ster 12

value?
by the

n one
ilticast

of the

nod to

multi-
«ce has
)K?

tion is

ised to

13.1

13

IGMP: Internet Group
Management Protocol

Introduction

IGMP conveys group membership information between hosts and routers on a local
network. Routers periodically multicast IGMP queries to the all-hosts group. Hosts
respond to the queries by multicasting IGMP report messages. The IGMP specification
appears in RFC 1112. Chapter 13 of Volume 1 describes the specification of IGMP and
provides some examples.

From an architecture perspective, IGMP is a transport protocol above IP. It has a
protocol number (2) and its messages are carried in IP datagrams (as with ICMP).
IGMP usually isn’t accessed directly by a process but, as with ICMP, a process can send
and receive JGMP messages through an IGMP socket. This feature enables multicast
routing daemons to be implemented as user-level processes.

Figure 13.1 shows the overall organization of the IGMP protocol in Net/3.

The key to IGMP processing is the collection of in_multi structures shown in the
center of Figure 13.1. An incoming IGMP query causes igmp_input to initialize a
countdown timer for each in_multi structure. The timers are updated by
igmp_fasttimo, which calls igmp_sendreport as each timer expires.

We saw in Chapter 12 that ip_setmoptions calls igmp_joingroup when a new
in_multi structure is created. igmp_joingroup calls igmp_sendreport to
announce the new group and enables the group’s timer to schedule a second announce-
ment a short time later. igmp_sendreport takes care of formatting an IGMP message
and passing it to ip_output.

On the left and right of Figure 13.1 we see that a raw socket can send and receive
IGMP messages directly.

381

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 407

382 IGMP: Internet Group Management Protocol Chapter 13 - Sectic

ip_setmoptions

v

in multi{} structure

o R

igmp,_fasttimg igmp_joingroup

{grp_sendrepor

A

Figure 13.1 Summary of IGMP processing.

13.2 Code Introduction

The IGMP protocol is implemented in four files listed in Figure 13.2.

File Description
netinet/igmp.h IGMP protocol definitions
netinet/igmp_var.h | IGMP implementation definitions
netinet/in_var.h IP multicast data structures
netinet/igmp.c IGMP protocol implementation

Figure 13.2 Files discussed in this chapter.

Global Variables

Three new global variables, shown in Figure 13.3, are introduced in this chapter.
SNMP

Statistics

IGMP statistics are maintained in the igmpstat variables shown in Figure 13.4.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 408

r 13 Section 13.2 Code Introduction 383

Variable Datatype Description
igmp_all_hosts_group u_long all-hosts group address in network byte order
igmp_timers_are_running | int true if any IGMP timer is active, false otherwise
igmpstat struct igmpstat | IGMP statistics (Figure 13.4).

Figure 13.3 Global variables introduced in this chapter.

igmpstat member Description
igps_rcv_badqueries | #messages received as invalid queries
sgps_rcv_badreports | #messages received as invalid reports
igps_rcv_badsum #messages received with bad checksum
igps_rcv_ourreports | #messages received as reports for local groups
igps_rcv_queries #messages received as membership queries
igps_rcv_reports #messages received as membership reports
igps_rcv_tooshort #messages received with too few bytes
igps_rcv_total total #IGMP messages received
igps_snd_reports #messages sent as membership reports

Figure 13.4 IGMP statistics.

Figure 13.5 shows some sample output of these statistics, from the netstat -p
igmp command on vangogh.cs.berkeley.edu.

netstat -p igmp output igmpstat member
18774 messages received igps_rcv_total
0 messages received with too few bytes igps_rcv_tooshort
0 messages received with bad checksum igps_rcv_badsum
18774 membership queries received igps_rcv_queries
0 membership queries received with invalid field(s) igps_rcv_badqueries
0 membership reports received igps_rcv_reports
0 membership reports received with invalid field(s) igps_rcv_badreports
0 membership reports received for groups to which we belong igps_rcv_ourreports
0 membership reports sent igps_snd_reports

Figure 13.5 Sample IGMP statistics.
From Figure 13.5 we can tell that vangogh is attached to a network where IGMP is
being used, but that vangogh is not joining any multicast groups, since
igps_snd_reportsis0.

SNMP Variables

There is no standard SNMP MIB for IGMP, but [McCloghrie and Farinacci 1994a]
describes an experimental MIB for IGMP.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 409

384 IGMP: Internet Group Management Protocol Chapter 13

13.3 igmp Structure

An IGMP message is only 8 bytes long. Figure 13.6 shows the igmp structure used by

Net/3.
43 struct igmp { 3mp
44 u_char igmp_type; /* version & type of IGMP message */
45 u_char igmp_code; /* unused, should be zero */
46 u_short igmp_cksum; /* IP-style checksum */
47 struct in_addr igmp_group; /* group address being reported */
48 }; /* (zero for queries) /.
igmp.h
. . Figure 13.6 igmp structure.
43-44 A 4-bit version code and a 4-bit type code are contained within igmp_type. Fig-
‘ ure 13.7 shows the standard values.
Version | Type igmp_type Description
1 1 0x11 (IGMP_HOST_MEMBERSHIP_QUERY) membership query
1 2 0x12 (IGMP_HOST_MEMBERSHIP_REPORT) | membership report
1 3 0x13 DVMRP message (Chapter 14)

Figure 13.7 IGMP message types.

Only version 1 messages are used by Net/3. Multicast routers send type 1
(IGMP_HOST_MEMBERSHIP_QUERY) messages to solicit membership reports from hosts
on the local network. The response to a type 1 IGMP message is a type 2
(IGMP_HOST_MEMBERSHIP_REPORT) message from the hosts reporting their multicast
membership information. Type 3 messages transport multicast routing information
between routers (Chapter 14). A host never processes type 3 messages. The remainder
of this chapter discusses only type 1 and 2 messages.

45-46 igmp_code is unused in IGMP version 1, and igmp_cksum is the familiar IP
checksum computed over all 8 bytes of the IGMP message.

47-48 igmp_group is 0 for queries. For replies, it contains the multicast group being
reported.

i Figure 13.8 shows the structure of an IGMP message relative to an IP datagram.

13.4 IGMP protosw Structure

Figure 13.9 describes the protosw structure for IGMP.

Although it is possible for a process to send raw IP packets through the IGMP
protosw entry, in this chapter we are concerned only with how the kernel processes
IGMP messages. Chapter 32 discusses how a process can access IGMP using a raw
socket.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 410

ter 13 Section 13.4

IGMP protosw Structure 385

F\ IGMP message Eb‘

1 1 2 bytes 4 bytes
‘gmp.h

IP header

igmp.h P\ IP datagram 7*;

Figure 13.8 An IGMP message (1igmp_ omitted).

. Fig-
Member inetsw(5] I Description
pr_type SOCK_RAW IGMP provides raw packet services
pr_domain &inetdomain IGMP is part of the Internet domain
pPr_protocol IPPROTO_IGMP (2) appears in the ip_p field of the IP header
) pr_flags PR_ATOMIC|PR_ADDR | socket layer flags, not used by protocol processing
: pr_input igmp_input receives messages from IP layer
pr_output rip_output sends IGMP message to IP layer
pr_ctlinput 0 not used by IGMP
pr_ctloutput | rip ctl output respond to administrative requests from a process
pe 1 pr_usrreq rip usrreqg respond to communication requests from a process
hosts pr_init igmp_init initialization for IGMP
7pe 2 pr_fasttimo igmp_fasttimo process pending membership reports
Iticast pr_slowtimo 0 not used by IGMP
C_a pr_drain 0 not used by IGMP
1ation pr_sysctl 0 not used by IGMP
iinder :
Figure 13.9 The IGMP protosw structure.
iar IP
being i
There are three events that trigger IGMP processing: ‘
1. -
* alocal interface has joined a new multicast group (Section 13.5),
¢ an IGMP timer has expired (Section 13.6), and
* an IGMP query is received (Section 13.7).
There are also two events that trigger local IGMP processing but do not result in i
. !
any messages belng sent: ;
IGMP , . . . U
cesses : * an IGMP report is received (Section 13.7), and ;
R * alocal interface leaves a multicast group (Section 13.8). ;
a raw . .

These five events are discussed in the following sections.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 411

386 IGMP: Internet Group Management Protocol Chapter 13

13.5

164-178

59-73

Joining a Group: igmp_joingroup Function

We saw in Chapter 12 that igmp_joingroup is called by in_addmulti when a new
in_multi structure is created. Subsequent requests to join the same group only
increase the reference count in the in_multi structure; igmp_joingroup is not called.
igmp_joingroup is shown in Figure 13.10

igmp.c
164 void 8mp

165 igmp_joingroup(inm)
166 struct in_multi *inm;

167 {

168 int s = splnet{();

169 if (inm—>inm_addr.s_addr == igmp_all_hosts_group |
170 inm->inm_ifp == &loif)

171 inm->inm_timer = 0;

172 else {

173 igmp_sendreport(inm);

174 ipm->inm_timer = IGMP_RANDOM_DELAY(inm—>inm4addr);
175 igmp_timers_are_running = 1;

176 }

177 splx(s) s

178))
//1gmp.c

Figure 13.10 igmp__joingroup function.

inm points to the new in_multi structure for the group. If the new group is the
all-hosts group, or the membership request is for the loopback interface, inm_timer is
disabled and igmp_joingroup returns. Membership in the all-hosts group is never
reported, since every multicast host is assumed to be a member of the group. Sending a
membership report to the loopback interface is unnecessary, since the local host is the
only system on the loopback network and it already knows its membership status.

In the remaining cases, a report is sent immediately for the new group, and the
group timer is set to a random value based on the group. The global flag
igmp_timers_are_running is set to indicate that at least one timer is enabled.
igmp_fasttimo (Section 13.6) examines this variable to avoid unnecessary processing.

When the timer for the new group expires, a second membership report is issued.
The duplicate report is harmless, but it provides insurance in case the first report is lost
or damaged. The report delay is computed by TGMP_RANDOM_DELAY (Figure 13.11).

According to RFC 1122, report timers should be set to a random time between 0 and
10 (IGMP_MAX_HOST_REPORT_DELAY) seconds. Since IGMP timers are decremented
five (PR_FASTHZ) times per second, TGMP_RANDOM_DELAY must pick a random value
between 1 and 50. If r is the random number computed by adding the total number of
IP packets received, the host’s primary IP address, and the multicast group, then

0 < (r mod 50) < 49
and
1 <(r mod 50)+1<50

Sectio

13.6

123-1:

154~1¢

170-17

. CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.

Paage 412

Section 13.6 igmp_fasttimo Function 387

P igmp_var.h
v 60 * Macro to compute a random timer value between 1 and (IGMP_MAX_REPORTING_
7 61 * DELAY * countdown frequency). We generate a "random" number by adding
62 * the total number of IP packets received, our primary IP address, and the
63 * multicast address being timed-out. The 4. 3 random() routine really
64 * ought to be available in the kernel!
c 65 */
66 #define IGMP_RANDOM_DELAY (multiaddr) \
67 /* struct in_addr multiaddr; */ \
68 ((ipstat.ips_total + \
69 ntohl (IA_SIN(in_ifaddr)->sin_addr.s_addr) + \ :
70 ntohl ((multiaddr) .s_addr) \
71) A\ C
72 % (IGMP_MAX_HOST_REPORT_DELAY * PR_FASTHZ) + 1 \ . ’
73) :
igmp_var.h [
Figure 13.11 IGMP_RANDOM_DELAY function. i S
Zero is avoided because it would disable the timer and no report would be sent.
. 13.6 igmp_fasttimo Function oo
Before looking at igmp_fasttimo, we need to describe the mechanism used to tra-
verse the in_multi structures.
e To locate each in_multi structure, Net/3 must traverse the in_mult1i list for each
15 interface. During a traversal, an in_multistep structure (shown in Figure 13.12)
T records the position. ‘
a4 - in_var.h
e 123 struct in_multistep { :
124 struct in_ifaddr *i_ia; !
e 125 struct in_multi *i_inm; ‘
g 126 3 in_varh i
2' Figure 13.12 in_multistep function. ‘| |
d. 123-126 i_ia points to the next in_1ifaddr interface structure and i_inm points to the next »
ot in_multi structure for the current interface.
d The IN_FIRST_MULTI and IN_NEXT_MULTI macros (shown in Figure 13.13) tra- ;
o verse the lists.
e 154169 If the in_multi list has more entries, i_inm is advanced to the next entry.. When
of IN_NEXT_MULTT reaches the end of a multicast list, i _ia is advanced to the next inter-

. face and i_inm to the first in_multi structure associated with the interface. If the ;
interface has no multicast structures, the while loop continues to advance through the
interface list until all interfaces have been searched.

170177 The in_multistep array is initialized to point to the first in_ifaddr structure in .
g the in_ifaddr list and i inm is set to null. IN_NEXT_MULTI finds the first
in_multi structure.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 413

388 IGMP: Internet Group Management Protocol Chapter 13

187-198

199-213

in_varh

147 /*

148 * Macro to step through all of the in_multi records, one at a time.

149 * The current position is remembered in "step", which the caller must
150 * provide. IN_FIRST MULTI(), below, must be called to initialize "step"
151 * and get the first record. Both macros return a NULL "inm" when there
152 * are no remaining records.

153 */

154 #define IN_NEXT_MULTI(step, inm) \

155 /* struct in_multistep step;: */ \

156 /* struct in_multi *inm; */ \

157 { \

158 if (((inm) = (step).i_inm) != NULL) \

159 (step).i_inm = (inm)->inm_next; \

160 else \

161 while ((step).i_ia != NULL) { \

162 (inm) = (step).i_ia->ia_multiaddrs; \
163 (step).i_ia = (step).i_ia->ia_next; \
164 if ((inm) != NULL) { \

165 (step).i_inm = (inm)->inm_next; \
166 break; \

167 oA

168 I

169)

170 #define IN_FIRST_MULTI (step, inm) \

171 /* struct in_multistep step; */ \

172 /* struct in_multi *inm; */ \

173 { \

174 (step) .i_ia = in_ifaddr; \

175 (step).i_inm = NULL; \

176 IN_NEXT_MULTI((step), (inm)); \

177 }

in_varh

Figure 13.13 IN_FIRST_MULTI and IN_NEXT_MULTI structures.

We know from Figure 13.9 that igmp_fasttimo is the fast timeout function for
IGMP and is called five times per second. igmp_fasttimo (shown in Figure 13.14)
decrements multicast report timers and sends a report when the timer expires.

If igmp_timers_are_running is false, igmp_fasttimo returns immediately
instead of wasting time examining each timer.

igmp_fasttimo resets the running flag and then initializes step and inm with
IN_FIRST MULTI. The igmp_fasttimo function locates each in_multi structure
with the while loop and the IN_NEXT_MULTI macro. For each structure:

¢ If the timer is 0, there is nothing to be done.
¢ If the timer is nonzero, it is decremented. If it reaches 0, an IGMP membership
report is sent for the group.

e If the timer is still nonzero, then at least one timer is still running, so
igmp_timers_are_runningissettol.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 414

i

2]

23

24¢

fer 13

_varh

1_var.h

m for
13.14)

liately

1 with
acture

ership

1g, SO

Section 13.6 igmp_fasttimo Function 389

187 void 1gmp-¢

188 igmp_fasttimo ()

189 {

190 struct in_multi *inm;

191 int S;

192 struct in_multistep step;

193 /*

194 * Quick check to see if any work needs to be done, in order

195 * to minimize the overhead of fasttimo processing.

196 */

197 if (!'igmp_timers_are_running)

198 return;

199 s = splnet();

200 igmp_timers_are_running = 0;

201 IN_FIRST_MULTI (step, inm);

202 while (inm != NULL) {

203 if (inm->inm_timer == 0) {

204 /* do nothing */

205 } else if (--inm->inm_timer == 0) {

206 igmp_sendreport (inm) ;

207 } else {

208 igmp_timers_are_running = 1;

209 }

210 IN_NEXT _MULTI(step, inm);

211 }

212 splx(s);

213 1} .
igmp.c

Figure 13.14 igmp_fasttimo function.

igmp_sendreport Function

214-232

233~245

246-260

The igmp_sendreport function (shown in Figure 13.15) constructs and sends an
IGMP report message for a single multicast group.

The single argument inm points to the in_multi structure for the group being
reported. igmp_sendreport allocates a new mbuf and prepares it for an IGMP mes-
sage. igmp_sendreport leaves room for a link-layer header and sets the length of the
mbuf and packet to the length of an IGMP message.

The IP header and IGMP message is constructed one field at a time. The source
address for the datagram is set to INADDR_ANY, and the destination address is the
multicast group being reported. ip_output replaces INADDR_ANY with the unicast
address of the outgoing interface. Every member of the group receives the report as
does every multicast router (since multicast routers receive all IP multicasts).

Finally, igmp_sendreport constructs an ip_moptions structure to go along with
the message sent to ip_output. The interface associated with the in_multi structure
is selected as the outgoing interface; the TTL is set to 1 to keep the report on the local
network; and, if the local system is configured as a router, multicast loopback is enabled
for this request.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.

390

IGMP: Internet Group Management Protocol

Chapter 13

217 |
218
219
220
221
222

223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239

240
241
242
243
244
245

246
247
248
249

250
251
252
253
254
255
256
257
258

259

214 static void
215 igmp_sendreport {inm)
216 struct in_multi *inm;

260 }

igmp.c

struct mbuf *m;

struct igmp *igmp;
struct ip *ip;

struct ip_moptions *imo;
struct ip_moptions simo;

MGETHDR (m, M_DONTWAIT, MT_HEADER);
if (m == NULL)
return;
/*
* Assume max_linkhdr + sizeof(struct ip) + IGMP_MINLEN
* ig smaller than mbuf size returned by MGETHDR.
*/
m->m_data += max_linkhdr;
m->m_len = sizeof(struct ip) + IGMP_MINLEN;
m->m_pkthdr.len = sizeof (struct ip) + IGMP_MINLEN;

ip = mtod(m, struct ip *);

ip->ip_tos = 0;

ip->ip_len = sizeof(struct ip) + IGMP_MINLEN;
ip->ip_off = 0;

ip->ip_p = IPPROTO_IGMP;

ip->ip_src.s_addr = INADDR_ANY;

ip->ip_dst = inm->inm_addr;

igmp = (struct igmp *) (ip + 1);
igmp->igmp_type = IGMP_HOST_MEMBERSHIP_ REPORT;
igmp->igmp_code = 0;

igmp->igmp_group = inm->inm_addr;
igmp->igmp_cksum = 0;

igmp->igmp_cksum = in_cksum(m, IGMP_MINLEN);

imo = &simo;

bzero((caddr_t) imo, sizeof (*imo));
imo->imo_multicast_ifp = inm->inm_ifp;
imo->imo_multicast_ttl = 1;

/*
* Request loopback of the report if we are acting as a multicast
* router, so that the process-level routing demon can hear it.
*/
{
extern struct socket *ip_mrouter;
imo->imo_multicast_loop = (ip_mrouter != NULL);
}
ip_output (m, NULL, NULL, 0, imo);

++igmpstat.igps_snd_reports;

Figure 13.15 igmp_sendreport function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 416

Section 13.7

Input Processing: igmp_input Function 391

The process-level multicast router must hear the membership reports. In Section 12.14 we saw
that IGMP datagrams are always accepted when the system is configured as a multicast router.

Through the normal transport demultiplexing code, the messages are passed to igmp_input
the pr_input function for IGMP (Figure 13.9).

,

13.7 Input Processing: igmp_input Function

In Section 12.14 we described the multicast processing portion of ipintr. We saw that
a multicast router accepts any IGMP message, but a multicast host accepts only IGMP
messages that arrive on an interface that is a member of the destination multicast group
(i.e, queries and membership reports for which the receiving interface is a member).

The accepted messages are passed to igmp_input by the standard protocol demul-
tiplexing mechanism. The beginning and end of igmp_input are shown in Fig-
ure 13.16. The code for each IGMP message type is described in following sections.

Validate IGMP message

52-96 The function ipintr passes m, a pointer to the received packet (stored in an mbuf),
and iphlen, the size of the IP header in the datagram.

The datagram must be large enough to contain an IGMP message (IGMP_MINLEN),
must be contained within a standard mbuf header (m_pullup), and must have a correct
IGMP checksum. If any errors are found, they are counted, the datagram is silently dis-
carded, and igmp_input returns.

The body of igmp_input processes the validated messages based on the code in
igmp_type. Remember from Figure 13.6 that igmp_type includes a version code and
a type code. The switch statement is based on the combined value stored in
igmp_type (Figure 13.7). Each case is described separately in the following sections.

Pass IGMP messages to raw IP

157-163 There is no default case for the switch statement. Any valid message (i.e., one
that is properly formed) is passed to rip_input where it is delivered to any process
listening for IGMP messages. IGMP messages with versions or types that are unrecog-
nized by the kernel can be processed or discarded by the listening processes.

The mrouted program depends on this call to rip_input so that it receives membership
queries and reports.

Membership Query: IGMP_HOST_MEMBERSHIP_ QUERY

REC 1075 recommends that multicast routers issue an IGMP membership query at least

once every 120 seconds. The query is sent to group 224.0.0.1 (the all-hosts group). Fig-
ure 13.17 shows how the message is processed by a host.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 417

392 IGMP: Internet Group Management Protocol Chapter 13
52 void 1gmp-e
53 igmp_input (m, iphlen)

54 struct mbuf *m;

55 int iphlen;

56 {

57 struct igmp *igmp;

58 struct ip *ip;

59 int igmplen;

60 struct ifnet *ifp = m->m_pkthdr.rcvif;
61 int minlen;

62 struct in_multi *inm;

63 struct in_ifaddr *ia;

64 struct in_multistep step;

65 ++igmpstat.igps_rcv_total;

66 ip = mtod(m, struct ip *);

67 igmplen = ip->ip_len;

68 /*

69 * Validate lengths

70 */

71 if (igmplen < IGMP_MINLEN) {

72 ++igmpstat.igps_rcv_tooshort;
73 m_freem(m) ;

74 return;

75 }

76 minlen = iphlen + IGMP_MINLEN;

77 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
78 (m = m_pullup(m, minlen)) == 0)
79 ++igmpstat.igps_xcv_tooshort;
80 return;

81)

82 /*

83 * Validate checksum

84 */

85 m->m_data += iphlen;

86 m->m_len -= iphlen;

87 igmp = mtod{m, struct igmp *);

88 if (in_cksum(m, igmplen)) {

89 ++igmpstat.igps_rcv_badsum;
90 m_freem(m);

91 return;

92 } 97
93 m->m_data -= iphlen;

94 m->m_ien += iphlen;

95 ip = mtod(m, struct ip *);

96 switch (igmp->igmp_type)

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 418

Section 13.7 Input Processing: igmp_input Function 393

/ *

159 * Pass all valid IGMP packets up to any process(es) listening
160 * on a raw IGMP socket.

161 */

162 rip_input (m};

163))
igmp.c
Figure 13.16 igmp_input function.
igmp.c

97 case IGMP_HOST_MEMBERSHIP_QUERY: L

98 ++igmpstat.igps_rcv_queries;

99 if (ifp == &loif) |
100 break; v
101 if (ip-»ip_dst.s_addr != igmp_all_hosts_group) {

102 ++igmpstat.igps_rcv_badqueries:
103 m_freem(m) ; i
104 return; v
105 } :
106 /* P
107 * Start the timers in all of our membership records for '
108 * the interface on which the query arrived, except those
109 * that are already running and those that belong to the
110 * "all-hosts" group. ;
111 */
112 IN_FIRST_MULTI (step, inm); |
113 while (inm != NULL) { B
114 if (inm->inm_ifp == ifp && inm->inm timer == 0 && {
115 inm->inm_addr.s_addr != igmp_all_hosts_group) { !
116 inm->inm_timer =
117 IGMP_RANDOM_DELAY (inm->inm_addr) ;
118 igmp_timers_are_running = 1;
119 : }
120 IN_NEXT_MULTI (step, inm);
121 }
122 break; . sl
igmp.c i
Figure 13.17 Input processing of the IGMP query message. L
97-122 Queries that arrive on the loopback interface are silently discarded (Exercise 13.1).
Queries by definition are sent to the all-hosts group. If a query arrives addressed to a
different address, it is counted in igps_rcv_badqueries and discarded.
The receipt of a query message does not trigger an immediate flurry of IGMP mem-
bership reports. Instead, igmp_input resets the membership timers for each group
associated with the interface on which the query was received to a random value with
IGMP_RANDOM_DELAY. When the timer for a group expires, igmp_fasttimo sends a
membership report. Meanwhile, the same activity is occurring on all the other hosts ,
that received the IGMP query. As soon as the random timer for a particular group
expires on one host, it is multicast to that group. This report cancels the timers on the

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 419

394 . IGMP: Internet Group Management Protocol

Chapter 13

other hosts so that only one report is multicast to the network. The routers, as well as

any other members of the group, receive the report.

The one exception to this scenario is the all-hosts group. A timer is never set for this

group and a report is never sent.

Membership Report: IGMP_HOST_MEMBERSHIP_REPORT

The receipt of an IGMP membership report is one of the two events we mentioned in
Section 13.1 that does not result in an IGMP message. The effect of the message is local
to the interface on which it was received. Figure 13.18 shows the message processing.

123
124

125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

case IGMP_HOST_MEMBERSHIP_REPORT:

++igmpstat.igps_rcv_reports;

1f (ifp == &loif)
break;

if (!IN_MULTICAST(ntohl (igmp->igmp_group.s_addr)) |
igmp->igmp_group.s_addr != ip->ip_dst.s_addr) {
++igmpstat.igps_rcv_badreports;
m_freem{m) ;

return;
}
/*
* KLUDGE: if the IP source address of the report has an
* unspecified (i.e., zero) subnet number, as is allowed for

* a booting host, replace it with the correct subnet number
* so that a process-level multicast routing demon can

* determine which subnet it arrived from. This is necessary
* to compensate for the lack of any way for a process to

* determine the arrival interface of an incoming packet.

*/

if ((ntohl (ip-»>ip_src.s_addr) & IN_CLASSA_NET) == 0) {
IFP_TO_IA(ifp, ia);
if (ia)

ip->ip_src.s_addr = htonl(ia->ia_subnet);
}
/*
* If we belong to the group being reported, stop
* our timer for that group.

*/
IN_LOOKUP_MULTI (igmp->igmp_group, ifp, inm);
if (inm != NULL) ¢{
inm->inm_timer = 0;

++igmpstat.igps_rcv_ourreports;
}

break;

Figure 13.18 Input processing of the IGMP report message.

igmp.c

igmp.c

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 420

13

s

is

1l

Section 13.8 Leaving a Group: igmp_leavegroup Function 395

123-156

13.8

179-186

Reports sent to the loopback interface are discarded, as are membership reports sent
to the incorrect multicast group. That is, the message must be addressed to the group
identified within the message.

The source address of an incompletely initialized host might not include a network
or host number (or both). igmp_report looks at the class A network portion of the
address, which can only be 0 when the network and subnet portions of the address are

from issuing a report. It is only nhecessary for the router to know that at least one inter-
face on the network is a member of the group. The router does not need to maintain an
explicit membership list or even a counter.

Leaving a Group: ig'mp_leavegroup Function

We saw in Chapter 12 that in_delmulti calls igmp_1 eavegroup when the last refer-
ence count in the associated in_multi structure drops to 0.

_ ____\i mp.c
179 void 8mp

180 igmp_leavegroup(inm)
181 struct in_multi *inm;

182 {
183 /*
184 * No action required on leaving a group.

185 */

186) .
\ igmp.c
Figure 13.19 igmp_leavegroup function.

As we can see, IGMP takes no action when an interface leaves a group. No explicit

warding multicast packets for the group to the network.

If the interface leaves the group while a report is pending (i.e., the group’s report
timer is running), the report is never sent, since the timer is discarded by in_delmulti
(Figure 12.36) along with the in muiti structure for the group when
icmp_leavegroup returns.

CAVIUM-1013

Cavium, Inc. v. Alacritech, Inc.

Paage 421

396

IGMP: Internet Group Management Protocol Chapter 13

13.9

Summary

In this chapter we described IGMP, which communicates IP multicast membership
information between hosts and routers on a single network. IGMP membership reports
are generated when an interface joins a group, and on demand when multicast routers
issue an IGMP report query message.

The design of IGMP minimizes the number of messages required to communicate
membership information:

¢ Hosts announce their membership when they join a group.

* Response to membership queries are delayed for a random interval, and the first
response suppresses any others.

e Hosts are silent when they leave a group.

e Membership queries are sent no more than once per minute.

Multicast routers share the IGMP information they collect with each other (Chapter 14)
to route multicast datagrams toward remote members of the multicast destination

group.

Exercises

13.1 Why isn't it necessary to respond to an IGMP query on the Joopback interface?
13.2 Verify the assumption stated on lines 226 to 229 in Figure 13.15.

13.3 Is it necessary to set random delays for membership queries that arrive on a point-to-point
network interface?

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 422

14.

r13

first

i 14)
ation

-point

141

14

IP Multicast Routing

Introduction

The previous two chapters discussed multicasting on a single network. In this chapter
we look at multicasting across an entire internet. We describe the operation of the
mrouted program, which computes the multicast routing tables, and the kernel func-
tions that forward multicast datagrams between networks.

Technically, multicast packets are forwarded. In this chapter we assume that every multicast
packet contains an entire datagram (i.e., there are no fragments), so we use the term datagram
exclusively. Net/3 forwards IP fragments as well as IP datagrams.

Figure 14.1 shows several versions of mrouted and how they correspond to the
BSD releases. The mrouted releases include both the user-level daemons and the
kernel-level multicast code.

mrouF ed Description
version
1.2 modifies the 4.3BSD Tahoe release
2.0 included with 4.4BSD and Net/3
3.3 modifies SunOS 4.1.3

Figure 14.1 mrouted and IP multicasting releases.

IP multicast technology is an active area of research and development. This chapter
discusses version 2.0 of the multicast software, which is included in Net/3 but is consid-
ered an obsolete implementation. Version 3.3 was released too late to be discussed fully
in this text, but we will point out various 3.3 features along the way.

397

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 423

i 398 IP Multicast Routing Chapter 14
Because commercial multicast routers are not widely deployed, multicast networks
are often constructed using multicast tunnels, which connect two multicast routers over
a standard IP unicast internet. Multicast tunnels are supported by Net/3 and are con-
structed with the Loose Source Record Route (LSRR) option (Section 9.6). An improved
tunneling technique encapsulates the IP multicast datagram within an IP unicast data-
gram and is supported by version 3.3 of the multicast code but is not supported by
Net/3.

As in Chapter 12, we use the generic term transport protocols to refer to the protocols
that send and receive multicast datagrams, but UDP is the only Internet protocol that
supports multicasting.

14.2 Code Introduction
The three files listed in Figure 14.2 are discussed in this chapter.

File Description
netinet/ip_mroute.h | multicast structure definitions
netinet/ip_mroute.c | multicast routing functions
netinet/raw_ip.c | multicast routing options

Figure 14.2 Files discussed in this chapter.
Global Variables
The global variables used by the multicast routing code are shown in Figure 14.3.
Variable Datatype Description
cached_mrt struct mrt one-behind cache for multicast routing
cached_origin u_long multicast group for one-behind cache
cached_originmask | u_long mask for multicast group for one-behind cache
mrtstat struct mrtstat | multicast routing statistics
mrttable struct mrt *[] | hash table of pointers to multicast routes
nunmvifs vifi_t number of enabled multicast interfaces
viftable struct vif(] array of virtual multicast interfaces
Figure 143 Global variables introduced in this chapter.
Statistics

All the statistics collected by the multicast routing code are found in the mrtstat struc-

ture described by Figure 14.4. Figure 14.5 shows some sample output of these statistics, j

from the net stat -gs command.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 424

ter 14

~vorks
3 over
2 con-
roved
data-
ed by

tocols
)l that

t struc-
atistics,

Section 14.3 Output Multicast Processing Revisited 399

- Used by
mrtstat member Description SNMP
nrts_mrt_lookups | #multicast route lookups
mrts_mrt_misses #multicast route cache misses
mrts_grp_lookups | #group address lookups
mrts_grp_misses #group address cache misses
mrts_no_route #multicast route lookup failures
mrts_bad_tunnel #packets with malformed tunnel options
mrts_cant_tunnel | #packets with no room for tunnel options
Figure 14.4 Statistics collected in this chapter.
netstat -gs output mrtstat members
multicast routing:
329569328 multicast route lookups mrts_mrt_lookups
9377023 multicast route cache misses mrts_mrt_misses
242754062 group address lookups mrts_grp_lookups
159317788 group address cache misses mrts_grp_misses
65648 datagrams with no route for origin mrts_no_route
0 datagrams with malformed tunnel options mrts_bad_tunnel
0 datagrams with no room for tunnel options | mrts_cant_tunnel

Figure 14.5 Sample [P multicast routing statistics.

These statistics are from a system with two physical interfaces and one tunnel inter-
face. These statistics show that the multicast route is found in the cache 98% of the time.
The group address cache is less effective with only a 34% hit rate. The route cache is
described with Figure 14.34 and the group address cache with Figure 14.21.

SNMP Variables

There is no standard SNMP MIB for multicast routing, but [McCloghrie and Farinacci
1994a] and [McCloghrie and Farinacci 1994b] describe some experimental MIBs for
multicast routers.

14.3 Multicast Output Processing Revisited

In Section 12.15 we described how an interface is selected for an outgoing multicast
datagram. We saw that ip_output is passed an explicit interface in the ip_moptions
structure, or ip_output looks up the destination group in the routing tables and uses
the interface returned in the route entry.

If, after selecting an outgoing interface, ip_output loops back the datagram, it is
queued for input processing on the interface selected for output and is considered for
forwarding when it is processed by ipintx. Figure 14.6 illustrates this process.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 425

400 IP Multicast Routing Chapter 14

Transport Transport
Protocols Protocols
ip_mloopback)e— — —

|
|
I
I
|
|
|

Tunnel Ethernet

Figure 14.6 Multicast output processing with loopback.

In Figure 14.6 the dashed arrows represent the original outgoing datagram, which
in this example is multicast on a local Ethernet. The copy created by ip_mloopback is
represented by the thin arrows; this copy is passed to the transport protocols for input.
The third copy is created when ip_mforward decides to forward the datagram
through another interface on the system. The thickest arrows in Figure 14.6 represents
the third copy, which in this example is sent on a multicast tunnel.

If the datagram is not looped back, ip_output passes it directly to ip_mforward,
where it is duplicated and also processed as if it were received on the interface that
ip_output selected. This process is shown in Figure 14.7.

Transport
Protocols

Tunnel Ethernet

Figure 14.7 Multicast output processing with no loopback.

Whenever ip_mforward calls ip_output to send a multicast datagram, it sets the
IP_FORWARDING flag so that ip_output does not pass the datagram back to
ip_mforward, which would create an infinite loop.

ip_mloopback was described with Figure 12.42. ip_mforward is described in
Section 14.8.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 426

mrouted Daemon 401

Section 14.4

14.4 mnrouted Daemon

Multicast routing is enabled and managed by a user-level process: the mrouted dae-
mon. mrouted implements the router portion of the IGMP protocol and communicates
with other multicast routers to implement multicast routing between networks. The
routing algorithms are implemented in mrouted, but the multicast routing tables are
maintained in the kernel, which forwards the datagrams.

In this text we describe only the kernel data structures and functions that support
mrout ed—we do not describe mrouted itself. We describe the Truncated Reverse Path
Broadcast (TRPB) algorithm [Deering and Cheriton 1990], used to select routes for
multicast datagrams, and the Distance Vector Multicast Routing Protocol (DVMRP),
used to convey information between multicast routers, in enough detail to make sense
of the kernel multicast code.

REC 1075 [Waitzman, Partridge, and Deering 1988] describes an old version of
DVMRP. mrouted implements a newer version of DVMRP, which is not yet docu-
mented in an REC. The best documentation for the current algorithm and protocol is
the source code release for mrouted. Appendix B describes where the source code can
be obtained.

The mrouted daemon communicates with the kernel by setting options on an
IGMP socket (Chapter 32). The options are summarized in Figure 14.8.

optname optval type Function Description

mrouted is starting
mrouted is shutting down

ip_mrouter_init
ip_mrouter_done

DVMRP_INIT
DVMRP_DONE

DVMRP_ADD_VIF struct vifectl add_vif add virtual interface

DVMRP_DEL_VIF vifi_t del_vif delete virtual interface

DVMRP_ADD_LGRP | struct lgrplctl | add_lgrp add multicast group entry for an interface
DVMRP_DEL_LGRP | struct lgrplctl | del_lgrp delete multicast group entry for an interface
DVMRP_ADD_MRT struct mrtctl add_mrt add multicast route

DVMRP_DEL_MRT struct in_addr del_mrt delete multicast route

Figure 14.8 Multicast routing socket options.

The socket options shown in Figure 14.8 are passed to rip_ctloutput (Section 32.8)
by the setsockopt system call. Figure 14.9 shows the portion of rip_ctloutput
that handles the DVMRP_xxx options.

When setsockopt is called, op equals PRCO_SETOPT and all the options are
passed to the ip_mrouter_cmd function. For the getsockopt system call, op equals
PRCO_GETOPT and EINVAL is returned for all the options.

173-187

Figure 14.10 shows the ip_mrouter_cmd function.

These “options” are more like commands, since they cause the kernel to update various data
structures. We use the term command throughout the rest of this chapter to emphasize this fact.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 427

402

IP Multicast Routing

Chapter 14

173 case DVMRP_INIT:

174 case DVMRP_DONE:

175 case DVMRP_ADD_VIF:

176 case DVMRP_DEL_VIF:

177 case DVMRP_ADD_LGRP:

178 case DVMRP_DEL_LGRP:

179 case DVMRP_ADD_MRT:

180 case DVMRP_DEL_MRT:

181 if (op == PRCO_SETOPT) {
182 error = ip_mrouter_cmd(optname, so, *m);
183 if (*m)

184 (void) m_free(*m);
185 } else

186 error = EINVAL;

187 return (error);

raw_ip.c

Figure 149 rip_ctloutput function: DVMRP_xxx socket options.

raw_ip.c

84 int
85 ip_mrouter_cmd{cmd, so, m)
86 int cmd;

87 struct socket *so;
88 struct mbuf *m;

89 {

90 int error = 0;

91 if (cmd != DVMRP_INIT && so != ip_mrouter)

92 error = EACCES;

93 else

94 switch (cmd) {

95 case DVMRP_INIT:

96 error = ip_mrouter_init (so);

97 break;

98 case DVMRP_DONE:

99 error = ip_mrouter_done();

100 break;

101 case DVMRP_ADD_VIF:

102 if (m == NULL || m->m_len < sizeof (struct vifctl))
103 error = EINVAL;

104 else

105 error = add_vif(mtod(m, struct vifctl *));
106 break;

107 case DVMRP_DEL_VIF:

108 if {m == NULL || m->m_len < sizeof (short))
109 error = EINVAL;
110 else

111 error = del_vif(mtod(m, vifi_t *));
112 break;

ip_mroute.c

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 428

Section 14.4 mrouted Daemon 403

84-92

94-142

146-157

113 case DVMRP_ADD_LGRP:

114 if (m == NULL || m->m_len < sizeof(struct lgrplcel))
115 error = EINVAL;

116 else

117 error = add_lgrp(mtod(m, struct lgrplctl *));
118 break;

119 case DVMRP_DEL_LGRP:

120 if (m == NULL |) m->m_len <« sizeof (struct lgrplctl))
121 error = EINVAL;

122 else

123 error = del_lgrp(mtod(m, struct lgrplctl *));
124 break;

125 case DVMRP_ADD_MRT:

126 if (m == NULL (| m->m_len < sizeof (struct mrtctl))
127 error = EINVAL;

128 else

129 error = add_mrt(mtod(m, struct mrtctl *));

130 break;

131 case DVMRP_DEL_MRT:

132 if (m == NULL || m->m_len < sizeof(struct in_addr))
133 error = EINVAL;

134 else

135 error = del_mrt{mtod(m, struct in_addr *));
136 break;

137 default:

138 error = EOPNOTSUPP;

139 break;

140 }

141 return (error);

142 }

ip_mroute.c
Figure 14.10 ip_mrouter_cmd function.

The first command issued by mrouted must be DVMRP_INIT. Subsequent com-
mands must come from the same socket as the DVMRP_INIT command. EACCES is
returned when other commands are issued on a different socket.

Each case in the switch checks to see if the right amount of data was included
with the command and then calls the matching function. If the command is not recog-
nized, EOPNOTSUPP is returned. Any error returned from the matching function is
posted in error and returned at the end of the function.

Figure 14.11 shows ip_mrouter_init, which is called when mrouted issues the
DVMRP_INIT command during initialization.

If the command is issued on something other than a raw IGMP socket, or if
DVMRP_INIT has already been set, EOPNOTSUPP or EADDRINUSE are returned respec-
tively. A pointer to the socket on which the initialization command is issued is saved in
the global ip_mrouter. Subsequent commands must be issued on this socket. This
prevents the concurrent operation of more than one instance of mrouted.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 429

404 IP Multicast Routing Chapter 14

— ip_mroute.c
146 static int
147 ip_mrouter_init (so}
148 struct socket *so;
149 {
150 if (so->so_type != SOCK_RAW ||
151 so->so_proto->pr_protocol != IPPROTO_IGMP)
152 return (EOPNOTSUPP) ;
153 if (ip_mrouter != NULL)
154 return (EADDRINUSE) ;
155 ip_mrouter = so;
156 return (0);
157 3 .
ip_mroute.c

Figure 14.11 ip_mrouter_init function: DVMRP_INIT command.

The remainder of the DVMRP_ xxx commands are described in the following sections.

14.5 Virtual Interfaces

i When operating as a multicast router, Net/3 accepts incoming multicast datagrams,
b duplicates them and forwards the copies through one or more interfaces. In this way,
the datagram is forwarded to other multicast routers on the internet.

An outgoing interface can be a physical interface or it can be a multicast tunnel.
Each end of the multicast tunnel is associated with a physical interface on a multicast
router. Multicast tunnels allow two multicast routers to exchange multicast datagrams
even when they are separated by routers that cannot forward multicast datagrams. Fig-
ure 14.12 shows two multicast routers connected by a multicast tunnel.

Ts tunnel Te
1

-
Network A arbitrary collection of unicast Network B
IP routers that implement LSRR

src = HS src = HS src = HS
P dst=G dst=T, dst=G
datagram) hardware multicast IP unicast hardware multicast
no LSRR LSRR = {TS,G) no LSRR

Figure 1412 A multicast tunnel.

In Figure 14.12, the source host HS on network A is multicasting a datagram to group G.
The only member of group G is on network B, which is connected to network A by a
multicast tunnel. Router A receives the multicast (because multicast routers receive all

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 430

Section 14.5 Virtual Interfaces 405

multicasts), consults its multicast routing tables, and forwards the datagram through
the multicast tunnel.

The tunnel starts on the physical interface on router A identified by the IP unicast
address T,. The tunnel ends on the physical interface on router B identified by the IP
unicast address, T,. The tunnel itself is an arbitrarily complex collection of networks
connected by IP unicast routers that implement the LSRR option. Figure 14.13 shows
how an IP LSRR option implements the multicast tunnel.

IP header Source route option e
System | — - Description
ip_src ip_dst [offset addresses
HS HS G on network A
T, HS T, 8 Ts e G on tunnel
T, HS G 12 T, seetext |after ip_dooptions on router B
T, HS G after ip_mforward on router B

Figure 14.13 LSRR multicast tunnel options.

The first line of Figure 14.13 shows the datagram sent by HS as a multicast on net-
work A. Router A receives the datagram because multicast routers receive all multi-
casts on their locally attached networks.

To send the datagram through the tunnel, router A inserts an LSRR option in the IP
header. The second line shows the datagram as it leaves A on the tunnel. The first
address in the LSRR option is the source address of the tunnel and the second address is
the destination group. The destination of the datagram is T, —the other end of the tun-
nel. The LSRR offset points to the destination group.

é The tunneled datagram is forwarded through the internet until it reaches the other
end of the tunnel on router B.

The third line of the figure shows the datagram after it is processed by
ip_dooptions on router B. Recall from Chapter 9 that ip_dooptions processes the
LSRR option before the destination address of the datagram is examined by ipintr.
Since the destination address of the datagram (T,) matches one of the interfaces on
router B, ip_dooptions copies the address identified by the option offset (G in this
example) into the destination field of the IP header. In the option, G is replaced with the
address returned by ip_rtaddr, which normally selects the outgoing interface for the
datagram based on the IP destination address (G in this case). This address is irrele-
vant, since ip_mforward discards the entire option. Finally, ip_dooptions advances
the option offset.

The fourth line in Figure 14.13 shows the datagram after ipintr calls
ip_mforward, where the LSRR option is recognized and removed from the datagram
header. The resulting datagram looks like the original multicast datagram and is pro-
cessed by ip_mforward, which in our example forwards it onto network B as a multi-
cast datagram where it is received by HG.

Multicast tunnels constructed with LSRR options are obsolete. Since the March
1993 release of mrouted, tunnels have been constructed by prepending another IP
header to the IP multicast datagram. The protocol in the new IP header is set to 4 to
indicate that the contents of the packet is another IP packet. This value is documented

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 431

406

IP Multicast Routing Chapter 14

Virtual

105-110

111-116

in RFC 1700 as the “IP in IP” protocol. LSRR tunnels are supported in newer versions
of mrouted for backward compatibility.

Interface Table

For both physical interfaces and tunnel interfaces, the kernel maintains an entry in a
virtual interface table, which contains information that is used only for multicasting.
Each virtual interface is described by a vif structure (Figure 14.14). The global variable
viftable is an array of these structures. An index to the table is stored in a vifi_t
variable, which is an unsigned short integer.

- ip_mroute.h
105 struct vif {
106 u_char v_flags; /* VIFF_ flags */
107 u_char v_threshold; /* min ttl required to forward on vif */
108 struct in_addr v_lcl_addr; /* local interface address */
109 struct in_addr v_rmt_addr; /* remote address (tunnels only) */
110 struct ifnet *v_ifp; /* pointer to interface */
111 struct in_addr *v_lcl_grps; /* list of local grps (phyints only) */
112 int v_lcl_grps_max; /* malloc’ed number of v_lcl_grps */
113 int v_1lcl_grps_n; /* used number of v_1lcl_grps */
114 u_long v_cached_group; /* last grp looked-up (phyints only) */
115 int v_cached_result; /* last look-up result (phyints only) */
116 };)
ip_mroute.h

Figure 14.14 vif structure.

The only flag defined for v_flags is VIFF_TUNNEL. When set, the interface is a
tunnel to a remote multicast router. When not set, the interface is a physical interface on
the local system. v_threshold is the multicast threshold, which we described in Sec-
tion 129. v_1lcl_addr is the unicast IP address of the local interface associated with
this virtual interface. v_rmt_addr is the unicast IP address of the remote end of an IP
multicast tunnel. Either v_1lcl_addr or v_rmt_addr is nonzero, but never both. For
physical interfaces, v_ifp is nonnull and points to the ifnet structure of the local
interface. For tunnels, v_i fp is null.

The list of groups with members on the attached interface is kept as an array of IP
multicast group addresses pointed to by v_1cl_grps, which is always null for tunnels.
The size of the array is in v_1c1_grps_max, and the number of entries that are used is
inv_lcl_grps_n. The array grows as needed to accommodate the group membership
list. v_cached_group and v_cached_result implement a one-entry cache, which
contain the group and result of the previous lookup.

Figure 14.15 illustrates the viftable, which has 32 (MAXVIFS) entries.
viftable[2] is the last entry in use, so numvifs is 3. The size of the table is fixed
when the kernel is compiled. Several members of the vi f structure in the first entry of
the table are shown. v_ifp points to an ifnet structure, v_lcl_grps points to an
array of in_addr structures. The array has 32 (v_lcl_grps_max) entries, of which
only 4 (v_1lcl_grps_n) are in use.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 432

4 Section 14.5 Virtual Interfaces 407

viftable([]: i
vfif‘p “
s : i
. v_lcl_grps in_addr{} 0
. ftabl
a F - vittable(0] v_1lcl_grps_max |32 in_addr({} 1 e
' v_lcl_grps_n 4 g in_addr{} 2 ifnet{}
[g~ R AT in_addr{} |3
e B —
t
viftable[1l] vif{}
h <131
viftable(2] vif{}
viftable[3]
h through
viftable([31]
a
nm Figure 14.15 viftable array.
-
th mrouted maintains viftable through the DVMRP _ADD VIF and
P DVMRP_DEL_VIF commands. Normally all multicast-capable interfaces on the local !
or system are added to the table when mrouted begins. Multicast tunnels are added Cl
al when mrouted reads its configuration file, usually /etc/mrouted.conf. Commands |
in this file can also delete physical interfaces from the virtual interface table or change
P the multicast information associated with the interfaces.
Is. A vifctl structure (Figure 14.16) is passed by mrouted to the kernel with the
is DVMRP_ADD_VIF command. It instructs the kernel to add an interface to the table of
ip virtual interfaces.
ch . ip_mroute.h
76 struct vifctl {
77 vifi_t wvifc_vifi; /* the index of the vif to be added */
78 u_char vifc_flags; /* VIFF_ flags (Figure 14.14) */
38, ’ 79 u_char vifc_threshold; /* min ttl required to forward on vif */ !
ad 80 struct in_addr vifc_lcl_addr; /* local interface address */ ' ‘
of 81 struct in_addr vifc_rmt_addr; /* remote address (tunnels only) */
82 };)
iﬁ p_mroute.h
- e e Figure 1416 vifctl structure.
to

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 433

408

IP Multicast Routing

Chapter 14

76-82 vifc_vifi identifies the index of the virtual interface within viftable. The
remaining four members, vifc_flags, vifc_threshold, vifc 1 cl_addr, and
vifc_rmt_addr, are copied into the vi £ structure by the add_vif function.

add_vif Function

Figure 14.17 shows the add_vi f function.

205 {
206
207
208
209
210
211
212

213
214
215
216

217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

202 static int
203 add_vif(vifcp)
204 struct vifctl *vifcp;

struct vif *vifp = viftable + vifcp->vifc_vifi;
struct ifaddr *ifa;

struct ifnet *ifp;

struct ifreq ifr;

int error, s;

static struct sockaddr_in sin =

{sizeof (sin), AF_INET};

if (vifcp->vifc_vifi >= MAXVIFS)
return (EINVAL) ;

if (vifp->v_lcl_addr.s_addr != 0)
return (EADDRINUSE) ;

/* Find the interface with an address in AF_INET family */
sin.sin_addr = vifcp->vifc_lcl_addr;
ifa = ifa_ifwithaddr ((struct sockaddr *) &sin) ;
if (ifa == 0)
return (EADDRNOTAVAIL) ;

s = splnet();

if (vifcp->vifc_flags & VIFF_TUNNEL)
vifp->v_rmt_addr = vifcp->vifc_rnt_addr;
else {
/* Make sure the interface supports multicast */
ifp = ifa->ifa_ifp;
if ((ifp->if_flags & IFF_MULTICAST) == 0) {
splx(s);
return (EOPNOTSUPP) ;
}
/*
* Enable promiscuous reception of all IP multicasts
* from the interface.
*/
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY ;

error = (*ifp->»if ioctl) (ifp, SIOCADDMULTI, {caddr_t)
if (error) {
splx(s);

return (error);

ip_mroute.c

& ifr);

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 434

14 Section 14.5

Virtual Interfaces 409

he 244 vifp->v_flags = vifep->vifc_flags;
nd 245 vifp->v_threshold = vifep->vifc_threshold;
K : 246 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
247 vifp->v_ifp = ifa->ifa_ifp;
248 /* Adjust numvifs up if the vifi is higher than numvifs */
249 if (numvifs <= vifcp-s>vifc_vifi)
250 numvifs = vifcp->vife_vifi + 1;
o 251 splx(s);
ec 252 return (0);
253 } .
ip_mroute.c
Figure 14.17 add_vif function: DVMRP_ADD_VIF command.
Validate index :,
202-216 If the table index specified by mrouted in vifc_vifi is too large, or the table :
entry is already in use, EINVAL or EADDRINUSE is returned respectively.
Locate physical interface !
217-221 ifa_ifwithaddr takes the unicast IP address in vifc_lcl_addr and returns a

225-243 For a physical interface, the link-level driver must support multicasting. The
SIOCADDMULTI command used with INADDR_ANY configures the interface to begin
receiving all IP multicast datagrams (Figure 12.32) because it is a multicast router.
Incoming datagrams are forwarded when ipintr passes them to ip_mforward.

Save muiticast information

244-253 The remaining interface information is copied from the vifct1 structure to the vif
structure. If necessary, numvifs is updated to record the number of virtual interfaces
in use.

del_vif Function

The function del_vif, shown in Figure 14.18, deletes entries from the virtual interface
table. It is called when mrouted sets the DVMR P_DEL_VIF command. !

Validate index i

pointer to the associated ifnet structure. This identifies the physical interface to be
used for this virtual interface. If there is no matching interface, EADDRNOTAVAIL is
returned.

Configure tunnel interface

222-224 For a tunnel, the remote end of the tunnel is copied from the vifctl structure to
the vif structure in the interface table.

Configure physical interface

257-268 If the index passed to del_vif is greater than the largest index in use or it refer-

R R ences an entry that is not in use, EINVAL or EADDRNOTAVATL is returned respectively.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 435

410 IP Multicast Routing Chapter 14 Sectiol

ip_mroute.c 14.6
. 257 static int
258 del_vif (vifip)
259 vifi_t *vifip;
260 {
261 struct vif *vifp = viftable + *vifip;
262 struct ifnet *ifp;
263 int i, s
264 struct ifreq ifr;
265 if (*vifip >= numvifs)
266 return (EINVAL);
267 if (vifp->v_lcl_addr.s_addr == 0)
268 return (EADDRNOTAVAIL) ;
269 s = splnet();
270 if (1 (vifp->v_flags & VIFF_TUNNEL)) {
271 if (vifp->v_lcl_grps)
272 free(vifp->v_1lcl_grps, M_MRTABLE);
273 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
274 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
275 ifp = vifp->v_ifp;
276 (*ifp~>if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);
277)
278 bzero((caddr_t) vifp, sizeof (*vifp));
279 /* Adjust numvifs down */
280 for (i = numvifs - 1; i >= 0; i--)
281 if (viftable[i].v_1lcl_addr.s_addr !'= 0)
282 break;
283 numvifs = 1 + 1; - 87—¢
284 splx(s);
285 return (0);
286) .
ip_mroute.c
Figure 14.18 del_vif function: DVMRP_DEL_VIF command.
. add_:
Delete interface _
269-278 For a physical interface, the local group table is released, and the reception of all
multicast datagrams is disabled by SIOCDELMULTI. The entry in viftable is cleared
by bzero.
Adjust interface count
279-286 The for loop searches for the first active entry in the table starting at the largest
previously active entry and working back toward the first entry. For unused entries, the
s_addr member of v_lcl_addr (an in_addr structure) is 0. numvifs is updated 291-3¢
' accordingly and the function returns.
302-3z

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 436

Section 14.6

IGMP Revisited 411

14.6

IGMP Revisited

Chapter 13 focused on the host part of the IGMP protocol. mrouted implements the
router portion of this protocol. For every physical interface, mrouted must keep track
of which multicast groups have members on the attached network. mrout ed multicasts
an IGMP_HOST_MEMBERSHIP_QUERY datagram every 120 seconds and compiles the
resulting IGMP_HOST_MEMBERSHIP_REPORT datagrams into a membership array asso-
clated with each network. This array is nof the same as the membership list we
described in Chapter 13.

From the information collected, mrouted constructs the multicast routing tables.
The list of groups is also used to suppress multicasts to areas of the multicast internet
that do not have members of the destination group.

The membership array is maintained only for physical interfaces. Tunnels are
point-to-point interfaces to another multicast router, so no group membership informa-
tion is needed.

We saw in Figure 14.14 that v_lcl_grps points to an array of IP multicast groups.
mrouted maintains this list with the DVMRP_ADD_LGRP and DVMRP_DEL_LGRP com-
mands. An lgrplctl (Figure 14.19) structure is passed with both commands.

ip_mroute.h
87 struct lgrplctl { i
88 vifi_t 1lgc_vifi; :
89 struct in_addr lgc_gaddr;
90 }; .

ip_mroute.h

Figure 14.19 1grplct1l structure.

87-90 The {interface, group} pair is identified by 1gc_vifi and lgc_gaddr. The inter- :
face index (1gc_vifi, an unsigned short) identifies a virtual interface, not a physical o
interface.

When an IGMP_HOST_MEMBERSHIP_REPORT datagram is received, the functions
shown in Figure 14.20 are called.

add_1lgrp Function

mrouted examines the source address of an incoming IGMP report to determine which
subnet and therefore which interface the report arrived on. Based on this information,
mrouted sets the DVMRP_ADD_LGRP command for the interface to update the member-
ship table in the kernel. This information is also fed into the multicast routing algo-
rithm to update the routing tables. Figure 14.21 shows the add_1lgrp function.

Validate add request

291-301 If the request identifies an invalid interface, EINVAL is returned. If the interface is
not in use or is a tunnel, EADDRNOTAVATL is returned.

If needed, expand group array

302-326 If the new group won't fit in the current group array, a new array is allocated. The
first time add_1grp is called for an interface, an array is allocated to hold 32 groups.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 437

412 IP Multicast Routing Chapter 14

lIIHHHHEH%!Il

DVMRP_ADD_LGRP option

igmp_input

ipintr

IGMP_HOST_MEMBERSHIP_REPORT
datagram

Figure 14.20 IGMP report processing.

Each time the array fills, add_lgrp allocates a new array of twice the previous size.
The new array is allocated by malloc, cleared by bzero, and filled by copying the old
array into the new one with bcopy. The maximum number of entries,
v_lcl_grps_max, is updated, the old array (if any) is released, and the new array is
attached to the vif entry withv_1cl_grps.

The “parancid” comment points out there is no guarantee that the memory allocated by
malloc contains all Os.

Add new group

327-332 The new group is copied into the next available entry and if the cache already con-
tains the new group, the cache is marked as valid.

The lookup cache contains an address, v_cached_group, and a cached lookup
result, v_cached_result. The grplst_member function always consults the cache
before searching the membership array. If the given group matches v_cached_group,
the cached result is returned; otherwise the membership array is searched.

del_1grp Function

Group information is expired for each interface when no membership report has been
received for the group within 270 seconds. mrouted maintains the appropriate timers
and issues the DVMRP_DEIL,_LGRP command when the information expires. Figure 14.22
shows del_1grp.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 438

4 Section 14.6

IGMP Revisited 413

294 {
295
296

297
298

299
300
301

302
303
304
305
306

307
308
309
310°
311
312
313
314
1 16
es, 317
is 318
319
320

by 321
322
323
324

n- 325

326
up S 327
che 328
up, 329
330

331
332 }

291 static int
292 add_lgrp(gcp)
293 struct lgrplctl *gcp;

struct vif *vifp:;
int s;

if (gcp->1lgc_vifi >= numvifs)
return (EINVAL) ;

vifp = viftable + gcp-»>lgc_vifi;
if (vifp->v_lcl_addr.s_addr == 0 || (vifp->v_flags & VIFF_TUNNE
return (EADDRNOTAVAIL) ;

/* If not enough space in existing list, allocate a larger one
s = splnet();
if (vifp-»>v_lcl_grps_n + 1 »>= vifp-»>v_lcl_grps_max) {

int num;

struct in_addr *ip;

num = vifp-»>v_lcl_grps_max;
if (num <= 0)

num = 32; /* initial number */
else

num += num; /* double last number */
ip = (struct in_addr *) malloc{num * sizeof(*ip).

M_MRTABLE, M_NOWAIT) ;

if (ip == NULL) {

splx(s);

return (ENOBUFS) ;
}
bzero(({caddr_t) ip, num * sizeof(*ip)); /* XXX paranoid
bcopy ((caddr_t) vifp->v_lcl_grps, (caddr_t) ip,

vifp->v_lcl_grps_n * sizeof(*ip)};

vifp->v_1cl_grps_max = num;

if (vifp->v_1lcl_grps)
free(vifp->v_lcl_grps, M_MRTABLE);

vifp->v_lcl_grps = ip;

splx(s);
}
vifp->v_lcl_grps[vifp->v_lcl_grps_n++] = gcp->lgc_gaddr;

if (gcp->lgc_gaddr.s_addr == vifp->v_cached_group)
vifp->v_cached_result = 1;

splx(s):
return (0);

2en o
1ers C
122 R

Figure 14.21 add_1grp function: process DVMRP_ADD_LGRP command.

ip_mroute.c

L))

*/

*/

ip_mroute.c

Cavium, |

CAVIUM-1013
nc. v. Alacritech, Inc.
Paage 439

IP Multicast Routing Chapter 14

ip_mroute.c
337 static int

338 del_lgrp(gcp)

339 struct lgrplctl *gcp;
340 {

341 struct vif *vifp;
342 int i, error, s:

343 if (gcp->lgc_vifi >= numvifs)

344 return (EINVAL);

345 vifp = viftable + gcp->lgc_vifi;

346 if (vifp-»>v_lcl_addr.s_addr == 0 || (vifp->v_flags & VIFF_TUNNEL))
347 return (EADDRNOTAVAIL) ;

348 s = splnet{};

if (gcp->lgc_gaddr.s_addr == vifp->v_cached_group)
vifp->v_cached_result = 0;

error = EADDRNOTAVATIL;
for (i = 0; i < vifp->v_1lcl_grps_n; ++1)
if (same(&gcp->lgc_gaddr, &vifp->v_lcl _grps[i))) {
error = 0;
vifp-»>v_1lcl_grps_n--;
beopy ((caddr_t) & vifp->v_lcl_grps{i + 1]
(caddr_t) & vifp->v_lcl_grps{i)
(vifp->v_lcl_grps_n - 1) * sizeof(struct in_addr));
error = 0;
break;
}
splx(s);
return (error);

ip_mroute.c
Figure 14.22 del_1lgrp function: process DVMRP_DEL_LGRP command.

Validate interface index

If the request identifies an invalid interface, EINVAL is returned. If the interface is
not in use or is a tunnel, EADDRNOTAVAIL is returned.

Update lookup cache

348-350 If the group to be deleted is in the cache, the lookup result is set to 0 (false).

Delete group

351-364 EADDRNOTAVATIL is posted in error in case the group is not found in the member-
ship list. The for loop searches the membership array associated with the interface. If
same (a macro that uses bcmp to compare the two addresses) is true, error is cleared
and the group count is decremented. bcopy shifts the subsequent array entries down
to delete the group and del_lgrp breaks out of the loop.

If the loop completes without finding a match, EADDRNOTAVAIL is returned; other-
wise 0 is returned.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 440

xr14

ute.c

route.c

ace is

mber-
lce.If
.eared
down

other-

Section 14.6 IGMP Revisited 415

368-379

380-393

grplst_member Function

During multicast forwarding, the membership array is consulted to avoid sending data-
grams on a network when no member of the destination group is present.
grplst_member, shown in Figure 14.23, searches the list looking for the given group
address.

— ip_mroute.c
368 static int
369 grplst_member (vifp, gaddr)
370 struct vif *vifp;
371 struct in_addr gaddr;
372 {
373 int i, s;
374 u_long addr;
375 mrtstat.mrts_grp_lookups++;
376 addr = gaddr.s_addr;
377 if (addr == vifp-»>v_cached_group)
378 return (vifp->v_cached_result);
379 mrtstat.mrts_grp_misses++;
380 for (i = 0; i < vifp->v_lcl_grps_n; ++i)
381 if (addr == vifp->v_lcl_grps{i].s_addr) ({
382 s = splnet();
383 vifp->v_cached_group = addr;
384 vifp->v_cached_result = 1;
385 splx(s);
386 return (1);
387 }
388 s = splnet();
389 vifp-»v_cached_group = addr;
390 vifp->v_cached_result = 0;
391 splx(s);
392 return (0);
393 } .
1p_mroute.c
Figure 14.23 grplst_member function.
Check the cache

If the requested group is located in the cache, the cached result is returned and the
membership array is not searched.

Search the membership array

A linear search determines if the group is in the array. If it is found, the cache is
updated to record the match and one is returned. If it is not found, the cache is updated
to record the miss and 0 is returned.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 441

416

IP Multicast Routing Chapter 14

14.7

Multicast Routing

As we mentioned at the start of this chapter, we will not be presenting the TRPB algo-
rithm implemented by mrouted, but we do need to provide a general overview of the
mechanism to describe the multicast routing table and the multicast routing functions in
the kernel. Figure 14.24 shows the sample multicast network that we use to illustrate
the algorithms.

tunnel

Network B

Figure 14.24 Sample multicast network.

In Figure 14.24, routers are shown as boxes and the ellipses are the multicast net-
works attached to the routers. For example, router D can multicast on network D and
C. Router C can multicast to network C, to routers A and B through point-to-point
interfaces, and to E through a multicast tunnel.

The simplest approach to multicast routing is to select a subset of the internet topol-
ogy that forms a spanning tree. If each router forwards multicasts along the spanning
tree, every router eventually receives the datagram. Figure 14.25 shows one spanning
tree for our sample network, where host S on network A represents the source of a
multicast datagram.

For a discussion of spanning trees, see [Tanenbaum 19891 or {Perlman 1992].

Figure 14.25 Spanning tree for network A.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 442

pter 14

) algo-
of the
ons in
1strate

st net-
D and
-point

topol-
tnning
inning
e of a

Section 14.7 Multicast Routing 417

We constructed the tree based on the shortest reverse path from every network back
to the source in network A. In Figure 14.25, the link between routers B and C is omitted
to form the spanning tree. The arrows between the source and router A, and between
router C and D, emphasize that the multicast network is part of the spanning tree.

If the same spanning tree were used to forward a datagram from network C, the
datagram would be forwarded along a longer path than needed to get to a recipient on
network B. The algorithm described in RFC 1075 computes a separate spanning tree for
each potential source network to avoid this problem. The routing tables contain a net-
work number and subnet mask for each route, so that a single route applies to any host
within the source subnet.

Because each spanning tree is constructed to provide the shortest reverse path to the
source of the datagram, and every network receives every multicast datagram, this pro-
cess is called reverse path broadcasting or RPB.

The RPB protocol has no knowledge of multicast group membership, so many data-
grams are unnecessarily forwarded to networks that have no members in the destina-
tion group. If, in addition to computing the spanning trees, the routing algorithm
records which networks are leaves and is aware of the group membership on each net-
work, then routers attached to leaf networks can avoid forwardi_ng datagrams onto the
network when there there is no member of the destination group present. This is called
truncated reverse path broadcasting (TRPB), and is implemented by version 2.0 of
mrouted with the help of IGMP to keep track of membership in the leaf networks.

Figure 14.26 shows TRPB applied to a multicast sent from a source on network C
and with a member of the destination group on network B.

Figure 14.26 TRPB routing for network C.

We'll use Figure 14.26 to illustrate the terms used in the Net/3 multicast routing
table. In this example, the shaded networks and routers receive a copy of the multicast
datagram sent from the source on network C. The link between A and B is not part of
the spanning tree and C does not have a link to D, since the multicast sent by the source
is received directly by C and D.

In this figure, networks A, B, D, and E are leaf networks. Router C receives the
multicast and forwards it through the interfaces attached to routers A, B, and E—even

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 443

418 IP Multicast Routing Chapter 14

though sending it to A and E is wasted effort. This is a major weakness of the TRPB
algorithm.

The interface associated with network C on router C is called the parent because it is
the interface on which router C expects to receive multicasts originating from network

~ C. The interfaces from router C to routers A, B, and E, are child interfaces. For router A,
the point-to-point interface is the parent for the source packets from C and the interface
for network A is a child. Interfaces are identified as a parent or as a child relative to the
source of the datagram. Multicast datagrams are forwarded only to the associated child
interfaces, and never to the parent interface.

Continuing with the example, networks A, D, and E are not shaded because they
are leaf networks without members of the destination group, so the spanning tree is
truncated at the routers and the datagram is not forwarded onto these networks.
Router B forwards the datagram onto network B, since there is a member of the destina-
tion group on the network. To implement the truncation algorithm, each multicast
router that receives the datagram consults the group table associated with every virtual
interface in the router’s viftable.

The final refinement to the multicast routing algorithm is called reverse path
multicasting (RPM). The goal of RPM is to prune each spanning tree and avoid sending
datagrams along branches of the tree that do not contain a member of the destination
group. In Figure 14.26, RPM would prevent router C from sending a datagram to A and
E, since there is no member of the destination group in those branches of the tree.
Version 3.3 of mrout ed implements RPM.

Figure 14.27 shows our example network, but this time only the routers and net-
works reached when the datagram is routed by RPM are shaded.

Figure 14.27 RPM routing for network C.

To compute the routing tables corresponding to the spanning trees we described,
the multicast routers communicate with adjacent multicast routers to discover the
multicast internet topology and the location of multicast group members. In Net/3,
DVMRP is used for this communication. DVMRP messages are transmitted as IGMP
P datagrams and are sent to the multicast group 224.0.0.4, which is reserved for DVMRP
| communication (Figure 12.1).

In Figure 1239, we saw that incoming IGMP packets are always accepted by 2

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 444

14 Section 14.7 Multicast Routing 419

PB il multicast router. They are passed to igmp_input, to rip_input, and then read by
mrouted on a raw IGMP socket. mrouted sends DVMRP messages to other multicast
(s 1= routers on the same raw IGMP socket.
rk For more information about RPB, TRPB, RPM, and the DVMRP messages that are :
A, o needed to implement these algorithms, see [Deering and Cheriton 19901 and the source :
wce ' code release of mrouted.
he = There are other multicast routing protocols in use on the Internet. Proteon routers i
ild implement the MOSPF protocol described in RFC 1584 [Moy 1994]. PIM (Protocol Inde- :
pendent Multicasting) is implemented by Cisco routers, starting with Release 10.2 of
ey their operating software. PIM is described in [Deering et al. 1994].
18 '
ks. “* Multicast Routing Table
na- 2"
ast o We can now describe the implementation of the multicast routing tables in Net/3. The
ual i kernel’s multicast routing table is maintained as a hash table with 64 entries
(MRTHASHSIZ). The table is kept in the global array mrttable, and each entry points
ath - to a linked list of mrt structures, shown in Figure 14.28.
ng ip_mroute.h
on 120 struct mrt {
nd ' 121 struct in_addr mrt_origin; /* subnet origin of multicasts */
ee. 122 S.trL.mt in_addr mrt_originmask; . /* S\-anet'mask for origin */
123 vifi t mrt_parent; /* incoming vif */
124 vifbitmap_t mrt_children:; /* outgoing children vifs */
et- 125 vifbitmap_t mrt_leaves:; /* subset of outgoing children vifs */
126 struct mrt *mrt_next; /* ftorward link */
127 };
ip_mroute.h
Figure 14.28 mrt structure.
120-127 mrtc_origin and mrtc_originmask identify an entry in the table.
mrtc_parent is the index of the virtual interface on which all multicast datagrams
from the origin are expected. The outgoing interfaces are identified within
mrtc_children, which is a bitmap. Outgoing interfaces that are also leaves in the
multicast routing tree are identified in mrtc_leaves, which is also a bitmap. The last
member, mrt_next, implements a linked list in case multiple routes hash to the same
array entry.
Figure 14.29 shows the organization of the multicast routing table. Each mrt struc-
ture is placed in the hash chain that corresponds to return value from the nethash
function shown in Figure 14.31.
The multicast routing table maintained by the kernel is a subset of the routing table
red, maintained within mrouted and contains enough information to support multicast for-
the 1... warding within the kernel. Updates to the kernel table are sent with the
t/3, DVMRP_ADD_MRT command, which includes the mrtctl structure shown in Fig-
MP ure 14.30.
1RP
vy a B

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 445

420 IP Multicast Routing Chapter 14
mrttable(]: mrt{} mrt{}
0 mrt_origin
1 mrt_originmask
2 mrt_parent
3 mrt_children
4 mrt_leaves
mrt_next _F_____' mrt_next mrt_next ——tl—
mrt{} mrt{}
—— mrt_next mrt_next
Figure 14.29 Multicast routing table.
ip_mroute.h
95 struct mrtctl {
96 struct in_addr mrtc_origin; /* subnet origin of multicasts */
97 struct in_addr mrtc_originmask; /* subnet mask for origin */
98 vifi_t mrtc_parent; /* incoming vif */
99 vifbitmap_t mrtc_children; /* outgoing children vifs */
100 vifbitmap_t mrtc_leaves; /* subset of outgoing children vifs */
101 }; .
ip_mroute.h
Figure 14.30 mrtctl structure.
95-101 The five members of the mrtctl structure carry the information we have already

described (Figure 14.28) between mrouted and the kernel.

The multicast routing table is keyed by the source IP address of the multicast data-
gram. nethash (Figure 14.31) implements the hashing algorithm used for the table. It
accepts the source IP address and returns a value between 0 and 63 (MRTHASHSIZ ~ 1).

- ip_mroute.c
398 static wu_long
399 nethash(in)
400 struct in_addr in;
401 {
402 u_long n;
403 n = in_netof(in);
404 while ((n & O0xff) == 0)
405 n >>= 8;
406 return (MRTHASHMOD(n)) ;
407 }

ip_mroute.c

Figure 14.31 nethash function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 446

‘e.c

te.c

Section 14.7 Multicast Routing 421

398—407

in_netof returns in with the host portion set to all Os leaving only the class A, B,
or C network of the sending host in n. The result is shifted to the right until the low-
order 8 bits are nonzero. MRTHASHMOD is

#define MRTHASHMOD (h) ((h) & (MRTHASHSIZ - 1))

The low-order 8 bits are logically ANDed with 63, leaving only the low-order 6 bits,
which is an integer in the range 0 to 63.

Doing two function calls (nethash and in_netof) to calculate a hash value is an expensive
algorithm to compute a hash for a 32-bit address.

del_mrt Function

451—462

The mrouted daemon adds and deletes entries in the kernel’s multicast routing table
through the DVMRP_ADD_MRT and DVMRP_DEL_MRT commands. Figure 14.32 shows
the del_mrt function.

— ip_mroute.c
451 static int
452 del_mrt (origin)
453 struct in_addr *origin;
454 {
455 struct mrt *rt, *prev_rt;
456 u_long hash = nethash(*origin);
457 int s;
458 for (prev_rt = rt = mrttable[hash}); rt; prev_rt = rt, rt = rt->mrt_next)
459 if (origin->s_addr == rt->mrt_origin.s_addr)
460 break;
461 if (lrt)
462 return (ESRCH);
463 s = splnet();
464 if (rt == cached_mrt)
465 cached_mrt = NULL;
466 if (prev_rt == rt)
467 mrttable[hash] = rt->mrt_next;
468 else
469 prev_rt->mrt_next = rt->mrt_next;
470 free(rt, M_MRTABLE);
471 splx(s);
472 return (0);
473 } .
ip_mroute.c

Figure 14.32 del_mrt function: process DVMRP_DEL_MRT command.

Find route entry

The for loop starts at the entry identified by hash (initialized in its declaration
from nethash). If the entry is not located, ESRCH is returned.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 447

422 1P Multicast Routing

Chapter 14

Delete route entry

463-473 If the entry was stored in the cache, the cache is invalidated. The entry is unlinked
from the hash chain and released. The if statement is needed to handle the special case

when the matched entry is at the front of the list.

add_mrt Function

The add_mrt function is shown in Figure 14.33.

411 static int
412 add_mrt (mrtcp)
413 struct mrtctl *mrtcp;

414 {

415 struct mrt *rt;

416 u_long hash;

417 int S;

418 if (rt = mrtfind (mrtcp->mrtc_origin)) {

419 /* Just update the route */

420 s = splnet();

421 rt->mrt_parent = mrtcp->mrtc_parent;

422 VIFM_COPY (mrtcp->mrtc_children, rt->mrt_children) ;
423 VIFM_COPY (mrtcp->mrtc_leaves, rt->mrt_leaves);
424 splx(s);

425 return (0);

426 }

427 s = splnet();

428 rt = (struct mrt *) malloc (sizeof (*rt), M_MRTABLE,
429 if (rt == NULL) {

430 splx(s);

431 return (ENOBUFS) ;

432 }

433 /*

434 * insert new entry at head of hash chain

435 */

436 rt-s>mrt_origin = mrtcp->mrtc_origin;

437 rt-smrt_originmask = mrtcp->mrtc_originmask;

438 rt->mrt_parent = mrtcp->mrtc_parent;

439 VIFM_COPY (mrtcp->mrtc_children, rt->mrt_children});
440 VIFM_COPY(mrtcp—>mrtc_1eaves, rt->mrt_Jleaves)

441 /* 1link into table */

442 hash = nethash (mrtcp->mrtc_origin);

443 rt->mrt_next = mrttable(hash];

444 mrttable[hash] = rt;

445 splx(s);

446 return (0);

447 '}

ip_mroute.c

Figure 14.33 add_mrt function: process DVMRP_ADD_MRT command.

ip_mroute.c

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 448

oute.c

Section 14.7 Multicast Routing 423

Update existing route

411-427 If the requested route is already in the routing table, the new information is copied
into the route and add_mrt returns.

Allocate new route

428447 An mrt structure is constructed in a newly allocated mbuf with the information
from mrtctl structure passed with the add request. The hash index is computed from
mrtc_origin, and the new route is inserted as the first entry on the hash chain.

mrtfind Function
The multicast routing table is searched with the mrtfind function. The source of the

datagram is passed to mrt find, which returns a pointer to the matching mrt structure,
or a null pointer if there is no match.

X ip_mroute.c
477 static struct mrt *
478 mrtfind(origin)
479 struct in_addr origin;
480 {
481 struct mrt *rt;
482 u_int hash;
483 int S;
484 mrtstat.mrts_mrt_lookups++;
485 if (cached_mrt != NULL &&
486 (origin.s_addr & cached_originmask) == cached_origin)
487 return (cached mrt);
488 mrtstat.mrts_mrt_misses++;
489 hash = nethash(origin);
490 for (rt = mrttablef{hash]; rt; rt = rt->mrt_next)
491 if ((origin.s_addr & rt->mrt_originmask.s_addr) ==
492 rt->mrt_origin.s_addr) {
493 s = splnet():
494 cached_mrt = rt;
495 cached_origin = rt->mrt_origin.s_addr;
496 cached_originmask = rt->mrt_originmask.s_addr;
497 splx(s);
498 return (rt):
499 }
500 return (NULL);
501 } .
ip_mroute.c
Figure 14.3¢ mrtfind function.
Check route lookup cache
477488 The given source IP address (origin) is logically ANDed with the origin mask in

the cache. If the result matches cached_origin, the cached entry is returned.

!
1
i

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 449

Chapter 14 : Se

424 IP Multicast Routing

Check the hash table

489-501 nethash returns the hash index for the route entry. The for loop searches the
hash chain for a matching route. When a match is found, the cache is updated and a
pointer to the route is returned. If a match is not found, a null pointer is refurned.

14.8 Multicast Forwarding: ip_mforward Function

Multicast forwarding is implemented entirely in the kernel. We saw in Figure 12.39 that
ipintr passes incoming multicast datagrams to ip_mforward when ip_mrouter is
nonnull, that is, when mroutedis running.

We also saw in Figure 12.40 that ip_output can pass multicast datagrams that
originate on the local host to ip_mforward to be routed to interfaces other than the one
interface selected by ip_output.

Unlike unicast forwarding, each time a multicast datagram is forwarded to an inter-
face, a copy is made. For example, if the Jocal host is acting as a multicast router and is
connected to three different networks, multicast datagrams originating on the system
are duplicated and queued for output on all three interfaces. Additionally, the datagram
may be duplicated and queued for input if the multicast loopback flag was set by the
application or if any of the outgoing interfaces receive their own transmissions.

Figure 14.35 shows a multicast datagram arriving on a physical interface.

Transport
Protocols

packet accepted by ipintr

discarded datagrams
(Figure 14.39)

incoming

multicast Tunnel Ethernet . -

Figure 14.35 Multicast datagram arriving on physical interface.

In Figure 14.35, the interface on which the datagram arrived is a member of the des-
tination group, so the datagram is passed to the transport protocols for input process-
ing. The datagram is also passed to ip_mforward, where it is duplicated and

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 450

apter 14

‘hes the
d and a
1

2.39 that
uter is

ams that
1 the one

an inter-
er and is
e system
Jatagram
iet by the

output

Ethernet

¢ of the des-
»ut process-
licated and

—

Section 14.8 Multicast Forwarding: ip_mforward Function 425

forwarded to a physical interface and to a tunnel (the thick arrows), both of which must
be different from the receiving interface.
Figure 14.36 shows a multicast datagram arriving on a tunnel.

Transport
Protocols

packet accepted only when it
arrives on a physical interface

discarded datagrams
(Figure 14.39)

ipintrq: . - - ip_mloopback)
packet arrived on tunnel
and is now queued for input
on the physical interface

ip_output

|

|

|

|
incoming
multicast Tunnel Ethernet

Figure 14.36 Multicast datagram arriving on a multicast tunnel.

In Figure 14.36, the datagram arriving on a physical interface associated with the
local end of the tunnel is represented by the dashed arrows. It is passed to
ip_mforward, which as we’ll see in Figure 14.37 returns a nonzero value because the
packet arrived on a tunnel. This causes ipintr to not pass the packet to the transport
protocols.

ip_mforward strips the tunnel options from the packet, consults the multicast
routing table, and, in this example, forwards the packet on another tunnel and on the
same physical interface on which it arrived, as shown by the thin arrows. This is OK
because the multicast routing tables are based on the virtual interfaces, not the physical
interfaces. :

In Figure 14.36 we assume that the physical interface is a member of the destination
group, so ip_output passes the datagram to ip_mloopback, which queues it for pro-
cessing by ipintr (the thick arrows). The packet is passed to ip_mforward again,
where it is discarded (Exercise 14.4). ip_mforward returns 0 this time (because the
packet arrived on a physical interface), so ipintr considers and accepts the datagram
for input processing.

We show the multicast forwarding code in three parts:

* tunnel input processing (Figure 14.37),
e forwarding eligibility (Figure 14.39), and
 forward to outgoing interfaces (Figure 14.40).

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 451

426

IP Multicast Routing

Chapter 14

ip_mroute.c =

516 int
517 ip_mforward(m, ifp)
518 struct mbuf *m;
519 struct ifnet *ifp;
520 {
521 struct ip *ip = mtod(m, struct ip *);
522 struct mrt *rt;
523 struct vif *vifp;
524 int vifi;
525 u_char *ipoptions;
526 u_long tunnel_src;
527 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 |
. 528 (ipoptions = (u_char *) (ip + 1))([1] != IPOPT_LSRR}) {
é‘ 529 /* Packet arrived via a physical interface. */
I 530 tunnel_src = 0;
i 531 } else {
532 /*
i 533 * pPacket arrived through a tunnel.
‘ 534 * A tunneled packet has a single NOP option and a
535 * two-element loose-source-and-record-route (LSRR)
536 * option immediately following the fixed-size part of
’ 537 * the IP header. At this point in processing, the IP
C 538 * header should contain the following IP addresses:
539 *
540 * original source - in the source address field
541 * destination group - in the destination address field
542 * remote tunnel end-point - in the first element.of LSRR
543 * one of this host’s addrs - in the second element of LSRR
544 *
: 545 * NOTE: RFC-1075 would have the original source and
! 546 * remote tunnel end-point addresses swapped. However,
: 547 * that could cause delivery of ICMP error messages to
548 * innocent applications on intermediate routing
549 * hosts! Therefore, we hereby change the spec.
550 */
. 551 /* Verify that the tunnel options are well-formed. */
B 552 if (ipoptions{0] != IPOPT_NOP ||
4 553 ipoptions[2] != 11 [| /* LSRR option length */
554 ipoptions (3] != 12 {| /* LSRR address pointer */
555 (tunnel_src = *(u_long *) (&ipoptions[4])) == 0) {
556 mrtstat.mrts_bad_tunnel++;
557 return (1);
558 }
559 /* Delete the tunnel options from the packet. */
560 ovbcopy ((caddr_t) (ipoptions + TUNNEL_LEN), (caddr_t) ipoptions,
561 (unsigned) (m->m_len - (IP_HDR_LEN + TUNNEL_LEN)));
562 m->m_len -= TUNNEL_LEN;
563 ip-»>ip_len -= TUNNEL_LEN;
i 564 ip->ip_hl -= TUNNEL_LEN >> 2;
i 565 } ,
% ip_mroute.c
! Figure 14.37 ip_mforward function: tunnel arrival.

Cavium, Inc

CAVIUM-1013
. v. Alacritech, Inc.
Paage 452

r14 Section 14.8 Multicast Forwarding: ip_mforward Function 427

516-526 The two arguments to ip_mforward are a pointer to the mbuf chain containing the

te.c . . P
datagram; and a pointer to the i fnet structure of the receiving interface.

Arrival on physical interface

527-530 To distinguish between a multicast datagram arriving on a physical interface and a
tunneled datagram arriving on the same physical interface, the IP header is examined
for the characteristic LSRR option. If the header is too small to contain the option, or if
the options don’t start with a NOP followed by an LSRR option, it is assumed that the
datagram arrived on a physical interface and tunnel_src is set to 0.

Arrival on a tunnel

531-558 If the datagram looks as though it arrived on a tunnel, the options are verified to
make sure they are well formed. If the options are not well formed for a multicast tun-
nel, ip_mforward returns 1 to indicate that the datagram should be discarded. Fig-
ure 14.38 shows the organization of the tunnel options.

NOP

LSRR ’
(11 (length) I
12 (offset) b

' .

IP header ‘ tunnel [destination data $ $
source group

20 bytes 111 1 4bytes 4 bytes -
N

tunnel options

IP header data

20 bytes 10 bytes
Figure 14.38 Multicast tunnel options.

In Figure 14.38 we assume there are no other options in the datagram, although that is not
required. Any other IP options will appear after the LSRR option, which is always inserted
before any other options by the multicast router at the start of the tunnel.

Delete tunnel options

559-565 If the options are OK, they are removed from the datagram by shifting the remain-
ing options and data forward and adjusting m_1len in the mbuf header and ip_len and
ip_hl in the IP header (Figure 14.38). ¢!

ip_mforward often uses tunnel_source as its return value, which is only “

e nonzero when the datagram arrives on a tunnel. When ip_mforward returns a I

nonzero value, the caller discards the datagram. For ipintr this means that a data- ‘ i :

gram that arrives on a tunnel is passed to ip_mforward and discarded by ipintr. l

The forwarding code strips out the tunnel information, duplicates the datagram, and i

sends the datagrams with ip_output, which calls ip_mloopback if the interface is a ' i

member of the destination group. !

woute.c

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 453

428 IP Multicast Routing Chapter 14

566—572

573-579

The next part of ip_mforward, shown in Figure 14.39, discards the datagram if it is
ineligible for forwarding.

ip_mroute.c
566 /*
567 * Don’t forward a packet with time-to-live of zero or one,
568 * or a packet destined to a local-only group.
569 */
570 if (ip->ip_ttl <=1 [I
571 ntohl (ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
572 return ({(int) tunnel_src);
573 /*
574 * pon't forward if we don’'t have a route for the packet’s origin.
575 */
576 if (! (rt = mrtfind(ip->ip_src))) {
577 mrtstat.mrts_no_route++;
578 return ((int) tunnel_src);
579 }
580 /*
581 * Don’'t forward if it didn’t arrive from the parent vif for its origin.
582 */
583 vifi = rt->mrt_parent;
584 if (tunnel_src == 0) {
585 if ((viftablelvifil.v_flags & VIFF_TUNNEL) 1|
586 viftable[vifi].v_ifp != ifp)
587 return ({(int) tunnel_src);
588 } else {
589 if (! (viftable[vifi].v_flags & VIFF_TUNNEL) ||
590 viftable[vifi].v_rmt_addr.s_addr != tunnel_src)
591 return ({int) tunnel_src);
592 } .
ip_mroute.c

Figure 14.39 ip_mforward function: forwarding eligibility checks.

Expired TTL or local multicast

If ip_ttl is 0 or 1, the datagram has reached the end of its lifetime and is not for-
warded. If the destination group is less than or equal to INADDR_MAX_LOCAL_GROUP
(the 224.0.0.x groups, Figure 12.1), the datagram is not allowed beyond the local net-
work and is not forwarded. In either case, tunnel_src is returned to the caller.

Version 3.3 of mrouted supports administrative scoping of certain destination groups. An
interface can be configured to discard datagrams addressed to these groups, similar to the
automatic scoping of the 224.0.0.x groups.

No route available

If mrt £ind cannot locate a route based on the source address of the datagram, the
function returns. Without a route, the multicast router cannot determine to which inter-
faces the datagram should be forwarded. This might occur, for example, when the
multicast datagrams arrive before the multicast routing table has been updated by
mrouted.

58¢

593-

ik

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 454

Section 14.8 Multicast Forwarding: ip_mforward Function 429

Arrived on unexpected interface

580592 If the datagram arrived on a physical interface but was expected to arrive on a tun-
nel or on a different physical interface, ip_mforward returns. If the datagram arrived
on a tunnel but was expected to arrive on a physical interface or on a different tunnel,
ip_mforward returns. A datagram may arrive on an unexpected interface when the
routing tables are in transition because of changes in the group membership or in the

physical topology of the network.

The final part of ip_mforward (Figure 14.40) sends the datagram on each of the

outgoing interfaces specified in the multicast route entry.

ip_mroute.c ;

593 /*
594 * For each vif, decide if a copy of the packet should be forwarded. {
595 * Forward if: :
596 * - the ttl exceeds the vif’s threshold AND i
597 * - the vif is a child in the origin’s route AND '
598 * - (the vif is not a leaf in the origin’s route OR :
599 * the destination group has members on the vif) !
600 *
601 * (This might be speeded up with some sort of cache -- someday.) i
602 */
603 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) { :
604 if (ip-»ip_ttl > vifp->v_threshold &&
605 VIFM_ISSET(vifi, rt->mrt_children) &&
606 (!VIFM_ISSET (vifi, rt->mrt_leaves) |
607 grplst_member (vifp, ip->ip_dst))) {

8 608 if (vifp->v_flags & VIFF_TUNNEL)

. - 609 tunnel_send(m, vifp);

. 610 else
611 phyint_send(m, vifp);
612 }
613 }

_ 614 return ((int) tunnel_src);
615 }

e SN 593-615

ip_mroute.c

Figure 1440 ip_mforward function: forwarding.

For each interface in viftable, a datagram is sent on the interface if

* the datagram’s TTL is greater than the multicast threshold for the interface,
¢ the interface is a child interface for the route, and
¢ the interface is not connected to a leaf network.

e
i If the interface is a leaf, the datagram is output only if there is a member of the des-
€ tination group on the network (i.e., grplst_member returns a nonzero value).

y

tunnel_send forwards the datagram on tunnel interfaces; phyint_send is used

for physical interfaces.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 455

Sh

430 IP Multicast Routing Chapter 14

phyint_send Function

To send a multicast datagram on a physical interface, phyint_send (Figure 14.41)
specifies the output interface explicitly in the ip_moptions structure it passes to
ip_cutput.

- - ip_mroute.c
616 static void

617 phyint_send(m, vifp)
618 struct mbuf *m;
619 struct vif *vifp;

620 (

621 struct ip *ip = mtod(m, struct ip *);
622 struct mbuf *mb_copy;

623 struct ip_moptions *imo;

624 int error;

625 struct ip_moptions simo;

626 mb_copy = m_copy(m, 0, M_COPYALL) ;
627 if (mb_copy == NULL)

628 return;

629 imo = &simo;

630 imo->imo_multicast_ifp = vifp->v_ifp;
631 imo->imo_multicast_ttl = ip->ip_ttl - 1;
632 imo->imo_multicast_loop = 1;

633 error = ip_output (mb_copy, NULL, NULL, IP_FORWARDING, imo);
634 }

ip_mroute.c

Figure 14.41 phyint_send function.

616~634 m_copy duplicates the outgoing datagram. The ip_moptions structure is set to
force the datagram to be transmitted on the selected interface. The TTL value is decre-
mented, and multicast loopback is enabled.
The datagram is passed to ip_output. The IP_FORWARDING flag avoids an infi-
nite loop, where ip_output calls ip_mforward again.

mbuf packet [{ IP header t-ur}nel
header g v options
28 bytes &9 20 bytes ~ 12 bytes

IP header data

) 1P
options
20 bytes

Y

m_Co

h’::;; options and data

20 bytes
Figure 14.42 Inserting tunnel options.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 456

14 Section 14.8 Multicast Forwarding: ip_mforward Function 431
tunnel_send Function
1) : To send a datagram on a tunnel, tunnel_send (Figure 14.43) must construct the appro-
to priate tunnel options and insert them in the header of the outgoing datagram. Fig-
ure 14.42 shows how tunnel_send prepares a packet for the tunnel.
2. . - - ip_mroute.c :
635 static void :
636 tunnel_send(m, vifp) e
637 struct mbuf *m; !
638 struct vif *vifp;
639 {
640 struct ip *ip = mtod(m, struct ip *);
641 struct mbuf *mb_copy, *mb_opts;
. 642 struct ip *ip_copy;
K 643 int error;
644 u_char *cp;
645 /* 1,
646 * Make sure that adding the tunnel options won't exceed the I
647 * maximum allowed number of option bytes. b
648 £/ s
649 if (ip->ip_hl > (60 - TUNNEL_LEN) >> 2) { P
650 mrtstat.mrts_cant_tunnel++;
651 return;
652 }
653 /% ;
654 * Get a private copy of the IP header so that changes to some ‘ :
e.c 655 * of the IP fields don’'t damage the original header, which is !
656 * examined later in ip_input.c. g
657 */
658 mb_copy = m_copy{m, IP_HDR_LEN, M_COPYALL);
to 659 if (mb_copy == NULL)
‘e- 660 return;
661 MGETHDR (mb_opts, M_DONTWAIT, MT_HEADER) ;
fi- 662 if (mb_opts == NULL) {
663 nm_freem(mb_copy) ; 1k
664 return; i
665) v
666 /*
667 * Make mb_opts be the new head of the packet chain. S
668 * Any options of the packet were left in the old packet chain head R
669 */
670 mb_opts->m_next = mb_copy; ¢ :
671 mb_opts->m_len = IP_HDR_LEN + TUNNEL_LEN; L
672 mb_opts->m_data += MSIZE - mb_opts->m_len; . S
ip_mroute.c :
Figure 1443 tunnel_send function: verify and allocate new header.
Wil the tunnel options fit?
635-652 If there is no room in the IP header for the tunnel options, tunnel_send returns
Ao immediately and the datagram is not forwarded on the tunnel. It may be forwarded on b
other interfaces. L

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 457

432 IP Multicast Routing Chapter 14

653—672

673-679

680—-664

Duplicate the datagram and allocate mbuf for new header and tunnel options

In the call to m_copy, the starting offset for the copy is 20 (IP_HDR_LEN). The
resulting mbuf chain contains the options and data for the datagram but not the IP
header. mb_opts points to a new datagram header allocated by MGETHDR. The data-
gram header is prepended to mb_copy. Then m_len and m_data are adjusted to
accommodate an IP header and the tunnel options.

The second half of tunnel_send, shown in Figure 14.44, modifies the headers of
the outgoing packet and sends the packet.

‘ ip_mroute.c
673 ip_copy = mtod(mb_opts, struct ip *);
674 /*
675 * Copy the base ip header to the new head mbuf.
676 */
677 *ip_copy = *ip;
678 ip_copy->ip_ttl--;
679 ip_copy->ip_dst = vifp->v_rmt_addr; /* remote tunnel end-point */
680 /*
681 * Adjust the ip header length to account for the tunnel options.
682 */
683 ip_copy->ip_hl += TUNNEL_LEN >> 2;
684 ip_copy->ip_len += TUNNEL_LEN;
685 /*
686 * aAdd the NOP and LSRR after the base ip header
687 */
688 cp = {(u_char *) (ip_copy + 1);
689 *cp++ = IPOPT_NOP;
690 *cp++ = IPOPT_LSRR;
691 *cp++ = 11; /* LSRR option length */
692 *cp++ = 8; /* LSSR pointer to second element */
693 *(u_long *) cp = vifp->v_lcl_addr.s_addr; /* local tunnel end-point */
694 cp += 4;
695 *(u_long *) cp = ip->ip_dst.s_addr; /* destination group */
696 error = ip_output (mb_opts, NULL, NULL, IP_FORWARDING, NULL);
697 })
ip_mroute.c

Figure 14.44 tunnel_send function: construct headers and send.

Modify IP header

The original IP header is copied from the original mbuf chain into the newly allo-
cated mbuf header. The TTL in the header is decremented, and the destination is
changed to be the other end of the tunnel.

Construct tunnel options

ip_hl and ip_len are adjusted to accommodate the tunnel options. The tunnel
options are placed just after the IP header: a NOP, followed by the LSRR code, the
Jength of the LSRR option (11 bytes), and a pointer to the second address in the option (8
bytes). The source route consists of the local tunnel end point followed by the destina-
tion group (Figure 14.13).

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 458

66

14

er 14

The
e IP
ata-
1to

‘s of

ute.c

ute.c

llo-
n is

nel

the
n(8
ina-

Section 14.9 Cleanup: ip_mrouter_done Function 433

665-697

14.9

Send the tunneled datagram

ip_output sends the datagram, which now looks like a unicast datagram with an
LSRR option since the destination address is the unicast address of the other end of the
tunnel. When it reaches the other end of the tunnel, the tunnel options are stripped off
and the datagram is forwarded at that point, possibly through additional tunnels.

Cleanup: ip mrouter_done Function

When mrouted shuts down, it issues the DVMRP_DONE command, which is handled by
the ip_mrouter_done function shown in Figure 14.45.

- ip_mroute.c !
161 int
162 ip_mrouter_done () ;
163 {
164 vifi_t wvifi; i
165 int i;
166 struct ifnet *ifp; ~;
167 int s; ‘
168 struct ifreq ifr; ‘
169 s = splnet();
170 /*
171 * For each phyint in use, free its local group list and
172 * disable promiscuous reception of all IP multicasts.
173 */
174 for (vifi = 0; vifi < numvifs; vifi++) |
175 if (viftable[vifi].vmlcl_addr.shaddr '= 0 &&
176 I(viftable[vifl],v_flags & VIFF_TUNNEL)) (
177 if (viftable[vifi].v*lcl_grps) :
178 free(viftable[vifi].v_lcl_grps, M_MRTABLE) ;
179 satosin(&ifr.ifr_addr)—>sinkfamily = AF_INET; i
180 satosin(&ifr.ifr_addr)—>sin_addr.s*addr = INADDR_ANY; |
181 ifp = viftable(vifi].v_ifp; é
182 (*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr); :
183 }
184) ‘
185 bzero((caddr_t) viftable, sizeof (viftable));
186 numvifs = 0;
187 /*
188 * Free any multicast route entries.
189 */
190 for (i = 0; i < MRTHASHSIZ; i++)
191 if (mrttable(i))
192 free(mrttable(i], M_MRTABLE) ;
193 bzero((caddr_t) mrttable, sizeof (mrttable));
194 cached_mrt = NULL;
195 ip_mrouter = NULL;
196 splx(s);
197 return (0);
198 } .

1p_mroute.c

Figure 14.45 ip_mrouter_done function: DVMRP_DONE command

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 459

434 P Multicast Routing

Chapter 14

161-186

187-198

14.10

This function runs at splnet to avoid any interaction with the multicast forward-
ing code. For every physical multicast interface, the list of local groups is released and
the STOCDELMULTT command is issued to stop receiving multicast datagrams (Exer-
cise 14.3). The entire vi ftable array is cleared by bzero and numvifs is set to 0.

Every active entry in the multicast routing table is released, the entire table is
cleared with bzero, the cache is cleared, and ip_mrouter is reset.

Each entry in the multicast routing table may be the first in a linked list of entries. This code
introduces a memory leak by releasing only the first entry in the list.

Summary

In this chapter we described the general concept of internetwork multicasting and the
specific functions within the Net/3 kernel that support it. We did not discuss the imple-
mentation of mrouted, but the source is readily available for the interested reader.

We described the virtual interface table and the differences between a physical
interface and a tunnel, as well as the LSRR options used to implement tunnels in Net/3.

We illustrated the RPB, TRPB, and RPM algorithms and described the kernel tables
used to forward multicast datagrams according to TRPB. The concept of parent and leaf
networks was also discussed.

Exercises

141 In Figure 14.25, how many multicast routes are needed?

142 Why is the update to the group membership cache in Figure 14.23 protected by splnet
and splx?

143 What happens when SIOCDELMULTT is issued for an interface that has explicitly joined a
multicast group with the TP_ADD_MEMBERSHIP option?

144 When a datagram arrives on a tunnel and is accepted by ip_mforward, it may be Jooped
back by ip_output when it is forwarded to a physical interface. Why does
ip_mforward discard the looped-back packet when it arrives on the physical interface?

145 Redesign the group address cache to increase its effectiveness.

15.1

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 460

St

Int

This
abst
face
cuss
fron

fron
crea

netv
grat
acce
thro
wri
WOor.

not «
tion:

gran

prot

Socket Layer

15.1 Introduction

This chapter is the first of three that cover the socket-layer code in Net/3. The socket
t abstraction was introduced with the 4.2BSD release in 1983 to provide a uniform inter-
face to network and interprocess communication protocols. The Net/3 release dis-
cussed here is based on the 4.3BSD Reno version of sockets, which is slightly different
from the earlier 4.2 releases used by many Unix vendors.

As described in Section 1.7, the socket layer maps protocol-independent requests
from a process to the protocol-specific implementation selected when the socket was
created.

To allow standard Unix I/O system calls such as read and write to operate with
network connections, the filesystem and networking facilities in BSD releases are inte-
grated at the system call level. Network connections represented by sockets are
accessed through a descriptor (a small integer) in the same way an open file is accessed
through a descriptor. This allows the standard filesystem calls such as read and :
write, as well as network-specific system calls such as sendmsg and recvmsg, to i
work with a descriptor associated with a socket. |

Our focus is on the implementation of sockets and the associated system calls and
not on how a typical program might use the socket layer to implement network applica-
tions. For a detailed discussion of the process-level socket interface and how to pro-
gram network applications see [Stevens 1990] and [Rago 1993]. _
N S_— Figure 15.1 shows the layering between the socket interface in a process and the -
protocol implementation in the kernel. b

435 L

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 461

436 Socket Layer Chapter 15 E

application

i

function call

socket
system calls

i

process

kernel

socket system call
implementations

i
i

function call
! y
k. socket layer
i functions

.
/

TCP) 4 TP4
calls via pr_usrreqgor pr_ctloutput

Figure 15.1 The socket layer converts generic requests to specific protocol operations.

splnet Processing

The socket layer contains many paired calls to splnet and splx. As discussed in Sec-
tion 1.12, these calls protect code that accesses data structures shared between the socket
layer and the protocol-processing layer. Without calls to splnet, a software interrupt
that initiates protocol processing and changes the shared data structures will confuse
the socket-layer code when it resumes.

We assume that readers understand these calls and we rarely point them out in our
discussion.

15.2 Code Introduction

The three files listed in Figure 15.2 are described in this chapter.
Global Variables

The two global variable covered in this chapter are described in Figure 15.3.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 462

Section 15.3 socket Structure 437

File Description

sys/socketvar.h socket structure definitions

kern/uipc_syscalls.c | system call implementation
kern/uipc_socket.c socket-layer functions

Figure 15.2 Files discussed in this chapter.

Variable Datatype Description
socketops | struct fileops socket implementation of I/O system calls
sysent struct sysent(] array of system call entries

Figure 15.3 Global variable introduced in this chapter.

15.3 socket Structure

A socket represents one end of a communication link and holds or points to all the
information associated with the link. This information includes the protocol to use,
state information for the protocol (which includes source and destination addresses),
queues of arriving connections, data buffers, and option flags. Figure 15.5 shows the
definition of a socket and its associated buffers.

41-42 so_type is specified by the process creating a socket and identifies the communica-
tion semantics to be supported by the socket and the associated protocol. so_type
shares the same values as pr_type shown in Figure 7.8. For UDP, so_type would be
SOCK_DGRAM and for TCP it would be SOCK_STREAM.

43 so_options is a collection of flags that modify the behavior of a socket. Fig-
ure 15.4 describes the flags.

. Kernel L
' so_options Description .

only L
S0_ACCEPTCONN . socket accepts incoming connections E
S0_BROADCAST socket can send broadcast messages
SO_DEBUG socket records debugging information
SO_DONTROUTE output operations bypass routing tables
SO_KEEPALIVE socket probes idle connections
SO_OOBINLINE socket keeps out-of-band data inline
SO_REUSEADDR socket can reuse a local address
SO_REUSEPORT socket can reuse a local address and port
SO_USELOOPBACK routing domain sockets only; sending process receives its

own routing requests
Figure 154 so_options values.
A process can modify all the socket options with the getsockopt and setsockopt system

calls except SO_ACCEPTCONN, which is set by the kernel when the listen system call is i
issued on the socket.]

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 463

438 Socket Layer Chapter 15

socketvar.h

41 struct socket {

42 short so_type; /* generic type, Figure 7.8 */

43 short so_options; /* from socket call, Figure 15.4 */

44 short so_linger; /* time to linger while closing */

45 short so_state; /* internal state flags, Figure 15.6 */

46 caddr_t so_pcb; /* protocol control block */

47 struct protosw *so_proto; /* protocol handle */

48 /*

49 * Variables for connection queueing.

50 * Socket where accepts occur is so_head in all subsidiary sockets.

51 * If so_head is 0, socket is not related to an accept.

52 * For head socket so_g0 queues partially completed connections,

53 * while so_g is a queue of connections ready to be accepted.

54 * If a connection is aborted and it has so_head set, then

55 * it has to be pulled out of either so_g0 or so_g. %

56 * We allow connections to queue up based on current gueue lengths i;

57 * and limit on number of qgueued connections for this socket.

58 */

59 struct socket *so_head; /* back pointer to accept socket */

60 struct socket *so_qgO0; /* queue of partial connections */

61 struct socket *so_q; /* queue of incoming connections */

62 short so_g0len; /* partials on so_qg0 */

63 short so_glen; /* number of connections on so_g */

64 short so_glimit; /* max number queued connections */

65 short so_timeo; /* connection timeout */

66 u_short so_error; /* error affecting connection */

67 pid_t so_pgid; /* pgid for signals */

68 u_long so_oobmark; /* chars to oob mark */

69 /*

70 * Variables for socket buffering.

71 */

72 struct sockbuf (

73 u_long sb_cc; /* actual chars in buffer */

74 u_long sb_hiwat; /* max actual char count */

75 u_long sb_mbcnt; /* chars of mbufs used */

76 u_long sb_mbmax; /* max chars of mbufs to use */

77 long sb_lowat; /* low water mark */

78 struct mbuf *sb_mb; /* the mbuf chain */

79 struct selinfo sb_sel; /* process selecting read/write */

80 short sb_flags; /* Figure 16.5 */

81 short sb_timeo; /* timeout for read/write */

82 } so_rcv, so_snd;

83 caddr_t so_tpchb; /* Wisc. protocol control block XXX */

84 void (*so_upcall) (struct socket * so, caddr_t arg, int waitf);

85 caddr_t so_upcallarg; /* Arg for above */

86 };
socketvar.h

. Figure 15.5 struct socket definition.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 464

Section 15.3

socket Structure 439

44

45

so_linger is the time in clock ticks that a socket waits for data to drain while clos-
ing a connection (Section 15.15).

So_state represents the internal state and additional characteristics of the socket.
Figure 15.6 lists the possible values for so_state.

Kernel -
so_state Description
only
SS_ASYNC socket should send asynchronous notification of I/O events
SS_NBIO socket operations should not block the process
SS_CANTRCVMORE . socket cannot receive more data from peer
SS_CANTSENDMORE . socket cannot send more data to peer
S5_ISCONFIRMING . socket is negotiating a connection request
SS_ISCONNECTED . socket is connected to a foreign socket
SS_ISCONNECTING . socket is connecting to a foreign socket
SS_ISDISCONNECTING . socket is disconnecting from peer
SS_NOFDREF . socket is not associated with a descriptor
SS_PRIV . socket was created by a process with superuser privileges
SS_RCVATMARK . process has consumed all data received before the most
recent out-of-band data was received
Figure 15.6 so_state values.

In Figure 15.6, the middle column shows that SS_ASYNC and SS_NBIO can be
changed explicitly by a process by the fcnt1 and ioct1 system calls. The other flags
are implicitly changed by the process during the execution of system calls. For exam-
ple, if the process calls connect, the SS_ISCONNECTED flag is set by the kernel when
the connection is established.

SS_NBIO and ss_ASYNC Flags

By default, a process blocks waiting for resources when it makes an /0O request. For
example, a read system call on a socket blocks if there is no data available from the net-
work. When the data arrives, the process is unblocked and read returns. Similarly,
when a process calls write, the kernel blocks the process until space is available in the
kernel for the data. If SS_NBIO is set, the kernel does not block a process during I/0 on
the socket but instead returns the error code ENOULDBLOCK.

If SS_ASYNC is set, the kernel sends the SIGIO signal to the process or process

group specified by so_pgid when the status of the socket changes for one of the fol-
lowing reasons: :

® aconnection request has completed,

* adisconnect request has been initiated,

* adisconnect request has completed,

* half of a connection has been shut down,

¢ data has arrived on a socket,

¢ data has been sent from a socket (i.e., the output buffer has free space), or
* anasynchronous error has occurred on a UDP or TCP socket.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 465

440 Socket Layer

Chapter 15

46 so_pcb points to a protocol control block that contains protocol-specific state infor-
mation and parameters for the socket. Each protocol defines its own control block
structure, so so_pcb is defined to be a generic pointer. Figure 15.7 lists the control

block structures that we discuss.

so_pcb never points to a tepeb structure directly; see Figure 22.1.

Protocol Controtl block Reference

uDr struct inpcb | Section 22.3

TCP struct inpcb | Section22.3

struct tecpcb | Section 24.5

ICMP, IGMP, raw IP { struct inpcb | Section 22.3

Route struct rawcb | Section20.3

Figure 15.7 Protocol control blocks.
47 so_proto points to the protosw structure of the protocol selected by the process
during the socket system call (Section 7.4).

48-64 Sockets with SO_ACCEPTCONN set maintain two connection queues. Connections

that are not yet established (e.g., the TCP three-way handshake is not yet complete) are
placed on the queue so_g0. Connections that are established and are ready to be
accepted (e.g., the TCP three-way handshake is complete) are placed on the queue
so_q. The lengths of the queues are kept in so_g0len and so_glen. Each queued
connection is represented by its own socket. so_head in each queued socket points to
the original socket with SO_ACCEPTCONN set. .

The maximum number of queued connections for a particular socket is controlled
by so_glimit, which is specified by a process when it calls 1isten. The kernel
silently enforces an upper limit of 5 (SOMAXCONN, Figure 15.24) and a lower limit of 0.
A somewhat obscure formula shown with Figure 15.29 uses so_glimit to control the
number of queued connections.

Figure 15.8 illustrates a queue configuration in which three connections are ready to
be accepted and one connection is being established.

65 so_timeo is a wait channel (Section 15.10) used during accept, connect, and
close processing.

66 so_error holds an error code until it can be reported to a process during the next
system call that references the socket.

67 If SS_ASYNC is set for a socket, the SIGIO signal is sent to the process (if so_pgid

is greater than 0) or to the progress group (if so_pgid is less than 0). so_pgid can be
changed or examined with the SIOCSPGRP and SIOCGPGRP ioctl commands. For
more information about process groups see [Stevens 1992].

68 so_oobmark identifies the point in the input data stream at which out-of-band data
was most recently received. Section 16.11 discusses socket support for out-of-band data
and Section 29.7 discusses the semantics of out-of-band data in TCP.

69-82 Each socket contains two data buffers, so_rcv and so_snd, used to buffer incom-
ing and outgoing data. These are structures contained within the socket structure, not

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 466

Section 15.4

System Calls 441

Bl

83-86

15.4

socket {}
so_head
so_q0 — socket {} _)
so_q —\ so_head — sockets start on this queue
— so_q0 — when TCP SYN arrives
' 1~
s0_q =

ockets move to this queue

when TCP SYN is ACKed, socket {} ‘) socket{} socket {}
accept removes sockets so_head so_head — so_head
from this queue - o a0 ‘/’ s f sohe

SO_Qq —

sS0_q sSO_g —

Figure 158 Socket connection queues.

pointers to structures. We describe the organization and use of the socket buffers in
Chapter 16.

so_tpcb is not used by Net/3. so_upcall and so_upcallarg are used only by
the NFS software in Net/3.

NEFS is unusual. In many ways it is a process-level application that has been moved into the
kernel. The so_upcall mechanism triggers NFS input processing when data is added to a
socket receive buffer. The tsleep and wakeup mechanism is inappropriate in this case, since
the NFS protocol executes within the kernel, not as a process.

The files socketvar.h and uipc_socket2.c define several macros and func-
tions that simplify the socket-layer code. Figure 15.9 summarizes them.

System Calls

A process interacts with the kernel through a collection of well-defined functions called
system calls. Before showing the system calls that support networking, we discuss the
system call mechanism itself.

The transfer of execution from a process to the protected environment of the kernel
is machine- and implementation-dependent. In the discussion that follows, we use the
386 implementation of Net/3 to illustrate implementation specific operations.

In BSD kernels, each system call is numbered and the hardware is configured to
transfer control to a single kernel function when the process executes a system call. The
particular system call is identified as an integer argument to the function. In the 386
implementation, syscall is that function. Using the system call number, syscall
indexes a table to locate the sysent structure for the requested system call. Each entry
in the table is a sy sent structure:

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 467

442 Socket Layer Chapter 15

K
i
f ——
Name Description
sosendallatonce Does the protocol associated with so require each send system call to result in a
single protocol request?
int sosendallatonce(struct socket *s0);
i soisconnecting Set the socket state to SS_ISCONNECTING.
int soisconnecting(struct socket *so);
soisconnected See Figure 15.30.
g soreadable Will a read on so retumn information without blocking?
int soreadable(struct socket *so);
sowriteable Will a write on so return without blocking?
int sowriteable(struct socket *so); -
b socantsendmore Set the SS_CANTSENDMORE flag. Wake up any processes sleeping on the send
; buffer.
int socantsendmore(struct socket *so);
socantrcvmore Set the SS_CANTRCVMORE flag. Wake up processes sleeping on the receive
buffer.
int socantrcvmore(struct socket *so);
sodisconnect Issue the PRU_DISCONNECT request.

int sodisconnect(struct socket *so);

soisdisconnecting | Clear the SS_ISCONNECTING flag. Set SS_ISDISCONNECTING,
SS_CANTRCVMORE, and SS_CANTSENDMORE flags. Wake up any processes
selecting on the socket.

int soisdisconnecting(struct socket *so);

soisdisconnected Clear the SS_ISCONNECTING, SS_ISCONNECTED, and SS_ISDISCONNECTING
flags. Set the SS_CANTRCVMORE and SS_CANTSENDMORE flags. Wake up any
processes selecting on the socket or waiting for close to complete.

int soisdisconnected(struct socket *so);

soginsque Insert so on a queue associated with head. If g is 0, the socket is added to the end
of so_q0, which holds incomplete connections. Otherwise, the socket is added
to the end of so_gq, which holds connections that are ready to be accepted.
Net/1 incorrectly placed sockets at the front of the queue.

int soginsque(struct socket *head, struct socket *so,int q);

sogremque Remove so from the queue identified by 4. The socket queues are located by
following so->so_head.

! int sogremque(struct socket *so,int g); i

Figure 15.9 Socket macros and functions.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 468

Section 15.4

System Calls 443

struct sysent {

int sy_narg; /* number of arguments */
int (*sy_call) (); /* implementing function */
}; /* system call table entry */
Here are several entries from the sysent array, which is defined in
kern/init_sysent.c. :
struct sysent sysent([] = { 5
VA ¥
{ 3, recvmsg }, /* 27 = recvmsg */
{ 3, sendmsg }, /* 28 = sendmsg */
{ 6, recvirom }, /* 29 = recvfrom */
{ 3, accept }, /* 30 = accept */
{ 3, getpeername 1}, /* 31 = getpeername */
{ 3, getsockname }, /* 32 = getsockname */
/oL */

)

For example, the recvmsg system call is the 27th entry in the system call table, has
three arguments, and is implemented by the recvmsg function in the kernel.

syscall copies the arguments from the calling process into the kernel and allo-
cates an array to hold the results of the system call, which syscall returns to the pro-
cess when the system call completes. syscall dispatches control to the kernel function
associated with the system call. In the 386 implementation, this call looks like:

struct sysent *callp;
error = (*callp-»sy_call) (p, args, rval)

i

where callpisa pointer to the relevant sysent structure, p is a pointer to the process
table entry for the process that made the system call, args represents the arguments to
the system call as an array of 32-bit words, and rval is an array of two 32-bit words to
hold the return value of the system call. When we use the term system call, we mean the
function within the kernel called by syscall, not the function within the process called
by the application.

syscall expects the system call function (i.e., what sy_call points to) to return 0
if no errors occurred and a nonzero error code otherwise. If no error occurs, the kernel
passes the values in rval back to the process as the return value of the system call (the
one made by the application). If an error occurs, syscall ignores the values in rval
and returns the error code to the process in a machine-dependent way so that the error
is made available to the process in the external variable errno. The function called by
the application returns —1 or a null pointer to indicate that errno should be examined.

The 386 implementation sets the carry bit to indicate that the value returned by
syscall is an error code. The system call stub in the process stores the code in errno
and returns -1 or a null pointer to the application. If the carry bit is not set, the value
returned by syscall is returned by the stub.

To summarize, a function implementing a system call “returns” two values: one for
the syscall function, and a second (found in rval) that syscall returns to the call-
ing process when no error occurs.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 469

444 Socket Layer Chapter 15

Example

The prototype for the socket system call is:
int socket (int domain, int type, int protocol) ;
The prototype for the kernel function that implements the system call is

struct socket_args {
int domain;
int type;
int protocol;
}i
socket (struct proc *p, struct socket_args *uap, int *retval);
When an application calls socket, the process passes three separate integers to the
: kernel with the system call mechanism. syscall copies the arguments into an array of
- 32-bit values and passes a pointer to the array as the second argument to the kernel ver-
sion of socket. The kernel version of socket treats the second argument as a pointer
to an socket_args structure. Figure 15.10 illustrates this arrangement.

protocol

process socket () l domainJ [type '

arguments copied from
user space to kernel space

syscall{) args (0] args[1] args|[2] args|[7)

kernel socket () domain type protocol

socket_args{}

Figure 1510 socket argument processing.

As illustrated by socket, each kernel function that implements a system call
declares args not as a pointer to an array of 32-bit words, but as as a pointer to a struc-

ture specific to the system call.

The implicit cast is legal only in traditional K&R C or in ANSI C when a prototype is not in
effect. If a prototype is in effect, the compiler generates a warning.

syscall prepares the return value of 0 before executing the kernel system call
function. If no error occurs, the system call function can return without clearing
*retval and syscall returns 0 to the process.

System Call Summary

Figure 15.11 summarizes the system calls relevant to networking.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 470

Section 15.5

Processes, Descriptors, and Sockets 445

Category Name Function

socket create a new unnamed socket within a specified communication

setup domain
bind assign a local address to a socket

server listen prepare a socket to accept incoming connections
accept wait for and accept connections

client connect establish a connection to a foreign socket
read receive data into a single buffer
readv receive data into multiple buffers

input recv receive data specifying options

P recvfrom receive data and address of sender
recvmsg receive data into multiple buffers, control information, and receive the
address of sender; specify receive options

write send data from a single buffer
writev send data from multiple buffers

output send send data specifying options

P sendto send data to specified address
sendmsg send data from multiple buffers and control information to a specified
address; specify send options
1/0 select wait for I/O conditions
- shutdown terminate connection in one or both directions
termination . .

close terminate connection and release socket
fcntl modify I/O semantics
ioctl miscellaneous socket operations

. . setsockopt socket or protocol options

administration Lsockop set p P

getsockopt get socket or protocol options
getsockname | getlocal address assigned to socket
getpeername | get foreign address assigned to socket

We present the setup, server, client, and termination calls in this chapter. The input
and output system calls are discussed in Chapter 16 and the administrative calls in

Chapter 17.

Figure 15.12 shows the sequence in which an application might use the calls. The
1/0 system calls in the large box can be called in any order. This is not a complete state
diagram as some valid transitions are not included; just the most common ones are

shown.

15.5

Before describing the socket system calls, we need to discuss the data structures that tie
together processes, descriptors, and sockets. Figure 15.13 shows the structures and
members relevant to our discussion. A more complete explanation of the file structures
can be found in [Leffler et al. 1989].

Figure 15.11 Networking system calls in Net/3.

Processes, Descriptors, and Sockets

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 471

446 Socket Layer Chapter 15

bind

i

write read
writev readv
sendto select readfrom
sendmsg readmsg

shutdown @

Figure 15.12 Network system call flowchart.

proc{} filedesc{} *file{)}]
; — >
P -
p_fa — fd_ofiles — fd .
file{)}
f_ops —
— f_data (socketops:
gsocket {} ; oo soo_read
b soo_write
so_type soo_ioctl
— so_proto soo_select
protosw{} ; soo_close

Figure 15.13 Process, file, and socket structures.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 472

pter 15

Section 15.6 socket System Call 447

15.6

42-55

56—-60

60—-69

The first argument to a function implementing a system call is always p, a pointer to
the proc structure of the calling process. The proc structure represents the kernel’s
notion of a process. Within the proc structure, p_fd points to a filedesc structure,
which manages the descriptor table pointed to by fd_ofiles. The descriptor table is
dynamically sized and consists of an array of pointers to file structures. Each file
structure describes a single open file and can be shared between multiple processes.

Only a single file structure is shown in Figure 15.13. It is accessed by
p->p_fd->fd_ofiles([£fd]. Within the file structure, two members are of interest to
us: £_ops and f_data. The implementation of I/O system calls such as read and
write varies according to what type of I/O object is associated with a descriptor.
f_ops points to a fileops structure containing a list of function pointers that imple-
ment the read, write, ioctl, select, and close system calls for the associated I/O
object. Figure 15.13 shows f_ops pointing to a global fileops structure, socketops,
which contains pointers to the functions for sockets.

f_data points to private data used by the associated I/O object. For sockets,
f_data points to the socket structure associated with the descriptor. Finally, we see
that so_proto in the socket structure points to the protosw structure for the proto-
col selected when the socket is created. Recall that each protosw structure is shared by
all sockets associated with the protocol. :

We now proceed to discuss the system calls.

socket System Call

The socket system call creates a new socket and associates it with a protocol as speci-
fied by the domain, type, and protocol arguments specified by the process. The
function (shown in Figure 15.14) allocates a new descriptor, which identifies the socket
in future system calls, and returns the descriptor to the process.

Before each system call a structure is defined to describe the arguments passed from
the process to the kernel. In this case, the arguments are passed within a socket_args
structure. All the socket-layer system calls have three arguments: p, a pointer to the
proc structure for the calling process; uap, a pointer to a structure containing the argu-
ments passed by the process to the system call; and retval, a value-result argument
that points to the return value for the system call. Normally, we ignore the p and
retval arguments and refer to the contents of the structure pointed to by uap as the
arguments to the system call.

falloc allocates a new file structure and slot in the fd_ofiles array (Fig-
ure 15.13). fp points to the new structure and £d is the index of the structure in the
fd_ofiles array. socket enables the file structure for read and write access and
marks it as a socket. socketops, a global fileops structure shared by all sockets, is
attached to the file structure by £ ops. The socketops variable is initialized at
compile time as shown in Figure 15.15.

socreate allocates and initializes a socket structure. If socreate fails, the error
code is posted in error, the file structure is released, and the descriptor slot cleared.
If socreate succeeds, £_data is set to point to the socket structure and establishes

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 473

448 Socket Layer

Chapter 15

42 struct socket_args {

43 int domain;

44 int type;

45 int protocol;

46 };

47 socket {(p, vap., retval)

48 struct proc *p;

49 struct socket_args *uap;

50 int *retval;

51 {

52 struct filedesc *fdp = p->p_£fd;
53 struct socket *so;

54 struct file *fp;

55 int £fd, error;

56 if (error = falloc(p, &fp, &fd))
57 return (error);

58 fp->f_flag = FREAD | FWRITE;

59 fp->f_type = DTYPE_SOCKET;

60 fp->f_ops = &socketops;

61 if (error = socreate (uap->domain,
62 fdp->fd_ofiles[£fd] = 0;

63 ffree(fp);

64 } else {

65 fp->f_data = (caddr_t) so;
66 *retval = fd;

67 }

68 return (error);

69 1}

uipc_syscalls.c

&so, uap->type, uap->protocol)) {

Figure 1514 soc

Member Value

uipc_syscalls.c

ket system call.

fo_read
fo_write
fo_ioctl
fo_select
fo_close

Figure 15.15 socketops: the global fileops structure for sockets.

the association between the descriptor and

through *retval. socket returns 0 or the error code returned by socreate.

socreate Function

Most socket system calls are divided into at

soo_read

soo_write
soo_ioctl
soo_select
soo_close

the socket. £d is returned to the process

least two functions, in the same way that

socket and socreate are. The first function retrieves from the process all the data

. CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.

Paage 474

er 15 Section 15.6 socket System Call 449

alls.c required, calls the second soxxx function to do the work, and then returns any results to
: the process. This split is so that the second function can be called directly by kernel-
based network protocols, such as NFS. socreate is shown in Figure 15.16.
43 socreate(dom, aso, type, proto) ZUPQ§0deC
44 int dom;
45 struct socket **aso;
46 int type;
47 int proto;
48
49 struct proc *p = curproc; /* XXX x/
50 struct protosw *prp;
51 struct socket *so;
52 int error;
53 if (proto)
54 prp = pffindproto(dom, proto, type);
55 else
56 prp = pffindtype(dom, type);
57 if (prp == 0 || prp->pr_usrreq == 0)
58 return (EPROTONOSUPPORT) ;
59 1f (prp->pr_type != type)
60 return (EPROTOTYPE) ;
61 MALLOC (so, struct socket *, sizeof(*so), M_SOCKET, M_WAIT);
62 bzero((caddr_t) so, sizeof(*so));
63 so->so_type = type;
64 1f (p->p_ucred->cr_uid == 0)
65 $sO->S0_state = SS_PRIV;
6h SO->SO_proto = prp;
lls.c 67 error =
68 (*prp->pr_usrreq) (so, PRU_ATTACH,
69 (struct mbuf *) 0, (struct mbuf *) proto, (struct mbuf *) Q);
70 if (error) {
71 SO->s0O_state |= SS_NOFDREF;
72 sofree(so);
73 return (error)
74 }
75 *aso = so;
76 return (0);
77 '}
uipc_socket.c
Figure 1516 socreate function.
43-52 The four arguments to socreate are: dom, the requested protocol domain (e.g., b
‘55 PF_INET); aso, in which a pointer to a new socket structure is returned; type, the ‘
requested socket type (e.g., SOCK_STREAM); and proto, the requested protocol . o
Find protocol switch table ‘
53-60 If proto is nonzero, pffindproto looks for the specific protocol requested by the
. process. If proto is 0, pffindtype looks for a protocol within the specified domain
hat ' with the semantics specified by type. Both functions return a pointer to a protosw '
ata structure of the matching protocol or a null pointer (Section 7.6).

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 475

450 Socket Layer

Chapter 15

61-66

67—69

70-77 Returning to socreate, the

socket and issues the PRU_ATTACH request to notify the protocol of the new end point. -
DP, to allocate and initialize:;

Allocate and initialize socket structure
ew socket structure, fills it with Os, records the type, and,

socreate allocates a n
PRIV in the socket structure.

if the calling process has superuser privileges, turns on SS_

PRU_ATTACH request

The first example of the protocol-independent socket layer making a protocol-
specific request appears in socreate. Recall from Section 7.4 and Figure 15.13 that
so->so_proto->pr_usrreq is a pointer to the user-request function of the protocol
associated with socket so. Every protocol provides this function in order to handle
communication requests from the socket layer. The prototype for the function is:

int pr_usrreg(struct socket *so, int req, struct mbuf *m0, *ml, *m2);

The first argument, so, is a pointer to the relevant socket and req is a constant identi-
fying the particular request. The next three arguments (m0, m1, and m2) are different for
each request. They are always passed as pointers to mbuf structures, even if they have
another type. Casts are used when necessary to avoid warnings from the compiler.

Figure 15.17 shows the requests available through the pr_usrreq function. The
semantics of each request depend on the particular protocol servicing the request.

R + Arguments Description
eques 41 escripti
que m0 ml m2 P

abort any existing connection

PRU_ABORT

PRU_ACCEPT address wait for and accept a connection
PRU_ATTACH protocol a new socket has been created

PRU_BIND address bind the address to the socket

PRU_CONNECT address establish association or connection to address
PRU_CONNECT2 socket2 connect two sockets together

socket is being closed

PRU_DETACH

PRU_DISCONNECT break association between socket and foreign address
PRU_LISTEN begin listening for connections

PRU_PEERADDR buffer return foreign address associated with socket
PRU_RCVD flags process has accepted some data

PRU_RCVOOB buffer | flags receive OOB data

PRU_SEND data address | control | send regular data

PRU_SENDOOB data address | control | send OOB data

PRU_SHUTDOWN end communication with foreign address
| PRU_SOCKADDR buffer return local address associated with socket J

Figure 15.17 pr_usrreq requests.

PRU_CONNECT? is supported only within the U
ets to each other. Unix pipes are implemented in this way.

Cleanup and return
function attaches the protocol switch table to the new

This request causes most protocols, including TCP and U
any structures required to support the new end point.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 476

nix domain, where it connects two local sock-

Section 15.7 getsock and sockargs Functions 451

Superuser Privileges

15.7

754-767

768—-783

Figure 15.18 summarizes the networking operations that require superuser access.

Superuser

Function Process | Socket Description Reference

in_control . interface address, netmask, and destination Figure 6.14
address assignment

in_control . broadcast address assignment Figure 6.22
in_pcbbind . binding to an Internet port less than 1024 Figure 22.22
ifioctl d interface configuration changes Figure 4.29
ifioctl . multicast address configuration (see text) Figure 12.11
rip_usrreq . creating an ICMP, IGMP, or raw IP socket Figure 32.10
slopen . associating a SLIP device with a tty device Figure 5.9]

Figure 15.18 Superuser privileges in Net/3.

The multicast ioct1 commands (STOCADDMULTT and STOCDELMULTI) are accessible to non-
superuser processes when they are invoked indirectly by the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP socket options (Sections 12.11 and 12.12).

In Figure 15.18, the “Process” column identifies requests that must be made by a
superuser process, and the “Socket” column identifies requests that must be issued on a
socket created by a superuser process (i.e., the process does not need superuser privi-
leges if it has access to the socket, Exercise 15.1). In Net/3, the suser function deter-
mines if the calling process has superuser privileges, and the SS_PRTV flag determines
if the socket was created by a superuser process.

Since rip_usrreq tests SS_PRIV immediately after creating the socket with
socreate, we show this function as accessible only from a superuser process.

getsock and sockargs Functions

These functions appear repeatedly in the implementation of the socket system calls.
getsock maps a descriptor to a file table entry and sockargs copies arguments from
the process to a newly allocated mbuf in the kernel. Both functions check for invalid
arguments and return a nonzero error code accordingly.

Figure 15.19 shows the get sock function.

The function selects the file table entry specified by the descriptor fdes with fdp, a
pointer to the filedesc structure. getsock returns a pointer to the open file structure
in fpp or an error if the descriptor is out of the valid range, does not point to an open
file, or does not have a socket associated with it.

Figure 15.20 shows the sockargs function.

The mechanism described in Section 15.4 copies pointer arguments for a system call
from the process to the kernel but does not copy the data referenced by the pointers,
since the semantics of each argument are known only by the specific system call and not

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 477

452

Socket Layer

754
755
756
757
758
759

760
761
762
763
764
765
766
767

768
769
770
771
772
773
774
775

776
7717
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

by the generic system call mechani

getsock (fdp, fdes, fpp)
struct filedesc *fdp;
int fdes;

struct file **fpp;

{
struct file *fp;

if ((unsigned) fdes >= fdp->fd nfiles I
(fp = fdp~>fd_ofiles[fdes]) == NULL)
return (EBADF);

if (fp->f_type \= DTYPE_SOCKET)
return (ENOTSOCK) ;

*fpp = fp;

return (0);

}

Figure 15.19 getsock function.

sockargs (mp, buf, puflen, type)
struct mbuf **mp;

Chapter 15 Seci
uipc_syscalls.c —if—-
784
786
uipc_syscalls.c
uipc_syscalls.c
15.

caddr_t buf;
int buflen,
{

type;

struct sockaddr *sa;
struct mbuf *m;
int exrror;

if ((u_int) buflen > MLEN) {
return (EINVAL);

}

m = m_get (M _WAIT,

if (m == NULL)
return (ENOBUFS);

m->m_len = buflen;

type);

error = copyin(buf, mtod(m, caddr_t), (u_int) buflen};

if (error)
(void) m_£free(m);
else {
*mp = M
if (type == MT_SONAME) {
sa = mtod(m, struct sockaddr *);
sa->sa_len = buflen;

}
return (error);

}

Figure 15.20 sockargs function.

sm. Several system calls use sockargs to follow the

uipc_syscalls.c

pointer arguments and copy the referenced data from the process into a newly allocated

mbuf within the kernel.
pointed to by bind’s second argument from t

For example, sockargs copies

the local socket address

he process to an mbuf.

. CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.

Paage 478

s.C

he
ed
2SS

Section 15.8 bind System Call ~ 453

784-785

786-794

15.8

70-82

83-90

If the data does not fit in a single mbuf or an mbuf cannot be allocated, sockargs
returns EINVAL or ENOBUFS. Note that a standard mbuf is used and not a packet
header mbuf. copyin copies the data from the process into the mbuf. The most com-
mon error from copyin is EACCES, returned when the process provides an invalid
address.

When an error occurs, the mbuf is discarded and the error code is returned. If there
is no error, a pointer to the mbuf is returned in mp, and sockargs returns 0.

If type is MT_SONAME, the process is passing in a sockaddr structure. sockargs
sets the internal length, sa_len, to the length of the argument just copied. This ensures
that the size contained within the structure is correct even if the process did not initial-
ize the structure correctly.

Net/3 does include code to support applications compiled on a pre-4.3BSD Reno system,
which did not have an sa_len member in the sockaddr structure, but that code is not shown
in Figure 15.20.

bind System Call

The bind system call associates a local network transport address with a socket. A
process acting as a client usually does not care what its local address is. In this case, it
isn’t necessary to call bind before the process attempts to communicate; the kernel
selects and implicitly binds a local address to the socket as needed.

A server process almost always needs to bind to a specific well-known address. If
so, the process must call bind before accepting connections (TCP) or receiving data-
grams (UDP), because the clients establish connections or send datagrams to the well-
known address.

A socket’s foreign address is specified by connect or by one of the write calls that
allow specification of foreign addresses (sendto or sendmsg).

Figure 15.21 shows bind.

The arguments to bind (passed within a bind_args structure) are: s, the socket
descriptor; name, a pointer to a buffer containing the transport address (e.g., a
sockaddr_in structure); and namelen, the size of the buffer.

getsock returns the file structure for the descriptor, and sockargs copies the
local address from the process into an mbuf, sobind associates the address specified by
the process with the socket. Before bind returns sobind’s result, the mbuf holding the
address is released.

Technically, a descriptor such as s identifies a fi1e structure with an associated socket struc-
ture and is not itself a socket structure. We refer to such a descriptor as a socket to simplify
our discussion.

We will see this pattern many times: arguments specified by the process are copied
into an mbuf and processed as necessary, and then the mbuf is released before the sys-
tem call returns. Although mbufs were designed explicitly to facilitate processing of
network data packets, they are also effective as a general-purpose dynamic memory
allocation mechanism.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 479

454 Socket Layer Chapter 15

uipc_syscalls.c

70 struct bind_args {

71 int S;

72 caddr_t name;

73 int namelen;
74 };

75 bind(p, uap. retval)
76 struct proc *p;
77 struct bind_args *uap;

78 int *retval;
79 {
80 struct file *fp;
81 struct mbuf *nam;
82 int error;
83 if (error = getsock (p->p_fd, vap->s, &fp))
84 return (error);
85 if (error = sockargs(&nam, uap->name, uap->nanmelen, MT_SONAME))
86 return (error);
87 error = sobind((struct socket *) fp->f_data, nam);
88 m_freem(nam) ;
89 return (error);
90 1}
uipc_syscalls.c

Figure 1521 bind function.

Another pattern illustrated by bind is that retval is unused in many system calls.
In Section 15.4 we mentioned that retval is always initialized to O before syscall
dispatches control to a system call. If 0 is the appropriate return value, the system calls
do not need to change retval.

sobind Function

sobind, shown in Figure 15.22, is a wrapper that issues the PRU_BIND request to the

protocol associated with the socket.
uipc_socket.c

78 sobind{so, nam)
79 struct socket *so;
80 struct mbuf *nam;

81 {
82 int s = splnet{);
83 int exror; 5

84 error =
85 (*so-»>so_proto->pr_usrreq) (so, PRU_BIND,
i 86 (struct mbuf *) 0, nam, (struct mbuf *) 0);
87 splx(s);
88 return (error);
89 1} :
uipc_socket.£

Figure 15.22 sobind function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 480

15 Section 15.9 listen System Call 455

5.0 . 78-89 sobind issues the PRU_BIND request. The local address, nam, is associated with '
the socket if the request succeeds; otherwise the error code is returned.
15.9 listen System Call
The listen system call, shown in Figure 15.23, notifies a protocol that the process is
prepared to accept incoming connections on the socket. It also specifies a limit on the
number of connections that can be queued on the socket, after which the socket layer
refuses to queue additional connection requests. When this occurs, TCP ignores incom-
ing connection requests. Queued connections are made available to the process when it
calls accept (Section 15.11).
- uipc_syscalls.c
91 struct listen_args {
92 int S;
93 int backlog;
94 };
95 listen(p, uap, retval)
96 struct proc *p;
, s 97 struct listen_args *uap;
Is.c 98 int *retval ;
99 |
100 struct file *fp;
1Is } 101 int error;
11 102 if (error = getsock(p->p_fd, uap->s, &fp))
ills - 103 return (error);
104 return (solisten((struct socket *) fp->f_data, uap->backlog)) ;
105 }
uipc_syscalls.c
Figure 15.23 listen system call.
the 91-98 The two arguments passed to 1isten specify the socket descriptor and the connec-
‘ tion queue limit.
et.c . 99-105 getsock returns the f£ile structure for the descriptor, s, and solisten passes the
listen request to the protocol layer.
solisten Function
This function, shown in Figure 15.24, issues the PRU_LISTEN request and prepares the
socket to receive connections. _
o 90~109 After solisten issues the PRU_LISTEN request and pr_usrreq returns, the
i socket is marked as ready to accept connections. SS_ACCEPTCONN is not set if a con-
: nection is queued when pr_usrreq returns.
; The maximum queue size for incoming connections is computed and saved in
ket.c so_glimit. Here Net/3 silently enforces a lower limit of 0 and an upper limit of 5
] (SOMAXCONN) backlogged connections. ;

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 481

456

Socket Layer Chapter 15

15.10

uipc_socket.c
90 solisten(so, backlog)

91 struct socket *so;

92 int backlog;

93 {

94 int s = splnet(), error;

95 error =

96 (*so->so_proto->pr_usrreq) (so, PRU_LISTEN,
97 (struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0);
98 if (error) {

99 splx(s};
100 return (error);
101 }
102 if (so->so_g == 0)
103 so->so_options |= SO_ACCEPTCONN;
104 if (backlog < 0)
105 backlog = 0;

106 so->so_glimit = min(backlog, SOMAXCONN) ;

107 splx(s);

108 return (0);

109 3}

uipc_socket.c

Figure 15.24 solisten function.

tsleep and wakeup Functions

When a process executing within the kernel cannot proceed because a kernel resource is
unavailable, it waits for the resource by calling tsleep, which has the following proto-
type:

int tsleep(caddr_t chan, int pri, char *mesg, int timeo);

The first argument to tsleep, chan, is called the wait channel. It identifies the par-
ticular resource or event such as an incoming network connection, for which the process
is waiting. Many processes can be sleeping on a single wait channel. When the
resource becomes available or when the event occurs, the kernel calls wakeup with the
wait channel as the single argument. The prototype for wakeup is:

void wakeup(caddr_t chan);

All processes waiting for the channel are awakened and set to the run state. The
kernel arranges for tsleep to return when each of the processes resumes execution.

The pri argument specifies the priority of the process when it is awakened, as well
as several optional control flags for tsleep. By setting the PCATCH flag in pri, tsleep
also returns when a signal arrives. mesg is a string identifying the call to tsleep and is
included in debugging messages and in ps output. timeo sets an upper bound on the
sleep period and is measured in clock ticks.

Figure 15.25 summarizes the return values from tsleep.

A process never sees the ERESTART error because it is handled by the syscall function and
never returned to a process.

E>

15

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 482

15 Section 15.11 accept System Call 457

tsleep() Description

0 The process was awakened by a matching call to wakeup.
EWOULDBLOCK | The process was awakened after sleeping for timeo clock ticks and before
the matching call to wakeup.

ERESTART A signal was handled by the process during the sleep and the pending
system call should be restarted.
EINTR A signal was handled by the process during the sleep and the pending

system call should fail.

Figure 15.25 tsleep return values.

Because all processes sleeping on a wait channel are awakened by wakeup, we
always see a call to tsleep within a tight loop. Every process must determine if the
resource is available before proceeding because another awakened process may have
claimed the resource first. If the resource is not available, the process calls tsleep once
again.

It is unusual for multiple processes to be sleeping on a single socket, so a call to
wakeup usually causes only one process to be awakened by the kernel.

For a more detailed discussion of the sleep and wakeup mechanism see [Leffler et
ket.c al. 1989].

Example

One use of multiple processes sleeping on the same wait channel is to have multiple
e is server processes reading from a UDP socket. Each server calls recvfrom and, as long
oto- as no data is available, the calls block in tsleep. When a datagram arrives on the
socket, the socket layer calls wakeup and each server is placed on the run queue. The
first server to run receives the datagram while the others call tsleep again. In this
way, incoming datagrams are distributed to multiple servers without the cost of starting

par- a new process for each datagram. This technique can also be used to process incoming ;
cess connection requests in TCP by having multiple processes call accept on the same I

the socket. This technique is described in [Comer and Stevens 1993]. {
1 the i

15.11 accept System Call L

The After calling listen, a process waits for incoming connections by calling accept,
. which returns a descriptor that references a new socket connected to a client. The origi- B
well v nal socket, s, remains unconnected and ready to receive additional connections. ; *
eep accept returns the address of the foreign system if name points to a valid buffer. '
dis | The connection-processing details are handled by the protocol associated with the
1 the socket. For TCP, the socket layer is notified when a connection has been established
¥ (ie., when TCP’s three-way handshake has completed). For other protocols, such as -
OSI's TP4, tsleep returns when a connection request has arrived. The connection is !
d : completed when explicitly confirmed by the process by reading or writing on the
na ERats Kiens-ui

socket.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 483

106
107
108
109
110

111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

¥ 458 Socket Layer ‘ Chapter 15

Figure 15.26 shows the implementation of accept.

uipc_syscalls.c
struct accept_args {

ant S;

caddr_t name;

int *anamelen;
};
accept (p, uap, retval)

struct proc *p;
struct accept_args *uap;
int *retval;
{
struct file *fp;
struct mbuf *nam;
int namelen, error, s;
struct socket *so;

if (uap->name && (error = copyin((caddr_t) uap->anamelen,
(caddr_t) & namelen, sizeof (namelen))))
return (error);
if (error = getsock (p->p_fd, uap->s, &fp))
return (error);
S = splnet();
SO = (struct socket *) fp->f_data;
if ((so->so_options & SO_ACCEPTCONN) == 0) {
splx(s);
return (EINVAL) ;
}
if ((so->so_state & SS_NBIO) && so->so_glen == 0) {
splx(s);
return (EWOULDBLOCK) ;
}
while (so->so_glen == 0 && SO->s0_error == 0) {
if (so->so_state & SS_CANTRCVMORE) {
$SO0->s0_error = ECONNABORTED;
break;
}
if (error = tsleep((caddr_t) & so-»>so_timeo, PSOCK
netcon, 0)) {

| PCATCH,
splx(s);
return (error);

}

if (so->so_error) {
error = SO->SO_error;
SO->s0_error = 0;
splx(s};
return (error);

}

if (error = falloc(p, &fp, retval)) {
splx(s});
return (error);

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 484

Section 15.11 accept System Call 459

106-114

116-134

135-145

146-151

156 { struct socket *aso = so-»so_g;

157 if (sogremque(aso, 1) == 0)

158 panic("accept");

159 SO = aso;

160 }

161 fp->f_type = DTYPE_SOCKET;

162 fp->f_flag = FREAD | FWRITE;

163 fp->f_ops = &socketops;

164 fp->f_data = (caddr_t) so;

165 nam = m_get (M_WAIT, MT_SONAME) ;

166 (void) soaccept(so, nam);

167 if (uap->name) {

168 if (namelen > nam->m_len)

169 namelen = nam->m_len;

170 /* SHOULD COPY OUT A CHAIN HERE */

171 if ((error = copyout {mtod(nam, caddr_t), (caddr_t) uap->name,
172 (u_int) namelen)) == 0)
173 error = copyout ((caddr_t) & namelen,

174 (caddr_t) uap->anamelen, sizeof (*uap->anamelen));
175 }

176 m_freem(nam) ;

177 splx(s);

178 return {error);

179 }

uipc_syscalls.c
Figure 15.26 accept system call.

The three arguments to accept (in the accept_args structure) are: s, the socket
descriptor; name, a pointer to a buffer to be filled in by accept with the transport
address of the foreign host; and anamelen, a pointer to the size of the buffer.

Validate arguments

accept copies the size of the buffer (*anamelen) into namelen, and getsock
returns the f£ile structure for the socket. If the socket is not ready to accept connec-
tions (i.e., 1isten has not been called) or nonblocking I/O has been requested and no
connections are queued, EINVAL or EKOULDBLOCK are returned respectively.

Wait for a connection

The while loop continues until a connection is available, an error occurs, or the
socket can no longer receive data. accept is not automatically restarted after a signal is
caught (tsleep returns EINTR). The protocol layer wakes up the process when it
inserts a new connection on the queue with sonewconn.

Within the loop, the process waits in t s1eep, which returns 0 when a connection is
available. If tsleep is interrupted by a signal or the socket is set for nonblocking
semantics, accept returns EINTR or ENOULDBLOCK (Figure 15.25).

Asynchronous errors

If an error occurred on the socket during the sleep, the error code is moved from the
socket to the return value for accept, the socket error is cleared, and accept returns.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 485

Socket Layer

Chapter 15

152-164

167-179

soaccept Function

It is common for asynchronous events to change the state of a socket. The protocol
processing layer notifies the socket layer of the change by setting so_error and wak-
ing any process waiting on the socket. Because of this, the socket layer must always
examine so_error after waking to see if an error occurred while the process was
sleeping.

Associate socket with descriptor

falloc allocates a descriptor for the new connection; the socket is removed from

the accept queue by sogremque and attached to the file structure. Exercise 15.4 dis-
cusses the call to panic.

Protocol processing

accept allocates a new mbuf to hold the foreign address and calls soaccept to do
protocol processing. The allocation and queueing of new sockets created during con-
nection processing is described in Section 15.12. If the process provided a buffer to
receive the foreign address, copyout copies the address from nam and the length from
namelen to the process. If necessary, copyout silently truncates the name to fit in the
process’s buffer. Finally, the mbuf is released, protocol processing enabled, and accept
returns.

Because only one mbuf is allocated for the foreign address, transport addresses
must fit in one mbuf. Unix domain addresses, which are pathnames in the filesystem
(up to 1023 bytes in length), may encounter this limit, but there is no problem with the
16-byte sockaddr_in structure for the Internet domain. The comment on line 170
indicates that this limitation could be removed by allocating and copying an mbuf
chain.

soaccept, shown in Figure 15.27, calls the protocol layer to retrieve the client’s address
for the new connection.

uipc_socket.c
184 soaccept (so, nam)

185 struct socket *so;
186 struct mbuf *nam;

187 {
188 int s = splnet();
189 int error;

190 if ((so-»so_state & SS_NOFDREF) == 0)

191 panic("soaccept: !NOFDREF");

192 so->so_state &= ~SS_NOFDREF;

193 error = (*so->so_proto->pr_usrreq) (so, PRU_ACCEPT,

194 (struct mbuf *) 0, nam, (struct mbuf *) 0);
195 splx(s);

196 return (error);

197 }

uipc_socket.c
Figure 15.27 soaccept function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 486

Section 15.12

sonewconn and soisconnected Functions 461

184-197 soaccept ensures that the socket is associated with a descriptor and issues the

PRU_ACCEPT request to the protocol. After pPr_usrreq returns, nam contains the name
of the foreign socket.

15.12 sonewconn and soisconnected Functions

In Figure 15.26 we saw that accept waits for the protocol layer to process incoming

connection requests and to make them available through so_q. Figure 15.28 uses TCP
to illustrate this process.

accept

socket{)

soaccept

— so_g0
so_g —

socket{} socket {} 4
s incomplete complete
+ .connection . - connection
4 \ 4

’ \ ’
/ \ /

/ \ /
/
soginsque

sonewconn

soisconnected

tcp_input

send SYN and ACK

. . final ACK of
Bl incoming TCP SYN TCP handshake

Figure 15.28 Incoming TCP connection processing.

In the upper left corner of Figure 15.28, accept calls ts leep to wait for incoming
connections. In the lower left, tcp_input processes an incoming TCP SYN by calling
sonewconn to create a socket for the new connection (Figure 28.7). sonewconn queues
the socket on so_q0, since the three-way handshake is not yet complete.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 487

462 Socket Layer Chapter 15

e

123-129

When the final ACK of the TCP handshake arrives, tcp_input calls
soisconnected (Figure 29.2), which updates the new socket, moves it from so_go0 to
so_q, and wakes up any processes that had called accept to wait for incoming con-
nections.

The upper right corner of the figure shows the functions we described with Fig-
ure 15.26. When tsleep returns, accept takes the connection off so_qg and issues the
PRU_ATTACH request. The socket is associated with a new file descriptor and returned
to the calling process.

Figure 15.29 shows the sonewconn function.

uipc_socket2.c
123 struct socket *

124 sonewconn (head, connstatus)
125 struct socket *head;

126 int connstatus;
127 {
128 struct socket *so;
129 int soqueue = connstatus ? 1 : 0;
130 if (head-»>so_glen + head-»so_g0len > 3 * head-»so_glimit / 2)
131 return ((struct socket *) 0);
132 MALLOC (so, struct socket *, sizeof (*so), M_SOCKET, M_DONTWAIT) ;
133 if (so == NULL)
134 return {(struct socket *) 0);
135 bzero((caddr_t) so, sizeof (*s0))i
136 so->so_type = head->so_type;
137 so->so_options = head->so_options & ~SO_ACCEPTCONN;
138 so->so_linger = head->so_linger;
139 so->so_state = head->so_state | SS_NOFDREF;
140 so->so_proto = head->so_proto;
141 so->so_timeo = head->so_timeo;
142 so->so_pgid = head->so_pgid;
143 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ;
144 soginsque (head, so, sogueue) ;
145 if ((*so—>so_protof>pr_usrreq) (so, PRU_ATTACH,
146 (struct mbuf *) 0, (struct wbuf *) 0, (struct mbuf *) 0)) {
147 (void) sogremque (sO, sogueue) ;
148 (void) free((caddr_t) so, M_SOCKET) ;
149 return {{struct socket *) 0);
150 }
151 if (connstatus) {
152 sorwakeup (head) ;
153 wakeup ((caddr_t) & head->so_timeo) ;
154 so->so_state |= connstatus;
155 }
156 return (so);
157 }
uipc_socket2.c
Figure 15.29 sonewconn function.
The protocol layer passes head, a pointer to the socket that is accepting the incom-

ing connection, and connstatus, a flag to indicate the state of the new connection. For
TCP, connstatus is always 0.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.

Paage 488

i3

13

14

14

- Gection 15.12

sonewconn and soisconnected Functions 463

130-131

132-143

144

145-150

151-157

78-87

For TP4, connstatus is always SS_ISCONFIRMING. The connection is implicitly confirmed
when a process begins reading from or writing to the socket.

Limit incoming connections
sonéwconn prohibits additional connections when the following inequality is true:
Ixso_glimit
2

This formula provides a fudge factor for connections that never complete and guaran-
tees that 1isten (fd, 0) allows one connection. See Figure 18.23 in Volume 1 for an
additional discussion of this formula.

so_glen+so_qg0Olen >

Allocate new socket

A new socket structure is allocated and initialized. If the process calls
setsockopt for the listening socket, the connected socket inherits several socket
options because so_options, so_linger, so_pgid, and the sb_hiwat values are
copied into the new socket structure.

Queue connection

soqueue was set from connstatus on line 129. The new socket is inserted onto
so_q0 if soqueue is 0 (e.g., TCP connections) or onto so_q if connstatus is nonzero
(e.g., TP4 connections).
Protocol processing

The PRU_ATTACH request is issued to perform protocol layer processing on the new
connection. If this fails, the socket is dequeued and discarded, and sonewconn returns
a null pointer.
Wakeup processes

If connstatus is nonzero, any processes sleeping in accept or selecting for read-
ability on the socket are awakened. connstatus is logically ORed with so_state.

This code is never executed for TCP connections, since connstatus is always 0 for
TCP.

Protocols, such as TCP, that put incoming connections on so_g0 first, call
soisconnected when the connection establishment phase completes. For TCP, this
happens when the second SYN is ACKed on the connection.

Figure 15.30 shows soisconnected.

Queue incomplete connections

The socket state is changed to show that the connection has completed. When
soisconnected is called for incoming connections, (i.e., when the local process is call-
ing accept), head is nonnull.

If sogremque returns 1, the socket is queued on so_qg and sorwakeup wakes up
any processes using select to monitor the socket for connection arrival by testing for
readability. If a process is blocked in accept waiting for the connection, wakeup
causes the matching tsleep to return.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 489

464 Socket Layer Chapter 15

88-93

15.13

uipc_socket2.c

78 soisconnected(so)
79 struct socket *so;

80 {

81 struct socket *head = so->so_head;

82 so->so_state &= ~(SS_TSCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING);
83 so->so_state |= SS_ISCONNECTED;

84 if (head && sogremgue(so, 0)) {

85 soginsque (head, so, 1);

86 sorwakeup (head) ;

87 wakeup ((caddr_t) & head->so_timeo);
88 } else {

89 wakeup ((caddr_t) & so->so_timeo);
90 sorwakeup (so) ;

91 sowwakeup (so) ;

92 }

93 }

uipc_socket2.c

Figure 1530 soisconnected function.

Wakeup processes waiting for new connection

If head is null, sogremque is not called since the process initiated the connection
with the connect system call and the socket is not on a queue. If head is nonnull and
sogremque returns 0, the socket is already on so_g. This happens with protocols such
as TP4, which place connections on so_g before they are complete. wakeup awakens
any process blocked in connect, and sorwakeup and sowwakeup take care of any
processes that are using select to wait for the connection to complete. -

connect System call

A server process calls the 1isten and accept system calls to wait for a remote process
to initiate a connection. If the process wants to initiate a connection itself (i.e., a client),
it calls connect.

For connection-oriented protocols such as TCP, connect establishes a connection to
the specified foreign address. The kernel selects and implicitly binds an address to the
local socket if the process has not already done so with bind.

For connectionless protocols such as UDP or ICMP, connect records the foreign
address for use in sending future datagrams. Any previous foreign address is replaced
with the new address.

Figure 15.31 shows the functions called when connect is used for UDP or TCP.

The left side of the figure shows connect processing for connectionless protocols,
such as UDP. In this case the protocol layer calls soisconnected and the connect
system call returns immediately.

The right side of the figure shows connect processing for connection-oriented pro-
tocols, such as TCP. In this case, the protocol layer begins the connection establishment
and calls soisconnecting to indicate that the connection will complete some time in
the future. Unless the socket is nonblocking, soconnect calls tsleep to wait for the

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 490

G);

R)

Section 15.13 connect System call 465

180-188

189-200

201-208

PRU_CONNECT request

PRU_CONNECT request

udp_usrreq

TCP begins three-way
handshake

soisconnecting

soisconnected

TCP three-way
handshake completes

TCP connection
establishment

Figure 15.31 connect processing.

connection to complete. For TCP, when the three-way handshake is complete, the
protocol layer calls soisconnected to mark the socket as connected and then calls
wakeup to awaken the process and complete the connect system call.

Figure 15.32 shows the connect system call.

The three arguments to connect (in the connect_args structure) are: s, the
socket descriptor; name, a pointer to a buffer containing the foreign address; and
namelen, the length of the buffer.

getsock returns the socket as usual. A connection request may already be pend-
ing on a nonblocking socket, in which case EALREADY is returned. sockargs copies
the foreign address from the process into the kernel.

Start connection processing

The connection attempt is started by calling soconnect. If soconnect reports an
error, connect jumps to bad. If a connection has not yet completed by the time
soconnect returns and nonblocking I/O is enabled, EINPROGRESS is returned imme-
diately to avoid waiting for the connection to complete. Since connection establishment

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 491

466

Socket Layer

Chapter 15

180
181
182
183
184

185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

struct connect_args {

int s;
caddr_t name;
int namelen;

3

connect (p, uap, retval)
struct proc *p;

struct connect_args *uap;

int *retval;
{

struct file *fp;

struct socket *so;

struct mbuf *nam;

int error, s;

if (error = getsock(p->p_£fd, uap->s, &fp))
return (error);

so = (struct socket *) fp->f_data;

if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING))
return (EALREADY) ;

if (error = sockargs(&nam, uap->name, uap->namelen, MT_SONAME))
return (error);

error = soconnect (so, nam);

if (error)
goto bad;

if ((so-»so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) {
m_freem(nam) ;
return (EINPROGRESS) ;

}

s = splnet();

while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0)
if (error = tsleep((caddr_t) & so->so_timeo, PSOCK | PCATCH,

netcon, 0))
break;

if (error == 0) {
error = SO->SO_error;
so->so_error = 0;

}

splx(s);

bad:

SO->s0_state &=
m_freem(nam) ;
if (error == ERESTART)

error = EINTR;
return (error);

“SS_ISCONNECTING;

uipc_syscalls.c

Figure 1532 connect system call.

uipc_syscalls.c

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 492

Se

20

21

80

ter 15

calls.c

alls.c

Section 15.13 connect System call 467

normally involves exchanging several packets with the remote system, it may take a
while to complete. Further calls to connect return EALREADY until the connection
completes. EISCONN is returned when the connection is complete.

Wait for connection establishment

208-217 The while loop continues until the connection is established or an error occurs.
splnet prevents connect from missing a wakeup between testing the state of the
socket and the call to tsleep. After the loop, error contains 0, the error code from
tsleep, or the error from the socket.

216-224 The SS_ISCONNECTING flag is cleared since the connection has completed or the
attempt has failed. The mbuf containing the foreign address is released and any error is
returned.

soconnect Function

This function ensures that the socket is in a valid state for a connection request. If the
socket is not connected or a connection is not pending, then the connection request is
always valid. If the socket is already connected or a connection is pending, the new
connection request is rejected for connection-oriented protocols such as TCP. For con-
nectionless protocols such as UDP, multiple connection requests are OK but each new
request replaces the previous foreign address.

Figure 15.33 shows the soconnect function.

uipc_socket.c
198 soconnect (so, nam)
199 struct socket *so;
200 struct mbuf *nam;
201 {
202 int S;
203 int error;
204 if (so->so_options & SO_ACCEPTCONN)
205 return (EOPNOTSUPP) ;
206 s = splnet(};
207 /*
208 * If protocol is connection-based, can only connect once.
209 * Otherwise, if connected, try to disconnect first.
210 * This allows user to disconnect by connecting to, e.g.,
211 * a null address.
212 */
213 if (so-»so_state & (SS_ISCONNECTED | SS_ISCONNECTING) &&
214 ((so->so_proto->pr_flags & PR_CONNREQUIRED) 1} |
215 (error = sodisconnect (so))))
216 error = EISCONN;
217 else
218 error = (*so->so_proto->pr_usrreq) (so, PRU_CONNECT,
219 (struct mbuf *) 0, nam, (struct mbuf *) 0);
220 splx(s);
221 return (error);
222)

uipc_socket.c

Figure 15.33 soconnect function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 493

468 Socket Layer Chapter 15

198-222 soconnect returns EOPNOTSUPP if the socket is marked to accept connections,
since a process cannot initiate connections if 1listen has already been called for the
socket. EISCONN is returned if the protocol is connection oriented and a connection has
already been initiated. For a connectionless protocol, any existing association with a
foreign address is broken by sodisconnect.

The PRU_CONNECT request starts the appropriate protocol processing to establish
the connection or the association.

Breaking a Connectionless Association

For connectionless protocols, the foreign address associated with a socket can be dis-
carded by calling connect with an invalid name such as a pointer to a structure filled
with 0s or a structure with an invalid size. sodisconnect removes a foreign address
associated with the socket, and PRU_CONNECT returns an error such as EAFNOSUPPORT
or EADDRNOTAVAIL, leaving the socket with no foreign address. This is a useful,
although obscure, way of breaking the association between a connectionless socket and
a foreign address without replacing it.

15.14 shutdown System Call

The shutdown system call, shown in Figure 15.34, closes the write-half, read-half, or
both halves of a connection. For the read-half, shutdown discards any data the process
hasn’t yet read and any data that arrives after the call to shutdown. For the write-half,
shutdown lets the protocol specify the semantics. For TCPF, any remaining data will be
sent followed by a FIN. This is TCP’s half-close feature (Section 18.5 of Volume 1).

To destroy the socket and release the descriptor, close must be called. close can
also be called directly without first calling shutdown. As with all descriptors, close is
called by the kernel for sockets that have not been closed when a process terminates.

uipc_syscalls.c

550 struct shutdown_args {

551 int S;
552 int how;
553 }:

554 shutdown(p, uap, retval)
555 struct proc *p;
556 struct shutdown_args *uap;

557 int *retval;

558 {

559 struct file *fp;
560 int error;

561 if (error = getsock(p->p_£fd, uap-»>s, &fp))

562 return (error);

563 return (soshutdown((struct socket *) fp->f_data, uap->how));
564 }

uipc_syscalls.c

Figure 15.34 shutdown system call.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 494

15 : Section 15.14 shutdown System Call 469

s, 550-557 In the shutdown_args structure, s is the socket descriptor and how specifies
e which halves of the connection are to be closed. Figure 15.35 shows the expected values
1S . for how and how++ (which is used in Figure 15.36).
a
how how++ Description

h 0 FREAD shut down the read-half of the connection

1 FWRITE shut down the write-half of the connection

2 FREAD|FWRITE | shut down both halves of the connection

Figure 15.35 shutdown system call options.

S_

d Notice that there is an implicit numerical relationship between how and the constants FREAD
s and FWRITE.

T 558-564 shutdown is a wrapper function for soshutdown. The socket associated with the
(11, descriptor is returned by getsock, soshutdown is called, and its value is returned.

soshutdown and sorflush Functions

The shut down of the read-half of a connection is handled in the socket layer by
sorflush, and the shut down of the write-half of a connection is processed by the
: PRU_SHUTDOWN request in the protocol layer. The soshutdown function is shown in §
T Figure 15.36. k

uipc_socket.c

f, 7 720 soshutdown (so, how)
e 721 struct socket *so;
722 int how;
723 {
.n 724 struct protosw *pr = s0->sO_proto;
S
725 how++;
) 726 if (how & FREAD)
-c 727 sorflush(so);
728 if {how & FWRITE)
729 return ((*pr->pr_usrreq) (so, PRU_SHUTDOWN,
730 (struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0));
731 return (0);
732 }
uipc_socket.c
Figure 1536 soshutdown function.
720-732 If the read-half of the socket is being closed, sorflush, shown in Figure 15.37, dis-

cards the data in the socket’s receive buffer and disables the read-half of the connection.
If the write-half of the socket is being closed, the PRU_SHUTDOWN request is issued to
the protocol.

733-747 The process waits for a lock on the receive buffer. Because of SB_NOINTR, sblock
does not return when an interrupt occurs. splimp blocks network interrupts and
protocol processing while the socket is modified, since the receive buffer may be
accessed by the protocol layer as it processes incoming packets.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 495

Socket Layer Chapter 15

uipc_socket.c

733 sorflush(so)
734 struct socket *so;

735 {

736 struct sockbuf *sb = &so->so_rcv;

737 struct protosw *pr = so->so_proto;

738 int s;

739 struct sockbuf asb;

740 sb->sb_flags |= SB_NOINTR;

741 (void) sblock(sb, M_WAITOK) ;

742 s = splimp();

743 socantrcvmore (so) ;

744 sbunlock(sb) ;

745 asb = *sb;

746 bzero((caddr_t) sb, sizeof(*sb));

747 splx{s);

748 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
749 (*pr->pr_domain->dom_dispose) (asb.sb_mb);
750 sbrelease (&asb) ;

751 }

uipc_socket.c

Figure 15.37 sorflush function.

socantrcvmore marks the socket to reject incoming packets. A copy of the
sockbuf structure is saved in asb to be used after interrupts are restored by splx.
The original sockbuf structure is cleared by bzero, so that the receive queue appears
to be empty.
Release control mbufs
748-751 Some kernel resources may be referenced by control information present in the
receive queue when shutdown was called. The mbuf chain is still available through
sb_mb in the copy of the sockbuf structure.
If the protocol supports access rights and has registered a dom_dispose function,
it is called here to release these resources.

In the Unix domain it is possible to pass descriptors between processes with control messages.
These messages contain pointers to reference counted data structures. The dom_dispose
function takes care of discarding the references and the data structures if necessary to avoid
creating an unreferenced structure and introducing a memory leak in the kernel. For more
information on passing file descriptors within the Unix domain, see [Stevens 1990] and [Leffler
et al. 1989].

Any input data pending when shutdown is called is discarded when sbrelease

releases any mbufs on the receive queue.
. Notice that the shut down of the read-half of the connection is processed entirely by
f the socket layer (Exercise 15.6) and the shut down of the write-half of the connection is
handled by the protocol through the PRU_SHUTDOWN request. TCP responds to the
PRU_SHUTDOWN by sending all queued data and then a FIN to close the write-half of the
TCP connection.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 496

Section 15.15 close System Call 471

15.15 close System Call
The close system call works with any type of descriptor. When £d is the last descrip-
tor that references the object, the object-specific c1lose function is called:

error = (*fp->f_ops->fo_close) (fp, p):

As shown in Figure 15.13, fp->f_ops->fo_close for a socket is the function
soo_close.

soo_close Function

This function, shown in Figure 15.38, is a wrapper for the soclcse function.

sys_socket.c
152 soo_close(fp, p)
153 struct file *fp;
154 struct proc *p;

155 |
156 int error = 0;
157 if (fp->f_data)
158 error = soclose({struct socket *) fp->f_data);
159 fp->f_data = 0;
160 return (error);
161 }
sys_socket.c
Figure 15.38 soo_close function.
152-161 If a socket structure is associated with the file structure, soclose is called,

f_datais cleared, and any posted error is returned.
soclose Function

This function aborts any connections that are pending on the socket (i.e., that have not
yet been accepted by a process), waits for data to be transmitted to the foreign system,
and releases the data structures that are no longer needed.

soclose is shown in Figure 15.39.

Discard pending connections

129-141 If the socket was accepting connections, soclose traverses the two connection
queues and calls soabort for each pending connection. If the protocol control block is
null, the protocol has already been detached from the socket and soclose jumps to the
cleanup code at discard.

soabort issues the PRU_ABORT request to the socket's protocol and returns the result.
soabort is not shown in this text. Figures 23.38 and 30.7 discuss how UDP and TCP handle
this request.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 497

: 472

Socket Layer

Chapter 15

uipc_socket.c

129
130
131
132
133

134
135
136
137
138
139
140
141

143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

soclose (so)
struct socket *so;

£

int s = splnet{); /* conservative */

int error = 0;

if (so->so_options & SO_ACCEPTCONN) {
while (so->so_q0)
(void) soabort (so->s0_q0);
while (so->so_qg)
(void) soabort (so->s0_qg);
}
if (so->so_pcb == 0)
goto discard;
if (so-»so_state & SS_ISCONNECTED) ({
if ((so->so_state & SS_ISDISCONNECTING)
error = sodisconnect (so);
if (error)
goto drop;

1
i
o

}
if (so-»so_options & SO_LINGER) {
if ((so->so_state & SS_ISDISCONNECTING) &&
(so->so_state & SS_NBIO))
goto drop;
while (so->so_state & SS_ISCONNECTED)

if (error = tsleep((caddr_t) & so->so_timeo,
PSOCK | PCATCH, netcls,

break;
}
drop:
if (so->so_pcb) {
int error2 =
(*so->so_proto->pr_usrreq) (so, PRU_DETACH,
(struct mbuf *) 0, (struct mbuf *) 0,
if (error == 0)
error = error2;
}
discard:

if (so->so_state & SS_NOFDREF)
panic("soclose: NOFDREF");

so->so_state |= SS_NOFDREF;

sofree(so);

splx(s);

return (error);

so->so_linger))

(struct mbuf *) 0);

uipc_socket.c

Figure 15.39 soclose function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 498

Section 15.15

close System Call 473

142-157

158—173

110-114

115-119

Break established connection or association

If the socket is not connected, execution continues at drop; otherwise the socket
must be disconnected from its peer. If a disconnect is not in progress, sodisconnect
starts the disconnection process. If the SO_LINGER socket option is set, soclose may
need to wait for the disconnect to complete before returning. A nonblocking socket
never waits for a disconnect to complete, so soclose jumps immediately to drop in
that case. Otherwise, the connection termination is in progress and the SO_LINGER
option indicates that soclose must wait some time for it to complete. The while loop
continues until the disconnect completes, the linger time (so_1 inger) expires, or a sig-
nal is delivered to the process.

If the linger time is set to 0, tsleep returns only when the disconnect completes (perhaps
because of an error) or a signal is delivered.
Release data structures

If the socket still has an attached protocol, the PRU_DETACH request breaks the con-

nection between this socket and the protocol. Finally the socket is marked as not having

an associated file descriptor, which allows sofree to release the socket.
The sofree function is shown in Figure 15.40.

uipc_socket.c
110 "sofree(so)

111 struct socket *so;

112 |

113 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
114 return;

115 if (so->so_head) {

116 if (!soqgremgue{so, 0) && !sogremque(so, 1))
117 panic("sofree dg");

118 so->so_head = 0;

119 }

120 sbrelease (&so->so_snd) ;

121 sorflush(so);

122 FREE (so, M_SOCKET) ;

123 }

uipc_socket.c

Figure 1540 sofree function.

Return if socket still in use

If a protocol is still associated with the socket, or if the socket is still associated with
a descriptor, sofree returns immediately.
Remove from connection queues

If the socket is on a connection queue (so_head is nonnull), sogremque is called
to remove the socket. An attempt is made to remove the socket from the incomplete
connection queue and if this fails, then from the completed connection queue. One of
the removals must succeed or the kernel panics, since so_head was nonnull. so_head
is cleared.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 499

474 Socket Layer Chapter 15

Discard send and receive queues

120-123 sbrelease discards any buffers in the send queue and sorflush discards any
buffers in the receive queue. Finally, the socket itself is released.

15.16 Summary

In this chapter we looked at all the system calls related to network operations. The sys-
tem call mechanism was described, and we traced the calls until they entered the proto-
col processing layer through the pr_usrreq function.

While looking at the socket layer, we avoided any discussion of address formats,
protocol semantics, or protocol implementations. In the upcoming chapters we tie
together the link-layer processing and socket-layer processing by looking in detail at the
implementation of the Internet protocols in the protocol processing layer.

Exercises

151 How can a process without superuser privileges gain access to a socket created by a super-
user process?

152 How can a process determine if the sockaddr buffer it provides to accept was too small
to hold the foreign address returned by the call?

153 A feature proposed for IPv6 sockets is to have accept and recvfrom return a source
route as an array of 128-bit IPv6 addresses instead of a single peer address. Since the array
will not fit in a single mbuf, modify accept and recvirom to handle an mbuf chain from
the protocol layer instead of a single mbuf. Will the existing code work if the protocol
layer returns the array in an mbuf cluster instead of a chain of mbufs?

154 Whyispanic called when sogremque returns a null pointer in Figure 15.267
155 Why does sor f1lush make a copy of the receive buffer?

15.6 What happens when additional data is received after sorflush has zeroed the socket’s
receive buffer? Read Chapter 16 before attempting this exercise.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.

Paae 500

16

Socket 1/0

16.1 Introduction

In this chapter we discuss the system calls that read and write data on a network con-
nection. The chapter is divided into three parts.

The first part covers the four system calls for sending data: write, writev,
sendto, and sendmsg. The second part covers the four system calls for receiving data:
read, readv, recvfrom, and recvmsg. The third part of the chapter covers the
select system call, which provides a standard way to monitor the status of descriptors .
in general and sockets in particular. o

The core of the socket layer is the sosend and soreceive functions. They handle h
all I/O between the socket layer and the protocol layer. As we'll see, the semantics of
the various types of protocols overlap in these functions, making the functions long and
complex.

16.2 Code Introduction P
The three headers and four C files listed in Figure 16.1 are covered in this chapter.

Global Variables

The first two global variables shown in Figure 16.2 are used by the select system call.
The third global variable controls the amount of memory allocated to a socket.

475

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 501

476 Socket 1/0

Chapter 16

File Description
sys/socket.h structures and macro for sockets APl
sys/socketvar.h socket structure and macros
sys/uio.h uio structure definition
kern/uipc_syscalls.c socket system calls
kern/uipc_socket.c socket layer processing
kern/sys_generic.c select system call
kern/sys_socket.c select processing for sockets

Figure 16.1 Files discussed in this chapter.

Variable Datatype Description
selwait int wait channel for select
nselcoll | int flag used to avoid race conditions in select
sb_max u_long | maximum number of bytes to allocate for a socket receive or send buffer

Figure 16.2 Global variables introduced in this chapter.

16.3 Socket Buffers

Section 15.3 showed that each socket has an associated send and receive buffer. The
sockbuf structure definition from Figure 15.5 is repeated in Figure 16.3.

socketvar.h
: 72 struct sockbuf {
: 73 u_long sb_cc; /* actual chars in buffer */
; 74 u_long sb_hiwat; /* max actual char count */
: 75 u_long sb_mbcnt; /* chars of mbufs used */
o 76 u_long sb_mbmax; /* max chars of mbufs to use */

77 long sb_lowat; /* low water mark */

78 struct mbuf *sb_mb; /* the mbuf chain */

79 struct selinfo sb_sel; /* process selecting read/write */

80 short sb_flags; /* Figure 16.5 */

81 short sb_timeo; /* timeout for read/write */

82 } so_xcv, so_snd;

socketvar.h

72-78

used). sb_mbmax is an upper bound on the amount of memory to be allocated as

Figure 16.3 sockbuf structure.

Each buffer contains control information as well as pointers to data stored in mbuf
chains. sb_mb points to the first mbuf in the chain, and sb_cc is the total number of
data bytes contained within the mbufs. sb_hiwat and sb_lowat regulate the socket
flow control algorithms. sb_mbcnt is the total amount of memory allocated to the
mbufs in the buffer.
Recall that each mbuf may store from 0 to 2048 bytes of data (if an external cluster is

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 502

Section 16.3

Socket Buffers

477

mbufs for each socket buffer. Default limits are specified by each protocol when the
PRU_ATTACH request is issued by the socket system call. The high-water and low-
water marks may be modified by the process as long as the kernel-enforced hard limit
of 262,144 bytes per socket buffer (sb_max) is not exceeded. The buffering algorithms

are described in Sections 16.7 and 16.12. Figure 16.4 shows the default settings for the
Internet protocols.

so_snd so_rcv
Protocol
sb_hiwat sb_lowat sb_mbmax sb_hiwat sb_lowat sb_mbmax

ubr 9%x1024 2048 (ignored) | 2xsb_hiwat | 40x (1024 + 16) 1 2Xxsb_hiwat
TCP 8x1024 2048 2xsb_hiwat 8x1024 1 2x sb_hiwat
raw IP

ICMP 8x1024 2048 (ignored) | 2xsb_hiwat 8x1024 1 2x sb_hiwat
IGMP

Figure 16.4 Default socket buffer limits for the Internet protocols.

Since the source address of each incoming UDP datagram is queued with the data
(Section 23.8), the default UDP value for sb_hiwat is set to accommodate 40 1K data-
grams and their associated sockaddr_in structures (16 bytes each).

79 sb_sel is a selinfo structure used to implement the select system call (Sec-
tion 16.13).
80 Figure 16.5 lists the possible values for sb_flags.
sb_flags Description
SB_LOCK a process has locked the socket buffer
SB_WANT a process is waiting to lock the buffer
SB_WAIT a process is waiting for data (receive) or space (send) in this buffer
SB_SEL one or more processes are selecting on this buffer
SB_ASYNC | generate asynchronous I/O signal for this buffer
) SB_NOINTR | signals do not cancel a lock request
. SB_NOTIFY (SB_WAIT | SB_SEL | SB_ASYNC)

a process is waiting for changes to the buffer and should be notified by
wakeup when any changes occur

Figure 16.5 sb_flags values.

81-82 sb_timeo is measured in clock ticks and limits the time a process blocks during a
read or write call. The default value of 0 causes the process to wait indefinitely.

sb_timeo may be changed or retrieved by the SO_SNDTIMEO and SO_RCVTIMEO
socket options.

Socket Macros and Functions

There are many macros and functions that manipulate the send and receive buffers

associated with each socket. The macros and functions in Figure 16.6 handle buffer
locking and synchronization.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 503

Chapter 16

478 Socket 1/0O

Name Description
sblock Acquires a lock for sb. If wf is M_WAITOK, the process sleeps waiting for the lock;
otherwise EWOULDBLOCK is returned if the buffer cannot be locked
immediately. EINTR or ERESTART is returned if the sleep is interrupted by
a signal; 0 is returned otherwise.
int sblock(struct sockbuf *sb, int wf);
sbunlock Releases the lock on sb. Any other process waiting to lock sb is awakened.
void sbunlock(struct sockbuf *sb);
sbwait Calls tsleep to wait for protocol activity on sb. Returns result of t sleep.
int sbwait(struct sockbuf *sb);
sowakeup Notifies socket of protocol activity. Wakes up matching call to sbwait or to
tsleep if any processes are selecting on sb.
void sowakeup(struct socket *so, struct sockbuf *sb);
sorwakeup Wakes up any process waiting for read events on so and sends the SIGIO signal
if a process requested asynchronous notification of I/0.
void sorwakeup(struct socket *so);
sowwakeup Wakes up any process waiting for write events on so and sends the SIGIO signal
if a process requested asynchronous notification of I/O.
void sowwakeup(struct socket *so);

Figure 16.6 Macros and functions for socket buffer locking and synchronization.

Figure 16.7 includes the macros and functions used to set the resource limits for
socket buffers and to append and delete data from the buffers. In the table, m, m0, n,
and control are all pointers to mbuf chains. sb points to the send or receive buffer for a

socket.

Name Description

The number of bytes that may be added to sb before it is considered full:
min((sb_hiwat - sb_cc), (sb_mbmax - sb_mbcnt)).

sbspace

long sbspace(struct sockbuf *sb);

sballoc m has been added to sb. Adjust sb_cc and sb_mbent in sb accordingly.

void sballoc(struct sockbuf *sb, struct mbuf *m);

sbfree m has been removed from sb. Adjust sb_cc and sb_mbent in sb accordingly.

int sbfree(struct sockbuf *sh, struct mbuf *m);

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 504

Section 16.3

Socket Buffers

479

L Name Description
sbappend Append the mbufs in 7 to the end of the last record in sb. Call sbcompress.
int sbappend(struct sockbuf *sh, struct mbuf *m);
sbappendrecord Append the record in m0 after the last record in sb. Call sbcompress.
int sbappendrecord(struct sockbuf *sh, struct mbuf *m0);
sbappendaddr Put address from asa in an mbuf. Concatenate address, control, and m0. Append
the resulting mbuf chain after the last record in sb.
int sbappendaddr(struct sockbuf *sh, struct sockaddr *asa,
struct mbuf *m0, struct mbuf *control);
sbappendcontrol | Concatenate control and mo. Append the resulting mbuf chain after the last
record in sb.
int sbappendcontrol(struct sockbuf *sb, struct mbuf *mo0,
struct mbuf *control);
sbinsertoob Insert m0 before first record in sb without out-of-band data. Call sbcompress.
int sbinsertoob(struct sockbuf *sb, struct mbuf *m0);
sbcompress Append m to n squeezing out any unused space.
void sbcompress(struct sockbuf *sh, struct mbuf *m,
struct mbuf *n);
sbdrop Discard len bytes from the front of sb.
void sbdrop(struct sockbuf *sb, intlen);
sbdroprecord Discard the first record in sh. Move the next record to the front.
void sbdroprecord(struct sockbuf *sb);
sbrelease Call sbflush to release all mbufs in sb. Reset sb_hiwat and sb_mbmax values
to 0.
void sbrelease(struct sockbuf *sb);
sbflush Release all mbufs in sb.
void sbflush(struct sockbuf *sb);
soreserve Set high-water and low-water marks. For the send buffer, call sbreserve with
sndcc. For the receive buffer, call sbreserve with revee. Initialize sb_lowat in
both buffers to default values, Figure 16.4. ENOBUFS is returned if any limits are
exceeded.
int soreserve(struct socket *s0, int sndec, int revee);
sbreserve Set high-water mark for sb to cc. Also drop low-water mark to cc. No memory is
allocated by this function.

int sbreserve(struct sockbuf *sb, int cc);

Figure 16.7 Macros and functions for socket buffer allocation and manipulation.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 505

480 Socket 1/0 Chapter 16

16.4 write, writev, sendto, and sendmsg System Calls

These four system calls, which we refer to collectively as the write system calls, send data
on a network connection. The first three system calls are simpler interfaces to the most
general request, sendmsg.

All the write system calls, directly or indirectly, call sosend, which does the work
of copying data from the process to the kernel and passing data to the protocol associ-
ated with the socket. Figure 16.8 summarizes the flow of control.

@ }library function

TCP TP4
PRU__SEND or PRU_SENDOOB

through pr_usrreg
UDP . ICMP

Figure 16.8 All socket output is handled by sosend.

In the following sections, we discuss the functions shaded in Figure 16.8. The other
four system calls and soo_write are left for readers to investigate on their own.

Figure 16.9 shows the features of these four system calls and a related library func-
tion (send).

In Net/3, send is implemented as a library function that calls sendto. For binary compatibil-
ity with previously compiled programs, the kernel maps the old send system call to the func-
tion osend, which is not discussed in this text.

From the second column in Figure 16.9 we see that the write and writev system

calls are valid with any descriptor, but the remaining system calls are valid only with
socket descriptors.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 506

Section 16.4 write, writev, sendto, and sendmsg System Calls 481

Type of Number of Specify
descriptor buffers destination address?
write any 1
writev any [1..010_MAaXIOV]
send socket only 1 .
sendto socket only 1 . .
sendmsg | socketonly | [1..UIO_MAXIOV] . .

Control
information?

Function

ta
st

Figure 16.9 Write system calls.

The third column shows that writev and sendmsg accept data from multiple
buffers. Writing from multiple buffers is called gathering. The analogous read operation
Is called scattering. In a gather operation the kernel accepts, in order, data from each
buffer specified in an array of iovec structures. The array can have a maximum of
UIO_MAXIOV elements. The structure is shown in Figure 16.10.

- uio.h
41 struct iovec {

42 char *iov_base; /* Base address */

43 size_t iov_len; /* Length */

44 };

uto.h
Figure 16.10 iovec structure.

41-44 iov_base points to the start of a buffer of iov_len bytes.

Without this type of interface, a process would have to copy buffers into a single
larger buffer or make multiple write system calls to send data from multiple buffers.
Both alternatives are less efficient than passing an array of iovec structures to the ker-
nel in a single call. With datagram protocols, the result of one writev is one datagram,
which cannot be emulated with multiple writes.

Figure 16.11 illustrates the structures as they are used by writev, where iovp
points to the first element of the array and iovent is the size of the array.

iovp i j
iov_len iov_base e——————— 1, byte:
0 Ho —~

1 m —

ar . : o ————1; bytes——

. iovent -1 Miovent-1 ! ‘L j

Hﬁniovcnt% bYtES

Figure 16.11 iovec arguments to writev.

Datagram protocols require a destination address to be associated with each write
call. Since write, writev, and send do not accept an explicit destination, they may be
called only after a destination has been associated with a connectionless socket by call-
ing connect. A destination must be provided with sendto or sendmsg, or connect
must have been previously called.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 507

482

Socket I/0

Chapter 16

228-236

251-256

The fifth column in Figure 16.9 shows that the sendxxx system calls accept optional

control flags, which are described in Figure 16.12.

flags

Description

Reference

MSG_DONTROUTE
MSG_DONTWAIT
MSG_EOR
MSG_OOB

bypass routing tables for this message

do not wait for resources during this message
data marks the end of a logical record

send as out-of-band data

Figure 16.23
Figure 16.22
Figure 16.25

Figure 16.26

Figure 16.12 sendxxx system calls: flags values.

As indicated in the last column of Figure 16.9, only the sendmsg system call sup-
ports control information. The control information and several other arguments to
sendmsg are specified within a msghdr structure (Figure 16.13) instead of being passed
separately.

socket.h
228 struct msghdr {

229 caddr_t msg_name; /* optional address */

230 u_int msg_namelen; /* size of address */ 3
231 struct iovec *msg_iov; /* scatter/gather array */

232 u_int msg_iovlen; /* # elements in msg_iov */

233 caddr_t msg_control; /* ancillary data, see below */

234 u_int msg_controllen; /* ancillary data buffer len */

235 int msg_flags; /* Figure 16.33 */

236 };

socket.h

Figure 16.13 msghdr structure.

msg_name should be declared as a pointer to a sockaddr structure, since it contains a net-
work address.

The msghdr structure contains a destination address (msg name and
msg_namelen), a scatter/gather array (msg_iov and msg_iovlen), control informa-
tion (msg_control and msg_controllen), and receive flags (msg_flags). The con-
trol information is formatted as a cmsghdr structure shown in Figure 16.14.

socket.h
251 struct cmsghdr {
252 u_int cmsg_len; /* data byte count, including hdr */
253 int cmsg_level; /* originating protocol */
254 int cmsg_type; /* protocol-specific type */
255 /* followed by u_char cmsg_dataf(); */
256 };

socket.h

Figure 16.14 cmsghdr structure.

The control information is not interpreted by the socket layer, but the messages are
typed (cmsg_type) and they have an explicit length (cmsg_len). Multiple control
messages may appear in the control information mbuf.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 508

Section 16.5

sendmsg System Call 483

16.5

307-321

322-334

Example

Figure 16.15 shows how a fully specified msghdr structure might look during a call to
sendmsg.

sockaddr{}

M——————msg_namelen——

msghdr{}

msg_namelen

msg_iov —
msg_iovlen 3 l iov_len iov_base —
2=

msg_control 0 ngy
msg_controllen

ny —
msg_flags 2 ny —Zﬁ’(i—nlhu

———— 7y

g ——————

—

Ll

cmsg_len cmsg_level] Cmsg_type ‘ data

f— msg_controllen

—

Figure 16.15 msghdr structure for sendmsg system call.

sendmsg System Call

Only the sendmsg system call provides access to all the features of the sockets API
associated with output. The sendmsg and sendit functions prepare the data struc-
tures needed by sosend, which passes the message to the appropriate protocol. For
SOCK_DGRAM protocols, a message is a datagram. For SOCK_STREAM protocols, a mes-
sage is a sequence of bytes. For SOCK_SEQPACKET protocols, a message could be an
entire record (implicit record boundaries) or part of a larger record (explicit record

boundaries). A message is always an entire record (implicit record boundaries) for
SOCK_RDM protocols.

Even though the general sosend code handles SOCK_SEQPACKET and SOCK_RDM protocols,
there are no such protocols in the Internet domain.

Figure 16.16 shows the sendmsg code.

There are three arguments to sendmsg: the socket descriptor; a pointer to a msghdr
structure; and several control flags. The copyin function copies the msghdr structure
from user space to the kernel.

Copy iov array

An iovec array with eight entries (UTO_SMALLIOV) is allocated automatically on
the stack. If this is not large enough, sendmsg calls MALLOC to allocate a larger array. If

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 509

484 Socket 1/0 Chapter 16

uipc_syscalls.c
307 struct sendmsg_args {

308 int s;

309 caddr_t msg;
310 int flags:
311 };

312 sendmsg(p, uap, retval)
313 struct proc *p;
314 struct sendmsg_args *uap;

315 int *retval;

316 {

317 struct msghdr msg;

318 struct iovec aiov[UIO_SMALLIOV], *iov;

319 int error;

320 if (error = copyin{uap->msg, (caddr_t) & msg, sizeof(msg)))
321 return (error);

322 if ((u_int) msg.msg_iovlen >= UIO_SMALLIOV} {

323 if ((u_int) msg.msg_iovlen >= UIO_MAXIOV)

324 return (EMSGSIZE});

325 MALLOC (iov, struct iovec *,

326 sizeof (struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
327 M_WAITOK) ;

328 } else

329 iov = aiov;

330 if (msg.msg_iovlen &&

331 (error = copyin{(caddr_t) msg.msg_iov, (caddr_t) iov,
332 {(unsigned) (msg.msg_iovlen * sizeof (struct iovec)))))
333 goto done;

334 msg.msg_iov = iov;

335 error = sendit (p, uap-»s, &msg, uap->flags, retval);

336 done:

337 if (iov !'= aiov)

338 FREE(1iov, M_IOV):

339 return {(error);

340 }

uipc_syscalls.c
Figure 16.16 sendmsg system call.

the process specifies an array with more than 1024 (ULIO_MAXIOV) entries, EMSGSIZE is
returned. copyin places a copy of the iovec array from user space into either the
array on the stack or the larger, dynamically allocated, array.

This technique avoids the relatively expensive call to malloc in the most common case of
eight or fewer entries.

sendit and cleanup

335-340 When sendit returns, the data has been delivered to the appropriate protocol or
an error has occurred. sendmsg releases the iovec array (if it was dynamically allo-
cated) and returns sendit’s result.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 510

Section 16.6

sendit Function 485

16.6 sendit Function

sendit is the common function called by sendto and sendmsg. sendit initializes a
uio structure and copies control and address information from the process into the ker-

nel. Before discussing sosend, we must explain the uiomove function and the uio
structure.

uiomove Function

The prototype for this function is:

int uiomove (caddr_t c¢p, int m, struct uio *uip);

The uiomove function moves 7 bytes between a single buffer referenced by cp and the
multiple buffers specified by an iovec array in uio. Figure 16.17 shows the definition of
the uio structure, which controls and records the actions of the uiomove function.

: uio.h
45 enum uio_rw {
46 UIO_READ, UIO_WRITE
47 };
48 enum uio_seg { /* Segment flag values */
49 UIO_USERSPACE, /* from user data space */
50 UIO_SYSSPACE, /* from system space */
51 UIO_USERISPACE /* from user instruction space */
52 };
53 struct uio {
54 struct iovec *uio_iov; /* an array of iovec structures */
55 int uio_iovent; /* size of iovec array */
56 off_t uio_offset; . /* starting position of transfer */
57 int uio_resid; /* remaining bytes to transfer */
58 enum uio_seg uio_segflg; /* location of buffers */
59 enum uio_rw uio_rw; /* direction of transfer */
60 struct proc *uio_procp; /* the associated process */
61 };
uio.h
Figure 16.17 uio structure.
45-61 In the uio structure, uio_iov points to an array of iovec structures, uio_offset

counts the number of bytes transferred by uiomove, and uio_resid counts the num-
ber of bytes remaining to be transferred. Each time uiomove is called, uio_offset
increases by n and uio_resid decreases by n. uiomove adjusts the base pointers and
buffer lengths in the uio_iov array to exclude any bytes that uiomove transfers each
time it is called. Finally, uio_iov is advanced through each entry in the array as each
buffer is transferred. uio_segflg indicates the location of the buffers specified by the
base pointers in the uio_iov array and uio_rw indicates the direction of the transfer.
The buffers may be located in the user data space, user instruction space, or kernel data
space. Figure 16.18 summarizes the operation of uiomove. The descriptions use the
argument names shown in the uiomove prototype.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 511

486 Socket I/0 Chapter 16

uio_segflg uio_rw Description

UIO_USERSPACE scatter n bytes from a kernel buffer cp to process
UIO_READ
UIO_USERISPACE buffers

UIO_USERSPACE UIO_WRITE gather 7 bytes from process buffers into the kernel
UIO_USERISPACE buffer ¢p

UIO_READ | scatter n bytes from the kernel buffer cp to
multiple kernel buffers

UIO_WRITE | gather n bytes from multiple kernel buffers into
the kernel buffer cp

UIO_SYSSPACE

Figure 16.18 uiomove operation.

Example

Figure 16.19 shows a uio structure before uiomove is called.

||=— uio_resid

process

uio_iovent
uio_offset |0
uio_resid ng+ny+ny
uio_segflg |UIO_USERSPACE
uio_rw UIO_WRITE
uio_procp -— » process

i

Figure 16.19 uiomove: before.

uio_iov points to the first entry in the iovec array. Each of the iov_base point-
ers point to the start of their respective buffer in the address space of the process
uio_offset is 0, and uio_resid is the sum of size of the three buffers. cp pointstoa
buffer within the kernel, typically the data area of an mbuf. Figure 16.20 shows the;
same data structures after

uiomove(cp, n, uio);

is executed where n includes all the bytes from the first buffer and only some of th
bytes from the second buffer (i.e., ny <n < ng + ny).

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 512

38.
ya
he

Section 16.6

sendit Function 487

fd—nuiofoffset——ﬁq‘ uio_resid —ﬁ

process
kernel
. uio{} iov_len iov_base
UlO —
uio_iov — 0
uio_iovent lﬁ ng+ny—n
uio_offset |n ny

uio_resid

(mo+ny+ny)—n

uio_segflg

UIO_USERSPACE

uio_rw

UIO _WRITE

uio_procp

———————— » process

’qﬁuio_of fsetH

cp

o

sendit Code

Initialize auio

Figure 16.20 uiomove: after.

After uiomove, the first buffer has a length of 0 and its base pointer has been
advanced to the end of the buffer. uio_iov now points to the second entry in the
iovec array. The pointer in this entry has been advanced and the length decreased to
reflect the transfer of some of the bytes in the buffer. uio_offset has been increased
by n and uio_resid has been decreased by n. The data from the buffers in the process
has been moved into the kernel’s buffer because uio_rw was UIO_WRITE.

We can now discuss the sendit code shown in Figure 16.21.

341-368 sendit calls getsock to get the file structure associated with the descriptor s
and initializes the uio structure to gather the output buffers specified by the process
into mbufs in the kernel. The length of the transfer is calculated by the for loop as the
sum of the buffer lengths and saved in uvio_resid. The first if within the loop
ensures that the buffer length is nonnegative. The second if ensures that uio_resid
does not overflow, since uio_residis a signed integer and iov_len is guaranteed to
be nonnegative.

Copy address and control information from the process

369-385 sockargs makes copies of the destination address and control information into
mbufs if they are provided by the process.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 513

488 Socket 1I/0

Chapter 16

341 sendit (p, s, mp, flags, retsize)
342 struct proc *p;

uipc_syscalls.c

343 int s;

344 struct msghdr *mp;

345 int flags, *retsize;

346 {

347 struct file *fp;

348 struct uio auio;

349 struct iovec *iov;

350 int i;

351 struct mbuf *to, *control;

352 int len, error;

353 if (error = getsock(p->p_fd, s, &fp))

354 return (error);

355 auio.uio_iov = mp->msg_iov;

356 auio.uio_iovent = mp->msg_iovlen;

357 auio.uio_segflg = UIO_USERSPACE;

358 auio.uio_rw = UIO_WRITE;

359 auio.uio_procp = D;

360 auio.uio_offset = 0; /* XXX */

361 auio.uio_resid = 0;

362 iov = mp->msg_iov;

363 for (i = 0; i < mp->msg_iovlen; i++, iov++) {

364 if (iov-»iov_len < 0)

365 return (EINVAL);

366 if ((auio.uio_resid += iov->iov_len) < 0)

367 return (EINVAL) ;

368 3

369 if (mp->msg_name) {

370 if (error = sockargs(&to, mp->msg_name, mp->msg_namelen,
371 MT_SONAME))

372 return (error);

373 } else

374 to = 0;

375 if (mp->msg_control) {

376 if (mp->msg_controllen < sizeof(struct cmsghdr)
377 y {

378 error = EINVAL;

379 goto bad;

380

381 if (error = sockargs (&control, mp->msg_control,
382 mp->msg_controllen, MT_CONTROL) }
383 goto bad;

384 } else

385 control = 0;

386 len = auio.uio_resid;

387 if (error = sosend((struct socket *) fp->f_data, to, &auio,
388 (struct mbuf *) 0, control, flags)) {
389 if (auio.uio_resid != len && (error == ERESTART |
390 error == EINTR || error == EWOULDBLOCK)) E
391 error = 0;

392 if (error == EPIPE)

393 psignal (p, SIGPIPE);

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 514

" Gection 16.7 sosend Function 489

386—401

16.7

394 }

395 if (error == 0)

396 *retsize = len - auio.uio_resid;
397 bad:

398 if (to)

399 m_freem(to) ;

400 return (error);

401)

uipc_syscalls.c

Figure 16.21 sendit function.

Send data and cleanup

uio_residis saved in len so that the number of bytes transferred can be calcu-
lated if sosend does not accept all the data. The socket, destination address, uio struc-
ture, control information, and flags are all passed to sosend. When sosend returns,
sendit responds as follows:

* If sosend transfers some data and is interrupted by a signal or a blocking condi-
tion, the error is discarded and the partial transfer is reported.

* If sosend returns EPIPE, the SIGPIPE signal is sent to the process. error is
not set to 0, so if a process catches the signal and the signal handler returns, or if
the process ignores the signal, the write call returns EPTPE.

* If no error occurred (or it was discarded), the number of bytes transferred is cal-
culated and saved in *retsize. Since sendit returns 0, syscall (Sec-
tion 15.4) returns *retsize to the process instead of returning the error code.

* If any other error occurs, the error code is returned to the process.

Before returning, sendit releases the mbuf containing the destination address.
sosend is responsible for releasing the control mbuf.

sosend Function

sosend is one of the most complicated functions in the socket layer. Recall from Fig-
ure 16.8 that all five write calls eventually call sosend. It is sosend’s responsibility to
pass the data and control information to the pr_usrreq function of the protocol associ-
ated with the socket according to the semantics supported by the protocol and the buff-
er limits specified by the socket. sosend never places data in the send buffer; it is the
protocol’s responsibility to store and remove the data.

The interpretation of the send buffer's sb_hiwat and sb_lowat values by
sosend depends on whether the associated protocol implements reliable or unreliable
data transfer semantics.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 515

490 Socket I/O Chapter 16

Reliable Protocol Buffering

For reliable protocols, the send buffer holds both data that has not yet been transmitted
and data that has been sent, but has not been acknowledged. sb_cc is the number of
bytes of data that reside in the send buffer, and 0 < sb_cc < sb_hiwat.

sb_cc may temporarily exceed sb_hiwat when out-of-band data is sent.

It is sosend’s responsibility to ensure that there is enough space in the send buffer
before passing any data to the protocol layer through the pr_usrreq function. The
protocol layer adds the data to the send buffer. sosend transfers data to the protocol in
one of two ways:

e If PR_ATOMIC is set, sosend must preserve the message boundaries between
the process and the protocol layer. In this case, sosend waits for enough space
to become available to hold the entire message. When the space is available, an
mbuf chain containing the entire message is constructed and passed to the
protocol in a single call through the pr_usrreq function. RDP and SPP are
examples of this type of protocol.

e If PR_ATOMIC is not set, sosend passes the message to the protocol one mbuf at
a time and may pass a partial mbuf to avoid exceeding the high-water mark.
This method is used with SOCK_STREAM protocols such as TCP and
SOCK_SEQPACKET protocols such as TP4. With TP4, record boundaries are indi-
cated explicitly with the MSG_EOR flag (Figure 16.12), so it is not necessary for
the message boundaries to be preserved by sosend.

TCP applications have no control over the size of outgoing TCP segments. For
example, a message of 4096 bytes sent on a TCP socket will be split by the socket layer
into two mbufs with external clusters, containing 2048 bytes each, assuming there is
enough space in the send buffer for 4096 bytes. Later, during protocol processing, TCP
will segment the data according to the maximum segment size for the connection,
which is normally less than 2048.

When a message is too large to fit in the available buffer space and the protocol
allows messages to be split, sosend still does not pass data to the protocol until the free
space in the buffer rises above sb_lowat. For TCP, sb_lowat defaults to 2048 (Fig-
ure 16.4), so this rule prevents the socket layer from bothering TCP with small chunks of
data when the send bulffer is nearly full.

Unreliable Protocol Buffering

With unreliable protocols (e.g., UDP), no data is ever stored in the send buffer and no
acknowledgment is ever expected. Each message is passed immediately to the protocol
where it is queued for transmission on the appropriate network device. In this case,
sb_cc is always 0, and sb_hiwat specifies the maximum size of each write and indi-
rectly the maximum size of a datagram. 7

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 516

Section 16.7 sosend Function 491

Figure 16.4 shows that sb_hiwat defaults to 9216 (9x1024) for UDP. Unless the
process changes sb_hiwat with the SO_SNDBUF socket option, an attempt to write a
datagram larger than 9216 bytes returns with an error. Even then, other limitations of
the protocol implementation may prevent a process from sending large datagrams. Sec-

tion 11.10 of Volume 1 discusses these defaults and limits in other TCP/IP implementa-
tions.

9216 is large enough for a NFS write, which often defaults to 8192 bytes of data plus protocol
headers.

sosend Code

Figure 16.22 shows an overview of the sosend function. We discuss the four
shaded sections separately.

271-278 The arguments to sosend are: so, a pointer to the relevant socket; addr, a pointer
to a destination address; uio, a pointer to a uio structure describing the I/0 buffers in
user space; top, an mbuf chain that holds data to be sent; control, an mbuf that holds
control information to be sent; and flags, which contains options for this write call.

Normally, a process provides data to the socket layer through the uio mechanism
and top is null. When the kernel itself is using the socket layer (such as with NES), the

i data is passed to sosend as an mbuf chain pointed to by top, and uio is null.

279-304 The initialization code is described separately.

Lock send buffer

305-308 sosend’s main processing loop starts at restart, where it obtains a lock on the
send buffer with sblock before proceeding. The lock ensures orderly access to the
socket buffer by multiple processes.

If MSG_DONTWAIT is set in flags, then SBLOCKWAIT returns M_NOWAIT, which
tells sblock to return EWOULDBLOCK if the lock is not available immediately.

MSG_DONTWAIT is used only by NFS in Net/3.
The main loop continues until sosend transfers all the data to the protocol (i.e.,
resid == Q).
Check for space
309-341 Before any data is passed to the protocol, various error conditions are checked and

sosend implements the flow control and resource control algorithms described earlier.
If sosend blocks waiting for more space to appear in the output buffer, it jumps back to
restart before continuing.

Use data from top

342-350 Once space becomes available and sosend has obtained a lock on the send buffer,
the data is prepared for delivery to the protocol layer. If uio is null (i.e., the data is in
the mbuf chain pointed to by top), sosend checks MSG_EOR and sets M_EOR in the
chain to mark the end of a logical record. The mbuf chain is ready for the protocol layer.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 517

492 Socket 1/0O Chapter 16

uipc_socket.c

271 sosend(so, addr, uio, top, control, flags)
272 struct socket *so;

273 struct mbuf *addr;

274 struct uio *uio;

275 gtruct mbuf *top;

276 struct mbuf *control;

277 int flags;

278 {

305 restart:

306 if (error = sblock (&so->so_snd, SBLOCKWAIT (flags)))
307 goto out;
308 do { /* main loop, until resid == 0 */

342

343 if (uio == NULL) {

344 /*

345 * Data is prepackaged in "top".
346 */

347 resid = 0;

348 if (flags & MSG_EOR)

349 top->m_flags |= M_EOR;
350 } else

351 do {

396

412 } while (resid && space > 0);

413 } while (resid);

414 release:

415 sbunlock (&so->so_snd) ;
416 out:

417 if (top)

418 m_freem(top);

419 if (control)

420 m_freem(control) ;
421 return (error);

422)

uipc_socket.c

Figure 16.22 sosend function: overview.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 518

W

116 " Section 16.7 sosend Function 493

ket.c

351-396

397413

414—422

279-284

285~-297

298-303

304

cket.c

Copy data from process

When uio is not null, sosend must transfer the data from the process. When
PR_ATOMIC is set (e.g., UDP), this loop continues until all the data has been stored in a
single mbuf chain. A break, which is not shown in Figure 16.22, causes the loop to ter-
minate when all the data has been copied from the process, and sosend passes the
entire chain to the protocol.

When PR_ATOMIC is not set (e.g., TCP), this loop is executed only once, filling a sin-
gle mbuf with data from uio. In this case, the mbufs are passed one at a time to the
protocol.

Pass data to the protocol

For PR_ATOMIC protocols, after the mbuf chain is passed to the protocol, resid is
always 0 and control falls through the two loops to release. When PR_ATOMIC is not
set, sosend continues filling individuals mbufs while there is more data to send and
while there is still space in the buffer. If the buffer fills and there is still data to send,
sosend loops back and waits for more space before filling the next mbuf. If all the data
is sent, both loops terminate.

Cleanup

After all the data has been passed to the protocol, the socket buffer is unlocked, any
remaining mbufs are discarded, and sosend returns.
The detailed description of sosend is shown in four parts:

¢ initialization (Figure 16.23),

¢ error and resource checking (Figure 16.24),
¢ data transfer (Figure 16.25), and

* protocol dispatch (Figure 16.26).

The first part of sosend shown in Figure 16.23 initializes various variables.
Compute transfer size and semantics

atomic is set if sosendallatonce is true (any protocol for which PR_ATOMIC is
set) or the data has been passed to sosend as an mbuf chain in top. This flag controls
whether data is passed to the protocol as a single mbuf chain or in separate mbufs.

resid is the number of bytes in the icvec buffers or the number of bytes in the
top mbuf chain. Exercise 16.1 discusses why resid might be negative.

If requested, disable routing

dontroute is set when the routing tables should be bypassed for this message only.
clen is the number of bytes in the optional control mbuf. _

The macro snderr posts the error code, reenables protocol processing, and jumps
to the cleanup code at out. This macro simplifies the error handling within the func-
tion.

Figure 16.24 shows the part of sosend that checks for error conditions and waits
for space to appear in the send buffer.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 519

494 Socket 1/0O Chapter 16

309

310-311

312-313

314-318

319-321

uipc_socket.c

279 struct proc *p = Curproc; /* XXX */

280 struct mbuf **mp;

281 struct mbuf *m;

282 long space, len, resid;

283 int clen = 0, error, s, dontroute, mlen;

284 int atomic = sosendallatonce(so) }| top;

285 if (uio)

286 resid = uio->uio_resid;

287 else

288 resid = top->m_pkthdr.len;

289 /*

290 * In theory resid should be unsigned.

291 * However, space must be signed, as it might be less than 0
292 * if we over-committed, and we must use a signed comparison
293 * of space and resid. On the other hand, a negative resid
294 * causes us to loop sending 0-length segments to the protocol.
295 */

296 if (resid < 0)

297 return (EINVAL);

298 dontroute =

299 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
300 (so->so_proto->pr_flags & PR_ATOMIC) ;

301 p—>p_stats—>p_ru.ru_msgsnd++;

302 if (control)

303 clen = control->m_len;

304 #define snderr {(errno) { error = errno; splx(s); goto release; }

uipc_socket.c

Figure 16.23 sosend function: initialization.

Protocol processing is suspended to prevent the buffer from changing while it is

being examined. Before each transfer, sosend checks several conditions:

If output from the socket is prohibited (e.g., the write-half of a TCP connection
has been closed), EPIPE is returned.

If the socket is in an error state (e.g., an ICMP port unreachable may have been
generated by a previous datagram), so_error is returned. sendit discards
the error if some data has been sent before the error occurs (Figure 16.21, line
389).

If the protocol requires connections and a connection has not been established or
a connection attempt has not been started, ENOTCONN is returned. sosend per-
mits a write consisting of control information and no data even when a connec-
tion has not been established.

The Internet protocols do not use this feature, but it is used by TP4 to send data with a
connection request, to confirm a connection request, and to send data with a disconnect
request.
If a destination address is not specified for a connectionless protocol (e.g., the
process calls send without establishing a destination with connect),
EDESTADDREQ is returned.

3.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 520

495

Section 16.7 sosend Function

uipc_socket.c

309 s = splnet{);
310 if (so-»so_state & SS_CANTSENDMORE)
311 snderr (EPIPE) ;
312 if (so->so_error)
313 snderr (so->SO_error} ;
314 if ((so-»so_state & SS_ISCONNECTED) == 0} {
315 if (so-»so_proto->pr_flags & PR_CONNREQUIRED) {
316 if ((so-»>so_state & SS_ISCONFIRMING) == 0 &&
317 ! (resid == 0 && clen != 0))
318 snderr (ENOTCONN) ;
319 } else if (addr == 0)
320 snderr (EDESTADDRREQ) ;
321)
322 space = sbspace(&so->so_snd);
323 if (flags & MSG_OOB)
324 space += 1024;
325 if (atomic && resid > so-»so_snd.sb_hiwat ||
326 clen > so->so_snd.sb_hiwat)
327 snderr (EMSGSIZE) ;
328 if (space < resid + clen && uio &&
329 (atomic }| space < so->so_snd.sb_lowat || space < clen)) {
330 if (so->so_state & SS_NBIO)
331 snderr (ENOULDBLOCK) ;
332 sbunlock (&so->so_snd) ;
333 error = sbwait (&so->so_snd) ;
334 splx(s});
335 if (error)
336 goto out;
337 goto restart;
338 }
339 splx(s);
ey 340 mp = ⊤
341 space -= clen;

uipc_socket.c

Figure 16.24 sosend function: error and resource checking,

Compute available space

322-324 sbspace computes the amount of free space remaining in the send buffer. This is
an administrative limit based on the buffer’s high-water mark, but is also limited by
sb_mbmax to prevent many small messages from consuming too many mbufs (Fig-
ure 16.6). sosend gives out-of-band data some priority by relaxing the limits on the
buffer size by 1024 bytes.

Enforce message size limit

325-327 If atomic is set and the message is larger than the high-water mark, EMSGSIZE is
returned; the message is too large to be accepted by the protocol—even if the buffer
were empty. If the control information is larger than the high-water mark, EMSGSIZE is
also returned. This is the test that limits the size of a datagram or record.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 521

496 Socket 1/0 Chapter 16

Wait for more space?

328-329 If there is not enough space in the send bulffer, the data is from a process (versus
from the kernel in top), and one of the following conditions is true, then sosend must
wait for additional space before continuing:

¢ the message must be passed to protocol in a single request (at omic is set), or

» the message may be split, but the free space has dropped below the low-water
mark, or

¢ the message may be split, but the control information does not fit in the avail-
able space.

When the data is passed to sosend in top (i.e, when uio is null), the data is
already located in mbufs. Therefore sosend ignores the high- and low-water marks
since no additional mbuf allocations are required to pass the data to the protocol.

If the send buffer low-water mark is not used in this test, an interesting interaction
occurs between the socket layer and the transport layer that leads to performance
degradation. [Crowcroft et al. 1992] provides details on this scenario.

Wait for space

330-338 If sosend must wait for space and the socket is nonblocking, ENOULDBLOCK is
returned. Otherwise, the buffer lock is released and sosend waits with sbwait until
the status of the buffer changes. When sbwait returns, sosend reenables protocol pro-
cessing and jumps back to restart to obtain a lock on the buffer and to check the error
and space conditions again before continuing.

By default, sbwait blocks until data can be sent. By changing sb_timeo in the
buffer through the SO_SNDTIMEO socket option, the process selects an upper bound for
the wait time. If the timer expires, sbwait returns ENOULDBLOCK. Recall from Fig-
ure 16.21 that this error is discarded by sendit if some data has already been trans-
ferred to the protocol. This timer does not limit the length of the entire call, just the
inactivity time between filling mbufs.

339-341 At this point, sosend has determined that some data may be passed to the proto-
col. splx enables interrupts since they should not be blocked during the relatively long
time it takes to copy data from the process to the kernel. mp holds a pointer used to con-
struct the mbuf chain. The size of the control information (c1len) is subtracted from the
space available before sosend transfers any data from the process.

Figure 16.25 shows the section of sosend that moves data from the process to one
or more mbufs in the kernel.

Allocate packet header or standard mbuf

351-360 When atomic is set, this code allocates a packet header during the first iteration of
the loop and standard mbufs afterwards. When atomic is not set, this code always
allocates a packet header since top is always cleared before entering the loop.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 522

T 16

‘sus
wst

ater

/ail-

ais

arks

tion
wnce

K is
mntil
pro-
Tror

the
{ for
Fig-
ans-
the

‘oto-
long
con-
i the

one

m of
vays

Section 16.7 sosend Function 497
uipc_socket.c
351 {
352 if (top == 0) {
353 MGETHDR (m, M_WAIT, MT_DATA);
354 mlen = MHLEN;
355 m->m_pkthdr.len = 0;
356 m->m_pkthdr.rcvif = (struct ifnet *) 0;
357 } else {
358 MGET (m, M_WAIT, MT_DATA);
359 mlen = MLEN;
360 }
361 if (resid >= MINCLSIZE && space >= MCLBYTES) {
362 MCLGET (m, M_WAIT);
363 if ((m->m_flags & M_EXT) == 0)
364 goto nopages;
365 mlen = MCLBYTES;
366 if (atomic && top == 0) {
367 len = min(MCLBYTES - max_hdr, resid);
368 m->m_data += max_hdr;
369 } else
370 len = min{(MCLBYTES, resid);
371 space -= MCLBYTES;
372 } else {
373 nopages:
374 len = min{min{mlen, resid), space);
375 space -= len;
376 /*
377 * For datagram protocols, leave room
378 * for protocol headers in first mbuf.
379 */
380 if (atomic && top == 0 && len < mlen)
381 MH_ALIGN(m, len);
382 }
383 error = uiomove(mtod{(m, caddr_t), (int) len, uio);
384 resid = uio->uio_resid;
385 m->m_len = len;
386 *mp = m;
387 top->m_pkthdr.len += len;
388 if (error)
389 goto release;
390 mp = &m->m_next;
391 if (resid <= 0) {
392 if (flags & MSG_EOR)
393 top->m_£flags |= M_EOR;
394 break;
395 }
396 } while (space > 0 && atomic);

uipc_socket.c

Figure 16.25 sosend function: data transfer.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 523

498 Socket I/0 Chapter 16 Sec

T If possible, use a cluster

361-371 If the message is large enough to make a cluster allocation worthwhile and space
is greater than or equal to MCLBYTES, a cluster is attached to the mbuf by MCLGET.
When space is less than MCLBYTES, the extra 2048 bytes will break the allocation limit
for the buffer since the entire cluster is allocated even if resid is less than MCLBYTES.
If MCLGET fails, sosend jumps to nopages and uses a standard mbuf instead of an
external cluster.

The test against MINCLSIZE should use >, not >=, since a write of 208 (MINCLSIZE) bytes fits
within two mbufs.

When atomic is set (e.g., UDP), the mbuf chain represents a datagram or record
and max_hdr bytes are reserved at the front of the first cluster for protocol headers.
Subsequent clusters are part of the same chain and do not need room for the headers.

If atomic is not set (e.g., TCP), no space is reserved since sosend does not know
how the protocol will segment the outgoing data.

Notice that space is decremented by the size of the cluster (2048 bytes) and not by
1en, which is the number of data bytes to be placed in the cluster (Exercise 16.2).

Prepare the mbuf 30

372-382 If a cluster was not used, the number of bytes stored in the mbuf is limited by the
smaller of: (1) the space in the mbuf, (2) the number of bytes in the message, or (3) the
space in the buffer.

When atomic is set, MH_ALIGN locates the data at the end of the buffer for the first
buffer in the chain. MH_ALIGN is skipped if the data completely fills the mbuf. This
may or may not leave enough room for protocol headers, depending on how much data
is placed in the mbuf. When atomic is not set, no space is set aside for the headers.

Get data from the process

383-395 uiomove copies len bytes of data from the process to the mbuf. After the transfer,
the mbuf length is updated, the previous mbuf is linked to the new mbuf (or top points
to the first mbuf), and the length of the mbuf chain is updated. If an error occurred dur-
ing the transfer, sosend jumps to release.

When the last byte is transferred from the process, M_EOR is set in the packet if the
process set MSG_EOR, and sosend breaks out of this loop.

40t

MSG_EOR applies only to protocols with explicit record boundaries such as TP4, from the OSI
3 protocol suite. TCP does not support logical records and jgnores the MSG_EOR flag.

Fill another buffer?
396 If atomic is set, sosend loops back and begins filling another mbuf.
The test for space > 0 appears to be extraneous. space is irrelevant when atomic is not set S0;

B i since the mbufs are passed to the protocol one at a time. When atomic is set, this loop is
: entered only when there is enough space for the entire message. See also Exercise 16.2.

The Jast section of sosend, shown in Figure 16.26, passes the data and control
mbufs to the protocol associated with the socket.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 524

ster 16

pace
LGET.
¢ limit
ES.

of an

rtes fits

ecord
aders.
TS,

know

a0t by

by the
3) the

1e first
. This

h data
rs.

ansfer,
points
d dur-

t if the

the OSI

s not set
5 loop is

control

Section 16.7 sosend Function 499

397-405

406-413

uipc_socket.c

397 if (dontroute)

398 so->so0_options |= SO_DONTROUTE;

399 s = splnet(); /* XXX */

400 error = (*so->so_proto-»>pr_usrreq) (so,

401 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
402 top, addr, control);
403 splx(s);

404 if (dontroute)

405 so->so_options &= ~SO_DONTROUTE;

406 clen = 0;

407 control = 0;

408 top = 0;

409 mp = ⊤

410 if (error)

411 goto release;

412 } while (resid && space > 0);

413 } while (resid);

uipc_socket.c

Figure 16.26 sosend function: protocol dispatch.

The socket’s SO_DONTROUTE option is toggled if necessary before and after passing
the data to the protocol layer to bypass the routing tables on this message. This is the
only option that can be enabled for a single message and, as described with Fig-
ure 16.23, it is controlled by the MSG_DONTROUTE flag during a write.

pr_usrreq is bracketed with splnet and splx to block interrupts while the
protocol is processing the message. This is a paranoid assumption since some protocols
(such as UDP) may be able to do output processing without blocking interrupts, but this
information is not available at the socket layer.

If the process tagged this message as out-of-band data, sosend issues the
PRU_SENDOOB request; otherwise it issues the PRU_SEND request. Address and control
mbufs are also passed to the protocol at this time.

clen, control, top, and mp are reset, since control information is passed to the
protocol only once and a new mbuf chain is constructed for the next part of the mes-
sage. resid is nonzero only when atomic is not set (e.g., TCP). In that case, if space
remains in the buffer, sosend loops back to fill another mbuf. If there is no more space,
sosend loops back to wait for more space (Figure 16.24).

We'll see in Chapter 23 that unreliable protocols, such as UDP, immediately queue
the data for transmission on the network. Chapter 26 describes how reliable protocols,
such as TCP, add the data to the socket’s send buffer where it remains until it is sent to,
and acknowledged by, the destination.

sosend Summary

sosend is a complex function. It is 142 lines long, contains three nested loops, one loop
implemented with goto, two code paths based on whether PR_ATOMIC is set or not,
and two concurrency locks. As with much software, some of the complexity has accu-
mulated over the years. NFS added the MSG_DONTWAIT semantics and the possibility

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 525

500 Socket 1/0 Chapter 16 ; : <

of receiving data from an mbuf chain instead of the buffers in a process. The
SS. ISCONFIRMING state and MSG_EOR flag were introduced to handle the connection
and record semantics of the OSI protocols.

A cleaner approach would be to impleme

type of protocol and dispatch through a pr_se
idea is suggested and implemented for UDP in [Partridge and Pink 1993].

nt a separate sosend function for each
nd pointer in the protosw entry. This

Performance Considerations

As described in Figure 16.25, sosend, when possible, passes message in mbuf-sized
] chunks to the protocol layer. While this results in more calls to the protocol than build-
ing and passing an entire mbuf chain, [Jacobson 1988a] reports that it improves perfor-
mance by increasing parallelism.
L Transferring one mbuf at a time (up to 2048 bytes) allows the CPU to prepare a
packet while the network hardware is transmitting. Contrast this to sending a large
E mbuf chain: while the chain is being constructed, the network and the receiving system
are idle. On the system described in [Jacobson 1988a], this change resulted in a 20%
increase in network throughput.

It is important to make sure the send buffer is always larger than the bandwidth-
delay product of a connection (Section 20.7 of Volume 1). For example, if TCP discovers
that the connection can hold 20 segments before an acknowledgment is received, the
send buffer must be large enough to hold the 20 unacknowledged segments. If it is too
small, TCP will run out of data to send before the first acknowledgment is returned and

: the connection will be idle for some period of time.

16.8 read, readv, recvfrom, and recvmsg System Calls

These four system calls, which we refer to collectively as read system calls, receive data
from a network connection. The first three system calls are simpler interfaces to the
most general read system call, recvmsg. Figure 16.27 summarizes the features of the

four read system calls and one library function (recv).

. Type of Number of Return sender’s Return control
Function . Flags? | . .
descriptor buffers address? information?

read any 1
readv any [1..UTO_MAXIOV]

% recv sockets only 1 .

b recvfrom | sockets only 1 . . ‘
recvmsyg socketsonly | [1.. UIO_MAXIOV] . . .

Figure 16.27 Read system calls.

t

{ In Net/3, recv is implemented as a library function that calls recvfrom. For binary compati-
bility with previously compiled programs, the kernel maps the old recv system call to the
function orecv. We discuss only the kernel implementation of recvirom.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 526

Section 16.9 recvmsg System Call 501

The read and readv system calls are valid with any descriptor, but the remaining

calls are valid only with socket descriptors.

As with the write calls, multiple buffers are specified by an array of iovec struc-
tures. For datagram protocols, recvirom and recvmsg return the source address asso-
ciated with each incoming datagram. For connection-oriented protocols, getpeername
returns the address associated with the other end of the connection. The flags associ-

ated with the receive calls are shown in Section 16.11.
As with the write calls, the receive calls utilize a common function, in this case
soreceive, to do all the work. Figure 16.28 illustrates the flow of control for the read

system calls.
¢ } library function

TP4)
PRU_RCVD or PRU_RCVOOB .
through pr_usrreq :

m o ICMP

Figure 16.28 All socket input is processed by soreceive.

We discuss only the three shaded functions in Figure 16.28. The remaining functions are
left for readers to investigate on their own.

16.9 recvmsg System Call

The recvmsg function is the most general read system call. Addresses, control infor-
mation, and receive flags may be discarded without notification if a process uses one of
N the other read system calls while this information is pending. Figure 16.29 shows the

recvmsg function.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 527

502 Socket 1/0 Chapter 16
uipc_syscalls.c
433 struct recvmsg_args {
434 int S:
435 struct msghdr *msg;
436 int flags;
437 };
438 recvmsg(p, uap, retval)
439 struct proc *p;
440 struct recvmsg_args *uap;
441 int *retval;
442 |
443 struct msghdr msg;
444 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
445 int error;
446 if (error = copyin{(caddr_t) uap->msg, (caddr_t) & msg, sizeof (msg)))
447 return (error);
448 if ((u_int) msg.msg_iovlen »= UIO_SMALLIOV) {
449 if ((u_int) msg.msg_iovlen >= UIO_MAXIOQV)
450 return (EMSGSIZE);
451 MALLOC (iov, struct iovec *,
452 sizeof (struct iovec) * (u_int) msg.msg_iovlen, M_IO0vV,
453 M_WAITOK) ;
454 } else
455 iov = aiov;
456 msg.msg_flags = uap->flags;
457 uiov = msg.msg_iov;
458 msg.msg_iov = iov;
459 if (error = copyin((caddr_t) uiov, (caddr_t) iov,
460 (unsigned) (msg.msg_iovlen * sizeof (struct iovec))))
461 goto done;
462 if ((error = recvit (p, uap-»>s, &msg, (caddr_t) 0, retval)) == 0) {
463 msg.msg_iov = uiov;
464 error = copyout({caddr_t) & msg, (caddr_t) uap->msg, sizeof (msg));
465 }
466 done:
467 if (iov != aiov)
468 FREE (iov, M_IOV);
469 return {(error);
470)
uipc_syscalls.c
Figure 16.29 recvmsg system call.
433-445 The three arguments to recvmsg are: the socket descriptor; a pointer to a msghdr
structure; and several control flags.
Copy iov array
446-461 As with sendmsg, recvmsg copies the msghdr structure into the kernel, allocates a

larger iovec array if the automatic arra
from the process into the kernel array

y aiovis too small,
pointed to by iov

(Section 16.4). The flags pro-
vided as the third argument are copied into the msghdr structure.

and copies the array entries

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 528

d¢

1€

471~5

w6 Section 16.10 recvit Function 503

ls.c recvit and cleanup
462-470 After recvit has received data, the msghdr structure is copied back into the pro-
cess with the updated buffer lengths and flags. If a larger iovec structure was allo-
cated, it is released before recvmsg returns.
16.10 recvit Function
The recvit function shown in Figures 16.30 and 16.31 is called from recv, recvfrom,
and recvmsg. It prepares a uio structure for processing by soreceive based on the
msghdr structure prepared by the recvxxx calls.
- - uipc_syscalls.c
471 recvit(p, s, mp, namelenp, retsize)
472 struct proc *p;
473 int s;
474 struct msghdr *mp;
475 caddr_t namelenp;
476 int *retsize;
477 |
478 struct file *fp;
479 struct uio auio;
480 struct iovec *iov;
481 int i;
482 int len, error;
483 struct mbuf *from = 0, *control = 0;
484 if (error = getsock(p->p_fd, s, &fp))
485 return (error);
)) 486 auio.uio_iov = mp->msg_iov;
487 auio.uio_iovent = mp->msg_iovlen;
488 auio.uio_segflg = UIO_USERSPACE;
489 auio.uio_rw = UIO_READ;
; 490 auio.uio_procp = p;
491 auio.uio_offset = 0; /* XXX */
492 auio.uio_resid = 0;
493 iov = mp->msg_iov;
494 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
495 if (iov->iov_len < 0)
496 return (EINVAL):;
Is.c 497 if ((auio.uio_resid += iov->iov_len) < 0)
' 498 return (EINVAL);
499 }
500 len = auio.uio_resid;
dr uipc_syscalls.c
Figure 16.30 recvit function: initialize uio structure.
sa 471-500 getsock returns the file structure for the descriptor s, and then recvit initial- o
ies izes the uio structure to describe a read transfer from the kernel to the process. The ;
fo- : number of bytes to transfer is computed by summing the msg_1iovlen members of the ; :
iovec array. The total is saved inuio_residand in len. ;
) The second half of recvit, shown in Figure 16.31, calls soreceive and copies the
S it results back to the process. T

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 529

504 Socket 1/0 Chapter 16 - Section
uipc_syscalls.c ;
501 if (error = soreceive{(struct socket *) fp->f_data, &from, &auio, 501-510
502 (struct mbuf **) 0, mp->msg_control ? &control (struct mbuf **} 0,
503 smp->msg_flags)) { -
504 if (auio.uio_resid != len && (error == ERESTART || e
505 error == EINTR || error == EWOULDBLOCK)) o
506 error = 0;
507 }
508 if (error)
509 goto out; 511-542
510 *retsize = len - auio.uilo_resid;
511 if (mp->msg_name) {
512 len = mp->msg_namelen;
513 if (len <= 0 |{ from == 0)
514 len = 0;
515 else {
516 if (len > from->m_len)
517 len = from->m_len;
518 /* else if len < from->m_len 2?2? */
519 if (error = copyout (mtod(from, caddr_t), 543-549
520 (caddr_t) mp->msg_name, (unsigned) len))
521 goto out;
522 } :
523 mp->nsg_namelen = len;
524 if (namelenp && 16.11
525 (error = copyout ((caddr_t) & len, namelenp, sizeof(int)})) {
526 goto out;
527 }
528 [
529 if (mp->msg_control) { gt
530 len = mp->msg_controllen; o
531 if (len <= 0 || control == 0) 5
532 len = 0;
533 else {
534 if (len >= control->m_len)
535 len = control->m_len;
536 else
537 mp->msg_flags |= MSG_CTRUNC;
538 error = copyout ((caddr_t) mtod(control, caddr_t),
539 (caddr_t) mp->msg_control, (unsigned) len);
540 }
541 mp->msg_controllen = len;
542 }
543 out:
544 if (from)
545 m_freem(from) ; {
546 if (control)]
547 m_freem(control) ;
548 return (error); Out-of-E
549 })
uipc_syscalls.c
Figure 16.31 recvit function: return results. {
€

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paae 530

Section 16.11 soreceive Function 505

Call soreceive

501-510 soreceive implements the complex semantics of receiving data from the socket
buffers. The number of bytes transferred is saved in *retsize and returned to the
process. When an signal arrives or a blocking condition occurs after some data has been
copied to the process (len is not equal to uio_resid), the error is discarded and the
partial transfer is reported.

Copy address and control information to the process

511-542 If the process provided a buffer for an address or control information or both, the
buffers are filled and their lengths adjusted according to what soreceive returned.
An address may be truncated if the buffer is too small. This can be detected by the pro-
cess if it saves the buffer length before the read call and compares it with the value
returned by the kernel in the namelenp variable (or in the length field of the sockaddr
structure). Truncation of control information is reported by setting MSG_CTRUNC in
msg_flags. See also Exercise 16.7.

Cleanup

543549 At out, the mbufs allocated for the source address and the control information are
released.

16.11 soreceive Function

This function transfers data from the receive buffer of the socket to the buffers specified
by the process. Some protocols provide an address specifying the sender of the data,
and this can be returned along with additional control information that may be present.
Before examining the code, we need to discuss the semantics of a receive operation, out-
of-band data, and the organization of a socket’s receive buffer.

Figure 16.32 lists the flags that are recognized by the kernel during soreceive.

flags Description Reference
MSG_DONTWAIT | do not wait for resources during this call Figure 16.38
MSG_OOB receive out-of-band data instead of regular data | Figure 16.39
MSG_PEEK receive a copy of the data without consuming it | Figure 16.43
MSG_WAITALL wait for data to fill buffers before returning Figure 16.50 i

Figure 16.32 recvxxx system calls: flag values passed to kernel.

recvmsg is the only read system call that returns flags to the process. In the other
calls, the information is discarded by the kernel before control returns to the process.
Figure 16.33 lists the flags that recvmsg can set in the msghdr structure.

Out-of-Band Data

Out-of-band (OOB) data semantics vary widely among protocols. In general, protocols
expedite OOB data along a previously established communication link. The OOB data
might not remain in sequence with previously sent regular data. The socket layer

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 531

506

Socket 1/0 Chapter 16

msg_flags Description Reference

MSG_CTRUNC | the control information received was larger than the buffer provided Figure 16.31
MSG_EOR the data received marks the end of a logical record Figure 16.48
MS5G_0OOB the buffer(s) contains out-of-band data Figure 16.45
MSG_TRUNC the message received was larger than the buffer(s) provided Figure 16.51

Figure 16.33 recvmsg system call: msg_f1lag values returned by kernel.

supports two mechanisms to facilitate handling OOB data in a protocol-independent
way: tagging and synchronization. In this chapter we describe the abstract OOB mecha-
nisms implemented by the socket layer. UDF does not support QOB data. The relation-
ship between TCP’s urgent data mechanism and the socket OOB mechanism is
described in the TCP chapters.

A sending process tags data as OOB data by setting the MSG_OOB flag in any of the -
sendxxx calls. sosend passes this information to the socket’s protocol, which provides
any special services, such as expediting the data or using an alternate queueing strategy.

When a protocol receives OOB data, the data is set aside instead of placing it in the
socket's receive buffer. A process receives the pending OOB data by setting the
MSG_OOB flag in one of the recvxxx calls. Alternatively, the receiving process can ask
the protocol to place OOB data inline with the regular data by setting the
SO_OOBINLINE socket option (Section 17.3). When SO_OOBINLINE is set, the protocol
places incoming OOB data in the receive buffer with the regular data. In this case,
MSG._0OB is not used to receive the OOB data. Read calls return either all regular data
or all OOB data. The two types are never mixed in the input buffers of a single input
system call. A process that uses recvmsg to receive data can examine the MSG_OOB flag
to determine if the returned data is regular data or OOB data that has been placed
inline.

The socket layer supports synchronization of OOB and regular data by allowing the
protocol layer to mark the point in the regular data stream at which OOB data was
received. The receiver can determine when it has reached this mark by using the
STOCATMARK ioctl command after each read system call. When receiving regular
data, the socket layer ensures that only the bytes preceding the mark are returned in a
single message so that the receiver does not inadvertently pass the mark. If additional
OOB data is received before the receiver reaches the mark, the mark is silently
advanced.

Example

Figure 16.34 illustrates the two methods of receiving out-of-band data. In both exam-
ples, bytes A through I have been received as regular data, byte J as out-of-band data,
and bytes K and L as regular data. The receiving process has accepted all data up to but
not including byte A.

In the first example, the process can read bytes A through I or, if MSG_OOB is set,
byte J. Even if the length of the read request is more than 9 bytes (A-]), the socket layer

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 532

— U1 oo =

he
as
he
ar
ta
al

tly

Section 16.11 soreceive Function 507

_ consumed receive buffer

B|C|D|E|F|G|H|I|K|L

~J' |out-of-band dat L
] out-of-band data mark

_ consumed receive buffer

L mark and out-of-band data

Figure 16.34 Receiving out-of-band data.

returns only 9 bytes to avoid passing the out-of-band synchronization mark. When byte
I is consumed, STOCATMARK is true; it is not necessary to consume byte J for the process
to reach the out-of-band mark.

In the second example, the process can read only bytes A through I, at which point
SIOCATMARK is true. A second call can read bytes J through L.

In Figure 16.34, byte J is not the byte identified by TCP’s urgent pointer. The urgent
pointer in this example would point to byte K. See Section 29.7 for details.

Other Receive Options

A process can set the MSG_PEEK flag to retrieve data without consuming it. The data
remains on the receive queue until a read system call without MSG_PEEK is processed.
The MSG_WAITALL flag indicates that the call should not return until enough data
can be returned to fulfill the entire request. Even if soreceive has some data that can
be returned to the process, it waits until additional data has been received.
When MSG_WAITALL is set, soreceive can return without filling the buffer in the
following cases:

¢ the read-half of the connection is closed,

¢ the socket’s receive buffer is smaller than the size of the read,

e an error occurs while the process is waiting for additional data,
out-of-band data becomes available, or
the end of a logical record occurs before the read buffer is filled.

NFS is the only software in Net/3 that uses the MSG_WAITALL and MSG_DONTWAIT flags.
MSG_DONTWATIT can be set by a process to issue a nonblocking read system call without select-
ing nonblocking I/0O with ioctl or fentl.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 533

508

Socket 1/0 Chapter 16

Receive Buffer Organization: Message Boundaries

Receive Buffer Organization: No Message Boundaries

For protocols that support message boundaries, each message is stored in a single chain
of mbufs. Multiple messages in the receive buffer are linked together by m_nextpkt to
form a queue of mbufs (Figure 2.21). The protocol processing layer adds data to the
receive queue and the socket layer removes data from the receive queue. The high-
water mark for a receive buffer restricts the amount of data that can be stored in the
buffer.

When PR_ATOMIC is not set, the protocol layer stores as much data in the buffer as
possible and discards the portion of the incoming data that does not fit. For TCP, this
means that any data that arrives and is outside the receive window is discarded. When
PR_ATOMIC is set, the entire message must fit within the buffer. If the message does not
fit, the protocol layer discards the entire message. For UDP, this means that incoming
datagrams are discarded when the receive buffer is full, probably because the process is
not reading datagrams fast enough.

Protocols with PR_ADDR set use sbappendaddr to construct an mbuf chain and
add it to the receive queue. The chain contains an mbuf with the source address of the
message, 0 or more control mbufs, followed by 0 or more mbufs containing the data.

For SOCK_SEQPACKET and SOCK_RDM protocols, the protocol builds an mbuf chain
for each record and calls sbappendrecord to append the record to the end of the
receive buffer if PR_ATOMIC is set. If PR_ATOMIC is not set (OSI’s TP4), a new record is
started with sbappendrecord. Additional data is added to the record with
sbappend.

It is not correct to assume that PR_ATOMIC indicates the buffer organization. For example, TP4
does not have PR_ATOMIC set, but supports record boundaries with the M_EOR flag.

Figure 16.35 illustrates the organization of a UDP receive buffer consisting of 3
mbuf chains (i.e., three datagrams). The m_type value for each mbulf is included.

In the figure, the third datagram has some control information associated with it.
Three UDP socket options can cause control information to be placed in the receive buff-
er. See Figure 22.5 and Section 23.7 for details.

For PR_ATOMIC protocols, sb_lowat is ignored while data is being received.
When PR_ATOMIC is not set, sb_lowat is the smallest number of bytes returned in a
read system call. There are some exceptions to this rule, discussed with Figure 16.41.

When the protocol does not maintain message boundaries (i.e., SOCK_STREAM protocols
such as TCP), incoming data is appended to the end of the last mbuf chain in the buffer
with sbappend. Incoming data is trimmed to fit within the receive buffer, and
sb_lowat puts a lower bound on the number of bytes returned by a read system call.

Figure 16.36 illustrates the organization of a TCP receive buffer, which contains only
regular data.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 534

Section 16.11 soreceive Function 509

socket {}

- so_rcv

datagram 1 MT_ADDR ——»{ — MT_DATA q—LMT_DATA +l

datagram2[— MT ADDR J—»{ MT_DATA J—»] MT_DATA ——» MT?DATH—]’

datagram 3 MT_ADDR MT_CONTROL: MT_DATA
g
l =

Figure 16.35 UDP receive buffer consisting of three datagrams.

socket{}

— so_rcv

MT_ DATAj—L MT_DATA

MT_DATA

L
4

MT_DATA?—LMT‘DATW MT_DATA q]_

Figure 16.36 so_rcv buffer for TCP.

Control Information and Out-of-band Data

Unlike TCP, some stream protocols support control information and call
sbappendcontrol to append the control information and the associated data as a new
mbuf chain in the receive buffer. If the protocol supports inline OOB data,
sbinsertoob inserts a new mbuf chain just after any mbuf chain that contains OOB
data, but before any mbuf chain with regular data. This ensures that incoming OOB
data is queued ahead of any regular data.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 535

510 S

ocket 1/0O Chapter 16

16.12

439-446

Figure 16.37 illustrates the organization of a receive buffer that contains control

information and OOB data.

socket{}

MT_DATA H—P‘ MT_DATA 3—:

[mr_ CONTRM MT_DATGl

| MT_DATA ﬂMT_DATA j—m DATA jl

Figure 16.37 so_rcv buffer with control and OOB data.

The Unix domain stream protocol supports control information and the OSI TP4
protocol supports MT_OOBDATA mbufs. TCP does not support control data nor does it
support the MT_OOBDATA form of out-of-band data. If the byte identified by TCP’s
urgent pointer is stored inline (SO_OOBINLINE is set), it appears as regular data, not
OOB data. TCP’s handling of the urgent pointer and the associated byte is described in

Section 29.7.

soreceive Code

We now have enough background information to discuss soreceive in detail.
receiving data, soreceive must respect message boundaries, handle addresses and
control information, and handle any special semantics identified by the read flags (Fig-
ure 16.32). The general rule is that soreceive processes one record per call and fries to
return the number of bytes requested. Figure 16.38 shows an overview of the function.
soreceive has six arguments. so is a pointer to the socket. A pointer to an mbuf
to receive address information is returned in *paddr. If mp0 points to an mbuf pointer,
soreceive transfers the receive buffer data to an mbuf chain pointed to by *mp0. In

this case, the uio structure is used only for the count in uio_resid. If mp0

soreceive copies the data into buffers described by the uio structure. A pointer t0
the mbuf containing control information is returned in *controlp, and soreceive

returns the flags described in Figure 16.33 in *flagsp.

While

is null,

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 536

re

‘16 Section 16.12 soreceive Code 511

rol : * 447-453 soreceive starts by setting pr to point to the socket’s protocol switch structure
and saving uio_resid (the size of the receive request) in orig_resid. If control
information or addressing information is copied from the kernel to the process,
orig_resid is set to 0. If data is copied, uio_resid is updated. In either case,
orig_resid will not equal uio_resid. This fact is used at the end of soreceive
(Figure 16.51).

454461 *paddr and *controlp are cleared. The flags passed to soreceive in *flagsp
are saved in flags after the MSG_EOR flag is cleared (Exercise 16.8). flagsp is a
value-result argument, but only the recvmsg system call can receive the result flags. If
flagspisnull, flags is set to 0.

483-487 Before accessing the receive buffer, sblock locks the buffer. soreceive waits for
the lock unless MSG_DONTWAIT is set in flags.

This is another side effect of supporting calls to the socket layer from NFS within the kernel.

Protocol processing is suspended, so soreceive is not interrupted while it exam-
ines the buffer. m is the first mbuf on the first chain in the receive buffer.
If necessary, wait for data
488-541 soreceive checks several conditions and if necessary waits for more data to arrive
in the buffer before continuing. If soreceive sleeps in this code, it jumps back to
restart when it wakes up to see if enough data has arrived. This continues until the
request can be satisfied.

_ 542-545 soreceive jumps to dontblock when it has enough data to satisfy the request. A
P4 pointer to the second chain in the receive buffer is saved in nextrecord.
;}t Process address and control information
S . . .
ot 546-590 Address information and control information are processed before any other data is
in transferred from the receive buffer.
Setup data transfer
591-597 Since only OOB data or regular data is transferred in a single call to soreceive, ;
this code remembers the type of data at the front of the queue so soreceive can stop g
the transfer when the type changes.
ile i Mbuf data transfer loop
! |
nd 598-692 This loop continues as long as there are mbufs in the buffer (m is not null), the
ig- requested number of bytes has not been transferred (uic_resid > 0), and no error has
to occurred.
N Cleanup
uf 693-719 The remaining code updates various pointers, flags, and offsets; releases the socket
:?r, buffer lock; enables protocol processing; and returns.
n
l,

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 537

512

Socket 1/0

Chapter 16

uipc_socket.c

453
454
455
456
457
458
459
460
461

484
485
486

543
544
545

; 592
593
594
595
596

439 soreceive(so, paddr, uio, mp0, controlp, flagsp)
440 struct socket *so;

441 struct mbuf **paddr;

442 struct uio *uio;

443 struct mbuf **mp0;

444 struct mbuf **controlp;

445 int *flagsp;

446 |

447 struct mbuf *m, **mp;

448 int flags, len, error, S, offset;
449 struct protosw *pr = so->s0_proto;
450 struct mbuf *nextrecord;

451 int moff, type;

452 int orig_resid = uio->uio_resid;

restart:

mp = mp0;
if (paddr)
*paddr = 0;
if (controlp)
*controlp = 0;
if (flagsp)
flags = *flagsp & “MSG_EOR;
else
flags = 0;

. /* MSG_OOB processing and */
A implicit connection-confirmatiqn x4

if (error = sblock(&so->sO_rcv, SBLOCKWAIT (flags)))
return (error);

s = splnet();

m so->so_rcv.sb_mb;

" 9% {f necessary, wait for data to, ‘drr

dontblock:
if (uio-»uio_procp)
uio—>uio_procp—>p_stats—>p_ru.ru_msgrcv++;
nextrecord = m->m_nextpkt;

/* process addréss and control informat on X7

if (m) {
if ((flags & MSG_PEEK) == 0)
m->m_nextpkt = nextrecord;
type = m->m_type;
if (type == MT_OOBDATA)

flags |= MSG_OOB;

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 538

soreceive Code 513

/* process data */

/* while more data and more space to fill */

/* cleanup */

release:
sbunlock (&so->so_rcv);
splx(s);
return (error);

uipc_socket.c

Figure 16.38 soreceive function: overview.

In Figure 16.39, soreceive handles requests for OOB data.

. uipc_socket.c
if (flags & MSG_00B) {

m = m_get (M_WAIT, MT_DATA);
error = (*pr->pr_usrreqg) (so, PRU_RCVOOB,
m, (struct mpuf *) (flags & MSG_PEEK), (struct mbuf *) 0);
if (error)
goto bad;
do {
error = ulomove(mtod{m, caddr_t),
(int) min{uio->uio_resid, m->m_len), uio);
m = m_free(m):;
} while (uio-»uio_resid && error == 0 && m);
bad:
if (m)
m_freem(m) ;
return (error);

uipc_socket.c

Figure 16.39 soreceive function: out-of-band data.

Receive OOB data

462477 Since OOB data is not stored in the receive buffer, soreceive allocates a standard
mbuf and issues the PRU_RCVOOB request to the protocol. The while loop copies any
data returned by the protocol to the buffers specified by uio. After the copy,
soreceive returns 0 or the error code.

UDP always returns EOPNOTSUPP for the PRU_RCVOOB request. See Section 30.2
for details regarding TCP urgent processing. In Figure 16.40, soreceive handles con-
nection confirmation.

CAVIUM-1013

Cavium, Inc. v. Alacritech, Inc.

Paage 539

514 Socket 1/0O Chapter 16

- uipc_socket.c
if (mp)

*mp = (struct mbuf *) 0;
if (so-»>so_state & SS_ISCONFIRMING && uio->uio_resid)
(*pr->pr_usrreq) (so, PRU_RCVD, (struct mbuf *) O,
{struct mbuf *) 0, (struct mbuf *) 0);

uipc_socket.c

Figure 16.40 soreceive function: connection confirmation.

Connection confirmation

478-482 If the data is to be returned in an mbuf chain, *mp is initialized to null. If the socket
is in the SO_ISCONFIRMING state, the PRU_RCVD request notifies the protocol that the
process is attempting to receive data.

The SO_ISCONFIRMING state is used only by the OS] stream protocol, TP4. In TP4, a connec-
tion is not considered complete until a user-level process has confirmed the connection by
attempting to send or receive data. The process can reject a connection by calling shutdown
or close, perhaps after calling getpeername to determine where the connection came from.

Figure 16.38 showed that the receive buffer is locked before it is examined by the
code in Figure 16.41. This part of soreceive determines if the read system call can be
satisfied by the data that is already in the receive buffer.

uipc_socket.c
488

489 If we have less data than requested, block awaiting more

490 (subject ‘to any timeout) if:

491 1. the current count is less than the low water mark, or

492 2. MSG_WAITALL is set, and it is possible to do the entire

493 receive operation at once if we block (resid <= hiwat).

494 3. MSG_DONTWAIT is not set

495

496 If MSG_WAITALL is set but resid is larger than the receive buffer,
497 * we have to do the receive in sections, and thus risk returning
498 * a short count if a timeout or signal occurs after we start.

499 */

500 if (m == 0 || ((flags & MSG_DONTWAIT) == 0 &&

501 so->so_rcv.sb_cc < uio->uio_resid) &&

502 (so-»so_rcv.sb_cc < so->so_rcv.sb_lowat ||

503 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
504 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)

uipc_socket.c

Figure 16.41 soreceive function: enough data?

Can the call be satisfied now?

488-504 The general rule for soreceive is that it waits until enough data is in the receive
buffer to satisfy the entire read. There are several conditions that cause an error or less
data than was requested to be returned.

If any of the following conditions are true, the process is put to sleep to wait for
more data to arrive so the call can be satisfied:

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 540

apter 16

:_socket.c

:_socket.c

e socket
that the

a connec-
tection by
thutdown
me from.

1 by the
{1 can be

c_socket.c

ffer,

£)) &&

2c_socket.c

e receive
or or less

wait for

Gection 16.12 soreceive Code 515

505-534

505-512

513-518

519-523

524-528

529-534

535-541

¢ There is no data in the receive buffer (m equals 0).

» There is not enough data to satisfy the entire read (sb_cc <uio_resid and
MSG_DONTWAIT is not set), the minimum amount of data is not available
(sb_cc < sb_lowat), and more data can be appended to this chain when it
arrives (m_nextpkt is 0 and PR_ATOMIC is not set).

» There is not enough data to satisfy the entire read, a minimum amount of data
is available, data can be added to this chain, but MSG_WAITALL indicates that
soreceive should wait until the entire read can be satisfied.

If the conditions in the last case are met but the read is too large to be satisfied with-
out blocking (uio_resid > sb_hiwat), soreceive continues without waiting for
more data.

If there is some data in the buffer and MSG_DONTWAIT is set, soreceive does not
wait for more data.

There are several reasons why waiting for more data may not be appropriate. In
Figure 16.42, soreceive checks for these conditions and returns, or waits for more
data to arrive.

Wait for more data?

At this point, soreceive has determined that it must wait for additional data to
arrive before the read can be satisfied. Before waiting it checks for several additional
conditions:

e If the socket is in an error state and empty (m is null), soreceive returns the
error code. If there is an error and the receive buffer also contains data (m is
nonnull), the data is returned and a subsequent read returns the error when
there is no more data. If MSG_PEEK is set, the error is not cleared, since a read
system call with MSG_PEEK set should not change the state of the socket.

o If the read-half of the connection has been closed and data remains in the
receive buffer, sosend does not wait and returns the data to the process (at
dontblock). If the receive buffer is empty, soreceive jumps to release
and the read system call returns 0, which indicates that the read-half of the con-
nection is closed.

s If the receive buffer contains out-of-band data or the end of a logical record,
soreceive does not wait for additional data and jumps to dontblock.

* If the protocol requires a connection and it does not exist, ENOTCONN is posted
and the function jumps to release.

o If the read is for 0 bytes or nonblocking semantics have been selected, the func-
tion jumps to release and returns 0 or ENOULDBLOCK, respectively.

Yes, wait for more data

soreceive has now determined that it must wait for more data, and that it is rea-
sonable to do so (i.e., some data will arrive). The receive buffer is unlocked while the
process sleeps in sbwait. If sbwait returns because of an error or a signal,

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 541

516 Socket 1/O Chapter 16

uipc_socket.c

505 if (so->so_error) {

506 if (m)

507 goto dontblock;

508 error = SO->SO_error;

509 if ((flags & MSG_PEEK) == 0)

510 so->so_error = 0;

511 goto release;

512 }

513 if (so->so_state & SS_CANTRCVMORE) {

514 if (m)

515 goto dontblock;

516 else

517 goto release;

518 }

519 for (; m; m = m->m_next)

520 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR))

521 m = soO->so_rcv.sb_mb;

522 goto dontblock;

523 }

524 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0 &&

525 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {

526 error = ENOTCONN;

527 goto release;

528 }

529 if (uio->uio_resid == 0)

530 goto release;

531 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)}) {

532 error = EWOULDBLOCK;

533 goto release;

534 }

535 sbunlock (&so->so_xcv) ;

536 error = sbwailt (&so->so_rcv);

537 splx(s});

538 if (error)

539 return (error);

540 goto restart;

541 }
uipc_socket.c

Figure 16.42 soreceive function: wait for more data?

soreceive returns the error; otherwise the function jumps to restart to determine if

the read can be satisfied now that more data has arrived.

As in sosend, a process can enable a receive timer for sbwait with the
SO_RCVTIMEO socket option. If the timer expires before any data arrives, sbwait
returns EWOULDBLOCK.

5
The effect of this timer is not what one would expect. Since the timer gets reset every time "«é

there is activity on the socket buffer, the timer never expires if at least 1 byte arrives within the
timeout interval. This can delay the return of the read system call for more than the value of ;
the timer. sb_timeo is an inactivity timer and does not put an upper bound on the amount o
time that may be required to satisfy the read system call.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 542

5¢

6 Section 16.12 soreceive Code 517
c At this point, soreceive is prepared to transfer some data from the receive buffer.
’ Figure 16.43 shows the transfer of any address information.
542 dontblock: uipe_socket.c
543 if (uio-»uio_procp)
544 uio->uio_procp->p_stats->p_ru.ru_mMSgrcv++;
545 nextrecord = m->m_nextpkt;
546 if (pr->pr_flags & PR_ADDR) {
547 orig_resid = 0;
548 if (flags & MSG_PEEK) {
549 if (paddr)
550 *paddr = m_copy (m, 0, m->m_len);
551 m = m->m_next;
552 } else {
553 sbfree(&so->so_rcv, m);
554 if (paddr) {
555 *paddr = m;
556 so->so_rcv.sb_mb = m->m_next;
557 m->m_next = 0;
558 m = S0->SO_rcv.sb_mb;
559 } else {
560 MFREE (m, so->so_rcv.sb_mb);
561 m = so->S0_rcv.sb_mb;
562)
563)
564 })
uipc_socket.c
Figure 16.43 soreceive function: return address information.
dontblock
542-545 nextrecord maintains a reference to the next record that appears in the receive
buffer. This is used at the end of soreceive to attach the remaining mbufs to the
socket buffer after the first chain has been discarded.
Return address information
e 546-564 If the protocol provides addresses, such as UDP, the mbuf containing the address is i
' removed from the mbuf chain and returned in *paddr. If paddr is null, the address is
discarded.
Throughout soreceive, if MSG_PEEK is set, the data is not removed from the P
. : buffer. i
2 if . :
he - The code in Figure 16.44 processes any control mbufs that are in the buffer.
it Return control information
565590 Each control mbuf is removed from the buffer (or copied if MSG_PEEK is set) and
. attached to *controlp. If controlp is null, the control information is discarded.
the If the process is prepared to receive control information, the protocol has a
s of dom_externalize function defined, and if the control mbuf contains a SCM_RIGHTS
tof (access rights) message, the dom_externalize function is called. This function takes
any kernel action associated with receiving the access rights. Only the Unix protocol

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 543

i

' 518 Socket 1/0 Chapter 16
uipc_socket.c
565 while (m && m->m_type == MT_CONTROL && error == 0) {
566 if (flags & MSG_PEEK) {
567 if (controlp)
568 *controlp = m_copy{m, 0, m->m_len);
569 m = m->m_next;
570 } else {
571 sbfree (&§so->so_rcv, m);
572 if (controlp) {
573 if (pr—>pr_domain—>dom_externalize &&
574 mtod(m, struct cmsghdr *)->cmsg_type ==
575 SCM_RIGHTS)
576 error = (*pr—>pr_domain~>dom_externalize) (m) ;
577 *controlp = m;
578 so->s50_rcv.sb_mb = m->m_next;
579 m->m_next = 0;
580 m = so->so_rcv.sb_mb;
581 } else {
582 MFREE (m, so-»>so_rcv.sb_mb);
583 m = so-»so_rcv.sb_mb;
584 }
585 }
586 if (controlp) {
587 orig_resid = 0;
588 controlp = &(*controlp)->m_next;
589 }
590 })
uipc_socket.c
: Figure 16.44 soreceive function: contro] information.

i

E domain supports access rights, as discussed in Section 7.3. If the process is not prepared
to receive control information (controlp is null) the mbuf is discarded.

The loop continues while there are more mbufs with control information and no
error has occurred.

g For the Unix protocol domain, the dom_externalize function implements the semantics of

i passing file descriptors by modifying the file descriptor table of the receiving process.

g After the control mbufs are processed, m points to the next mbuf on the chain. If the ;
chain does not contain any mbufs after the address, or after the control information, m is
null. This occurs, for example, when a 0-length UDP datagram is queued in the receive
buffer. In Figure 16.45 soreceive prepares to transfer the data from the mbuf chain.
Prepare to transfer data

591-597 After the control mbufs have been processed, the chain should contain regular, out- ;

of-band data mbufs or no mbufs at all. If m is null, soreceive is finished with this
chain and control drops to the bottom of the while loop. If m is not null, any remaining
chains (nextrecord) are reattached to m and the type of the next mbuf is saved in
type. If the next mbuf contains OOB data, MSG_0OB is set in flags, which is later

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 544

598-600

600~-605

606—611

612-625

soreceive Code 519
-

W uipc_socket.c

592 if ((flags & MSG_PEEK) == 0)
593 m->m_nextpkt = nextrecord;
594 type = m->m_type;

595 if (type == MT_OOBDATA)

596 flags = MSG_OOB;

597 }
- uipc_socket.c

Figure 16.45 soreceive function: mbuf transfer setup.

returned to the process. Since TCP does not support the MT_OOBDATA form of out-of-
band data, MSG_00B will never be returned for reads on TCP sockets.

Figure 16.47 shows the first part of the mbuf transfer loop. Figure 16.46 lists the
variables updated within the loop.

[Varable

mof f the offset of the next byte to transfer when MSG_PEEX is set

offset the offset of the OOB mark when MSG__PEEK is set

uio_resid | the number of bytes remaining to be transferred

len the number of bytes to be transferred from this mbuf; may be less than
m_lenifuio_residis small, or if the OOB mark is near

Figure 16.46 soreceive function: loop variables.

During each iteration of the whi Le loop, the data in a single mbuf is transferred to
the output chain or to the uio buffers. The loop continues while there are more mbufs,
the process’s buffers are not full, and no error has occurred.

Check for transition between OOB and regular data

If, while processing the mbuf chain, the type of the mbuf changes, the transfer
stops. This ensures that regular and out-of-band data are not both returned in the same
message. This check does not apply to TCP.

Update OOB mark

The distance to the ocobmark is computed and limits the size of the transfer, so the
byte before the mark is the Jast byte transferred. The size of the transfer is also limited
by the size of the mbuf. This code does apply to TCP,

If the data is being returned to the uio buffers, uiomove is called. If the data is
being returned as an mbuf chain, uio_resid is adjusted to reflect the number of bytes
moved.

To avoid suspending protocol processing for a long time, protocol processing is
enabled during the call to uiomove. Additional data may appear in the receive buffer
because of protocol processing while uiomove is running.

The code in Figure 16.48 adjusts all the pointers and offsets to prepare for the next
mbulf.

CAVIUM-1013

Cavium, Inc. v. Alacritech, Inc.

Paage 545

520 Socket I/O Chapter 16

626—646

647~657

uipc_socket.c

598 moff = 0;

599 offset = 0;

600 while (m && uio->uio_resid > 0 && error == 0) {

601 if (m->m_type == MT _OOBDATA) {

602 if (type != MT_OOBDATA)

603 break;

604 } else if (type == MT_OOBDATA)

605 break;

606 so->so_state &= “SS_RCVATMARK;

607 len = uio->uio_resid;

608 if (so->so_oobmark && len > so->so_oobmark - offset)
609 len = so->so_oobmark - offset;

610 if (len > m->m_len - moff)

611 len = m->m_len - moff;

612 /*

613 * If mp is set, just pass back the mbufs.

614 * Otherwise copy them out via the uio, then free.
615 * Sockbuf must be consistent here (points to current mbuf,
616 * it points to next record) when we drop priority;
617 * we must note any additions to the sockbuf when we
618 * block interrupts again.

619 */

620 if (mp == 0) ¢

621 splx(s);

622 error = uiomove(mtod(m, caddr_t) + moff, (int) len, uio);
623 s = splnet{();

624 } else

625 uio->uio_resid -= len;

uipc_socket.c

Figure 16.47 soreceive function: uiomove

Finished with mbuf?

If all the bytes in the mbuf have been transferred, the mbuf must be discarded or the
pointers advanced. If the mbuf contained the end of a logical record, MSG_EOR is set. If
MSG_PEEK is set, soreceive skips to the next buffer. If MSG_PEEK is not set, the buffer
is discarded if the data was copied by uiomove, or appended to mp if the data is being
returned in an mbuf chain.

More data to process

There may be more data to process in the mbuf if the request didn’t consume all the
data, if so_oobmark cut the request short, or if additional data arrived during
uiomove. If MSG_PEEX is set, moff is updated. If the data is to be returned on an
mbuf chain, 1en bytes are copied and attached to the chain. The mbuf pointers and the
receive buffer byte count are updated by the amount of data that was transferred.

Figure 16.49 contains the code that handles the OOB offset and the MSG_EOR pro-
cessing.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 546

soreceive Code 521

uipc_socket.c

626 if (len == m-»>m_len - moff) {
627 if {(m->m_flags & M_EOR)
628 flags |= MSG_EOR;
629 if (flags & MSG_PEEK) {
630 m = m->m_nexet;
631 moff = 0;
632 } else {
633 nextrecord = m->m_nextpkt;
634 sbfree(&so->so_rcv, m);
635 if (mp) |
636 *mp = m;
637 mp = &mM~->mM_next;
638 so->so_rcv.sb mb = m = m->m_next;
639 *mp = (struct mbuf *) 0;
640 } else {
641 MFREE(m, so-~>so_rcv.sb_mb);
642 m = SO->SO_rcv.sb_mb;
643 }
644 if (m)
645 m->m_nextpkt = nextrecord;
646 }
647 } else {
648 if (flags & MSG_PEEK)
649 moff += len;
650 else {
651 if (mp)
652 *mp = m_copym(m, 0, len, M_WAIT);
653 m->m_data += len;

c 654 m->m_len -= len;

655 so->so_rcv.sb_cc -= len;

656 }
657 }

uipc_socket.c

Figure 16.48 soreceive function: update buffer.

e - uipc_socket.c
f 658 if (so->so_oobmark) {
r 659 if ((flags & MSG_PEEK) == 0) {
660 so->so_oobmark -= len; R
Cf 661 if (so->so_oobmark == 0) !
662 so->so_state |= SS_RCVATMARK; :
663 break;
664 }
e 665 } else {
g 666 offset += len;
n 667 if (offset == so->so_oobmark)
668 break;
e 669 }
670 } :
671 if (flags & MSG_EOR) g’
672 break; . T
)- uipc_socket.c k1

Figure 16.49 soreceive function: out-of-band data mark.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 547

522

Socket 1/0O Chapter 16

Update OOB mark

658~670 If the out-of-band mark is nonzero, it is decremented by the number of bytes trans-
ferred. If the mark has been reached, SS_RCVATMARK is set and soreceive breaks out
of the while loop. If MSG_PEEK is set, of fset is updated instead of so_oobmark.

End of logical record

671-672 If the end of a logical record has been reached, soreceive breaks out of the mbuf
processing loop so data from the next logical record is not returned with this message.

The loop in Figure 16.50 waits for more data to arrive when MSG_WATTALL is set
and the request is not complete.

uipc_socket.c

673 /*

674 * If the MSG_WAITALL flag is set (for non-atomic socket),
675 * we must not qguit until "uio-»uio_resid == 0" or an error
676 * termination. If a signal/timeout occurs, return

677 * with a short count but without error.

678 * Keep sockbuf locked against other readers.

679 */

680 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
681 !sosendallatonce (so) && !nextrecord) {

682 if (so->so_error |! so->so_state & SS_CANTRCVMORE)

683 break;

684 error = sbwait (&so->so_rcv);

685 if (error) {

686 sbunlock (&so->so_rcv) ;

687 splx(s);

688 return (0);

689 }

690 if (m = so-»so_rcv.sb_mb)

691 nextrecord = m->m_nextpkt;

692 }

693 } /* while more data and more space to f£ill */

uipc_socket.c

Figure 16.50 soreceive function: MSG_WAITALL processing.

MSG_WAITALL

673-681 If MSG_WAITALL is set, there is no more data in the receive buffer (m equals 0), the -
caller wants more data, sosendallatonce is false, and this is the last record in the -
receive buffer (nextrecord is null), then soreceive must wait for additional data.

Error or no more data will arrive

682683 If an error is pending or the connection is closed, the loop is terminated.

Wait for data to arrive

684689 sbwait returns when the receive buffer is changed by the protocol layer. If the
wait was interrupted by a signal (error is nonzero), sosend returns immediately.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 548

16 - Gection 16.12 soreceive Code 523

Synchronize m and nextrecord with receive buffer

ns- ' 690-692 m and nextrecord are updated, since the receive buffer has been modified by the
out . protocol layer. If data arrived in the mbuf, m will be nonzero and the while loop termi-
nates.

Process next mbuf

buf 693 This is the end of the mbuf processing loop. Control returns to the loop starting on
by line 600 (Figure 16.47). As long as there is data in the receive buffer, more space to fill,
and no error has occurred, the loop continues.

set When soreceive stops copying data, the code in Figure 16.51 is executed.
: uipc_socket.c
ket 694 if (m && pr->pr_flags & PR_ATOMIC) {
< 695 flags |= MSG_TRUNC;
696 if ((flags & MSG_PEEK) == 0)
697 (void) sbdroprecord(&so->so_rcv) ;
698 }
699 if ((flags & MSG_PEEK) == 0) {
700 if (m == 0) i
701 so->so_rcv.sb_mb = nextrecord; ‘
702 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
703 (*pr->pr_usrreq) (so, PRU_RCVD, {struct mbuf *) 0O,
704 (struct mbuf *) flags, (struct mbuf *) 0,
705 (struct mbuf *) 0);
706 }
707 if (orig_resid == uio->uio_resid && orig_resid &&
708 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE)} == 0) {
709 sbunlock (&so->so_rcv) ;
710 splx(s);
711 goto restart;
712)
713 if (flagsp)
714 *flagsp |= flags; .
1% uipc_socket.c
cket.c : Figure 16.51 soreceive function: cleanup.
Truncated message
694-698 If the process received a partial message (a datagram or a record) because its receive
. the buffer was too small, the process is notified by setting MSG_TRUNC and the remainder of
’ . . - . . .
| the the message is discarded. MSG_TRUNC (as with all receive flags) is available only to a
N : process through the recvmsg system call, even though soreceive always sets the
flags.
End of record processing
699-706 If MSG_PEEK is not set, the next mbuf chain is attached to the receive buffer and, if
- required, the protocol is notified that the receive operation has been completed by issu-
f the | ing the PRU_RCVD protocol request. TCP uses this feature to update the receive win- i

dow for the connection.

CAVIUM-1013
Cavium, Inc. v. Alacritech, Inc.
Paage 549

524 Socket 1/0 Chapter 16

Nothing transferred

707712 If soreceive runs to completion, no data is transferred, the end of a record is not
reached, and the read-half of the connection is still active, then the buffer is unlocked
and soreceive jumps back to restart to continue waiting for data.

713-714 Any flags set during soreceive are returned in *flagsp, the buffer is unlocked,
and soreceive returns.

Analysis

soreceive is a complex function. Much of the complication is because of the intricate
manipulation of pointers and the multiple types of data (out-of-band, address, control,
regular) and multiple destinations (process buffers, mbuf chain).

Gimilar to sosend, soreceive has collected features over the years. A specialized
receive function for each protocol would blur the boundary between the socket layer
and the protocol layer, but it would simplify the code considerably.

[Partridge and Pink 1993] describe the creation of a custom soreceive function for
UDP to checksum datagrams while they are copied from the receive buffer to the pro-
cess. They note that modifying the generic soreceive function to support this feature
would “make the already complicated socket routines even more complex.”

select System Call

In the following discussion we assume that the reader is familiar with the basic opera-
tion and semantics of select. For a detailed discussion of the application interface to
select see [Stevens 1992].

Figure 16.52 shows the conditions detected by using select to monitor a socket<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>