
PATENT APPLICATION SERI-ALNO.‘

US. DEPARTMENT OF COMMERCE .
PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET -

. ‘ 86/27/2892HMR211 90988043 11621825 '

' 01 FC:1811
B2:FC:1111
B3 FC:1311' ’
041131981 ~
8511251202

PTO-1556 I I. _
If}? ;

' -u.'s. Government Priming Ofiioe: zen-1489467159033

a ReductionActof 1995. no -nom m

Substitute for Form PTO—875

APPLICATION AS FILED - PART I
~ (Column 1) (Column 2)

I NUMBER FILED ' NUMBER EXTRA

(J7 CFRI.10(o).ioioviqn

2

BASIC FEE
JICFRH a. 0.01 c

SEARCH FEE
(:7 CFR I rem. (I). or (Mi)
EXAMINATION FEE

INDEPENDENT CLAIMS
(31 CFR 1.16011)

if the specification and drawings exceed 100
Appucniou SIZE sheets of paper, the application size fee due
FEE is $250 ($125 for small entity) for each
(37 CFR Hat-i) ' additional 50 sheets or fraction thereof. See

35 U.S.C. 41 a 1 G and 37 CFR 1.16 s .

MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR1.16(|))

' If the d'fl‘ference in column 1 is less than zero. enter ‘0' in column 2.\ .

APPLICATION AS AMENDED —- PART II

(Column 2)
HIGHEST
NUMBER

PREVIOUSLY
PAID FOR

(Column 1) (Column 3)
ClAIMS

REMAINING
AFTER

AMENDMENT

PRESENT
EXTRA

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.160))

(Column 1)
ClAIMS

REMAINING
AFTER

AMENDMENT

(Column 2) (Column 3)
HIGHEST
NUMBER

PREVIOUSLY
PAID FOR

PRESENT
EXTRA

- Total
m cm 1.155))
Independent
(11 CFR 1.18m)

Application Size Fee (37 CFR 1.16 5AMENDMENTB
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.160)) I V

' If the entry in column 1 is less than the entry in column 2. write ‘0' in column 3.

TOTAL
ADD'L FEE

“ If the 'nghest'Number Previously Paid For IN THIS SPACE is less than 20, enter '20".
“' If the 'Highest Number Previously Paid For' IN THIS SPACE is less than 3. enter '3'.

The "Hihest Number Previousl Paid For Total or lnde endent is the hihest number found in the e - -- riete box in column 1.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which Is to file (and by the
USPTO to process) an application. Confidentiality is governed by_35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete.
including gathering. preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments
on the amount of time you require to complete this form and/or suggestions for reducing this burden. should be sent to the Chief Information Officer, U.S. Patent
and Trademark Office. U.S. Department of Commerce. PO. Box 1450, Alexandria. VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissloner for Patents, P.O.'Box 1450, Alexandria. VA 22313-1450.

If you need assistance in completing the [armies/(5 1:609-PTO-9199 and select option 2.

PTO/SBIOG (0241‘)
Approved for use through 02/28/2007. OMB 0851-0032

U.S. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
-uired to to: ~ - to a colect'ton of information unless it din

PATENT APPLICATION FEE DETERMINATION RECORD

ADDI-
TIONAL
FEE

ADDI-
TIONAL
FEE S

a a a valid OMB control number.

OTHERTHAN
SMALL ENTITY

RATE 8
E>

0E o_>

39

g
ll

El
OTHER THAN

SMALL ENTITY

RATE (3) ADDI-
TIONAL
FEE S

x560 =

TOTAL
ADD'L FEE

AD DI-
TIONAL

TOTAL
ADD'L FEE

bx,-
.‘" U.S. PTO

11/821820

06/25/2007

Attorney Docket No.
. ALA-006K

TO THE COMMISSIONER FOR PATENTS:

,5," 18351 U.S. PTO

llllllIllllllll11111111111111
062507
UTILITY PATENT APPLICATION TRANSMITTAL

New Non rovisional A lications Under 37 CFR ~ .

Transmitted herewith is a patent application identified as follows:
First-named inventor: Laurence B. Boucher

Assignee: Alacritech, Inc.
Filing Date: September 27, 2002
Title: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

This application claims the benefit under 35 USC §120 of(is a continuation of):

“Fast-Path Apparatus For Receiving Data Corresponding to a TCP Connection”
Serial No.: 10/260,112

Filing Date: September 27, 2002
Atty. Docket: ALA—006G
Examiner: Jude Jean Gilles

This application claims the benefit under 35 USC §120 of Application Serial No. 10/260,112, filed
September 27, 2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/092,967,
filed March 6, 2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240,
filed December 15, 2001, which in turn claims the benefit under 35 USC §120 of Application Serial No.
09/464,283, filed December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial
No. 09/439,603, filed November 12, 1999, which in turn claims the benefit under 35 USC §120 of Application

Serial No. 09/067,544, filed April 27, 1998, which in turn claims the benefit under 35 USC §119 of Provisional
Application Serial No. 60/061,809, filed October 14, 1997. '

This application also claims the benefit under 35 USC §120 of Application Serial No. 09/384,792, filed
August 27, 1999, which in turn claims the benefit under 35 USC §120 oprplication Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §ll9 of Provisional Application Serial No.
60/098,296, filed August 27, 1998. '

This application also claims the benefit under 35 USC. §120 ofthe following:
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.

(X)

(X)

Patent Application Serial No.

Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.

09/416,925 (ALA-005), filed October 13, 1999;
09/514,425 (ALA-007), filed February 28, 2000;
09/675,484 (ALA-010A), filed September 29, 2000;
09/675,700 (ALA-0103), filed September 29, 2000;
09/789,366 (ALA-013), filed February 20, 2001;
09/801,488 (ALA-011), filed March 7, 2001;
09/802,551 (ALA-012), filed March 9, 2001;
09/802,426 (ALA-014), filed March 9, 2001;
09/802,550 (ALA-015), filed March 9, 2001;
09/855,979 (ALA-016), filed March 14, 2001; and
09/970,124 (ALA-020), filed October 2, 2001.

5,1

The specification contains a statement claiming priority under 35 USC § 120 and claiming the benefit under
35 USC. §119.
The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
O9/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/801,488; 09/802,551; 09/802,426; 09/802,550; 09/855,979; 09/970,124) is considered as being part ofthe
disclosure of the accompanying application and is hereby incorporated by reference therein.
The entire disclosure of each of the prior provisional applications (60/061,809; 60/098,296) is considered as

being part ofthe disclosure of the accompanying application and is hereby incorporated by reference therein.

Enclosed are:

145 pages Specification
4 pages Claims
1 page Abstract

89 pages Drawings
.4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed - copy)

4 pages Declaration/Power of Attorney from prior
application 10/092,967 (signed - copy)

2 page CD Appendix Transmittal Letter
X CD Appendix (two copies) '
X A check for filing fee ($1800.00)

Newly Executed Declaration Not Required:
A newly executed declaration is not filed in this application because, under 37 CFR l.63(d)(1), a newly executed

declaration is not required because: prior application contained a ‘ declaration as prescribed by 37 CFR 1.63; the
continuation application (this application) is filed by all of the inventors named in the prior application; the specification
and drawings in the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two) in the prior application is being submitted in the
continuation application (this application).

The filing fee is calculated as follows:

CLAIMS AS FILED

FOR NO. FILED NO. EXTRA RATE FEE

Total Claims 21 - $50.00 $ 50.00
lndeendent Claims 3 __ $200.00 $ 0.00
- $0.00

$300.00
$750.00

‘$500.00
$200.00

$1800.00

I hereby certify that this is being deposited with the US. Postal Respectfully submitted,
Service “Express Mail Post Office to Addressee” service under.

37 CFR § 1.l0 on the date indicated below and is addressed to: By; %
Mark La er

MS Patent Application u
C . . Reg. No. 36,578ommlssroner for Patents

Po. Box 1450 6601 K011 Center Parkway
. Suite 245

Alexandrla, VA 22313-1450 Pleasanton, CA 94566
Phone: (925) 484-9295

By: % > Fax: (925) 484-9291

Typed Name: Mark Lauer Date: é'é" F'é 2

Express Mail Label No.: EV 406928085 US Correspondence Address:

Date of Deposit:m ' CUSTOMER NO. 24501

TO THE ASSISTANT COMMISSIONER FOR PATENTS:

Inventors: Laurence B. Boucher, et a1. Atty Docket: ALA-006K

Filing Date: June 25, 2007 Serial No.: Unknown

Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO

A TCP CONNECTION

Compact Disk Transmittal Letter per 37 CFR 1.521e)3§ ii)!

Transmitted herewith are:

Two Labeled Compact Discs — Recordable (CD-R) — “Copy 1” and “Copy 2,” each in a

CD case and contained in a padded envelope.

The content on the two discs is identical

The machine format is: IBM-PC

The operating system is: MS-Windows

v The creation date ofthe CDs is: June 21, 2007

The name, date and size of the files on the CDs are listed below:

There are three folders on each disc: 1) CD Appendix A,

2) CD Appendix B, and

3) CD Appendix C.

Folder Appendix A contains two files:

CD Appendix A Title Page.txt. Its size is 370 bytes. It was created 6/21/07.

Rcv.v. Its size is 84.4KB. It was created (written to disc) 6/21/07.

Folder Appenidix B contains two files:

CD Appendix B Title Page.txt. Its size is 495 bytes. It was created 6/21/07.

Microcodetxt. Its size is 105 KB. It was created (written to disc) 6/21/07.

Express Mail No, EV 406928085 US

Folder Appendix C contains three files:

CD Appendix C Title Pagetxt. Its size is 416 bytes. It was created 6/21/07.

atcpsource.wrd.txt. Its size is 778 KB. It was created (written to disc) 6/21/07.

simbasource.wrd.txt. Its size is 262 KB. It was created (written to disc) 6/21/07.

Respectfully submitted,

CERTIFICATE OF MAILING 2g
I hereby certify that this correspondence is being deposited with Mark Lauer

the United States Postal Service as Express Mail Label No. Reg. NO. 36,578

EV406928085US in an envelope addressed to: Box PATENT Silicon Edge Law Group LLP

APPLICATION, Assistant Commissioner for Patents, 6601 K011 Center Parkway

Washington, DC. 20231, on June 25, 2007. Suite 245

Pleasanton, CA 94566

mam % I Tel: (925)484-9295
MarkLauer I Fax: (925) 484-9291

Express Mail No. EV 406928085 US

ALA-006K . Express Mail No. EV 406928085 US

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Crafi

David Higgen
Clive M. Philbrick

I Daryl D. Starr

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §120 of (is a continuation of) US.

Patent Application Serial No. 10/260,112, entitled “FAST—PATH APPARATUS FOR

RECEIVING DATA CORRESPONDING TO A TCP CONNECTION,” filed September 27,

2002, by Laurence B. Boucher et al., which in turn claims the benefit under 35 U.S.C. §120 of

(is a continuation of) US. Patent Application Serial No. 10/092,967, entitled “FAST-PATH

APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION,”

filed March 6, 2002, by Laurence B. Boucher et al., which in turn claims the benefit under 35

U.S.C. §120 of (is a continuation-in-part of) US. Patent Application Serial No. 10/023,240,

entitled “TRANSMIT FAST-PATH PROCESSING ON TCP/IP OFFLOAD NETWORK

INTERFACE DEVICE,” filed December 15, 2001 , by Laurence B. Boucher et al., which in

turn claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) US. Patent

Application Serial No. 09/464,283, now US. Patent No. 6,427,173, entitled “INTELLIGENT

NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED

COMMUNICATION”, filed December 15, 1999, by Laurence B. Boucher et al., which in turn

claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) US Patent

Application Serial No. 09/439,603, now US. Patent No. 6,247,060, entitled “INTELLIGENT

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING”, filed November 12, 1999, by Laurence B. Boucher et al., which in turn

claims the benefit under 35 U.S.C. §120 of (is a continuation-in-part of) US. Patent

Application Serial No. 09/067,544, now US. Patent No. 6,226,680, entitled “INTELLIGENT

1

ALA—006K ‘ Express Mail No. EV 406928085 US

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING”, filed April 27, 1998, which in turn claims the benefit under 35 U.S.C. §

'119(e)(1) of the Provisional Application filed under 35 U.S.C. §111(b) entitled I

“INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL

PROCESSING,” Serial No. 60/061,809, filed on October 14, 1997. , ~
Application No. 10/260,] 12 also claims the benefit under 35 U.S.C. §120 of (is a

continuation-in—part of) US. Patent Application Serial No. 09/384,792, now US. Patent No.

6,434,620, entitled “TCP OFFLOAD NETWORK INTERFACE DEVICE,” filed August 27,

1999, which in turn claims the benefit under 35 U.S.C. §120 of (is. a continuation-in-part of)

US. Patent Application Serial No. 09/141,713, now US. Patent No. 6,389,479, entitled

“INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED PROTOCOL PROCESSING”, filed August 28, 1998, which both claim the

benefit under 35 U.S.C. § 119(c)(1) of the Provisional Application filed under 35 U.S.C.

§111(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED COMMUNICATION,” Serial No. 60/098,296, filed August 27, 1998.

Application No. 10/260,112 also claims the benefit under 35 U.S.C. §120 of (is a

continuation-in-part of) US. Patent Application Serial No. 09/416,925, now US. Patent No.

6,470,415, entitled “QUEUE SYSTEM FOR MICROPROCESSORS,” filed October 13, 1999
,

(is a continuation-in-part of) US. Patent Application Serial No. 09/514,425, now US. Patent

No. 6,427,171, entitled “PROTOCOL PROCESSING STACK FOR USE WITH

INTELLIGENT NETWORK INTERFACE CARD,” filed February 28, 2000, (is a

continuation-in-part of) US. Patent Application Serial No.. 09/675,484, now US Patent No.

6,807,581, entitled “INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,” filed

September 29, 2000, (is a continuation—in—part of) US. Patent Application Serial No.

09/675,700, entitled “INTELLIGENT NETWORK STORAGE INTERFACE DEVICE,” filed

September 29, 2000, (is a continuation-in-part of) US Patent Application Serial No.

09/789,366, now US Patent No. 6,757,746, entitled “OBTAINING A DESTINATION

ADDRESS SO THAT NETWORK INTERFACE DEVICE CAN WRITE NETWORK

DATA WITHOUT HEADERS DIRECTLY INTO HOST MEMORY,” filed February 20,

2001, (is a continuation—in-part oQU.S.Patent Application Serial No. 09/801,488, now US.

Patent No. 6,687,758, entitled “PORT AGGREGATION FOR NETWORK CONNECTIONS

THAT ARE OFFLOADED TO NETWORK INTERFACE DEVICES,” filed March 7, 2001,

2

ALA-006K . Express Mail No. EV 406928085 US

(is a continuation-in-part of) US Patent Application Serial No. 09/802,551, entitled

“INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,” filed March 9,2001, (is a

continuation-in—part of) US Patent Application Serial No. 09/802,426, entitled “REDUCING

DELAYS ASSOCIATED WITH INSERTING A CHECKSUM INTO A NETWORK

MESSAGE,” filed March 9, 2001, (is a continuation—in-part of) US Patent Application Serial

No. 09/802,550, now US. Patent No. 6,658,480, entitled “INTELLIGENT NETWORK '

INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING,” filed March 9, 2001, (is a continuation-in—part of) US. Patent Application

Serial No. 09/855,979, entitled “NETWORK INTERFACE DEVICE EMPLOYING DMA

COMMAND QUEUE,” filed March 14, 2001, (is a continuation-in-part of) US. Patent

Application Serial No. 09/970,124, entitled “NETWORK INTERFACE DEVICE THAT

FAST-PATH PROCESSES SOLICITED SESSION LAYER READ COMMANDS,” filed

October 2, 2001 .

The subject matter of all of the above-identified patent applications (including the

subject matter in the Microfiche Appendix of US. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), which is a part of the present disclosure,

includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on

the compact disc. CD Appendix A contains a hardware description language (verilog code)

description of an embodiment of a receive sequencer. CD Appendix B contains microcode

executed by a processor that operates in conjunction with the receive sequencer of CD

Appendix A. CD Appendix C contains a device driver executable'on the host as well as ATCP

code executable on the host. A portion of the disclosure of this patent document contains

material (other than any portion of the “free BSD” stack included in CD Appendix C) which is

subject to copyright protection. The copyright owner of that material has no objection to the

facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears

in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright

rights.

ALA-006K Express Mail No. EV 406928085 US

TECHNICAL FIELD

The present invention relates generally to computer or other networks, and more

particularly to processing of information communicated between hosts such as computers

connected to a network.

BACKGROUND

The advantages of network computing are increasingly evident. The convenience and

efficiency'of providing information, communication or computational power to individuals at

their personal computer or other end user devices has led to rapid growth- of such network

computing, including intemet as well as intranet devices and applications.

As is well known, most network computer communication is accomplished with the aid of

a layered software architecture for moving information between host computers connected to

the network. The layers help to segregate information into manageable segments, the general

functions of each layer often based on an international standard called Open Systems

Interconnection (OSI). OSI sets forth seven processing layers through which information may
pass when received by a host in order to be presentable to an end user. Similarly, transmission

of information from a host to the network may pass through those seven processing layers in

reverse order. Each step of processing and service by a layer may include copying the

processed information. Another reference model that is widely implemented, called TCP/IP

(TCP stands for transport control protocol, while IP denotes intemet protocol) essentially

employs five of the seven layers of OSI.

Networks may include, for instance, a high—speed bus such as an Ethernet connection or an

intemet connection between disparate local area networks (LANs), each of which includes

multiple hosts, or any of a variety of other known means for data transfer between hosts.

According to the OSI standard, physical layers are connected to the network at respective

hosts, the physical layers providing transmission and receipt of raw data bits via the network.

A data link layer is serviced by the. physical layer of each host, the data link layers providing

frame division and error correction to the data received from the physical layers, as well as

processing acknowledgment frames sent by the receiving host. A network layer of each host is

serviced by respective data link layers, the network layers primarily controlling size and

coordination of subnets ofpackets of data.

l

ALA-006K Express Mail No. EV 406928085.US

A transport layer is serviced by each network layer and a session layer is serviced by each

transport layer within each host. Transport layers accept data from their respective session

layers and split the data into smaller units for transmission to the other host’s transport layer,

which concatenates the data for presentation to respective presentation layers. Session layers

allow for enhanced communication control between the hosts. Presentation layers are serviced

by their respective session layers, the presentation layers translating between data semantics

and syntax which may be peculiar to each host and standardized structures of data

representation. Compression and/or encryption of data may also be accomplished at the

presentation level. Application layers are serviced by respective presentation layers, the

application layers translating between programs particular to individual hosts and standardized

programs for presentation to either an application or an end user. The TCP/IP standard

includes the lower four layers and application layers, but integrates the functions of session

layers and presentation layers into adjacent layers. Generally speaking, application,

presentation and session layers are defined as upper layers, while transport, network and data

link layers are defined as lower layers.

The rules and conventions for each layer are called the protocol of that layer, and since the

protocols and general functions of each layer are roughly equivalent in various hosts, it is

useful to think of communication occurring directly between identical layers of different hosts,

even though these peer layers do not directly communicate without information transferring

Sequentially through each layer below. Each lower layer performs a service for the layer

immediately above it to help with processing the communicated information. Each layer saves

the information for processing and service to the next layer. Due to the multiplicity of

hardware and sofiware architectures, devices and programs commonly employed, each layer is

necessary to insure that the data can make it to the intended destination in the appropriate

form, regardless of variations in hardware and software that may intervene.

In preparing data for transmission from a first to a second host, some control data is added

at each layer of the first host regarding the protocol of that layer, the control data being

indistinguishable from the original (payload) data for all lower layers of that host. Thus an

application layer attaches an application header to the payload data and sends the combined

data to the presentation layer of the sending host, which receives the combined data, operates

on it and adds a presentation header to the data, resulting in another combined data packet.

The data resulting from combination of payload data, application header and presentation
5

ALA-006K ’ ‘ Express Mail No. EV 406928085 US

header is then passed to the session layer, which performs required operations including

attaching a session header to the data and presenting the resulting combination of data to the

transport layer. This process continues as the information moves to lower layers, with a

transport header, network header and data link header and trailer attached to the data at each of

those layers, with each step typically including data moving and copying, before sending the

data as bit packets over the network to the second host.

The receiving host generally performs the converse of the above—described process,

beginning with receiving the bits from the network, as headers are removed and data processed

in order from the lowest (physical) layer to the highest (application) layer before transmission

to a destination of the receiving host. Each layer of the receiving host recognizes and

manipulates only the headers associated with that layer, since to that layer the higher layer

control data is included with and indistinguishable from the payload data. Multiple interrupts,

valuable central processing unit (CPU) processing time and repeated data copies may also be

necessary for the receiving host to place the data in an appropriate form at its intended

destination.

The above description of layered protocol processing is simplified, as college-level

textbooks devoted primarily to this subject are available, such as Computer Networks, Third

Edition (1996) by Andrew S. Tanenbaum, which is incorporated herein by reference. As

defined in that book, a computer network is an interconnected collection of autonomous

computers, such as intemet and intranet devices, including local area networks (LANs), wider

area networks (WANs), asynchronous transfer mode (ATM), ring or token ring, wired,

wireless, satellite or other means for providing communication capability between separate

processors. A computer is defined herein to include a device having both logic and memory

functions for processing data, while computers or hosts connected to a network are said to be

heterogeneous if they function according to different operating devices or communicate via
different architectures.

As networks grow increasingly popular and the information communicated thereby

becomes increasingly complex and copious, the need for such protocol processing has

increased. It is estimated that a large fraction of the processing power of a host CPU may be

devoted to controlling protocol processes, diminishing the ability of that CPU to perform other

tasks. Network interface cards have been developed to help with the lowest layers, such as the

physical and data link layers. It is also possible to increase protocol processing speed by
6 .

ALA-006K I Express Mail No. EV 406928085 US

simply adding more processing power or CPUs according to conventional arrangements. This

solution, however, is both awkward and expensive. But the complexities presented by various

networks, protocols, architectures, operating devices and applications generally require

extensive processing to afford communication capability between various network hosts.

SUMMARY OF THE INVENTION

The current invention provides a device for processing network communication that greatly

increases the speed of that processing and the efficiency of transferring data being

communicated. The invention has been achieved by questioning the long-standing practice of

performing multilayered protocol processing on a general-purpose processor. The protocol

processing method and architecture that results effectively collapses the layers of a connection-

based, layered architecture such as TCP/1P into a single wider layer which is able to send

network data more directly to and from a desired location or buffer on a host. This accelerated

processing is provided to a host for both transmitting and receiving data, and so improves

performance whether one or both hosts involved inan exchange of information have such a

feature.

The accelerated processing includes employing representative control instructions for a

given message that allow data from the message to be processed via a fast-path which accesses

message data directly at its source or delivers it directly to its intended destination. This fast-

path bypasses conventional protocol processing of headers that accompany the data. The fast-

path employs a specialized microprocessor designed for processing network communication,

avoiding the delays and pitfalls of conventional sofiware layer processing, such as repeated

copying and interrupts to the CPU. In effect, the fast—path replaces the states that are.

traditionally found in several layers of a conventional network stack with a single state

machine encompassing all those layers, in contrast to conventional rules that require rigorous

differentiation and separation ofprotocol layers. The host retains a sequential protocol

processing stack which can be employed for setting up a fast—path connection or processing

message exceptions. ' The specialized microprocessor and the host intelligently choose whether

a given message or portion of a message is processed by the microprocessor or the host stack.

One embodiment is a method of generating a fast-path response to a packet received onto a

network interface device where the packet is received over a TCP/IP network connection and

where the TCP/IP network connection is identified at least in part by a TCP source port, a TCP
7 .(.

ALA-006K ' Express Mail No. EV 406928085 US

destination port, an IP source address, and an IP destination address. The method comprises:

1) Examining the packet and determining from the packet the TCP source port, the TCP

destination port, the IP source address, and the IP destination. address; 2) Accessing an

appropriate template header stored on the network interface device. The template header has

TCP fields anle fields; 3) Employing a finite state machine that implements both TCP

protocol processing and IP protocol processing to fill in the TCP fields and IP fields of the

template header; and 4) Transmitting the fast-path response from the network interface device.

The fast-path response includes the filled in template header and a payload. The finite state

machine does not entail a TCP protocol processing layer and a discrete IP protocol processing

layer where the TCP and IP layers are executed one afier another in sequence. Rather, the

finite state machine covers both TCP and IP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted are pushed

onto a plurality of transmit queues. A transmit sequencer pops the transmit queues and obtains

the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers

where the packets are stored. The retrieved packets are then transmitted from the network

interface device. In one embodiment, there are two transmit queues, one having a higher

transmission priority than the other. Packets identified by buffer descriptors on the higher

priority transmit queue are transmitted from the network interface device before packets

identified by the lower priority transmit queue. I

Other structures and methods are disclosed in the detailed description below. This

summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view diagram of a device of the present invention, including a host

computer having a communication-processing device for accelerating network

communication.

FIG. 2 is a diagram of information flow for the host of FIG. 1 in processing network

communication, including a fast-path, a slow-path and a transfer of connection context

between the fast and slow-paths.

FIG. 3 is a flow chart of message receiving according to the present invention.

FIG. 4A is a diagram of information flow for the host of FIG. 1 receiving a message packet

processed by the slow-path.

ALA~006K Express Mail No. EV 406928085 US

FIG. 4B is a diagram of information flow for the host of FIG. 1 receiving an initial message

packet processed by the fast-path.

FIG. 4C is a diagram of information flow for the host of FIG. 48 receiving a subsequent

message packet processed by the fast-path.

FIG. 4D is a diagram of information flow for the host of FIG. 4C receiving a message

packet having an error that causes processing to revert to the slow-path.

FIG. 5 is a diagram of information flow for the host of FIG. 1 transmitting a message by

either the fast or slow-paths.

FIG. 6 is a diagram of information flow for a first embodiment of an intelligent network

interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG. 7 is a diagram of hardware logic for the INIC embodiment shown in FIG. 6, including

a packet control sequencer and a fly—by sequencer.

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for analyzing header bytes as they are

received by the INIC.

FIG. 9 is a diagram of information flow for a second embodiment of an INIC associated

with a server having a TCP/IP processing stack.

FIG. 10 is a diagram of a command driver installed in the host of FIG. 9 for creating and

controlling a communication control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and command driver of FIG. 10 configured for

NetBios communications. .

FIG. 12 is a diagram of a communication exchange between the client of FIG.\6 and the
server of FIG. 9.

FIG. 13 is a diagram ofhardware functions included in the INIC of FIG. 9.

FIG. 14 is a diagram of a trio ofpipelined microprocessors included in the INIC of FIG. 13,

including three phases with a processor in each phase.

FIG. 15A is a diagram of a first phase of the pipelined microprocessor of FIG. 14.

FIG. ISB is a diagram of a second phase of the pipelined microprocessor of FIG. 14.

FIG. 15C is a diagram of a third phase of the pipelined microprocessor of FIG. 14.

FIG. 16 is a diagram of a plurality of queue storage units that interact with the

microprocessor of FIG. 14 and include SRAM and DRAM. .

FIG. 17 is a diagram of a set of status registers for the queues storage units of FIG. 16.

ALA-006K V Express Mail No. EV 406928085 US

FIG. 18 is a diagram of a queue manager, which interacts, with the queue storage units and

status registers of FIG. 16 and FIG. 17.

FIGs. 19A-D are diagrams of various stages of a least-recently-used register that is

employed for allocating cache memory.

FIG. 20 is a diagram of the devices used to operate the least-recently-used register of FIGs.

19A-D. I

FIG. 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure 13. 8

FIG. 22 is a diagram of the receive sequencer of FIG. 21.

FIG. 23 is a diagram illustrating a “fast-path” transfer of data of a multi-packet message

from INIC 200 to a destination 2311 in host 20.

FIGS. 24-33, 34A-C, 35-57, 58A-C, and 59-107 are associated with the description below

entitled “Disclosure From Provisional Application 60/061 ,809.” i I

DETAILED DESCRIPTION

FIG. 1 shows a host 20 of the present invention connected by a network 25 to a remote host

22. The increase in processing speed achieved by the present invention can be provided with

an intelligent network interface card (INIC) that is easily and affordably added to an existing

host, or with a communication processing device (CPD) that is integrated into a host, in either

case freeing the host CPU from most protocol processing and allowing improvements in other

tasks performed by that CPU. The host 20 in a first embodiment contains a CPU 28 and a

CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

' processing communication data and memory buffers controlled by a direct memory access

(DMA) unit. Also connected to the host bus 33 is a storage device 35, such as a

semiconductor memory ‘or disk drive, along with any related controls.

Referring additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44

housed in storage 35, the stack including a data link layer 36, network layer 38, transport layer

40, upper layer 46 and an upper layer interface 42. The upper layer 46 may represent a

session, presentation and/or application layer, depending upon the particular protocol being

employed and message communicated. The upper layer interface 42, along with the CPU 28

and any related controls can send or retrieve a file to or from the upper layer 46 or storage 35,

as shown by arrow 48. A connection context 50 has been created, as will be explained below,

the context summarizing various features of the connection, such as protocol type and source

10 ' '

ALA-006K Express Mail No. EV 406928085 US

and destination addresses for each protocol layer. The context may be passed between an

interface for the session layer 42 and the CPD 30, as shown by arrows 52 and 54, and stored as

a communication control block (CCB) at either CPD 30 or storage 35.

When the CPD 30 holds a CCB defining a particular connection, data received by the CPD

from the network and pertaining to the connection is referenced to that CCB and can then be

sent directly to storage 35 according to a fast-path 58, bypassing sequential protocol

processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,

such as sending a file from storage 35 to remote host 22, can also occur via the fast-path .58, in

which case the context for the file data is added by the CPD 3O referencing a CCB, rather than

by sequentially adding headers during processing by the transport 40, network 38 and data link

36 layers. The DMA controllers of the CPD 30 perform these transfers between CPD and

storage 35.

The CPD 30 collapses multiple protocol stacks each having possible separate states into a .

single state machine for fast-path processing. As a result, exception conditions may occur that

are not provided for in the single state machine, primarily because such conditions occur

infrequently and to deal with them on the CPD would provide little or no performance benefit

to the host. Such exceptions can be CPD 30 or CPU 28 initiated. An advantage of the

invention includes the manner in which unexpected situations that occur on a fast-path CCB

are handled. The CPD 30 deals with these rare situations by passing back or flushing to the

host protocol stack 44 the CCB and any associated message frames involved, via a control V

negotiation. The exception condition is then processed in a conventional manner by the host

protocol stack 44. At some later time, usually directly afier the handling of the exception

condition has completed and fast-path processing can resume, the host stack 44 hands the CCB

back to the CPD. ‘

This fallback capability enables the performance-impacting functions of the host protocols

to be handled by the CPD network microprocessor, while the exceptions are dealt with by the

host stacks, the exceptions being so rare as to negligibly effect overall performance. The

custom designed network microprocessor can have independent processors for transmitting

‘ and receiving network information, and further processors for assisting and queuing. A

preferred microprocessor embodiment includes a pipelined trio of receive, transmit and utility

processors. DMA controllers are integrated into the implementation and work in close concert

with the network microprocessor to quickly move data between buffers adjacent to the
' l l

ALA-006K 1 Express Mail No. EV 406928085 US

controllers and other locations such as long term storage. Providing buffers logically adjacent

to the DMA controllers avoids unnecessary loads on the PCI bus.

FIG. 3 diagrams the general flow of messages received according to the current invention.

A large TCP/1P message such as a file transfer may be received by the host from the network

.in a number of separate, approximately 64 KB transfers, each of which may be split into many,

approximately 1.5 KB frames or packets for transmission over a network. Novell NetWare

protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol

(NCP) over Intemetwork Packet Exchange (IPX) work in a similar fashion. Another form of

data communication which can be handled by the fast-path is Transaction TCP (hereinafier

T/TCP or TTCP), a version ofTCP which initiates a connection with an initial transaction

request afier which a reply containing data may be sent according to the connection, rather

than initiating a connection via a several-message initialization dialogue and then transferring

data with later messages. In any of the transfers typified by these protocols, each packet

conventionally includes a portion of the data being transferred, as well as headers for each of

the protocol layers and markers for positioning the packet relative to the rest of the packets of

this message.

When a message packet or frame is received 47 from a network by the CPD, it is first

validated by a hardware assist. This includes determining the protocol types of the various

layers, verifying relevant checksums, and summarizing 57 these findings into a status word or

words. Included in these words is an indication whether or not the frame is a candidate for

fast-path data flow. Selection 59 of fast-path candidates is based on whether the host may

benefit from this message connection being handled by the CPD, which includes determining

whether the packet has header bytes indicating particular protocols, such as TCP/1P or

SPX/IPX for example. The small percent of frames that are not fast-path candidates are sent

61 to the host protocol stacks for slow-path protocol processing. Subsequent network

microprocessor work with each fast—path candidate determines whether a fast—path connection

such as a TCP or, SPX CCB is already extant for that candidate, or whether that candidate may V

be used to set up a new fast—path connection, such as for a TTCP/IP transaction. The

validation provided by the CPD provides acceleration whether a frame is processed by the fast-

path or a slow-path, as only error free, validated frames are processed by the host CPU even

for the slow-path processing.

ALA-006K ' Express Mail No. EV 406928085 US

All received message frames which have been determined by the CPD hardware assist to be

fast-path candidates are examined 53 by the network microprocessor or INIC comparator

circuits to detennine whether they match a CCB held by the CPD. Upon confirming such a

match, the CPD. removes lower layer headers and sends 69 the remaining application data from

the frame directly into its final destination in the host using direct memory access (DMA) units

of the CPD. This operation may occur immediately upon receipt of a message packet, for

example when a TCP connection already exists and destination buffers have been negotiated,

or it may first be necessary to process an initial header to acquire a new set of final destination

addresses for this transfer. In this latter case, the CPD will queue subsequent message packets

while waiting for the destination address, and then DMA the queued application data to that

destination.

A fast-path candidate that does not match a CCB may be used to set up a new fast-path

connection, by sending 65 the frame to the host for sequential protocol processing. In this

case, the host uses this frame to create 51 a CCB, which is then passed to the CPD to control

subsequent frames on that connection. The CCB, which is cached 67 in the CPD, includes

control and state information pertinent to all protocols that would have been processed had

conventional software layer processing been employed. The CCB also contains storage space

for per-transfer information used to facilitate moving application-level data contained within

subsequent related message packets directly to a host application in a form available for

immediate usage. The CPD takes command of connection processing upon receiving a CCB

for that connection from the host.

As shown more specifically in FIG. 4A, when a message packet is received from the remote

host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which

checksums headers and data, and parses the headers, creating a word or words which identify

the message packet and status, storing the headers, data and word temporarily in memory 60.

As well as validating the packet, the receive logic 32 indicates with the word whether this

packet is a candidate for fast-path processing. FIG. 4A depicts the case in which the packet is

not a fast-path candidate, in which case the CPD 30 sends the validated headers and data from

memory 60 to data link layer 36 along an internal bus for processing by the host CPU, as

shown by arrow 56. The packet is processed by the host protocol stack 44 of data link 36,

network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

sent to storage 35, as shown by arrow 65.

13

ALA-006K Express Mail No. EV 406928085 US

FIG. 4B, depicts the case in which the receive logic 32 of the CPD determines that a

message packet is a candidate for fast-path processing, for example by deriving from the

packet’s headers that the packet belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A

processor 55 in the CPD 30 then checks to see whether the word that summarizes the fast—path . ’

candidate matches a CCB held in a cache 62. Upon finding no match for this packet, the CPD

sends the validated packet from memory 60 to the host protocol stack 44 for processing. Host

stack 44 may use this packet to create a connection context for the message, including finding

and reserving a destination for data from the message associated with the packet, the context

taking the form of a CCB. The present embodiment employs a‘single specialized host stack 44

for processing both fast-path and non-fast-path candidates, while in an embodiment described

below fast-path candidates are processed by a different host stack than non-fast-path

candidates. Some data (D1) 66 from that initial packet may optionally be sent to the

destination in storage 35, as shown by arrow 68. The CCB is then sent to the CPD 30 to be

saved in cache 62, as shown by arrow 64. For a traditional connection-based message such as

typified by TCP/IP, the initial packet may be part of a connection initialization dialogue that

transpires between hosts before the CCB is created and passed to the CPD 30.

Referring now to PIG. 4C, when a subsequent packet from the same connection as the

initial packet is received from the network 25 by CPD 30, the packet headers and data are I

validated by the receive logic 32, and the headers are parsed to create a summary of the

message packet and a hash for finding a corresponding CCB, the summary and hash contained

in a word or words. The word or words are temporarily stored in memory 60 along with the

packet. The processor 55 checks for a match between the hash and each CCB that is stored in

the cache 62 and, finding a match, sends the data (D2) 70 via a fast—path directly to the

destination in storage 35, as shown by arrow 72, bypassing the session layer 42, transport layer

40, network layer 38 and data link layer 36. The remaining data packets from the message can

also be sent by DMA directly to storage, avoiding the relatively slow protocol layer processing

and repeated copying by the CPU stack 44.

FIG. 4D shows the procedure for handling the rare instance when a message for which a

fast-path connection has been established, such as shown in FIG. 4C, has a packet that is not

easily handled by the CPD. In this case the packet is sent to be processed by the protocol stack

44, which is handed the CCB for that message from cache 62 via a control dialogue with the

CPD, as shown by arrow 76, signaling to the CPU to take over processing of that message.
14

ALA-006K . Express Mail N0. EV 406928085 US

Slow-path processing by the protocol stack then results in data (D3) 80 from the packet being

sent, as shown by arrow 82, to storage 35. Once the packet has been processed and the error

situation corrected, the CCB can be handed back via a control dialogue to the cache 62, so that

payload data from subsequent packets of that message can again be sent via the fast-path of the

I CPD 30. Thus the CPU and CPD together decide whether a given message is to be processed

according to fast-path hardware processing or more conventional software processing by the
CPU. '

Transmission of a message from the host 20 to the network 25 for delivery to remote host 22

also can be processed by either sequential protocol software processing via the CPU or

accelerated hardware processing via the CPD 30, as shown in FIG. 5. A message (M) 90 that

is selected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack

44, as shown by arrows 92 and 96. For the situation in which a connection exists and the CPD

30 already has an appropriate CCB for the message, however, data packets can bypass host

stack 44 and be sent by DMA directly to memory 60, with the processor 55 adding to each

data packet a single header containing all the appropriate protocol layers, and sending the

resulting packets to the network 25 for transmission to remote host 22. This fast-path

transmission can greatly accelerate processing for even a singlepacket, with the acceleration

multiplied for a larger message.

A message for which a fast-path connection is not extant thus may benefit from creation of

a CCB with appropriate control and state information for guiding fast-path transmission. For a

traditional connection-based message, such as typified by TCP/IP or SPX/IPX, the CCB is

created during connection initialization dialogue. For a quick-connection message, such as

typified by TTCP/IP, the CCB can be created with the same transaction that transmits payload

data. In this case, the transmission of payload data may be a reply to a request that was used to

set up the fast-path connection. In any case, the CCB provides protocol and status information

regarding each of the protocol layers, including which user is involved and storage space for

per-transfer information. The CCB is created by protocol stack 44, which then passes the CCB

to the CPD 30 by writing to a command register of the CPD, as shown by arrow 98. Guided

by the CCB, the processor 55 moves network frame-sized portions of the data from the source

in host memory 35 into its own memory 60 using DMA, as depicted by arrow 99. The

processor 55 then prepends appropriate headers and checksums to the data portions, and

. transmits the resulting frames to the network 25, consistent with the restrictions of the

15

ALA-006K Express Mail No. EV 406928085 US

associated "protocols. Afier the CPD 30 has received an acknowledgement that all the data has

reached its destination, the CPD will then notify the host 35 by writing to a response buffer.

Thus, fast-path transmission of data communications also relieves the host CPU of per-frame

processing. A vast majority of data transmissions can be sent to the network by the fast-path.

Both the input and output fast—paths attain a huge reduction in interrupts by functioning at an

upper layer level, i.e., session level or higher, and interactions between the network

microprocessor and the host occur using the full transfer sizes which that upper layer wishes to

make. For fast-path communications, an interrupt only occurs (at the most) at the beginning

and end of an entire upper—layer message transaction, and there are no interrupts for the

sending or receiving of each lower layer portion or packet of that transaction.

A simplified intelligent network interface card (INIC) 150 is shown in FIG. 6 to provide a

network interface for a host 152. Hardware logic 171 of the INIC 150 is connected to a

network 155, with a peripheral bus (PCI) 157 connecting the INIC and host. The host 152 in

this embodiment has a TCP/IP protocol stack, which provides a slow-path 158 for sequential

software processing of message frames received from the network 155. The host 152 protocol

stack includes a data link layer 160, network layer 162, a transport layer 164 and an

application layer 166, which provides a source or destination 168 for the communication data

in the host 152. Other layers which are not shown, such as session and presentation layers,

may also be included in the host stack 152, and the source or destination may vary depending

upon the nature of the data and may actually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages

along a slow-path 158 that includes the protocol stack of the host, or along a fast-path 159 that

bypasses the protocol stack of the host. Each received packet is processed on the fly by

hardware logic 17] contained in INIC 150, so that all of the protocol headers for a packet can

be processed without copying, moving or storing the data between protocol layers. The

hardware logic 171 processes the headers of a given packet at one time as packet bytes pass

through the hardware, by categorizing selected header bytes. Results of processing the

selected bytes help to determine which other bytes of the packet are categorized, until a

summary of the packet has been created, including checksum validations. The processed

headers and data from the received packet are then stored in INIC storage 185, as well as the

word or words summarizing the headers and status of the packet. For a network storage

configuration, the INIC 150 may be connected to a peripheral storage device such as a disk
16

ALA-006K Express Mail No. EV 406928085 US

drive which has an IDE, SCSI or similar interface, with a file cache for the storage device

residing on the memory 185 of the INIC 150. Several such network interfaces may exist for a

host, with each interface having an associated storage device.

The hardware processing of message packets received by INIC 150 from network 155 is

shown in more detail in FIG. 7. A received message packet first enters a media access

controller 172, which controls INIC access to the network and receipt of packets and can

provide statistical information for network protocol management. From there, data flows one

byte at a time into an assembly register 174, which in this example is 128 bits wide. The data

is categorized by a fly-by sequencer 178, as will be explained in more detail with regard to

FIG. 8, which examines the bytes of a packet as they fly by, and generates status from those

bytes that will be used to summarize the packet. The status thus created is merged with the

data by a multiplexor 180 and the resulting data stored in SRAM 182. A packet control

sequencer 176 oversees the fly-by sequencer 17 8, examines information from the media access

controller 172, counts the bytes of data, generates addresses, moves status and manages the

movement of data from the assembly register 174 to SRAM 182 and eventually DRAM 188.

i The packet control sequencer 176 manages a buffer in SRAM 182 via SRAM controller 183,

and also indicates to a DRAM controller 186 when data needs to be moved from SRAM 182 to

a buffer in DRAM 188. Once data movement for the packet has been completed and all the

data has been moved to the buffer in DRAM 188, the packet control sequencer 176 will move

the status that has been generated in the fly-by sequencer 178 out to the SRAM 182 and to the

beginning of the DRAM 188 buffer to be prepended to the packet data. The packet control

sequencer 176 then requests a queue manager 184 to enter a receive buffer descriptor into a

receive queue, which in turn notifies the processor 170 that the packet has been processed by

hardware logic 171 and its status summarized.

FIG. 8 shows that the fly-by sequencer 178 has several tiers, with each tier generally

focusing on a particular portion of the packet header and thus on a particular protocol layer, for

generating status pertaining to that layer. The fly-by sequencer 17 8 in this embodiment

includes a media access control sequencer 191 , a network sequencer 192, a transport sequencer

194 and a session sequencer 195. Sequencers pertaining to higher protocol layers can

additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer

176 and given pointers by the packet control sequencer that tell the fly-by sequencer whether a

given byte is available from the assembly register 174. The media access control sequencer
17

ALA-006K . Express Mail No. EV 406928085 US

19] determines, by looking at bytes 0-5, that a packet is addressed to host 152 rather than or in

addition to another host. Offsets 12 and 13 of the packet are also processed by the media

access control sequencer 191 to determine the type field, for example whether the packet is

Ethernet or 802.3. If the type field is Ethernet those bytes also tell the media access control

sequencer 19] the packet’s network protocol type. For the 802.3 case, those bytes instead

indicate the length of the entire frame, and the media access control sequencer 191 will check

eight bytes further into the packet to determine the network layer type.

For most packets the network sequencer 192 validates that the header length received has

the correct length, and checksums the network layer header. For fast-path candidates the

network layer header is known to be IP or IPX from analysis done by the media access control

sequencer 191. Assuming for example that the type field is 802.3 and the network protocol is

IF, the network sequencer 192 analyzes the first bytes of the network layer header, which will

begin at byte 22, in order to determine IP type. The first bytes of the IP header will be

processed by the network sequencer 192 to determine what IP type the packet involves.

Determining that the packet involves, for example, IP version 4, directs fithher processing by

the network sequencer 192, which also looks at the protocol type located ten bytes into the IP

header for an indication of the transport header protocol of the packet. For example, for IP

over Ethernet, the IP header begins at offset 14, and theprotocol type byte is offset 23, which

will be processed by network logic to determine whether the transport layer protocol is TCP,

for example. From the length of the network layer header, which is typically 20—40 bytes, ,

network sequencer 192 determines the beginning of the packet’s transport layer header for

validating the transport layer header. Transport sequencer 194 may generate checksums for

the transport layer header and data, which may include information from the IP header in the
case of TCP at least.

Continuing with the example of a TCP packet, transport sequencer 194 also analyzes the

first few bytes in the transport layer portion of the header to determine, in part, theTCP source

and destination ports for the message, such as whether the packet is NetBios or other

protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine

and validate the TCP header length. Byte 13 of the TCP header contains flags that may, aside

from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

cause the processor to categorize this packet as an exception. TCP offset bytes 16 and 17 are

18

ALA-006K Express Mail No. EV 406928085 US

the checksum, which is pulled out and stored by the hardware logic 171 while the rest of the

frame is validated against the checksum.

Session sequencer 195 determines the length of the session layer header, which in the case

of NetBios is only four bytes, two ofwhich tell the length of the NetBios payload data, but

which can be much larger for other protocols. The session sequencer 195 can also be used to

categorize the type ofmessage as read or write, for example, for which the fast-path may be

particularly beneficial. Further upper layer logic processing, depending upon the message

type, can be performed by the hardware logic 171 ofpacket control sequencer 176 and fly—by

sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the

headers by categorization of selected bytes from a single'stream ofbytes, with the status of the

packet being built from classifications determined on the fly. Once the packet control

. sequencer 176 detects that all of the packet has been processed by the fly-by sequencer 178,

I the packet control sequencer 176 adds the status information generated by the fly—by sequencer

178 and any status information generated by the packet control sequencer 176, and prepends

(adds to the front) that status information to the packet, for convenience in handling the packet

by the processor 170. The additional status information generated by the packet control

sequencer 176 includes media access controller 172 status information and any errors

discovered, or data overflow in either the assembly register or DRAM buffer, or other

miscellaneous information regarding the packet. The packet control sequencer 176 also stores

entries into a receive buffer queue and a receive statistics queue via the queue manager 184.

An advantage of processing a packet by hardware logic 171 is that the packet does not, in

contrast with conventional sequential sofiware protocol processing, have to be stored, moved,

copied or pulled from storage for processing each protocol layer header, offering dramatic

increases in processing efficiency and savings in processing time for each packet. The packets

can be processed at the rate bits are received from the network, for example 100

megabits/second for a 100 baseT connection. The time for categorizing a packet received at

this rate and having a length of sixty bytes is thus about 5 microseconds. The total time for I

processing this packet with the hardware logic 171 and sending packet data to its host

destination via the fast-path may be about 16 microseconds or less, assuming a 66 MHz PCI

bus, whereas conventional sofiware protocol processing by a 300 MHz Pentium II® processor

may take as much as 200 microseconds in a busy device. More than an order ofmagnitude

decrease in processing time can thus be achieved with fast-path 159 in comparison with a
‘ 19

ALA-006K Express Mail No. EV 406928085 US

high-speed CPU employing conventional sequential sofiware protocol processing,

demonstrating the dramatic acceleration provided by processing the protocol headers by the

hardware logic 171 and processor 170, without even considering the additional time savings

afforded by the reduction in CPU interrupts and host bus bandwidthsavings.

The processor 170 chooses, for each received message packet held in storage 185, whether

that packet is a candidate for the fast-path 159 and, if so, checks to see whether a fast-path has

already been set up for the connection that the packet belongs to. To do this, the processor 170

first checks the header status summary to determine whether the packet headers are of a

protocol defined for fast-path candidates. If not, the processor 170 commands DMA

controllers in the INIC 150 to send the packet to the host for slow-path 158 processing. Even

for a slow-path 158 processing of a message, the INIC 150 thus performs initial procedures

such as validation and determination ofmessage type, and passes the validated message at

least to the data link layer 160 of the host.

For fast-path 159 candidates, the processor 170 checks to see whether the header status

summary matches a CCB held by the INIC. If so, the data from the packet is sent along fast-

path 159 to the destination 168 in the host. If the fast-path 159 candidate’s packet summary

does not match a CCB held by the INIC, the pacl<et may be sent to the host 152 for slow-path

processing to create a CCB for the message. Employment of the fast-path 159 may also not be

needed or desirable for the case of fragmented messages or other complexities. For the vast

majority of messages, however, the INIC fast-path 159 can greatly accelerate message

processing. The INIC 150 thus provides a single state machine processor 170 that decides

whether to send data directly to its destination, based upon information gleaned on the fly, as

opposed to the conventional employment of a state machine in each of several protocol layers

for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver of the host

selects the processing route based upon whether the indication is fast-path or slow-path. A

TCP/IP or SPX/IPX message has a connection that is set up from which a CCB is formed by

the driver and passed to the INIC for matching with and guiding the fast—path packet to the

connection destination 168. For a TTCP/IP message, the driver can create a connection

context for the transaction from processing an initial request packet, including locating the

message destination 168, and then passing that context to the INIC in the form of a CCB for

providing a fast-path for a reply from that destination. A CCB includes connection and state

20

ALA-006K Express Mail No. EV 406928085 US

information regarding the protocol layers and packets of the message. Thus a CCB can

include source and destination media access control (MAC) addresses, source and destination

IP or IPX addresses, source and destination TCP or SPX ports, TCP variables such as timers,

receive and transmit windows for sliding window protocols, and information indicating the

session layer protocol.

Caching the CCBs in a hash table in the INIC provides quick comparisons with words

summarizing incoming packets to determine whether the packets can be processed via the fast-

path 159, while the full CCBs are also held in the INIC for processing. Other ways to

accelerate this comparison include software processes such as a B-tree or hardware assists

such as a content addressable memory (CAM). When INIC microcode or comparator circuits

detect a match with the CCB, a DMA controller places the data from the packet in the

destination 168, without any interrupt by the CPU, protocol processing or copying. Depending

upon the type ofmessage received, the destination of the data may be the session, presentation

or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed as a file server. This

INIC provides a network interface for several network connections employing the 802.3u

standard, commonly known as Fast Ethernet. The INIC 200 is connected by a PCI bus 205 to

the server 202, which maintains a TCP/IP or SPX/IPX protocol stack including MAC layer

212, network layer 215, transport layer 217 and application layer 220, with a

source/destination 222 shown above the application layer, although as mentioned earlier the

application layer can be the source or destination. The INIC is also connected to network lines

. 210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial

cable or other lines each allowing data transmission of 100 Mb/s, while faster and slower data

rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated

row of hardware circuits which can each validate and summarize message packets received

from their respective network line. Thus line 210 is connected with a first horizontal row of

sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line

242 is connected with a third horizontal row of sequencers 262 and line 244 is connected with

a fourth horizontal row of sequencers 264. After a packet has been validated and summarized

by one of the horizontal hardware rows it is stored along with its status summary in storage

270.

ALA-006K Express Mail No. EV 406928085 US

A network processor 230 determines, based on that summary and a comparison with any

CCBs stored in the INIC 200, whether to send a packet along a slow-path 231 for processing

by the host. A large majority of packets can avoid such sequential processing and have their

data portions sent by DMA along a fast-path 237 directly to the data destination 222 in the

server according to a matching CCB. Similarly, the fast—path 237 provides an avenue to send

data directly from the source 222 to any of the network lines by processor 230 division of the

data into packets and addition of full headers for network transmission, again minimizing CPU

processing and interrupts. For clarity only horizontal sequencer 250 is shown active, in

actuality each of the sequencer rows 250, 260, 262 and 264 offers full duplex communication,

concurrently with all other sequencer rows. The specialized TNIC 200 is much faster at

working with message packets than even advanced general-purpose-host CPUs that processes

[those headers sequentially according to the software protocol stack.

One of the most commonly used network protocols for large messages such as file transfers

is server message blt)ck (SMB) over TCP/IP. SMB can operate in conjunction with redirector

.sofiware that determines whether a required resource for a particular operation, such as a

printer or a disk upon which a file is to be written, resides in or is associated with the host from

which the operation was generated or is located at another host connected to the network, such

as a file server. SMB and server/redirector are conventionally serviced by the transport layer;

in the present invention SMB and redirector can instead be serviced by the INIC. In this case,

sending data by the DMA controllers from the INIC buffers when receiving a large SMB

transaction may greatly reduce interrupts that the host must handle. Moreover, this DMA

generally moves the data to its final destination in the file device cache. An SMB transmission

of the present invention follows essentially the reverse of the above described SMB receive,

with data transferred from the host to the INIC and stored in buffers, while the associated

protocol headers are prepended to the data in the INIC, for transmission via a network line to a

remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, NetBios

and SMB protocol layers via custom hardware and without repeated interrupts of the host can

greatly increase the speed of transmitting an SMB message to a network line.

As shown in FIG. 10, for controlling whether a given message is processed by the host 202

or by the INIC 200, a message command driver 300 may be installed in host 202 to work in

concert with a host protocol stack 310. The command driver 300 can intervene in message

reception or transmittal, create CCBs and send or receive CCBs' from the INIC 200, so that
22

ALA-006K Express Mail No. EV 406928085 US

functioning of the INIC, aside fiom improved performance, is transparent to a user. Also

shown is an INIC memory 304 and an INIC miniport driver 306, which can direct message

packets received from network 210 to either the_conventional protocol stack 310 or the

command protocol stack 300, depending upon whether a packet has been labeled as a fast-path

candidate. The conventional protocol stack 310 has a data link layer 312, a network layer 314

and a transport layer 316 for conventional, lower layer processing of messages that are not

labeled as fast-path candidates and therefore not processed by the command stack 300.

Residing above the lower layer stack 310 is an upper layer 318, which represents a session,

presentation and/or application layer, depending upon the message communicated. The

command driver 300 similarly has a data link layer 320, a network layer 322 and a transport

layer 325.

The driver 300 includes an upper layer interface 330 that determines, for transmission of

messages to the network 210, whether a message transmitted from the upper layer 318 is to be

processed by the command stack 300 and subsequently the INIC fast-path, or by the

conventional stack 310. When the upper layer interface 330 receives an appropriate message

from the upper layer 318 that would conventionally be intended for transmission to the

network after protocol processing by the protocol stack of the host, the message is passed to

driver 300. The INIC then acquires network-sized portions of the message data for that

transmission via INIC DMA units, prepends headers to the data portions and sends the

resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or

similar message packet from the network 210 to be used in setting up a fast-path connection,

miniport driver 306 diverts that message packet to command driver 300 for processing. The

driver 300 processes the message packet to create a' context for that message, with the driver

302 passing the context and command instructions back to the INIC 200 as a CCB for sending

data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,

TTCP, SPX or similar CCB connections may be held indefinitely by the INIC, although a least

recently used (LRU) algorithm is employed for the case when the INIC cache is full. The

driver 300 can also create a connection context for a TTCP request which is passed to the INIC

200 as a CCB, allowing fast-path transmission of a TTCP reply to the request. A message

having a protocol that is not accelerated can be processed conventionally by protocol stack

310.

ALA-006K Express Mail No. EV 406928085 US

FIG. 11 shows a TCP/IP implementation of command driver software for Microsofi®

protocol messages. A conventional host protocol stack 350 includes MAC layer 353, IP layer

355 and TCP layer 358. A command driver 360 works in concert with the host stack 350 to

process network messages. The command driver 360 includes a MAC layer 363, an IP layer

366 and an Alacritech TCP (ATCP) layer 373. The conventional stack 350 and command

driver 360 share a network driver interface specification (NDIS) layer 375, which interacts

with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications

for processing by either the conventional host stack 350 or the ATCP driver 360. A TDI filter

driver and upper layer interface 380 similarly determines whether messages sent from a TDI

user 382 to the network are diverted to the command driver and perhaps to the fast-path of the

INIC, or processed by the host stack.

FIG. .12 depicts a typical SMB exchange between a client 190 and server 290, both of

which have communication devices of the present invention, the communication devices each

holding a CCB defining their connection for fast-path movement of data. The client 190

includes INIC 150, 802.3 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios

layer 166, and SMB layer 168. The client has a slow-path 157 and fast-path 159 for

communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data

link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and-SMB 222. The server is

connected to network lines 240, 242 and 244, as well as line 210 which is connected to client

190. The server'also has a slow-path 231 and fast-path 237 for communication processing.

Assuming that the client 190 wishes to read a 100KB file on the server 290, the client may

begin by sending a Read Block Raw (RBR) SMB command across network 210 requesting the

first 64 KB of that file on the server 290. The RBR command may be only 76 bytes, for

example, so the INIC 200 on the server will recognize the message type (SMB) and relatively

small message size, and send the 76 bytes directly via the fast-path to NetBios of the server.

NetBios will give the data to SMB, which processes the Read request and fetches the 64KB of

data into server data buffers. SMB then calls NetBios to send the data, and NetBios outputs

the data for the client. In a conventional host, NetBios would call TCP output and pass 64KB

to TCP, which would divide the data into 1460 byte segments and output each segment via IP

and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP

driver along with an indication regarding the client-server SMB connectionawhich indicates a
CCB held by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the

24

ALA-006K Express Mail No. EV 406928085 US

host buffers, add the appropriate headers for TCP, IP and MAC at one time, and send the

completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the

whole 64KB transfer has been sent. Usually afier receiving acknowledgement from the client

that the 64KB has been received, the INIC will then send the remaining 36KB also by the fast-

path 237. A

With INIC 150 operating on the client 190 when this reply arrives, the INIC 150 recognizes

from the first frame received that this connection is receiving fast-path 159 processing

(TCP/IP, NetBios, matching a CCB), and the ATCP may use this first frame to acquire buffer

space for the message. This latter case is done by passing the first 128 bytes of the NetBios

portion of the frame via the ATCP fast-path directly to the host NetBios; that will give

NetBios/8MB all of the frame’s headers. NetBios/8MB will analyze these headers, realize by

matching with a request ID that this is a reply to the original RawRead connection,‘and give

the ATCP a 64K list of buffers into which to place the data. At this stage only one frame has

arrived, although more may arrive while this processing is occurring. As soon as the client

buffer list is given to the ATCP, it passes that transfer information to the INIC 150, and the

INIC 150 starts DMAing any frame data that has accumulated into those buffers.

FIG. 13 provides a simplified diagram of the INIC 200, which combines the functions of a

network interface controller and a protocol processor in a single ASIC chip 400. The INIC

200 in this embodiment offers a full-duplex, four channel, 10/100-Megabit per second (Mbps)

intelligent network interface controller that is designed for high speed protocol processing for

server applications. Although designed specifically for server applications, the INIC 200 can

be connected to personal computers, workstations, routers or other hosts anywhere that

TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200 is connected with four network lines 210, 240, 242 and 244, which may

transport data along a number of different conduits, such as twisted pair, coaxial cable or

optical fiber, each of the connections providing a media independent interface (MII) via

commercially available physical layer chips, such as model 80220/80221 Ethernet Media

Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,

CA 94538. The lines preferably are 802.3 compliant and in connection with the INIC

constitute four complete Ethernet nodes, the INIC supporting lOBase-T, lOBase-T2, 100Base-

TX, 100Base-FX and lOOBase-T4 as well as future interface standards. Physical layer

identification and initialization is accomplished through host driver initialization routines. The
25

ALA-006K

30

Express Mail No. EV 406928085 US

. connection between the network lines 210, 240, 242 and 244 and the INIC 200 is controlled by

MAC units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408 which contain logic

circuits for performing the basic functions of the MAC sublayer, essentially controlling when

the INIC accesses the network lines 210, 240, 242 and 244. The MAC units 402-408 may act

in promiscuous, multicast or unicast modes, allowing the INIC to function as a network

monitor, receive broadcast and multicast packets and implement multiple MAC addresses for

each node. The MAC units 402-408 also provide statistical information that can be used for

simple network management protocol (SNMP).

The MAC units 402, 404, 406 and 408 are each connected to a transmit and receive

sequencer, XMT & RCV-A 418, XMT RCV—B 420, XMT & RCV-C 422 and XMT &

RCV-D 424, by wires 410, 412, 414 and 416, respeCtively. Each of the transmit and receive

sequencers can perform several protocol processing steps on the fly as message frames pass

through that sequencer. In combination with the MAC units, the transmit and receive

sequencers 418-422 can compile the packet status for the data link, network, transport, session

and, if appropriate, presentation and application layer protocols in hardware, greatly reducing

the time for such protocol processing compared to conventional sequential software engines.

The-transmit and receive sequencers 410-414 are connected, by lines 426, 428, 430 and 432 to

' an SRAM and DMA controller 444, which includes DMA controllers 438 and SRAM

controller 442. Static random access memory (SRAM) buffers 440 are coupled with SRAM

controller 442 by line 441. The SRAM and DMA controllers 444 interact across line 446 with

external memory control 450 to send and receive frames via external memory bus 455 to and

from dynamic random access memory (DRAM) buffers 460, which is located adjacent to the

IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 MB,

and may optionally be disposed on the chip. The SRAM and DMA controllers 444 are

connected via line 464 to a PCI Bus Interface Unit (BIU) 468, which manages the interface

between the INIC 200 and the PCI interface bus 257. The 64-bit, multiplexed BIU 468

provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC

200 is capable of operating in either a 64-bit or 32—bit PCI environment, while supporting 64-

bit addressing in either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMA controllers 444,

and connected via line 475 to the PCI BIU 468. Microprocessor 470 instructions and register

files reside in an on chip control store 480, which includes a writable on-chip control store
26

ALA-006K Express Mail No. EV 406928085 US

(WCS) of SRAM and a read only memory (ROM), and is connected to the-microprocessor by

line 477. The microprocessor 470 offers a programmable state machine which is capable of

processing incoming frames, processing host commands, directing network traffic and

directing PCI bus traffic. Three processors'are implemented using shared hardware in a three

level pipelined architecture that launches and completes a single instruction for every clock

cycle. A receive processor 482 is primarily used for receiving communications while a

transmit processor 484 is primarily used for transmitting communications in order to facilitate

full duplex communication, while a utility processor 486 offers various functions including

overseeing and controlling PCI register access.

The instructions for the three processors 482, 484 and 486 reside in the on-chip control-

store 480. Thus the functions of the three processors can be easily redefined, so that the

microprocessor 470 can adapted for a given environment. For instance, the amount of

processing required for receive functions may outweigh that required for either transmit or

utility functions. In this situation, some receive functions may be performed by the transmit

processor 484 and/or the utility processor 486. Alternatively, an additional level ofpipelining

can be created to yield four or more virtual processors instead of three, with the additional

level devoted to receive functions. f

The INIC 200 in this embodiment can support up to 256 CCBs which are maintained in a

table in the DRAM 460. There is also, however, a CCB index in hash order in the SRAM 440

to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,

with up to sixteen cached CCBs in SRAM in this example. Allocation of the sixteen CCBs

cached in SRAM is handled by a least recently used register, described below. These cache

locations are shared between the transmit 484 and receive 486 processors so that the processor

with the heavier load is able to use more cache buffers. There are also eight header buffers

and eight command buffers to be shared between the sequencers. A given header or command ‘

buffer is not statically linked to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 shows an overview of the pipelined microprocessor 470, in which instructions for

the receive, transmit and utility processors are executed in three alternating phases according

to Clock increments I, II and III, the phases corresponding to each of the pipeline stages. Each

phase is responsible for different functions, and each of the three processors occupies a

different phase during each Clock increment. Each processor usuallyroperates upon a different
27

ALA-006K Express Mail No. EV 406928085 US

instruction stream from the control store 480, and each carries its own program counter and

status through each of the phases.

In general, a first instruction phase 500 of the pipelined microprocessors completes an

instruction and stores the result in a destination operand, fetches the next instruction, and

stores that next instruction in an instruction register. A first register set 490 provides a number

of registers including the instruction register, and a set of controls 492 for first register set

provides the controls for storage to the first register set 490. - Some items pass through the first

phase without modification by the controls492, and instead are simply copied into the first

register set 490 or a RAM file register 533. A second instruction phase 560 has an instruction

decoder and operand multiplexer 498 that generally decodes the instruction that was stored in

the instruction register of the. first register set 490 and gathers any operands which have been

generated, which are then stored in a decode register of a second register set 496. The first

register set 490, second register set 496 and a third register set 501, which is employed in a

third instruction phase 600, include many of the same registers, as will be seen in'the more

detailed views of FIGS. 15A-C. The instruction decoder and operand multiplexer 498 can read

from two address and data ports of the RAM file register 533, which Operates in both the first

phase 500 and second phase 560. A third phase 600 of the processor 470 has an arithmetic

logic unit (ALU) 602 which generally performs any ALU operations on the operands from the

second register set, storing the results in a results register included in the third register set 501.

A stack exchange 608 can reorder register stacks, and a queue manager 503 can arrange

queues for the processor 470, the results of which are stored in the third register set.

The instructions continue with the first phase then following the third phase, as depicted by a

circular pipeline 505. Note that various functions have been distributed across the three phases

of the instruction execution in order to minimize the combinatorial delays within any given

phase. With a frequency in this embodiment of 66 MHz, each Clock increment takes 15

nanoseconds to complete, for a total of 45 nanoseconds to complete one instruction for each of

the three processors. The rotating instruction phases are depictedin more detail in FIGS. 15A—

C, in which each phase is shown in a different figure.

More particularly, FIG. 15A shows some specific hardware functions of the first phase 500,

which generally includes the first register set 490 and related controls 492. The controls for the

first register set 492 includes an SRAM control 502, which is a logical control for loading

address and write data into SRAM address and data registers 520. Thus the output of the ALU
28

ALA-006K Express Mail No. EV 406928085 US

602 from the third phase 600 may be placed by SRAM control 502 into an address register or

data register of SRAM address and data registers 520. A load control 504 similarly provides

controls for writing a context for a file to file context register 522, and another load control

506 provides controls for storing a variety ofmiscellaneous data to flip-flop registers 525.

ALU condition codes, such as whether a carried bit is set, get clocked into ALU condition

codes register 528 without an operation performed in the first phase 500. Flag decodes 508

can perform various functions, such as setting locks, that get stored in flag registers 530.

The RAM file register 533 has a single write port for addresscs and data and two read ports

for addresses and data, so that more than one register can be read from at one time. As noted

above, the RAM file register 533 essentially straddles the first and second phases, as it is

written in the first phase 500 and read from in the second phase 560. A control store

instruction 510 allows the reprogramming of the processors due to new data in from the

control store 480, not shown in this figure, the instructions stored in an instruction register

535. The address for this is generated in a fetch control register 511, which determines which

address to fetch, the address stored in fetch address register 538. Load control 515 provides

instructions for a program counter 540, which operates much like the fetch address for the

control store. A last-in first-out stack 544 of three registers is copied to the first register set

without undergoing other operations in this phase. Finally, a load control 517 for a debug

address 548 is optionally included, which allows correction of errors that may occur.

FIG. 15B depicts the Second microprocessor phase 560, which includes reading addresscs

and data out of the RAM file register 533. A scratch SRAM 565 is written from SRAM

address and data register 520 of the first register set, which includes airegister that passes

through the first two phases to be incremented in the third. The scratch SRAM 565 is read by

the instruction decoder and operand multiplexer 498, as are most of the registers from the first

register set, with the exception of the stack 544, debug address 548 and SRAM address and

data register mentioned above. The instruction decoder and operand multiplexer 498 looks at

the various registers of set 490 and SRAM 565, decodes the instructions and gathers the

operands for operation in the next phase, in particular determining the operands to provide to

the ALU 602 below. The outcome of the instruction decoder and operand multiplexer 498 is

stored to a number of registers in the second register set 496, including ALU, operands 579 and

582, ALU condition code register 580, and a queue channel and command 587 register, which

in this embodiment can control thirty-two queues. Several of the registers in set 496 are
29

ALA-006K Express Mail No. EV 406928085 US

loaded fairly directly from the instruction register 535 above without substantial decoding by

the decoder 498, including a program control 590, a literal field 589, a test Select 584 and a

flag select 585. Other registers such as the file context 522 of the first phase 500 are always

stored in a file context 577 of the second phase 560, but may also be treated as an operand that

is gathered by the multiplexer 572. The stack registers 544 are simply copied in stack register

594. The program counter 540 is incremented '5 68 in this phase and stored in register 592.

Also incremented 570 is the optional debug address 548, and a load control 575 may be fed

from the pipeline 505 at this point in order to allow error control in each phase, the result

stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALU and queue

operations. The ALU 602 includes an adder, priority encoders and other standard, logic

fimctions. Results of the ALU are stored in registers ALU output 618, ALU condition codes

620 and destination operand results 622. A file context register 616, flag select register 626

and literal field register 630 are simply copied from the previous phase 560. A test multiplexer

604 is provided to determine whether a conditional jump results in a jump, with the results

stored in a test results register 624. The test multiplexer 604 may instead be performed in the

first phase 500 along with similar decisions such as fetch control 511. A stack exchange 608

shifis a stack up or down by fetching a program counter from stack 594 or putting a program

counter onto that stack, results of which are stored in program control 634, program counter

638 and stack 640 registers. The SRAM address may optionally be incremented in this phase

600. Another load control 610 for another debug address 642 may be forced from the pipeline

505 at this point in order to allow error control in this phase also. A QRAM & QALU 606,

shown together in this figure, read from the queue channel and command register 587, store in

SRAM and rearrange queues, adding or removing data and pointers as needed to manage the

queues of data, sending results to the test multiplexer 604 and a queue flags and queue address

register 628. Thus the QRAM & QALU 606 assume the duties of managing queues for the

three processors, a task conventionally performed sequentially by sofiware on a CPU, the

queue manager 606 instead providing a0celerated and substantially parallel hardware queuing.

FIG. 16 depicts two of the thirty-two hardware queues that are managed by the queue

manager 606, with each of the queues having an SRAM head, an SRAM tail and the ability to

queue information in a DRAM body as well, allowing expansion and individual configuration

of each queue. Thus FIFO 700 has SRAM storage units, 705, 707, 709 and 711, each

30

ALA-006K Express Mail No. EV 406928085 US

containing eight bytes for a total of thirty-two bytes, although the number and capacity of

these units may vary in other embodiments. Similarly, FIFO 702 has SRAM storage units

713, 715, 717 and 719. SRAM units 705 and 707 are the head ofFIFO 700 and units 709 and

711 are the tail ofthat FIFO, while units 713 and 715 are the head ofFIFO 702 and units 717

and 719 are the tail of that FIFO. Information for FIFO 700 may be written into head units

705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shown by arrow

725. A particular entry, however, may be both written to and read from head units 705 or 707,

or may be both written to and read from tail units 709 or 71 1, minimizing data movement and

latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as

shown by arrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may

instead be read from the same head or tail unit to which it was written.

The SRAM FIFOS 700 and 702 are both connected to DRAM 460, which allows virtually

unlimited expansion of those FIFOS to handle situations in which the SRAM head and tail are

full. For example a first of the thirty-two queues, labeled Q-zero, may queue an entry in

DRAM 460, as shown by arrow 727, by DMA units acting under direction of the queue

manager, instead ofbeing queued in the head or tail of FIFO 700. Entries stored in DRAM

460 return to SRAM unit 709, as shown by arrow 730, extending the length and fall-through

time of that FIFO. Diversion from SRAM to DRAM is typically reserved for when the SRAM

is full, since DRAM is slower and DMA movement causes additional latency. Thus Q-zero

may comprise the entries stored by queue manager 606 in both the FIFO 700 and the DRAM

460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,

for example, can be moved by DMA into DRAM 460, as shown by arrow 735. The capacity

for queuing in cost-effective albeit slower DRAM 460 is user-definable during initialization,

allowing the queues to change in size as desired. Information queued in DRAM 460 is

returned to SRAM unit 717, as shown by arrow 737.

Status for each of the thirty—two hardware queues is conveniently maintained in and

accessed from a set 740 of four, thirty-two bit registers, as shown in FIG. 17, in which a

specific bit in each register corresponds to a specific queue. The registers are labeled Q-

Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760. If a particular bit is set in

the Q-Out_Ready register 750, the queue corresponding to that bit contains information that is

ready to be read, while the setting of the same bit in the Q-In_Ready 752 register means that

the queue is ready to be written. Similarly, a positive setting of a specific bit in the Q-Empty
'31

ALA-006K ' ~ Express Mail No. EV 406928085 US

register 755 means that the queue corresponding to that bit is empty, while a positive setting of

a particular bit in the Q-Full register 760 means that the queue corresponding to that bit is full. A

Thus Q-Out_Ready 745 contains bits zero 746 through thirty-one 748, including bits twenty-

seven 752, Wenty-eight 754, twenty-nine 756 and thirty 758. Q-In_Ready 750 contains bits

zero 762 through thirty-one 764, including bits twenty-seven 766, twenty-eight 768, twenty-

:nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 through thirty-one 776,

including bits twenty-seven 778, twenty-eight 780, twenty-nine 782 and thirty 784, and Q-full

760 contains bits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-

eight 792, twenty-nine 794 and thirty 796. I

Q-zero, corresponding to FIFO 700, is a free buffer queue, which holds a list of addresses

I for all available buffers. This queue is addressed when the microprocessor or 'other devices

need a free buffer address, and so commonly includes appreciable DRAM 460. Thus a device

needing a free buffer address would check with Q-zero to obtain that address. Q-twenty-

seven, corresponding to FIFO 702, is a receive buffer descriptor queue. After processing a

received frame by the receive sequencer the sequencer looks to 'store a descriptor for the frame

in Q-twenty-seven. Ifa location for such a descriptor is immediately available in SRAM, bit

twenty-seven 766 of Q-In_Ready 750 will be set. If not, the sequencer must wait for the queue

manager to initiate a DMA move from SRAM to DRAM, thereby freeing space to store the

receive descriptor.

Operation of the queue manager, which manages movement of queue entries between

SRAM and the processor, the transmit and receive sequencers, and also between SRAM and

DRAM, is shown in more detail in FIG. 18. Requests which utilize the queues include

Processor Request 802, Transmit Sequencer Request 804, and Receive Sequencer Request

80.6. Other requests for the queues are DRAM to SRAM Request 808 and SRAM to DRAM

Request 810, which operate on behalf of the queue manager in moving data back and forth

between the DRAM and the SRAM head or tail of the queues. Determining which of these

various requests will get to use the queue manager in the next cycle is handled by priority logic

Arbiter 815. To enable high frequency operation the queue manager is pipelined, with

Register A 818 and Register B 820 providing temporary storage, while Status Register 822

maintains status until the next update. The queue manager reserves even cycles for DMA,

receive and transmit sequencer requests and odd cycles for processor requests. Dual ported

QRAM 825 stores variables regarding each of the queues, the variables for each queue
' 32

ALA-006K ~ ' Express Mail No. EV 406928085 US

including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer

‘ corresponding to the queue’s SRAM condition, and a Body Write Pointer and Body Read

Pointer corresponding to the queue’s DRAM condition and the queue’s size.

After Arbiter 815 has selected the next operation to be performed, the variables of QRAM
825 are fetched and modified according to the selected operation by a QALU 828, and an

SRAM Read Request 830 or an SRAM Write Request 840 may be generated. The variables

are updated and the updated status is stored in Status Register 822 as well as QRAM 825. The

status is also fed to Arbiter 815 to signal that the operation previously requested has been

fulfilled, inhibiting duplication of requests. The Status Register 822 updates the four queue

registers Q-Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760 to reflect the new

status of the queue that was accessed. Similarly updated are SRAM Addresses 833, Body

Write Request 835 and Body Read Requests 838, which are accessed via DMA to and from

SRAM head and tails for that queue. Alternatively, various processes may wish to write to a

queue, as shown by Q Write Data 844, which are selected by multiplexor 846, and pipelined to

SRAM Write Request 840. The SRAM controller services the read and write requests by

writing the tail or reading the head of the accessed queue and returning an acknowledge. In

this manner the various queues are utilized and their status updated.

FIGs. 19A-C show a least-recently-used register 900 that is employed for choosing which

contexts or CCBs to maintain in INIC cache memory. The INIC in this embodiment can cache

up to sixteen CCBs in SRAM at a given time, and so when a new CCB is cached an old one

must often be discarded, the discarded CCB usually chosen according to this register 900 to be

the CCB that has been used least recently. In this embodiment, a hash table for up to two

hundred fifty-six CCBs is also maintained in SRAM, while up to two hundred fifty-six full

CCBs are held in DRAM. The least-recently-used register 900 contains sixteen four-bit blocks

labeled R0-R15, each of which corresponds to an SRAM cache unit. Upon initialization, the

blocks are numbered 0-15, with number 0 arbitrarily stored in the block representing the least

recently used (LRU) cache unit and number 15 stored in the block representing the most

recently used (MRU) cache unit. FIG. 19A shows the register 900 at an arbitrary time when

the LRU block R0 holds the number 9 and the MRU block R15 holds the number 6.

When a different CCB than is currently being held in SRAM is to be cached, the LRU

block R0 is read, which in FIG. 19A holds the number 9, and the new CCB is stored in the

SRAM cache unit corresponding to number 9. Since the new CCB corresponding to number
33

ALA-006K Express Mail No. EV 406928085 US

9 is now the most recently used CCB, the number 9 is stored in the MRU block, as shown in

FIG. 19B. The other numbers are all shifted one register block to the left, leaving the number

1 in the LRU block. The CCB that had previously been cached in the SRAM unit

corresponding to number 9 has been moved to slower but more cost-effective DRAM.

FIG. 19C shows the result when the next CCB used had already been cached in SRAM. In

this example, the CCB wascached in an SRAM unit corresponding to number 10, and so after

employment of that CCB, number 10 is stored in the MRU block. Only those numbers which

had previously been more recently used than number 10 (register blocks R9-R15) are shifted

to the lefi, leaving the number 1 in the LRU block. In this manner the INIC maintains the

most active CCBs in SRAM cache.

In some cases a CCB being used is one that is not desirable to hold in the limited cache

memory. For example, it is preferable not to cache a CCB for a context that is known to be

closing, so that other cached CCBs can remain in SRAM longer. In this case, the number

representing the cache unit holding the decacheable CCB is stored in the LRU block R0 rather

than the MRU block R15, so that the decacheable CCB will be replaced immediately upon

employment of a new CCB that is cached in the SRAM unit corresponding to the number held

in the LRU block R0. FIG. 19D shows the case for which number 8 (which had been in block

R9 in FIG. 19C) corresponds to a CCB that will be used and then closed. In this case number
8 has been removed from block R9 and stored in the LRU block R0. All the numbers that had

previously been stored to the left ofblock R9 (R1—R8) are then shified one block to the right.

FIG. 20 shows some of the logical units employed to operate the least-recently-used

register 900. An array of sixteen, three or four input multiplexors 910, of which only

multiplexors MUXO, MUX7, MUX8, MUX9 and MUXI 5 are shown for clarity, have outputs

fed into the corresponding sixteen blocks of least-recently-used register 900. For example, the

output of MUXO is stored in block R0, the output of MUX7 is stored in block R7, etc. The

value of each of the register blocks is connected to an input for its corresponding multiplexor

and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For

instance, the number stored in R8 is fed into inputs for MUX7, MUX8 and MUX9. MUXO

‘ and MUXl 5 each have only one adjacent block, and the extra input for those multiplexors is

used for the selection of LRU and MRU blocks, respectively. WK] 5 is shown as a four-

input multiplexor, with input 915 providing the number stored on R0.I

34

ALA-006K Express Mail No. EV 406928085 US

An array of sixteen comparators 920 each receives the value stored in the corresponding

block of the least-recently-used register 900. Each comparator also receives a signal from

processor 470 along line 935 so that the register block having a number matching that sent by

processor 470 outputs true to logic circuits 930 while the other fifteen comparators output

false. Logic circuits 930 control a pair of select lines leading to each of the multiplexors, for

selecting inputs to the multiplexors and therefore controlling shifting of the register block

numbers. Thus select lines 939 control MUXO, select lines 944 control MUX7, select lines

949 control MUX8, select lines 954 control MUX9 and select lines 959 control MUX15.

When a CCB is to be used, processor 470 checks to see whether the'CCB matches a CCB

currently held in one of the sixteen cache units. If a match is found, the processor sends a

signal along line 935 with the block number corresponding to that cache unit, for example

number 12. Comparators 920 compare the signal from that line 935 with the block numbers

and comparator C8 provides a true output for the block R8 that matches the signal, while all

the other comparators output false. Logic circuits 930, under control from the processor 470,

use select lines 959 to choose the input from line 935 for MUX15, storing the number 12 in the

MRU block R15. Logic circuits 930 also send signals along the pairs of select lines for MUX8

and higher multiplexers, aside from MUX15, to shift their output one block to the left, by

selecting as inputs to each multiplexor MUX8 and higher the value that had been stored in

register blocks one block to the right (R9-R15). The outputs ofmultiplexers that are to the left

of MUX8 are selected to be constant.

If processor 470 does not find a match for the CCB among the sixteen cache units, on the

other hand, the processor reads from LRU block R0 along line 966 to identify the cache

corresponding to the LRU block, and writes the data stored in that cache to DRAM. The

number that was stored in R0, in this case number 3, is chosen by select lines 959 as input 915

to MUX15 for storage in MRU block R15. The other fifieen multiplexers output to their

respective register blocks the numbers that had been stored each register block immediately to

the right. i

For the situation in which the processor wishes to remove a CClB from the cache after use,

the LRU block R0 rather than the MRU block R15 is selected for placement of the number

corresponding to the cache unit holding that CCB. The number corresponding to the CCB to

be placed in the LRU block R0 for removal from SRAM (for example number 1, held in block

R9) is sent by processor 470 along line 93 5, which is matched by comparator C9. The
35 '

ALA-006K Express Mail No. EV 406928085 US

processor instructs logic circuits 930 to input the number 1 to R0, by selecting with lines 939

input 935 to MUXO. Select lines 954 to MUX9 choose as input the number held in register

block R8, so that the number from R8 is stored in R9. The numbers held by the other register

blocks between R0 and R9 are similarly shified to the right, whereas the numbers in register

blocks to the right of R9 are lefi constant. This frees scarce cache memory from maintaining

closed CCBs for many cycles while their identifying numbers move through register blocks

from the MRU to the LRU blocks.

Figure 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure

13. lNlC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and

Dynamic Random Access Memory (DRAM) 460. PHY chip 2100 couples INIC card 200 to

network line 210 via a network connector 2101. INIC card 200 is coupled to the CPU of the

host (for example, CPU 28 of host 20 of Figure 1) via card edge connector 2107 and PCI bus

257. ASIC chip 400 includes a Media Access Control (MAC) unit 402, a sequencers block

2103, SRAM control 442, SRAM 440, DRAM control 450, a queue manager 2103, a

processor 470, and a PCI bus interface unit 468. Structure and operation of queue manager

2103 is described above in connection with Figure 18 and in U.S. Patent Application Serial

Number 09/416,925, entitled “Queue System For Microprocessors”, attorney docket no. ALA-

005, filed October 13, 1999, by Daryl D. Starr and Clive M. Philbrick (the subject matter of

which is incorporated herein by reference). Sequencers block 2102 includes a transmit

sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC

destination address is stored in configuration register 2106. Part of the program code executed

by processor 470 is contained in ROM (not shown) and part is located in a writeable control

store SRAM (not shown). The program is downloaded into the writeable control store SRAM

at initialization from the host 20.

Figure 22 is a more detailed diagram of receive sequencer 2105. Receive sequencer 2105

includes a data synchronization buffer 2200, a packet synchronization sequencer 2201, a data

assembly register 2202,1a protocol analyzer 2203, a packet processing sequencer 2204, a queue

manager interface 2205, and a Direct Memory Access (DMA) control block 2206. The packet

synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network-

synchronized clock of MAC 402, whereas the remainder of the receive sequencer 2105 utilizes

a fixed-frequency clock. Dashed line 2221' indicates the clock domain boundary.

36

ALA-006K Express Mail No. EV 406928085 US

4 CD Appendix A contains a complete hardware description (verilog code) of an embodiment

of receive sequencer 2105. Signals in the verilog code are named to designate their functions.

Individual sections of the verilog code are identified and labeled with comment lines. Each of

these sections describes hardware in a block of the receive sequencer 2105 as set forth below

in Table 1.

I SECTION OF VERILOG CODE BLOCK OF FIG. 22

Synchronization Interface 2201

Sync-Buffer Read-Ptr Synchronizers 2201

Packet-Synchronization Sequencer I 2201

Data Synchronization Buffer ’ 2201 and 2200 I

Synchronized Status for Link-Destination—Address 2201

Synchronized Status-Vector . 2201

Synchronization Interface 2204

Receive Packet Control and Status 2204

Buffer-Descriptor - , 2201

Ending Packet Status 2201

AssyReg shift-in. Mac -> AssyReg. 7 2202 and 2204

Fifo shift-in. AssyReg -> Sram Fifo 2206

Fifo ShifiOut Burst. SrarnFifo —> DramBuffer 2206

Fly-By Protocol Analyzer; Frame, Network and Transport Layers 2203

Link Pointer ' I 2203

Mac address detection 2203

Magic pattern detection 2203

Link layer and network layer detection 1 2203

Network counter 2203

Control Packet analysis 2203

Network header analysis * 2203

Transport layer counter 2203

Transport header analysis 2203

Pseudo-header stuff ' 2203

Free-Descriptor Fetch 2205

ALA-006K ‘ Express Mail No. EV 406928085 US

Receive-Descriptor Store

Receive-Vector Store

Queue-manager interface—mux

Pause Clock Generator

Pause Timer

TABLE 1

Operation of receive sequencer 2105 of Figures 21 and 22 is now described in connection

with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At

initialization time, processor 470 partitions DRAM 460 into buffers. Receive sequencer 2105

uses the buffers in DRAM 460 to store incoming network packet data as well as status

information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A

buffer descriptor indicates the size and location in DRAM of its associated buffer. Processor

A€70 places these buffer descriptors on a “free-buffer queue” 2108 by writing the descriptors to
the queue manager 2103. Queue manager 2103 maintains multiple queues including the “free-

buffer' queue” 2108. In this implementation, the heads and tails of the various queues are

located in SRAM 440, whereas the middle portion of the queues are located in DRAM 460.

Lines 2229 comprise a request mechanism involving a request line and address lines.

Similarly, lines 2230 comprise a request mechanism involving a request line and address lines.

Queue manager 2103 uses lines 2229 and 2230 to issue requests to transfer queue information
from DRAM to SRAM or from SRAM to DRAM.

The queue manager interface 2205 of the receive sequencer always attempts to maintain a

free buffer descriptor 2207 for use by the packet prOcessing sequencer 2204. Bit 2208 is a

ready bit that indicates that free—buffer descriptor 2207 is available for use by the packet

processing sequencer 2204. If queue manager interface 2205 does not have a free buffer

descriptor (bit 2208 is not set), then queue manager interface 2205 requests one from queue

manager 2103 via request line 2209. (Request line 2209 is actually a bus which communicates

the request, a queue ID, a read/write signal and data if the operation is a write to the queue.)

In response, queue manager 2103 retrieves a free buffer descriptor from the tail of the “free

buffer queue” 2108 and then alerts the queue manager interface 2205 via an acknowledge

signal on acknowledge line 2210. When queue manager interface 2205 receives the

acknowledge signal, the queue manager interface 2205 loads the free buffer descriptor 2207
3 8

ALA-006K ' Express Mail No. EV 406928085 US

and sets the ready bit 2208. Because the free buffer descriptor was in the tail of the free buffer

queue in SRAM 440, the queue manager interface 2205 actually receives the free buffer

descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet

processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When'

the queue manager interface 2205 retrieves the free buffer descriptor 2207 and the free buffer

descriptor 2207 is available for use by the packet processing sequencer, the queue manager

interface 2205 informs the packet processing sequencer 2204 via grant line 2212. By this

process, a free buffer descriptor is made available for use by the packet processing sequencer

2204 and the receive sequencer 2105' is ready to processes an incoming packet.

Next, a TCP/IP packet is received from the network line 210 via network connector 2101

and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC 402 via a

Media Independent Interface (MII) parallel bus 2109. MAC 402 begins processing the packet

and asserts a “start of packet“ signal on line 2213 indicating that the beginning of a packet is

being received. When a byte of data is received in the MAC and is available at the MAC

outputs 2215, MAC 402 asserts a “data valid” signal on line 2214. Upon receiving the “data

valid” signal, the packet synchronization sequencer 220] instructs the data synchronization

buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data

synchronization buffer 2200 is four bytes deep. The packet synchronization sequencer 2201

then increments a data synchronization buffer write pointer. This data synchronization buffer

write pointer is made available to the packet processing sequencer 2204 via lines 2216.

Consecutive bytes of data from data lines 2215 are clocked into the data synchronization

buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained by the

packet processing sequencer 2204. The packet processing sequencer 2204 determines that

data is available in data synchronization buffer 2200 by comparing the data synchronization

buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines

2219. ‘

Data assembly register 2202 contains a sixteen—byte long shifi register 2217. This register

2217 is loaded serially a single byte at a time and is unloaded in parallel. When data is loaded

into register 2217, a write pointer is incremented. This write pointer is made available to the

packet processing sequencer 2204 via lines 2218. Similarly, when data is unloaded from

' register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.
39

ALA-006K ' ExpressMail No. EV 406928085 US

This read pointer is available to the data assembly register 2202 via lines 2220. The packet

processing sequencer 2204 can therefore determine whether room is available in register 2217

by comparing the write pointer on lines 2218 to the read pointer on lines 2220.

If the packet processing sequencer 2204 determines that room is available in register 2217,

then packet processing sequencer 2204 instructs data assembly register 2202 to load a byte of

data from data synchronization buffer 2200. The data assembly register 2202 increments the

data assembly register write pointer on lines 2218 and the packet processing sequencer 2204

‘ increments the data synchronization buffer read pointer on lines 2219. Data shifted into

register 2217 is examined at the register outputs by protocol analyzer 2203 which verifies

checksums, and generates “status” information 2223.

DMA control block 2206 is responsible for moving information from register 2217 to

buffer 2114 via a sixty-four byte receive FIFO 2110. DMA control block 2206 implements

receive FIFO 2110 as two thirty-two byte ping-pong buffers using sixty-four bytes of SRAM

440. DMA control block 2206 implements the receive FIFO using a write—pointer and a read-

pointer. When data to be transferred is available in register 2217 and space is available in

FIFO 2110, DMA control block 2206 asserts an SRAM write request to SRAM controller 442

via lines 2225. SRAM controller 442 in turn moves data from register 2217 to FIFO 2110 and

asserts an acknowledge signal back to DMA control block 2206 via lines 2225. DMA control

block 2206 then increments the receive FIFO write pointer and causes the data assembly

register read pointer to be incremented.

When thirty-two bytes of data has been deposited into receive FIFO 2110, DMA control

block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This

write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for

the DRAM request address, and the receive FIFO read pointer for the SRAM read address.

Using the receive FIFO read pointer, the DRAM controller 450 asserts a read request to

SRAM controller 442. SRAM controller 442 responds to DRAM controller 450 by returning

the indicated data from the receive FIFO 2110 in SRAM 440 and asserting an acknowledge

signal. DRAM controller 450 stores the data in a DRAM write data register, stores a DRAM

request address in a DRAM address register, and asserts an acknowledge to DMA control

block 2206. The DMA control block 2206 then decrements the receive FIFO read pointer.

Then the DRAM controller 450 moves the data from the DRAM write data register to buffer

2114. In this way, as consecutive thirty-two byte chunks of data are stored in SRAM 440,

’ 40

ALA-006K Express Mail No. EV 406928085 US

DRAM control block 2206 moves those thirty-two byte chunks of data one at a time from

SRAM 440 to buffer 2214 in DRAM 460. Transferring thirty-two byte chunks of data to the

DRAM 460 in this fashion allows data to be written into the DRAM using the relatively

efficient burst mode of the DRAM.

Packet data continues to flow from network line 210 to buffer 2114 until all packet data has

been received. MAC 402 then indicates that the incoming packet has completed by asserting

an “end of frame” (i.e., end ofpacket) signal on line 2227 and by presenting final packet status

(MAC packet status) to packet synchronization sequencer 2204. The packet processing

sequencer 2204 then moves the status 2223 (also called “protocol analyzer status”) and the

MAC packet status to register 2217 for eventual transfer to buffer 2114. After all the data of

the packet has been placed in buffer 2214, status 2223 and the MAC packet status is

transferred to buffer 2214 so that it is stored prepended to the associated data as shown in

Figure 22. '

After all data and status has been transferred to buffer 2114, packet processing sequencer

2204 creates a summary 2224 (also called a “receive packet descriptor”) by concatenating the

free buffer descriptor 2207, the buffer load-count, the MAC ID, and a status bit (also called an

“attention bit”). If the attention bit is a one, then the packet is not a “fast-path candidate”;

whereas if the attention bit is a zero, then the packet is a “fast-path candidate”. The value of

the attention bit represents the result of a significant amount ofprocessing that processor 470

would otherwise have to do to determine whether the packet is a “fast-path candidate”. For

example, the attention bit being a zero indicates that the packet employs both TCP protocol

and IP protocol. By carrying out this significant amount ofprocessing in hardware beforehand

and then encoding the result in the attention bit, subsequent decision making by processor 470

as to whether the packet is an actual “fast-path packet” is accelerated. A complete logical

description of the attention bit in verilog code is set forth in CD Appendix A in the lines

following the heading “Ending Packet Status”.

Packet processing sequencer 02204 then sets a ready bit (not shown) associated with

summary 2224'and presents summary 2224 to queue manager interface 2205. Queue manager

interface 2205 then requests a write to the head of a “summary queue” 2112 (also called the

“receive descriptor queue”). The queue manager 2103 receives the request, writes the

summary 2224 to the head of the summary queue 2212, and asserts an acknowledge signal

back to queue manager interface via line 2210. When queue manager interface 2205 receives
41

ALA-006K ' Express Mail No. EV 406928085 US

the'acknowledge, queue manager interface 2205 informs packet processing sequencer 2204

that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with the

summary. Packet processing sequencer 2204 also generates additional status information (also

called a “vector”) for the packet by coricatenating the MAC packet status and the MAC ID.

Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and

presents this vector to the queue manager interface 2205. The queue manager interface 2205
and the queue manager 2103 then cooperate to write this vector. to the head of a “vector queue”

2113_in similar fashion to the way summary 2224 was written to the head of summary queue

2112 as described above. When the vector for the packet has been written to vector queue

2113, queue manager interface 2205 resets the ready bit associated with the vector.

Once summary 2224 (including a buffer descriptor that points to buffer 21 14) has been

placed in summary queue 2112 and the packet data has been placed in buffer 2144, processor '

470 can retrieve summary 2224 from summary queue 2112 and examine the “attention bit”.

If the attention bit from summary 2224 is a digital one, then processor 470 determines that

the packet is not a “fast-path candidate” and processor 470 need not examine the packet

headers. Only the status 2223 (first sixteen bytes) from buffer 2114 are DMA transferred to

SRAM so processor 470 can examine it. If the status 2223 indicates that the packet is a type

ofpacket that is not to be transferred to the host (for-example, a multicast frame that the host is

not registered to receive), then the packet is discarded (i.e., not passed to the host). If status

2223 does not indicate that the packet is the type ofpacket that is not to be transferred to the

host, then the entire packet (headers and data) is passed to a buffer on host 20 for “slow—path”

transport and network layer processing by the protocol stack ofhost 20.

If, on the other hand, the attention bit is a zero, then processor 470 determines that the

packet is a “fast-path candidate”. Ifprocessor 470 determines that the packet is a “fast-path

candidate”, then processor 470 uses the buffer descriptor from the summary to DMA transfer

the first approximately 96 bytes of information from buffer 21 14 from DRAM 460 into a

portion of SRAM 440 so processor 470 can examine it. This first approximately 96 bytes

contains status 2223 as well as the IP source address of the IP header, the IP destination

address of the IP header, the TCP source address of the TCP header, and the TCP destination

address of the TCP header. The IP source address of the IP header, the IP destination address

of the IP header, the TCP source address of the TCP header, and the TCP destination address

of the TCP header together uniquely define a single connection context (TCB) with which the
42

ALA-006K Express Mail No. EV 406928085 US

packet is associated. Processor 470 examines thesc addresses of the TCP and IP headers and

determines the connection context of the packet. Processor 470 then checks 'a list of

connection contexts that are under the control of INIC card 200 and determines whether the

a packet is associated with a connection context (TCB) under the control of INIC card 200.

If the connection context is not in the list, then the “fast—path candidate” packet is'

‘ determined not to be a “fast-path packet.” In such a case, the entire packet (headers and data)

is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack of host 20.

If, on the other hand, the connection context is in the list, then soflware executed by

processor 470 including software state machines 2231 and 2232 checks for one of numerous

exception conditions and determines whether the packet is a “fast-path packet” or is not a

“fast-path packet”. These exception conditions include: 1) IP fragmentation is detected; 2) an

IP option is detected; 3) an unexpected TCP flag (urgent bit set, reset bit set, SYN bit set or

FIN bit set) is detected; 4) the ACK field in the TCP header is before the TCP window, or the

ACK field in the TCP header is after the TCP window, or the ACK field in the TCP header

shrinks the TCP window; 5) the ACK field in the TCP header is a duplicate ACK and the

ACK field exceeds the duplicate ACK count (the duplicate ACK count is a user settable

value); and 6) the sequence number of the TCP header is out of order (packet is received out of

sequence). If the sofiware executed by processor 470 detects one of these exception

conditions, then processor 470 determines that the “fast-path candidate” is nOt a “fast-path

packet.” In such a case, the connection context for the packet is “flushed” (the connection

context is passed back to the host) so that the connection context is no longer present in the list

of connection contexts under control of INIC card 200. The entire packet (headers and data) is

transferred to a buffer in host 20 for “slow-pat ” transport layer and network layer processing

by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such eXception condition, then the “fast-path

candidate” packet is determined to be an actual “fast-path packet”. The receive state machine

2232 then processes of the packet through TCP. The data portion of the packet in buffer 21 14

is then transferred by another DMA controller (not shown in Figure 21) from buffer 2114 to a

host-allocated file cache in storage 35 of host 20. In one embodiment, host 20 does no

analysis of theTCP and IP headers of a “fast—path packet”. All analysis of the TCP and IP

headers of a “fast-path packet” is done on INIC card 20.

43

ALA—006K ' Express Mail No. EV 406928085 US

Figure 23 is a diagram illustrating the transfer of data of “fast-path packets” (packets of a

64k-byte session layer message 2300) from INIC 200 to host 20. The portion of the diagram

to the left of the dashed line 2301 represents lNIC 200, whereas the portion of the diagram to

the right of the dashed line 2301 represents host 20. The 64k-byte session layer message 2300

includes approximately forty-five packets, four of which (2302, 2303, 23 O4 and 2305) are

labeled on Figure 23. The first packet 23 02 includes a portion 2306 containing transport and

network layer headers (for example, TCP and IP headers), a portion 2307 containing a session

layer header, and a portion 2308 containing data. In a first step, portion 2307,the first few

bytes of data from portion 2308, and the connection context identifier 2310 of thepacket 23 00

are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a second step, host 20

examines this information and returns to INIC 200 a destination (for example, the location of a

file cache 2311 in storage 35) for the data. Host 20 also copies the first few bytes of the data

from buffer 2309 to the beginning of a first part 2312 of file cache 2311'. In a third step, INIC

200 transfers the remainder of the data from portion 2308 to host 20 such that the remainder of

the data is stored in the remainder of first part 2312 of file cache 2311. No network, transport,

or session layer headers are stored in first part 2312 of file cache 231 1. Next, the data portion

1 2313 of the second packet 2303 is transferred to host 20 such that the data portion 2313 of the

second packet 2303 is stored in a second part 2314 of file cache 2311. The transport layer and

network layer header portion 2315 of second packet 2303 is not transferred to host 20. There

is no network, transport, or session layer header stored in file cache 2311 between the data

portion of first packet 2302 and the data portion of second packet 2303. Similarly, the data

portion 2316 of the next packet 2304 of the session layer message is transferred to file cache

2311 so that there is no network, transport, or session layer headers between the data portion

of the second packet 2303 and the data portion of the third packet 2304 in file cache 2311. In

this way, only the data portions of the packets of the session layer message are placed in the

file cache 2311; The data from the session layer message 2300 is present in file cache 2311 as

'a block such that this block contains no network, transport, or session layer headers.

In the case of a shorter, single-packet session layer message, portions 2307 and 2308 of the

session layer message are transferred to 256-byte buffer 230.9 ofhost 20 along with the

connection context identifier 2310 as in the case of the longer session layer message described

above. In the case of a single-packet session layer message, however, the transfer is completed

44

ALA-006K Express Mail No. EV 406928085 US

at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does not transfer

subsequent data to such a destination.

CD Appendix B includes a listing of sofiware executed by processor 470 that determines

whether a “fast-path candidate” packet is or is not a “fast—path packet”. An example of the

instruction set of processor 470 is found starting on page 79 of the Provisional US. Patent

Application Serial No. 60/061,809, entitled “Intelligent Network Interface Card And System

For Protocol Processing”, filed October 14, 1997 (the subject matter of this provisional
application is incorporated herein by reference).

CD Appendix C includes device driver software executable on host 20 that interfaces the

host 20 to INIC card 200. There is also ATCP code that executes on host 20. This ATCP

code includes: 1) a “free BSD” stack (available from the University of California, Berkeley)

that has been modified slightly to make it run on the NT4 operating system'(the “free BSD”

stack normally runs on a UNIX machine), and 2) code added to the free BSD stack between

the session layer above and the device driver below that enables the BSD stack to carry out

“fast-path” processing in conjunction with INIC 200. I

TRANSMIT FAST-PATH PROCESSING: The following is an overview of one.

embodiment of a transmit fast-path flow once a command has been posted (for additional

information, see provisional application 60/098,296, filed August 27, 1998). The transmit

request may be a segment that is less than the M88, or it may be as much as a full 64K session

layer packet. The former request will go out as one segment, the latter as a number of MSS-

sized segments. The transmitting CCB must hold on to the request until all data in it has been

transmitted and ACKed. Appropriate pointers to do this are kept in the CCB. To create an

output TCP/1P segment, a large DRAM buffer is acquired from the Q_FREEL queue. Then

data is DMAd from host memory into the DRAM buffer to create an MSS-sized segment.

This DMA also checksums the data. The TCP/1P header is created in SRAM and DMAd to

the front of the payload data. It is quicker and simpler to keep a basic frame header (i.e., a

template header) permanently in the CCB and DMA this directly from the SRAM CCB buffer

into the DRAM buffer each time. Thus the payload checksum is adjusted for the pseudo—

header (i.e., the template header) and placed into the TCP header prior to DMAing the header

from SRAM. Then the DRAM buffer is queued to the appropriate CLUXMT transmit queue.

The final step is to update various window fields etc in the CCB. Eventually either the entire

request will have been sent and ACKed, or a retransmission timer will expire in which case the
45

ALA-006K ' ‘ Express Mail No. EV 406928085 US

context is flushed to the host. In either case, the INIC will place a command response in the

response queue containing the command buffer from the original transmit command and

appropriate status.

The above discussion has dealt with how an actual transmit occurs. However the real -

challenge in the transmit processor is to determine whether it is appropriate to transmit at the

time a transmit request arrives, and then to continue to transmit for as long as the transport

protocol permits. There are many reasons not to transmit: the receiver’s window size is less
than or equal to zero, the persist timer has expired, the amount to send is less than a full

segment and an ACK is expected/outstanding, the receiver’s window is not half-open, etc.

Much of transmit processing will be in determining these conditions.

The fast-path is implemented as a finite state machine (FSM) that covers at least three

layers of the protocol stack, i.e., IP, TCP, and Session. The following summarizes the steps

involved in nor'rnal fast-path transmit command processing: 1) get control of the associated

CCB (gotten from the command): this involves locking the CCB to stop other processing (e.g.

Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into

an SRAM CCB buffer. There are sixteen of these buffers in SRAM and they are not flushed to

DRAM until the buffer space is needed by other CCBs. Acquisition and flushing of these

CCB buffers is controlled by a hardware LRU mechanism. Thus getting into a buffer may

involve flushing another CCB from its SRAM buffer. 3) Process the send command

(EX_SCMD) event against the CCB’s FSM.

Each event and state intersection provides an action to be executed and a new state. The

following is an example of the state/event transition, the action to be executed and the new

state for the SEND command while in transmit state IDLE (SX_IDLE). The action from. this

state/event intersection is AX_NUCMD and the next state. is XMIT COMMAND ACTIVE

(SX_XMIT). To summarize, a command to transmit data has been received while transmit is
currently idle. The action performs the following steps: 1) Store details of the command into

the CCB. 2) Check that it is okay to transmit now (e.g. send window is not zero). 3) If output

is not possible, send the Check Output event to Q_EVENT1 queue for the Transmit CCB’s

FSM and exit. 4) Get a DRAM 2K-byte buffer from the Q-FREEL queue into which to move

the payload data. 5) DMA payload data from the addresses in the scatter/gather lists in the

command into an offset in the DRAM buffer that leaves space for the frame header. These

DMAs will provide the checksum of the payload data. 6) Concurrently with the above DMA,
46 ‘

ALA-006K Express Mail No. EV 406928085 US

fill out variable details in the frame header template in the CCB. Also get the IP and TCP

header checksums while doing this. Note that base IP and TCP headers checksums are kept in

the CCB, and these are simply updated for fields that vary per frame, viz. IP Id, IP length, IP

checksum, TCP sequence and ACK numbers, TCP window size, TCP flags and TCP

checksum. 7) When the payload is complete, DMA the frame header from the CCB to the

front of the DRAM buffer. 8) Queue the DRAM buffer (i.e., queue a buffer descriptor that

points to the DRAM buffer) to the appropriate QUXMT queue for the interface for this CCB.

9) Determine if there is more payload in the command. If so, save the current command

transfer address details in the CCB and send a CHECK OUTPUT event via the QEVENT]

queue to the Transmit CCB. Ifnot, send the ALL COMMAND DATA SENT (EX_ACDS)

event to the Transmit CCB. 10) .Exit from Transmit FSM processing.

Code that implements an embodiment of the Transmit FSM (transmit software state

machine 2231 of Figure 21) is found in CD Appendix B. In one embodiment, fast-path

transmit processing is controlled using write only transmit configuration register (Xmthg).

Register Xmthg has the following portions: 1) Bit 3] (name: Reset). Writing a one (1) will

force reset asserted to the transmit sequencer of the channel selected by XcvSel. 2) Bit 30

(name: thEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)

causes the transmit sequencer to halt after completion of the current packet. 3) Bit 29 (name:

PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission, after

completion of the current packet, wheneVCr the receive sequencer detects an 802.3X pause

command packet. 4) Bit 28 (name: Loaang). Writing a one (1) causes the data in

RchddrB[10:00] to be loaded in to the Mac’s random number register for use during

collision back-offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15 (name: FreeQId). Selects

the queue to which the freed buffer descriptors will be written once the packet transmission

has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: thQId).

Selects the queue from which the transmit buffer descriptors will be fetched for data packets.

8) Bits 09:05 (name: CtrlQId). Selects the queue from which the transmit buffer descriptors

will be fetched for control packets. These packets have transmission priority over the data

packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:

VectQId). Selects the queue to which the transmit vector data is written afier the completion

of each packet transmit. In some embodiments, transmit sequencer 2104 of Figure 21 retrieves

buffer descriptors from two transmit queues, one of the queues having a higher transmission
47

ALA-006K Express Mail No. EV 406928085 US

priority than the other. The higher transmission priority transmit queue is used for the

transmission of TCP ACKs, whereas the lower transmission priority transmit queue is used for

the transmission of other types of packets. ACKs may be transmitted in accordance with

techniques set forth in US. Patent Application Serial No. 09/802,426 (the subject matter of

which is incorporated herein by reference). In some embodiments, the processor that executes

the Transmit FSM, the receive and transmit sequencers, and the host processor that executes

the protocol stack are all realized on the same printed circuit board. The printed circuit board

may, for example, be a card adapted for coupling to another computer.

All told, the above-described devices and systems for processing of data communication

result in dramatic reductions in the time and host resourcesrequired for processing large,

connection-based messages. Protocol processing speed and efficiency is tremendously

accelerated by specially designed protocol processing hardware as compared with a general

purpose CPU running conventional protocol software, and interrupts to the host CPU are also

substantially reduced. These advantages can be provided to an existing host by addition of an

intelligent network interface card (INIC), or the protocol processing hardware may be

integrated with the CPU. In either case, the protocol processing hardware and CPU

intelligently decide which device processes a given message, and can change the allocation of

that processing based upon conditions of the message.

DISCLOSURE FROM PROVISIONAL APPLICATION 60/061 809.

BACKGROUND OF THE INVENTION.

Network processing as it exists today is a costly and inefficient use of system

resources. A 200 MHz Pentium-Pro is typically consumed simply processing network data .

from a lOOMb/second-network connection. The reasons that this processing is so costly are

described here.

.TOO MANY DATA MOVES.

When network packet arrives at a typical network interface card (NIC), the NIC moves

the data into pre-allocated network buffers in system main memory. From there the data is

read into the CPU cache so that it can be checksummed (assuming of course that the protocol

in use requires checksums. Some, like IPX, do not). Once the data has been fully processed

ALA-006K Express Mail No. EV 406928085 US

by the protocol stack, it can then be moved into its final destination in memory. Since the

CPU is moving the data, and must read the destination cache line in before it can fill it and

write it back out, this involves at a minimum two more trips across the system memory bus. In

short, the best one can hope for is that the data will get moved across the system memory bus

' four times before it arrives in its final destination. It can, and does, get worse. If the'data

happens to get invalidated from system cache after it has been checksummed, then it must get

pulled back across the memory bus before it can be moved to its final destination. Finally, on

some systems, including Windows NT 4.0, the data gets copied yet another time while being

moved up the protocol stack. In NT 4.0, this occurs between the miniport driver interface and

the protocol driver interface. This can add up to a whopping eight trips across the system

memory bus (the four trips described above, plus the move to replenish the cache, plus three

more to copy from the miniport to the protocol driver). That’s enough to bring even today’s

advanced memory busses to their knees.

TOO MUCH PROCESSING BY THE CPU.

In all but the original move from the NIC to system memory, the system CPU is

responsible for moving the data. This is particularly expensive because while the CPU is

moving this data it can do nothing else. While moving the data the CPU is typically stalled

waiting for the relatively slow memory to satisfy its read and write requests. A CPU, which

can execute an instruction every 5 nanoseconds, must now wait as long as several hundred

nanoseconds for the memory controller to respond before it can begin its next instruction.

Even today’s advanced pipelining technology doesn’t help in these situations because that

relies on the CPU being able to do useful work while it waits for the memory controller to

respond. If the only thing the CPU has to look forWard to for the next several hundred

instructions is more data moves, then the CPU ultimately gets reduced to the speed of the

memory controller.

Moving all this data with the CPU slows the system down even after the data has been

moved. Since both the source and destination cache lines must be pulled into the CPU cache

when the data is moved, more than 3k of instructions and or data resident in the CPU cache

must be flushed or invalidated for every 1500 byte frame. This is of course assuming a

combined instruction and data second level ca'che, as is the case with the Pentium processors.

After the data has been moved, the former resident of the cache will likely need to be pulled
49

ALA-006K ' Express Mail No. EV 406928085 US

I back in, stalling the CPU even when we are not performing network processing. Ideally a

system would never have to bring network frames into the CPU cache, instead reserving that

precious commodity for instructions and data that are referenced repeatedly and frequently.

But the data movement is not the only drain on the CPU. There is also a fair amount of

processing that must be done by the protocol stack software.’ The most obvious expense is

calculating the checksum for each TCP segment (or UDP datagram). . Beyond this, however,

there is other processing to be done as well. The TCP connection object must be located when

a given TCP segment arrives, IP header checksums must be calculated, there are buffer and

memory management issues, and finally there is also the significant expense of interrupt

processing which we will discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments

when running over Ethernet (1500 byte MTU). Each of these segments may result in an

interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming data, it’s

possible to get another 44 transmit-complete interrupts as a result of sending out the TCP

acknowledgements. While this is possible, it is not terribly likely. Delayed ACK timers allow

us to acknowledge more than one segment at a time. And delays in interrupt processing may

mean that we are able to process more than one incoming network frame per interrupt.

Nevertheless, even if we assume four incoming frames per input, and an acknowledgement for

' every two segments (as is typical per the ACK-every-other-segment property of TCP), we are

still lefl with 33 interrupts per 64k SMB request. .

Interrupts tend to be very costly to the system. Often when a system is interrupted,

important information must be flushed or invalidated from the system cache so that the

interrupt routine instructions, and needed data can be pulled into the cache.' Since the CPU

will return to its prior location afler the interrupt, it is likely that the information flushed from

the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While

the processor pipeline is an extremely efficient way of improving CPU performance, it can be

expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the

peripheral bus (PCI). This is discussed more in the following section.
50

ALA-006K Express Mail No. EV 406928085 US

INEFPICIENT USE OF THE PERIPHERAL BUS (PCI).

We noted earlier that when the CPU has to access system memory, it may be stalled for

several hundred nanoseconds. When it has to read from PCI, it may be stalled for many

microseconds. This happens every time the CPU takes an interrupt from a standard NIC. The.

first thing the CPU must do when it receives one of these interrupts is to read the NIC Interrupt

Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling

thing about this is that since interrupt lines are shared on PC-based systems, we may have to

perform this expensive PCI read even when the interrupt is not meant for us.

There are other peripheral bus inefficiencies as well. Typical NICs operate using

descriptor rings. When a frame arrives, the NIC reads a receive descriptor from'system

memory to determine where to place the data. Once the data has been moved to main

memory, the descriptor is then written back out to system memory with status about the

received frame. Transmit operates in a similar fashion. The CPU must notify that NIC that it

has a new transmit. The NIC will read the descriptor to locate the data, read the data itself, and

then write the descriptor back with status about the send. Typically on transmits the NIC will

then read the next expected descriptor to see if any more data needs to be sent. In short, each

receive or transmit frame results in 3 or 4 separate PCI reads or writes (not counting the status/

register read).

SUMMARY OF THE INVENTION.

Alacritech was formed with the idea that the network processing described above could

be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the

Alacritech INIC, we address each of the above problems, resulting in the following

advancements:

1. The vast majority of the data is moved directly from the INIC into its final

destination. A single trip across the system memory bus.

’ . 2. There is no header processing, little data copying, and no checksumming
required by the CPU. Because of this, the data is never moved into the CPU cache, allowing

the system to keep important instructions and data resident in the CPU cache.

3. Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per

64k SMB write.

5 1

ALA-006K Express Mail No. EV 406928085 US

4. There are no CPU reads over PCI and there are fewer PCI operations per

receive or transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

PERFORM TRANSPORT LEVEL PROCESSING ON THE INIC.

In order to keep the system CPU from having to process the packet headers or

checksum the packet, we must perform this task on the INIC. This is a daunting task. There

are more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.

Clearly this is more code than could be efficiently handled by a competitively priced network

card. Furthermore, as noted above, the TCP/IP protocol stack is complicated enough to"

consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive

card, we need special network processing hardware as opposed to simply using a general

purpose CPU.

ONLY SUPPORT TCP/1P.

In this section we introduce the notion of a "context". A context is required to keep

track of information that spans many, possibly discontiguous, pieces of information. -When

processing TCP/1P data, there are actually two contexts that must be maintained. The first

context is required to reassemble IP fragments. It holds information about the status of the IP

reassembly as well as any checksum infonnation being calculated across the IP datagram

(UDP or TCP). This context is identified by the IP_ID of the datagram as well as the source

and destination IP addresses. The second context is required to handle the sliding window

protocol‘of TCP. It holds information about which segments have been sent or received, and

which segments have been acknowledged, and is identified by the IP source and destination

addresses and TCP source and destination ports.

If we were to choose to handle both contexts in hardware, we would have to potentially

keep track of many pieces of information. One such example is a case in which a single 64k

SMB write is-broken down into 44 1500 byte TCP segments, which are in turn broken down

into 131 576 byte IP fragments, all of which can come in any order (though the maximum

window size is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection

establishment time, which should prevent IP fragmentation in nearly all TCP connections. The

52 '

ALA-006K ' ' ' Express Mail No. EV 406928085 US

only time that we should end up with fragmented TCP connections is when there is a router in

the middle of a connection which must fragment the segments to support a smaller MTU. The

only networks that use a smaller MTU than Ethernet are serial line interfaces such as SLIP and

PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we

had 256 of these connections, we would still only need to support 34Mb/sec, or a little over

three 10bT connections worth of data. This is not enough to justify any performance

enhancements that the INIC offers. If this becomes an issue at some point, we may decide to

implement the MTU discovery algorithm, which should prevent TCP fragmentation on all

connections (unless an ICMP redirect changes the connection route while the connection is

established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP

segments on the INIC. UDP is another matter. Since UDP does not support the notion of a

Maximum Segment Size, it is the responsibility of IP to break down a UDP datagram into

MTU sized packets. Thus, fragmented UDP datagrams are very common. The most common

UDP application running today is NFSV2 over UDP. While this is also the most common

version ofNFS running today, the current version of Solaris being sold by Sun Microsystems

runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP traffic start to

decrease over the coming years. In summary, we will only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLE TCP “EXCEPTIONS”.

. As noted above, we won’t provide support for fragmented TCP segments on the INIC.

We have also opted to not handle TCP connection and breakdown. Here is a list ofother TCP

“exceptions” which we have elected to not handle on the INIC:

Fragmented Segments —Discussed above.

Retransmission Timeout — Occurs when we do not get an acknowledgement for

previously sent data within the expected timeperio'd.

Out of order segments — Occurs when we receive a segment with a sequence number

other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have now eliminated support for so many different code paths, it might seem

hardly worth the trouble to provide any assistance by the card at all. This is not the case.

53

ALA-006K Express Mail No. EV 406928085 US

According to W. Richard Stevens and Gary Write in their book “TCP/1P Illustrated Volume

23’, TCP operates without experiencing any exceptions between 97 and 100 percent of the time

in local area netWorks. As network, router, and switch reliability improve this number is likely

to only improve with time.

TWO MODES OF OPERATION.

So the next question is what to do about the network packets that do not fit our criteria.

The answer shown in Fig. 24 is to use two modes of operation: One in which the network

frames are processed on the'INIC through TCP and one in which the card operates like a

typical dumb NIC. We call these two modes fast-path, and slow-path. In the slow—path case,

network frames are handed to the system at the‘ MAC layer and passed up through the host

protocol stack like any other network frame. In the fast path case, network data is given to the

host after the headers have been processed and stripped.

The transmit case works in much the same fashion. In slow-path mode the packets are

given to the INIC with all of the headers attached. The INIC simply sends these packets out as

if it were a dumb NIC. 'In fast-path mode, the host gives raw data to the INIC which it must

carve. into MSS sized segments, add headers to the data, perform checksums on the segment,
and then send it out on the wire.

THE TCB CACHE. \

Consider a situation which a TCP connection is being handled by the card and a

fragmented TCP segment for that connection arrives. In this situation, it will be necessary for

the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a

structure that contains the entire context associated with a connection. This includes the

source and destination IP addresses and source and destination TCP ports that define the

connection. It also contains information about the connection itself such as the current send

and receive sequence numbers, and the first-hop MAC address, etc. The complete set ofTCBs

exists in host memory, but a subset of these may be "owned" by the card at any given time.

This subset is the TCB cache. The INIC can own up to 256 TCBs at any given time.

TCBs are initialized by the host during TCP connection setup. Once the connection has

achieved a “steady-state” of operation, its associated TCB can then be turned over to the INIC,
54

ALA-006K ' Express Mail No. EV 406928085 US

putting us into fast-path mode. From this point on, the INIC owns the connection until either a

FIN arrives signaling that the connection is being closed, or until an exception occurs which

the INIC is not designed to handle (such as an out of order segment). When any of these

conditions occur, the INIC will then flush the TCB back to host memory, and issue a message

to the host telling it that it has relinquished control of the connection, thus putting the

connection back into slow-path mode. From this point on, the INIC simply hands incoming

segments that are destined for this TCB off to the host with all of the headers intact.

Note that when a connection is owned by the INIC, the host is not allowed to reference

the corresponding TCB in host memory as it will contain invalid information about the state of

the connection.

TCP HARDWARE ASSISTANCE.

When a frame is received by the INIC, it must verify it completely before it even

determines whether it belongs to one of its TCBs or not. This includes all header validation (is

it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum correct, etc). Once

this is done it must compare the source and destination IP address and the source and

destination TCP port with those in each of its TCBs to determine if it is associated with one of

its TCBs. This is an expensive process. To expedite this, we have added several features in

hardware to assist us. The header is fully parsed by hardware and its type is summarized in a

single status word. The checkSum is also verified automatically in hardware, and a hash key is

created out of the IP addresses and TCP ports to expedite TCB lookup. For full details on

these and other hardware optimizations, refer to the INIC Hardware Specification sections

(Heading 8).

With the aid of these and other hardware features,rmuch of the work associated with

TCP is done essentially for free. Since the card will automatically calculate the checksum for

TCP segments, we can pass this on to the host, even when the segment is for a TCB that the

INIC does not own.

TCP SUMMARY.

By moving TCP processing down to the INIC we have offloaded the host of a large

amount of work. The host no longer has to pull the data into its cache to calculate the TCP

55

ALA-006K Express Mail No. EV 406928085 US

checksum. It does not have to process the packet headers, and it does not have to generate

TCP ACKs. We have achieved most of the goals outlined above, but we are not done yet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relationto the hosts transport layer interface (Called

TDI or Transport Driver Interface in Windows NT). For full details on this interface, refer to

the Alacritech TCP (ATCP) driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing

the data in its final destination. Somehow the host has to tell the INIC where to put the data.

This is a problem in that the host cannot do this without knowing what the data actually is.

Fortunately, NT has provided a mechanism by which a transport driver can “indicate” a small

amount of data to a client above it while telling it that it has more data to come. The client,

having then received enough of the data to know what it is, is then responsible for allocating a

block ofmemory and passing the memory address or addresses back down to the transport

driver, which is in turn responsible for moving the data into the provided location.

We will make use of this feature by providingla small amount of any received data to

the host, with a notification that we have more data pending. When this small amount of data

is passed up to the client, and it returns with the address in which to put the remainder of the

data, our host transport driver will pass that address to the INIC which will DMA the

remainder of thedata into its final destination. A

Clearly there are circumstances in which this does not make sense. When a small

amount of data (500 bytes for example), with a push flag set indicating that the data must be '

delivered to the client immediately, it does not make sense to deliver some of the data directly

while waiting for the list of addresses to DMA the rest. Under these circumstances, it makes

more sense to deliver the 500 bytes directly to the host, and allow the host to copy it into its

final destination. While various ranges are feasible, it is currently preferred that anything less

than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while

anything more will be delivered as a small piece which may be128 bytes, while waiting until

receiving the destination memory address before moving the rest.

56

ALA-006K ' Express Mail No. EV 406928085 US

The trick then is knowing when the data should be delivered to the client or not. As

we’ve noted, a push flag indicates that the data should be delivered to the client immediately,

but this alone is not sufficient. Fortunately, in the case of NetBIOS transactions (such as

SMB), we are explicitly told the length of the session message in the NetBIOS header itself.

With this we can simply indicate a small amount of data to the host immediately upon

receiving the first segment. The client will then allocate enough memory for the entire

NetBIOS‘transaction, which we can then use to DMA the remainder of the data into as it

arrives. In the case of a large (56k for example) NetBIOS session message, all but the first

couple hundred bytes will be DMA’d to their final destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not

rely on a session level protocol to tell us the length of the transaction. Under these

circumstances we will buffer the data as it arrives until A) we have receive some

predetermined number of bytes such as 8k, or B) some predetermined period of time passes

between segments or C) we get a push flag. If after any of these conditions occur we will then

indicate some or all of the data to the host depending on the amount of data buffered. If the

data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be returned from the host so that we may then DMA the remainder of the data.

TRANSMIT.

The transmit case is much simpler. In this case the client (NetBIOS for example) issues

a TD] Send with a list of memory addresses which contain data that it wishes to send along

with the length. The host can then pass this list of addresses and length off to the INIC. The

INIC will then pull the data from its source location in host memory, as it needs it, until the

complete TDI request is satisfied.

. AFFECTS ON INTERRUPTS.

Note that when we receive a large SMB transaction, for example, that there are two

interactions between the INIC and the host. The first in which the INIC indicates a small

amount of the transaction to the host, and the second in which the host provides the memory

location(s) in which the INIC places the remainder of the data. This results in only two

interrupts from the INIC. The first when it indicates the small amount of data and the second

after it has finished filling in the host memory given to it. A drastic reduction from the 33/64k
57

ALA—006K ' Express Mail No. EV 406928085 US

SMB request that we estimate at the beginning of this section. On transmit, we actually only

receive a single interrupt when the send command that has been given to. the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having now established our interaction with Microsofi’s TDI interface, we have

achieved our goal of landing most of our data directly into its final destination in host memory.

We have also managed to transmit all data from its original location on host memory. And

finally, we have reduced our interrupts to 2 per 64k SMB read and l per 64l< SMB write. The
only thing that remains in our list of objectives is to design an efficient host (PCI) interface.

HOST (PCI) INTERFACE.

In this section we define the host interface. For a more detailed description, refer to the

“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

AVOID PCI READS.

One of our primary objectives in designing the host interface of the INIC was to

eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they

completely stall the reader until the transaction completes. As noted above, this could hold a

CPU up for several microseconds, a thousand times the time typically required to execute a

single instruction. PCI writes on the other hand, are usually buffered by the memory-

bus¢>PCI-bridge allowing the writer to continue on with other instructions. This technique is

known as “posting”.

MEMORY-BASED STATUS REGISTER.

The only PCI read that is required by most NICs is the read of the interrupt status

register. This register gives the host CPU information about what event has caused an

interrupt (if any). In the design of our INIC we have elected to place this necessary status

register into host memory. Thus, when an event occurs on the INIC, it writes the status

register to an agreed upon location in host memory. The corresponding driver on the host

reads this local register to determine the cause of the interrupt. The interrupt lines are held

high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadow registers are maintained on the INIC to ensure that events are not lost.
58

ALA-006K Express Mail No. EV 406928085 US

BUFFER ADDRESSES ARE PUSHED TO THE INIC.

Since it is imperative that our INIC operate as efficiently as possible, we must also

avoid PCI reads from the INIC. We do this by pushing our receive buffer addresses to the

INIC. As mentioned at the beginning of this section, most NICs work on a descriptor queue

algorithm in which the NIC reads a descriptor from main memory in order to determine where

to place the next frame. We will instead write receive buffer addresses to the INIC as receive

buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the-host to pass off a pages worth (4k) of buffers in a single write.

SUPPORT SMALL AND LARGE BUFFERS ON RECEIVE.

In order to reduce further the number of writes to the INIC, and to reduce the amount of

memory being used by the host, we support two different buffer sizes. A small buffer contains

roughly 200 bytes of data payload, as well as extra fields containing status about the received

data bringing the total size to 256 bytes. We can therefore pass 16 of these small buffers at a

time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path

data that does not fit in a small buffer. Note that when we have a large fast-path receive, a

small buffer will be used to indicate a small piece of the data, while the remainder of the data

will be DMA’d directly into memory. Large buffers are never passed to the host by

themselves, instead they are always accompanied by a small buffer which contains status about

the receive along with the large buffer address. By operating in the manner, the driver must

only maintain and process the small buffer queue. Large buffers are returned to the host by

virtue ofbeing attached to small buffers. Since large buffers are 2k in size they are passed to
the INIC 2 buffers at a time.

COMMAND AND RESPONSE BUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we

also need a manner by which we can instruct the INIC to send data. Plus, when the INIC

indicates a small amount of data in a large fast-path receive, we need a method of passing back

the address or addresses in which to put the remainder of the data. We accomplish both of

these with the use of a command buffer. Sadly, the command buffer is the only place in which

we must violate our rule ofonly pushing data across PCI. For the command buffer, we write
59

ALA-006K Express Mail No. EV 406928085 US

the address of command buffer to the INIC. The INIC then reads the contents of the command

bufferinto its memory so that it can execute the desired command. Since a command may

take a relatively long time to complete, it is unlikely that command buffers-will complete in

order. For this reason we also maintain a response buffer queue. Like the small and large

receive buffers, a page worth of response buffers is passed to the INIC at a time. Response

buffers are only 32 bytes, so we have to replenish the INIC’s supply of them relatively

infrequently. The response buffers only purpose is to indicate the completion of the

designated command buffer, and to pass status about the completion.

EXAMPLES.

In this section we will provide a couple of examples describing some of the differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment

will contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of

this first segment is provided to the host by filling in a small receive buffer, modifying the

interrupt status register on the host, and raising the appropriate interrupt line. Upon receiving

the interrupt, the host will read the ISR, clear it by writing back to the INIC’s Interrupt Clear

Register, and will then process its small receive buffer queue looking for receive buffers to be

processed. Upon finding the small buffer, it will indicate the small amount of data up to the

client to be processed by NetBIOS. It will also, if necessary, replenish the receive buffer pool

on the INIC by passing off a pages worth of small buffers. Meanwhile, the NetBIOS client

will allocate a memory pool large enough to hold the entire NetBIOS message, and will pass

this address or set of addresses down to the transport driver. The transport driver will allocate

an INIC command buffer, fill it in with the list of addresses, set the command type to tell the

INIC that this is where to put the receive data, and then pass the command off to the INIC by

writing to the command register. When the INIC receives the command buffer, it will DMA

the remainder of the NetBIOS data, as it is received, into the memory address or addresses

designated by the host. Once the entire NetBIOS transaction is complete, the INIC will

complete the command by writing to the response buffer with the appropriate status and
command buffer identifier.

60

ALA-006K Express-Mail No. EV 406928085 US

In this example, we have two interrupts, and all but a couple hundred bytes are DMA’d

directly to their final destination. On PCI we have two interrupt status register writes, two

interrupt clear register writes, a command register write, a command read, and a response

‘ buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register

reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get

moved anywhere from 4 to 8 times across the system memory bus.

SLOW-PATH RECEIVE.

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s,

it simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer

(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the hoSt.

Otherwise it places the data in a large buffer, writes the address of the large buffer into a small

buffer, and again notifies the host. The host, having received the interrupt and found the

completed small buffer, checks to see if the data is contained in the small buffer, and if not,

locates the large buffer. Having found the data, the host will then pass the frame upstream to

be processed by the standard protocol stack. It must also replenish the INIC’s small and large

receive buffer pool if necessary. I

With the INIC, this will result in one interrupt, one interrupt status register write and

one interrupt clear register write as well as a possible small and or large receive buffer register

write. The data will go through the normal path although if it is TCP data then the host will

not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assume that the client has a small amount of data to send. It will

issue the TDI Send to} the transport driver which will allocate a command buffer, fill it in with

the address of the 400 byte send, and set the command to indicate that it is a transmit. It will

then pass the command off to the INIC by writing to the command register. The INIC will

then DMA the 400 bytes into its own memory, prepare a frame with the appropriate
61

ALA-006K ' Express Mail No. EV 406928085 US

checksums and headers, and send the frame out on the wire. Afier it has received the

acknowledgement it will then notify the host of the completion by writing to a response buffer.

With the INIC, this will result in one interrupt, one interrupt status register write, one

interrupt clear register write, a command buffer register write a command buffer read, and a

response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and ‘a descriptor read and write. The data would get moved

across the system bus a minimum of 4 times. The resulting TCP ACK of the data, however,

would add yet another interrupt, another interrupt status register read, interrupt clear register

write, a descriptor read and write, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECH INIC.

This section describes the host interface strategy for the Alacritech Intelligent Network

Interface Card (INIC). The goal of the Alacritech INIC is to not only process network data

through TCP, but also to provide zero-copy support for the SMP upper-layer protocol. It

achieves this by supporting two paths for sending and receiving data, the fast-path and the

slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,

while slow-path traffic corresponds to network data for which the NIC does not have a

connection. The fast-path flow works by passing a header to the host and subsequently holding

further data for that connection on the card until the host responds via an INIC command with

' a set ofbuffers into which to place the accumulated data. In the slow-path data flow, the INIC

will be operating as a “dumb” NIC, so that these packets are simply dumped into frame buffers

on the host as they arrive. To do either path requires a pool of smaller buffers to be used for

headers and a pool of data buffers for frames/data that are too large for the header buffer, with

both pools being managed by the INIC. This section discusses how these two pools of data are

managed as well as how buffers are associated with a given context.

RECEIVE INTERFACE.

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth

are the driving forces behind the host interface that is described herein. As mentioned above,

the fast-path flow puts a header into a header buffer that is then forwarded to the host. The host

uses the header to determine what further data is following, allocates the necessary host
62

ALA-006K Express Mail No. EV 406928085 US

buffers, and these are passed back to the INIC via a command to the INIC. The INIC then fills

these buffers from data it was accumulating on the card and notifies the host by sending a

response to the command. Alternatively, the fast—path may receive a header and data that is a

complete request, but that is also too large for a header buffer. This results in a header and data

buffer being passed to the host. This latter flow is identical to the slow-path flow, which also

puts all the data into the header buffer or, if the header is too small, uses a large (2K) host

buffer for all the data. This means that on the unsolicited receive path, the host will only see

either a header buffer or a header and at most, one data buffer. Note that data is never split

between a header and a data buffer.

Fig. 25 illustrates both situations. Since we want to fill in the header buffer with a

single DMA, the header must be the last piece of data to be written to thehost for any received

transaction.

RECEIVE INTERFACE DETAILS.

HEADER BUFFERS. _

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte

boundaries. There will be a field in the header buffer indicating it has valid data. This field

will initially be reset by the host before passing the buffer descriptor to the INIC. set of

header buffers are passed from the host to the IN[C by the host writing to the “Header Buffer

Address Register” on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous

header buffers.

Bits 7-0 Number ofheader buffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and pass all 16 buffers to

the INIC with one register write. The INIC will maintain a queue of these header descriptors

in the SmallHType queue in it’s own local memory, adding to the end of the queue every time

the host writes to the Header Buffer Address Register. Note that the single entry is added to

the queue; the eventual dequeuer will use the count afier extracting that entry.

The header buffers, will be used and returned to the host in the same order that they

were given to the INIC. The valid field will be set by the INIC before returning the buffer to

the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a header buffer for the host to process. When servicing this

63

ALA-006K Express Mail No. EV 406928085 US _

interrupt, the host will look at its queue ofheader buffers, reading the valid field to determine

how many header buffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory are aligned to page boundaries, assumed here to be

2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass receive

data buffers to the INIC, the host must write to two registers on‘the INIC. The first register to

be written is the “Data Buffer Handle Register.” The buffer handle is not significant to the

INIC, but will be copied back to the host to return the buffer to the host. The second register

written is the Data Buffer Address Register. This is the physical address of the data buffer.

When both registers have been written, the INIC will add the contents of these two registers to

FreeType queue of data buffer descriptors. Note that the INIC host driver sets the handle

register first, then the address register. There needs to be some mechanism put in place to

ensure the reading of these registers does not get out of sync with writing them. Effectively the

INIC can read the address register first and save its contents, then read the handle register. It -

can then lock the register pair in some manner such that another write to the handle register is

not permitted until the current contents have been saved. Both addresses extracted from the

registers are to be written to the FreeType queue. The INIC will extract 2 entries each time

when dequeuing. _ ’

Data buffers will be allocated and used by the INIC as needed. For each data buffer

used by a slow-path transaction, the data buffer handle will be copied into a header buffer.
Then the header buffer will be returned to the host.

TRANSMIT INTERFACE.

TRANSMIT INTERFACE OVERVIEW.

The transmit interface shown in Fig. 26, like the receive interface, has been designed to

minimize the amount of PCI bandwidth and latencies. In order to transmit data, the host will

transfer a command buffer to the INIC. This command buffer will include a command buffer

handle, a command field, possibly a TCP context identification, and a list of physical data

pointers. The command buffer handle is defined to be the first word of the command buffer

and is used by the host to identify the command. This word will be passed back to the host in

a response buffer, since commands may complete out of order, and the host will need to know

64

ALA-006K Express Mail No. EV 406928085 US

which command is complete. Commands will be used for many reasons, but primarily to cause

the INIC to transmit data, or to pass a set of buffers to the INIC for input data on the fast-path

as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the

same order as they were given to it by the host. This enables the host to know which response

buffer(s) to next look at when the INIC signals a command completion.

TRANSMIT INTERFACE DETAILS.

COMMAND BUFFERS.

Command buffers in host memory are a multiple of 32 bytes, up to a maximum of 1K

bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC by

writing to one of five “Command Buffer Address Registers.” These registers are defined as

follows:

Bits 31-5 Physical address in host memory of the command buffer.

Bits 4-0 Length of command buffer in bytes / 32 (i.e. number of multiples of 32

bytes).

This-is the physical address of the command buffer. The register to which the command

is written predetermines the XMT interface number, or if the command is for the RCV CPU;

hence there will be 5 of them, 0 — 3 for XMT and 4 for RCV. When one of these registers has

been written, the INIC will add the contents of the register to it’s own internal queue of

command buffer descriptors. The first word of all command buffers is defined to be the

command buffer handle. It is the job of the utility CPU to extract a command from its local

queue, DMA the command into a small INIC buffer (from the EreeSType queue), and queue

that buffer into the Xmit#Type queue, where # is 0 — 3 depending on the interface, or the

appropriate RCV queue. The receiving CPU will service the queues to perform the commands.

When that CPU has completed a command, it extracts the command buffer handle and passes

it back to the host via a response buffer.

RESPONSE BUFFERS.

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.

They are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. This field will initially be reset by the host before
’ 65

ALA—006K ' _ Express Mail No. EV 406928085 US

passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to

the INIC by the host writing to the “Response Buffer Address Register” on the INIC. This

register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous

response buffers.

Bits 7-0 Number of response buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 128 buffers

to the INIC with one register write. The INIC will maintain a queue of these header

descriptors in it’s ResponseType queue, adding to the end of the queue every time the host

writes to the “Response Buffer Address Register”. The INIC writes the extracted contents

including the count, to the queue in exactly the same manner as for the header buffers.

The response buffers can be used and returned to the host in the same order that they I
were given to the INIC. The valid field will be set by the INIC before returning the buffer to

the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a response buffer for the host to process. When servicing

this interrupt, the host will look at its queue of response buffers, reading the valid field to

determine how many response buffers are to be processed.

INTERRUPT STATUS REGISTER / INTERRUPT MASK REGISTER.

Fig. 27 shows the general format of this register. The setting of any bits in‘the ISR will

cause an interrupt, provided the corresponding bit in the Interrupt Mask Register is set. The

default setting for the IMR is 0. ~

The INIC is configured so that the host should never need to directly read the ISR from

the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host

memory into which the ISR is dumped. The address and size of that area ca be passed to the

INIC via a command on the XMT interface. That command will also specify the setting for the

IMR. Until the INIC receives this command, it will not DMA the ISR to host memory, and no

events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC

in this case.

For the host to never have to actually read the register from the INIC itself, it is

necessary for the INIC to update this host copy of the register whenever anything in it changes.

The host will Ack (or deassert) events in the register by writing the register with 0’s in
66

ALA-006K Express Mail No. EV 406928085 US

appropriate bit fields. So that the host does not miss events, the following scheme has been

developed:

The INIC keeps a local copy of the register whenever it DMAs it to the host i.e. afier

some event(s). Call this COPYA Then the INIC starts accumulating any new events not

reflected in the host copy in a separate word. Call this NEWA. As the host clears bits by

writing the register back with those bits set to zero, the INIC clears these bits in COPYA (or

the host write-back goes directly to COPYA). If there are new events in NEWA, it ORs them

with COPYA, and DMAs this new ISR to the host. This new ISR then replaces COPYA,

NEWA is cleared and the cycle then repeats.

REGISTER ADDRESS.

For the sake of simplicity, in this example of Fig. 28 the registers are at 4-byte
increments from whatever the base address is.

ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.‘

This section outlines the design specification for the Alacritech TCP (ATCP) transport

driver. The ATCP driver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.

This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the

driver.

2. At the top of the protocol stack we introduce an NT filter driver used to

intercept TDI requests destined for the Microsoft TCP driver.

3. At the bottom of the protocol stack we include an NDIS protocol-driver

interface which allows us to communicate with the INIC miniport NDIS driver beneath the

ATCP driver.

This section covers each of these topics, as well as issues common to the entire ATCP

driver.

CODING STYLE.

In order to ensure that our ATCP driver is written in a consistent manner, we have

adopted a set of coding guidelines. These guidelines are introduced with the philosophy that

we should write code in a Microsoft style since we are introducing an NT-based product. The

67

ALA-006K ' ' Express Mail No. EV 406928085 US

guidelines below apply to all code that we introduce into our driver. Since a very large portion

of our ATCP driver will be based on FreeBSD, and since we are somewhat time-constrained

on our driver development, the ported FreeB SD code will be exempt from these guidelines.

1. Global symbols — All function names and global variables in the ATCP driver

should begin with the “ATK” prefix (ATKSend() for instance).

2. Variable names — Microsofi seems to use capital letters to separate multi-word

variable names instead of underscores (VariableName instead of variable_name). We should

adhere to this style.

3. Structure pointers — Microsofi typedefs all of their structures. The structure

types are always capitals and they typedef a pointer to the structure as “P”<name> as follows:

typedef struct _FOO {

INT bar;

} FOO, *PFOO;

We will adhere to this style.

4. Function calls — Microsoft separates function call arguments on separate lines:

X = foobar(

argumentl ,

argumentZ,

);

We will adhere to this style.

5. Cements — While Microsofi seems to alternatively use // and /* */ comment

notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that

describe the function, its arguments, and its return value. We will also include these

comments, but will move them from within the fiJnction itself to just prior to the function for

better readability.

7. Function arguments — Microsofi includes the keywords IN and OUT when

defining function arguments. These keywords denote whether the function argument is used

as an input parameter, or alternatively as a placeholder for an output parameter. We will

include these keywords.

ALA-006K Express Mail No. EV 406928085 US

8. . Function prototypes — We will include function prototypes in the most logical

header file corresponding to the .c file. For example, the prototype for function foo() found in

foo.c will be placed in foo.h.

9. Indentation — Microsofi code fairly consistently uses a tabstop of 4. We will
do likewise.

10. Header file #ifiidef —' each header file should contain a #ifndef/#define/#endif

which is used to prevent recursive header file includes. For example, foo.h would include:

#ifiidef _FOO_H_

#define _FOO_H_

<foo.h contents..>

#endif /* _FOO_H_ */

Note the _NAME_H'_ format.

ALA-006K Express Mail No. EV 406928085 US

11. Each file must contain a comment at the beginning which includes the ld as

follows:

/*

* Id

*/

CVS (RCS) will expand this keyword to denote RCS revision, timestamps, author, etc.

This section describes the process by which we will make the ATCP driver SMP safe.

The basic rule for SMP kernel code is that any access to a memory variable must be protected

by a lock that prevents a competing access by code running on another processor. Spinlocks

are the normal locking method for code paths which do not take a long time to execute (and

which do not sleep.)

In general each instance of a structure will include a spinlock, which must be acquired

before members of that structure are accessed, and held while a function is accessing that

instance of the structure. Structures which are logically grouped together may be protected by

a single spinlock: for example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and ‘socket’ structure

which together constitute the administrative information for a TCP connection will probably ‘

be collectively managed by a single spinlock in the ‘socket’ structure.

In addition, every global data structure such as a list or hash table must also have a

protecting spinlock which must be held while the structure is being accessed or modified. The

NT DDK in fact provides a number of convenient primitives for SMP-safe list manipulation,
and it is recommended that these be used for any new lists. Existing list manipulations in the

FreeBSD code can probably be lefi as-is to minimize code disturbance, except of course that

the necessary spinlock acquisition and release must be added around them.

Spinlocksshould not be held for long periods of time, and most especially, must not be

held during a sleep, since this will lead to deadlocks. There is a significant deficiency in the

NT kernel support for SMP systems: it does not provide an operation which allows a spinlock '

to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX

environment where much of the processing occurs in the context of the user process which

initiated the operation. (The spinlock would have to be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)

70

ALA-006K . Express Mail No. EV 406928085 US

The NT approach is more asynchronous, however: IRPs are simply marked as

‘PENDING’ when an operation cannot be completed immediately. The calling thread does

NOT sleep at that point: it returns, and may go on with other processing. Pending IRPs are

later completed, not by waking up the thread which initiated them, but by an

“IoCompleteRequest” call which typically runs at DISPATCH level in an arbitrary context.

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver,

hoping the above issue will not arise.

DATA FLOW OVERVIEW.

The ATCP driver supports two paths for sending and receiving data, the fast-path and

the slow-path. The fast-path data flow corresponds to connections that are maintained on the

INIC, while slow-path traffic corresponds to network data for which the INIC does not have a

connection. In order to set some groundwork for the rest of this section, these two data paths

are summarized here.

FAST-PATH INPUT DATA FLOW.

There are 2 different cases to consider:

1. NETBIOS traffic (identifiable by port number.)

2. Everything else.

NETBIOS INPUT.

As soon as the INIC has received a segment containing a NETBIOS header, it will

forward it up to the TCP driver, along with the NETBIOS length from the header. (In

principle the host could get this from the header itself, but since the INIC has already done the

decode, it seem reasonable to just pass it.)

From the TDIspec, the amount of data in the buffer actually sent must be at least 128

bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed .

directly by the TDI client without any further MDL exchange. Experiments tracing the TDI

data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the amount of

payload data in a single Ethernet frame. Thus the initial system specifies thatthe INIC will

indicate anything up to a complete segment to the ATCP driver. [See note (1)].

71

ALA-006K. 1 Express Mail No. EV 406928085 US

Once the INIC has passed up an indication with an NETBIOS length greater than the

amount of data in the packet it passed, it will continue to accumulate further incoming data in

DRAM on the INIC. Overflow of INIC DRAM buffers will be avoided by using a receive.

window on the INIC. at this point, which can be 8K.

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection,lpassing the actual size of the data in the packet

from the INIC as "bytes indicated" and the NETBIOS length as "bytes available." [See note

(2)].

In the "large data input" case, where "bytes available" exceeds the packet length, the

TDI client will then provide an MDL, associated with an IRP, which must be completed when

this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of the

receive handler, or as an explicit TDI_RECEIVE request.)

The ATCP driver will build a “receive request” from the MDL information, and pass

this to the INIC. This request will contain: I

l) The TCP context identifier; 2) Size and offset information; 3) A list ofphysical

addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driVer to

identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must copy any remaining data (which was not taken by the

receive handler) from the segment indicated by the INIC to the start of the MDL, and must

adjust the size & offset information in the request passed to the INIC to account for this.

The INIC will fill the given page(s) with incoming data up to the requested amount,

and respond to the ATCP driver when this is done [See note (3)]. If the MDL is large, the INIC

may open up its advertised receive window for improved throughput while filling the MDL:

On receiving the response fiom the INIC, the ATCP driver will complete the IRP associated

with this MDL, to tell the TDI client that the data is available. At this point the cycle of events

‘ is complete, and the ATCP driver is now waiting for the next header indication.

OTHER TCP INPUT.

. In the general case we do not have a higher-level protocol header to enable us to

predict that more data is coming. So on non-NETBIOS connections, the INIC will just

accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, a

72

ALA-006K Express Mail No. EV 406928085 US

maximum advertised window size, which may be 16K, will be used to prevent overflow of

INIC DRAM buffers.

. When the prescribed amount has been accumulated, or when a PSH flag is seen, the

INIC will indicate a small packet which may be 128 bytes of the data to the ATCP driver,

along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes available."

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated", the TDI client

will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to be

filled, as before. The INIC will reply to the ATCP driver, which in turn will complete the IRP

to the TDI client.

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K

and delay indicating to the ATCP driver until we have done so, a question arises regarding

further segments coming in, since INIC DRAM is a scarce resource. We do not want to ACK

with a zero-size window advertisement: this would cause the transmitting end to go into persist

state, which is bad for throughput. If the transmitting end is also our IN IC, this results in

having to implement the persist timer on the INIC, which we do not wish to do. Instead for

large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the

MDL, and also, to avoid stopping the transmitting end, we will use a receive window of twice

the amount we will buffer before calling the host. Since the host comes back with the MDL

quite quickly (measured at < 100 microseconds), we do not expect to experience significant

. overruns.

INIC RECEIVE WINDOW UPDATES. . ,

If the INIC “owns” an MDL provided by the TDI client (sent by ATCP as a receive

request), it will treat this as a “promise” by the TDI client to accept the data placed in it, and

may therefore ACK incoming data as it is filling the pages.

However, for small requests, there will be no MDL returned by the TDI client: it

absorbs all of the data directly in the receive callback function. We need to update the INIC’s

view of data which has been accepted, so that it can update its receive window. In order to be

73

ALA-006K V Express Mail No. EV 406928085 US

able to do this, the ATCP driver will accumulate a count of data which has been accepted by

the TDI client receive callback function for a connection.

From the INIC’s point of view, though, segments sent up to the ATCP driver are just

“thrown over the wall”; there is no explicit reply path. We will therefore “piggyback” the

update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data for that

connection, it will place this count in a field in the send request (and then clear the counter.)

Any receive request (passing a receive MDL to the INIC) may also be used to transport

window update info in the same way. ‘

Note: we will probably also need to design a message path whereby the ATCP driver

can explicitly send an update of this “bytes consumed” information (either when it exceeds a

preset threshold or if there are no requests going out to the INIC for more than a given time

interval), to allow for possible scenarios in which the data stream is entirely one-way.

NOTES»

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver to its client's callback

in this case is always 1460. The NETBIOS-aware TDI client presumably calculates the size of

the MDL it will return from the NETBIOS header. So strictly speaking we do not need the

NETBIOS header length at this point: just an indication that this is a header for a "large" size.

However, we *do* need an actual "bytes available" value for the non-NETBIOS case, so we

may as well pass it.

3) We observe that the PSH flag is set in the segment completing each NETBIOS transfer.

The TNIC can use this ,to determine when the current transfer is complete and the MDL should

be returned. It can, at least in a debug mode, sanity check the amount of received data against

what is expected, though.

FAST-PATH OUTPUT DATA FLOW.

The fast-path output data flow is similar to the input data-flow, but simpler. In this

case the TD] client will provide a MDL to the ATCP driver along with an IRP to be completed

when the data is sent. The ATCP driver will. then give a request (corresponding to the MDL)

to the INIC. This request will contain:

ALA-006K Express Mail No. EV 406928085 US

1) The TCP context identifier; 2) Size and offset information; 3) A list of physical

addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to

identify the requeston completion; 5) “Piggybacked” window update information (as

discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the

corresponding network frames onto the network. When all of the data is sent, the INIC will

notify the host of the completion, and the ATCP driver will complete the IRP‘.

Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously Outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, we will have

to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we will

port the FreeBSD protocol stack. In this mode, the INIC will be operating as a “dumb NIC”;

the packets which pass over the NDIS interface will just contain MAC-layer frames.

The MBUFs in the incoming direction will in fact be managing NDIS-allocated

packets. In the outgoing direction, we need protocol-allocated MBUFs in which to assemble

the data and headers. The MFREE macro must be cognizant of the various types of MBUFs,

and “do the right thing” for each type.

We will retain a (modified) socket structure for each connection, containing the socket

buffer'fields expected by the FreeBSD code. The TCP code that operates on socket buffers

(adding/removing MBUFs to & from queues, indicating acknowledged & received data etc)

will remain essentially unchanged from the FreeBSD base (though most of the socket

functions & macros used to do this will need to be modified; these are the functions in

kern/uipc_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and

out of socket buffers, must be entirely re—implemented to work in TDI terms. Thus, instead of

sosend(), there will be a function that copies data from the MDL provided in a TDI_SEND call

into socket buffer MBUFs. Instead of soreceive(), there will be a handler that calls the TDI i

client receive callback function, and also copies data from socket buffer MBUFs into any

MDL provided by the TDI client (either explicitly with the callback response or as a separate

TDI_RECEIVE call.)

75

ALA-006K, ’ Express Mail No. EV 406928085 US

We must note that there is a semantic difference between TDI_SEND and a write() on

a BSD socket. The latter may complete back to its caller as soon as the data has been copied

into the socket buffer. The completion of a TDI_SEND, however, implies that the data has

actually been sent on the connection. Thus we will need to keep the TDI_SEND IRPs (and

associated MDLs) in a queue on the socket until the TCP code indicates that the data from

them has been ACK’d.

DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler

function'registered. This has not been observed, but we can probably just ASSERT for a a

missing handler for the moment. If it should happen, however, we must assume that the TDI

client will be doing TDI_RECEIVE calls on the connection. If we can’t make a callup at the

time that the indication from the INIC appears, we can queue the data and handle it when a

TDI_RECEIVE does appear. ‘

2. .NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP

corresponding to an MDL which has been “handed” to the INIC by a send or receive request.

We can handle this by being able to force the context back off the TNIC, since IRPs will only

get cancelled when the connection is being aborted.

CONTEXT PASSING BETWEEN ATCP AND INIC.

FROM ATCP TO INIC.

There is a synchronization problem that must be addressed here. The ATCP driver will

make a decision on a given connection that this connection should now be pasSed to the INIC.

It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is

not difficult; it simply pends and queues any new TDI_SEND requests and waits for any

unacknowledged slow path output data to be acknowledged before initiating the context pass

operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass

in a single command handshake, there is a window during which the ATCP driver has send the

context command, but the INIC has not yet seen this (or has not yet completed setting up its

context.) During this time, slow—path input data frames could arrive and be fed into the slow-
76

ALA-006K 1 Express Mail No. EV 406928085 US

path ATCP processing code. Should that happen, the context information which the ATCP .

driver passed to the INIC is no longer correct. We can simply abort the outward pass of the

context in this event, but it seems better to have a reliable handshake.

Therefore, the command to pass context from ATCP driver to INIC will be split into

two halves, and there will be a two—exchange handshake.

The initial command from ATCP to INIC expresses an “intention” to hand out the

context. It will include the source and destination IP addresses and ports, which will allow the

INIC to establish a “provisional” context. Once it has this “provisional”icontext in place, the

INIC will not send any more slow-path input frames for that src/dest IP/port combination (it

will queue them, if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows

that the INIC will send no more slow-path input. The ATCP driver then waits for any

remaining unconsumed slow-path input data for this connection to be consumed by the client.

(Generally speaking there will be none, since the ATCP driver will not initiate a context pass

while there is unconsumed slow-path input data; the handshake is simply to close the

crossover window.)

Once any such data has been consumed, we know things are in a quiescent state. The

ATCP driver can then send the second, “commit” command to hand out the context, with

cbnfidence that the TCB values it is handing out (sequence numbers etc) are reliable. ~

Note 1: it is conceivable that there might be situations in which the ATCP driver

decides, after having sent the original “intention” command, that the context is not to be

passed after all. (Eg. the local client issues a close.) So we must allow for the possibility that

the second command may be a “abort”, which should cause the INIC to deallocate and Iclear up

its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may

be in process ofbeing handed out at a time: in other words, it will never issue another initial

“intention” command until it has completed the second half of the handshake for the first one.

FROM INIC TO ATCP.

There are two possible cases for this: a context transfer may be initiated either by the

ATCP driver or by the INIC. However the machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
77

ALA—006K r Express Mail No. EV 406928085 US

message to the INIC specifying the context number to be flushed. once the INIC receives

this, it will proceed with the same steps as for the case where the flush is initiated by the INIC

itself:

1) The INIC will send an error response to any current outstanding receive request it is

working on (corresponding to an MDL into which data is being placed.) Before sending the

response, it updates the receive command “length” field to reflect the amount of data which

has actually been placed in the MDL buffers at the time of the flush. f

2) Likewise it will send an error response for any current send request, again reporting

the amount of data actually sent from the request.

3) The INIC will DMA the TCB for the context back to the host. (Note: part of the

information provided with a context must be the address of the TCB in the host.)

4) The INIC will send a “flush” indication to the host (very preferably via the regular

input path as a special type of frame) identifying the context which is being flushed. Sending

this indication via the regular input path ensures that it will arrive before any following slow-

path frames.

At this point, the INIC is no longer doing fast-path processing, and any further

incoming frames for the connection will simply be sent to the host as raw frames for the slow

input path. The ATCP driver may not be able to complete the cleanup operations needed to

resume normal slow path processing immediately on receipt of the “flush frame”, since there

may be outstanding send and receive requests to which it has not yet received a response. If

this is the case, the ATCP driver must set a “pend incoming TCP frames” flag in its per-

connection context. The effect of this is to change the behavior of tcp_input(). This runs as a

function call in the context of ip_input(), and normally returns only when incoming frames

have been processed as far as possible (queued on the socket receive buffer or out-of-sequence

reassembly queue.) However, if there is a flush pending and we have not yet completed

resynchronization, we cannot do TCP processing and must instead queue input frames for TCP

on a “holding queue” for the connection, to be picked up later when context flush is complete

and normal slow path processing resumes. (This is why we want to send the “flush” indication

via the normal input path: so that we can ensure it is seen before any following frames of slow-

path input.)

Next we need to wait for any outstanding “send” requests to be errored off:

78

ALA—006K Express Mail No. EV 406928085 US

l) The INIC maintains its context for the connection in a “zombie” state..As “send”

requests for this connection come out of the TNIC queue, it sends error responses for them

back to the ATCP driver. (It is apparently difficult for the INIC to identify all command

requests for a given context; simpler for it to just continue processing them in order, detecting

ones that are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the number of outstanding requests it has sent to

the INIC. As error responses for these are received, it decrements this count, and when it

reaches zero, the ATCP driver sends a “flush complete” message to the INIC.

3) When the INIC receives the “flush complete” message, it dismantles its “zombie”

context. From the INIC perspective, the flush is now completed.

4) When the ATCP driver has received error responses for all outstanding requests, it

has all the information needed to complete its cleanup. This involves completing any IRPs

corresponding to requests which have entirely completed and adjusting fields in partially-

completed requests so that send and receive of slow path data will resume at the right point in

the byte streams.

45) Once all this cleanup is complete, the ATCP driver will loop pulling any “pended”

TCP input frames off the “pending queue” mentioned above and feeding them into the normal

TCP input processing. Once all input frames on this queue have been cleared off, the “pend

incoming TCP frames” flag can be cleared for the connection, and we are back to normal

slow—path processing.

FREEBSD PORTING SPECIFICATION.

The largest portion of the ATCP driver is either derived, or directly taken from the

FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this

code, the FreeBSD code itself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/1P (current version referred to as Net/3) is a general purpose TCP/1P

driver. It contains code to handle a variety of interface types and many different kinds of

protocols. To meet this requirement the code is often written in a sometimes confusing, over-

complex manner. General-purpose structures are overlaid with other interface-specific

structures so that different interface types can coexist using the same general-purpose code.
79

ALA-006K . . Express Mail No. EV 406928085 US

For our purposes much of this complexity is unnecessary since we are only supporting a single

interface type and a few specific protocols. It is therefore tempting to modify the code and

data structures in an effort to make it more readable, and perhaps a bit more efficient. There

are, however, some problems with doing this. First, the more we modify the original

FreeBSD, the more changes we will have to make. This is especially true with regard to data

structures. If we collapse two data structures into one we might improve the cleanliness of the

code a bit, but we will then have to modify every reference to that data structure in the entire

protocol stack. Another problem with attempting to “clean up” the code is that we might later

discover that we need something that we had previously thrown away. Finally, while we

might gain a small performance advantage in cleaning up the FreeBSD code, the FreeBSD

TCP code will mostly only run in the slow—path connections, which are not our primary focus.

Our priority is to get the slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the

data structures and code at close to the original FreeB SD implementation as possible. The

- code will be modified for the following reasons:

1) As required for NT interaction — Obviously we can’t expect tosimply “drop-in” the

FreeBSD code as is. The interface of this code to the NT system will require some significant

code modifications. This will mostly occur at the topmost and bottommost portions of the

protocol stack, as well as the “ioctl” sections of the code. Modifications for SMP issues are

also needed.

2) Unnecessary code can be removed — While we will keep the code as close to the

original FreeBSD as possible, we will nonetheless remove code that will never be used (UDP

is a good example of this).

UNIX <—) NT CONVERSION.

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These

include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc. These

will not be itemized in detail since the conversion to the corresponding NT calls is a fairly

trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

ALA-006K Express Mail No. EV 406928085 US

NETWORK BUFFERS.

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers

are mapped using a combination of packet descriptors and buffer descriptors (the buffer

descriptors are really MDLs). There are a couple of problems with the Microsoft method.

First it does not provide the necessary fields which allow us to easily strip offprotocol

headers. Second, converting all of the FreeBSD protocol code to speak in terms ofbuffer

descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our

own mbuf structures and remap the NT packets as shown in Fig. 29.

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf

including the data pointer, which points to the current location of the data, data length fields

and flags. In addition each mbuf will point to the packet descriptor which is associated with

the data being mapped. Once an NT packet is mapped, our transport driver should never have

to refer to the packet or buffer descriptors for any information except when we are finished and

are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a

packet header should never be split across multiple buffers. Thus, we should never require the

equivalent of the “m_pullup” routine included in Unix. Also note that there are circumstances

in which we will be accepting data that will also be accepted by the Microsoft TCP/IP. One

such example of this is ARP fi'ames. We will need to build our own ARP cache by looking at

ARP replies as they come off the network. Under these circumstances, it is absolutely

imperative that we do not modify the data, or the packet and buffer descriptors. We will

discuss this further in the following sections.

We will allocate a pool ofmbuf headers at ATCP initialization time. It is important to

remember that unlike other NICs, we can not simply drop data ifwe run out of the system

resources required to manage/map the data. The reason for this is that we will be receiving

data from the card that has already been acknowledged by TCP. Because of this it is essential

that we never run out of mbuf headers. To solve this problem we will statically allocate mbuf

headers for the maximum number of buffers that we will ever allow to be outstanding. By

doing so, the card will run out of buffers in which to put the data before we will run out of

mbufs, and as aresult, the card will be forced to drop data at the link layer instead of us

dropping it at the transport layer. DhXXX: as we’ve discussed, I don’t think this is really true

anymore. The INIC won’t ACK data until either it’s gotten a window update from ATCP to
8 1

' ALA-006K ' Express Mail No. EV 406928085 US

tell it the data’s been accepted, or it’s got an MDL. Thus it seems workable, though

undesirable, if we can’t accept a frame from the INIC & return an error to it saying it was not
taken.

We will also require a poolof actual mbufs (not just headers). These mbufs are

required in order to build transmit protocol headers for the slow-path data path, as well as

other miscellaneous purposes such as for building ARP requests. We will allocate a pool of

these at initialization time and we will add to this pool dynamically as needed. Unlike the

mbu'f headers described above, which will be used to map acknowledged TCP data coming

from the card, the full mbufs will contain data that can be dropped if we can not get an mbuf.

THE CODE.

In this section we describe each section of the FreeBSD TCP/IP port. These sections

include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACE INITIALIZATION.

STRUCTURES.

There are a variety of structures, which represent a single interface in FreeBSD. These

structures include: ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in,-and sockaddr_dl.

Fig. 30 shows the relationship between all of these structures: 7

_ In the example of Fig. 30 we show a single interface with a MAC address of

OO:60:97:DB:9B:A6 configured with an IP address of 192.100.1.2. As illustrated above, the

in_ifaddris actually an ifaddr structure with some extra fields tacked on to the end. Thus the

ifaddr structure is used to represent both a MAC address and an IP address. Similarly the

sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address type.

An interface can be configured to multiple IP addresses by simply chaining in_ifaddr

structures after the in_ifaddr structure shown in Fig. 30.

As mentioned in the Porting Philosophy section, many of the above structures could

likely be collapsed into fewer structures. In order to avoid making unnecessary modifications

to FreeBSD, for the time being we will leave these structures mostly as is. We will however

eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.

ALA-006K ~ Express Mail No. EV 406928085 US

We also show above a structure called iface. This is a structure that we define. It

contains the arpcom structure, which in turn contains the ifnet structure. It also contains fields

that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle used to call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeB SD initializes the above structures in two phases. First when a network interface

is found, the ifiiet, arpcom, and first ifaddr structures are initialized first by the network layer

driver, and then via a call to the if_attach routine. The subsequent in_ifaddr structure(s) are

initialized when a user dynamically configures the interface. This occurs in the in_ioctl and

' the in_ifinit routines. Since NT allows dynamic configuration of a network interface we will

continue to perform the interface initialization in two phases, but we will consolidate these two

phases as described below:

IFTNIT.

The IfInit routine will be called from the ATKProtocolBindAdapter function. The

Iflnit function will initialize the Iface structure and associated arpcom and ifnet structures. It

will then allocate and initialize an ifaddr structure in which to contain link-level information

about the interface, and a sockaddr_dl structure to contain the interface name and MAC

address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs array (using

the if_index field of the ifnet structure) contained in the extended device object. Iflnit will

then call IfConfig for each IP address that it finds in the registry entry for the interface.

IFCONFIG.

IfConfig'is called to configure an IP address for a given interface. It is passed a pointer

to the ifnet structure for that interface along with all the information required to configure an

IP address for that interface (such as IP address, netmask and broadcast info, etc). IfConfig

will allocate an in_ifaddr structure to be used to configure the interface. It will chain it to the

total chain of in_ifaddr structures contained in the extended device object, and will then

configure the structure with the information given to it. After that it will add a static route for

the newly configured network and then broadcast a gratuitous ARP request to notify others of

our Mac/1P address and to detect duplicate IP addresses on the net.

83

ALA-006K ‘ Express Mail No. EV 406928085 US

We will port the FreeBSD ARP code to NT mostly as—is. For some reason, the

FreeBSD ARP code is located in a file called if_ether.c. While the functionality of this file

will remain the same, we will rename it to a more logical arp.c. The main structures used by

ARP are the llinfo_arp structure and the 'rtentry structure (actually part of route). These

structures will not require major modifications. The functions that will require modification
are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARP frame can either

be an ARP request Or an ARP reply. ARP requests are broadcast, so we will see every ARP

request on the network, while ARP replies are directed so we should only see ARP replies that

are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP

would reply to this ARP request with an ARP reply containing our MAC address. Since ARP

requests will also be passed up to the Microsofi TCP/IP driver, we need not reply. Note

however, that FreeB SD also creates or updates an ARP cache entry with the information

derived from the ARP request. It does this in anticipation of the fact that any host that wishes

to know our MAC address is likely to wish to talk to us soon. Since we will need to know his

MAC address in order to talk back, we might as well add the ARP information now rather than

issuing our own ARP request later.

2. ARP request trying to resolve someone else’s IP address — Since ARP requests are

broadcast, we see every one on the network. When we receive an ARP request of this type, we

simply check to see if we have an entry for the host that sent the request in our ARP cache. If

we do, we check to see if we still have the correct MAC address associated with that host. If it

is incorrect, we update our ARP cache entry. Note that we do not create a new ARP cache

entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having

resolved the address, we check to see if there is any transmit requests pending for the resolve

IP address, and if so, transmit them.

ALA-006K - Express Mail No. EV 406928085 US'

Given the above three possibilities, the only major change to the in_arpinput code is

that we will remove the code which generates an ARP reply for ARP requests that are meant

for our interface.

' ARPINTR.

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We

will be calling in_arpinput directly from our ProtocolReceiveDPC routine (discussed in the

NDIS section below) so this function is not needed.

ARPWHOHAS.

This is a single line function that serves only as a wrapper around arprequest. We will

remove it and replace all calls to it with direct calls to arprequest.

ARPREQUEST.

This code simply allocates a'mbuf, fills it in with an ARP header, and then passes it

down to the ethemet output routine to be transmitted. For us, the code remains essentially the

same except for the obvious changes related to how we allocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interface is initialized to broadcast a gratuitous ARP

request (described in the interface initialization section) and to set some ARP related fields in

the ifaddr structure for the interface. We will simply move this functionality into the interface

initialization code and remove this function.

ARPTIMER.

This is a timer-based function that is called every 5 minutes to walk through the ARP

table looking for entries that have timed out. Although the time-out period for FreeBSD is 20

minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can

modify this value or delete the timer altogether to suit our needs. Either way the function

won’t require any major changes. All other functions in if_ether.c will not require any major

changes.

85

ALA—006K ‘ . Express Mail N0. EV 406928085 US

ROUTE.

I On first thought, it might seem that we have no need for routing support since our
ATCP driver will only receive IP datagrams whose destination IP address matches that of one

of our own interfaCes. Therefore, we will not “route” from one interfaceto another. Instead,

the MICROSOFT-TCP/IP driver will provide that service. We will, however, need to maintain

an up-to-date routing table so that we know a) whether an outgoing connection belongs to one

of our interfaces, b) to which interface it belongs, and c) what the first-hop IP address

(gateway) is if the destination is not on the local network.

We discuss four aspects on the subject ofrouting in this section. They are as follows:

1. The mechanics of how routing information is stored.

. The manner in which routes are added or deleted from the route table.

When and how route information is retrieved from the route table.

. Notification of route table changes to interested parties.

THE ROUTE TABLE.

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA

(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated

algorithm that is a bit costly to set up, but is very efficient to reference. Since the routing table

should contain the same information for both NT and FreeB SD, and since the key used to

search for an entry in the routing table will be the same for each (the destination IP address),

we should be able to port the routing table software to NT without any major changes.

The software which implements the route table (via the PATRICIA algorithm) is

located in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with

no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added or deleted in a number of different ways. The kernel adds or

deletes routes when the state of an interface changes or when an ICMP redirect is received.

User space programs such as the RIP daemon, or the route command also modify the route

table.

I ALA-006K , Express Mail No. EV 406928085 US

For kernel-based route changes, the changes can be made by a direct call to the routing

sofiware. The FreeBSD sofiware that is responsible for the modification of route table entries

is found in route.c. The primary routine for all route table changes is called rtrequest(). It

takes as its arguments, the request type (ADD, RESOLVE, DELETE), the destination IP

address for the route, the gateway for the route, the netmask for the route, the flags for the

route, and a pointer to the route structure (struct rtentry) in which we will place the added or

resolved route. Other routines in the route.c file include ItinitO, which is called during

interface initialization time to add a static route to the network, rtredirect, which is called by

ICMP when we receive a ICMP redirect, and an assortment of support routines used for the

modification of route table entries. All of these routines found in route.c will be ported with

no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route

Changes are sent down to the kernel from user-space applications via a special route socket.

This code is found in the FreeBSD file, rtsock.c. Obviously this will not work for our ATCP

driver. Instead the filter driver portion of our driver will intercept route changes destined for

the Microsoft TCP driver and will apply those modifications to our own route table via the

rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddr_in) expected by the rtrequest routine.

'Obviously, none of the code from rtsock.c will be ported to the ATCP driver. This same

procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FreeBSD, the route table is consulted in ip_output when an IP datagram is being

sent. In order to avoid a complete route table search for every outgoing datagram, the route is

stored into the in_pcb for the connection. For subsequent calls to ip_output, the route entry is

then simply checked to ensure validity. While we will keep this basic operation as is, we will

require a slight modification to allow us to coexist with the Microsofi TCP driver. When an

active connection is being set up, our filter driver will have to determine whether the

connection is. going to be handled by one of the INIC interfaces. To do this, we will have to

consult the route table from the filter driver portion of our driver. This is done via a call to the

rtallocl function (found in routec). If a valid route table entry is found, then we will take

87

ALA-006K . Express Mail No. EV 406928085 US

control of the connection and set a pointer to the rtentry structure returned by rtallocl in our

in_pcb structure.

WHAT TO DO WHEN A ROUTE CHANGES.

When a routetable entry changes, there may be connections that have pointers to a

stale route table entry. These connections will need to be notified of the new route. FreeBSD

solves this by checking the validity of a route entry during every call to ip_output. If the entry

is no longer valid, its reference to the stale route table entry is removed, and an attempt is i

made to allocate a new route to the destination. For our slow path, this will work fine.

Unfortunately, since our IP processing is handled by the INIC for our fast path, this sanity

check method will not be sufficient. Instead, we will need to perform a review of all of our

fast path connections during every route table modification. If the route table change affects

our connection, we will need to advise the INIC with a new first-hop address, or if the

destination is no longer reachable, close the connection entirely.

ICMP.‘ "

Like the ARP code above, we will need to process certain types of incoming ICMP

frames. Of the 10 possible ICMP message types, there are only three that we need to support.

These include ICMP_REDIRECT, ICMP_UNREACH, and ICMP_SOURCEQUENCH. Any

FreeBSD code to deal with other types of ICMPtraffic will be removed. Instead, we will

simply return NDIS_STATUS_NOT_ACCEPTED for all but the above ICMP frame types.

This section describes how we will handle these ICMP frames.

ICMP_REDIRECT,

Under FreeBSD, an ICMP_REDIRECT causes two things to occur. First, it causes the

route table to be updated with the route given in the redirect. Second, it results in a call back

to TCP to cause TCP to flush the route entry attached to its associated in_pcb structures. By

doing this, it forces ip_output to search for a new route. As mentioned in the Route section

above, we will also require a call to a routine which will review all of the TCP fast-path

connections, and update the route entries as needed (in this case because the route entry has

been zeroed). The INIC will then be notified of the route changes.

88

ALA-006K

30

Express Mail No.‘ EV 406928085 US

ICMP_UNREACH.

In both FreeBSD and Microsofi TCP, the ICMP_UNREACH results in no more than a

simple statistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quench is sent to cause a TCP sender to close its congestion window to a

single segment, thereby putting the sender into slow—start mode. We will keep the FreeBSD

code as-is for slow-path connections. For fast path connections we will send a notification to

the card that the congestion window for the given connection has been reduced. The INIC will

then be responsible for the slow-start algorithm.

IP.

The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

IP lNlTIALlZATlON.

During initialization time, ip_init is called to initialize the array of protosw structures.

These structures contain all the information needed by IP to be able to pass incoming data to

the correct protocol above it. For example, when a UDP datagram arrives, IP locates the

protosw entry corresponding to the UDP protocol type value (0x11) and calls the input routine

specified in that protosw entry. We will keep the array of protosw structures intact, but since

we are only handling the TCP and ICMP protocols above IP, we will strip the protosw array

down substantially.

IP INPUT.

Following are the changes required for IP input (function ip_intr()).

NO IP FORWARDING.

Since we will only be handling datagrams fOr which we are the final destination, we

should never be required to forward an IP datagram. All references to IP forwarding, and the

ip_forward function itself, can be removed.

ALA-006K Express Mail No. EV 406928085 US

IP OPTIONS.

The only options supported by FreeBSD at this time include record route, strict and

loose source and record route, and timestamp. For the timestamp option, FreeBSD only logs'
the current time into the IP header so that before it is forwarded. Since we will not be

forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the

remaining options, NT essentially does nothing useful with them. For the moment, we will not

bother dealing with IP options. They will be added in later if needed.

1P REASSEMBLY.

There is a small problem with the FreeBSD IP reassembly code. The reassembly code

reuses the IP header portionof the IP datagram to contain 1P reassembly queue information. It

can do this because it no longer requires the original IP header. This is an absolute no-no with

the NDIS 4.0 method ofhandling network packets. The NT DDK explicitly states that we

must not modify packets given to us by NDIS. This is not the only place in which the

FreeBSD code modifies the contents of a network buffer. It also does this when performing
endian conversions. At the moment we will leave this code as is and violate the DDK rules.

We believe we can do this because we are going to ensure that no other transport driver looks

at these frames. If this becomes a problem we will have to modify this code substantially by-

moving the IP reassembly fields into the mbuf header.

‘ IP OUTPUT.

There are only two modifications required for IP output. The first is that since, for the

moment, we are not dealing with IP options, there is no need for the code that inserts the IP

options into the IP header. Second, we may discover that it is impossible for us to ever receive

an output request that requires fragmentation. Since TCP performs Maximum Segment Size

negotiation, we should theoretically never attempt to send a TCP segment larger than the

MTU.

NDIS PROTOCOL DRIVER.

This section defines protocol driver portion of the ATCP driver. The protocol driver

portion of the ATCP driver is defined by the set of routines registered with NDIS via a call to

NdisRegisterProtocol. These routines are limited to those that are called (indirectly) by the
90

ALA-006K V Express Mail No. EV 406928085 US

INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so

that when the INIC driver calls NdisMIndicateReceivePacket it will result in a call from NDIS

to our driver. Strictly speaking, the protocol driver portion of our driver does not include the

method by which our driver calls down to the miniport (for example, the method by which we

send network packets). Nevertheless, we will describe that method here for lack of a better

place to put it. That said, we cover the following topics in this section of the document: 1)

Initialization; 2) Receive; 3) Transmit; 4) Query/Set Information; 5) Status indications;

6) Reset; and 7) Halt.

' INITIALIZATION.

The protocol driver initialization occurs in two phases. The first phase occurs when the

ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs the

following:

1. Allocate resources — We attempt to allocate many of the required resources as soon

as possible so that we are more likely to get the memory we want. This mostly applies to

allocating and initializing our mbuf and mbuf header pools.

2. Register Protocol — We call NdisRegisterProtocol to register our set ofprotocol

driver routines.

3. Locate and initialize bound NICs — We read the Linkage parameters of the registry

to determine which NIC devices we are bound to. For each of these devices we allocate and

initialize a IFACE structure (defined above). We then read the TCP parameters out of the

registry for each bound device and set the corresponding fields in the IFACE structure.

After the underlying INIC devices have completed their initialization, NDIS will call

our driver’s ATKBindAdapter function for each underlying device. It will perform the

following: ' '

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACE structure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter information. This includes such things as link speed

and MAC address. Save relevant information in the IFACE structure.

4. Perform the interface initialization as specified in the section on Interface

Initialization.

ALA-006K’ Express Mail No. EV 406928085 US

RECEIVE.

Receive is handled by the protocol driver routine ATKReceivePacket. Before we

describe this routine, it is important to consider each possible receive type and how it will’be

handled.

RECEIVE OVERVIEW. -

Our INIC miniport driver will be bound to our transport driver as well as the generic

Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively to

TNIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as other

types of NICs. This is illustrated in Fig. 31. By binding the driver in this fashion, we can

choose to direct incoming network data to our own ATCP transport driver, the Microsofi TCP

driver, or both. We do this by playing with the ethemet “type” field as follows.

- To NDIS and the transport drivers above it, our card is going to be registered as a

normal ethemet card. When a transport driver receives a packet from our driver, it will expect

the data to start with an ethemet header, and consequently, expects the protocol type field to be

in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to either IP,

or ARP, it will not accept the packet. So, to deliver an incoming packet to our driver, we must

simply map the data such that byte 12 contains a non-recognized ethemet type field. Note that

we must choose a value that is greater than 1500 bytes so that the transport drivers do not

confuse it with an 802.3 frame. We must also choose a value that will not be accepted by

other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to

Microsoft TCP, we can then simply leave the ethemet type field set to IP (or ARP). Note that

since we will also see these frames we can choose to accept or not-accept them as necessary.

Incoming packets are delivered as follows:

A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-

path frames and fast-path frames. In the slow-path case, the TCP frames are given in there

entirety (headers included). In the fast-path case, the ATKReceivePacket is given a header

buffer that contains status information and data with no headers (except those above TCP).

More on this later. I

B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-TCP packets.
92

ALA—006K . Express Mail No. EV 406928085 US

2. All packets that are not destined for one of our interfaces (packets that will be

routed). Continuing the above example, if there is an IP address 144.48.252.4 associated with

the 3com interface, and we receive a TCP connect with a destination IP address of

144.48.252.4, we will actually want to send that request up to the ATCP driver so that we

create a fast-path connection for it. This means that we will need to know every IP address in

the system and filter frames based on the destination IP address in a given TCP datagrarn.

This can be done in the INIC miniport driver. Since it will be the ATCP driver that learns of

dynamic IP address changes in the system, we will need a method to notify the INIC miniport

of all the IP addresses in the system. More on this later.

C. Packets delivered to both:

1. All ARP frames.

2. All ICMP frames.

TWO TYPES OF RECEIVE PACKETS.

There are several circumstances in which the INIC will need to indicate extra

information about a receive packet to the ATCP driver. One such example is a fast path

.receive in which the ATCP driver will need to be notified of how much data the card has

buffered. To accomplish this, the first (and sometimes only) buffer in a received packet will

actually be an INIC header buffer. The header buffer contains status information about the

receive packet, and may or may not contain network data as well. The ATCP driver will

recognize a header buffer by mapping it to an ethemet frame and inspecting the type field

found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames

that are destined for both our driver and the Microsoft TCP driver (ARP, ICMP.) will be

indicated without a header buffer. Fig. 32 shows an example of an incoming TCP packet. Fig.

33 shows an example of an incoming ARP frame.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIS has been designed such that all packets indicated via

NdisMIndicateReceivePacket by an underlying miniport are delivered to the

ProtocolReceivePacket routine for all protocol drivers bound to it. These protocol drivers can

choose to accept or not accept the data. They can either accept the data by copying the data

out of the packet indicated to it, or alternatively they can keep the packet and return it later via
93

ALA-006K - ' Express MailNo. EV 406928085 US

a call to NdisRetumPackets. By implementing it in this fashion, NDIS allows more than one

protocol driver to accept a given packet. For this reason, when a packet is delivered to a

protocol driver, the contents of the packet descriptor, buffer descriptors and data must all be

treated as read-only. At the moment, we intend to violateithis rule. We choose to violate this

because much of the FreeB SD code modifies the packet headers as it examines them (mostly

for endian conversion purposes). Rather than modify all of the FreeBSD code, we will instead

ensure that no other transport driver accepts the data by making sure that the ethemet type field

is unique to us (no one else will want it). Obviously this only works with data that is only

delivered to our ATCP driver. For ARP and ICMP frames we will instead copy the data out of

the packet into our own buffer and return the packet to NDIS directly. While this is less

efficient than keeping the data and returning it later, ARP and ICMP traffic should be small

enough, and infrequent enough, that it doesn’t matter.

The DDK specifies that when a protocol driver chooses to keep a packet, it should

return a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then

later returned to NDIS via the call to NdisRetumPackets. This can only happen after the

ProtocolReceivePacket has returned control to NDIS. This requires that the call to

NdisRetumPackets must occur in a different execution context. We can accomplish this by

scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our own. For

brevity in this section, we will assume it is a done through a DPC. In any case, we will require

a queue of pending receive buffers on which to place and fetch receive packets.

After a receive packet is dequeued by the DPC it is then either passed to TCP directly

for fast-path processing, or it is sent through the FreeBSD path for slow—path processing. Note

‘ that in the case of slow-path processing, we may be working on data that needs to be returned

to NDIS (TCP data) or we may be working on our own copy of the data (ARP and ICMP).

When we finish with the data we will need to figure out whether or not to return the data to

NDIS or not. This will be done via fields in the mbuf header used to map the data. When the

mfreem routine is called to free a chain of mbufs, the fields in the mbuf will be checked and, if
required, the packet descriptor pointed to by the mbuf will be returned to NDIS.

ALA-006K - Express Mail No. EV 406928085 US

MBUF <—) PACKET MAPPING.

As noted in the section on mbufs above, we will map incoming data to mbufs so that

our FreeBSD port requires fewer modifications. Depending on the type of data received, this

mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data for a TCP fast-path connection. In this example,

the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf

and sent upstream for fast-path TCP processing. In this case it is required that the header

buffer be mapped and sent upstream because the fast-path TCP code will need information

contained in the header buffer in order to perform the processing. When the mbuf in this

example is freed, the mfreem routine will determine that the mbuf maps a packet that is owned

by NDIS and will then free the mbuf header only and call NdisReturnPackets to free the data.

In Fig. 34B, we show incoming data for a TCP slow—path connection. In this example

the mbuf points to the start of the TCP data directly instead of the header buffer. Since this

buffer will be sent up for slow—path FreeBSD processing, we can not have the mbuf pointing to

a header buffer (FreeB SD would get awfully confused). Again, when mfreem is called to free

the mbuf, it will discover the mapped packet, free the mbuf header, and call NDIS to free the

packet and return the underlying buffers. Note that even though we do not directly map the

header buffer with the mbuf we do not lose it because of the link from the packet descriptor.

Note also that we could alternatively have the INIC miniport driver only pass us the TCP data

buffer when it receives a slow-path receive. This would work fine except that we have

determined that even in the case of slow—path connections we are going to attempt to offer

some assistance to the host TCP driver (most likely by checksum processing only). In this

case there may be some special fields that we need to pass up to the ATCP driver from the

H\lIC driver. Leaving the header buffer connected seems the most logical way to do this.

Finally, in Fig. 34C, we show a received ARP frame. Recall that for incoming ARP

and ICMP frames we are going to copy the incoming data out of the packet and return it

directly to NDIS. In this case the mbuf simply points to our data, with no corresponding

packet descriptor. When we free this mbuf, mfreem will discover this and free not only the

mbuf header, but the data as well. '

ALA-006K ‘ - Express Mail No. EV 406928085 US

OTHER RECEIVE PACKETS.

We use this receive mechanism for other purposes besides the reception of network

data. It is also used as a method of communication between the ATCP driver and the INIC.

One such example is a TCP context flush from the INIC. When the INIC determines,.for

whatever reason, that it can no longer manage a TCP connection, it must flush that connection

to the ATCP driver. It will do this by filling in a header buffer with appropriate status and

delivering it to the INIC driver. The INIC driver will in turn deliver it to the protocol driver

which will treat it essentially like a fast-path TCP connection by mapping the header buffer

with an mbuf header and delivering it to TCP for fast-path processing. There are two

advantages to communicating in this manner. First, it is already established path, so no
extra coding or testing is required. Second, since a context flush comes in,- in the same manner

as received frames, it will prevent us from getting a slow-path frame before the context has

been flushed.

SUMMARY

Having covered all of the various types of receive data, following are the steps that are

taken by the ATKProtocolReceivePacket routine.

1. Map incoming data to an ethernet frame and check the type field;

2. If the type field contains our custom INIC type then it should be TCP;

3. If the header buffer specifies a fast-path connection, allocate one or more mbufs headers

to map the header and possibly data buffers. Set the packet descriptor field of the mbuf

to point to the packet descriptor, set the mbuf flags appropriately, queue the mbuf, and

return 1;

. If the header buffer specifies a s10w-path connection, allocate a single mbuf header to

map the network data, set the mbuf fields to map the packet, queue the mbuf and return

1. Note that we design the INIC such that we will never get a TCP segment split across

more than one buffer;

. If the type field of the frame indicates ARP or ICMP;

. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.

Queue the mbuf, and return 0 (not accepted); and

. If the type field is not either the INIC type, ARP or ICMP, we don’t want it. Return 0.

96

ALA-006K ' Express Mail No. EV 406928085 US

The receive processing will continue when the mbufs are dequeued. At the moment

this is done by a routine called ATKProtocolReceiveDPC. It will do the following:

1. Dequeue a mbuf from the queue; and

. 2. Inspect the mbuf flags. If the mbuf is meant for fast-path TCP, it will call the fast-path

routine directly. Otherwise it will call the ethemet input routine for slow-path

processing.

TRANSMIT.

In this section we discuss the ATCP transmit path.

NDIS 4 SEND OPERATION.

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes

to send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets with

an array ofpacket descriptors to send. As soon as this routine is called, the transport/protocol

driver relinquishes ownership of the packets until they are returned, one by one in any order,

via a NDIS call to the ProtocolSendComplete routine. Since this routine is called

asynchronously, our ATCP driver must save any required context into the packet descriptor

header so that the appropriate resources can be freed. This is discussed further in the

following sections.

TYPES OF “SENDS”.

Like the Receive path described above, the transmit path is used not only to send

network data, but is also used as a communication mechanism between the host and the INIC.

Here are some examples of the types of sends performed by the ATCP driver.

FAST-PATH TCP SEND.

I When the ATCP driver receives a transmit request with an associated MDL, it will

package up the MDL physical addresses into a command buffer, map the command buffer

with a buffer and packet descriptor, and call NdisSendPackets with the-corresponding packet.

The underlying INIC driver will issue the command buffer to the INIC. When the

corresponding response buffer is given back to the host, the INIC miniport will call

NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete

97

ALA-006K Express Mail No. EV 406928085 US

(ATKSendComplete) routine, at which point the resources associated with the send can be

freed. We will allocate and use a mbuf to hold the command buffer. By doing this we can

store the context necessary in order to clean up afier the send completes. This context includes

a pointer to the MDL and presumably some other connection context as well. The other

advantage to using a mbuf to hold the command buffer is that it eliminates having another

special set of code to allocate and return command buffer. We will store a pointer to the mbuf

in the reserved section of the packet descriptor so we can locate it when the send is complete.

Fig. 35 illustrates the relationship between the client’s MDL, the command buffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

As described in the Fast-Path Input Data Flow section above, the receive process

typically occurs in two phases. First the INIC fills in. a host receive buffer with a relatively

small amount of data, but notifies the host of a large amount ofpending data (either through a

large amount of buffered data on the card, or through a large amount of expected NetBios

data). This small amount of data is delivered to the client through the TDI interface. The

client will then respond with a MDL in which the data should be placed. Like the Fast-path

TCP send process, the receive portion of the ATCP driver will then fill in a command buffer

with the MDL information from the client, map the buffer with packet and buffer descriptors

and send it to the INIC via a call to NdisSendPackcts. Again, when the response buffer is

returned to the INIC miniport, the ATKSendComplete routine will be called and the receive

will complete. This relationship betWeen the MDL, command buffer and buffer and packet

descriptors are the same as shown in the Fast-path send section above.

SLOW—PATH (FREEBSD).

Slow-path sends pass through the FreeB SD stack until the ethemet header is prepended

in ether_output and the packet is ready to be sent. At this point a command buffer will be

filled with pointers to the ethemet frame, the command buffer will be mapped with a packet

and buffer descriptor and NdisSendPackets will be called to hand the packet off to the

miniport. Fig. 36 shows the relationship between the mbufs, command buffer, and buffer and

packet descriptors. Since we will use a mbuf to map the command buffer, we can simply link

98

, ALA—006K Express Mail No. EV 406928085 US

the data mbufs directly offof the command buffer mbuf. This will make the freeing of

resources much simpler.

NON-DATA COMMAND BUFFER.

The transmit path is also used to send non-data commands to the card. As shown in

Fig. 37, for example, the ATCP driver gives a context to the INIC by filling in a command

buffer, mapping it with a packet and buffer descriptor, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.

Given the above different types of sends, the ATKProtocolSendComplete routine will

perform various types of actions when it is called from NDIS. First it must examine the

reserved area of the packet descriptor to determine what type of request has completed. In the

case of a slow-path completion, it can simply free the mbufs, command buffer, and descriptors

and return. In the case of a fast-path completion, it will need to notify the TCP fast path

routines of the completion so TCP can in turn complete the client’s IRP. Similarly, when a

non—data command buffer completes, TCP will again be notified that the command sent to the

INIC has completed.

TDI FILTER DRIVER.

In a first embodiment of the product, the INIC handles only simple-case data transfer

operations on a TCP connection. (These of course constitute the large majority of CPU cycles

consumed by TCP processing in a conventional driver.)

‘ There are many other complexities of the TCP protocol which must still be handled by

host driver software: connection setup and breakdown, out-of-order data, nonstandard flags,

etc.

The NT OS contains a fully functional TCPHP driver, and one solution would be to

enhance this-so that it is able to detect our INIC and take advantage of it by "handing oft“ data—

path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.
Thus the solution above, while a goal, cannot be done immediately. We instead provide our

own custom driver sofiware on the host for those parts of.TCP processing which are not

handled by the INIC.

99

ALA—006K Express Mail No. EV 406928085 US

This presents a challenge. The NT network driver framework does make provision for

multiple types ofprotocol driver: but it does not easily allow for multiple instances of drivers

handling the SAME protocol.

For example, there are no "hooks" into the Microsofi TCP/1P driver which would allow

for routing of IP packets between our driver (handling our INICs) and the Microsofi driver

(handling other NICs).

Our approach to this is to retain the Microsofi driver for all non-TCP network

processing (even for traffic on our INICs), but to invisibly "steal" TCP traffic on our

connections and handle it via our own (BSD-derived) driver. The Microsoft TCP/1P driver is

unaware of TCP connections on interfaces we handle.

The network "bottom end“ of this artifice is described earlier in the document. In this

section we will discuss the "top end": the TDI interface to higher-level NT network client

software.

We make use of an NT facility called a filter driver. NT allows a special type of driver

("filter driver") to attach itself "on top", of another driver in the system. The NT I/O manager

then arranges that all requests directed to the attached driver are sent first to the filter driver;

this arrangement is invisible to the rest of the system.

The filter driver may then either handle these requests itself, or pass them down to the

underlying driver it is attached to. Provided the filter driver completely replicates the

(externally visible) behavior of the underlying driver when it handles requests itself, the

existence of the filter driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft TCP/1P driver; this gives us the

basic mechanism whereby we can intercept requests for TCP operations and handle them in

our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we want to

achieve, there are some significant technical problems to be solved. The basic issue is that

setting up a TCP connection involves a sequence of several requests from higher—level

software, and it is not always possible to tell, for requests early in this sequence, whether the

connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we need it later,

but also allow the request to be passed down to the Microsoft TCP/1P driver in case the

connection ultimately turns out to be one which that driver should handle.

100 I

ALA-006K Express Mail No. EV 406928085 US

Let us look at this in more detail, which will involve some examination of the TDI

interface: the NT interface into the top end of NT network protocol drivers. Higher-level TDI

client software which requires services from a protocol driver proceeds by creating various

types of NT FILE_OBJECTs, and then making various DEVICE_IO_CONTROL requests on

these FILE_OBJECTs.

There are two types of FILE_OBJECT of interest here. Local IP addresses that are

represented by ADDRESS objects, and TCP connections that are represented by

CONNECTION objects. The steps involved in setting up a TCP connection (from the "active"

client side, for a CONNECTION object) are:

1) Create an ADDRESS object; 2) Create a CONNECTION object; 3) Issue a

TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION object with the

ADDRESS object; and 4) Issue a TDI_CONNECT io-control on the CONNECTION object,

specifying the remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we would tell, on the

basis of the address given when creating the ADDRESS object, whether the connection is for

one of our interfaces or not. After which, it would be easy to arrange for handling entirely by

our code, or entirely by the Microsoft code: we would simply examine the ADDRESS object

to see if it was "one of ours" or not.

There are two main difficulties, however. First, when the CONNECTION object is

created, no address is specified: it acquires a local address only later when the

TDI_ASSOCIATE_ADDRESS is done. Also, when a CONNECTION object is created, the

caller supplies an opaque "context cookie" which will be needed for later communications

with that caller. Storage of this cookie is the responsibility of the protocol driver: it'is not

directly derivable just by examination of the CONNECTION object itself. If we simply

passed the "create" calldown to the Microsoft TCP/IP driver, we would have no way of

obtaining this cookie later if it turns out that we need to handle the connection. Therefore, for

every CONNECTION object which is created we allocate a structure to keep track of

information about it, and store this structure in a hash table keyed by the address of the

CONNECTION object itself, so that we can locate it ifwe later need to process requests on

this object. We refer to this as a "shadow" object: it replicates information about the object

stored in the Microsoft driver. (We must, of course, also pass the create request down to the

Microsoft driver too, to allow it to set up its own administrative information about the object.)
101

ALA-006K ‘ ' Express Mail N0. EV 406928085 US

A second major difficulty arises with ADDRESS objects. These are often created with

the TCP/IP "wildcard" address (all zeros); the actual local address is assigned only later during

connection setup (by the protocol dn'ver itself.) Of course, a "wildcard" addressdoes not

allow us to determine whether connections that will be associated with this ADDRESS object

should be handled by our driver or by the Microsofi one. Also, as with CONNECTION

objects, there is "opaque" data associated .with ADDRESS objects that cannot be derived just

from examination of the object itself. (In this caSe addresses of callback functions set on the

object by TDI_SET_EVENT io-controls.)

Thus, as in the CONNECTION object case, we create a "shadow" object for each

ADDRESS object which is created with a wildcard address. In this we store information

(principally addresses of callback functions) which we will need if we are handling

conneCtions on CONNECTION objects associated with this ADDRESS object. We store

similar information, of course, for any ADDRESS object which is explicitly for one of our

interface addresses; in this case we don't need to also pass the create request down to the

Microsoft driver.

' With this concept of "shadow" objects in place, let us revisit the steps involved in

setting up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is

a "wildcat " address, we create a "shadow" object before passing the call down to the

Microsoft driver.

The next step (omitted in the earlier list for brevity) is normally that the client makes a

number of TDI_SET_EVENT io-control calls to associate various callback functions with the

ADDRESS object. These are functions that should be called to notify the TDI client when

certain events (such arrival of data or disconnection requests etc) occur. We store these

callback function pointers in our "shadow" address object, before passing the call down to the

Microsoft driver.

Next, the TDI client makes a call to create a CONNECTION object. Again, we create

our "shadow" of this object.

Next, the client issues the TDI_ASSOCIATE_ADDRESS io-control to bind the

CONNECTION object to the ADDRESS object. We note the association in our "shadow"

objects, and also pass the call down to the Microsoft driver.

102

ALA-006K v V Express Mail No. EV 406928085 US

Finally the TDI client issues a TDI_CONNECT io-control on the CONNECTION

object, specifying the remote IP address (and port) for the desired connection. At this point,

we examine our routing tables to determine if this connection should be handled by one of our

interfaces, or by some other NIC. If it is ours, we mark the CONNECTION object as "one of

I ours" for future reference (using an opaque field which NT FILE_OBJECTS provide for driver

use.) We then proceed with connection setup and handling in our driver, using information

stored in our "shadow" objects. The Microsoft driver does not see the connection request or

any subsequent traffic on the connection. i

If the'connection request is NOT for one of our interfaces, we pass it down to the

Microsofi driver. Note carefully, however, that we can not simply discard our "shadow"

objects at this point. The TDI interface allows re—use of CONNECTION objects: on

termination of a connection, it is legal for the TDI client to dissociate the CONNECTION

object from its current . Thus our "shadow" objects must be retained for the lifetime

ADDRESS object, re-associate it with another, and use it for another connection of the NT

FILE_OBJECTS: the subsequent connection could tum out to be via one of our interfaces.

TIMERS.

KEEPALIVE TIMER.

We don’t want to implement keepalive timers 0n the INIC. It would in any case be a ‘

very poor use of resources to have an INIC context sitting idle for two hours.

IDLE TIMER.

We will keep an idle timer in the ATCP driver for connections that are managed by the

INIC (resetting it whenever we see activity on the connection), and cause a flush of context

back to the host if this timer expires. We may want to make the threshold substantially lower

than 2 hours, to reclaim INIC context slots for useful work sooner. May also want to make

that dependent on the number of contexts which have actually been handed out: don’t need to

reclaim them if we haven’t handed out the max.

RECEIVE AND TRANSMIT MICROCODE DESIGN.

This section provides a general description of the design of the microcode that will

execute on two of the sequencers of the Protocol Processor on the INIC. The overall

103 '

ALA-006K Express Mail No. EV 406928085 US

philosophy of the INIC is discussed in other sectiOns. This section will discuss the INIC

microcode in detail.

DESIGN OVERVIEW.

As specified in other sections, the INIC supplies a set of 3 custom processors that will

provide considerable hardware-assist to the microcode running thereon. The paragraphs

immediately following list the main hardware-assist features:

1) Header processing with specialized DMA engines to validate an input header and

generate a context hash, move the header into fast memory and do header comparisons on a

DRAM-based TCP control block;

2) DRAM fifos for free buffer queues (large & small), receive-frame queues, event

queues etc.;

3) Header compare logic;

4) Checksum generation;

5) Multiple register contexts with register access controlled by simply setting a context

register. The Protocol Processor will provide 512 SRAM-based registers to be shared among

the 3 sequencers;

6) Automatic movement of input frames into DRAM buffers from the MAC Fifos;

7) Run receive processing on one sequencer and transmit processing on the other. This

was chosen as opposed to letting both sequencers run receive and transmit. One of the main

reasons for this is that the header—processing hardware can not be shared and interlocks would

be needed to do this. Another reason is that interlocks would be needed on the resources used

exclusively by receive and by transmit;

8) The INIC Will support up to 256 TCP connections (TCB’s). A TCB is associated

with an input frame when the frame’s source and destination IP addresses and source and

destination ports match that of the TCB. For speed of access, the TCB’s will be maintained in h

a hash table in NIC DRAM to save sequential searching. There will however, be an index in

hash order in SRAM. Once a hash has been generated, the TCB will be cached in SRAM.

There will be up to 8 cached TCBs in SRAM. These cache locations can be shared between

both sequencers so that the sequencer with the heavier load will be able to use more cache

buffers. There will also be 8 header buffers to be shared between the sequencers. Note that

each header buffer is not statically linked to a specific TCB buffer. In fact the link is dynamic
104

ALA—006K Express Mail No. EV 406928085 US

On a per-frame basis. The need for this dynamic linking will be explained in later sections.

Suffice to say 'here that if there is a free header buffer, then somewhere there is also a free TCB

SRAM buffer;

9) There were 2 basic implementation options considered here. The first was single—

stack and the second was a process model. The process model was chosen here because the

custom processor design is providing zero-cost overhead for context switching through the usc

of a context base register, and because there will be more than enough process slots (or

contexts) available for the peak load. It is also expected that. all “local” variables will be held ‘

permanently in registers whilst an event is being processed;

10) The features that provide this are 256 of the 512 SRAM-based registers that will

be used for the register contexts. This can be divided up into 16 contexts (or processes) of 16

registers each. Then 8 of these will be reserved for receive and 8 for transmit. Little’s Law

analysis has shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100 -

Mbits, requires more than 8 jobs to be in process in the NIC. However each job requires an

SRAM buffer for a TCB context and at present, there are only 8 of these currently specified

due to SRAM space limits. So more contexts (e.g. 32 '* 8 regs each) do not seem worthwhile.

Refer to the section entitled “LOAD CALCULATIONS” for more details of this analysis. A

context switch simply involves reloading the context base register based on the context to be

restarted, and jumping to the appropriate address for resumption;

11) To better support the process model chosen, the code will lock an active TCB into

an SRAM buffer while either sequencer is operating on it. This implies there will be no

swapping to and from DRAM of a TCB once it is in SRAM and an operation is started onit.

More specifically, the TCB will not be swapped afier requesting that a DMA be performed for

it. Instead, the system will switch to another active “process”. Then it will resume the former

process at the point directly after where the DMA was requested. This constitutes a zero-cost

switch as mentioned above;

12) Individual TCB state machines will be run from within a “process”. There will be

a state machine for the receive side and one for the transmit side. The current TCB states will

be stored in the SRAM TCB index table entry;

13) The INIC will have 16 MB of DRAM. The current specification calls for dividing

a large portion of this into 2K buffers and control allocation / deallocation of thesc buffers

105

ALA-006K ' Express Mail No. EV 406928085 US

through one of the DRAM fifos mentioned above. These fifos will also be used to control

small host buffers, large host buffers, command buffers and command response buffers;

14) For events from one sequencer to the other (i.e. RCV <—) XMT), the current

specification calls for using simple SRAM CIO buffers, one for each direction;

15) Each sequencer handles its own timers independently of the others;

16) Contexts will be passed to the INIC through the Transmit command and response

buffers. INIC-initiated TCB releases will be handled through the Receive small buffers. Host-

initiated releases will use the Command buffers. There needs to be strict handling of the

acquisition and release of contexts to avoid windows where for example, a frame is received

on a context just afier the context was passed to the INIC, but before the INIC has “accepted”

‘ it; and

17) T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections.

This is because they are typically used for the HTTP protocol and the client for that protocol

typically connects, sends a request and disconnects in one segment. The server sends the

connect confirm, reply and disconnect in his first segment. Then the client confirms the

disconnect. This is a total of 3 segments for the life of a context. Typical data lengths are on

the order of 300 bytes from the client and 3K from the server. The INIC will provide as good

an assist as seems necessary here by checksumming the frame and splitting headers and data.

The latter is only likely when data is forwarded with a request such as when a filled-in form is

sent by the client.

SRAM REQUIREMENTS.

SRAM requirements for the Receive and Transmit engines are shown in Fig. 38.

Depending upon the available space, the number of TCB buffers may be increased to 16.

GENERAL PHILOSOPHY.

The basic plan is to have the host determine when a TCP connection is able to be

handed to the INIC, setup the TCB and pass it to the card via a command in the‘Transmit

queue. TCBs that the INIC owns can be handed back to the host via a request from the Receive

or Transmit sequencers or. from the host itself at any time.

When the INIC receives a frame, one of its immediate tasks is to determine if the frame

is for a TCB that it controls. If not, the frame is passed to the host on a generic interface TCB.
106

ALA-006K . Express Mail No. EV 406928085 us

‘ On transmit, the transmit request will specify a TCB hash number if the request is on a INIC-

controlled TCB. Thus the initial state for the INIC will be transparent mode in which all

received frames are directly passed through and all transmit requests will be simply thrown on

the appropriate wire. This state is maintained until the host passes TCBs to the INIC to control.

Note that frames received for which the INIC has no TCB (or it is with the host) will still have

the TCP checksum verified if TCP/1P, and may split the TCPIP header off into a separate

buffer.

REGISTER USAGE.

There will be 512 registers available. The first 256 will be used for process contexts.

The remaining 256 will be split between the three sequencers as follows: 1) 257 — 320: 64 for

RCV genera] processing / main loop; 2) 32] - 384: 64 for XMT general processing / main

loop; and 3) 385 — 512: 128 for three sequencer use.

RECEIVE PROCESSING.

MAIN LOOP.

Fig. 39 is a summary of the main loop of Receive.

RECEIVE EVENTS.

The events that will be processed on a given context are:

1) accept a context;

2) release a context command (from the host via Transmit);

3) release a context request (from Transmit);

4) receive a valid frame; this will actually become 2 events based on the received

frame - receive an ACK, receive a segment;

' 5) receivean “invalid” frame i.e. one that causes the TCB to be flushed to the host;

6) a valid ACK needs to be sent (delayed ACK timer expiry); and

7) There are expected to be the following sources of events: a) Receive input queue:

it is expected that hardware will automatically DMA arriving frames into frame buffers and

queue an event into a RCV-event queue; b) Timer event queue: expiration of a timer will

queue an event into this queue; and c) Transmit sequencer queue: for requests from the

transmit processor.
107

ALA—006K Express Mail No. EV 406928085 US

For the sake ofbrevity the following only discusses receive-frame processing.

RECEIVE DETAILS — VALID CONTEXT. '

The base for the receive processing done by the INIC on an existing context is the fast—

path or “header prediction” code in the FreeBSD release. Thus the processing is divided into

three parts: header validation and checksumming, TCP processing and subsequent SMB

processing.

HEADER VALIDATION.

There is considerable hardware assist here. The first step in receive processing is to

DMA the frame header into an SRAM header buffer. It is useful for header validation to be

implemented in conjunction with this DMA by scanning the data as it flies by. The following

tests need to be “passed”:

1) MAC header: destination address is our MAC address (not MC or BC too), the

Ethertype is IP; 2) IP header: header checksum is valid, header length = 5, IP length > header

length, protocol = TCP, no fragmentation, destination IP is our IP address; and 3) TCP header:

checksum is valid (incl. pseudo—header), header length = 5 or 8 (timestamp option), length is

valid, dest port = SMB or FTP data, no FIN/SYN/URG/PSH/RST bits set, timestamp option is

valid ifpresent, segment is in sequence, the window size did not change, this is not a

retransmission, it is a pure ACK or a pure receive segment, and most important, a valid

context exists. The valid-context test is non—trivial in the amount of work involved to

determine it. Also note that for pure ACKs, the window-size test will be relaxed. This is

because initially the output PERSIST state is to be handled on the INIC.

Many but perhaps not all of these tests will be performed in hardware — depending

upon the embodiment.

TCP PROCESSING.

Once a frame has passed the header validation tests, processing splits based on whether

the frame is a pure ACK or a pure received segment.

ALA-006K Express Mail No. EV 406928085 US

PURE RCV PACKET. '

The design is to split offheaders into a small header buffer and pass the aligned data in

separate large buffers. Since a frame has been received, eventually some receiver process on

the host will need to be informed. In the case of FTP, the frame is pure data and it is passed to

the host immediately. This involves getting large buffers and DMAing the data into them,

then setting the appropriate details in a small buffer that is used to notify the host. However for

SMB, the INIC is performing reassembly of data when the frame consists ofheaders and data.

So there may not yet be a complete SMB to pass to the host. In this case, a small buffer will be

acquired and the header moved into it. If the received segment completes an SMB, then the

procedures are pretty much as for FTP. If it does not, then the scheme is to at least move the

received data (not the headers) to the host to free the INIC buffers and to save latency. The list

of in-progress host buffers is maintained in the TCB and moved to the header'buffer when the

SMB is complete.

The final part ofpure-receive processing is to fire off the delayed ACK timer for this

segment. ’

PURE ACK.

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers

that can be returned to the host. If so, send an event to the Transmit processor (or do the

processing here). If there is more output available, send an event to the transmit processor.

Then appropriate actions need to be taken with the retransmission timer.

‘ SMB PROCESSING.

Fig. 40 shows the format of the SMB header of an SMB frame. The LENGTH field of

the NetBIOS header will be used to determine when a complete SMB has been received and

the header buffer with appropriate details can be posted to the host. The interesting commands

are the write commands: SMBwrite (OxB), SMBwriteBraw (OxlD), SMBwriteBme (OxlE),

SMBwriteBs(Ox1F), SMBwriteclose (OXZC), SMBwriteX (0x2F), SMBwriteunlock (0x14).

These are interesting because they will have data to be aligned in host memory. The point to

note about these commands is that they each have a different WCT field, so that the start offset

of the data depends on the command type. SMB processing will thus need to be cognizant of

these types.

109

ALA—006K ' Express Mail No. EV 406928085 US

RECEIVE DETAILS — NO VALID CONTEXT.

The design here is to provide as much assist as possible. Frames will be checksummed

and the TCPIP headers may be split off.

RECEIVE NOTES. r

1. PRU_RCVD or the equivalent in Microsofi language: the host application has to

tell the INIC when he has accepted the received data that has been queued. This is so that the

INIC can update the receive window. It is an advantage for this mechanism to be efficient.

This may be accomplished by piggybacking these on transmit requests (not necessarily for the

same TCB).

2. Keepalive Timer: for a INIC—controlled TCB, the INIC will not maintain this timer.

This leaves the host with the job ofdetermining that the TCB is still active.

3.. Timestamp option: it is useful to support this option in the fast path because the

BSD implementation does. Also, it can be very helpful in getting a much better estimate of the

round-trip time (RTT) which TCP needs to use.

i 4. Idle timer: the INIC will not maintain this timer (see Note 2 above).

5. Frame with no valid context: The INIC may split TCP/1P headers into a separate

header buffer.

TRANSMIT PROCESSING.

MAIN LOOP.

Fig. 41 is a summary of the main loop ofTransmit.

TRANSMIT EVENTS.

The events that will be processed on a given context and their sources are: I) accept a

context (from the Host); 2) release a context command (from the Host); 3) release a context

command (from Receive); 4) valid send request and window > 0 (from host or RCV

sequencer); 5) valid send request and window = 0 (from host or RCV sequencer); 6) send a

window update (host has accepted data); 7) persist timer expiration (persist timer); 8)

context-release event e.g. window shrank (XMT processing or retransmission timer); and 9)

receive-release request ACK(from RCV sequencer).

‘ 110

ALA-006K ‘ Express Mail No. EV 406928085 US

TRANSMIT DETAILS — VALID CONTEXT.

The following is an overview of the transmit flow: The host posts a transmit request to

the INIC by filling in a command buffer with appropriate data pointers etc and posting it to the

INIC via the Command Buffer Address register. Note that there is one host command buffer

queue, but there are four physical transmit lines. So each request needs to include an interface

number as well as the context number. The INIC microcode will DMA the command in and

place it in one of four internal command queues which the transmit sequencer will work on.

This is so that transmit processing can round-robin service these four queues to keep all four

interfaces busy, and not let a highly-active interface lock out the others (which would happen

with a single queue). The transmit request may be a segment that is less than the M38, or it

may be as much as a full 64K SMB READ. Obviously the former request will go out as one

segment, the latter as a number of MSS-sized segments. The transmitting TCB must hold on to

the request until all data in it has been transmitted and acked. Appropriate pointers to do this

will be kept in the TCB. A large buffer is acquired from the free'buffer fifo, and the MAC and

TCP/1P headers are created in it. It may be quicker/simpler to keep a basic frame header set up

in the TCB and either DMA directly this into the frame each time. Then data is DMA’d from

host memory into the frame to create an MSS—sized segment. This DMA also checksums the

data. Then the checksum is adjusted for the pseudo-header and placed into the TCP header,

and the frame is queued to the MAC transmit interface which may be controlled by the third

sequencer. The final step is to update various window fields etc in the TCB. Eventually either

the entire request will have been sent and acked, or a retransmission timer will expire in which

case the context is flushed to the host. In either case, the INIC will place a command response

in the Response queue containing the command buffer handle from the original transmit

command and appropriate status.

The above discussion has dealt how an actual transmit occurs. However the real

challenge in the transmit processor is to determine whether it is appropriate to transmit at the

time a transmit request arrives. There are many reasons not to transmit: the receiver’s window

size is <= 0, the Persist timer has expired, the amount to send is less than a full segment and an

ACK is expected / outstanding, the receiver’s window is not half-open etc. Much of the

transmit processing will be in determining these conditions.

111

ALA-006K ' Express Mail-No. EV 406928085 US

TRANSMIT DETAILS — NO VALID CONTEXT.

The main difference between this and a context-based transmit is that the queued

request here will already have the appropriate MAC and TCP/IP (or whatever) headers in the

frame to be output. Also the request is guaranteed not to be greater than MSS-sized in length.

So the processing is fairly simple. A large buffer is acquired and the frame is DMAed into it,

at which time the checksum is also calculated. If the frame is TCP/1P, the checksum will be

appropriately adjusted if necessary (pseudo-header etc) and placed in the TCP header. The

frame is then queued to the appropriate MAC transmit interface. Then the command is

immediately responded to with appropriate status through the Response queue.

TRANSMIT NOTES.

1) Slow-start: the INIC will handle the slow—start algorithm that is now a part of the

TCP standard. This obviates waiting until the connection is sending a full-rate before passing

it to the INIC. V

2) Window Probe vs Window Update - an explanation for posterity. A Window Probe

is sent from the sending TCB to the receiving TCB, and it means the sender has the receiver in

PERSIST state. Persist state is entered when the receiver advertises a zero window. It is thus

the state of the transmitting TCB. In this state, he sends periodic window probes to the receiver

in case an ACK from the receiver has been lost. The receiver will return his latest window size

in the ACK. A Window Update is sent from the receiving TCB to the sending TCB, usually to

tell him that the receiving window has altered. It is mostly triggered by the upper layer when it

. accepts some data. This probably means the sending TCB is viewing the receiving TCB as I

being in PERSIST state.

‘3) Persist state: it is designed to handle Persist state on the INIC. It seems

unreasonable to throw a TCB back to the host just because its receiver advertised a zero

window. This would normally be a transient situation, and would tend to happen mostly with

clients that do not support slow-start. Alternatively, the code can easily be changed to throw

the TCB back to the host as soon as a receiver advertises a zero window.

4) MSS—sized frames: the INIC code will expect all transmit requests for which it has

no TCB to not be greater than the MSS. If any request is, it will be dropped and an

appropriate response status posted.

ALA-006K Express Mail No. EV 406928085 US

5) Silly Window avoidance: as a receiver, the INIC will do the right thing here and not

advertise small windows - this is easy. However it is necessary to also do things to avoid this

as a sender, for the cases where a stupid client does advertise small windows. Without getting

into too much detail here, the mechanism requires the INIC code to calculate the largest

window advertisement ever advertised by the other end. It is an attempt to guess the size of the

other end’s receive buffer and assumes the other end never reduces the size of its receive

buffer. See Stevens, “TCP/IP Illustrated”, Vol. 1, pp. 325—326 (1994).

THE UTILITY PROCESSOR.

SUMMARY.

The following is a summary of the main functions of the utility sequencer of the

microprocessor:

1) Look at the event queues: Event13Type & Event23Type (we assume there will be

an event status bit for this — USE_EVl 3 and USE_EV23) in the events register; these are ‘

events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT sequencer.

Dequeue request and place the frame on the appropriate interface.

2) RCV-frame support: in the model, RCV is done through VinicReceive() which is

registered by the lower-edge driver, and is called at dispatch-level. This routine calls

VinicTransferDataComplete() to check if the xfer (possibly DMA) of the frame into host

buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion

interrupt. It queues complete buffers to the RCV sequencer via the normal queue mechanism.

3) Other processes may also be employed here for supporting the RCV sequencer.

4) Service the following registers (this will probably involve micro-interrupts):

a) Header Buffer Address register:

Buffers are 256 bytes long on 256—byte boundaries.

31-8 - physical addr in host of a set of contiguous hddr buffers.

7-0 - number ofhddr buffers passed.

Use contents to add to SmallHType queue.

b) Data Buffer Handle & Data l3uffer Address registers:

Buffers are 4K long aligned on 4K boundaries.

Use contents to add to the FreeType queue.

c) Command Buffer Address register:
1 l3

ALA-006K Express Mail No. EV 406928085 US

Buffers are multiple of 32 bytes up to 1K long (2**5 * 32).

31-5 - physical addr in host of cmd buffer.

4-0 - length of cmd in bytes/32 (i.e. multiples of 32 bytes).

Points to host cmd; get FreeSType buffer and move.

command into it; queue to XmitO-Xmit3Type queues.

d) Response Buffer Address register:

Buffers are 32 bytes long on 32-byte boundaries.

31-8 - physical addr in host of a set of contiguous resp buffers.

7-0 - number of resp buffers passed.

Use contents to add to the ResponseType queue.

5) Low buffer threshold support: set approp bits in the ISR when the available-buffers

count in the various queues filled by the host falls below a threshold.

FURTHER OPERATIONS OF THE UTILITY PROCESSOR.

The utility processor of the microprocessor housed on the INIC is responsible for

setting up and implementing all configuration space and memory mapped operations, and also '

as described below, for managing the debug interface. I

All data transfers, and other INIC initiated transfers will be donelvia DMA.

Configuration space for both the network processor function and the utility processor function

will define a single memory space for each. This memory space will define the basic

communication structure for the host. In general, writing to one of these memory locations

will perform a request for service from the INIC. This is detailed in the memory description

for each function. This section defines much of the operation of the Host interface, but should

be read in conjunction with the Host Interface Strategy for the Alacritech INIC to fully define

the Host/INIC interface. I

Two registers, DMA hardware and an interrupt function comprise the INIC interface to

the Host through PCI. The interrupt function is implemented via a four bit register (PCI_INT)

tied to the PCI interrupt lines. This register is directly accessed by the microprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the

PCI_Address_Reg, to enable the Host to access Configuration Space and the memory space

allocated to the INIC. These registers are not available to the Host, but are used by THE

114

ALA-006K I Express Mail No. EV 406928085 US

' MICROPROCESSOR to enable Host reads and writes. The function of these two registers is

as follows.

1) PCI_Data_Reg: This register can be both read and written by THE

MICROPROCESSOR. On write operations from the host, this register contains the data being

sent from the host. On read operations, this register contains the data to be sent to the host.

2) PCI_Address_Reg: This is the control register for memory reads and writes from

the host. The structure of the register is shown in Fig. 42. During a write operation from the

Host the PCI_Data_Reg contains valid data afler Data Valid is set in the PCI_Address_Reg.

Both registers are locked until THE MICROPROCESSOR writes the PCI_Data_Reg, which

resets Data Valid. All read operations will be direct from SRAM. Memory space based reads

will return 00. Configuration space reads will be mapped as shown in Fig. 43.

CONFIGURATION SPACE.

The INIC is implemented as a multi-function device. The first device is the network

controller, and the second device is the debug interface. An alternative production

embodiment may implement only the network controller function. Both configuration space

headers will be the same, except for the differences noted in the following description.

Vendor ID — This field will contain the Alacritech Vendor ID. One field will be used

for both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. One field will be used for

both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.

Those that are enabled will be set to 0 or 1 depending on the state of the system; Each

function (network and debug) will have its own command field, as shown in Fig. 44.

Status — This is not initialized to zero. Each function will have its own field. The

configuration is as shown in Fig. 45.

Revision ID - The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.

The field will be shared. _ ‘ I

Cache Line Size — This is initialized to zero. Supported sizes are 16, 32, 64 and 128

bytes. This hardware register is replicated in SRAM and supported separately for each

115

ALA-006K ' Express Mail No. EV 406928085 US

function, but THE MICROPROCESSOR will implement the value set in'Configuration Space

1 (the network processor).

Latency Timer — This is initialized to zero. The function is supported. This hardware

register isreplicated in SRAM. Each-function is supported separately, but THE

MICROPROCESSOR will implement the value set in Configuration Space 1 (the network

processor). ‘

Header Type — This is set to 80 for both fiinctions, but will be supported separately.

~ .BIST — Is implemented. In addition to responding to a request to run self test, if test

after reset fails, a code will be set in the BIST register. This will be implemented separately

for each function. ‘

Base Address Register — A single base address register is implemented for each

function. It is 64 bits in length, and the bottom four bits are configured as follows: Bit 0 — 0,

indicates memory base address; Bit 1,2 — 00, locate base address anywhere in 32 bit memory

space; and Bit 3 — 1, memory is prefetchable.

CardBus CIS Pointer — Not implemented—initialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to O. This is implemented separately for

each function.

Interrupt Pin —- This is set to 01, corresponding to INTA# for the network controller,

and 02, corresponding to INTB# for the debug interface. This is implemented separately for

each function.

Min_Gnt — This can be set at a value in the range 'of 10, to allow reasonably long bursts

on the bus. This is implemented separately for each function. V

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of

access to PCI. This is implemented separately for each function.

MEMORY SPACE.

Because each of the following functions may or may not reside in a single location, and

may or may not need to be in SRAM at all, the address for each is really only used as an

identifier (label). There is, therefore, no control block anywhere in memory that represents
1 1 6

ALA-006K Express Mail No. EV 406928085 US

this memory space. When the host writes one of these registers, the utility processor will

construct the data required and transfer it. Reads to this memory will generate 00 for data.

NETWORK PROCESSOR.

The following four byte registers, beginning at location h00 of the network processor’s

allocated memory, are defined.

00 — Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be ORed until the host writes the Interrupt

Status Register. New status will be ored with any remaining

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 3] — ERR -- Error bits are set;

Bit 3O — RCV — Receive has occurred;

Bit 29 — XMT — Transmit command complete; and

Bit 25 — RMISS —'Receive drop occurred due to no buffers.

Interrupt Mask -— Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the same bit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status

to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

Header Buffer Address — Written by host to pass a set of header buffers to the INIC.

Data Buffer Handle — First register to be written by the Host to transfer a receive data

buffer to the INIC. This data is Host reference data. It is not used by the INIC, it is

returned with the data buffer. However, to insure integrity of the buffer, this register

must be interlocked with the Data Buffer Address register. Once the Data Buffer
1 17

ALA-006K Express Mail No. EV 406928085 US

Address register has been written, neither register can be written until afier’ the Data

Buffer Handle register has been'read by THE MICROPROCESSOR.

Data Buffer Address — Pointer to the data buffer being sent to the INIC by the Host.

Must be interlocked with the Data Buffer Handle register.

Command Buffer Address XMTO —— Pointer to a set of command

buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to local

DRAM found on the FreeSType queue and queue the Command

Buffer Address XMTO with the local address replacing the host Address.

Command Buffer Address SMTl.

Command Buffer Address SMT2.

Command Buffer Address SMT3.

Response Buffer Address -- Pointer to a set of response buffers sent

by the Host. These will be treated in the same fashion as the Command Buffer Address

registers.

UTILITY PROCESSOR.

Ending status will be handled by the utility processor in the same fashion as it is

handled by the network processor. At present two ending status conditions are defined B31 —

command complete, and B30 — error. When end status is stored an interrupt is generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is

responsible for insuring that the Data Pointer is valid and points to sufficient memory before

storing a command pointer. Storing a command pointer initiates command decode and

execution by the debug processor. The Host must not modify either command or Data Pointer

until ending status has been received, at which point a newgcommand may be initiated.

Memory space is write only by the Host, reads will receive 00. The format is as follows:

00 — Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

Interrupt Status — Returned status from'host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be stored until the host writes the Interrupt

Status Register. New status will be ored with any remaining

118

ALA-006K ‘ Express Mail 'No. EV 406928085 US

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — CC — Command Complete;

Bit 3O — ERR — Error;

Bit29 — Transmit Processor Halted;

Bit28 — Receive Processor Halted; and

Bit27 — Utility Processor Halted.

Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the same bit in the mask

register is set. When the Interrupt Mask register is written and as I

a result astatus bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status

to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

Command Pointer — Points to command to be executed. Storing

' this pointer initiates command decode and execution.

Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

DEBUG INTERFACE.

In order to provide a mechanism to debug the microcode running on the microprocessor

sequencers, a debug process has been defined which will run on the utility sequencer. This

processor will interface with a control program on the host processor over PC].

PCI INTERFACE.

This interface is defined in the combination of the Utility Processor and the Host

Interface Strategy sections, above.

ALA-006K - Express Mail No. EV 406928085 US

COMMAND FORMAT.

The first byte of the command, the command byte, defines the structure of the remainder

of the command.

COMMAND BYTE.

The first five hits of the command byte are the command itself. The next bit is used to

specify an alternate processor, and the last two bits specify which processors are intended for

the command.

PROCESSOR BITS.

00 — Any Processor;

01 — Transmit Processor;

10 - Receive Processor; and

11 — Utility Processor.

ALTERNATE PROCESSOR.

This bit defines which processor should handle debug processing if the utility

processor is defined as the processor in debug.

0 — Transmit Processor; and

1 — Receive Processor.

SINGLE BYTE COMMANDS.

00 — Halt - This command asynchronously halts the processor.

08 — Run - This command starts the processor.

10 — Step - This command steps the processor.

EIGHT BYTE COMMANDS.

18 — Break

0 ' ' 1 ‘ 2 — 3 4 — 7

Command Reserved Count Address

ALA-006K I Express Mail N0. EV 406928085 US

This command sets a stop at the specified address. A count of 1 causes the specified

processor to halt the first time it executes the instruction. A count of 2 or more causes the

processor to halt afier that number of executions. The processor is halted just before executing

the instruction. A count of 0 does not halt the processor, but causes a sync signal to be

generated. If a second processor is set to the same break address, the count data from the first

break request is used, and each time either processor executes the instruction the count is

decremented.

20 — Reset Break

0 1 - 3 4 — 7

Command ‘ Reserved Address

This command resets a previously set break point at the specified address. Reset break

fully resets that address. If multiple processors were set to that break point, all will be reset.

28—Dump

0 1 2-3 4—7

Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the address field is specified.

DESCRIPTOR.

00 — Register - This descriptor uses both count and address fields. Both fields are

four byte based (a count of 1 transfers four bytes).

01 — Sram - This descriptor uses both count and address fields. Count is in four byte

blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

DRAM - This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address.

121

ALA-006K Express Mail No. EV 406928085 US

03 — Cstore - This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address.-

5 Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04 — CPU_STATUS; *

05 — PC;

06 — ADDR_REGA;

07 — ADDR_REGB;

08 — RAM_BASE;

09 — FILE_BASE;

0A — INSTR_REG_L;

0B — INSTR_REG_H;

0C — MAC_DATA;

0D — DMA_EVENT;

0E — MISC_EVENT;

OF — Q_IN_RDY;

10 — Q_OUT_RDY;

11 — LOCK STATUS;

12 — STACK - This returns 12 bytes; and

13 — SENSE_REG.

This register contains four bytes of data. If error status is posted for a command, if the

next command that is issued reads this register, a code describing the error in more detail may

be obtained. If any command other than a dump of this register is issued afler error status,

sense, information will be reset.

30 — Load

0 1

Command Descriptor

ALA-006K Express Mail No. EV 406928085 US

This command transfers from the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the address field is specified.

DESCRIPTOR.

00 — Register - This descriptor uses both count and address fields. Both fields are

four byte based.

01 — Sram - This descriptor uses both count and address fields. Count is in four byte

blocks. Address is in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

DRAM - This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address.

Cstore— This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, but if it is not four byte aligned, it is forced to

I the lower four byte aligned address. This applies to WCS only.

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04 — ADDR_REGA;

05 — ADDR_REGB;

06 — RAM_BASE;

O7 — FILE_BASE;

08 — MAC_DATA;

09 — Q_IN_RDY;

0A — QOUT_RDY;

0B — DBG_ADDR; and

3 8 — MAP.

This command allows an instruction in ROM to be replaced by an instruction in WCS.

30 The new instruction will be located in the Host‘buffer. It will be stored in the first eight bytes

of the buffer, with the high bits unused. To reset a mapped out instruction, map it to location

00.

123

ALA-006K ' Express-Mail No. EV 406928085 US

1—3 4—7

Address to Address to

Map To Map Out

5 HARDWARE SPECIFICATION.

FEATURES:

1) PERIPHERAL COMPONENT INTERCONNECT (PCI) INTERFACE.

a) Universal PCI interface supports both 5.0V and 3.3V signaling environments;

b) Supports both 32-bit and 64 bit PCI interface;

0) Supports PCI clock frequencies from lSMHz to 66MHz;

d) High performance bus mastering architecture;

e) Host memory based communications reduce register accesses;

f) Host memory based interrupt status word reduces register reads;

g) Plug and Play compatible;

h) PCI specification revision 2.1 compliant;

i) PCI bursts up to 512 bytes;

j) Supports cache line operations up to 128 bytes;

k) Both big-endian and little-endian byte alignments supported; and

1) Supports Expansion ROM.

2) NETWORK INTERFACE.

a) Four internal 802.3 and ethemet compliant Macs;

b) Media Independent Interface (MII) supports external PHYs;

c) lOBASE-T, 100BASE-TX/FX and 100BASE-T4 supported;

d) Full and half-duplex modes supported; V

e) Automatic PHY status polling notifies system of status change;

f) Provides SNMP statistics counters;

g) Supports broadcast and multicast packets;

h) Provides promiscuous mode for network monitoring or multiple unicast address

detection;

i) Supports “huge packets” up to 32KB;

j) Mac-layer loop-back test mode; and
124

ALA-006K ‘ Express Mail No. EV 406928085 US

k) Supports auto-negotiating Phys.

MEMORY INTERFACE.

a) External DRAM buffering of transmit and receive packets;

b) Buffering configurable as 4MB, 8MB, 16MB or 32MB;

c) 32-bit interface supports throughput of 224MB/s;

(1) Supports external FLASH ROM up to 4 MB, for diskless boot applications; and

6) Supports external serial EEPROM for custom configuration and Mac addresses.

4) PROTOCOL PROCESSOR.

a) High speed, custom, 32-bit processor executes 66 million instructions per second;

b) Processes IP, TCP and NETBIOS protocols;

0) Supports up to 256 resident TCP/IP contexts; and

d) Writable control store (WCS) allows field updates for feature enhancements.

5) POWER.

a) 3.3V chip operation; and

b) PCI controlled 5.0V/3i3V I/O cell operation.

20 6) PACKAGING.

a) 272-pin plastic ball grid array;

b) 91 PCI signals;

c) 68 M11 signals;

(1) 58 external memory signals;

e) l clock signal;

t) 54 signals split between power and ground; and

g) 272 total pins.

GENERAL DESCRIPTION.

The microprocessor (see Fig. 46) is a 32-bit; full-duplex, four channel, 10/ 1 00-Megabit

per second (Mbps), Intelligent Network Interface Controller (INIC), designed to provide high-

speed protocol processing for server applications. It combines the functions of a standard

' 125

ALA-006K . Express Mail No. EV 406928085 US

network interface controller and a protocol processor within a single chip. Although designed

specifically for server applications, the microprocessor can be used by PCs,'workstations and

routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous DRAM

(SDRAM), the INIC comprises four complete ethemet nodes. It contains four 802.3/ethemet

compliant Macs, a PCI Bus Interface Unit (BIU), a memory controller, transmit fifos, receive

fifos and a custom TCP/IP/NETBIOS protocol processor. The INIC supports 10Base-T ,

lOOBase-TX, lOOBase-FX and lOOBase-T4 via the M11 interface attachment of appropriate

Phys. ‘

The INIC Macs provide statistical information that may be used for SNMP. The Macs

operate in promiscuous mode allowing the INIC to function as a network monitor, receive

broadcast and multicast packets and implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support lOBASE-

, T, lOBASE—TZ, lOOBASE-TX, lOOBase-FX and 100BASE-T4 as well as future interface

standards. PHY identification and initialization is accomplished through host driver

initialization routines. PHY status registers can be polled continuously by the INIC and

detected PHY status changes reported to the host driver. The Mac can be configured to support

a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave

and master functions. The INIC is capable of operating in either a 64-bit or 32-bit PCI

environment, while supporting 64—bit addressing in either configuration. PCI bus frequencies

up to 66MI-lz are supported yielding instantaneous bus transfer rates of 533MB/s. Both 5.0V

and 3.3V signaling environments can be utilized by the INIC. Configurable cache-line size up

to 256B-will accommodate future architectures, and Expansion ROM/Flash support allows for

diskless system booting. Non-PC applications are supported via programmable big and little _

endian modes. Host based communication has been utilized to provide the best system

performance possible.

The INIC supports Plug-N-Play auto—configuration through the PCI configuration

space. External pull-up and pull-down resistors, on the memory I/O pins, allow selection of

various features during chip reset. Support of an external eeprom allows for local storage of

configuration information such as Mac addresses.

126

ALA-006K Express Mail No. EV 406928085 US

External SDRAM provides frame buffering, which is configurable as 4MB, 8MB, 16MB

or 32MB using the appropriate SIMMs. Use of -10 speed grades yields an external buffer

bandwidth of 224MB/s. The buffer provides temporary storage ofboth incoming and outgoing

frames. The protocol processor accesses the frames within the buffer in order to implement

TCP/IP and NETBIOS. Incoming frames are processed, assembled then transferred to host

memory under the control of the protocol processor. For transmit, data is moved from host

memory to buffers where various headers are created before being transmitted out via the Mac.

1) CORES/CELLS.

a) LSI Logic Ethernet-110 Core, 100Base and 10Base Mac with MII interface;

b) LSI Logic single port SRAM, triple port SRAM and ROM available;

c) LSI Logic PCI 66MHz, 5V compatible I/O cell; and

d) LSI Logic PLL.

2) DIE SIZE / PIN COUNT.

LSI Logic G10 process. Fig. 47 shows the area on the die of each module.

3) DATAPATH BANDWIDTH (See Fig. 48).

4) CPU BANDWIDTH (See Fig. 49).

5) PERFORMANCE FEATURES.

3) 512 registers improve performance through reduced scratch ram accesses and reduced

instructions;

b) Register windowing eliminates context-switching overhead;

c) Separate instruction and data paths eliminate memory contention;

(1) Totally resident control store eliminates stalling during instruction fetch;

e) Multiple logical processors eliminate context switching and improve real-time

response; '

f) Pipelined architecture increases operating frequency;

g) Shared register and scratch ram improve inter-processor communication;

h) Fly—by state-Machine assists address compare and checksum calculation;

i) TCP/IP-context caching reduces latency;

j) Hardware implemented queues reduce CPU overhead and latency;

k) Horizontal microcode greatly improves instruction efficiency;

1) Automatic frame DMA and status between Mac and DRAM buffer; and
l 2 7

ALA-006K . Express Mail No. EV 406928085 US

In) Deterministic architecture coupled with context switching eliminates processor stalls.

ALA-006K ’ . Express Mail No. EV 406928085 US

PROCESSOR.

The processor is a convenient means to provide a programmable state-machine which

is capable of processing incoming frames, processing host commands, directing network

traffic and directing PCI bus traffic. Three processors are implemented using shared hardware '

in a three-level pipelined architecture which launches and completes a single instruction for

every clock cycle. The instructions are executed in three distinct phases corresponding to each

of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the

destination operand, modifies the program counter (Pc), selects the address source for the

instruction to fetch, then fetches the instruction from the control store. The fetched instruction

is then stored in the instruction register at the end of the clock cycle.

The processor instructions reside in the on-chip control-store, which is implemented as

a mixture of ROM and SRAM. The ROM contains 1K instructions starting at address OxOOOO

and aliases each 0x0400 locations throughout the first 0x8000 of instruction space. The SRAM

(WCS) will hold up to 0x2000 instructions starting at address 0x8000 and aliasing each

0x2000 locations throughout the last 0x8000 of instruction space. The ROM and SRAM are

both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate mapping

ram provides bits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM

based instructions. The mapping ram has a configuration of 128x7 which is insufficient to

allow a separate map address for each of the 1K ROM locations. To allow re-mapping of the

entire 1K ROM space, the map ram address lines are connected to the address bits Fetch[9:3].

The result is that the ROM is re-mapped in blocks of 8 contiguous locations.

The second instruction phase decodes the instruction which was stored in the

instruction register. It is at this point that the map. address is checked for a non-zero value

‘Which will cause the decoder to force a Jmp instruction to the map address. If a non—zero value

is detected then the decoder selects the source operands for the Alu operation based on the

values of the OpdASel, OdeSel and Alqu fields. These operands are then stored in the

decode register at the end of the clock cycle. Operands may originate from File, SRAM, or

flip-flop based registers. The second instruction phase is also where the results of the previous

instruction are written to the SRAM.

ALA-006K Express Mail No. EV 406928085 US

The third instruction phase is when the actual Alu operation is performed, the test

condition is selected and the Stack push and pop are implemented. Results of the Alu

operation are stored in the results register at the end of the clock cycle.

Fig. 50 is a block diagram of the CPU. Fig. 50 shows the hardware functions

associated with each of the instruction phases. Note that various functions have been

distributed across the three phases of the instruction execution in order to minimize the

combinatorial delays within any given phase.

INSTRUCTION SET.

The micro-instructions are divided into six types according to the program control

directive. The micro-instruction is further divided into sub-fields for which the definitions are

dependent upon the instruction type. The six instruction types are listed in Fig. 51.

All instructions (see Fig. 51) include the Alu operation (Alqu), operand “A” select

(OpdASel), operand “B” select (OdeSel) and Literal fields. Other field usage depends upon

the instruction type.

The “jump condition code” (Jcc) instruction causes the program counter to be altered if

the condition selected by the “test select” (TstSel) field is asserted. The new program counter

(Pc) value is loaded from either the Literal field or the AluOut as described in the following

section and the Literal field may be used as a source for the Alu or the ram address if the new

Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally.

The new program counter (Pc) value is loaded from either the Literal field or the AluOut as

described in the following section. The format allows instruction bits 23: 16 to be used to

perform a flag operation and the Literal field may be used as a source for the Alu or the ram

. address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counter to be altered

unconditionally. The new program counter (Pc) value is loaded from either the Literal field or

the AluOut as described in the following section. The old program counter value is stored on

the top location of the Pc-Stack which is implemented as a LIFO memory. The format allows

instruction bits 23:16 to be used to perform a flag operation and the Literal field may be used

as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

130'

ALA-006K Express .Mail No. EV 406928085 US

The “Nxt” (Nxt) instruction causes the program counter to increment. The format

allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be

used as a source for the Alu or the ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction I

in which the “flag operation” (FlgSel) field is set to a value of Ohff. The current Pc value is

replaced with the last value stored in the stack. The Literal field may be used as a source for

the Alu or the ram address.

The Map instruction is provided to allow replacement of instructions which have been

stored in ROM and is implemented any time the “map enable” (MapEn) bit has been set and

the content of the “map address” (MapAddr) field is non-zero. The instruction decoder forces a

jump instruction with the Alu operation and destination fields set to pass the MapAddr field to

the program control block.

The program control is determined by a combination of Pngtrl, DstOpd, FlgSel and

V TstSel. The behavior of the program control is defined with. the "C-like" description in Fig. 52.

Figs. 53-61 show ALU operations, selected operands, selected tests, and flag operations.

SRAM CONTROL SEQUENCER (SramCtrl).

SRAM is the nexus for data movement within the INIC. A hierarchy of sequencers,

working in concert, accomplish the movement of data between DRAM, SRAM, CPU, ethemet

and the Pci bus. Slave sequencers, provided with stimulus from master sequencers, request

data movement operations by way of the SRAM, Pci bus, DRAM and Flash. The slave

sequencers prioritize, service and acknowledge the requests.

The data flow block diagram of Fig. 62 shows all of the master and slave sequencers of

the INIC product. Request information such as r/w, address, size, endian and alignment are

represented by each request line. Acknowledge information to master sequencers include only

the size of the transfer being acknowledged. ' i

The block diagram of Fig. 63 illustrates how data movement is accomplished for a Pci

slave write to DRAM. Note that the Psi (Pci slave in) module functions as both a master

sequencer. Psi sends a write request to the SramCtrl module. Psi requests pr to move data

from SRAM to DRAM. pr subsequently sends a read request to the SramCtrl module then

writes the data to the DRAM via the Xctrl module. As each piece of data is moved from the

SRAM to pr, pr sends an acknowledge to the Psi module.
131

ALA-006K Express Mail No. EV 406928085 US

The SRAM control sequencer services requests to store to, or retrieve data from an

SRAM organized as 1024 locations by 128 bits (16KB). The sequencer operates at a frequency

of 133MHz, allowing both a CPU access and a DMA access to occur during a standard

66MHz CPU cycle. One 133MHz cycle is reserved for CPU accesses during each 66MHz

cycle while the remaining 133MHz cycle is reserved for DMA accesses on a prioritized basis.

The block diagram of Fig. 64 shows the major functions of the SRAM control
sequencer. A slave sequencer begins by asserting a request along with r/w, ram address,

endian, data path size, data path alignment and request size. SramCtrl prioritizes the requests.

The request parameters are then selected by a multiplexer which feeds the parameters to the

SRAM via a register. The requestor provides the SRAM address which when coupled with the

other parameters controls the input and output alignment. SRAM outputs are fed to the output

aligner via a register. Requests are acknowledged in parallel with the returned data.

Fig. 65 is a timing diagram depicting two ram accesses during a single 66MHz clock

cycle. .

EXTERNAL MEMORY CONTROL (Xctrl).

Xctrl (See Fig. 66) provides the facility whereby pr, er, Dcfg and Eectrl access

external Flash and DRAM. Xctrl includes an arbiter, i/O registers, data multiplexers, address

multiplexers and control multiplexers. Ownership of the external memory interace is requested

by each block and granted to each of the requesters by the arbiter function. Once ownership

has been granted the multiplexers select the address, data and control signals from owner,

allowing access to external memory.

EXTERNAL MEMORY READ SEQUENCER (er).

The er sequencer acts only as a slave sequencer. Servicing requests issued by master

sequencers, the er sequencer moves data from external SDRAM or flash to the SRAM, via

the Xctrl module, in blocks of 32 bytes or less. The nature of the SDRAM requires fixed burst

sizes for each of it's internal banks with ras precharge intervals between each access. By

selecting a burst size of 32 bytes for SDRAM reads and interleaving bank accesses on a 16

byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied

before burst completion for the second bank, allowing us to re-instruct the first bank and

continue with uninterrupted DRAM access. SDRAMs require a consistent burst size be
132

/

ALA-006K ‘ Express Mail No. EV 406928085 US

utilized each and every time the SDRAM is'accessed. For this reason, if an SDRAM access '

does not begin or end on a 32 byte boundary, SDRAM bandwidth will be reduced due to less

than 32 bytes of data being transferred during theburst cycle.

Fig. 67 depicts the major functional blocks of the er external memory read sequencer.

The first step in servicing a request to move data from SDRAM to SRAM is the prioritization

of the master sequencer requests. Next the er sequencer takes a snapshot of the DRAM read

address and applies configuration information to determine the correct bank, row and column

address to apply. Once sufficient data has been read, the er sequencer issues a write request

to the SramCtrl sequencer which in turn sends an acknowledge to the er sequencer. The er

sequencer passes the acknowledge along to the level two master with a size code indicating

how much data was written during the SRAM cycle allowing the update of pointers and

counters. The DRAM read and SRAM write cycles repeat until the original burst request has

been completed at which point the er sequencer prioritizes any remaining requests in

preparation for the next burst cycle.

Contiguous. DRAM burst cycles are not guaranteed to the er sequencer as an

algorithm is implemented which ensures highest priority to refresh cycles followed by flash

accesses, DRAM writes then DRAM reads.

Fig. 68 is a timing diagram illustrating how data is read from SDRAM. The DRAM has

been configured for a burst of four with a latency of two clock cycles. Bank A is first

selected/activated followed by a read command two clock cycles later. The bank

select/activate for bank B is next issued as read data begins returning two clocks after the read

command was issued to bank A. Two clock cycles before we need to receive data from bank B

we issue the read command. Once all 16 bytes have been received from bank A we begin

receiving data from bank B.

EXTERNAL MEMORY WRITE SEQUENCER (pr).

The pr sequencer is a slave sequencer. Servicing requests issued by master

sequencers, the pr sequencer moves data from SRAM to the 'extemal SDRAM or flash, via

the Xctrl module, in blocks of 32 bytes or less while accumulating a checksum of the data

moved. The nature of the SDRAM requires fixed burst sizes for each of it's internal banks with

ras precharge intervals between each access. By selecting a burst size of 32 bytes for SDRAM

writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras
133

ALA-006K Express Mail No. EV 406928085 US

prechage interval for the first bank is satisfied before burst completion for the second bank,

allowing us to re-instruct the first bank and continue with uninterrupted DRAM access.

SDRAMs require a consistent burst size be utilized each and every time the SDRAM is

accessed. For this reason, if an SDRAM access does not begin or end on a 32 byte boundary,

SDRAM bandwidth will be reduced due to less than 32 bytes of data being transferred during

the burst cycle.

Fig. 69 depicts the major functional blocks of the pr sequencer. The first step in

servicing a request to move data from SRAM to SDRAM is the prioritization of the level two

master requests. Next the pr sequencer takes a Snapshot of the DRAM write address and

applies configuration information to determine the correct DRAM, bank, row and column

address to apply. The pr sequencer immediately issues a read command to the SRAM to

which the SRAM responds with both data and an acknowledge. The pr sequencer passes the

acknowledge to the level two master along with a size code indicating how much data was

read during the SRAM cycle allowing the update of pointers and counters. Once sufficient data

has been read from SRAM, the pr sequencer issues a write command to the DRAM starting

the burst cycle and computing a checksum as the data flys by. The SRAM read cycle repeats

until the original burst request has been completed at which point the pr sequencer

prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the pr sequencer as an

algorithm is implemented which ensures highest priority to refresh cycles followed by flash

accesses then DRAM writes. '

F 70 is a timing diagram illustrating how data is written to SDRAM. The DRAM has

been configured for a burst of four with a latency of two clock cycles. Bank A is first

selected/activated followed by a writecommand two clock cycles later. The bank

select/activate for bank B is next issued in preparation for issuing the second .wn'te command.

As soon as the first 16 byte burst to bank A completes we issue the write command for bank B

and begin supplying data.

PCI MASTER-OUT SEQUENCER (Pmo).

The Pmo sequencer (See Fig. 71) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmo sequencer moves data from an SRAM based fifo to a Pci

target, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus
134

ALA-006K Express Mail No. EV 406928085 US

dictates the use of the write line command to ensure optimal system performance. The write

line command requires that the‘ Pmo sequencer be capable of transferring a whole multiple

(1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers.

To accomplish this end, Pmo will automatically perform partial bursts until it has aligned the

transfers on a cache line boundary at which time it will begin usage of the write line command.

The SRAM fifo depth, of 256 bytes, has been chosen in order to allow Pmo to accommodate

cache line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmo will

perform multiple, contiguous cache line bursts until it has exhausted the supply of data.
Pmo receives requests from two separate sources; the DRAM to Pci (D2p) module and

the SRAM to Pci (S2p) module. An operation first begins with prioritization of the requests

where the S2p module is given highest priority. Next, the Pmo module takes a Snapshot of the

SRAM fifo address and uses this to generate read requests for the SramCtrl sequencer. The

Pmo module then proceeds to arbitrate for ownership of the Poi bus via the PciMstrIO module.

Once the Pmo holding registers have sufficient data and Pci bus mastership has been granted,.

the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo

sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal

pointers, counters and status. Once the Pci burst transaction has terminated, Pmo parks on the

Pci bus unless another initiator has requested ownership. Pmo again prioritizes the incoming ‘

requests and repeats the process.

PCI MASTER-OUT SEQUENCER (Pmi).

The Pmi sequencer (See Fig. 72) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmi sequencer moves data from a Pci target to an SRAM

based fifo, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus

dictates the use of the read multiple command to ensure optimal system performance. The read

multiple command requires that the Pmi sequencer be capable of transferring a cache line or

more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts

until it has aligned the transfers on a cache line boundary at which time it will begin usage of

the read multiple command. The SRAM fifo depth, of 256 bytes, has been chosen in order to

allow Pmi to accommodate cache line sizes up to 128 bytes. Provided the cache line size is

less than 128 bytes, Pmi will perform multiple, contiguous cache line bursts until it has filled

the fifo. ,

135

ALA-006K I ' Express Mail No. EV 406928085 US

Pmi receive requests from two separate sources; the Pci to DRAM (P2d) module and

the Pci to SRAM (P2s) module. An operation first begins with prioritization of the requests

where the P25 module is given highest priority. The Pmi module then proceeds to arbitrate for

ownership of the Pci bus via the PciMstrIO module. Once the Pci bus mastership has been

granted and the Pmi holding registers have sufficient data, the Pmi module begins transferring

data to the SRAM fifo.’ For each successful transfer, Pmi sends an acknowledge and encoded

size to the master sequencer, allowing it to update it's internal pointers, counters and status.

Once the Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator

has requested ownership. Pmi again prioritizes the incoming requests and repeats the process.

DRAM TO PCI SEQUENCER (D2P).

The D2p sequencer (See Fig. 73) acts is a master sequencer. Servicing channel requests

issued by the CPU, the D2p sequencer manages movement of data from DRAM to the Pci bus

by issuing requests to both the er sequencer and the Pmo sequencer. Data transfer is

accomplished using an SRAM based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, D2p fetches a DMA descriptor from an SRAM location

dedicated to the requesting channel which includes the DRAM address, Pci address, Pci endian

and request size. D2p then issues a request to the D25 sequencer causing the SRAM based fifo

to fill with DRAM data. Once the fifo contains sufficient data for a Pci transaction, D2s issues

a request to Pmo which in turn moves data from the fifo to a Pci target. The process repeats

until the entire request has been satisfied at which time D2p writes ending status in to the

SRAM DMA descriptor area and sets the channel done bit associated with that channel. D2p

then monitors the DMA channels for additional requests. Fig. 74 is an illustration showing the

major blocks involved in the movement of data from DRAM to Pci target.

PCI TO DRAM SEQUENCER (P2d).

The P2d sequencer (See Fig. 75) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P2d sequencer manages movement of data

from Pci bus to DRAM by issuing requests to both the pr sequencer and the Pmi sequencer.

Data transfer is accomplished using an SRAM based fifo through which data is staged.

136

ALA-006K ' ' Express Mail No. EV 406928085 US

P2d can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, P2d, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAM address, Pci address, Pci endian and request size. P2d then issues a request to Pmo

which in turn moves data from the Pci target to the SRAM fifo. Next, P2d issues a request to

the Km sequencer causing the SRAM based fifo contents to be written to the DRAM. The

process repeats until the entire request has been satisfied at which time P2d writes ending

status in to the SRAM DMA descriptor area and sets the channel done bit associated with that

channel. P2d then monitors the DMA channels for additional requests. Fig. 76 is an illustration

showing the major blocks involved in the movement of data from a Pci target to DRAM.

SRAM TO PCI SEQUENCER (82p).

The 82p sequencer (See Fig. 77) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the 82p sequencer manages movement of data

from SRAM to the Pci bus by issuing requests to the Pmo sequencer

S2p can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, 82p, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

SRAM address, Pci address, Pci endian and request size. 52p then issues a request to Pmo

which in turn moves data from the SRAM to a Pci target. The process repeats until the entire

request has been satisfied at which time S2p writes ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. 82p then monitors

the DMA channels for additional requests. Fig. 78 is an illustration showing the major blocks

involved in the movement of data from SRAM to Pci target.

PCI TO SRAM SEQUENCER (P2s).

The P2s sequencer (See Fig. 79) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P2s sequencer manages movement of data

from Pci bus to SRAM by issuing requests to the Pmi sequencer.

P25 can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, P23, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the
137 '

ALA-006K ' Express Mail No. EV 406928085 U5

SRAM address, Pci address, Pci endian and request size. P25 then issues a request to Pmo

which in turn moves data from the Pci target to the SRAM. The process repeats until the entire

request has been satisfied at whichtime P25 writes ending status in to the DMA descriptor area

of SRAM and sets the channel done bit associated with that channel. P25 then monitors the

DMA channels for additional requests. Fig. 80 is an illustration showing the major blocks

involved in the movement of data from a Pci target to DRAM.

DRAM TO SRAM SEQUENCER (D25). _

The D25 sequencer (See Fig. 81) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the D25 sequencer manages movement ofdata

from DRAM to SRAM by issuing requests to the er sequencer.

D25 can receive requests fi'om any of the processor's thirty-two DMA channels. Once a

command request has been detected, D25, operating as a slave sequencer, fetches a DMA

descriptor from an SRAM location dedicated to the requesting channel which includes the

DRAM address, SRAM address and request size. D25 then issues a request to the er

sequencer causing the transfer of data to the SRAM. The process repeats until the entire

request has been satisfied at which time D25 writes ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. D25 then'monitors

the DMA channels for additional requests. Fig. 82 is an illustration showing the major blocks

involved in the movement of data from DRAM to SRAM.

SRAM TO DRAM SEQUENCER (S2d).

The 82d sequencer (See Fig. 83) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the 82d sequencer manages movement of data

from SRAM to DRAM by issuing requests to the pr sequencer.

82d can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, S2d, operating as a slave sequencer, fetches a DMA

descriptor fi'om an SRAM location dedicated to the requesting channel whichiincludes the

DRAM address, SRAM address, checksum reset and request size. 82d then issues a request to

the pr sequencer causing the transfer of data to the DRAM. The process repeats until the

entire request has been satisfied at which time 82d writes-ending status in to the SRAM DMA

descriptor area and sets the channel done bit associated with that channel. 82d then monitors
1 3 8

ALA-006K Express Mail No. EV 406928085 US

the DMA channels for additional requests. Fig. 84 is an illustration showing the major blocks

involved in the movement of data from SRAM to DRAM.

PCI SLAVE INPUT SEQUENCER (Psi).

The Psi sequencer (See Fig. 85) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pci master, the Psi sequencer manages movement ofdata from

Pci bus to SRAM and Pci bus to DRAM via SRAM by issuing requests to the SramCtrl and

pr sequencers.

Psi manages write requests to configuration space, expansion rom, DRAM, SRAM and

memory mapped registers. Psi separates these Pci bus operations in to two categories with

different action taken for each. DRAM accesses result in Psi generating write request to an

SRAM buffer followed with a write request to the pr sequencer. Subsequent write or read

DRAM operations are retry terminated until the buffer has been emptied. An event notification

is set for the processor allowing message passing to occur through DRAM space.

All other Pci write transactions result in Psi posting the write information including Pci

address, Pci byte marks and Pci data to a reserved location in SRAM, then setting an event flag

which the event processor monitors. Subsequent writes or reads of configuration, expansion

rom, SRAM or registers are terminated with retry until the processor clears the event flag. This

allows the INIC pipelining levels to a minimum for the posted write and give the processor

ample time to modify data for subsequent Pci read operations.

Fig. 85 depicts the sequence of events when Psi is the target of a Pci write operation.

-Note that events 4 through'7 occur only when the write operation targets the DRAM.

PCI SLAVE OUTPUT SEQUENCER (Pso). ”

I The Pso sequencer (See Fig. 86) acts as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pci master, the Pso sequencer manages movement of data to Pci

bus from SRAM and to Pci bus from DRAM via SRAM by issuing requests to the SramCtrl

and er sequencers. ‘

Pso manages read requests to configuration space, expansion rom, DRAM, SRAM and

memory mapped registers. Pso separates these Pci bus operations in to two categories with

different action taken for each. DRAM accesses result in Pso generating read request to the

er sequencer followed with a read request to SRAM buffer. Subsequent write or read DRAM
139 I

ALA-006K I Express Mail No. EV 406928085 US

operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information

including Pci address and Pci byte marks to a reserved location in SRAM, then setting an

event flag which the event processor monitors. Subsequent writes or reads of configuration,

expansion rom, SRAM or registers are terminated with retry until the processor clears the

event flag. This allows the INIC to use a microcoded response mechanism to return data for

the request. The processor decodes the request information, formulates or fetches the requested

data and stores it in SRAM then clears the event flag allowing Pso to fetch the data and return

it on the Pci bus.

Fig. 78 depicts the sequence of events when Pso is the target of a Pci read operation.

FRAME RECEIVE SEQUENCER (Rch).

The receive sequencer (See Fig. 87) (RcvSeq) analyzes and manages incoming packets,

stores the result in DRAM buffers, then notifies the processor through the receive queue

(Rch) mechanism. The process begins when a buffer descriptor is available at the output of

the FreeQ. RcvSeq issues a request to the ng which responds by supplying the buffer

descriptor to RcvSeq. RcvSeq then waits for a receive packet. The Mac, network, transport and

session information is analyzed as each byte is received and stored in the assembly register

(AssyReg). When four bytes of information is available, RcvSeq requests a write of the data to

the SRAM. When sufficient data has been stored in the SRAM based receive fifo, a DRAM

write request is issued to pr. The process continues until the entire packet has been received

at which point RcvSeq stores the results of the packet analysis in the beginning of the DRAM

buffer. Once the buffer and status have both been stored, RcvSeq issues a write-queue request

to ng. ng responds by storing a buffer descriptor and a status vector provided by RcvSeq.

The prooess then repeats. If RcvSeq detects the arrival of a packet before a free buffer is

available, it ignores the packet and sets the FrameLost status bit for the next received packet.

Fig. 88 depicts the sequence of events for successful reception of a packet followed by

a definition of the receive buffer and the buffer descriptor as stored on the Rch. Fig. 89

shows the Receive Buffer Descriptor. Figs. 90-92 show the Receive Buffer Format.

ALA-006K Express Mail No. EV 406928085 US

FRAME TRANSMIT SEQUENCER (thX).

The transmit sequencer (See Fig. 93) (thSeq) analyzes and manages outgoing

packets, using buffer descriptors retrieved from the transmit queue (thQ) then storing the

descriptor for the freed buffer in the free buffer queue (FreeQ). The process begins when a

buffer descriptor is available at the output of the thQ. thséq issues a request to the ng

which responds by supplying the buffer descriptor to thSeq. thSeq then issues a read

request to the er sequencer. Next, thSeq issues a read request to SramCtrl then instructs

the Mac to begin frame transmission. Once the frame transmission has completed, thSeq

stores the buffer descriptor on the FreeQ thereby recycling the buffer.

Fig. 94 depicts the sequence of events for successful transmission of a packet followed

by a definition of the receive buffer and the buffer descriptor as stored on the thQ. Fig. 95

shows the Transmit Buffer Descriptor. Fig. 96 shows the Transmit Buffer Format. Fig. 97

shows the Transmit Status Vector.

QUEUE MANAGER tng l.

The INIC includes special hardware assist for the implementation of message and

pointer queues. The hardware assist is called the queue manager (‘See Fig. 98) (ng) and

manages the movement of queue entries between CPU and SRAM, between DMA sequencers

and SRAM as well as between SRAM and DRAM. Queues comprise three distinct entities; the

queue head (QHd), the queue tail (QTl) and the queue body (Qde). QHd resides in 64 bytes

of scratch ram and provides the area to which entries will be written (pushed). QT] resides in

64 bytes of scratch ram and contains queue locations from which entries will be read (popped).

Qde resides in DRAM and contains locations for expansion of the queue in order to

minimize the SRAM space requirements. The Qde size depends upon the queue being

accessed and the initialization parameters presented during queue initialization.

ALA-006K Express Mail No. EV 406928085 US

ng accepts operations from both CPU and DMA sources (See Fig. 99). EXecuting

these operations at a frequency of 133MHz, ng reserves even cycles for DMA requests and

reserves odd cycles for CPU requests. Valid CPU operations include initialize queue (InitQ),

write queue (WrQ) and read queue (RdQ). Valid DMA requests include read body (Rdde)

and write body (Wrde). ng working in unison with Q2d and D2q generate requests to the

pr and er sequencers to control the movement of data between the QHd, QT] and Qde.

Fig. 98 shows the-major functions of ng. The arbiter selects the next operation to be

performed. The dual-ported SRAM holds the queue variables HdWrAddr, HdeAddr,

TIWrAddr, TleAddr, deWrAddr, deRdAddr and Q82. ng accepts an operation request,

fetches the queue variables from the queue ram (Qram), modifies the variables based on the

current state and the requested operation then updates the variables and issues a read or write

request to the SRAM controller. The SRAM controller services the requests by writing the tail

or reading the head and returning an acknowledge.

DMA OPERATIONS.

DMA operations are accomplished through a combination of thirtytwo DMA channels

(DmaCh) and seven DMA sequencers (Dma8eq). Each DMA channel provides a mechanism

whereby a CPU can issue a command to any of the seven DMA sequencers. Where as the

DMA channels are multi-purpose, the DMA sequencers they command are single purpose as

shown in Fig. 100.

The processors manage DMA in the following way. The processor writes a DMA

descriptor to an SRAM location reserved for the DMA channel. The format of the DMA

descriptor is dependent upon the targeted DMA. sequencer. The processor then writes the

DMA sequencer number to the channel command register. ‘

' Each of the DMA sequencers polls all thirtytwo DMA channels in search of commands

to execute. Once a command request has been detected, the DMA sequencer fetches a DMA

descriptor from a fixed location in SRAM. The SRAM location is fixed and is determined by

the DMA channel number. The DMA sequencer loads the DMA descriptor in to it's own

registers, executes the command, then overwrites the DMA descriptor with ending status.

Once the command has halted, due to completion or error, and the ending status has been

written, the DMA sequencer sets the clone bit for the current DMA channel.

142‘

ALA-006K Express Mail No. EV 406928085 US

The done bit appears in a DMA event register which the CPU can examine. The CPU

.fetches ending status from SRAM, then clears the done bit by writing zeroes to the channel

command (ChCmd) register. The channel is now ready to accept another command.

The format of the channel command register is as shown in Fig. 101. The format of the

P2d or P23 descriptor is as shown in Fig. 102. The format of the S2p or D2p descriptor is as

shown in Fig. 103. The format of the 82d, D2d or D25 descriptor is as shown in Fig. 104. The

format of the ending status of all channels is as shown in Fig. 105. The format of the ChEvnt

register is as shown in Fig. 106.‘ Fig. 107 is a block diagram of MAC CONTROL (Macctrl).

LOAD CALCULATIONS.

The following load calculations are based on the following basic formulae:

N = X * R (Little’s Law) where:

N = number ofjobs in the system (either in progress or in a queue),

X = system throughput,

R = response time (which includes time waiting in queues).

U = X * S (from Little’s Law) where:

S = service time,

U = utilization.

R = S / (l-U) for exponential service times (which is the worst—case assumption).

A 256-byte frame at 100Mb/sec takes 20 usec per frame.

4 * 100 Mbit ethemets receiving at full frame rate is:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame,

102000 frames/sec @ 512 bytes/frame,

204000 frames/sec @ 256 bytes/frame.

ALA-006K Express Mail No. EV 406928085 US

The following calculations assume 250 instructions/frame, 45nsec clock. Thus

S = 250 * 45 nsecs = 11.2 usecs.

Av Frame Size Thruput Utilization Response Nbr in system

(X) (U) (R) (N)

256 >l --204000

Instns Per Service Thruput Utilization Response

Frame Time (S) (X) (U) (R)

l 1.2 usec 102000

11.2 _ 85000 (*) 0.95
. 10180000(**)

89000(**)

102000

102000

 225 ‘ 102000

(*)
225

200

150 .

(*) shows what frame rate can be supported to get a utilization of less than 1.

(**) shows what frame rate can be supported with 8 SRAM CCB buffers and at least 8 process

contexts.

If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support 256

byte frames: -

Note that these calculations assume that response times increase exponentially as

utilization increases. This is the worst-case assumption, and probably may not be true for our

144

ALA—006K Express Mail No. EV 406928085 US

system. The figures show that to support a theoretical full 4 * 100 Mbit receive load with an

average frame size of 512 bytes, there will need to be 19 active “jobs” in the system, assuming

250 instructions per frame. Due to SRAM limitations, the current design specifies 8 SRAM

buffers for active TCBs, and not to swap a TCB out of SRAM once it is active. So Under these

limitations, the INIC will not be able to keep up with the full frame rate. Note that the initial

implementation is trying to use only 8KB of SRAM, although 16KB may be available, in

which case 19 TCB SRAM buffers could be used. This is a cost trade-off. The real point here

is the effect of instructions/frame on the throughput that can be maintained. If the

instructions/frame drops to 200, then the INIC is capable ofhandling the full theoretical load

(102000 frames/second) with only 9 active TCBs. If it drops to 100 instructions per frame,

then the INIC can handle full bandwidth at 256 byte frames (204000 frames/second) with 10

active CCBs. The bottom line is that all hardware-assist that reduces the instructions/frame is

really worthwhile. If header-assist hardware can save us 50 instructions per frame then it goes

straight to the throughput bottom line.

ALA-006K . Express Mail N0. EV 406928085 US

A method comprising:

establishing, at a host computer, a transport layer connection, including creating

a context that includes protocol header information for the connection;

transferring the protocol header information to an interface device;

transferring data from the network host to the interface device, afier transferring

the protocol header information to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from a template

header containing the protocol header information; and

prepending the headers to the segments to form transmit packets.

2. The method of claim 1, further comprising transferring status information for the

r context to the interface device during the same operation as transferring protocol header

information to the interface device.

3. The method of claim 1,.wherein creating headers for the segments includes adding

status information to the template header.

4. The method of claim 1, wherein the protocol header information includes Internet

Protocol (IP) addresses and Transmission Control Protocol (TCP) ports for the connection, and

creating headers for the segments includes forming headers containing the IP addresses and

TCP ports.

5. The method of claim 1, wherein the protocol header information includes a Media

Access Control (MAC) layer address, and creating headers for the segments includes forming

headers containing the MAC layer address.

6. The method of claim 1, further comprising adding to the context a descriptor for a

buffer, in a memory of the computer, that has been allocated for application data.

146

ALA-006K ' Express Mail Nd. EV 406928085 US

7. The method of claim 1, further comprising receiving, by the interface device, receive

packets that correspond to the context, and updating the context by the interface device to

account for the receive packets.

8. The method of claim 1, further comprising transmitting the transmit packets on a

network.

A method comprising:

creating, at a computer, a context including protocol information and status

information for a network connection, the protocol information providing a template header

for the network connection;

transferring the protocol information and status information to an interface

device;

transferring data from the computer to the interface device, after transferring the

protocol information and status information to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from the template

prepending the headers to the segrnents to form packets; and

transmitting the packets on a network.

10. The method of claim 9, wherein creating headers for the segments includes adding

current status information to the template header, the current status information being different

than the status information that was transferred to the interface device.

11. The method of claim 9, wherein the protocol header information includes Internet

Protocol (IP) addresses and Transmission Control Protocol (TCP) ports for the connection, and

creating headers for the segments includes forming headers containing the IP addresses and

TCP ports. V

ALA-006K . Express Mail No. EV 406928085 US

12. The method of claim 9, wherein the protocol header information includes a Media

Access Control (MAC) layer address, and creating headers for the segments includes forming

headers containing the MAC layer address.

13. The method of claim 9, further comprising transferring to the interface device a

descriptor for a buffer, in a memory of the computer, that has been allocated for application

data that is transferred according to the protocol information.

14. The method of claim 9, further comprising receiving, by the interface device, receive

packets that correspond to the protocol information, and updating the status information by the

interface device to account for the receive packets.

15. A method comprising:

establishing, at a computer, a Transmission Control Protocol (TCP) connection

corresponding to a context that includes status information and Internet Protocol (IP) addresses .

and TCP ports for the connection;

“ transferring the context to an interface device;

transferring data from the network host to the interface device;

dividing, by the interface device, the data into segments;

creating headers for the segments, by the interface device, from a template

header that includes the IP addresses and TCP ports; and

prepending the headers to the segments to form transmit packets.

16. The method of claim 15, wherein transferring the context to the interface device occurs

prior to transferring the data to the interface device.

17. The method of claim 15, wherein creating headers for the segments includes adding

current status information to the template header, the current status information being different

than the status information that was transferred to the interface device.

ALA-006K ‘ Express Mail No. EV 406928085 US

18. The method of claim 15, wherein the template header includes a Media Access Control

(MAC) layer address, and creating headers for the segments includes forming headers

containing the MAC layer address.

19. The method of claim 15, wherein the context includes a Media Access Control (MAC)

layer address, and creating headers for the segments includes forming headers containing the

MAC layer address.

20. The method of claim 15, further comprising adding to the context a descriptor for a

buffer, in a memory of the computer, that has been allocated for application data.

21. The method of claim 15, further comprising receiving, by the interface device, receive

packets that correspond to the context, and updating the status information by the interface

device to account for the receive packets.

ALA—006K Express Mail No. EV 406928085 US

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Crafi

David A. Higgen

Clive M. Philbrick

Daryl D. Starr

ABSTRACT OF THE DISCLOSURE

A system for protocol processing in a computer network has an intelligent network

interface card (INIC) or communication processing device (CPD) associated with a host

computer. The INIC provides a fast-path that avoids protocol processing for most large multi—

packet messages, greatly accelerating data communication, The INIC also assists the host for

those message packets that are chosen for processing by host software layers. A

' communication control block for a message is defined that allows DMA controllers of the

INIC to move data, free of headers, directly to or from a destination or source in the host. The

context is stored in the INIC as a communication control block (CCB) that can be passed back

to the host for message processing by the host. The INIC contains specialized hardware

circuits that are much faster at their specific tasks than a general purpose CPU. A preferred

embodiment includes a trio ofpipelined processors-with separate processors devoted to

transmit, receive and management processing, with fiill duplex communication for four fast
Ethernet nodes.

‘ UPPER

‘ LAYER

UPPER LAYER

CONTEXT V INTERFACE STORAGE

TRANSPORT

NETWORK

- DATA LINK

INIC/CPD

RECEIVE PACKET

FROM NETWORK
BY CPD

VALIDATE PACKET,
SUMMARIZE

HEADERS

FAST PATH

CANDIDATE?

MATCH WITH

CCB ?

SEND TO

DESTINATION

IN HOST VIA

FAST-PATH

SEND PACKET TO

STACK FOR SLOW-

PATH PROCESSING

SEND PACKET TO

STACK FOR SLOW-

PATH PROCESSING

CREATE CCB FOR

MESSAGE

PROCESSOR S
WARE LOGIC

PACKET

CONTROL

SEQUENCER

FLYBY

SEQUENCER

SRAM

CONTROL

PACKET ASSEMBLY
CONTROL

SEQUENCER REGISTER

MAC

SEQUENCER

SEQUENCER

TRANSPORT

SEQUENCER

SESSION

SEQUENCER

‘ ‘ MULTIPLEXOR

PROCESSOR I
HARDWARE LOGIC 4

HARDWARE LOGIC 3 s

HARDWARE LOGIC 2

HARDWARE LOGIC 1

TDI USERS

TDI FILTER DRIVER

& UPPER LAYER INTERFACE

INIC MINIPORT DRIVER '

UPPER LAYER INTERFACE

TRANSPORT TRANSPORT

NETWORK NETWORK

DATA LINK DATA LINK ‘

INTO

MEMORY

.ADEmOHmELmZmzm
H7550

MEMORY

EXTERNAL

CTRL

HECAMETmSUBaP

RAM FILE
REGISTER

INSTRUCTION DECODER

AND

OPERAND MULTIPLEXER

SECOND REGISTER SET

ARITHMETIC LOGIC UNIT QUEUE

'. THIRD REGISTER SET »

mm?1}III[:1Emmammmmmmm_
ma3%2%mm. ommm.

_

man?MofimUmmom?$3.008mm80WWx5<W3A\Kmomma__0EEWEZEman?95D?E5Emam?

mom“a:m8m3m8m"_.“N3dab450mwwmmwmum?25ago25"925PS.63m.95g95g3%
man?2:.

EI..-._

,a
/l

m2.05

mmohm

mamgmmmcam9%gm3%gmmmm.V‘_man?MofimB450BE9200#5Emmo80mmmox5A\K@3me.23£5063mEmma.bia?D?mam‘.MmNmAmHHADZQZémEOQZ<MmQOUmQZOELUDMHmZHHDOQHDOQgm
EUHEUm

mmrwmmumamAE3M0o25man?

__ Umfi.UHmA,man?Mofimomago,5mmm<oEm.5mm9%memooSo5002502mmmode95SEEmma:12Di3:33

ax
2E

wflfiomwz<mQXmDE.Di. n23Mofim0SE
___.___.—_._.———__—-——__.1

16/89

D2Q Q2D XMT RCV

Seq Seq Seq Seq

Req Req Req Req

802 Proc 806
Req

. 808 810 804
815

_ ARBITER

‘ REGISTER A

_,

Body Body |
Write Read I

Req Req :
830 833 835 _§38 840

FIG. 18

LRU
90 _

R0 R1 R2

9 1 7 _

LRU
9 0

R0 R1 R2

1 7 5

LRU _9 0

R0 R1 R2

1 7 5 -

LRU
90

R0 R1 R2

8 1 7 -

MRU

R13 R14 R15

13 4 6

MRU

R7 R8 R9 R13 R14 R15
12 10 3 -- 4 6 9

R7 R8 R9

2 12 10

' FIG. 19A

' FIG. 19B

.‘R7R8R9
.123 8-

MRU

R13 R14 R15

- 6‘ 9 10

MRU

R13 R14 R15

’- 6 9 10

FIG. 19C

R7 R8 R9

2 12 3 -

FIG. 19D

520 2
:24" O

04
O
U)
CI]
[.11

8
24

ON ON 9“
:24" 0

CI)
HD—(

B
a?
o

$2 83 o

i ‘3o
.4

(9)Ni O

R0
3 C!

66

Il__—____—_—‘_~___.
INK3200

210

2101t,
NETWORK

PHYSICAL
LAYER

ASIC 400

ROSSECORP

470

TX

MEDVX

ACCESS RX

CTRL

HOST20

2102
SEQUENCERS

RXSEQ

2105

.§.2__!3_XI_E_S.-.

-§.2._!3.YI..E§,.

DRAM

460
STATUS

BUFFER
2223

QUEUE

MANAGER

2213 2214 2227

L—-—4¢*-~4 2210 2209

2200

SYNC PACKET MANAGER

BUFFER SYNC INTERFACE
SEQUENCER

DATA PACKET
ASSEMBLY PROCESSWKB SUMMARY]
REGBTER 2221SEQUENCER

2204

STATUS

PROTOCOL

ANALYZER

fl

DMAJCONTRCK

2206

CONTROLLER CONTROLLER

STATUS DATA

R__J
2223

FIG. 22

2214

INIC 200 HOST 20

DESTINATION

(FILE CACHE)

2306 2307 I 2311

937

MULTI-

PACKET

MESSAGE

2300

FAST-PATH

Header buffer desuiptors

31 ‘ A ' 0

III--

‘ Error bits are sent

RCV has occured

Command has been completed

Rev drop occured due to no buffers

FIG. 27

Interrupt Status

' Interrupt Mask

Header Buffer Address
Data Buffer Handle

Data Buffer Address

Command Buffer Address XM'ID

’ Command Bufler Address XMTl

Command Buffer Address XMTZ

0x20 Command Buffer Address XMB

0x24 _ Command Buffer Address RCV
0x28 pronse Buffer Address

___r__'—_—J

FIG. .28

Example of incoming ARP Frame

FIG. 33

,9%dz<3ca
3%be

SRAMmqlfixemmtsfortheReoeiveanthansrnitengines:

TCB buffels 256 bytes ‘ 16 4096
Header buffers * 16 2048

TCB hash index * 256 4096
Timers 128

DRAM Fifo queues * 16 M

~12K bytes

StmnnaryofthemainloopofReoeive:

forever {

while there are any Receive events {

if (a new event) {

if (no new context available)

‘ ignore the event;

}

call appropriate event handler to service the even:
this may make a waiting process runnable or set up

a new process to be nm (get free context hddr bufl'er,

. "PCB buffer, set the context up).
} .
while any process contexts are nmable {

rtm them by jumping to the start/resmne address;

if (process complete)
free the context;

FIG. 39*

Format of the SMB header of an SMB frame:

l
NetBlOS header

SMB header

m
m
m

Egfl

’

Notes (interesfing fields):
LENGTH 17 bit Length of 'SMB message (0 - 128K)
COM SMB command .

‘WCT Count (16 bit) of pammeter words in VWV []
VWV ' Variable number of pammeter words

BCC Bytes of data fellowing

gaff—#4

FIG. 40..

SmrnaryofflremainloopofTransmit

'forever {

while there are any Transmit events {

if (a new event) { _

if (no new context available)

ignore the event;-

}

call appropriate event handler to service the event;
this may‘rnake awaiting process runnable or set up

a new process to be run (get free context hddr bulfer,
TCB bulfer, set the context up).

}

while any process contexts are rrmable {

rim them by jumping to the start/resnme address;
if (process complete)

free the context;

Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
valid for 32 bit addressing mode.

Bit 23 - 0 Memory access

1 Configmafion access

Bit22- ORead(toHost)

1 Wlitc (to Host)

Bit 21 - 1 Data Valid

Bit 20 - 16 Reserved

Bit 15 - 0 Address

V , i ll

FIG. 42 }

SRAM Addmss Oflset

00

04

08

0C
10

.14

Configmalion Space 2 _

00 00
04 18
08 08
0C 1C
10 20

3c I ' 24

‘ Allotherreddstoconfigmation spacevdllretmn 00. . ,

FIG. 43 '

. Bit 0

Bit 1

' Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

BitS-l

Bit6-0

Bit7-l

BitS-l

1/0 accesses are not enabled

Memory accesses are enabled
Bus master is enabled

Special Cycle is not enabled
Memory-Write and Invalidate is enabled

VGA palette snooping is not enabled

- 1 Parity checking is enabled

-0 Address data stepping is not enabled
- SERR# is enabled

- 0 Fast back to back is not enabled

FIG. 44

-0

-l

-l

-0

-1

.01

66MHzcapableisenabledTl1isbitwillbesetiftheINIC
Detectsthesystemm‘nningat66lldeonreset

. User Definable Features is not enabled

East Back-toBack slave transfers enabled
ParityEnorenabled-Tlnsbitisinitializedtoo

Bit9,10-00-Fastdevioeselectwillbesctifweareat33MHz
01-Medimndeviceseleetwillbesetifweareat66lvin

Bit 11 - 1

Bit 12 - 1

Bit 13 -'1

Bit 14 _- 1

Bit-15 - 1

SERR#

Target Abort is implemented Initialized to 0.

Target Abort is implemented Initialized to 0.
Master Ab01t is implemented Initialized to 0.

is implemented to 0.

Parity enor is implemented Initialized to 0.

FIG. '45

DESCR SPEED

1Kx128 sport 4.37 ns nom,

8Kx49 spofl, 6.40 115 110111,

128x7 spon, 3.50 ns nom,

le49 32001, 5.00 ns nom,

512x32 teed; 6.10 115 110111,
.75 mm2 x 4 =

PLL, - ‘ .5 mm2 =
MISC LOGIC, 117,260 gates / (5035.gates / m2) =

NNNNNNNN
TOTAL (DRE

(Core side)2
Core side

Dir; side ‘ = cone side + 1.0 m (1/0 cells)
Dicarea =8.5mmx8.5mm

Pads needed " = 220 signals x 1.25 (vss, vdd)
LSI PBGA --

‘ ' FIG. 47 '

(10MB/s/100Base) x rain duplex) x 4 connections , so MB/s
Average frame size 512 B
Frame rate = 80MB/s / 512B s 156250 flames / s

Cpu overhead / flame = (2563 context read) + (64B header read) + g ‘
(128B context write) + (128B misc.) 512B lfiame

Total bandwidth = (512B in) + (512B out) + (512B Cpu) 1536B / flame

Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) 240MB/s

Dram Bandwidth @ 60MHz = (32 bytes / 167ns) 202MB/s

Dram Bandwidth @ 66MHz = (32bytes/ 150ns) "' 224MB/s

PCI Bandwidth required - SOME/s

PCI Bandwidth available @ 30 MHz, 32b, average . 46MB/s

PCI Bandwidth available @ 33 MHZ, 32b, average SOME/s

PCI Bandwidth available @ 60 MHz, 32b, average 92MB/s

PCI Bandwidth available @ 66 MHz, 32b, average ' 100MB/s

PCI Bandwidth available @ 30 MHz, 64b, average - 92MB/s

PCI Bandwidth available @ 33 MHz, 64b, average 100MB/s

PCI Bandwidth available @ 60 MHz, 64b, average 184MB/s

PCI Bandwidth available @ 66 MHz 64b, average ‘ 200MB/s

L________W__+___._J

FIG. 48

Receive flame interval i 512B / 40MB/s I

Instructions / flame @ 60MHz = (12.8us/fiame) / (50ns/instruc1ion)

instructions/flame _ .

Instructions / flame @ some .= (12.8us/fiame) / (45ns/instmction) = 284
instructioanrame ,

Required instructions / frame I 250 instructions/frame

\ _______ F____———Jl.

FIG. 49

CLK

38/89 I

E Sram LOAD LOAD FLAG DNA FETCH IDAD IDAD LOAD

Ctrl CII CIII DEC 3%}; GI GIN Chi Chi

immwmmmmmm mm
& BASED C C PC gm Addr

Dam 'CTX REGS CCS REG'S 512m NEG Add: &BASE Addr

4Kx32 “1dr fig ‘10“ '
; swatch INCR INCR

: gm
‘ ICAD

: Ctfi
NSTRUCH$DECODER
OPERAND MULTIPLEXER

FILE ALU ALU ALU TEST FLAG QCH PGM Smm DEBUG
& LIT PC STAck Addr

GIN OPD'S cos 0P. SEL SEL QCMD Ctrl &BASE Addr

TEsi QRAMI STAck [DAD
ALU . & INCR '

IQALUI EXCHANGE CAI
FILE ALU ALU DEST TEST FLAG QEIGS PGM Stam DEBU

. OPD & LIT PC STAck Addr
= CDI GUT CCs SEL RSLT SEL QAddT CtI-I &BASE Addr\s x

INSTRUCTION-WORD FORMAT

TYPE [55:49] mmM [41:33] [32:24] [_2_:_3_:1_6] [is—:09]

Jcc 0b0000000 0b00, Alqu, OpdASel, OdeSel, TstSel, Literal

Jmp 0b0000000 ObOl, Alqu, OpdASel, OdeSel, FlgSel, Literal

0b0000000 0b10, Alqu, OpdASel, OdeSel, FlgSel, Literal

ObOOOOOOO 01:11, Alqu, OpdASel, OdeSel, Ohff, Literal

ObOOOOOOO 0b11, Alqu, OpdASel, OdeSel, FlgSel, Literal

MapAddr OBXX, OBXXXXX, OBXXXXXXXXX, OBXXXXXXXXX, OHXX, OHXXXX

FIG. 51

SEQUENCER BEHAVIOR

if (MapEn & (MapAddr != 0b0000000)){ fire-map instr
Stackc = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = Oh8000 | Pc[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & ~DbgMd);

Fetch = DbgMd ? DbgAddernstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (Pngtrl == Jcc){ l //conditional jump
Stackc = Stackc; ‘
StackB = StackB;
StackA = StackA; .

InstrAddr = ~Tst@TstSel ? Pc:(AluDst=Pc) ? AluOutzLiteral;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (Pngtrl = Jmp){
Stackc = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddrzlnstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (Pngtrl == Jsr){ //jump subroutine
Stackc = StackB;
StackB = StackA;
StackA = Pc;

InstrAddr = (AluDst = Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddrzlnstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (FlgSel = Rts){ //retum subroutine
InstrAddr = StackA;

StackA = StackB;
StackB = Stackc;
Stackc = ErrVec;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddrzlnstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd);}

else '

InstrAddr = Pc; //continue
StackA = StackA;
StackB = StackB;
Stackc = Stackc;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddrzlnstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd);}

FIG. 52

ALU OPERATIONS

Alqu

0b00000

0b00001

0b00010

0b00011

0b00100

0b00101

0b00110

0b00111

0b0‘1000

0b01001

0b01010

0b01011

0b01100

0b01101

0b01110

0b01111

OPERATION

A:
C:

A:
C

A
C

A

(A &~(1<<B));
0; V=(B >= 32) ? 1:0;

(A&B);
0;V=0;

(Literal & B);
0; = 0;

~ ' ral &B);

|(1<<B));
;V=(B>=32)?1:0;

IB);
;V=0;

iteral | B);
; V = 0;

~Literal | B);
;"=0;

' i>=0; i--) if B[i] continue; A=i;
3

V= 0;

$1224] A B[23:16] " B[15:08] " B[07:00];= 0)

3:16],B[31:24],B[07:00],‘B[15:08]};50

5:00], B[31:16]};
=0 5

FIG. 53

//bit clear

//10gical and

//logical and

//logical and not

//bit set

//logical or

//logical or

//logical or not

//priority enc

//logical xor

//logical xor

//logical xor not

//m0ve

//hash

//swap bytes

-//swap doublets

AluOQ

0b10000

0b10001

0b10010

0b10011

0b10100

0b10101

0b10110

0b10111

0b11000

0b11001

0b11010

0b11011

0b11100

0b11101

0b11110

Oblllll

FUNCT ION

A=(A+B);
C =(A +B)[32]; V= 0;

A=(A+B+C);
C=(A+B+C)[32];V=0;

A = (Literal +~ B);
C = (Literal + B)[32]; V = O;

A = (-Literal + B);
C = (-Literal + B)[32]; V = 0;

A =(A -B);
C = (A - B)[32]; V= 0;

A=(A-B-~C);
C=(A-B-~C)[32];V=O;

A = (-A + B);
C = (-A + B)[32]; V = 0;

(A <<B);
A[31]; V = (B >= 32) ? 0:1;

(B << Literal);
B[31]; V = (Literal >= 32) ? 0:1;

A=(B<< 1);
C= B[31];V=0;

n=(A-B); 4
c = (A - B)[32]; V= 0;

A=(A>> B);
c = A[0]; V = (B >= 32)?1:o;

A = (B >> Literal);
C = A[0]; V = (Literal >= 32) ? 1:0;

A=(B>>1);
c= A[0];V=0;

n=(B-A);
C=(B-A)[32]; V=0;

FIG. 54

//add B

//add B, carry

//add constant

//sub constant

/(sub B

//sub B, borrow

//sub A

//sub A, borrow

//shift left A

//shift left B

//shift left B

//compare

//shift right A

//shift right B

//shift right B

//compare

OEdSel SELECTED OPERANDS

ObOOOOaaaaa File File@(0pdSel[4:0] | FileBase);
Allows paged access to [any part of the register file.

0b0001aaaaa CpuReg File@{2'b11, CpuId, OgdSel[4:(}]}Allows direct access to pu speci 1c registers.

ObOO lXXXXXX reserved Reserved for future expansion.

0b0100000XX CpuStatus 0b0000000000000BHDOOOOOOOOOOOOOOCC
This is a read-only register providing information about the Cpu executing
(0pdSel[l:0]) cycles afier the current cycle. "CC" represents a value
indicating the Cpu. Currently, only CpuId values of 0, 1 and 2 are returned.
"H" represents the current state of Hlt, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

0b0100001XX reserved Reserved for future expansion.

0b0 1 OOOIOXX Pc OXOOOOAAAA

Writing to this address causes the program control logic to use AluOut as the
new Pc value in the event of a Jmp, Jcc or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Ma , or
Rts, the register write has no effect. Reading this register returns the vafixe in
Pc for the Cpu executing (OpdSel[l :0]) cycles after the current cycle.

0b010001 IXX ' OxDOOOAAAA

' Writing to this register alters the contents of the debu address register
(DbgAddr) for the Cpu executing (O dSel[l :0]) eye es after the current
cycle. DbgAddr provides the fetch a dress for the control-store when
Db Md has been selected and the Cpu is executing. DbgAddr is also used
as tfie conlIol—store address when performing a Wchs@DbgAddr or
RdWcs%Db§lAddr operation. “D” represents bit 31 of the register. It is a generalpurpose ag at is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

ObOIOOIXXXX reserved Reserved for future expansion.

0b010100000 RamAddr {0b1CCC, 0x000, Obl, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[3l] ? CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr. '

bit I name ~ description
31 v Always l.
30 PrevC , Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.

27:16 Always 0.
15 Always 1.
14:0 ' RamAddr Contents of last Sram address used.

When writing this register, if alu out[3l] is set, the previous condition codes will be overwritten with .
bits 30:28 of AluOut. IfAluOutTlS] is set, bits 14:0 will be written to the RamAddr. IfAluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr

' FIG. 55

OpdSel I

0b010100001

0b010100010

ObOlOlOOOll

ObOlOlOOlOO

0b010100101

0b0101001 10

0b010100111

SELECTED OPERANDs

AddrRegA OXOOOOAAAA

AddrRegA = AluOut;

A read/write o erand which loads AddrRegA used to provide the address for read and write
operations. en AddrRegA[15] is set the contents Will be presented directly to the ram, When
AddrRegA[15] is reset, the contents w1ll first be ored With the'coiitents of the RamBase register
before presentation to the ram. Writing to this register takes priority over Literal loads usmgFlgOp. Reading this register returns e current value of the register.

Ad d rRegB OxOOOOAAAA

Add rRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write
0 erations. , .

en AddrRe _B[15] is set, the contents Will be presented directly to the ram. When
AddrRegB[15fis reset, the contents will first be ored with the contents of the RamBase
register before resentation to the ram. Writing to this register takes priority over Literal loadsusmg FlgOp. eading this register returns the current va ue of the register.

AddrRegAb OXOOOOAAAA
Add rRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA usedto provide the address

for read and write operations Writing to this re ister takes(priority over Literal loads usmgFlgOp. Reading this register returns the value XOOOOOOO

RamBase OXOOOOAAAA
RamBase = AluOut;

A read/write register which provides. the base address for ram read and write cycles. When
RamAddrUS] 15 set the contents Will not be used. When RamAddr[15] is reset, the contents
Will first be ored_w1tli the contents of the RamBase re ister before presentation to the ram.
Reading this register returns the value fOr the current pu.

FileBase 0b0000000000OOOOOOOOOOOOOAAAAAAAAA
FileBase = AluOut'

FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);

A read/write register which rovides the base address for file read and write eagles. When
OgdSel 8] is set the conten will not be used and OpdSel will be presented neat] to the
a dress mes of the file. When OBdSel[8] is reset, the contents w111 first be.ored.Wi thecontents of the FileBase register efore presentation to the file. Reading this register returns the
value for the current Cpu.

InstrRegL OXIIIIIIII

This is a read-only re ister which returns the contents of InstrReg[3 1 :0]. Writing to
this register has no e ect.

InstrRegH OxOOIIlIII

This is a read-onl register which returns the contents of InstrReg[55232]. Writing to this
register has no e ect.

FIG. 56

M

0b010101000

0b010101001

0b010101010

0b010101011

0b010101100

I Minusl

FreeTime

LiteralL

LiteralH

SELECTED OPERANDS

Oxffffffff

This is a read—only register which supplies a value 0xffffffff.. Writing to this

register has no effect.

A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

Instr[15:0]

A read-only register. Writing to this register has no effect

, Instr[15:0]<<l6;

A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use

during Mac operations. The Mac operation, resulting fiom writing to the MacOp register,
determines the definition ofthe MacData register contents as follows.

MacOQ
Mstop

WrMcfg

Werng

RdPhy

WrPhy

MacData definition ‘ . ‘
ObXMXXXXXWXXXXHflXXXXXXXXXXXX

MacData is not used for the StopM operation.

hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdllO,

ipgrl[6:0],

ipgr2[6:0], ipgt[6:0]. -
Loads the Machg register with the contents of the MacData register. Refer to

LSI Logic's Ethernet—1 10 Core Technical Manual for detailed definitions ofthese
bits.

ObXXXXXXXXXXXXXXXXDOCXXXSSSSSSSSSSS

Loads seed[10:0] into the Mac's random number generator.

ObXXXXRRRRXXXXPPPPXXXXXXXXXXXXXXXX

Reads register[R] of phy[P].

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD

Writes register[R] of phy[P] with MacData[lS:0].

Reading this register returns prsd[15:0] of MacO which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while Machy is asserted
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a

definition of the phy register contents.

FIG. 57

9%

~ 0b010101101

b010101110.

SELECTED OPERANDs

MacOp - A write only register. Writing to this address loads the Macsel register and staRts
execution of the specified operation as follows.

AluOut
0X)OOOO(OX}VI

OXXXXXXBXM
OXXXXXX9XM
OXXXXXXaXM
OXXXXXXbXM

ChCmd

bit name .
31 :1 1 reserved

command10:8

07:05 reserved

04:00 ChId

description
Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for
Machy to be deasserted before issuing another command or changing the
contents of MacData.

WrMcfg - Writes the contents of MacData to the Machg register of MaiM}
The user must wait for Machy to be deasserted before issuing another command

or changing the contents of MacData.

Werng - Writes the contents ofMacData to the seed register ofMac[M]. The
user must wait for Machy to be deasserted before issuing another command or

changing the contents of MacData.
RdPhy - Reads the contents ofreg[R] for phy[P] on the M11 management bus of

Mac[M]. The contents may be read from MacData after Machy has been de—
asserted.

WrPhy - Writes the contents ofMacData[15:0] to e reg[R] of phy[P] on the M11
management bus of Mac[M]. The user must wait for Machy to be deasserted
before issuing another command or changing the contents of MacData.
WrAddrAL - Writes the contents ofMacData[15:0] to MacAddrA[lS:0] for Mac[M].
WrAddrAH - Writes the contents ofMacData[l l :0] to MacAddrA|47:16] for Mac[M].
WrAddrBL - Writes the contents ofMacData[15:0] to MacAddrB[15:0] for Mac[M].
WrAddrBH - Writes the contents ofMacDétaU 1:0] to MacAddrB[47: 16] for Mac[M].

A write-only register.

description

Data written to these bits is ignored;

0 — Stops execution of the current operation and clears the

corresponding event flag.
1 - Transfer data from ExtMem to ExtMem.

2 — Transfer data from Pci to ExtMem.

3 - Transfer data from ExtMem to Pci.

4 — Transfer data from Sram to ExtMem.

5 - Transfer data from ExtMem to Sram.

6 ¥ Transfer data from Pci to Sram.

7 - Transfer data from Sram to Pci.

Data written to these bits is ignored.
Provides the channel number for the channel command.

FIG. 58A

0b010101110 A read-only register.

Mum——

Each bit represents the dome flag for the respective dma channel. These

bits are set by a dmavsequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmd register.

0b0101011 11 GenEvnt A read-only register.

bit name description
31 PciRdEvnt Indicates that a PCI initiator is attempting to read a mproc.

' register.
30 PciWrEvnt Indicates that a PCI initiator has posted a write to a mproc.

register.

29 TimeEvnt An event which occurs once every 2.00 milliseconds.
reserved Reserved for future use.

0b010110000 A write-only register used to select and manipulate a Q.

name description
reserved Data written to these bits areignored.

QSz Used only during InitQ operations to specify the size of the Qde in Dram.

7 — Queue depth is 32K entries (128KB).

6 — Queue depth is 16K entries (64KB).
5 — Queue depth is 8K entries (32KB).

4 — Queue depth is 4K entries (16KB).
3 — Queue depth is 2K entries (8KB).

2 — Queue depth is 1K entries (4KB).
1 — Queue depth is 512 entries (2KB).
0 — Queue depth is 256 entries (lKB).

Specifies the queue operation to perform.
7 — Dle Disables all queues.
6 — EnQ Enables all queues.

5 — Rdde Increments the QdeRdPtr and increments the QTlWrPtr.
4 — Wrde Decrements the QdeWrPtr and increments the QHdePtr.
3 — RdQ Returns a queue entry in register QData..
2 — rsvd Reserved. Not to be used.

1 — InitQ Set the queue status to empty and initializes Q82.
0 — SelQ Selects the Qld to be utilized during writes to QData.

' FIG. 58B

4:0

0b010110001

0b010110010

0b010110011

0b010110100

- 0b010110101

0b010111000

0b010111001

0b010111010

0b010111011

0b0101lllXX

0b01 lOXXXXX Constants

ObOl l IOXXXX reserved

QId

QData

reserved

Xchtrl

QIany

QOuthy

QEmpty

QFull

reserved

Specifies the queue on which to perform all operations except Dle or EnQ.

A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data popped off during
the previous RdQ operation.

Reserved for future expansion.

A write-only register used to enable and disable Mac transmit and receive
sub-channels.

name description

reserved Data written to these bits are ignored. ,
enable When set, indicates to the Mac transmit or receive sequencer that the subchannel

contains a transmit or receive descriptor.
reserved Data written to these bits is ignored. .
Rchh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel

when cleared. '

reserved Data written to this bit are ignored.
SubCh Selects subchannel B when set or A when reset.
MacId Provides the Mac number for the subchannel enable bit.

0x0000000A

A read/write operand indicating which of the 16 entries is least recently used.
When Reading This register the least recently used entry is returned, afler which
it is automatically made the most recently used entry. This register should only be
read in conjunction with a 'Move' operation of the ALU, else the results are
unpredictable. Writing to this register forces the addressed entiy to become the
least recently used entry.

OXOOOOOOOA

A write only operand forcing the addressed entry to become the most recently
used entry.

A read-only register comprising QHd not full flags for each of the 32 queues.

A read-only register comprising QTI not empty flags for each of the 32 queues.

A read-only register comprising QEmpty flags for each of the 32 queues.

A read-only register comprising QFull flags for each of the 32 queues.

Reserved for future expansion.

{0b000, OpdSel[4:0]}

Reserved for future expansion.

FIG. 58C

OQdSel SELECTED OPERANDS

ObOl l 1 IXXXX Sram OPERATIONS

OpdSel|3| PostAddrOp
nop
RamAddr = RamAddr + (OpdSel[l :O]);

transpose Ctrl
don't trans ose
transpose ytes

OQdSel l:0| RamOpdSz
0 quadlet
l triplet
2 ' doublet
3 byte

RAM READ ATTRIBUTES SOURCE OPERAND

endiah trans- byte Sram
mode ose o_f_t:s_ data 1! sz=T sz=D sz=B

little 0 abcd Obcd 00cd 000d
little ach Oabc OObc 0000

little abXX trap OOab 00%
little aXXX trap trap 000a
little abcd Odcb OOdc 000d
little ach cha v Och 0000

little abXX trap OOba OOOb
little aXXX tra trap 000a
BIG abcd 0a c 00ab 000a
BIG Xbcd OObc OOOb
BIG XXcd OOcd OOOC

BIG XXXd p tra 000d
BIG abcd 00 a 000a
BIG Xbcd OOCb OOOb
BIG XXcd , OOdc 000C
BIG XXXd trap 000d

Hp—MHoooo——.——ooo WN—OUN—‘OWNHOWNH
RAM WRITE ATTRIBUTES SOURCE OPERAND

endian trans- Opd Alu
mode ose size out OF=2 0F=3

little 8 abca trap
little 0 Xbcd trap
little 0 XXcd
little 0 XXXd
little 1 abcd
little I Xbcd
little 1 XXcd
little 1 XXXd

big 0 abcd
big 0 Xbcd
big 0 XXcd
big 0 XXXd
big 1 abcd
big 1 Xbcd
big 1 XXcd
big I XXXd

EJUHIOUJUHOWUHLOCUUHO
Oblaaaaaaaa File File@0 dSel[8:O];

' Allows irect, non~paged, access to the top half of the register file.

FIG. 59

TstSel

ObXOOXXXXX

0bX0100000

0bX0100001

ObXOlOOOIO

0bX0100011

0bX0100100

0bX0100101

0bX0100110

0bX0100111

0bX0101000

0bX0101001

0bX010101X

0bX01011XX

0bX0110XXX

ObXOl 1 lXXX

0bx01xxxxx

0bX1XXXXXX

SELECTED TEST

Tst: TstSel[7] A AluOut[TstSel[4:0]]

Tst = TstSel[7] A C

Tst = TstSel[7] A V

Tst = TstSel[7] A Z

Tst = TstSel[7] A (Z | ~C)

Tst = TstSel[7] A PrevC

Tst = TstSel[7] A Prev;

Tst = TstSel[7] A PrevZ

Tst = TstSel[7] A (PrevZ & Z)

Tst = TstSel[7]r A QOpDn

Tst = reserved

Tst = reserved

Tst = reserVed

Tst = TstSel[7] A Lock[TstSel[2:0]]

> Lock(TstSel[2:0]) = 1;

Tst = TstSel[7] A'Lock[TstSel[2:0]]l

Tst = reserved

Tst = reserved

FIG. 60

//Alu bit

Ilearry

//error

//zero

//less or equal

//previous carry

//previous error

//previous zero

A //64b zero

//queue op okay

//tests the current value of

//the Lock then set it.

//tests the value of Lock.

FlgSel

0b00000000

0b0000000|

0b00000010

0b0000001 1

ObOOOOOIOO

' 0b00000101

0b000001 lX

0b00001xxx

0b000 lOXXX

0b0001 1xxx

0b0010XXXX

0b001 IXXXX

0b01000000

0b01000001

0b01000010

0b010000l 1

0b01000100

Ob01 OOOIXX

0b010010XX

0b010011XX

0b0101 OOXX

0b010101XX

0b01011XXX

Ob01 lXXXXX

OleXXXXXX

No operation.

SelfRst

SelBigEnd

SelLitEnd

DblMap

EnbMap

reserved

reserved

ClrLck

reserved

AddrOp

FIgScll3t2|

FlgSel 1:0

' AddrRegB = Literal;

FLAG OPERATION

Forces a self reset for the entire chip excluding the PCI configuration
registers

Selects big-endian mode for ram accesses for the current Cpu.

Selects little-endian mode for ram accesses for the current Cpu.

Disable instruction re-mapping for the current Cpu.

Enable instruction re-mapping for the current Cpu.

Lock[FlgSel[2:Oll] = 0;Clears the semap ore register bit for the current Cpu only.

AddrSelect

RamAdar.= Literal[l S]
RamAddr = AddrRegA lS
RamAddr = AddrRegB 15
if(0pdA = RamAddr)
RamAddr = AluOut[lS]
else if(0pdA = ram)

liamAddr = AddrRegB[l 5] ,e se '

RamAddr = AddrRegAHS]

addr reg load

“‘3’A drRegA = Literal;

7 Literal : (Literal l RamBase);

'.7 AddrRegA : EAddrRegA RamBase);? AddrRegB ; AddrRegB RamBase); '

?Alu0ut :(AluOutl RamBase);

7 AddrRegB : (AddrRegB I RamBase);

?AddrRegA : (AddrRegA | RamBase);

\

AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.

reserved

WchsL@Dbg

WchsH@Dbg

RdWcsL@Dbg

RdWcsH@Dbg

reserved

Step

Pch

DbgMd

Hlt

Run

reserved

reserved

reserved

Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the current AluOut data.

Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.

Causes the bits 31:0] of the control-store at address DbgAddr to be
moved to file a dress Oxlff. ‘

Causes the bits 63:32] of the control-store at address DbgAddr to be
moved to file a dress Oxlffthen increments DbgAddr.

Allows the glilu (FlgSel[1:0]) ctycles after the current cycle to execute a singleinstruction. ere is no effect i the Cpu is not halted, An offset OM is not allowed.

Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles afier the current cycle.

Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[l :0])
cycles afier the current cycle. '

Halts the Cpu (FlgSel[l :0]) cycles afier the current cycle.

Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.

FIGQ61

UH

I

ng
.

EézéégzcafiézéagzfiEézéégaa
_3dz

wééafiaaioaamgsfimogmfiéiééégmfiézMoe?WEEEQEZGEmEsBEEmEszégzzoauEs22%maa:2255%mEEE2.WE<225%WEz5%“=§o§m3§§<ggazaaggfi5%5323“gmEEG22“gamma333‘;MWaoéawéafiaaéfigmaagfiEESMEQEEEEmagic“;

i
E

Ill.
51
ES

Ill-l-%
g

I...
3: E

:ggéé’
5

age$5;

III

RECEIVE BUFFER DESCRIPTOR

bit name ' descri tion
3 1:30 reserved

29:28 size A copy of the bits in the FreeBustcr. .
27:00 address Represents the last address +1 to which flame data was transferred. The address

wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the flame received.

FIG. 89‘

TIME STAMP OFFSET 0x0008:0x000B
bit name description
31:66 Rchime The contents 0 reeClk att e comp etion o e ame recelve operation.

FIG. 90'

CHECKSUM OFFSET 0x000C:0x000F

bit name descri tion

31:15 IpChksum Reflects the value of the l? Header checksum at Eame completlon or W header
completion. If an IP datagram was not detected, the checksum rovides a total for
the entire data ortion of the received flame. The data area is efined as those bytes
received afiert e type field of an ethemet flame, the LLC header of an 802.3 flame
or the SNAP header of an 802.3-SNAP flame.

15:00 TcpChksum Reflects the value of the transport checksum at [P completion or flame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be OXOOOO.

RESERVED OFFSET 0x0010z0x0011

FRAME Data OFFSET 0x0012:END OF BUFFER

FIG. 91

RECEIVE BUFFER FORMAT

FRAME Status A

bit

31

30

29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
ll

10
10
09:08
07:06
05:04
03
02
01 :00

name
attention

CompositeErr

CtrlFrame

IpDn
802.3Dn
MacADet
MacBDet
MacMcst
Machst

IpMcst
Ichst
Frag
IpOffst
IpFlgs
IpOpts
Tchlgs
Tchpts
Tchrg
CarrierEvnt

LongEvnt '
FrameLost

reserved
NoAck

FrameTyp
kaTyp
TrnsptTyp
NetBios
reserved
channel

FRAME Status B

bit
3]
30
29
28
27
26
25
24
23
22
21
20
19:16

15:08
07:00

name
802.3Shrt
Buvar
Badet
lnvldPrmbl
CrcErr
Drblebl
CodeErr

IpHdrSh rt
IpIncmplt
IpSumErr
TcpSumErr
TcpHdrSh rt
Prcsst

MacHsh
Cth-lsh

OFFSET 0x0000:0x0003

description
Indicates one or more 0 e o owmg: CompositeErr, !IpDn, !MacADet &
!MacBDet, IpMcst, Ichst, lethernet & 1802.3Snap, !Ip4, chp.
Set when any of the error bits ofErrStatus are set or if flame processing stops
while receiving a Tcp or Udp header.
A control flame was received at our unicast or special MltCst address.
Frame processing Hlted due to exhaustion of the 1P4 length co‘unter.
Frame processing Hlted due to exhaustion of the 802.3 length counter.
Frame's destination address matched the contents of MacAddrA.
Frame's destination address matched the contents of MacAddrB.
The Mac detected a MltCst address. -
The Mac detected a BrdCst address.

The flame processor detected an IP MltCst address.
The flame processor detected an IP BrdCst address.
The flame processor detected a Frag IP datagram.
The flame processor detected a non-zero IP datagram offset.
The flame processor detected flags within the IP datagram.
The flame processor detected a header length greater than 20 for the IP datagram.
The flame processor detected an abnormal header flag for the TCP segment.
The flame processor detected a header length greater than 20 for the TCP segment.
The flame processor detected a non-zero urgent pointer for the TCP segment.Refer to El 1 0 Technical Manual.
Refer to E110 Technical Manual.

Set when an incoming flame could not be processed as a result ofan outstanding flame completion
. event not yet serv1ced by the utlllty processor.

The flame processor detected a
00 - Reserved. 01— ethemet.

00 - Unknown. 01- Ip4.
00 - Unknown. 01- reserved.
A NetBios flame was detected.

10-802.3. 11

lO-Ip6 11
10-Tcp 11

802.3 Snap..
ip other.
Udp

The Mac on which this flame was received.

OFFSET 0x0004:0x0007

descri tion .
End 0 flame was encountere e oret e 8023 en

The flame length exceded the buffer space available.
Refer to E110 Technical Manual.
Refer to El 10 Technical Manual.
Refer to E110 Technical Manual.
Refer to E110 Technical Manual.
Refer to E110 Technical Manual.

The 1P4 header length field contained a value less than 0x5.
The flame terminated before the 1P len th counter was exhausted.

The IP header checksum was not Oxfff at the completion of the IP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.
The state of the flame processor at the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b001 1 Processing unknown network data.
0b0100 Processing IP header.
ObO 101 Processing IP data (unknown transport).
ObOl 10 Processing transport header (1P data).
ObOl] 1 Processing transport data (IP data).
0b1000 Processing IP prooessing complete.
0b1001 Reserved.
0b101x Reserved.
Obl lxx Reserved.
The Mac destination-address hash. Refer to E110 Technical Manual.

The 8-bit context-hash generated by exclusive-oring all bytes of the IP source

count was e auste .

address, IP destination-address, transport source port and the transport destination port.

FIG. 92

a

II..-%%%

FREFQID

camp

thOJD

PauseClr

PauseDet

Cpu_PauseReq

FIG. 93

E

III

E:3 III.

:3

E

I m
I We I

>1:0

“5%

From PROCESSOR

From RCV_SEQ

FROM PROCESSOR

TO PROCESSOR

TRANSMIT BUFFER DESCRIPTOR

bit name description
31 ChksumEn When set, mtSeq w1 insert a ca cu ate c ec sum. en reset, mt eq w1

not alter the outgomg data stream.30 ' reserved

29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :

256B boundary. A[7:0] ignored.
2KB boundary. A[10:0] ignored.
4KB boundary. A[11:O] ignored.
32KB bonndary. A[14:0] ignored.

UJUJUJUJ IIIIIIII NN—‘O
EndAddr ' The address of the last byte to transmit plus one.

FIG. 95

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name descri tion

31:00 Primer A value to be added during checEsum accumulation. For lPV4, this should include
the psuedo-header values, protocol and Tcp—length.

RESERVED OFFSET 0x0004:0x0005

FRAME Data OFFSET 0x0006:END 0F BUFFER

FIG. 96

TRANSMIT Status VECTOR

bit name descri tion

31 LnkErr Indicates that a link status error occured before or during transmit.30:15 reserved
14 ExcessDeferral Refer to E110 Technical Manual.
13 LateAbort Refer to E11 0 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
1 1 UnderRun Refer to E110 Technical Manual.

10 Excesngth Refer to E110 Technical Manual.
09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E1] 0 Technical Manual.
07 BrdCst Refer to E1 10 Technical Manual.
06 MltCst Refer to E110 Technical Manual.
05 CrcErr Refer to E110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

FIG. 97

Eggnogn72gamed"8&5u85rea;mE.a;m

msea_msea.mu.WnMmmacaaszfimaozoaaéfimaommgao5EggMacaoégagéfig“so
Mao5Emacawmnwas5ECmeoafiao5Emacaw“masMmavMMm.mmags“M5383_.255mB;_ma;_£8503aahegaefié

DMA OPERATIONS

dma seg # name description
none This is a no operation a ess.
D2dSeq Moves data from ExtMem to ExtMem. _
DZSSeq Moves data from ExtMem bus to sram.
D2pSeq Moves data fiom ExtMem to Pci bus. '
82dSeq Moves data fi'om sram to ExtMem.
SZpSeq Moves data fi'om sram to Pei bus.
P2dSeq Moves data fi'om Pci bus to ExtMem.
PZSSeq Moves data from Pci bus to sram.

FIG. 100

description
Data written tot ese 1t5151gnore .
0 - Stops execution of the current operation and clears the corresponding event flag.1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data fi'om ExtMem bus to sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data fi'om Pci bus to Sram.

reserved Data written to these bits is ignored.
ChId Provides the channel number for the channel command.

FIG. 101

name descri tion

PciAddrH Bits [63:32] of Elie Pc1 address.

PciAder Bits [31:00} ofthe Pci address.MemA’ddr Bits [27:00 of the ExtMem address or bits [15:00] of the Sram address.
PciEndian When set, selects big endian mode for Pci transfers.
WideDbl When set, disables Pci 64-bit mode.
DstFlash Selects Flash for the external memory destination of P2d.
Xerz Bits [15:00] of the requested dma size expressed in bytes.

FIG. 102

bit name
[23:96 MemAddr
95:64 PciAddrH
63:32 PciAder

. 30 SrcFlash
23 PciEndian
22 WideDbl

Xerz

bit name
127: 124 reserved
123 :96 SrcAddr
95:60 reserved
59:32 DstAddr
30 FlashSel
22 FlashSel
15:00 Xerz

name
reserved
ChkSum

reserved
SrcStatus
DstStatus
Xerz

descri tion

Bits [27:00] of die ExtMem aadfess or hits l13:00 oi the Sram address.
Bits [63:32] of the Pci address.
Bits [31:00] ofthe Pci address. .
Selects Flash for the external memory source of D2p.
When set, selects big endian mode for Pci transfers.
When set, disables Pci 64-bit mode.

Bits [15:00] of the requested dma size expressed in bytes.

FIG. 103

description
Reserved for ture use.

Bits [27:00] of the ExtMem address or bits [15 :00] of the Sram address.Reserved for future use.

Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address,
Selects Flash for the external memory source ofD2d or D25.
Selects Flash for the external memory destination of 82p or D2d.
Bits [15 :00] of the requested dma size expressed in bytes.

FIG. 104

description
Not used.

Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d
operation only.
Reserved for future use.
TBD.
TBD.

Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the
dma operation was successful

FIG. 105

descri tion

Each bit represents the done flag for the respective dma channel. These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmd register ChCmep field.

FIG. 106

1 Attorney Docket N0.: ALA-006C

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION ,

As 3 below framed inventor, I hereby declare that:

My residence, post-office address, and citizenship are as stated below next to my name. I believe I am the original,'first and sole
inventor (if only one name is listed below), or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which a patent is sought by way of the application entitled: _

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) X ‘is attached hereto. .
and is amended by the Preliminary Amendment attached hereto.
was filed on , as Application Serial No.
and was amended on i (if applicable).

I hereby state that I have reviewed and understood the contents of' the above-identified specification, including the Claims. as amended
by any amendment referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in
37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority ,

I hereby claim foreign priority benefits under Title 35, United States Code Section ll9(a)—(d),~ of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(S) for patent or inventor’s certificate or an PCT

international application(s) designating at least one country other than the United States of America filed by me on the same subject
matter having a filing date before that of the application(s) on which priority is claimed:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed
below:

US. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international

application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the

claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of

Federal Regulations, Section 1.S6(a) which became available between the filing date ofthe prior application(s) and the national or
PCT international filing date of this application:

Declaration and Power of Attorney

‘ Attorney Docket No.: ALA—006C

Power of Attorney _ _

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith.

Mark A. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patent issued thereof. a

Full Name of Inventor: Laurence B. Boucber Citizenship; United States of America

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

Post Office '

entor’s Signature

Declaration and Power of Attorney

In. ‘ (—5 ’ Attorney Docket No.: ALA-006C

Full Name of Inventor: Stephen‘E. I. Blighmian Citizenship: United Kingdom

Residence: 3733 Arlen Court
San Jose, CA 95132

9 - nto ’s Sgnature

Full Name of Inventor: Peter K. Craft Citizenship: United States of America

Residence: . 156 Henry Street

San Francisco, CA 94114

Post Office Address:

Inventor’s Signature

Full Name of Inventor: David A. Higgen Citizenship: United Kingdom

Residence: 17880 Los Alamos DriVe

Saratoga, CA 95070

Post Office Address: Same as above

Inventor’s Signature

Declaration and Power of Attorney

l— " Attorney Docket No.:ALA—OO6C

Full Name of Inventor: Clive M. Philbrick Citizenship; Australia

Residence: 1170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

QMW ' y
Inventor’s Signature

Full Name of Inventor: Daryl D. Starr Citizenship: United States of America

Residence: 446 Folsom Conn

Milpitas, CA 95035

Declaration and Power of Attorney

Attorney Docket No: ALA-006C

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post-office address, and citizenship are as stated below next to my name. I believe I am the original, first and sole
inventor (if only one name is listed below), or an original, first and joint inventor (if plural names are listed below) of the subject

matter which is claimed and for which a patent is sought by way of the application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION"

which (check) is attached hereto. .
and is amended by the Preliminary Amendment attached hereto.
was filed on , as Application Serial No.

and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended
by any amendment referred to above. I acknowledge die duty to disclose all information which is material to patentability as defined in
37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits'under Title 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent

or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor‘s certificate or an PCT
international application(s) designating at least one country other than the United States of America filed by me on the same subject
matter having a filing date before that of the application(s) On which priority is claimed:

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed
below:

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the

claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCT international filing date of this application:

Declaration and Power of Attorney

Attorney Docket No.: ALA-006C

Power of Attorney - .
As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith.

Mark A. Lauer, Reg. No. 36,578 ' T. Lester Wallace, Reg. No. 34,748

I_hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patent issued thereof.

Full Name of Inventor: Laurence B. Boucher Citizenship: United States of America

Residence: 20605 Montalvo Heights Drive
‘ Saratoga, CA 95070

‘Post Office Address: Same as above

Inventor’s Signature

Declaration and Power of Attorney

Full Name of Inventor:

Residence:

Post Office Address:

Inventor’s Signature

Full Name of Inventor:

Residence:

Post Office Address:

Inventor’s Signature

Full Name of Inventor:

Residence: '

Post Office Address:

Stephen E. I. Blightman

3733 Arlen Court

San Jose, CA 95132

Same as above

Peter K. Craft

156 Henry Street
San Francisco, CA 94114

Same as above

David A. Higgen

17880 Los Alamos Drive

Saratoga, CA 95070

Same as above

Attorney Docket No.: ALA—006C

Citizenship: United Kingdom

Citizenship: United States of America

Citizenship: United Kingdom

r‘ .

Inventor’s Signature 3

Declaration and Power of Attorney

wz " ‘fb
Attorney Docket No.: ALA-006C

Full Name of Inventor: Clive M. Philbrick Citizenship: . Australia

Residence: 1 170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

Inventor’s Signature

Full Name of Inventor: Daryl D. Starr Citizenship: United States of America

Residence: 446 Folsom Court

Milpitas, CA 95035

Post Office Address: Same as above

Inventor’s Signature

Declaration and Power of Attorney

UVITED STATES DEPARTWEVT OF COM—MERGE
United States Patent and Trademark Office
Adtht'ss.CUI\/IIVIISSTO\IFR FOR PATENTSPO. Box 1450

A1exa11thia,‘.’ugjtia 22313-1450wvmnspmgov

ATTYDOCKETNO TOT CLAIMS IND CLAIMS

21 311/821,820 06/25/2007 2143 1800 ALA-006K
CONFIRMATION NO. 8447

24501 FILING RECEIPT
MARK A LAU ER

660. KOLL CENTER pARKWAY |||||||II IIIIIII"111111111111111111111IIIIIIIIIIIIISUITE 245

PLEASANTON, CA 94566

Date Mailed: 02/19/2008

Receipt is acknowledged of this non—provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the

application must include the following identification information: the US. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.
Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please
write to the Office of Initial Patent Examination's Filing Receipt Corrections. Please provide a copy of this
Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this

application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the
USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the
requested corrections

Applicant(s)

Laurence B. Boucher, Saratoga, CA;
Stephen E.J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;

David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;

Daryl D. Starr, Milpitas, CA;
Assignment For Published Patent Application

Alacritech, Inc.

Power of Attorney:
Thomas Wallace—34748
Mark Lauer--36578

Domestic Priority data as claimed by applicant
This application is a CON of 10/260,112 09/27/2002 PAT 7,237,036
which is a CON of 10/092,967 03/06/2002 PAT 6,591,302
which is a CIP of 10/023,240 12/17/2001 PAT 6,965,941 *

which is a CIP of 09/464,283 12/15/1999 PAT 6,427,173
which is a CIP of 09/439,603 11/12/1999 PAT 6,247,060

which is a CIP of 09/067,544 04/27/1998 PAT 6,226,680
which claims benefit of 60/061 ,809 10/14/1997
and said 10/260,112 09/27/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620
which is a CIP of 09/141,713 08/28/1998 PAT 6,389,479
which claims benefit of 60/098,296 08/27/1998

page 1 of 3

and said 10/260,112 09/27/2002

is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
and is a CIP of 09/514,425 02/28/2000 PAT 6,427,171
and is a CIP of 09/675,484 09/29/2000 PAT 6,807,581
and is a CIP of 09/675,700 09/29/2000
and is a CIP of DEB/789,366 02/20/2001 PAT 6,757,746
and is a CIP of 09/801,488 03/07/2001 PAT 6,687,758
and is a CIP of GEE/802,551 03/09/2001 PAT 7,076,568

and is a CIP of 09/802,426 03/09/2001 PAT 7,042,898
and is a CIP of 09/802,550 03/09/2001 PAT 6,658,480

and is a CIP of 09/855,979 05/14/2001 PAT 7,133,940 *
and is a CIP of 09/970,124 10/02/2001 PAT 7,124,205

(*)Data provided by applicant is not consistent with PTO records.

Foreign Applications

If Required, Foreign Filing License Granted: 02/19/2008

The country code and number of your priority application, to be used for filing abroad under the Paris Convention,

is US 11/821 ,820

Projected Publication Date: 05/29/2008

Non-Publication Request: No

Early Publication Request: No
Title

Fast-path apparatus for transmitting data corresponding to a TCP connection

Preliminary Class

709

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a US. patent extend only throughout the territory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent

in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same

effect as a regular national patent application in each PCT—member country. The PCT process simplifies the filing
of patent applications on the same invention in member countries, but does not result in a grant of "an international
patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent

protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an
application for patent in that country in accordance with its particular laws. Since the laws of many countries differ

in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must

issue a license before applicants can apply for a patent in a foreign country. The filing of a US. patent application
page 2 of 3

serves as a request for a foreign filing license. The application's filing receipt contains further information and
guidance as to the status of applicants license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the
section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it

can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish
to consult the US. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative,
this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may

call the US Government hotline at 1—866—999—HALT (1—866—999—4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier

license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless
it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter
as imposed by any Government contract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselves of current regulations especially with

respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and

Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of
Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12,
if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed
from the filing date of this application and the licensee has not received any indication of a secrecy order under 35

U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

page 3 of 3

J;

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE W
lication of Boucher et al. Ser. No: 11/821,820

Filing Date: June 25, 2007 ‘ Examiner: Unknown

Atty. Docket No: ALA-006K GAU: 2143

For: FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

February 21, 2008

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Information Disclosure Statement per 37 C.F.R. §1.98

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring two-hundred and

eighty-four documents listed on the enclosed thirteen-page form PTO-1449 to the

attention of the Examiner in the above-identified application. Copies of the two—hundred

and eight US. Patent documents are not enclosed. Copies of the seventy-five non-US.

Patent reference documents listed on the enclosed thirteen-page form PTO-1449 are not

submitted because they were submitted in earlier applications (09/801,488, 09/675,700,

and 10/260,112) which are relied upon for an earlier filing date under 35 U.S.C. §120.

Documents 209-218, 221—262, 264-267, and 283-284, were submitted in application no.

09/801,488, documents 263, 268-270, and 281, were submitted in application no.

09/675,700, and documents 219-220, and 271-282, were submitted in application no.

10/260,1 12.

Citation of these documents shall not be construed as an admission that the

documents are prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING
I hereby certify that this correspondence is being deposited with Mark Lauer

sufficient postage in the US Postal Service as first class mail in an Reg. NO. 36,578
envelope addressed to: Commissioner for Patents, PO. Box 1450, 6601 KOll Center Parkway

Alexandria, VA 22313-1450, February 21, 2008. ' Suite 245

' Pleasanton, CA 94566

Date: Z ’éz -@ g: Tel: (925) 484-9295
Mark Lauer Fax: (925) 484-9291

Information Disclosure Statement

App. Ser. No. 11/821,820

'gyo’NDlNG TO A TCP CONNECTION

US. Patent Documents

Examiner

Initial Document

4,366,538 * December 28, 1982 Johnson et al.1 ' 200

-November 27, 1984 Gary W. Boone et al
3 , 4,485,460 November 27, 1984l
4 4,589,063 May 13, 1986 Shah et al.

- 4,700,185 October 13, 1987 Thomas J. Balph et al
4,991,133 May 13, 1986 Davis et al.

in 5,056,058 October 8, 1991 Hirata et al.

5,058,110 ' October 15, 1991 , Beach et al.

5,097,442 March 17, 1992 Ward et al.

5,163,131 November 10, 1992 Row et al.C

5,212,778 May 18, 1993 Daily et al.

5,280,477 January 18, 1994 Trapp

5,289,580 February 22, 1994 Latif et al.

a
n

5,303,344 April 12, 1994 Yokoyama et al. 395

5,412,782 May 2, 1995 Hausman et al.
955,418,912 May 23, 1995 David, A. Christenson

._. A

D—i)—‘ QM
._. \l 5,448,566 September 5, 1995 Richter et al.

5,485,579 Hitz et al.
5,506,966 April 9, 1996

20 April 23, 1996
1 May 14, 1996 ' Szwerinski et al.

22 . June 4, 1996 Chesson et al.

*EXAMINER: Initial'if reference considered, whether or not'citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant. .

 Ni—Ai—A
\OOO

I

US. Department ofCommerce, Patent and Trademark Office A “cation No.1 1 1/821 ’320

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date June 25, 2007

I

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

- 5,535,375 July 9, 1996 Eshel et al.
- 5,548,730 August 20, 1996 Young et al.

25 5,566,170 .October 15, 1996 Bakke et al.

5,574,919 November 12, 1996 Arun_N. Netravali et al26

- 5,566,170 October 15, 1996 Bakke et al.
28 5,588,121 December 24, 1996 Reddin et al.

29 5,590,328 December 31, 1996 Seno et al.

30 5,592,622 January 7, 1997 lsfeld et al.

31 5,598,410 January 28, 1997 Stone 70

33 5,629,933 'May 13, 1997 411

5,634,099 May 27, 1997 Andrews et al.
3

4

5,634,127 May 27, 1997 Cloud et al.
37 5,642,482 June 24, 1997 Pardillos

38 . 5,664,114 September 2, 1997 Krech, Jr. et al.

 40

5,682,534 October 28, 1997 Kapoor et al.
5,692,130 November 25, 1997 Shobu et al.
5,699,317 December 16, 1997 Sartore et al.
5,699,350 December 16, 1997 Andrew J. Kraslavsky

5,701,434 December 23, 1997 Nakagawa

5,701,516 December 23, 1997 Cheng et al.

5,727,142 March 10, 1998

39 5,671,355 September 23, 1997 Collins

. 5,678,060 October 14, 1997 Yokoyama et al.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

V

U.S. Depanment of Commerce, Patent and Trademark Office A “cation No; 1 1/821 ’820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

I Inventors: Boucher et al.

Grou Art Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Pae 3 of 13

- 5,742,765 April 21, 1998 Wong et al. 395 200
- 5,749,095 May 5, 1998 Hagersten 711 141

827

52 5,758,084 May 26, 2008 Silverstein et al. 200.58

53 5,758,089 May 26, 2008 . Gentry et al. 200.64

54 Hamilton et al. 395

56 5,768,618 June 16, 1998 Gene R. Erickson et al 829
5,771,349 June 23, 1998 Picazo, Jr. et al. 395 188.01

07

57

58 5,778,013 July 7, 1998 Jedwab 8

59 5,778,419 July 7, 1998 Hansen et al. 112

5,794,061 August 11, 1998 Hansen et al. 800.01

5,802,258 September 1, 1998 Chen , 182.0862

63 5,802,580 September 1, 1998 McAlpice 711

64

149

5,809,328 September 15, 1998 Nogales et al. 395 825

65 5,812,775 September 22, 1998 Van Seeters et al. 3 5 200.43

5,815,646 September 29, 1998 Purcell et al. -3

67 5,828,835 October 27, 1998 Mark S. lsfeld et al 3 200.3

68 5,848,293 December 8, 1998 Gentry et al. 3 825

3

9

95

95

95

95

5

71

5,872,919 February 16, 1999 Wakeland et al. 200
70 5,878,225 March 2, 1999 Bilansky et al. 200.57

5,892,903 April 6, 1999 Christopher W. Klaus 39 187.01-
- 5,898,713 April 27, 1999 Melzer et al.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

US. Department of Commerce, Patent and Trademark Office A “cation No; 11/821,820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

Inventors: Boucher et al.

Group An Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

80 5,941,972 August 24, 1999 - Hoese et al.

81 5,950,203 September 7, 1999 Stakuis et al.

82 5,970,804 August 4, 1998 Osborne

5,987,022 November 16, 1999 Robert L. Geiger et al 383

- 5,991,299 November 23, 1999 Radogna et al. -370

5,996,013 November 30, 1999 Gary Scott Delp et al 709

5,996,024 November 30, 1999 Blumenau

6,005,849 L December 21, 1999 Roach et al.

6,009,478 December 28, 1999 Panner, et al.

6,016,513 January 18, 2000 Glen H. Lowe

6,021,446 February 1, 2000 Gentry et al.

6,021,507 February 1, 2000 Shawfu Chen

92 6,026,452 February 15, 2000 William Michael Pitts

9

6,034,963 March 7, 2000 Minami et al.3

-94 March 14, 2000 Anjur et al.
- March 21, 2000' John A. Flanders et al
-m March 21, 2000 Geoffrey B. Hoese

97 6,044,438 March 28, 2000

’EXAMlNER: initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

. US. Department of Commerce, Patent and Trademark Office A “cation No.3 1 1 /321 ,820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filin date: June 25, 2007

—

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TOP CONNECTION

Page 5 of 13

6,047,323 April 4, 2000 Michael R. Krause 227

6,047,356 April 4, 2000 Anderson et al. 129

- 6,049,528 April 11, 2000 Ariel Hendel et al 235
6,057,863 May 2, 2000 Sompong P. Olarig 520

6,061,368 May 9, 2000 Hitzelberger 537

6,065,096 May~16, 2000 Day et al. 114

6,067,569 May 23, 2000 Mohamed J. Khaki et al 709 224

6,070,200 May 30, 2000 Gates et al. 710 0

6,078,733 June 20, 2000 Randy B. Osborne 395 200.8

4 46,097,734 August 1, 2000 Joel Gotesman et al 370

108 6,101,555 August 8, 2000 Goshey et al. 709

7

321

6,111,673 August 29, 2000 Gee-Kung Chang et al
110 6,115,615 September 5, 2000 Takeshi Ota et al 455

1 11 6,122,670 September 19, 2000 Toby D. Bennett et al 709

6,141,705 October 31, 2000 Anand et al. 710 15

6,145,017 November 7, 2000 Ghaffari 710 5

6,157,955 December 5, 2000 Narad et al. 709 2

6,172,980 January 9, 2001 Flanders et al. 37 4

-

28

01

118 6,181,705 'February 24, 2004 San-Hong Kim 37 92 0

6,202,105 March 13, 2001 Gates at al. 710
6,223,242 April 24, 2001 Stephen J. Sheafor et al 132

6,226,680 ' May 1, 2001 Boucher et al. 230

392
6,246,683 June 12, 2001 Connery et al.

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in confon'nance and not considered. Include copy of this form with your communication to applicant.

0

0

US. Department of Commerce, Patent and Trademark Office A “cation No; 11/821 1820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date June 25: 2007

' .

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Pae6of13

- 6,247,060 June 12, 2001 Boucher et al.
- 6,279,051 August 21, 2001 Gates et al. 710 20

125 370

6,289,023 September 11, 2001 Brian M. Dowiing et al 419

126 6,298,403 October 2, 2001 Suri et al.
127 6,324,649 November 27, 2001 Kevin W. Eyres et al
128 December 25, 2001 Boucher et al.
129 6,343,360 January 29, 2002 David Feinleib 713 1

230

130 6,345,301 February 5, 2002 Burns et al. 7 09

131 6,345,302 February 5, 2002 . Toby D. Bennett et
132 6,356,951 March 12, 2002 Gentry et al. 709' 250

15133 6,370,599 April 9, 2002 Sanjay Anand et al 710

134 6,385,647 May 7, 2002 Dean Willis et al 709 217

135 6,389,468 May 14, 2002 Muller et al. 709 226

136 6,389,479 May 14, 2002 Boucher 709 243

137 6,393,487 May 21, 2002 Boucher, et al. 709 238 '

138 6,421,742 July 16,2002

141 6,427,171 July 30, 2002 Craft, et al.

142 6,427,173 July 30, 2002 Laurence B. Boucher et al

143 6,434,620

145 6,449,656 September 10, 2002 Elzur et al.

6,453,360 September 17,2002 Muller et al.

147 6,470,415 October 22, 2002

Examiner Date Considered v

'EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. include copy of this form with your communication to applicant.

US. Department of Commerce, Patent and Trademark Office A “cation N0; 1 1 /821 ,820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2907
-

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION Mom Docks, N05 ALA_OO6K

6,490,631 December 3, 2002
6,502,144 December 31, 2002 Jean-Paul Accarie 7

Pae 7 of 13

‘1 _k N

709

10

\l _x (.06,523,119 February 18, 2003 Dominique Vincent Pavlin et al

6,526,446 February 25, 2003 Yang et al. 709
6,570,884 May 27, 2003 . Glenn William Connery et al 370
6,591,310 July 8,2003 Stephen B. Johnson 7 0 3

6,591,302 July 8, 2003 Boucher, et al. 709

November 18, 2003 David M. Morse et al

6,650,640 November 18 2003 Shimon Muller et al 370
6,657,757 December 2. 2003 - Gee-Kung Chang et al 359

7096,658,480 December 2, 2003 Laurence B. Boucher et al

#

_x.3
N

163 6,678,283 January 13, 2004 Yakov Teplitsky 370

6,681,364 January 20, 2004 Jean Louis Calvignac et al 714
6,687,758 February 3, 2004 Craft, et al. 709

166 6,697,868 February 24, 2004 Peter K. Craft et al 709

167 6,751,665 June 15, 2004 Philbrick, et al. 709

168 6,765,901 July 20, 2004 Michael Ward Johnson et al 370

169 Boucher, et al. 709

7 6,912,522 June 28, 2005 David A. Edgar

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. include copy of this form with your communication to applicant.

U.S. Department of Commerce, Patent and Trademark Office A “cation Na: 1 1/821 1820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

Group An Unit: 2143

CORRESPONDING TO A TCP CONNECTION
Pae 8 of 13

173 6,938,092 August 30, 2005

174 6,941,386 September 6, 2005 Peter K. Craft et al

175 6,965,941 November 15, 2005 Laurence B. Boucher et al

- 6,996,070 . Starr, et al.

7,093,099 August 15, 2006 Bodas, et al.

y—nu—n WOO Ho
7,124,205 October 17, 2006 _ Craft, et al.

2 7,133,940 November 7, 2006 Blightman, et al.

7,167,927 January 23, 2007 Philbrick, et al.

18

._i 00J}.

7,174,393 February 6, 2007 Boucher, et al.

186 February 27, 2007 Blightman, et al. _

7,237,036 June 26, 2007
7,254,696 August 7, 2007 Mittal, et al.

191 7,284,070 ‘ October 16, 2007 Boucher, et al.

Published Applications

Examiner

fl
' ’ Document Name Class Subclass |i

2001/0004354 January 10, 2001 Jolitz 370 328

2001/0013059 August 9, 2001 Dawson et al. 709 217

- 2001/0014892 Augum, 2001 Gatheretal I

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. lnclude copy of this form with your communication to applicant.

H 00 LII

-

I
-

I
-

US. Department of Commerce, Patent and Trademark Office A “cation No; 1 1,821 320

' INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007 '

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TOP CONNECTION

Page 9 of 13

195 2001/0014954 August 1.6, 2001 Purcell et al.

196 2001/0025315 January 10, 2001 231

-
-2001/0053148 December 20. 2001

I-199 2002/0073223 June 13, 2002 B. Scott Darnell et al
- 2002/0112175 August 15, 2002 Makofka et al _

2003/0110344 June 1, 2003 Szezepanek et al.

2003/0165160 September 4, 2003 J Minami et al.
2004/0054814 March 1, 2004 McDaniel

2004/0059926 March 25, 2004 Angelo, et al. 713

2004/0153578 August 1, 2004 Elzur

2004/0213290 October 1, 2004 Johnson et al. 469
2004/0246974 December 9, 2004 Gyugyi et al. 370 3

Foreign Patent Documents

Examiner

Document
Number

WO 98/19412 May 7, 1998 PCT/U897“ 7257

Initial

10 WO 98/50852 November 12, 1998 PCT/USQ8/O871

1 1

December 16, 1999 PCT/US/99/13184
March 9, 2000 PCT/U898/24943

WO 01/05116 January 18, 2001 PCT/USOO/19243

*EXAMINER: lnitial if reference considered; whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered; Include copy of this form with your communication to applicant.

US. Department of Commerce, Patent and Trademark Office A “cation N0; 1 1/821 1320

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

FAST—PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Pae100f13

-217 WO 01/05123 January 18, 2001 PCT/USOO/18976
- WO 01/40960 June 7, 2001 ’ PCT/USOO/32660

219 WO 01/59966 August 16, 2001 PCT/U800/06475

220 WO 01/86430 November 15, 2001 PCT/USO1/15180

OTHER ART Includin - Author, Title, Date, Pertinent Pag_es, Etc.L

22] Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinber is working on),
1 page. printed 11/25/98. '

-Zilog product Brief entitled "285030 CMOS SCC Serial Communication Controller", Zilog Inc., 3 pages,1997.

Internet pages of Xpoint Technologies, Inc. entitled “Smart LAN Work Requests”, 5 pages, printed223
12/19/97.

-Internet pages entitled: Asante and 1OOBASE-T Fast Ethernet. 7 pages, printed 5/27/97.
225 Internet pages entitled: A Guide to the Paragon XP/S-A7 Supercomputer at Indiana University. 13

pages, printed 12/21/98.

-Richard Stevens, “TCP/IP Illustrated, Volume 1. The Protocols", pages 325—326 (1994).
-Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

Gigabit Ethernet Technical Brief, Achieving End-tO-End Performance. Alteon Networks, Inc., First
Edition, September 1996, 15 pages.

Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com,
14 pages, printed 3/15/97.

VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4". pages i—iv, 1-11, cover and copyright
page, revision 1.3, Feb. 1, 2000.

iReady News Archives article entitled "iReady Rounding Out Management Team with Two Key
Executives", http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed 11/28/98.

“Toshiba Delivers First Chips to Make Consumer Devices Internet—Ready Based On iReady's Design,"

Press Release October, 1998, 3 pages, printed 11/28/98.

Internet pages from iReady Products, web sitehttp://www.ireadyco.com/products,html, 2 pages,
downloaded 11/25/98.

iReady News Archives, Toshiba, iReady shipping Internet chip, 1 page, printed 11/25/98.

Interprophet article entitled "Technology", http://www.interprophet.com/technology.htmI, 17 pages,
printed 3/1/00.

'EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

U.S. Department of Commerce, Patent and Trademark Office A “cation No.3 1 1/821 ‘820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing data June 25’ 2007
Inventors: Boucher et a1. .

Group An Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TOP CONNECTION

Pae 11 of 13

iReady Corporation, article entitled "The l-1000 Internet Tuner", 2 pages, date unknown.

iReady article entitled "About Us Introduction", Internet pages fromhttpzllwww.iReadyco.com/about.html,
3 pages, printed 11/25/98.

iReady News Archive article entitled "Revolutionary Approach to Consumer Electronics Internet
Connectivity Funded", San Jose, CA, November 20,1997. 2 pages, printed 11/2/98.

iReady News Archive article entitled "Seiko Instruments Inc. (Sll) INTRODUCES WORLD’S FIRST
INTERNET-READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY," Santa

Clara, CA and Chiba, Japan, October 26, 1998. 2 pages, printed 11/2/98.

NEWSwatch article entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November 5,
1996, printed 11/2/98, 2 pages.

EETimes article entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner", by David
Lammers, 2 pages, printed 11/02/98.

"Comparison of Novell Netware and TCP/IP Protocol Architectures", by JS Carbone, 19 pages, printed
242 4/10/98. ' ' ‘

N4;O

241

243 Adaptec article entitled "AEA-7110C—a DuraSAN product", 11 pages, printed 10/1/01.

244 iSCSI HBA article entitled "iSCSI and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic,
Adaptec, JNl", 8 pages, printed 10/01/01.

iSCSI HBA article entitled "FCE-3210/6410 32 and 64-bit PCI—to-Fibre Channel HBA", 6 pages, printed
10/01/01.

245

246 lSCSI.com article entitled "iSCSI Storage", 2 pages, printed 10/01/01.

“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukas et al.,
IEEE Transactions on Networking, vol. 6, no. 6, December 1998, 17 pages.

lReady News article entitled “Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready
248 Based on iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98, 3

pages.

Internet pages of InterProphet entitled "Frequently Asked Questions", by Lynne Jolitz, printed 6/14/00, 4
pages.

247

“File System Design For An NFS File Server Appliance”, Article by D. Hitz, et al., 13 pages.

Adaptec Press Release article entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May
4, 2000, printed 6/14/00. ’

252 Adaptec article entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.
.N'(I!kl! *—‘O

253 Adaptec article entitled “EtherStorage White Paper", 7 pages, printed 7/19/00.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date June 25, 2007
Inventors: Boucher et a1.

—emanating

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Pae120f13

-CIBC World Markets article entitled "Computers; Storage", by J. Berlino et al., 9 pages, dated August 7,2000.

-Merrill Lynch article entitled “Storage Futures", by S. Milunovich, 22 pages, dated May 10, 2000.
256 CBS Market Watch article entitled “Montreal Start—Up Battles Data Storage Botttleneck”, by S. Taylor,

dated March 5, 2000, 2 pages, printed 3/7/00.

257 Internet-draft article entitled "SCSI/TCP (SCSI over TCP)", by J. Satran et al., 38 pages, dated February
2000, printed 5/19/00.

258 Internet pages entitled “Technical White Paper-Xpoint's Disk to LAN Acceleration Solution for Windows
NT Server, printed 6/5/97, 15 pages.

259 Jato Technologies article entitled “Network Accelerator Chip Architecture, twelve-slide presentation,
printed 8/19/98, 13 pages.

260 EETimes article entitled “Enterprise System Uses Flexible Spec, dated August 10,1998, printed
11/25/98, 3 pages.

261 Internet pages entitled “Smart Ethernet Network Interface Cards“, which Berend Ozceri is developing,
printed 11/25/98, 2 pages.

262 Internet pages of Xath corporation entitled “GigaPower Protocol Processor Product Review," printed
11/25/99, 4 pages.

263 US. Provisional Patent Application No.: 60/283,896, Titled: CRC Calculations for Out of Order PUDs,
Filed April 12, 2003, Inventor: Amit Oren, Assignee: Siliquent Technologies Ltd.

264 nternet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,“ by Robert
J. Walsh, printed 6/3/99, 25 pages.

265 Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996, ISBN 0—13-349945-6.

266 Article from Rice University entitled “LRP: A New Network Subsystem Architecture for Server Systems”,
by Peter Druschel and Gaurav Banga, 14 pages.

267 Internet RFC/STD/FYI/BCP Archives article with heading “RFC2140” entitled “TCP Control Block
Interdependence”, web address http://www.faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

268 WindRiver article entitled "Tornado: For Intelligent Network Acceleration”, copyright Wind River
Systems, 2001, 2 pages.

269 WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks",
Copyright Wind River Systems, 2002, 7 pages.

270 Intel article entitled "Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation,
1999, 8 pages.

I Schwaderer et aI., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol271

Decomposition for ASIC Implementation", from 15th Conference on Local Computer Networks, 5 pages,
Sept. 30 — Oct. 3, 1990.

‘EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TOP CONNECTION

272

7——

A lication No.: 11/821,820

Filing date: June 25, 2007

Group Art Unit: 2143

Attorney Docket No.: ALA-006K

Page13of13

I_l§each, Bob, IEEE Computer Society Press publication entitled, "UltraNet: An Architecture for Gigabit
Networking”, from 15th Conference on Local Computer Networks, 18 pages, Sept. 30 — Oct. 3, 1990.

273

274

275

276

Chesson et al., IEEE Syposium Record entitled, “The Protocol Engine Chipset", from Hot Chips Ill, 16
pages, Aug. 26-27, 1991.

Maclean et al., IEEE Global Telecommunications Conference, Globecom '91, presentation entitled, “An
Outboard Processor for High Performance Implementation of Transport Layer Protocols", 7 pages. Dec.
2—5, 1991.

Ross et al., IEEE article entitled “FX1000: A high performance single chip Gigabit Ethernet NIC”, from
Compcon ’97 Proceedings, 7 pages, Feb. 23-26, 1997.

Strayer et al., “Ch. 9: The Protocol Engine" from XTP: The Transfer Protocol, 12 pages, July 1992.

277 Publication entitled “Protocol Engine Handbook”, 44 pages, Oct. 1990.

Koufopavlou et al., lEEE Global Telecommunications Conference, Globecom ‘92, presentation entitled,

“Parallel TCP for High Performance Communication Subsystems”, 7 pages, Dec; 6-9, 1992.

Lilienkamp et al., Publication entitled "Proposed Host-Front End Protocol", 56 pages, Dec. 1984.

Thia et al. Publication entitled “High—Speed OSI Protocol Bypass Algorithm with Window Flow Control,"
Protocols for High Speed Networks, pages 53-68, 1993.

US Provisional Patent Application No.: 60/053,240, Titled: TCP/IP Network Accelerator and Method of
Use, Filed July 17, 1997, Inventor: William Jolizt et aI

Thia et al. Publication entitled “A Reduced Operational Protocol Engine (ROPE) for a multiple—layer
bypass architecture," Protocols for High Speed Networks, pages 224-239, 1995.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

'pplication of Boucher et al. Ser. No: ‘ 11/821,820

Filing Date: June 25, 2007 Examiner: . Unknown

Atty. Docket No: ALA-006K GAU: 2143

For: FAST-PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

February 29, 2008

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Supplemental Information'Disclosure Statement

Sir: 1

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring two US. Patent

documents to the Examiner’s attention. Copies of the two US. Patent documents are not

enclosed.

Citation of these documents shall not be construed as an admission that the

documents are prior art with respect to the instant invention, a representation that a search

has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING
I hereby certify that this correspondence is being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. NO. 36,578

addressed to the Commissioner for Patents, PO. Box 1450 6601 K011 Center Parkway
Alexandria, VA 22313-1450, on February 29,2008. Suite 245

Pleasanton, CA 94566

Date: Z—gfl «r? % v Tel: (925)484—9295
Mark Lauer Fax: (925) 484-9291

US. Department of Commerce, Patent and Trademark Office A . lication No.: 1 1/821 ,820

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT BY Filing date: June 25, 2007

APPLICANT Inventors: Boucher et al.

Group Art Unit: 2143

Examiner name: Unknown

Attorney Docket No.: ALA-006K

Pae 1 OH

0 H m m (Difiiweirs"u Document Filing Date, ~
Im. 1511 Number Date Name subclass If Appropriate

6/30/98

9/15/98

5,774,660 Brendel et al. 395 200.31

5,809,527 \1Cooper et al. 11 133

OTHER ART—NON PATENT LITERATURE DOCUMENTS l
'Examiner
Initial (Including Author, Title, Date, Pertinent Pages, Etc.)

-_

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address. COATAHSSIQNTER FOR PATENTSP 0 Rm I 4 50

Alexandria.Vin;irja 22313-1450www.usplo gov

APPLICATION NUMBER FILING OR 371() DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K

CONFIRMATION NO. 8447

24501
MARK A LAU ER
6601 KOLL CENTER PARKWAY
SUITE 245

PLEASANTON, CA94566

Title: Fast-path apparatus for transmitting data corresponding to a TCP connection

Publication No. US—2008—0126553—A1
Publication Date: 05/29/2008

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication

pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date
are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases
via the Internet at www.uspto.gov. The direct link to access the publication is currently

http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the
publication to applicant. A copy of the publication may be obtained from the Office upon payment

of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application

publications are handled by the USPTO's Office of Public Records. The Office of Public Records

can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759,
by mail addressed to the United States Patent and Trademark Office, Office of Public Records,
Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions

and the dates of receipt of correspondence filed in the Office, may also be accessed via the

Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of
the Patent Application Information and Retrieval (PAIR) system. The direct link to access this

status information is currently http://pair.uspto.gov/. Prior to publication, such status information is

confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling
the Patent Electronic Business Center at 1-866—217-9197.

Pre—Grant Publication Division, 703—605—4283

Doc code: IDS PTO/SB/oaa (01—09). A d to th h 02/28/2009. OMB 0651-0031

Doc description: Information Disclosure Statement (IDS) Filed UIS Pate,“ and “£2:sz ofggjeusrf’ggEPARTMEN-r OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

1 Application Number 11821820

Filing Date 2007-06-25 _

First Named Inventor Laurence B. Boucher , Saratoga, CA

Art Unit 2443

Attorney Docket Number ALA-006K

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

U.S.PATENTS

Pages,Cqumns,Lines where

Relevant Passages or Relevant
Figures Appear

Name of Patentee or Applicant
of cited Document

Patent Number Issue Date

6157944 2000-12-05 Pedersen

If you wishto add additional US. Patent citation information please click the Add button.

U.S.PATENT APPLICATION PUBLICATIONS

Pages,Columns,Lines where
Relevant Passages or Relevant

Figures Appear

Examiner Cite Publication Number Kind Publication Name of Patentee or Applicant
|nitial* Code1 Date of cited Document

If you wish to add additional US. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS

Name of Patentee or Pages,Columns,Lines
Examiner Cite Foreign Document Country Kind Publication . . where Relevant

. Applicant of Cited
Code2 | Code4 Date Document Passages or Relevant

Figures Appear

If you wish to add additional Foreign Patent Document citation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS

Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item

(book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s),
publisher, city and/or country where published.

Examine Cite
|nitials*

EFS Web 2.1.10

Application Number 11821820

First Named Inventor Laurence B. Boucher , Saratoga, CA
STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99) ,

Attorney Docket Number ALA-006K

If you wish to add additional non—patent literature document citation information please click the Add button

EXAMINER SIGNATURE

Examiner Signature Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a

citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number ofthe patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5Applicant is to place a check mark here i
English language translation is attached.

EFS Web 2.1.10

Application Number 11821820

'“F-ORMAT'OND'SCLOSURE
STATEMENT BY APPLICANT 2443
(Not for submission under 37 CFR 1.99) m

Attorney Docket Number ALA-006K

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication
I] from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the

information disclosure statement. See 37 CFR 1.97(e)(1). '

That no item of information contained in the information disclosure statement was cited in a communication from a

foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was, known to

any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure
statement. See 37 CFR 1.97(e)(2).

See attached certification statement.

Fee set forth in 37 CFR 1.17 (p) has been submitted herewith.

None

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the
form of the signature.

Name/Print Mark Lauer Registration Number

This collection of information is required by 37 CFR 197 and 1.98. The information is required to obtain or retain a benefit by the
public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR

1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you
require to complete this form and/or suggestions for reducing this burden, should be sent tothe Chief Information Officer, US.
Patent and Trademark Office, US Department of Commerce, PO. Box 1450, Alexandria, VA 22313—1450. DO NOT SEND

FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.0. Box 1450, Alexandria,
VA 22313-1450.

EFS Web 2.1.10

Electronic Acknowledgement Receipt

4756643

Confirmation Number:

Title of Invention: Fast-path apparatus for transmitting data corresponding to a TCP connection

First Named Inventor/Applicant Name: Laurence B. Boucher

Customer Number: 24501

Filer Authorized By: Mark Alan Lauer

Attorney Docket Number: ALA—006K

Filing Date: 25-JUN-2007

Time Stamp: 13:36:47

Application Type: Utility under 35 USC 111(a)

Payment information:

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number P Message Digest Part /.zip (ifappl.)

. . 161157
Informatlon Disclosure Statement (IDS)

Filed (SB/08) |DS_ALA_006K.pdf d06134e31l0bDl7c541554952939d162bSld
4532

Information:

This is not an USPTO supplied IDS fillable form

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
Ifa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DOIEOI903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

lfa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number

and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMIVEERCE
United States Patent and Trademark Office
Address: COIVLVIISSIONER FOR PATENTS

PO. Box 1450
Alexandria. Virginia 22313-1430
www uspm gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

24501 7590 11/03/2009 h INhR

MARK A LAUER JEAN GILLES,JUDE

6601K0LLCENTER
SUITE 245 2443
PLEASANTON’ CA DATE MAILED: 11/03/2009

APPLICATION NO. FILING DATE FIRST NAIVIED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447
TITLE OF INVENTION: FAS T-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

 APPLN. TYPE SMALL ENTITY ISSUE FEE DUE PUBLICATION FEE DUE PREV. PA) ISSLE FEE TOTAL FEE(S) DUE DATE DUE

NO $0nonprovisional $1510 $300 $1810 02/03/2010

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT.
PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS.
THIS APPLICATION IS SUBJECT TO WITHDRAVVAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON
PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE
MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS
STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES
NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS
PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORIVI
WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW
DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current If the SMALL ENTITY is shown as NO:
SMALL ENTITY status:

A. If the status is the same, pay the TOTAL FEE(S) DUE shown A. Pay TOTAL FEE(S) DUE shown above, or
above.

B. If the status above is to be removed, check box 5b on Part B - B. If applicant claimed SMALL ENTITY status before, or is now
Fee(s) Transmittal and pay the PUBLICATION FEE (if required) claiming SMALL ENTITY status, check box 5a on Part B - Fee(s)
and twice the amount of the ISSUE FEE shown above, or Transmittal and pay the PUBLICATION FEE (if required) and 1/2

the ISSUE FEE shown above.

II. PART B — FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office
(USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b"
of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a
request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing
the paper as an equivalent of Part B.

III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to
Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing an applications filed on or after Dec. 12, 1980 may require payment of
maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3
PTOL—85 (Rev. 08/07) Approved for use Lhrough 08/31/2010.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE
Commissioner for Patents
P.0. Box 1450
Alexandria, Virginia 22313-1450

or m (571)-273—2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where
ap ropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as
indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" formaintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note;UseBlock1f0ranychangeofaddmg) Note: A certificate of mailing can only be used for domestic mailings of the
Fee(s) Transmittal. 1'his certificate cannot be used for any other accompanying
papers. Each additional paper. such as an assignment or formal draw1ng. mustave its own certificate of mailing or transmission.

24501 7590 11/03/2009
Certificate of Mailing or Transmission

A I hereby certify that this Fee(s) Transmittal is being deposited with the United. , States Postal Service with sufficient postage for first class mail in an envelope
6601 KOLL CENTER PARKWAY addressed to the Mail Stop ISSUE FEE address above. or being facsimileSUITE 245 transmitted to the USPTO (571) 273—2885, on the date indicated below.

PLEASANTON, CA 94566 (Deposiloi's manic)

(Signature)

(Date)

APPLICATION NO. FILING DATE FIRST NAIVIED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447
TITLE OF INVENTION: FAS T-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

 APPLN. TYPE SMALL ENTITY ISSUE FEE DUE PUBLICATION FEE DUE PREV. PA) ISSLE FEE TOTAL FEE(S) DUE DATE DUE

NO $0nonprovisional $1510 $300 $1810 02/03/2010

EXAMINER ART UNIT CLASS-SUBCLASS

JEAN GILLES, JUDE 709—245000

1. Change of correspondence address or indication of "Fee Address" (37 2. For printing on the patent front page, list
CF 1 1.363). . .

(1) the names of up to 3 registered patent attorneys

3 Change of correspondence address (or Change of Correspondence or agents OR, alternatively.
Address orm PTO/SB/IZZ) atlaChed‘ (2) the name of a single firm (having as a member a
3 "Fee Address" indication (or "Fee Address" Indication form registered attorney or agent) and the names of up to
jTO/SB/47; Rev 03—02 or more recent) attached. Use of a Customer 2 reglstered patent attorneys 0r agentS. If no name IS
Number is required. listed, no name will be printed.

3. ASSIGNES NAVIE AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

)LEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for
rccordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : D lndividua D Corporation or other private group entity D Government

4a. The following fee(s) are submitted: 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
3 Issue Fee 3 A check is enclosed.

3 Publication Fee (No small entity discount permitted) 3 Payment by credit card. Form PTO—2038 is attached.
3 Advance Order — # of Copies :IThe Director is hereby authorized to charge the required fee(s), any deficiency, or credit anyoverpayment, to Deposit Account Number (enclose an extra copy of this form).

5. Change in Entity Status (from status indicated above)

3 a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. :l b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2).
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in
interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature Date

Typed or printed narne Registration No.

This collection of information is required by 37 CFR 1.311. The information is re uired to obtain or retain a benefit by the public which is to file (and by the USPTO to process)
an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. T is collection is estimated to take 12 minutes to complete, including gathering, preparing, and
submitting the completed application form to the USPTO. Time will varv de endin upon the individual case. Any comments on the amount of time you require to com lete
this form and/or suggestions for reducing this burden, should be sent to the C ief ln ormation Officer, US. Patent and Trademark Office, US. Department of Commerce, .0.
Box 1450, Alexandria, Virginia 2231371450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, PO. Box 1450,
Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection ofinformation unless it displays a valid OMB control number.

PTOI.—85 (Rev. 08/07) Approved for use through 08/31/2010. OVlB 0651—0033 US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMNEERCE
United States Patent and Trademark Office
Address: CONMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria. Virginia 22313-1430
www nspm gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447

24501 7590 11/03/2009 1: INhR

MARK A LAUER JEAN GILLES,JUDE

6601K0LLCENTER
SUITE 245 2443
PLEASANTON’ CA DATE MAILED: 11/03/2009

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 435 day(s). If the issue fee is paid on the date that is three months after the

mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half

months) after the mailing date of this notice, the Patent Term Adjustment will be 435 day (s).

If a Continued Prosecution Application (CPA) was filed in the above—identified application, the filing date that

determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval

(PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of

Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be
directed to the Customer Service Center of the Office of Patent Publication at l-(888)-786-0101 or

(571)-272-4200.

Page 3 of 3
PTOL—SS (Rev. 08/07) Approved for use Lhrough 08/31/2010.

Application No. Applicant(s)

_ _ _ 11/821,820 BOUCHER ET AL.
Examiner

JUDE J. JEAN GILLES

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address--

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included
herewith (or previously mailed), a Notice of Allowance (PTOL—85) or other appropriate communication will be mailed in due course. THIS
NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative
of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. E This communication is responsive to 06/25/2007.

2. IZI The allowed claim(s) is/are 1-21.

3. I] Acknowledgment is made ofa claim for foreign priority under 35 U.S.C. § 119(a)—(d) or (f).

a) [I All b) [I Some* c) [I None of the:

1. El Certified copies of the priority documents have been received.

2. El Certified copies of the priority documents have been received in Application No.

3. El Copies ofthe certified copies ofthe priority documents have been received in this national stage application from the

International Bureau (PCT Rule 17.2(a)).

* Certified copies not received:

Applicant has THREE MONTHS FROM THE “MAILING DATE” ofthis communication to file a reply complying with the requirements
noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.

4. [I A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER’S AMENDMENT or NOTICE OF
INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.

5. I] CORRECTED DRAWINGS (as “replacement sheets”) must be submitted.

(a) El including changes required by the Notice of Draftsperson’s Patent Drawing Review (PTO-948) attached

1) El hereto or 2) [I to Paper No./Mai| Date

(b) [I including changes required by the attached Examiner's Amendment / Comment or in the Office action of
Paper No./Mai| Date

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of
each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).

6. El DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the
attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)
1. E Notice of References Cited (PTO-892) 5. El Notice of Informal Patent Application

2. El Notice of Draftperson's Patent Drawing Review (PTO-948) 6. El Interview Summary (PTO-413),
Paper No./Mai| Date .

3. IE Information Disclosure Statements (PTO/SB/08), 7. El Examiner's Amendment/Comment
Paper No./Mail Date See Continuation Sheet

4. El Examiner's Comment Regarding Requirement for Deposit 8. IX Examiner's Statement of Reasons for Allowance
of Biological Material

9. El Other

/Jude J Jean-Gilles/

Primary Examiner, Art Unit 2443

U.S. Patent and Trademark Office

PTOL-37 (Rev. 08-06) Notice of Allowability Part of Paper No./Mai| Date 20091026

Continuation Sheet (PTOL-37) Application No. 11/821,820

Continuation of Attachment(s) 3. Information Disclosure Statements (PTO/SB/08), Paper No./Mai| Date: 02/26/2008, 03/03/2008, and
02/09/2009 .

Application/Control Number: 11/821,820

Art Unit: 2443

Information Disclosure Statement

1. The information disclosure statement (IDS) submitted on 02/26/2008,

03/03/2008, and 02/09/2009 was filed after the mailing date of the original application

on 06/25/2007. The submission is in compliance with the provisions of 37 CFR 1.97.

Accordingly, the information disclosure statement is being considered by the examiner.

Application/Control Number: 11/821,820

Art Unit: 2443

EXAMINER’S REASON FOR ALLOWANCE

2. The following is an examiner’s statement of reasons for allowance: The examiner

has conducted a thorough search for this application. No prior art of record appears to

teach the limitations of the independent claims. the closest prior art of record, Dillon et

al. US 6460085 B1 does not teach “A method comprising: establishing, at a host

computer, a transport layer connection, including creating a context that includes

protocol header information for the connection; transferring the protocol header

information to an interface device; transferring data from the network host to the

interface device, after transferring the protocol header information to the interface

device; dividing, by the interface device, the data into segments; creating headers for

the segments, by the interface device, from a template header containing the protocol

header information; and prepending the headers to the segments to form transmit

packets.” as well as the teachings of each dependent claims in accordance with the

disclosure of the specification filed on 06/25/2007.

Any comments considered necessary by applicant must be submitted no later

than the payment of the issue fee and, to avoid processing delays, should preferably

accompany the issue fee. Such submissions should be clearly labeled “Comments on

Statement of Reasons for Allowance.”

3. .Any inquiry concerning this communication or earlier communications from

examiner should be directed to Jude Jean-Gilles whose telephone number is (571) 272-

Application/Control Number: 11/821,820 Page 4

Art Unit: 2443

3914. The examiner can normally be reached on Monday-Thursday-Friday from 8:00

AM to 5:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Tonia Dollinger, can be reached on (571) 272-4170. The fax phone number

for the organization where this application or proceeding is assigned is (571) 273-3301.

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone number is (571) 272-

0800.

/Jude J Jean-Gilles/

Primary Examiner, Art Unit 2443

October 25, 2009

Application/Control No. Applicant(s)/Patent Under
Reexamination

11/821,820 BOUCHER ET AL.

Examiner Art Unit

JUDE J. JEAN GILLES 2443

U.S. PATENT DOCUMENTS

Notice of References Cited

Page 1 of1

Document Number Date . . .
Country Code-Number-Kind Code MM.YYYY ClaSSIflcatlon

12-1998 Dillon etal. 709/217

FOREIGN PATENT DOCUMENTS

Document Number . . .
Country Code-Number-Kind Code Classn‘lcatlon

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20091026

Page 1 012

' UNITED STATES PATENT AND TRADEMARK OFFICE
LNITED STATES DEPARTMENT OF CONIMERCE
United States Patent and Trademark Office
AddIess: COMMISSIONER FOR PATENTS

PO. Box 1450
AICAHJILIIIEL Vilginia 22313-1450
www nspro gov

BIB DATA SHEET

CONFIRMATION NO. 8447

SERIAL NUMBER FILINSAQFI‘E 371 (C) GROUP ART UNIT ATTORNECY) DOCKET
11/821,820 06/25/2007 ALA-006K

RULE

APPLICANTS

Laurence B. Boucher, Saratoga, CA;
Stephen E.J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;
David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;

Daryl D. Starr, Milpitas, CA;

** *************************

This application is a CON of 10/260,112 09/27/2002 PAT 7,237,036
which is a CON of 10/O92,967 03/06/2002 PAT 6,591,302
which is a CIP of 10/023,240 12/17/2001 PAT 6,965,941
which is a CIP of 09/464,283 12/15/1999 PAT 6,427,173
which is a CIP of 09/439,603 11/12/1999 PAT 6,247,060
which is a CIP of 09/067,544 04/27/1998 PAT 6,226,680
which claims benefit of 60/061 ,809 10/14/1997
and said 10/260,112 09/27/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620
which is a CIP of 09/141 ,713 08/28/1998 PAT 6,389,479
which claims benefit of 60/098,296 08/27/1998
and said 10/260,112 09/27/2002
is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
and is a CIP of 09/514,425 02/28/2000 PAT 6,427,171
and is a CIP of 09/675,484 09/29/2000 PAT 6,807,581
and is a CIP of 09/675,700 09/29/2000
and is a CIP of 09/789,366 02/20/2001 PAT 6,757,746
and is a CIP of 09/801,488 03/07/2001 PAT 6,687,758
and is a CIP of 09/802,551 03/09/2001 PAT 7,076,568
and is a CIP of 09/802,426 03/09/2001 PAT 7,042,898
and is a CIP of 09/802,55O 03/09/2001 PAT 6,658,480
and is a CIP of 09/855,979 05/14/2001 PAT 7,133,940
and is a CIP of 09/970,124 10/02/2001 PAT 7,124,205
(*)Data provided by applicant is not consistent with PTO records.

** *************************

** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **
02/19/2008

Foreign Priority claimed Cl Yes 9N0 STATE OR SHEETS TOTAL INDEPENDENT
35 USC 119(a—d) conditions met BYes D NO D Met afterAllowance
Verified and NUDE JEAN GILLES/ JG

Acknowledged Examiner's Signature Initials CA 89 21 3

ADDRESS

MARK A LAUER
6601 KOLL CENTER PARKWAY

BIB (Rev. o5/o7).

SUITE 245

PLEASANTON, CA 94566
UNITED STATES

TITLE

Fast-path apparatus for transmitting data corresponding to a TCP connection

FILING FEE FEES: Authority has been given in Paper
RECEIVED N0-

BIB (Rev. 05/07).

to charge/credit DEPOSIT ACCOUNT

for following: II 1.18 Fees

:l Other

Issue

Page 2 of 2

II All Fees

31.16 Fees (Filing)

:I 1.17 Fees (Processing Ext. of time)

)

:l Credit

Time Stamp

2009/10/26

2009/10/26

sPlurals

‘\

Operator

mU_.|smmSU

USPAT; USOCR

‘ USPGPUB;

’ USPGPUB;

"6415329").PN.

"5014265"|
"5163046"

"5313454"

"5426635"

"5594490"

"5784358"

"5850517"

"5852721"

"5896558"

"5897622"

"5912883"

"5968129"

"6038216"

"6098108"

"6101189"

"6115384"

"6130880"

"6161141"

"6215776"

"6292839"

"6298041"

"6324582"

"6385175"

x"5014265"|

"5313454"

"5426635"

"5594490"

"5784358"

"5850517"

"5852721 "

"5896558"

"5897622"

"5912883"

"5968129"

"6038216"

‘6098108"

"6101189"

"6115384"

"6130880"

"6161141"

"6215776"

"6292839"

:Search Query

6403615

\

EAST Search History (Prior Art)

Hits

EAST Search History

“ ““m“““w

file:///C1/Documents%20and%ZOSettings/jjeangilles/My%2...21820/EASTSearchHistoryJ18218207140068sibleVersion.htm (1 of 7)]0/26/09 6:05 :00 AM

EAST Search History

2009/10/26

2009/10/26

2009/10/26

(KKKKKKKKKKKKKKKKKKKKKKK-

USPAT; USOCR

mKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK“

(prepend$3

append$3))

same (protocol

near7 header)

(header with

(prepend$3

append$3»

same (protocol

near7 header)

same template

and (header with

and (header with

(prepend$3

(prepend$3

append$3)) and

(protocol near7

"6415329").PN.

header)

"6298041" |

"6324582" |

"6385175" |

"6415329").

6403615
y"5014265"|

"5313454"

"5426635"

"5594490"

"5784358"

"5850517"

"5852721"

"5896558"

"5897622"

"5912883"

"5968129"

"6038216"

"6098108"

"6101189"

"6115384"

"6130880"

"6161141"

"6215776"

"6292839"

"6298041"

"6324582"

"6385175"

\

KKKKKKKKKKKK KKK“KKV

57

file:///Cl/Documents%20and%205ettings/jjeangilles/My%2...21820/EASTSearchHistory.118218207AccessibleVersion.htm (2 of 7)]0/26/09 6:05 :00 AM

EAST Search History

‘

2009/10/26

2009/10/26

2009/10/‘2‘6‘ “ “

2009/ 1 0/26

2009/10/26

2009/10/26

rc\\2c‘_\‘\c\\2c‘_\“\“»“_“»“»“_“\

- \\\\\\\\\\\\\\\\\\\\\\\\'(

r“\\“»“_“\“»“w((

\u“““\“uuu“uw((

USOCR

mU_.|..mSU

USPAT; USOCR

USPAT; USOCRE

USPAT; USOCR

‘ us PGPUB;

‘ 091523909; “ “ “ “ “ “ “ “ “ “

us PGPUB,

us PGPUB;

USPAT;

‘ 0696976} “ “ “ “ “ “ “ “ “ “

@6135?

(protocol

near10 header)

same (prepend

near7 header)

ame prepend$3

ear10 header)

7237036"

"6591302"

"6965941"

"6427173"

"6247060"

"6226680"

"6434620"

"6389479"

"6470415"

"6427171"

"6807581"

"6757746"

"6687758"

"7076568"

"7042898"

"6658480"

7 and (("tcp"

((prepend$3 pre-

protocol) near10

spend$3)same

‘segment)

((prepend$3 pre-

header)and

pend$3) same

same ((prepend

segment)

(header with

(prepend$3))
ssame

same template

7133940"

'7124205"

7 and (protocol

near10 header)

)7 and (protocol
n

s

7 an

$3 pre-pend$3)

7 and (protocol

near10 header)

$3 pre-pend$3)

same segment)

protocol) near10

theader)same‘\thtttttfi\tttx‘txt)\tttx‘txt)cx-x\tttx‘txtttx‘t)~xx-xx~tt~§§§t§~§§§t§tttxtttx~\tttx‘tx‘t
St
S1

file:///Cl/Documents%20and%ZOSettings/jjeangilles/My%2...21820/EASTSearchHistory.118218207AccessibleVersion.htm (3 of 7)]0/26/09 6:05 :00 AM

EAST Search History

2009/10/26

2009/10/26

2009/10/26

- fi““““““““““w

. vn“““\“““““\w

\u“““\“uuu“uw‘\

m,U_.I,mSU

USPAT; USOCR;

FPRS; EPO;

FPRS, EPO,

DERWENT;
IBM TDB

DERWENT;
IBM TDB

mmHSWU

Iach ritec. asn .)
and 17

\

((prepend$3 pre-

adj4 Higgen).in.

((L‘éfi‘r‘éfiéé {3

(Olive adj4

protocol) near10

header)same

Boucher).in.

(Stephen adj4

Blightman).in.

=(Peter adj4

Philbrick).in.

(Daryl adj4

Starr).inv.

tne
m.geS

(\

F‘,\"\\‘,"‘,\"\\‘,"“\““‘““““““‘w

‘ o\\\‘

\

éCraft).in. (David

§15 and 4

$15 and 9

ea‘

:37

P“\““““““w‘\

file:///CVDocuments%20and%ZOSettings/jjeangilles/My%2...21820/EASTSearchHistoryJ18218207AccessibleVersion.htm (4 of 7)]0/26/09 6:05 :00 AM

EAST Search History

2009/1 0/26

2009/1 0/26

2009/ 1 0/26

" '2"009/70725mm

~ ‘\\\\\\\\\\\\\\\\\\\\\\\'(

USPAT; USOCR;

FPRS; EPO;

DERWENT;
| BM TDB

USPAT; USOCR;

FPRS; EPO;

USPAT; USOCR;

DERWENT;
IBM TDB

US—PGPUB;

FPRS; EPO;

DERWENT;
IBM TDB

m,U_.I,mSU

mm.

DERWENT;
| BM TDB

mm“mm

V.n\I/

.inv.

(Daryl adj4

Starr) .inv.

).in.

(Stephen adj4

iBIightman).in.

n

\I

.4 .\../Hd

Craft).inv. (David

adj4 Higgen).inv.

('(Eéfii‘é'fiéé'3819"“

(Clive adj4

Boucher).inv.

adj4 Higgen).in.

Boucher).inv.

(Z[SJFEHEé‘EEij‘éW

Craft).in. (David

(Clive adj4

adj4 Higgen).in.

Boucher).in.

Craft).in. (David

(Clive adj4

eg.nlu
a

Philbrick) .inv.

Blightman).inv.

(Daryl adj4

Starr) inv)

alachritec.asn.)

(Stephen adj4

(Peter adj4

Blightman).inv.

(Peter adj4
Craft

alach ritec. asn .)

(Stephen adj4

Blightman).in.

(Peter adj4

(Daryl adj4

Clive adj4

alachritec.asn.)

(Stephen adj4

Philbrick).in.

Starr) .inv.

Philbrick).in.

(Daryl adj4

Starr).inv.

and 7

Philbrick

(Peter adj4

(

gtt
t

5tt

t

St

Ett

file:///Cl/Documents%20and%205ettings/jjeangilles/My%2...21820/EASTSearchHistory.118218207AccessibleVersion.htm (5 of 7)]0/26/09 6:05 :00 AM

EAST Search History

m,‘

2009/10/25

2009/10/25

‘Eaaéfib7égmmmmu

2009/10/25

2009/10/25

USPAT; USOCR;

FPRS; EPO;

USOCR'

FPPS; EPO;

!

m,U_.I,mSU

mm.

USPAT; USOCR;

USPAT; USOCR;

DERWENT;
IBM TDB

DERWENT;
IBM TDB

DERWENT;
IBM TDB

IBM TDB

USPGPUB,

FPRS, EPO,

JPO;

DERWENT;

USPGPUB,

FPRS, EPO,

JPO;

DERWENT;
IBM TDB

IBM TDB

USPAT'
‘ BEN “ 0‘

mm“mm

10 (intercept

$3 relay$3 rout

t‘iEfi‘éiSB‘r‘i"58jZ""‘

$3 gateway)

connect$3

(

layer protocol))

"TCP') near10

(connect$3

header near20

connect$3

7237036 .pn.

(itgreat; Eénif
$3 forward$3

ntercept$3

information data

receipt$3)

content)same

(layer protocol))

context)

((i‘r'alir‘is‘fib'r‘tfid‘jzi‘ “

"TCF") near10

session) same

near30 header)

)1
n.nlvSSe6

session

snear

u((

(

(

(

\r
‘

Bneskn
\

126‘s“

632memmmm«W
\

file:///CI/Documents%20and%ZOSettings/jjeangilles/My%2...21820/EASTSearchHistory.118218207AccessibleVersion.htm (6 of 7)]0/26/09 6:05 :00 AM

EAST Search History

EAST Search History

§(S1 same 83 and '

\
wx

= 11" sameSB

§(S1 same 83 and
§(prepend$3
§$3append$3))§

prepend$3
§append$3)
gnear20 appel)

1same ana
§(prepend$3
§append$3)

§near20 header)

“v N“u““u“\u““u“\“““u“““““w ‘

§(S1 same 83 and
§(prepend$3
§append$3)
§near20 header

§near30 segment)
E:

gus PGPUB;
§USPAT; USOCR;

§FPRS; EPO;

§DERWENT;
§I BM_TDB

§FPRS; EPO;

gDERWENT;
BM_TDB

§FPRS; EPO;
§JPO;

§DERWENT;
§I BMiTDB

§USPAT; USOCR;
§FPPs; EPO;
§JPO;
§DERWENT;
§|BM TDB

gU PUB,

§USPAT; USOCR;
§FPRS; EPO;

§DERWENT;

§I BM_TDB

§US— PGPUB;
§USPAT; USOCR;
§FPRS; EPO;
§JPO;

§DERWENT;
§I BM_TDB

\\\\\\\\\\\\‘ ~\\\\\\\\\\\\\\\\\\\\ v\\ r\\‘ \\‘ “

§326
R

R

§
‘ON
:
1
1‘

:

=ON‘
K

E2009/10/25
$2258

$2009/10/25
$2258

. 1 ,eee0.1\ 1 11

:2009/10/25
32:59

. . V»»»-- ,»»‘»»wue»»‘»»wuwu»u»-u»‘»u»u» 1
l 1 11
‘ON
k‘
k E2009/10/25

E2300

é2009/10/25
§23:o1

- »“u“\u““u“\u““u“\“““u“\“w V

‘ $2009/10/25
23:01

10/26/09 6:04:36 AM

C:\ Documents and Settings\ jjeangilles\ My Documents\ EAST\ Workspaces\ 11821820.
wsp

file:///C1/Documents%20and%ZOSettings/jjeangilles/My%2...21820/EASTSearchHistoryJ 18218207AccessibleVersion.htm (7 of 7)]0/26/09 6:05 :00 AM

Index of Claims

Application/Control No.

11821820

Examiner

JUDE J JEAN GILLES

Applicant(s)lPatent Under
Reexamination

BOUCHER ET AL.

Art Unit

2443

Final Original 10/25/2009

X Claims renumbered in the same order as presented by applicant

CLAIM

Objected

El 0 "U> El

_. O

_. N

_x

.. 4503—k
_x 01

_. 0'3

_. \1

_. 0::

EH0
N _‘

U.S. Patent and Trademark Office Part of Paper No. : 20091026

Application/Control No. Applicant(s)/Patent Under
Reexamination

SeaI'Ch Notes 11821820 BOUCHER ET AL.

Examiner Art Unit

JUDE J JEAN GILLES 2443

SEARCHED

Subclass Examiner

245, 230-234, 239, and 250 10/26/09 JG

235, 468,237, 230, 233, and 234 10/26/09 JG

SEARCH NOTES

Search Notes Date Examiner

EAST tex search, USPGPUB claim and text search, and NPLs 10/26/09 JG

INTERFERENCE SEARCH

Subclass Date Examiner

245, 230-234, 239, and 250 10/26/09 JG

235, 468, 237, 230, 233, and 234 10/26/09

US. Patent and Trademark Office Part of Paper No. : 20091026

Application/Control No. Applicant(s)/Patent Under Reexamination

Issue Classification 11821820 BOUCHER ET AL,

Examiner Art UnitJUDE J JEAN GILLES 2443

ORIGINAL INTERNATIONAL CLASSIFICATION

SUBCLASS CLAIMED

245 15/16 (2006.01.01)

NON-CLAIMED

CROSS REFERENCE(S)

SUBCLASS (ONE SUBCLASS PER BLOCK)
233 234 232

468

N 0: ‘1

E Claims renumbered in the same order as presented by applicant CPA El T.D. R.1.47

Final Original Final Original Final Original Final Original Flnal Original Final Original Final Original17
18
19

20
21

Total Claims Allowed:

 Loonwmmbwrx)

G
_k
N
w
J;
U1
m

21

(Assistant Examiner)
/JUDE J JEAN GILLES/

Primary Examiner.Art Unit 2443 10/25/2009 O.G. Print Claim(s) 0.6. Print Figure

(Primary Examiner) (Date) 1 2
US. Patent and Trademark Office Part of Paper No. 20091026

Filing date: June 25, 2007

Inventors: Boucher et a1.

Grou Art Unit: 2143

Vale»?
. NDING TO A TOP CONNECTION Attorney Docket No.: ALA-006K

Pae1of13

US. Patent Documents

Examiner , >
Initial Document Date Name Subclass

4,366,538 December 28, 1982 Johnson et al. I
-Gary W. Boone et al 364 9003 , 4,485,460 November 27, 1984 Mark A. Stambaugh 365

-Thomas J. Balph et al 340 .
-fl 4,991,133 May 13, 1986 Davis et al. 364 900

7 5,056,058 October 8, 1991 Hirata et al. I
5,058,110 ' October15, 1991 , Beach etal. -

365 78

8.

-fl 5,097,442 March 17, 1992 Ward et al.
5,163,131 November 10, 1992 Row et al. 395 200

11 5,212,778 May 18, 1993 Dally et al.

5,280,477 January 18, 1994

April 12, 1994 Yokoyama et al. 395 2
5,412,782 May 2, 1995 Hausman et al. 395

5,418,912 May 23, 1995 David A. Christenson 395

5,448,566 September 5, 1995 Richter et al.

5,485,579 January 16, 1996 Hitz et al.

ON 001

NM 001 CO

N 0105,506,966 April 9, 1996 Ban

5,511,169 April 23, 1996 Suda

21 5,517,668 , May 14, 1996 Szwerinski et al.

22 . 5,524,250 , June 4, 1996 Chesson et al.

I[\Jv—Ir—Ap—- O\O00\]
NCO NO 010

N (I) O

Examiner Nude Jean Gilles/ (1 aseaeaadered

'EXAMINER: Initial'if reference considered, whether or not'citation is in conformance with MPEP 609‘ Draw line throifih citation if notin conformance 85131100 eeeeemeseewfidflflfififikfifififiafifi'fitwfiéfilfififi Ll N ED T ROU G H.

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date June 25, 2007

I

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING To A TOP CONNECTION Attorney Docks, No, ALA_006K
 Page 2 of 13

5,535,375 July 9, 1996 Eshel et al. 323 91 500

- 5,548,730 August 20, 1996 Young et al.
6025 5,566,170 , October 15, 1996 Bakke et al.

26 5,574,919 November 12, 1996 Arun N. Netravali et al 561

6

-
28 5,588,121 December 24, 1996 Reddin et al. 200 15

5,590,328 December 31, 1996 Seno et al. 75

5,619,650 April 8, 1997 Bach et al. 200.01

5,629,933 May 13, 1997 Delp et al. 411

5,634,099 May~27,1997 Andrews etal. 200.0735

36 5,634,127 May 27, 1997 Cloud et al. 395 680.

5,642,482 June 24, 1997 Pardillos 395 200.2

395

395

5,664,114 September 2,1997 Krech, Jr. etal. - 200.64

40 5,678,060 October 14, 1997 Yokoyama et al. 09 212

41 5,682,534 October 28, 1997 Kapoor et al. 395 684

-

7

395

43 395

44 5,699,350 December 16, 1997 Andrew J. Kraslavsky 370
5,701,434 December 23, 1997 Nakagawa ‘ 395

95

5,701,516 December 23, 1997 Cheng et al. -
5,727,142 March 10, 1998 3

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line throu h citation if not

in conformance $4.th Bfifififlfiifl®€d§pmwgiflflfifi§®cfim§fi$ Wfififlfi Lt N ED T ROU G H. / . J/

, v u. *~~;; _ . "zV .

US. Department of Commerce, Patent and Trademark Office A “cation N0; 1 1/821‘820

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

-

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

5,742,765 0121,1998 200
5,749,095 May 5,1998 Hagersten 711

Chanel...

52 5,758,084 May 26, 2008 Silverstein et al.
May 26,2008 _ Gentry etal.

5

831

5 5,758,194 May 26, 2008 Kuzma ‘ 886

56 5,768,618 June 16, 1998 Gene R. Erickson et al 829

57 .

07

- 5,771,349 June 23. 1998 Picazo, Jr. et al. 395 188 O1
Jedwab 8

Hansen et al. 112

August 4, 1998 Osborne 709 245

August 11, 1998 'Hansen et al. 395 800.01

395 182.08

711 149

5,809,328 September 15, 1998 Nogales et al. 395 825

5,812,775 September 22, 1998 Van Seelers et al. 395 200.43

Purcell et al. 395 163

5,828,835 October 27, 1998 Mark S. lsfeld et al 395 200.3

5,848,293 December 8, 1998 Gentry et al. 395 825

5,872,919 February 16, 1999 Wakeland et al. 3 20095

l
'April 6, 1999 Christopher W. Klaus 395 187.01 I53 -April 27, 1999 Melzer et al.

Exam“ i’Jude Jean muss/114282380185“ .

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line throu h citation if not

in conformance miaeewmefiamwaimmmefimwaeee LlNED T ROUGH. .3

U.S. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

Inventors: Boucher et al.

Group Art Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

_ Pae4of13

- 5,913,028 June 15, 1999 Wang, et al.
5,920,566 July 6, 1999 Ariel Hendel et al-

- 5,930,830 July 27, 1999 Mendeison et al. A .

5,931,918 August 3, 1999 Row et al. 7

N 0')5,935,205 August 10, 1999 Murayama et al. 709 1

95

77

78 Connery et al. 200.8
79 ,

80

5,941 969 August 24, 1999 Ram et-al. 128

5,941,972 August 24, 1999 I Hoese et al. 129

O81 5,950,203 September 7, 1999 Stakuis et al. 707

82 5,970,804 August 4, 1998 Osborne 395 200.75

370 3495,987,022 November 16, 1999 Robert L. Geiger et ai83

84 5,991,299 November 23, 1999 Radogna et al. 370 392

8 5,996,013 November 30, 1999 Gary Scott Delp et al 709 226

09 O1

5

-III s l
87 6,005,849 December 21, 1999 Roach et al. I
88 6,009,478 December 28, 1999 Panner, et al. 710 5

89 6,016,513 January 18, 2000 Glen H. Lowe 709 250

6,021,446 February 1, 2000 Gentry et al. 709l
91 6,021,507 February 1, 2000 Shawfu Chen -
92 6,026,452 February 15, 2000 William Michael Pitts

93 6,034,963 March 7,2000 Minamietal. 401 I
6,038,562 Mamh14,2ooo Murat... “-

95 6,041,058 March 21, 2000' John A. Flanders et al 370 . 401

6,041,381 ~ March 21, 2000 Geoffrey B. Hoese 710 129

97 6,044,438 March 28, 2000 Howard Thomas Olnowich I
I ‘ i ' I

Examiner "JUde Jean Glues" ggtglggllgllered

*EXAMiNER: initial if refere ce considereé, whether or ngtbcitation is in conformance with MPEP 609; Draw ii throu h ‘tatio if notIran I [£5 TFfiRE‘IUGl—l.in conformance afiilnln l...

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Filing date: June 25, 2007

Inventors: Boucher et a1.

Group Art Unit: 2143

Examiner name: Unknown

Attorney Docket No.: ALA-006K

Pae50f13

-m 6,047,323 April 4, 2000 Michael R. Krause I
99 6,047,356 April 4, 2000 Anderson et al. 711 129

235

20

200.8

6,049,528 April 11, 2000 Ariel Hendel et al 370

m

6,070,200 May 30, 2000 Gates at al.

v—di—I
OO

70

N _L H

345

3

709

I—‘H CO WM

710

104

105

H O 0‘. 6,078,733 June 20, 2000 Randy B. Osborne

107 6,097,734 August 1, 2000 Joel Gotesman et al

108 6,101,555 August 8, 2000 Goshey et al. 70

10 69 ,111,673 August 29, 2000 Gee—Kung Chang et al

395

37

Takeshi Ota et alH H 0 6,115,615

112 6,141,701 October 31, 2000 Mark M. Whitney

6,141,705 October 31, 2000 Anand et al.

September 5, 2000

Toby D. Bennett et al

0

9

359

455

709

710

H H DJ

6,145,017 November 7, 2000 Ghaffari

553

236

l-
15

5

132

230

H ._. 4;

6,172,980 January 9, 2001 Flanders et al. 370

6,173,333

H H O\

Jolitz et al.H H \1 July 18, 1997

H H 00 6,181,705 February 24, 2004

6,202,105 March 13, 2001

April 24, 2001

San-Hong Kim

Gates et al. 710119

120

121 6,226,680 May 1, 2001 Boucher et al.

-' 6,246,683 June 12, 2001 Connery et al. 370

Examiner ' Nude Jean Gilles/ (1 aa’amidered

{3113553321 ” teammaammmmmmfia Eiitlgbfii‘ifiiflfiititfi

6,223,242 Stephen J. Sheafor et al
if not

 H. .3J/_

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

e .
Group Art Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TOP CONNECTION

- 6,247,060 June 12, 2001 Boucher et al.
6,279,051 August 21, 2001 Gates et al.
6,289,023 September 11, 2001 Brian M. Dowling et al

6,298,403 October 2, 2001 Suri et al.
127 6,324,649 November 27, 2001 Kevin W. Eyres et al 713 202

128 6,334,153 December 25, 2001 ' Boucher et al. 709 230

129 6,343,360 January 29, 2002 David Feinleib 713 1

6,345,301 February 5, 2002 Burns et al. 709 230
6,345,302 February 5, 2002 Toby D. Bennett et 709 236

132 6,356,951 March 12, 2002 Gentry 'et al. 709- 250

133 6,370,599 April 9, 2002 Sanjay Anand et al

- 6,385,647 May 7, 2002 Dean Willis et al 709
6,389,468 May 14, 2002 Muller et al. 709 226

137 6,393,487 May 21, 2002 Boucher, et al. 709

138 6,421,742 July 16,2002 Tillier 710

106,421,753 July 16, 2002 Geoffrey B. Hoese et al 7

709 230

14

141 6,427,171 July 30, 2002 Craft, et al.

1 2 6,427,173 July 30, 2002 Laurence B. Boucher et alI 4

_l 145 6,449,656 September 10, 2002 Elzuretal. '
146 6,453,360 September 17,2002 Muller et al. I

I

'EXAMINER: Initi lif at r nce o sidere w th r rno citation is in conformance with MPEP 609'

Inconformance I Efiéfimtfiefiaéémélmamcm; 66666636

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENTBY APPLICANT Filing date June 25, 2907
Inventors: Boucher et al.

Group An Unit: 2143

FAST-PATH APPARATUS FOR TRANSMI‘I'I'ING DATA
CORRESPONDING TO A TCP CONNECTION Attorney Docks, No.2 ALA_006K

- 6,473,425 October 29, 2002 Gilles Bellaton et al 370 392
- 6,480,489 Novembemooz Muleretai I
-150 6,487,202 November 26, 2002 Daniel E. Klausmeier et al 370 395
-151 6,487,654 November 26, 2002 Eric M. Dowling 712 244
-l
-Jean-Paul Accarie 710 8

154 6,523,119 February 18, 2003 Dominique Vincent Pavlin et al 713 192

155 6,526,446 February 25, 2003 Yang et al.
-l

- 6,591,302 July 8, 2003 Boucher, et al. 709 230

6,648,611 November 18, 2003 David M. Morse et al 417 310

I
I

6,658,480 December 2, 2003 Laurence B. Boucher et al 709 239

6,678,283 January 13, 2004 Yakov Teplitsky r 370 463

6,681,364 January 20. 2004 Jean Louis Calvignac et al 714 776

165 6,687,758 February 3, 2004 Craft, et al. I
166 6,697,868 February 24, 2004 Peter K. Craft et al 709

6,751,665 June 15, 2004 Philbrick, et al. 709

Pae 7 of13

 230

224

wI
I

I9

6,842,896 January 11, 2005 Mark E. Redding et al 17

6,765,901 July 20, 2004 Michael Ward Johnson et al 3

6,912,522 June 28, 2005 David A. Edgar

Examiner T’Jude Jean Gilles! (W£@BBQ%red

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; D aw line throu
in conformance mth REWE‘EMBEfiEpWfilEEREfihWé-fiafiW Li E

US, Department of Commerce, Patent and Trademark Office A

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007
Inventors: Boucher et al.

—00000 An 0000 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING To A TOP CONNECTION Attorney Docket No, ALA_006K

Pae8of13

- 6,938,092 August 30, 2005 709 230 -
6,941,386 September 6, 2005 Peter K. Craft et al 709 250

6,965,941 November 15, 2005 Laurence B. Boucher et al 709I
I

7,042,898 May 9, 2006 Blightman, et al. 370 463

7,076,568 July 11, 2006 ’ Philbrick, et al. 709 250

I
III at

7,124,205 October 17, 2006 _ Craft, et al.

7,133,940 November 7, 2006 Blightman, et al. 22

183 7,167,926 January 23, 2007 Boucher, et al. 250 I
-184 7,167,927 January 23, 2007 Philbrick, et al.

7097,174,393 February 6, 2007 Boucher, et al.

7,185,266 February 27, 2007 Blightman, et al.

7,191,241 March 13, 2007 Boucher, et al.

-188 7,191,318 March 13,2007 Tripathy, etal.
-189 7,237,036 June 26, 2007 BOucher, et al. 709

190 7,254,696 August 7, 2007 Mittal, et al.

191 7,284,070 October 16, 2007 Boucher, et al.

Published Applications

Examiner

fl
Initial Document Date Name Class Subclass Ii

00000004004 0000000000000 0000 I

- 2001/0014892 August16, 2001 Gaither etal. 707 200

Eiaminer Nude Jean Gilles! (1 13930695010000 -

5:311:53? 'Efiffifififimfifimfilfifikfifi 0W0? E'flllé‘lfi‘ll‘lfr‘lfifil‘ifl‘é l-f-l‘.°‘/,,I/

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TOP CONNECTION Attorney DocketNm ALA_006K

Page 9 of 13

- 2001/0014954 August16,2001 Purcell etal. 714 4

38

23

2

5

4

2001/0048681 December 6, 2001 Bilic et al.

198 2001/0053148 December 20, 2001 [Bilic et al. _

2002/0073223 June 13, 2002 B. Scott Darnell et al

200 2002/0112175 August 15, 2002 Makofka et al _

370

370

709

7 3

714

1 1

201 2003/0066011 April 11. 2002 Oren .
7

September 4, 2003 Minami et al.

March 1, 2004 McDaniel

2004/0059926 March 25, 2004 Angelo, et al.

207 2004/0213290 October1,2004 Johnson etal. 370
2004/0246974 December 9, 2004 Gyugyi et al. 395.31

Foreign Patent Documents

9

00

7 8

69

Examiner

Document
Numberm _

209 WO 98/19412 May 7, 1998 PCT/U597/17257

210 WO 98/50852 November 12, 1998 PCT/U598/0871

-21 1--I
- WO 99/65219 Decem ber 16, 1999 PCT/US/99/13184

213 WO 00/13091 March 9, 2000 PCT/U598/24943
214

WO 01/04770 January 18, 2001 PCT/USOO/18939

- wo 01/05107 January18,2001 PCT/USOO/19006
- wo 01/05116 January18,2001 PCT/USOO/19243

Examiner

ifi‘cfifl'iffac'iiifitflfifiéeéfifié ~ 7 .4; Wermkfibmmfimfi; E’Ififltfi‘Wfifi‘fl iI-f-I".°t/

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST—PATH APPARATUS FOR TRANSMITTING DATA

CORRESPONDING TO A TCP CONNECTION

WO 01/05123 January 18, 2001

219
221

222

223

224

225

226

227

228

229

230

231

232

233

235

Examiner iJude Jean GIIIBS/ (15 Ifia’afifigsidered

*EXAMINER: Initi I if gar-10in conformance

220 WO 01/86430 November 15, 2001

.I

iReady News Archives, Toshiba, iReady shipping Internet chip, 1 page, printed 11/25/98.

Filing date: June 25, 2007

Inventors: Boucher et a].

Group Art Unit: 2143

Examiner name: Unknown

Attorney Docket No.: ALA-006K

Page100f13

PCT/USOO/18976

PCT/USOO/32660WO 01/40960 June 7, 2001

PCT/USOO/06475WO 01/59966 August 16, 2001

PCT/USO1/1518O

OTHER ART (Including Author, Title, Date, Pertinent Pag_es, Etc.

Internet pages entitled "Hardware Assisted Protocol Processing", (which Eugene Feinber is working on),
1 page, printed 11/25/98.

Zilog product Brief entitled "Z85C30 CMOS SCC Serial Communication Controller", Zilog Inc.. 3 pages,
1997.

Internet pages of Xpoint Technologies, Inc. entitled "Smart LAN Work Requests”, 5 pages, printed
12/19/97.

Internet pages entitled: Asante and 1OOBASE-T Fast Ethernet. 7 pages, printed 5/27/97.

Internet pages entitled: A Guide to the Paragon XP/S-AT Supercomputer at Indiana University. 13
pages, printed 12/21/98.

Richard Stevens, “TCP/IP Illustrated, Volume 1, The Protocols", pages 325—326 (1994).

Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

Gigabit Ethernet Technical Brief, Achieving End-to-End Performance. Alteon Networks, Inc., First
Edition, September 1996, 15 pages.

Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com,
14 pages, printed 3/15/97.

VIA Technologies, Inc. article entitled "VT8501 Apollo MVP4", pages i-iv, 1-11, cover and copyright
page, revision 1.3, Feb. 1, 2000.

iReady News Archives article entitled "iReady Rounding Out Management Team with Two Key
Executives", http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed 11/28/98.

"Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based On iReady’s Design,"

Press Release October, 1998, 3 pages, printed 11/28/98.

Internet pages from iReady Products, web sitehttp://www.ireadyco.comlproducts,html, 2 pages.
downloaded 11/25/98.

Interprophel article entitled "Technology", http://www.interp'rophet.com/technology.html, 17 pages,
printed 3/1/00.

.3

INF

FAST-PATH APPARATUS FOR TRANSMITTING DATA

U.S. Department of Commerce, Patent and Trademark Office

Filing date: June 25, 2007

Inventors: Boucher et a1.

Group Art Unit: 2143

Examiner name: Unknown

Attorney Docket No.: ALA-006K

ORMATION DISCLOSURE STATEMENT BY APPLICANT

CORRESPONDING TO A TCP CONNECTION

Pae 11 of 13

iReady Corporation, article entitled 'The [-1000 Internet Tuner", 2 pages. date unknown.

iReady article entitled "About Us Introduction", internet pages fromhttpzllwww.iReadyco.com/about.html,
3 pages, printed 11/25/98.

iReady News Archive article entitled "Revolutionary Approach to Consumer Electronics Internet
Connectivity Funded", San Jose, CA, November 20,1997. 2 pages, printed 11/298.

iReady News Archive article entitled “Seiko Instruments Inc. (Sll) INTRODUCES WORLD'S FIRST
INTERNET-READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY," Santa

Clara, CA and Chiba, Japan, October 26, 1998. 2 pages, printed 11/2/98.

NEWSwatch article entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November 5,
1996, printed 11/2/98, 2 pages.

EETimes article entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner", by David

Lammers, 2 pages, printed 11/02/98.

"Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages, printed
4/10/98.

242

—a DuraSAN product", 11 pages, printed 10/1/01.243 Adaptec article entitled "AEA-711OC

iSCSl HBA article entitled "iSCSl and ZGigabit fibre Channel Host Bus Adapters from Emulex, QLogic,
Adaptec, JNl", 8 pages, printed 10/01/01.

iSCSI HBA article entitled "FCE-3210/6410 32 and 64-bit PCl-to-Fibre Channel HBA", 6 pages, printed
10/01/01 .

244

245

246 lSCS|.com article entitled "iSCSI Storage", 2 pages. printed 10/01/01.

“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis", by Kalampoukas et al.,
247 IEEE Transactions on Networking, vol. 6, no. 6, December 1998, 17 pages.

Examiner

{Eatgfiflattiaeaaammamea‘flfillét‘i‘i‘iflttiifii‘tfi

IReady News article entitled "Toshiba Delivers First Chips to Make Consumer Devices Internet—Ready
Based on iReady Design", Santa Clara, CA, and Tokyo. Japan, October 14, 1998, printed 11/2/98, 3
pages.

Internet pages of InterProphet entitled “Frequently Asked Questions", by Lynne Jolitz, printed 6/14/00, 4
pages.

248

249

250 “File System Design For An NFS File Server Appliance”, Article by D. Hitz, et al., 13 pages.

Adaptec Press Release article entitled "Adaptec Announces EtherStorage Technology”. 2 pages, May
4, 2000, printed 6/14/00. ‘

“EtherStorage Frequently Asked Questions", 5 pages. printed 7/19/00.2 2 Adaptec article entitled5

"EtherStorage White Paper", 7 pages, printed 7/19/00.2 3 Adaptec article entitled

ifnot

H.

5

(II v—I

US. Department of Commerce, Patent and Trademark Office A licafion N01: 1 12v. w. I I. I I I I.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007
Inventors: Boucher et a1.

_GmupAnu... 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TCP CONNECTION

Pae 12 of13

25-4 CIBC World Markets article entitled “Computers; Storage", by J. Berlino et al., 9 pages, dated August 7,2000.

255 Merrill Lynch article entitled “Storage Futures", by S. Milunovich, 22 pages, dated May 10, 2000.

256 CBS Market Watch article entitled "Montreal Start—Up Battles Data Storage Botttleneck", by S. Taylor,
dated March 5, 2000, 2 pages, printed 3/7/00.

257 Internet-draft article entitled “SCSI/TCP (SCSI over TCP)”, by J. Satran et al., 38 pages, dated February
2000, printed 5/19/00.

258 Internet pages entitled “Technical White Paper-Xpoint's Disk to LAN Acceleration Solution for Windows
NT Server, printed 6/5/97, 15 pages.

Jato Technologies article entitled “Network Accelerator Chip Architecture, twelve-slide presentation,
printed 8/19/98, 13 pages.

EETimes article entitled “Enterprise System Uses Flexible Spec, dated August 10,1998, printed
11/25/98, 3 pages.

Internet pages entitled “Smart Ethernet Network Interface Cards", which Berend Ozceri is developing,
printed 11/25/98, 2 pages.

Internet pages of Xath corporation entitled “GigaPower Protocol Processor Product Review," printed
11/25/99, 4 pages.

US. Provisional Patent Application No.: 60/283,896, Titled: CRC Calculations for Out of Order PUDs,
Filed April 12, 2003, Inventor: Amit Oren, Assignees Siliquent Technologies Ltd.

925

260

261

262

263

264 Internet pages entitled "DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert
J. Walsh, printed 6/3/99, 25 pages.

65 Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996, ISBN 0-13-349945-6.I

Article from Rice University entitled "LRP: A New Network Subsystem Architecture for Server Systems”,
by Peter Druschel and Gaurav Banga, 14 pages.

Internet RFC/STD/FYI/BCP Archives article with heading “RFC2140” entitled “TCP Control Block
Interdependence", web address http://www.faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

266
267

WindRiver article entitled "Tornado: For Intelligent Network Acceleration”, copyright Wind River
Systems, 2001. 2 pages.

269 WindRiver White Paper entitled “Complete TCP/IP Offload for High-Speed Ethernet Networks",
Copyright Wind River Systems, 2002, 7 pages.

270 Intel article entitled "Solving Server Bottlenecks with intel Server Adapters”, Copyright Intel Corporation,
1999, 8 pages.

Schwaderer et aI., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
271 Decomposition for ASIC Implementation“, from 15th Conference on Local Computer Networks, 5 pages,

Sept. 30 — Oct. 3, 1990.

Examiner Nude Jean Gilles” (I 0/ Sigmfionsidered

{Em$332‘SfitfififmfigflmgfimfiffigfigfimfiziéiW‘ Eltxi'é‘fifi t’i‘tfltlc‘i‘titi 13W

268

. . , bi . ., ~ 4. 7——

U.S. Department of Commerce, Patent and Trademark Office A “cation No.2 1 1/8212

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25, 2007

'
—

FAST-PATH APPARATUS FOR TRANSMITTING DATA
CORRESPONDING TO A TOP CONNECTION

Pae 13 of13

Beach, Bob, IEEE Computer Society Press publication entitled. "UltraNet: An Architecture for Gigabit
Networking", from 151h Conference on Local Computer Networks, 18 pages, Sept. 30 — Oct. 3, 1990.

Chesson et al., IEEE Syposium Record entitled, “The Protocol Engine Chipset”, from Hot Chips Ill, 16
pages, Aug. 26-27, 1991.

Maclean et al., IEEE Global Telecommunications Conference, Globecom ‘91, presentation entitled, “An
Outboard Processor for High Performance Implementation of Transport Layer Protocols", 7 pages, Dec.
2—5, 1991.

274

Ross et al., IEEE article entitled “FX1000: A high performance single chip Gigabit Ethernet NIC", from
276

Compcon ’97 Proceedings, 7 pages, Feb. 23-26, 1997.

I Strayer et al., “Ch. 9: The Protocol Engine" from XTP: The Transfer Protocol, 12 pages, July 1992.
Publication entitled “Protocol Engine Handbook”, 44 pages, Oct. 1990.

278 Koufopavlou et al., lEEE Global Telecommunications Conference, Globecom ‘92, presentation entitled,
“Parallel TCP for High Performance Communication Subsystems”, 7 pages, Dec; 6-9, 1992.

Lilienkamp et al., Publication entitled “Proposed Host-Front End Protocol", 56 pages, Dec. 1984.
280 Thia et al. Publication entitled “High—Speed OSI Protocol Bypass Algorithm with Window Flow Control,"

Protocols for High Speed Networks. pages 53-68, 1993.

281 US. Provisional Patent Application No.: 60/053,240, Titled: TCP/IP Network Accelerator and Method of
Use, Filed July 17, 1997, Inventor: William Jolizt et al

Thia et al. Publication entitled “A Reduced Operational Protocol Engine (ROPE) for a multiple-layer
bypass architecture," Protocols for High Speed Networks, pages 224-239. 1995.

282

283 Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1987 (10 pages).

284 Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1988 (10 pages).

Examiner [Jude Jean Giltes/ {1 Wigmonsidered

ExamEtc‘aeeeiamasmmawmemmae Elfififi‘Wfififi lit?) . J/

US. Department of Commerce, Patent and Trademark Office A . . “cation No; 1

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT BY Filing date: June 25

APPLICANT Inventors: Boucher et al.

Attorney Docket No.2 ALA-006K

Pae1of1

US. Patent Documents

Document Filing Date, \
Number Date Name Class Subclass If Appropriate

5 774,660

5,809,527

6/30/98

9/1 5/98

395

711

200.31

133

Brendel et al.

Cooper et al.

OTHER ART—NON PATENT LITERATURE DOCUMENTS

(Including Author, Title, Date, Pertinent Pages, Etc.)

Eteceigtogate: 02/09/2009 PTO/SB/Oaa (0109)OC cod A roved for use throu h 02/28/2009. OMB 0651-0031

Doc description: Information Disclosure Statement (IDS) Filed US Patent and Traggmark Office, US DQEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

'

'NFORMAT'°”°'S°L°SURE
STATEMENT BY APPLICANT 2443
(Not for submission under 37 CFR 1.99)

Examiner Name . Unknown
Attorney Docket Number ALA-006K

U.S.PATENTS

Kind Name of Patentee or Applicant Pages’commns‘l‘mes Where
Issue Date . Relevant Passages or RelevantCode1 of Cited Document .

Figures Appear

If you wishto add additional US. Patent citation information please Click the Add button.

U.S.PATENT APPLICATION PUBLICATIONS

Pages,Columns,Lines where
Relevant Passages or Relevant

Figures Appear

Examiner Cite . . Kind Publication Name of Patentee or Applicant. . * Publication Number .Initial of Cited Document

If you wish to add additional US. Published Application citation information please click the Add button.

FOREIGN PATENT DOCUMENTS

Name of Patentee or Pages’commns’unes
Examiner Cite Foreign Document Country Kind Publication . . where Relevant

. Applicant of Cited
Code2 I Code4 Date Document Passages or Relevant

Figures Appear

If you wish to add additional Foreign Patent Document citation information please Click the Add button

NON-PATENT LITERATURE DOCUMENTS

Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item

(book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s),
publisher, city and/or country where published.

Examiner Cite
|nitials*

EFS Web 2110 ALL REFERENCES CONSIDERED) EXCEPT WHERE LtNED THROUGH. /JJ/

Receipt date: 32/09/2009 Application Number 11821820
Filing Date 2007-06—25

First Named Inventor Laurence B. Boucher , Saratoga, CA

STATEMENT BYAPPL'CANTm
(Not for submission under 37 CFR 1.99) ,

if you wish to add additional non—patent literature document citation information please click the Add button

EXAMINER SIGNATURE

Examiner Signature Nude Jean Giiies/ (10/26/2009) Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3)_ 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number ofthe patent document.
4 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here i
English language translation is attached.

EFS Web 2.1.10 ALL REFERENCES CONSlDERED EXCEPT WHERE LtNED THROUGH. Aid/r

O O I U U I

A - lication No.: 11/821,820

Filing date: June 25, 2007

Grou An Unit: 2143

Pae1of13

US. Patent Documents '

Examiner . ' ®- Name

-- 4,366,538 ' December 28, 1982 7 Johnson et al. ‘ 364 m
2

-fl

-rlm
-m
-rlm
-H
-mm
- 5,212,778 May 18, 1993 Dally et al.
-u
-m
-mm
-mm
-mm
-m
-mm

'-“mm
-m“am
-m

I Examiner [Jude Jean Gilles/ (1 1'96f20fi9}aidered '
'EXAMINER: Initial.if reference considered. whether or not citation is in conformance with MPEP 609- Draw H e magi-in citatlon if notin 0°"f0rmance aWbfl WEERchmfixewwneaeLIN D ROUG

V

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Fill" dale: June 25, 2007

Inventors: Boucher et al.

Grou » Art Unit: 2143

FAST-PATH APPARATUS FOR TRANSMITTING DATA Ennninernann; Unknown

CORRESPONDING TO A TOP CONNECTION Mom Dock“ No; Ammo“

m April 21. 1998 Wong et al.
a May 5, 1998 Hagersten

May 12, 1998 Chan et al.
May 12, 1998 Delp et al.
May 26, Silverst'ein et al.

ms-
2W

Mm 224 '1'?
June 16, 1998 Gene R. Erickson et al
June 23, 1998 Picazo, Jr. et al.
July 7, 1998 Jedwab

m

lllll
\

--‘w‘‘4

VDQ

. Gentry et at.'l ‘.,
5

Hamilton et al.

«r
C

5,802,258 September 1 1998 Chen
5,802,580 September 1 1998 McAlpice
5.809.328 September 15 1998 Nogales et al.

a
Mark s. lsfeld et al

a Gem
a at

5,812,775 September 22, 1998 Van Seeters et al.

71 5,892,903 ' April 6, 1999 Christopher W. Klaus

-72 5,898,713 April 27I 1999 Melzer et al.

Exam" I’Jude Jean Gilles/(1t: 2%?éfbfiéls‘°°'°°
'EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609' Draw line th
in conformance afiirbt 85mWWWSWOEPSFthrlEfiE Ll N E

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing date: June 25. 2007
Inventors: Boucher et al.

—ammonium

FAST-PATH APPARATUS FOR TRANSMITTING DATA Examiner name: Unknown

CORRESPONDING TO A TOP CONNECTION Mom Docket No, ALA_006K

5,913,028 Wang, et al. m
5,920,566 Ariel Hendel et al “
5,930,830 Mendelson et al. . 711

_ Pae4of13

5.931.918 Row et al. m
5,935,205 Murayama el al.
5,937,169 Connery et al. 200.8
5,941,969 Ram er'al.

m 5,941,972 August 24, 1999 ' ~ Hoese et al.
III

‘ 5,970,804'5 Osborne a 200.75

El
5.987.022 November 16, 1999 Robert L. Geiger et al “
5,991,299 November 23, 1999 Radogna et al.
5,996,013 November 30, 1999 Gary Scott Delp et al

a 5,996,024 November 30, 1999 Blumenau 301
6,005,849 December 21, 1999 Roach et al. 276

El

401

401

8

8

8 6,009,478 Panner, et al.
6,016,513 Glen H. Lowe
6,021,446 Gentry et al.
6,021,507 Shawfu Chen

9 6,026,452 William Michael Pitts
9

9

6,034,963 Minami et al.
6.038.562 Anjur et al.
6,041,058 John A. Flanders et al
6,041,381 - March 21, 2000 Geoffrey B. Hoese

- 6,044,438 March 28, 2000 Howard Thomas Olnowich

/Jude Jean Gilles/ (gglglgggglemd

‘ {mgfafiggigmfiference cgnsifififigfithir or ntécitatign ii in wnforfifiomgféfiog i.f_|n'ot/

7

709

709

370

710

709

709

714

710

370

07

370 .

Examiner

US. Department of Commerce, Patent and Trademark Office

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

FAST-PATH APPARATUS FOR TRANSMITTING DATA
C

ORRESPONDING TO A TOP CONNECTION

6,047,356

6,049,528

6,057,863

_. 0 6,061,368

6,111,673 August 29, 2000 Gee-Kung Chang et al _

._I O9-)

6,115,615 r September 5, 2000 Takeshi Ota et al

6,122,670 September 19, 2000 Toby D. Bennett et al

6,141,701 October 31, 2000 Mark M. Whitney 71

6,141,705 October 31, 2000 Anand et al.

December 5, 2000 Narad et al. 709

January 9, 2001 Flanders et at. 370

3' , a. I, I
a .- ' 1".

l
w

6,181,705 FFebruary'Ztmw Sandieng—léim

March 13, 2001

6,145,017

6,157,955

6,172,980 1||||
6,173,333

6,223,242 April 24, 2001

122 ' 6,246,683 June 12, 2001

$13.13;?“ ” mmmmemmmeENI'E‘B‘WIPISTJ‘EW/ J/ ,

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEECommissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313—1450

or m (571)-273-2885__—__—__—_—_—__————

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where
ap ropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current corres ondence address asin

icated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate " ADDRESS" formaintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (NomUsemock 1 fm— any changgofaddfcss) Note: A certificate of _mailin can only be used for domestic mailings of theFee(s) Transmittal. This ceru icate cannot be used for any other accompanying

Ipapers. Each additional paper, such as an assignment or formal drawing, mustave its own certificate of mailing or transmissron.
24501 7590 11/03/2009

Certificate of Mailing or Transmission

ggnggofigggagR PARKWAY his“ 025;? case‘smamas;trasstnsait‘n‘hsntafig‘:
SUITE 245 assigns: assssazzastiastem

PLEASANTON’CA94566

~ //- .5 we
APPLICATION NO. FILlNG DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

11/821,820 06/25/2007 Laurence B. Boucher ALA-006K 8447
TITLE OF INVENTION: FAST-PATH APPARATUS FOR TRANSMITTING DATA CORRESPONDING TO A TCP CONNECTION

mmm mmmm WWW

NO $0nonprovi sional $1510 $300 $1810 02/03/2010

mum
JEAN GILLES, IUDE 2443 709-245000

1. Change of correspondence address or indication of "Fee Address” (37 2. For printing on the patent front page, list
CFR 1'363)‘ (1) the names of up to 3 registered patent attorneys

:I Ch e of corrcstgmdence address (or Change of Correspondence or agents OR, alternatively,
Address 01111 PTO/S I122) attached. (2) the name of a single mm (having as amember a 2 Silicon Edge Law Group, LLP
:I "Fee Address" indication (or "Fee Address" Indication form regismred attorney or agent) and the names of up to
NOISE/47; Rev 03—02 or more recent) attached. Use ofa Customer 2 registered patent attorneys or agents. If no name is
Number is required. hsted, no name Will be printed.

1 Mark Lauer

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for
recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NANIE 0F ASSIGNEE (B) RESIDENCE: (CITY and STATE OR COUNTRY)

Alacritech, Inc. San Jose, CA

Please check the appropriate assignee category or categories (will not be printed on the patent) : D Individual IX] Corporation or other private group entity D Government

43. The follovn'ug fee(s) are submitted: 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
Kl Issue Fee D A check is enclosed.

Publication Fee (No small entity discount permitted) El Payment by credit cardform-PTe-QBSS-is-aflaehed—
D Advance Order — # of Copies D The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any

overpayment, to Deposit Account Number (enclose an extra copy of this form).

5. Change in Entity Status (from status indicated above)

D :1. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. D b. Applicant is no longer clairriing SMALL ENTITY status. See 37 CFR 1.27(g)(2).
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in
interest as shown by the records of the Unith States Patent and Trademark Office.

Authorized Signamrefi—i Date /— //- /0
Typed or printed name Mark Lauer Re 'stration No. 36,578g1

______—_______———.———

This collection of information is required by 37 CFR 1.311. The information is re uired to obtain or retain a benefit by the public which is to file (and by the USPTO to process)
an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. is collection is estimated to take 12 minutes to complete, including gathering, preparing. and
submitting the completed application form to the USPTO. Time will V dc endin upon the individual case. Any comments on the amount of time you require to compnlete
this form and/or stifilgestions for reducing this burden, should be sent to e C ief I ormation Officer, US. Patent and Trademark Office, US. Department of Commerce, .0.Box 1450, Alexan a, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, PO. Box 1450,
Alexandria, Virginia 22313—1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PTOL—85 (Rev. 08/07) Approved for use through 08/31/2010. OMB 0651—0033 U.S. Patent and Trademark Office; US. DEPARTMENT OF COMNIERCE

Electronic Patent Application Fee Transmittal

Filing Date: 25-Jun-2007

FAST-PATH APPARATUS FOR TRANSMI'I'I'ING DATA CORRESPONDING TO A

TItle of Inventlon: Tcp CONNECTION

First Named Inventor/Applicant Name: Laurence B. Boucher

Filer: Mark Alan Lauer

Filed as Large Entity

Utility under 35 USC111(a) Filing Fees

Sub-Total in

USD($)

Basic Filing:

Claims:

Description Fee Code Quantity

Miscellaneous-Filing:

Patent-Appeals—and-Interference:

Post-Allowance-and-Post-lssuance:

Utility Appl issue fee 1501 1510
'l 300

510

‘ 300 ‘Publ. Fee— early, voluntary, or normal ‘ 1504 ‘

Sub-Total in

Description Quantity USD($)

Extension-of—Time:

Miscellaneous:

Total in USD (5)

Electronic Acknowledgement Receipt

6788611

Confirmation Number:

FAST-PATH APPARATUS FOR TRANSMI'I'I'ING DATA CORRESPONDING TO A

Title oflnventlon: TCP CONNECTION

First Named Inventor/Applicant Name: Laurence B. Boucher

Customer Number: 24501

—
Filer Authorized By:

Attorney Docket Number: ALA—006K

Time Stamp: 17:59:16

Application Type: Utility under 35 USC 1 i 1(a)

Payment information:

Submitted with Payment

PaymentType Credit Card

Payment was successfully received in RAM $1810

RAM confirmation Number

Deposit Account

Authorized User

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number P Message Digest Part /.zip (ifappl.)

102894
|ssue_Fee_Payment_ALA—006K.

Issue Fee Payment (PTO—853) pdf 936757386877l79h464004h9flfl d9637§('
eald

Fee Worksheet (PTO—875) fee—info.pdf 2017777b65dd8dl451SafiOdddSeelLl87dt-Ll
2456f

Information:

Total Files Size (in bytes) 134944

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
Ifa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date ofthe application.

National Stage of an International Application under 35 U.S.C. 371
lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/D0/E0/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

lfa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number

and of the International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning

national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

UNITED STATES PATENT AND TRADEMARK OEEICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMIVIISS IONER FOR PATENTS

PO Box 1450
Alexandria Virginia 22313-1450
www.uspt0 gov

APPLICATION NO. ISSUE DATE PATENT NO. ATTORNEY DOCKET NO. CONFIRMATION NO.

A11/821.820 03/02/2010 7673072 UTA-006K 8447
24501 7590 02/10/2010

MARK A LAUER
6601 KOLL CENTER PARKWAY
SUITE 245

PLEASANTON, CA 94566

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)

The Patent Term Adjustment is 435 day(s). Any patent to issue from the above-identified application will

include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that

determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information

Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the

Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee

payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management

(ODM) at (571)-272-4200.

APPLICANT(S) (Please see PAIR WEB site http://pairllsptogov for additional applicants):

Laurence B. Boucher, Saratoga, CA;
Stephen E]. Blightinan. San Jose. CA;
Peter K. Craft, San Francisco, CA;

David A. Higgen, Saratoga, CA;
Clivc M. Philbrick, San Jose, CA;
Daryl D. Starr, Milpitas, CA;

IR103 (Rev. 10/09)

Case 2:16-cv-OO692-JRG Document 3 Filed 06/30/16 Page 1 of 2 PageID #: 718

A0 120 (Rev. USITU} I

Mail Stop 8 REPORT ON THE
Director of the US. Patent and Trademark Office FILTNG OR DETERNIEN ATION BE AN

PI). Box 1450 ACTION REGARDING A PATENT OR
Alexandria, VA 22313—1450 TRADENIARK

'10:

in Compliance with 35 U ,SC ‘ 290 and/or 15 U.S.C. § 1116 you are heraby advisad that, a (:(mrt. action has been

filed in the US. District Court Eastern District of Texas (Marshaii Division) 0111116 following

Tradcmarks 01' El’atents. (the patent action involves 35 U812. § 292.3:

DOCKET NO. DATE FELED US. DESTRICT COURT

2:16—cv—692 6/30/2016 . Eastern District of Texas Marshati Division

PLAINTIFF DEFENDANT

ALACRITECH, tNG. WiSTFiON CORPORATEON, et at

PATENT OR DATE OF PATENT T 7‘ y r
TRADEMARK N0, OR TRADEMARK HOLDER OF PA tEINT OR TRADEMARR

Cross Bill [:1 Other Pleading
PATENT 0R DATE OF PATENT

TR A DEM A R K NOT (TR TR A DEM A R K

in the abovewreuiit‘ted case. the following decision has been rendered or judgement. issued:

DECISION/JUDG EM ENT

CLERK (B Y) DEPUTY CLERK

Copy inn-Upon initiation (traction, mail this copy to Director Copy Lin-Upon termination of action, mail this copy to Director
Copy 2-—--Upon filing document adding patentt’sL mail this copy to Director Copy 4----Case file ropy

Case 2:16-cv-00692-JRG Document 3 Filed 06/30/16 Page 2 of 2 PageID #: 719

A0 120 (Rev. USITU} I

Mail Stop 8 REPORT ON THE
Director of the US. Patent and Trademark Office FILTNG OR DETERNIEN ATION BE AN

PI). Box 1450 ACTION REGARDING A PATENT OR
Alexandria, VA 22313—1450 TRADENIARK

'10:

in Compliance with 35 U ,SC ‘ 290 and/or 15 U.S.C. § 1116 you are heraby advisad that, a (:(mt't. action has been

filed in the US. District Court Eastern District of Texas (Marshaii Division) 011L116 following

Tradcmarks 01' El’atents. (the patent action involves 35 U812. § 292.3:

DOCKET NO. DATE FELED US. DESTRICT COURT

2:16—cv—692 6/30/2016 . Eastern District of Texas Marshati Division

PLAINTIFF DEFENDANT

ALACRITECH, tNG. WiSTFiON CORPORATEON, et at

PATENT OR DATE OF PATENT

TRADEMARK NO, OR TRADEMARK HOLDER OF PA iENT OR TRADEMARR

1 8,805,948 8/12/2014 Aiacritech, inc.

2 9,055,104 6/9/2015 Atacritech; inc.

Cross Bill [:1 Other Pleading
PATENT 0R DATE OF PATENT

TR A DEM A R K NDt (TR TR A DEM A R K

in the abovewreuiit‘ted case. the following decision has been rendered or judgement. issued:

DECISION/JUDG EM ENT

CLERK (B Y) DEPUTY CLERK

Copy inn-Upon initiation (traction, mail this copy to Director Copy Lin-Upon termination of action, mail this copy to Director
Copy 2-—--Upon filing document adding patentt’sL mail this copy to Director Copy 4----Case file ropy

Case 2:16-cv-OO693-JRG Document 3 Filed 06/30/16 Page 1 of 2 PageID #: 740

A0 120 (Rev. USITU} I

Mail Stop 8 REPORT ON THE
Director of the US. Patent and Trademark Office FILTNG OR DETERTVHN ATION BE AN

PI). Box 1450 ACTION REGARDING A PATENT OR
Alexandria, VA 22313—1450 TRADENIARK

'10:

in Compliance with 35 U ,SC ‘ 290 and/or 15 U.S.C. § 1116 you are heraby advisad that, a (:(mrt. action has been

filed in the US. District Court Eastern District of Texas (Marshaii Division) 011L116 following

Tradcmarks 01' El’atents. (the patent action involves 35 U812. § 292.3:

DOCKET NO. DATE FELED US. DESTRICT COURT

2:16—cv—693 6/30/2016 . Eastern District of Texas Marshati Division

PLAINTIFF DEFENDANT

ALACRITECH, ENG. GENTURYLENK, ENC.

PATENT OR DATE OF PATENT T 7‘ y r
TRADEMARK N0, OR TRADEMARK HOLDER OF PA TENT OR TRADEMARR

Cross Bill [:1 Other Pleading
PATENT 0R DATE OF PATENT

TR A DEM A R K NOT (TR TR A DEM A R K

in the abovewreuiitied case. the following decision has been rendered or judgement. issued:

DECISION/JUDG EM ENT

CLERK (B Y) DEPUTY CLERK

Copy inn-Upon initiation (traction, mail this copy to Director Copy Lin-Upon termination of action, mail this copy to Director
Copy 2-—--Upon filing document adding patentt’sL mail this copy to Director Copy 4----Case file ropy

Case 2:16-cv-OO693-JRG Document 3 Filed 06/30/16 Page 2 of 2 PageID #: 741

A0 120 (Rev. USITU} I

Mail Stop 8 REPORT ON THE
Director of the US. Patent and Trademark Office FILTNG OR DETERTVHN ATION BE AN

PI). Box 1450 ACTION REGARDING A PATENT OR
Alexandria, VA 22313—1450 TRADENIARK

'10:

in Compliance with 35 U ,SC ‘ 290 and/or 15 U.S.C. § 1116 you are heraby advisad that, a (:(mrt. action has been

filed in the US. District Court Eastern District of Texas (Marshaii Division) 011L116 following

Tradcmarks 01' El’atents. (the patent action involves 35 U812. § 292.3:

DOCKET NO. DATE FELED US. DESTRICT COURT

2:16—cv—693 6/30/2016 . Eastern District of Texas Marshati Division

PLAINTIFF DEFENDANT

ALACRITECH, ENG. GENTURYLENK, ENC.

PATENT OR DATE OF PATENT

TRADEMARK NO, OR TRADEMARK HOLDER OF PA iENT OR TRADEMARR

1 8,131,880 3/6/2012 Aiacritech, inc.

2 8,805,948 8/12/2014 Atacritech; inc.

9,055.104 6/9/2015 Aiacritech, inc.

Cross Bill [:1 Other Pleading
PATENT 0R DATE OF PATENT

TR A DEM A R K NOT (TR TR A DEM A R K

in the abovewreuiitied case. the following decision has been rendered or judgement. issued:

DECISION/JUDG EM ENT

CLERK (B Y) DEPUTY CLERK

Copy inn-Upon initiation (traction, mail this copy to Director Copy Lin-Upon termination of action, mail this copy to Director
Copy 2-—--Upon filing document adding patentt’sL mail this copy to Director Copy 4----Case file ropy

