 605



574 

10.4 

10.4 MIMD Computers-Multiple Instruction Streams, Multiple Data Streams 

MIMD Computers-Multiple Instruction 
Streams, Multiple Data Streams 

Multis are a new class of computers based on multiple microprocessors. The 
small size, low cost, and high performance of microprocessors allow design and 
construction of computer structures that offer significant advantages in 
manufacture, price-performance ratio, and reliability over traditional computer 
families .... Multis are likely to be the basis for the next, the fifth, generation of 
computers. 

Bell D985, 463] 

Practically since the first working computer, architects have been striving for the 
El Dorado of computer design: To compose a powerful computer by simply 
connecting many existing smaller ones. The user orders as many CPUs as he can 
afford and gets a commensurate amount of performance. Other advantages of 
MIMD may be highest absolute performance, faster than the largest uniproces
sor, and highest reliability/availability (page 520) via redundancy. 

For decades, computer designers have been looking for the missing piece of 
the puzzle that allows this speedup to happen, as if by magic. People are heard 
making statements that begin "Now that computers have dropped to such a low 
price ... " or "This new interconnection scheme will overcome the scaling prob
lem, so ... " or "As this new programming language becomes widespread ... ," and 
end with "MIMDs will (finally) dominate computing." 

With so many attempts to use parallelism, there are a few terms that are 
useful to know when discussing MIMDs. The principal division is that which 
delineates how information is shared. Shared-memory processors offer the 
programmer a single memory address that all processors can access; cache
coherent multiprocessors are shared-memory machines (see Sections 8.8 and 
10.8). Processes communicate through shared variables in memory, with loads 
and stores capable of accessing any memory location. Synchronization must be 
available to coordinate processes. An alternative model to sharing data is where 
processes communicate by sending messages. As an extreme example, processes 
on different workstations communicate by sending messages over a local area 
network. This communication distinction is so fundamental that Bell suggests 
the term multiprocessor be limited to MIMDs that can communicate via shared 
memory, while MIMDs that can only communicate via explicit message passing 
should be called multicomputers. Since a portion of a shared memory could be 
used for messages, most multiprocessors can efficiently execute message
passing software. A multicomputer might be able to simulate shared memory by 
sending a message for every load or store, but presumably this would run 
excruciatingly slowly. Thus, Bell's distinction is based on the underlying 
hardware and program execution model, reflected in the performance of shared
memory communication, as opposed to the software that might run on a mach
ine. Message-passing docents question the scalability of multiprocessors, while 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 606



Future Directions 575 

shared-memory advocates question the programmability of multicomputers. The 
next section examines this debate further. 

The good news is that after many assaults, MIMD has established a 
beachhead. Today it is generally agreed that a multiprocessor may be more 
effective for a timesharing workload than a SISD. No single program takes less 
CPU time, but more independent tasks can be completed per hour-a throughput 
versus latency argument. Not only are start-up companies like Encore and 
Sequent selling small-scale multiprocessors •. but the high-end machines from 
IBM, DEC, and Cray Research are multiprocessors. This means multiprocessors 
now embody a significant market, responsible for a majority of the mainframes 
and virtually all supercomputers. The only disappointment to computer archi
tects is that shared memory is practically irrelevant for user programs run on the 
machine, with the operating system being the only benefactor. The development 
of a multiprocessor~s operating system, particularly its resource manager, is 
simplified by shared memory. 

The bad news is that it remains to be seen how many important applications 
run faster on MIMDs. The difficulty has not lain in the prices of SISDs, in flaws 
in topologies of interconnection networks, or in programming languages; but in 
the lack of applications software that have been reprogrammed to take advantage 
of many processors to complete important tasks sooner. Since it has been even 
harder to find applications that can take advantage of many processors, the 
challenge is greater for large scale MIMDs. When the positive gains from 
timesharing are combined with the scarcity of highly parallel applications, we 
can appreciate the predicament fa~ing computer architects designing large-scale 
MIMDs that do not support time~haring. 

But why is this so? Why should it be so much harder to develop MIMD 
programs than sequential programs? One reason is that it is hard to write MIMD 
programs that achieve close to linear speedup as the number of processors 
dedicated to the task increases. As an analogy, think of the communication 
overhead for a task done by one person versus the overhead for a task done by a 
committee, especially as the size of the group increases. While n people may 
have the potential to finish any task n times faster, the communication overhead 
for the group can prevent it from achieving this; this becomes especially hard as 
n increases. (Imagine the change in communication overhead going from 10 
people to 1,000 people to 1,000,000.) Another reason for the difficulty in writing 
parallel programs is how much the programmer must know about the hardware. 
On a uniprocessor, the high-level language programmer writes his program 
ignoring the underlying machine organization-that's the job of the compiler. 
For a multiprocessor today, the programmer had better know the underlying 
hardware and organization if he is to write fast and. scalable programs. This 
intimacy also makes portable parallel programs rate. Though this second 
obstacle may lessen over time, it is now the biggest challenge facing computer 
science. Finally, from Chapter 1 comes Amdahl's Law (page 8) to remind us 
that even small parts of a program must be parallelized to reach the full 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 607



576 

Example 

Answer 

10.s I 

10.4 MIMD Computers-Multiple Instruction Streams, Multiple Data Streams 

potential. Thus, coming close to linear speedup involves inventing new 
algorithms that are inherently parallel. 

Suppose you want to achieve linear speedup with 100 processors. What fraction 
of the original computation can be sequential? 

Amdahl's Law is 

1 
Speedup = 

. Fractionenhanced 
(l-Fract1onenhanced) + S d 

pee UPenhanced 

Substituting for the goal of linear speedup with 100 processors gives: 

100 = 1 
. 

. Fractionenhanced 
(1-Fractlonenhanced) + 100 

Solving for percentage converted to enhanced mode: 

100 - 100 * Fractionenhanced + 1 * Fractionenhanced = 1 

-99 * Fractionenhanced = -99 

Fractionenhanced = 1 

Thus, to achieve linear speedup with 100 processors, none of the original 
computation can be sequential. Put another way, to get a speedup of 99 from 100 
processors means the sequential fraction of the original program had to be about 
0.0001. 

The example above demonstrates the need for new algorithms. This 
underlines the authors' belief that major successes in using large-scale parallel 
machines of the 1990s are possible for those who understand applications, 
algorithms, and architecture. 

The Roads to El Dorado 

Figure 10.1 shows the state of the industry, plotting number of processors 
versus performance of an individual processor. The massive parallelism question 
is whether taking the high road or the low road in Figure 10.1 will get us to El 
Dorado. Currently we don't know enough about parallel programming and 
applications to be able to quantitatively trade-off number of processors versus 
performance per processor to achieve the best cost/performance. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 608



Future Directions 

1000000 

Number of 
processors 

1000 

1 

.001 

577 

1000 

Performance per processor (MFLOPS) 

FIGURE 10.1 Danny Hillis, architect of the Connection Machines, has used a figure 
similar to this to illustrate the multiprocessor industry. (Hillis's x axis was processor 
width rather than processor performance.) Processor performance on this graph is 
approximated by the MFLOPS rating of a single processor for the DAXPY procedure of 
the Unpack benchmark for a 1000 x 1000 matrix. Generally, it is easier tor programmers 
when moving to the right , while moving up is easier tor the hardware designer because 
there is more hardware replication. The massive parallelism question is, "Which is the 
quickest path to the upper right corner?" The computer design question is, "Which has the 
best cost/performance or is more scalable for equivalent cost/performance?" 

It is interesting to note that very different changes are required to improve 
performance depending on whether you talce the low road or the high road in this 
figure. Since most programs are written in high-level languages, moving along 
the horizontal direction (increasing performance per processor) is almost entirely 
a matter of improving the hardware. The applications are unchanged, with 
compilers adapting them to the more powerful processor. Hence, increasing 
processor performance versus number of processors is easier for the applications 
software. Improving performance by moving in the vertical direction (increasing 
parallelism), on the other hand, may involve significant changes to applications, 
since programming ten processors may be very different from programming a 
thousand, and different yet again from programming a million. (But going from 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 609



578 10.5 The Roads to El Dorado 

100 to 101 is probably not different.) An advantage of the vertical path to 
performance is that the hardware may be simply replicated-the processors in 
particular, but also the hardware of the interconnection switch. Hence, 
increasing number of processors versus processor performance results in more 
hardware replication. An advantage of the low road is that it is much more likely 
that there will be a market at the various points along the way to El Dorado. In 
addition, those who take the high road must grapple with Amdahl's Law. 

This brings us to a fundamental debate about the organization of memory in 
large-scale machines of the future. The debate unfortunately often centers on a 
false dichotomy: shared memory versus distributed memory. Shared memory 
means a single address space, implying implicit communication. The real 
opposite to a shared address is multiple private address spaces, implying explicit 
communication. Distributed memory refers to the location of the memory. If 
physical memory is divided into modules with some placed near each processor 
(which allows faster access time to that memory), then physical memory is 
distributed. The real opposite of distributed memory is centralized memory, 
where access time to a physical memory location is the ~ame for all processors. 

Clearly shared address versus multiple address and distributed memory 
versus centralized memory are orthogonal issues: SIMDs or MIMDs can have a 
shared address and a distributed physical memory or multiple private address 
spaces and a centralized physical memory (although this last combination would 
be unusual). Figure 10.2 categorizes several machines by these axes. The proper 
debates concerning the future are the pros and cons of a single address and the 
pros and cons of distributed memory. 

The single address debate is closely tied to the model of communication, 
since shared-address machines must offer implicit communication (possibly 

Distributed 

Physical 
memory 
location 

Centralized 

' Intel Hypercube 
Ncube 
lnmos Transputer 

l 

Multiple 
Addressing 

CM-2 
IBM RP3 
Cedar 

IBM 3090-600 
Encore Multimax 
Sequent Symmetry 

Shared 

FIGURE 10.2 Parallel processors placed according to centralized versus distributed 
memory and shared versus multiple addressing. In general it is easier tor software for 
machines on the shared side of the addressing axis and it is easier to build larger-scale 
machines on the distributed end of the vertical access. These machines in the graph are 
described in Section 10.11. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 610



Future Directions 579 

part of any memory access) and multiple-address machines must have explicit 
communication. (It is not quite that simple since some shared-address machines 
also offer explicit communication in various forms.) "Implicitists" knock 
"explicitists" for advocating machines that are harder to program when it is 
already hard to find applications: Why make the programmer's life more 
difficult when software is the linchpin of large-scale parallelism? One reply is 
that if memory is distributed, as processors get faster the time to remote memory 
will be so long-· say 50 to 100 clock cycles-the compiler or programmer must 
be aware he is writing for a large-scale parallel machine no matter which 
communication scheme is used. Explicit communication also offers the 
possibility of hiding the cost of communication by overlapping it with computa
tion. The implicitist reply is that using hardware rather than explicit instructions 
reduces the overhead of communication. Moreover, a single address means pro
cesses can use pointers and communicate data only if the pointer is dereferenced, 
while explicit communication means the data must be sent in the presence of 
pointers since the data might be accessed. The explicitist rebuttal is the owner of 
the data can send the data, traversing a properly designed network only once, 
while in shared-memory machines a processor requests the data and then the 
owner returns it, requiring two trips over the communications network. 

Distributed-memory advocates argue that no matter how much caching is 
placed in front of a single central memory, it has limited bandwidth, and thus, 
limits the number of processors. Central-memory advocates raise the question of 
efficiency: If there is not enough parallelism to use many processors, then why 
distribute memory? Centralists also point out that distributed memory increases 
the difficulty of programming, since now the programmer or the compiler must 
decide how to lay out the data in the physical m~mory modules so as to reduce 
communication. Hence, distributed memory introduces the concept of data 
elements being near a processor (the module taking less time to access) or far (in 
other memory modules). 

We can now explain a difficulty of the distributed versus centralized dichot
omy. Every processor will likely have a cache, which is in some sense a distrib
uted memory no matter how main memory is organized. Even with caches, the 
latency of a miss and the effective bandwidth for satisfying cache requests can 
be improved if data is allocated to the memory module near the appropriate 
cache. Hence, there is still a distinction between centralized and distributed main 
memory in the presence of caches. 

As you can imagine, these debates continue back and forth, practically 
interminably. Fortunately, in computer architecture such disagreements are 
settled by measurements rather than polemics. Thus, time will. be the judge of 
these issues, but your authors will be the judge of a bet inspired by these 
debates (see page 590 in 10.11). 

The real issues for future machines are these: Do problems and algorithms 
with sufficient parallelism exist? And can people be trained or compilers be 
written to exploit such parallelism? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 611



580 

10.& I 

10.6 Special-Purpose Processors 

Special-Purpose Processors 

In addition to exploring parallelism, many designers today are exploring special
purpose computers. With the increasing sophistication of computer-aided design 
software and increasing capacity per chip comes the opportunity of quickly 
building a chip that does one thing well at low cost. Real-time speech 
recognition and image processing are examples. Such special-purpose devices, 
or coprocessors, frequently act in conjunction with the CPU. There are two 
types in the coprocessor trend: digital signal processors and systolic arrays. 

Digital signal processors (or DSPs) are not derived from the traditional 
model of computing, and tend to look like horizontal microprogrammed 
machines (see page 212) orVLIW machines (see pages 322-325). They tend to 
solve real-time problems, essentially having an infinite-input data stream. There 
has been little emphasis on compiling from programming languages such as C, 
but that is starting to change. As DSPs bend to the demands of programming 
languages, it will be interesting to see how they differ from traditional 
microprocessors. 

Systolic arrays evolved from attempts to get more efficient computing 
bandwidth from silicon. Systolic arrays can be thought of as a method for 
designing special-purpose computers to balance resources, 1/0 bandwidth, and 
computation. Relying on pipelining, data flows in stages from memory through 
an array of computation units and back to memory, as suggested in Figure 10.3. 
Recently, systolic-array research has moved away from many, dedicated special
purpose chips to fewer, more powerful chips that are programmable. 

The authors expect an increasing role for special-purpose computers in the 
1990s because they off er both higher performance and lower cost for dedicated 
functions such as real-time speech recognition and image processing. The 
consumer marketplace seems the most likely candidate, given its high volume 
and sensitivity to cost. 

,..... Processing - --+-
Processing Processing Processing Processing Processing 

element element element element element element 
,__ 

- Memory ....._ Memory -

Traditional computation model Systolic array computation model 
(SISD) (MISD?) 

FIGURE 10.3 The systolic architecture gets its name from the heart rhythmically 
pumping blood. Data arrives at a processing element at regular intervals, where it is 
modified and passed to the next element, and so on, until it circulates back to memory. 
Some consider systolic arrays an example of MISD. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 612



Future Directions 581 

1 O. 7 I Future Directions for Compilers 

Compilers of the future have two challenges on machines of the future: 

• Lay out of data to reduce memory hierarchy and communication overhead, 
and 

• Exploitation of parallelism. 

Programs of the future will spend a larger percentage of the execution time 
waiting for the memory hierarchy as the gap grows between the clock cycle time 
of processors and the access time of main memory (see Figure 8.18, page 427). 
Compilers that arrange code and data so as to reduce cache misses may lead to 
larger performance improvements than traditional optimizations of today. 
Further improvements are possible with the possibility of prefetching data into a 
cache before it is needed by the program. One interesting proposition is by 
extending existing programming languages with array operations a programmer 
can express parallelism with calculations on entire arrays at a time, leaving it up 
to the compiler to lay out the data into processors to reduce the amount of 
communication. For example, the proposed extension to FORTRAN 77 called 
FORTRAN 8X includes array extensions. The hope is that the programmer's 
task might even be simpler than with SISD machines where array operations 
must be specified with loops. The range of programs that such a compiler can 
handle efficiently and the number of hints a programmer must supply on where 
to place data will determine the practical value of this proposal. 

In addition to reducing the costs of memory access and communication, 
compilers may change performance by factors of two or three by utilizing 
parallelism available in the processor. Figure 2.25 (page 75) shows the Perfect 
Club benchmarks operate at only 1 % of peak performance, clearly suggesting 
many opportunities for software. More specifically, the superscalar machines of 
Chapter 6 (pages 318-320) typically achieve a speedup of less than 2 using 
today's compilers, even through the potential performance improvement of 
executing 4 instructions at once is 4. From Chapter 7 we see that vector 
machines typically achieve a vectorization rate of 40% to 70%, delivering a 
speedup of 1.5 to 2.5, where a vectorization rate of 90% could achieve a speedup 
over 5. And current compilers for multiprocessors are considered successful if 
they achieve a speedup 3 for a single program when the potential from 8 
processors is 8. Figure 10.4 (page 582) shows the potential improvement in 
performance of a larger percentage of the work executing in the higher
performance mode for each of these categories. Since we can expect multiple 
processors in machines where each processor has vector or superscalar features, 
the potential speedup of these factors may be multiplied together. 

While this opportunity exists for compilers, we do not want to belittie its 
difficulty. Parallelizing compilers have been under development since 197 5 but 
progress has been slow. These problems are hard, especially for the "dusty deck" 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 613



582 

10 

Vector 9 
speedup 

8 

7 

6 

5 

4 

3 

2 

fo.7 Future Directions for Compilers 

challenge of running existing programs. Success has been limited to programs 
where the parallelism is available in the algorithm and expressed in the program 
and to machines with a small number of processors. Significant progress may 
eventually require new programming languages as well as smarter compilers! 

0% 20% 40% 60% 80% 100% 

Percentage of operations 
executed in vector mode 

4 

Super
scalar 
speedup 

3 

2 

8 

Multi- 7 
processor 
speedup 

0% 20% 40% 60% 80% 100% 

Percentage of extra 
superscalar slots used 

6 

5 

4 

3 

2 

0% 20% 40% 60% 80% 100% 

Percentage of extra 
processors used 

FIGURE 10.4 Potential for performance improvement by compilers transforming more of the computation into 
the faster mode. The leftmost graph shows the percentage of operations executed in vector mode, while the other 
graphs show the percentage of the potential speedup in use on average: percentage of four instructions used per cycle in 
superscalar and percentage of time all eight processors were utilized in the multiprocessor. The gray area shows the 
range of utilization typically found in programs using,current compilers. 

10.a I Putting It All Together: The Sequent 
Symmetry Multiprocessor 

The high performance and low cost of the microprocessor inspired renewed 
interest in multiprocessors in the 1980s. Several microprocessors can be placed 
on a common bus because: 

they are much smaller than multichip processors, 

caches can lower bus traffic, and 

coherency protocols can keep caches and memory consistent. 

Traffic per processor and the bus bandwidth determine the number of processors 
in such a multiprocessor. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 614



Future Directions 583 

Several research projects and companies investigated these shared-bus 
multiprocessors. One example is Sequent Corporation, founded to build multi
processors based on standard microprocessors, and the UNIX operating system. 
The first-generation system was the Balance 8000, offered in 1984 with 2 to 12 
National 32032 microprocessors, a 32-bit split transaction bus that multiplexed 
address and data, and one 8-KB, 2-way-set-associative, write-through cache per 
processor. Each cache watched the bus to maintain coherency using write 
through with invalidate. (See Sections 8.4, 8.8, and 9.4 for a review of these 
terms.) The sustained bandwidth of the main memory and bus is 26.7 MB/sec. 
Two years later Sequent upgraded to the Balance 21000, offering up to 30 
National 32032 microprocessors with the same memory system and bus. 

< 

2 to 32 CPU/FPUs 1 to 6 Memory Modules 

80386 CPU/ 
1167 FPU 

t 
64-,KB 
write-
back 
cache 

t 

t 
Bus 

adapter 

t I System 
console 

Ethernet 

SCSI bus 

80386 CPU/ 
1167 FPU 

64-KB 
write
back 
cache 

Main memory Main memciry 
(8 MB-40 MB) ' ' • (8 MB-40 MB) 

t t 
Memory Memory 
controller controller 

t t 
System bus 

Disk 
controller 

Bus 
adapter 

Multibus 

Bus 
adapter 

t X.25 network 

> 

FIGURE 10.5 The Sequent Symmetry multiprocessor has up to 30 microprocessors, 
each with 64 KB of 2-way set associative, write-back caches connected over the 
shared system bus. Up to six memory controllers also talk to this 64-bit-wide bus, plus 
some interfaces for 1/0. In addition to a special-purpose disk controller, there is an interface 
for the system console, Ethernet network, and SCSI 1/0 bus (see Chapter 9), as well as 
another interface for Multibus. 1/0 devices can be attached either to SCSI or to Multibus, as 
the customer desires. (Although all interfaces are labeled "Bus adapter," each is a unique 
design.) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 615



584 10.8 Putting It All Together: The Sequent Symmetry Multiprocessor 

In 1986, Sequent began the design of the Symmetry multiprocessor, assuming 
a microprocessor 300% to 400% faster than the 32032. The goal was to support 
as many processors as possible using the I/O controllers developed for the 
Balance system. This meant the bus had to remain compatible, though the new 
memory and bus system had to deliver roughly 300% to 400% higher bandwidth 
than the older system. 

The goal of higher memory-system bandwidth with a similar bus was 
attacked on four levels. First, the cache was increased to 64 KB, increasing the 
hit rate and therefore the effective memory bandwidth as seen by the processor. 
Second, the cache policy was changed from write through to write back to 
reduce the number of write operations on the shared bus. To maintain cache 
coherency with write back, Symmetry uses a write-invalidate scheme (see pages 
468-469). The third change was to double the bus width to 64 bits, thereby 
doubling the bus bandwidth to 53 MB/sec. The final change was to have each 
memory controller interleave memory as two banks (see Section 8.8), allowing 
the memory system to match the bandwidth of the wider bus. The memory 
system can have up to six controllers with up to 240-MB total main memory. 

The use of high-level languages and the portability of the UNIX operating 
system allowed changing instruction sets to the faster Intel 80386. Running at a 
higher clock rate, with the faster Weitek 1167 floating-point accelerator, and 
with the improved memory system, a single 80386 ran from 214% to 776% 
faster for floating-point benchmarks and about 375% faster for integer bench
marks. Figure 10.5 (page 583) shows the organization of the Symmetry. 

One of the other design constraints was that the new Symmetry boards had to 
work properly when put into the old Balance systems. Since the new system was 
to use write back and the old system used write through, the hardware team 
solved the problem by designing the new caches to support either write through 
or write back. Lovett and Thakkar [1988] took advantage of that feature to run 
parallel programs with both policies. Figure 10.6 shows bus utilization versus 
the number of processors for four parallel programs. 

As mentioned above, bus utilization directly corresponds to the number of 
processors that can be used in such single-bus systems. Write-through caches 
should have higher bus utilization for the same number of processors since every 
write must go over the bus; or from a different perspective, the same bus should 
be able to support more processors if they use write-back caches. Figure 10.6 
fulfills our expectations; the buses saturate with fewer than 16 processors with 
write through, but write back appears to scale to the full size. 

There are two components to the bus traffic: normal misses and coherency 
support. Uniprocessor misses (compulsory, capacity, and conflict) can be 
reduced by larger caches and by better write policies, but the coherency traffic is 
a function of the parallel program. The primary benefit of write back for the 
programs in Figure 10.6 was simply reducing the number of writes on the bus 
due to the write-back policy, for there were few writes to shared data in these 
programs. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 616



Future Directions 

80% 

70% 

60% 

50% 

Bus 40% 

utilization 
30% 

20% 

10% 

0% 

585 

Write back: 1 

Write back: 2 
Write back: 4 

::;=:;:=;:::=;::::;=::;==;;:q:::::;:::::::;:::::;::::;:=;==;:::::;=::;;::::;::::;=:;:=;:::=;::::;=::;::::::;- Write back: 3 

3 5 7 9 11 13 15 17 19 21 23 25 27 

Number of processors 

FIGURE 10.6 Comparing the impact of write-through versus write-back cache 
coherency on bus utilization of the Sequent Symmetry multiprocessor for four 
parallel benchmarks: (1) Butterfly Switch Simulator, (2) 20 Monte Carlo Simulation, 
(3) Ray Tracing , and (4) Parallel Linpack Benchmark. Lovett and Thakkar [1988] 
collected these data with a hardware performance monitor. 

Another experiment evaluated the Symmetry as a timeshared (multiprogram
med) multiprocessor running ten independent programs. The experiment ran n 
copies of the program on n processors. This study found about half the programs 
started to stray from linearly increasing throughput at 6 to 8 processors with 
write through, yet with write back it stayed near linear for all but one of the ten 
programs for up to 28 processors. (The single dud was due to hot spots in the 
operating system rather than write-back coherency protocol.) 

1 O. 9 · 1 Fallacies and Pitfalls 

Given the speculative nature of this chapter, it would seem that this section 
would not be needed. In good conscience, however, we submit two warnings. 

Pitfall: Measuring performance of multiprocessors by linear speedup versus 
execution time. 

"Mortar shot" graphs-plotting performance versus number of processors 
showing linear speedup, a plateau, and then a falling off-have long been used 
to judge the success of parallel processors. While scalability is one facet of a 
parallel program, it is not a direct measure of performance. The first question is 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 617



586 10.9 Fallacies and Pitfalls 

the power of the processors being scaled: A program that linearly improves 
performance to equal 100 Intel 8080s may be slower than the sequential version 
on a workstation. Be especially careful of floating-point-intensive programs, as 
processing elements without hardware assist may scale wonderfully but have 
poor collective performance. 

Comparing execution times is only fair if you are comparing the best 
algorithms on each machine. (Of course, you can't subtract time for idle 
processors when evaluating a multiprocessor, so CPU time is inappropriate for 
multiprocessors.) Comparing the identical code on two machines may seem fair, 
but it is not; the parallel program may be slower on a uniprocessor than a 
sequential version. Sometimes, developing a parallel program will lead to algo
rithmic improvements, so that comparing the previously best-known sequential 
program with the parallel code-which seems fair-will not compare equivalent 
algorithms. To reflect this issue, sometimes the terms relative speedup (same 
program) and true speedup (best programs) are used. Results that suggest super
linear performance, when a program on n processors is more than n times faster 
than the equivalent uniprocessor, give a clue to unfair comparisons. 

Fallacy: Amdahl's Law doesn't apply to parallel computers. 

In 1987, the head of a research organization claimed that Amdahl's Law (see 
Section 1.3) had been broken by a MIMD machine. This hardly meant, however, 
that the law has been overturned for parallel computers; the neglected portion of 
the program will still limit performance. To try to understand the basis of the 
media reports, let's see what Amdahl [1967] originally said: 

A fairly obvious conclusion which can be drawn at this point is that the effort . 
expended on achieving high parallel processing rates is wasted unless it is 
accompanied by achievements in sequential processing rates of very nearly the 
same magnitude. [page 483] 

One interpretation of the law was that since portions of every program must be 
sequential, there is a limit to the useful economic number of processors-say 
100. By showing linear speedup with 1000 processors, this interpretation of 
Amdahl's Law was disproved. 

The approach of the researchers was to change the input to the benchmark, so 
that rather than going 1000 times faster, they essentially computed 1000 times 
more work in comparable time. For their algorithm the sequential portion of the 
program was constant independent of the size of the input, and the rest was fully 
parallel-hence, linear speedup with 1000 processors. 

Chapter 2 (see Section 2.2) describes the dangers of letting each experimenter 
select his own input for benchmarks. We see no reason why varying input is safe 
for evaluating performance of multiprocessors, nor why Amdahl's Law doesn't 
apply. What this research does point out is the importance of having benchmarks 
that are large enough to demonstrate performance of large-scale parallel 
processors. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 618



Future Directions 

10.10 I Concluding Remarks-Evolution Versus 
Revolution in Computer Architecture 

587 

Reading conference and journal articles from the last 20 years can leave one 
discouraged; so much effort has been expended with so little impact. 
Optimistically speaking, these papers act as gravel and, when placed logically 
together, form the foundation for the next generation of computers. From a more 
pessimistic point of view, if 90% of the ideas disappeared no one would notice. 

One reason for this could be called the "von Neumann syndrome." By hoping 
to invent a new model of computation that will revolutionize computing, 
researchers are striving to become known as the von Neumann of the 21st 
century. Another reason is taste: researchers often select problems that no one 
else cares about. Even if important problems are selected, there is frequently a 
lack of experimental evidence to convincingly demonstrate the value of the 
solution. Moreover, when important problems are selected and the solutions are 
demonstrated, the proposed solutions may be too expensive relative to their 

User 
compat· 
iblllty 

Example 

Difference 

U) 
c: 

""' .Q 
i;_· 0 
~ 2 
Q) 'lii 
E .5 

~ >I > 

! ! 
(.) 
Cl) 

a: 

! 
-- I I Evolutionary 

Binary Upward Assembly High-level 
binary language 

VAX-11/780 IBM 360vs. MIPS 1000 Sun 3 vs. 
vs. 8800 370 vs. 370-XA vs. Sun 4 

vs. ESA/370 DECstation 3100 

Microcode, Some new Byte order Full instruction 
TLB, caches, instructions (Big vs. Little set (same 
pipelining, Endian) data represen-
MIMD talion) 

Q) 

0 0 U) 
0 

::.? ::.? e-
Ci.i :i] :I 

Q. 

!!;? >. a; 0 ·u; c: ·c:; 
U) Q) Q) ca j Q. 

::.? Cl) 

! ! ! 
Revolutionary 

New programs, 
extended or 
newHLL, new 
algorithms 

SISD vs. CM-2 

Algorithms, 
extended HLL, 
programs 

FIGURE 10.7 The evolution-revolution spectrum of computer architecture. The first 
four columns are distinguished from the last column in that applications and operating 
systems can be ported from other computers rather than written from scratch. For example, 
RISC is listed in the middle of the spectrum because user compatibility is only at the level 
of high-level languages, while microprogramming allows binary compatibility, and latency
oriented MIMDs require changes to algorithms and extending HLLs. Time-shared MIMD 
means MIMDs justified by running many independent programs at once, while latency 
MIMD means MIMDs intended to run a single program faster. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 619



588 

10.11 

10.1 O Concluding Remarks-Evolution Versus Revolution in Computer Architecture 

benefit. Sometimes this expense is measured as straightforward cost/perfor
mance-the performance enhancement does not merit the added cost. More 
often the expense of innovation is that it is too disruptive to computer users. 
Figure 10.7 shows what we mean by the evolution-revolution spectrum of 
computer architecture innovation. To the left are ideas that are invisible to the 
user (presumably excepting better cost, better performance, or both). This is the 
evolutionary end of the spectrum. At the other end are revolutionary architecture 
ideas. Those are the ideas that require new applications from programmers who 
must learn new programming languages and models of computation, and must 
invent new data structures and algorithms. 

Revolutionary ideas are easier to publish than evolutionary ideas, but to be 
adopted they must have a much higher payoff. Caches are an example of an 
evolutionary improvement. Within five years after the first publication about 
caches almost every computer company was designing a machine with a cache. 
The RISC ideas were nearer to the middle of the spectrum, for it took closer to 
ten years for most companies to have a RISC product. An example of a 
revolutionary computer architecture is the Connection Machine. Every program 
that runs efficiently on that machine was either substantially modified or written 
especially for it, and programmers need to learn a new style of programming for 
it. Thinking Machines was founded in 1983, but only a few companies offer that 
style of machine. 
, There is value in projects that do not affect the computer industry because of 
lessons that they document for future efforts. The sin is not in having a novel 
architecture that is not a commercial success; the sin is in not quantitatively 
evaluating the strengths and weaknesses of the novel ideas. The next section 
mentions several machines whose primary contribution is documentation of the 
machine and experience using it. 

When contemplating the future-and when inventing your own contributions 
to the field-· remember the evolution-revolution spectrum. Also keep in mind 
the laws and principles of computer architecture found in the early chapters; 
these will surely guide computers of the future, just as they have guided 
computers of the past. 

Historical Perspective and References 

For over a decade prophets have voiced the contention that the organization of 
a single computer has reached its limits and that truly significant advances can 
be made only by interconnection of a multiplicity of computers in such a manner 
as to permit cooperative solution .... Demonstration is made of the continued 
validity of the single processor approach ... 

Amdahl [1967, 483] 

The quotes at the chapter opening give the classic arguments for abandoning the 
current form of computing, and Amdahl [1967] gives the classic reply. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 620



Future Directions 589 

Arguments for the advantages of parallel execution can be traced back to 19th 
century [Menabrea 1842] ! Yet the effectiveness of the multiprocessor for 
reducing latency of individual important programs is still being determined. 

The earliest ideas on SIMD-style computers are from Unger [1958] and 
Slotnick, Borek, and McReynolds [1962]. Slotnick's Solomon design formed the 
basis of the Illiac IV, perhaps the most infamous of the supercomputer projects. 
While successful in pushing several technologies useful in later projects, it failed 
as a computer. Costs escalated from the $8 million estimate in 1966 to $31 
million by 1972, despite constructing only a quarter of the planned machine. 
Actual performance was at best 15 MFLOPS versus initial predictions of 1000 
MFLOPS for the full system (see Hord [1982]). Delivered to NASA Ames 
Research 1972, the computer took three more years of engineering before it was 
usable. These events slowed investigation of SIMD, with Danny Hillis [1985] 
resuscitating this style in the Connection Machine: The cost of a program 
memory for each of 65,636 1-bit processors was prohibitive, and SIMD was the 
solution. 

It is difficult to distinguish the first multiprocessor. The first computer from 
the Eckert-Mauchly Corporation, for example, had duplicate units to improve 
availability. Holland [1959] gave early arguments for multiple processors. After 
several laboratory attempts at multiprocessors, the 1980s first saw successful 
commercial multiprocessors. Bell [1985] suggests the key was that the smaller 
size of the microprocessor allowed the memory bus to replace the intercon
nection network hardware, and that portable operating systems meant multi
processor projects no longer required the invention of a new operating system. 
This is the paper in which he defines the terms "multiprocessor" and "multi
computer." Two of the best-documented multiprocessor projects are the C.mmp 
[Wulf and Bell 1972 and Wulf and Habrison 1978] and Cm* [Swan et al. 1977 
and Gehringer, Siewiorek, and Segall 1987]. Recent commercial multiprocessors 
include the Encore Multimax [Wilson 1987] and the Sequent Symmetry [Lovett 
and Thakkar 1988]. The Cosmic Cube is an early multicomputer [Seitz 1985]. 
Recent commercial multicomputers are the Intel Hypercube and the Transputer
based machines [Whitby-Strevens 1985]. Attempts at building a scalable shared
memory multiprocessor include the IBM RP3 [Pfister, Brantley, George, 
Harvey, Kleinfekder, McAuliffe, Melton, Norton, and Weiss 1985], the NYU 
Ultracomputer [Schwartz 1980 and Elder, Gottlieb, Kruskal, McAuliffe, 
Randolph, Snir, Teller, and Wilson 1985], and the University of Illinois Cedar 
project [Gajksi, Kuck, Lawrie, and Sameh 1983]. 

There is unbounded information on multiprocessors and multicomputers: 
Conferences, journal papers, and even books seem to be appearing faster than 
any single person can absorb the ideas. One good source is the International 
Conference on Parallel Processing, which has met annually since 1972. Two 
recent books on parallel computing have been written by Almasi and Gottlieb 
[1989] and Hockney and Jesshope [1988]. Eugene Miya of NASA Ames has 
collected an on-line bibliography of parallel-processing papers that contains 
more than 10,000 entries. To highlight a few papers, he sends out electronic 

/ 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 621



590 10.11 Historical Perspective and References 

requests every January to ask which papers every serious student in the field 
should read. After collecting the ballots, he picks the ten papers most frequently 
recommended and publishes that list. Here is an alphabetical list of the winners: 
Andrews and Schneider [1983]; Batcher [1974]; Dewitt, Finkel, and Solomon 
[1984]; Kuhn and Padua [1981]; Lipovski and Tripathi [1977]; Russell [1978]; 
Seitz [1985]; Swan, Fuller, and Siewiorek [1977]; Treleaven, Brownbridge, and 
Hopkins [1982]; and Wulf and Bell [1972]. 

Special-purpose computers predate the stored-program computer. Brodersen 
[1989] gives a history of signal processing and its evolution to programmable 
devices. H. T. Kung [1982] coined the term "systolic array" and has been one of 
the leading proponents of this style of computer design. Recent research has 
been in the direction of making programmable systolic-array elements and 
providing a programming environment to simplify the programming task. 

Its hard to predict the future, yet Gordon Bell has made two predictions for 
1995. The first is that a computer capable of sustaining a TeraFLOPS-one 
million MFLOPS-will be constructed by 1995, either using a multicomputer 
with 4K to 32K nodes or a Connection Machine with several million processing 
elements [Bell 1989]. To put this prediction in perspective, each year the Gordon 
Bell Prize acknowledges advances in parallelism, including the fastest real 
program (highest MFLOPS). In 1988, the winner achieved 400 MFLOPS using 
a CRAY X-MP with four processors and 16 megawords and in 1989 the winner 
used an eight-processor CRAY Y-MP to run at 1680 MFLOPS. Machines and 
programs will have to improve by a factor of three each year for the fastest 
program to achieve 1 TFLOPS in 1995. 

The second Bell prediction concerns the number of data streams in super
computers shipped in 1995. Danny Hillis believes that while supercomputers 
with a small number of data streams may be best sellers, the biggest machines 
will be machines with many data streams, and these will perform the bulk of the 
computations. Bell bet Hillis that in the last quarter of calendar year 1995 more 
sustained MFLOPS will be shipped in machines using few data streams (SlOO) 
rather than many data streams (;;:::1000). This bet concerns only supercomputers, 
defined as machines costing more than $1,000,000 and used for scientific 
applications. Sustained MFLOPS is defined for this bet as the number of 
floating-point operations per month, so availability of machines affects their 
rating. The loser must write and publish an article explaining why his prediction 
failed; your authors will act as judge and jury. 

References 

ALMASI, G. S. AND A. GOTTLIEB [1989]. Highly Parallel Computing, Benjamin/Cummings, 
Redwood City, Calif. 

AMDAHL, G. M. [1967]. "Validity of the single processor approach to achieving large scale 
computing capabilities," Proc. AF/PS Spring Joint Computer Conf. 30, Atlantic City, N. J. (April) 
483-485. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 622



Future Directions 591 

ANDREWS, G. R. AND F. B. SCHNEIDER [1983]. "Concept and notations for concurrent 
programming," Computing Surveys 15: 1 (March) 3-43. 

BATCHER, K. E. [1974]. "STARAN parallel processor system hardware," Proc. AF/PS National 
Computer Conference, 405-410. 

BELL, C. G. [1985]. "Multis: A new class of multiprocessor computers," Science 228 (April 26) 
462-467. 

BELL, C. G. [1989]. "The future of high performance computers in science and engineering," Comm. 
ACM 32:9 (September) 1091-1101. 

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J. M. RANDALL, A. H. SAMEH, AND D. L. 
SLOTNICK [1972]. "The ILLIAC IV system," Proc. IEEE 60:4, 369-379. Also appears in D. P. 
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982), 306-
316. 

BRODERSEN, R. W. [1989]. "Evolution of VLSI signal-processing circuits," Proc. Decennial 
Caltech Conf on VLSI (March) 43-46, The MIT Press, Pasadena, Calif. 

DEWITT, D. J., R. FINKEL, AND M. SOLOMON [1984]. "The CRYSTAL multicomputer: Design 
and implementation experience, Computer Sciences Tech. Rep. No. 553, University of Wisconsin
Madison, September. 

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P. 
TELLER, AND J. WILSON [1985]. "Issues related to MIMD shared-memory computers: The NYU 
Ultracomputer approach," Proc. 12th Int'l Symposium on Computer Architecture (June), Boston, 
Mass., 126-135. 

FLYNN, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909. 

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. "CEDAR-A large scale multi
processor," Proc. Int' I Conf on Parallel Processing (August) 524-529. 

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm* 
Experience, Digital Press, Bedford, Mass. 

HILLIS, W. D. [1985]. The Connection Machine, The MIT Press, Cambridge, Mass. 

HOCKNEY, R. W. AND C.R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming 
and Algorithms, Adam Hilger Ltd., Bristol, England and Philadelphia. 

HOLLAND, J. H. [1959]. "A universal computer capable of executing an arbitrary number of 
subprograms simultaneously," Proc. East Joint Computer Conf 16, 108-113. 

HORD, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science Press, Rockville, 
Md. 

KUHN, R.H. AND D. A. PADUA, EDS. [1981]. Tutorial on Parallel Processing, IEEE. 

KUNG, H. T. [1982]. "Why systolic architectures?," IEEE Computer 15:1, 37-46. 

LIPOVSKI, A.G. AND A. TRIPATHI [1977]. "A reconfigurable varistructure array processor," Proc. 
1977 Int'! Conf of Parallel Processing (August), 165-174. 

LOVETT, T. ANDS. THAKKAR [1988]. "The Symmetry multiprocessor system," Proc. 1988 Int' I 
Conf of Parallel Processing, University Park, Pennsylvania, 303-310. 

MENABREA, L. F. [1842]. "Sketch of the analytical engine invented by Charles Babbage," 
Bibiotheque Universelle de Geneve (October). 

MITCHELL, D. [1989]. "The Transputer: The time is now," Computer Design, RISC supplement, 
40-41 (November). 

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P. 
MCAULIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. "The IBM research parallel 
processor prototype (RP3): Introduction and architecture," Proc. 12th Int' I Symposium on 
Computer Architecture (June), Boston, Mass., 764-771. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 623



592 1 O .11 Historical Perspective and References 

RUSSELL, R. M. [1978]. "The Cray-1 computer system," Comm. ACM 21:1(January)63-72. 

SEITZ, C. [1985]. "The Cosmic Cube," Comm. ACM 28:1(January)22-31. 

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. "The Solomon computer," 
Proc. Fall Joint Computer Conf (December), Philadelphia, 97-107. 

SWAN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. "The 
implementation of the Cm* multi-microprocessor," Proc. AF/PS National Computing Conj., 645-
654. 

SWAN, R. J., S. H. FULLER, AND D. P. SIEWIOREK (1977]. "Cm*-A modular, multi
microprocessor," Proc. AF/PS National Computer Conf 46, 637-644. 

SWARTZ, J. T. (1980]. "Ultracomputers," ACM Transactions on Programming Languages and 
Systems 4:2, 484-521 

TRELEAVEN, P. C., D. R. BROWNBRIDGE, and R. P. HOPKINS (1982]. "Data-driven and demand
driven computer architectures," Computing Surveys, 14:1(March)93-143. 

UNGER, S. H. [1958]. "A computer oriented towards spatial problems," Proc. Institute of Radio 
Engineers 46:10 (October) 1744-1750. 

VON NEUMANN, J. [1945]. "First draft of a report on the EDVAC." Reprinted in W. Aspray and A. 
Burks, eds., Papers of John von Neumann on Computing and Computer Theory (1987), 17-82, 
The MIT Press, Cambridge, Mass. 

WHITBY-STREVENS C. [1985]. "The transputer," Proc. 12th Int'! Symposium on Computer 
Architecture, Boston, Mass. (June) 292-300. 

WILSON, A. W., JR. [1987]. "Hierarchical cache/bus architecture for shared memory 
multiprocessors," Proc. 14th Int' l Symposium on Computer Architecture (June), Pittsburg, Penn., 
244-252. 

WULF, W. AND C. G. BELL (1972]. "C.mmp-A multi-mini-processor," Proc. AF/PS Fall Joint 
Computing Conf. 41, part 2, 765-777. 

WULF, W. ANDS. P. HARBISON (1978]. "Reflections in a pool of processors-An experience report 
on C.mmp/Hydra," Proc. AF/PS 1978 National Computing Conf 48 (June), Anaheim, Calif. 939-
951. 

EXERCISES 

10.1 [Discussion] <10.4> The weakness of SIMD for case statements, as well as the 
failure of the first machine to popularize SIMD, prevented exploration of SIMD designs 
while MIMD was still an open frontier. MIMD also has the advantage of riding the wave 
of improvements in SISD processors. Now that MIMD programming has not succumbed 
easily to assaults of computer scientists, the issue arises whether the simpler 
programming model of SIMD might lead it to victory over MIMD for large numbers of 
processors. It looks as if MIMD programs for thousands of processors will consist of 
thousands of copies of one program rather than thousands of different programs. Thus, 
the direction is toward a single program with multiple data streams, independent of 
whether the machine itself is SIMD or MIMD. What trends favor MIMD over SIMD, and 
vice versa? Be sure to consider utilization of memory and processors (including 
communication and synchronization). 

10.2 [Discussion] <10.3-10.5> It might take approximately 100 clocks to communicate 
in a massively parallel SIMD or MIMD machine. What hardware techniques might 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 624



Future Directions 593 

this time? How can you change the architecture or the programming model to make a 
computer more immune to such delays? 

10.3 [Discussion] <10.4,10.8> What must happen before latency-oriented MIMD 
machines become commonplace? 

10.4 [Discussion] <10.6> When do special-purpose processors make sense economically? 

10.5 [Discussion] <10.8> Construct a scenario whereby a truly revolutionary 
architecture-pick your favorite candidate-will play a significant role. Significant is 
defined as 10% of the computers sold, 10% of the users, 10% of the money spent on 
computers, or 10% of some other figure of merit. 

10.6 [30] <10.2> The CM-2 uses 64K 1-bit processors in SIMD mode. Bit-serial 
operations can easily be simulated 32 bits one step by a 32-bit-wide SISD, at least for 
logical operations. The CM-2 takes about 500 ns for such operations. If you have access 
to a fast SISD, calculate how long add and logical AND take on 64K 1-bit numbers. 

10.7 [30] <10.2> Similar to the question above, a popular use of the CM-2 is to operate 
on 32-bit data using multiple steps with the 64K 1-bit processors. The CM-2 takes about 
16 microseconds for a 32-bit AND or add. Simulate this activity on a fast SISD; calculate 
how long it takes to add and logical AND 64K 32-bit numbers. 

10.8-10.12 <2.2,10.4> If you have access to a few different multiprocessors or 
multicomputers, performance comparison is the basis of some projects. 

10.8 [50] <2.2,10.4> One argument for super-linear speedup (pages 585-586) is that time 
spent servicing interrupts or switching contexts is reduced when you have many 
processors, since only one need service interrupts and there are more processors to be 
shared by users. Measure the time spent on a workload in handling interrupts or context 
switching on a uniprocessor versus a multiprocessor. This workload may be a mix of 
independent jobs for a multiprogramming environment or a single large job. Does the 
argument hold? 

10.9 [50] <2.2,10.4> A multiprocessor or multicomputer is typically marketed using 
programs that can scale performance linearly with the number of processors. The project 
would be to port programs written for one machine to the others and measure their 
absolute performance and how it changes as you change the number of processors. What 
changes need to be made to improve performance of the ported programs on each 
machine? What is the ratio of processor performance according to each program? 

10.10 [50] <2.2,10.4> Instead of trying to create fair benchmarks, invent programs that 
make one multiprocessor or multicomputer look terrible compared to the others, and also 
programs that always make one look better than the others. It would be an interesting 
result if you couldn't find a program that made one multiprocessor or mult~mputer look 
worse than the others. What are the key performance characteristi/ organization? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 625



594 Exercises 

10.11 [50] <2.2,10.4> Multiprocessors and multicomputers usually show performance 
increases as you increase the number of processors, with the ideal being n times speedup 
for n processors. The goal of this biased benchmark is to make a program that gets worse 
performance as you add processors. For example, this means that 1 processor on the 
multiprocessor or multicomputer runs the program fastest, 2 is slower, 4 is slower than 2, 
and so on. What are the key performance characteristics for each organization that give 
inverse linear speedup? 

10.12 [50] <10.4> Networked workstations can be considered multicomputers, albeit with 
slow communication relative to computation. Port multicomputer benchmarks to a 
network using remote procedure calls for communication. How well do the benchmarks 
scale on the network versus the multicomputer? What are the practical differences 
between networked workstations and a commercial multicomputer? 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 626



CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 627



The Fast drives out the Slow even if the Fast is wrong. 

W. Kahan 

by David Goldberg 

(Xerox Palo Alto Research Center) 

A.1 Introduction A·1 

A.2 Basic Techniques of Integer Arithmetic A·2 

A.3 Floating Point A·12 

A.4 Floating-Point Addition A·16 

A.5 Floating-Point Multiplication A·20 

A.6 Division and Remainder A·23 

A.7 Precisions and Exception Handling A·28 

A.8 Speeding Up Integer Addition A·31 

A.9 Speeding Up Integer Multiplication and Division A·39 

A.10 Putting It All Together A·53 

A.11 Fallacies and Pitfalls A·57 

A.12 Historical Perspective and References A·58 

Exercises A·63 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 628



A.1 

Computer Arithmetic 

Introduction 

A tremendous variety of algorithms have been proposed for use in floating-point 
accelerators. However, actual floating-point chips are usually based on refine
ments and variations of just a few basic algorithms. In this appendix, we focus 
on those algorithms. In addition to choosing algorithms for addition, subtraction, 
multiplication and division, the computer architect must decide whether to go 
beyond the basics. Should square root be implemented in hardware or software? 
Should extended precision be implemented? This appendix will give you the 
background for making these and other decisions. 

Our discussion of floating point will focus almost exclusively on the IEEE 
floating-point standard (IEEE 754) because of its rapidly increasing acceptance. 
Although floating-point arithmetic involves manipulating exponents and shifting 
fractions, the bulk of the time in floating-point operations is spent operating on 
fractions using integer algorithms (but not necessarily using the integer hard
ware). Thus, after our discussion of floating point, we will take a more detailed 
look at integer algorithms. 

Some good references on computer arithmetic, in order from least to most 
detailed, are Chapter 7 of Hamacher, Vranesic, and Zaky [1984], Gosling 
[1980], and Scott [1985]. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 629



A·2 A.2 Basic Techniques of Integer Arithmetic 

A.2 I Basic Techniques of Integer Arithmetic 

A.2.1 

A.2.2 

Readers who have studied computer arithmetic before will find most of this sec
tion to be review. 

Ripple-Carry Addition 

The building blocks of an adder that can compute the sum of the n-bit numbers 
an-r··a1a0 and bn_1···b1bo are half adders andfull adders. The half adder takes 
two bits ai and bi as input and produces a sum bit si and a carry bit ci+l as output. 
Mathematically, si = (ai +bi) mod 2, and ci+l = L (ai +bi )/2 J , where L J is the 
floor function. As logic equations, si = aJii + aibi, and Ci+l = aibi, where aibi 
means ai A bi and ai + bi means ai v bi. The half adder is also called a (2,2) 
adder, since it takes two inputs and produces two outputs. The full adder is a 
(3,2) adder and is defined by the logic equations 

The input ci is called the carry in, while ci+l is the carry out. The principle 

problem in building an adder for n-bit numbers is propagating the carries. The 
most obvious way to solve this is with a ripple-carry adder, consisting of n full 
adders, as illustrated in Figure A. l. (In the figures in this appendix the least sig
nificant bit is always on the right.) The ci+l output of the ith adder is fed into the 
ci+I input of the next adder (the (i + 1)-th adder) with the lower order carry in c0 
set to 0. Since the low-order carry in is zero, the low-order adder could be a half 
adder. Later, however, we will see that setting the low-order carry-in bit to 1 is 
useful for performing subtraction. 

From Equation A.2.2, there are two levels of logic involved in computing 
ci+I from ci. Thus, if the least significant bit generates a carry, and that carry gets 

propagated all the way to the last adder, the a0 signal will pass through 2n levels 
of logic before the final gate can determine whether there is a carry out of the 
most significant place. In general, the time a circuit takes to produce an output is 
proportional to the maximum number of logic levels through which a signal 
travels. However, determining the exact relationship between logic levels and 
timings is highly technology dependent. Therefore, when comparing adders we 
will simply compare the number of logic levels in each one. For a ripple-carry 
adder that operates on n bits, there are 2n logic levels. Typical values of n are 32 
for integer arithmetic and 53 for double-precision floating point. The ripple
carry adder is the slowest adder, but also the cheapest. It can be built with only n 
simple cells, connected in a simple, regular way. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 630



Computer Arithmetic A·3 

0 

••• 

FIGURE A.1 Ripple-carry adder, consisting of n full adders. The carry out of one full 
adder is connected to the carry in of the adder for the next most significant bit. The carries 
ripple from the least significant bit (on the right) to the most significant bit (on the left). 

Because the ripple-carry adder is relatively slow compared to the designs dis
cussed in Section A.8, one might wonder why it is used at all. In technologies 
like CMOS, even though ripple adders take time O(n), the constant factor is very 
small. In such cases short ripple adders are often used as building blocks in 
larger adders. 

Radix·2 Multiplication and Division 

The simplest multiplier operates on two unsigned numbers, one bit at a time, as 
illustrated in Figure A.2(a) (page A-4). The numbers to be multiplied are 
an_1an-r·ao and bn_1bn-r·b0, and they are placed in registers A and B, respec
tively. Register Pis initially zero. There are two parts in each multiply step. 

L If the least significant bit of A is 1, then register B, containing bn_1bn_2···b0, is 
added to P; otherwise 00···00 is added to P. The sum is placed back into P. 

2. Registers P and A are shifted right, with the low-order bit of P being moved 
into register A and the rightmost bit of A, which is not used in the rest of the 
algorithm, being shifted out. 

After n steps, the product appears in registers P and A, with A holding the 
lower-order bits. 

The simplest divider also operates on unsigned numbers and produces a bit at 
a time. A hardware divider is shown in Figure A.2(b). To compute a/b, put a in 
the A register, b in the B register, 0 in the P register, and then proceed as 
follows: 

1. ·Shift the register pair (P ,A) one bit left. 

2. Subtract the content ofregister B (which is bn_1bn_2···b0) from register P. 

3. If the result of step 2 is negative, set the low-order bit of A to 0, otherwise 
to 1. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 631



A·4 A.2 Basic Techniques of Integer Arithmetic 

Carry out 
Shift 

I p 

I 
A 

f-1-1 t----'" n I t----'"n 

B 

(a) i----n----1 

Shift 

p 

1---- n+ 1 ------1 

(b) 

FIGURE A.2 Block diagram of simple multiplier (a) and divider (b) for n-bit unsigned 
integers. Each multiplication step consists of adding the contents of P to either B or O 
(depending on the low-order bit of A), replacing P with the sum, and then shifting both P 
and A one bit right. Each division step involves first shifting P and A one bit left, subtracting 
B from P, and if the difference is nonnegative, putting it into P. If the difference is nonnega
tive, the low-order bit of A is set to 1. 

4. If the result of step 2 is negative, restore the old value of P by adding the 
contents of register B back into P. 

After repeating this n times, the A register will contain the quotient, and the P 
register will contain the remainder. This algorithm is the binary version of the 
paper-and-pencil method; a numerical example is illustrated in Figure A.3(a) 
(page A-6). 

Notice that the two block diagrams in Figure A.2 are very similar. The main 
difference is that the register pair (P,A) shifts right when multiplying and left 
when dividing. By allowing these registers to shift bidirectionally, the same 
hardware can be shared between multiplication and division. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 632



Computer Arithmetic A·S 

The division algorithm illustrated in Figure A.3(a) (page A-6) is calle~ 
restoring, because if subtraction by b yields a negative result, the P register is 
restored by adding b back in. The restoration step ( 4 above) can be easily 
eliminated. To see why, let r be the contents of the (P,A) register pair, with a 
binary point between the low-order bit of P and the high-order bit of A. Then 
each step of the algorithm computes 2r - b, putting the high-order word of this 
difference in P, and the low-order word in A. Suppose the result of a step is 
negative. Normally, we would add b back in (giving 2r), shift (giving 4r), and 
then subtract (obtaining 4r - b). Suppose we didn't restore, but continued with 
the algorithm. First, shift the unrestored 2r - b, yielding 4r - 2b, then add b, 
giving 4r - b. This is exactly what we would have obtained if we had restored! 
Thus, the nonrestoring algorithm is 

If P is negative, 

la. Shift the register pair (P,A) one bit left. 

2a. Add the contents of register B to P. 

Else, 

lb. Shift the register pair (P,A) one bit left. 

2b. Subtract the contents of register B from P. 

Finally, 

3. If P is negative, set the low-order bit of A to 0, otherwise set it to 1. 

After repeating this n times, the quotient is in A. If P is nonnegative, it is the 
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the 
remainder. A numerical example is given in Figure A.3(b). Note that the sign of 
P must be tested before shifting, since the sign bit can be lost when shifting. 
However, because of two's complement arithmetic (discussed in the next sec
tion), the net result of shifting followed by the appropriate add/subtract operation 
will be the correct value. This comes about because the result of each step is a 
number r with Ir I ~ b. 

If a and bare unsigned numbers in the range 0 ~ a,b ~ 2n - l, then the multi
plier in Figure A.2 will work if register Pis n bits long. However, for division, P 
must be extended to n + 1 bits in order to detect the sign of P. Thus the adder 
must also have n + 1 bits. 

Why would anyone implement restoring division, which uses the same 
hardware as nonrestoring division (the control is slightly different) but involves 
an extra addition? In fact, the usual implementation for restoring division 
doesn't literally perform an add in step 4. Rather, the sign resulting from the 
subtraction is tested, and only if the sum is nonnegative is it loaded back into the 
P register. 

As a final point, before beginning to divide, the hardware must check to see if 
the divisor is zero. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 633



A-6 A.2 Basic Techniques of Integer Arithmetic 

p A 

00000 1110 Divide 14 = 111 O by 3 = 11. B always contains 0011 

00001 110 step (1 ): shift 

-00011 step (2): subtract 

-00010 1100 step (3): result is negative, set quotient bit to 0 

00001 1100 step (4): restore 

00011 100 step (1): shift 

-00011 step (2): subtract 

00000 1001 step (3): result is nonnegative, set quotient bit to 1 

00001 001 step (1): shift 

-00011 step (2): subtract 

-00010 0010 step (3): result is negative, set quotient bit O 

00001 0010 step (4): restore 

00010 010 step (1 ): shift 

-00011 step (2): subtract 

-00001 0100 step (3): result is negative, set quotient bit to O 

00010 0100 step (4): restore. The quotient is 0100 and the remainder is 00010. 

(a) 

00000 1110 Divide 14 = 111 O by 3 = 11: B always contains 0011 

00001 110 step (1b): shift 

+11101 step (2b}: subtract b (add 2's complement) 

11110 1100 step (3): P is negative, so set quotient bit to O 

11101 100 step (1a): shift 

+00011 step (2a): add b 

00000 1001 step (3): P is nonnegative, so set quotient bit to 1 

00001 001 step (1 b): shift 

+11101 step (2b): subtract b 

11110 0010 step (3): Pis negative, so set quotient bit to O 

11100 010 step (1 a): shift 

+00011 step (2a): add b 

11111 0100 step (3): Pis negative, so set quotient bit to O 

+00011 remainder is negative, so do final restore step 

00010 The quotient is 0100 and the remainder is 0001 O 

(b) ..._ _________________________ .. 

FIGURE A.3 Numerical example of (a) restoring division and (b) nonrestoring 
division. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 634



Example: 

Answer: 

A.2.3 

Computer Arithmetic A·7 

Signed Numbers 

There are four methods commonly used to represent signed n-bit numbers: sign 
magnitude, two's complement, one's complement, and biased. In the sign-mag
nitude system, the high-order bit is the sign bit, and the low-order n - 1 bits are 
the magnitude of the number. In the two's complement system, a number and its 
negative add up to 2n. In one's complement, the negative of a number is ob
tained by complementing each bit. In a biased system, a fixed bias is picked so 
that the sum of the bias and the number being represented will always be non
negative. A number is represented by first adding it to the bias, and then encod
ing the sum as an ordinary unsigned number. 

How is -3 expressed in each of these formats? 

The binary representation of 3 is 00112• In signed magnitude, -0011 = 1011. In 
two's complement 0011 2 + 11012 = 8, so -0011 = 1101. In one's complement, 
-0011=1100. Using a bias of 8, 3 is represented by 1011, and -3 by 0101. 

The most widely used system for representing integers, two's complement, is 
the system we will use here; one's complement is discussed in the Exercises. 
One reason for the popularity of two's complement is that addition is extremely 
simple: Simply discard the carry out from the high-order bit. To add 5 + -2, for 
example, add 0101 and 1110 to obtain 0011, resulting in the correct value of 3. 
A useful formula for the value of a two's complement number an_1an_2···a1a0 is 

Overflow occurs when the result of the operation does not fit in the represen
tation being used. For example, if unsigned numbers are being represented using 
four bits, then 6 = 01102, and 11 = 10112. Their sum (17) overflows because its 
binary equivalent (100012) doesn't fit into four bits. For unsigned numbers, 
detecting overflow is easy; it occurs exactly when there is a carry out of the most 
significant bit. For two's complement, things are trickier: Overflow occurs 
exactly when the carry into the high-order bit is different from the (to be dis
carded) carry out of the high-order bit. In the example of 5 + -2 above, a 1 is 
carried both into and out of the leftmost bit, avoiding overflow. 

Negating a two's complement number involves complementing each bit and 
then adding 1. For instance, to negate 0011, complement it to get 1100 and then 
add 1 to get 1101. Thus, to implement a-busing an adder, simply feed a and b 
(where bis the number obtained by complementing each bit of b) into the adder, 
and set the low-order, carry-in bit to 1. This explains why the rightmost adder in 
Figure A.1 is a full adder. 

Multiplying two's complement numbers is not quite as simple as adding 
them. The obvious approach is to convert both operands to be nonnegative, do 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 635



A-8 

Example: 

Answer: 

A.2 Basic Techniques of Integer Arithmetic 

an unsigned multiplication, and then (if the original operands were of opposite 
signs) negate the result. Although this is conceptually simple, it requires extra 
time and hardware. Here is a better approach: Suppose that we are multiplying a 
times b using the hardware shown in Figure A.2(a) (page A-4). Register A is 
loaded with the number a; Bis loaded with b. Since the contents of register Bis 
always b, we will use B and b interchangeably. The first thing to do when 
multiplying two's complementnumbers is to ensure that when Pis shifted, it is 
shifted arithmetically; that is, the bit shifted into the high-order bit of P should 
be the sign bit of P. Note that our n-bit-wide adder will now be adding n-bit 
two's complement numbers between -2n-1 and 2n-1 _ 1. 

Next, suppose a is negative. The method for handling this case is called 
Booth recoding. Booth recoding is a very basic technique in computer arithmetic 
and will play a key role in Section A. 9. Observe that multiplying by 01112 is the 
same as multiplying by 10002 - 1. To perform this multiplication, subtract b 
from register P in the first multiplication cycle. Add zero in the second and third 
cycles. In the fourth cycle, add b. To apply this technique to a negative 
multiplier like -4 = 11002, think of it as an unsigned number and write it as 
100002 - 01002. If the multiplication algorithm only involves n steps (n = 4 in 
this case), the 100002 term is ignored, and we end up subtracting 01002 = 4 
times the multiplier-exactly the right answer. The advantage of Booth recoding 
is that it works equally well for positive and negative multipliers. To deal with 
negative values of a, then, all that is required is to sometimes subtract b from P, 
instead of either adding b or 0 to P. Here are the precise rules: If the initial con
tent of A is an_1 .. ·a0, then at the ith multiply step, the low-order bit of register A 
is ai, and 

1. If ai = 0 and ai-l = 0 then add 0. 

2. If ai = 0 and ai-l = 1 then add B. 

3. If ai = 1 and ai-l = 0 then subtract B. 

4. If ai = 1 and ai-l = 1 then add 0. 

For the first step, when i = 0, take ai-l to be 0. 

When multiplying -6 times -5, what is the sequence of values in the (P,A) 
register pair? 

Initially, Pis zero and A holds -6 = 10102. From Figure A.4, in the first step 0 is 
added to P giving (P,A) = 0000 1010. After shifting (P,A) = 0000 0101. In the 
next step, Figure A.4 shows that 0101 is added to P giving (P,A) = 0101 0101. 
Continuing, (P,A) = 0010 1010, 1101 1010, 1110 1101, 0011 1101, and finally 
00011110. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 636



Computer Arithmetic A·9 

The four cases above can be restated as saying that in the ith step you should add 
(ai-l - a)B to P. With this observation, it is easy to verify that these rules work, 
because the result of all the additions is 

n-1 
L,b(ai-I -aD2i = b(-an-I2n-I +an-22n- 2+ ... +a12+ao) 
i=O 

From Equation A.2.3 (page A-7), the quantity in parenthesis is the value of A as 
a two's complement number. 

The simplest way to implement the rules for Booth recoding is to extend the 
A register one bit to the right so that this new bit will contain ai-l· Unlike the 
naive method of inverting any negative operands, this technique doesn't require 
extra steps or any special casing for negative operands. It has only a slightly 
more complicated control logic. If the multiplier is being shared with a divider, 
there will already be the capability for subtracting b, rather than adding it. To 
summarize, a simple method for handling two's complement multiplication is to 
pay attention to the sign of P when shifting it right, and to save the most recently 
shifted off bit of A to use in deciding whether to add or subtract b from P. 

The reason for the term "recoding" is as follows. Consider representing num
bers using 1, 0, and 1 where 1 represents -1; as an example, this allows us to 
also represent (recode) 0111 as 1001. Imagine a multiplication algorithm that 
worked as follows: Put a recoded number into the A register. If the low-order bit 
of A is l, then add-B. If it is 1, then subtract B. If the low-order bit is 0, then add 
0. This imaginary algorithm has exactly the same effect as the Booth recoding 
method given above. 

Booth recoding is usually the best method for designing hardware that 
operates on signed numbers. For hardware that doesn't directly implement it, 
however, performing Booth recoding in software or microcode is usually too 
slow, due to the conditional tests and branches. If the hardware supports 
arithmetic shifts (so that negative b is handled correctly), then the following 

1 O 1 O =a 

x 1011 =b 

a;=O,a;_
1 
=0, so add O 

a;=1,a
1
_

1
=0, so add -b =0101 

a;=O,a;_
1
=1, so add b 

O 1 O 1 a;=1,ai-1 =0, so add -b 

0011110 

FIGURE A.4. Multiplication of a= -6 by b = -5 to get 30 using Booth recoding. The 

digits to the left of the jagged line are the sign-extended digits. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 637



A·10 A.2 Basic Techniques of Integer Arithmetic 

method can be used. Treat the multiplier a as if it were an unsigned number, and 
perform n - 1 multiply steps. If a < 0 (in which case there will be a 1 in the low
order bit of the A register at this point), then subtract b from P; otherwise (a~ 0) 
neither add nor subtract. In either case, do a final shift (for a total of n shifts) to 
get the low-order bit of the product into the low-order position of A. This works 
because it amounts to multiplying b by -an_ 12n-l + ··· + a 12 + a0, which is the 
value of an_1 ···a0 as a two's complement number by Equation A.2.3. If the 
hardware doesn't support arithmetic shift, then converting the operands to be 
nonnegative is probably the best approach. 

Two final remarks: A good way to test a signed-multiply routine is to try 

-2n-l x -2n-l, since this is the only case that produces a 2n-1 bit result. Unlike 
multiplication, division is usually performed in hardware by converting the 
operands to be nonnegative and then doing an unsigned divide; because division 
is substantially slower (and less frequent) than multiplication, the extra· time 
used to manipulate the signs has less impact than it does on multiplication. 

Systems Issues 

When designing an instruction set, there are a number of issues related to integer 
arithmetic that need to be resolved. Several of them are discussed here. 

First, what should be done about integer overflow? This situation is compli
cated by the fact that detecting overflow is different depending on whether the 
operands are signed or unsigned integers. Consider signed arithmetic first. There 
are three approaches: Set a bit on overflow, trap on overflow, or do nothing on 
overflow. In the last case, software has to check whether or not an overflow 
occurred. The most convenient solution for the programmer is to have an enable 
bit. If this bit is turned on, then overflow causes a trap. If it is turned off, then 
overflow sets a bit. The advantage of this approach is that both trapping and 
nontrapping operations require only one instruction. Furthermore, as we will see 
in Section A.7, this is analogous to how the IEEE floating-point standard han
dles floating-point overflow. Figure A.5 shows how some common machines 
treat overflow. 

What about unsigned addition? Notice that none of the architectures in Figure 
A.5 trap on unsigned overflow. The reason for this is that the primary use of 
unsigned arithmetic is in manipulating addresses. It is convenient to be able to 
subtract from an unsigned address by adding. For example, when n = 4, we can 
subtract 2 from the unsigned address 10 = 10102 by adding 14 = 11102. Even 
though 10102 + 11102 sums to the answer we wanted (10002 = 8), this operation 
has an unsigned overflow. In other words, addresses are treated as both signed 
and unsigned numbers, making an overflow trap useless for address calculations. 

A second issue concerns multiplication. Should the result of multiplying two 
n-bit numbers be a 2n-bit result, or should multiplication just return the low
order n bits, signaling overflow if the result doesn't fit inn bits? The argument 
in favor of an n-bit result is that in virtually all high-level languages, 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 638



Machine 

VAX 

IBM 370 

Intel 8086 

MIPS R3000 

SPARC 

Computer Arithmetic A·11 

multiplication is an operation whose arguments are integer variables and whose 
result is an integer variable of the same type. Therefore, there is no way to 
generate code that utilizes a double-precision result. The argument in favor of a 
2n-bit result is that it can be used by an assembly language routine to speed up 
multiplication of multiple-precision integers substantially (by about a factor of 
3). 

A third issue concerns machines that want to execute one instruction every 
cycle. It is rarely practical to perform a multiplication or division in the same 
amount of time that an addition or register-register move takes. There are three 
possible approaches to this problem. The first is to have a single-cycle multiply
step instruction. This might do one step of the Booth algorithm. The second 
approach is to do integer multiplication in the floating-point unit and have it be 
part of the floating-point instruction set. (This is what DLX does.) The third 
approach is to have an autonomous unit in the CPU do the multiplication. Iri this 
case, the result can either be guaranteed to be delivered in a fixed number of 
cycles-and the compiler charged with waiting the proper amount of time-or 
there can be an interlock. The same comments apply to division as well. As 
examples, the SPARC has a multiply-step instruction but no divide-step instruc
tion, and the MIPS R3000 has an autonomous unit that does multiplication and 
division (see Section E-6 for new extensions to SPARC for arithmetic). The 
designers of the HP Precision Architecture did an especially thorough job of ana
lyzing the frequency of the operands for multiplication and division, and based 
their multiply and divide steps accordingly. (See Magenheimer et al. [1988] for 
details.) 

A potential pitfall worth mentioning concerns multiple-precision addition. 
Many instruction sets offer a variant of the ADD instruction that adds three 
operands: two n-bit numbers together with a third single-bit number. This third 
number is the carry from the previous addition. Since the multiple-precision 
number will typically be stored in an array, it is important to be able to incre
ment the array pointer without destroying the carry bit. 

Trap on signed overflow? Trap on unsigned Set bit on signed Set bit on unsigned 
overflow? overflow? overflow? 

If enable is on No Yes. ADD sets V bit. Yes. ADD sets C bit. 

If enable is on No Yes. ADD sets cond Yes. Logical ADD 
code. sets cond code. 

No No Yes. ADD sets V bit. Yes. ADD sets C bit. 

There are 2 ADD No No. Software must deduce it from sign of 
instructions: one always operands and result. 
traps, the q_ther never does. 

No No AD DCC sets v bit. ADD CC sets c bit. 
ADD does not. ADD does not. 

FIGURE A.5 Summary of how various machines handle integer overflow. Both the 8086 an.d SPARC have an 
instruction that traps if the V bit is set, so the cost of trapping on overflow is one extra instruction. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 639



A·12 

A.3 

A.3 Floating Point 

Floating Point 

Introduction 

Many applications require numbers that aren't integers. There are a number of 
ways that nonintegers can be represented. One is to use fixed point; that is, use 
integer arithmetic and simply imagine the binary point somewhere other than 
just to the right of the least significant digit. Adding two such numbers can be 
done with an integer add, whereas multiplication requires some extra shifting. 
Other representations that have been proposed involve storing the logarithm of a 
number and doing multiplication by adding the logarithms, or using a pair of 
integers (a,b) to represent the fraction a/b. However, there is only one noninteger 
representation that has gained widespread use, and that is the floating-point 
representation. In this system, a computer word is divided into two parts, an 
exponent and a significand. As an example, an exponent of -2 and significand 
of 1.5 might represent the number 1.5 x r 2 = 0.375. The advantages of 
standardizing a particular representation are obvious. Numerical analysts can 
build up high-quality software libraries, computer designers can develop tech
niques for implementing high-performance hardware, and hardware vendors can 
build standard accelerators. Given the predominance of the floating-point repre
sentation, it appears unlikely that any other representation will come into 
widespread use. 

A key fact about floating-point instructions is that their semantics are not as 
clear cut as the semantics of the rest of the instruction set, and in the past the 
behavior of floating-point operations varied considerably from one computer 
family to the next. The variations involved such things as the number of bits 
allocated to the exponent and significand, the range of exponents, how rounding 
was carried out, and the actions taken on exceptional conditions like underflow 
and overflow. Computer architecture books used to dispense advice on how to 
deal with all these details, but fortunately this is no longer necessary. That's 
because the computer industry is rapidly converging on the format specified by 
IEEE standard 754-1985. The advantages of using a standard variant of floating 
point are similar to those for using floating point over other noninteger represen
tations. In this chapter we will discuss only the IEEE version of floating point. 
For further reading see IEEE [1985], Cody et al. [1984], Cody [1988], and Gold
berg [1989]. 

Overview of the IEEE Standard 

Probably the most notable feature of the standard is that it requires computation 
to continue in the face of exceptional conditions, such as dividing by zero or tak
ing the square root of a negative number. The result of taking the square root of 
a negative number is a NaN (Not a Number), a bit pattern that does not represent 
an ordinary number. As an example of how NaNs might be useful, consider the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 640



Computer Arithmetic A·13 

code for a zero finder that talces a function F as an argument and evaluates F at 
various points to determine a zero for it. If the zero finder accidentally probes 
outside the valid values for F, F may well cause an exception. Writing a zero 
finder that deals with this case is highly language and operating-system depen
dent, because it relies on how the operating system reacts to exceptions and how 
this reaction is mapped back into the programming language. In IEEE arithmetic 
it is easy to write a zero finder that handles this situation and runs on many 
different system's. After each evaluation of F, it simply checks to see if F has 
returned a NaN; if so, it knows it has probed outside the domain of F. 

Because of the rules for performing arithmetic with NaNs, writing floating
point subroutines that can accept NaN as an argument rarely requires any special 
case checks. Suppose that arccos is computed in terms of arctan, using the 

formula arccos x = 2 arctan(V (1 - x)/(1 + x) ). If arctan handles an argument of 
NaN properly, arccos will automatically do so too. That's because the IEEE 
standard specifies that when an argument of an operation is a NaN, the result 
should be a NaN. Therefore if x is a NaN, 1 + x, 1-x, (1 + x)/(1 - x) and 

-J (1-x)/(l + x) will also be NaNs. No checking for NaNs is required. 

While the result of-v-=i is a NaN, the result of 1/0 is hot a NaN, but +oo, 
which is another special value. The standard defines arithmetic on 
infinities (including -oo) using rules such as l/oo = 0. The formula arccos x = 
2 arctan(-J (1-x)/(l +x)) illustrates how infinity arithmetic can be used. Since 

arctan x asymptotically approaches n/2 as x approaches 00, it is natural to define 
arctan(oo) = n/2, in which case arccos(-1) will automatically be computed cor
rectly as 2 arctan( oo) = n. 

Another feature of the IEEE standard with implications for hardware is the 
rounding rule. When operating on two floating-point numbers, the result is usu
ally a number that cannot be exactly represented as another floating-point num
ber. For example, in a floating-point system using base 10 and two significant 
digits, 2.1 x 0.5 = 1.05. This needs to be rounded to two digits. Should it be 
rounded to 1.0 or 1.1? In the IEEE standard, such halfway cases are rounded to 
the number whose low-order digit is even. That is, J;05 rounds to 1.0, not 1.1. 
The standard actually has four rounding modes. The default is round to nearest, 
which rounds to an even number in the case of ties. The other modes are round 
toward 0, round toward +oo and round toward -oo, . 

The standard specifies four precisions: single, single extended, double, and 
double extended. The properties of these precisions are summarized in Figure 
A.6 (page A-14). Implementations are not required to have all four precisions, 
but are encouraged to support either the combination of single and single 
extended or all of single, double, and double extended. Let us consider single 
precision in more detail. Single-precision numbers are represented using 32 bits: 
1 for the sign, 8 for the exponent, and 23 for the fraction. The exponent is a 
signed number represented using the bias method (as explained in Section A.2 
above) with a bias of 127. We will always use the term exponent field to mean 
the unsigned number contained in bits one through nine and exponent to mean 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 641



A-14 

Example: 

Answer: 

A.3 Floating Point 

the power to which two is to be raised. (In the standard these are called the 
"biased exponent" and the "unbiased exponent," respectively.) The fraction 
represents a number less than one, but the significand of the floating-point 
number is one plus the fraction part. In other words, if e is the value of the ex
ponent field andf is the value of the fraction field, the number being represented 
is 1.fx 2e-127. 

What single-precision number does the following 32-bit word represent? 

1 10000001 01000000000000000000000 

Considered as an unsigned number, the exponent field is 129, making the value 
of the exponent 129 - 127 = 2. The fraction part is .012 = .25, making the 
significand 1.25. Thus, this bit pattern represents the number -1.25 x 22 = -5. 

The fractional part of a floating-point number (.25 in the example above) 
must not be confused with the significand, which is one plus the fractional part. 
The leading 1 in the significand l .f does not appear in the representation; that is, 
the leading bit is implicit. When performing arithmetic on IEEE format numbers, 
the fraction part normally needs to be unpacked, which is to say the implicit one 
needs to be made explicit. 

In Figure A.6, the range of exponents for single precision is -126 to 127; 
accordingly, the exponent field ranges from 1 to 254. The exponent fields of 0 
and 255 are used to represent special values. When the exponent field is 255, a 
zero fraction field represents infinity, and a nonzero fraction field represents a 
NaN. Thus, there is an entire family of NaNs. WheIJ. the exponent and fraction 
fields are zero, then the number represented is zero. Because ordinary numbers 
always have a significand greater than or equal to 1-and are thus never zero-a 
special convention such as this is required to represent zero. 

A zero exponent field and nonzero fraction part represent a denormal number, 
also sometimes called a subnormal number. These numbers make up the most 
controversial part of the standard. Later, in the discussion of multiplication, we 
will see why they are difficult to implement in hardware. In many floating-point 

systems if Emin is the smallest exponent, a number less than 1.0 x 2Emin 

Single Single extended Double Double extended 

p (bits of precision) 24 ;::: 32 53 ;:::64 

Emax 127 ;::: 1023 1023 ;::: 16383 

Emin -126 :S:-1022 -1022 :S:-16382 

Exponent bias 127 1023 

FIGURE A.6 Format parameters for the IEEE 754 floating-point standard. The first 
row gives the number of bits in the significand. The blank boxes are unspecified 
parameters. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 642



Computer Arithmetic A·15 

cannot be represented, and a floating-point operation that results in a number 
less than this is simply flushed to zero. In the IEEE standard, on the other hand, 

numbers less than 1.0 x 2Emin are represented by shifting their fraction part to 
the right. This is called gradual underflow. Thus, as numbers decrease in magni

tude below 2Emin, they gradually lose their significance and are only represented 
by zero when all their significance has been shifted out. For example, in base 10 
with 4 significant figures, let x = 1.234 x 2Emin. Then x/10 = 0.123 x lOEmin, 
having lost a digit of precision; x/l 00 and x/l 000 have even less precision, while 
x/10000 is finally small enough to be rounded to zero. Denormalized numbers 
are implemented by having a word with a zero exponent field represent the 

number O.fx 2Emin. One of the advantages of gradual underflow is that when it 
is used, if x ::f:. y, then x - y ::f:. 0. In a flush-to-zero system, this is not always true. 

The primary reason why the IEEE standard, like most other floating-point 
formats, uses biased exponents is that it means nonnegative numbers are ordered 
in the same way as integers. That is, the magnitude of floating-point numbers 
can be compared using an integer comparator. Another (related) advantage is 
that zero is represented by a word of all zeros. The down side of biased expo
nents is that adding them is slightly awkward, because it requires that the bias be 
subtracted from their sum. 

As the IEEE standard becomes more widespread, it will become easier to port 
software and to, write portable libraries that deal with floating-point exceptions. 
But the standard also has some drawbacks: 

1. It was originally intended for microprocessors, so the requirements of high
performance implementations ~ere not given high priority. 

2. The standard contains optional parts. This results in difficult decisions for 
implementors-which parts should they implement?-and for portable software 
writers-should they avoid using any of the optional parts of the standard? 

3. Gradual underflow has usually been implemented in a way that is orders of 
magnitude slower than flush to zero, so users often disable it. 

4. There is as yet no industrial-strength, public-domain, IEEE floating-point 
test suite. 

Although the standard may ultimately improve the quality of floating-point 
libraries, this has yet to happen because of the large base of VAXes, IBM/370s, 

, and Crays, as well as the fact that there is no corresponding standard for how to 
access its features in software. On the other hand, both DEC and IBM have 
recently introduced machines that use IEEE arithmetic. 

Some final comments on the standard: 

1. Unlike most standards, IEEE 754 did not ratify or refine any existing system. 
Although most of the features of the standard appeared in at least one previous 
computer system, it is substantially different from what was current practice at 
the time. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 643



A-16 A.3 Floating Point 

2. The standard says nothing about integer arithmetic or about transcendental 
functions (sin, cos, exp, and so forth). In particular, it says nothing about the 
accuracy that transcendentals should have, and it says nothing about the excep
tional values of transcendentals, such as o0. 

3. It is intended that a computer system-that is, some combination of hard
ware and software-will implement the standard. Thus, there is nothing wrong 
with designing hardware that does not completely implement the standard, as 
long as there is some way for software to provide what the hardware does not. In 
fact, the best design may well involve having rare cases handled by software. 

A.4 I Floating-Point Addition 

There are two differences between floating-point arithmetic and integer arith
metic: An exponent field must be manipulated, in addition to the fraction field, 
and the result of a floating-point operation usually has to be rounded in order to 
be represented by another floating-point number of the same precision. 

Rounding 

The IEEE standard specifies that the result of an arithmetic operation should be 
the same as it would be if computed exactly and then rounded using the current 
rounding mode. The most difficult mode to implement is the default mode
round toward the neare~t value (and round halfway cases to even). The naive 
approach to complying with the IEEE standard is to compute the sum exactly 
and then round. This would be quite expensive, since it would require a very 
long adder. To see how to satisfy the standard with less hardware, we will con
sider some examples. 

There are two ways that rounding can occur during addition. For purposes of 
illustration we will use base 10, which is more natural for humans, and three 
significant digits. The first case requires rounding due to carry out on the left, as 
illustrated in Figure A.7(a). The second case requires rounding due to unequal 
exponents, as in Figure A.7(b). Figure A.7(c) shows that it is possible for both 
situations to occur simultaneously. In each of these cases, the sum must be com
puted to more than three places in order to perform rounding. In one case-when 
subtracting nearby numbers, as in Figure A.7(d)-the sum must be computed to 
more than three places, even though no rounding occurs. By temporarily ignor
ing the round-to-even requirement, each of these examples can be implemented 
with a four-digit-wide adder (that is, using one additional digit). Thus, in Figure 
A.7(b) the rightmost 6 of 2.56 can simply be dropped before adding. But there is 
one case, shown in Figure A.7(e), in which four digits are not enough. If the 
low-order digit of .0376 were shifted off, the answer would have been .973 
instead of .972. However, it is easy to check (disregarding round to even) that 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 644



Computer Arithmetic A·17 

two extra digits are always enough. These extra digits are called the guard and 
round digits. 

The round-to-even rule introduces an extra complication. Figure A.7(f) shows 
an example with five significant digits. It might appear at first that one needs to 
keep double the number of digits to perform round to even, as the rightmost 1 in 
2.5001 determines whether the result will be 4.5676 or 4.5677. 

Upon a little reflection one can see that it is only necessary to know whether 
or not there are any nonzero digits past the guard and round positions. This 
information can be stored in a single bit, usually called the sticky bit, which is 
implemented by examining each digit as it is shifted off. As soon as a nonzero 
digit appears, the sticky bit is set on and remains stuck on. To implement round 
to even, simply append the sticky bit to the right of the round digit just before 
rounding. 

2.34 x 10
2 

a) 
+8.51 x 10

2 

10.85 x 10
2 

rounds to 1.08 X 10
3 

2.34 x 10
2 

2.34 x 10
2 

b) 
+2.56 x 10° +.0256 x 10

2 

2.3656 x 10
2 

rounds to 2.37 x 10
2 

gr 

9.51 x 10
2 

c) 
+.642 x 10

2 

10.152 x 10
2 

rounds to 1.02 X 10
3 

g 

1.47 x 10
2 

d) 
-.876 x 10

2 

.594 x 10
2 

g 

e) 
1.01 x 10

2 

-.0376 x 102 

.9724 x 10
2 

rounds to .972 X 10
2 

gr 

4.5674 x 10° 4.5674 
f) 

2.5001 x 10-4 +.00025001 

4.56765001 rounds to 4.5677 
gr 

FIGURE A.7 Examples of rounding. In (a) there is rounding because of carry out on the 
left and in (b) because of unequal exponents, whereas in (c) both occur. Example (d) 
shows that one extra place must be kept even if there is no rounding, while (e) shows the 
situation in which two extra digits are needed. Finally (f), where p = 5, illustrates why a 
sticky bit is necessary to perform round to even. The letters g and rare placed under the 
guard and round digits. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 645



A·18 

Example: 

Answer: 

A.4 Floating-Point Addition 

The Addition Algorithm 

The notations ei and si are used here for the exponent and significand fields of 
the floating-point number ai. This means that the floating-point number has been 
unpacked and that Si has an explicit leading bit. The basic procedure for adding 
two floating-point numbers a 1 and a2 is straightforward and involves five steps. 

1. If e1 < e2, swap the operands so that the difference of the exponents satisfies 
d = e1 - e2 ;::: 0. Tentatively set the exponent of the result to ei. 

2. Shift s2 by d = ei - e2 places to the right. More precisely, put s2 into a p-bit 
register and then extend that register MIN(2,d) bits to the right. Shift s2 d places 
to the right. If d > 2, set the sticky bit to the logical OR of the d - 2 bits that are 
shifted out of the extended register. Of the two extended bits, the most signifi
cant is the guard bit; the least significant is the round bit. 

3. Append the sticky bit to s2, and then add the two signed-magnitude fraction 
fields in a p + 3 bit adder. Call this preliminary sum S. 

4. If there was a carry out from the most significant place in the previous step, 
shift the magnitude of S right by one. Otherwise, shift it left until it is normal
ized. Adjust the exponent of the result accordingly. The round bit is now set to 
the (p + 1)-st bit of the magnitude of S, and the sticky bit to the logical OR of all 
the bits to the right of the round bit. 

5. Round the result using Figure A.8. If a table entry is nonempty, add 1 to the 
magnitude of S. Thus, if S;::: 0, you will be computing S + 1, otherwise S-1. 

The guard and round bits before shifting are marked in each of the examples 
of Figure A.7 (page A-17). 

Show how the addition algorithm proceeds on the operands of Figure A. 7 (f) 
when round to nearest is in effect. 

In step 1, e1 = 0 > e2 = -3, sod= 3 and no swapping is necessary. In step 2, 
g = 5, r = 0, and sticky is the OR of 0, 0, and 1; hence, sticky is 1. In step 3 the 
numbers to be added are 4.5674 and 0.0002501, so the preliminary sum is 
S = 4.5676501. In step 4 there is no carry out, sod is still 3. The round bit is 5, 
and the sticky bit is 1 = 0 v 1. In step 5, consulting the table tells us that because 
round and sticky are both nonzero, we must add 1 to the fifth digit of S, chang
ing S from 45676 to 45676 + 1 = 45677. 

Step 3 involves adding sign-magnitude numbers, and itself has three steps: 

3a. Convert any negative numbers to two's complement. 

3b. Perform a (p + 4)-bit two's complement addition (p + 3 bits of magnitude, 1 
bit for the sign). 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 646



Computer Arithmetic A·19 

3c. If the result is negative, perform another two's complementation to put the 
result back into sign-magnitude form. 

As is apparent from this, addition is quite a complicated operation. Here is 
one trick that can speed it up. A pair of numbers will only need to be variably 
shifted once, in either step 2 or step 4, but not in both. The reason is simple: 
If I ei - e1 I > 1, then step 4 can require a shift of at most one place. And if 

I ei - e1 I :::;; 1, then step 2 obviously requires a shift of at most one step. A non-

pipelined adder can exploit this and reduce the number of steps from five to four. 
An adder that uses each of the above steps as a pipeline stage can also use this 
reduction, though it requires duplicating the shifter and adder. 

Step 3 can be time consuming, because it can involve as many as four addi
tions: two to negate both operands (two's complementation done by performing 
a bitwise complementation followed by adding 1), a third for the addition itself, 
and then a fourth to negate the result. There are a number of ways to speed up 
this step. We have already seen that 1 can be added to a sum essentially for free 
by setting the low-order, carry-in bit of the adder to 1. If both operands are neg
ative, we can set their sign bits to zero, remembering to negate the result. The 
add required when negating the result can be combined with the rounding step 
(which must be prepared to do an add anyway). 

The rounding step requires a second full-precision add in addition to the one 
in step 3. It is possible to combine these into a single add. Observe that at the 
end of step 2, the g, r, ands bits are known; thus it is also known whether or not 
to round up, adding 1 to the pth most significant bit. What is not known is the 
position of the pth most significant bit, since its location depends on the result of 
the add in step 3; when adding numbers of the same sign, that position is deter
mined by whether there is a carry out of the most significant bit. Therefore, the 
way to eliminate step 5 is to add in the round-up bit (if necessary) as part of step 
3. Because the position is unknown, two versions of step 3 must be performed 
using two adders in parallel. Each adder assumes one of the two possibilities for 
the position where the round-up bit goes. This technique for reducing the num
ber of addition steps is used on the Intel 860 [Kohn 1989]. When rounding, there 
is one complication that can arise: The addition of 1 could cause a carry out of 
the high-order bit. This case occurs only when the value of S is 11 .. · l 1. 

Rounding mode s::::o S<O 

-oo +lifrvs 

+oo +lifrvs 

0 

Nearest + 1 if r /\ s /\ Po or r /\ s +1 ifr AS A Po or r As 

FIGURE A.8 Rules for implementing the IEEE rounding modes. Blank boxes mean 
that the p most significant bits of the preliminary sum Sare the actual sum bits. If the 
condition in the box is true, add 1 to the pth most significant bit of S. The symbols rand s 
represent the round and sticky bits, while p0 is the pth most significant bit of S. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 647



A·20 

A.5 

A.4 Floating-Point Addition 

Denormalized Numbers 

Very little changes in the above description if one of the inputs is a denormal 
number. There must be a test to see if the exponent field is 0. If it is, then when 
unpacking the significand there will not be a leading 1. By setting the exponent 
field to 1 when unpacking a denormal, the shifting rules in steps 1-5 are still 
correct. 

In order to deal with denormalized outputs, step 4 must be modified slightly. 
The value in the P register is shifted left until P is normalized, or until the expo
nent becomes Emin (that is, the exponent field becomes 1). If the exponent is 
Emin• and if after rounding, the high-order bit of P is 1, then the result is a nor
malized number and should be packed in the usual way, by omitting the 1. If, on 

· the other hand, the high-order bit is 0, the result is denormal, and when the result 
is unpacked the exponent field must be set to 0. 

Incidentally, detecting overflow is very easy. It can only happen if step 4 
involves a shift right, and if the exponent field at that point is bumped up to 255 
in single precision (or 2047 for double precision), or if this occurs after round
ing. 

Detecting underflow is complicated by the fact that it depends on whether 
there is a user trap handler. The IEEE standard specifies that if user trap handlers 
are enabled, the system must trap if the result is denormal. On the other hand, if 
trap handlers are disabled, then the underflow flag is set only if there is a loss of 
accuracy-that is, if the result must be rounded. The rationale for this is that if 
no accuracy is lost on an underflow, there is no point in setting a warning flag. 
But if a trap handler is enabled, the user might be trying to simulate flush-to
zero and should therefore be notified whenever a result.dips below 1.0 x 2Emin. 
This discussion is relevant for addition in that an addition or subtraction result
ing in a denormal number will always be exact; because no accuracy can be lost 
to underflow, there is no need to set the underflow flag. 

Floating-Point Multiplication 

Floating-point multiplication is much like integer multiplication. Because float
ing-point numbers are stored in sign-magnitude form, the multiplier need only 
deal with unsigned numbers (although we have seen that Booth recoding handles 
signed two's complement numbers painlessly). If the fractions are unsigned p-bit 
numbers, then the product can have as many as 2p bits and must be rounded to a 
p-bit number. Besides multiplying the fraction parts, the exponent fields must be 
added, and the bias then subtracted from their sum. 

Here is a straightforward method of handling rounding using the multiplier of 
Figure A.2 (page A-4): Multiply the two fractions to obtain a 2p-bit product in 
the (P,A) registers. During the multiplication, the first p - 2 times a bit is shifted 
into the A register, OR it into the sticky bit. After the end of all the multiply 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 648



Computer Arithmetic A·21 

steps, the high-order bit of A is the guard bit, and the second high-order bit is the 
round bit. There are two cases: 

1. The high-order bit of Pis 0. Shift P left 1 bit, shifting in the g bit from A. 
Shifting the rest of A is not necessary. 

2. The high-order bit of P is 1. Set s := s v r and r := g, and add 1 to the 
exponent. 

Now use the rules in Figure A.8 (page A-19) to round the result, adding the 1 
(if necessary) into the low-order bit of P. The fraction (in unpacked form) is in 
the P register. Recall that the rounding operation can cause a carry out of the 
most significant bit. A good discussion of more efficient ways to implement 
rounding is in Santoro, Bewick, and Horowitz [1989]. 

Detecting overflow and underflow is slightly tricky. Consider the case of sin
gle precision. The exponent fields must be added together with -127. If the addi
tion is done in a 10-bit adder, -127 = 11100000012, and overflow occurs when 
the high-order bits of the sum are 01 or if the sum is 0011111111. Underflow 
occurs when the high-order bits are 11 or the sum is 0000000000. Alternatively, 
the addition can be done using only an 8-bit adder. Simply add both exponents 
and -127 = 100000012. If the high-order bits of the exponent fields are different, 
no over/underflow is possible. If the high-order bits are both 1, the result has 
overflowed if it has 0 in the high-order bit or if it is 1111111. If both the expo
nents have high-order bits of zero, underflow has occurred if the sum has a high
order bit of 1, or if the sum is 00000000. 

Denormals 

From the description of the multiplication algorithm, one can see that after doing 
an integer multiplication on the fractions, the final result is obtained with at most 
one shift. With denormals, the situation changes completely. Suppose the input 
is normalized, but the output is denormal, so that in single precision the product 
has an exponent e with e < -126. Then the result must be shifted right by 
-e - 126 places. This requires extra hardware (a barrel shifter that wouldn't 
otherwise be needed) and extra time. The situation with denormal inputs isn't 
any better, because even if the final result is a normalized number, a variable 
shift is still required. Thus, high-performance, floating-point multipliers often do 
not handle denormalized numbers, but instead trap, letting software handle them. 
There are a few practical codes that generate many underflows, even when 
working properly, and these programs usually run quite a bit slower on systems 
that require denormals to be processed by a trap handler. 

One procedure followed by some floating-point units is to have the multiplier 
deliver denormalized outputs in wrapped form. That is, the fraction part is nor
malized, and the exponent is wrapped around to a large positive number. This is 
exactly the res\llt when following the multiplication algorithm for normalized 
numbers given above. Since the addition unit must have a barrel shifter, it is 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 649



A·22 A.5 Floating-Point Multiplication 

usually straightforward to provide a way to convert wrapped numbers into their 
correct denormalized form by passing them through the adder. However, if a 
trap handler has to intervene in order to send wrapped numbers into the adder, 
multiplication will still be slowed down substantially. 

There are some fine points that occur when a multiplication results in a 
denormal number. Consider the simple case of a base 2 floating-point system 

with 3-bit significands (hence two bits of fraction). The exact result of 1.11 x r 2 

multiplied by 1.11 x 2Emin is 0.110001 X 2Emin. If the rounding mode is round 

toward plus infinity, the rounded result is the normal number 1.00 x 2Emin. 

Should underflow be signaled? Signaling underflow means that one is using the 
before rounding rule, because the result was denormal before rounding. Not 
signaling underflow means that one is using the after rounding rule, because the 
result is normalized after rounding. The IEEE standard provides for choosing 
either rule; however, the one chosen must be used consistently for all operations. 

As mentioned in the addition section, the trap handler, if there is one, should 
be called whenever the result is denormal. If there is no trap handler, the under
flow exception is signaled only when the result is denormal and inexact. Nor
mally, inexact means there was a result that couldn't be represented exactly and 

had to be rounded. Consider again the example of ( 1.11 x T 2) x ( 1.11 x 2Emin) = 
0.110001 x 2Emin, with round to nearest in effect. The delivered result is 0.11 x 

2Emin, which had to be rounded, causing inexact to be signaled. But is it correct 
to also signal underflow? Gradual underflow loses significance because the 
exponent range is bounded. If the exponent range were unbounded, the delivered 

result would be 1.10 x 2Emin-l, exactly the same answer obtained with gradual 
underflow. The fact that denormalized numbers have fewer bits in their signifi
cand than normalized numbers therefore doesn't make any difference in this 
case. The commentary to the standard [Cody et al. 1984] encourages this as the 
criterion for setting the underflow flag. That is, it should be set whenever the 
delivered result is different from what would be delivered in a system with the 
same fraction size, but with a very large exponent range. However, owing to the 
difficulty of implementing this scheme, the standard allows setting the under
flow flag whenever the result is denormal and different from the infinitely pre
cise result. 

Precision of Multiplication 

In the discussion of integer multiplication, we mentioned that designers must 
decide whether to deliver the low-order word of the product or the entire prod
uct. A similar issue arises in floating-point multiplication, where the exact prod
uct can be rounded to the precision of the operands or to the next higher preci
sion. In the case of integer multiplication, none of the standard high-level 
languages contains a construct that would generate a "single times single gets 
double" instruction. The situation is different for floating point. Not only do 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 650



Computer Arithmetic A·23 

many languages allow assigning the product of two single-precision variables to 
a double-precision one, but the construction can also be exploited by numerical 
algorithms. The best-known case is using iterative refinement to solve linear 
systems of equations. 

A.6 I Division and Remainder 

Iterative Division 

We earlier discussed an algorithm for integer division. Converting it into a 
floating-point division algorithm is similar to converting the integer multiplica
tion algorithm into floating point. If the numbers to be divided are s12e1 and 
s22e2 then the divider will compute sifs2, and the final answer will be this quo
tient multiplied by 2e1-e2. Referring to Figure A.2(b) (page A-4), the alignment 
of operands is slightly different from integer division. Load s2 into b and sif2 
into P so that s1 is shifted right one bit. Then the integer algorithm for division 
can be used, and the result will be of the form q0.q1 •·• • For floating-point 
division, the A register is not needed to hold the operands. To round, simply 
compute two additional quotient bits (guard and round) and use the remainder as 
the sticky bit. The guard digit is necessary because the first quotient bit might be 
zero. However, since the numerator and denominator are both normalized, it is 
not possible for the two most significant quotient bits to be zero. 

There is a different approach to division, based on iteration. An actual 
machine that uses this algorithm will be discussed in Section A.10. First, we will 
describe the two main iterative algorithms and then discuss the pros and cons of 
iteration compared to the direct algorithms. There is a general technique for con
structing iterative algorithms, called Newton's iteration, shown in Figure A.9. 

FIGURE A.9 Newton's iteration for zero finding. If X;is an estimate for a zero off, then X;+1 
iS a better estimate. To compute x;+1, find the intersection of the x axis with the tangent line 
to fat x;. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 651



A·24 

A.6.1 

A.6.2 

A.6 Division and Remainder 

First, cast the problem in the form of finding the zero of a function. Then, 
starting from a guess for the zero, approximate the function by its tangent at that 
guess and form a new guess based on where the tangent has a zero. If xi is a 
guess at a zero, then the tangent line has the equation 

This equation has a z~ro at 

To recast division as finding the zero of a function, consider f(x) = llx - b. 
Since the zero of this function is at lib, applying Newton's iteration to it will 
give an iterative method of computing lib from b. Usingf'(x) = -llx2, Equation 
A.6.1 becomes 

Thus, we could implement computation of alb using the following method: 

1. Scale b to lie in the range 1 :::;; b < 2 and get an approximate value of lib (call 
it x0) using a table lookup. 

2. Iterate xi+ 1 = xi(2 - xib) until reaching an Xn that is accurate enough. 

3. Compute axn and reverse the scaling done in step 1. 

Here are some more details. How many times will step 2 have to be iterated? 
To say that xi is accurate top bits means that (xi - llb)l(l/b) = 2-P, and a simple 
algebraic manipulation shows (xi+l - llb)l(llb) = 2-2P. Thus the number of cor
rect bits doubles at each step. Newton's iteration is self-correcting in the sense 
that making an error in xi doesn't really matter. That is, it treats Xi as a guess at 
lib and returns xi+l as an improvement on it (roughly doubling the digits). One 
thing that would cause xi to be-in error is rounding error. More importantly, 
however, in the early iterations we can take advantage of the fact that we don't 
expect many correct bits by performing the mult~plication in reduced precision, 
thus gaining speed without sacrificing accuracy. Some other applications of 
Newton's iteration are discussed in the Exercises. 

The second iterative division method is sometimes called Goldschmidt' s 
algorithm. It is based on the idea that to compute alb, you should multiply the 
numerator and denominator by a number r with rb ::::: 1. In more detail, let x0 = a 
and Yo= b. At each step compute xi+l = rixi and Yi+l = riYi· Then the quotient 
Xi+ilYi+I = x/yi =alb is constant. If we pick ri so that Yi~ l, then Xi~ alb, so 
the xi converge to the answer we want. This same idea can be used to compute 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 652



A.6.3 

Computer Arithmetic A·25 

other functions. For example, to compute the square root of a, let x0 = a and Yo = 
a, and at each step compute xi+l = ri2xi, Yi+ I = riYi· Then xi+ilYT+i = x/J? = 1/a, 

so if the ri are chosen to drive Xi -7 1, then Yi -7 f;z. This technique is used to 
compute square roots on the TI 8847. 

Returning to Goldschmidt's division algorithm, set x0 =a and y0 = b, and 
write b = 1 - 0, where I 0 I < 1. If we pick ro = 1 + 0, then Y1 = ToYo = 1 - 8 2. 

We next pick r1 = 1 + 82, so that Y2 = r1Y1 = 1 - 84, and so on. Since I 81 < 1, 

Yi-7 1. With this choice of ri, the Xj will be computed as Xi+ I = rixi = (1 + o 2i)Xi 
= (1 + (1 - bi)xio or 

Xi+l = a[l + (1- b)][l + (1- b)2 ][1 + (1 -b)4}··[1 + (1- b)2i] 

There appear to be two problems with this algorithm. First, convergence is slow 
when bis not near 1 (that is, o is not near O); and second, the formula isn't self
correcting-since the quotient is being computed as a product of independent 
terms, an error in one of them won't get corrected. To deal with slow conver
gence, if you want to compute a/b, look up an approximate inverse to b (call it 
b'), and run the algorithm on ab'/bb'. This will converge rapidly since 
bb'""' 1. 

To deal wit_h the self-correction problem, the computation should be run with 
a few bits of extra precision to compensate for rounding errors. However, Gold
schmidt's algorithm does have a weak form of self-correction, in that the precise 
value of the ri does not matter. Thus, in the first few iterations, you can choose ri 
t~ be a truncation of 1 + 82i which may make these iterations run faster without 
affecting the speed of convergence. If ri is truncated, then Yi is no longer exactly 
1 - 82i, so Equation A.6.3 can no longer be used, but it is easy to organize the 
computation so that it does not depend on the precise ·value of ri. With these 
changes, Goldschmidt's algorithm is as follows (the notes in brackets show the 
connection with our earlier formulas). 

L Scale a and b so that 1 ::; b < 2. 

2. Look up an approximation to 1/b (call it b') in a table. 

3. Set x0 =ab' and Yo= bb'. 

4. Iterate until Xi is close enough to a/b : 

r""'2-y 

y=yxr 

x=xxr 

[if Yi= 1 + Di, then r ""' 1 - Dd 

[yi+l =Yi x r""' 1 - o?J 

The two iteration methods are related~ Suppose in Newton's method that we 
unroll the iteration and compute each term Xi+ 1 directly in terms of b, instead of 
recursively in terms of Xi· By carrying out this calculation, we discover that 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 653



A·26 A.6 Division and Remainder 

This formula is of a very similar form to Equation A.6.3 when a = 1. In fact, if 
the iterations were done to infinite precision, the two methods would y.ield 
exactly the same sequence xi. 

The advantage of iteration is that it doesn't require special divide hardware, 
but can instead use the multiplier (which, however, requires extra control). Fur
ther, on each step, it delivers twice as many digits as in the previous step
unlike ordinary division, which produces a fixed number of digits at every step. 
There are two disadvantages with inverting by iteration. The first is that the 
IEEE standard requires division to be correctly rounded, but iteration only 
delivers a result .that is close to the correctly rounded answer. In the case of 
Newton's iteration, which computes lib instead of alb directly, there is an addi
tional problem. Even if lib was correctly rounded, there is no guarantee that alb 
will be. Take 5/7 as an example: To two digits of accuracy 1/7 is 0.14, and 
5 x 0.14 is 0.70, but 5/7 is 0.71. The second ,disadvantage is that iteration does 
not give a remainder. This _is especially troublesome if the floating-point divide 
hardware is being used to perform integer division, since a remainder operation 
is present in almost every high-level language. 

Traditional folklore has held that the way to get a correctly rounded result 
from iteration is to compute lib to slightly more than 2p bits, compute alb to 
slightly more than 2p bits, and then round top bits. However, there is a faster 
way, which apparently was first implemented on the TI 8847. In this method, alb 
is computed to about six extra bits of precision, giving a preliminary quotient q. 
By comparing qb with a (again with only six extra bits), it is possible to quickly 
decide whether q is correctly rounded or whether it needs to be bumped up or 
down by 1 in the least significant place. This algorithm is explored further in the 
Exercises. 

One factor to take into account when deciding on division algorithms is the 
relative speed of division and multiplication. Since division is more complex 
than multiplication, it will run more slowly. As a general rule of thumb, division 
algorithms should try to achieve a speed that is about one-third that of multipli
cation. One argument in favor of this rule is that there are real programs (such as 
some versions of Spice) where the ratio of division to multiplication is 1:3. 
Another place where a factor of three arises is in the standard iterative method 
for computing square root. This method involves one division per iteration, but 
can be replaced by one using three multiplications. This is discussed in the 
Exercises. 

Floating-Point Remainder 

For nonnegative integers, integer division and remainder satisfy 

a = (a DIV b )b + a REM b, 0 ::; a REM b < b 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 654



Computer Arithmetic A·27 

A floating-point remainder x REM y can be similarly defined as x = INT(xfy)y + 
x REM y. How should x/y be converted to an integer? The IEEE remainder 
function uses the round-to-even rule. That is, pick n =INT (x/y) so that lxfy-n I 
~ 1/2. If two different n satisfy this relation, pick the even one. Then REM is 
defined to be x - yn. Unlike integers where 0 ~ a REM b < b, for floating-point 
numbers Ix REM y I ~ y/2. Although this defines REM precisely, it is not a 

practical operational definition, because n can be huge. In single precision, n 

could be as large as 212712-126 = 2253""' 1076. 
There is a natural way to compute REM if a direct division algorithm is used. 

Proceed as if you were computing x/y. If x = s12e1 and y = s22e2 and the divider 
is as in Figure A.2(b) (page A-4), then load s1 into P and s2 into B. After e1 - e2 

division steps, the P register will hold a number r of the form x- yn satisfying 0 
~ r < y. The IEEE remainder is then either r or r- y. It is only necessary to keep 
track of the last quotient bit produced, which is needed in order to resolve 
halfway cases. Unfortunately, el - e2 can be a lot of steps, and floating-point 
units typically have a maximum amount of time they are allowed to spend on 
one instruction. Thus, it is usually not possible to implement REM directly. 
None of the chips discussed in Section A.10 implement REM, but they could by 
providing a remainder-step instruction-this is what is done on the Intel 8087 
family. A remainder step takes as arguments two numbers x and y, and performs 
divide steps until either the remainder is in P, or else n steps have been 
performed, where n is a small number, such as the number of steps required for 
division in the highest supported precision. The REM driver calls the REM-step 
instruction L<e1 - e2 )!nJ times, initially using x as the numerator, but then 
replacing it with the remainder from the previous REM step. It is useful if the 
REM-step instruction returns the low-order three bits of the quotient, since when 
doing trigonometric argument reduction to the interval (0, rc/4 ), you need to 
know the value of n mod 8 in order to know what quadrant you are in. 

Currently, most of the fastest floating-point chips don't implement remainder, 
even though it is a required part of the IEEE standard. Since the standard allows 
implementations to be a combination of hardware and software, the REM opera
tion could be implemented entirely in software. However, availability of the 
REM-step instruction would make computing REM much simpler. Is a REM
step instruction worth it? For two reasons this situation is difficult to decide on 
the basis of frequency data. First, because REM is peculiar to the IEEE standard, 
few people are currently using it. Testing the demand for REM is somewhat like 
trying to estimate the demand for a new product. Second, the main benefit from 
REM is not an increase in performance, but rather an increase in accuracy, and it 
is not easy to quantify the value of accuracy. What we will do here is simply 
present the primary application of REM, which is argument reduction for peri
odic functions, like sin and cos. 

There are some subtle issues involved in argument reduction. To simplify 
things, imagine that we are working in base 10 with 5 significant figures, and 
consider computing sinx. Suppose that x = 7. Then we reduce by re= 3.1416 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 655



A·28 .. 

·A.7 

A.6 Division and Remainder 

and compute sin(7) = sin(7 - 2x3.1416) = sin(0.7168) instead. But suppose we 
want to compute sin(2.0 x 105). Then 2 x 105/3.1416 = 63661.8, which in our 5-
place system comes out to be 63662. Since multiplying 3.1416 times 63662 
gives 200000.5392, which rounds to 2.0000 x 105, argument reduction reduces 2 
x 105 to 0, which is not even close to being correct. The problem is that our 5-
place system does not have the precision to do correct argument reduction. Sup
pose we had the REM operator. Then we could compute 2 x 105 REM 3 .1416 
and get -.5392. However, this is still not correct because we used 3.1416, which 
is an approximation for n. The value of 2 x 105 REM n is -.071513. The 
difficulty is that we subtracted two nearby numbers, 2 x 105 and 63662 x 3 .1416, 
where 63662x3.1416 was slightly in error due to approximating n. Even though 
REM has the effect of performing the subtraction exactly, all the significant 
figures in 63662 x 3.1416 canceled, leaving behind only rounding error. 

Traditionally, there have been two approaches to computing periodic func
tions with large arguments. The first is to return an error for their value when x 
is large. The second is to store n to a very large number of places and do exact 
argument reduction. The REM operator is not much help in either of these situa
tions. There is a third approach that has been used in some math libraries, such 
as the Berkeley UNIX 4.3bsd release. In these libraries, n is computed to the 
nearest floating-point number. Let's call this machine n, and denote it by n'. 
Then when computing sinx, reduce x using x REM n'. As we saw in the above 
example, x REM n' is quite different from x REM n, so that computing sinx as 
sin(x REM n') will not give the exact value of sinx. However, computing 
trigonometric functions in this fashion has the property that all familiar identities 
(such as sin2 x + cos2 x = 1) are true to within a few rounding errors. Thus, 
using REM together with machine n provides a simple method of computing 
trigonometric functions that is accurate for small arguments and still useflil for 
large arguments in most applications. 

Precisions and Exception Handling 

Precisions 

Implementations of the IEEE standard are only required to support single 
precision. Thus, the computer designer must make a choice about what other 
precisions to support. Because of the widespread use of double precision in 
scientific computing, double precision is almost always implemented. 

Double-extended precision is more problematic. Although the Motorola 
68882 and Intel 387 coprocessors implement extended precision, most of the 
more recently designed, high-performance floating-point chips do not implement 
extended precision. Among the reasons are that the 80-bit width of extended 
precision is awkward for 64-bit buses and registers, and that many high-level 
languages do not give the user access to extended precision. However, extended 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 656



Computer Arithmetic A·29 

precision is very useful to writers of mathematical software. As an example, 
consider writing a library routine to compute the length of a vector in the plane 

-V x2 + y2. If x is larger than 2Emax
12, then computing this in the obvious way will 

overflow. This means that either the allowable exponent range for this sub
routine will be cut in half, or a more complex algorithm using scaling will have 
to be employed. But if extended precision is available, then the simple algorithm 
will work. Computing the length of a vector is a simple task, and it is not diffi
cult to come up with an algorithm that doesn't overflow. However, there are 
more complex problems for which extended precision means the difference 
between a simple, fast algorithm and a much more complex one. One of the best 
examples of this is binary/decimal conversion. An efficient algorithm for binary
to-decimal conversion that makes essential use of extended precision is very 
readably presented in Coonen [1984]. This algorithm is also briefly sketched in 
Goldberg [1989]. Computing accurate values for transcendental functions is 
another example of a problem that is made much easier if extended precision is 
present. 

One very important fact about precision concerns double rounding. To illus
trate in decimal, suppose that we want to compute 1.9 x 0.66, and that single 
precision is two digits, while extended precision is three digits. The exact result 
of the product is 1.254. Rounded to extended precision, the result is 1.25. When 
further rounded to single precision, we get 1.2. However, the result of 1.9 x 0.66 
correctly rounded to single precision is 1.3. Thus, rounding twice may not pro
duce the same result as rounding once. Suppose you want to build hardware that 
only does double-precision arithmetic. Can you simulate single precision by 
computing first in double precision and then rounding to single? The above 
example suggests that you can't. However, double rounding is not always dan
gerous. In fact, the following rule is true (although it is not easy to prove). 

If x and y have p-bit significands, and x + y is computed exactly and 
then rounded to q places, a second rounding to p places will not 
change the answer if p ~ ( q-1 )12. This is true not only for addition, 
but also for multiplicC!tion, division, and square root. 

In our example above, q = 3, and p = 2, so 2 ~ (3 - 1)/2 is not true. On the 
other hand, for IEEE arithmetic, double precison hasp = 53, and single precision 
is p = 24 ~ (q-1)/2 = 26. Thus, single precision can be implemented by comput
ing in double precision (that is, computing the answer exactly and then rounding 
to double) and then rounding to single precision. 

The standard requires implementations to provide versions of addition, sub
traction, multiplication, division, and remainder that take two operands of the 
same precision and produce a result of that precision. It also recommends that 
implementations allow operations that take operands of two different precisions 
and return a result whose precision is at least as wide as the widest operand. The 
standard allows implementations to combine two operands and return a result in 
a higher precision. Remember that the result of an operation is the exact result 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 657



A-30 A.7 Precisions and Exception Handling 

rounded to the destination precision. What the standard does not allow is com
bining two operands and returning a result in a lower precision. Although at first 
this may seem like a minor restriction, consider again the problem of computing 

-.J x2 + y2 . If x and y are double, then you might like to compute x2 + y2 in 
extended precision and then compute a square root that takes an extended-preci
sion argument and returns a double-precision answer. But this is not allowed by 
the standard. 

There is a related issue. The standard permits combining two extended vari
ables to produce a result that is stored in extended format, but rounded to double 
precision. However, this doesn't help in the square root example, because the 
result of the square root must still be explicitly converted from an extended for
mat to a double-precision format. 

Exceptions 

The IEEE standard defines five exceptions: underflow, overflow, divide by zero, 
inexact, and invalid. By default, when these exceptions occur, they merely set a 
flag and the computation continues. The flags are sticky, meaning that once set 
they remain set until explicitly cleared. The standard strongly encourages imple
mentations to provide a trap-enable bit for each exception. When an exception 
with an enabled trap handler occurs, a user trap handler is called, and the value 
of the associated exception flag is undefined. 

The underflow, overflow, and divide-by-zero exceptions are found in most 
other systems. The inexact exception is peculiar to IEEE arithmetic and occurs 
when either the result of an operation must be rounded or when it overflows. In 
fact, since 1/0 and an operation that overflows both deliver oo, the exception 
flags must be consulted to distinguish between them. The inexact exception is an 
unusual "exception," in that it is not really an exceptional condition because it 
occurs so frequently. Thus, enabling a trap handler for inexact will most likely 
have a severe impact on performance. The invalid exception is for things like 

"1=1, 0/0 or oo - oo, which don't have any natural value as a floating-point 
number or as ±oo. Thus, 1/0 causes a divide by zero exception and delivers oo, 
whereas 0/0 causes an invalid exception and delivers a NaN. There is a twist in 
IEEE underflow, because it is not always signaled when numbers fall below 

1.0 x 2Emin. If a user trap handler is not installed, then underflow is signaled only 

if the result of an operation is below 2Emin and is inexact. 
The IEEE standard assumes that when a trap occurs, it is possible to identify 

the operation that trapped and its operands. On machines with pipelining, or 
machines with multiple arithmetic units, when an exception occurs, it may not 
be enough to simply have the trap handler examine the program counter. Hard
ware support may be necessary in order to identify exactly which operation 
trapped. Another problem is illustrated by the following program fragment. 

X Y * Z; 
Z A + B; 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 658



Computer Arithmetic A·31 

These two instructions might well be executed in parallel. If the multiply 
traps, its argument z could already have been overwritten by the addition, espe
cially since addition is usually faster than multiplication. Computer systems that 
support trapping in the IEEE standard must provide some way to save the value 
of z, either in hardware or by having the compiler avoid such a situation in the 
first place. 

One approach to this problem, used in the MIPS R3010, is to treat floating
point exceptions similarly to page-fault exceptions. If an instruction that assigns 
a memory location to a register causes a page fault, the execution of the instruc
tion must stall before it clobbers the register because (for example) that very 
register might be used to reference the memory that faulted. The key to making 
this work is that the memory address is computed early in the instruction cycle, 
before the instruction actually writes anything. A similar trick can be done with 
floating-point operations. An instruction that may cause an exception can be 
identified early in the instruction cycle. For example, an addition can overflow 
only if one of the operands has an exponent of Emax• and so on. This early check 
is conservative: It might flag an operation that doesn't actually cause an excep
tion. However, if such false positives are rare, then this technique will have 
excellent perfomiance. When an instruction is tagged as being possibly excep
tional, special code in a trap handler can compute it without destroying any state. 
Remember that all these problems occur only when trap handlers are enabled. 
Otherwise, setting the exception flags during normal processing is straight
forward. 

There is a subtlety that should be mentioned that involves the underflow trap. 
When there is no underflow trap handler, the result of an operation that involves 
an underflow is a denormal number. When there is a trap handler, it is provided 
with the result of the operation with the exponent wrapped around. Now there is 
a potential double-rounding problem. If the rounding mode is round toward 
nearest, when there is a trap handler the result is correctly rounded top signifi
cant bits. If there is no trap handler, the result is rounded to less than p bits, 
depending on how many leading zeros the denormal number has. If the trap 
handler wants to return the denormal result, it can't just round its argument, 
because that might lead to a double-rounding error. Thus, the trap handler must 
be passed at least one extra bit of information if it is to be able to deliver the 
correctly rounded result. 

A.8 I Speeding Up Integer Addition 

The previous section showed that there are many steps that go into implementing 
floating-point operations. However, each floating-point operation eventually 
reduces to an integer operation. Thus, increasing the speed of integer operations 
will also lead to faster floating point. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 659



A·32 

A.8.1 

A.8.2 

A.8.3 

A.8 Speeding Up Integer Addition 

Integer addition is the simplest operation and the most important. Even for 
programs that don't do explicit arithmetic, addition must be performed to incre
ment the program counter and to do address calculations. Despite the simplicity 
of addition, there isn't a single best way to perform high-speed addition. We will 
discuss three techniques that are in current use: carry lookahead, carry skip, and 
carry select. 

Carry Lookahead 

An n-bit adder is just a combinational circuit. It can therefore be written by a 
logic formula whose form is a sum of products and can be computed by a circuit 
with two levels of logic. How does one figure out what this circuit looks like? 
Recall from Equation A.2.1 that. the formula for the ith sum bit is 

The problem with this formula is that although we know the values of ai and 
b1-they are inputs to the circuit-we don't know ci. So our goal is to write ci in 
terms of ai and bi. To accomplish this, we first rewrite Equation A.2.2 (page 
A-2) as 

Here is the reason for the symbols p and g: If gi is true, then ci+I is certainly 
true, so a carry is generated. Thus, g is for generate. If Pi is true, then if ci is true, 

it is propagated to ci+I· Start with Equation A.8.1 and use Equation A.8.2 to 
replace ci with gi-I +Pi-lei-I· Then, use Equation A.8.2 with i -1 in place of i, to 
replace ci-1 with ci-2· and so on. This gives the result 

ci + 1 = gi +Pi gi-I + PiPi-Igi-2 + ··· +Pi Pi-1 ... PI go + Pi Pi-I ... PIPoco 

An adder that computes carries using Equation A.8.3 is called a carry-looka
head adder, or CLA adder. A CLA adder requires one logic level to form p and 
g, two levels to form the carries, and two for the sum, for a grand total of five 
logic levels. This is a vast improvement over the 2n levels required for the rip
ple-carry adder. 

Unfortunately, as is evident from Equation A.8.3 or from Figure A.10, a 
carry-lookahead adder on n bits requires a fan-in of n + 1 at the OR gate as well 
as at the rightmost AND gate. Also, the Pn-1 signal must driven AND gates. In 
addition, the rather irregular structure and many long wires of Figure A.10 make 
it impractical to build a full C'!IT)'-lookahead adder when n is large. 

However, we can use the carry-lookahead idea to build an adder that has 
about log2n logic levels (substantially less than the 2n required by a ripple-carry 
adder), and yet has a simple, regular structure. The idea is to build up the p's and 
g's in steps. We have already seen that 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 660



A.8.4 

A.8.5 

A.8.6 

Computer Arithmetic A·33 

en 

en= gn-1 + Pn-1 gn-2 + · · · + Pn-1 P n-2 ... p1 go + Pn-1 Pn-2 ... po Co 

FIGURE A.10 Pure carry-lookahead circuit for computing the carry out Cn of an n-bit 
adder. 

This says there is a carry out of the 0th position (c1) if there is either a carry 
generated in the 0th position, or if there is a carry into the 0th position and the 
carry propagates. Similarly, 

G01 means there is a carry generated out of the block consisting of the first 
two bits. Poi means that a carry propagates through this block. P and G have the 
following logic equations: 

Go1 = gl + P1go 

Poi = PlPo 

More generally, for any j with i <j,j + 1 < k, we have the recursive relations 

Ck+l = G·k+P·kc. l I I 

Gik = Gj+l,k + Pj+l,kGij 

pik = PijPj+l,k 

Equation A.8.5 says that a carry is generated out of the block consisting of 
bits i through k inclusive if it is generated in the high-order part of the block 
(j + 1, k) or if it is generated in the low-order (i,j) part of the block and then 
propagated through the high part. These equations will also hold for i :::;; j < k if 
we set Gii = gi and Pii =Pi· 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 661



A·34 

Example: 

Answer: 

A.8 Speeding Up Integer Addition 

Express P03 and G03 in terms of p's and g's. 

Using A.8.6, P03 = Po1P23 = PooP11P22P33. Since Pu= Pi• P03 = PoPiP2fJ3. For 
G03, Equation A.8.5 says G03 = G23 + P23Go1 = (G33 + P33G22) + (P22P33)(G11 + 
P11Goo) = g3 + p3g2 + p3p2g1 + P3P2P1go. 

With these preliminaries out of the way, we can now show the design of a 
practical CLA adder. The adder consists of two parts. The first part computes 
various values of P and G from Pi and gi, using Equations A.8.5 and A.8.6; the 
second part uses these P and G values to compute all the carries via Equation 
A.8.4. The first part of the design is in Figure A.11. At the top of the diagram, 
input numbers ar·a0 and br .. bo are converted to p's and g's using cells of type 
1. Then various P's and G's are generated by combining cells of type 2 in a 
binary-tree structure. The second part of the design is shown in Figure A.12. By 
feeding c0 in at the bottom of this tree, all the carry bits come out the top. Each 
cell must know a pair of (P ,G) values in order to do the conversion, and the 
value it needs is written inside the cells. Now compare Figure A.11 and Figure 
A.12. There is a one-to-one correspondence between cells, and the value of 
(P ,G) needed by the carry-generating cells is exactly the value known by the 

2 2 2 2 

Gs,1 Ps,1 G4,s P4,s G2,3 P2,3 

2 2 

G4.7 P4, 1 Go,3 Po,3 

i 
2 

' 

' 
' 

Go, 1 Po,1 

Gi+1 k ~+1,k 

2 

P,,k= P,,/~+1,k 

G,,k= Gi+1,k+ pi+1,k G,,i 

FIGURE A.11 First part of carry-lookahead tree. As signals flow from the top to the 
bottom, various values of P and Gare computed. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 662



Computer Arithmetic A-35 

C7 cs C5 C4 C3 C2 C1 Co 

Pe P4 P2 Po 

9s 94 92 9o 

Cs C4 C2 Co 

P4,5 Po,1 

G4,5 Go,1 

C4 Co 

Po,3 

Go,3 

Co 

FIGURE A.12 Second part of carry-lookahead tree. Signals flow from the bottom to the 
top, combining with P and G to form the carries. 

B 

Cs 

B 

C4 

B 

B 

C4 

S; = a;<ii:) b/f) C; 

P;= a;+ b; 
9;= a;b; 

B B 

C2 Co 

B 

Pa.3 Co 

FIGURE A.13 Complete carry-lookahead tree adder. This is the combination of Figures 
A.11 and A.12. The numbers to be added enter at the top, flow to the bottom to combine 
with c 0, and then flow back up to compute the sum bits. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 663



A·36 A.8 Speeding Up Integer Addition 

FIGURE A.14 Combination of CLA adder and ripple-carry adder. In the top row, 
carries ripple within each group of four boxes. 

corresponding (P ,G) generating cells. The combined cell is shown in Figure 
A.13. The numbers to be added flow into the top and downward through the 
tree, combining with c0 at the bottom and flowing back up the tree to form the 
carries. Note that there is one thing missing from Figure A.13: a small piece of 
extra logic to compute c8 for the carry out of the adder. 

-The bits in a CLA must pass through about log2 n logic levels, compared with 
2n for a ripple-carry adder. This is a substantial speed improvement, especially 
for a large n. Whereas the ripple-carry adder had n cells, however, the CLA 
adder has 2n cells, although in our layout they will take n log n space. The point 
is that a small investment in size pays off in a dramatic improvement in speed. 

There are a number of technology-dependent modific~tions that can improve 
CLA adders. For example, if each node of the tree has three inputs instead of 
two, then the height of the tree will decrease from log2 n to log3 n. Of course, 
the cells will be more complex and thus might operate more slowly, negating the 
advantage of the decreased height. For technologies where rippling works well, 
a hybrid design might be better. This is illustrated in Figure A.14. Carries ripple 
between adders at the top level, while the "B" boxes are the same as in Figure 
A.13. This design will be faster if the time to ripple between four adders is faster 
than the time it takes to traverse a level of "B" boxes. 

Carry-Skip Adders 

A carry-skip adder sits midway between a ripple-carry adder and a carry
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not 
called a CSA, as that name is reserved for carry-save adders.) The motivation for 
this adder comes from examining the equations for P and G. For example, 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 664



Computer Arithmetic A·37 

P03 = PoP1P2P3 

G03 = g3 + P3 gz + P3P2 gl + P3P2P1 go 

Computing Pis much simpler than computing G, and a carry-skip adder only 
computes the P's. Such an adder is illustrated in Figure A.15. Carries begin 
rippling simultaneously through each block. If any block generates a carry, then 
the carry out of a block will be true, even though the carry in to the block may 
not be correct yet. If at the start of each add operation the carry in to each block 
is zero, then no spurious carry outs will be generated. Thus, the carry out of each 
block can thus be thought of as if it were the G signal. Once the carry out from 
the least significant block is generated, it not only feeds into the next block, but 
is also fed through the AND gate with the P signal from that next block. If the 
carry out and P signals are both true, then the carry skips the second block and 
is ready to feed into the third block, and so on. The carry-skip adder is only 
practical if the carry in signals can be easily cleared at the start of each 
operation-for example by precharging in CMOS. 

To analyze the speed of a carry-skip adder, let's assume that it takes on~ time 
unit for a signal to pass through two logic levels. Then it will take k time units 
for a carry to ripple across a block of size k, and it will take one time unit for a 
carry to skip a block. The longest signal path in the carry-skip adder starts with a 
carry being generated at the 0th position. Then it takes k time units to ripple 
through the first block, n/k - 2 time units to skip blocks, and k more to ripple 
through the last block. To be specific: If we have a 20-bit adder broken into 
groups of 4 bits, it wili take 11 time units to perform an add. Suppose we keep 
the least significant block at 4 bits, but combine the next two blocks into a single 
8-bit block. Then the time of the adder drops to 10 time units. However, if we 
had combined three blocks instead of two, then the time to ripple through this 3-
block unit (12 bits in all) would dominate the time to add. However, the general 
principle is important: For a carry-skip adder, making the interior blocks larger 
will speed up the adder. In fact, the same idea of varying the block sizes can 
sometimes speed up other adder designs as well. Because of the large amount of 
rippling, a carry-skip adder is most appropriate for technologies where rippling 
is fast. 

FIGURE A.15 Carry-skip adder. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 665



A-38 A.8 Speeding Up Integer Addition 

Carry-Select Adder 

A carry-select adder works on the following principle: Two additions are per
formed in parallel, one assuming the carry in is zero and the other assuming the 
carry in is one. When the carry in is finally known, the correct sum (which has 
been precomputed) is simply selected. An example of such a design is shown in 
Figure A.16. An 8-bit adder is divided into two halves, and the carry out from 
the lower half is used to select the upper half. If each block is computing its sum 
using rippling (a linear-time algorithm), then the design in Figure A.16 is twice 

FIGURE A.16 Simple carry-select adder. At the same time that the sum of the low-order 
four bits are being computed, the high-order bits are being computed twice in parallel: once 
assuming that c4 = 0, and once assuming c4 = 1. 

FIGURE A.17 Carry-select adder. As soon as the carry out of the rightmost block is 
known, it is used to select the other sum bits. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 666



Computer Arithmetic A·39 

as fast at 50% more cost. However, note that the c4 signal must drive many 
muxes, which may be very slow in some technologies. Instead of dividing the 
adder into halves, it could be divided into quarters for a still further speedup. 
This is illustrated in Figure A.17. If it talces k time units for a block to add k-bit 
numbers, and if it talces one time unit to compute the mux input from the two 
carry-out signals, then for optimal operation each block should be one bit wider 
than the next, as shown in Figure A.17. Therefore, as in the carry-skip adder, the 
best design involves variable-sized blocks .. 

As a summary of this section, the asymptotic time and space requirements for 
the different adders are given in Figure A.18. These different adders shouldn't 
be thought of as disjoint choices, but rather as building blocks to be used in con
structing an adder. The utility of these different building blocks is highly depen
dent on the technology used. For example, the carry-select adder works well 
when a signal can drive many muxes, and the carry-skip adder is attractive in 
technologies where signals can be cleared at the start of each operation. Know
ing the asymptotic behavior of adders is useful in understanding them, but rely
ing too much on that behavior is a pitfall. The reason is that asymptotic behavior 
is only important as n grows very large. But n for an adder is the bits of preci
sion, and double precision today is the same as it was twenty years ago-about 
53 bits. Although it is true that as computers get faster, computations get 
longer-and thus have more rounding error, which in tum requires more preci
sion-this effect grows very slowly with time. 

Time· Space 

Ripple O(n) O(n) 

CLA O(log n) O(n logn) 

Carry skip O(Yn) O(n) 

Carry select ocvn) O(n) 

FIGURE A.18 Asymptotic time and space requirements for four different types of 
adders. 

Speeding Up Integer Multiplication and 
Division 

The multiplication and division algorithms presented in Section A.2 are fairly 
slow, producing one bit per cycle (although that cycle might be a fraction of the 
CPU instruction cycle time). In this section we discuss various techniques for 
higher performance multiplication and division. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 667



A0 40 A.9 Speeding Up Integer Multiplication and Division 

Shifting Over Zeros 

Shifting over zeros is a technique that is not currently used much, but is instruc
tive to consider. It is distinguished by the fact that its execution time is operand 
dependent. Its lack of use is primarily attributable to its failure to offer enough 
speedup over bit-at-a-time algorithms. In addition, pipelining, synchronization 
with the CPU, and good compiler optimization are difficult with algorithms that 
run in variable time. In multiplication, the idea behind shifting over zeros is to 
add logic that detects when the low-order bit of the A register is zero (see Figure 
A.2(a)) and, if so, skip the addition step and proceed directly to the shift step-
hence the term shifting over zeros. This technique becomes more useful if the 
number of zeros in the A operand can be increased. The Exercises discuss how 
well Booth recoding does in increasing zeros. 

What about shifting for division? In nonrestoring division, an ALU operation 
(either an addition or subtraction) is performed at every step, so that there 
appears to be no opportunity for skipping an operation. But think about division 
this way: To compute a/b, subtract multiples of b from a, and then report how 
many subtractions were done. At each stage of the subtraction process the re
mainder must fit into the P register of Figure A.2(b) (page A-4 ). In the case 
when the remainder is a small positive number, you normally subtract b; but 
suppose instead you only shifted the remainder and subtracted b the next time. 
As long as the remainder was sufficiently small (its high-order bit 0), after 
shifting it still would fit into the P register, and no information would be lost. 
However, this method does require changing the way we keep track of the num
ber of times b has been subtracted from a. This idea usually goes under the name 
of SRT division, for Sweeney, Robertson, and Tocher, who independently 
proposed algorithms of this nature. The main extra complication of SRT division 
is that the quotient bits cannot be determined immediately from the sign of P at 
each step, as it can be in ordinary nonrestoring division. 

More precisely, to divide a by b where a and b are n-bit numbers, load a and 
b into the A and B registers, respectively, of Figure A.2 (page A-4). 

1. If B has k leading zeros when expressed using n bits, shift all the registers 
left k bits. After this shift, since b has n + 1 bits, its most significant bit will be 0, 
and its second-most-significant bit will be 1. 

2. For i = 0, n - 1 do 

If the top three bits of Pare equal, set qi= 0 and shift (P,A) one bit left. 

If the top three bits of P are not all equal and P is negative, set qi =I, 
shift (P,A) one bit left, and add B. 

Otherwise set qi =1, shift (P,A) one bit left, and subtract B 

Endloop 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 668



Computer Arithmetic A·41 

3. If the final remainder is negative, correct the remainder by adding B, and 
correct the quotient by subtracting 1 from q0• Finally, the remainder must be 
shifted k bits right, where k is the initial shift. 

A numerical example is given in Figure A.19. Although we are discussing 
integer division, it helps in explaining the algorithm to move the binary point 
from the right of the least significant bit to the left of the most significant bit. 
Thus if n = 4 and the operation is 9/4, the A register holds 0.1001 and 
(remembering that the B register has n + 1 bits), the B register holds 0.0100. 

Since this changes the binary point in both the numerator and denominator, 
the quotient is not affected. The remainder being a two's complement number, a 
P register of 1.11102 represents -1/8. With this convention, the P register holds 
numbers satisfying -1 :::;; P < 1. The first step of the algorithm shifts b so that 
b ~ 1/2. As before, let r be the value of the (P,A) pair. Our rule for which ALU 
operation to perform is this: If -1/4 :::;; r < 1/4 (true whenever the top three bits of 
P are equal), then compute 2r by shifting (P,A) left one bit; else if r < 0 (and 
hence r < -1/4, since otherwise it would have been eliminated by the first condi
tion), then compute 2r + b by shifting and then adding, else r ;;::: 1/4 and subtract 
b from 2r. Using b ~ 1/2, it is easy to check that these rules keep-1/2:::;; r < 1/2. 
For nonrestoring division, we only have Jr J ·:::;; b, and we need P to be n + 1 bits 

wide. But for SRT division, the bound on r is tighter, namely -1/2 :::;; r < 1/2. 
Thus, we can save a bit by eliminating the high-order bit of P (and b and the 
adder). In particular, the test for equality of the top three bits of P becomes a test 
on just two bits. 

p A 

00000 1000 

00010 0000 

00100 0000 

01000 0000 

±lQ.lQQ. 

11100 0000 

11000 0000 

10000 0000 

±QllQQ_ 

11100 

±QllQQ_ 

01000 

B contains 0011, so shift all registers left two places 

B now contains 1100. Top bits of P are equal, so shift and set q 0= O 

Top bits are not equal, so set q1 = 1 

shift and 

subtract B 

Top bits equal, so shift and set q2 = O 

Top bits are unequal, so set q3 = -1 

shift and 

add B 

Remainder is negative, so restore it and subtract 1 from q
0 

This must be shifted right two places to give remainder 

Remainder= 10,q= 0101 -1 = 0010 

FIGURE A.19 SRT division of 1000/0011. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 669



A-42 A.9 Speeding Up Integer Multiplication and Division 

The algorithm might change slightly in an implementation of SRT division. 
After each ALU operation, the P register can be shifted as many places as neces
sary to make either P ;:::: 1/4 or P < -1/4. By shifting k places, k quotient bits are 
set equal to zero all at once. For this reason SRT division is sometimes described 
as one that keeps the remainder normalized to I r I ;:::: 1/4. 

Notice that the value of the quotient bit computed in a given step is based on 
which operation is performed in that step (which in tum depends on the result of 
the operation from the previous step). This is in contrast to nonrestoring divi
sion, where the quotient bit computed in ith step depends on the result of the 
operation in the same step. This difference is reflected in the fact that when the 
final remainder is negative, the last quotient bit must be adjusted in SRT divi
sion, but not in nonrestoring division. However, the key fact about the quotient 
.bits in SRT division is that they can include I. Therefore the quotient bits can't 
be stored in the low-order bits of the A register; furthermore, the quotient must 
be converted to ordinary two's complement in a full adder. A common way to 
do this is to accumulate the positive quotient bits in one register and the negative 
quotient bits in another, and then subtract the two registers after all the bits are 
known. Because there is more than one way to write a number in terms of the 
digits -1, 0, 1, SRT division is said to use a redundant quotient representation. 

The differences between SR T division and ordinary nonrestoring division can 
be summarized as follows: 

1. ALU decision rule: In nonrestoring division, it is determined by the sign of 
P; in SR T, it is determined by the two most significant bits of P. 

2. Quotient determination: In nonrestoring division, it is immediate from the 
signs of P; in SRT, it must be computed in a full n-bit adder. 

3. Speed: SRT division will be faster on operands that produce zero quotient 
bits. 

Speeding Up Multiplication with a Single Adder 

As mentioned before, shifting-over techniques are not used much in current 
hardware. We now discuss some methods that are in more widespread use. 
Methods that increase the speed of multiplication can be divided into two 
classes: those that use a single adder and those that use multiple adders. Let's 
first discuss techniques that use a single adder. 

In the discussion of addition we noted that, because of carry propagation, it 
is not practical to perform addition with two levels of logic. using the cells of 
Figure A.13, adding two 64-bit numbers will require a trip through seven cells to 
compute the P's and G's, and seven more to compute the carry bits, which will 
require at least 28 logic levels. Each multiplication step will require a trip 
through this adder. A way to avoid this computation ill each step is to use carry
save adders (CSA). A carry-save adder is simply n independent full adders. A 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 670



Computer Arithmetic 

p 
Carry bits 

Sum bits 

B 

A·43 

Shift 

D D D D D D 

,,~ a;t 
bi 

A 

FIGURE A.20 Carry-save multiplier. Each circle represents a (3,2) adder working inde
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum bit. 

multiplier using such an adder is illustrated in Figure A.20. Each circle marked 
"A" is a single-bit full adder, and each box represents one bit of a register. Each 
addition operation results in a pair of bits, stored in the sum and carry parts of P. 
Since each add is independent, only two logic levels are involved in the add-a 
vast improvement over 28. 

To operate the multiplier in Figure A.20, load the sum and carry bits of P 
with zero and perform the first ALU operation. (If Booth recoding is used, it 
might be a subtraction rather than an addition.) Then shift the low-order sum bit 
of Pinto A, as well as shifting A itself. Then - 1 high-order bits of P don't need 
to be shifted because on the next cycle the sum bits are fed into the next lower 
order adder. Each addition step is dramatically increased in speed, since each 
add cell is working independently of the others, and no carry is propagated. 
There are two drawbacks to carry-save adders. First, they require more hardware 
because there must be a copy of register P to hold the carry outputs of the adder. 
Second, after the last step, the high-order word of the result must be fed into an 
ordinary adder to combine the sum and carry parts. This could be accomplished 
by feeding the output of P into the adder used to perform the addition operation. 
Multiplying with a carry-save adder is sometimes called redundant multi
plication because P is represented using two registers. Since there are many 
ways to represent P as the sum of two registers, this representation is redundant. 
The term carry-propagate adder (CPA) is used to denote an adder that is not a 
CSA. A propagate adder may propagate its carries using ripples, carry. 
lookahead, or some other method. 

Another way to speed up multiplication without using extra adders is to 
examine k low-order bits of A at each step, rather than just one bit. This is often 
called higher-radix rrir:tltiplication. As an example, suppose that k = 2. If the pair 
of bits is 00, add 0 tO:P, and if it is 01, add B. If it is 10, simply shift bone bit 
left before adding it to P. Unfortunately, if the pair is 11, it appears we would 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 671



A-44 A.9 Speeding Up Integer Multiplication and Division 

have to compute b + 2b. But this can be avoided by using a higher-radix version 
of Booth recoding. Imagine A as a base 4 number: When the digit 3 appears, 
change it to I and add 1 to the next higher digit to compensate. The name for 
this technique, overlapping triplets, comes from the fact that it looks at 3 bits to 
determine what multiple of b to use, whereas ordinary Booth recoding looks at 2 
bits. 

The precise rules for overlapping triplets are given in Figure A.21. Besides 
having more complex control logic, this technique also requires that the P regis
ter be one bit wider to accommodate the possibility of 2b or-2b being added to 
it. It is also possible to use a radix-8 (or even higher) version of Booth recoding. 
In that case, however, it will be necessary to use the multiple 3B as a potential 
summand. Radix-8 multipliers normally compute 3B once and for all at the 
beginning of a multiplication operation. 

Current pair Previous Multiple 

i + 1 i i -1 

0 0 0 0 

0 0 1 +b 

0 1 0 +b 

0 1 1 +2b 

1 0 0 -2b 

1 0 1 -b 

1 1 0 -b 

1 1 1 0 

FIGURE A.21 Multiples of b to use for radix-4 Booth recoding. For example, if the two 
low-order bits of the A register are both 1, and the last bit to be shifted out of the A register 
was 0, then the correct multiple is -b, obtained from the second to last row of the table. 

Faster Multiplication with Many Adders 

If the space for many adders is available, then multiplication speed can be 
improved. Figure A.22 shows a block diagram of a simple array multiplier for 
multiplying two 8-bit numbers using seven CS As and one propagate adder; As it 
still takes eight additions to compute the product, the latency of computing a 
product is not dramatically different from using a single carry-save adder. How
ever, with the hardware in Figure A.22, multiplication can be pipelined, increas
ing the total throughput. On the other hand, although this level of pipelining is 
sometimes used in array processors, it is not used in any of the single-chip, 
floating-point accelerators discussed in Section A.10. Pipelining is discussed in 
general in Chapter 6 and by Kogge [ 1981] in the context of multipliers. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 672



Computer Arithmetic A-45 

CSA 

CSA 

CSA 

CSA 

CSA 

CSA 

CSA 

Propagate adder 

FIGURE A.22 Block diagram of an array multiplier. The 8-bit number in A is multiplied 
by b-,b6···bo. Each box marked "CSA" is a carry-save adder. 

With the technology of 1990, it is not possible to fit an array large enough to 
multiply two double-precision numbers on a single chip and have space left over 
for the other arithmetic operations. Thus, a popular design is to use a two-pass 
arrangement such as the one shown in Figure A.23 (page A-46). The first pass 
through the array "retires" four bits of B. Then the result of this first pass is fed 
back into the top to be combined with the next four summands. The result of this 
second pass is then fed into a CPA. This design, however, loses the ability to be 
pipelined. 

If arrays require as many addition steps as the much cheaper arrangement in 
Figure A.2, why are they so popular? First of all, using an array has a smaller 
latency than using a single adder-because the array is a combinational circuit, 
the signals flow through it directly without being clocked. Although the two
pass adder of Figure A.23 would normally still use a clock, the cycle time for 
passing through k arrays can be less than k times the clock that would be needed 
for a design like the one in Figure A.2. Secondly, the array is amenable to vari
ous schemes for further speedup. One of them is shown in Figure A.24 (page 
A-47). The idea of this design is that two adds proceed in parallel or, to put it 
another way, each stream passes through only half the adders. Thus, it runs at 
almost twice the speed of the multiplier in Figure A.22. This even/odd multiplier 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 673



A·46 A.9 Speeding Up Integer Multiplication and Division 

is popular in VLSI because of its regular structure. Arrays can also be speeded 
up using asynchronous logic. One of the reasons why the multiplier of Figure 
A.2 (page A-4) needs a clock is to keep the output of the adder from feeding 
back into the input of the adder before the output has fully stabilized. Thus, if 
the array in Figure A.23 is long enough so that no signal can propagate from the 
top through the bottom in the time it takes for the first adder to stabilize, it may 
be possible to avoid clocks altogether. Williams et al. [1987] discusses a design 
using this idea, although it is for dividers instead of for multipliers. 

The techniques of the previous paragraph still have a multiply time of O(n), 
but the time can be reduced to log n using a tree. The simplest tree would com
bine pairs of summands b0A ··· bn_1A, cutting the number of summands from n 
to n/2. Then these n/2 numbers would be added in pairs again, reducing to n/4, 
and so on, and resulting in a single sum after log n steps. However, this simple 
binary-tree idea doesn't map into full (3,2) adders, which reduce three inputs to 
two rather than reducing two inputs to one. A tree that does use full adders, 
known as a Wallace tree, is shown in Figure A.25. Wheri computer arithmetic 
units were built out of MSI parts, a Wallace tree was the design of choice for 
high-speed multipliers. There is, however, a problem with implementing them in 
VLSI. 

Figures A.22-A.24 are sufficiently concise that it may be hard to visualize all 
the adders involved in an array multiplier. Figure A.26 (page A-49) shows each 
individual adder in a 4-bit array multiplier. Figure A.26(b) shows the inputs to 
the circuit, and Figure A.26(c) shows how those inputs are connected by adders. 

b4 A 

i 
b5 A b0 A 

i 
b6 A b1 A CSA 

i 
b7 A b2 A CSA 

i 
b3 A CSA 

CSA 

CPA 

FIGURE A.23 Multipass array multiplier. Multiplies two 8-bit numbers with about half the 
hardware of that in Figure A.22. At the end of the second pass, the bits flow into the CPA. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 674



Computer Arithmetic A·47 

b2 A b1A b0 A 

CSA 

b5 A b4 A b3 A 

CSA 

b6 A 

t 
CSA 

b7 A 

CSA 

CSA 

CSA 

CPA 

FIGURE A.24 Even/odd array. The first two adders work in parallel. Their results are fed 
into the third and fourth adders, which also work in parallel, and so on. 

CSA CSA 

CSA CSA 

CSA 

CSA 

Propagate adder 

FIGURE A.25 Wallace-tree multiplier. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 675



A-48 

Example: 

Answer: 

A.9 Speeding Up Integer Multiplication and Division 

Each row of adders in A.26(c) corresponds to a single box in A.26(a). In actual 
implementation the array w~uld be laid out as a square, not "twisted" as shown 
in the picture. (Lining up bits of the same significance in the same column 
makes the picture easier to understand.) If you try to fill in all the adders and 
paths for the Wallace tree of Figure A.25 (page A-47), you will discover that it 
does not have the nice, regular structure of Figure A.26. This is why VLSI 
designers have often chosen to use other log n designs such as the binary-tree 
multiplier, which is discussed next. 

The problem with adding summands in a binary tree is that of corning up with 
a (2,1) adder that combines two digits and produces a single-sum digit. Because 
of carries, this isn't possible using binary notation, but it can be done with some 
other representation. We will use the signed-digit representation l, T, and 0, 
which we used previously to understand Booth's algorithm. This representation 
has two costs. First, it takes two bits to represent each signed digit. Second, the 
algorithm for adding two signed-digit numbers ai and bi is complex and requires 
examining aiai-lai-2 and bibi-lbi-2· Although this means you must look two bits 
back, in binary addition you might have to look an arbitrary number of bits back 
(because of carries). 

We can describe the algorithm for adding two signed-digit numbers as fol
lows. First, compute sum and carry bits si and ci+l using the table in Figure A.27. 
Then compute the final sum as si + ci. The tables are set up so that this final sum 
does not generate a carry. 

What is the sum of the signed-digit numbers 1 To and 001 ? 

The two low-order bits sum to 0 + 1=1 I, the next pair sums to 1+0 =OT, and 
the high-order pair sums to 1 + 0 = 01, so the sum is 1T + 0 To + 0100 = 10 I. 

This, then, defines a (2,1) adder. With this in hand, we can use a 
straightforward binary tree to perform multiplication. In the first step it adds b0A 
+ b 1A in parallel with b2A + b3A, .. ., bn_2A + bn_1A. The next step adds the 
results of these sums in pairs, and so on. Although the final sum must be run 
through a carry-propagate adder to convert it from signed-digit form to two's 
complement, this final add step is necessary in any multiplier using CSAs. 

To summarize, both Wallace trees and signed-digit trees are log n multipliers. 
The Wallace tree uses the fewer gates but is harder to lay out. The signed-digit 
tree has a more regular structure, but requires two bits to represent each digit and 
has more complicated add logic. As with adders, it is possible to combine differ
ent multiply techniques. For example, Booth recoding and arrays can be com
bined. In Figure A.22 (page A-45) instead of having each input be bz'A, we could 
have it be bibi_1A, and in order to avoid having to compute the multiple 3b, we 
can use Booth recoding. · 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 676



Computer Arithmetic A·49 

b1A 

CSA 

CSA 

CSA 

(a) 
Propagate adder 

b0a 1 boao .. \ I. • b0A 

• • • • b1A 

• • • • b2A 

• • • • b3A 
I \ 

(b) b3a 1 b3ao 

(c) 

FIGURE A.26 Block diagram of an array multiplier (a); the inputs to the array (b); the 
array expanded to show all the adders (c). 

1 1 0 1 x 1 x 
±J_ +1 +1 ±..Q. :!:..Q__t :!:..Q__t 
1 0 00 fo 00 1 1 ifx;:::Oand y;::o o1 if x;:::o and y;::: o 

0 1 otherwise 11 otherwise 

FIGURE A.27 Signed-digit addition table. The leftmost sum shows that when computing 
1 + 1, the sum bit is O and the carry bit is 1 . 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 677



A·SO A.9 Speeding Up Integer Multiplication and Division 

Faster Division with One Adder 

The two techniques for speeding up multiplication with a single adder were 
carry-save adders and higher-radix multiplication. There is a difficulty when try
ing to utilize these approaches to speed up nonrestoring division. The problem 
with CSAs is that at the end of each cycle the value of P, since it is in carry-save 
form, is not known exactly. In particular, the sign of Pis uncertain, yet it is the 
sign of P that is used to compute the quotient digit and decide on the next ALU 
operation. When a higher radix is used, the problem is deciding what value to 
subtract from P. In the paper-and-pencil method, you have to guess the quotient 
digit. In binary division there are only two possibilities; we were able to finesse 
the problem by initially guessing one and then adjusting the guess based on the 
sign of P. This doesn't work in higher radices because there are more than two 
possible quotient digits, rendering quotient selection potentially quite compli
cated: You would have to compute all the multiples of b and compare them to P. 

Both the carry-save technique and higher-radix division can be made to work 
if we use a redundant quotient representation. Recall from our discussion of SRT 
division that by allowing the quotient digits to be -1, 0, or 1, there is often a 
choice of which one to pick. The idea in the previous algorithm was to choose 
zero whenever possible because that meant an ALU operation could be skipped. 
In carry-save division, the idea is that because the remainder (P register) is not 
known exactly (being stored in carry-save form), the exact quotient digit is also 
not known. But thanks to the redundant representation, the remainder doesn't 
have to be known precisely in order to pick a quotient digit. This is illustrated in 
Figure A.28, where the x axis represents ri, the contents of the (P,A) register pair 
after i steps. The line labeled qi= 1 shows the value that ri+l would be if we 
choose qi = 1, and similarly for the lines qi = 0 and qi = -1. We can choose any 
value for qi, as long as ri+l = rPi- qiB satisfies I ri+i I :::; B. The allowable ranges 
are shown in the right half of Figure A.28. Thus we only need to know r pre
cisely enough to decide in which range in Figure A.28 it lies. 

-----<qi =-1 
1------1 qi= 0 

---q1=1 
~-+----t---+--0 

-b 0 b 

FIGURE A.28 Quotient selection for· radix-2 division. The x axis represents the i th 
remainder, which is the quantity in the (P,A) register pair. They axis shows the value of the 
remainder after one additional divide step. Each bar on the right-hand graph gives the 
range of 'i values for which it is permissible to select the associated value of qi. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 678



Computer Arithmetic A-51 

This is the basis for using carry-save adders. Look at the high-order bits of 
the carry-save adder and sum them in a propagate adder. Then use this approxi
mation of r to compute qi, usually by means of a lookup table. The same tech-
nique works for higher-radix division (whether or not a carry-save adder is 
used). The high-order bits P can be used to index a table that gives one of the al
lowable quotient digits. 

The design challenge when building a high-speed SRT divider is figuring out 
how many bits of P and B need to be examined. For example, suppose that we 
take a radix of 4, use quotient digits of 2, 1, o,I, 2, but have a propagate adder. 
How many bits of P and B need to be examined? Deciding this involves two 
steps. For ordinary radix-2 nonrestoring division, because at each stage Ir I ::; b, 
the P buffer won't overflow. But for radix 4, ri+I = 4ri- qib is computed at each 
stage, and if ri is near b, then 4r; will be near 4b, and even the largest quotient 
digit will not bring r back to the range I ri+I I ::; b. In other words, the remainder 
might grow without bound. However, restricting I ri I ::; 2bl3 makes it easy to 
check that ri will stay bounded. 

After figuring out the bound that ri must satisfy, we can draw the diagram in 
Figure A.29, which is analogous to Figure A.28. If r; is between (1112)b and 
(5112)b, we can pick q = 11 and so on. Or to put it another way, if rib is between 
1/12 and 5112, we can pick q = 1. Suppose we look at 4 bits of P and 4 bits of b, 
and the high bits of P (not counting .the (n + 1)-st sign bit) are OOllxxx··., while 
the high bits of b are lOOlxxX.·· . To simplify calculation, imagine the binary 
point at the left end of each register. Since we truncated, r (the value of P con
catenated with A) could have a value from .0011 to .0100, and b could have a 
value from .1001 to .1010. Thus rib could be as small as .0011/.1010 or as large 
as .01001.1001. But .001lp/.10102=3110 < 113 would require a quotient bit of 1, 
while .010021.10012 = 419 > 5112 would require a quotient bit of 2. In other 
words, 4 bits of P and 4 bits of b aren't enough to pick a quotient bit. It turns out 
that 5 bits of P and 4 bits of b are enough. This can be verified by writing a 
simple program that checks all the cases. 

--;---11>----+---+---t-----+---+--0 
-g_Q 

3 

-g_Q 
3 

q;= 1 
q;=2 

----<-------+-+--+---+---+-+-<-+--+---0 

1------t 0 .P. .P. 
,__ __ _, q; = -1 12 6 

q;=-2 

.P. EQ 
3 12 

FIGURE A.29 Quotient selection for radix-4 division. 

gg 
3 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 679



A·52 

b 

8 

8 

8 

8 

8 

9 

9 

9 

9 

9 

10 

10 

10 

10 

10 

11 

11 

11 

11 

11 

Example: 

Answer: 

A.9 Speeding Up Integer Multiplication and Division 

Suppose that the radix is 4 and the quotient digits are 2, 1, OJ, 2, but this time a 
CSA is used instead of a propagate adder. How many bits of the P and B 
registers need to be examined? 

Once again I ri I :::; 2b/3, and the ranges of the qi are still as in Figure A.29. If the 

top 4 bits of the sum part and the carry part of Pare respectively 0010 and 0001, 
then the sum part ranges from 0010 to 0011 and the carry part from 0001 to 
0010. Accordingly, the true value of r ranges from 0010 + 0001=0011to0011 
+ 0010 = 0101. Given, therefore, a CPA that adds the top 4 bits of the carry and 
sum parts of P, and a sum of 0011, the true sum will be anywhere from 0011 to 
0101. A program that checks all the cases will show that 6 bits of P and 4 bits of 
b are needed to predict a quotient digit. The result of such a program is shown in 
Figure A.30. For example, if bis 1001.x.xx ... and r is 001101.x.xx .. ., then the top 4 
bits of bare 9 and the top 6 bits of rare 13, making the quotient digit 1. But if r 
were 0011102 = 14, the quotient digit would have to be 2. 

Range of P q b Range of P q 

-21 -14 -2 12 -32 -20 -2 
-13 -5 -1 12 -20 -7 -1 

-5 3 0 12 -8 6 0 

3 11 1 12 5 18 1 

12 21 2 12 18 32 2 

-24 -16 -2 13 -34 -21 -2 

-15 -6 -1 13 -21 -7 -1 

-6 4 0 13 -8 6 0 

4 13 1 13 5 19 1 

14 24 2 13 19 34 2 

-26 -17 -2 14 -37 -22 -2 

-16 -6 -1 14 -23 -7 -1 

-6 4 0 14 -9 7 0 

4 14 1 14 5 21 2 

15 26 2 14 20 37 2 

-29 -18 -2 15 -40 -24 -2 

-18 -6 -1 15 -25 -8 -1 

-7 5 0 15 -10 8 0 

4 16 1 15 6 23 1 

16 29 2 15 22 40 2 

FIGURE A.30 Quotient digits for radix-4 SRT division with a CSA. The top row says that if the high-order 4 bits of b 
are 10002 = 8, and if the top 6 bits of P are between 1100102 = -14 and 10101 2 = -21, then the quotient digit is -2. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 680



A.10 I 

Computer Arithmetic A·53 

Although these are simple cases, all SRT analyses proceed in the same way. 
First compute the range of ri, then plot ri against ri+I to find the quotient ranges, 
and finally write a program to compute how many bits are necessary. (It is some
times also possible to compute the required number of bits analytically.) Two 
final comments about high-radix SRT division are in order. First, Figure A.30 is 
not symmetrical. Thus, for a radix-4 CSA divider, the lookup table needs not 
only 6 bits of P, but also the sign of P. Second, the quotient lookup table has a 
fairly regular structure. This means it is· usually cheaper to encode it as a PLA 
rather than in ROM. 

Putting It All Together 

In this section, we will compare the Weitek 3364, the MIPS R3010, and the 
Texas Instruments 8847 (see Figures A.31 and A.32, pages A-54-A-55). In 
many ways, these are ideal chips to compare. They each implement the IEEE 
standard for addition, subtraction, multiplication, and division on a single chip. 
All were introduced in 1988 and run with a cycle time of about 40 nanoseconds. 
However, as we will see, they use quite different algorithms. The Weitek chip is 
well described in Birman et al. [1988], the MIPS chip is described in less detail 
in Rowen, Johnson, and Ries [1988], and the details of the TI chip have yet to be 
published. 

There are a number of things that these three chips have in common. They 
perform addition and multiplication in parallel, and they implement neither 
extended precision nor the IEEE remainder operation. We discussed earlier how 
an efficient REM could be provided in software if only chips would implement a 
remainder-step function. The designers of these chips probably decided not to 

MIPS R3010 Weitek 3364 Tl8847 

Clock cycle time (ns) 40 50 30 

Size (mil2) 114,857 147,600 156,180 

Transistors 75,000 165,000 180,000 

Pins 84 168 207 

Power (watts) 3.5 1.5 1.5 

Cycles/add 2 2 2 

Cycles/mult 5 2 3 

Cycles/divide 19 17 11 

Cycles/sq root - 30 14 

FIGURE A.31 Summary of the three floating-point chips discussed in this section. 
The cycle times are for production parts available in June 1989. The cycle counts are for 
double-precision operations. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 681



A-54 A.1 O Putting It All Together 

Pipeline register 

Pipeline register 
Normalizer 

"' E 
Signed digit converter 

(/) Rounder 

Sum register 

Product register 

Pads 

Pads I Register 
timing Register file 

and 
IEEE -decode 

exception Conflict 
and status detect Forward- Operand fowarding 

register ing and staging 
control 

Extemal data bus 

Instruction 32b H64b alignment 

D -
Exponent 

~ 
datapath 

Shifter 
decode Add 

control Cl) - L 

Pipeline 
control Adder 

and IEEE 
interlock rounding 

logic 

i Divide 
control Divider 

Clocks 

~ 1/0 
control Multiply i d 

loop control Multiplier 

Pads 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 682



Computer Arithmetic 

J 
ALU 

I 

I 
Reg. file 

1/0 muxes 

Divide/sqrt 

I 

Multiplier 

FIGURE A.32 Chip layout. In the left-hand column are the photomicrographs; the right
hand column shows the corresponding floor plans. Top left is the Tl 8847, bottom left is the 
MIPS R3010, and above is the Weitek 3364. 

A-55 

Pads 

I 

Control 

I 
' 

Status 
reg. 

Pads 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 683



A·56 A.1 O Putting It All Together 

provide extended precision because the most influential users are those who run 
portable codes, which can't rely on extended precision. However, as we have 
seen, extended precision can make for faster and simpler math libraries. 

A summary of the three chips is given in Figures A.31 (page A-53) and A.32. 
Note that a higher transistor count generally leads to smaller cycle counts. 
Comparing the cycles/op numbers needs to be done carefully because the figures 
for the MIPS chip are those for a complete system (R3000/3010 pair), while the 
Weitek and TI numbers are for standalone chips, and are usually larger when 
used in a complete system. 

The MIPS chip has the fewest transistors of the three. This is reflected in the 
fact that it is the only chip of the three that does not have any pipelining or 
hardware square root. Further, the multiplication and addition operations are not 
completely independent because they share the carry-propagate adder that 
performs the final rounding (as well as the rounding logic). Addition on the 
R3010 uses a mixture of ripple, CLA, and carry select. A carry-select adder is 
used in the fashion of Figure A.16 (page A-38). Within each half, carries are 
propagated using a hybrid ripple-CLA scheme of the type indicated in Figure 
A.14. However, this is further tuned by varying the size of each block, rather 
than having each fixed at four bits (as they are in Figure A)4 on page A-36). 
The multiplier is midway between the designs of Figures A.2 (page A-4) and 
A.22 (page A-45). It has an array just large enough so that output can be fed 
back into the input without having to be clocked. Also, it uses radix-4 Booth 
recoding and the even-odd technique of Figure A.24 (page A-47). The R3010 
can do a divide and multiply in parallel (like the Weitek chip but unlike the TI 
chip). The divider is a radix-4 SRT method with quotient digits -2, -1, 0, 1, and 
2, and is similar to that described in Taylor [1985]. Double-precision division is 
about four times slower than multiplication. The R3010 shows that for chips 
using an O(n) multiplier, an SRT divider can operate fast enough to keep area
sonable ratio between multiply and divide. 

The Weitek 3364 has independent add, multiply, and divide units, and also 
uses radix-4 SRT division. However, the add and multiply operations on the 
W eitek chip are pipelined. The three addition stages are ( 1) exponent compare, 
(2) add followed by shift (or vice versa), and (3) final rounding. Stages (1) and 
(3) take only a half-cycle, allowing the whole operation to be done in two cycles, 
even though there are three pipline stages. The multiplier uses an array of the 
style of Figure A.23 but uses radix-8 Booth recoding, which means it must com
pute 3 times the multiplier. The three multiplier pipeline stages are (1) compute 
3b, (2) pass through array, and (3) final carry-propagation add and round. Single 
precision passes through the array once, double precision twice. Like addition, 
the latency is two cycles. The Weitek chip uses ,an interesting addition 
algorithm. It is a variant on the carry-skip adder pictured in Figure A.15 (page 
A-37). However Pij, which is the logical AND of many terms, is computed by 
rippling, performing one AND per ripple. Thus, while the carries propagate left 
within a block, the value of Pij is propagating right within the next block, and 
the block sizes are chosen so that both waves complete at the same time. Unlike 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 684



A.11 

Computer Arithmetic A·57 

the MIPS chip, the 3364 has hardware square root, which shares the divide 
hardware. The ratio of double-precision multiply to divide is 2: 17. The large 
disparity between multiply and divide is due to the fact that multiplication uses 
radix-8 Booth recoding, while division uses a radix-4 method. In the MIPS 
R3010, multiplication and division use the same radix. 

The notable feature of the TI 8847 is that it does division by iteration (using 
the Goldschmidt algorithm discussed in Section A.6). This improves the speed 
of division (the ratio of multiply to divide is 3: 11), but means that multiplication 
and division cannot be done in parallel as on the other two chips. Addition has a 
two-stage pipeline. Exponent compare, fraction shift, and fraction addition are 
done in the first stage, normalization and rounding in the second stage. Multipli
cation uses a binary tree of signed-digit adders and has a three-stage pipeline. 
The first stage passes through the array retiring half the bits, the second stage 
passes through the array a second time, and the third stage converts from signed
digit form to two's complement. Since there is only one array, a new multiply 
operation can only be initiated in every other cycle. However, by slowing down 
the clock, two passes through the array can be made in a single cycle. In this 
case, a new multiplication can be initiated in each cycle. The 8847 adder uses a 
carry-select algorithm rather than carry lookahead. As mentioned in Section A.6, 
the TI ·carries 60 bits of precision in order to do correctly rounded division. 

These three chips illustrate the different tradeoffs made by designers with 
similar constraints. One of the most interesting things about these chips is the 
diversity of their algorithms. Each uses a different add algorithm, as well as a 
different multiply algorithm. In fact, Booth recoding is the only technique that is 
universally used by all the chips. 

Fallacies and Pitfalls 

Fallacy: Underflows rarely occur in actual floating-point application code. 

Although most codes rarely underflow, there are actual codes that underflow 
frequently. SDRWAVE [Kahaner 1988], which solves a one-dimensional wave 
equation, is one such example. This program underflows quite frequently, even 
when functioning properly. Measurements on one machine show that adding 
hardware support for gradual underflow would cause SDRWA VE to run about 
50% faster. 

Fallacy: Conversions between integer and floating point are rare. 

In fact, in Spice they are as frequent as divides. The assumption that conversions 
are rare leads to a mistake in the SP ARC instruction set, which does not provide 
an instruction to move from integer registers to floating-point registers. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 685



A·58 A.11 Fallacies and Pitfalls 

Pitfall: Don't increase the speed of a floating-point unit without increasing its 
memory bandwidth. 

A typical use of a floating-point unit is to add two vectors to produce a third 
vector. If these vectors consist of double-precision numbers, then each floating
point add will use three operands of 64 bits each, or 24 bytes of memory. The 
memory bandwidth requirements are even greater if the floating-point unit can 
perform addition and multiplication in parallel (as most do). 

Pitfall: -xis not the same as 0 -x. 

This is a fine point in the IEEE standard that has tripped up some designers. 
Because floating-point numbers use the sign/magnitude system, there are two 
zeros, +O and -0. The standard says that 0 - 0 = +O, whereas -(0) = -0. Thus -x 
is not the same as 0 - x when x = 0. 

A.1 2 I Historical Perspective and References 

The earliest computers used fixed point rather than floating point. In 
"Preliminary Discussion of the Logical Design of an Electronic Computing In
strument," Burks, Goldstine, and von Neumann put it like this: 

There appear to be two major purposes in a ''floating" decimal point system 
both of which arise from the fact that the number of digits in a word is a con
stant fixed by design considerations for each particular machine. The first of 
these purposes is to retain in a sum or product as many significant digits as pos
sible and the second of these is to free the human operator from the burden of 
estimating and inserting into a problem "scale factors" - multiplicative con
stants which serve to keep numbers within the limits of the machine. 

There is, of course, no denying the fact that human time is consumed in arrang
ing for the introduction of suitable scale factors. We only argue that the time so 
consumed is a very small percentage of the total time we will spend in preparing 
an interesting problem for our machine. The first advantage of the floating point 
is, we feel, somewhat illusory. In order to have such a floating point, one must 
waste memory capacity which could otherwise be used for carrying more digits 
per word. It would therefore seem to us not at all clear whether the modest 
advantages of a floating binary point offset the loss of memory capacity and the 
increased complexity of the arithmetic and control circuits. [Bell and Newell 
1971, 97] 

This enables us to see things from the -perspective of early computer design
ers, who believed that saving computer time and memory were more important 
than saving programmer time. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 686



Computer Arithmetic A·59 

The original papers introducing the Wallace tree, Booth recoding, SRT divi
sion, overlapped triplets, and so on, are reprinted in Swartzlander [1980]. A 
good explanation of an early machine (the IBM 360/91) that used a pipelined 
Wallace tree, Booth recoding, and iterative division is in Anderson et al. [1967]. 
A discussion of the average time for single-bit SRT division is in Freiman 
[1961]; this is one of the few interesting historical papers that does not appear in 
Swartzlander. 

The standard book of Mead and Conway [1980] discouraged the use of CLAs 
as not being cost effective in VLSI. Brent and Kung [1982] was an important 
paper that helped combat that view. An example of a detailed layout for CLAs 
can be found in Ngai and Irwin [1985] or in Weste and Eshraghian [1985]. 
Takagi, Yasuura, and Yajima [1985] provides a detailed description of a si~ned
digit-tree multiplier. 

Although the IEEE standard is being widely adopted, there are still three 
other important floating-point systems in use: the IBM/370, the DEC VAX, and 
the Cray. We will briefly discuss these older formats. The VAX format is closest 
to the IEEE standard. Its single-precision format (F format) is like IEEE single 
precision in that it has a hidden bit, 8 bits of exponent, and 23 bits of fraction. 
However, it does not have a sticky bit, which causes it to round halfway cases up 
instead of to even. The VAX has a slightly different exponent range than IEEE 
single: Emin is -128 rather than -126 as in IEEE, and Emax is 126 instead of 127. 
The main differences between VAX and IEEE are the lack of special values and 
gradual underflow. The VAX has a reserved operand, but it works like a signal
ing NaN: it traps whenever it is referenced. Originally, the VAX's double preci
sion (D format) also had 8 bits of exponent. However, as this is too small for 
many applications, a G format was added; like the IEEE standard, this format 
has 11 bits of exponent. The VAX also has an H format, which is 128 bits long. 

The IBM/370 floating-point format uses base 16 rather than base 2. This 
means it cannot use a hidden bit. In single precision, it has 7 bits of exponent 
and 24 bits (6 hex digits) of fraction. Thus, the largest representable number is 
162

7 = 24 x 27 = 229
, compared with 22

8 
for IEEE. However, a number that is 

' normalized in the hexadecimal sense only needs to have a nonzero leading digit. 
When interpreted in binary, the three most significant bits could be zero. Thus, 
there are potentially fewer than 24 bits of significance. The reason for using the 
higher base was to minimize the amount of shifting required when adding 
floating-point numbers. However, this is less significant in current machines, 
where the floating-point add time is usually fixed independent of the operands. 
Another difference between 370 arithmetic and IEEE arithmetic is that the 370 
has neither a round digit nor a sticky digit, which effectively means that it 
truncates rather than rounds. Thus, in many computations, the result will 
systematically be too small. Unlike the VAX and IEEE arithmetic, every bit 
pattern is a valid number. Thus, library routines must establish conventions for 

what to return in case of errors. In the IBM FORTRAN library, for example, f=i. 
returns 2! 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 687



A·60 A.12 Historical Perspective and References 

Arithmetic on Cray computers is interesting because it is driven by a 
motivation for the highest possiqle floating-point performance. It has a 15-bit 
exponent field and a 48-bit fraction field. Addition on Cray computers does not 
have a guard digit, and multiplication is even less accurate than addition. 
Thinking of multiplication as a sum of p numbers, each 2p bits long, what Cray 
computers do is to drop the low-order bits of each summand. Thus, analyzing the 
exact error characteristics of the multiply operation is not easy. Reciprocals are 
computed using iteration, and division of a by b is done by multiplying a times 
l/b. The errors in multiplication and reciprocation combine to make the last 
three bits of a divide operation unreliable. At least Cray computers serve to keep 
numerical analysts on their toes! 

The IEEE standardization process began in 1977, inspired mainly by W. 
Kahan, and is based partly on Kahan's work with the IBM 7094 at the Univer
sity of Toronto [Kahan 1968]. The standardization process was a lengthy affair, 
with gradual underflow causing the most controversy. (According to Cleve 
Moler, visitors to the U.S. were advised that the sights not to be missed were Las 

. Vegas, the Grand Canyon, and the IEEE standards committee meeting.) The 
standard was finally approved in 1985. The Intel 8087 was the first major com
mercial IEEE implementation and appeared in 1981, before the standard was 
finalized. It contains features that were eliminated in the final standard, such as 
projective bits. According to Kahan, the length of double-extended precision 
was based on what could be implemented in the 8087. Although the IEEE stan
dard was not based on any existing floating-point system, most of its features 
were present in some other system. For example the CDC 6600 reserved special 
bit patterns for INDEFINITE and INFINITY, while the idea of denormal num
bers appears in Goldberg [1967] as well as in Kahan [1968]. Kahan was awarded 
the 1989 Turing prize in recognition of his work on floating point. 

References 

ANDERSON, S. F., J. G. EARLE, R. E. GOLDSCHMIDT, AND D. M. POWERS [1967]. "The IBM 
System/360 Model 91: Floating-point execution unit," IBM J. Research and Development 11, 34-
53. Reprinted in [Swartzlander 1980). 

Good description of an early high-performance floating-point unit that used a pipelined 
Wallace-tree multiplier and iterative division. 

ATKINS, D. E. [1968). "Higher-radix division using estimates of the divisor and partial remainders," 
IEEE Trans. on Computers C-17:10, 925-934. Reprinted in [Swartzlander 1980). 

This is the standard reference for high-radix SRT division. 

BELL, C. G. AND A. NEWELL, [1971). Computer Structures: Readings and Examples, McGraw
Hill, New York. 

BIRMAN, M., G. CHU, L. HU, J. MCLEOD, N. BEDARD, F. WARE, L. TORBAN, AND C. M. LIM 
[1988). "Design of a high-speed arithmetic datapath," Proc. ICCD: VLSI Computers and 
Processors, 214-216. 

Fairly detailed description of the Weitek 3364 floating-point chip. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 688



Computer Arithmetic A-61 

BRENT, R. P. AND H. T. KUNG [1982) "A regular layout for parallel adders," IEEE Trans. on 
Computers C-31, 260-264. 

This is the paper that popularized CLA adders in VLSI. 

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN, [1946). Preliminary Discussion of the 
Logical Design of an Electronic Computing Instrument. 

CODY, W. J. [1988). "Floating point standards: Theory and practice," in Reliability in Computing: 
The Role of Interval Methods in Scientific Computing, R. E. Moore, (ed.), Academic Press, Boston, 
Mass., 99-107. 

Presents a status of hardware and software implementations of the standard. 

CODY, W. J., J. T. COONEN, D. M. GAY, K. HANSON, D. HOUGH, W. KAHAN, R. KARPINSKI, 
J. PALMER, F. N. RIS, AND D. STEVENSON [1984). "A proposed radix- and word-length
independent standard for floating-point arithmetic," IEEE Micro 4:4, 86-100. 

Contains a draft of the 854 standard, which is more general than 754. The significance of this 
article is that it contains commentary on the standard, most of which is equally relevant to 
754. 

COONEN, J. [1984). Contributions to a Proposed Standard for Binary Floating-Point Arithmetic, 
Ph.D. Thesis, Univ. of Calif., Berkeley. 

The only detailed discussion of how rounding modes can be used to implement efficient binary 
decimal conversion. 

FREIMAN, C. V. [1961). "Statistical analysis of certain binary division algorithms," Proc. IRE 49:1, 
91-103. 

Contains an analysis of the performance of shifting-over-zeros SRT division algorithm. 

GOLDBERG, D. [1989). "Floating-point and computer systems," Xerox Tech. Rep. CSL-89-9. A 
version of this paper will appear in Computing Surveys. 

Contains an in-depth tutorial on the IEEE standard from the software point of view. 

GOLDBERG, I. B. [1967). "27 bits are not enough for 8-digit accuracy," Comm. ACM 10:2, 105-106. 

This paper proposes using hidden bits and gradual underflow. 

GOSLING, J. B. [1980). Design of Arithmetic Units for Digital Computers, Springer-Verlag 
NewYork, Inc., New York. 

A concise, well-written book, although itfocuses on MS! designs. 

HAMACHER, V. C., Z. G. VRANESIC, ANDS. G. ZAKY [1984). Computer Organization, 2nd ed., 
McGraw-Hill, New York. 

Introductory computer architecture book with a good chapter on computer arithmetic. 

HWANG, K. [1979). Computer Arithmetic: Principles, Architecture, and Design, Wiley, New York. 

This book contains the widest range of topics of the computer arithmetic books. 

IEEE [1985). "IEEE standard for binary floating-point arithmetic," SIGPLAN Notices 22:2, 9-25. 

IEEE 754 is reprinted here. 

KAHAN, W. [1968). "7094-II system support for numerical analysis," SHARE Secretarial 
Distribution SSD-159. 

This system had many features that were incorporated into the IEEE floating-point standard. 

KAHANER, D. K. [1988). "Benchmarks for 'real' programs," SIAM News (November). 

The benchmark presented in this article turns out to cause many underflows. 

KNUTH, D. [1981). The Art of Computer Programming, vol II, 2nd ed., Addison-Wesley, Reading, 
Mass. 

Has a section on the distribution of floating-point numbers. 

KOGGE, P. [1981). The Architecture of Pipelined Computers, McGraw-Hill, New York. 
Has brief discussion of pipelined multipliers. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 689



A·62 A.12 Historical Perspective and References 

KOHN, L. AND S.-W. FU, [1989). "A 1,000,000 transistor microprocessor," IEEE Int' l Solid-State 
Circuits Conj., 54-55. 

A brief overview of the Intel 860, whose floating-point addition algorithm is discussed in 
Section A.4. 

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS, AND D. ZURAS, [1988). "Integer multiplication 
and division on the HP Precision Architecture," IEEE Trans. on Computers 37:8, 980-990. 

Rationale for the integer- and divide-step instructions in the Precision architecture. 

MEAD, C. AND L. CONWAY [1980). Introduction to VLSI Systems, Addison-Wesley, Reading, 
Mass. 

NGA!, T-F. AND M. J. IRWIN [1985). "Regular, area-time efficient carry-lookahead adders," Proc. 
Seventh IEEE Symposium on Computer Arithmetic, 9-15. 

Describes a CLA adder like that of Figure A.13, where the bits flow up and then come back 
down. 

PENG, V., S. SAMUDRALA, AND M. GAVRIELOV [1987). "On the implementation of shifters, 
multipliers, and dividers in VLSI floating point units," Proc. Eighth IEEE Symposium on 
Computer Arithmetic, 95-102. 

Highly recommended survey of different techniques actually used in VLSI designs. 

ROWEN, C., M. JOHNSON, and P. RIES [1988). "The MIPS R3010 floating-point coprocessor," 
IEEE Micro 53-62 (June). 

SANTORO, M. R., G. BEWICK, and M.A. HOROWITZ [1989). "Rounding algorithms for IEEE 
multipliers," Proc. Ninth IEEE Symposium on Computer Arithmetic, 176-183. 

A very readable discussion of how to efficiently implement rounding for floating-point 
multiplication. 

SCOTT, N. R. [1985). Computer Number Systems and Arithmetic, Prentice-Hall, Englewood Cliffs, 
NJ. 

SWARTZLANDER, E., ED. [1980). Computer Arithmetic, Dowden, Hutchison and Ross (distributed 
by Van Nostrand, New York). 

A collection of historical papers. 

TAKAGI, N., H. YASUURA, ANDS. YAJIMA [1985)."High-speed VLSI multiplication algorithm 
with a redundant binary addition tree," IEEE Trans. on Computers C-34:9, 789-796. 

A discussion of the binary-tree signed multiplier that was the basis for the design used in the Tl 
8847. 

TAYLOR, G. S. [1981). "Compatible hardware for division and square root," Proc. Fifth IEEE 
Symposium on Computer Arithmetic, 127-134. 

Good discussion of a radix-4 SRT division algorithm. 

TAYLOR, G. S. [1985). "Radix 16 SRT dividers with overlapped quotient selection stages," Proc. 
Seventh IEEE Symposium on Computer Arithmetic, 64-71. 

Describes a very sophisticated high-radix division algorithm. 

WESTE, N. AND K. ESHRAGHIAN [1985). Principles of CMOS VLSI Design, Addison-Wesley, 
Reading, Mass. 

This textbook has a section on the layouts of various kinds of adders. 

WILLIAMS, T. E., M. HOROWITZ, R. L. ALVERSON, AND T. S. YANG [1987). "A self-timed chip 
for division," Advanced Research in VLSI, Proc. 1987 Stanford Conf, The MIT Press, Cambridge, 
Mass. 

Describes a divider that tries to get the speed of a combinational design without using the area 
that would be required by one. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 690



Computer Arithmetic A·63 

EXERCISES 

A.1 [15/15/20] <A.3> Represent the following numbers as single-precision and double
precision IEEE floating-point numbers. 

a. [15] 10 

b. [15] 10.5 

c. [20] 0.1 

A.2 [10/15/20] <A.8> Complete the details of the block diagrams for the following 
adders. 

a. [10] In Figure A.11, show how to implement the "l" and "2" boxes in terms of AND 
and OR gates. 

b. [15] In Figure A.14, what signals need to flow from the adder cells in the top row into 
the "C" cells? Write the logic equations for the "C" box. 

c. [20] Show how to extend the block diagram in A.13 so it will produce the carry-out 
bit Cg. 

A.3 [15/15] <A.4> Floating-point addition. 

a. [15] In a decimal system with p = 5, compute -4.5673 + 4.9999 x 10-5 assuming 
round to nearest. Give the value of the guard and round digits, and the sticky bit. 

b. [15] What is the value of the sum for the other three rounding modes? 

A.4 [15] <A.3> Show that if gradual underflow is not used, then it is no longer true that 

x * y if and only if x - y * 0. 

A.5 [25] <A.9> Write out the analogue of Figure A.21 for radix-8 Booth recoding. 

A.6 [15] <A.3> Is the ordering of nonnegative floating-point numbers the same as 
integers when denormalized numbers are also considered? What if the denormalized 
numbers are represented using the wrapped representation mentioned in Section A.5? 

A.7 [25/10] <A.2> One's complement. 

a. [25] When adding two's complement numbers, you discard the carry out from the 
most significant bit. Show that in one's complement, you must add the carry back 
into the low.end. 

b. [10] Find the rule for detecting overflow in one's complement. 

A.8 [15] <A.2> Equations A.2.1 and A.2.2 are for adding two n-bit numbers. Derive 
similar equations for subtraction, where there will be a borrow instead of a carry. 

A.9 [15/20] <A.2> More one's complement. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 691



A·64 Exercises 

a. [15] A complication that arises with one's complement arithmetic is that zero has two 
representations. Show that even if the negative form of zero is never an input, the 
adder in Equation A.2.1 (with c0 the end around carry) can still produce a negative 
zero. 

b. [20] Use the fact that a+ b =a - (-b) together with the subtractor circuit of the 
previous problem to derive a different one's complement adder. Can this adder ever 
produce negative zero? 

A.10 [20] <A.2> On a machine that doesn't detect integer overflow in hardware, show 
how you would detect overflow on a signed addition operation in software. 

A.11 [25] <A.9> In the array of Figure A.23, the fact that an array can be pipelined is not 
exploited. Can you come up with a design that feeds the output of the bottom CSA into 
the bottom CSAs instead of the top one, and that will run faster than the arrangement of 
Figure A.23? 

A.12 [15] <A.9> For ordinary Booth recoding, the multiple of b used in the ith step is 
simply ai-l - ai. Can you find a similar formula for radix-4 Booth recoding (overlapped 
triplets)? 

A.13 [25/15/30] <A.9> Shifting-over-zeros multiplication. 

a. [25] Does Booth recoding always increase the number of zeros in a number? Can it 
ever decrease the number of zeros? 

b. [15] Given the number an_1 .. ·ao, define co = 0, and define ci to be the carry out from 
adding ai, ai-1' and ci-l· Then modified Booth recoding gives a number with digits 
Ai= ai + ci - 2ci+l ·What is the recoding of 01101? 

c. [30] Show that modified Booth recoding never decreases the number of zeros. 

A.14 [20/15/20/15/20/15] <A.6> Iterative square root. 

a. [20] Use Newton's method to derive an iterative algorithm for square root. The 
formula will involve a division. 

b. [15] What is the fastest way you can think of to divide a floating-point number by 2? 

c. [20] If division is slow, then the iterative square root routine will also be slow. Use 
Newton's method on/(x) = l/x2 - a to derive a method that doesn't use any divisions. 

d. [15] Assume that the ratio division by 2 : floating-point add: floating-point multiply 
is 1 :2:4. What ratios of multiplication time to divide time makes each iteration step 
in the method of Part c faster than each iteration in the method of Part a? 

e. [20] When using the method of Part a, how many bits need to be in the initial guess 
in order to get double-precision accuracy after 3 iterations? (You may ignore round
ing error.) 

f. [15] Suppose that when Spice runs on the TI 8847, it spends 16.7% of its time in the 
square root routine (this percentage has been measured on other machines). Using the 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 692



Computer Arithmetic A·65 

values in Figure A.31 and assuming 3 iterations, how much slower would Spice run if 
square root was implemented in software using the method of Part a? 

A.15 [30/1 O] <A.2> This problem presents an algorithm for adding signed-magnitude 
numbers. If A and B are integers of opposite signs, let a and b be their magnitudes. 

a. [30] Show that the following rules for manipulating the unsigned numbers a and b 
gives A +B 

1. Complement one of the operands. 

2. Using end around carry (as in the one's complement adder of problem A.7) add 
the complemented operand and the other (uncomplemented) one. 

3. If there was a carry out, the sign of the result is the sign associated with the 
uncomplemented operand. 

4. Otherwise, if there was no carry out, complement the result, and give it the sign of 
the complemented operand. 

b. [10] <A.4> In our discussion of floating-point add, we suggested that when the result 
is negative the +1 needed to do two's complement be done in the rounding unit. Use 
the result of Part A to devise a floating-point adder that doesn't require this. 

A.16 [15] <A.7> Our example that showed that double rounding can give a different 
answer from rounding once used the round-to-even rule. If halfway cases are rounded up, 
is double rounding still dangerous? 

A.17 [15/30] <A.9> The text discussed radix-4 SRT division with quotient digits of -2, 

-1, 0, 1, 2. Suppose that 3 and-3 are also allowed as quotient digits. 

a. [15] What relation replaces I ri I :::; 2b/3? 

b. [30] How many bits of b and P do you need to examine ? 

A.18 [25] <A.6,A.9> The discussion of the remainder-step instruction assumed that 
division was done using a bit-at-a-time algorithm. What would have to change if 
division was implemented using a higher-radix method? 

A.19 [20/20/25/25/20] <A.3> Signed-logarithm representation. 

a. [20] Suppose you want to represent a number x by its sign and log Ix I . Then if 

log Ix I is to be nonnegative, x must be ;::: 1. You can allow smaller x if you represent 

x by log k Ix I for some constant k. Use 0 if k Ix I < 1. Now log k Ix I will not be an 

integer, but it can be represented as a fixed-point number. If we put the binary point 
m bits to the left of the least significant bit, write down formulas for converting x to 
signed-logarithm form and back. 

b. [20] Give the rules for multiplication and division. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 693



A·66 Exercises 

c. [25] Show that no matter what base of logs is used, this system cannot exactly 
represent all of 1, 2, and 3. 

d. [25] Show how to implement addition using a table containing 2P- l entries of p - 1 
bits each, where the signed logarithm number is stored in a p-bit register. 

e. [20] Show that for numbers which are exactly represe!'ltable in this system, 
multiplication is exact, addition is not, but a(b + c) =ab+ ac exactly (when there is 
no over/underflow). 

A.20 [20/l 0] <A.8> Carry-skip adders. 

a. [20] Assuming that time is proportional to logic levels, what (fixed) block size gives 
the fastest addition for an adder of some fixed total length? 

b. [10] Explain why the carry-skip adder takes time ~. 

A.21 [Discussion] In the MIPS approach to exception handling, you need a test for 
determining whether two floating-point operands could cause an exception. This should 
be fast and also not have too many false positives. Can you come up with a practical test? 
The performance cost of your design will depend on the distribution of floating-point 
numbers. This is discussed in Knuth [1981] and Swartzlander [1980]. 

A.22 [35] <A.8> The simplest carry-select adder replaces an n-bit adder with n/2 bit 
adders and a mux. A more complex carry-select adder would use n/4-bit adders and more 
muxes. Can you design an adder that uses muxes and 1-bit adders and runs in O(log n) 
time? Such an adder is called a conditional-sum adder. 

A.23 [10/15/20/15/15] <A.6> Correctly rounded iterative division. Let a and b be 
floating-point numbers with p-bit significands (p = 53 in double precision). Let q be the 
exact quotient q = a/b. Suppose that q is the result of an iteration process, that if has a 
few extra bits of precision, and that 0 < q - if < 2-p . 

a. [10] If x is a floating-point number, and 1 ~ x < 2, what is the next representable 
number after x? 

b. [15] Show how to compute q' from q, where q' hasp+ 1 bits of precision and 

I q - q' I < 2-p · 

c. [20] Assuming round to nearest, show that the correctly rounded quotient is either q', 

q' - 2-P, or q' + 2-P. 

d. [15] Give rules for computing the correctly rounded quotient from q' based on the 

low- order bit of q' and the sign of a - bq'. 

e. [15] Solve Part c for the other three rounding modes. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 694



Complete Instruction 
Set Tables 

8.1 VAX User Instruction Se.t 
8.2 System/360 Instruction Set 
8.3 8086 Instruction Set 

8·2 
8·6 
8·9 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 695



B·2 

B.1 

B.1 VAX User Instruction Set 

VAX User Instruction Set 

The following tables include all the VAX user instructions; the system 
instructions are not included. 

The underscore following the instruction name implies that the instruction 
will operate upon any data type contained in the parentheses following that 
instruction. The data type abbreviations are: 

B =byte (8 bits) F = F _floating (32 bits) 

W =word (16 bits) D = D_floating (64 bits) 

G = G_floating (64 bits) 

H = H_floating (128 bits) 

L =longword (32 bits) 

Q =quadword (64 bits) 

0 = octaword (128 bits) 

Integer and Floating-Point Logical and Arithmetic 
Instructions 

Instruction Description 

ADA WI Add aligned word interlocked 

ADD_2 Add (B,W,L,F,D,G,H) 2 operand 

ADD_3 Add (B,W,L,F,D,G,H) 3 operand 

ADWC Add with carry 

ASH_ Arithmetic shift (L,Q) 

BIC_2 Bit clear (B,W,L) 2 operand 

BIC_3 Bit clear (B,W,L) 3 operand 

BICPSW Bit clear processor status word 

BIS_2 Bit set (B,W,L) 2 operand 

BIS_3 Bit set (B,W,L) 3 operand 

BI SP SW Bit set processor status word 

BIT - Bit test (B,W,L) 

CLR_ Clear (B,W,L=F,Q=D=G,O=H) 

CVT - Convert (B,W,L,F,D,G,H)(B,W,L,F,D,G,H) except BB, 
WW, LL, FF, DD, GG, HH, DG, and GD 

CVTR_L Convert rounded (F,D,G,H) to longword 

CMP - Compare (B,W,L,F,D,G,H) 

DEC - Decrement (B,W,L) 

DIV_2 Divide (B,W,L,F,D,G,H) 2 operand 

DIV_3 Divide (B,W,L,F,D,G,H) 3 operand 

EDIV Extended divide 

EMOD - Extended modulus (F,D,G,H) 

EMUL Extended multiply 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 696



Appendix B: Complete Instruction Set Tables B·3 

Instruction Description 

INC - Increment (B,W,L) 

INDEX Compute index 

MCOM_ Move complemented (B,W,L) 

MNEG_ Move negated (B,W,L,F,D,G,H) 

MOVA_ Move address (B,W,L=F,Q=D=G,O=H) 

MOV_* Move (B,W,L,F,D,G,H,Q,O)**-general move between 
two operands 

MOVPSL Move from processor status longword 

MOVZ - Move zero-extended (BW,BL,WL) 

MUL_2 Multiply (B,W,L,F,D,G,H) 2 operand 

MUL_3 Multiply (B,W,L,F,D,G,H) 3 operand 

POLY - Polynomial evaluation (F,D,G,~) 

POPR Pop registers from stack 

PUS HA_ Push address (B,W,L=F,Q=D=G,O=H) on stack 

PUSHL Push longword on stack 

PUS HR Push registers on stack 

ROTL Rotate longword 

SBWC Subtract with carry 

SUB_2 Subtract (B,W,L,F,D,G,H) 2 operand 

SUB_3 Subtract (B,W,L,F,D,G,H) 3 operand 

TST - Test (B,W,L,F,D,G,H) 

XOR_2 Exclusive or (B,W,L) 2 operand 

XOR_3 Exclusive or (B,W,L) 3 operand 

Branch, Jump, and Procedure Call Instructions 

Instruction Description 

ACB - Add, compare and branch (B,W,L.F,D,G,H) 

AOBLEQ Add one and branch less than or equal 

AOBLSS Add one and branch less than 

BB - Branch on bit (set, clear) 

BBS - Branch on bit (set, clear) and (set, clear) bit 

BB_I Branch on bit set (clear) and set (clear) bit interlocked 

BCC Branch carry cleared 

BCS Branch carry set 

BEQL Branch equal 

BEQLU Branch equal unsigned 

BGEQ Branch greater than or equal 

BGEQU Branch greater than or equal unsigned 

BGTR Branch greater than 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 697



9.4 B.1 VAX User Instruction Set 

Instruction Description 

BGTRU Branch greater than unsigned 

BLB - Branch on low bit (set, clear) 

BLEQ Branch less than or equal 

BLEQU Branch less than or equal unsigned 

BLSS Btranch less than 

BLSSU Branch less than unsigned 

BNEQ Branch not equal 

BNEQU Branch not equal unsigned 

BR_ Jump with (B,W) displacement 

BSB - Branch to subroutine with (B,W) displacement 

BV_ Branch overflow (set,clear) 

CAL LG Call procedure with general argument list 

CALLS Call procedure with stack argument list 

CASE - Case on (B,W,L) 

JMP Jump 

JSB Jump to subroutine 

RET Return from procedure 

RSB Return from subroutine 

SOBGEQ Subtract one and branch greater than or equal 

SOBGTR Subtract one and branch greater than 

Decimal and String Instructions 

Instruction Description 

ADDP4 Add packed 4 operand 

ADDP6 Add packed 6 operand 

ASHP Arithmetic shift packed and round 

CMPC3 Compare characters 3 operand 

CMPC5 Compare characters 5 operand 

CMPP3 Compare packed 3 operand 

CMPP4 Compare packed 4 operand 

CRC Calculate cyclic redundancy check· 

CVTLP Convert long to packed 

CVTPL Convert packed to long 

CVTPT Convert packed to trailing 

CVTTP Convert trailing to packed 

CVTPS Convert packed to separate 

CVTSP Convert separate to packed 

DIVP Divide packed 

EDITPC Edit packed to character string 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 698



Appendix B: Complete Instruction Set Tables B·S 

Instruction Description 

LOCC Locate character 

MATCHC Match characters 

MOVC3 Move character 3 operand 

MOVC5 Move character 5 operand 

MOVP Move packed 

MOVTC Move translated characters 

MOVTUC Move translated until character 

MULP Multiply packed 

SCANC Scan characters 

SKPC Skip character 

SPANC Span characters 

SUBP4 Subtract packed 4 operand 

SUBP6 Subtract packed 6 operand 

Variable-Length Bit Field Instructions 

Instruction Description 

CMPV Compare field 

CMPZV Compare zero-extended field 

EXTV Extract field 

EXTZV Extract zero-extended field 

INSV Insert field 

FFS Find first set 

FFC Find first clear 

Queue Instructions 

Instruction Description 

INSQHI Insert entry into queue at head, interlocked 

INS QT I Insert entry into queue at tail, interlocked 

INS QUE Insert entry in queue 

REMQHI Remove entry from queue at head, interlocked 

REMQTI Remove entry from queue at tail, interlocked 

REMQUE Remove entry from queue 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 699



B·& B.2 System/360 Instruction Set 

8.2 I System/360 Instruction Set 

The 360 instruction set is shown in the following tables, organized by instruction 
type and format. System/370 contains 15 additional user instructions. 

Integer/Logical and Floating-Point R-R 
Instructions 

The * indicates the instruction is floating point, and may be either D (double 
precision) or E (single precision). 

Instruction Description 

ALR Add logical register 

AR Add register 

A*R FP addition 

CLR Compare logical register 

CR Compare register 

C*R FPcompare 

DR Divide register 

D*R FP divide 

H*R FP halve 

LCR Load complement register 

LC*R Load complement 

LNR Load negative register 

LN*R Load negative 

LPR Load positive register 

LP*R Load positive 

LR Load register 

L*R Load FP register 

LTR Load and test register 

LT*R Load and test FP register 

MR Multiply register 

M*R FP multiply 

NR And register 

OR Or register 

SLR Subtract logical register 

SR Subtract register 

S*R FP subtraction 

XR Exclusive or register 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 700



Appendix B: Complete Instruction Set Tables B·7 

Branches and Status Setting R-R Instructions 

These are R-R format instructions that either branch or set some system status; 
several of them are privileged and legal only in supervisor mode. 

Instruction Description 

BALR Branch and link 

BCTR Branch on count 

BCR Branch/condition 

ISK Insert key 

SPM Set program mask 

SSK Set storage key 

SVC Supervisor call 

Integer/Logical and Floating-Point Instructions
RX Format 

These are all RX format instructions. The symbol "+" means either a word 
operation (and then stands for nothing) or H (meaning halfword); for example, 
A+ stands for the two opcodes A and AH. The symbol "*" is D or E standing for 
double- or single-precision floating point. 

Instruction Description 

A+ Add 

A* FPadd 

AL Add logical 

C+ Compare 

C* PP compare 

CL Compare logical 

D Divide 

D* FP divide 

L+ Load 

L* Load FP register 

M+ Multiply 

M* FP multiply 

N And 

0 Or 

s+ Subtract 

S* FP subtract 

SL Subtract logical 

ST+ Store 

ST* Store FP register 

x Exclusive or 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 701



B·B B.2 System/360 Instruction Set 

Branches and Special Loads and Stores-RX format 

Instruction Description 

BAL Branch and link 

BC Branch condition 

BCT Branch on count 

CVB Convert-binary 

CVD Convert-decimal 

EX Execute 

IC Insert character 

LA Load address 

STC Store character 

RS and SI Format Instructions 

These are the RS and SI format instructions. The symbol "*" may be A 

(arithmetic) or L (logical). 

Instruction Description 

BXH Branch/high 

BXLE Branch/low-equal 

CLI Compare logical immediate 

HIO Haltl/O 

LPSW LoadPSW 

LM Load multiple 

MVI Move immediate 

NI And immediate 

OI Or immediate 

RDD Read direct 

SIO Start 1/0 

SL* Shift left AIL 

SLD* Shift left double AIL 
SR* Shift right AIL 

SRD* Shift right double AIL 

SSM Set system mask 

STM Store multiple 

TCH Test channel 

TIO Test 1/0 

TM Test under mask 

TS Test and set 
., 

WRD Write direct 

XI Exclusive or immediate 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 702



Appendix B: Complete Instruction Set Tables B·9 

SS Format Instructions 

These are all decimal or string instructions. 

Instruction Description 

AP Add packed 

CLC Compare logical chars 

CP Compare packed 

DP Divide packed 

ED Edit 

EDMK Edit and mark 

MP Multiply packed 

MVC Move character 

MVN Move numeric 

MVO Move with offset 

MVZ Move zone 

NC And characters 

oc Or characters 

PACK Pack (Character ~ decimal) 

SP Subtract packed 

TR Translate 

TRT Translate and test 

·uNPK Unpack 

xc Exclusive or characters 
~-

ZAP Zero and add packed 

B.3 J 8086 Instruction Set 

These charts contain the instruction set of the 8086; floating-point instructions 
that are neither included nor used by the 8086 benchmarks are not included. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 703



B-10 B.3 8086 Instruction Set 

Arithmetic and Logical Instructions 

Instruction Description 

AAA ASCII adjust after addition 

AAD ASCII adjust before division 

AAM ASCII adjust after multiplication 

AAS ASCII adjust after subtraction 

ADC Add with carry 

ADD Integer addition 

AND Logical and 

CBW/CWD/CDQ Convert byte to word/word to dword/dword to quad 

CLC Clear the carry flag 

CLD Clear the direction flag 

CLI Clear the interrupt flag 

CMC Complement the carry flag 

CMP Compare 

DAA Decimal adjust after addition 

DAS Decimal adjust after subtraction 

DEC Decrement 

DIV Unsigned divide 

IDIV Signed divide 

IMUL Signed multiplication 

INC Increment 

MUL Unsigned multiplication 

NEG Negate 

NOT Not 

OR Inclusive or 

RCL Rotate throµgh carry left 

RCR Rotate through carry right 

ROL Rotate left 

ROR Rotate right 

SAL/SHL Shift arithmetic left 

SAR Shift arithmetic right 

SBB Subtract with borrow 

SHR Shift logical right 

STC Set carry flag 

STD Set direction flag 

STI Set interrupt flag 

SUB Subtract 

TEST Logical compare 

XOR Exclusive or 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 704



Appendix 8 B·11 

Control Instructions 

Instruction Description 

CALL Call procedure (intrasegment) 

CALL Call procedure (intersegment) 

HLT Halt 

INT Call to interrupt procedure 

INTO On overflow call interrupt procedure 

IRET Interrupt return . 
JB/JNAE/JC Jump below 

JBE/JNA Jump below or equal 

JCXZ/JECXZ Jump CX/ECX zero 

JE/JZ Jump equal 

JL/JNGE Jump less 

JLE/JNG Jump less or equal 

JMP Jump (intrasegment) 

JMPF Jump (intersegment) 

JNB/JAE/JNC Jump not below 

JNBE/JA Jump not below or equal 

JNE/JNZ Jump not equal 

JNL/JCE Jump not less 

JNLE/JG Jump not less or equal 

JNO Jump no overflow 

JNP/JPO Jump not parity 

JNS Jump not sign 

JO Jump overflow 

JP/JPE Jump parity 

JS Jump sign 

LOCK Bus lock 

RET Return (intrasegment) 

RETF Return (intersegrnent) 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 705



B·12 B.3 8086 Instruction Set 

Data Transfer Instructions 

Instruction Description 

IN Input from a port 

LAHF Load flags into AH register 

LDS Load pointer to DS 

LEA Load effective address 

LES Load pointer to ES 

LOCK Bus lock 

MOV Move 

OUT Output to a port 

POP Pop off stack 

POPF/POPFD Pop from stack into flags 

PUSH Push onto stack 

PUSH Push segment register onto the stack 

PUSHF/PUSHFD Push flags onto stack 

SAHF Store AH register into flags 

XCHC Exchange 

XLAT/XLATB Table lookup translation 

String Instructions 

Instruction Description 

CMPS/CMPSB/CMPSW/CMPSD Compare string 

LODS/LODSB/LODSW/LODSD Load string 

MOVS/MOVSB/MOVSW/MOVSD Move string 

REP Repeat 

REPE/REPZ Repeat while equal 

REPNE/REPNZ Repeat while not equal 

SCAS/SCASB/SCASW/SCASD Scan string 

STOS/STOSB/STOSW/STOSD Store string 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 706



Detailed Instruction Set 
Measurements 

C.1 VAX Detailed Measurements C·2 
C.2 360 Detailed Measurements C·3 
C.3 Intel 8086 Detailed Measurements C·4 
C.4 DLX Detailed Instruction Set Measurements C·S 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 707



C-2 C.1 VAX Detailed Measurements 

C.1 VAX Detailed Measurements 

Instruction GCC Spice TeX COBOLX Average 

Control 30% 18% 30% 25% 26% 

Conditional Branch 20% 13% 19% 18% 17% 
BRB,BRW 6% 3% 4% 5% 5% 
CALLS,CALLG 2% 1% 4% 0% 2% 
RET 2% 1% 4% 0% 2% 
JMP 2% 1% 
Arithmetic, logical 40% 23% 33% 24% 30% 

CMP* 12% 5% 11% 9% 9% 
ADDL_ 5% 12% 4% 5% 
INCL 3% 3% 5% 3% 
MOVA* 1% 3% 4% 2% 3% 
TSTL 4% 2% 3% 2% 
CLRL 3% 1% 2% 3% 2% 
SUB*_ 3% 1% 3% 2% 
CVT*L 6% 0% 2% 
ASHL 3% 3% 0% 2% 
MULL_ 0% 5% 1% 
Data transfer 19% 15% 28% 4% 16% 

MOVL 15% 9% 17% 4% 11% 
PUSHL 3% 7% 2% 
MOVQ 6% 1% 
MOVZ*L 1% 4% 1% 
Floating point 0% 23% 0% 0% 6% 

MULD_ 9% 2% 
SUBD_ 6% 1% 
ADDD_ 6% 1% 
DIVD_ 3% 1% 
CMPD 2% 
Decimal, string 0% 0% 1% 38% 10% 

CVTTP,CVTPT 19% 5% 
MOVC3,MOVC5 1% 9% 2% 
ADDP4 6% 1% 
CMPP_ 2% 1% 
CMPC3 2% 1% 
Totals 88% 79% 92% 88% 87% 

FIGURE C.1 Instructions responsible for more than 1.5% of the dynamic executions in any benchmark. The 
instructions are broken into five classes, printed in boldface. The data in those rows give the total frequency for the 
operations in that class. Cells representing a contribution of 1 % or less are empty, except the average column can have 
an entry of 1 %. Because of rounding, the average can differ from what might appear to be correct if based on the figures 
in the individual columns. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 708



Appendix C: Detailed Instruction Set Measurements C·3 

c.21 360 Detailed Measurements 

Instruction PLIC FORTGO PLIGO COBOLGO Average 

Control 32% 13% 5% 16% 16% 

BC,BCR 28% 13% 5% 14% 15% 
BAL,BALR 3% 2% 1% 

Arithmetic, logical 29% 35% 29% 9% 26% 

A,AR 3% 17% 21% 10% 
SR 3% 7% 3% 
SLL 6% 3% 2% 
LA 8% 1% 1% 2% 
CLI 7% 2% 
NI 7% 2% 
c 5% 4% 4% 0% 3% 
TM 3% 1% 3% 2% 
MH 2% 1% 

Data transfer 17% 40% 56% 20% 33% 

L,LR 7% 23% 28% 19% 19% 
MVI 2% 16% 1% 5% 
ST 3% 7% 3% 
LD 7% 2% 2% 
STD 7% 2% 2% 
LPDR 3% 1% 
LH 3% 1% 
IC 2% 1% 
LTR 1% 0% 

Floating point 7% 2% 

AD 3% 1% 
MDR 3% 1% 

Decimal, string 4% 40% 11% 

MVC 4% 7% 3% 
AP 11% 3% 
ZAP 9% 2% 
CVD 5% 1% 
MP 3% 1% 
CLC 3% 1% 
CP 2% 1% 
ED 1% 0% 

Total 82% 95% 90% 85% 88% 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 709



C-4 360 Detailed Measurements 

FIGURE C.2 (See previous page.) Distribution of instruction execution frequencies for the four 360 programs. All 
instructions with a frequency of execution greater than 1.5% are included. Immediate instructions, which operate on only a 
single byte, are induded in the section that characterizes their operation, rather than with the long character-string 
versions of the same operation. By comparison, the average frequencies for the major instruction classes of the VAX are 
23% (control), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1 % entry in the 
average column can occur because of entries in the constituent columns. 

C.31 Intel 8086 Detailed Measurements 

Instruction TurboC MASM Lotus Average 

Control 21% 20% 32% 24% 

Conditional jumps 10% 12% 9% 10% 
CALL,CALLF 4% 3% 5% 4% 
RET,RETF 4% 3% 5% 4% 
LOOP 12% 4% 
JMP 3% 2% 2% 2% 

Arithmetic, logical 23% 24% 26% 25% 

CMP 8% 9% 5% 7% 
SAL,SHR,RCR 2% 1% 11% 5% 
ADD 3% 2% 3% 3% 
OR, XOR 4% 2% 2% 3% 
INC, DEC 3% 4% 3% 3% 
SUB 2% 3% 2% 
CBW 1% 1% 1% 
TEST 2% 2% 1% 

Data transfer 49% 46% 30% 42% 

MOV 29% 31% 21% 27% 
LES 6% 2% 3% 
PUSH 10% 8% 4% 7% 
POP 5% 6% 5% 5% 
Totals 93% 90% 88% 90% 

FIGURE C.3 The instructions responsible for more than 1.5% of the executions on 
any of the three benchmarks Some very similar instructions were combined for 
simplicity. Although MASM makes some use of string operations, the frequency is too low 
to make the table. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 710



Appendix C: Detailed Instruction Set Measurements C·5 

C.4 j DLX Detailed Instruction Set Measurements 

Instruction GCC Spice TeX US Steel Average 

Control 21% 5% 7% 23% 14% 

B--z 19% 2% 7% 16% 11% 
J 2% 3% 3% 2% 
JAL 2% 0% 
JR 2% 0% 

Arithmetic, logical 37% 28% 41% 49% 39% 

ADDU,ADDUI 17% 16% 20% 27% 20% 
LHI 2% 7% 10% 3% 5% 
SLL 5% 5% 5% 4% 5% 
LI 4% 4% 6% 4% 
S--,S--I 5% 3% 3% 3% 
AND,ANDI 2% 3% 1% 
SRA 2% 2% 1% 
OR, ORI 2% 1% 

Data transfer 28% 35% 33% 10% 26% 

LW 18% 8% 19% 5% 13% 
SW 10% 2% 12% 5% 7% 
LBU 2% 1% 
LD 14% 4% 
SD 6% 1% 
MOVFP2I, MOVI2FP 5% 1% 

Floating point 0% 15% 0% 0% 4% 

FMUL 5% 1% 
FADD 4% 1% 
FSUB 3% 1% 
FDIV 3% 1% 
Totals 85% 83% 82% 82% 83% 

FIGURE C.4 Instruction mixes for GCC, Spice, TeX, and the U.S. Steel COBOL benchmark. Some instructions were 
combined, both in the interest of space and because the combined class more correctly reflects what the processor is 
doing. The instruction class "B--Z" includes all conditional branches (which are all compares to zero). The class "S--,S--1" 
includes all set conditional instructions, both immediate and register-register. Immediate operations have been combined 
with the non-immediate class for all operations except loads, where they are distinctly different. Again, a blank space 
means that the instruction is not responsible for more than 1.5% of the executions, and the average may appear at 1 % or 
less because the instruction is not used by all benchmarks. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 711



CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 712



Time Versus Frequency 
Measurements 

D.1 Time Distribution on the VAX-11n80 D·2 
D.2 Time Distribution on the IBM 370/168 D·4 
D.3 Time Distribution on an 8086 in an IBM PC D·6 
D.4 Time Distribution on a DLX Relative D·8 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 713



D·2 

D.1 

D.1 Time Distribution on the VAX-11/780 

Time Distribution on the VAX-11/780 

We know from Chapters 2 and 3 that measuring instruction counts alone can be 
misleading. In this appendix we will examine the time distributions for some 
programs running on these four machines. For the 360, the 8086, and DLX, we 
will show the time distribution averaged over the three programs in the graph 
format used earlier. For the VAX, we will use measurements reported in Clark 
and Levy [1982] (see References in Chapter 4). 

Figure D. l shows the distribution of instruction executions, both by time and 
by frequency of occurrence. These data were measured by Erner and reported by 
Clark and Levy for a VAX-11/780 running VMS with multiple users doing three 
primary tasks: 

1. Updating indexed files 

2. Executing a matrix multiplication routine 

3. Doing program development, including editing, compiling, and debugging 

Figure D. l includes any user instruction that accounts for more than 1 % of the 
instruction executions or more than 1 % of execution time. There are 26 
instructions that fit this description, and together they account for 59% of the 
executions and 58% of the time. The measured data include the operating system 
and file system overhead. 

Time distributions are particularly important on architectures like the VAX, 
where the number of cycles for an instruction may vary from one or two up to 
tens or hundreds. 

CAVIUM-1035 
Cavium, Inc. v. Alacritech, Inc. 

Page 714



Appendix D: Time Versus Frequency Measurements 

MOVC3)1111illlllilllilllilllilllilllilllilllilllilll 13% 

EXTZV 

MULF3 

CVTFD 

ADDD2 

MOVZBL, MOVZBW 

MOVL 

MOVAB 

CLRL 

INCL 

TSTL 

ADDL-

CMPB,CMPL 

RSB 

AOBLEQ 

Conditional branch 9% 

lll!lllllll~ll!J.16% 
~~~RH 1~ 1~ 1~18 

Percentage of occurrence or time

• Frequency of use Ill Time frequency I

D·3

FIGURE D.1 Time and frequency distribution for a multiuser workload on a VAX-
11/780 running VMS. This data includes all user instructions that are responsible for more
than 1 % of either the instruction executions or the execution time. (Two operating system
instructions (REI and MTPR), each of which accounts for about 1 % of the execution time,
are not included.) The absence of an execution-frequency bar or time-frequency bar for an
entry (such as MOVC3 or TSTL) means that the time frequency or execution-time frequency
is below 1 % (not that it is O!). Clark and Levy [1982] commented that the large percentage
of time consumed by the MOVC3 in the time distribution is somewhat abnormal for a
nonbusiness workload and has not been observed in other measurements on the 11 /780.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 715

D·4 D.2 Time Distribution on the IBM 370/168

D.2 I Time Distribution on the IBM 370/168

Figure D.2 shows the time distribution on an IBM 370/168 for the same
programs we discussed in Chapter 4 and included in Figure 4.28 (page 175). All
instructions that are responsible for more than 1.5% of the execution frequency
and the execution time for at least one program are included. Several

ED

GP

CLC

Decimal, MP

string CVD

ZAP 4%

AP 4%

MVC 6%

Floating MOR, MD 7%

point AD 5%

STD 7%

LO 3%
Data

transfer
ST

MVI

L, LR 3%

CLI

LA
Arithmetic,

SLL
logical

SR

A,AR

Control, BAL,BALR

procedure BC, BCR 16%

0% 2% 4% 6% 8% 10% 12% 14% 16%

Percentage of the execution time

I • PLIC [ill FORTGO [ill PLIGO • COBOLGO I

FIGURE D.2 Time distribution for the four programs discussed in Chapter 4
running on an IBM 370/168. The corresponding data.on execution frequency appears in
Figure 4.28 (page 175), or in table form in Figure C.2. Any instruction with greater than
1.5% frequency in the time distribution and in the execution-count distribution is included in
this chart. Shustek [1978] (see References in Chapter 4) computed these numbers using a
model of the 370/168 CPU. The model predicts the execution time for the programs and
has an overall accuracy for each program of about 99% except on PLIGO, where it has an
8% error.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 716

Appendix D: Time Versus Frequency Measurements D·S

instructions appeared in the time distribution that were not in the frequency
distribution, where their occurrence was too low. These instructions, which are
not in Figure 4.28, are

TRT-Translate and test, a string instruction used by the PL/I compiler, most
likely to scan the input source; takes 5.4% of the time in that program.

DP-Divide packed, a low frequency but long-running instruction that takes
18.7% of the time in COBOLGO.

DDR-Divide double register, a floating-point divide, infrequent but long
running at 5.2% of the FORTGO execution time.

LM and s TM-Load multiple and store multiple, with frequencies just below
1 %, are somewhat slower than the average instruction; thus, they take 3% to
4% of the cycles in PLIGO.

BCT,BXLE-Loop branches that involve incrementing counts or doing other
compares; BCT consumes about 2% of the time in PLIC, and BXLE consumes
3.5% in FORTGO.

ED 2.9
CP

CLC
Decimal, MP 5.0

string CVD 1.0
ZAP 1.8

AP 1.4
MVC 2.1

Floating MOR, MD 8.1

point AD 6.9

STD 3.2

Data
LO 1.5
ST

transfer MVI
L, LR

CLI

Arithmetic, LA

logical
SLL
SR

A,AR

Control, BAL,BALR

procedure BC, BCR

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Ratio of time frequency/
dynamic frequency

FIGURE D.3 Time frequency (percent of cycles doing this instruction as measured
on an IBM 370/168) divided by dynamic frequency (percent of executions for this
instruction). The programs are those in Chapter 4. This data is obtained directly from
Figures 4.28 (page 175) and Figure D.2. This clearly shows that the floating-point
instructions are the most expensive.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 717

D·6 D.2 Time Distribution on the IBM 370/168

Several of the simpler but lower-frequency data transfer and ALU instructions
that appeared in the frequency distribution do not appear in the time distribution
because they constitute a very small percentage of the execution time. In total,
the instructions shown in Figure D.2 account for 89% of the instruction
executions and 72% of the execution time.

Figure D.3 gives the average execution time divided by the average
frequency for those instructions that appear in both distributions. This
measurement is a ratio that indicates the relative cost of an instruction. For
example, an instruction that is responsible for 10% of the executions and 10% of
the execution time will have a ratio of 1: 1, or a cost factor of 1, and a CPI equal
to the average CPI on the machine.

D.3 J Time Distribution on an 8086 in an IBM PC

Figure D.4 continues our examination of time distribution by looking at the top
time-consuming instructions on the 8086 for the same programs as measured in
Chapter 4. These curves look very similar to those in Figure 4.32 (page 178), the
frequency distribution for the 8086 (shown in table form in Figure C.3,
page C-4). Two arithmetic and logical instructions, CBW and SUB, that appeared
in the frequency distribution do not appear in the top of the execution-time
distribution. Additionally, there are four instructions that have a significant
contribution to the time frequency but are not in the execution-frequency
distribution:

• String instructions SCAS (a string search) and MOVS (a string move). Both
instructions are used in MASM, where they account for 8% and 7% of the
execution time, respectively. MOVS is also used in Lotus, where it accounts
for 6.6% of the program's execution time.

• Integer multiply and divide MLl 6 and DVl 6. These are used in Lotus, where
they respectively account for 10% and 4% of the program's execution time.

Together, the instructions in Figure D.4 are responsible for 87% of the
instruction executions and 85% of the execution time.

Figure D.5 shows the ratio of execution time to execution frequency in the
same fashion used for the IBM 360. Calls, returns, and loading a segment
register consume a larger percentage of the execution time relative to their
dynamic occurrence. However, the overall execution time profile of the 8086 is
much closer to the execution frequency profile-the correspondence is often 1: 1,
and never as high as 1 :2. This is primarily because the variation in CPI among
instructions is small compared to an overall average CPI of 14.1. The long
running instructions that do not even appear in the frequency counts but are
major consumers of execution time (and would have a high CPI) are the string
instructions and integer multiply and divide.

1

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 718

Appendix D: Time Versus Frequency Measurements

POP

Data PUSH 7%
transfer LES

MOV 21%

TEST

INC, DEC

Arithmetic, OR, XOR

logical ADD

SAL, SHR, RCR

CMP

JMP

Control,
LOOP

procedure
RET,RETF

CALL, CALLF

Conditional jump 7%

0% 5% 10% 15% 20% 25%

• TurboC D MASM II Lotus ~

FIGURE D.4 The 8086 time distribution as measured on an IBM PC running MS·
DOS. The format and data are the same as in Figure 4.32 (page 178).

Data

transfer

Arithmetic,

logical

Control,

procedure

t
POP 0.6

t
PUSH 1.0

LES 1. 7

MOV 0.8

TEST 1.1
t

INC, DEC 0.4

OR, XOR ;... 0.2

ADD 0.4
t

SAL, SHR, RCR 0.7

CMP 0.8

JMP 1.2

LOOP 0.7
t

RET,RETF 1.4

CALL, CALLF 1. 7

Conditional jump 0.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Ratio of time frequency/
dynamic frequency

D·7

FIGURE D.5 Time distribution divided by frequency distribution for the 8086. This
data is directly derived from Figures 4.32 (page 178) and D.4. The distribution is
remarkably flatter than that for the IBM 360 or the VAX.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 719

D·8 D.4 Time Distribution on a DLX Relative

D.4 I Time Distribution on a DLX Relative

To obtain a time distribution for DLX, we tum to the DECstation 3100, which
has an instruction set architecture very similar to DLX (see Appendix E). The
time distribution on the DECstation 3100 for the same programs measured in
Chapter 4 (Figure 4.34 on page 181 and in table form in Figure C.4 is shown in
Figure D.6. Figure D.6 includes all instructions that contribute more than 1 % to
the execution time. In total, these instructions account for 81 % of all instruction
executions and 97% of the execution time.

This time distribution is by far the closest to the frequency distribution. This
is because under ideal conditions almost all instructions in DLX can take one
cycle; only the LD and SD instructions must take two cycles. Of course, these
perfect conditions never arise. The average CPI using the DECstation 3100 as a
base is about 1.6 for GCC, TeX, and COBOLX, and about 2.1 for Spice.

FDIV

Floating F$UB

point FADD

FMUL

MOVEFP21,MOVE12FP

SD

Data LD 6%

transfer LBU

SW 11%

LW 18%

AND.ANDI

S--,S--1

Arithmetic, LI 4%

logical SLL 4%

LUI 5%

ADDUl,ADDU 18%

Control, B

procedure B--Z 14%

0% 2% 4% 6% 8% 10% 12% 14% 16%

Total dynamic count

•Gee 0 Spice. • TeX • US Steel I
FIGURE D.6 The time distribution for our three benchmarks plus the US Steel
COBOL benchmark as they would run on DLX using the CPI measurements from a
DECstation 3100.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 720

Appendix D: Time Versus Frequency Measurements D·9

Figure D. 7 shows· contribution to execution time over contribution to
execution frequency for the top instructions. Like the 360 and 8086 charts, a
value above 1 indicates that .this instruction has a higher CPI than the average
instruction. Remember, though, that the ratio does not indicate the CPI for the
instruction. However, we can use this figure to find the CPI for an instruction,
given the base CPI for a specific program.

T

FDIV
t

FSUB
Floating FADD

point

t

t
FMUL

t
MOVFP21,MOVl2FP

t
SD

t
Data LD

transfer LBU

SW

LW

AND.ANDI
Arithmetic,

S--,S--1 logical

LI

SLL

LUI

ADDUl,ADDU
t

Control B
t

B--Z

0.0 0.5

0.9

1.7

1.7

1.5

1.5

1.4

1.0

1.0

1.0

0.8

0.8

0.9

1.1

1.3

1.0 1.5

Ratio of time frequency/
dynamic frequency

2.0

2.2

2.2

2.2

2.2

2.5

FIGURE D.7 Time frequency divided by execution frequency for DLX as measured
using the time data from Figure D.6 and the frequency data from Figure 4.34 (page
181). The integer register-floating-point register moves are inexpensive, since they are
really register-register operations. Surprisingly, the double-precision memory references
are not twice as expensive as the 32-bit loads and stores. Can you hypothesize why based
on the discussions of pipelining and cache design?

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 721

RISC: any computer announced after 1985.

Steven Przybylski (a designer of the Stanford MIPS)

E.1 Introduction E·1

E.2 Addressing Modes and Instruction Formats E-2

E.3 Instructions: The DLX Subset E·4

E.4 Instructions: Common Extensions to DLX E·9

E.5 Instructions Unique to MIPS E·12

E.6 Instructions Unique to SPARC E·15

E.7 Instructions Unique to M88000 E·17

E.8 Instructions Unique to i860 E·19

E.9 Concluding Remarks E·23

E.10 References E·24

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 722

E.1

Survey of RISC
Architectures

Introduction

We cover four examples of Reduced Instruction Set Computer (RISC) architec
tures in this appendix:

• Intel 860;

• MIPS R3000/R.3010 (plus a section on MIPS II, used in the R6000);

• Motorola M88000; and

• SPARC, developed originally by Sun Microsystems.

We also include DLX, the instruction set architecture invented for this book. (A
review of DLX can be found in the back inside cover or in pages 160-167 of
Chapter 4.) Characteristics of these architectures are found in Figure E.1.

There has never been another class of computers that were so similar. This
similarity allows the presentation of four architectures at once, with DLX thrown
in for good measure! After presenting the addressing modes and instruction for
mats, the instructions are presented in three steps:

• Instructions found in DLX;

• Instructions not found in DLX but found in two or more architectures; and

• The unique instructions and characteristics of each architecture.

We conclude with a speculation about .the future directions for RISCs.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 723

E·2 E.1 Introduction

QLX i860 MIPS MSSOOO SPARC

Date announced 1990 1989 1986 1988 1987

Instruction size (bits) 32 32 32 32 32

Address space (size, model) 32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Aligned Aligned

Data addressing modes 1 2 1 3 2

Protection Page Page Page Page Page

Page size 4KB 4KB 4KB 4KB 4-64KB

1/0 Memory Memory Memory Memory Memory
mapped mapped mapped mapped mapped

Integer registers (size, model, 31 GPRx 31 GPRx 31 GPRx 31 GPRx 31 GPRx
number) 32 bits 32 bits 32 bits 32 bits 32 bits

Separate floating-point registers 32 x 32 or 30 x 32 or 16 x 32 or 0 32 x 32 or
16 x 64 bits 15 x 64 bits 16 x 64 bits 16 x64

Floating-point format IEEE 754 IEEE 754 IEEE 754 IEEE 754 IEEE 754
single, double single, double single, double single, double single, double

FIGURE E.1 Summary of five recent architectures. Except for number of data address modes and some instruction
set details, the integer instruction sets of these architectures of the late 1980s are identical. Contrast this to Figure E.13,
page E-23.

E.21 Addressing Modes and Instruction Formats

Addressing mode

Figure E.2 shows the data addressing modes supported by each architecture.
Since all have one register that always has the value 0-in fact, it is r 0 in every
architecture-the absolute address mode with limited range can be synthesized
using rO as the base in displacement addressing. Similarly, register-indirect
addressing is synthesized by using displacement addressing with an offset of 0.
Simplified addressing modes is one distinguishing feature between these and
prior architectures.

DLX i860 MIPS MSSOOO SPARC

Register + offset (displacement or based) --J --J --J --J --J

Register + register (indexed) -- --J -- --J --J

Register+ scaled register (scaled) -- -- -- --J --

FIGURE E.2 Summary of data addressing modes. (These addressing modes are explained in Section 3.4, pages 94-
103) While the i860 does have indexed data addressing for all loads and floating-point stores, it is not available for integer
stores.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 724

Appendix E: Survey of RISC Architectures E·3

31 25 20 15 10 0

DLX Rs15 Rs25 Rd5

i860 Rs25 Rd5 Rs15

Register- MIPS Rs15 Rs25
register

M88000

SPARC Rs25

31 18 1312 4

DLX

i860
Register-
immediate MIPS

M88000

SPARC

31 29 24 18 1312 0
0

DLX

i860

Branch
MIPS

M88000

SPARC

31 29 21 0

31 25 0

DLX

i860
Jump/Call

MIPS

M88000

SPARC

31 29 0

•Opcode D Register Dconstant '
FIGURE E.3 Instruction formats for five architectures. These four formats are found in all five architectures. (The
superscript notation in this figure means something different from our standard notation; it shows the width of a field in
bits.) While the register fields are located in similar pieces of the instruction, beware that the destination and two source
fields are scrambled. Here are the meanings of the abbreviations: Op = the main opcode, Opx =an opcode extension, Rd
=the destination register, Rs1 =source register 1, Rs2 =source register 2, and Const= a constant (used as an
immediate or as an address). The main variation for the M88000 is register-immediate format when the operation doesn't
need a full 16-bit immediate: an opcode extension field is placed in the upper bits of the constant field. The variation for
the i860 is using Rs1 in the Branch format to specify a 5-bit constant as well as a register.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 725

E·4 E.2 Addressing Modes and Instruction Formats

References to code are normally PC-relative, although register indirect is
supported for returning from procedures and for case statements. One variation
is that PC-relative branch addresses in everything but DLX are shifted left 2 bits
before being added to the PC, thereby increasing the branch distance. This works
because the length of all instructions is one word and instructions must be word
aligned in memory.

Figure E.3 (page E-3) shows the format of instructions, which includes the
size of the address in the instructions. Each instruction set architecture uses these
four primary instruction formats. The primary differences are subtle, concerning
how to extend constant fields to 32 bits. Figure E.4 shows the variations.

Format: instruction category DLX i860 MIPS M88000 SPARC

Branch: all Sign Sign Sign Sign Sign

Jump/Call: all Sign Sign -- Sign Sign

Register-immediate: data transfer Sign Sign Sign Zero Sign

Register-immediate: arithmetic Sign Sign Sign Zero Sign

Register-immediate: logical Sign Zero Zero Zero Sign

FIGURE E.4 Summary of constant extension. The constant in the Jump and Call
instructions of MIPS are not sign extended since they only replace the lower 28 bits of the
PC, leaving the upper 4 bits unchanged.

E.3 I instructions: The DLX Subset

The similarities of each architecture allow simultaneous descriptions of the
architectures, starting with the operations equivalent to DLX.

DLX Instructions

Almost every instruction found in DLX instructions is found in the other archi
tectures, as Figure E.5 shows. (For reference, definitions of the DLX instructions
are found on pages 160 to 167 of Chapter 4 and the back inside cover.) Instruc
tions are listed under four categories: "Data transfer," "Arithmetic, logical,"
"Control," and "Floating point." A fifth category in the figure shows conven
tions for register usage and pseudoinstructions on each architecture. If a DLX
instruction requires a short sequence of instructions, these instructions are
separated by semicolons in Figure E.5. (To avoid confusion, the destination
register will always be the leftmost operand in this appendix, independent of the
notation normally used with each architecture.)

Every architecture must have a scheme for compare and conditional branch,
but even with all the similarities, each of these architectures has found a differ
ent way to perform the operation. The advantages and disadvantages of the
general options are found on pages 105-109 of Chapter 3.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 726

Appendix E: Survey of RISC Architectures E-5

Instruction name DLX i860 MIPS M88000 SPARC

Data transfer
(Instruction formats) R-1 R-1,R-R R-1 R-1,R-R R-1,R-R

Load byte signed LB LD.B LB LD.B LDSB

Load byte unsigned LBU LD.B; LBU LD.BU LDUB
AND ... ,xOOFF, ...

Load halfword signed LH LD.S LH LD.H LDSH

Load halfword LHU LD.S; LHU LD.HU LDUH
unsigned AND ... ,xFFFF ...

Load word LW LD.L LW LD LD

Load SP float LP FLD.L LWCl LD LDF

Load DP float LD FLD.D LWCl Rd; LD.D LDDF
(see E.5 for MIPS) LWCl Rd+l

Store byte SB ST.B SB ST.B STB

Store halfword SH ST.S SH ST.H STH

Store word SW ST.L SW ST ST

Store SP float SF FST.L SW Cl ST STF

Store DP float SD FST.D SWCl Rd; ST.D STDF
(see E.5 for MIPS) SWCl Rd+l

Read, write special MOVS2I, LD.C, MF_, LDCR,FLDCR RD,LDFSR,
registers MOVI2S ST.C MT_ STCR,FSTCR WR,STFSR

Move int. to PP reg. MOVI2FP IXFR MFCl not applicable ST;LDF,

Move PP to int. reg. MOVFP2I FXFR MTCl not applicable STF;LD

Arithmetic, logical
(Instruction formats) R-R, R-1 R-R,R-1 R-R,R-1 R-R,R-1 R-R,R-1

Add ADDU,ADDUI ADD,ADDU ADDU,ADDIU ADDU ADD

Add (trap if overflow) ADD,ADDI ADD;INTOVR ADD,ADDI ADD ADDcc; TVS

Sub SUBU,SUBUI SUB,SUBU SUBU SUBU SUB

Sub (trap if overflow) SUB,SUBI SUB; INTOVR SUB SUB SUBcc; TVS

Multiply MULTU; FMLOW MULT, MUL MULScc; ;
(see E.6 for SPARC) MULTUI MULTU MULScc

Multiply (trap if ovf) MULT,MULTI -- -- -- -- (see E.6)

Divide~ DIVU,DIVUI -- DIV,DIVU DIV,DIVU -- (see E.6)

Divide (trap if ovf) DIV,DIVI -- -- -- -- (see E.6)

And AND,ANDI AND AND,ANDI AND AND

Or OR, ORI OR OR, ORI OR OR

Xor XOR,XORI XOR XOR,XORI XOR XOR

Load high part reg. LHI OR.H ... ,rO, ... LUI OR.U ... ,rO, ... SETHI (B fmt.)

Shift left logical SLL,SLLI SHL SLLV,SLL MAK SLL

Shift right logical SRL,SRLI SHR SRLV,SRL EXTU SRL

Shift right arithmetic SRA,SRAI SHRA SRAV,SRA EXT SRA

Compare S-(<,>,s,::::,=,:;t:) SUB rO, ... SLT,SLTU, CMP SUBcc rO, ...
SLTI,SLTIU

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 727

E-6 E.3 Instructions: The DLX Subset

Instruction Name DLX i860 MIPS M88000 SPARC

Control
(Instruction formats) B,J/C B,J/C B,J/C B,J/C B,J/C

Branch on integer BEQ,BNE BC.T,BNC.T, BEQ,BNE,B_Z BBl.N,BBO.N, Bice
compare BTE,BTNE (<,>,5,~) BCND.N (<,>,5,~,==,:;t)

Branch on floating- BFPT,BFPF BC.T,BNC.T BClT,BClF BBl.N,BBO.N, FBfcc
point compare BCND.N (<,>,s,~.== •...)

Jump, jump register J,JR BR,BRI J,JR BR.N,JMP.N B,JMPLrO, ...

Call, call register JAL,JALR CALL, CALLI JAL,JALR BSR.N ,JSR.N CALL,JMPL

Trap TRAP TRAP BREAK TCND, TBO Tice

Return from interrupt RFE BRI (trap bits:;tO) JR;RFE RTE RETT

Floating point
(Instruction formats) R-R R-R R-R R-R R-R

Add single, double ADDF, FADD.SS, ADD.S, FADD.SSS, FADDS,
ADDD FADD.DD ADD.D. FADD.DDD FADDD

Sub single, double SUBF, FSUB.SS, SUB.S, FSUB.SSS, FSUBS,
SUBD FSUB.DD SUB.D FSUB.DDD FSUBD

Mult single, double MULF, FMUL.SS, MUL.S, FMUL.SSS, FMULS,
MULD FMUL.DD MUL.D FMUL.DDD FMULD

Div single, double DIVF, --
'

DIV.S, FDIV.SSS, FD IVS,
DIVD -- DIV.D FDIV.DDD FDIVD

Compare _F, PF_.SS, c_.s, FCMP.SS, FCMPS,
D PF.DD C_.D FCMP.DD FCMPD
(<,> ,s,~.==, ...) (>,5,==) (<,>,5,~,==, ...)

MoveR-R MOVF FIADD.SS ... ,fO, MOV.S ADD ... ,rO, ... FMOVS
Convert CVTF2D, F ADD.SD . .fO .. , CVT.S.D, FADD.SSD rO, FSTOD,
(single,double,integer) CVTD2F, F ADD.DS .. fO .. , CVT.D.S, --

'
FDTOS,

to CVTF21, FIX.SS, CVT.S.W, INT.SS, FSTOI,
(single,double,integer) CVTD2I, FIX.DS, CVT.D.W, INT.SD, FDTOI,

CVTI2F, --
'

CVT.W.S, FLT.SS, FITOS,
CVTI2D -- CVT.W.D FLT.DS FITOD

Conventions

Register with value 0 rO rO rO rO rO

Return address reg. r31 rl r31 r1 r31

Noop ADD rO,rO,rO SHL rO,rO,rO SLL rO,rO,rO OR rO,rO,rO SETHirO,O

Move R-R integer ADD ... ,rO, ... SHL ... ,rO, ... ADD ... ,rO, ... OR ... ,rO, ... OR ... ~rO, ...

Operand order OP Rd,Rs l ,Rs2 OP Rsl,Rs2,Rd OP Rd,Rs 1,Rs2 OP Rd,Rsl,Rs2 OP Rsl,Rs2,Rd

FIGURE E.5 Instructions equivalent to DLX. Dashes mean the operation is not available in that architecture, or not
synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several
choices of instructions equivalent to DLX, they are separated by commas. Finally, "not applicable" means that while this
operation is not directly available, other changes in the architecture means it wouldn't make sense. This later category is
for the M88000, since integer and floating-point instructions sharing the same registers means separate floating-point

· move instructions are unnecessary. Note that in the "Arithmetic, logical" category DLX and MIPS use separate instruction
mnemonics to indicate an immediate operand, while the i860, M88000, and SPARC offer immediate versions of these
instructions but use a single mnemonic. (Of course these are separate opcodes!) Both MIPS and SPARC have new
instructions that were not implemented in the first machine and that apply to some of these cases: see Sections E.5 and
E.6.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 728

Appendix E: Survey of RISC Architectures E·7

Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program status
word: Negative, Zero, Carry, and Overflow. They can be set on any arithmetic
or logical instruction, but unlike earlier architectures this setting is optional on
each instruction. This leads to fewer problems in pipelined implementation
(page 334 in Chapter 6). While condition codes can be set as a side effect of an
operation, explicit compares are synthesized with a subtract using r 0 as the des
tination. Floating point uses separate condition codes to encode the IEEE 754
conditions, requiring a floating-point compare instruction. SPARC conditional
branches test condition codes to determine all possible unsigned and signed
relations.

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE) and then the
branch is taken if the condition holds. The set-on-less-than instructions
(SLT,SLTI, SLTU,SLTIU) compare two operands and then set the destination
register to 1 if less and to 0 otherwise. These instructions are enough to synthe
size the full set of relations. Because of the popularity of comparisons to 0,
MIPS includes special compare-and-branch instructions for all such compar
isons: greater than or equal to zero (BGEZ), greater than zero (BGTZ), less than
or equal to zero (BLEZ), and less than zero (BLTZ). Of course, equal and not
equal to zero can be synthesized using rO with BEQ and BNE. Like SPARC,
MIPS uses a condition code for floating point with separate floating-point com
pare and branch instructions.

The M88000 also uses registers to evaluate conditions and optimizes compare
to 0 with a separate set of compare-and-branch instructions (BCND. N). Compar
ison of arbitrary operands differs. MIPS offers several compare instructions to
set the register to 0 or 1 depending on the selected condition, but the M88000
uses a single instruction (CMP) and sets 10 bits of the destination register show
ing the relationship of the two operands. These bits represent equality(=, :t) plus
all relations for signed (<, :::;, >, 2::) and unsigned (<, :::;, >, 2::) operands. Instruc
tions that branch if a bit in a register is 1 (BB 1 • N) or 0 (BB 0 . N) complete the
conditional branch set. (Another option is using EXTU with CMP to set a register
to 0 or 1 and then using BCND. N. Using EXT instead of EXTU sets a register to
0 or -1, if so desired.) Since there is a common register set for integer and float
ing point, floating-point compare uses the same scheme: set bits of a register and
branch based on the result using BB 1 . N or BB 0 . N.

The Intel i860 uses condition codes for branches like SP ARC, except that the
i860 condition codes are set implicitly as part of every integer arithmetic or logi
cal instruction. Also unlike SP ARC, the i860 uses just two bits of conditions: OF

and CC. OF is set only by the integer add and subtract instructions, and is used to
indicate overflow. There is no conditional branch instruction to test this bit, but
the INTOVR instruction will cause a trap if the bit is set. The CC bit is set or
cleared depending on the operation. The logical instructions (AND,OR,XOR) set
CC if the result is 0. The unsigned arithmetic instructions (ADDU,SUBU) set CC

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 729

E·S E.3 Instructions: The DLX Subset

if there is a carry out of the most significant bit. Signed subtract (SUBS) sets CC
if Rs2 > Rs 1, while signed add (ADD s) sets CC if Rs2 is less than the two's
complement of Rsl. Floating-point comparison instructions set CC if the condi
tion tested is true: greater than (PFGT), less than or equal (PFLE), or equal
(PFEQ).

The i860 conditional branch instructions (BC. T and BNC. T) test CC and
branch depending on whether CC is 1or0. The i860 also has conditional branch
instructions based on equality of two operands: BTE jumps if they are equal and
BTNE jumps if they are not.

Figure E.6 summarizes the four schemes used for conditional branches.

DLX i860 MIPS M88000 SPARC

Number of condition code bits 1 FP 1 both, 1 FP -- 4 integer,
(integer and FP) 1 integer 2FP

Basic compare instructions 1 integer, 1 FP 1 integer, 1 integer, 1 FP
(integer and FP) 1 FP 1 FP 1 FP

Basic branch instructions 1 integer, 1 both, 2 integer, 1 both, 1 integer,
(integer and FP) 1 FP 1 integer 1 FP 1 integer 1 FP

Compare register with =;:F- =;:F- =;:;t. -- --
register/const and branch

Compare register to zero and =;:F- =;:F- =;:;t.,<,::;,>,;::: =,:;t:,<,::;,>,;::: --
branch

FIGURE E.6 Summary of five approaches to conditional branches. Integer compare on the i860 and SPARC is
synthesized with an arithmetic instruction that sets the condition codes using rO as the destination.

Integer Multiply and Divide

Multiply and divide are usually implemented as multicycle instructions and are
thus not a good match for the single-cycle execution goal of the rest of the inte
ger instructions, requiring separate integration into the pipeline. Each architec
ture takes a different approach to integer multiply and divide as well as condi
tional branch. The i860 uses the same scheme as DLX: there is a floating-point
instruction (FMLOW) that treats the contents of two floating-point registers as
integers, leaving a 32-bit result in the lower 32 bits of a double-precision pair of
floating-point registers. Programs do integer divide using. i860 floating-point
instructions. (Floating-point divide uses Newton-Raphson iteration; see pages
E-19-E-20.)

The combined integer and floating-point register file allows the M88000 to
use the floating-point unit to perform integer multiply and divide, as the
operands do not have to be moved to and from the floating-point registers. The
one complication in the first version of the architecture, the MC88100, is a neg
ative dividend or negative divisor results in a trap. Software then makes the
operands positive, uses the divide instruction, and then complements the quo
tient (if necessary). A zero divisor traps as well, as we would hope.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 730

Appendix E: Survey of RISC Architectures E·9

In the MIPS architecture the 64-bit product of an integer multiply or the quo
tient/remainder of an integer divide is placed in a special registers HI and LO.
This computation is treated as an independent unit executing in parallel with the
integer and floating-point units. The appropriate result is transferred to the cor
rect register with a MFHI or MFLO instruction. Attempts to read the registers
before the computation is complete stalls the processor. There is no trap for
overflow or divide by zero. These are typically checked by explicit integer
instructions that execute in parallel with the divide. (See Section E.5 for
architectural extensions not implemented in the first MIPS machines.)

SPARC provides a multiply step instruction. When used in a loop it calcu
lates a full 64-bit product using the special register Y. It is loaded with the multi
plier and receives the least significant word of the product. Magenheimer,
Peters, Pettis, and Zuras [1988] measured the size of operands in multiplies and
divides to show how well the multiply step would work. Using this data for C
programs, Muchnick [1988] found that by making special cases the average
multiply by a constant takes 6 clock cycles and multiply of variables takes 24
clock cycles. There is no divide step in the SPARC. (See Section E.6 for
architectural extensions not implemented in the first SPARC machines.)

E.4 I instructions: Common Extensions to DLX

Figure E.7 (pages E-10-E-11) lists instructions not found in Figure E.5 (pages
E-5-E-6) in the same four categories. Instructions are put in this list if they
appear in more than one of the four architectures. The instructions are defined
using the hardware description language, which is described on the page facing
the inside back cover and on pages 160-167 of Chapter 4.

While most of the categories are self-explanatory, a few bear comment:

• The "Atomic swap" row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system semaphores
in uniprocessors as well as for multiprocessor synchronization (see pages
471-473 of Chapter 8.)

• In the "Endian" row, "Big or Little" means there is a bit in the program status
register that allows the processor to act either as Big Endian or Little Endian.
This can be accomplished by simply complementing some of the least signif
icant bits of the address in data transfer instructions.

• The "Coprocessor operations" row lists several categories that allow for the
processor to be extended with special-purpose hardware.

• The "Implicit conversions" row under "Floating point" means that floating
point operands in these architectures do not have to all be the same size, and
the floating-point unit performs a conversion as part of the operation. The
i860 allows for two single-precision operands to produce a double-precision

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 731

E·10

Name

Data transfer

Atomic swap RIM
(for semaphores)

Load double
integer

Store double
integer

Load coprocessor

Store coprocessor

Endian

Cache flush

Arithmetic, logical

Support for multi-
word integer add

Support for multi-
word integer sub

And not

Or not

Xornot

E.4 Instructions: Common Extensions to DLX

result while the M88000 allows for any combination of single and double
precisions for each of the three operands.

One difference that needs a longer explanation is the optimized branches.
Figure E.8 (page E-12) shows the options. The i860 and M88000 offer branches
that take effect immediately, like branches on earlier architectures. This avoids
executing NOPs when there is no instruction to fill the delay slot. SP ARC
provides a version of delayed branch that makes it easier to fill the delay slot.
The "annulling" branch executes the instruction in the delay slot only if the
branch is taken; otherwise the instruction is annulled. This means the instruction
at the target of the branch can safely be copied into the delay slot since it will
only be executed if the branch is taken. The restrictions are that the target is not
another branch and that the target is known at compile time. SP ARC also offers
a nondelayed jump because an unconditional branch with the annul bit set does
not execute the following instruction.

After covering the similarities, we will cover the unique features of each
architecture, ordering them by length of description of the unique features from
shortest to longest.

Definition i860 MIPS MSSOOO SPARC

Temp+-Rd; LOCK;LD.L; -- (see E.5) XMEM, SWAP

Rd+- Mem[x]; UNLOCK; ST.L; XMEMBU

Mem[x]+---Temp

Rd+---Mem[x]; -- -- LD.D LDD

Rd+ 1 +---Mem[x+4]

Mem[x]+---Rd; -- -- ST.D STD

Mem[x+4]+---Rd+ 1

Coprocessor+---Mem[x] -- LWCi -- LDC

Mem[x]+---Coprocessor -- SW Ci -- STC

(Big/Little Endian?) Big or Little Big or Little Big or Little Big

(Flush cache block at FLUSH -- (see E.5) -- FLUSH

this address)

CarryOut,Rd +--- Rs 1 + ADDU;BNC; ADDU;SLTU; ADDU.CIO ADDXcc

Rs2 + OldCarrvOut ADDU ... , ... , #1 ADDU

CarryOut,Rd +--- Rs 1 - SUBU;BNC; SUBU;SLTU; SUBU.CIO SUBXcc

Rs2 + OldCarrvOut ADDU , ... , #1 SUBU

Rd +--- Rs 1 & ! (Rs2) AND NOT -- AND .C (R-R) ANDN

Rd +--- Rs 1 I ! (Rs2) -- -- OR. C (R-R) ORN

Rd+--- Rsl "!(Rs2) -- -- XOR.C (R-R) XNOR

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 732

Appendix E: Survey of RISC Architectures E·11

Definition i860 MIPS M88000 SPARC

Arithmetic, logical (continued)

And high Rd0 .. 15~Rs10 . .15 & ANDH (R-1) -- AND. U (R-1) --
immediate (Const<<16);

Rd16 .. 31~0

Or high immediate Rd0 .. 15~Rs10 .. 15 I ORH (R-1) -- OR. U (R-1) --
(Const<<l6); Rd16 .. 31~0

Xor high Rdo .. 15~Rslo .. 15" XORH (R-1) -- XOR. U (R-1) --
immediate (Const<<l6);

Rd16 .. 31~0
Coprocessor (Defined by coprocessor) -- COPi -- CPop
operations

Control

Optimized delayed (Branch not always BC,BNC -- BBl,BBO, Bice, A
branches delayed) BCND
Optimized (Branch not always BC,BNC -- BBl,BBO, Bf cc, A
floating-point delayed) BCND
branches

Conditional trap if(COND) -- -- (see E.5) TBl, TEO, Tice
{R31~PC; PC ~O .. O#i} TCND

Branch on if (CoProc COND) -- BCiT,BCiF -- Bccc
coprocessor {PC ~PC+Const}

No. control regs. Misc. regs (virtual 6 12 32 7
memory, interrupts, ...)

Floating point

Negate Fd ~ Fs " x80000000 -- NEG. S, XOR.U 8000 NEGS
NEG.D

Absolute value Fd ~ Fs & x7FFFFFFF -- ABS.S, AND.U 7FFF ABSS
ABS.D

Truncate to integer Fd ~ unrounded integer FTRUNC.SS, -- TRNC.SS, --
part of Fs FTRUNC.DS TRNC.SD

Implicit (Convert as part of - .SD -- _.SSD,_.SDS, --
conversions operation) (2 single operands, _.SDD,_.DSS,

1 double result) - .DSD._.DDS
(all
combinations)

FIGURE E.7 Instructions not found in DLX but found in two or more of the four architectures. Both MIPS and
SPARC have new instructions that were not implemented in the first machine and that apply to some of these cases: see
Sections E.5 and E.6.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 733

E-12 E.4 Instructions: Common Extensions to DLX

Delayed branch (Plain) Branch Annulling delayed branch

Found in architectures All 5 RISCs i860, M88000 SPARC

Execute following instruction Always Only if branch not taken Only if branch taken

FIGURE E.8 When the instruction following the branch is executed for three types of branches.

E.5 I instructions Unique to MIPS

Starting with data transfer instructions, MIPS is unlike the others since the archi
tecture requires that the instruction following a load does not refer to the value
being loaded. The MIPS Assembler inserts a NOOP instruction if this situation
occurs.

Nonaligned Data Transfers

The other unique feature of MIPS data transfer is special instructions to handle
misaligned words in memory. A rare event in most programs, it is included for
COBOL programs where the programmer can force misalignment by declara
tions. While all these architectures trap if you try to load a word or store a word
to a misaligned address, on all architectures misaligned words can be accessed
without traps by using 4 load byte instructions and then assembling the result us
ing shifts and logical ORs. The MIPS load and store word left and right instruc
tions (LWL, LWR, SWL, SWR) allow this to be done in just 2 instructions: LWL
loads the left portion of the register and LWR loads the right portion of the regis
ter. SWL and SWR do the corresponding stores. Figure E.9 shows how they work.
Unlike other loads, a LWL followed by a LWR does not require a NOOP even
though both will specify the same register since fields do not overlap.

TLB Instructions

TLB misses are handled in software in the MIPS R2000, so the instruction set
also has instructions for manipulating the registers of the TLB (see pages 437-
438 and 443-445 in Chapter 8 for more on TLBs.) These registers are
considered part of the "system coprocessor" and thus can be accessed by the
instructions that move between coprocessor registers and integer registers. The
contents of a TLB entry are read by loading via Read Indexed TLB Entry
(TLBR) and written using either Write Indexed TLB Entry (TLBWI) or Write
Random TLB Entry (TLBWR). The TLB contents are searched using Probe TLB
for Matching Entry (TLBP).

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 734

Appendix E: Survey of RISC Architectures

Case 1
Before

M[100)D000 100 101 102 103
M[104)0DDD 1 04 105 106 107

After LWL R2, 101:

After LWR R2, 104:

R
2G000

Case 2
Before

M[200)DDD0 200 201 202 203
M[204)000D 204 205 206 207

R4 0~00

After LWL R4, 203:

R4 G~00
After LWR R4, 206:

R
4 G0G0

E·13

FIGURE E.9 MIPS instructions for unaligned word reads. This figure assumes
operating in Big Endian mode. Case (1) first loads the 3 bytes 101, 102, and 103 into the left
of R2 leaving the least significant byte undisturbed. The following LWR simply loads byte
104 into the least significant byte of R2 leaving the other bytes of the register unchanged
using LWL. Case (2) first loads byte 203 into the most significant byte of R4 and the
following LWR loads the other 3 bytes of R4 from memory bytes 204, 205, and 206. LWL

reads the word with the first byte from memory, shifts to the left to discard the unneeded
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the first byte
until the lowest-order byte of the word. The following LWR addresses the last byte, right
shifts to discard the unneeded byte(s), and finally changes only those bytes of Rd. The
byte(s) transferred are from the last byte up to the highest-order byte of the word. Store
word left (SWL) is simply the inverse of LWL, and store word right (swR) is the inverse of
LWR. Changing to Little Endian mode flips which bytes are selected and discarded. (If
big/little-lefVright-load/store seems confusing, don't worry, it works!)

Remaining Instructions

Below is a list of the remaining unique details of the MIPS architecture:

• NOR: This logical instruction calculates !(Rsl I Rs2).

• Constant shift amount: Nonvariable shifts use the 5-bit constant field shown
in the register-register format in Figure E.3.

• SYSCALL: This special trap instruction is used to invoke the operating
system.

• Move to/from control registers: CTCi and CFCi move between the integer
registers and control registers.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 735

E·14 E.5 Instructions Unique to MIPS

• Limited single-precision registers: Although the 32 floating-point registers
can be addressed individually for loads and stores, single-precision operands
for floating-point operations can use only the 16 even floating-point registers.

• Jump/Call not PC-relative: The 26-bit address of jumps and calls is not
added to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the
PC. This would only make a difference if the program was located near a
256-MB boundary.

• Conditional procedure call instructions: BGE ZAL saves the return address
and branches if the contents of Rs 1 is greater than or equal to zero, and
BLT ZAL does the same for less than zero. The purpose of these instructions
is to get a PC-relative call.

There is no specific provision in the MIPS architecture for floating-point execu
tion to proceed in parallel with integer execution, but the MIPS implementations
of floating point allow this to happen by checking to see if arithmetic interrupts
are possible early in the cycle; normally interrupts are not possible and integer
and floating point operate in parallel (see page A-31 in Appendix A).

MIPS II

With the announcement of the R6000 came a set of extensions to the original
MIPS architecture described above. Here are the additions of MIPS II:

• Interlocked loads: The MIPS II Assembler need not insert a NOP after a load
if there is a dependency on the following instruction, as the hardware will
automatically stall.

• Branch likely: Equivalent to the SPARC annulled branches, this instruction
executes the instruction in the delay slot only if the branch is taken.

• Load double floating point and store double floating point: MIPS II takes a
single instruction to-load or store double-precision floating-point numbers.

• SQRT: Single- and double-precision floating-point square root are added to
the floating-point operations.

• Conditional trap instructions: These match the conditional branch instruc
tions, except they are not delayed: When the trap is taken, the following
instruction is not executed. These instructions are useful for range checking,
popular in Ada.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 736

Appendix E: Survey of RISC Architectures E-15

E.6 I instructions Unique to SPARC

Register Windows

The primary unique feature of SP ARC is register windows (pages 450-453 of
Chapter 8), used to reduce the register save/restore overhead of procedure calls
and returns. SPARC can have between 2 and ~2 windows, using 8 registers each
for the globals, locals, incoming parameters, and outgoing parameters (see Fig
ure 8.34 page 452.) (Given each window has 16 unique registers, an
implementation of SPARC can have as few as 40 physical registers and as many
as 520, although most have 128 to 136, so far.) Rather than tie window changes
with call and return instructions, SP ARC has the separate instructions SA VE and
RESTORE. SAVE is used to "save" the caller's window by pointing to the next
window of registers in addition to performing an add instruction. The trick is
that the source registers are from the caller's window of the addition operation
while the destination register is in the callee's window. SPARC compilers typi
cally use this instruction for changing the stack pointer to allocate local variables
in a new stack frame. RESTORE is the inverse of SAVE, bringing back the
caller's window while acting as an add instruction, with the source registers
from the callee's window and the destination register in the caller's window.
This automatically deallocates the stack frame. Compilers can also make use of
it for generating the callee's final return value. Unlike earlier register window
architectures, SPARC uses a Window Invalid Mask, which is used in real-time
applications, that allows the windows to be partitioned between different
processes.

Another data transfer feature is alternate space option for loads and stores.
This simply allows the memory system to identify memory accesses to
input/output devices, or to control registers for devices such as the cache and
memory-management unit.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SP ARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor [1986] and Ungar [1984]). A
small amount of support is offered for tagged data types with operations for
addition, subtraction, and hence comparison. The two least significant bits indi
cate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc

set the overflow bit if either operand is not tagged as integer or if the result is too
large. A subsequent conditional branch or trap instruction can decide what to do.
(If the operands are not integers, software recovers the operands, checks the

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 737

E·16 E.6 Instructions Unique to SPARC

types of the operands, and invokes the correct operation based on those types.)
Two other versions of these instructions make the conditional trap unnecessary,
as TADDccTV and TSUBccTV trap if the overflow is set. It turns out that the
misaligned memory access trap can also be put to use for tagged data, since
loading from a pointer with the wrong tag can be an invalid access. Figure E.10
shows both types of tag support.

(b) Loading via
valid pointer
(coded as 11)

LD rD,r4,-3

I 11

3

00

(R4)

(Word
address)

FIGURE E.10 SPARC uses the two least significant bits to encode different data
types for the tagged arithmetic instructions. (a) shows integer arithmetic, which takes a
single cycle as long as the operands and the result are integers. (b) shows that the mis
aligned trap can be used to catch invalid memory accesses, such as trying to use an inte
ger as a pointer. For languages with paired data like LISP, an offset of -3 can be used to
access the even word of a pair (CAR) and + 1 can be used for the odd word of a pair (CDR).

Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer
instructions. To recover from an interrupt during such a situation, SP ARC has a
queue of pending floating-point instructions and their addresses. STDFQ allows
the processor to empty the queue. The second floating-point feature is the
inclusion of floating-point square root instructions FSQRTS and FSQRTD.

Remaining Instructions

The remaining unique features of SP ARC are:

• JMP L uses Rd to specify the return address register, so specifying r 31 makes
it similar to JALR in DLX and specifying rO makes it like JR.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 738

Appendix E: Survey of RISC Architectures E-17

• LDSTUB loads the value of the byte into Rd and then stores FF16 into the
addressed byte. This instruction can be used to implement a semaphore.

• LDDC and STDC provide load double and store double for the coprocessor.

• UNIMP causes an unimplemented instruction interrupt. Muchnick [1988]
explains how this is used for proper execution of aggregate returning proce
dures in C.

Finally, SPARC includes opcodes for instructions that are emulated in software
on early implementations. SPARC application programs generally call dynami
cally linked library routines to perform these operations, but the opcodes would
result in a trap if executed. The instructions are:

• Signed and unsigned integer multiply and divide, with both operands and the
results being integer registers. The extra 32 bits of a product and the 32-bit
remainder of a divide are placed in the Y register.

• Quadruple precision floating-point arithmetic, allowing the floating-point
registers to act as eight 128-bit registers.

• Multiple precision floating-point results for multiply, meaning two single
precision operands can result in a double-precision product and two double
precision operands can result in a quadruple-precision product: These instruc
tions can be useful in complex arithmetic and some models of floating-point
calculations.

E. 7 I instructions Unique to M88000

The most distinguishing feature of the M88000 is the single set of 32 registers
for both integer and floating-point operations. This simplifies the instruction set
at the cost of fewer registers for floating-point programs.

Bit Instructions

The next feature unique to the M88000 is a full set of bit-field instructions,
shown in Figure E.11 (page E-18). (While we usually number the most
significant bit 0, in this table we follow Motorola's notation, which numbers the
most significant bit 31 and the least significant bit 0.) Bit-field instructions need
an extra operand to specify the width of the field in addition to the destination
register, source register, and beginning of the bit field. This 5-bit width field is
located next to the bit field in source 2. The M88000 encodes a width of 0 to
mean the full 32-bit value, hence the traditional shift instructions (SLL, SRL,

SRA) are simply the corresponding bit-field instructions (MAK, EXTU, EXT) with
0 in the width field.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 739

E·18 E.7 Instructions Unique to M88000

Name Instruction Notation

CLR Clear bit field Rd (o+w) .. (o+l) f- ow

SET Set bit field Rd (o+w) .. (o+l) f- 1 w

EXT Extract signed if (w==O) {Rd f- Rs 131 ° ## (Rsl >> o) }

bit field else {Rd f- (Rsl (o+w)) 0 ## (Rsl (o+w) .. (o+l) >> o) }

EXTU Extract unsigned if (w==O) {Rd f- 0° ## (Rsl >> o) }

bit field else {Rd f- 0° ## (Rsl (o+w) .. (o+l) >> o) }

MAK Make bit field if (w==O) {Rd f- Rsl << o}
else {Rd(o+w) .. (o+l) f-Rsl(w-1) .. 0 }

ROT Rotate right Rd f-Rsl(o-l) .. 0 ## Rsl 31. .o

FFO Find first bit clear for (i=3l;Rs2i==O 11 i<O;i f-i-1); /* loop until = O* I
if (i<O) {Rd f- 32} else · {Rd f- i }

FFl Find first bit set for (i=3l;Rs2i==l 1 I i<O; i f-i-1); /* loop until = 1 *I
if(i<O) {Rd f- 32} else {Rd f- i}

FIGURE E.11 The M88000 bit-field instructions. The bit offset, o, is the least significant five bits of the second operand
and the bit-field width, w, is the five bits next to the offset. The subscript notation specifies a bit field while the superscript
notation means replicate the bit that many times. Note that in this table, bit 31 refers to the most significant bit, and 0
refers to the least significant bit.

Remaining Instructions

The final unique instructions are load address (LDA), MASK, round to nearest
integer (NINT), trap on bounds (TBND), and exchange control register (XCR):

• LDA loads Rd with the effective address rather than the data in memory. The
only time this is different from ADDU is for scaled addressing of nonbyte
data.

• MASK is simply another case of logical AND immediate: This instruction
clears the other half of the word while AND immediate leaves it undisturbed.
Thus, ANDI in DLXis arguably closer to MASK than to AND immediate in the
M88000.

• NINT differs from INT in that it rounds to the nearest integer no matter how
the rounding modes are set (see Appendix A, pages A-16 to A-17).

• TBND traps if Rsl > Rs2, treating them as unsigned numbers (see page 239 in
Chapter 5 for an explanation of how an unsigned comparison can check two
signed bounds at once).

• XCR exchanges a control register with an integer register.

In addition to instructions, here are a few features that distinguish the M88000:

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 740

Appendix E: SuNey of RISC Architectures E·19

• Double-length operations use Rn and Rn+ 1 rather than an even-odd register
pair. This gives the M88000 more flexibility in register allocation, which is
important given the lack of floating-point registers.

• The first implementation, the MC88100, allows all multicycle instructions to
overlap execution with following instructions unless there is a data hazard
(see pages 264-265 in Chapter 6). Also, all floating-point instructions except
divide are pipelined, taking just one cycle to issue single-precision operations
and two cycles to issue double-precision operations. The 88000 provides a set
of shadow registers (see Section 5.6) for floating-point operands to help soft
ware handle both precise and imprecise interrupts (see Motorola [1988]).

• There are special data transfers, identified by appending .USR to the instruc
tions, that allow access to the user's data while in supervisor mode.

E.8 I 1nstructions Unique to i860

The i860 has many unique features. Before covering the special extensions for
graphics and high-performance floating point, let's cover the traditional areas.

The unique data transfers are for floating point only. The i860 provides 128-
bit loads (FLD • Q) and stores (F ST • Q) of pairs of 64-bit floating-point registers.
It also provides an optional addressing mode on all floating-point loads and
stores: the effective address (sum of Rsl/Const and Rs2) is stored back into Rs2.
One unique characteristic is that the i860 seems to run out of opcode bits for
load instructions because it uses the least significant bit to distinguish load
halfword from load word. This works fine for the register-register format since
bit 0 is an opcode extension field in this format, but in register-immediate for
mat this is the least significant bit of the constant field. To avoid crazy address
ing problems, this bit is cleared when used as an address. This prevents having
an odd value in an index register that is corrected by an odd byte address in the
constant field for halfword and word data transfers (see E.lO(b) on page E-16 for
a reason this is useful.)

The only unique arithmetic logical instruction is a double-length shift-right
logical (SHRD). Rsl and Rs2 are shifted right as a pair and then the 32 least sig
nificant bits are placed into Rd. Since there is no room in the instruction to spec
ify the shift amount, SHRD uses the shift amount from the last SHR instruction.
This value is saved in the 5-bit SC field of the program status word. By the way,
SHRD can be used to perform a 32-bit rotate by having Rsl and Rs2 specify the·
same register.

The i860 control instructions include a loop instruction called B LA. This
instruction both performs an add and a conditional branch. Since it is likely that
another instruction in the loop would change the condition code, the i860 has a
special loop condition code (LCC) just for this instruction. BLA performs Rd~
Rs\l+Rs2 and branches if LCC equals 1. In addition, BLA sets the LCC for the

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 741

E-20 E.8 Instructions Unique to i860

next time through the loop if Rs2 ~-Rs 1 and clears it otherwise. (LCC is set just
the opposite of how ADDS sets CC.)

While i860 does not have floating-point divide, it does have a floating-point
reciprocal instruction (FRCP). Used with Newton-Raphson iteration (pages
A-23-A-24 of Appendix A), this calculates divide that disagrees with the IEEE
floating-point standard (IEEE 754) in the 2 least significant bits. Intel offers
software to produce the correctly rounded result at twice the cycle count. A
similar instruction, FRSQR, calculates a reciprocal step for square root. The
floating-point instructions also include 64-bit integer addition and subtraction
(FIADD. DD and FI SUB. DD) using the floating-point registers.

This covers the unique features in the traditional categories, so let's describe
the new categories of the i860.

Graphics Instructions

The graphics or pixel instructions of i860 operate on 64 bits of data at a time,
with each word representing several pixels. Pixel instructions are intended to be
useful in graphics operations such as hidden surface elimination (see page 525 in
Chapter 9), distance interpolation, and three-dimensional shading using intensity
interpolation. These special-purpose instructions are not simple to understand, so
interested readers should refer to the manual for details.

The overview of the operations is that two bits in the program status word
determine the size of the pixels in a 64-bit word. Pixels can be 8-, 16-, or 32-bits
wide, with each size containing fields representing intensity of the primary
colors red, blue, and green. Some pixel instructions work with a 64-bit accumu
lator called the MERGE register, useful in collecting the results of a series of
calculations on pixels. In addition to "merge" instructions (FADDP and FADDZ),

the i860 has instructions for z buffers (page 525) that compare two sets of four
16-bit (F ZCHKS) or two 32-bit (F ZCHKL) values, storing the smaller values in
the 64-bit destination register and setting bits indicating which was smaller in
the program status word. Pixel-store instructions (P s T) then use those bits to
selectively store only those pixels that were smaller. Finally, the F o RM

instruction is used to move the MERGE register into a floating-point register and
then clear MERGE.

Pipelined Mode

For higher performance, the i860 offers pipelined versions of all the floating
point and pixel instructions. One model for these instructions is to use them to
build vector primitives, allowing procedures to be written to implement vector
operations (see Chapter 7). The hope is that existing vectorizing compilers could
invoke these more efficient procedures. Another model, used by compilers cur
rently under development at Intel's behest, tries to compile directly into these
instructions for both vector and nonvector codes.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 742

Appendix E: Survey of RISC Architectures E-21

In pipelined mode, an instruction is launched every cycle, but unlike other
pipelined machines, there is no hardware to remember where the results are to be
stored. Basically, the instruction issuing at the stage the pipeline completes
specifies the destination! There are four independent pipelines in the i860, and
each pipeline advances only when the next instruction of that type is executed.
Figure E.12 shows the i860 pipelines, the number of pipeline stages, and instruc
tions that advance each pipeline. Thus, the source fields and opcode specify the
operation to be launched while the destination field specifies the register to be
loaded by an instruction of the same type that is in the final stage at this cycle.

Pipeline No. of Stages Instructions using pipeline

PP multiplier 3 (single operands) PFMUL

2 (double operands)

PP adder 3 PFADD, PF SUB, PFGT, PFLE,
PFEQ, PFIX, PFTRUNC

PP load 3 PFLD

Graphics 1 PFIADD, PF I SUB, PFZCHKS,
PFZCHKL, PFADDP, PFADDZ,
PF ORM

FIGURE E.12 i860 pipelines, including the number of pipeline stages and
instructions. All adder and multiplier instructions allow single-precision operands with
single-precision results (.SS), single operands with double results (.SD), and double
precision operands with double-precision results (.DD). Since the number of stages differs
for multiply depending on single or double, Intel recommends not mixing precisions
involving multiplication.

For example, look at the sequence below for the floating-point adder pipeline
(assume the operands are specified with the result on the left):

PFADD.SS F4, F2, F3 ;Single Pree. Add

PFSUB.DD FlO, F8, F6 ;Double Pree. Sub

PFMUL.DD F16, F12, F14 ;Double Pree. Mul

PFADD.SS F19, F17, F18 ;Single Pree. Add

PFADD.SS F22, F20, F21 ;Single Pree. Add

The floating-point adder pipeline is three stages, so the first instruction launches
a floating-point add of F 2 and F 3, but F 4 is loaded from the operation in the
adder pipeline launched three instructions earlier. The multiply in this sequence
does not advance the adder pipeline, so the third adder pipeline instruction fol
lowing the first instruction (one subtract and two adds) is the final instruction in
the sequence, meaning that F 2 2 f- F 2 + F 3.

The load pipeline has an interesting interaction with the data cache. As long
as the data is in the cache, it is fetched from the cache. On a miss the data is
fetched from memory, but the cache is not updated with the new data. This

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 743

E·22 E.8 Instructions Unique to i860

policy prevents operations on large data structures from filling the cache with
data that will not be reused and throwing out data that would be reused. The pro
grammer must decide on whether to use scalar loads (FLD) or pipelined loads
(PFLD), depending on whether the data is likely to be reused or not.

Scalar instructions will normally empty the pipeline. (The exception is the
load pipeline because FLD or LD don't empty it.) Thus, before executing a scalar
floating-point instruction there must be a sequence of dummy pipelined instruc
tions that store the results away. For example, there is no pipelined version of
the floating-point instruction used for integer multiply (FMLOW), so the pipeline
must be drained if an integer multiply is needed during a floating-point
calculation.

Summarizing pipelined mode on the i860, the advantages are

• Pipeline control is simple (basically it is done in software).

• It doesn't need many registers, since they are not reserved during the
operation.

The disadvantages are:

• Operations must be performed to empty the pipeline.

• The interrupt mechanism is complicated, taking longer to recover the state.

• Sometimes the pipeline is hard to use.

• Code size may mushroom (this has not yet been quantified).

Add/Sub and Multiply

To squeeze even more performance from the floating-point unit, the i860 has
pipelined instructions that simultaneously perform an add and multiply (PFAM

and PFMAM) or a subtract and multiply (PF SM and PFMSM), advancing the
pipelines of both the add and multiply units. Since each instruction needs 4
sources and 2 destinations, the i860 has three registers that can also be used in
addition to the three floating-point registers specified in the instruction. The
registers KI and KR, optionally loaded from Rsl, can be sources for the multi
plier, and register T can be a destination of the multiplier or a source for the ad
der. The final stage of adder pipeline and multiplier pipeline can also be sources.
Four bits in each instruction specify a variety of combinations of the operands
and the operations.

Dual Instruction Mode

Finally, the i860 allows an integer and a floating-point instruction to be fetched
and executed simultaneously. This long instruction word or superscalar form of
operation (pages 318-322 in Chapter 6) is called dual-instruction mode in the
i860. Simultaneous execution occurs in this mode when the upper instruction of

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 744

Appendix E: Survey of RISC Architectures E-23

an aligned doubleword is an integer instruction and the lower is a floating-point
instruction with the "D" bit set (bit 9 = 1). Entering or exiting the mode is
delayed: When the i860 finds an instruction with the D bit set, it executes one
more instruction before entering dual-instruction mode; and, similarly, when the
i860 is in dual-instruction mode and finds a D bit not set, it executes one more
pair before going to sequential execution.

Clearly, highest performance comes when the i860 is in both dual-instruction
and pipelined modes.

E.9 I Concluding Remarks

Date announced

Instruction size(s) (bits)

Addressing (size, model)

Data aligned?

Data addressing modes

Protection

Page size

1/0

Integer registers (size,
model, number)

Separate floating-point
registers

Floating-point format

This appendix covers the addressing modes, instruction formats, and all
instructions found in four recent architectures. While the later sections con
centrate on the differences, it would not be possible to cover four architectures in
these few pages if there were not so many similarities. In fact, we would guess
that more than 90% of the instructions executed for any of these architectures
would be found in Figure E.3 (page E-3). To illustrate this homogeneity, Figure
E.13 gives a summary for four architectures from the 1970s similar to Figure E.1
(page E-2). (Imagine trying to write a single appendix in this style for those
architectures.) In the history of computing, there has never been such
widespread agreement on computer architecture.

IBM360/370 Intel 8086 Motorola 68000 DEC VAX

1964/1970 1978 1980 1977

16,32,48 8,16,24,32, 40,48 16,32,48, 64,80 8,16,24,32, ... , 432

24 bits, flat 4+16 bits, 24 bits, flat 32 bits, flat
segmented

Yes 360/No 370 No 16-bit aligned No

4 5 9 ~ 14

Page None Optional Page

4KB -- 0.25 to 32 KB 0.5KB

Opcode Opcode Memory mapped Memory mapped

16 GPR x 32 bits 8 dedicated data x 8 data & 8 address 15 GPR x 32 bits
16 bits x 32 bits

4 x 64 bits Optional: Optional: 0
8 x 80 bits 8 x 80 bits

IBM IEEE 754 single, IEEE 754 single, DEC
double, extended double, extended

FIGURE E.13 Summary of four 1970s architectures. Unlike the architectures in Figure E.1 (page E-2), there is little
agreement between these architectures in any category. (See Chapter 4 for more details on the 370, 8086, and VAX.)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 745

E·24 E.9 Concluding Remarks

This style of architectures cannot remain static, however. One hard lesson is
that address space must grow, so the 32-bit size of all these architectures must
expand for them to survive. In terms of their implementation, we expect all to
offer superscalar execution of 2 to 4 instructions per cycle. The hardware tech
nology will go beyond the current CMOS VLSI and ECL to BiCMOS, and
possibly even Gallium Arsenide. Our guess is that all of them will grow beyond
the current market of workstations and peripheral controllers to minicomputers,
mainframes, and even supercomputers, with increasing numbers of processors
per computer class.

E.1 0 I References

INTEL [1989]. i860 64-Bit Microprocessor Programmer's Reference Manual.

KANE, G. [1988]. MIPS RISC Architecture, Prentice-Hall, Englewood Cliffs, N. J.

MOTOROLA [1988]. MC88IOO RISC Microprocessor User's Manual.

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS AND D. ZURAS [1988]. "Integer multiplication
and division on the HP Precision Architecture," IEEE Trans. on Computers, 37:8, 980-990.

MUCHNICK, S.S. [1988]. "Optimizing compilers for SPARC," Sun Technology (Summer) 1:3, 64-
77.

SUN MICROSYSTEMS [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-09,
August 25, 1989.

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. "Evaluation of the
SPUR LISP architecture," Proc. 13th Symposium on Computer Architecture (June), Tokyo.

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. "Architecture of
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann
Arbor, Mich., 188-197.

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 746

References R·1

I References

The following is a compilation of all the references listed in the reference section of each chapter.
The page number of where each reference appears in the book is in parentheses after the reference.

ADAMS, T. AND R. ZIMMERMAN [1989). "An analysis of 8086 instruction set usage in MS DOS
programs," Proc. Third Symposium on Architectural Support for Programming Languages and
Systems (April) Boston, 152-161. (p. 188)

AGARWAL, A. [1987). Analysis of Cache Pe1formance for Operating Systems and
Multiprogramming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May). (p. 487)

AGARWAL, A., R. L. SITES, AND M. HOROWITZ [1986). "ATUM: A new technique for capturing
address traces using microcode," Proc. 13th Annual Symposium on Computer Architecture (June
2-5), Tokyo, Japan, 119-127. (p. 486)

AGERWALA, T. AND J. COCKE [1987). "High performance reduced instruction set processors,"
IBM Tech. Rep. (March). (p. 340)

ALEXANDER, W. G. AND D. B. WORTMAN [1975). "Static and dynamic characteristics of XPL
programs," Computer 8: 11 (November) 41-46. (pp. 130, 187)

ALLIANT COMPUTER SYSTEMS CORP. [1987). Alliant PX/Series: Product Summary (June), Acton,
Mass. (p. 395)

ALMASI, G. S. AND A. GOTTLIEB [1989). Highly Parallel Computing, Benjamin/Cummings,
Redwood City, Calif. (p. 589)

AMDAHL, G. M. [1967). "Validity of the single processor approach to achieving large scale
computing capabilities," Proc. AF/PS Spring Joint Computer Conf 30, Atlantic City, N. J. (April)
483-485.(pp.26,588)

AMDAHL, G. M., G. A. BLAAUW, AND F. P. BROOKS, JR. [1964). "Architecture of the IBM
System/360," IBM J. Research and Development 8:2 (April) 87-101. (pp. 127, 186)

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967). "The IBM 360 Model 91:
Machine philosophy and instruction handling," IBM J. of Research and Development 11: 1
(January) 8-24. (p. 339)

ANDERSON, S. F., J. G. EARLE, R. E. GOLDSCHMIDT, AND D. M. POWERS [1967). "The IBM
System/360 Model 91: Floating-point execution unit," IBM J. Research and Development 11, 34-
53. Reprinted in [Swartzlander 1980). (p. A-59)

ANDREWS, G. R. AND F. B. SCHNEIDER [1983). "Concept and notations for concurrent
programming," Computing Surveys 15:1(March)3-43. (p. 590)

ANON ET AL. [1985). "A measure of transaction processing power," Tandem Tech. Rep. TR 85.2.
Also appeared in Datamation, April 1, 1985. (p. 511)

ARCHIBALD, J. AND J.-L. BAER [1986). "Cache coherence protocols: Evaluation using a
multiprocessor simulation model," ACM Trans. on Computer Systems 4:4 (November) 273-298.
(p. 487)

AT AN AS OFF, J. V. [1940). "Computing machine for the solution of large systems of linear
equations," Internal Report, Iowa State University. (p. 24)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 747

R·2 Computer Architecture: A Quantitative Approach

ATKINS, D. E. [1968]. "Higher-radix division using estimates of the divisor and partial remainders,"
IEEE Trans. on Computers C-17:10, 925-934. Reprinted in [Swartzlander 1980]. (p. A-60)

BAER, J.-L. AND E.-H. WANG [1988]. "On the inclusion property for multi-level cache hierarchies,"
Proc. I 5th Annual Symposium on Computer Architecture (May-June), Honolulu, 73-80. (p. 487)

BAKOGLU, H.B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAHLE, C.R. MOORE, D. P. TUTTLE,
W. E. MAULE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T.
GLOVER, ANDS. DHAWAN [1989]. "IBM second-generation RISC machine organization," Proc.
Int' l Conj. on Computer Design, IEEE (October) Rye, N.Y., 138-142. (p. 340)

BANERJEE, U. [1979]. Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign (October). (p. 395)

BARTON, R. S. [1961]. "A new approach to the functional design of a computer," Proc. Western
Joint Computer Conj., 393-396. (p. 127)

BASHE, C. J., L. R. JOHNSON, J. H. PALMER, AND E.W. PUGH [1986]. IBM's Early Computers,
MIT Press, Cambridge, Mass. (p. 561)

BASHE, C. J., W. BUCHHOLZ, G .V. HAWKINS, J .L. INGRAM, AND N. ROCHESTER [1981]. "The
architecture of IBM's early computers," IBM J. of Research and Development 25:5 (September)
363-375. (p. 561)

BATCHER, K. E. [1974]. "STARAN parallel processor system hardware," Proc. AF/PS National
Computer Conj., 405-410. (p. 590)

BELL, C. G. AND W. D. STRECKER [1976]. "Computer structures: What have we learned from the
PDP-11? ,"Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, Penn.,
1-14. (p. 485)

BELL, C. G. [1984]. "The mini and micro industries," IEEE Computer 17:10 (October) 14-30. (p.
27)

BELL, C. G. [1985]. "Multis: A new class of multiprocessor computers," Science 228 (April 26)
462-467. (p. 589)

BELL, C. G. [1989]. "The future of high performance computers in science and engineering," Comm.
ACM 32:9 (September) 1091-1101. (p. 590)

BELL, C. G. AND A. NEWELL, [1971]. Computer Structures: Readings and Examples, McGraw
Hill, New York. (p. A-58)

BELL, C. G., J.C. MUDGE, AND J.E. MCNAMARA [1978]. A DEC View of Computer Engineering,
Digital Press, Bedford, Mass. (p. 80)

BELL, C. G., R. CADY, H. MCFARLAND, B. DELAGI, J. O'LAUGHLIN, R. NOONAN, AND W.
WULF [1970]. "A new architecture for mini-computers: The DEC PDP-11," Proc. AF/PS SJCC,
657-675. (p. 127)

BERRY, M., D. CHEN, P. KOSS, D. KUCK [1988]. "The Perfect Club benchmarks: Effective
performance evaluation of supercomputers," CSRD Report No. 827 (November), Center for
Supercomputing Research and Development, University of Illinois at Urbana-Champaign:(p. 80)

BIRMAN, M., G. CHU, L. HU, J. MCLEOD, N. BEDARD, F. WARE, L. TORBAN, AND C. M. LIM
[1988]. "Design of a high-speed arithmetic datapath," Proc. ICCD: VLSI Computers and
Processors, 214-216. (p. A-53)

BLAKKEN, J. [1983]. "Register windows for SOAR," in Smalltalk On A RISC: Architectural
Investigations, Proc. of CS 292R (April) 126-140. (p. 451)

BLOCH, E. [1959]. "The engineering design of the Stretch computer," Proc. Fall Joint Computer
Conj., 48-59. (p. 338)

BORRILL, P. L. [1986]. "32-bit buses-An objective comparison," Proc. Buscon 1986 West, San
Jose, Calif., 138-145. (p. 533)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 748

References R·3

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J.M. RANDALL, A.H. SAMEH, AND D. L.
SLOTNICK [1972]. "The Illiac IV system," Proc. IEEE 60:4, 369-379. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982),
306-316. (p. 570)

BRADY, J. T. [1986]. "A theory of productivity in the creative process," IEEE CG&A (May) 25-34.
(p. 560)

BRENT, R. P. AND H. T. KUNG [1982] "A regular layout for parallel adders," IEEE Trans. on
Computers C-31, 260--264. (p. A-59)

BRODERSEN, R. W. [1989]. "Evolution of VLSI signal-processing circuits," Proc. Decennial
Caltech Conf on VLSI (March) 43-46, The MIT Press, Pasadena, Calif. (p. 590)

BUCHER, I. Y. [1983]. "The computational speed of supercomputers," Proc. SIGMETRICS Conf on
Measuring and Modeling of Computer Systems, ACM (August) 151-165. (p. 395)

BµCHER, I. Y. AND A.H. HA YES [1980]. "1/0 Performance measurement on Cray-1 and CDC 7000
computers," Proc. Computer Performance Evaluation Users Group, 16th Meeting, NBS 500-65,
245-254. (p. 562)

BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.
(p. 338)

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. "Preliminary discussion of the
logical design of an electronic computing instrument," Report to the U.S. Army Ordnance
Department, p. 1; also appears in Papers of John von Neumann, W. Aspray and A. Burks, eds.,
The MIT Press, Cambridge, Mass. and Tomash Publishers, Los Angeles, Calif., 1987, 97-146. (p.
24)

CALLAHAN, D., J. DONGARRA, AND D. LEVINE [1988]. "Vectorizing compilers: A test suite and
results;" Supercomputing '88, ACM/IEEE (November), Orlando, Fla., 98-105. (p. 377)

CASE, R. P. AND A. PADEGS [1978]. "The architecture of the IBM System/370," Comm. ACM21:1,
73-96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures:
Principles and Examples (1982), McGraw-Hill, New York, 830-855. (pp. 186, 485)

CENSIER, L. M. AND P. FEAUTRIER [1978]. "A new solution to the coherence problem in
multicache systems," IEEE Trans. on Computers C-27:12 (December) 1112-1118. (p. 487)

CHAITIN, G. J., M.A. AUSLANDER, A. K. CHANDRA, J. COCKE, M. E. HOPKINS, AND P. W.
MARKSTEIN [1982]. "Register allocation via coloring," Computer Languages 6, 47-57. (p. 130)

CHARLESWORTH, A. E. [1981]. "An approach to scientific array processing: The architecture
design of the AP-120B/FPS-164 family," Computer 14:12 (December) 12-30. (p. 340)

CHEN, P. [1989]. An Evaluation of Redundant Arrays of Inexpensive Disks Using an Amdahl 5890,
M. S. Thesis, Computer Science Division, Tech. Rep. UCB/CSD 89/506. (p. 507)

CHEN, S. [1983]. "Large-scale and high-speed multiprocessor system for scientific applications,"
Proc. NATO Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
"Supercqn'lputers: Design and applications," IEEE (August) 1984. (p. 394)

CHEN, T. C. [1980]. "Overlap and parallel processing" in Introduction to Computer Architecture, H.
Stone, ed., Science Research Associates, Chicago, 427-486. (p. 339)

CHOW, F. C. [1983]. A Portable Machine-Independent Global Optimizer-Design and Measure
ments, Ph.D. Thesis, Stanford Univ. (December). (p. 130)

CHOW, F. C. AND J. L. HENNESSY [1984]. "Register allocation by priority-based coloring," Proc.
SIGPLAN '84 Compiler Construction (ACM SIGPLAN Notices 19:6, June) 222-232. (p. 130)

CHOW, F., M. HIMELSTEIN, E. KILLIAN, AND L. WEBER [1986]. "Engineering a RISC compiler
system," Proc. COMPCON (March), San Francisco, 132-137. (p. 197)

CLARK, D. W. [1983]. "Cache performance of the VAX-11/780," ACM Trans. on Computer
Systems 1: l, 2~37. (p. 486)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 749

R·4 Computer Architecture: A Quantitative Approach

CLARK, D. W. [1987]. "Pipelining and performance in the VAX 8800 processor," Proc. Second
Conf on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 173-177. (p. 272)

CLARK, D. W. AND H. LEVY [1982]. "Measurement and analysis of instruction set use in the VAX-
11/780," Proc. Ninth Symposium on Computer Architecture (April), Austin, Tex., 9-17. (p. 188)

CLARK, D. W. AND J. S. EMER [1985]. "Performance of the VAX-11/780 translation buffer:
Simulation and measurement," ACM Trans. on Computer Systems 3:1, 31-62. (p. 486)

CLARK, D. W. AND W. D. STRECKER [1980]. "Comments on 'the case for the reduced instruction
set computer', " Computer Architecture News 8:6 (October) 34-38. (p. 130)

CLARK, D. W., P. J. BANNON, AND J.B. KELLER [1988]. "Measuring VAX 8800 performance with
a histogram hardware monitor," Proc. 15th Annual Sy0posium on Computer Architecture (May
June), Honolulu, Hawaii, 176-185. (pp. 213, 486)

COCKE, J. AND J. T. SCHWARTZ [1970]. Programming Languages and Their Compilers, Courant
Institute, New York Univ., New York City. (p. 130)

COCKE, J., AND J. MARKSTEIN [1980]. "Measurement of code improvement algorithms," lnforma
tion Processing 80, 221-228. (p. 130)

CODD, E. F. [1962]. "Multiprogramming," in F.L. Alt and M. Rubinoff, Advances in Computers,
vol. 3, Academic Press, New York, 82. (p. 241)

CODY, W. J. [1988]. "Floating point standards: Theory and practice," in Reliability in Computing:
The Role of lnterval Methods in Scientific Computing, R. E. Moore, (ed.), Academic Press, Boston,
Mass., 99-107. (p. A-12)

CODY, W. J., J. T. COONEN, D. M. GAY, K. HANSON, D. HOUGH, W. KAHAN, R. KARPINSKI,
J. PALMER, F. N. RIS, AND D. STEVENSON [1984]. "A proposed radix- and word-length
independent standard for floating-point arithmetic," JEEE Micro 4:4, 86-100. (p. A-12)

COHEN, D. [1981]. "On holy wars and a plea for peace," Computer 14:10 (October) 48-54. (p. 95)

COLWELL, R. P, C. Y. HITCHCOCK, III, E. D. JENSEN, H. M. B. SPRUNT, AND C. P. KOLLAR,
[1985]. "Computers, complexity, and controversy," Computer 18:9 (September) 8-19. (p. 125)

COLWELL, R. P., R. P. NIX, J. J. O'DONNELL, D. B. PAPWORTH, AND B. K. RODMAN [1987]. "A
VLIW architecture for a trace scheduling compiler," Proc. Second Conj. on Architectural Support
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif., 180-
192. (p. 340)

CONTI, C., D. H. GIBSON, AND S. H. PITKOWSKY [1968). "Structural aspects of the System/360
Model 85, part I: General organization," IBM Systems J. 7:1, 2-14. (pp. 77, 486)

COONEN, J. [1984]. Contributions to a Proposed Standard for Binary Floating-Point Arithmetic,
Ph.D. Thesis, Univ. of Calif., Berkeley. (p. A-29)

CRAWFORD, J. HAND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif.
(pp. 188, 446)

CURNOW, H.J. AND B. A. WICHMANN [1976]. "A synthetic benchmark," The Computer J. 19:1.
(p.77)

DAVIDSON, E. S. [1971]. "The design and control of pipelined function generators," Proc. Conj. on
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19-21. (p. 339)

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. "Effective control for
pipelined processors," COMPCON, IEEE (March), San Francisco, 181-184. (p. 339)

DEHNERT, J.C., P. Y.-T. HSU, AND J.P. BRATT [1989]. "Overlapped loop support on the Cydra 5,"
Proc. Third Conf on Architectural Support for Programming Languages and Operating Systems
(April), IEEE/ACM, Boston, 26-39. (p. 340)

DEROSA, J., R. GLACKEMEYER, AND T. KNIGHT [1985]. "Design and implementation of the VAX
8600 pipeline," Computer 18:5 (May) 38-48. (p. 328)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 750

References R-5

DEWITT, D. J., R. FINKEL, AND M. SOLOMON [1984]. "The CRYSTAL multicomputer: Design
and implementation experience, Computer Sciences Tech. Rep. No. 553, University of Wisconsin
Madison, September. (p. 590)

DIGITAL EQUIPMENT CORPORATION [1987]. Digital Technical]. 4 (March), Hudson, Mass. (This
entire issue is devoted to the VAX 8800 processor.) (p. 341)

DITZEL, D.R. [1981]. "Reflections on the high-level language Symbol computer system," Computer
14:7 (July) 55-66. (p. 129)

DITZEL, D.R. AND D. A. PATTERSON [1980]. "Retrospective on high-level language computer
architecture," in Proc. Seventh Annual Symposium on Computer Architecture, La Baule, France
(June) 97-104. (p. 130)

DITZEL, D.R. AND H. R. MCLELLAN [1987]. "Branch folding in the CRISP microprocessor:
Reducing the branch delay to zero," Proc. 14th Symposium on Computer Architecture (June),
Pittsburgh, 2-7. (p. 339)

DITZEL, D.R., AND H. R. MCLELLAN [1982]. "Register allocation for free: The C machine stack
cache," Symposium on Architectural Support for Programming Languages and Operating Systems
(March 1-3), Palo Alto, Calif., 48-56. (p. 487)

DOHERTY, W. J. AND R. P. KELISKY [1979]. "Managing VM/CMS systems for user effectiveness,"
IBM Systems J. 18:1, 143-166. (p. 560)

DONGARRA, J. J. [1986]. "A survey of high performance computers," COMPCON, IEEE (March)
8-11. (p. 394)

EARLE, J. G. [1965]. "Latched carry-save adder," IBM Technical Disclosure Bull. 7 (March) 909-.
910. (p. 254)

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph.D.
Thesis, Univ. of California, Berkeley, Computer Science Division Tech. Rep. UCB/CSD 89/501
(April). (p. 487)

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P.
TELLER, AND J. WILSON [1985]. "Issues related to MIMD shared-memory computers: The NYU
Ultracomputer approach," Proc. 12th Int' l Symposium on Computer Architecture (June), Boston,
Mass., 126-135. (p. 589)

ELLIS, J. R., J. A. FISHER, J.C. RUTTENBERG, AND A. NICHOLAU [1984]. "Parallel processing: A
smart compiler and a dumb machine," Proc. SIGPLAN Conj. on Compiler Construction (June),
Montreal, Canada, 37-47. (p. 340)

ELSHOFF, J. L. [1976]. "An analysis of some commercial PL/I programs," IEEE Trans. on Software
Engineering SE-2 2 (June) 113-120. (p. 130)

EMER, J. S. AND D. W CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.
(pp. 189,213,342,486)

E•SUN MICROSYSTEMS [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-
09, August 25, 1989.

FABRY, R. S. [1974]. "Capability based addressing," Comm. ACM 17:7 (July) 403-412. (p. 485)·

FAZIO, D. [1987]. "It's really much more fun building a supercomputer than it is simply inventing
one," COMPCON, IEEE (February) 102-105. (p. 394)

FEIERBACK, G AND D. STEVENSON [1979]. "The Illiac-IV," in Infotech State of the Art Report on
Supercomptuers, Maidenhead, England. This data also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell, Computer Structures: Principles and Examples (1982), McGraw-Hill, New York, 268-
269. (p. 556)

FISHER, J. A. [1983]. "Very long instruction word architectures and ELI-512," Proc. Temth Sympo
sium on Computer Architecture (June), Stockholm, Sweden. (p. 340)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 751

R·6 Computer Architecture: A Quantitative Approach

FLEMMING, P. J. AND J. J. WALLACE [1986]. "How not to lie with statistics: The correct way to
summarize benchmarks results," Comm. ACM 29:3 (March) 218-221. (p. 78)

FLYNN, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909. (pp.351,591)

FOLEY, J. D. AND A. VAN DAM [1982]. Fundamentals of Interactive Computer Graphics, Addison
Wesley, Reading, Mass. (p. 561)

FOSTER, C. C. AND E. M. RISEMAN [1972]. "Percolation of code to enhance parallel dispatching
and execution," IEEE Trans. on Computers C-21:12 (December) 1411-1415. (p. 340)

FOSTER, C. C., R.H. GONTER, AND E. M. RISEMAN [1971]. "Measures of opcode utilization,"
IEEE Trans. on Computers 13:5 (May) 582-584. (p. 129)

FRANK, P. D. [1987]. "Advances in Head Technology," presentation at Challenges in Winchester
Technology (December 15), Santa Clara Univ. (p. 561)

FRANK, S. J. [1984]. "Tightly coupled multiprocessor systems speed memory access times,"
Electronics 57:1(January)164-169. (p. 487)

FREIMAN, C. V. [1961]. "Statistical analysis of certain binary division algorithms," Proc. IRE 49:1,
91-103. (p. A-59)

FRIESENBORG, S. E. AND R. J. WICKS [1985]. "DASD expectations: The 3380, 33?0-23, and
MVS/XA," Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center. (p. 554)

FULLER, S. H. [1976]. "Price/performance comparison of C.mmp and the PDP-11," Proc. Third
Annual Symposium on Computer Architecture (Texas, January 19-21), 197-202. (p. 80)

FULLER, S. H. AND W. E. BURR [1977]. "Measurement and evaluation of alternative computer
architectures," Computer 10: 10 (October) 24-35. (p. 78)

GAGLIARDI, U. 0. [1973]. "Report of workshop 4-software-related advances in computer hard
ware," Proc. Symposium on the High Cost of Software, Menlo Park, Calif., 99-120. (p. 129)

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. "CEDAR-A large scale multi
processor," Proc. Int' l Conf on Parallel Processing (August) 524-529. (p. 589)

GARNER, R., A. AGARWAL, F. BRIGGS, E. BROWN, D. HOUGH, B. JOY, S. KLEIMAN, S.
MUNCHNIK, M. NAMJOO, D. PATTERSON, J. PENDLETON, AND R. TUCK [1988]. "Scaleable
processor architecture (SPARC)," COMPCON, IEEE (March), San Francisco, 278-283. (p. 190)

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm*
Experience, Digital Press, Bedford, Mass. (p. 587)

GIBSON, D. H. [1967]. "Considerations in block-oriented systems design," AF/PS Conf Proc. 30,
SJCC, 75-80. (p. 486)

GIBSON, J.C. [1970]. "The Gibson mix," Rep. TR. 00.2043, IBM Systems Development Division,
Poughkeepsie, N.Y. (Research done in 1959.) (p. 77)

GOLDBERG, D. [1989]. "Floating-point and computer systems," Xerox Tech. Rep. CSL-89-9. A
version of this paper will appear in Computing Surveys. (p. A-29)

GOLDBERG, I. B. [1967]. "27 bits are not enough for 8-digit accuracy," Comm. ACM 10:2, 105-106.
(p. A-60)

GOLDSTEIN, S. [1987]. "Storage performance---,an eight year outlook," Tech. Rep. TR 03.308-1
(October), Santa Teresa Laboratory, IBM, San Jose, Calif. (p. 561)

GOLDSTINE, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University
Press, Princeton, N.J. (p. 25)

GOODMAN, J. R. [1983]. "Using cache memory to reduce processor memory traffic," Proc. Tenth
Annual Symposium on Computer Architecture (June 5-7), Stockholm, Sweden, 124-131. (p. 487)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 752

References R·7

GOODMAN, J. R. and M.-C. Chiang [1984]. "The use of static column RAM as a memory
hierarchy," Proc. 11th Annual Symposium on Computer Architecture (June 5-7), Ann Arbor,
Mich., 167-174. (p. 488)

GOSLING, J.B. [1980]. Design of Arithmetic Units for Digital Computers, Springer-Verlag
NewYork, Inc., New York. (p. A-61)

GRAY, W. P. [1989]. Memorandum of Decision, No. C-84-20799-WPG, U.S. District Court for the
Northern District of California (February 7, 1989). (p. 244)

GROSS, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December),
Computer Systems Lab., Stanford Univ. (p. 342)

HALBERT, D. C. AND P. B. KESSLER [1980]. "Windows of overlapping register frames," CS 292R
Final Reports (June) 82-100. (p. 489)

HAMACHER, V. C., Z. G. VRANESIC, ANDS. G. ZAKY [1984]. Computer Organization, 2nd ed.,
McGraw-Hill, New York. (p. A-61)

HAUCK, E. A., AND B. A. DENT [1968]. "Burroughs' B6500/B7500 stack mechanism," Proc.
AF/PS SJCC, 245-251. (p. 131)

HENLY, M. AND B. MCNUTT [1989]. "DASD 1/0 characteristics: A comparison of MYS to VM,"
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif. (pp. 80, 562)

HENNESSY, J. [1984]. "VLSI processor architecture," IEEE Trans. on Computers C-33:11
(December) 1221-1246. (p. 190)

HENNESSY, J. [1985]. "VLSI RISC processors," VLSI Systems Design VI:lO (October) 22-32. (p.
191)

HENNESSY, J. L. AND T. R. GROSS [1983]. "Postpass code optimization of pipeline constraints,"
ACM Trans. on Programming Languages and Systems 5:3 (July) 422-448. (p. 342)

HENNESSY, J., N. JOUPPI, F. BASKETT, AND J. GILL [1981]. "MIPS: A VLSI processor
architecture," Proc. CMU Conf on VLSI Systems and Computations (October), Computer Science
Press, Rockville, Md. (p. 191)

HENNESSY, J. L., N. JOUPPI, F. BASKETT, T. R. GROSS, AND J. GILL [1982]. "Hardware/software
tradeoffs for increased performance," Proc. Symposium on Architectural Support for
Programming Languages and Operating Systems (March), 2-11. (p. 131)

HENNESSY, J. [1984]. "VLSI processor architecture," IEEE Trans. on Computers C-33:11
(December) 1221-1246. (p. 189)

HILL, M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis,
Univ. of California at Berkeley Computer Science Division, Tech. Rep. UCB/CSD 87/381
(November). (p. 489)

HILL, M. D. [1988]. "A case for direct mapped caches," Computer 21:12 (December) 25-40. (p.
489)

HILLIS, W. D. [1985]. The Connection Machine, The MIT Press, Cambridge, Mass. (p. 591)

HINTZ, R. G. AND D. P. TATE [1972]. "Control data STAR-100 processor design," COMPCON,
IEEE (September) 1-4. (p. 396)

HOCKNEY, R. W. AND C.R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming
and Algorithms, Adam Hilger Ltd., Bristol, England and Philadelphia. (p. 591)

HOLLAND, J. H. [1959]. "A universal computer capable of executing an arbitrary number of
subprograms simultaneously," Proc. East Joint Computer Conf 16, 108-113. (p. 591)

HOLLINGSWORTH, W., H. SACHS AND A. J. SMITH [1989]. "The Clipper processor: Instruction set
architecture and implementation," Comm. ACM 32:2 (February), 200-219. (p. 80)

HORD, R. M. [1982]. The llliac-IV, The First Supercomputer, Computer Science Press, Rockville,
Md. (p. 591)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 753

R·8 Computer Architecture: A Quantitative Approach

HOWARD, J. H. ET AL. [1988]. "Scale and performance in a distributed file system," ACM Trans. on
Computer Systems 6: 1, 51-81. (p. 512)

HUGUET, M. AND T. LANG [1985]. "A reduced register file for RISC architectures," Computer
Architecture News 13:4 (September) 22-31. (p. 489)

HWANG, K. [1979]. Computer Arithmetic: Principles, Architecture, and Design, Wiley, New York.
(p. A-61)

Hwu, W.-M. ANDY. PATT [1986]. "HPSm, a high performance restricted data flow architecture
having minimum functionality," Proc. 13th Symposium on Computer Architecture (June), Tokyo,
297-307. (p. 339)

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0 White Plains, N.Y, 11-
82. (p. 560)

IEEE [1985]. "IEEE standard for binary floating-point arithmetic," SIGPLAN Notices 22:2, 9-25. (p.
A-12)

IMPRIMIS [1989]. "lmprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2
GB," Document No. 64402302 (May). (p. 558)

INTEL [1989]. i860 64-Bit Microprocessor Programmer's Reference Manual. (E-24)

JORDAN, K. E. [1987]. "Performance comparison of large-scale scientific computers: Scalar main
frames, mainframes with vector facilities, and supercomputers," Computer 20:3 (March) 10-23.
(p. 395)

JOUPPI N. P. AND D. W. WALL [1989]. "Available instruction-level parallelism for superscalar and
superpipelined machines," Proc. Third Conj. on Architectural Support for Programming Lan
guages and Operating Systems, IEEE/ACM (April), Boston, 272-282. (p. 340)

KAHAN, W. [1968]. "7094-II system support for numerical analysis," SHARE Secretarial
Distribution SSD-159. (p. A-60)

KAHANER, D. K. [1988]. "Benchmarks for 'real' programs," SIAM News (November). (p. A-57)

KAHN, R. E. [1972]. "Resource-sharing computer communication networks," Proc. IEEE 60: 11
(November) 1397-1407. (p. 561)

KANE, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J. (p. 190)

KANE, G. [1988]. MIPS RISC Architecture, Prentice-Hall, Englewood Cliffs, N. J. (E-24)

KATZ, R.H., D. A. PATTERSON, AND G. A. GIBSON [1990]. "Disk system architectures for high
performance computing," Proc. IEEE 78:2 (February). (p. 561)

KATZ, R.H., S. EGGERS, D. A. WOOD, C. PERKINS, AND R. G. SHELDON [1985]. "Implementing
a cache consistency protocol," Proc. 12th Annual Symposium on Computer Architecture, 276--283.
(p. 487)

KELLER R. M. [1975]. "Look-ahead processors," ACM Computing Surveys 7:4 (December) 177-
195. (p. 339)

KELLY, E. [1988]. "'SCRAM Cache' in Sun-4/110 beats traditional caches," Sun Technology 1:3
(Summer) 19-21. (p. 487)

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, F. H. SUMNER [1962]. "One-level storage
system," IRE Transactions on Electronic Computers EC-11 (April) 223-235. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982),
McGraw-Hill, New York, 135-148. (pp. 26, 487)

KIM, M. Y. [1986]. "Synchronized disk interleaving," IEEE Trans. on Computers C-35:11
(November). (p. 561)

KNUTH, D. [1981]. The Art of Computer Programming, vol II, 2nd ed., Addison-Wesley, Reading,
Mass. (p. A-61)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 754

References R-9

KNUTH, D. E. [1971]. "An empirical study of FORTRAN programs," Software Practice and
Experience, Vol. 1, 105-133. (p. 27)

KOGGE, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York. (pp.
339, A-44)

KOHN, L. AND S.-W. FU, [1989]. "A 1,000,000 transistor microprocessor," IEEE Int'l Solid-State
Circuits Conf, 54-55. (p. A-19)

KROFT, D. [1981]. "Lockup-free instruction fetch/prefetch cache organization," Proc. Eighth
Annual Symposium on Computer Architecture (May 12-14), Minneapolis, Minn., 81-87. (p. 487)

KUCK, D., P. P. BUDNIK, S.-C. CHEN, D. H. LAWRIE, R. A. TOWLE, R. E. STREBENDT, E.W .
. DAVIS, JR., J. HAN, P. W. KRASKA, Y. MURAOKA [1974]. "Measurements of parallelism in ordi-

nary FORTRAN programs," Computer 7:1 (January) 37-46. (p. 395)

KUHN, R.H. AND D. A. PADUA, EDS. [1981]. Tutorial on Parallel Processing, IEEE. (p. 590)

KUNG, H. T. [1982]. "Why systolic architectures?," IEEE Computer 15:1, 37-46. (p. 590)

KUNKEL, S. R. ANDJ. E. SMITH [1986]. "Optimal pipelining in supercomputers," Proc. 13th Sym
posium on Computer Architecture (June), Tokyo, 404-414. (p. 339)

LAM, M. [1988]. "Software pipelining: An effective scheduling technique for VLIW machines,"
SIGPLAN Conf on Programming Language Design and Implementation, ACM (June), Atlanta,
Ga., 318-328. (p. 340)

LAMPSON, B. W. [1982]. "Fast procedure calls," Symposium on Architectural Support for
Programming Languages and Operating Systems (March 1-3), Palo Alto, Calif., 66--75. (p. 487)

LARSON, JUDGE E. R. [1973]. "Findings of Fact, Conclusions of Law, and Order for Judgment,"
File No. 4-67, Civ. 138, Honeywell v. Sperry Rand and Illinois Scientific Development, U.S.
District Court for the District of Minnesota, Fourth Division (October 19). (p. 24)

LEE, R. [1989]. "Precision architecture," Computer 22:1(January)78-91. (p. 190)

LEINER, A. L. [1954]. "System specifications for the DYSEAC," J. ACM 1:2 (April) 57-81. (p. 561)

LEINER, A. L. ANDS. N. ALEXANDER [1954]. "System organization of the DYSEAC," IRE Trans.
of Electronic Computers EC-3:1 (March) 1-10. (p. 561)

LEVY, H. M. AND R.H. ECKHOUSE, JR. [1989]. Computer Programming and Architecture: The
VAX, 2nd ed., Digital Press, Bedford, Mass. 358-372. (pp. 188, 243)

LEVY, J. V. [1978]. "Buses: The skeleton of computer structures," in Computer Engineering: A
DEC View of Hardware Systems Design, C. G. Bell, J. C. Mudge, and J.E. McNamara, eds.,
Digital Press, Bedford, Mass. (p. 561)

LINCOLN, N. R. [1982]. "Technology and design tradeoffs in the creation of a modern super
computer," IEEE Trans. on Computers C-31:5 (May) 363-376. (p. 393)

LIPOVSKI, A.G. AND A. TRIPATHI [1977]. "A reconfigurable varistructure array processor," Proc.
1977 Int' l Conf. of Parallel Processing (August), 165-174. (p. 590)

LIPTA Y, J. S. [1968]. "Structural aspects of t'1e System/360 Model 85, part II: The cache," IBM
Systems J. 7: 1, 15-21. (p. 486)

LOVETT, T. ANDS. THAKKAR [1988]. "The Symmetry multiprocessor system," Proc. 1988 Int' l
Conj. of Parallel Processing, University Park, Pennsylvania, 303-310. (p. 589)

LUBECK, 0., J. MOORE, AND R. MENDEZ [1985]. "A benchmark comparison of three super
computers: Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2," Computer 18: 12 (December)
10-24.(pp. 75,395)

LUNDE, A. [1977]. "Empirical evaluation of some features of instruction set processor architecture,"
Comm. ACM 20:3 (March) 143-152. (p. 129)

MABERLY, N. C. [1966]. Mastering Speed Reading, New American Library, Inc., New York. (p.
513)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 755

R·10 Computer Architecture: A Quantitative Approach

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS AND D. ZURAS [1988). "Integer multiplication
and division on the HP Precision Architecture," IEEE Trans. on Computers, 37:8, 980-990. (p. E-
9)

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS, AND D. ZURAS, [1988). "Integer multiplication
and division on the HP Precision Architecture," IEEE Trans. on Computers 37:8, 980-990. (p. A
ll)

MCCALL, K. [1983). "The Smalltalk-80 benchmarks," Smalltalk 80: Bits of History, Words of
Advice, G. Krasner, ed., Addison-Wesley, Reading, Mass., 153-174. (p. 451)

MCCREIGHT, E. [1984). "The Dragon computer system: An early overview," Tech. Rep. Xerox
Corp. (September). (p. 487)

MCFARLING, S. [1989). "Program optimization for instruction caches," Proc. Third Int' l Conf on
Architectural Support for Programming Languages and Operating Systems (April 3-6), Boston,
Mass., 183-191. (p. 496)

MCFARLING, S. AND J. HENNESSY [1986). "Reducing the cost of branches," Proc. "13th Sym
posium on Computer Architecture (June), Tokyo, 39~03. (p. 340)

MCKEEMAN, W. M. [1967). "Language directed computer design," Proc.1967 Fall Joint Computer
Conf, Washington, D.C., 413-417. (p. 128)

MCKEVITT, J., ET AL. [1977). 8086 Design Report, internal memorandum. (p. 229)

MCMAHON, F. M. [1986). "The Livermore FORTRAN kernels: A computer test of numerical
performance range," Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of
California, Livermore, Calif. (December). (p. 78)

MEAD, C. AND L. CONWAY [1980). Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass. (p. A-59)

MENABREA, L. F. [1842). "Sketch of the analytical engine invented by Charles Babbage,"
Bibiotheque Universelle de Geneve (October). (p. 589)

METCALFE, R. M. AND D.R. BOGGS [1976). "Ethernet: Distributed packet switching for local
computer networks," Comm. ACM 19:7 (July) 395-404. (p. 560)

MEYERS, G. J. [1978). "The evaluation of expressions in a storage-to-storage architecture," Com
puter Architecture News 7:3 (October), 20-23. (p. 127)

MEYERS, G. J. [1982). Advances in Computer Architecture, 2nd ed., Wiley, N.Y. (p. 129)

MIRANKER, G. S., J. RUBENSTEIN, AND J. SANGUINETTI [1988). "Squeezing a Cray-class
supercomputer into a single-user package," COMPCON, IEEE (March) 452-456. (p. 395)

MITCHELL, D. [1989). "The Transputer: The time is now," Computer Design, RISC supplement,
40-41 (November). (p. 570)

MIURA, K. AND K. UCHIDA [1983). "FACOM vector processing system: VPl00/200," Proc. NATO
Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
"Supercomputers: Design and applications," IEEE (August 1984) 59-73. (p. 394)

MOORE, B., A. PADEGS, R. SMITH, AND W. BUCHOLZ [1987). "Concepts of the System/370 vector
architecture," Proc. 14th Symposium on Computer Architecture (June), ACM/IEEE, Pittsburgh,
Pa., 282-292. (p. 394)

MORSE, S., B. RA VENAL, S. MAZOR, AND W. POHLMAN [1980). "Intel Microprocessors-8008 to
8086," Computer 13:10 (October). (p. 188)

MOTOROLA [1988]. MC88100 RISC Microprocessor User's Manual. (E-19)

MOUSSOURIS, J., L. CRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. PRZYBYLSKI, T.
RIORDAN, AND C. ROWEN [1986]. "A CMOS RISC processor with integrated system functions,"
Proc. COMPCON, IEEE (March), San Francisco. (p. 189)

MUCHNICK, S.S. [1988). "Optimizing compilers for SPARC," Sun Technology (Summer) 1:3, 64-
77. (p. E-9)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 756

References R-11

NEWMAN, W. N. AND R. F. SPROULL [1979]. Principles of Interactive Computer Graphics, 2nd
ed., McGraw-Hill, New York. (p. 561)

NGAI, T-F. AND M. J. IRWIN [1985]. "Regular, area-time efficient carry-lookahead adders," Proc.
Seventh IEEE Symposium on Computer Arithmetic, 9-15. (p. A-59)

NICHOLAU, A. AND J. A. FISHER [1984]. "Measuring the parallelism available for very long
instruction word architectures," IEEE Trans. on Computers C-33: 11 (November) 968-976. (p.
340)

OUSTERHOUT, J. K. ET AL. [1985]. "A trace-driven analysis of the UNIX 4.2 BSD file system,"
Proc. Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Wash., 15-24. (p.
538)

PADUA, D. AND M. WOLFE [1986]. "Advanced compiler optimizations for supercomputers,"
Comm. ACM 29:12 (December) 1184-1201. (p. 395)

PAPAMARCOS, M. AND J. PATEL [1984]. "A low coherence solution for multiprocessors with
private cache mei:nories," Proc. of the 11th Annual Symposium on Computer Architecture (June),
Ann Arbor, Mich., 348-354. (p. 487)

PATTERSON, D. A. [1983]. "Microprogramming," Scientific American 248:3 (March), 36-43. (p.
244)

PATTERSON, D. A. [1985]. "Reduced Instruction Set Computers," Comm. ACM 28:1 (January) 8-
21. (p. 189)

PATTERSON, D. A. AND C.H. SEQUIN [1981]. "Lockup-free instruction fetch/prefetch cache
organization," Proc. Eighth Annual Symposium on Computer Architecture (May 12-14),
Minneapolis, Minn., 443-458. (p. 487)

PATTERSON, D. A. AND D.R. DITZEL [1980]. "The case for the reduced instruction set computer,"
Computer Architecture News 8:6 (October), 25-33. (pp. 130, 189)

PATTERSON, D. A., G. A. GIBSON, AND R.H. KATZ [1987]. "A case for redundant arrays of
inexpensive disks (RAID)," Tech. Rep. UCB/CSD 87/391, Univ. of Calif. Also appeared in ACM
SIGMOD Conj. Proc., Chicago, Illinois, June 1-3, 1988, 109-116. (p. 561)

PENG, V., S. SAMUDRALA, AND M. GAVRIELOV [1987]. "On the implementation of shifters,
multipliers, and dividers in VLSI floating point units," Proc. Eighth IEEE Symposium on
Computer Arithmetic, 95-102. (p. A-62)

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P.
MCAULIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. "The IBM research paraUel
processor prototype (RP3): Introduction and architecture," Proc. 12th Int' l Symposium on
Computer Architecture (June), Boston, Mass., 764-771. (p. 589)

PHISTER, M., JR. [1979]. Data Processing Technology and Economics, 2nd ed., Digital Press and
Santa Monica Publishing Company. (p. 80)

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann
Publishers, San Mateo, Calif. (p. 487)

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. "Performance tradeoffs in cache
design," Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu, Hawaii,
290-298. (p. 481)

RADIN, G. [1982]. "The 801 minicomputer," Proc. Symposium Architectural Support for
Programming Languages and Operating Systems (March), Palo Alto, Calif. 39-47. (p. 189)

RAMAMOORTHY, C. V. AND H.F. LI [1977]. "Pipeline architecture," ACM Computing Surveys 9:1
(March) 61-102. (p. 339)

REDMOND, K. C. AND T. M. SMITH [1980]. Project Whirlwind-The History of a Pioneer
Computer, Digital Press, Boston, Mass. (p. 25)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 757

R·12 Computer Architecture: A Quantitative Approach

REIGEL, E.W., U. FABER, AND D. A. FISCHER, [1972]. "The Interpreter-a microprogrammable
building block system," Proc. AF/PS 1972 Spring Joint Computer Conj. 40, 705-723. (p. 244)

ROBERTS, D., G. TAYLOR, AND T. LAYMAN [1990]. "An ECL RISC microprocessor designed for
two-level cache," IEEE COMPCON (February). (p. 487)

ROBINSON, B. AND L. BLOUNT [1986]. "The VM/HPO 3880-23 performance results," IBM Tech.
Bulletin, 0066-0247-00 (April), Washington Systems Center, Gathersburg, Md. (p. 553)

ROWEN, C., M. JOHNSON, and P. RIES [1988]. "The MIPS R3010 floating-point coprocessor,"
IEEE Micro 53-62 (June). (p. A-53)

RUSSELL, R. M. [1978]. "The CRAY-1 computer system," Comm. ACM 21:1 (January) 63-72. (pp.
393, 590)

RYMARCZYK, J. [1982]. "Coding guidelines for pipelined processors," Proc. Symposium on Archi
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo
Alto, Calif., 12-19. (p. 339)

SALEM, K. AND H. GARCIA-MOLINA [1986]. "Disk striping," IEEE 1986 Int'/ Conj. on Data
Engineering. (p. 561)

SAMPLES, A. D. AND P. N. HILFINGER [1988]. "Code reorganization for instruction caches," Tech.
Rep. UCB/CSD 88/447 (October), Univ. of Calif., Berkeley. (p. 496)

SANTORO, M. R., G. BEWICK, and M.A. HOROWITZ [1989]. "Rounding algorithms for IEEE
multipliers," Proc. Ninth IEEE Symposium on Computer Arithmetic, 176-183. (p. A-21)

SCHNECK, P. B. [1987]. Supercomputer Architecture, Kluwer Academic Publishers, Norwell, Mass.
(p. 394)

SCOTT, N. R. [1985]. Computer Number Systems and Arithmetic, Prentice-Hall, Englewood Cliffs,
N.J. (p. A-1)

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. "The access time myth," Tech.
Rep. RC 10197 (45223) (September 21), IBM, Yorktown Heights, N.Y. (p. 561)

SEITZ, C. [1985]. "The Cosmic Cube," Comm. ACM 28: 1 (January) 22-31. (p. 590)

SHURKIN, J. [1984]. Engines of the Mind: A History of the Computer, W.W. Norton, New York. (p.
25)

SHUSTEK, L. J. [1978]. "Analysis and performance of computer instruction sets," Ph.D. Thesis
(May), Stanford Univ., Stanford, Calif. (p. 187)

SITES, R. [1919]. lnstruction Ordering for the CRAY-I Computer, Tech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego. (p. 339)

SITES, R. L., [1979]. "How to use 1000 registers," Caltech Conj. on VLSI (January). (p. 487)

SLATER, R. [1987]. Portraits in Silicon, The MIT Press, Cambridge, Mass. (p. 25)

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. "The Solomon computer,"
Proc. Fall Joint Computer Conj. (December), Philadelphia, 97-107. (p. 589)

SMITH, A. AND J. LEE [1984]. "Branch prediction strategies and branch target buffer design," Com-
puter 11: 1 (January) 6-22. (p. 339) ·

SMITH, A. J. [1982]. "Cache memories," Computing Surveys 14:3 (September) 473-530. (p. 486)

SMITH, A. J. [1985]. "Disk cache-miss ratio analysis and design considerations," ACM Trans. on
Computer Systems 3:3 (August) 161-203. (p. 538)

SMITH, A. J. [1986]. "Bibliography and readings on CPU cache memories and related topics,"
Computer Architecture News (January) 22-42. (p. 486)

SMITH, B. J. [1981]. "Architecture and applications of the HEP multiprocessor system," Real-Time
Signal Processing JV 298 (August) 241-248. (p. 395)

SMITH, J. E. [1981]. "A study of branch prediction strategies," Proc. Eighth Symposium on
Computer Architecture (May), Minneapolis, 135-148. (p. 339)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 758

References R-13

SMITH, J.E. [1984]. "Decoupled access/execute computer architectures," ACM Trans. on Computer
Systems 2:4 (November), 289-308. (p. 340)

SMITH, J.E. [1988]. "Characterizing computer performance with a single number," Comm. ACM
31:10 (October) 1202-1206. (p. 78)

SMITH, J.E. [1989]. "Dynamic instruction scheduling and the Astronautics ZS-1," Computer 22:7
(July) 21-35. (p. 340)

SMITH, J.E. AND A. R. PLEZKUN [1988]. "Implementing precise interrupts in pipelined proces
sors," IEEE Trans. on Computers 37:5 (May) 562-573. (p. 339)

SMITH, J.E. AND J. R. GOODMAN [1983]. "A study of instruction cache organizations and
replacement policies," Proc. Tenth Annual Symposium on Computer Architecture (June 5-7),
Stockholm, Sweden,, 132-137. (p. 490)

SMITH, J.E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L.
FOWLER, K. R. SCIDMORE, J.P. LAUDON [1987]. "The ZS-1 central processor," Proc. Second
Conf on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 199-204. (p. 340)

SMITH, M. D., M. JOHNSON, AND M.A. HOROWITZ [1989]. "Limits on multiple instruction issue,"
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, Mass., 290-302. (p. 341)

SMITH, W.R., R.R. RICE, G. D. CHESLEY, T. A. LALIOTIS, S. F. LUNDSTROM, M. A.
CHALHOUN, L. D. GEROULD, AND T. C. COOK [1971]. "SYMBOL: A large experimental system
exploring major hardware replacement of software,'.' Proc. AF/PS Spring Joint Computer Conf,
601-616. (p. 129)

SMOTHERMAN, M. [1989]. "A sequencing-based taxonomy ofl/0 systems and review of historical
machines," Computer Architecture News 17:5 (September) 5-15. (pp. 241, 561)

SOHi, G. S., ANDS. VAJAPEYAM [1989]. "Tradeoffs in instruction format design for horizontal
architectures," Proc. Third Conf on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (April), Boston, Mass. 15-25. (p. 341)

SPEC [1989]. "SPEC Benchmark Suite Release 1.0," October 2, 1989. (p. 48)

SPORER, M., F. H. MOSS AND C. J. MATHAIS [1988]. "An introduction to the architecture of the
Stellar Graphics supercomputer," COMPCON, IEEE (March) 464-467. (p. 395)

STERN, N. [1980]. "Who invented the first electronic digital computer," Annals of the History of
Computing 2:4 (October) 375-376. (p. 24)

STRAPPER, C. H. [1989]. "Fact and fiction in yield modelling," Special Issue of the Micro
electronics Journal entitled Microelectronics into the Nineties, Oxford, UK; Elsevier (May). (p.
80)

STRAPPER, C.H., F. H. ARMSTRONG, AND K. SAJI [1983]. "Integrated circuit yield statistics,"
Proc. IEEE 71:4 (April) 453-470. (p. 80)

STRECKER, W. D. [1976]. "Cache memories for the PDP-11 ?,"Proc. Third Annual Symposium on
Computer Architecture (January), Pittsburgh, Penn., 1~5-158. (pp. 187, 486)

STRECKER, W. D. [1978]. "VAX-111780: A virtual address extension to the PDP-11 family," Proc.
AF/PS National Computer Conf 47, 967-980. (128, 187)

STRECKER, W. D. AND C. G. BELL [1976]. "Computer structures: What have we learned from the
PDP-11 ?,"Proc. Third Symposium on Computer Architecture~ (p. 187)

SUTHERLAND, I.E. [1963]. "Sketchpad: A man-machine graphical communication system," Spring
Joint Computer Conf 329. (p. 561)

SW AN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. "The
implementation of the Cm* multi-microprocessor," Proc. AF/PS National Computing Conf, 645-
654. (p. 589)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 759

R-14 Computer Architecture: A Quantitative Approach

SW AN, R. J., S. H. FULLER, AND D. P. SIEWIOREK [1977]. "Cm*-A modular, multi
microprocessor," Proc. AF/PS National Computer Conf. 46, 637-644. (p. 590)

SWARTZ, J. T. [1980]. "Ultracomputers," ACM Transactions on Programming Languages and
Systems 4:2, 484-521 (p. 592)

SWARTZLANDER, E., ED. [1980]. Computer Arithmetic, Dowden, Hutchison and Ross (distributed
by Van Nostrand, New York). (p. A-59)

TAKAGI, N., H. YASUURA, ANDS. YAJIMA [1985]."High-speed VLSI multiplication algorithm
with a redundant binary addition tree," IEEE Trans. on Computers C-34:9, 789-796. (p. A-59)

TANENBAUM, A. S. [1978]. "Implications of structured programming for machine architecture,"
Comm. ACM 21:3 (March) 237-246. (p. 128)

TANG, C. K. [1976]. "Cache system design in the tightly coupled multiprocessor system," Proc.
1976 AF/PS National Computer Conf., 749-753. (p. 487)

TAYLOR, G. S. [1981]. "Compatible hardware for division and square root," Proc. Fifth IEEE
Symposium on Computer Arithmetic, 127-134. (p. A-62)

TAYLOR, G. S. [1985]. "Radix 16 SRT dividers with overlapped quotient selection stages," Proc.
Seventh IEEE Symposium on Computer Arithmetic, 64-71. (p. A-56)

TAYLOR, G. S., P. N. HILFINGER, J. R. LARUS, D. A. PATTERSON, AND B. G. ZORN [1986].
"Evaluation of the SPUR Lisp architecture," Proc. 13th Annual Symposium on Computer
Architecture (June 2-5), Tokyo, Japan, 444-452. (pp. 189, 451)

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. "Evaluation of the
SPUR LISP architecture," Proc. 13th Symposium on Computer Architecture (June), Tokyo. (p. E-
15)

THACKER, C. P. AND L. C. STEWART [1987]. "Firefly: a multiprocessor workstation," Proc.
Second Int' l Conf. on Architectural Support for Programming Languages and Operating Systems,
Palo Alto, Calif., 164-172. (p. 487)

THACKER, C. P., E. M. MCCREIGHT, B. W. LAMPSON, R. F. SPROULL, AND D.R. BOGGS [1982].
"Alto: A personal computer," in Computer Structures: Principles and Examples, D. P. Siewiorek,
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549-572. (p. 560)

THADHANI, A. J. [1981]. "Interactive user productivity," IBM Systems J. 20:4, 407-423. (p. 560)

THISQUEN, J. [1988]. "Seek time measurements," Amdahl Peripheral Products Division Tech. Rep.
(May). (p. 558)

THORLIN, J. F. [1967]. "Code generation for PIE (parallel instruction execution) computers," Spring
Joint Computer Conf. (April), Atlantic City, N.J. (p. 339)

THORNTON, J.E. [1964]. "Parallel operation in Control Data 6600," Proc. AF/PS Fall Joint Com
puter Conf. 26, part 2, 33-40. (pp. 128, 339)

THORTON, J.E. [1970]. Design of a Computer, the Control Data 6600, Scott, Foresman, Glenview,
Ill. (p. 339)

TJADEN, G. S. AND M. J. FLYNN [1970]. "Detection and parallel execution of independent instruc
tion.s," IEEE Trans. on Computers C-19:10 (October) 889-895. (p. 340)

TOM1SULO, R. M. [1967]. "An efficient algorithm for exploring multiple arithmetic units," IBM J.
of Research and Development 11: 1 (January) 25-33. (p. 339)

TRELEAVEN, P. C., D.R. BROWNBRIDGE, and R. P. HOPKINS [1982]. "Data-driven and demand
driven computer architectures," Computing Surveys, 14:1 (March) 93-143. (p. 590)

TROIANI, M., S.S. CHING, N. N. QUA YNOR, J.E. BLOEM, AND F. C. COLON OSORIO [1985].
"The VAX 8600 I Box, a pipelined implementation of the VAX architecture," Digital Technical J.
1 (August) 4-19. (p. 328)

TUCKER, S. G. [1967]. "Microprogram control for the System/360," IBM Systems Journal 6:4, 222-
241. (p. 242)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 760

References R·15

UNGAR, D. M. [1987). The Design of a High Performance Smalltalk System, The MIT Press
Distinguished Dissertation Series, Cambridge, Mass. (p. 451)

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984). "Architecture of
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann
Arbor, Mich., 188-197. (p. 189)

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984). "Architecture of
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann
Arbor, Mich., 188-197. (p. E-15)

UNGER, S. H. [1958). "A computer oriented towards spatial problems," Proc. Institute of Radio
Engineers 46:10 (October) 1744-1750. (p. 589)

VON NEUMANN, J. [1945). "First draft of a report on the EDY AC." Reprinted in W. Aspray and A.
Burks, eds., Papers of John von Neumann on Computing and Computer Theory (1987), 17-82,
The MIT Press, Cambridge, Mass. (p. 592)

WAKERLY, J. [1989). Microcomputer Architecture and Programming, J. Wiley, New Y9rk. (p. 188)

WANG, E.-H., J.-L. BAER, AND H. M. LEVY [1989). "Organization and performance of a two-level
virtual-real cache hierarchy," Proc. 16th Annual Symposium on Computer Architecture (May 28-
June 1), Jerusalem, Israel, 140-148. (p. 487)

WATANABE, T. [1987). "Architecture and performance of the NEC supercomputer SX system,"
Parallel Computing 5, 247-255. (p. 394)

WATERS, F., ED. [1986). IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.
(p. 190)

WATSON, W. J. [1972). "The TI ASC-A highly modular and flexible super computer architecture,"
Proc. AF/PS Fall Joint Computer Conf., 221-228. (p. 393)

WEICKER, R. P. [1984). "Dhrystone: A synthetic systems programming benchmark," Comm. ACM
27:10 (October) 1013-1030. (p. 47)

WEISS, S. AND J.E. SMITH [1984). "Instruction issue logic for pipelined supercomputers," Proc.
11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 110-118. (p. 339)

WEISS, S. AND J.E. SMITH [1987). "A study of scalar compilation techniques for pipelined super
computers," Proc. Second Conf. on Architectural Support for Programming Languages and
Operating Systems (March), IEEE/ACM, Palo Alto, Calif., 105-109. (p. 340)

WESTE, N. AND K. ESHRAGHIAN [1985). Principles of CMOS VLSI Design, Addison-Wesley,
Reading, Mass. (p. A-59)

WHITBY-STREVENS C. [1985). "The transputer," Proc. 12th Int'! Symposium on Computer
Architecture, Boston, Mass. (June) 292-300. (p. 589)

WICHMANN, B. A. [1973). Algol 60 Compilation and Assessment, Academic Press, New York. (p.
46)

WIECEK, C. [1982). "A case study of the VAX 11 instruction set usage for compiler execution,"
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems
(March), IEEE/ACM, Palo Alto, Calif., 177-184. (p. 188)

WILKES, M. [1965). "Slave memories and dynamic storage allocation," IEEE Trans. Electronic
Computers EC-14:2 (April) 270-271. (p. 486)

WILKES, M. V. [1953). "The best way to design an automatic calculating machine," in Manchester
University Computer Inaugural Conj., 1951, Ferranti, Ltd., London. (Not published until 1953.)
Reprinted in "The Genesis of Microprogramming" in Annals of the History of Computing 8: 116.
(p. 241)

WILKES, M. V. [1982). "Hardware support for memory protection: Capability implementations,"
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems

(March 1-3), Palo Alto, Calif., 107-116. (pp. 107, 486)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 761

R·16 Computer Architecture: A Quantitative Approach

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, The MIT Press, Cambridge, Mass. (pp. 25,
241)

WILKES, M. V. AND J. B. STRINGER [1953]. "Microprogramming and the design of the control
circuits in an electronic digital computer," Proc. Cambridge Philosophical Society 49:230-238.
Also reprinted in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples (1982), McGraw-Hill, New York, 158-163, and in "The Genesis of Microprogramming"
in Annals of the History of Computing 8:116. (p. 248)

WILKES, M. V. AND W. RENWICK [1949]. Report of a Conj. on High Speed Automatic Calculating
Machines, Cambridge, England. (p. 88)

WILKES, M. V., D. J. WHEELER, ANDS. GILL [1951]. The Preparation of Programs for an
Electronic Digital Computer, Addison-Wesley Press, Cambridge, Mass. (p. 24)

WILLIAMS, T. E., M. HOROWITZ, R. L. ALVERSON, AND T. S. YANG [1987]. "A self-timed chip
for division," Advanced Research in VLSI, Proc. 1987 Stanford Conj., The MIT Press, Cambridge,
Mass. (p. A-46)

WILSON, A. W., JR. [1987]. "Hierarchical cache/bus architecture for shared memory
multiprocessors," Proc. 14th Int' l Symposium on Computer Architecture (June), Pittsburg, Penn.,
244-252. (p. 589)

WULF, W. [1981]. "Compilers and computer architecture," Computer 14:7 (July) 41--47. (p. 130)

WULF, W. A., R. LEVIN ANDS. P. HARBISON [1981]. Hydra/C.mmp: An Experimental Computer
System, McGraw-Hill, New York. (p. 485)

WULF, W. AND C. G. BELL [1972]. "C.mmp-A multi-mini-processor," Proc. AF/PS Fall Joint
Computing Conj. 41, part 2, 765-777. (p. 590)

WULF, W. AND S. P. HARBISON [1978]. "Reflections in a pool of processors-An experience
report on C.mmp/Hydra," Proc. AF/PS 1978 National Computing Conj. 48 (June), Anaheim, Calif.
939-951. (p. 589)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 762

Index

Bold page numbers indicate term definitions.

oo (see infinity)
-oo (see infinity)
+oo (see infinity)
10000 (see Apollo DN 10000)
11/780 (see Digital Equipment Corporation, V AX-11/780)
11/785 (see Digital Equipment Corporation, VAX-11/785)
2000 (see MIPS Computer Corporation, 2000; Digital

Equipment Corporation, V AXstation)
2: 1 cache rule, front endsheet
2100 (see Sequent Corporation)
29000 (see AMD 29000)
3000 (see MIPS Computer Corporation, 3000)
3010 (see MIPS Computer Corporation, 3010)
3090 (see International Business Machines Corp.; disk,

magnetic, IBM 3990 storage subsystem and)
3090-600S (see International Business Machines Corp., IBM

3090-600S)
3100 (see Digital Equipment Corporation, DECstation; Digital

Equipment Corporation, V AXstation)
3364 (see Weitek 3364)
360 (see International Business Machines Corp., IBM 360)
360/85 (see International Business Machines Corp., IBM

360/85)
360/91 (see International Business Machines Corp., IBM

360/91)
370 (see International Business Machines Corp., IBM 370)
370/158 (see International Business Machines Corp., IBM

370/158) .
370-XA (see International Business Machines Corp., IBM 370-

XA)
3990 (see International Business Machines Corp.; disk,

magnetic, IBM 3990 storage subsystem and)
68000 (see Motorola Corporation, 68000)
6809 (see Motorola Corporation, 6809)
701 (see International Business Machines Corp., IBM 701)
7030 (see International Business Machines Corp., IBM 7030)
704 (see International Business Machines Corp., IBM 704)
7090 (see International Business Machines Corp., IBM 7090)
8000 (see Sequent Corporation)
801 (see International Business Machines Corp., IBM 801)
8012 (see International Business Machines Corp., IBM 8012)
80186 (see Intel Corporation, 80x86, 80186)
80286 (see Intel Corporation, 80x86, 80286)
80386 (see Intel Corporation, 80x86, 80386)
80486 (see Intel Corporation, 80x86, 80486)
80x86 (see Intel Corporation, 80x86)
8080 (see Intel Corporation, 8080)
8086 (see Intel Corporation, 80x86, 8086)

8088 (see Intel Corporation, 8088)
8550 (see Digital Equipment Corporation, VAX)
860 (see Intel Corporation, 860; Intel Corporation, i860)
8600 (see Digital Equipment Corporation, VAX)
8700 (see Digital Equipment Corporation, VAX)
88000 (see Motorola Corporation, 88000)
88100 (see Motorola Corporation, 88100)
88200 (see Motorola Corporation, 88200)
8847 (see Texas Instruments, 8847)
90/10 rule, front endsheet (see also locality, principle of)
90/50 branch-taken rule, front endsheet) (see also branch,

taken)

A

aborts, 216 (see also interrupts)
absolute addressing (see addressing mode, direct)
access alignment (see data alignment)
access authorization (see virtual memory, Intel 80286/80386

and; virtual memory, protection schemes of)
access bit, 446 (see also virtual memory, page table)
access latency, 405 (see also memory hierarchy, access time;

cache, access time)
access time 19, 20, 405, 420 425 (see also memory hierarchy,

access time; cache access time)
access time gap, 518 (fig.), 519
accumulator architecture (see architecture, accumulator)
accumulator-based architecture (see architecture, accumulator)
Adams, T., 188 ·
adders, A~39 (fig.) (see also arithmetic, integer, ripple-carry

addition; arithmetic, integer, speeding up addition)
addition (see arithmetic, addition, floating-point; arithmetic,

integer, addition; arithmetic, integer, speeding up
addition)

address (see also addressing mode)
consumption of, front endsheet, 16
effective, 97-98
fault, 433 (see also virtual memory, page fault)
memory, 12, 18, 21, 93, 94-103, 115-117, 134

shared versus multiple, 578-579
space, 16, 19 (see also cache; memory; memory hierarchy;

virtual memory; virtual memory, processes and)
consequences of too small an, 480-481
extensions of, 483
on the Intel 80286, 445-446
on the VAX-11/780, 441

specifier, 102 (see also addressing mode)
translation, 433 (see also virtual memory, address

translation)
address-consumption rate, front endsheet, 16, 480-481

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 763

1·2

addressing mode, 97-10~. 126, 134, 136 (see also Digital
Equipment Corporation, VAX; DLX; Intel
Corporation, Intel 80x86, 8086; International Business
Machines Corp., IBM 360)

autodecrement, 98
autoincrement, 98
encoding of, 102-103
direct (absolute), 98
displacement (based), 98-100, 105-106, 114, 133

field, 100, 102-103, 106
size, 100
value, 100

immediate (literal), 98-102
field, 102
value, 101

indexed, 98, 136
memory indirect (memory deferred), 98-99
operand specifiers, 145 (fig.), 169 (fig.), 173 (fig.), 177

(fig.), 180 (fig.)
register deferred (indirect), 98, 136
of RISC architectures, E-2
scaled (index), 98, 126

after rounding, A-20, A-22 (see also arithmetic, rounding and)
Aileen, 24
algorithm, 14
Agarwal, A., 190
Alexander, W. G., 130, 187
aliased variables, 116-117
aliases, 460
alignment (see also data alignment; stack, alignment of)

interrupts and, 215
on the DLX, 221, 231

alignment network, 96-97, 135
Alto, 560
ALU (see arithmetic logic unit)
AMD 29000, 167, 190
Amdahl, G. M., 17, 26, 127, 186, 242, 588 (see also Amdahl's

Law)
Amdahl/Case rule (see Case/Amdahl rule of thumb)
Amdahl's Law, 8-11, 22, 26, 29, 575-576, 586 (see also

Case/ Amdahl rule of thumb)
CPU-DRAM performance gap and, 426, 427 (fig.), 432
I/0 and, 500, 555, 559

Amdahl's rule of thumb, 426 (see also Case/ Amdahl rule of
thumb)

Annual International Symposium on computer architecture (see
architecture, Annual International Symposium on)

anti-aliasing, 460 (see also virtual cache)
antidependence, 374 (see also vector processor,

antidependence)
AP-120B (see Floating-Point Systems)
Apollo DN 10000, 340
Archibald, J., 471, 487, 488
architecture, 3, 4, 5, 13, 128 (see also Digital Equipment

Corporation, VAX; DLX; HLLCA; Intel Corporation,
860; Intel Corporation, 80x86; International Business
Machines Corp., IBM 360; MIPS Computer Corporation,
R3000; Motorola Corporation; SP ARC)

accumulator, 24, 90-92, 127
Annual International Symposium on, 80
decoupled (see decoupled architecture)
definitions, front endsheet
evolution-revolution spectrum of, 587-588
evolution versus revolution, 587-588
formualas, front endsheet
general-purpose register (see general-purpose register

architecture)

architecture (continued)
Harvard, 25
instruction set (see instruction set, architecture)
load/store (see load/store architecture)
memory-memory (see memory-memory architecture)
performance evaluation of, 78-80
register-memory (see register-memory architecture)
register-register (see register-register architecture)
revolutionary, 593
rules of thumb (see rules of thumb)
simulator, 48
stack (see stack architecture)
systolic (see systolic architecture)
trends of, 16
trivia, front endsheet
vector (see vector processor, architecture)

Index

areal density of disk, 518 (see also maximum areal density;
disk, magnetic)

arithmetic, 15, 201, A-1
addition, floating-point, A-16-A-20

algorithm for, A-18-A-19
denormals and, A-20
rounding in, A-16-A-17 (see also infinity)

addition, integer, A-2-A-3 (see also arithmetic, integer)
add, subtract and multiply instructions in Intel 860, E-22
Booth recoding, A-8-A-9, A-20, A-40, A-43-A-44, A-48,

A-56, A-59
modified, A-64

decimal, 15, 103, 109-110 (see also arithmetic, integer;
arithmetic, floating-point)

denormals, A-14-A-15, A-20, A-21-A-22, A-31, A-60
division, integer, A-3-A-7 (see also arithmetic, integer)

nonrestoring, A-5, A-6 (fig.), A-40-A-41, A-42
speeding up, A-50

restoring, A-5, A-6 (fig.)
division, floating-point, A-23-A-26
exceptions, A-30-A-31

overflow, A-7, A-10, A-11 (fig.), A-30-A-31
floating-point addition, A-20
floating-point multiplication, A-21
integer, A-10

underflow, A-20, A-21-A-22, A-30, A-57
gradual underflow, A-15, A-22, A-59-A-60, A-63
underflow trap, A-31

exponents and, A-1, A-12, A-13-A-14, A-15
exponent field, A-13-A-14, A-20

fallacies and pitfalls, A-57-A-58
floating-point, A-12-A-3 l, A-57, A-58, A-59 (see also

arithmetic, IEEE standard and)
addition, A-16-A-20 (see also arithmetic, addition,

floating-point)
division, A-23-A-26
exceptions, A-30-A-31
multiplication, A-20-A-23 (see also arithmetic,

multiplication, floating-point)
precision, A-22-A-23, A-28-A-30
remainder, A-26-A-28

history of, A-58-A-60
IEEE standard and, 109, A-1, A-12-A-16, A-60, E-2, E-23
integer, A-2-A-11, A-57

basic techniques of, A-2-A- l 1
multiple-precision addition, A-11
radix-2 multiplication and division, A-3-A-6
ripple-carry addition, A-2-A-3, A-32, A-36 (fig.), A-39

(fig.)
signed number.sand, A-7-A-10
speeding up addition, A-31-A39

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 764

Index

arithmetic, integer, speeding up addition (continued)
carry-lookahead adder (CLA), A-32, A-36, A-39 (fig.)

(see also carry)
carry-select adder, A-38-A-39, A-39 (fig.), A-56, A-66

(see also carry)
carry-skip adder, A-36-A-37, A-39 (fig.) (see also

carry)
speeding up division, A-39-A-42, A-50-A-53

shifting over zeros, A-40-A-42
with a single adder, A-50-A-53

speeding up multiplication, A-39-A-50
shifting over zeros, A-40
with a single adder, A-42-A-44
with many adders, A-44-A-49

systems issues of, A-10-A-ll
multiplication and division, integer, A-3-A-7 (see also

arithmetic, integer)
multiplication, floating-point, A-20-A-23

denormals and, A-21-A-2
precision, A-22-A-23

operations, 103
precision, A-22-A-23, A-28-A-30

double-extended, A-28, A-60
multiple-precision addition, A-11

remainder, A-4-A-5, A-40-A-42, A-50
floating-point, A-26-A-28
REM, A-26-A-28, A-53 (see also arithmetic, remainder)

rounding and, A-13, A-16-A-17, A-18, A-19, A-20-A-21,
A-23, A-26 (see also infinity)

after rounding, A-20, A-22
before rounding, A-17, A-22
double rounding, A-29, A-64
rounding errors, A-24, A-25
rounding mode, A-13, A-22

signed, A-7-A-10, A-58
signed-digit representation, A-48
signed-logarithm representation, A-65

significand, A-12, A-14, A-18, A-22, A-29
square root, A-25, A-26, A-29-A-30, A-64

of a negative number, A-12-A-13
systems and, A-10-A-l 1 (see also not a number; infinity)

arithmetic and logical instructions, 92
coprocessor operations, E-9, E-11
in RISC architectures, E-5

arithmetic and logical operators, 103
arithmetic logic unit (ALU), 39-42, 201

clock cycles per instruction and, 224-226, 235
DLX states and, 222 (fig.), 225-226
effect on rain forest from papers about, 201
encoding and, 235-236
instructions and operations of, 91, 93, 101, 103, 106, 120,

123, 132, 133, 136, 202-203, 211, 213, 229-234 (figs.),
237 (fig.)

arithmetic mean (see mean, arithmetic)
arithmetic operations, 103 (see also arithmetic; instruction set)
arithmetic overflow (see interrupts, arithmetic overflow and)
arm, 516 (see also disk, magnetic)
Armstrong, F. H., 81
ARPANET, 527, 528 (fig.), 561 (see also networks)
array, A-45-A-46 (see also systolic arrays)
array multiplier, A-44, A-45-A-47 (figs.), A-49 (fig.), A-56

(see also arithmetic, integer, speeding up multiplication)
array of disks (see disk array)
array processor (see single instruction stream, multiple data

stream computer)
ASCII, 109
ASP (see cost, average selling price)

1-3

ASPLOS (Architectural Support for Programming Languages
and Operating Systems) conference, 130

associativity, 420 (see also cache, fully associative; cache, set
associative)

asynchronous bus, 530 (see also bus)
Atanasoff, J. V., 24
Atlas computer, 26, 485
atomic, 471 (see also cache, coherency, synchronization)
atomic swap instruction (see data transfer)
atomic swap operation, 471 (see also cache, coherency,

synchronization)
attributes field, 446 (see also virtual memory, page table;

virtual memory; Intel 80286/80386 and)
Auslander, M.A., 130
autodecrement, 98 (see also addressing mode)
autoincrement, 98 (see also addressing mode)
availability, 520 (see also input/output, reliability)
average instruction execution time, 228
average memory-access time, 461 (see also memory hierarchy,

access time; cache, access time; cache, two-level caches)

B5000 (see Burroughs)
B5500 (see Burroughs)
B6500 (see Burroughs)
Baer, J.-L., 471, 487, 488

B

Balance (see Sequent Corporation)
balance (tradeoffs), 121, 131, 135, 140-141, 220 (see also

design, computer; Case/ Amdahl rule of thumb)
pipelining

balance among stages, 252
balance in issue, 320

software and hardware, 14-16, 21, 28
bandwidth, 5, 18, 19 (fig.), 29, 124, 135

performance measures of main memory and, 425
1/0 and (see input/output, performance, throughput)

bandwidth, 1/0 (see input/output, performance, throughput)
Banerjee test (see vector processor, data dependences, Banerjee

test)
Barton, R. S., 127
base, 439 (see also virtual memory, protection schemes of;

virtual memory, Intel 80286/80386 and)
based addressing mode (see addressing mode, displacement)
base field, 446 (see also virtual memory, page table)
basic architecture of vector processor (see vector processors,

architecture)
basic block, 115
Baskett, F., 130
BCD (see binary-coded decimal)
before rounding, A-17, A-22 (see also arithmetic, rounding)
behavior, 512 (see also input/output, devices)
Bell, C. G., 81, 127, 590

bet with Hillis, 590
W. D. Strecker and, 485, 488

benchmark, 42, 43, 45-48, 53, 72, 75, 81, 82, 83, 85-86 (see
also disk, magnetic, 1/0 benchmarks for; input/output,
performance)

file system 1/0, 512 (see also input/output, benchmarks)
historical perspective, 77-80
kernels, 45
Unpack (see vector processor, Linpack benchmark)
Perfect Club, 75, 79-80

vectorization and, 375
SPEC (System Performance Evaluation Cooperative), 48,

72-73, 79, 81, 83

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 765

1·4

benchmark (continued)
supercomputer 1/0, 510-511 (see also input/output,

benchmarks)
synthetic, 45-48, 73-74, 80, 86

Dhrystone, 45, 47, 73-74, 81, 85, 86
Whetstone, 45-46, 73-74, 77, 82, 83, 86

toy, 45
TP-1, 511, 511(fig.),565
transaction processing I/0, 511-512 (see also input/output,

transactions and)
unfair, 490

benchmark programs (see benchmark)
Berkeley RISC (see reduced instruction set computer,

Berkeley)
Berry, M. D., 81
biased exponent, A14, A-15 (see also arithmetic, exponents

and)
Big Endian, front endsheet, 95
Bigelow, Julian, 24
binary-coded decimal (BCD), 109

packed,109
unpacked, 109

binary-tree multiplier, A-48 (see also arithmetic)
bit block transfer, 521 (see also graphic displays)
bitblts, 521 (see also graphics displays)
bit-field instructions in Motorola 88000, E-17-E-18
bit map, 521 (see also graphics displays)
Blaauw, G. A., 127, 186
Blau, R., 189
block, 404 (see also memory hierarchy, blocks and; cache,

blocks and; virtual memory, page; virtual memory,
segment)

block-frame address, 405 (see also memory hierarchy, blocks
and; cache, block-frame address of)

block identification, 407, 484
caches and, 410-411
virtual caches and, 459-460
virtual memory and, 435-436

block-offset address, 405 (see also memory hierarchy, blocks
and)

block-offset field, 410 (see also cache, blocks and)
block placement, 407, 484 (see also conflict miss)

caches and, 408-409, 420 (see also cache, fully associative;
cache, set associative; cache, direct mapped)

subblocks, 456-457
VAX-11/780 cache and, 419
virtual memory and, 434-435

block replacement, 407, 484
caches and, 411-412, 4 20
early restart, 458
first-in-first-out (FIFO), 412
least-recently used (LRU), 411-412, 436

versus random, 412 (fig.)
on the V AX-11/780, 443

out-of-order fetch, 458
random, 411

versus least-recently used, 412 (fig.)
VAX-11/780 cache and, 411
virtual memory, 436

block size (see cache, blocks and, size; virtual memory, paged,
page size)

Boggs, D., 560, 562
Booth recoding, A-8 (see also arithmetic, Booth recoding)
bound, 439 (see also virtual memory, protection schemes of)
bounds checking (see virtual memory, Intel 80286/80386 and)
Brady, J., 509, 560, 562

Index

branch, 103, 104-109, 133 (see also jump; branch-prediction
schemes)

behavior, 272-273
clock cycles and, 224-225, 237
condition code (CC), 37, 106, 201, 282-283, 335
conditional, 104-108, 203, 209 (see also branch instruction)

of RISC architectures, E-8
condition register, 106
delay, 272, 273-277, 282, 335 (see also hazard, branch-delay

slots; branch-prediction schemes)
delayed, 274 (fig.), 275, 276-279, 339
scheduling, 274-275
DLX and (see branch instruction, of DLX)
frequency,272
hazard (see hazard, branch)
instruction, 37-38, 104

branch conditions of DLX, 203, 237
conditional, 37-38, 104
ofDLX, 203, 224 (fig.), 230 (fig.), 234-237

loop, 108
not taken, 270, 273 (see also branch-prediction schemes,

predict-not-taken)
offset, 105-106

optimization, 114 (see also optimization)
penalty, 271-272, 277

determining, 313
reduction, 273-278, 307-314

on DLX, 276-277, 310
optimization and, 114-115, 119-120
PC (program-counter)-relative branches, 105
pipelining and (see branch-prediction schemes)
prediction (see branch-prediction schemes)
scheduling, 274-275, 282
schemes, 277 (see also branch-prediction schemes; dynamic

hardware branch prediction)
taken, 107-108, 270, 273 (see also branch-prediction

schemes, predict-taken)
90/50 branch-taken rule, front endsheet
target, 105-106
unconditional (see jump)

branch-delay slots, 274, 275-276, 279, 335
empty, 276
filled,276
scheduling, 274 (fig.), 276 (fig.), 345

branch likely instruction, E-14 (see also delayed branch)
branch-prediction buffer, 308-310
branch-prediction schemes 273-277, 308-314, 339-340 (see

also dynamic hardware branch prediction; misprediction
penalty)

prediction accuracy, 309-310, 313
predict-not-taken, 273-274, 277 (fig.), 309, 312-313
predict-taken, 274-275, 277 (fig.), 309, 312-313, 331-332
reducing branch penalties with dynamic hardware prediction,

307-314
branch-target buffer, 310-312, 339-340
bridge, 527 (see also networks)
Briggs, F., 190
Brooks,F.P., 127, 186,445
Brown, E., 190
bubble, 265 (see also pipeline stall)
Burks, A. W., 24
Burr, W. E., 79
Burroughs

B5000, 127
B5500,71
B6500, 127, 131

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 766

Index

bus, 528-532, 560 (see also memory bus)
DLX, 200 (fig.), 201
FutureBus, 532, 532 (fig.)
IBM PC-AT bus, 531
instructions on the DLX, 211, 230
intelligent peripheral interface (IPI), 531, 532 (fig.), 560
Multibus II, 532, 532 (fig.)
NuBus, 15, 561
options for, 530 (fig.), 531 (fig.)
PDP-11 Unibus, 531, 560 .
small computer systems interface (SCSI), 532 (fig.), 560-561
standards for, 531-532

comparison of five bus standards, 532 (fig.)
transactions, 529
VME bus, 532, 532 (fig.)

bus error, 215 (fig.)
bus masters, 529 (see also bus)
bus transaction, 529 (see also bus)
bus width, 428 (see also memory, organization of)
busy-wait (see spin waiting)
bypass, 261, 263, 292, 338 (see also forwarding)
bypass registers, 263
byte, 219

alignment of on DLX, 221, 231
load byte on DLX, 232, 235

byte addressed machine, 95
byte ordering, 95 (see also Little Endian and Big Endian)

c
cache,19-20,25,26,224,238,408-425,454-474,481,483,

484 (fig.), 486-487 (see also memory; memory hierarchy;
virtual memory; block identification; block placement;
block replacement; write strategy)

2: 1 cache rule, front end sheet
access time and, 420

average memory-access time, 418-419, 454
block size versus, 423-424 (figs.)
virtual cache, 459-460

blocks and, 408, 420, 425, 454
address tag, 410
identification (see block identification, caches and)
placement (see block placement, caches and)
replacement (see block replacement, caches and)
size, 420, 423, 454, 469

versus memory access time, 423-424 (figs.)
subblocks, 456-457
vAx-11n80, 414

block-frame address of, 410, 412 (fig.), 414
coherency,466,467-474,487

block size and, 469
cache-coherency problem, 466 (fig.), 468
cache-coherency protocols, 467-473

directory based, 467-468
example of, 469-471
hits and, 471
misses and, 468-471
snooping, 467-474, 487

summary of, 471 (fig.)
write broadcast, 469-470 (fig.)
write invalidate, 468-469, 470 (fig.)

example, 473 (fig.)
multilevel caches and, 468
read hits and, 471
read misses and, 469, 471
sequential consistency, 474
synchronization, 471-474

cache, coherency, synchronization (continued')
lock variable, 471, 472 (fig.), 473
unlock, 472 (fig.)

weak consistency, 474
write hits and, 4 71
write misses and, 469, 4 71

data-only, 423-425
differences between virtual memory and, 438

1·5

direct mapped, 408, 409 (fig.), 410 (fig.), 418-422, 456, 481,
486

2: 1 cache rule, front endsheet
address portions of, 410 (fig.)
conflict misses and, 420

disk, 537, 566 (see also input/output, interfacing to an
operating system)

file, 537, 538 (fig.) (see also input/output, interfacing to an
operating system)

fully associative, 408, 409 (fig.), 410 (fig.), 418-422, 454
block placement and, 410 (fig.)
block replacement and, 411, 420
misses and, 420

hit, 412-413, 414, 460
rate, 411
read, 412
reducing hit times by making writes faster, 455-457
making cache hits faster with virtually addressed caches,

459-460
instruction-only, 423-425
1/0 and, 466-467
least-recently used block replacement (see block

replacement, least-recently used)
miss, 19, 412, 414, 418, 419-422, 429, 459 (see also cache,

miss rate; cache, write miss)
capacity, 419, 420, 421-422 (figs.)
compulsory, 419, 420, 421-422 (figs.)
conflict, 420, 421-422 (figs.)
reducing miss penalty, 457-458 (see also cache, two-level

caches)
"three Cs" (capacity, compulsory, conflict), 420, 421-422

(figs.), 484
miss rate, 416, 418-419, 481 (see also cache, miss; cache,

write miss)
2: 1 cache rule, front endsheet
compared to misses per instruction, 417
data-only versus instruction-only miss rates, 424-425

(fig.)
for random vs. least-recently used block replacement, 412
multiprocessors and, 468 (see cache, coherency)
on DLX, 482 (fig.)
on the V AX-11/780, 482 (fig.)
reducing by reducing cache flushes, 466-467
versus cache size, 455 (fig.)

for two-level caches, 462 (fig.)
using a process-identifier tag (PID), 459 (fig.)

mixed cache (see cache, unified)
multilevel (see cache, two-level caches)
multiprocessors and (see cache, coherency)
n-way set associative (see cache, set associative, n-way)
parameters, typical, 408 (fig.) (see also parameters, typical

ranges of)
performance, 416-419, 454-474, 481, 483
pipelined machines and, 334
random (see block replacement, random)
reads and, 412, 416 (see also cache, miss)

read miss rate, 416
register versus, speed of, 483
set associative, 409, 409 (fig.), 410 (fig.), 454, 481

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 767

1-6

cache, set associative (continued)
block-offset field, 410, 411 (fig.)
conflict misses and, 420
index field, 410, 411 (fig.)
n-way, 409, 420-422

SRAM relationship, 426
stale data and (see stale data)
subblocks, 456-457, 492
summary of, 484 (fig.)
synchronization (see cache, coherency)
tag field, 410, 411 (fig.)
two-level caches, 460-465, 484 (fig.), 487

average memory-access time for, 461
coherency, 468 (see also cache, coherency)
parameters, typical for, 463 (fig.) (see also parameters,

typical ranges·of)
relative execution time, 463 (fig.), 465 (fig.)
size of, 464
summary of, 484 (fig.)

valid bit, 410
V AX-11/780 and, 414-416 (see also memory hierarchy,

VAX-11/780 and; virtual memory, VAX-11/780 and)
miss rates for, 482 (fig.)

unified, 423
vectors as an alternative to caches, 352
virtual, 460
virtual memory and, 434, 438
write back, 413-414, 429, 469

clean, 413
dirty,413
dirty bit, 413

write buffer, 413, 457, 482-483 (see also cache, writes and)
fallacy of, 482-483
VAX-11/780 and, 413, 416, 477, 483
write stalls and, 457-458

write miss, 413-414, 416, 457-458
no write allocate, 413-414, 416
making faster, 457-458 (see also subblock placement)
multiprocessors and, 468
rate, 416
write allocate, 413-414

writes and, 413-414, 416 (see also cache, write miss)
making writes faster, 455-457
multiprocessor, 468

write strategy (see write strategy, caches and)
write through, 413-414, 416, 457, 477

cache-coherency problem, 466 (see also cache, coherency)
cache-coherency protocols, 467 (see also cache, coherency)
cache-coherency example, 473 (fig.) (see also cache,

coherency)
cache machine, 334 (see also cache)
Cady, R., 127
call (see procedure calVretum)
caller, 124-125
callee-saving, 108-109, 124-125
caller-saving, 108-109
call gate, 448 (see also virtual memory, protection schemes of;

virtual memory, Intel 80286/80386 and)
Calls instruction, 122, 124-125, 137, 213
capabilities, 441, 485 (see also virtual memory, protection

schemes of)
capacity miss, 420 (see also cache, miss, capacity)
capacity

of DRAMs (see dynamic random access memory)
of SRAMs (see static random access memory)

Index

carry, A-2, A-11 (see also carry in; carry out; carry-lookahead
adder; carry-propagate adder; carry-save adder; carry
select adder; carry-skip adder)

carry in, A-2, A-3 (fig.), A-7, A-37, A-38
carry-lookahead adder (CLA), A-32 (see also arithmetic,

integer, speeding up addition)
carry out, A-2, A-3 (fig.), A-7, A-15, A-16 (fig.), A-18-A-19,

A-33, A-37
carry-propagate adder (CPA), A-43, A-48, A-51, A-56
carry-save adder (CSA), A-42-A-44, A-45 (fig.), A-51
carry-select adder, A-38 (see also arithmetic, integer, speeding

up integer addition)
carry-skip adder, A-36 (see also arithmetic, integer, speeding

up addition)
CAS (see column-access strobe)
Case, R., 17, 186
Case/Amdahl rule of thumb, front endsheet, 17, 426 (see also

balance, software and hardware; rules of thumb;
performance)

CPU-DRAM performance gap and, 426, 427 (fig.), 432
cathode ray tube (CRT), 521 (see also graphics displays)
CC (see branch, condition code)
CD (see disk, optical)
CDB (see common data bus)
CDC (see Control Data Corporation)
CD-ROM, 519 (see disk, optical)
centralized memory (see memory, centralized)
central processing unit (CPU), 8, 13, 90-92, 199 (see also

datapath; processor)
balance and, 17
memory hierarchy and, 18-19 (see also memory hierarchy)
system performance and, 11, 16
CPU-DRAM performance gap, 426, 427 (fig.), 432
idle time, 500-501
interfacing to 1/0 (see input/output, interfacing to the CPU)
CPU-execution clock cycles and caches, 416
CPU-memory buses, 529 (see also bus)
performance, 35, 36-40, 71 (see also performance)
time, 35-40, 41, 67-69, 122

caches and, 416, 418
1/0 and, 499
system CPU time, 35
user CPU time, 35

chaining, 378 (see also vector processor, chaining and)
Chaitin, G. J., 130
Chandra, A. K., 130
character strings, 109
channel, 548 (see also disk, magnetic, IBM 3990 storage

subsystem and)
channel controllers, 534 (see also input/output, interfacing to

the CPU)
channel program, 549 (see also disk, magnetic, IBM 3990

storage subsystem and)
Chow, F. C., 114-115, 117, 130
CISC (complex instruction set computer) (see reduced

instruction set computer; Digital Equipment Corporation,
VAX)

CLA (see carry-lookahead adder)
Clark, D. W., 130, 171, 188, 189, 486, 488
clean, 413 (see also cache, write back)
clock, 36

period (see clock cycle)
tick (see clock cycle)

clock cycle, 29, 36-38, 75, 77, 79, 81, 134, 201, 224, 228 (see
. also clock cycle time; clock cycles per instruction)

ALU and, 224-226, 235
branches and, 224-225, 237-238

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 768

Index

clock cycle (continued)
caches and, 416
controland,204
DLX and, 224, 235, 237-238
microinstructions and, 211
per instruction (CPI) (see clock cycles per instruction)
pipelines and, 278 (fig.), 351
reducing, 207
register file and, 201
stalls and, 213-214, 224

clock cycles per floating-point operation (CPF), 360-361, 378,
392

clock cycles per instruction (CPI), 36-41, 71-72, 77, 82, 94,
132, 134, 199, 224

CPF versus, 392
ALU and, 224-226, 235
DLX and, 224, 225 (fig.), 235, 238
performance and, 210
pipelining and, 252, 258, 351
reducing, 207

by adding hardwired control, 213-214
by parallelism, 214, 314-327
by pipelining, 252, 258
with special case microcode, 213

clock cycle time, 5, 36-41, 81, 199, 201, 228 (see also clock
rate)

cachesand,416,481
controland,210,227,240
interrupts and, 214
pipelined machines and, 251-255

clock rate, 36-37, 41, 68, 71, 84, 135, 228 (see also clock cycle
time)

clock skew, 253-254, 336
CM (see Connection Machine)
Cm* multiprocessor, 589 (see also multiprocessor)
C.mmp multiprocessor, 589 (see also multiprocessor)
COBOL, 15
Cocke, J., 130, 189, 340
code,45

condition (see branch, condition code)
optimized, 41-42, 49, 73
size, 70-71, 73, 78-79, 92, 103, 121, 135, 324
source, 43, 48
system, 35
unoptimized, 41-42, 73
user, 35

code motion, 114 (see also optimization)
coherency (see cache, coherency)
cold start misses, 419 (see also cache, miss, compulsory)
collision misses, 420 (see also cache, miss, conflict)
coloring, graph, 113-114, 130
color map, 523 (see also graphics displays)
color table, 523 (see also graphics displays)
column-access strobe (CAS), 425
column-major order, 366, 367 (fig.)
committed instruction, 280
common case

importance in design, 8
common data bus (CDB), 300-307, 349
common subexpression elimination, 114 (see also

optimization)
global, 112, 114

communication, 573, 574, 592-593, 594
explicit, 579
implicit, 578-579
overhead,575,581

compare, 101, 103, 106-107
macrocode improvement of, on V AX-11/780, 239
in RISC architectures, E-7-E-8

Comparability, of instruction sets (see object-code
compatibility)

compare and branch instruction, 106-107
comparison (see compare)
comparators

for hazard detection, 263, 269 (see also hazard, detection)
compiler, 5, 16, 17, 19, 21, 28, 92-94, 111-122

complexity of, 111, 120-121
future directions for, 581-582
optimizing, 41, 47, 67, 73-74, 81, 111-120, 126, 130, 131,

136
performance and, 37, 42-48, 71-72, 79
structure of, 111-115

1·7

vector processor and (see vector processor, compilers and)
completion, out-of-order (see out-of-order completion)
completion rate, 358 (see also vector processor)
complex instruction set computer (CISC) (see reduced

instruction set computer)
compulsory miss, 419 (see also cache, miss, compulsory)
computer architecture (see architecture, computer)
Computer Museum, 25
computer program, 243
condition code (see branch, condition code)
conditional branch (see branch, conditional)
conditionally executed statements (see vector processor,

conditionally executed statements and)
conditional-sum adder, A-66
conflict miss, 420 (see also cache, miss, conflict)
connect/disconnect bus, 530 (see also bus)
Connection Machine

CM, 589-590, 591
CM-2,573,577,593

constant bit density, 516 (see also disk, magnetic)
constant extension of RISC architectures (see reduced

instruction set computer)
constant propagation, 114 (see also optimization)
context switch, 438 (see also virtual memory, processes and)

virtual caches and, 459-460 (fig.)
Conti, C. J., 78
control 199, 201 (fig.)

DLX and, 220-224, 228-234 (see also DLX, instruction set,
control-flow instructions)

flow (see also control-flow instructions)
hardwired, 204-207, 210

reducing CPI by adding hardwired control, 213-214
improving DLX performance when control is hardwired,

226-228
performance of, 207, 224-225, 237
reducing hardware costs of hardwired control, 205-206,

213-214
interrupts and, 217-218
microprogrammed/microcoded 208-214, 238-243

ABCs of microprogramming, 209-210
microcoded control for DLX, 228-234
performance of, 238, 240-241
performance of microcoded control for DLX, 235
reducing cost and improving performance of DLX when

control is microcoded, 235-238
reducing hardware costs by encoding control lines, 210-

211
reducing hardware costs with multiple microinstruction

formats, 211-212
special case microcode, 213
writable control store (WCS) and, 238-239

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 769

1·8

Control Data Corporation (CDC), 353, 394
CDC 6600, 71, 128, 132, 292, 295, 299-300, 338-339
ETA-10, 394

control dependences (see hazard, branch)
control-flow instructions, 104-109, 122 (see also DLX,

instruction set, control-flow instructions)
in RISC architectures, E-6

control hazard (see hazard, control)
controller, disk (see disk, magnetic)
controller time, 516 (see also disk, magnetic)
control operators, 103
control store, 209, 210, 212-213, 235, 239 (see also writable

control store)
coprocessor, 580, A-28
coprocessor operations (see arithmetic and logical instructions)
copy back, 413 (see also cache, wri~e ~ac~)
copy propagation, 114 (see also opt1m1zat1on)
Cosmic Cube multicomputer, 589
cost, 34, 53-54, 80 (see also die; integrated circuit; package;

wafer; workstation)
average selling price (ASP), 64, 66, 85
average discount, 64-65, 84-85
comparing price of media versus price of packaged system,

556-557
direct, 64-66, 85
DRAM, 556-557
indirect, 64
list price, 64-66, 70, 84-85
magnetic disk, 556-557 . .
versus access time for SRAM, DRAM, and magnetic disks,

518 (fig.)
versus price, 61-64, 65 (fig.), 66 (fig.), 84-85.

cost/performance, 11, 16, 21, 25, 76 (see also performance)
design, 34
fallacies, 70
optimizing, 14
price/performance, 47, 66-70, 80

CPA (see carry-propagate adder)
CPF (see clock cycles per floating-point operation)
CPI (see clock cycles per instruction)
CPU (see central processing unit)
Crawford, J., 188
Cray, Seymour, 71
Cray Research machines, 34, 353, 390, 391, 393

arithmetic on, A-60
CRAY-1, 353, 377, 391, 392, 393
CRA Y-2, 43, 353, 377 (fig.)
CRAY X-MP, 74-75, 80, 353, 376-377, 391, 392, 394, 493
CRAY Y-MP, 353, 391-392, 394

critical section (see synchronization)
CRT (see cathode ray tube; graphics displays)
Crudele, L., 189
CSA, A-42 (see also carry-save adder)
Curnow, H.J., 78
cycle time (see also clock cycle time)

of DRAM (see dynamic random access memory)
of SRAM (see static random access memory)

Cydra 5 (see Cydrome Cydra 5)
Cydrome Cydra 5, 340
cylinder, 516 (see also disk, magnetic)
Cypress Corporation

Cypress CY7C601 microprocessor, 84, 493

D

DASD, 514 (see also direct-access storage device; disk,
magnetic; input/output)

data alignment; 95-96
data antidependency (see antidependency)
data area, global, 116
data dependences (see hazard, data)

Index

vector processing and, 375 (see also vector processor, data
dependences)

Data General Nova, 560
data hazard (see hazard, data)
data integrity, 520 (see also input/output, reliability)
datareferences, 123-124, 132-133
data transfer, 79, 135

atomic swap instruction, E-9-E-10
Endian option, E-9-E-10 (see also Big Endian; Little

Endian)
non-aligned, E-12-E-13
in RISC architectures, E-5

data transfer operator, 103
data trunks, 295
data-only cache (see cache, data-only)
data parallelism, 573
datapath, 201

control and, 227
data from, 205, 206 (fig.)
design, 204, 207
DLX architecture and, 221
microinstructions and, 208-209, 211, 214

data rate, 511, 512 (see also input/output, devices)
DAXPY (see vector processor, Unpack benchmark)
DEC (see Digital Equipment Corporation)
decimal arithmetic (see arithmetic, decimal)
decimal operations, 15, 103 (see also arithmetic, decimal)
decoupled architecture, 321
defects per unit area, 59-60 . . .
deferred addressing (see addressmg mode, memory mdtrect)
deferred branching (see branch, delayed)
definitions, front endsheet
DeLagi, B., 127
delay slot, 268 (see also branch-delay slot; load delay slot)
delayed branch (see branch, delayed)
delayed load, 268, 339
denormal, A-14 (see also arithmetic, denormals and)
Dent, B. A., 127
dependences 264, 269 (fig.), 287 (see also hazard; vector

processor, data dependences)
anti- (see vector processor, antidependence)
output (see vector processor, output dependence)
true data (see vector processor, data dependences)
vector processing and (see vector processor, data

dependences)
depth (see pipelining, depth of a pipeline)
description language, 141-142, inside back cover
descriptor table, 446 (see also virtual memory, page table;

virtual memory, Intel 80286/80386 and)
design, computer, 8, 13

complexity and time, 15-16
computer-aided, 580
high-performance, 34
low-cost, 34
tradeoffs, 8, 14
trends and, 16-17

designer, computer (see architect, computer)
detailed measurements (see instruction set, measurements)
device level select (DLS), 553 (see also disk, magnetic, IBM

3990 storage subsystem and)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 770

Index

DG (see Data General)
Dhrystone, 28, 45 (see also benchmarks, synthetic)
die, 55-58 (see also wafer)

area, 59-60, 61
cost of, 55, 59-60, 62, 84, 85
photographs of, 58
testing, 60

costof,55,60,62,84
yield, 59-61, 62, 80

difficulties in implementing pipelines (see pipelines,
difficulties in implementation)

Digital Equipment Corporation (DEC), 15
DECstation, 19
DECstation 3100, 68, 167, 190, D-8-D-9
PDP-8, 91
PDP-10, 93
PDP-11, 93, 104, 127-128, 131-132, 142, 187, 480-481, 531,

561
bus of, 531
Unibus and (see bus, Unibus)

VAX, 25, 91, 93, 97, 101-102, 103-104, 123, 128-129, 140,
147, 169-172, 187-188

addressing modes, 144-147, 145 (fig.), 169 (fig.)
usage, 169-171, 170

condition codes, 147
data types, 143
floating-point arithmetic on, A-59
instruction mixes, 171-172
instruction set, 142-144, 146 (fig.), 147 (fig.) (see also

Digital Equipment Corporation, VAX, user
instruction set)

format, 141, 144-145, 147
instruction length, 145 (fig.), 147 (fig.)
usage measurement, 140, 168, 169-172, 186 (fig.), C-2

interrupts, 215 (fig.), 218 (fig.), 219
operand specifiers (see Digital Equipment Corporation,

VAX, addressing modes)
operations on, 147
registers, 143-144
summary of, E-23
user instruction set, B-2-B-5

branch, jump, and procedure call instructions, B-3-B-4
decimal and string instructions, B-4-B-5
integer and floating-point logical and arithmetic

instructions, B-1-B-2
queue instructions, B-5
variable-length bit field instructions, B-5

VAX-11/780, 13, 19, 28, 29, 142, 187-188
address space, 441
cache in, 414-416 (see also cache, VAX-11/780 and)
instruction-prefetch buffer in, 450
memory hierarchy of (see memory hierarchy, VAX-

11/780 and)
page-table entry of (see page-table entry)
time distributions on, D-2-D-3
translation-lookaside buffer (see virtual memory,

translation-lookaside buffer)
virtual memory in (see virtual memory, V AX-11/780 and)
write buffers on, 413, 416, 477, 483

V AX-11/785, 13
VAX 8550, 28
VAX 8600, 13, 28. 329. 337 (see also pipelining, VAX 8600

and)
EBox, 328-332
FBox, 328-332
IBox, 328-332, 334
!Fetch, 230-238, 330

Digital Equipment Corp., VAX 8600 (continued)
MBox, 328-331, 333
Opfetch, 329-334

VAX8700
frequency of process switches on, 439 (fig.)

V AXstation 2000, 68
V AXstation 3100, 68

digital signal processor (DSP), 580
direct (absolute) addressing, 98 (see also addressing mode)
discount (see cost)
display (see cathode ray tube; graphics displays)
direct-access storage devices, 514 (see also disk, magnetic;

input/output)
direct mapped, 408 (see also cache, direct-mapped)

1·9

direct memory access (DMA), 534-535 (see also input/output,
DMAand)

directory based, 467-468 (see cache, coherency)
dirty, 413 (see also cache, write back)
dirty bit, 413 (see also cache, write back; virtual memory, dirty

bits and)
disk, 6, 19, 20, 29 (see also disk, magnetic; disk, optical)

growth rule, front endsheet, 17
storage, 3, 19
technology, 17

disk array, 520-521
availability of, 520-521
reliability of, 520-521

disk cache, 537 (see also input/output, interfacing to an
operating system)

disk controller, 516 (see also disk, magnetic)
disk drive (see disk, magnetic)
disk-growth rule, front endsheet, 17
disk, magnetic, 514-520, 561

access time gap and, 518 (fig.), 519
array of (see disk array) ·
capacity of, 517 (fig.), 518, 547 (see also maximum areal

density)
characteristics of, 515-516, 517 (fig.)
comparison of four manufacturers, 517 (fig.)
cost of, 556-557
cost versus access time, 518 (fig.)
data rate of, 514 (fig.), 517 (fig.)
extended storage (ES), 519
future of, 518-519, 561
IBM 3990 storage subsystem and, 546-554, 567

changes in response time with improvements in 3380D,
553 (fig.)

channels and, 548, 554
channel program for, 549
control hierarchy, 547-549
data-transfer hierarchy, 547, 548 (fig.), 549
DLS and, 552-553
DPR and, 552-553
head of string, 549, 552
IOCB of, 549
RPS, 551, 552, 554
speed-matching buffers of, 549
storage director of, 549
summary of, 553-554
tracing a disk read, 549-553

1/0 benchmarks for, 5.10-512 (see also input/output,
performance)

file system, 512
supercomputer, 510-511
transaction processing, 511-512
TP-1, 511, 511 (fig.)

organization of, 515 (fig.)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 771

1-10

disk magnetic (continued)
seeks and, 516, 557-558

average se~k time, 516, 557, 563
formulas for, 557, 558 (fig.)
seek distance measurements, 559 (fig.)
versus seek distance, 558 (fig.)

solid state disks (SSDs), 519 (see also dynamic random
access memory)·

disk, optical, 519-520
write-once misperception, 519

displacement (based) addressing mode (see addressing mode)
Ditzel, D.R., 129, 130, 189
division (see arithmetic, division, floating-point; arithmetic,

division, integer)
DLS (see device level select)
DLX, 117, 122-123, 160-167, 179-183, 188

addressing mode usage, 179-180
alignment, 221, 231
bus, 200 (fig.), 201, 211, 230
control (see control, DLX and)
datapath, 221
instruction mixes, 180-183
instruction set, 161-166, 165 (fig.). E-4-E-6

arithmetical logical instructions, 163
branch instructions, 203, 224 (fig.), 230 (fig.), 234-237
common extensions to, E-9-E-12
control-flow instructions, 163, 164 (fig.), 183
format, 166 (fig.)
jump instructions, 222-225
load and store instructions in, 161-163, 203
usage measurement, 179-183, 181(fig.),186'(fig.), C-5

load byte, 232, 235
machines related to, 166
miss rates for, 482 (fig.)
pipelining (see pipelining, DLX and)
registers, 161-162
register window benefits on, 453 (fig.)
states, 205, 221-224 (figs.), 225-226
summary of, E-2
superscalar (see superscalar)
time distribution on, D-8-D-9
vector processing and (see vector processor, DLXV and)

DLXV, 353 (see also vector processor, DLXV)
DMA (see direct memory access)
Doherty, W., 560, 562
done bit, 534 (see also input/output)
double precision (see arithmetic, precision)
double-extended precision (see arithmetic, precision)
double rounding, A-29 (see also arithmetic, rounding)
doubleword, 95
DPR (see dynamic path reconnection)
DRAM (see dynamic random access memory; memory,

DRAM)
DRAM-growth rule, front endsheet
DRAM-specific interleaving for improving main memory

performance, 431-432 (see also memory, interleaved)
drive (see disk, magnetic)
dual instruction mode

in Intel 860, E-22
dual-issue, 322, 340
dynamic address translation (see virtual memory, address

translation)
dynamic branch prediction (see dynamic hardware branch

prediction)
dynamic detection of memory hazard (see hazard, memory,

dynamic detection of)

Index

dynamic hardware branch prediction, 307-314, 339-340 (see
also branch-prediction schemes)

dynamic measurements (see instruction set, measurements,
dynamic)

dynamic path reconnection (DPR), 552 (see also disk,
magnetic, IBM 3990 storage subsystem and)

dynamic random access memory (DRAM), 16, 17, 29, 425-
427, 431-432 (see also static random access memory;
memory, DRAM; virtual memory)

capacity of, 426, 431
cost of, 556-557
cost versus access time for, 518 (fig.)
cycle time of, 426, 432 (fig.)
growth rule, front endsheet, 17
interleaving and, 431-432
performance increase, 426 (fig.), 427 (fig.)
static column, 431, 487
solid state disk and, 519, 564
times of, 426 (fig.)
video, 523 (see also graphics displays)

dynamic scheduling 291, 290-313, 321-322, 339-340
multiple instruction issue and, 321-322
reducing branch penalties with dynamic hardware prediction,

307-314 (see also branch-prediction schemes; dynamic
hardware branch prediction)

scoreboard approach (see scoreboard)
Tomasulo algorithm (see Tomasulo algorithm)

E

Earle latch (see latches)
early restart, 458 (see also cache, miss)
EBCDIC, 109
EBox (see Digital Equipment Corporation, VAX 8600)
Eckhouse, R., 188
Eckert, J.P., 23-25, 241
Eckert-Mauchly Computer Corporation, 25
EDSAC (Electronic Delay Storage Automatic Calculator), 24,

241-242
EDV AC (Electronic Discrete Variable Automatic Computer),

23-24
Edwards, D. B. G., 26
Eggers, S., 471, 487, 488
elapsed time, 35-36, 67, 69, 72
Emer,J., 79
emulation, 242
empty slots (see delay slots)
encoding, 210-211, 235 (see also addressing mode)
Encore Multimax multiprocessor, 589 (see also

multiprocessor)
Endian option (see data transfer)
Engelbart, D., 560
ENIAC (Electronic Numerical Integrator And Calculator), 23-

24
entry time, 508 (see also input/output, transactions and)
error bit, 534 (see also input/output)
ES (see extended storage)
ESA/370 (see International Business Machines, IBM ESN370)
ETA-10 (see Control Data Corporation, ETA-10)
Ethernet, 526 (see also networks)
evaluation of vector performance (see vector performance,

analyzing)
even/odd multiplier, A-45 (see also arithmetic)
exceptions, 216 (see also arithmetic, exceptions; interrupts)
execution, 252, 294, 301, 330

in a pipeline, 252, 285, 294, 301, 330
out-of-order (see out-of-order execution)

1

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 772

Index

execution (continued)
simulation, 289
mode of, 8, 10, 29

execution time, 5-7, 27, 35, 28, 29 (see also response time;
performance; mean)

average instruction, 77
locality ofreference and, 11-12 (see also locality)
normalized, 52-53, 83
performance and, 6, 35, 40-45, 48-49, 71-72, 81
speedup and, IO
total, 50, 83
weighted, 51, 84

executive process, 440 (see also virtual memory, processes
and)

explicit communication (see communication, explicit)
exponent, A-13 (see also arithmetic, exponents and)
exponent field, A-13 (see also arithmetic, exponents and,

exponent field)
extended storage (ES), 519

Fabry, R., 485, 488

F

false sharing, 469 (see also cache, coherency)
fast page mode of DRAM, 432
faults, 216 (see also interrupts)
FBox (see Digital Equipment Corporation, VAX 8600)
fetch on write, 413 (see also cache, write miss)
fields, 209
FIFO (see block replacement, first-in-first-out)
file cache, 537 (see also input/output, interfacing to an

operating system)
file server

versus workstation, 500
file systems, 512
file system 1/0 benchmark (see benchmark; input/output,

performance; disk, magnetic, 1/0 benchmarks for)
filled slots (see branch-delay slots)
finite state diagram, 204, 206

for the DLX, 205, 220
interrupts and, 217

firmware (see microprogramming)
first-in-first-out (FIFO), 412 (see also block replacement, first-

in-first-out)
first part done (FPD), 219-220
first reference misses, 419 (see also cache, miss, compulsory)
Fisher, J., 340
fixed-field decoding, 202
fixed point, A-12, A-58 (see also arithmetic, integer)
Flemming, P. J., 79
floating point (FP), 15, 19 (see also arithmetic, floating-point)

arithmetic (see arithmetic, floating-point) '
CDC 6600 and, 291-293
floating-point operations per second (FLOPS), 360-361 (see

also vector processor, performance)
IBM 360/91 and, 299-300
millions of floating-point operations per second (MFLOPS),

43-44, 74-75, 78, 83, 86, 383, 386 (see also vector
processor, performance)

native, 43-44, 81, 83
normalized, 43-44, 83

overflow (see arithmetic, exception, overflow)
floating-point arithmetic, quadruple precision, E-17
floating-point compares, 106-107
floating-point format (see arithmetic, IEEE standard and)
floating-point instructions (see floating-point operations)

1·11

floating-point operations, 14, 103, 284-290, 318-319 (see also
pipelining, DLX and, floating-point)

implicit conversions, E-9, E-11
in RISC architectures, E-6
overlapped, in SPARC, E-16

floating-point operations per second (see floating point,
floating-point operations per second)

floating-point operator, 103
floating-point references, 119
floating-point pipeline (see pipelining, DLX and, floating-

point)
floating-point register, 114, 118-119, 124
floating-point stalls, 290
floating-point standard, 109
Floating-Point Systems AP-120B, 340
FLOPS (see floating point, floating-point operations per

second)
Flynn bottleneck, 351, 352 (see also vector processor)
Foley, P., 189
format field, 211
format of instructions (see instruction syntax)
FORTRAN, 119, 130

Absoft System V88 2.0a compiler 83
F77 compiler, 126
FORTRAN 8X, 581
FORTRAN 77, 581

forwarding, 261-265, 269, 286, 339
Foster, C. C., 129
FP (see floating point)
FPD (see first part done) on VAX
fraction, computation time, 10

enhanced, 10
fragmentation and reassembly, 527 (see also networks)
frame address (see memory hierarchy, block)
frame buffer, 521 (see also graphics displays)
freezing the pipeline, 273, 334
Freitas, D., 189
frequency distributions (see instruction set, measurements)
full adders, A-2 (see also arithmetic)
Fuller, S. F., 78, 80
fully associative, 408 (see also cache, fully associative)
functional requirements (see requirements, functional)
functional units, 255-258, 291-298, 300-305, 318-319, 323-

324, 338
multiple, 284-285, 338, 346
vector processing and (see vector processor, functional units)

functional unit status, 295, 296-298 (figs.), 303-305 (figs.)
FutureBus, 532, 532 (fig.) (see also bus)
future file, 288 (see also out-of-order completion)

Gagliardi, U. 0., 129
Gajksi, D., 589
Gamer, R., 190

G

gateway, 527 (see also networks)
gather, 380 (see also vector processor, sparse matrices)
GCD (see greatest common divisor)
Gelsinger, P., 188
general-purpose register (GPR) architecture (see register,

general-purpose register architecture)
generate, A-32 (see also arithmetic; carry)
generation, computer, 26
geometric mean (see mean, geometric)
Gibson, D. H., 78
Gibson, J.C., 77, 78, 80
Gibson mix, 77, 78, 80

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 773

1·12

gigaflop (see floating point, millions of floating-point
operations per second)

Gill, J., 130
Gill, S., 24
global address space, 446 (see also virtual memory, processes

and)
global data area (see data area, global)
global miss rate, 461 (see cache, miss; cache, two-level caches)
Gnu C compiler, 67, 69-70, 79, 85
Goldschmidt's algorithm, A'-24-A-25, A57
Goldstine, H. H., 23-25
Gonter, R.H., 129 •
Goodman, J., 487, 488
Gottlieb, A., 589
GPR (see register, general-purpose register architecture)
gradual underflow (see arithmetic, exceptions, underflow)
graphics instructions in Intel 860, E-20 ·
graphics displays, 521-525, 560, 561

color map, 523, 524 (fig.)
cost of, 523-524
frame buffer, 521, 522 (fig.)
future directions in, 525-526
hidden surface elimination, 525

z-buffer approach to, 525
performance demands of, 524-525
tasks and their perfonnance requirements, 525 (fig.)
video DRAMs, 524, 525

gray-scale displays, 521 (see also graphics displays)
greatest common divisor (GCD), 373 (see also vector

processor, data dependences)
growth rules (see disk, growth rule; dynamic random access

memory, growth rule)
Gross, T. R., 335, 339

H

half adders, A-2 (see also arithmetic)
halfwords, 95
Hansen, C., 189
hard disk (see disk, magnetic)
hard drive (see disk, magnetic)
hardware branch prediction 291 (see also dynamic hardware

branch prediction)
hardware, 13 (see also balance, software and hardware)

"smaller is faster," 18
industry growth and, 21

hardwired control (see control, hardwired)
harmonic mean (see mean, hannonic)
Harvard University, 24-25
Hauck, E. A., 127
hazard, 257-258, 278 (see also dependences; vector processor,

data dependences)
branch,270-272,280,307

handling on VAX 8800, 331-332
(see also branch, penalty)

control, 257 (see also hazard, branch)
data,257,260-269,282,283-284,286-290,291-298, 300-

306, 346 (see also vector processor, data dependences;
pipelining)

handling on VAX 8800, 331-332
detection, 268-269, 334 (see also branch, penalty)

VAX 8600 and, 328-329
DLX and data hazard detection 268-269
DLX and structural hazard detection, 292
floating point and, 286
overlapped integer and floating-point instructions and,

285
scoreboard and, 293-298

Index

hazard, detection (continued)
Tomasulo algorithm and, 300, 302-306

dynamic detection of memory hazards, 291-298, 300-306,
339

RAW, 264, 286, 294, 297, 301, 331
vectors and (see vector processor, data dependences)

memory, dynamic detection of, 339
structural, 257, 258-259, 284, 286, 294, 300

CPI and, 260
DLX and, 289, 291-292, 300
superscalar machine and, 319

true data dependences (see vector processor, data
dependences)

vector processing and, 375 (see also vector processor, data
dependences)

WAR, 264, 286, 293-295, 304
WAW,264,287,293-295,304

hazards, reducing (see hazard, detection; branch, penalty,
reduction)

head of string, 549 (see also disk, magnetic, IBM 3990 storage
subsystem and)

Henly, M., 79
Hennessy, J. L., 130, 189
Hewlett-Packard

Precision, 167, 190
hidden surface elimination, 525 (see also graphics displays)
higher-radix multiplication, A-43, A-50 (see also arithmetic,

integer, speeding up multiplication)
high-level language, 16,111, 115~116, 121, 124, 127-129, 131,

135
High-Level Language Computer Architecture (HLLCA), 129-

130
high-perfonnance design (see design, high-performance)
Bilfinger, P., 189
Hill, M., 421, 424, 481, 486-487, 489
Hillis, D., 577, 589, 590

bet with Bell, 590
history, computer, 23-27
history file, 288 (see also out-of-order completion)
hit, 404 (see also memory hierarchy, hit; cache, hit)
Hitachi S810/20, 74
hit rate, 404 (see also memory hierarchy, hit rate; cache, hit)
hit time, 405 (see also memory hierarchy)
Hopkins, M. E., 130
horizontal microcode (see microcode, horizontal)
horizontal microinstruction (see microcode, horizontal)
Hough, D., 190
How is a block found? (see block identification)
HP (see Hewlett-Packard)
Hudson, E., 189

I

i860 (see Intel Corporation, i860)
IAS (Institute for Advanced Study) (see Princeton University)
IBox (see Digital Equipment Corporation, VAX 8600)
IBM (see International Business Machines Corporation)
IC (see integrated circuit)
ideal performance in pipelining, 258-259
identification, block (see block identification)
IEEE (see arithmetic, IEEE standard and)
!fetch (see Digital Equipment Corporation, VAX 8600)
Illiac IV, 554, 555 (fig.), 573, 589, 591
immediate (literal) addressing mode (see addressing mode)
IMP (see interface message processor; networks)
implementation, 13

hardware, 14, 21

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 774

Index

implementation (continued')
performance evaluation and, 78-79
software, 14
technology of, 16

implicit communication (see communication, implicit)
implicit conversions (see floating-point instructions)
imprecise interrupt (see interrupts, imprecise)
improving performance of vector processors (see vector

processor, improving performance)
in-order instruction issue, 291
index, 47, 98
index addressing mode (see addressing mode, scaled)
indexed addressing mode, 98 (see also addressing mode)
index field, 410 (see also cache, set associative)
index vector, 380 (see also vector processor, sparse matrices)
indirect addressing mode (see also addressing mode, register

deferred; addressing mode, memory indirect)
induction variable elimination, 114 (see also optimization)
inexact exception, A-30 (see also arithmetic, exceptions
infinity, A-13, A-14, A-19 (fig.), A-22, A-30, A-60 (see also

arithmetic, rounding and; not a number)
infinite precision, A-22

initiation rate, 358 (see also vector processor, initiation rate)
input/output (1/0), 6, 11, 15 (fig.), 17, 22, 499-501, 554-561

(see also disk, magnetic; graphics displays; networks; bus)
bandwidth (see input/output, throughput)
benchmarks (see input/output, performance; disk, magnetic,

1/0 benchmarks for)
CPU time and, 499
DMA and, 534-535, 537, 561

virtual, 537, 538 (fig.)
IBM and, 546
IBM 3990 storage subsystem (see disk, magnetic, IBM 3990

storage subsystem and)
idle time and, 500-501 (see also input/output, people and)
designing a system for, 539-546
devices, 512-514, 560-561 (see also disk, magnetic; graphics

displays; networks; bus)
categorized by behavior, partner, and data rate, 513 (fig.)
data rate, 511, 512, 514
examples of, 513 (fig.)
keyboards, 513

fallacies and pitfalls of, 554-559
history of, 560-561
importance of (see input/output, system performance and)
interfacing to the CPU, 533-535 (see also input/output,

DMAand)
delegating 1/0 responsibility from the CPU, 534-535
fallacy of moving functions from CPU to 1/0, 555-556

interfacing to an operating system, 535-538
caches causing problems with, 535-537
caches helping with, 537-538
disk cache, 537-538

effectiveness of, 538 (fig.)
stale data and, 535-536
virtual memory and, 537

latency (see input/output, response time)
operating systems and, 535 (see also input/output,

interfacing to an operating system)
overlapping (see input/output, system performance and)
people and, 508-509, 513, 560

peak 1/0 rates for, 513 (fig.)
transactions per hour versus computer response time, 510

(fig.)
performance, 506-512, 539-546, 555-556 (see also

input/output, response time; input/output, throughput;
benchmark; disk, magnetic, 1/0 benchmarks for)

input/output, performance (continued')
cost/performance, 539, 555

1-13

producer-server model of response time and throughput,
506 (fig.), 508 (fig.)

reliability, 520-521
response time (latency), 506, 507, 509 (fig.), 560

disk array and, 520
graphics displays and, 522-524
IBM 3380D and, 553 (fig.)
magnetic disk and, 507 (fig.)
networks and, 528
transaction time and, 509
versus throughput, 507 (fig.), 507-509
versus transactions per hour, 510 (fig.)

supercomputers and, 529, 564
system performance and, 501-506, 555-556

Amdahl's Law and, 500, 555, 559
cost/performance, 555
time formulas for, 502-506
overlapped execution of 1/0, 502 (fig.), 502-506

throughput (bandwidth), 506, 507, 544
bus and, 532
disk array and, 520
graphics displays and, 522-524
magnetic disk and, 507 (fig.)
networks and, 528
versus response time, 507 (fig.), 507-509

transactions and, 508, 509 (fig.)
transaction processing (TP), 511-512
transaction time, 508

entry time, 508, 509 (fig.), 560
system response time, 508 (see also input/output,

performance, response time)
think time, 508. 509 (fig.), 560

transactions per hour versus response time, 510 (fig.)
user transaction, 509 (fig.)

types (see input/output devices)
Institute for Advanced Study (IAS) (see Princeton University

Institute for Advanced Study)
instruction (see also instruction set)

architecture (see instruction set, architecture)
average execution time, 77
control (see control; control-flow instructions)
count, 36-42, 72-73, 94, 99, 121, 123

optimization and, 119-120
density, 94
encoding, 94, 102-103
fetch and decode rate, 351
format (see instruction set)

of RISC architectures, E-3
frequencies (see instruction set, measurements)
interruption and restart, 279-282, 287-289, 332
issue, 266, 286-289, 292-296, 300-306, 339-340 (see also

dual-issue; multiple instruction issue)
issue more than one instruction, 318-320
multiple instruction issue with dynamic scheduling, 321-

325
scoreboard and, 292-296, 293 (fig.)
superscalar machines and, 318-320
stalls and, 284

measurements (see instruction set, measurements)
mix, 39, 45, 73, 77
path length, 36 (see also instruction count)
parallelism, 314-328, 340-341 (see also vector processor)

increasing with loop unrolling, 315-318
increasing with software pipelining and trace scheduling,

325-328

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 775

1-14

instruction (continued)
reference, 124
scheduling, 267-268, 274-278, 339
set (see instruction set)
size, 103
static, 12
status, 295, 296-298 (figs.), 303, 305 (fig.), 308 (fig.)
syntax, 141 (see also instruction set, architecture)

instruction-level parallelism (see instruction, parallelism)
instruction-only cache (see cache, instruction-only)
instruction-prefetch buffer, 449-450, 484 (fig.)

summary of, 484 (fig.)
VAX-11/780 and, 450 (fig.)

instruction set (see also instruction; DLX; Intel Corporation,
860; MIPS Computer Corporation, R3000; Motorola
Corporation, 88000)

architecture, 13, 16, 17, 37, 90-94
comparison, 70
complications (see pipelining, difficulties in implementation,

instruction set complications)
control (see control; control-flow instructions)
frequencies (see instruction set, instruction frequencies;

instruction set, measurements)
instruction frequencies (see also instruction set,

measurements)
DEC VAX, 172 (fig.)
DLX, 181 (fig.)
IBM 360, 175 (fig.)
Intel 8086, 178 (fig.)

measurements, 139-141, 142, 167-168, 184, 185 (fig.), 186
(fig.), D-2

DEC VAX, 169-172, 172 (fig.)
detailed measurements, C-2

DLX, 179-183, 181 (fig.)
detailed measurements, C-5

dynamic, 90, 139, 140 (fig.)
comparisons of, by architecture, 186 (fig.)

frequency distributions, D-2, D-3 (fig.)
IBM 360, 173-176, 175 (fig.), 185 (fig.), 186 (fig.)

detailed measurements, C-3-C-4
Intel 8086, 176-178 (fig.), 186 (fig.)

detailed measurements, C-4
static, 139
time distributions, 139, 171, 184-185, D-2-D-9

8086 in an IBM PC, D-6-D-8
DLX relative, D-8-D-9
IBM 370/168, D-4-D-6
VAX-11/780, D-2-D-3

performance and, 36-37, 39, 67
processor (ISP) (see instruction set, architecture
usage (see instruction set, measurements)
user (see Digital Equipment Corporation, VAX, user

instruction set)
instruction set processor (ISP) (see instruction set, architecture)
integer arithmetic (see arithmetic, integer)
integer compares, 106-107
integer multiply and divide

in RISC architectures, E-8-E-9
signed and unsigned, in SPARC, E-17

integer operations, 15
integer overflow (see arithmetic, exception, overflow)
integer pipeline (see pipeline, DLX and, integer)
integerregister, 114, 117-119, 124, 136
integer variables, 109, 117
integrated circuit (IC), 3, 5, 13, 17, 26

cost of, 54-58
yield, 59, 81

Intel Corporation
Intel 4004 and 8008, 188
Intel 432, 125
Intel 8080, 153, 188
Intel 8088, 188

Index

Intel 80x86, front endsheet, 153, 188, 449
Intel8086,91,97, 104, 141, 153-160, 176-179, 188,445

addressing modes, 155-156
usage, 177 (fig.)

address space, 154
compatibility mode, 153
flaws, 184
instruction mixes, 176-178
instruction set, 153-160, 158 (fig.), B-9-B-12

arithmetic and logical instructions, B-10
control instructions, B-11
data transfer instructions, B-12
formats, 141, 157, 159 (fig.), 160 (fig.)
string instructions, B-12
usage measurement, 156 (fig.), 168, 176-179, 186

(fig.), C-4
interrupts, 215 (fig.)
operations on, 156-160
postbyte encoding, 160 (fig.)
registers, 153-155, 154 (fig.)
summary of, E-23
time distribution on, D-6-D-7

Intel 80186, 153, 188
Intel 80286, 153, 188, 445-446, 448-449

call gates on (see call gate)
descriptor table, 446 (see also virtual memory, page

table; virtual memory, Intel 80286/80386 and)
protection on (see virtual memory, Intel 80286/80386

and)
virtual memory on (see virtual memory, Intel

80286/80386 and)
Intel 80386, 153, 188

protection on (see virtual memory, Intel 80286/80386
and)

virtual memory on (see virtual memory, Intel
80286/80386 and)

Intel 80486, 56, 58, 84, 153, 188
Intel 860, 84, 167, 190, 340, 493, E-2

instruction set, E-5-E-6
common extensions to DLX instructions, E-10-E-1 l
unique, E-19-E-23

Intel i860, 493 (see also Intel Corporation, Intel 860)
Intel Hypercube multicomputer, 589

intelligent devices, 560 (see also bus)
intelligent peripheral interface (IPI), 531, 532 (fig.), 560 (see

also bus)
interface message processor (IMP), 527 (see also networks)
interference graph, 113
interleaved memory, 429 (see also memory, interleaved)
interleaving factor, 429 (see also memory, interleaved)
interlocked loads instruction (see load interlock)
interlock (see pipeline interlock; hazard, data; load interlock)
internal fragmentation, 437 (see virtual memory, page size and)
internal storage, 90-92
International Business Machines Corp. (IBM), front end sheet,

15,25,80
IBM 3090, 547

storage (see disk, magnetic, IBM 3990 storage subsystem
and)

IBM 3090-600S, 75
IBM 360, 16, 25, 77, 91, 93, 104, 127-128, 148-152, 172-

176, 186-187,242,485,557

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 776

Index

International Business Machines, IBM 360 (continued)
addressing modes, 149-150

usage, 173-174
flaws, 183-184
IBM 360/85 (see International Business Machines Corp.,

IBM 360/85
instruction.mixes, 175-176
instruction set, 148-150, 151 (fig.), 152 (fig.), B-6-B-9

formats, 149-151
usage, 174 (fig.)

register-indexed (RX), 149-150, 174
branches and special loads and stores, RX format, B-

8
integer/logical and floating-point instructions, RX

format, B-7
register-register (RR), 149-150, 174

branches and status setting R-R instructions, B-7
integer/logical and floating-point R-R instructions,

B-6
register-storage (RS), 149-150, 174

RS and SI format instructions, B-8
storage-immediate (SI), 150, 174

RS and SI format instructions, B-8
storage-storage (SS), 150, 174, 177

SS format instructions, B-9
usage measurement, 172-176, 185 (fig.), 186 (fig.), C-

3-C-4
Shustek's thesis on, 172-173, 185, 187

interrupts, 215 (fig.), 219-220
operations on, 151-152
registers, 141, 149-150, 174, 177
summary of, E-23

IBM 360/85, 26, 80, 486
IBM 360/91, 299-300, 339
IBM 360/IBM 370 (see International Business Machines

Corp., IBM 360; International Business Machines
Corp., IBM 370)

IBM 370, 148, 186-187, 394, 485 (see also International
Business Machines Corp., IBM 360)

floating-point system on, A-59
IBM 370/158, 77, 78
IBM 370/168, D-4-D-6
IBM 370-XA, 148, 187
IBM 3990 storage subsystem (see disk, magnetic, IBM 3990

storage subsystem and)
IBM 701, 25, 26
IBM704, 338
IBM 801, 189, 190
IBM 7030, 104, 338
IBM 7090, 129, 242
IBM ESA/370, 148
IBM PC, 34, 176, 184, 188, D-6-D-7

bus of, 531
IBMPC-AT,531
IBM PL.8 compiler, 130
IBM RP3 multiprocessor, 589 (see also multiprocessor)
IBM RT-PC, 93, 190
IBM Stretch (7030), 77
IBM System/360 (see International Business Machines

Corp., IBM 360)
IBM System/370 (see International Business Machines

Corp., IBM 370)
MIPS definition and, 78
Stretch (see International Business Machines Corp., IBM

7030)
interprocedural register allocation, 453 (see also register

windows)

1-15

interrupt-driven I/0, 534 (see also input/output, interfacing to
the CPU)

interrupts, 214-220
8600 and, 332-334
arithmetic overflow and, 214-215, 217 (fig.), 218 (fig.), 241
comparison on four computers, 215 (fig.)
DLX and, 229, 235, 237
history of, 241
how control checks for interrupts, 217-218
page faults and, 215, 217 (fig.), 218 (fig.)
pipelining and, 261, 276, 279-282 (see also interrupts,

imprecise; interrupts, precise)
virtual memory and, 440
what's hard about interrupts, 218-220

interrupts, imprecise, 287-288
interrupts, precise, 280, 334, 339
invalid exception, A-30 (see also arithmetic, exceptions)
inverted page table, 435 (see also virtual memory)
I/0 (see input/output)
I/0 bandwidth (see input/output, performance, throughput)
I/0 bus, 529 (see also bus)
IOCB (see I/0 control block)
1/0 control block, 534-535, 549 (see also input/output,

interfacing to the CPU; disk, magnetic, IBM 3990 storage
subsystem and)

I/0 controllers, 534 (see also input/output, interfacing to the
CPU)

1/0 latency (see input/output, performance, response time)
I/O processor, 534 (see also input/output, interfacing to the

CPU)
I/O rate, 511 (see also input/output, transactions and)
I/O response time (see input/output, performance, response

time)
I/0 throughput (see input/output, performance, throughput)
Iowa State University, 24
IPI (see intelligent peripheral interface; bus)
ISP (instruction set processor) (see instruction set, architecture)
issue (see instruction issue)
issue more than one instruction (see instruction issue;

superscalar)
issued, 266 (see also instruction issue)

J

Japanese supercomputers (see supercomputers, Japanese)
Jouppi, N., 130
Joy, B., 190
jump, 104-105, 120 (see also bran, h)

conditional, 23
on the DLX, 222-225

Kahn, R., 561, 562
Kane, G., 190
Katz, R., 487, 488
Kelisky, R. P., 560

K

kernel process, 440 (see also virtual memory, processes and)
kernel programs, 43, 45-48, 77

Livermore FORTRAN, 43, 77, 80
Kilburn, T., 26, 432, 485, 489
Kleiman, S., 190
Knuth, D. E., 26-27
Kuck, D., 589
Kung, H. T., 590

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 777

1-16

L

LAN (see local area network; networks)
language

assembly, 16
high-level (see high-level language)
programming, 17

language-oriented architecture (see high-level language)
Lanigan, M. J., 26
Lams, J., 189
latch delay, 253
latches, 253-255, 339

Earle latch, 254-255
latch overhead, 336

latency, 5, 18 (see also execution time, performance)
access time, 425-426
cycle time of, 425-426
1/0 latency (see input/output, performance, response time)
performance measures of main memory and, 425
throughput and, 8

latency, I/0 (see input/output, performance, response time)
learning curve, 54, 55 (see also yield)
least-recently used (LRU), 411 (see also block replacement,

least-recently used)
Lee, R., 190
length of vector (see vector processor, vector length)
Levy, H., 171, 188
limit field, 446"(see also virtual memory, page table; virtual

memory, Intel 80286/80386 and)
line, 408 (see also cache, blocks and)
linear speedup, 576, 585-586, 593, 594
Linpack (see vector processor, Linpack benchmark;

benchmarks), 28, 45
LISP, support for in SPARC, E-15-E-16
literal addressing mode (see addressing mode, immediate)
Little Endian, front endsheet, 95
LIW (see long instruction word)
live ranges, 113
load and store buffers, 301-303, 308 (fig.)
load delay, 268, 278, 290
load interlock, 267, 269

in MIPS II architecture, E-14
load/store architecture, 39-42, 93, 94, 124, 337 (see also

reduced instmction set computer; DLX)
local address space, 446 (see also virtual memory, processes

and)
local area networks (LAN), 526 (see also networks)
locality (see also memory hierarchy, principle of locality and)

principle of (90/10 locality rule), front endsheet, 11-12, 403
program, 26
ofreference, 11-12, 18, 20
spatial, 12 (fig.), 29, 403
temporal, 12, 403

local miss rate, 461 (see cache, miss; cache, two-level caches)
lock/unlock operations (see synchronization)
lock variables, 471 (see also cache, coherency,

synchronization)
logic

operations, 15
technology, 17 (fig.)

long-haul networks, 527 (see also networks)
long instruction word (LIW), 323, 340

in Intel 860, E-22-E-23
loop, 114-115 (see also loop unrolling)

branch (see branch, loop)
software-pipelined (see pipelining, software-pipelined loop)

loop-carried dependences, 372 (see also vector processor, data
dependences)

loop unrolling, 316, 325-326, 340
increased instruction-level parallelism with, 315-318
superscalar DLX and, 319-320
unrolled loop, 316-318, 320, 326, 327 (fig.)

loosely-coupled MIMD (see multicomputer)
low-cost design (see design, low-cost)
lower level, 404 (see memory hierarchy; cache; memory;

virtual memory)
Lunde, A., 129
LRU (see block replacement, least-recently used)

M

M680x0 (see Motorola Corporation)
M88000 (see Motorola Corporation, 88000)
macro-, 208
MAD (see maximum areal density)
magnetic disk (see disk, magnetic)
mainframe, 3-4

versus minicomputer, 499
main memory (see memory, main)
Manchester, University of (see University of Manchester)
margin, gross, 64-66, 76, 85
Mark I (University of Manchester), 24
Mark-I, -II, -III, -IV (Harvard University), 24-25
market, computer

effect on design, 4, 13, 14, 15
marketplace (see market, computer)
Markstein, J., 130
Markstein, P. W., 130
Mauchly, J., 23-25, 241

Index

maximally encoded, 212 (see also microcode, vertical)
maximum areal density of disks (MAD), 518-519, 561 (see

also disk, magnetic)
MAD formula, 518, 561

maximum vector length (MVL), 364 (see also vector
processor, vector length)

Mazor, S., 188
MBox (see Digital Equipment Corporation, VAX 8600)
McFarland, H., 127
McKeeman, W. M., 128
McMahon, F. M., 78, 79
McNamara, J.E., 81
McNutt, B., 79
mean

arithmetic, 50-53, 69-70, 78
weighted, 51, 53, 84

geometric, 52-53, 72, 78, 83-84
harmonic, 50, 52, 75, 78, 81

weighted, 51
mean time to failure (MTTF), 520 (see also input/output,

reliability)
mean time to repair (MTTR), 520 (see also input/output,

reliability)
measurements, dynamic, 139 (see also instruction set,

measurements)
measurements of instruction set usage (see instruction set,

measurements)
measurements, static, 139 (see also instruction set,

measurements)
media price (see cost)
megahertz (see clock rate)
megaFLOPS (see MFLOPS)
memory, 5, 13, 14, 15 (see also bandwidth cache; dynamic

random access memory; static random access memory;
memory hierarchy; virtual memory; block identification;
block placement; block replacement; write strategy)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 778

Index

memory (continued)
bandwidth, 257, 260, 324, 329 (see also memory,

organization of) ,
in vector machines, 361-363, 392

banks, 361-363 (see also memory, interleaved)
bus, 13, 15, 18 (fig.), 29
cell, 18
centralized, 578

versus distributed, 578-579
consistency, 474 (see also cache, coherency)

sequential, 474
weak, 474

deferred addressing mode (see addressing mode, memory
indirect)

DRAMs and, 16, 17, 29, 425-427 (see also dynamic random
access memory)

interleaving, 431-432 (see also memory, interleaved)
refresh cost, 426

hazard (see hazard)
hierarchy (see memory hierarchy)
indirect (memory deferred) addressing, 98 (see also

addressing mode)
interleaved, 429-431

disadvantage of, 430
DRAM-specific, 431-432
interleaving factor, 429

latency, access time of, 425-426 (see also latency; memory
hierarchy, access time)

latency, cycle time, of, 425-426 (see also latency)
magnetic core, 25, 425
main, 19-20, 25, 425-432

bandwidth, 425 (see also bandwidth)
latency, 425 (see also latency)

mapping, 433 (see virtual memory, address translation;
virtual memory, Intel 80286/80386 and)

memory-mapped 1/0, 533 (see also input/output, interfacing
to the CPU)

memory-memory architecture (see memory-memory
architecture)

memory-memory vector machine, 353 (see also vector
processor, vector machines)

organization of, 427, 428 (fig.) (see also memory,
interleaved; memory, wider)

performance, 485
CPU-DRAM performance gap, 426, 427 (fig.), 432
increasing with DRAM-specific interleaving, 431-432

pipeline, 259 (see also pipelining; load delay; load and store
buffers)

read-only (ROM), 205, 208, 239, 241-242
future of microprogramming and, 241

reference, 93-97, 110, 116-119, 123, 129, 134, 260, 264
CDC 6600 and, 293
computed, 117
IBM 360/91, 301-303
save/restore, 116, 118-119

register-memory architecture (see register-memory
architecture)

software and, 16
stall clock cycles, 224
stall cycle, 224

caches and, 416
static random access (SRAM) (see static random access

memory)
virtual (see virtual memory)
wider, 428-429

1-17

memory hierarchy, 19, 18-20, 22, 29-30, 402, 403-407, 484
(fig.) (see also cache; cache, two-level caches; memory;
virtual memory; virtual memory, transfation-lookaside
buffer; block identification; block placement; block
replacement; write strategy; instruction pre-fetch buffer;
register windows)

access time, 405-406, 420, 425-426 (see also cache, access
time)

average memory-access time, 405, 407 (see also cache,
access time; cache, two~level caches)

blocks and, 404-407 (see also cache, blocks and; memory,
block; virtual memory, paged; block)
block-frame address, 405
block-offset address, 405
fixed block size, 404, 406
miss penalty and block size, 406 (fig.), 423 (fig.)
variable block size, 404, 434 (see also virtual memory,

segmented)
cache's relationship to, 408 (see also cache)
fallacies and pitfalls of, 480-483
history of, 485-487
hit, 404 (see also cache, hit)
hit rate, 404 (see also cache, hit)
implications of, to CPU, 407
levels (see memory hierarchy, lower level; cache; memory;

virtual memory)
lower level, 404 (see also cache; virtual memory; memory)
main memory's relationship to, 425 (see also memory)
miss, 404 (see also cache, miss; cache, write miss; virtual

memory, page fault)
performance, 405-407, 485 (see also cache, performance;

virtual memory, performance)
principle of locality and, 403-404, 484 (see also loaclity)

address translation and, 437 (see also virtual memory,
translation-lookaside buffer)

spatial locality, 403, 406, 486 (see also locality)
cache block size and, 422, 458, 465 (see also cache,

blocks and)
shared data and, 469

temporal locality, 403, 406, 486 (see also locality)
least-recently used and, 411 (see also block

replacement, least-recently used)
shared data and, 469

summary of examples of, 484 (fig.)
thrashes and, 420
upper level, 404-407 (see also memory; cache; virtual

memory)
VAX-11/780 and, 475-480 (see also cache, VAX-11/780

and; virtual memory, VAX-11/780 and)
average number of clock cycles per 780 instruction, 477
miss rates for, versus DLX, 482 (fig.)
miss rates for the V AX-11/780 TLB, 479 (fig.)
misses per hundred instructions for the V AX-11/780

TLB, 479 (fig.)
overall picture of, 476 (fig.)
physical-instruction-buffer address (PIBA), 475
virtual-instruction-buffer address (VIBA), 475
write buffers, 413, 416, 477, 483

virtual memory's relationship to, 433 (see also virtual
memory)

memory deferred addressing mode (see addressing mode,
memory indirect)

memory indirect (memory deferred) addressing, 98 (see also
addressing mode)

memory interleaving (see memory, interleaved)
memory, main (see memory, main)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 779

1-18

memory-mapped 1/0, 533 (see also input/output, interfacing to
the CPU)

memory-memory architecture, 93-94, 122-124, 128-29, 134
memory-memory vector machine, 353 (see also vector

processor, vector machines)
memory width (see memory, wider)
Metcalfe, R., 560, 562
metric, computer, 14, 18
MFLOPS (see floating point, millions of floating-point

operations per second)
MHz (megahertz) (see clock rate)
micro-, 208
micro-architecture (see organization)
microcode, 208, 213 (see also control,

microprogrammed/microcoded; microprogram)
compared to macrocode, 238
horizontal, 212, 214, 244
legal status of, as program, 243
vertical, 212, 244

microcoded control (see control,
microprogrammed/microcoded)

microcomputer, 3-4
microinstruction, 208, 228 (see also microcode; control,

microprogrammed/microcoded)
microinstruction format, 209

on the DLX (see control, DLX and)
reducing hardware costs with multiple microinstruction

formats, 211-212
microprocessor, 4, 16, 75 (see also Cypress Corporation; Intel

Corporation; MIPS Computer Corporation; Motorola
Corporation; National 32032 microprocessor)

comparison of 188-190
Intel 80x86 (see Intel Corporation, 80x86)
MIPS R2000 (see MIPS Computer Corporation)
MIPS R3000 (see MIPS Computer Corporation)
Motorola 680x0 (see Motorola Corporation)
Motorola 88000 (see Motorola Corporation)
SPARC (see SPARC)
"super-", 500

microprogram, 208, 211 (see also microcode; control,
microprogrammed/microcoded)

counter, 228
DLX microprogram (see control, DLX and)
horizontal, 212, 214, 244
legal status of, as program, 243
microprogram memory (see control store)
structure of, 209
vertical, 212, 244

microprogrammed control (see control,
microprogrammed/microcoded)

microprogramming, 208, 209
ABCs of microprogramming, 209-210
(see also control, microprogrammed/microcoded)

millions of floating-point operations per second (MFLOPS)
(see floating point, millions of floating-point operations
per second)

millions of instructions per second (MIPS), 17, 40-42, 44, 67
native, 42, 71, 78
relative, 42, 72, 77-78

MIMD computer (see multiple instruction streams-multiple
data streams computer)

minicomputer, 3-4
PDP-I I (see Digital Equipment Corporation, PDP-11)
VAX-11/780 (see Digital Equipment Corporation, VAX-

11/780)
V AX-8600 (see Digital Equipment Corporation, VAX 8600)
VAX 8700 (see Digital Equipment Corporation, VAX 8700)

minicomputer (COntinued)
versus mainframe, 499
versus workstation, 499

minimally encoded, 212 (see also microcode, horizontal)
minus infinity (see infinity)
MIPS (see millions of instructions per second)
MIPS (see also Stanford MIPS)
MIPS Computer Systems, Inc., 41, 68, 93, 189, 339

MIPS II architecture, E-14
MIPSR2000, 104, 167, 179, 189-190,289,395
MIPSR3000,84, 167, 179, 189-190,289,492,E-2

instruction set, E-5-E-6

Index

common extensions to DLX instructions, E-1 O-E-11
unique, E-12-E-14

MIPS R3010, A-31, A-53 (fig.), A-56, E-5-E-6 (see also
MIPS Computer Systems, Inc., MIPS R3000)

mirroring, 521
MISD computer (see multiple instruction streams-single data

stream computer)
mispredicted branch (see misprediction penalty)
misprediction penalty, 277, 310, 311(fig.),312-313, 328 (see

also branch-prediction schemes)
miss, 404 (see also cache, miss; virtual memory, page fault;

memory hierarchy, miss)
misses per instruction, 417 (see also cache, miss)
miss penalty, 405 (see also memory hierarchy, miss; memory

hierarchy, block; cache, miss; virtual memory, miss
penalty)

miss rate, 404 (see also cache, miss)
MIT (Massachusetts Institute of Technology), 25
mixed cache, 423 (see also cache)
model for vector performance (see vector processor,

performance, model for)
modify bit, 443 (see also virtual memory, page table; virtual

memory, dirty bit)
Morse, S., 188
MOS, 59
Motorola Corporation

C88000 1.8.4m14 C compiler, 83
6809,91
68000,93, 188

architecture of, E-23
interrupts on, 215 (fig.)

88000, 167, 190,495
architecture of, E-2
instruction set, E-5-E-6

common extensions to DLX instructions, E-1 O-E-11
unique, E-17-E-19

88100,84,492
88200,492

Moussouris, J., 189
MOVC3, 219, 245-246
MTTF (see mean time to failure)
MTTR (see mean time to repair)
Muchnik, S., 190
Mudge, J. C., 81
Multibus II, 532, 532 (fig.) (see also bus)
multicomputer, 589, 593-594
multicycle operations, 283

DLX and, 284-289
Multiflow machine, 340
multilevel cache (see cache, two-level caches)
multilevel inclusion property, 465 (see also cache, two-level

caches)
multiple functional units (see functional units, multiple)
multiple instruction issue, 318-320, 321-325, 340

dynamic scheduling and, 321-322

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 780

Index

multiple instruction streams-multiple data streams (MIMD)
computer, 574-576, 578, 587, 591, 592, 593

loosely-coupled MIMD (see multicomputer)
tightly-coupled MIMD (see multiprocessor)

multiple instruction streams-single data stream (MISD)
computer, 573, 580

multiple operations per instruction, 323-325, 340
multiple-precision addition, A-11
multiple private address spaces, 578
multiplication (see arithmetic, multiplication, floating-point;

arithmetic, integer)
multiply-step instruction, A-11 (see also arithmetic)
multiprocessor, 72-73, 574-575, 581, 589, 593-594

caches on (see cache, coherency)
Cm* multiprocessor, 589
C.mmp multiprocessor, 589
Encore Multimax multiprocessor, 589
IBM RP3 multiprocessor, 589
measuring performance of, 585-586
miss rate, 468 (see also cache, coherency)
Symmetry multiprocessor, 582-585, 589
writes and, 468 (see also cache, coherency)

MVL (see maximum vector length; vector processor, vector
length)

N

n-way set associative (see cache)
NaN (see not a number)
nano-, 244
nanocode, 244-245
nanoinstruction, 244-245
Namjoo, M., 190
National 32032 microprocessor, 583
negative infinity (see infinity)
networks, 15 (fig.), 526-528

ARPANET, 527, 528 (fig.), 561
Ethernet, 526, 528, 560
hierarchy of, 528 (fig.)
local area network (LAN), 526-527, 528 (fig.)
range of characteristics, 526 (fig.)
RS232, 526, 528 (fig.)

Newton's iteration, A-23-A-24, A-25, A-26
New York University (NYU) Ultracomputer, 589
nibble mode, 431 (see also memory, DRAM)
ninety/ten rule (see locality, principle of)
nonrestoring division, A-5 (see also arithmetic, nonrestoring)
nonunit strides, 367 (see also vector processor, stride)
Noonan, R., 127
no operation (NOP), 491

Spice miss rates with and without, 491 (fig.)
NOP (see no operation)
not a number (NaN), A-12-A-14, A-30 (see also arithmetic)
not taken, 270 (see also branch, not taken)
Nova (see Data General)
no write allocate, 413 (see also cache, write miss)
NuBus, 15, 561 (see also bus)
n-way set associative (see cache)

0

object-code compatibility, 4
offset address (see memory hierarchy, block)
O'Laughlin, J., 127
one level store (see virtual memory)
one's complement, A-7 (see also arithmetic, signed)

operand specifier (see addressing mode)
operand

naming of, 90-92
type and size, 109-111

operand storage, 91-92
in memory, 92-94

operating system, 127-129
operations, 103
operators (see operations)
operating system, 13, 15 (fig.), 19 (fig.)
operand specifier, 330-332
Opfetch (see Digital Equipment Corporation, Opfetch)
optical disk (see disk, optical)
optical compact disk, 519 (see also disk, optical)
optical write-once disk (see disk, optical)
optimization

global, 112, 114-115, 131
high-level, 112, 114
local, 114-115
machine-dependent, 114-115

1-19

organization, 13 (see also memory, organizations of; memory
hierarchy)

organizations for improving main memory performance (see
memory, organizations of)

effect on design time, 16
out of order

completion (see out-of-order completion)
execution (see out-of-order completion)
interrupts, 280-282

out-of-order completion, 287-289, 291-293, 304
out-of-order execution, 291-292, 299-300, 339 (see also

scoreboard; Tomasulo algorithm)
out-of-order fetch, 458 (see also cache, miss)
output dependence, 374 (see also vector processor, output

dependence)
overflow, A· 7 (see also arithmetic, exception, overflow)
overflow, window (see register windows)
overlap (see pipelining)
overlapped integer and floating-point instructions, 285
overlapped loop iterations, 308
overlapping .

VO (see input/output, system performance and)
triplets, A-44, A-59 (see also arithmetic, integer, speeding

up multiplication)
vector processing and, 360, 389-390

overlays, 433 (see also virtual memory, overlays)

p

PO, 441 (see also virtual memory, V AX-11/780 and)
Pl, 441 (see also virtual memory, VAX-11/780 and)
package (see also cost)

cost of, 55, 60-62, 84
design and, 54

packaged system price (see cost)
packed (see also binary-coded decimal, packed)
packet switched approach, 527 (see also networks)
packets, 526 (see also networks)
packing operation, 110
Padegs, A., 186
page, 19, 433, 434 (see also virtual memory, page; address,

memory)
paged segments, 434 (see also virtual memory, page; virtual

memory, segment)
page fault, 19, 433 (see also virtual memory, page fault;

interrupts, page faults and)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 781

1·20

page fault (continued)
pipelining and, 279-282

page mode for DRAMs, 431 (see also memory, DRAM)
page size (see virtual memory, paged, page size)
page table, 435 (see alsG virtual memory, page table)
page-table entry (PTE), 443 (see also virtual memory, page

table)
on the Intel 80286/80386, 446
on the VAX-11/780, 443, 475

parallelism (see also instruction, parallelism)
in pipelining, 252, 314
instruction-level parallelism and pipelining, 314-328, 340-

341 (see also instruction, parallelism)
parameters, typical ranges of

cache, 408 (fig.)
translation-lookaside buffers, 438 (fig.)
two-level cache, 463 (fig.)
V AX-11/780 TLB, 443 (fig.)
virtual memory, 433 (fig.)

partner, 512 (see also input/output, devices)
pass, 111, 112, 114
Patterson, David, 130, 189, 190
PC (see program counter; branch)
PC (personal computer) (see Intel Corporation, 80x86; Intel

Corporation, 8088; International Business Machines
Corp., IBM PC)

PDP (see Digital Equipment Corporation)
peak performance (see vector processor, performance, peak

performance)
Pegasus computer, 127
penalty for misprediction (see misprediction penalty)
Pendleton, J., 190
Perfect Club benchmark (see benchmark)
performance, 5-8, 35, 36-40, 71, 502 (see also input/output,

system performance and; bandwidth; cost/performance;
latency; response time; throughput)

Amdahl's Law and, 8-11
cache (see cache, performance)
costand,22,26, 34
CPU and, 11, 16 (see also central processing unit,

performance)
design requirements and, 13-17
"faster than," 6-7, 28
graphics display (see graphics displays, perfonnance

demands of)
growth of, 3, 4 (fig.), 5, 6, 21, 28
improving, 502-506 (see also input/output, system

performance and)
input/output (see input/output, performance)
locality of reference and, 18, 20 (see also locality)
memory hierarchy (see memory hierarchy, performance;

memory, performance; cache, performance; virtual
memory, performance)

peak, 71, 74-75
pipelining performance improvement (see pipelining, DLX

and, performance of)
RISC performance advantage (see reduced instruction set

computer, performance advantage of)
"slower than," 7
system, 35 (see also input/output, system performance and)
vector processor (see vector processor, performance)
virtual memory (see virtual memory, performance)

peripheral, 499 (see also input/output, devices; disk, magnetic;
graphics displays; networks; bus)

personal computer (PC), 560 (see also Intel Corporation,
80x86; Intel Corporation, 8088; International Business
Machines Corp., IBM PC)

personal computer (continued)
versus workstation, 500

Pfister, G. F., 589
phase, 112 (see also pass)
phase-ordering problem, 111-112
Phister, M., 81
physical addresses, 433 (see also virtual memory, address

translation)
physical-instruction-buffer address (PIBA), 475 (see also

memory hierarchy, VAX-111780 and)
PIBA (see physical-instruction-buffer address)
PID, 460 (see also process-identifier tag)
pin grid array (PGA), 60, 84 (see also package)
pipeline, 8, 22, 25, 251 (see also pipelining)
pipelined bus, 530 (see also bus)
pipelined machines, 352
pipelined mode, E-21

in Intel 860, E-20-E-22
pipeline hazard (see hazard, data)
pipeline hazard detection (see hazard, detection)
pipeline interlock, 265-267, 339 (see also load interlock)

DLX and, 267-268
pipeline reservation tables, 256, 339

Index

pipeline scheduling, 114, 119, 267-268, 315-317, 339 (see also
optimization; dynamic scheduling)

pipeline speedup, 258-259, 277
pipeline stall, 257-259, 265-266, 278, 285, 290 (fig.)

branch delay and, 273-278
control hazard and, 269-27i, 270 (fig.)
vector machines and, 352, 357-358

pipeline throughput (see pipelining, speedup)
pipelining, 251-349

balance among stages, 252
balance in issue, 320
clock cycles and, 351
depth of a pipeline, 253, 258, 336, 339
difficulties in implementation, 278-284

dealing with interrupts, 279-282
instruction set complications, 282-284, 334-335

DLX and, 252-257, 270, 252-257, 278-282, 300, 301 (fig.)
floating-point, 260, 284-290, 299-300
integer, 252-278
performance of, 278, 290
superscalar DLX (see superscalar)

dynamic hardware prediction, 307-314 (see also branch
prediction schemes)

multiple instruction issue and, 321-322
dynamic scheduling, 291, 290-307, 340

multiple instruction issue and, 321-322
scoreboard approach (see scoreboard)
Tomasulo algorithm (see Tomasulo algorithm)

hazards of (see hazard)
instruction-level parallelism, 314-328, 340-341

dynamic scheduling and, 321-322
loop unrolling and, 315-318
software pipelining and, 325-328
superscalar machines and, 318-320
trace scheduling and, 325-328
VLIW approach and, 322-325

Intel 860 and, E-21
making the pipeline work, 255-257
performance of, 278, 290
software for, 325-328, 340
software-pipelined loop, 325, 327 (fig.)
speedup,251-253,289
superscalar DLX (see superscalar)
timing of instructions, 254, 260 (see also pipeline speedup)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 782

Index

pipelining (continued)
VAX 8600 and, 328-334

dealing with interrupts, 332-334
handling data dependences, 331
handling control dependences, 331-332
operand decode and fetch, 330-331

writes and (see write result in a pipeline)
pipe segment, 251
pipe stage, 251-253, 255-256, 285
Pitkowsky, S. H., 78
pixel instructions of Intel 860 (see graphics instructions)
pixels, 521 (see also graphics displays)
PLA (see programmed logic array)
placement, block (see block placement)
plastic quad flat pack (PQFP), 60 (see also package)
plus infinity (see infinity)
Pohlman, W., 188
polling, 534 (see also input/output, interfacing to the CPU)
pollution point, 406 (see also memory hierarchy, block; cache,

blocks and)
position-independence, 105
positive infinity (see infinity)
precise interrupts (see interrupts, precise)
precision (see arithmetic, precision)
Precision (see Hewlett-Packard, Precision)
predicting system performance (see input/output)
prediction of branching (see branch-prediction schemes)
prediction accuracy (see branch-prediction schemes, prediction

accuracy)
predict-not-taken (see branch-prediction schemes, predict-not

taken)
predict-taken (see branch-prediction schemes, predict-taken)
present bit, 446 (see also virtual memory, page table; virtual

memory, Intel 80286/80386 and)
price (see cost)
primitive, 121
Princeton University Institute for Advanced Study (IAS), 24
principle oflocality, 403 (see also locality; memory hierarchy,

principle of locality and)
procedure call/return, 73, 81, 103-105, 108-109, 114, 116, 137

fallacies and pitfalls, 124-125
procedure inlining (see procedure integration)
procedure integration, 112, 114-115
process, 438 (see also virtual memory, processes and)
process-identifier tag (PID), 460 (see also cache)
processing

parallel, 22, 26 (see also parallelism)
sequential, 26

processor, 199, 211 (see also central processing unit)
computation and, 201
controland,201,204,214
datapath and, 201
special-purpose, 580

processor-memory-switch level (see organization)
process segments, 441 (see also virtual memory, V AX-11/780

and)
process switch, 438 (see also virtual memory, processes and)
producer-server model (see input/output, performance)
program

behavior (see instruction-prefetch buffer; register windows)
benchmarks (see benchmark)
of channel (see channel program)

program counter (PC), 105
PC (program counter)-relative addressing, 97-98, 104-106
PC (program-counter)-relative branches (see branch)
VAX 8600 and, 332

programmable read-only memory (PROM), 63

programmed logic array (PLA), 205-206, 230, 232
PROM (see programmable read-only memory)
propagate, A-32-A-33 (see also carry-propagate adder;

arithmetic)
protection, 432 (see also virtual memory, protection schemes

of; virtual memory, Intel 80286/80386 and)
protocols

coherency (see cache, coherency)
networks and, 527 (see also networks)
multiprocessors and (see cache, coherency)

Przybylski, S., 189
PTE (see page-table entry)
Puzzle (see benchmarks, toy)

Ql (see block placement)
Q2 (see block identification)
Q3 (see block replacement)
Q4 (see write strategy)

Q

questions for classifying memory hierarchies (see block
identification; block placement; block replacement; write
strategy)

Quicksort (see benchmarks, toy)
queueing delay, 516 (see also disk, magnetic)
queues,321,340

R

Radin, G., 189
RAID (redundant arrays of inexpensive disks) (see disk array)
random, 411 (see also block replacement, random)
ranges of parameters (see parameters, typical ranges of)
RAR (see read after read)
RAS (see row-access strobe)
raster, 521 (see also graphics displays)
raster cathode ray tube (CRT) display, 521 (see also graphics

displays)
raster refresh buffer, 521 (see also graphics displays)
Ravenal, B., 188
RAW (see read after write)
RAW hazard (see hazard, RAW)
read after read (RAR), 265
read after write (RAW), 264 (see also hazard, RAW)
read miss rate, 416 (see also cache, reads and; cache, miss)
read-only memory (ROM), 205, 208, 239, 241-242

future of microprogramming and, 241
read-only protection, 440 (see also virtual memory, protection

schemes of)
read-only storage (see read-only memory)
read-write head, 516 (see also disk, magnetic)
recurrence, 373 (see also vector processor, data dependences)
recursive doubling, 382 (see also vector processor, vector

reduction)
reduced instruction set computer (RISC), 130, 131, 132, 188-

190, 337, 339-340 (see also International Business
Machines Corp., IBM 801; MIPS Computer Corporation)

architecture, survey of, E-l-E-24
addressing mode, E-2
arithmetic and logical instructions, E-5
conditional branch of RISC, E-8
constant extension, E-4
control-flow instructions, E-6
data transfer, E-5
floating-point instructions, E-6
instruction format, E-3
integer multiply and divide, E-8-E-9

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 783

1·22

reduced instruction set, architecture (continued)
Berkeley, 189
performance advantage of, 189

reducing branch penalties (see branch-prediction schemes)
Redmond, K. C., 25
reduction 382 (see also vector processor, vector reduction and)
redundant, A-42 (see also arithmetic, integer, speeding up

division, shifting over zeros)
redundant arrays of inexpensive disks (see disk array)
reference bit, 436 (see also block replacement, least-recently

used)
refresh, 426 (see also memory, DRAM)
refresh rate, 521 (see also graphics displays)
register, 19, 20, 22, 90-94

allocation, 108-109, 112-144, 115-119, 130
caches versus, speed of, 483
DEC VAX, 143-144
DLX, 161-162
file, 324
field, 102-103
general-purpose register (GPR) architecture, 91-94, 127-128

comparison of, 93-94
hazard (see hazard, register)
IBM 360, 148-150
Intel 8086, 153-155, 154 (fig.)
machine (see register, general-purpose register architecture)
register-memory architecture (see register-memory

architecture)
renaming, 307, 339, 340

antidependences and output dependences and, 374-375
register deferred (indirect) addressing, 98 (see also

addressing mode)
register-indexed (RX) (see International Business Machines

Corp., IBM 360, instruction set)
register-register (RR) (see International Business Machines

Corp., IBM 360, instruction set)
register-register architecture (see register-register

architecture)
register-storage (RS) (see International Business Machines

Corp., IBM 360, instruction set)
result status, 295, 296 (fig.), 297 (fig.), 302-303
set, 91, 118-119
shadow (see shadow registers)
tags, 303-306
vector (see vector processor, registers)
vector-length (see vector processor, vector length)
vector-mask (see vector processor, vector-mask registers)
windows (see register windows)

register-memory architecture, 93-94, 128
register-memory instruction, 39-40

register-register architecture, 93-94 (see also load/store
architecture)

register-storage architecture (see register-memory architecture;
International Business Machines Corp., IBM 360,
instruction set)

register windows, 450-454, 484 (fig.), 487, E-15
benefits of, on DLX, 453 (fig.)
load and store benefits, 453 (fig.)
number of versus overflow rate, 451 (fig.)
pros and cons of, 453-454
summary of, 484 (fig.)

reliability, 520 (see also input/output, reliability)
relocation, 433 (see also virtual memory, relocation and)
REM, A-26-A-28, A-53 (see also arithmetic, remainder)
remainder (see arithmetic, remainder)
Remington-Rand Corporation, 25
replacement, block (see block replacement)

Index

requested protection level, 448 (see also virtual memory,
protection schemes of; virtual memory, Intel 80286/80386
and)

requirements, functional, 13-14, 15 (fig.)
reservation stations, 300-308, 321
resources

allocation of, 8, 11
pipelines and, 255-257, 287
VLIW approach and, 323

response time, 6, 22, 506 (see also execution time;
performance; input/output, performance, response time)

definition of, 5
restartable, 218-220, 240, 279-282
restoring division (see arithmetic, division, integer, restoring)
result buffer, 263
result store, 330 (fig.), 331
return (see procedure call/return)
rings, 440 (see also virtual memory, protection schemes of)
ripple-carry adder, A-2 (see also arithmetic, integer, ripple-

carry addition)
Riordan, T., 189
RISC (see reduced instruction set computer)
RISC-I and RISC-II, 189, 190
Riseman, E. M., 129
ROM (see read only memory)
rotational positional sensing (RPS), 551 (see also disk,

magnetic, IBM 3990 storage subsystem and)
rotation delay, 516 (see also disk, magnetic)
rotation latency, 516 (see also disk, magnetic)
rounding (see arithmetic, rounding and)
rounding modes, A-13 (see also arithmetic, rounding and)
row-access strobe (RAS), 425
Rowan, C., 189
row-major order, 366, 367 (fig.)
RPS (see rotational positional sensing)
RPS miss, 552 (see also disk, magnetic, IBM 3990 storage

subsystem and)
RR (see register-register)
RS (see register-storage)
RS232, 526 (see also networks)
rules of thumb, front endsheet (see also Case/Amdahl rule of

thumb)
2: 1 cache rule, front endsheet
90/l 0 locality rule, front endsheet
90/50 branch-taken rule, front endsheet
address-consumption rate, front endsheet
Amdahl/Case rule, front endsheet
disk-growth rate, front endsheet
DRAM-growth rule, front endsheet

RX (see register-indexed)

s
S810/20 (see Hitachi S810/20)
safe calls from user to OS gates, 448 (see also virtual memory,

Intel 80286/80386 and)
Saji, K., 81
Samples, D., 189
SAXPY (see vector processor, Unpack benchmark)
scalability, 574, 585
scalar expansion, 382 (see also vector processor, vector

reduction and)
scalar variable, 116

global, 116, 119
scaled (index) addressing, 98 (see also addressing mode)
scatter, 380 (see also vector processor, sparse matrices and)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 784

Index

scatter-gather, 380 (see also vector processor, sparse matrices
and) ·

scheduling, 268 (see also branch, scheduling, branch-delay
scheduling; dynamic scheduling; instruction scheduling;
pipeline scheduling) '

scheduling the branch-delay slot (see branch-delay slot)
scheduling effectiveness, 268, 276, 278
schemes for branch-prediction (see branch-prediction schemes)
Schwartz, J. T., 130, 589
scoreboard, 291-299, 398-399, 346

components of, 296 (fig.)
dynamic scheduling around hazards with a scoreboard, 291-

299
hazard detection, 293 (see also hazard, detection)
instruction issue, 293 (fig.)
tables, 296-298 (figs.)

scoreboard approach (see scoreboard)
scoreboarding, 292 (see also scoreboard)
SCRAM (see static column DRAM)
SCSI (see small computer systems interface)
sectors, 515 (see also disk, magnetic)
seek, 516 (see also disk, magnetic, seeks and)
seek time, 516 (see also disk, magnetic, seeks and)
segment, 433, 434 (see also virtual memory, segment)
segment descriptor, 446 (see also virtual memory, page-table)
self-modifying code, 335
semantic clash, 124
semantic gap, 124, 129
semaphore (see synchronization)
set associative (see also cache, set associative)
Sequent Corporation, 583

Balance 8000, 583
Balance 2100, 583
Symmetry multiprocessor, 582-585, 589 (see also

multiprocessor)
sequential consistency, 474 (see also cache, coherency)
sequential processing (see processing, sequential)
shadow registers, 246
shadowing, 521
shared caches (see cache, coherency)
shared memory (see virtual memory, shared; virtual memory,

Intel 80286/80386 and)
shared-memory processor, 574-575, 578-579, 589, 591, 592
shifting over zeros, A-40 (see also arithmetic, integer, speeding

up division, shifting over zeros)
short-circuiting, 261 (see also forwarding)
Shurkin, J., 25
Shustek, L. J., 138, 172-173, 185, 187
SI (see storage-immediate)
Sieve Of Erastosthenes (see benchmarks, toy)
signal

delay, 18
propagation, 18

sign-magnitude, A-7 (see also arithmetic, signed)
signed-digit representation, A-48 (see also arithmetic, signed)
signed-logarithm representation, A-65 (see also arithmetic,

signed)
signed numbers (see arithmetic, signed)
SIMD computer (see single instruction stream-multiple data

stream computer)
simulate the execution (see execution, simulation)
single instruction stream-multiple data stream (SIMD)

computer, 572-574, 578, 589, 592. 593
single level store, 432 (see also virtual memory)
Slater, R., 25
Slotnick, D. L., 589
slots (see branch-delay slots; load delay)

1·23

small computer systems interface (SCSI), 15, 532 (fig.), 560-
561 (see also bus)

Smalltalk, support for in SP ARC, E-15-E-16
Smith, A., 486, 489
Smith, J. E., 79
Smith, T. M., 25
snoop, 467 (see also cache, coherency)
snooping, 467 (see also cache, coherency)
Snoopy cache (see cache, coherency)
software, 16-17 (see also balance, software and hardware)
software pipelining (see pipelining, software)
software-pipelined loop (see pipelining, software-pipelined

loop)
solid state disks (SSDs), 519 (see also dynamic random access

memory)
source code (see code, source)
SPARC, 167, 190

architecture, 190
instructions, E-5-E-6

common extensions to DLX instructions, E-1 O-E-11
unique, E-15-E-17

summary of, E-2
SPARCstation 1 (see SP ARC)
sparse matrices (see vector processor, sparse matrices and)
spatial locality, 403 (see also locality; memory hierarchy,

principle of locality and; locality)
SPEC (System Performance Evaluation Cooperative) (see

benchmark programs)
special-purpose processor (see processor, special-purpose)
speed-matching buffer, 540, 549 (see also input/output)
speedup,9-11,20,26,28,29

definition of, 9
enhanced, 10
overall, IO

Spice program, 12, 44, 45, 67, 69, 70, 72, 79, 83, 86
spin lock, 473 (see also cache, coherency, synchronization)
spin waiting, 472 (see also cache, coherency, synchronization)
split transactions, 530 (see also bus)
square root (see arithmetic, square root)
SRAM (see static random access memory)
SRT division, A-40, A-41, A-42, A-51, A-53, A-56, A-59 (see

also arithmetic, integer, speeding up division, shifting
over zeros)

SS (see storage-storage)
SSD (see solid state disks)
stack, 98, 114, 116-118, 124-125, 127, 131, 134, 136 (see also

stack architecture)
alignment of, 124
height reduction, 114 (see also optimization)

stack architecture, 90-92, 127
stale data, 466, 535-537 (see also cache; virtual memory;

input/output)
stall, 213-214 (see also memory stall cycles)
stall, pipeline (see pipeline stall)
standards

bus (see bus, standards)
Stanford MIPS, 189 (see also MIPS Computer Systems Inc.)
start-up time 358 (see also vector processor, start-up time)
state-assignment problem, 206
states, 201, 204-206 (see also finite state diagram)

clock cycles and, 224-225, 228
DLX and, 205, 221-224 (figs.), 225
interrupts and, 216, 218-219
PLA and, 206

static column DRAM, 431 (see also dynamic random access
memory, static column; memory, DRAM)

static measurements (see instruction set, measurements, static)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 785

.1·24

static random access memory (SRAM), 426, 431 (see also
dynamic random access memory; memory)

capacity of, 426
cost versus access time of, 518 (fig.)
cycle time of, 426

static scheduling, 267, 274-275, 290-291, 315-317 (see also
dynamic scheduling)

versus dynamic scheduling, 321, 340, 349
versus Tomasulo algorithm, 307

Stem, N., 24
sticky, A-30
sticky bit, A-17-A-18, A-23, A-59
storage (see memory; disk; disk, magnetic; input/output)
storage director, 549 (see also disk, magnetic, IBM 3990

storage subsystem and)
storage hierarchy (see memory hierarchy)
storage-immediate (SI) (see International Business Machines

Corp., IBM 360, instruction set)
storage-storage (SS) (see International Business Machines

Corp., IBM 360, instruction set)
storage-storage architecture (see memory-memory architecture)
storage subsystem, IBM (see disk, magnetic, IBM 3990 storage

subsystem and)
stored-program computer, 23-25
store in, 413 (see also cache, write back)
store through, 413 (see also cache, write through)
Strapper, C.H., 81
strategy for writes (see write strategy)
Strecker, W.W., 130
Strecker (see Bell, C. G. and W. D. Strecker)
strength reduction, 114 (see also optimization)
Stretch (see International Business Machines Corp. IBM 7030)
stride, 367 (see also vector processor, stride)
string operations, 15
string operators, 103
strip mining, 364-365
subblock placement, 456 (see also cache, subblocks)
subblocks, 456 (see also cache, subblocks)
subexpression (see common subexpression elimination)
summary of memory hierarchy examples, 484 (fig.)
Sumner, F. H., 26
Sun Microsystems (See also SP ARC)

1.2 FORTRAN compiler, 83
C compiler, 83
FORTRAN 77 compiler, 82

supercomputer, 3-4, 500
CRA Y-1 (see Cray Research machines, CRA Y-1)
CRA Y-2 (see Cray Research machines, CRAY-2)
CRAY X-MP (see Cray Research machines, CRAY X-MP)
CRAY Y-MP (see Cray Research machines, CRAY Y-MP)
Fujitsu (see supercomputer, Japanese)
l/O and (see input/output, supercomputers and; disk,

magnetic, I/O benchmarks for)
Japanese, 353, 390, 394
NEC SX-2 (see supercomputer, Japanese)

supercomputer I/0 benchmarks (see input/output,
supercomputers and; disk, magnetic, I/0 benchmarks for)

"super-microprocessor", 500
superpipelined, 337, 340-~41
superscalar DLX (see superscalar, DLX)
superscalar

DLX, 318-320, 325
instruction issue, 318-320
instruction level parallelism, 318-320
in Intel 860, E-22-E-23
loop unrolling and, 319-320
machines, 318-320, 340-341, 573, 581

pipeline on, 319 (fig.)
processor, 337-338
structural hazards and, 319

superscalar machines, 318 (see also superscalar)
superscalar pipeline (see superscalar)
superscalar processor, 337 (see also superscalar)

Index

supervisor process, 440 (see also virtual memory, processes
and)

sustained performance (see vector processor, performance,
sustained performance)

sustained rate (see vector processor, sustained rate)
Sutherland, I., 521, 561, 563
SYMBOL Project, 129, 132
Synapse N+l, 471, 487
synchronization, 471 (see also cache, coherency)
synchronous bus, 530 (see also bus)
synonyms, 460 (see also aliases)
synthetic benchmark (see benchmark, synthetic)
system CPU time (see central processing unit, CPU time,

system)
system mode, 440 (see also virtual memory, protection

schemes of)
system operators, 103
system performance, 35 (see also performance; input/output,

system performance and)
system response time, 508 (see also input/output, performance,

response time)
system segments, 441 (see also virtual memory, VAX-11/780

and)
systolic architecture, 580, 591
systolic array, 580, 590 (see also array)

T

tag field, 410 (see also cache)
Tagged architecture (see SP ARC)
tagging of data, 307, 339
taken branch, 270 (see also branch, taken)
Taylor, G., 189
technology (see design, computer; disk; implementation; logic)
temporal locality, 403 (see also locality; memory hierarchy,

principle of locality and)
terminal network, 526 (see also networks)
test and set, 473 (see cache, coherency, synchronization)
TeX,45,67,69,70,79,80,86
Texas Instruments

8847, A-26, A-53 (fig.), A-57
Thacker, C., 487, 490, 560, 563
Thadhani, A., 560, 563
think time, 508 (see also input/output, transactions and)
thrash, 420 (see also memory hierarchy; cache)
"three Cs" (see cache, miss)
three-operand format, 93-94
throughput, 5-6, 22

latency and, 8
I/0 and, 500-501 (see also input/output, performance,

throughput)
of pipeline (see also pipelining, speedup)

TI (see Texas Instruments)
ticks (see clock cycles)
tightly-coupled MIMD (see multiprocessor)
Timebest of CPU and l/O overlapped, 503-505 (see also

input/output, system performance and)
time distributions (see instruction set, measurements)
Timescaled of CPU and I/O overlapped, 503-504 (see also

input/output, system performance and)
timesharing, 575

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 786

Index

Timeworst of CPU and 1/0 overlapped, 503-505 (see also
input/output, system performance and)

timing of instructions (see pipelining, timing of instructions)
TLB (see virtual memory, translation-lookaside buffer)
TLB instruction, E-12
Tomasulo algorithm, 299-307, 339 (see also dynamic

scheduling)
DLX and, 301 (fig.)-307
hazard detection and, 300, 304 (see also hazard, detection)
versus static scheduling, 307

toy benchmark (see benchmark, toy)
TP (see transaction processing)
TP-1, 510, 511 (fig.) (see also benchmark; disk, magnetic, 1/0

benchmarks for)
TPI (see clock cycles per instruction)
trace, 326
trace compaction, 326
trace scheduling, 323, 326, 325-328, 340

VLIW and, 326
trace selection, 326
tracks, 515 (see also disk, magnetic)
tradeoffs (see balance)
traffic ratio, 491, 567
transaction, 508 (see also input/output, transactions and)
transaction processing (TP), 14, 15, 511 (see also input/output,

transaction; disk, magnetic, 1/0 benchmarks for)
transaction processing 1/0 benchmarks (see also disk,

magnetic, 1/0 benchmarks for)
transaction time, 508 (see also input/output, transaction and)
transfer, 104 (see also branch)
transfer time, 516, 405 (see also memory hierarchy, miss; disk,

magnetic)
translation-lookaside buffer (TLB), 437 (see also virtual

memory, translation-lookaside buffer)
Transputer-based multicomputer, 589
traps, 216 (see also interrupts)
trivia, front endsheet
Trojan horses, 445 (see also virtual memory, protection

schemes of)
true data dependence, 374 (see also vector processor, data

dependences)
Tuck, R., 190
Tucker, S., 242
two-bit prediction, 309-310 (see also branch-prediction

schemes)
two-level cache (see cache, two-level caches)
two-operand format, 93
two's complement, A-5, A-7-A-9, A-18-A-19
two-to-one cache rule, front end sheet
typical parameters (see parameters, typical ranges of)
typical program, 183

u
Ultrix C compiler, 68
unbiased exponents, A-14 (see also arithmetic, exponents and)
unconditional branches (see jump)
underflow (see arithmetic, exceptions, underflow)
underflow trap (see arithmetic, exceptions, underflow)
underflow, window (see wiµdow registers)
underpipelined, 337, 344
unfair benchmarks, 490 (see also benchmark)
Ungar, D., 189
Unibus (see bus, Unibus)
unified, 423 (see also cache)
uniprocessor, 72-73
UNIVAC I, 241

UNIVAC I, 25, 26
University of Illinois Cedar project, 589
University of Manchester, 24, 485
University of Pennsylvania Moore School, 23-24
UNIX, 4, 15 (see also operating system)

1·25

unlock, 472 (fig.) (see also cache, coherency, synchronization)
unpacked, A-14 (see also binary-coded decimal, unpacked)
unpacking operation, 110
umolled loop (see loop umolling)
untaken branch, 270 (see also branch, not taken)
upper level, 404 (see also memory hierarchy; cache; memory;

virtual memory)
usage (see instruction set, measurements)
use bit, 436 (see also block replacement, least-recently used)
useful slots, 276 (see also branch-delay slots)
user code (see code, user)
user CPU time (see central processing unit, CPU time, user)

v
valid bit, 410, 443 (see also cache, blocks and; virtual memory,

page table)
VAX (see Digital Equipment Corporation, VAX)
V AXstation (see Digital Equipment Corporation, VAX)
VAX units of performance (VUP), 78
vector, 352 (see also vector processor)

mode, 28
operations, in Intel 860, E-20
processor, 25
rate, 28

vector architecture (see vector processor, architecture of)
vector functional units (see vector processor, functional units)
vectorization, percentage of, 28
vector length (see vector processor, vector length)
vector-length register (VLR), 364 (see also vector processor,

vector length)
vector-mask control, 379 (see also vector processor, vector

mask control)
vector-mask register, 379 (see also vector processor, vector

mask register)
, vector processor, 351-401

advantage, 352
antidependences, 374-375
architecture, 353-358
chaining and, 377-378
compilers and, 371-377 (fig.) (see also hazard)
completion rate, 358
component, 353-354
conditionally executed statements and, 379-382
data dependences, 360, 371-377, 395 (see also

antidependences; output dependences)
Banerjee test, 374
GCD test, 373
loop-carried dependences, 372-373
RAW hazard, 374 (see also vector processor, true data

dependence)
recurrence, 373
sparse matrices and, 380-381, 382
true data dependence, 374
WAR hazard, 374 (see also antidependence)
WA W hazard, 37 4 (see also output dependence)

DAXPY (see vector processor, Linpack benchmark)
dependences (see vector processor, antidependences; vector

processor, data dependences; vector processor, output
dependences)

DLXV, 353-363, 383-390
initiation rate, 358

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 787

1·26

vector processor, DLXV (continued)
start-up time of, 358, 361 (fig.)
stride and, 368
vector instructions, 356 (fig.)
vector length and, 364-365

effectiveness (see ve<;tor processor, performance)
fallacies and pitfalls of, 390-392
functional units, 354
Flynn bottleneck and, 351
history of, 393-395
improving performance, 377-382, 388-390

by chaining, 377-378
with conditionally executed statements and sparse

matrices, 379-382
by vector reduction, 382
with multiple memory pipelines, 388-390

initiation rate, 358-363
chaining and, 378

Linpack benchmark, 357
DAXPY loop, 357
SAXPY loop, 357, 360, 384, 388

in FORTRAN, 364
memory banks and, 361-363

memory bank conflicts, 368
mod bank number, 362
output dependences, 374
overlap, 360, 389-390
peak (see vector processor, performance, peak performance)
performance, 375-377

improving (see vector processor, improving performance)
analyzing, 369-371, 383-390
evaluating (see virtual processor, performance, analyzing)
model of, 369-371
length-related measures, 384
memory bandwidth and, 392
peak performance, 385-386, 390-391
SAXPY performance, 388-390
scalar performance comparison, 391-392
sustained performance, 386-388

reduction (see vector processor, vector reduction)
registers, 353, 354

renaming, 374-375
vector, 354 (fig.)
vector-length register (see vector processor, vector length)
vector-mask register (see vector processor, vector-mask

register)
SAXPY (see vector processor, Linpack benchmark)
sparse matrices and, 380-382

gather, 380, 393
index vector, 380-381, 382
scatter, 380, 393
scatter-gather, 380, 381

start-up time, 358-361, 390
early vector machines and, 390
start-up penalties on the DLXV, 361 (fig.)

stride, 367, 366-369
nonunit strides, 367, 393

sustained rate, 360, 378, 385, 386-388
scalar machines and, 392
Japanese supercomputers and, 390

vector reduction and, 382
vector length 364-366, 384

maximum vector length (MVL), 364, 379
vector-length registers (VLR), 364

vector machines, 22, 352-353, 355 (fig.), 390-395, 581
memory-memory vector machine, 353, 390-391, 393
start-up times and, 390

vector processor, vector machines (continued)
vector register machine, 353, 364

vector-mask control, 379
vector-mask register, 379-380
vector reduction and, 382-383

recursive doubling, 382-383
scalar expansion, 382

vector stride (see vector processor, stride)

Index

vector reduction (see vector processor, vector reduction and)
vector register machine, 353 (see also vector processor, vector

machines)
vector registers (see vector processor, registers)
vector stride (see vector processors, stride)
vertical microcode (see microcode, vertical)
vertical microinstruction (see microcode, vertical)
very long instruction word (VLIW), 318, 323, 322-325, 337-

338, 573, 580
instructions, 323
trace scheduling and, 326

VIBA (see virtual-instruction-address buffer)
video DRAM, 524 (see also graphics displays)
video look-up table, 523 (see also graphics displays)
virtual addresses, 433 (see also virtual memory, address

translation)
virtual cache, 460

anti-aliasing, 460
virtual DMA, 537 (see also input/output, DMA and)
virtualcinstruction-buffer address (VIBA), 475 (see also

memory hierarchy, V AX-11/780 and)
virtual memory, 14, 19, 26, 103, 127, 129, 432-449, 484 (fig.)

(see also cache; memory; memory hierarchy; block
identification; block placement; block replacement; write
strategy)

address translation, 433, 435, 436 (fig.), 440, 442-443, 460
(see also virtual memory, translation-lookaside buffer)

techniques for fast address translation, 437-438
on the VAX-11/780, 442-443

block (see virtual memory, page; virtual memory, segment)
block information (see block information, virtual memory)
block placement (see block placement, virtual memory)
block replacement (see block replacement, virtual memory)
cachesand,434,438
differences between caches and, 434
dirty bits and, 436, 438
DMAand, 537
Intel 80286/80386 and, 445-449

attributes field, 446
bounds checking on, 446
memory mapping on, 446
page-table entry of, 446
protection on, 446, 448-449
safe calls from user to OS gates, 448
segment descriptor of, 447 (fig.)
sharing on, 446-447

miss penalty, 434
overlays, 433
paged,433,434

internal fragmentation and, 437
page size, 437
versus segmentation, 434, 435 (fig.), 441

page fault, 433, 434, 436 (see also cache, miss, "three Cs")
page table, 435, 437

conserving memory with, 442-443
page-table entry (PTE) on the V AX-11/780, 443, 475
page-table entry /segment descriptor of the Intel

80286/80386, 446

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 788

Index

virtual memory (continued)
parameters, typical, 433 (fig.) (see also parameters, typical

ranges of)
processes and, 438-439 (see also virtual memory, protection

schemes of)
address space, 432
user, kernel and supervisor processes, 440

protection schemes of, 432-433, 439-441, 443, 446-449 (see
also virtual memory, Intel 80286/80386 and, protection
on)

base register, 439
bound register, 439
read-only protection, 439
rings of security levels, 440
Trojan horses and, 445, 447

relocation and, 433, 434
segmented, 433, 434

fallacy of, 483
versus paging, 434, 435 (fig.), 441

shared,433,445-446
stale data and (see stale data)
summary of, 484 (fig.)
translation-lookaside buffer (TLB), 437-438, 484 (fig.)

parameters typical of, 438 (fig.) (see also parameters,
typical ranges of)

miss rates for the VAX-11/780 TLB, 479
misses per hundred instructions on the V AX-11/780, 479
on the V AX-11/780, 443 (fig.), 444-445, 475
summary of, 484 (fig.)
TLB instruction-stream miss rate, 478

V AX-11/780 and, 441-445, 448-449 (see also cache, VAX-
11/780 and; memory hierarchy, V AX-11/780 and)
area PO, 441
area Pl, 441
miss rates for the V AX-11/780 TLB, 479
misses per hundred instructions on the V AX-11 /780, 4 79
operation of the V AX-11/780 TLB, 444 (fig.)
page-table entry (PTE) on the V AX-11/780, 443, 475
parameters typical of, 443 (fig.) (see also parameters,

typical ranges of)
process segments of, 441
system segments of, 441

writes and (see write strategy, virtual memory and)
VLIW (see very long instruction word)
VLR (see vector-length register; vector processors, vector

length)
VME bus, 532, 532 (fig.) (see also bus)
VMS

C compiler, 68
fort (FORTRAN compiler), 68

von Neumann, J., 23-24
"von Neumann syndrome", 587

wafer, 55-57, 59
chips per, 59, 84
cost of, 59-60, 62
dies per, 59, 61-62
photographs of, 56-57
yield,59-60, 62, 84, 85

wait states, 224
Wakerly, J., 188
Wallace, J. J., 79

w

Wallace tree, A-46, A-47, A-59 (see also array multiplier;
arithmetic)

WAR (see write after read)

Ward, S., 561
Waters, F., 190
WA W (see write after write)
WCS (see writable control store)
weak consistency, 474 (see also cache, coherency)
weighted means (see mean)
Weitek 3364, A-53 (fig.), A-56-A-57
What happens on a write? (see write strategy)
Wheeler, D. J., 24
Where can a block be placed? (see block placement)
Whetstone (see benchmark programs, synthetic)
Which block should be replaced on a miss? (see block

replacement)
Whirlwind, 25
Wichmann, B. A., 78
wider main memory (see memory, wider)
width of memory (see memory, wider)
width of bus (see memory, organization of)
Wiecek, 169, 171, 188
Wilkes, M., 24, 25, 425, 485, 486, 490
window overflow, 450 (see also register windows)
window underflow, 450 (see also register windows)
word, 95
word reads, unaligned, E-13
workstation, 499-500, 560

cost of, 61, 63, 86
DECstation 3100 (see Digital Equipment Corporation,

DECstation 3100)
file server versus, 500
minicomputer versus, 499
personal computer versus, 500
V AXstation 2000 (see Digital Equipment Corporation,

V AXstation 2000)
V AXstation 3100 (see Digital Equipment Corporation,

V AXstation, 3100)
SPARCstation I (see SPARC)

workload, 45
WORM (see write-once, read-many)
Wortman, D. B., 130, 187
wrapped form, A-21-A-22
wrapped fetch, 458 (see cache, miss)
writable control store (WCS), 239-240, 248
write after read (WAR), 264 (see also hazard, WAR)
write after write (WA W), 264 (see also hazard, WA W)
write allocate, 413 (see also cache, write miss)
write around, 413 (see also cache, write miss)
write back, 413 (see also cache, write back)

virtual memory and, 436
write broadcast, 469 (see also cache, coherency)
write buffer (see cache, write buffer; cache, writes and)
write invalidate, 469 (see als.o cache, coherency)
write miss rate, 416 (see also cache, write miss)
write-once optical disk, 519 (see also disk, optical)
write-once, read-many (WORM), 497

1·27

write result in a pipeline, 294, 296-298 (figs.), 301, 303 (fig.),
305-306 (fig.), 308 (fig.), 333, 347

write stall, 413 (see also cache, writes and; cache, write buffer;
write stalls and)

write strategy, 407, 484
caches and, 412-414, 468 (see also cache, writes and)
virtual memory and, 436

write through, 413 (see also cache, write through)
Wulf, W., 127, 485, 490

x
X-MP (see Cray Research machines)

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 789

1-28

y

yield, 54-55, 80, 81 (see also die; integrated circuit; wafer)
final test, 55, 60-62
scrap and, 64

Y-MP (see Cray Research machines)

z
z buffer, 525 (see also graphics displays)
Zimmermann, R., 188
Zorn, B., 191
Zuse, 24

Index

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 790

QA 76.9/.A 73/H392/l 990
Computer architecture : a quantitative

approach J David A. Patterson, John L.

crdd c. 1 SVO

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 791

DLX Standard Instruction Set

Instruction type I opcode Instruction meaning

Data transfers Move data between registers and memory~ or between the integer and FP or
special registers; only memory address mode is 16-bit displacement +
contents of an integer register

LB, LBU, SB Load byte, load byte unsigned, store byte

LH, LHU, SH Load halfword, load halfword unsigned, store halfword

LW, SW Load word, store word (to/from integer registers)

LF, LD, SF, SD Load SP float, load DP float, store SP float, store DP float

MOVI2S, MOVS2I Move from/to integer register to/from a special register

MOVF, MOVD Copy one floating-point register or a DP pair to another register or pair

MOVFP2I, MOVI2FP Move 32 bits from/to FP registers to/from integer registers

Arithmetic, logical Operations on integer or logical data in integer registers; signed arithmetic
instructions trap on overflow

ADD, ADDI, ADDU, Add, add immediate (all immediates are 16 bits); signed and unsigned
AD DUI

SUB, SUBI, SUBU, Subtract, subtract immediate; signed and unsigned
SUBUI

MULT, MULTU, DIV, Multiply and divide, signed and unsigned; operands must be floating-point
DIVU registers; all operations take and yield 32-bit values

AND, ANDI And, and immediate

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate

LHI Load high immediate-loads upper half of register with immediate

SLL, SRL, SRA, SLLI, Shifts: both immediate (S I) and variable form (S _); shifts are shift left
SRLI, SRAI logical, right logical, right arithmetic

s , s I Set conditional: " _"may be EQ, NE, LT, GT, LE, GE - -

Control Conditional branches and jumps; PC-relative or through register

BEQZ, BNEZ Branch integer register equal/not equal to zero; 16-bit offset from PC

BFPT, BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC

J, JR Jumps: 26-bit offset from PC (J) or target in register (JR)

JAL, JALR Jump and Link: save PC+4 to R3 l, target is 26-bit offset from PC (JAL) or a
register (JALR)

TRAP Transfer to operating system at a vectored address (see Chapter 5)

RFE Return to user code from an exception; restore user mode (see Chapter 5)

Floating point Floating-point operations on DP and SP formats

ADDD, ADDF Add DP,SP numbers

SUBD,SUBF Subtract DP,SP numbers

MULTD, MULTF Multiply DP,SP floating point

DIVD, DIVF Divide DP, SP floating point

CVTF2D, CVTF2I, Convert instructions: CVTx2y converts from type x to type y, where x and y
CVTD2F, CVTD2 I, are one of I (integer), D (double precision), or F (single precision); both
CVTI2F, CVTI2D operands are in the FP registers

D, F DP and SP compares:"_" may be EQ, NE, LT, GT, LE, GE; sets comparison - -
bit in FP status register

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 792

Notation Meaning Example Meaning

~ Data transfer. Length of the Rl~R2; Transfer contents of R2 to Rl. Registers
transfer is given by the have a fixed length, so transfers shorter than
destination's length; the length is the register size must indicate which bits
specified when not clear. are used.

M Array of memory accessed in Rl~M[x]; Place contents of memory location x into
bytes. The starting address for a Rl. If a transfer starts at M [.i J and
transfer is indicated as the index requires 4 bytes, the transferred bytes are
to the memory array. M [i], M [i + 1], M [i + 2], and M [i + 3] .

~n Transfer an n-bit field, used M [y] ~16M [x]; Transfer 16 bits starting at memory location
whenever length of transfer is not x to memory location y. The length of the
clear. two sides should match.

Xn Subscript selects a bit. Rlo~O; Change sign bit of Rl to 0. (Bits are
numbered from MSB starting at 0.)

Xm .. n Subscript selects a bit field. R324 .. 31 ~M [x]; Moves contents of memory location x into
low-order byte of R3.

xn Superscript replicates a field. R3o .. 23~024; Sets high-order three bytes of R3 to 0.

Concatenates two fields. R3~0 24 ## M (x] Moves contents of location x into low byte
of R3; clears upper three bytes.

F2##F3~64M [x];
Moves 64 bits from memory starting at
location x; first 32 bits go into F2, second
32 into F3.

* , & Dereference a pointer; get the P*~&x; Assign to object pointed to by p the address
address of a variable. of the variable x.

<< >> C logical shifts (left,right) Rl << 5 Shift Rl left 5 bits.

==, ! =, >, C relational operators: equal, not (Rl==R2) & True if the contents of Rl equal the contents

<,>=,<= equal, greater, less, greater or (R3 ! =R4) of R2 and the contents of R3 do not equal
equal, less or equal the contents of R 4.

& , I , " ! C bitwise logical operations: and, (Rl & (R2 I R3)) Bitwise and of Rl and the bitwise or of R2 ,
or, exclusive or, and complement. and R3.

DLX Pipeline Structure

Stage ALU instruction Load or store instruction Branch instruction

IF IR~Mem [PC J; IR~Mem[PC]; IR~Mem[PC];

PC~PC+4; PC~PC+4; PC~PC+4;

ID A~Rsl; B~Rs2; PCl~PCA~Rsl; B~Rs2; PCl~PC A~Rsl; B~Rs2; PCl~PC

IRl~IR IRl~IR IRl~IR

EX ALUoutput~A op B; DMAR~A+ ALUoutput~PCl +

or ((IRl16) 16##IRl16 .. 31); ·((IRl16) 16##IRl16 .. 31);
ALUoutput~A op SMDR~ B; cond~ (Rsl op 0);

((IRl16) 16##IRl16 .. 31);

MEM ALUoutputl~ ALU output LMDR~Mem [DMAR]; or if (cond) PC~ALUoutput,

Mem[DMAR]~SMDR;

WB Rd~ALUoutputl; Rd~LMDR;

CAVIUM-1035
Cavium, Inc. v. Alacritech, Inc.

Page 793

