
111111 111

(12) United States Patent
Boucher et al.

(54) FAST-PATH APPARATUS FOR
TRANSMITTING DATA CORRESPONDING
TO A TCP CONNECTION

(75) Inventors: Laurence B. Boucher, Saratoga, CA
(US); Stephen E. J. Blightman, San
Jose, CA (US); Peter K. Craft, San
Francisco, CA (US); David A. Higgen,
Saratoga, CA (US); Clive M. Philbrick,
San Jose, CA (US); Daryl D. Starr,
Milpitas, CA (US)

(73) Assignee: Alacritech, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 435 days.

(21) Appl. No.: 11/821,820

(22) Filed: Jun. 25, 2007

(65)

(63)

Prior Publication Data

US 2008/0126553 Al May 29,2008

Related U.S. Application Data

Continuation of application No. 10/260,112, filed on
Sep. 27, 2002, now Pat. No. 7,237,036, which is a
continuation of application No. 10/092,967, filed on
Mar. 6, 2002, now Pat. No. 6,591,302, which is a
continuation-in-part of application No. 10/023,240,
filed on Dec. 17,2001, now Pat. No. 6,965,941, which
is a continuation-in-part of application No. 09/464,
283, filed on Dec. 15, 1999, now Pat. No. 6,427,173,
which is a continuation-in-part of application No.
09/439,603, filed on Nov. 12, 1999, now Pat. No.
6,247,060, which is a continuation-in-part of applica
tion No. 091067,544, filed on Apr. 27,1998, now Pat.
No. 6,226,680, said application No. 10/260,112 is a
continuation-in-part of application No. 09/384,792,
filed on Aug. 27, 1999, now Pat. No. 6,434,620, which
is a continuation-in-part of application No. 091141,
713, filed on Aug. 28,1998, now Pat. No. 6,389,479,

50
UPPER
LAYER

US007673072B2

(10) Patent No.: US 7,673,072 B2
Mar. 2,2010 (45) Date of Patent:

said application No. 10/260,112 is a continuation-in
part of application No. 091970,124, filed on Oct. 2,
2001, now Pat. No. 7,124,205, and a continuation-in
part of application No. 09/855,979, filed on May 14,
2001, now Pat. No. 7,133,940, and a continuation-in
part of application No. 09/802,550, filed on Mar. 9,
2001, now Pat. No. 6,658,480, and a continuation-in
part of application No. 09/802,426, filed on Mar. 9,
2001, now Pat. No. 7,042,898, and a continuation-in
part of application No. 09/802,551, filed on Mar. 9,
2001, now Pat. No. 7,076,568, and a continuation-in
part of application No. 09/801,488, filed on Mar. 7,
2001, now Pat. No. 6,687,758, and a continuation-in
part of application No. 091789,366, filed on Feb. 20,
2001, now Pat. No. 6,757,746, and a continuation-in
part of application No. 09/675,700, filed on Sep. 29,
2000, and a continuation-in-part of application No.
09/675,484, filed on Sep. 29, 2000, now Pat. No.
6,807,581, and a continuation-in-part of application
No. 09/514,425, filed on Feb. 28, 2000, now Pat. No.
6,427,171, and a continuation-in-part of application
No. 09/416,925, filed on Oct. 13, 1999, now Pat. No.
6,470,415.

(60) Provisional application No. 601061,809, filed on Oct.
14, 1997, provisional application No. 601098,296,
filed on Aug. 27, 1998.

(51)

(52)

(58)

(56)

Int. Cl.
G06F 15116 (2006.01)

U.S. Cl. 7091245; 709/230; 709/233;
709/234; 709/232; 709/239; 370/235; 370/468;

370/237; 370/230; 370/233

Field of Classification Search 709/245,
709/230-234,239,250; 370/235,468,237,

370/230, 233, 234
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,366,538 A
4,485,455 A
4,485,460 A
4,589,063 A

12/1982 Johnson et al. 364/200
1111984 Boone et al. 364/900
1111984 Stambaugh 365/203

5/1986 Shah et al. 710/8

46

UPPER LAYER
48

INTERFACE

TRANSPORT 35
40

52 38
NETWORK \ 58

44
DATA LINK

36
56

30

USOO7673072B2

(12) United States Patent
Boucher et a].

US 7,673,072 B2

Mar. 2, 2010

(10) Patent N0.:

(45) Date of Patent:

(54) FAST-PATH APPARATUS FOR said application No. 10/260,112 is a continuation-in-

(75)

TRANSMITTING DATA CORRESPONDING
TO A TCP CONNECTION

Inventors: Laurence B. Boucher, Saratoga, CA
(US); Stephen E. J. Blightman, San
Jose, CA (US); Peter K. Craft, San
Francisco, CA (US); David A. Higgen,
Saratoga, CA (US); Clive M. Philbrick,
San Jose, CA (US); Daryl D. Starr,
Milpitas, CA (US)

Assignee: Alacritech, Inc., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 435 days.

11/821,820

Jun. 25, 2007

Prior Publication Data

US 2008/0126553 A1 May 29, 2008

Related U.S. Application Data

Continuation of application No. 10/260,112, filed on
Sep. 27, 2002, now Pat. No. 7,237,036, which is a
continuation of application No. 10/092,967, filed on
Mar. 6, 2002, now Pat. No. 6,591,302, which is a
continuation-in-part of application No. 10/023,240,
filed on Dec. 17, 2001, now Pat. No. 6,965,941, which
is a continuation-in-part of application No. 09/464,
283, filed on Dec. 15, 1999, now Pat. No. 6,427,173,
which is a continuation-in—part of application No.
09/439,603, filed on Nov. 12, 1999, now Pat. No,
6,247,060, which is a continuation-in-part of applica-
tion No. 09/067,544, filed on Apr. 27, 1998, now Pat.
No. 6,226,680, said application No. 10/260112 is a
continuation-in-part of application No. 09/384,792,
filed onAug. 27, 1999, now Pat. No. 6,434,620, which
is a continuation-in-part of application No. 09/ 141,
713, filed on Aug. 28, 1998, now Pat. No. 6,389,479,

part of application No, 09/970,124, filed on Oct. 2,
2001, now 7at. No. 7,124,205, and a continuation-in-
part of app ication No. 09/855,979, filed on May 14,
2001, now 3at. No. 7,133,940, and a continuation-in-
part of application No. 09/802,550, filed on Mar. 9,
2001, now 3at. No. 6,658,480, and a continuation-in-
part of application No. 09/802,426, filed on Mar. 9,
2001, now 3at. No. 7,042,898, and a continuation—in—
part of application No. 09/802,551, filed on Mar. 9,
2001, now ’at. No. 7,076,568, and a continuation-in-
part of application No. 09/801,488, filed on Mar. 7,
2001, now 3at. No. 6,687,758, and a continuation—in—
part of app ication No. 09/789,366, filed on Feb. 20,
2001, now 3at. No. 6,757,746, and a continuation-in-
part of app ication No. 09/675,700, filed on Sep. 29,
2000, and a continuation-in-part of application No.
09/675,484, filed on Sep. 29, 2000, now Pat. No.
6,807,581, and a continuation-in-part of application
No. 09/514,425, filed on Feb, 28, 2000, now Pat. No.
6,427,171, and a continuation-in-part of application
No. 09/416,925, filed on Oct. 13, 1999, now Pat. No.
6,470,415.

Provisional application No. 60/061,809, filed on Oct.
14, 1997, provisional application No. 60/098,296,
filed on Aug. 27, 1998.

Int. Cl.

G06F 15/16 (2006.01)
U.S. Cl. 709/245; 709/230; 709/233;

709/234; 709/232; 709/239; 370/235; 370/468;
370/237; 370/230; 370/233

Field of Classification Search 709/245,
709/2307234, 239, 250; 370/235, 468, 237,

370/230, 233, 234
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,366,538 A
4,485,455 A
4,485,460 A
4,589,063 A

12/1982 Johnson ct al. 364/200
11/1984 Boone et al. .. 364/900

11/1984 Stambaugh 365/203
5/1986 Shah et a1. 710/8

F46

48

UPPER

42 LAYERK 50
¥UPPER LAYER

COMEXT ' ' INTERFACE
54
/ TRANSPORT4o

4 NETWORK38/

STORAGE

/ DATA LINK36
56

30

INIC/CPD

4,700,185 A
4,991,133 A
5,056,058 A
5,058,110 A
5,097,442 A
5,163,131 A
5,212,778 A
5,280,477 A
5,289,580 A
5,303,344 A
5,412,782 A
5,418,912 A
5,448,566 A
5,485,579 A
5,506,966 A
5,511,169 A
5,517,668 A
5,524,250 A
5,535,375 A
5,548,730 A
5,566,170 A
5,574,919 A
5,588,121 A
5,590,328 A
5,592,622 A
5,598,410 A
5,619,650 A
5,629,933 A
5,633,780 A
5,634,099 A
5,634,127 A
5,642,482 A
5,664,114 A
5,671,355 A
5,678,060 A
5,682,534 A
5,692,130 A
5,699,317 A
5,699,350 A
5,701,434 A
5,701,516 A
5,727,142 A
5,742,765 A
5,749,095 A
5,751,715 A
5,752,078 A
5,758,084 A
5,758,089 A
5,758,186 A
5,758,194 A
5,768,618 A
5,771,349 A
5,774,660 A
5,778,013 A
5,778,419 A
5,790,804 A
5,794,061 A
5,802,258 A
5,802,580 A
5,809,328 A
5,809,527 A
5,812,775 A
5,815,646 A
5,828,835 A
5,848,293 A
5,852,721 A *
5,872,919 A
5,878,225 A
5,892,903 A
5,898,713 A
5,913,028 A
5,920,566 A
5,930,830 A

US 7,673,072 B2
Page 2

1011987 Balph et al. 340/825.5
211991 Davis et aI 364/900

1011991 Hirata et al. 7091230
1011991 Beach et al. 370/85.6
311992 Ward et al. 365/78

1111992 Row et al. 395/200
511993 Dally et aI 395/400
111994 Trapp 370/85.1
211994 Latif et al. 395/275
411994 Yokoyama et al. 395/200
511995 Hausman et al. 395/250
511995 Christenson 395/200
911995 Richter et aI 370194.1
111996 Hitz et al. 395/200.12
411996 Ban 395/250
411996 Suda 395/280
511996 Szwerinski et aI. 395/800
611996 Chesson et al. 395/775
711996 Eshel et aI 3911500
811996 Young et aI 395/280

1011996 Bakke et al. 370/60
1111996 Netravali et al. 395/561
1211996 Reddin et al. 395/200.15
1211996 Seno et al. 395/675

111997 Isfeld et al. 395/200.02
111997 Stone 370/469
411997 Bach et al. 395/200.01
511997 Delp et al. 370/411
511997 Cronin et al. 3611220
511997 Andrews et al. 395/200.07
511997 Cloud et al. 395/680
611997 Pardillos 395/200.2
911997 Krech, Jr. et al. 395/200.64
911997 Collins 395/200.2

1011997 Yokoyama et al. 7091212
1011997 Kapoor et al. 395/684
1111997 Shobu et al. 395/200.12
1211997 Sartore et al. 395/230.06
1211997 Kraslavsky 3701254
1211997 Nakagawa 395/484
1211997 Cheng et aI 395/842
311998 Chen 395/181
411998 Wong et al. 395/200
511998 Hagersten 7111141
511998 Chan et al. 370/455
511998 Delp et al. 395/827
511998 Silverstein et aI 395/200.58
511998 Gentry et al. 395/200.64
511998 Hamilton et al. 395/831
511998 Kuzma 395/886
611998 Erickson et al. 395/829
611998 Picazo, Jr. et aI. 3951188.01
611998 Brendel et al. 395/200.31
711998 Jedwab 714/807
711998 Hansen et al. 7111112
811998 Osborne 7091245
811998 Hansen et al. 395/800.01
911998 Chen 3951182.08
911998 McAlpine 7111149
911998 Nogales et aI 395/825
911998 Cooper et aI 7111133
911998 Van Seeters et al. ... 395/200.43
911998 Purcell et al. 395/163

1011998 Isfeld et al. 395/200.3
1211998 Gentry et al. 395/825
1211998 Dillon et al. 7091217
211999 Wakeland et aI 395/200
311999 Bilansky et aI 395/200.57
411999 Klaus 3951187.01
411999 Melzer et al. 371153
611999 Wang et aI 395/200.33
711999 Hendel et al. 370/401
711999 Mendelson et aI 7111171

5,931,918 A
5,935,205 A
5,937,169 A
5,941,969 A
5,941,972 A
5,950,203 A
5,987,022 A
5,991,299 A
5,996,013 A
5,996,024 A
6,005,849 A
6,009,478 A
6,016,513 A
6,021,446 A
6,021,507 A
6,026,452 A
6,034,963 A
6,038,562 A
6,041,058 A
6,041,381 A
6,044,438 A
6,047,323 A
6,047,356 A
6,049,528 A
6,057,863 A
6,061,368 A
6,065,096 A
6,067,569 A
6,070,200 A
6,078,733 A
6,097,734 A
6,101,555 A
6,111,673 A
6,115,615 A
6,122,670 A
6,141,701 A
6,141,705 A
6,145,017 A
6,157,944 A
6,157,955 A
6,172,980 Bl
6,173,333 Bl
6,181,705 Bl
6,202,105 Bl
6,223,242 Bl
6,226,680 Bl
6,246,683 Bl
6,247,060 Bl
6,279,051 Bl
6,289,023 Bl
6,298,403 Bl
6,324,649 Bl
6,334,153 B2
6,343,360 Bl
6,345,301 Bl
6,345,302 Bl
6,356,951 Bl
6,370,599 Bl
6,385,647 Bl
6,389,468 Bl
6,389,479 Bl
6,393,487 B2
6,421,742 Bl
6,421,753 Bl
6,427,169 Bl
6,427,171 Bl
6,427,173 Bl
6,434,620 Bl
6,434,651 Bl
6,449,656 Bl
6,453,360 Bl
6,470,415 Bl
6,473,425 Bl

8/1999 Row et aI 709/300
8/1999 Murayama et aI 7091216
8/1999 Connery et al. 395/200.8
8/1999 Ram et al. 710/128
811999 Hoese et aI. 710/129
911999 Stakuis et aI 707/10

1111999 Geiger et al. 370/349
1111999 Radogna et al. 370/392
1111999 Delp et al. 7091226
1111999 Blumenau 709/301
12/1999 Roach et aI 370/276
12/1999 Panner et al. 710/5

112000 Lowe 7091250
212000 Gentry et al. 709/303
212000 Chen 714/2
212000 Pitts 710/56
312000 Minami et al. 370/401
3/2000 Anjur et al. 707/10
3/2000 Flanders et al. 370/401
3/2000 Hoese 710/129
312000 Olnowich 7111130
4/2000 Krause 7091227
4/2000 Anderson et al. 7111129
4/2000 Hendel et aI 3701235
5/2000 Olarig 345/520
5/2000 Hitzelberger 370/537
5/2000 Dayet al. 7111114
5/2000 Khaki et al. 7091224
5/2000 Gates et al. 71 0120
6/2000 Osborne 395/200.8
8/2000 Gotesman et al. 370/474
8/2000 Goshey et aI. 709/321
8/2000 Chang et al. 359/123
912000 Ota et aI 455/553
912000 Bennett et al. 7091236

1012000 Whitney 710/5
1012000 Anand et al. 710115
1112000 Ghaffari 710/5
1212000 Pedersen
1212000 Narad et al. 7091228

112001 Flanders et al. 370/401
112001 Jolitz et aI.
112001 Branstad et al. 370/392
3/2001 Gates et al. 71 0120
4/2001 Sheafor et al. 710/132
5/2001 Boucher et al. 7091230
6/2001 Connery et al. 370/392
6/2001 Boucher et al. 7091238
8/2001 Gates et al. 71 0120
912001 Dowling et al. 370/419

10/2001 Suri et al. 710/100
1112001 Eyres et al. 713/202
12/2001 Boucher et al. 7091230

112002 Feinleib 713/1
212002 Burns et al. 7091230
212002 Bennett et al. 7091236
3/2002 Gentry et al. 7091250
4/2002 Anand et al. 710115
5/2002 Willis et aI 7091217
5/2002 Muller et al. 7091226
5/2002 Boucher 7091243
5/2002 Boucher et al. 7091238
7/2002 Tillier 710/1
712002 Hoese et aI 710/129
7/2002 Elzur 7091224
7/2002 Craft et al. 7091230
7/2002 Boucher et al. 7091238
8/2002 Boucher et al. 7091230
8/2002 Gentry, Jr. 710/260
912002 Elzur et aI. 7091236
912002 Muller et al. 7091250

1012002 Starr et al. 7111104
1012002 Bellaton et al. 370/392

US 7,673,072 B2
Page 3

6,480,489 Bl
6,487,202 Bl
6,487,654 B2
6,490,631 Bl
6,502,144 Bl
6,523,119 B2
6,526,446 Bl
6,570,884 Bl
6,591,302 B2
6,591,310 Bl
6,648,611 B2
6,650,640 Bl
6,657,757 Bl
6,658,480 B2
6,678,283 Bl
6,681,364 Bl
6,687,758 B2
6,697,868 B2
6,751,665 B2
6,757,746 B2
6,765,901 Bl
6,807,581 Bl
6,842,896 Bl
6,912,522 B2
6,938,092 B2
6,941,386 B2
6,965,941 B2
6,996,070 B2
7,042,898 B2
7,076,568 B2
7,089,326 B2
7,093,099 B2
7,124,205 B2
7,133,940 B2
7,167,926 Bl
7,167,927 B2
7,174,393 B2
7,185,266 B2
7,191,241 B2
7,191,318 B2
7,237,036 B2
7,254,696 B2
7,284,070 B2

200110004354 A
200110025315 A
200110013059 Al
200110014892 Al
200110014954 Al
200110048681 Al
200110053148 Al
200210073223 Al
200210112175 Al
2003/0066011 Al
2003/0110344 Al
2003/0165160 Al
2004/0054814 Al
2004/0059926 Al
2004/0153578 Al
2004/0213290 Al
2004/0246974 Al

1112002 Muller et al. 370/389
1112002 Klausmeier et al. 370/395
1112002 Dowling 7121244
12/2002 Teich et al. 7091250
12/2002 Accarie 710/8
212003 Pavlin et al 713/192
212003 Yang et al.
5/2003 Connery et al. 370/419
7/2003 Boucher et al. 7091230
7/2003 Johnson 710/3

1112003 Morse et al 417/310
1112003 Muller et al. 370/392
1212003 Chang et al 359/124
1212003 Boucher et al. 7091239

112004 Teplitsky 370/463
112004 Calvignac et al 7141776
212004 Craft et al. 7091250
212004 Craft et al. 7091230
6/2004 Philbrick et al 7091224
6/2004 Boucher et al. 7091250
7/2004 Johnson et al. 370/352

1012004 Starr et al. 7091250
112005 Redding et al. 717/172
6/2005 Edgar 707/2
8/2005 Burns 7091230
912005 Craft et al. 7091250

1112005 Boucher et al. 7091230
212006 Starr et al. 3701252
5/2006 Blightman et al. 370/463
7/2006 Philbrick et al 7091250
8/2006 Boucher et al. 7091242
8/2006 Bodas et al. 7111206

1012006 Craft et al. 7091250
1112006 Blightman et al. 710122

112007 Boucher et al. 7091250
112007 Philbrick et al 7091250
212007 Boucher et al. 7091250
212007 Blightman et al. 7141776
3/2007 Boucher et al. 7091230
3/2007 Tripathyet al. 7121225
6/2007 Boucher et al. 7091245
8/2007 Mittal et al. 7121210

1012007 Boucher et al. 7091250
112001 Jolitz 370/328
112001 Jolitz 7091231
8/2001 Dawson et al. 7091217
8/2001 Gaither et al. 707/200
8/2001 Purcell et al. 714/4

1212001 Bilic et al. 370/389
1212001 Bilic et al. 370/389
6/2002 Darnell et al. 7091232
8/2002 Makofka et al. 713/200
412003 Oren 7141758
6/2003 Szczepanek et al 7111100
912003 Minami et al. 370/466
3/2004 McDaniel
3/2004 Angelo et al 713/168
812004 Elzur

1012004 Johnson et al. 370/469
1212004 Gyugyi et al. 370/395.31

FOREIGN PATENT DOCUMENTS

WO WO 98119412 5/1998
WO WO 98/50852 1111998
WO WO 99104343 111999
WO WO 99/65219 12/1999
WO WO 00/13091 312000
WO WO 01104770 112001
WO WO 01105107 112001
WO WO 01105116 112001
WO WO 01105123 112001
WO WO 01140960 6/2001

WO
WO

WO 01159966
WO 01186430

8/2001
1112001

OTHER PUBLICATIONS

Internet pages entitled "Hardware Assisted Protocol Processing",
(which Eugene Feinber is working on), 1 page, printed Nov. 25,1998.
Zilog product Brief entitled "Z85C30 CMOS SCC Serial Commu
nication Controller", Zilog Inc., 3 pages, 1997.
Internet pages of Xpoint Technologies, Inc. entitled "Smart LAN
Work Requests", 5 pages, printed Dec. 19, 1997.
Internet pages entitled: Asante and 100BASE-T Fast Ethernet. 7
pages, printed May 27, 1997.
Internet pages entitled: A Guide to the Paragon XP/S-A7
Supercomputer at Indiana University. 13 pages, printed Dec. 21,
1998.
Richard Stevens, "TCP/IP Illustrated, vol. 1, The Protocols", pp.
325-326 (1994).
Internet pages entitled: Northridge/Southbridge vs. Intel Hub Archi
tecture, 4 pages, printed Feb. 19, 2001.
Gigabit Ethernet Technical Brief, Achieving End-to-End Perfor
mance. Alteon Networks, Inc., First Edition, Sep. 1996, 15 pages.
Internet pages directed to Technical Brief on Alteon Ethernet Gigabit
NIC technology, www.alteon.com.14pages.printed Mar. 15, 1997.
Via Technologies, Inc. article entitled "VT8501 Apollo MVP4", pp.
i-iv, 1-11, cover and copyright page, revision 1.3, Feb. 1,2000.
iReady News Archives article entitled "iReady Rounding Out Man
agement Team with Two Key Executives", http://www.ireadyco.
corniarchives/keyexec.html, 2 pages, printed Nov. 28, 1998.
"Toshiba Delivers First Chips to Make Consumer Devices Internet
Ready Based On iReady's Design," Press Release Oct. 1998,3 pages,
printed Nov. 28, 1998.
Internet pages from iReady Products, web sitehttp://www.ireadyco.
corniproducts,html, 2 pages, downloaded Nov. 25, 1998.
iReady News Archives, Toshiba, iReady shipping Internet chip, 1
page, printed Nov. 25, 1998.
Interprophet article entitled "Technology", http://www.interprophet.
cornitechnology.html, 17 pages, printed Mar. 1, 2000.
iReady Corporation, article entitled "The 1-1000 Internet Tuner", 2
pages, date unknown.
iReady article entitled "About Us Introduction", Internet pages
frornhttp://www.iReadyco.comiabout.html.3pages.printed Nov.
25, 1998.
iReady News Archive article entitled "Revolutionary Approach to
Consumer Electronics Internet Connectivity Funded", San Jose, CA,
Nov. 20,1997. 2 pages, printed Nov. 2, 1998.
iReady News Archive article entitled "Seiko Instruments Inc. (SII)
Introduces World's First Internet-Ready Intelligent LCD Modules
Based on iReady Technology," Santa Clara, CA and Chiba, Japan,
Oct. 26, 1998.2 pages, printed Nov. 2, 1998.
NEWSwatch article entitled "iReady internet Tuner to Web Enable
Devices", Tuesday, Nov. 5, 1996, printed Nov. 2, 1998,2 pages.
EETimes article entitled "Tuner for Toshiba, Toshiba Taps iReady for
Internet Tuner", by David Lammers, 2 pages, printed Nov. 2, 1998.
"Comparison of Novell Netware and TCPIIP Protocol Architec
tures", by J.S. Carbone, 19 pages, printed Apr. 10, 1998.
Adaptec article entitled "AEA-7110C-a DuraSAN product", 11
pages, printed Oct. 1, 2001.
iSCSI HBA article entitled "iSCSI and 2Gigabit fibre Channel Host
Bus Adapters from Emulex, QLogic, Adaptec, JNI", 8 pages, printed
Oct. 1, 2001.
iSCSI HBA article entitled "FCE-3210/641O 32 and 64-bit PCI-to
Fibre Channel HBA", 6 pages, printed Oct. 1, 2001.
ISCSI.com article entitled "iSCSI Storage", 2 pages, printed Oct. 1,
2001.
"Two-Way TCP Traffic Over Rate Controlled Channels: Effects and
Analysis", by Kalampoukas et aI., IEEE Transactions on Network
ing, vol. 6, No.6, Dec. 1998, 17 pages.
IReady News article entitled "Toshiba Delivers First Chips to Make
Consumer Devices Internet-Ready Based on iReady Design", Santa
Clara, CA, and Tokyo, Japan, Oct. 14, 1998, printed Nov. 2, 1998,3
pages.

US 7,673,072 B2
Page 4

Internet pages of InterProphet entitled "Frequently Asked Ques
tions", by Lynne Jolitz, printed Jun. 14,2000,4 pages.
"File System Design For An NFS File Server Appliance", Article by
D. Hitz, et ai., 13 pages.
Adaptec Press Release article entitled "Adaptec Announces
EtherStorage Technology", 2 pages, May 4, 2000, printed Jun. 14,
2000.
Adaptec article entitled "EtherStorage Frequently Asked Questions",
5 pages, printed Jui. 19,2000.
Adaptec article entitled "EtherStorage White Paper", 7 pages, printed
Jui. 19,2000.
CIBC World Markets article entitled "Computers; Storage", by J.
Berlino et al., 9 pages, dated Aug. 7, 2000.
Merrill Lynch article entitled "Storage Futures", by S. Milunovich,
22 pages, dated May 10, 2000.
CBS Market Watch article entitled "Montreal Start-Up Battles Data
Storage Botttieneck", by S. Taylor, dated Mar. 5, 2000, 2 pages,
printed Mar. 7, 2000.
Internet-draft article entitled "SCSI/TCP (SCSI over TCP)", by J.
Satran et al., 38 pages, dated Feb. 2000, printed May 19, 2000.
Internet pages entitled Technical White Paper-Xpoint's Disk to LAN
Acceleration Solution for Windows NT Server, printed Jun. 5, 1997,
15 pages.
Jato Technologies article entitled Network Accelerator Chip Archi
tecture, twelve-slide presentation, printed Aug. 19, 1998, 13 pages.
EETimes article entitled Enterprise System Uses Flexible Spec,
dated Aug. 10,1998, printed Nov. 25,1998,3 pages.
Internet pages entitled "Smart Ethernet Network Interface Cards",
which Berend Ozceri is developing, printed Nov. 25, 1998,2 pages.
Internet pages of Xaqti corporation entitled "GigaPower Protocol
Processor Product Review," printed Nov. 25, 1999,4 pages.
U.S. Appi. No. 601283,896, Titled: CRC Calculations for Out of
Order PUDs, filed Apr. 12, 2003, Inventor: Amit Oren, Assignee:
Siliquent Technologies Ltd.
Internet pages entitled "DART: Fast Application Level Networking
via Data-Copy Avoidance," by Robert J. Walsh, printed Jun. 3, 1999,
25 pages.
Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996,
ISBN 0-13-349945-6.
Article from Rice University entitled "LRP: A New Network Sub
system Architecture for Server Systems", by Peter Druschel and
Gaurav Banga, 14 pages.
Internet RFC/STD/FYI/BCP Archives article with heading
"RFC2140" entitled "TCP Control Block Interdependence", web
address http://www.faqs.org/rfcs/rfc2140.htrnl.9pages.printed Sep.
20,2002.
WindRiver article entitled "Tornado: For Intelligent Network Accel
eration", copyright Wind River Systems, 2001, 2 pages.
WindRiver White Paper entitled "Complete TCP/IP Offload for
High-Speed Ethernet Networks", Copyright Wind River Systems,
2002, 7 pages.
Intel article entitled "Solving Server Bottlenecks with Intel Server
Adapters", Copyright Intel Corporation, 1999,8 pages.
Schwaderer et ai., IEEE Computer Society Press publication entitled,
"XTP in VLSI Protocol Decomposition for ASIC Implementation",
from 15th Conference on Local Computer Networks, 5 pages, Sep.
30-0ct. 3, 1990.
Beach, Bob, IEEE Computer Society Press publication entitled,
"UltraN et: An Architecture for Gigabit Networking", from 15th Con
ference on Local Computer Networks, 18 pages, Sep. 30-0ct. 3,
1990.

Chesson et ai., IEEE Syposium Record entitled, "The Protocol
Engine Chipset", from Hot Chips III, 16 pages, Aug. 26-27,1991.
Maclean et ai., IEEE Global Telecommunications Conference,
Globecom '91, presentation entitled, "An Outboard Processor for
High Performance Implementation of Transport Layer Protocols", 7
pages, Dec. 2-5, 1991.
Ross etai., IEEE article entitled "FXI000: Ahigh performance single
chip Gigabit Ethernet NIC", from Compcon '97 Proceedings, 7
pages, Feb. 23-26, 1997.
Strayer et ai., "Ch. 9: The Protocol Engine" from XTP: The Transfer
Protocol, 12 pages, Jui. 1992.
Publication entitled "Protocol Engine Handbook", 44 pages, Oct.
1990.
Koufopavlou et ai., IEEE Global Telecommunications Conference,
Globecom '92, presentation entitled, "Parallel TCP for High Perfor
mance Communication Subsystems", 7 pages, Dec. 6-9, 1992.
Lilienkamp et ai., Publication entitled "Proposed Host-Front End
Protocol", 56 pages, Dec. 1984.
Thia et ai. Publication entitled "High-Speed OSI Protocol Bypass
Algorithm with Window Flow Control," Protocols for High Speed
Networks, pp. 53-68, 1993.
U.S. Appi. No. 601053,240, Titled: TCP/IP Network Accelerator and
Method of Use, filed Jui. 17, 1997, Inventor: William Jolizt et ai.
Thia et ai. Publication entitled "A Reduced Operational Protocol
Engine (ROPE) for a multiple-layer bypass architecture," Protocols
for High Speed Networks, pp. 224-239, 1995.
Form 10-K for Exelan, Inc., for the fiscal year ending Dec. 31, 1987
(10 pages).
Form 10-K for Exelan, Inc., for the fiscal year ending Dec. 31, 1988
(10 pages).

* cited by examiner

Primary Examiner-Jude J Jean Gilles
(74) Attorney, Agent, or Firm-Mark Lauer; Silicon Edge
Law Group, LLP

(57) ABSTRACT

A system for protocol processing in a computer network has
an intelligent network interface card (INIC) or communica
tion processing device (CPD) associated with a host com
puter. The INIC provides a fast-path that avoids protocol
processing for most large multi-packet messages, greatly
accelerating data communication. The INIC also assists the
host for those message packets that are chosen for processing
by host software layers. A communication control block for a
message is defined that allows DMA controllers of the INIC
to move data, free of headers, directly to or from a destination
or source in the host. The context is stored in the INIC as a
communication control block (CCB) that can be passed back
to the host for message processing by the host. The INIC
contains specialized hardware circuits that are much faster at
their specific tasks than a general purpose cpu. A preferred
embodiment includes a trio of pipelined processors with
separate processors devoted to transmit, receive and manage
ment processing, with full duplex communication for four
fast Ethernet nodes.

21 Claims, 89 Drawing Sheets

u.s. Patent Mar. 2,2010 Sheet 1 of89 US 7,673,072 B2

20

I

r------------------------,
HOST 1--/

35~
STORAGE r--- 28 I ,

I
I
I

r 22
I - CPU I
I

30 I
REMOTE ~ CPD ~33 1-

HOST I
I
I
I

25\
L _____ -----------------

FIG. 1

(46

(50
UPPER

42,,- LAYER
UPPER LAYER 48\

CONTEXT

54)
INTERFACE

STORAGE

~ "-4~
TRANSPORT 35

38"'-
NETWORK \ ~8 52

'-- 44
r- DATA LINK

36
56

30\
~

,Ir

INIC/CPD

FIG. 2

u.s. Patent Mar. 2,2010 Sheet 2 of89 US 7,673,072 B2

RECEIVE PACKET
FROM NETWORK 47

BYCPD

VALIDATE PACKET,
SUMMARIZE 57

HEADERS

61

5~

FAST PATH NO
SEND PACKET TO

CANDIDATE?
STACK FOR SLOW-
PATH PROCESSING

67 65 YES 53

NO SEND PACKET TO
STACK FOR SLOW-

CCB? PATH PROCESSING

YES 69

SEND TO
DESTINATION CREATE CCB FOR
IN HOST VIA MESSAGE
FAST-PATH

51

FIG. 3

US. Patent Mar. 2, 2010 Sheet 2 of 89 US 7,673,072 B2

RECEIVE PACKET

FROM NETWORK

BY CPD

VALIDATE PACKET,

SUMMARIZE

HEADERS

SEND PACKET TO

STACK FOR SLOW-

PATH PROCESSING

FAST PATH

CANDIDATE?

SEND PACKET TO

MATCH WITH STACK FOR SLOW-

CCB? PATH PROCESSING

SEND TO

DESTINATION CREATE CCB FOR

IN HOST VIA MESSAGE

FAST-PATH

u.s. Patent

REMOTE
HOST 25

REMOTE
HOST

REMOTE
HOST

REMOTE
HOST

32

32

Mar. 2,2010 Sheet 3 of89 US 7,673,072 B2

FIG.4A

FIG.4C

FIG.4D

56

42

40
38
36

65
SESS

r-------l
f-----L+K:::-l I

TRANS 40
NETW 38
DUNK 36

I
I
I
I
I
I

~44

SESS
TRANS
NETW
DUNK

~44

SESS
TRANS
NETW
DLINK

~44

I

40 I
35 I

38 '-1
I

36 L _______

r--- ---,
I I
I 1

35 1 70 1

'--i :
I 1
L _______ I

US. Patent Mar. 2, 2010 Sheet 3 of 89 US 7,673,072 B2

u.s. Patent Mar. 2,2010 Sheet 4 of89 US 7,673,072 B2

"

REMOTE
HOST

42 99
1

~SE~S~S~--.-J~--rMI :
TRANS L.......-_-' 1

NETW 1

1

,..-_,--...., DLINK L - -,- - --,
~--------~)

96 35·...-
~44

FIG. 5

152-, ,----- -- --------1
1 FAST-PATH
: : ~ SOURCEIDEST 15l 168 -r .. ~
1 APPLICATION

166 --1.
1

150 '" 170 185
1

164~ TRANSPORT : ___ L ___ ~ ______ -_ -
1
1 162 1

1 1 :-t--- NETWORK 1 PROCESSOR 1 1 1
S 1 160,-+-1 1

1 HARDWARE LOGIC 1 SLOW-PATH 1 DATA LINK
..l.

I ~I 1
1 I L __________________ '.

C157
. -----\:-------

~155 171 158

FIG. 6

1
1
1
1
1
1
1

-'

US. Patent Mar. 2, 2010 Sheet 4 0f 89 US 7,673,072 32

u.s. Patent Mar. 2,2010 Sheet 5 of89

MEDIA ACCESS r----.-- 172
CONTROLLER

I
l'

ASSEMBLY r------- 174 (178
REGISTER)

"

.. FLYBY

.~-- SEQUENCER

MULTIPLEXOR r----.-- 180

SRAM ...-

"

DRAM CONTROL

C 186

l'
DRAM r------- 188

SRAM
CONTROL ...-

FIG. 7

US 7,673,072 B2

PACKET
CONTROL

SEQUENCER
J

QUEUE
184"'-- MANAGER

US. Patent Mar. 2, 2010 Sheet 5 0f 89 US 7,673,072 32

NEEDIA ACCESS

CONTROLLER

ASSEMBLY

REGISTER

MULTIPLEXOR

182

PACKET

CONTROL

SEQUENCER

FLY BY

SEQUENCER

E 5 I I SRAM

DRAM CONTROL

u.s. Patent

178

Mar. 2,2010 Sheet 6 of89 US 7,673,072 B2

) 174

PACKET
176 ______ CONTROL

.. ASSEMBLY
I----~

SEQUENCER
REGISTER

r---- 191
MAC ~ 1-4-------1

SEQUENCER

1

r---- 192
NETWORK _

1-4---------J
SEQUENCER

TRANSPORT ~ 194
I-0Il-1--------1

SEQUENCER

SESSION ~ 195
14------

SEQUENCER """

MULTIPLEXOR

FIG. 8

US. Patent Mar. 2, 2010 Sheet 6 of 89 Us 7,673,072 32

174

PACKET ASSEMBLY
CONTROL REGISTER

SEQUENCER

MAC

SEQUENCER

NETWORK

SEQUENCER
TRANSPORT

SEQUENCER

SESSION

SEQUENCER

180

MULTIPLEXOR

FIG. 8

u.s. Patent Mar. 2,2010 Sheet 7 of89 US 7,673,072 B2

270 FAST-PATH~", SOURCEIDEST
I'

't3~~ __ :~~~i_~3~_i~4 -r- r:;237 222~ APPLICATION ,~
: PROCESSOR) I 220 ~ f--------H
I I I

I
I, '" HARDWARE LOGIC 4: 217---r TRANSPORT

I II 262, I ~ I-----------t-l

~ ~HARDWARELOGIC3 S: 215~NETWORK
I 231 212 I

242 r+--; HARDWARE LOGIC 2 I / '---II-------H

'-- : HARDWARE LOGIC 1 : \ SLOW-PATH; MAC
I I: '----------'

" L~210-----t-----;6~- '. C • ------',~-----
240 ./ ~ 250 205 202

,~

FIG. 9

TDIUSERS ~ 382

I~
TDI FILTER DRIVER

& UPPER LAYER INTERFACE

360
I~ ATCP

TCP ~ 358

;~ 366 IP IP ~ 355 350

363 ~ MAC MAC ~ 353
--- ---

375 ~ NDIS

)1' I'

,Ir ,,..

377 ~ INIC MINIPORT DRIVER

FIG. 11

US. Patent Mar. 2, 2010 Sheet 7 0f 89 US 7,673,072 32

PROCESSOR .
HARDWARE LOGIC 4 ‘ TRANSPORT

HARDWARE LOGIC 3 NETWORK
HARDWARE LOGIC 2

HARDWARE LOGICl

TDI FILTER DRIVER

& UPPER LAYER INTERFACE

INIC MINIPORT DRIVER

u.s. Patent Mar. 2,2010 Sheet 8 of89 US 7,673,072 B2

r--------------------------------I
202/~,_~ I

I

: 300 I

: "\ 318~ UPPERLAYER ~.I--': ___ -"
I ,'----- " I
I I
I I

,~. UPPER LAYER INTERFACE :
330 1--'

I I

.~I ~III - 316 325 r----' TRANSPORT TRANSPORT I ~
I
I

322~ NETWORK NETWORK
I 1--_____ --1

I

~314
I
I I

320~ DATALINK DATALINK ~ 312
I I
I
I I' I' I
L ________________________ -t. _____ 1

,w- 'w- '--310

306 ~ INIC MINIPORT DRIVER

J

240~
1

200~

(
INIC

210

INIC
MEMORY ~304

FIG. 10

190 ._,,-~-------cLiENT------1

168

166

164
157

162

160

I,i-----~

5MB

NETBIOS

TCP ~159

IP

MAC

INrc 210
L _________________ _

FIG. 12

-------------1
,...-- SERVER l_"-" 290

5MB

NETBIOS

TCP

IP

MAC

INIC
L. _____ _

240

I
I

___ J

244

242

222

220

217
231

215

212

200

~
7Jl
•
~
~
~
~ = ~

~
~
:-:
N
~

N
o
o

rFJ

=('D
('D
\0
o
QO
\0

d
rJl
-....l
0..,
-....l
W

-= -....l
N

= N

gm.5:2:Z»:N“8:.£53a2%dm$3?ch3
RmRES

u.s. Patent Mar. 2,2010 Sheet 10 of 89 US 7,673,072 B2

1

1

210 400 -, 240 200~
., 42 244

\
_______ L ___ _

MAC-A 402 MAC-B

412

XMT&
RCV-A

426

REG FILE
WCS
ROM

418 XMT&
RCV-B

428

477

:---MfCRO----: 470
1 PROCESSOR L_/
1 r--------,
1
1
1
1

1

: 484

464

04

420

SRAM
CTRL

----,
1

1

MAC-C 406 MAC-D :

XMT& 422 XMT&
RCV-D RCV-C 42

1

1

1

430
43

440

SRAM

446

EXTERNAL
MEMORY

CTRL

1

1

1

416 1

1 ____ ,_1
450 455

'-444
468

1-------
1

1

1

DRAM

PCI BUS INTERFACE UNIT
1

1

1

1

1

1 ______ ------------------
___________________ J 460

257

FIG. 13

US 7,673,072 B2

CTRL

EXTERNAL

MEMORY

Sheet 10 0f 89

HECmBTmSUBGP

Mar. 2, 2010

PROCESSOR

US. Patent

u.s. Patent Mar. 2,2010 Sheet 11 of 89 US 7,673,072 B2

CLOCK r--r-------L----- L ______ /- ______ L _____ L __
/

/
I
I
I

492....., I CONTROLS FOR FIRST REGISTER SET I
I

/ 505 -../"' /

500'-,
490\ ,

533\)

I

~
I
I

FIRST REGISTER SET
I :

RAM FILE I
I REGISTER , ,

>--f------- ------- ------- f-------- --- f--
/

/

I
498~ I

I ,
I
I INSTRUCTION DECODER I
I AND
J

OPERAND MULTIPLEXER /

560,/
496\

, ,
I
I

~ I
I SECOND REGISTER SET IT I
I
I
I , ,

)---------- ------- -------1-------- ------- -----
/

/
I
I
I STACK I ARITHMETIC LOGIC UNIT QUEUE I EXCHANGE I
I ~608 602) 503) /

/

600/, ,
) r r r r r r
I
I

THIRD REGISTER SET ITI I

(:" 501~
470 '--~------~----- ~------~------~----- '5..--

FIG. 14

500
\
\

~ ___ L_~ ___ ~---~---~--~---~--~--r==1~ __ ~ __ ~ ___ ~ __
1
1
1
I
1

1 SRAM LOAD LOAD r CTRL CTRL CTRL
492:

502

r .. • •

Ir

FLAG
DEC

508T1

533,\ .. J"
ADDR

~ & FILE ALU FLAG
ADDR

C

510

535 \

Ir 1 • •

D~ IINSTR/FETCH
REG IADDR

~

•
LOAD
CTRL

517T1
505 ""'--

..
PC ISTACKIDEBUG

ADDR (: r DATA CTX CCS REGS
490 1 520~~~~-LTT~In'-~~

1
1

RAM FILE
REGISTER

538) I 540) 54471~8]
________ ----1-- I- - \- - - - -' +- - - - -I- - - - -1- - - - - - - - - - -

• t •
, • • Ir I I ,

DOUT DOUT • • •
ADDR ADDR'

FIG. 15A

~
7Jl
•
~
~
~
~ = ~

~
~ :-:
N

N
o
o

rFJ

=('D

a
N
o
QO
\0

d
rJl
-....l
0..,
-....l
W

-= -....l
N

= N

560-
\

\
ADDR DIN

~----~-~- --4----+----~-- C C
1--------

I
I
I
I
I
I

SCRATCH
SRAM

)
565

: 498)
I
I
I
I
I
I

1

..

..

RAM FILE
REGISTER

r-l DOUT DOUTI

ADDR ADDR

'533) I
.. * r*

INSTRUCTION DECODER
AND

OPERAND MULTIPLEXER

, .. , ..

----t------~----------

INCR

568)

1

,--t--
INCR

570)

505"'--

LOAD k---...
CTRLf "

575)

: FILE ALU ALU ALU TEST FLAG QCH& LIT PGM PC STACK DEBUG r CTX OPDS CCS OP SEL SEL QCMD CTRL ADDR

496: 577
I

~----- -------- ----~------

1 .. 1 1 1

FIG. 1SB

~
7Jl
•
~
~
~
~ = ~

~
~
:-:
J'J
N
o
o

rFJ

=('D
('D
(.H

o
QO
\0

d
rJl

",-.....1
0'1
-.....1
"'w = -.....1
N

= N

600 ---"
\
\
L_~ ____ ~ ____ ~ ____ ~ ___ ~ ____ ~ ____ + ____ ~ ____ ~ ___ ~ ____ ~ _____ ~ ____ _

• • ttl t ~ STACK LOAD~ ALU ITESTI~ IQ~
EXCHANGE MUX QALU CTRL

602) I I 160~) I ' 16071 1608) 1 1 1610) I

505~

1 ! ! ! ! ! ! 1 ! 1 1 1
DEST QFLGS

FILE ALU ALU OPD TEST FLAG & LIT PGM PC STACK DEBUG
CTX OUT CCS RSLT RSLT SEL QADDR CTRL ADDR

616
I
L __ _

FIG. 15C

~
7Jl
•
~
~
~
~ = ~

~
~ :-:
N
~

N
o
o

rFJ

=('D
('D
.j;o.

o
QO
\0

d
rJl
-....l
0..,
-....l
W

-= -....l
N

= N

u.s. Patent Mar. 2,2010 Sheet 15 of 89 US 7,673,072 B2

722 733

I- -700 460 702~ J-
705

1 727
1 713

735 1
1

715 707
DRAM

709 717

1 730 719 711 1

_I _I
725 739

FIG. 16

745 _____ 1

1 I I I I. ;46CJ)))) C
758 754 752 748 756

75° _____ 1

I I 1 . . ;69 1 1

))))
"=766

764 772 770 768 740

755 _____ 1

1 I 1 I. ~79 1

)))) C
776 784 782 780 778

76° _____ 1

1 . . ;89 1 1

)
1
)

1

)) C790
788 796 794 792

FIG. 17

US. Patent Mar. 2, 2010 Sheet 15 of 89 Us 7,673,072 B2

764 772 770 768

M

776 784 782 780

\>

796 794 792

FIG.

u.s. Patent Mar. 2,2010 Sheet 16 of 89 US 7,673,072 B2

8
p) D2Q Q2D XMT ReV 806 <cJ ;:C I Seq ·1 Seq (Seq I Seq 0

844

~~~~:r 808 810 804 
846 ~815 
~ ARBITER MUX 

~ 
( 

REGISTER A 

8 

• Addr DIn Addr '55 
Out In 

QRAM 

DOut 

( • 
REGISTERB 

82 

r 

( 
QALU 

82 

822\ - 8 
r- -I r-- -- --- ----1-- ----- --~-, 
1 Q Q : 1 Body Body 1 
I Q Q I 0 I Sram STam W· R d I n ~ n~ ~ 
1 Empty Full RDY RDY : I Req Addr Req Req I 

21 

Sram 
Write 
Data 

~ -~ _ -~- -\;--- -\: ~ L -\: _ -\i -\: - -\~_I 
755 760 750 745 830 833 835 838 840 

FIG. 18 

US. Patent Mar. 2, 2010 Sheet 16 of 89 US 7,673,072 B2

D2Q Q2D XMT RCV QProc 806 -802
844 WnteSeq Seq Seq Seq

Req Req Req Req ch Data

808 810 864

ARBITER

818

815

REGISTER A

 

 

 

REGISTER B

828

822\
,__| ________ _____ __ ____

—|
l l

| Q Q 1% Oat Ill Sram Sram
: Empty Full RDY RDY :[ Req Addr

75
_ _ _ __ .4 L _ __ _

5 760 750 745 830

FIG. 18

  



u.s. Patent Mar. 2,2010 Sheet 17 of 89 US 7,673,072 B2 

9~ LRU 

1 ~O 1 ~1 I~I. . 1 ~7 1 ~~ 1 ~ I. . 

MRU 

R13 R14 R15 
13 4 6 

FIG.19A 

9~ LRU 

1 ~o 1 ~1 1 ~ I. . I~; 1 ~g 1 ~91· . 
MRU 

R13 R14 R15 
4 6 9 

FIG. 19B 

9~ LRU 

1 ~o 1 ~1 1 ~ I· . I~; 1 ~8 1 ~ I· 
MRU 

R13 R14 R15 
6 9 10 

FIG. 19C 

9~ LRU 

1 ~o 1 ~1 I~I .. I ~71 ~~ I ~ I .. 
MRU 

R13 R14 R15 
6 9 10 

FIG. 19D 



915 
(~ 

------------------------------------------------------~ 

,--, n rI II l 
r. /. ,D. ,IT • rr 7'r-, r '. 

MUX MUX MUX MUX MUX 
r-~ 0 ;/ ~ 7 ~ 8 ~ 9 r=: 15 

/. /. 

r /. r , r "/ 

~,.... RO r- L-I'-- R7 r- L......r~-i'-- R8 r- L.../~"--~ R9 r- L....../I-i'- R15 r--

3 t- 2 12 1 10 
I 

• , +_ , i , J ; t ; 
CO C7 C8 C9 C15 

~ 944 949 954 959 
939, ~ , ~ r ~ , ~ 

LOGIC CIRCUITS 

, 
~966 930 

PROCESSOR 
I-

FIG. 20 470 

...- 910 

"'-900 

"'-920 

935 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ :-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... .... 
QO 

o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 19 of 89 

NETWORK 

J:210 
__ 2101 INIC 200 

------¥-----------~----------------

PHYSICAL 2100 
LAYER r---

INTERF. ASIC 400 
1------- ---------2-----------------, 
I I 
I 2230) j. j. ~2229 I 

: 2109-- j02 QUEUE : 
M GR PROCESSOR 

MEDIA N tv21D3 470 : : 

ACCESS . ~2~112~ ~X ~ I I 
CTRL : : 

2231 2232 I I 

US 7,673,072 B2 

I 41 0 '--------y-------' I I r 2108! 2113 2106 I I HOST 20 
SEQUENCERS :-,.475 11 _______ ..:::' ____ 1 

2102 lCONFIG.J : :: 257 : 
~8 'II I 

[ RXSEQ I TXSEQ : : I CPU I 
21 05. 2104 , I: 28: 

.. PCI :2 , 
2228 ~ 442 BUS I~ I, , 

~ I 

SRAM I NT. I I STORAGE : 
SRAM CTRL ')50 : : 35: 

44~ ~ DRAM : : I 

I jl~rt~~: } 2110 CTRL l i L -----------j 
I L 'I 
I , I 
I I r 

: ---------------------------------~, 
I DRAM : 
I 
I STATUS ~ 460 : 
I , 
, /2223 , 
, } BUFFER I 
I J 2114 I 
I I 
I I 
I I 
I I L _____________________________________ ~ 

FIG. 21 



u.s. Patent Mar. 2,2010 Sheet 20 of 89 US 7,673,072 B2 

MAC 
QUEUE 

MANAGER 
2213 2214 2227 

2215, III c r'-
8v f 

---~--------------i~ 
2221~ 2210 2209 

I I-' f--' 2105 
I c! 

----~-----~----~---
I I I 

I DATA 2200 I QUEUE : 
: SYNC r-- PACKET: MANAGER \ 

: BUFFER 22222 SYNC I INTERFACE 1<t---~'---.o;1 ~-,,-r-.L-
\ ~ SEQUENCER II ~ : 2230 
I 2201 \ fl I 
I \) l \ 

: : 2268 2207 : 
I 4.v ~v .... 1 I \ 

- -:- - - - - - - - - - - - - ;2-0; 22 16-" - r--221 9' 2212 " t---2211 : 

\ DATA P 2218 PACKET : 
~ ASSEM.BLY /_.r PROCESSING I SUMMARy] I 

I I REGISTER 3 2220 SEQUENCER \2224: 

i 4= i f" '3 .2 2204 : 
: '-------t--+-.l_---' I 

I v 2217 : 
I / ~2228 I 
I I 

: I STATUS 1- 2223 , 
I DMA CONTROL : 
: ~ PROTOCOL 2206 I 
I ANALYZER I 

I 2203 \ 

l 1: : \~--------------------~ : 
~---- _____ I ______ --------------------r- ___ ~ 

'f::""'2225 -c. :::. •• ... '··2226 

SRAM 
CONTROLLER 

DRAM 
CONTROLLER 

\--2214 
\~S_T_A_TU_s_I~ _________ J DATA 

~~ 
2223 

FIG. 22 



u.s. Patent 

MULTI
PACKET 

MESSAGE 
2300 

Mar. 2,2010 Sheet 21 of 89 US 7,673,072 B2 

lNIC 200 

2301 

'i 
2306 2307 ~ I 

( ( ~f2302 I 
I TCPIIP I SES IDATA ~2308 I 

"----y----J I 

HOST 20 
DESTINATION 
(FILE CACHE) 

2311 

2315 
(~ 

j-----r----+--

I TCPIIP I DATA I 
[2313 ~2303 

~ 2304 I TCPIIP I DATA I L 
[2316 

• 

:~ 
~ 2305 

I TCPIIP I DATA r J! 

I • 
I 
I 
I 
I 

• 
• 

2S6-BYTE BUFFER 
2309 r-

I C I I 
? '----y----I 

2310 

FIG. 23 

US. Patent Mar. 2, 2010 Sheet 21 0f 89 US 7,673,072 B2

INIC 200 HOST 20

DESTINATION

(FILE CACHE)

2306 2307 2311

O

' / 2309
r—L—R 2305 -

I 2310 V

r—’%

MULTL 2313 K2303
PACKET

MESSAGE [2304 ,
2300 i

2316

256-BYTE BUFFER

FIG. 23 



u.s. Patent 

INIC 

NetBIOS 

TCP 

IP 

MAC 

PHYSICAL 

Ethernet 

Header buffer descriptors 

Header a 

Header b 

Mar. 2,2010 Sheet 22 of 89 

FAST-PATH 

SWW-PATH 

Pel 

FIG. 24 

Header buffers 

status 

TCP/SMB 
Headers 

(fast-path) 

Data buffers 

status DATA 

DATA 
buffer handle 
(slow-path) DATA 

FIG. 25 

US 7,673,072 B2 

CLIENT 

TDI 

TCP 

IP 

MAC 

Data buffer descriptors 

US. Patent Mar. 2, 2010 Sheet 22 of 89 US 7,673,072 B2

FAST-PATH

 



u.s. Patent 

Command 
buffer queue 

Command pointer 

Command pointer 

Command pointer 

Mar. 2,2010 Sheet 23 of 89 

Command buffers 

Command 
buffer handle 
rcp context 

identifier 
Command 

Data pointers 

Command 
buffer handle 
TCP context 

identifier 
Command 

Data pointers 

Command 
buffer handle 
rcp context 

identifier 
Command 

Data pointers 

FIG. 26 

US 7,673,072 B2 

~nse 
buffer queue 

Command 
buffer handle 

Status 

Command 
buffer handle 

status 

Command 
buffer handle 

Status 



u.s. Patent Mar. 2,2010 Sheet 24 of 89 

31 

ERR -
RCV --' 
XMf ----' 

RMISS 

ISR 
IMR 
HBAR 
DBHR 
DBAR 
CBARO 
CBARI 
CBARl 
CBARJ 
CBAR4 
RBAR 

\.. 

Error bits are sent 
RCV has occured. 
Command has been rompleted 

Rev drop occured due to no buffers 

FIG. 27 

0x0 Interrupt status 
Ol4 Interrupt Mask 
OXS Header Buffer Address 
Ole Data Buffer Handle 
OxIO Data Buffer Address 
()XI4 Command Buffer Address XMTO 
()xIS Command Buffer Address XMTI 
OxIC Command Buffer Address XMT2 
000 Command Buffer Address XMTI 
004 Command Buffer A& RCY 
0x28 Response Buffer Address 

y 

FIG. 28 

US 7,673,072 B2 

o 

) 



u.s. Patent Mar. 2,2010 Sheet 25 of 89 

Packet Desc 

r-------,-
I 

• • 
ifuet : 

• 
• • I l __ 

'-----------. 

I 

Mbuf 

Buffer Desc 

Data 

FIG. 29 

Ifure ifaddr 

H 
r--

inifaddr 

I ~ ifaddr H 

FIG. 30 

US 7,673,072 B2 

Mbuf 
,---. 

BufferDesc 

~ Data 

kaddr dl soc -
OO:60:97:DB:9B:A6 I 

sockaddrin 

192.100.1.2 1 



u.s. Patent Mar. 2,2010 Sheet 26 of 89 US 7,673,072 B2 

Filter Driver 

Microsoft 
ATCP 
Driver TCPIIP 

Driver 

I I I 
3COM INIC 
Miniport 
Driver 

~rt 
Driver 

FIG. 31 

Packet Desc Packet Desc 

BufferDesc BufferDesc BufferDesc 

Header TCP ARP 
Buffer Packet Frame 

Example of incoming TCP pkt Example of incoming ARP Frnme 

FIG. 32 FIG. 33 



,--- Addr 
Packet desc 

r- . . . 
mbuf t 

- Buffer desc 
~ Buffer desc l- . . . 

. . . 
Packet 

Packet f 

L Data t-
- Data 

Next 
Next9l 

Buffer 
Buffer 

J ~ 

~ Header 
Header Buffer 
Buffer 

TCP Fast-path 

FIG. 34A 

Addr I-

Packet desc . . . 
mbuf 

---. Data t-

Next=Q 

t-

Buffer 

J 
~ 

Data 
Buffer 

TCP Slow-path 

FIG. 34B 

- Addr 
Packet desc=O . . . 

mbuf 

Data 
~ Buffer 

ARP Frame 

FIG. 34C 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
N 
-....l 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l w 
-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 28 of 89 US 7,673,072 B2 

Packet mbuf -I MDL j 
Desc 

~ I 

Command ~ Buffer \ 

Buffer Data Data Data Desc , 

FIG. 35 

Packet I mbuf 
Desc 

~ mbuf rnbuf mbuf , 

\ 
Command t Buffer \ 

Buffer Data Data Data Desc , 

FIG. 36 



u.s. Patent Mar. 2, 2010 Sheet 29 of 89 US 7,673,072 B2 

Packet mbuf 
Desc 

Command 
Buffer 

Buffer 
~ ... 

Desc 
, 

FIG. 37 

SRAM requirements for the Receive and Tnmsmit engines: 

TCBbuffers 
Header buffers 
TCB hash index 
Timers 
DRAM Fifo queues 

256 bytes 
128 bytes 
16 bytes 

128 bytes 

~-----------------~ y 

* 16 
* 16 
* 256 

* 16 

FIG. 38 

4096 
2048 
4096 

128 
2048 -

"-' 12K bytes 
) 



u.s. Patent Mar. 2,2010 Sheet 30 of 89 

forever { 

} 
} 

SmDlnary of the main loop of Receive: 

while there are any Receive events { 
if (a new event) { 

} 

} 

if (no new context available) 
ignore the even~ 

call appropriate event handler to service the even~ 
this may make a waiting process runnable or set up 
a new process to be nm (get free context, hddr buffer, 
TCB buffer, set the context up). 

while any process contexts are runable { 
nm them by jumping to the startlresume address; 
if (process complete) 

free the context; 

US 7,673,072 B2 

~ ~. ---------------------y---------------------

FIG. 39 



u.s. Patent Mar. 2,2010 Sheet 31 of 89 US 7,673,072 B2 

Format of the 5MB header of an 5MB frame: 

NetBIOS header 

5MB header 

31 

TYPE 

0xFF 

COM 

... ERR 

wcr 

TID 

urn 

I 

Bee 

FLAGS +--

"S" 

RClS 

REBIFLG 

Res rtved 

Res! ~ed 

Res! trved 

Notes (interesting fields): 
LENGTII 
COM 
wcr 
VWV 
Bec 

17 bit length of 5MB message (0 - 128K) 
5MB command 
Count (16 bit) of parameter words in VWV [ ] 
Variable number of parameter words 
Bytes of data following 

LENGTII 

''M'' 

REB 

Reserved 

PID 

MID 

VWV[ ] 

Data .. 

~ 

"B" 

ERR .. 

~-------------------~~-------------------) y 

FIG. 40 

o 



u.s. Patent Mar. 2,2010 Sheet 32 of 89 

forever { 

} 
} 

Summary of 1he main loop of Tnmsmit 

while there are any Tnmsmit events { 
if (a new event) { 

} 

} 

if (no new context available) 
ignore the event; 

call appropriate event handler to service the even~ 
this may make a waiting process runnable or set up 
a new process to be run (get free context, hddr buffer, 
TCB buffer, set the context up). 

while any process conrem are runable { 
run them by jumping to the start!resume address; 
if (process complete) 

free the context; 

US 7,673,072 B2 

~---------------------~-------------------) v 

FIG. 41 



u.s. Patent Mar. 2,2010 Sheet 33 of 89 

Bit 31 - 24 Byte enable 7 - O. Only the low order four bits are 
valid for 32 bit addressing mode. 

Bit 23 - 0 Memory acctsS 

1 Configuration access 
Bit 22 - 0 Read (to Host) 

1 Write (to Host) 
Bit 21 - 1 Data Valid 
Bit 20 - 16 Reserved 
Bit 15 - 0 Address 

US 7,673,072 B2 

~-------------------~-------------------~) V 

Configuration Space 1 

00 
04 
08 
OC 
10 
3C 

Configmation Space 2 

00 
04 
08 
OC 
10 
3C 

FIG. 42 

SRAM Address Offset 

00 
04 
08 
OC 
10 
14 

00 
18 
08 
Ie 
20 
24 

~ All other reads to coniiguration space will return 00. ) 
------------------~v--------------------

FIG, 43 



u.s. Patent Mar. 2,2010 Sheet 34 of 89 US 7,673,072 B2 

Bit 0 - 0 J/O accesses are not enabled 
Bit 1 - 1 Memoty accesses are enabled 
Bit 2 - 1 Bus master is enabled 
Bit 3 - 0 Special Cycle is not enabled 
Bit 4 - 1 Memory Write and Invalidate ~ enabled 
Bit 5 - O· VGA palette snooping is not enablerl 
Bit 6 - 1 Parity checking ~ enabled 
Bit 7 - 0 Address data stepping is not enabled 
Bit 8 - SERR# is enabled 
Bit 9 - 0 Fast back to back is not enabled 

FIG. 44 

Bit 5 - 1 66 MHz capable is enabled This bit will be set if the INIC 
Detects the system miming at 66 MHz on reset 

Bit 6 - 0 User Definable Features is not enabled 
Bit 7 - 1 Fast Back-to-Back slave transfers enabled 
Bit 8 - 1 Parity Error enabled - This bit is initialized to 0 
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz 

01 - Medium device select will be set if we are at 66 MHz 
Bit 11 - 1 Target Abort is implemented. Initialized to O. 
Bit 12 - 1 Target Abort is implemented. Initialized to O. 
Bit 13 - 1 Master Abort is implemented. Initialized to O. 
Bit 14 - 1 SERR# is implemented Initialized to O. 
Bit 15 - 1 Parity error is implemented. Initialized to O. 

FIG. 45 



u.s. Patent 

MilA 

MacA 

XmtA 
& 

RcvA 
Seq 

REG FILE 
8KI WCS 
lKI ROM 

uPROC 

... 
I 

I 

f 

Mar. 2,2010 Sheet 35 of 89 

MIIB 

MacB 

XmtB 
& 

RcvB 
Seq 

I KB X 128 Sram 
& DMA Ctrl 

PC! BUS 
INTERFACE UNIT 

PC! BUS 

FIG. 46 

MIlC 

Mace 

XmtC 
& 

RcvC 
Seq 

US 7,673,072 B2 

MilD 

MacD 

XmtD 
& 

RcvD 
Seq 

EXTERNAL 
MEMORY 

BUS 

EXTERNAL 
MEMORY Ctrl 



u.s. Patent Mar. 2,2010 Sheet 36 of 89 US 7,673,072 B2 

MODULE DESCR SPEED AREA --

Scratch RAM, lKx128 sport, 4.37 ns nom., 
2 

06.77mm 
WCS, 8Kx49 sport, 6.40 ns nom., 2 18.29 mm 
MAP, 128x7 sport, 3.50 ns nom., 0014 mm2 

ROM, lKx49 32co1, S.OO ns nom., 00.45 mm2 

REGs, 512x32 tport, 6.1 0 ns nom., 03.49 mm2 

Macs, .75 mm2 x 4 = 03.30 mm2 

PLL, .5 mm2 = 00.55 mm2 

MISC LOGIC, 117)60 gates I (5035 gates I mm2) = 23.29 mm2 

TOTAL CORE 5612 mm2 

(Core side) 2 2 
== 56.22 rom 

Core side == 07.50 mm 
Die side = core side + 1.0 mm (I/O celIs) = 08.50 mm 
Die area = 8.5 mm x 8.5 mm = 72.25 mm2 

Pads needed = 220 signals x 1.25 (WI, vdd) = 275 pins 
LSIPBGA == 272 pins 

~----------------------------------------) v 

FIG. 47 



u.s. Patent Mar. 2,2010 Sheet 37 of 89 US 7,673,072 B2 

(lOMB/S/IOOBase) X 2 (full duplex) X 4 connections = 80 MB/s 
Average frmne size = 512 B 
Frnme rate = 80MB/s / 512B = 156,2S0 fimnes / s 
Cpu overhead I funne = (2S6B context read) + (64B header read) + 

(128B context write) + (128B misc.) = 512B /funne 
Total bandwidth = (512B in) + (S12B out) + (SI2B Cpu) = 1536B / frame 
Dnun Bandwidth required = (lS36B/frame) X (1S6,250 funnes/s) = 240MB/s 
Dnun Bandwidth @ 60MHz = (32 bytes / 1 67ns) = 202MB/s 
Dnun Bandwidth @ 66MHz = (32 bytes I I sOns) ::: 224MB1s 
PCI Bandwidth required = 80MB/s 
PCI Bandwidth available @ 30 MH1, 32b, average = 46MB/s 
PC! Bandwidth available @ 33 MH1, 32b, average = SOMB/s 
PC! Bandwidth available @ 60 MH1, 32b, average = 92MB/s 
PC! Bandwidth available @ 66 MH1, 32b, average = l00MBIs 
PCI Bandwidth available @ 30 MH1, 64b, average - 92MB/s 
PCI Bandwidth available @ 33 MH1, 64b, average = 100MB/s 
PC! Bandwidth available @ 60 MH1, 64b, average = 184MB1s 
PC! Bandwidth available @ 66 MH1, 64b, average = 200MB/s 

\.. y 
) 

FIG. 48 

Receive frame interval = 512B I 4OMB/s = 12.8us 
Instructions I frame @ 60MHz = (l2.8us/frame) / (SOns/instruction) = 256 
instructiowframe 
Instructions / frame @ 66MHz.= (12.8us/frame) / (45winstruction) = 284 
instructiowframe 
Required instructions I frame = 250 ins1ructiowframe 

) \..~------------------~y~--------------------

FIG. 49 



u.s. Patent Mar. 2,2010 Sheet 38 of 89 US 7,673,072 B2 

eLK -{ / ± / / "",-- ----- ----- ------ ----- ----- ----- --- ---~------ ----- ----- ------ --------

r Snun LOAD LOAD FLAG DlNAdd! FETCH LOAD LOAD LOAD 
, Ctrl , , 

Ctrl Ctrl , Ctrl DEC STORE Ctrl Ctrl Ctrl Ctri , , , '---, 
J 

" <, , 
'l , , , , 
, , addr din Srnm DEBUG , Addr FILE FF ALU FLAG lNSTR FETCH 

i'.. 
, , 

BASED e e Addr , & PC STAck , &BASE Addr , Dala crx REGs ecs REG's REG Addr , , 512x32 l , , FILE , , 
>--- ----- ----- ----- ----- -- -- ----- ----- ----- - ----- ------ --------

,-, , 
I 

-'-- -~ 
addr dout dout 

,--'--

4Kx32 addr 
scratch !NCR !NCR 
Snun 

L..-r-
'-- .--- L..-,...-

~ ~ ,....--

2 

, , 
INSTRUCTION DECODER LOAD , 

,~ 

< , AND h 
~ OPERAND MULTIPLEXER Ctrl 

'--.--

, ~ , , , \ ~ , , , ~ 

"- FILE ALU ALU ALU TEST FLAG ~ PGM Srnm DEBUG 
LIT PC STAck Addr 

crx OPD's CCs OP SEL SEL GCMD Ctri &BASE Addr 

, , , , 
)--- ----- ----- ------ ----- .. ---- ----- ----- ----- ------ ----- ----- ------ --------

, , , , 
( .---~ , , TEST QRAM STAck LOAD , , , 

ALU ~ I-- & ~ !NCR h • , etrl , MUX QALU EXCHANGE , , , -,.-
J 

<:' , 
'l , , \ , , , , , , 3 
, , Snun DEBUG , 

FILE ALU ALU DEST TEST FLAG QFLGS PGM , , Adrlr , OPD & LIT PC STAck , &BASE Addr , crx OUT ecs SEL RSLT SEL QAddr Ctrl , 
l , , 
"~-~---- ----- ----- ----- ----- ------ ----- ----- ----- ------ ----- ------ --------

FIG. 50 



u.s. Patent Mar. 2,2010 Sheet 39 of 89 US 7,673,072 B2 

INSTRUCTION-WORD FORMAT 

TYPE [55:49] [48:47] [46:42J [41:33] [32:24] [23:16] [15:00] 

Jee ObOOOOOOO ObOO, AluOp, OpdASel, OpdBSel, TstSel, Literal 

Jmp ObOOOOOOO ObO!, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Jsr ObOOOOOOO ObIO, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Rts ObOOOOOOO ObI1, AluOp, OpdASel, OpdBSel, Ohff, Literal 

Nxt ObOOOOOOO Obll, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Map MapAddr OsXX, OsXXXXX, OsXXXXXXXXX, Osxxxxxxxxx, OHXX, OHXXXX 

FIG. 51 



u.s. Patent Mar. 2,2010 

SEQUENCER BEHAVIOR 

if (MapEn & (MapAddr != ObOOOOOOO»{ 
Stackc = Stackc; 
StackB = StackB; 
StackA = StackA; 

Sheet 40 of 89 

InstrAddr = Oh8000 I Pc[2:0] I (MapAddr «3); 
Pc = InstrAddr + (Execute & -DbgMd); 

Fetch = DbgMd ? DbgAddr:InstrAddr; 
DbgAddr = DbgAddr + (Execute & DbgMd);} 

US 7,673,072 B2 

lIre-map instr 

else if (pgrnCtrl = Jcc){ Ilconditionaljump 
Stackc = Stackc; 
StackB = StackB; 
StackA = StackA; 

InstrAddr = -Tst@TstSel ? Pc:(AluDst=Pc)? AluOut:Literal; 
Pc = Instr Addr + (Execute & -DbgMd) 

Fetch = DbgMd ? DbgAddr:InstrAddr; 
DbgAddr = DbgAddr + (Execute & DbgMd);} 

else if(pgrnCtrl = Jrnp){ 
Stackc = Stackc; 
StackB = StackB; 
StackA = StackA; 

InstrAddr = (AluDst = Pc) ? AluOut:Literal; 
Pc = InstrAddr + (Execute & -DbgMd) 

Fetch = DbgMd ? DbgAddr:lnstrAddr; 
DbgAddr = DbgAddr + (Execute & DbgMd);} 

else if(pgmCtrl = Jsr){ 
Stackc = StackB; 
StackB = StackA; 
StackA =Pc· 

InstrAddr = (AluDst = Pc) ? AluOut:Literal; 
Pc = InstrAddr + (Execute & -DbgMd) 

Fetch = DbgMd ? DbgAddr:InstrAddr; 
DbgAddr = DbgAddr + (Execute & DbgMd);} 

else if (FlgSel = Rts){ 

else 

InstrAddr = StackA; 
StackA = StackB; 
StackB = Stackc; 
Stackc = ErrVec; 

Pc = InstrAddr + (Execute & -DbgMd) 
Fetch = DbgMd ? DbgAddr:InstrAddr; 

DbgAddr = DbgAddr + (Execute & DbgMd);} 

{ 
InstrAddr = Pc; 

StackA = StackA; 
StackB = StadeR; 
Stackc = Stackc; 

Pc = InstrAddr + (Execute & -DbgMd) 
Fetch = DbgMd ? DbgAddr:InstrAddr; 

DbgAddr = DbgAddr + (Execute & DbgMd);} 

FIG. 52 

I/jump 

//jump subroutine 

Ilretum subroutine 

/Icontinue 



u.s. Patent Mar. 2,2010 Sheet 41 of 89 

ALU OPERATIONS 

AluOp =O",-,PE=RA~T=I=O~N=--______ _ 

ObOOOOO 

ObOOOOl 

ObOOOIO 

ObOOOll 

ObOOlOO 

ObOOlOl 

ObOO 110 

ObOOl1l 

ObOlOOO 

ObOlOOl 

Ob01010 

Ob0101l 

OhOll00 

OhOll0l 

OhOlll0 

ObOl111 

A = (A & -(1 «B»; 
C = 0; V = (B >= 32) ? 1 :0; 

A=(A&B); 
C=O; V=O; 

A = (Literal & B); 
C=O; V=O; 

A = (-Literal & B); 
C=O; V=O; 

A = (A J (1 « B)); 
C = 0; V = (B >= 32) ? 1 :0; 

A=(A J B); 
C=O; V=O; 

A = (LiteralJ B); 
C=O; V=O; 

A = (~LiteraIJ B); 
C=O; V=O; 

for (i=3l; i>=O; i--) ifB[i] continue; A=i; 
C = 0; V = (B) ? 0: 1; 

A= (A "B); 
C=O; V=O; 

A = ({Literal} "B); 
C=O; V=O; 

A = ({-Literal} "B); 
C=O; V=O; 

A=B; 
C= 0; V= 0; 

A=B[3i:24] "B[23:16] "B[lS:08] "B[07:00]; 
C=O; V= 0; 

A = {B[23: 16],B[3l:24],B[07:00],B[lS:08]}; 
C= 0; V=O; 

A = {B[15:00], B[31: 16]}; 
C=O; V= 0; 

FIG. 53 

US 7,673,072 B2 

Ilbit clear 

Illogical and 

Illogical and 

Illogical and not 

Ilbit set 

Illogical or 

Illogical or 

Illogical or not 

Ilpriority enc 

Illogical xor 

//logical xor 

//logical xor not 

Ilmove 

Ilhash 

Iiswap bytes 

Iiswap doublets 



u.s. Patent Mar. 2,2010 Sheet 42 of 89 US 7,673,072 B2 

AluOQ FUNCTION 

OblOOOO A= (A +B); Iladd B 
C = (A + B)[32]; V = 0; 

OblOOOI A = (A +B + C); Iladd B, carry 
C = (A + B + C)[32]; V = 0; 

Obl0010 A = (Literal + B); Iladd constant 
C = (Literal + B)[32]; V = 0; 

Obl00ll A = (-Literal + B); Iisub constant 
C = (-Literal + B)[32]; V = 0; 

OblOIOO A = (A - B); Iisub B 
C = (A - B)[32]; V = 0; 

OblOl01 A = (A - B - ~C); Iisub B, borrow 
C = (A - B - ~C)[32]; V = 0; 

OblOl10 A = (-A + B); Iisub A 
C = (-A + B)[32]; V = 0; 

OblOlll A = (-A + B - ~C); Iisub A, borrow 
C = (-A + B - ~C)[32]; V = 0; 

Obi 1000 A=(A«B); Iishift left A 
C= A[31];V=(B>=32)?0:1; 

Obll00l A = (B « Literal); Iishift left B 
C = B[31]; V = (Literal >= 32) ? 0: 1; 

Obll01O A=(B« 1); IIshift left B 
C= B[31];V=0; 

Obl1011 n = (A - B); 
C = (A - B)[32J; V = 0; 

IIcompare 

Oblll00 A= (A» B); 
C = A[O]; V = (B >= 32)? 1:0; 

Iishift right A 

Obl1101 A = (B » Literal); 
C = A[O]; V = (Literal >= 32) ? 1:0; 

Iishift right B 

Oblll10 A=(B»1); IIshift right B 
C = A[O]; V = 0; 

Obll111 n = (B - A); Ilcompare 
C = (B - A)[32]; V = 0; 

FIG. 54 



u.s. Patent Mar. 2,2010 Sheet 43 of 89 US 7,673,072 B2 

OpdSel SELECTED OPERANDs 

ObOOOOaaaaa File File@(OpdSel[4:0] I FileBase); 
Allows paged access to any part of the register file. 

ObOOOlaaaaa CpuReg File@{2'bll, Cpuld, OpdSel[4:0]}; 
Allows direct access to Cpu specific registers. 

ObOOlXXXXXX reserved 

ObOlOOOOOXX CpuStatus 

Reserved for future expansion. 

ObOOOOOOOOOOOOOBHDOOOOOOOOOOOOOOCC 
This is a read-only register providing information about the Cpu executing 
(OpdSel[1 :0]) cycles after the current cycle. "CC" represents a value 
indicating the Cpu. Currently, only CpuId values of 0, 1 and 2 are returned. 
"H" represents the current state of Hit, "D" indicates DbgMd and "8" 
indicates BigMd. Writing this register has no effect. 

ObO 10000 lXX reserved 

ObOIOOOIOXX Pc 

ObOlOOOllXX DbgAddr 

ObO 100 I XXXX reserved 

Reserved for future expansion. 

OxOOOOAAAA 
Writing to this address causes the program control logic to use AluOut as the 
new Pc value in the event of a Jrnp, Jcc or Jsr instruction for the Cpu 
executing during the current cycle. Ifthe current instruction is Nxt, Map, or 
Rts, the register write has no effect. Reading this register returns the value in 
Pc for the Cpu executing (OpdSel[l :0]) cycles after the current cycle. 

OxDOOOAAAA 
Writing to this register alters the contents of the debug address register 
(DbgAddr) for the Cpu executing (OpdSel[1 :0]) cycles after the current 
cycle. DbgAddr provides the fetch address for the control-store when 
DbgMd has been selected and the Cpu is executing. DbgAddr is also used 
as the control-store address when performing a WrWcs@DbgAddr or 
RdWcs(aJDbgAddr operation. "D" represents bit 31 of the register. It is a ~eneral 
purpose flag that is used for event indication during simulation. Reading thIS 
regIster returns a value ofOxOOOOOOOO. 

Reserved for future expansion. 

ObOlOlOOOOO RarnAddr {ObICCC, OxOOO, ObI, AAAA} 
RarnAddr = AluOut[I5] ? AluOut : (AluOut I RamBase); 
PrevCC =AluOut[31] ?CCC : AluCC; 

A read/write register. When reading this register, the Alu condition codes from the previous 
instruction are returned together with RamAddr. 

bit 
n-
30 
29 
28 
27:16 
15 
14:0 

name 

PrevC 
PrevV 
PrevZ 

RamAddr 

description 
Always 1. 
Previous Alu Carry. 
Previous Alu Overflow. 
Previous Alu Zero. 
Always O. 
Always I. 
Contents of last Sram address used. 

When writing this register, if alu out[31] is set, the previous condition codes will be overwritten with 
bits 30:28 of AluOut. If AluOuijI5] is set, bits 14:0 will be written to the RamAddr. If AluOut [15] 
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr 

FIG. 55 



u.s. Patent Mar. 2,2010 Sheet 44 of 89 US 7,673,072 B2 

OpdSel 

ObOlOlOOOOl 

SELECTED OPERANDs 

AddrRegA OxOOOOAAAA 

AddrRegA = AluOut; 

A read/write_operand which loads AddrRegA used to provide the address for read and write 
operations. WIlen AddrRegA[lS] is set the contents will be presented directly. to the ram. When 
AddrRegA[lS] is resej, the contents will fIrst be ored with the contents of the RamBase register 
before presentation to me ram. Writing to this register takes priority over Literal loads using 
FlgOp. Reading this register returns tlle current value of the register. 

ObOlOlOOOIO AddrRegB OxOOOOAAAA 

ObOlOlOOOll 

AddrRegB = AluOut; 

A read/write operand which loads AddrRegB used to provide the address for read and write 
o~eratlOns. 
When AddrRegB[IS] is set, the contents will be presented directly to the ram. When 
AddrRegB[ IS J is reset, the contents will fIrst be ored with the contents of the RamBase 
register Before_presentation to the ram. Writing to this register takes priority over LiterallQads 
usmg FlgOp. Reading this register returns the current vaTue of the register. 

AddrRegAb OxOOOOAAAA 
AddrRegA = AluOut; AddrRegB = AluOnt; 

A destination only operand which loads AddrRe,gB and AddrRegA used to provide the address 
for read and write operations Writing to this register takes priority over Literal loads using 
FlgOp. Reading this register returns the value OxOOOOOOOO. 

ObO 10100100 RamBase OxOOOOAAAA 
RamBase = AluOut; 

A read/write register which provides the base address for ram read and write cycles. When 
RamAddr[IS] IS set, the contents will not be used. When RamAddr[IS] is reset, the contents 
will fIrst be ored with the contents of the RamBase register before presentation to the ram. 
Reading this register returns the value for the current Cpu. 

ObO I 0 100 I 0 I FileBase ObOOOOOOOOOOOOOOOOOOOOOOOAAAAAAAAA 
FileBase = AluOut" 
FileAddr = OpdSei(8) ? OpdSel:(OpdSel + FileBase); 

ObO 10100 I 10 

ObOlOlOOll I 

A read/write register which provides the base address for fIle read and write cycles. When 
OpdSelf8) is se~\ the contents will not be used and OpdSel will be presented directly to the 
address lines of me fIle. When OpdSel[8] is reset, the contents will fIrst be ored with the 
contents of the FileBase register before presentatIOn to the file. Reading this register returns the 
value for the current Cpu. 

InstrRegL OxIIIIIIII 

Th.is is a, read-only register which returns the contents of InstrReg[31 :0]. Writing to 
thiS register has no effect. 

InstrRegH OxOOIIIIII 

Thi.s is a read-onJy register which returns the contents ofInstrReg[SS:32]. Writing to this 
regIster has no effect. 

FIG. 56 



u.s. Patent Mar. 2,2010 Sheet 45 of 89 US 7,673,072 B2 

OpdSel SELECTED OPERANDs 

Ob010101000 Minusl 

ObO 1010 1 00 1 FreeTime 

Ob01OlO101O LiteralL 

ObO 1 0 1010 II LiteralH 

Oxffffffff 
This is a read-only register which supplies a value Oxffffffff .. Writing to this 
register has no effect. 

A free-running timer with a resolution of 1.00 microseconds and a maximum count 
of 71 minutes. This timer is cleared during reset. 

Instr[ 15:0] 
A read-only register. Writing to this register has no effect 

Instr[15:0]«16; 
A read-only register. Writing to this register has no effect 

ObO 10 1 01100 MacDa ta - Writing to this address loads the AluOut data into the MacData register for use 
during Mac operations. The Mac operation, resulting from writing to the MacOp register, 
determines the definition of the MacData register contents as follows. 

MacOp 
Mstop 

WrMcfg 

WrMrng 

RdPhy 

WrPhy 

MacData definition 
ObXXXXXXXX 
MacData is not used for the StopM operation. 

hrstJ, rsvd, rsvd, crcen, fulId, hrstl, hugen, nopre, paden, prtyl, xdllO, 
ipgrl[6:0], 
ipgr2[6:0], ipgt[6:0]. 
Loads the MacCfg register with the contents of the MacData register. Refer to 
LSI Logic's Ethernet- J J 0 Core Technical Manual for detailed definitions of these 
bits. 

Ob~X~SSSSSSSSSSS 

Loads seed[1 0:0] into the Mac's random number generator. 

ObXXXXRRRRXXXXPPPPXXXXXXXXXXXXXXXX 
Reads register[R] of phy[P]. 

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD 
Writes registereR] ofphy[P] with MacData[15:0]. 

Reading this register returns prsd[lS:O) of MacO which contains phy status data returned to the 
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted 
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a 
definition of the phy register contents. 

FIG. 57 



u.s. Patent Mar. 2,2010 Sheet 46 of 89 US 7,673,072 B2 

FIG.58A 

FIG.58B 

FIG. S8e 

FIG. 58 



u.s. Patent Mar. 2,2010 Sheet 47 of 89 US 7,673,072 B2 

OpdSel 

ObOlOlOllOl 

SELECTED OPERANDs 

MacOp - A write only register. Writing to this address loads the MacSel register and staRts 
execution of the specified operation as follows. 

AluOut 
OxXXXXXOXM: 

OxXXXXXIXM: 

OxXXXXX2XM 

OxXXXXX3XM: 

OxXXXXX4XM: 

OxXXXXX8XM 
OxXXXXX9XM 
OxXXXXXaXM 
OxXXXXXbXM 

description 
Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for 
MacBsy to be deasserted before issuing another command or changing the 
contents of Mac Data. 
WrMcfg - Writes the contents of MacData to the MacCfg register of Ma:jMJ. 
The user must wait for MacBsy to be deasserted before issuing another command 
or changing the contents of MacData. 
WrMrng - Writes the contents of Mac Data to the seed register ofMac[M]. The 
user must wait for MacBsy to be deasserted before issuing another command or 

changing the contents of Mac Data. 
RdPhy - Reads the contents ofreg[R] for phy[P] on the MIl management bus of 
Mac[M]. The contents may be read from MacData after MacBsy has been de

asserted. 
WrPhy - Writes the contents ofMacData[15:0] to e reg[R] of phy[P] on the MIl 
management bus ofMac[M]. The user must wait for MacBsy to be deasserted 
before issuing another command or changing the contents of MacData. 
WrAddrAL - Writes the contents ofMacData[15:0] to MacAddrA[lS:O] for Mac[M]. 
Wr Addr AH - Writes the contents ofMacData[ II :0] to MacAddr A [47: 16) for Mac[M]. 
WrAddrBL - Writes the contents ofMacData[l5:0] to MacAddrB(lS:O) for Mac[M]. 
WrAddrBH - Writes the contents ofMacData[l1 :0] to MacAddrB[47:16) for Mac[M]. 

bOIOIOIllO ChCmd A write-only register. 

bit name 
3 1 : 11 reserved 
10:8 command 

07:05 reserved 
04:00 ChId 

description 
Data written to these bits is ignored: 
o - Stops execution of the current operation and clears the 
corresponding event flag. 
1 - Transfer data from ExtMem to ExtMem. 
2 - Transfer data from Pci to ExtMem. 
3 - Transfer data from ExtMem to Pci. 
4 - Transfer data from Srarn to ExtMem. 
5 - Transfer data from ExtMem to Srarn. 
6 - Transfer data from Pci to Srarn. 
7 - Transfer data from Srarn to Pci. 
Data written to these bits is ignored. 
Provides the channel number for the channel command. 

FIG.58A 



u.s. Patent Mar. 2,2010 Sheet 48 of 89 US 7,673,072 B2 

ObOIOlOlllO ChEvnt A read-only register. 

!llL name 
31:00 ChDn 

ObOlOJOllll GenEvnt 

!llL name 
31 PciRdEvnt 

30 PciWrEvnt 

29 TimeEvnt 
28:00 reserved 

description 
Each bit represents the don:e flag for the respective dma channel. These 
bits are set by a dma sequencer upon completion of the channel 
command. Cleared when the processor writes 0 to the corresponding 
ChCmd register. 

A read-only register. 

description 
Indicates that a PCI initiator is attempting to read a mproc. 
register. 
Indicates that a PCI initiator has posted a write to a mproc. 
register. 
An event which occurs once every 2.00 milliseconds. 
Reserved for future use. 

ObO 10 110000 QCtrl A write-only register used to select and manipUlate a Q. 

!llL 
31: 11 
10:8 

7:5 

~ 
reserved 
QSz 

QOp 

description 
Data written to these bits are ignored. 
Used only during InitQ operations to specify the size of the QBdy in Dram. 

7 - Queue depth is 32K entries (l28KB). 
6 - Queue depth is 16K entries (64KB). 
5 - Queue depth is 8K entries (32KB). 
4 - Queue depth is 4K entries (16KB). 
3 - Queue depth is 2K entries (8KB). 
2 - Queue depth IS lK entries (4KB). 
I - Queue depth is 512 entries (2KB). 
0- Queue depth is 256 entries (lKB). 
Specifies the queue operation to perform. 
7 - DblQ Disables all queues. 
6 - EnQ Enables all queues. 
5 - RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr. 
4 - WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr. 
3 - RdQ RetUrns a queue entry in register QData .. 
2 - rsvd Reserved. Not to be used. 
I - InitQ Set the queue status to empty and initializes QSz. 
0- SelQ Selects the Qld to be utilized during writes to QData. 

FIG.58B 



u.s. Patent Mar. 2,2010 Sheet 49 of 89 US 7,673,072 B2 

4:0 Qld Specifies the queue on which to perfonn all operations except DblQ or EnQ. 

ObOIOllOOOl QData A read/write register. Writing this register will result in the data being pushed on 
to the selected queue. Reading this register fetches queue data popped off during 
the previous RdQ operation. 

ObOlOllOOlO reserved Reserved for future expansion. 

ObOI011001 I XcvCtrl A write-only register used to enable and disable Mac transmit and receive 
sub-channels. 

ObOlOllOIOO 

ObOlOllOlO1 

ObOIOI I 1000 

ObOlOlllOOI 

ObOIOI I 1010 

ObOIOl1 101 I 

ObOIOllllXX 

ObO II OXXXXX 

ObO 111 OXXXX 

bit name_ :::d;:::es~c:.:..r!£ip:.::t,""io:.::n~"""7_-:-:-~_:--_-:-____________ _ 
31 :09 reserved Data written to these bits are ignored. . 
8 enable When set, indicates to the Mac transmit or receive sequencer that the sub channel 

contains a transmit or receive descriptor. 
07:05 reserved Data written to these bits is ignored. 
04 RcvCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel 

when cleared. 
03 reserved Data written to this bit are ignored. 
02 SubCh Selects subchannel B when set or A when reset. 
01:00 MacId Provides the Mac number for the subchannel enable bit. 

Lru 

Mru 

QlnRdy 

QOutRdy 

QEmpty 

QFull 

reserved 

Constants 

reserved 

OxOOOOOOOA 

A read/write operand indicating which of the 16 entries is least recently used. 
When Reading This register the least recently used entry is returned, after which 
it is automatically made the most recently used entry. This register should only be 
read in conjunction with a 'Move' operation of the ALU, else the results are 
unpredictable. Writing to this register forces the addressed entry to become the 
least recently used entry. 

OxOOOOOOOA 

A write only operand forcing the addressed entry to become the most recently 
used entry. 

A read-only register comprising QHd not full flags for each ofthe 32 queues. 

A read-only register comprising QTl not empty flags for each of the 32 queues. 

A read-only register comprising QEmpty flags for each of the 32 queues. 

A read-only register comprising QFull flags for each of the 32 queues. 

Reserved for future expansion. 

{ObOOO,OpdSel[4:0]} 

Reserved for future expansion. 

FIG.58e 



u.s. Patent Mar. 2,2010 Sheet 50 of 89 US 7,673,072 B2 

OpdSel SELECTED OPERANDs 

ObOllllXXXX Sram OPERATIONS 

OpdSel[3] PostAddrOp 
0 nop 
1 RamAddr = RamAddr + (OpdSel[ 1:0]); 

OpdSel[2] transpose Ctrl 
0 don't transgose 
1 transpose ytes 

OpdSel[l :0] RamOpdSz 
0 quadlet 
1 triplet 
2 doublet 
3 byte 

RAM READ ATTRIBUTES SOURCE OPERAND 

endian trans- byte Sram 
mode ~offs data sz=O sz=T sz=D sz=B 

little o 0 abed abed Obed OOed OOOd 
little 0 I abeX trap Oabe OObe OOOe 
little 0 2 abXX trap trap OOab OOOb 
little 0 3 aXXX trag, trap trap OOOa 
little 1 0 abed de a Odeb OOde OOOd 
little 1 1 abeX trap Oeba OOeb OOOe 
little I 2 abXX trap trap OOba OOOb 
little I 3 aXXx trap trag, trap OOOa 
BIG 0 0 abed abed Oa e OOab OOOa 
BIG 0 I Xbed trap Obed OObe OOOb 
BIG 0 2 XXed trap trap ODed OOOe 
BIG 0 3 XXXd trag, trag trag OOOd 
BIG I 0 abed de a Oe a 00 a OOOa 
BIG I I Xbed trap Odeb OOeb OOOb 
BIG I 2 XXed trap trap OOde 00 De 
BIG I 3 XXXd trap trap trap OOOd 

RAM WRITE ATTRIBUTES SOURCE OPERAND 

endian trans- Opd Alu 
mode T-LSiZQ out OF=O OF=) OF=2 OF=3 

little abed abed tra£ trap trap 
little 0 T Xbed -bed be - trap trap 
little 0 D XXed --cd -ed- cd-- trap 
little 0 B XXXd ---d --d- -d-- d---
little I Q abed deba trag trap trap 
little I T Xbed -deb de - trap trap 
little 1 D XXed --de -de- de- trap 
little I B XXXd ---d --d- -d-- d---
big 0 Q abed abed trap trap trap 
big 0 T Xbed bed- -bed trap trap 
big 0 D XXed ed-- -ed- --cd trap 
big 0 B XXXd d--- -d-- --d- ---d 
big I Q abed deba trap trap trap 
big 1 T Xbed deb- -deb ~& trap 
big I D XXed de-- -de- trap 
big I B XXXd d--- -d-- --d- ---d 

Oblaaaaaaaa File File@O£dSeI[8:0]; 
Allows ireet, non-paged, access to the top half of the register file. 

FIG. 59 



u.s. Patent Mar. 2,2010 Sheet 51 of 89 US 7,673,072 B2 

TstSel SELECTED TEST 

ObXOOXXXXX Tst = TstSel[7] A AluOut[TstSel[4:0]] IIAlu bit 

ObXOIOOOOO Tst = TstSel[7] A C Ilcarry 

ObXOIOOOOl Tst = TstSel[7] A V Ilerror 

ObXOIOOOIO Tst = TstSel[7] A Z tlzero 

ObXOIOOOl1 Tst = TstSel[7] A (Z I-C) Illess or equal 

ObXOIOOIOO Tst = TstSel[71 A PrevC Ilprevious carl)' 

ObXOIOOlOl Tst = TstSel[7] A PrevV Ilprevious error 

ObXOIOOIIO Tst = TstSel[7] 1\ PrevZ Ilprevious zero 

ObXOIOOlll Tst = TstSel[7] 1\ (prevZ & Z) 1164b zero 

ObXOIOIOOO Tst = TstSel[7J A QOpDn Ilqueue op okay 

ObXOIOIOOI Tst = reserved 

ObXOIOIOIX Tst = reserved 

ObXOIOIIXX Tst = reserved 

ObXOII0XXX Tst = TstSel[7] 1\ Lock[TstSel[2:0]] Iitests the current value of 
Lock(TstSel[2:0]) = 1; lithe Lock then set it. 

ObXOIIIXXX Tst = TstSel[7] 1\ Lock[TstSel[2:0]] Iitests the value of Lock. 

ObXOIXXXXX Tst = reserved 

ObXIXXXXXX Tst = reserved 

FIG. 60 



u.s. Patent Mar. 2,2010 Sheet 52 of 89 US 7,673,072 B2 

FJgSeJ 

ObOOOOOOOO 

ObOOOOOOOI 

ObOOOOOOlO 

ObOOOOOOIl 

ObOOOOOIOO 

ObOOOOOIOI 

ObOOOOOllX 

ObOOOOIXXX 

ObOOOIOXXX 

ObOOOllXXX 

ObOOIOXXXX 

ObOOllXXXX 

ObOIOOOOOO 

ObOIOOOOOI 

ObOIOOOOIO 

ObOIOOOOl1 

ObOlOOO100 

ObOIOOOIXX 

ObOIOOIOXX 

ObOIOOllXX 

ObOIOIOOXX 

ObOIOIOIXX 

ObOIOllXXX 

ObOllXXXXX 

OblXXXXXXX 

FLAG OPERATION 

No operation. 

Selffist 

SelBigEnd 

SelLitEnd 

DblMap 

EnbMap 

reserved 

reserved 

ClrLck 

reserved 

AddrOp 

FlgSel[3:2] 
o 
I 
2 
3 

FlgSel[l :0] 
o 
I 
2 
3 

Forces a self reset for the entire chip excluding the pcr configuration 
registers 

Selects big-endian mode for ram accesses for the current Cpu, 

Selects Iittle-endian mode for ram accesses for the current Cpu. 

Disable instruction re-mapping for the current Cpu, 

Enable instruction re-mapping for the current Cpu. 

Lock[FlgSel[2:01] = 0; 
Clears the semaphore register bit for the current Cpu only, 

AddrSelect 
RamAddr. - Literal( 15] 
RamAddr = AddrRegA(IS] 
RamAddr = AddrRegB[IS 
if(OpdA = RamAddr) 
RamAddr = AluOut(lS] 
else if (OpdA = ram) 
RamAddr = AddrRegB[lS] 
else 
RamAddr = AddrRegA(IS] 

addr reg load 
nop 
AddrRegA = Literal; 
AddrRegB = Literal; 
AddrRegA = Literal; 

? Literal : (Literal I RamBase); 
? AddrRegA : (AddrRegA I RamBase); 
? AddrRegB : (AddrRegB I Ram Base); 

? AluOut : (AluOut I RamBase); 

? AddrRegB : (AddrRegB I RamBase); 

? AddrRegA : (AddrRegA I RamBase); 

AddrRegB = Literal; 

note: When specifying the same register for both the load and select fields, the current value of the 
register, before it is loaded with the new value, will be used for the ram address. 

reserved 

WrWcsL@Dbg 

WrWcsH@Dbg 

RdWcsL@Dbg 

RdWcsH@Dbg 

reserved 

Step 

PcMd 

DbgMd 

Hit 

Run 

reserved 

reserved 
reserved 

Causes the bits [31 :0] of the control-store at address DbgAddr to be 
written with the current AluOut data 

Causes the bits [63:32] of the control-store at address DbgAddr to be 
written with the current AluOut data then increments DbgAddr, 

Causes the bits f31 :0] of the control-store at address DbgAddr to be 
moved to file aadress Oxlff. 

Causes the bits f63:321 of the control-store at address DbgAddr to be 
moved to file aadress Oxlffthen increments DbgAddr. 

Allows the Cpu (FlgSel[1 :0]) cycles after the current cycle to execute a single 
instruction, There is no effect if the Cpu is not halted. An offset of 0 is not allowed. 

Selects the Pc as the address source for the control-store during 
instruction fetches for the Cpu (FlgSel[1 :0]) cycles after the current cycle. 

Selects the DbgAddr address register as the address source for the 
control-store during instruction fetches for the Cpu (FlgSel[I :0]) 
cycles after the current cycle, 

Halts the Cpu (FIgSel[1 :0]) cycles after the current cycle, 

Clears Halt for the Cpu (FlgSel[I :0]) cycles after the current cycle. 

FIG. 61 



u.s. Patent Mar. 2,2010 Sheet 53 of 89 US 7,673,072 B2 

\ 

~ Pso ~ , 

Eec1rl 
-"- , 

~ 

S2p -, 

t ~ Cpu ~ 

Pmo 
Cfg Xrd 

, 

Eeprom ~ ~ t 
D2p 

~ D2s , 

-
XmtX -

--". 

D2q ~ 

Dram Xctrl D2d - Qmg ~ 
~ 

Q2d , 

RcvX 

S2d 

P2d --". 

Flash 
~ ~ Xwr t 

Pmi .J_ 
""7" 

t ~ Srnm ~ 

I P2s 
I 
I 

, 

...,. 

Dcfg I Psi I 

FIGo 62 



Req 
1 

WrReq RdRaI 
4 

Addr Addr Addr 

DOut DIN DOut --" 

Srnm 
2 Ctrl 5 Ack 

.L PC! BUS ... -
Psi 

WrReq 3 
--" 

SrnmAddr --"" 

-- 6 

FIG. 63 

Rtxt 

Addr 

DIN 
Addr ,. 

Ack 

Xwr 

Data 

WrRtXJ. 7 
Ctrl 

SrnmAddr 

DrnmAddr 

Ack 

Xctrl 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
J'J 
N 
o .... 
o 

rFJ 

=('D 
('D ..... 
Ul 
.j;o. 

o .... 
QO 
\0 

d 
rJl 

",-.....1 
0'1 
-.....1 
"'w = -.....1 
N 

= N 



u.s. Patent 

133MHz 

133MHz 
CLK 

133MHz eLK 

Mar. 2,2010 Sheet 55 of 89 

ReqO ••• ReqN Addd 
CtrV 

US 7,673,072 B2 

. . . Addrl 
CtrY 

Data 0 Data N 

CLK Arbiter 

Register 

Align 

1----+1 Addr DIN 

Register 

Ack 
I 

Ack sz 

133MHz 

1---+1 WE 

CLK Register 

FIG. 64 

Srnm 

00ut 

Partial Align 

Partial Align 

~ 
Sram 
Rd 

Data 

US. Patent Mar. 2, 2010 Sheet 55 of 89 US 7,673,072 B2

 



~I 1_-1 1 1 

&cr I I 
~~;~ Y valid XXXX valid XXX>< 
D~ 1 I 

~ 1 I 
1st CpuParams SELECfED GRANf TO 1st DMA SEQUENCER 1 2nd CpuParnms SELECfED GRANf TO 7nd DMA SEQUENCER 1 

1st DMAParams sELECI'ED ! 2nd DMAParams SELECTED i 
Ack AND Ack SIZE FOR Cpu Act AND Ark SIZE FOR 1st DMA ~ Ack AND Ack SIZE FOR Cpu 

APPLY 1st Cpu Addr APPLY 1st DMA Addr APPLY 2nd Cpu Addr APPLY 2nd DMA Addr l 
AliGN 1st Om INPUf Data AliGN 1st DMA INPUf Data AliGN 2nd Om INPUf Data AliGN 2nd DMA 1NPUf Data l 

READ OR WRiTE 1st Cpu Data READ OR WRfIE 1st DMA Data READ OR WRItE 2nd Cpu Data READ OR WRITE 2nd DMA Datal 

FIG. 65 
ALIGN AND REl1lRN 1st Cpu Th!ta ALIGN AND RETIlRN 1st DMA Th!ta ALIGN AND REl1JRN 200 Cpu Th!ta 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
Ul 
0\ 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent 

XrdReq 
XrdAddr 
XrdState 

XrdCtrl 
XrdData 

XwrReq 
XwrAddr 
xwrState 
XwrCtrl 
XwrData 

DcfgReq 
DcfgAddr 
DcfgState 
DcfgClrl 
DcfgData 

&;trlReq 
&;trlAddr 

EectrlState 
EectrlCtrl 
EectrlData 

/ 

Mar. 2,2010 

Arbiter 

, 

MUX 

--"" 

--"" 

Sheet 57 of 89 US 7,673,072 B2 

" 

GIant 
,;1 TO requestors 

XAddr / TO Xmem. 

XData 
/ 

~ TO Xmem 

/ 
XCtrl ". TO Xmem 

FIG. 66 



u.s. Patent 

D2p 
D2s 
D2d 
D2q 
Pso 
XmtA 
XmtB 
XrntC 
XmtD 

xctrlDin 
XctrlGnt 

/ 

, 

SrnmGnt 
SramAck 
SramAckSz 

Mar. 2,2010 Sheet 58 of 89 

Grnnt 

XAddr 

XData 

XCtrl 

SEQ 
Slate 

FIG. 67 

US 7,673,072 B2 

" 

/ -, TO Requester 

/ TO Xctrl 

EN 
SramGnt 

SnunData / 

/ 

/ 

sZ 

~ 

c1rl , TO X 

clrl ~ TOX 

~ Ack ~ o requester 

-,. Xctrl& 
, S. 

eq 
eq 

Srnm 

->0 S 
Gnt 

ramParams 



u.s. Patent Mar. 2,2010 Sheet 59 of 89 US 7,673,072 B2 US 7,673,072 B2

mo.65336.339933%,veaaaaaan?3%

900f095teehSMar. 2, 2010US. Patent

 



u.s. Patent 

P2p 
S2s 
D2d 
Q2q 
Psi 
RevA 
RevB 
RevC 
RevD 

XctrlGnt 

z 

SramGnt 
SramAck 
SramAckS 
SramRdD ata 

,. 

,. 

--,-

,. 

~ 
~ 

,. 

-,. 

7' 

Mar. 2,2010 Sheet 60 of 89 

~ Grant 

~ XAddr 

----)10 XData 

---. XCtrl 

---. D2dChkSum 

---. P2dChkSum 

~ 
SEQ 
State 

FIG. 69 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

US 7,673,072 B2 

TO Requester 

TO Xctrl 

TO Xctrl 

,. TO Xctrl 

~ TO D2d 

TO P2d 

TO Xctrl 

,.. Ac 

--- Xc 

k TO requester 

trlReq 
,. S ramReq 

S 

S 

ramGnt 

ramParams 



66MHz 

controls 

write data 

read data 

FIG. 70 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
0\ .... 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 

mom‘S‘n
66MH2W

controls .IIMIMI@I.@.EI@I 010z‘znew
watcdata MDEEEEEEE‘

U)
:5"(D
(DH
OH
OH,
W
\Dmm

FIG. 70

zauo‘sw‘LSfl 



RdReq 2 
Req ... -

Addr ...- Addr 

DOut DIN 
Sram 
Ctrl 3 

Ack 

S2p Pmo 

1 
WrReq WrReq 

SnunAddr SramAddr 

PciAddr PciAddr 

Ack 6 
Ack ... 

FIG. 71 

Addr 

Pmstr 

Data PC! BUS ...... 
5 

Ctrl 
4 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
J'J 
N 
o .... 
o 

rFJ 

=('D 
('D ..... 
0\ 
N 
o .... 
QO 
\0 

d 
rJl 

",-.....1 
0'1 
-.....1 
"'w = -.....1 
N 

= N 



WrReq 4 
RtxI 

Srnm Addr ....., Addr 
Ctrl 

DIN - DOut """ 

5 
Ack 

P2s Pmi 

Req 1 
RdRtxI 

SrnmAddr SrnmAddr 

PciAddr -PciAddr 

Ack 6 
Ack 

FIG. 72 

PciAddr 

Pmstr 
PC! BUS Data 

3 

Ctrl 
2 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
0\ 
(.H 

o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 64 of 89 

/ 

CHANNEL 
r---+ ID 

~ 
Drnm 
Pm 

r---+ PC! 
P1R 

XFR 
~ COUNT 

FIFO 
~ RDPIr -

FIFO 
~ WRPtr -

XrdAck r---+ XFR 
~ OPTIONS 

XrdSlatus ~ r---+ SEQ 
State 

Pmo Ack ~ 

Pmo Status ~ 

Srnm Ack ~ 

Srnm Rd Data -+ 

FIG. 73 

"-

~ 

/ 

/ 

/ 

/ 

/ 

~ 

~ 

US 7,673,072 B2 

TOXrd 

TO Pmo 

-'" -, TO Xrd 

~ TO Pmo 

TO Xrd 

Fill bent 

Pm 

S 

o Req 
XrdReq 

rnmReq 

EN 
.J_ Fro 

~S 
mSram 

rnmParams 



Req 6 
WrReq RdReq 10 

"'" 

Addr Addr Addr "'" 

DOut DIN DOut 

Ack 
7 

Ack Srnm Ack 
11 

"'" 
Ctrl 

5 
Addr "" 

Xrd Rq AD D Ack 
Xctrl 

1,141 I 1 2,15 
~ Data 

Rq AD D Ack 
4 3 9 Ctrl Req Req Req """ ......-

SrnmAddr "'" Addr Addr 
DramAddr """'" Addr Addr 

Ack 8 
Ack Ack 

14 

D2p 

FIG. 74 

Req 

Addr 

DIN 

Ack 

Addr 

Pmo Pmstr 

Data , 

Ctrl 
12 

Req 

SrnmAddr 

PciAddr 

Ack 

13 
~ 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
J'J 
N 
o .... 
o 

rFJ 

=('D 
('D ..... 
0\ 
Ul 
o .... 
QO 
\0 

d 
rJl 

",-.....1 
0'1 
-.....1 
"'w = -.....1 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 66 of 89 

/ 

\.. CHANNEL 
~ ID 

Dram --.. PTR 

f------. 
PCI 
PTR 

~ 
XFR 

COUNT 

f------. 
FIFO 

WRPIr 

~ 
FIFO 

RDPir 
XwrChksum --+-

-

XFR 
XwrAc 

--.. 
k --+- OPTIONS 

xwrStatus --+- f------. 
SEQ 
State 

PmiAck --+-

PmiStatus --+-

k SramAc --+-

SramRdD ata --+-

FIG. 75 

"" 

---./ 

/ 

/ 

/ 

/ 

/ 

---./ 

~ 

US 7,673,072 B2 

TO Xwr 

TOPmi 

TO Pmi 

TO Prm 

TO Xwr 

Fifi bent 

X 
S 

Pmi Req 
wrReq 
rnmReq 

rom Srnm 

ramPanuns ~; 



Req 10 --" RdReq WrReq 

Addr Addr Addr 

DIN DOut DIN ~ 

Ack 11 
Ack Ack ~ 

Sram 
- Addr Orl 

Xctrl 
1,141 I 

, f 2,15 
~ Data 

Rq AD D Ack 
13 9 Orl Req Req Req ~ 

SramAddr -... Addr Addr 
Addr Addr 

12 -'" Ack 

Xwr P2d 

FIG. 76 

6 
Req 

Addr 

DOut 
7 Ack 

Addr 

Pmi 

Data 

3 Ctr} 
4 

Req 

SramAddr 

' PciAddr 
8 

Ack 

Pms1r 
5 
~ 

~ 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
0\ 
-....l 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 68 of 89 

/ 

CHANNEL 
~ ill 

PC! 
~ PTR 

XFR 
~ 

COUNT 

-----.. Sram 
PTR 

XFR 
~ OPTIONS' 

~ 
SEQ 
State 

PmoAck ---.. 

PmoStatus ---.. 

SramAck ---.. 

SrnmRdDa ta ---.. 

FIG. 77 

US 7,673,072 B2 

" 

-./ 

/ TO Pmo 

/ TO Pmo 

/ TO Pmo 

-./ 

~ 

-,.Pm oReq 

--,. S ramReq 

EN 
mSram 

ramParams t>- ~ro 



RdReq 4 
Req 

Addr Addr 

DOut DIN Sram , 

Orl Ack 5 Ack , 

1 
Pmo If'. I ) 

2,10 9 
i' 

AD D Ack 

Req 3 
Req 

Addr ~ SrnmAddr 
Addr -~ PciAddr __ 8 

Ack 

S2p 

FIGo 78 

Addr ---,. 

Pmstr 
7 Data ~ 

~ 

Ctrl 
6 ,.... , 

--'" 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
0\ 
\0 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 70 of 89 

CHANNEL ,--. ID 

~ 
PC! 
PTR 

XFR 
--+- COUNT 

~ 
Sram 
PTR 

XFR 
--+- OPTIONS 

--+-
SEQ 
State 

PmiAck -----. 

PmiStatus -----. 

SramAck -----. 

SramRdD ata -----. 

FIG. 79 

US 7,673,072 B2 

~ 

/ TO Pmi 

/ TO Pmi 

/ TO Pmi 

~ 

L-/ 

PmiReq 

S ramReq 

~Fro 
S 

mSram 

ramParams 



WrReq 6 
Req 

Addr Addr 

Srnm Din DOut 
Orl Ack 

7 Ack ~ 

Pmi 
1 ,9 2,10 

Rq AD D Ack 

Req 3 Req 

Addr SrnmAddr 

Addr PciAddr 
8 

Ack 

P2s 

FIG. 80 

Addr , 

Pmstr 
5 Data , 

Orl 
4 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
-....l .... 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 72 of 89 

" CHANNEL 
~ ID 

Dnun 
~ PTR 

r----.. XFR 
COUNT 

-----. Srnm 
PTR 

~ 
XFR 

OPTIONS 

f-+ 
SEQ 
State 

XrdAck 

XrdStatus . 

SramAck 

SnunRdData 

FIG. 81 

US 7,673,072 B2 

" 

~ 

/ - TO Xrd 

/ TO Xrd 

/ TO Xrd 

~ 

~ 

XrdReq 

S ramReq 

EN 

{S-!ro mSrnm 

nunParams 



Req 5 _~ WrReq 
Addr Addr 

D D 
Ack~ 

6 
Ack Addr .... 

Rq 
Xctrl 

) 

-.. ~ 

Data 
1,8 

Rq 

Xrd 

4 
Orl ~ 

3 Req ~ Req 
SnunAddr r- Addr 

....- Addr 
7~ 

J 
Ack 

FIG. 82 

Sram 
Ctrl 

AD D Ack j 

f. ~ 

... 2,~ 

AD D Ack 

D2S 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 

N 
o .... 
o 

rFJ 

=('D 

a 
-....l 
(.H 

o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 74 of 89 

/ 

'\.. CHANNEL ----.. ill 

~ 
Dram 
PTR 

~ 
XFR 

COUNT 

~ 
Sram 
PTR 

XFR 
~ OPTIONS 

~ 
SEQ 
State 

XwrAck -----+-

-----+-

SramAck -----+-

SramRdDa ta -----+-

FIG. 83 

US 7,673,072 B2 

~ 

/ TO Xwr 

/ TO Xwr 

/ TO Xwr 

~ 

'--./ 

X wrReq 

S ramReq 

EN 

{5- ~ro mSram 

ramParams 

US. Patent Mar. 2, 2010 Sheet 74 of 89 US 7,673,072 132

 



Req 4 RdReq 
Addr ~~~ Addr 

D D 
Ack ~ 5 Ack Addr .... --

Rq 
Xctrl 

) 

1,8 
~ 

Data -- ...-

Rq 

Xwr 

7 
Ctrl r-

3 Req -- Req 
SramAddr ...- Addr 

-- Addr 
6 _ 

Ack 

FIG. 84 

Srnm 
Ctrl 

AD D Ack 
A I J 2~ L< 

AD D Ack 

S2d 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
J'J 
N 
o .... 
o 

rFJ 

=('D 
('D ..... 
-....l 
Ul 
o .... 
QO 
\0 

d 
rJl 

",-.....1 
0'1 
-.....1 
"'w = -.....1 
N 

= N 



Req 5 RdReq 
Addr Addr 

D D 

Addr Ack 6 
Ack 

Xctrl 
Rq 

2 i ~ 

~ Data 
Rq 

Xwr 

8 
Ctrl 

Req ~ 4 Req 
SramAddr -""- Addr 

~ Addr 
7 

Ack 

SI3IIl 
Ctrl 

AD D Ack 
t- t ~ 3 

AD D Ack 

9 

10 
Psi 

t 
Pms1r 1 

EVENT NOTIFY 

EVENT CLEAR 

PC! BUS 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
-....l 
0\ 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



Req 4~ 

Addr -~ 

D--

Ack r--
5 

Addr r--

Xctrl 
7 .. r....- Data 

Xrd 
3 

Ctrl ~ 

2 Req 

SramAddr --
-- 6 __ 

-,. 

I 

WrReq 
Addr 

D SI3II1 
Ack Ctrl 

Rq AD D 

-r 1 
Rq AD D 

Req 
Addr Pso 
Addr 

Ack 

t 
Pmstr 

Ack 

T 8 
Ack 

I 

I"" 

--
1,9 

EVENT NOTIFY 

EVENT CLEAR 

PC! BUS 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
-....l 
-....l 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent 

MacDataIn 

MacCtrlIn 

MacStatus IN 

MacAddrA 

MacAddrB 

SrnmAck 

SramRdData 

PauseDetEn 

FIG. 87 

Mar. 2,2010 

~ 

~ 

~ 

f-----. 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

---+ 

... ~ 

~ 

~ 

Sheet 78 of 89 

QUEUE 
COMMAND 

BUFFER 
DESCR 

Srnm WR 
Data 
Srnm 
Addr 
Drnm 
PTR 

FIFOWR 
PTR 

FIFORD 
PTR 
Data 

ASSY REG 
RCVSEQ 

State 
ANALYlER 

State 
FRAME 

POINTER 
IP 

POINTER 
TRANSPORT 

POINTER 
IP 

CHECKSUM 
PAYWAD 

CHECKSUM 
CONTEXT 

HASH 

" 
/ 

~ 

/ 

/ 

-./ 

/ 

~ 

-./ 

~ 

-./ 

-./ 

~ 

L--/ 

L--/ 

~ 

US 7,673,072 B2 

-" TO QmgR 

romSram 
TO Sram 

romSram ~ TOSram 

TO Xwr 

TO Xwr 

Xm'Req 
PauseDet 
QmgRReq 
SramReq 

From S ram 

SramP arams 

US 7,673,072 B2CI)5' (D ('D H \l 00 O H, 00 \DUS. Patent Mar. 2, 2010

Ill-Ii
E

gEwag”§§§%$E23%
l

E
g;

E

sis“g llll‘lll'
i

I m
ASSYREG
I We

8
ii

prReq

PauseDet

WM

513qu

From 812111

813um

 



u.s. Patent Mar. 2,2010 Sheet 79 of 89 US 7,673,072 B2 

Mac Ctrt 

OPTIONS OPTIONS 

! 
PauseDet ~ TO Xmt Mac 

Mac 
Status Status Req 7 Req Xwr 

Ctrl 4 CtrI SramAddr Sram AD AD ~ 

D - D DramAddr D~ 
Xctrl 

Dram AD 

Ack 9 Ack CtrI J..-. 
Rq Ack 

RcvX 21 1 113 

Rq 
1,10 

Rq Rq AD D Ack 

Rq 5 Rq 

D 
3,6,12 

D Sram 
Ctrt 

Ack Ack 
Qmg AD AD 

Ptr Addr 

Ack 
3,12 

Ack 

Req 
2,11 

Req 

FIG. 88 



u.s. Patent Mar. 2,2010 Sheet 80 of 89 US 7,673,072 B2 

RECEIVE BUFFER DESCRIPTOR 

bit name 
31 :30 ""'re=-s"'e'""rv-e""""d:---
29:28 size 
27:00 address 

TIMESTAMP 

bit name 
3EOO *R~cv~T~I .... m~e--

CHECKSUM 

bit ~n=a""m",e=--__ 
3T'TO IpChksum 

15:00 TcpChksum 

RESERVED 

FRAME Data 

description 

A copy of the bits in the FreeBuIDscr. 
Represents the last address + 1 to which frame data was transferred. The address 
wraps around at the boundary dictated by the S bits. This can be used to determine 
the size ofthe frame received. 

FIG. 89 

OFFSET Ox0008:0xOOOB 

description 
The contents of FreeClk at the completIOn of the frame receIVe operatIOn. 

FIG. 90 

OFFSET OxOOOC:OxOOOF 

description 
Reflects the value of the IP header checksum at frame completIOn or IP header 
completion. If an IP datagram was not detected, the checksum provides a total for 
the entire data portion of the received frame. The data area is aefmed as those bytes 
received after the type field of an ethernet frame, the LLC header of an 802.3 frame 
or the SNAP header of an 802.3-SNAP frame. 

Reflects the value of the transport checksum at IP completion or frame completion. 
If IP was detected but session was unknown, the checksum will not include the 
psuedo-header. IfIP was not detected, the checksum will be OxOOOO. 

OFFSET OxOOlO:OxOOll 

OFFSET Ox0012:END OF BUFFER 

FIG. 91 



u.s. Patent Mar. 2,2010 Sheet 81 of 89 US 7,673,072 B2 

RECEIVE BUFFER FORMAT 

FRAME Status A 

bit name 
31 attention 

30 CompositeErr 

29 CtrlFrame 
28 IpDn 
27 802.3Dn 
26 MacADet 
25 MacBOet 
24 MacMcst 
23 MacBest 
22 IpMest 
21 IpBcst 
20 Frag 
19 IpOffst 
18 IpFlgs 
17 IpOpts 
16 TcpFlgs 
IS TcpOpts 
14 TcpUrg 
13 CarrierEvnt 
12 LongEvnt 
11 FrameLost 

10 reserved 
10 NoAck 
09:08 FrameTyp 
07:06 NwkTyp 
05:04 TrnsptTyp 
03 NetBios 
02 reserved 
01:00 channel 

FRAME Status B 

bit name 
31 802.3Shrt 
30 BufOvr 
29 BadPkt 
28 InvldPrmbl 
27 CrcErr 
26 OrblNbbl 
25 CodeErr 
24 IpHdrShrt 
23 Iplncmplt 
22 IpSumErr 
21 TcpSumErr 
20 TcpHdrShrt 
19:16 PrcssCd 

15:08 MacHsh 
07:00 CtxHsh 

OFFSET OxOOOO:Ox0003 

description 
Indicates one or more of the followmg: CompositeErr, !IpDn, IMacADet & 
!MacBOet, IpMcst, IpBcst, !ethernet & !802.3Snap, !Ip4, !Tcp . 
Set when any of the error bits of ErrS tat us are set or if frame processing stops 
while receiving a Tcp or Udp header. 
A control frame was received at our unicast or special MltCst address. 
Frame processing Hlted due to exhaustion of the IP4 length coimter. 
Frame processing Hlted due to exhaustion of the 802.3 length counter. 
Frame's destination address matched the contents ofMacAddrA. 
Frame's destination address matched the contents of MacAddrB. 
The Mac detected a MltCst address. 
The Mac detected a BrdCst address. 
The frame processor detected an IP MltCst address. 
The frame processor detected an IP BrdCst address. 
The frame processor detected a Frag IP datagram. 
The frame processor detected a non-zero IP datagram offset. 
The frame processor detected flags within the IP datagram. 
The frame processor detected a header length greater than 20 for the IP datagram. 
The frame processor detected an abnormal header flag for the TCP segment. 
The frame processor detected a header length greater than 20 for the TCP segment. 
The frame processor detected a non-zero urgent pointer for the TCP segment. 
Refer to E110 Technical Manual. 
Refer to Ell 0 Technical Manual. 
Set when an incoming frame could not be processed as a result of an outstanding frame completion 
event not yet serviced by the utility processor. 

The frame processor detected a 
00 - Reserved. 01- ethemet. 
00 - Unknown. 01- Ip4. 
00 - Unknown. 01- reserved. 
A NetBios frame was detected. 

10 - 802.3. 
10 - Ip6 
10 - Tcp 

The Mac on which this frame was received. 

OFFSET Ox0004:0x0007 

descri tion 
End 0 frame was encountere e ore e 802.3 en 
The frame length exceded the buffer space available. 
Refer to E1 10 Technical Manual. 
Refer to E110 Technical Manual. 
Refer to E110 Technical Manual. 
Refer to E110 Technical Manual. 
Refer to E1 10 Technical Manual. 

11 - 802.3 Snap. 
II - ip other. 
11 - Udp 

The IP4 header length field contained a value less than Ox5. 
The frame terminated before the IP length counter was exhausted. 
The IP header checksum was not Oxffff at the completion of the IP header read. 
The session checksum was not Oxffff at the termination of session processing. 
The TCP header length field contained a value less than Ox5. 
The state of the frame processor at the time the frame processing terminated. 
ObOOOO Processing Mac header. 
ObOOOI Processing 802.3 LLC header. 
ObOOlO Processing 802.3 SNAP header. 
ObOO II Processing unknown network data. 
ObO I 00 Processing IP header. 
ObOlOl Processing IP data (unknown transport). 
ObO II 0 Processing transport header (IP data). 
ObOll1 Processing transport data (IP data). 
Ob 1000 Processing IP processing complete. 
Ob 1 00 1 Reserved. 
OblOlx Reserved. 
Obllxx Reserved. 
The Mac destination-address hash. Refer to E1 1 0 Technical Manual. 
The 8-bit context-hash generated by exclusive-oring all bytes of the IP source 
address, IP destination-address, transport source port and the transport destination port. 

FIG. 92 

US. Patent Mar. 2, 2010 Sheet 81 of 89 US 7,673,072 B2

RECEIVE BUFFER FORMAT

FRAME Status A OFFSET 0x0000:0x0003

bit name description
31 attention Indicates one or moreo e o owmg: CompositeErr, le n,. ac et&

lMacBDet, IpMcst, Ichst, iethernet & 1802.38nap, !Ip4, chp.
30 CompositeErr Set when any of the error bits ofErrStatus are set or if flame processing stops

while receiving a Top or Udp header.
29 CtrlFrame A control flame was received at our unicast or special MltCst address.
28 IpDn Frame processing Hlted due to exhaustion of the IP4 length counter.
27 802.3Dn Frame processing Hlted due to exhaustion of the 802.3 length counter.26 MacADet Frame's destination address matched the contents of MacAddrA.
25 MacBDet Frame's destination address matched the contents of MacAddrB.
24 MacMcst The Mac detected a MltCst address.
23 Machst The Mac detected a BrdCst address.

22 IpMcst The frame processor detected an IP MltCst address.
21 Ichst The flame processor detected an IP BrdCst address.
20 Frag The frame processor detected a Frag 1P datagram.
19 IpOt'fst The flame processor detected a non-zero 1P datagram offset.
18 IpF‘lgs The frame processor detected flags within the IP datagram.
17 IpOpts The frame processor detected a header length greater than 20 for the 1P datagram.
16 Tchlgs The flame processor detected an abnormal header flag for the TCP segment.
15 Tchpts The frame processor detected a header length greater than 20 for the TCP segment.
14 Tchrg The flame rocessor detected a non-zero urgent pointer for the TCP segment.13 CarrierEvnt Refer to E 10 Technical Manual.

12 LongEvnt Refer to E1 10 Technical Manual.
1 1 FrameLost Set when an incoming frame could not be processed as a result ofan ourstand ing flame completion

event not yet serviced by the utility processor.10 reserved
10 NoAck The flame processor detected a
09:08 FrameTyp 00 — Reserved. 01— ether-net. 10 - 802.3. 1] - 802.3 Snap.
07:06 kaTyp 00 - Unknown. 01- IP4. 10 - 1136 1] - ip other.
05:04 TrnsptTyp 00 - Unknown. 01- reserved. 10 - Top 11 - Udp03 NetBios A NetBios flame was detected.
02 reserved
01:00 channel The Mac on which this frame was received.

FRAME Status B OFFSET 0x0004:0x0007

bit name deseri tion
31 802.3§hrt End 0 frame was encountere e ore e 802.3 en 1 count was 6 lauste .
30 Buvar The frame length exceded the buffer space available.
29 Badet Refer to E110 Technical Manual.
28 InvldPrmbl Refer to E110 Technical Manual.
27 CrcErr Refer to E110 Technical Manual.
26 Drblebl Refer to E1] 0 Technical Manual.
25 CodeErr Refer to E1 10 Technical Manual.
24 IpI-Id rShrt The IP4 header length field contained a value less than 0x5.
23 IpIncmplt The flame terminated before the IP len th counter was exhausted.
22 IpSumE rr The IP header checksum was not 0x at the completion of the 1P header read.
21 TcpSumErr The session checksum was not Oxfi’ff at the termination of session processing.
20 TcpHd rShrt The TCP header length field contained a value less than 0x5.
19:16 Prcsst The state of the flame processor at the time the frame processing terminated.

0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b001 1 Processing unknown network data.
0b0100 Processing IP header.
ObOIOl Processing 11’ data (unknown transport).
0b01 10 Processing transport header (1? data).
0b011 1 Processing transport data (I? data).
0b1000 Processing IP processing complete.
0b1001 Reserved.
Ob101x Reserved.
Obl lxx Reserved.

15:08 MacHsh The Mac destination-address hash. Refer to E110 Technical Manual.
07:00 Ctsth The 8-bit context-hash generated by exclusive-oring all bytes of the IP source

address, 1P destination-address, transport source port and the transport destination port.

FIG. 92

 



u.s. Patent Mar. 2,2010 Sheet 82 of 89 US 7,673,072 B2 

QUEUE 
COMMAND 

TO QrngR 

MacData IN BUFFER 
DESCR From Srnm 

MruflrlIN Sram WR TO Srnm 
Data From Srnm 

MacStatusIN Sram TOSrnm 
Addr From Xwr 
Dram TO Xwr 
P1R 

MacAddrA FIFORD 
P1R 

MacAddrB FIFOWR TO Xwr 
P1R 
Data 

HOLD REG 

SrnmAck Xmt SEQ 
State 

SrnmRdData ANALYZER 
State 

FRAME 
POINTER 

~ID 
IP 

POINTER 

CtrtQ.ID 
1RANSPORT 

POINTER 

XmtQJD IP 
CHECKSUM 
PAYLOAD 

CHECKSUM 

XmtData PauseClr 
XwrReq 

PauseDet PauseD 
QrngRReq 

Cpu ]auseReq SramReq 

From Srnm 

FIG. 93 SrnmParams 

US. Patent Mar. 2, 2010 Sheet 82 0f89 US 7,673,072 B2

4
E

III-
Eo
fig

5% s

méfgm

8aU332365%;g “nut-u
g;

I “R
I HOLDREG

E 



u.s. Patent Mar. 2,2010 Sheet 83 of 89 US 7,673,072 B2 

Mac Ctrl 

OPTIONS OPTIONS 

! 
CLR Pause From PROCESSOR 

PauseDet From RCVJEQ 

PauseReq FROM PROCESSOR 

PauseD TO PROCESSOR 

Mac Req 4 .. " Req Dwr 

Status 9 status SnunAddr S1'3IIl AD AD ~ 
Xctrl 

C1rl - Orl DnunAddr Dram AD D I+-

D 8 D Ack 5 Ack Orl ~ 

Rq 
XmtX ! ! 1 I 

Rq 
1,10 

Rq RqAD D Ack 

Rq 6 Rq -,. 

Qmg D D Sram 
Orl 3,7,12 Ack 

Addr 
Serv 

.~ AD 

PTR ~ Addr 

Req 
2,11 

Req , 

Ac 3,12 
Ack 

FIG. 94 



u.s. Patent Mar. 2,2010 Sheet 84 of 89 US 7,673,072 B2 

TRANSMIT BUFFER DESCRIPTOR 

bit name n- ~C~hTks"'u-m----"'E;-n-

30 reserved 
29:28 size 

27:00 EndAddr 

description 
When set, XmtSeq wIll msert a calculated checksum. When reset, XmtSeq wIll 
not alter the outgomg data stream. 

Represents the size ofthe buffer by indicating at what boundary the buffer should 
start and tenninate. This is used in combination with EndAddr to detennine the 
starting address of the buffer: 

S = 0 256B boundary. A[7:0] ignored. 
S = I 2KB boundary. A[lO:O] ignored. 
S = 2 4KB boundary. A[11:0] ignored. 
S = 3 32KB boundary. A[14:0] ignored. 

The address of the last byte to transmit plus one. 

FIG. 95 

TRANSMIT BUFFER FORMAT 

CHECKSUM PRIMER OFFSET OxOOOO:Ox0003 

bit name 
3TI)(j ""p=iri=m=-e-r--

RESERVED 

FRAME Data 

description 
A value to be added during checksum accumulatiOn. For IPV4, thiS should mclude 
the psuedo-header values, protocol and Yep-length. 

OFFSET Ox0004:0xOOOS 

OFFSET Ox0006:END OF BUFFER 

FIG. 96 

TRANSMIT Status VECTOR 

bit n-
30:15 
14 
13 
12 
11 
10 
09 
08 
07 
06 
05 
04 
03:00 

name 
LnkErr 
reserved 
ExcessDeferral 
LateAbort 
ExcessColl 
UnderRun 
ExcessLgth 
Okay 
deferred 
BrdCst 
MltCst 
CrcErr 
LateColl 
CollCnt 

description 
Indicates that a lInk status error oeeured before or during transmit. 

Refer to Ella Technical Manual. 
Refer to Ella Technical Manual. 
Refer to E110 Technical Manual. 
Refer to Ella Technical Manual. 
Refer to Ella Technical Manual. 
Refer to Ella Technical Manual. 
Refer to Ell 0 Technical Manual. 
Refer to E110 Technical Manual. 
Refer to El10 Technical Manual. 
Refer to Ella Technical Manual. 
Refer to E110 Technical Manual. 
Refer to Ella Technical Manual. 

FIG. 97 



D2q Q2d Xmt RCV 
Cpu Seq Seq SEQ SEQ 
Req Req Req Req Req 

133MHz ~ register 

1"11.'.' ....... ,,, ..... ",,., 

133MHz 
uvu~ 

I 

133MHz ~ register 

QmgALU 

133MHz ~ register 

Sram Sram Q Q Q Q 
Req Addr Empty Full IN OUT 

RDY RDY 

W~te 
Data 

BODY 
WR 
Req 

FIG. 98 

BODY Sram 
RD Write 
Req Data 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 
~ 

N 
0 .... 
0 

rFJ 

=-('D 
('D ..... 
QO 
Ul 
0 .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l w 
-= -....l 
N 

= N 

Q2d th RCV
Seq SEQ SEQ

Req Req mama'S'fl

010z‘znew
(I)
5'(D
(DH
00
U]
Dm,
00
\O

zaZLO‘9L9‘LSfl 



I DmaQmgRtx} AND I I QmgDmaAck AND I ~: DmaQWrData : : QmgDmaRdDala 
-------------------------------------------------T----------------I----------------~--------I 

Return Qdata for Cpu : Return Qdata 
I Write : I Write ! for Dma 

Sram ! Qdata for i ! Qdata for i 
Ctrl 

I I I I 

: Cpu: : Dma: 
SramQmg Grant for Cpu!SramQmg iliant for Dma! I 

! SramQmg Ack for Cpu I SramQmg Ack for Dma: 
_________________________________________ L _______________ ~ ________________ L _______________ j 

13~ I 
--------r---------------,----------------r---------------,----------------r----------------

Qmg Fetch for CpuOp ! QmgSrnmRtx} for CpuOp! QmgSrnmReq for DmaOp! 
I I I 

Qmg Arb for DmaOp l Qmg Fetch for DmaOp l l 
: : I~: I I I I 
I I I I 

: :: Wnte for l 
: : I : 

I I: CpuOp I 

Qmg ~ 
Wnte for 
DmaOp 

----------------~----------------~---------------~---------------~----------------.--------

66MHz I QmgCpuAck AND I CLK QmgCpuRdData 

FIG. 99 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
:-: 
N 

N 
o .... 
o 

rFJ 

=('D 

a 
QO 
0\ 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



u.s. Patent Mar. 2,2010 Sheet 87 of 89 US 7,673,072 B2 

DMA OPERA TrONS 

dma seq # 
o 

name 
none 
D2dSeq 
D2sSeq 
D2pSeq 
S2dSeq 
S2pSeq 
P2dSeq 
P2sSeq 

description 
This is a no operation addTess. 

I 
2 
3 
4 
5 
6 
7 

bit 
3T:TI 
10:8 

07:05 
04:00 

bit 
127:96 
95:64 
59:32 
31 
30 
22 
15:00 

name 
reserved 
ChCmd 

reserved 
ChId 

name 
PciAddrH 
PciAddrL 
MemAddr 
PciEndian 
WideDbl 
DstFlash 
XfrSz 

Moves data from ExtMem to ExtMem. 
Moves data from ExtMem bus to srarn. 
Moves data from ExtMem to Pci bus. 
Moves data from sram to ExtMem. 
Moves data from sram to PCi bus. 
Moves data from Pci bus to ExtMem. 
Moves data from Pci bus to sram. 

FIG. 100 

description 
Data written to these bits IS Ignored. 
o -Stops execution of the current operation and clears the corresponding event flag. 
I - Transfer data from ExtMem to ExtMem. 
2 - Transfer data from ExtMem bus to srarn. 
3 - Transfer data from ExtMem to Pci bus. 
4 - Transfer data from srarn to ExtMem. 
5 - Transfer data from srarn to Pci bus. 
6 - Transfer data from Pci bus to ExtMem. 
7 - Transfer data from Pci bus to Sram. 
Data written to these bits is ignored. 
Provides the channel number for the channel command. 

FIG. 101 

description 
Bits [63:32

1 
of the PCI address. 

Bits [31:00 of the Pci address. 
Bits [27:00 of the ExtMem address or bits [15:00] of the Sram address. 
When set, selects big endian mode for Pci transfers. 
When set, disables Pci 64-bit mode. 
Selects Flash for the external memory destination ofP2d. 
Bits [15:00] of the requested dma size expressed in bytes. 

FIG. 102 



u.s. Patent 

bit 
TTI'JJ6 
95:64 
63:32 

.30 
23 
22 
15:00 

name 
MemAddr 
PciAddrH 
PciAddrL 
SrcFlash 
PciEndian 
WideDbl 
XfrSz 

bit name 
127: 124 ..... re""s"'erv:=--e""'ld~-
123:96 SrcAddr 
95:60 reserved 
59:32 DstAddr 
30 FlashSel 
22 FlashSel 
15:00 XfrSz 

bit name 
127:64 reserved 
63:32 ChkSum 

31:24 reserved 
23:20 SrcStatus 
19:16 DstStatus 
15:00 XfrSz 

bit name 
31 :00 ~C'i-';hD*'n'----

Mar. 2,2010 Sheet 88 of 89 US 7,673,072 B2 

description 
Bits [27:00] of the ExtMem addIess or hits [15:00J of the Srarn address. 
Bits [63:32] of the Pci address. 
Bits [31 :00] of the Pci address. 
Selects Flash for the external memory source ofD2p. 
When set, selects big endian mode for Pci transfers. 
When set, disables Pci 64-bit mode. 
Bits [15:00] of the requested dma size expressed in bytes. 

FIG. 103 

description 
Reserved for future use. 
Bits [27:00] of the ExtMem address or bits [15:00] of the Srarn address. 
Reserved for future use. 
Bits [27:00] of the ExtMem address or bits [15:00] of the Srarn address. 
Selects Flash for the external memory source ofD2d or D2s. 
Selects Flash for the external memory destination of S2p or D2d. 
Bits [15:00] of the requested dma size expressed in bytes. 

FIG. 104 

description 
Not used. 
Represents the 1 's compliment sum of all halfwords transferred during a P2d or D2d 
operation only. 
Reserved for future use. 
TBD. 
TBD. 
Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the 
dma operation was successful 

FIG. 105 

description 
Each bit represents the done flag for the respective dma channel. These hits are set by a 
dma sequencer upon completion of the channel command. Cleared when the processor 
writes 0 to the corresponding ChCmd register ChCmdOp field. 

FIG. 106 



/ ( ( 
l-pU _ l-Ll\. 

PHY RNG PHY 
WR RD WR 
ReqO ReqO 

~ 
ReqO 

Xmt CLK ~ 

- CK· 

REG 

Xmt CLK t 
- CK 

REG 

~ 

LCI1D RStatus LRNG 
HWD, CTLD 

BUSY 
t 

4 
~ OR 

t 
Mac BUSY 

( ( 
CFG Reqs 
WR TO OTHER 

r--+ 
ReqO Macs 

l 
~ 

CK· 

REG 

t 
CK CK 

REG CFG 
REG 

CFG 
MacA 

~ 

TO Cpu 

( From Cpu 

Mac 

Data 

"'- TO OrnER Macs 

/ 

FIG. 107 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ :-: 
N 
~ 

N 
o .... 
o 

rFJ 

=('D 
('D ..... 
QO 
\0 
o .... 
QO 
\0 

d 
rJl 
-....l 
0.., 
-....l 
W 

-= -....l 
N 

= N 



US 7,673,072 B2 
1 

FAST-PATH APPARATUS FOR 
TRANSMITTING DATA CORRESPONDING 

TO A TCP CONNECTION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit under 35 U.S.c. §1200f 

2 
STACK FOR USE WITH INTELLIGENT NETWORK 
INTERFACE CARD," filed Feb. 28, 2000, (is a continuation
in-part of) U.S. patent application Ser. No. 09/675,484, now 
U.S. Pat. No. 6,807,581, entitled "INTELLIGENT NET
WORK STORAGE INTERFACE SYSTEM," filed Sep. 29, 
2000, (is a continuation-in-part of) U.S. patent application 
Ser. No. 09/675,700, entitled "INTELLIGENT NETWORK 
STORAGE INTERFACE DEVICE," filed Sep. 29, 2000, (is (is a continuation of) U.S. patent application Ser. No.1 0/260, 

112, entitled "FAST-PATH APPARATUS FOR RECEIVING 
DATA CORRESPONDING TO A TCP CONNECTION," 
filed Sep. 27, 2002 now U.S. Pat. No. 7,237,036, by Laurence 

10 a continuation-in-part of) U.S. patent application Ser. No. 
091789,366, now U.S. Pat. No. 6,757,746, entitled "OBTAIN
INGADESTINATIONADDRESSSOTHATANETWORK 
INTERFACE DEVICE CAN WRITE NETWORK DATA B. Boucher et a!., which in tum claims the benefit under 35 

U.S.c. § 120 of (is a continuation of) U.S. patent application 
Ser. No. 10/092,967, entitled "FAST-PATH APPARATUS 15 

FOR RECEIVING DATA CORRESPONDING TO A TCP 
CONNECTION," filed Mar. 6, 2002 now U.S. Pat. No. 6,591, 
302, by Laurence B. Boucher et a!., which in tum claims the 
benefit under 35 U.S.c. §120 of (is a continuation-in-part of) 
U.S. patent application Ser. No. 10/023,240, entitled 
"TRANSMIT FAST-PATH PROCESSING ON TCPIIP OFF
LOAD NETWORK INTERFACE DEVICE," filed Dec. 17, 
2001 now U.S. Pat. No. 6,965,941, by Laurence B. Boucheret 

WITHOUT HEADERS DIRECTLY INTO HOST 
MEMORY," filed Feb. 20, 2001, (is a continuation-in-part of) 
U.S. patent application Ser. No. 09/801,488, now U.S. Pat. 
No. 6,687,758, entitled "PORT AGGREGATION FOR NET
WORK CONNECTIONS THAT ARE OFFLOADED TO 

20 NETWORK INTERFACE DEVICES," filed Mar. 7,2001, (is 
a continuation-in-part of) U.S. patent application Ser. No. 
09/802,551, entitled "INTELLIGENT NETWORK STOR
AGE INTERFACE SYSTEM," filed Mar. 9, 2001 now U.S. 

a!., which in tum claims the benefit under 35 U.S.c. §120 of Pat. No. 7,076,568, (is a continuation-in-part of) U.S. patent 
25 application Ser. No. 09/802,426, entitled "REDUCING 

DELAYS ASSOCIATED WITH INSERTING A CHECK-

(is a continuation-in-part of) U.S. patent application Ser. No. 
09/464,283, now U.S. Pat. No. 6,427,173, entitled "INTEL
LIGENT NETWORK INTERFACE DEVICE AND SYS
TEM FOR ACCELERATED COMMUNICATION", filed 
Dec. 15, 1999, by Laurence B. Boucher et a!., which in tum 
claims the benefit under 35 U.S.c. § 120 of (is a continuation- 30 

in-part of) U.S. patent application Ser. No. 09/439,603, now 
U.S. Pat. No. 6,247,060, entitled "INTELLIGENT NET
WORK INTERFACE SYSTEM AND METHOD FOR 
ACCELERATED PROTOCOL PROCESSING", filed Nov. 
12,1999, by Laurence B. Boucheret a!., which in turn claims 35 

the benefit under 35 U.S.c. § 120 of (is a continuation-in-part 

40 

SUM INTO A NETWORK MESSAGE," filed Mar. 9, 2001 
now U.S. Pat. No. 7,042,898, (is a continuation-in-part of) 
U.S. patent application Ser. No. 09/802,550, now U.S. Pat. 
No. 6,658,480, entitled "INTELLIGENT NETWORK 
INTERFACE SYSTEM AND METHOD FOR ACCELER
ATED PROTOCOL PROCESSING," filed Mar. 9, 2001, (is a 
continuation-in-part of) U.S. patent application Ser. No. 
09/855,979, entitled "NETWORK INTERFACE DEVICE 
EMPLOYING DMA COMMAND QUEUE," filed May 14, 
2001 now U.S. Pat. No. 7,133,940, (is a continuation-in-part 
of) U.S. patent application Ser. No. 091970,124, entitled 
"NETWORK INTERFACE DEVICE THAT FAST-PATH 
PROCESSES SOLICITED SESSION LAYER READ COM-
MANDS," filed Oct. 2, 2001 now U.S. Pat. No. 7,124,205. 

of) U.S. patent application Ser. No. 091067,544, now U.S. Pat. 
No. 6,226,680, entitled "INTELLIGENT NETWORK 
INTERFACE SYSTEM AND METHOD FOR ACCELER
ATED PROTOCOL PROCESSING", filed Apr. 27, 1998, 
which in turn claims the benefit under 35 U.S.c. §119(e)(1) of 
the Provisional Application filed under 35 U.S.c. § 111 (b) 
entitled "INTELLIGENT NETWORK INTERFACE CARD 
AND SYSTEM FOR PROTOCOL PROCESSING," Ser. No. 
60/061,809, filed on Oct. 14, 1997. 

The subject matter of all of the above-identified patent 
applications (including the subject matter in the Microfiche 

45 Appendix of U.S. application Ser. No. 09/464,283), and of the 
Application Ser. No. 10/260,112 also claims the benefit 

under 35 U.S.c. §120 of (is a continuation-in-part of) U.S. 
patent application Ser. No. 09/384,792, now U.S. Pat. No. 
6,434,620, entitled "TCP OFFLOAD NETWORK INTER
FACE DEVICE," filed Aug. 27, 1999, which in turn claims 50 

the benefit under 35 U.S.c. § 120 of (is a continuation-in-part 

two above-identified provisional applications, is incorporated 
by reference herein. 

REFERENCE TO COMPACT DISC APPENDIX 

The Compact Disc Appendix (CD Appendix), which is a 
part of the present disclosure, includes three folders, desig
nated CD Appendix A, CD Appendix B, and CD Appendix C 
on the compact disc. CD Appendix A contains a hardware 
description language (verilog code) description of an 
embodiment of a receive sequencer. CD Appendix B contains 
microcode executed by a processor that operates in conjunc-

of) U.S. patent application Ser. No. 091141,713, now U.S. Pat. 
No. 6,389,479, entitled "INTELLIGENT NETWORK 
INTERFACE DEVICE AND SYSTEM FOR ACCELER
ATED PROTOCOL PROCESSING", filed Aug. 28, 1998, 55 

which both claim the benefit under 35 U.S.c. § 119( e)(1) of 
the Provisional Application filed under 35 U.S.c. § 111 (b) 
entitled "INTELLIGENT NETWORK INTERFACE 
DEVICE AND SYSTEM FOR ACCELERATED COMMU
NICATION," Ser. No. 601098,296, filed Aug. 27, 1998. 60 tion with the receive sequencer of CD Appendix A. CD 

Appendix C contains a device driver executable on the host as 
well as ATCP code executable on the host. A portion of the 
disclosure of this patent document contains material (other 
than any portion of the "free BSD" stack included in CD 

Application Ser. No. 10/260,112 also claims the benefit 
under 35 U.S.c. §120 of (is a continuation-in-part of) U.S. 
patent application Ser. No. 09/416,925, now U.S. Pat. No. 
6,470,415, entitled "QUEUE SYSTEM FOR MICROPRO
CESSORS," filed Oct. 13, 1999, (is a continuation-in-part of) 
U.S. patent application Ser. No. 09/514,425, now U.S. Pat. 
No. 6,427,171, entitled "PROTOCOL PROCESSING 

65 Appendix C) which is subject to copyright protection. The 
copyright owner of that material has no objection to the 
facsimile reproduction by anyone of the patent document or 



US 7,673,072 B2 
3 

the patent disclosure, as it appears in the Patent and Trade
mark Office patent files or records, but otherwise reserves all 
copyright rights. 

TECHNICAL FIELD 

The present invention relates generally to computer or 
other networks, and more particularly to processing of infor
mation communicated between hosts such as computers con
nected to a network. 

BACKGROUND 

The advantages of network computing are increasingly 
evident. The convenience and efficiency of providing infor
mation, communication or computational power to individu
als at their personal computer or other end user devices has led 
to rapid growth of such network computing, including inter
net as well as intranet devices and applications. 

As is well known, most network computer communication 
is accomplished with the aid of a layered software architec
ture for moving information between host computers con
nected to the network. The layers help to segregate infonna
tion into manageable segments, the general functions of each 
layer often based on an international standard called Open 
Systems Interconnection (OSI). OSI sets forth seven process
ing layers through which infonnation may pass when 
received by a host in order to be presentable to an end user. 
Similarly, transmission of information from a host to the 
network may pass through those seven processing layers in 
reverse order. Each step of processing and service by a layer 
may include copying the processed infonnation. Another ref
erence model that is widely implemented, called TCP/IP 
(TCP stands for transport control protocol, while IP denotes 
internet protocol) essentially employs five of the seven layers 
of OS I. 

Networks may include, for instance, a high -speed bus such 
as an Ethernet connection or an internet connection between 
disparate local area networks (LAN s), each of which includes 
multiple hosts, or any of a variety of other known means for 
data transfer between hosts. According to the OSI standard, 
physical layers are connected to the network at respective 
hosts, the physical layers providing transmission and receipt 
of raw data bits via the network. A data link layer is serviced 

4 
cation or an end user. The TCP/IP standard includes the lower 
four layers and application layers, but integrates the functions 
of session layers and presentation layers into adjacent layers. 
Generally speaking, application, presentation and session 
layers are defined as upper layers, while transport, network 
and data link layers are defined as lower layers. 

The rules and conventions for each layer are called the 
protocol of that layer, and since the protocols and general 
functions of each layer are roughly equivalent in various 

10 hosts, it is useful to think of communication occurring 
directly between identical layers of different hosts, even 
though these peer layers do not directly communicate without 
information transferring sequentially through each layer 
below. Each lower layer perfonns a service for the layer 

15 immediately above it to help with processing the communi
cated infonnation. Each layer saves the infonnation for pro
cessing and service to the next layer. Due to the multiplicity of 
hardware and software architectures, devices and programs 
commonly employed, each layer is necessary to insure that 

20 the data can make it to the intended destination in the appro
priate fonn, regardless of variations in hardware and software 
that may intervene. 

In preparing data for transmission from a first to a second 
host, some control data is added at each layer of the first host 

25 regarding the protocol of that layer, the control data being 
indistinguishable from the original (payload) data for all 
lower layers of that host. Thus an application layer attaches an 
application header to the payload data and sends the com
bined data to the presentation layer of the sending host, which 

30 receives the combined data, operates on it and adds a presen
tation header to the data, resulting in another combined data 
packet. The data resulting from combination of payload data, 
application header and presentation header is then passed to 
the session layer, which perfonns required operations includ-

35 ing attaching a session header to the data and presenting the 
resulting combination of data to the transport layer. This 
process continues as the infonnation moves to lower layers, 
with a transport header, network header and data link header 
and trailer attached to the data at each of those layers, with 

40 each step typically including data moving and copying, 
before sending the data as bit packets over the network to the 
second host. 

by the physical layer of each host, the data link layers pro- 45 

viding frame division and error correction to the data received 
from the physical layers, as well as processing acknowledg
ment frames sent by the receiving host. A network layer of 
each host is serviced by respective data link layers, the net
work layers primarily controlling size and coordination of 50 

subnets of packets of data. 

The receiving host generally performs the converse of the 
above-described process, beginning with receiving the bits 
from the network, as headers are removed and data processed 
in order from the lowest (physical) layer to the highest (appli-
cation) layer before transmission to a destination of the 
receiving host. Each layer of the receiving host recognizes 
and manipulates only the headers associated with that layer, 
since to that layer the higher layer control data is included 
with and indistinguishable from the payload data. Multiple 

A transport layer is serviced by each network layer and a 
session layer is, serviced by each transport layer within each 
host. Transport layers accept data from their respective ses
sion layers and split the data into smaller units for transmis- 55 

sion to the other host's transport layer, which concatenates the 
data for presentation to respective presentation layers. Ses
sion layers allow for enhanced communication control 
between the hosts. Presentation layers are serviced by their 
respective session layers, the presentation layers translating 60 

between data semantics and syntax which may be peculiar to 
each host and standardized structures of data representation. 
Compression and/or encryption of data may also be accom
plished at the presentation level. Application layers are ser
viced by respective presentation layers, the application layers 65 

translating between programs particular to individual hosts 
and standardized programs for presentation to either an appli-

interrupts, valuable central processing unit (CPU) processing 
time and repeated data copies may also be necessary for the 
receiving host to place the data in an appropriate fonn at its 
intended destination. 

The above description of layered protocol processing is 
simplified, as college-level textbooks devoted primarily to 
this subject are available, such as Computer Networks, Third 
Edition (1996) by Andrew S. Tanenbaum, which is incorpo
rated herein by reference. As defined in that book, a computer 
network is an interconnected collection of autonomous com-
puters, such as internet and intranet devices, including local 
area networks (LANs), wide area networks (WANs), asyn
chronous transfer mode (ATM), ring or token ring, wired, 
wireless, satellite or other means for providing communica
tion capability between separate processors. A computer is 
defined herein to include a device having both logic and 



US 7,673,072 B2 
5 

memory functions for processing data, while computers or 
hosts connected to a network are said to be heterogeneous if 
they fnnction according to different operating devices or 
commnnicate via different architectures. 

6 
interface device. The template header has TCP fields and IP 
fields; 3) Employing a finite state machine that implements 
both TCP protocol processing and IP protocol processing to 
fill in the TCP fields and IP fields of the template header; and 
4) Transmitting the fast-path response from the network inter
face device. The fast-path response includes the filled in tem
plate header and a payload. The finite state machine does not 
entail a TCP protocol processing layer and a discrete IP 
protocol processing layer where the TCP and IP layers are 
executed one after another in sequence. Rather, the finite state 
machine covers both TCP and IP protocol processing layers. 

In one embodiment, buffer descriptors that point to packets 
to be transmitted are pushed onto a plurality of transmit 
queues. A transmit sequencer pops the transmit queues and 
obtains the buffer descriptors. The buffer descriptors are then 
used to retrieve the packets from buffers where the packets are 
stored. The retrieved packets are then transmitted from the 
network interface device. In one embodiment, there are two 
transmit queues, one having a higher transmission priority 

As networks grow increasingly popular and the infonna
tion communicated thereby becomes increasingly complex 
and copious, the need for such protocol processing has 
increased. It is estimated that a large fraction of the processing 
power of a host CPU may be devoted to controlling protocol 
processes, diminishing the ability of that CPU to perfonn 10 

other tasks. Network interface cards have been developed to 
help with the lowest layers, such as the physical and data link 
layers. It is also possible to increase protocol processing 
speed by simply adding more processing power or CPUs 
according to conventional arrangements. This solution, how- 15 

ever, is both awkward and expensive. But the complexities 
presented by various networks, protocols, architectures, oper
ating devices and applications generally require extensive 
processing to afford communication capability between vari-
0us network hosts. 20 than the other. Packets identified by buffer descriptors on the 

higher priority transmit queue are transmitted from the net
work interface device before packets identified by the lower 
priority transmit queue. 

SUMMARY OF THE INVENTION 

Other structures and methods are disclosed in the detailed 
25 description below. This summary does not purport to define 

the invention. The invention is defined by the claims. 

The current invention provides a device for processing 
network communication that greatly increases the speed of 
that processing and the efficiency of transferring data being 
commnnicated. The invention has been achieved by question
ing the long-standing practice of perfonning multilayered 
protocol processing on a general-purpose processor. The pro
tocol processing method and architecture that results effec- 30 

tively collapses the layers of a connection-based, layered 
architecture such as TCP/IP into a single wider layer which is 
able to send network data more directly to and from a desired 
location or buffer on a host. This accelerated processing is 
provided to a host for both transmitting and receiving data, 35 

and so improves perfonnance whether one or both hosts 
involved in an exchange of infonnation have such a feature. 

The accelerated processing includes employing represen
tative control instructions for a given message that allow data 
from the message to be processed via a fast-path which 40 

accesses message data directly at its source or delivers it 
directly to its intended destination. This fast-path bypasses 
conventional protocol processing of headers that accompany 
the data. The fast-path employs a specialized microprocessor 
designed for processing network commnnication, avoiding 45 

the delays and pitfalls of conventional software layer process
ing, such as repeated copying and interrupts to the cpu. In 
effect, the fast-path replaces the states that are traditionally 
found in several layers of a conventional network stack with 
a single state machine encompassing all those layers, in con- 50 

trast to conventional rules that require rigorous differentiation 
and separation of protocol layers. The host retains a sequen
tial protocol processing stack which can be employed for 
setting up a fast-path connection or processing message 
exceptions. The specialized microprocessor and the host 55 

intelligently choose whether a given message or portion of a 
message is processed by the microprocessor or the host stack. 

One embodiment is a method of generating a fast-path 
response to a packet received onto a network interface device 
where the packet is received over a TCP/IP network connec- 60 

tion and where the TCP/IP network connection is identified at 
least in part by a TCP source port, a TCP destination port, an 
IP source address, and an IP destination address. The method 
comprises: 1) Examining the packet and determining from 
the packet the TCP source port, the TCP destination port, the 65 

IP source address, and the IP destination address; 2) Access
ing an appropriate template header stored on the network 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a plan view diagram of a device of the present 
invention, including a host computer having a commnnica
tion-processing device for accelerating network commnnica
tion. 

FIG. 2 is a diagram of information flow for the host of FIG. 
1 in processing network communication, including a fast
path, a slow-path and a transfer of connection context 
between the fast and slow-paths. 

FIG. 3 is a flow chart of message receiving according to the 
present invention. 

FIG. 4A is a diagram of information flow for the host of 
FIG. 1 receiving a message packet processed by the slow
path. 

FIG. 4B is a diagram of infonnation flow for the host of 
FIG. 1 receiving an initial message packet processed by the 
fast-path. 

FIG. 4C is a diagram of infonnation flow for the host of 
FIG. 4B receiving a subsequent message packet processed by 
the fast-path. 

FIG. 4D is a diagram of information flow for the host of 
FIG. 4C receiving a message packet having an error that 
causes processing to revert to the slow-path. 

FIG. 5 is a diagram of information flow for the host of FIG. 
1 transmitting a message by either the fast or slow-paths. 

FIG. 6 is a diagram of information flow for a first embodi
ment of an intelligent network interface card (INIC) associ
ated with a client having a TCP/IP processing stack. 

FIG. 7 is a diagram of hardware logic for the INIC embodi
ment shown in FIG. 6, including a packet control sequencer 
and a fly-by sequencer. 

FIG. 8 is a diagram of the fly-by sequencer of FIG. 7 for 
analyzing header bytes as they are received by the INIC. 

FIG. 9 is a diagram of infonnation flow for a second 
embodiment of an INIC associated with a server having a 
TCP/IP processing stack. 

FIG. 10 is a diagram of a command driver installed in the 
host of FIG. 9 for creating and controlling a communication 
control block for the fast-path. 



US 7,673,072 B2 
7 

FIG. 11 is a diagram of the TCP/IP stack and command 
driver of FIG. 10 configured for NetBios communications. 

FIG. 12 is a diagram of a communication exchange 
between the client of FIG. 6 and the server of FIG. 9. 

8 
tocol type and source and destination addresses for each 
protocol layer. The context may be passed between an inter
face for the session layer 42 and the CPD 30, as shown by 

FIG. 13 is a diagram of hardware functions included in the 5 

INIC of FIG. 9. 

arrows 52 and 54, and stored as a communication control 
block (CCB) at either CPD 30 or storage 35. 

When the CPD 30 holds a CCB defining a particular con
nection, data received by the CPD from the network and 
pertaining to the connection is referenced to that CCB and can 
then be sent directly to storage 35 according to a fast-path 58, 

FIG. 14 is a diagram of a trio of pipelined microprocessors 
included in the INIC of FIG. 13, including three phases with 
a processor in each phase. 

FIG. 15A is a diagram of a first phase of the pipelined 
microprocessor of FIG. 14. 

FIG. 15B is a diagram of a second phase of the pipelined 
microprocessor of FIG. 14. 

FIG. 15C is a diagram of a third phase of the pipelined 
microprocessor of FIG. 14. 

FIG. 16 is a diagram of a plurality of queue storage units 
that interact with the microprocessor of FIG. 14 and include 
SRAM and DRAM. 

FIG. 17 is a diagram of a set of status registers for the 
queues storage units of FIG. 16. 

FIG. 18 is a diagram of a queue manager, which interacts, 
with the queue storage units and status registers of FIG. 16 
and FIG. 17. 

10 bypassing sequential protocol processing by the data link 36, 
network 38 and transport 40 layers. Transmitting a message, 
such as sending a file from storage 35 to remote host 22, can 
also occur via the fast-path 58, in which case the context for 
the file data is added by the CPD 30 referencing a CCB, rather 

15 than by sequentially adding headers during processing by the 
transport 40, network 38 and data link 36 layers. The DMA 
controllers of the CPD 30 perform these transfers between 
CPD and storage 35. 

The CPD 30 collapses multiple protocol stacks each hav-
20 ing possible separate states into a single state machine for 

fast-path processing. As a result, exception conditions may 
occur that are not provided for in the single state machine, 
primarily because such conditions occur infrequently and to 

FIGS. 19A-D are diagrams of various stages of a least
recently-used register that is employed for allocating cache 25 

deal with them on the CPD would provide little or no perfor
mance benefit to the host. Such exceptions can be CPD 30 or 
CPU 28 initiated. An advantage of the invention includes the memory. 

FIG. 20 is a diagram of the devices used to operate the 
least-recently-used register of FIGS. 19A-D. 

FIG. 21 is another diagram ofIntelligent Network Interface 
Card (INIC) 200 of FIG. 13. 

FIG. 22 is a diagram of the receive sequencer of FIG. 21. 
FIG. 23 is a diagram illustrating a "fast-path" transfer of 

data of a multi-packet message from INIC 200 to a destination 
2311 in host 20. 

FIGS. 24-33, 34A-C, 35-57, 58A-C, and 59-107 are asso
ciated with the description below entitled "Disclosure From 
Provisional Application 601061,809." 

DETAILED DESCRIPTION 

FIG. 1 shows a host 20 of the present invention connected 
by a network 25 to a remote host 22. The increase in process
ing speed achieved by the present invention can be provided 
with an intelligent network interface card (INIC) that is easily 
and affordably added to an existing host, or with a commu
nication processing device (CPD) that is integrated into a 
host, in either case freeing the host CPU from most protocol 
processing and allowing improvements in other tasks per
formed by that cpu. The host 20 in a first embodiment 
contains a CPU 28 and a CPD 30 connected by a host bus 33. 
The CPD 30 includes a microprocessor designed for process
ing communication data and memory buffers controlled by a 
direct memory access (D MA) unit. Also connected to the host 
bus 33 is a storage device 35, such as a semiconductor 
memory or disk drive, along with any related controls. 

Referring additionally to FIG. 2, the host CPU 28 controls 
a protocol processing stack 44 housed in storage 35, the stack 
including a data link layer 36, network layer 38, transport 
layer 40, upper layer 46 and an upper layer interface 42. The 
upper layer 46 may represent a session, presentation and/or 
application layer, depending upon the particular protocol 
being employed and message communicated. The upper layer 
interface 42, along with the CPU 28 and any related controls 
can send or retrieve a file to or from the upper layer 46 or 
storage 35, as shown by arrow 48. A connection context 50 
has been created, as will be explained below, the context 
summarizing various features of the connection, such as pro-

manner in which unexpected situations that occur on a fast
path CCB are handled. The CPD 30 deals with these rare 
situations by passing back or flushing to the host protocol 

30 stack 44 the CCB and any associated message frames 
involved, via a control negotiation. The exception condition is 
then processed in a conventional manner by the host protocol 
stack 44. At some later time, usually directly after the han
dling of the exception condition has completed and fast-path 

35 processing can resume, the host stack 44 hands the CCB back 
to theCPD. 

This fallback capability enables the performance-impact
ing functions of the host protocols to be handled by the CPD 
network microprocessor, while the exceptions are dealt with 

40 by the host stacks, the exceptions being so rare as to negligi
bly effect overall performance. The custom designed network 
microprocessor can have independent processors for trans
mitting and receiving network information, and further pro
cessors for assisting and queuing. A preferred microprocessor 

45 embodiment includes a pipelined trio of receive, transmit and 
utility processors. DMA controllers are integrated into the 
implementation and work in close concert with the network 
microprocessor to quickly move data between buffers adja
cent to the controllers and other locations such as long term 

50 storage. Providing buffers logically adjacent to the DMA 
controllers avoids unnecessary loads on the PCI bus. 

FIG. 3 diagrams the general flow of messages received 
according to the current invention. A large TCP/IP message 
such as a file transfer may be received by the host from the 

55 network in a number of separate, approximately 64 KB trans
fers, each of which may be split into many, approximately 1.5 
KB frames or packets for transmission over a network. Novell 
NetWare protocol suites running Sequenced Packet 
Exchange Protocol (SPX) or NetWare Core Protocol (NCP) 

60 over Internetwork Packet Exchange (IPX) work in a similar 
fashion. Another form of data communication which can be 
handled by the fast-path is Transaction TCP (hereinafter 
T/TCP or TTCP), a version ofTCP which initiates a connec
tion with an initial transaction request after which a reply 

65 containing data may be sent according to the connection, 
rather than initiating a connection via a several-message ini
tialization dialogue and then transferring data with later mes-



US 7,673,072 B2 
9 

sages. In any of the transfers typified by these protocols, each 
packet conventionally includes a portion of the data being 
transferred, as well as headers for each of the protocol layers 
and markers for positioning the packet relative to the rest of 
the packets of this message. 

When a message packet or frame is received 47 from a 
network by the CPD, it is first validated by a hardware assist. 
This includes determining the protocol types of the various 
layers, verifying relevant checksums, and summarizing 57 
these findings into a status word or words. Included in these 10 

words is an indication whether or not the frame is a candidate 
for fast-path data flow. Selection 59 offast-path candidates is 
based on whether the host may benefit from this message 
connection being handled by the CPD, which includes deter
mining whether the packet has header bytes indicating par- 15 

ticular protocols, such as TCP/IP or SPX/IPX for example. 
The small percent of frames that are not fast-path candidates 
are sent 61 to the host protocol stacks for slow-path protocol 
processing. Subsequent network microprocessor work with 
each fast-path candidate determines whether a fast-path con- 20 

nection such as a TCP or SPX CCB is already extant for that 
candidate, or whether that candidate may be used to set up a 
new fast-path connection, such as for a TTCP/IP transaction. 
The validation provided by the CPD provides acceleration 
whether a frame is processed by the fast-path or a slow-path, 25 

as only error free, validated frames are processed by the host 
CPU even for the slow-path processing. 

All received message frames which have been determined 
by the CPD hardware assist to be fast-path candidates are 
examined 53 by the network microprocessor or INIC com- 30 

parator circuits to determine whether they match a CCB held 
by the CPD. Upon confirming such a match, the CPD 
removes lower layer headers and sends 69 the remaining 
application data from the frame directly into its final destina
tion in the host using direct memory access CDMA) units of 35 

the CPD. This operation may occur immediately upon receipt 
of a message packet, for example when a TCP connection 
already exists and destination buffers have been negotiated, or 
it may first be necessary to process an initial header to acquire 
a new set of final destination addresses for this transfer. In this 40 

latter case, the CPD will queue subsequent message packets 
while waiting for the destination address, and then DMA the 
queued application data to that destination. 

A fast-path candidate that does not match a CCB may be 
used to set up a new fast-path connection, by sending 65 the 45 

frame to the host for sequential protocol processing. In this 
case, the host uses this frame to create 51 a CCB, which is then 
passed to the CPD to control subsequent frames on that con
nection. The CCB, which is cached 67 in the CPD, includes 
control and state information pertinent to all protocols that 50 

would have been processed had conventional software layer 
processing been employed. The CCB also contains storage 
space for per-transfer information used to facilitate moving 
application-level data contained within subsequent related 
message packets directly to a host application in a form avail- 55 

able for immediate usage. The CPD takes command of con
nection processing upon receiving a CCB for that connection 
from the host. 

10 
not a fast-path candidate, in which case the CPD 30 sends the 
validated headers and data from memory 60 to data link layer 
36 along an internal bus for processing by the host CPU, as 
shown by arrow 56. The packet is processed by the host 
protocol stack 44 of data link 36, network 38, transport 40 and 
session 42 layers, and data CD) 63 from the packet may then be 
sent to storage 35, as shown by arrow 65. 

FIG. 4B, depicts the case in which the receive logic 32 of 
the CPD determines that a message packet is a candidate for 
fast-path processing, for example by deriving from the pack
et's headers that the packet belongs to a TCP/IP, TTCP/IP or 
SPX/IPX message. A processor 55 in the CPD 30 then checks 
to see whether the word that sUflllllarizes the fast-path candi
date matches a CCB held in a cache 62. Upon finding no 
match for this packet, the CPD sends the validated packet 
from memory 60 to the host protocol stack 44 for processing. 
Host stack 44 may use this packet to create a connection 
context for the message, including finding and reserving a 
destination for data from the message associated with the 
packet, the context taking the form of a CCB. The present 
embodiment employs a single specialized host stack 44 for 
processing both fast-path and non-fast-path candidates, while 
in an embodiment described below fast-path candidates are 
processed by a different host stack than non-fast-path candi
dates. Some data CD1) 66 from that initial packet may option
ally be sent to the destination in storage 35, as shown by arrow 
68. The CCB is then sent to the CPD 30 to be saved in cache 
62, as shown by arrow 64. For a traditional connection-based 
message such as typified by TCP/IP, the initial packet may be 
part of a connection initialization dialogue that transpires 
between hosts before the CCB is created and passed to the 
CPD30. 

Referring now to FIG. 4C, when a subsequent packet from 
the same connection as the initial packet is received from the 
network 25 by CPD 30, the packet headers and data are 
validated by the receive logic 32, and the headers are parsed 
to create a summary of the message packet and a hash for 
finding a corresponding CCB, the SUflllllary and hash con
tained in a word or words. The word or words are temporarily 
stored in memory 60 along with the packet. The processor 55 
checks for a match between the hash and each CCB that is 
stored in the cache 62 and, finding a match, sends the data 
CD2) 70 via a fast-path directly to the destination in storage 
35, as shown by arrow 72, bypassing the session layer 42, 
transport layer 40, network layer 38 and data link layer 36. 
The remaining data packets from the message can also be sent 
by DMA directly to storage, avoiding the relatively slow 
protocol layer processing and repeated copying by the CPU 
stack 44. 

FI G. 4 D shows the procedure for handling the rare instance 
when a message for which a fast-path connection has been 
established, such as shown in FIG. 4C, has a packet that is not 
easily handled by the CPD. In this case the packet is sent to be 
processed by the protocol stack 44, which is handed the CCB 
for that message from cache 62 via a control dialogue with the 
CPD, as shown by arrow 76, signaling to the CPU to take over 
processing of that message. Slow-path processing by the pro
tocol stack then results in data CD3) 80 from the packet being As shown more specifically in FIG. 4A, when a message 

packet is received from the remote host 22 via network 25, the 
packet enters hardware receive logic 32 of the CPD 30, which 
checksums headers and data, and parses the headers, creating 
a word or words which identify the message packet and status, 
storing the headers, data and word temporarily in memory 60. 
As well as validating the packet, the receive logic 32 indicates 
with the word whether this packet is a candidate for fast-path 
processing. FIG. 4A depicts the case in which the packet is 

60 sent, as shown by arrow 82, to storage 35. Once the packet has 
been processed and the error situation corrected, the CCB can 
be handed back via a control dialogue to the cache 62, so that 
payload data from subsequent packets of that message can 
again be sent via the fast-path of the CPD 30. Thus the CPU 

65 and CPD together decide whether a given message is to be 
processed according to fast-path hardware processing or 
more conventional software processing by the CPU. 



US 7,673,072 B2 
11 

Transmission of a message from the host 20 to the network 
12 

destination may vary depending upon the nature of the data 
and may actually be the application layer. 

The INIC 150 has a network processor 170 which chooses 
between processing messages along a slow-path 158 that 
includes the protocol stack of the host, or along a fast-path 
159 that bypasses the protocol stack of the host. Each received 
packet is processed on the fly by hardware logic 171 con
tained in INIC 150, so that all of the protocol headers for a 
packet can be processed without copying, moving or storing 

25 for delivery to remote host 22 also can be processed by 
either sequential protocol software processing via the CPU or 
accelerated hardware processing via the CPD 30, as shown in 
FIG. 5. A message (M) 90 that is selected by CPU 28 from 
storage 35 can be sent to session layer 42 for processing by 
stack 44, as shown by arrows 92 and 96. For the situation in 
which a connection exists and the CPD 30 already has an 
appropriate CCB for the message, however, data packets can 
bypass host stack 44 and be sent by DMA directly to memory 
60, with the processor 55 adding to each data packet a single 
header containing all the appropriate protocol layers, and 
sending the resulting packets to the network 25 for transmis
sion to remote host 22. This fast-path transmission can greatly 
accelerate processing for even a single packet, with the accel
eration multiplied for a larger message. 

10 the data between protocol layers. The hardware logic 171 
processes the headers of a given packet at one time as packet 
bytes pass through the hardware, by categorizing selected 
header bytes. Results of processing the selected bytes help to 
determine which other bytes of the packet are categorized, 

A message for which a fast-path connection is not extant 
thus may benefit from creation of a CCB with appropriate 
control and state information for guiding fast-path transmis
sion. For a traditional connection-based message, such as 
typified by TCP/IP or SPX/IPX, the CCB is created during 
connection initialization dialogue. For a quick-connection 
message, such as typified by TTCP/IP, the CCB can be cre
ated with the same transaction that transmits payload data. In 
this case, the transmission of payload data may be a reply to 

15 until a summary of the packet has been created, including 
checksum validations. The processed headers and data from 
the received packet are then stored in INIC storage 185, as 
well as the word or words snnnnarizing the headers and status 
of the packet. For a network storage configuration, the INIC 

20 150 may be connected to a peripheral storage device such as 
a disk drive which has an IDE, SCSI or similar interface, with 
a file cache for the storage device residing on the memory 185 
of the INIC 150. Several such network interfaces may exist 
for a host, with each interface having an associated storage 

25 device. 

a request that was used to set up the fast-path connection. In 
any case, the CCB provides protocol and status information 
regarding each of the protocol layers, including which user is 
involved and storage space for per-transfer information. The 30 

CCB is created by protocol stack 44, which then passes the 
CCB to the CPD 30 by writing to a command register of the 
CPD, as shown by arrow 98. Guided by the CCB, the proces
sor 55 moves network frame-sized portions of the data from 
the source in host memory 35 into its own memory 60 using 35 

DMA, as depicted by arrow 99. The processor 55 then 
prep ends appropriate headers and checksums to the data por
tions, and transmits the resulting frames to the network 25, 
consistent with the restrictions of the associated protocols. 
After the CPD 30 has received an acknowledgement that all 40 

the data has reached its destination, the CPD will then notify 
the host 35 by writing to a response buffer. Thus, fast-path 
transmission of data commnnications also relieves the host 
CPU of per-frame processing. A vast majority of data trans
missions can be sent to the network by the fast-path. Both the 45 

input and output fast-paths attain a huge reduction in inter
rupts by functioning at an upper layer level, i.e., session level 
or higher, and interactions between the network microproces
sor and the host occur using the full transfer sizes which that 
upper layer wishes to make. For fast-path communications, 50 

an interrupt only occurs (at the most) at the beginning and end 
of an entire upper-layer message transaction, and there are no 
interrupts for the sending or receiving of each lower layer 
portion or packet of that transaction. 

The hardware processing of message packets received by 
INIC 150 from network 155 is shown in more detail in FIG. 7. 
A received message packet first enters a media access con
troller 172, which controls INIC access to the network and 
receipt of packets and can provide statistical information for 
network protocol management. From there, data flows one 
byte at a time into an assembly register 174, which in this 
example is 128 bits wide. The data is categorized by a fly-by 
sequencer 178, as will be explained in more detail with regard 
to FIG. 8, which examines the bytes of a packet as they fly by, 
and generates status from those bytes that will be used to 
snnnnarize the packet. The status thus created is merged with 
the data by a multiplexor 180 and the resulting data stored in 
SRAM 182. A packet control sequencer 176 oversees the 
fly-by sequencer 178, examines information from the media 
access controller 172, connts the bytes of data, generates 
addresses, moves status and manages the movement of data 
from the assembly register 174 to SRAM 182 and eventually 
DRAM 188. The packet control sequencer 176 manages a 
buffer in SRAM 182 via SRAM controller 183, and also 
indicates to a DRAM controller 186 when data needs to be 
moved from SRAM 182 to a buffer in DRAM 188. Once data 
movement for the packet has been completed and all the data 
has been moved to the buffer in DRAM 188, the packet 
control sequencer 176 will move the status that has been 
generated in the fly-by sequencer 178 out to the SRAM 182 
and to the beginning of the DRAM 188 buffer to be prep ended 
to the packet data. The packet control sequencer 176 then 
requests a queue manager 184 to enter a receive buffer 
descriptor into a receive queue, which in tum notifies the 
processor 170 that the packet has been processed by hardware 
logic 171 and its status summarized. 

FIG. 8 shows that the fly-by sequencer 178 has several 
tiers, with each tier generally focusing on a particular portion 

A simplified intelligent network interface card (INIC) 150 55 

is shown in FIG. 6 to provide a network interface for a host 
152. Hardware logic 171 of the INIC 150 is connected to a 
network 155, with a peripheral bus (PCI) 157 connecting the 
INIC and host. The host 152 in this embodiment has a TCP/IP 
protocol stack, which provides a slow-path 158 for sequential 
software processing of message frames received from the 
network 155. The host 152 protocol stack includes a data link 
layer 160, network layer 162, a transport layer 164 and an 
application layer 166, which provides a source or destination 
168 for the communication data in the host 152. Other layers 
which are not shown, such as session and presentation layers, 
may also be included in the host stack 152, and the source or 

60 of the packet header and thus on a particular protocol layer, 
for generating status pertaining to that layer. The fly-by 
sequencer 178 in this embodiment includes a media access 
control sequencer 191, a network sequencer 192, a transport 
sequencer 194 and a session sequencer 195. Sequencers per-

65 taining to higher protocol layers can additionally be provided. 
The fly-by sequencer 178 is reset by the packet control 
sequencer 176 and given pointers by the packet control 



US 7,673,072 B2 
13 

sequencer that tell the fly-by sequencer whether a given byte 
is available from the assembly register 174. The media access 
control sequencer 191 determines, by looking at bytes 0-5, 
that a packet is addressed to host 152 rather than or in addition 
to another host. Offsets 12 and 13 of the packet are also 
processed by the media access control sequencer 191 to deter
mine the type field, for example whether the packet is Ether
net or 802.3. If the type field is Ethernet those bytes also tell 
the media access control sequencer 191 the packet's network 
protocol type. For the 802.3 case, those bytes instead indicate 
the length of the entire frame, and the media access control 
sequencer 191 will check eight bytes further into the packet to 
determine the network layer type. 

For most packets the network sequencer 192 validates that 
the header length received has the correct length, and check
sums the network layer header. For fast-path candidates the 
network layer header is known to be IP or IPX from analysis 
done by the media access control sequencer 191. Assuming 
for example that the type field is 802.3 and the network 
protocol is IP, the network sequencer 192 analyzes the first 
bytes of the network layer header, which will begin at byte 22, 
in order to determine IP type. The first bytes of the IP header 
will be processed by the network sequencer 192 to determine 
what IP type the packet involves. Determining that the packet 
involves, for example, IP version 4, directs further processing 
by the network sequencer 192, which also looks at the proto
col type located ten bytes into the IP header for an indication 
of the transport header protocol of the packet. For example, 
for IP over Ethernet, the IP header begins at offset 14, and the 
protocol type byte is offset 23, which will be processed by 
network logic to determine whether the transport layer pro
tocol is TCP, for example. From the length of the network 
layer header, which is typically 20-40 bytes, network 
sequencer 192 determines the beginning of the packet's trans
port layer header for validating the transport layer header. 
Transport sequencer 194 may generate checksums for the 
transport layer header and data, which may include informa
tion from the IP header in the case ofTCP at least. 

Continuing with the example of a TCP packet, transport 
sequencer 194 also analyzes the first few bytes in the transport 
layer portion of the header to determine, in part, the TCP 
source and destination ports for the message, such as whether 
the packet is NetBios or other protocols. Byte 12 of the TCP 
header is processed by the transport sequencer 194 to deter
mine and validate the TCP header length. Byte 13 of the TCP 
header contains flags that may, aside from ack flags and push 
flags, indicate unexpected options, such as reset and fin, that 
may cause the processor to categorize this packet as an excep
tion. TCP offset bytes 16 and 17 are the checksum, which is 
pulled out and stored by the hardware logic 171 while the rest 
of the frame is validated against the checksum. 

14 
status information generated by the fly-by sequencer 178 and 
any status information generated by the packet control 
sequencer 176, and prep ends (adds to the front) that status 
information to the packet, for convenience in handling the 
packet by the processor 170. The additional status informa
tion generated by the packet control sequencer 176 includes 
media access controller 172 status information and any errors 
discovered, or data overflow in either the assembly register or 
DRAM buffer, or other miscellaneous information regarding 

10 the packet. The packet control sequencer 176 also stores 
entries into a receive buffer queue and a receive statistics 
queue via the queue manager 184. An advantage of process
ing a packet by hardware logic 171 is that the packet does not, 
in contrast with conventional sequential software protocol 

15 processing, have to be stored, moved, copied or pulled from 
storage for processing each protocol layer header, offering 
dramatic increases in processing efficiency and savings in 
processing time for each packet. The packets can be pro
cessed at the rate bits are received from the network, for 

20 example 100 megabits/second for a 100 baseT connection. 
The time for categorizing a packet received at this rate and 
having a length of sixty bytes is thus about 5 microseconds. 
The total time for processing this packet with the hardware 
logic 171 and sending packet data to its host destination via 

25 the fast-path may be about 16 microseconds or less, assuming 
a 66 MHz PCI bus, whereas conventional software protocol 
processing by a 300 MHz Pentium II® processor may take as 
much as 200 microseconds in a busy device. More than an 
order of magnitude decrease in processing time can thus be 

30 achieved with fast-path 159 in comparison with a high-speed 
CPU employing conventional sequential software protocol 
processing, demonstrating the dramatic acceleration pro
vided by processing the protocol headers by the hardware 
logic 171 and processor 170, without even considering the 

35 additional time savings afforded by the reduction in CPU 
interrupts and host bus bandwidth savings. 

The processor 170 chooses, for each received message 
packet held in storage 185, whether that packet is a candidate 
for the fast-path 159 and, if so, checks to see whether a 

40 fast-path has already been set up for the connection that the 
packet belongs to. To do this, the processor 170 first checks 
the header status summary to determine whether the packet 
headers are of a protocol defined for fast-path candidates. If 
not, the processor 170 commands DMA controllers in the 

45 INIC 150 to send the packet to the host for slow-path 158 
processing. Even for a slow-path 158 processing of a mes
sage, the INIC 150 thus performs initial procedures such as 
validation and determination of message type, and passes the 
validated message at least to the data link layer 160 of the 

50 host. 

Session sequencer 195 determines the length of the session 
layer header, which in the case of Net Bios is only four bytes, 
two of which tell the length of the NetBios payload data, but 
which can be much larger for other protocols. The session 55 

sequencer 195 can also be used to categorize the type of 
message as read or write, for example, for which the fast-path 
may be particularly beneficial. Further upper layer logic pro
cessing, depending upon the message type, can be performed 

For fast-path 159 candidates, the processor 170 checks to 
see whether the header status summary matches a CCB held 
by the INIC. If so, the data from the packet is sent along 
fast -path 159 to the destination 168 in the host. If the fast-path 
159 candidate's packet summary does not match a CCB held 
by the INIC, the packet may be sent to the host 152 for 
slow-path processing to create a CCB for the message. 
Employment of the fast-path 159 may also not be needed or 
desirable for the case of fragmented messages or other com
plexities. For the vast majority of messages, however, the 
INIC fast-path 159 can greatly accelerate message process
ing. The INIC 150 thus provides a single state machine pro
cessor 170 that decides whether to send data directly to its 
destination, based upon information gleaned on the fly, as 
opposed to the conventional employment of a state machine 
in each of several protocol layers for determining the destiny 
of a given packet. 

by the hardware logic 171 of packet control sequencer 176 60 

and fly-by sequencer 178. Thus hardware logic 171 intelli
gently directs hardware processing of the headers by catego
rization of selected bytes from a single stream of bytes, with 
the status of the packet being built from classifications deter
mined on the fly. Once the packet control sequencer 176 65 

detects that all of the packet has been processed by the fly-by 
sequencer 178, the packet control sequencer 176 adds the 



US 7,673,072 B2 
15 16 

division of the data into packets and addition offull headers 
for network transmission, again minimizing CPU processing 
and interrupts. For clarity only horizontal sequencer 250 is 
shown active; in actuality each of the sequencer rows 250, 
260, 262 and 264 offers full duplex communication, concur
rently with all other sequencer rows. The specialized INIC 
200 is much faster at working with message packets than even 
advanced general-purpose host CPUs that processes those 
headers sequentially according to the software protocol stack. 

One of the most commonly used network protocols for 
large messages such as file transfers is server message block 
(SMB) over TCP/IP. 5MB can operate in conjunction with 
redirector software that determines whether a required 
resource for a particular operation, such as a printer or a disk 

In processing an indication or packet received at the host 
152, a protocol driver of the host selects the processing route 
based upon whether the indication is fast-path or slow -path. A 
TCP/IP or SPX/IPX message has a connection that is set up 
from which a CCB is fonned by the driver and passed to the 
INIC for matching with and guiding the fast-path packet to 
the connection destination 168. For a TTCP/IP message, the 
driver can create a connection context for the transaction from 
processing an initial request packet, including locating the 
message destination 168, and then passing that context to the 10 

INIC in the fonn of a CCB for providing a fast-path for a reply 
from that destination. A CCB includes connection and state 
information regarding the protocol layers and packets of the 
message. Thus a CCB can include source and destination 
media access control (MAC) addresses, source and destina
tion IP or IPX addresses, source and destination TCP or SPX 
ports, TCP variables such as timers, receive and transmit 
windows for sliding window protocols, and information indi
cating the session layer protocol. 

15 upon which a file is to be written, resides in or is associated 
with the host from which the operation was generated or is 
located at another host connected to the network, such as a file 
server. 5MB and serverlredirector are conventionally ser
viced by the transport layer; in the present invention 5MB and 

Caching the CCBs in a hash table in the INIC provides 
quick comparisons with words summarizing incoming pack
ets to detennine whether the packets can be processed via the 
fast-path 159, while the full CCBs are also held in the INIC 
for processing. Other ways to accelerate this comparison 
include software processes such as a B-tree or hardware 
assists such as a content addressable memory (CAM). When 
INIC microcode or comparator circuits detect a match with 
the CCB, a DMA controller places the data from the packet in 
the destination 168, without any interrupt by the CPU, pro
tocol processing or copying. Depending upon the type of 
message received, the destination of the data may be the 
session, presentation or application layers, or a file buffer 
cache in the host 152. 

FIG. 9 shows an INIC 200 connected to a host 202 that is 

20 redirector can instead be serviced by the INIC. In this case, 
sending data by the DMA controllers from the INIC buffers 
when receiving a large 5MB transaction may greatly reduce 
interrupts that the host must handle. Moreover, this DMA 
generally moves the data to its final destination in the file 

25 device cache. An 5MB transmission of the present invention 
follows essentially the reverse of the above described 5MB 
receive, with data transferred from the host to the INIC and 
stored in buffers, while the associated protocol headers are 
prepended to the data in the INIC, for transmission via a 

30 network line to a remote host. Processing by the INIC of the 
multiple packets and multiple TCP, IP, NetBios and 5MB 
protocol layers via custom hardware and without repeated 
interrupts of the host can greatly increase the speed of trans-
mitting an 5MB message to a network line. 

As shown in FIG. 10, for controlling whether a given 
message is processed by the host 202 or by the INIC 200, a 
message command driver 300 may be installed in host 202 to 
work in concert with a host protocol stack 310. The command 
driver 300 can intervene in message reception or transmittal, 

40 create CCBs and send or receive CCBs from the INIC 200, so 
that functioning of the INIC, aside from improved perfor
mance, is transparent to a user. Also shown is an INIC 
memory 304 and an INIC miniport driver 306, which can 
direct message packets received from network 210 to either 

employed as a file server. This INIC provides a network 35 

interface for several network connections employing the 
802.3u standard, commonly known as Fast Ethernet. The 
INIC 200 is connected by a PCI bus 205 to the server 202, 
which maintains a TCP/IP or SPX/IPX protocol stack includ
ing MAC layer 212, network layer 215, transport layer 217 
and application layer 220, with a source/destination 222 
shown above the application layer, although as mentioned 
earlier the application layer can be the source or destination. 
The INIC is also connected to network lines 210, 240, 242 and 
244, which are preferably Fast Ethernet, twisted pair, fiber 
optic, coaxial cable or other lines each allowing data trans
mission of 100 Mb/s, while faster and slower data rates are 
also possible. Network lines 210, 240, 242 and 244 are each 
connected to a dedicated row of hardware circuits which can 
each validate and summarize message packets received from 
their respective network line. Thus line 210 is connected with 

45 the conventional protocol stack 310 or the command protocol 
stack 300, depending upon whether a packet has been labeled 
as a fast-path candidate. The conventional protocol stack 310 
has a data link layer 312, a network layer 314 and a transport 
layer 316 for conventional, lower layer processing of mes-

50 sages that are not labeled as fast-path candidates and therefore 
not processed by the command stack 300. Residing above the 
lower layer stack 310 is an upper layer 318, which represents 
a session, presentation and/or application layer, depending 
upon the message communicated. The command driver 300 

a first horizontal row of sequencers 250, line 240 is connected 
with a second horizontal row of sequencers 260, line 242 is 
connected with a third horizontal row of sequencers 262 and 
line 244 is connected with a fourth horizontal row of sequenc
ers 264. After a packet has been validated and summarized by 
one of the horizontal hardware rows it is stored along with its 
status summary in storage 270. 

A network processor 230 determines, based on that sum
mary and a comparison with any CCBs stored in the INIC 
200, whether to send a packet along a slow-path 231 for 
processing by the host. A large majority of packets can avoid 
such sequential processing and have their data portions sent 
by DMA along a fast-path 237 directly to the data destination 
222 in the server according to a matching CCB. Similarly, the 
fast-path 237 provides an avenue to send data directly from 
the source 222 to any of the network lines by processor 230 

55 similarly has a data link layer 320, a network layer 322 and a 
transport layer 325. 

The driver 300 includes an upper layer interface 330 that 
determines, for transmission of messages to the network 210, 
whether a message transmitted from the upper layer 318 is to 

60 be processed by the command stack 300 and subsequently the 
INIC fast-path, or by the conventional stack 310. When the 
upper layer interface 330 receives an appropriate message 
from the upper layer 318 that would conventionally be 
intended for transmission to the network after protocol pro-

65 cessing by the protocol stack of the host, the message is 
passed to driver 300. The INIC then acquires network-sized 
portions of the message data for that transmission via INIC 



US 7,673,072 B2 
17 

DMA units, prepends headers to the data portions and sends 
the resulting message packets down the wire. Conversely, in 
receiving a TCP, TTCP, SPX or similar message packet from 
the network 210 to be used in setting up a fast-path connec
tion, miniport driver 306 diverts that message packet to com- 5 

mand driver 300 for processing. The driver 300 processes the 
message packet to create a context for that message, with the 
driver 302 passing the context and command instructions 
back to the INIC 200 as a CCB for sending data of subsequent 
messages for the same connection along a fast-path. Hun- 10 

dreds ofTCP, TTCP, SPX or similar CCB connections may be 
held indefinitely by the INIC, although a least recently used 
(LRU) algorithm is employed for the case when the INIC 
cache is full. The driver 300 can also create a connection 
context for a TTCP request which is passed to the INIC 200 as 15 

a CCB, allowing fast-path transmission of a TTCP reply to the 
request. A message having a protocol that is not accelerated 
can be processed conventionally by protocol stack 310. 

FIG. 11 shows a TCP/IP implementation of command 
driver software for Microsoft® protocol messages. A conven- 20 

tional host protocol stack 350 includes MAC layer 353, IP 
layer 355 and TCP layer 358.A commanddriver360 works in 
concert with the host stack 350 to process network messages. 
The command driver 360 includes a MAC layer 363, an IP 
layer 366 and an Alacritech TCP (ATCP) layer 373. The 25 

conventional stack 350 and command driver 360 share a 
network driver interface specification (NDIS) layer 375, 
which interacts with the INIC miniport driver 306. The INIC 
miniport driver 306 sorts receive indications for processing 
by either the conventional host stack 350 or the ATCP driver 30 

360. A TDI filter driver and upper layer interface 380 simi
larly determines whether messages sent from a TDI user 382 

18 
byte segments from the host buffers, add the appropriate 
headers for TCP, IP and MAC at one time, and send the 
completed packets on the network 210 (fast-path 237). The 
INIC 200 will repeat this until the whole 64 KB transfer has 
been sent. Usually after receiving acknowledgement from the 
client that the 64 KB has been received, the INIC will then 
send the remaining 36 KB also by the fast-path 237. 

With INIC 150 operating on the client 190 when this reply 
arrives, the INIC 150 recognizes from the first frame received 
that this connection is receiving fast-path 159 processing 
(TCP/IP, NetBios, matching a CCB), and the ATCP may use 
this first frame to acquire buffer space for the message. This 
latter case is done by passing the first 128 bytes of the NetBios 
portion of the frame via the ATCP fast -path directly to the host 
NetBios; that will give NetBios/SMB all of the frame's head
ers. NetBios/SMB will analyze these headers, realize by 
matching with a request ID that this is a reply to the original 
Raw Read connection, and give theATCP a 64 K list of buffers 
into which to place the data. At this stage only one frame has 
arrived, although more may arrive while this processing is 
occurring. As soon as the client buffer list is given to the 
ATCP, it passes that transfer information to the INIC 150, and 
the INIC 150 starts DMAing any frame data that has accu
mulated into those buffers. 

FIG. 13 provides a simplified diagram of the INIC 200, 
which combines the functions of a network interface control
ler and a protocol processor in a single ASIC chip 400. The 
INIC 200 in this embodiment offers a full-duplex, four chan
nel, lO/lOO-Megabit per second (Mbps) intelligent network 
interface controller that is designed for high speed protocol 
processing for server applications. Although designed spe-
cifically for server applications, the INIC 200 can be con
nected to personal computers, workstations, routers or other 
hosts anywhere that TCP/IP, TTCP/IP or SPX/IPX protocols 

to the network are diverted to the command driver and per
haps to the fast-path of the INIC, or processed by the host 
stack. 35 are being utilized. 

FIG. 12 depicts a typical 5MB exchange between a client 
190 and server 290, both of which have communication 
devices of the present invention, the communication devices 
each holding a CCB defining their connection for fast-path 
movement of data. The client 190 includes INIC 150, 802.3 40 

compliant data link layer 160, IP layer 162, TCP layer 164, 
NetBios layer 166, and 5MB layer 168. The client has a 
slow-path 157 and fast-path 159 for communication process
ing. Similarly, the server 290 includes INIC 200, 802.3 com
pliant data link layer 212, IP layer 215, TCP layer 217, Net- 45 

Bios layer 220, and 5MB 222. The server is connected to 
network lines 240,242 and 244, as well as line 210 which is 
connected to client 190. The server also has a slow-path 231 
and fast-path 237 for communication processing. Assuming 
that the client 190 wishes to read a 100 KB file on the server 50 

The INIC 200 is connected with four network lines 210, 
240, 242 and 244, which may transport data along a number 
of different conduits, such as twisted pair, coaxial cable or 
optical fiber, each of the connections providing a media inde
pendent interface (MIl) via commercially available physical 
layer chips, such as model 80220/80221 Ethernet Media 
Interface Adapter from SEEQ Technology Incorporated, 
47200 Bayside Parkway, Fremont, Calif. 94538. The lines 
preferably are 802.3 compliant and in connection with the 
INIC constitute four complete Ethernet nodes, the INIC sup
porting lOBase-T, lOBase-T2, 100Base-TX, 100Base-FX 
and 100Base-T4 as well as future interface standards. Physi
cal layer identification and initialization is accomplished 
through host driver initialization routines. The connection 
between the network lines 210, 240, 242 and 244 and the 
INIC 200 is controlled by MAC units MAC-A 402, MAC-B 
404, MAC-C 406 and MAC-D 408 which contain logic cir
cuits for performing the basic functions of the MAC sub layer, 
essentially controlling when the INIC accesses the network 

290, the client may begin by sending a Read Block Raw 
(RBR) 5MB command across network 210 requesting the 
first 64 KB of that file on the server 290. The RBR command 
may be only 76 bytes, for example, so the INIC 200 on the 
server will recognize the message type (SMB) and relatively 
small message size, and send the 76 bytes directly via the 
fast-path to NetBios of the server. NetBios will give the data 
to 5MB, which processes the Read request and fetches the 64 
KB of data into server data buffers. 5MB then calls NetBios 
to send the data, and NetBios outputs the data for the client. In 
a conventional host, NetBios would call TCP output and pass 
64 KB to TCP, which would divide the data into 1460 byte 
segments and output each segment via IP and eventually 
MAC (slow-path 231). In the present case, the 64 KB data 
goes to the ATCP driver along with an indication regarding 
the client-server 5MB connection, which indicates a CCB 
held by the INIC. The INIC 200 then proceeds to DMA 1460 

55 lines 210,240,242 and 244. The MAC units 402-408 may act 
in promiscuous, multicast or unicast modes, allowing the 
INI C to function as a network monitor, receive broadcast and 
multicast packets and implement multiple MAC addresses for 
each node. The MAC units 402-408 also provide statistical 

60 information that can be used for simple network management 
protocol (SNMP). 

The MAC units 402, 404, 406 and 408 are each connected 
to a transmit and receive sequencer, XMT & RCV-A 418, 
XMT & RCV-B 420, XMT & RCV-C 422 and XMT & 

65 RCV-D 424, by wires 410, 412, 414 and 416, respectively. 
Each of the transmit and receive sequencers can perform 
several protocol processing steps on the fly as message frames 



US 7,673,072 B2 
19 20 

eight command buffers to be shared between the sequencers. 
A given header or command buffer is not statically linked to 
a specific CCB buffer, as the link is dynamic on a per-frame 
basis. 

FIG. 14 shows an overview of the pipelined microproces
sor 470, in which instructions for the receive, transmit and 
utility processors are executed in three alternating phases 
according to Clock increments I, II and III, the phases corre
sponding to each of the pipeline stages. Each phase is respon-

pass through that sequencer. In combination with the MAC 
units, the transmit and receive sequencers 418-422 can com
pile the packet status for the data link, network, transport, 
session and, if appropriate, presentation and application layer 
protocols in hardware, greatly reducing the time for such 
protocol processing compared to conventional sequential 
software engines. The transmit and receive sequencers 410-
414 are connected, by lines 426, 428, 430 and 432 to an 
SRAM and DMA controller 444, which includes DMA con
trollers 438 and SRAM controller 442. Static random access 
memory (SRAM) buffers 440 are coupled with SRAM con
troller 442 by line 441. The SRAM and DMA controllers 444 
interact across line 446 with external memory control 450 to 
send and receive frames via external memory bus 455 to and 
from dynamic random access memory (DRAM) buffers 460, 15 

which is located adjacent to the IC chip 400. The DRAM 
buffers 460 may be configured as 4 MB, 8 MB, 16 MB or 32 
MB, and may optionally be disposed on the chip. The SRAM 
and DMA controllers 444 are connected via line 464 to a PCI 

10 sible for different functions, and each of the three processors 
occupies a different phase during each Clock increment. Each 
processor usually operates upon a different instruction stream 
from the control store 480, and each carries its own program 
counter and status through each of the phases. 

In general, a first instruction phase 500 of the pipelined 
microprocessors completes an instruction and stores the 
result in a destination operand, fetches the next instruction, 
and stores that next instruction in an instruction register. A 
first register set 490 provides a number of registers including 
the instruction register, and a set of controls 492 for first 
register set provides the controls for storage to the first reg-

Bus Interface Unit (BIU) 468, which manages the interface 20 

between the INIC 200 and the PCI interface bus 257. The 
64-bit, multiplexed BIU 468 provides a direct interface to the 
PCI bus 257 for both slave and master functions. The INIC 
200 is capable of operating in either a 64-bit or 32-bit PCI 
environment, while supporting 64-bit addressing in either 
configuration. 

A microprocessor 470 is connected by line 472 to the 
SRAM and DMA controllers 444, and connected via line 475 
to the PCI BIU 468. Microprocessor 470 instructions and 
register files reside in an on chip control store 480, which 
includes a writable on-chip control store (WCS) of SRAM 
and a read only memory (ROM), and is connected to the 
microprocessor by line 477. The microprocessor 470 offers a 
programmable state machine which is capable of processing 
incoming frames, processing host commands, directing net
work traffic and directing PCI bus traffic. Three processors 
are implemented using shared hardware in a three level pipe
lined architecture that launches and completes a single 
instruction for every clock cycle. A receive processor 482 is 
primarily used for receiving communications while a trans
mit processor 484 is primarily used for transmitting commu
nications in order to facilitate full duplex communication, 
while a utility processor 486 offers various functions includ
ing overseeing and controlling PCI register access. 

ister set 490. Some items pass through the first phase without 
modification by the controls 492, and instead are simply 
copied into the first register set 490 or a RAM file register 533. 

25 A second instruction phase 560 has an instruction decoder 
and operand multiplexer 498 that generally decodes the 
instruction that was stored in the instruction register of the 
first register set 490 and gathers any operands which have 
been generated, which are then stored in a decode register of 

30 a second register set 496. The first register set 490, second 
register set 496 and a third register set 501, which is employed 
in a third instruction phase 600, include many of the same 
registers, as will be seen in the more detailed views of FIGS. 
15A-C. The instruction decoder and operand multiplexer 498 

35 can read from two address and data ports of the RAM file 
register 533, which operates in both the first phase 500 and 
second phase 560.A third phase 600 of the processor 470 has 
an arithmetic logic unit (ALU) 602 which generally performs 
any ALU operations on the operands from the second register 

40 set, storing the results in a results register included in the third 
register set 501. A stack exchange 608 can reorder register 
stacks, and a queue manager 503 can arrange queues for the 
processor 470, the results of which are stored in the third 
register set. The instructions continue with the first phase then 

45 following the third phase, as depicted by a circular pipeline 
505. Note that various functions have been distributed across 

The instructions for the three processors 482, 484 and 486 
reside in the on-chip control-store 480. Thus the functions of 
the three processors can be easily redefined, so that the micro
processor 470 can adapted for a given environment. For 
instance, the amount of processing required for receive func
tions may outweigh that required for either transmit or utility 50 

functions. In this situation, some receive functions may be 
performed by the transmit processor 484 and/or the utility 
processor 486. Alternatively, an additional level of pipelining 
can be created to yield four or more virtual processors instead 

the three phases of the instruction execution in order to mini
mize the combinatorial delays within any given phase. With a 
frequency in this embodiment of 66 MHz, each Clock incre
ment takes 15 nanoseconds to complete, for a total of 45 
nanoseconds to complete one instruction for each of the three 
processors. The rotating instruction phases are depicted in 
more detail in FIGS. 15A-C, in which each phase is shown in 
a different figure. 

of three, with the additional level devoted to receive func- 55 More particularly, FIG.15A shows some specific hardware 
tions. 

The INIC 200 in this embodiment can support up to 256 
CCBs which are maintained in a table in the DRAM 460. 
There is also, however, a CCB index in hash order in the 
SRAM 440 to save sequential searching. Once a hash has 
been generated, the CCB is cached in SRAM, with up to 
sixteen cached CCBs in SRAM in this example. Allocation of 
the sixteen CCBs cached in SRAM is handled by a least 
recently used register, described below. These cache locations 
are shared between the transmit 484 and receive 486 proces
sors so that the processor with the heavier load is able to use 
more cache buffers. There are also eight header buffers and 

functions of the first phase 500, which generally includes the 
first register set 490 and related controls 492. The controls for 
the first register set 492 includes an SRAM control 502, 
which is a logical control for loading address and write data 

60 into SRAM address and data registers 520. Thus the output of 
the ALU 602 from the third phase 600 may be placed by 
SRAM control 502 into an address register or data register of 
SRAM address and data registers 520. A load control 504 
similarly provides controls for writing a context for a file to 

65 file context register 522, and another load control 506 pro
vides controls for storing a variety of miscellaneous data to 
flip-flop registers 525. ALU condition codes, such as whether 



US 7,673,072 B2 
21 

a carried bit is set, get clocked into ALU condition codes 
register 528 without an operation performed in the first phase 
500. Flag decodes 508 can perfonn various functions, such as 
setting locks, that get stored in flag registers 530. 

The RAM file register 533 has a single write port for 5 

addresses and data and two read ports for addresses and data, 
so that more than one register can be read from at one time. As 
noted above, the RAM file register 533 essentially straddles 
the first and second phases, as it is written in the first phase 
500 and read from in the second phase 560. A control store 10 

instruction 510 allows the reprogramming of the processors 
due to new data in from the control store 480, not shown in 
this figure, the instructions stored in an instruction register 
535. The address for this is generated in a fetch control reg
ister 511, which determines which address to fetch, the 15 

address stored in fetch address register 538. Load control 515 
provides instructions for a program counter 540, which oper
ates much like the fetch address for the control store. A last-in 
first-out stack 544 of three registers is copied to the first 
register set without undergoing other operations in this phase. 20 

Finally, a load control 517 for a debug address 548 is option
ally included, which allows correction of errors that may 
occur. 

22 
along with similar decisions such as fetch control 511. A stack 
exchange 608 shifts a stack up or down by fetching a program 
counter from stack 594 or putting a program counter onto that 
stack, results of which are stored in program control 634, 
program counter 638 and stack 640 registers. The SRAM 
address may optionally be incremented in this phase 600. 
Another load control 610 for another debug address 642 may 
be forced from the pipeline 505 at this point in order to allow 
error control in this phase also. A QRAM & QALU 606, 
shown together in this figure, read from the queue channel and 
command register 587, store in SRAM and rearrange queues, 
adding or removing data and pointers as needed to manage the 
queues of data, sending results to the test multiplexer 604 and 
a queue flags and queue address register 628. Thus the QRAM 
& QALU 606 assume the duties of managing queues for the 
three processors, a task conventionally performed sequen-
tially by software on a CPU, the queue manager 606 instead 
providing accelerated and substantially parallel hardware 
queuing. 

FIG. 16 depicts two of the thirty-two hardware queues that 
are managed by the queue manager 606, with each of the 
queues having an SRAM head, an SRAM tail and the ability 
to queue infonnation in a DRAM body as well, allowing 
expansion and individual configuration of each queue. Thus FIG. 15B depicts the second microprocessor phase 560, 

which includes reading addresses and data out of the RAM 
file register 533. A scratch SRAM 565 is written from SRAM 
address and data register 520 of the first register set, which 
includes a register that passes through the first two phases to 

25 FIFO 700 has SRAM storage units, 705, 707, 709 and 711, 
each containing eight bytes for a total of thirty-two bytes, 
although the number and capacity of these units may vary in 
other embodiments. Similarly, FIFO 702 has SRAM storage 
units 713, 715, 717 and 719. SRAMunits 705 and 707 are the be incremented in the third. The scratch SRAM 565 is read by 

the instruction decoder and operand multiplexer 498, as are 
most of the registers from the first register set, with the excep
tion of the stack 544, debug address 548 and SRAM address 
and data register mentioned above. The instruction decoder 
and operand multiplexer 498 looks at the various registers of 
set 490 and SRAM 565, decodes the instructions and gathers 35 

the operands for operation in the next phase, in particular 
determining the operands to provide to the ALU 602 below. 
The outcome of the instruction decoder and operand multi
plexer 498 is stored to a number of registers in the second 
register set 496, including ALU operands 579 and 582, ALU 40 

condition code register 580, and a queue charmel and com
mand 587 register, which in this embodiment can control 
thirty-two queues. Several of the registers in set 496 are 
loaded fairly directly from the instruction register 535 above 
without substantial decoding by the decoder 498, including a 
program control 590, a literal field 589, a test select 584 and 

30 head of FIFO 700 and units 709 and 711 are the tail of that 
FIFO, while units 713 and 715 are the head of FIFO 702 and 
units 717 and 719 are the tail of that FIFO. Information for 
FIFO 700 may be written into head units 705 or 707, as shown 
by arrow 722, and read from tail units 711 or 709, as shown by 
arrow 725. A particular entry, however, may be both written to 
and read from head units 705 or 707, or may be both written 
to and read from tail units 709 or 711, minimizing data move
ment and latency. Similarly, infonnation for FIFO 702 is 
typically written into head units 713 or 715, as shown by 
arrow 733, and read from tail units 717 or 719, as shown by 
arrow 739, but may instead be read from the same head or tail 
unit to which it was written. 

The SRAM FIFOS 700 and 702 are both connected to 
DRAM 460, which allows virtually unlimited expansion of 

45 those FIFOS to handle situations in which the SRAM head 

a flag select 585. Other registers such as the file context 522 of 
the first phase 500 are always stored in a file context 577 of the 
second phase 560, but may also be treated as an operand that 
is gathered by the multiplexer 572. The stack registers 544 are 50 

simply copied in stack register 594. The program counter 540 
is incremented 568 in this phase and stored in register 592. 
Also incremented 570 is the optional debug address 548, and 
a load control 575 may be fed from the pipeline 505 at this 
point in order to allow error control in each phase, the result 55 

stored in debug address 598. 
FIG. 15C depicts the third microprocessor phase 600, 

which includes ALU and queue operations. The ALU 602 
includes an adder, priority encoders and other standard logic 
functions. Results of the ALU are stored in registers ALU 60 

output 618, ALU condition codes 620 and destination oper
and results 622. A file context register 616, flag select register 
626 and literal field register 630 are simply copied from the 
previous phase 560. A test multiplexer 604 is provided to 
determine whether a conditional jump results in a jump, with 65 

the results stored in a test results register 624. The test mul
tiplexer 604 may instead be perfonned in the first phase 500 

and tail are full. For example a first of the thirty-two queues, 
labeled Q-zero, may queue an entry in DRAM 460, as shown 
by arrow 727, by DMA units acting under direction of the 
queue manager, instead of being queued in the head or tail of 
FIFO 700. Entries stored in DRAM 460 return to SRAM unit 
709, as shown by arrow 730, extending the length and fall
through time of that FIFO. Diversion from SRAM to DRAM 
is typically reserved for when the SRAM is full, since DRAM 
is slower and DMA movement causes additional latency. 
Thus Q-zero may comprise the entries stored by queue man
ager 606 in both the FIFO 700 and the DRAM 460. Likewise, 
information bound for FIFO 702, which may correspond to 
Q-twenty-seven, for example, can be moved by DMA into 
DRAM 460, as shown by arrow 735. The capacity for queuing 
in cost-effective albeit slower DRAM 460 is user-definable 
during initialization, allowing the queues to change in size as 
desired. Information queued in DRAM 460 is returned to 
SRAM unit 717, as shown by arrow 737. 

Status for each of the thirty-two hardware queues is con
veniently maintained in and accessed from a set 740 of four, 
thirty-two bit registers, as shown in FIG. 17, in which a 
specific bit in each register corresponds to a specific queue. 



US 7,673,072 B2 
23 24 

of requests. The Status Register 822 updates the four queue 
registers Q-OuCReady 745, Q-In_Ready 750, Q-Empty 755 
and Q-Full 760 to reflect the new status of the queue that was 
accessed. Similarly updated are SRAMAddresses 833, Body 
Write Request 835 and Body Read Requests 838, which are 
accessed via DMA to and from SRAM head and tails for that 
queue. Alternatively, various processes may wish to write to a 
queue, as shown by Q Write Data 844, which are selected by 
multiplexor 846, and pipelined to SRAM Write Request 840. 
The SRAM controller services the read and write requests by 
writing the tailor reading the head of the accessed queue and 
returning an acknowledge. In this manner the various queues 
are utilized and their status updated. 

FIGS. 19A-C show a least-recently-used register 900 that 
is employed for choosing which contexts or CCBs to maintain 
in INIC cache memory. The INIC in this embodiment can 
cache up to sixteen CCBs in SRAM at a given time, and so 
when a new CCB is cached an old one must often be dis-

The registers are labeled Q-OuCReady 745, Q-In_Ready 
750, Q-Empty 755 and Q-Full 760. If a particular bit is set in 
the Q-Out_Ready register 750, the queue corresponding to 
that bit contains infonnation that is ready to be read, while the 
setting of the same bit in the Q-In_Ready 752 register means 5 

that the queue is ready to be written. Similarly, a positive 
setting of a specific bit in the Q-Empty register 755 means that 
the queue corresponding to that bit is empty, while a positive 
setting of a particular bit in the Q-Full register 760 means that 
the queue corresponding to that bit is full. Thus Q-OuCReady 10 

745 contains bits zero 746 through thirty-one 748, including 
bits twenty-seven 752, twenty-eight 754, twenty-nine 756 
and thirty 758. Q-In_Ready 750 contains bits zero 762 
through thirty-one 764, including bits twenty-seven 766, 
twenty-eight 768, twenty-nine 770 and thirty 772. Q-Empty 15 

755 contains bits zero 774 through thirty-one 776, including 
bits twenty-seven 778, twenty-eight 780, twenty-nine 782 
and thirty 784, and Q-full 760 contains bits zero 786 through 
thirty-one 788, including bits twenty-seven 790, twenty-eight 
792, twenty-nine 794 and thirty 796. 20 carded, the discarded CCB usually chosen according to this 

register 900 to be the CCB that has been used least recently. In 
this embodiment, a hash table for up to two hundred fifty-six 
CCBs is also maintained in SRAM, while up to two hundred 
fifty-six full CCBs are held in DRAM. The least-recently-

Q-zero, corresponding to FIFO 700, is a free buffer queue, 
which holds a list of addresses for all available buffers. This 
queue is addressed when the microprocessor or other devices 
need a free buffer address, and so commonly includes appre
ciable DRAM 460. Thus a device needing a free buffer 
address would check with Q-zero to obtain that address. 
Q-twenty-seven, corresponding to FIFO 702, is a receive 
buffer descriptor queue. After processing a received frame by 
the receive sequencer the sequencer looks to store a descriptor 
for the frame in Q-twenty-seven. If a location for such a 
descriptor is immediately available in SRAM, bit twenty
seven 766 ofQ-In_Ready 750 will be set. Ifnot, the sequencer 
must wait for the queue manager to initiate a D MA move from 
SRAM to DRAM, thereby freeing space to store the receive 
descriptor. 

25 used register 900 contains sixteen four-bit blocks labeled 
RO-R15, each of which corresponds to an SRAM cache unit. 
Upon initialization, the blocks are numbered 0-15, with num
ber 0 arbitrarily stored in the block representing the least 
recently used (LRU) cache unit and number 15 stored in the 

30 block representing the most recently used (MRU) cache unit. 
FIG. 19A shows the register 900 at an arbitrary time when the 
LRU block RO holds the number 9 and the MRU block R15 
holds the number 6. 

35 When a different CCB than is currently being held in 
SRAM is to be cached, the LRU block RO is read, which in 
FIG. 19A holds the number 9, and the new CCB is stored in 
the SRAM cache unit corresponding to number 9. Since the 
new CCB corresponding to number 9 is now the most recently 

Operation of the queue manager, which manages move
ment of queue entries between SRAM and the processor, the 
transmit and receive sequencers, and also between SRAM 
and DRAM, is shown in more detail in FIG. 18. Requests 
which utilize the queues include Processor Request 802, 40 

Transmit Sequencer Request 804, and Receive Sequencer 
Request 806. Other requests for the queues are DRAM to 
SRAM Request 808 and SRAM to DRAM Request 810, 
which operate on behalf of the queue manager in moving data 
back and forth between the DRAM and the SRAM head or tail 45 

of the queues. Detennining which of these various requests 
will get to use the queue manager in the next cycle is handled 
by priority logic Arbiter 815. To enable high frequency opera
tion the queue manager is pipelined, with Register A 818 and 
Register B 820 providing temporary storage, while Status 50 

Register 822 maintains status until the next update. The queue 
manager reserves even cycles for DMA, receive and transmit 
sequencer requests and odd cycles for processor requests. 
Dual ported QRAM 825 stores variables regarding each of the 
queues, the variables for each queue including a Head Write 55 

Pointer, Head Read Pointer, Tail Write Pointer and Tail Read 
Pointer corresponding to the queue's SRAM condition, and a 
Body Write Pointer and Body Read Pointer corresponding to 
the queue's DRAM condition and the queue's size. 

After Arbiter 815 has selected the next operation to be 60 

performed, the variables ofQRAM 825 are fetched and modi
fied according to the selected operation by a QALU 828, and 

used CCB, the number 9 is stored in the MRU block, as shown 
in FIG. 19B. The other numbers are all shifted one register 
block to the left, leaving the number 1 in the LRU block. The 
CCB that had previously been cached in the SRAM unit 
corresponding to number 9 has been moved to slower but 
more cost-effective DRAM. 

FIG. 19C shows the result when the next CCB used had 
already been cached in SRAM. In this example, the CCB was 
cached in an SRAM unit corresponding to number 10, and so 
after employment of that CCB, number 10 is stored in the 
MRU block. Only those numbers which had previously been 
more recently used than number 10 (register blocks R9-R15) 
are shifted to the left, leaving the number 1 in the LRU block. 
In this manner the INIC maintains the most active CCBs in 
SRAMcache. 

In some cases a CCB being used is one that is not desirable 
to hold in the limited cache memory. For example, it is pref
erable not to cache a CCB for a context that is known to be 
closing, so that other cached CCBs can remain in SRAM 
longer. In this case, the number representing the cache unit 
holding the decacheable CCB is stored in the LRU block RO 
rather than the MRU block R15, so that the decacheable CCB 
will be replaced immediately upon employment of a new 
CCB that is cached in the SRAM unit corresponding to the 
number held in the LRU block RO. FIG. 19D shows the case 

an SRAM Read Request 830 or an SRAM Write Request 840 
may be generated. The variables are updated and the updated 
status is stored in Status Register 822 as well as QRAM 825. 
The status is also fed to Arbiter 815 to signal that the operation 
previously requested has been fulfilled, inhibiting duplication 

65 for which number 8 (which had been in blockR9 inFIG.19C) 
corresponds to a CCB that will be used and then closed. In this 
case number 8 has been removed from block R9 and stored in 



US 7,673,072 B2 
25 

the LRU block RO. All the numbers that had previously been 
stored to the left of block R9 (Rl-RS) are then shifted one 
block to the right. 

FIG. 20 shows some of the logical units employed to oper-

26 
block R9) is sent by processor 470 along line 935, which is 
matched by comparator C9. The processor instructs logic 
circuits 930 to input the number 1 to RO, by selecting with 
lines 939 input 935 to MUXO. Select lines 954 to MUX9 
choose as input the number held in register block RS, so that 
the number from RS is stored in R9. The numbers held by the 
other register blocks between RO and R9 are similarly shifted 
to the right, whereas the numbers in register blocks to the right 
ofR9 are left constant. This frees scarce cache memory from 

10 maintaining closed CCBs for many cycles while their identi
:lYing numbers move through register blocks from the MRU to 
the LRU blocks. 

ate the least-recently-used register 900. An array of sixteen, 
three or four input multiplexors 910, of which only multiplex
ors MUXO, MUX7, MUXS, MUX9 and MUX15 are shown 
for clarity, have outputs fed into the corresponding sixteen 
blocks of least-recently-used register 900. For example, the 
output ofMUXO is stored in block RO, the output ofMUX7 is 
stored in block R7, etc. The value of each of the register 
blocks is connected to an input for its corresponding multi
plexor and also into inputs for both adjacent multiplexors, for 
use in shifting the block numbers. For instance, the number 
stored in RS is fed into inputs for MUX7, MUXS and MUX9. 15 

MUXO and MUX15 each have only one adjacent block, and 
the extra input for those multiplexors is used for the selection 
ofLRU and MRU blocks, respectively. MUX15 is shown as a 
four-input multiplexor, with input 915 providing the number 
stored on RO. 

FIG. 21 is another diagram ofIntelligent Network Interface 
Card (INIC) 200 of FIG. 13. INIC card 200 includes a Physi
cal Layer Interface (PRY) chip 2100, ASIC chip 400 and 
Dynamic Random Access Memory (DRAM) 460. PRY chip 
2100 couples INIC card200 to network line 210 via a network 
connector 2101. INIC card 200 is coupled to the CPU of the 
host (for example, CPU2S of host 20 of FIG. 1) via card edge 

20 connector 2107 and PCI bus 257. ASIC chip 400 includes a 
Media Access Control (MAC) unit 402, a sequencers block 
2103, SRAM control 442, SRAM 440, DRAM control 450, a 
queue manager 2103, a processor 470, and a PCI bus interface 

An array of sixteen comparators 920 each receives the 
value stored in the corresponding block of the least-recently
used register 900. Each comparator also receives a signal 
from processor 470 along line 935 so that the register block 
having a number matching that sent by processor 470 outputs 25 

true to logic circuits 930 while the other fifteen comparators 
output false. Logic circuits 930 control a pair of select lines 
leading to each of the multiplexors, for selecting inputs to the 
multiplexors and therefore controlling shifting of the register 
block numbers. Thus select lines 939 control MUXO, select 30 

lines 944 control MUX7, select lines 949 control MUXS, 
select lines 954 control MUX9 and select lines 959 control 
MUX15. 

unit 46S. Structure and operation of queue manager 2103 is 
described above in connection with FIG. IS and in U.S. patent 
application Ser. No. 09/416,925, entitled "Queue System For 
Microprocessors", filed Oct. 13, 1999, by Daryl D. Starr and 
Clive M. Philbrick (the subject matter of which is incorpo
rated herein by reference). Sequencers block 2102 includes a 
transmit sequencer 2104, a receive sequencer 2105, and con
figuration registers 2106. A MAC destination address is 
stored in configuration register 2106. Part of the program 
code executed by processor 470 is contained in ROM (not 
shown) and part is located in a writeable control store SRAM 

35 (not shown). The program is downloaded into the writeable 
control store SRAM at initialization from the host 20. 

When a CCB is to be used, processor 470 checks to see 
whether the CCB matches a CCB currently held in one of the 
sixteen cache units. If a match is found, the processor sends a 
signal along line 935 with the block number corresponding to 
that cache unit, for example number 12. Comparators 920 
compare the signal from that line 935 with the block numbers 
and comparator CS provides a true output for the block RS 40 

that matches the signal, while all the other comparators output 
false. Logic circuits 930, under control from the processor 
470, use select lines 959 to choose the input from line 935 for 
MUX15, storing the number 12 in the MRU block R15. Logic 
circuits 930 also send signals along the pairs of select lines for 45 

MUXS and higher multiplexors, aside from MUXI5, to shift 
their output one block to the left, by selecting as inputs to each 
multiplexor MUXS and higher the value that had been stored 
in register blocks one block to the right (R9-RI5). The outputs 
of multiplexors that are to the left ofMUXS are selected to be 50 

constant. 
If processor 470 does not find a match for the CCB among 

the sixteen cache units, on the other hand, the processor reads 
from LRU block RO along line 966 to identify the cache 
corresponding to the LRU block, and writes the data stored in 55 

that cache to DRAM. The number that was stored in RO, in 
this case number 3, is chosen by select lines 959 as input 915 
to MUX15 for storage in MRU block R15. The other fifteen 
multiplexors output to their respective register blocks the 
numbers that had been stored each register block immediately 60 

to the right. 
For the situation in which the processor wishes to remove 

a CCB from the cache after use, the LRU block RO rather than 
the MRU block R15 is selected for placement of the number 
corresponding to the cache unit holding that CCB. The num- 65 

ber corresponding to the CCB to be placed in the LRU block 
RO for removal from SRAM (for example number 1, held in 

FIG. 22 is a more detailed diagram of receive sequencer 
2105. Receive sequencer 2105 includes a data synchroniza
tion buffer 2200, a packet synchronization sequencer 2201, a 
data assembly register 2202, a protocol analyzer 2203, a 
packet processing sequencer 2204, a queue manager interface 
2205, and a Direct Memory Access (DMA) control block 
2206. The packet synchronization sequencer 2201 and data 
synchronization buffer 2200 utilize a network-synchronized 
clock of MAC 402, whereas the remainder of the receive 
sequencer 2105 utilizes a fixed-frequency clock. Dashed line 
2221 indicates the clock domain boundary. 

CD Appendix A contains a complete hardware description 
(verilog code) of an embodiment of receive sequencer 2105. 
Signals in the verilog code are named to designate their func
tions. Individual sections of the verilog code are identified 
and labeled with comment lines. Each of these sections 
describes hardware in a block of the receive sequencer 2105 
as set forth below in Table 1. 

TABLE 1 

SECTION OF VERILOG CODE 

Synchronization Interface 
Sync-Buffer Read-Ptr Synchronizers 
Packet-Synchronization Sequencer 
Data Synchronization Buffer 
Synchronized Status for Link-Destination-Address 
Synchronized Status-Vector 
Synchronization Interface 
Receive Packet Control and Status 
Buffer-Descriptor 

BLOCK OF FIG. 22 

2201 
2201 
2201 
2201 and 2200 
2201 
2201 
2204 
2204 
2201 



US 7,673,072 B2 
27 

TABLE I-continued 

SECTION OF VERILOG CODE 

Ending Packet Statns 
AssyReg shift-in. Mac -> AssyReg. 
Fifo shift-in. AssyReg -> Sram Fifo 
Fifo ShiftOut Burst. SramFifo -> DramBuffer 
Fly-By Protocol Analyzer; Frame, Network 
and Transport Layers 

BLOCK OF FIG. 22 

2201 
2202 and 2204 
2206 
2206 
2203 

28 
SRAM control block 442. Packet processing sequencer 2204 
requests a free buffer descriptor 2207 via request line 2211. 
When the queue manager interface 2205 retrieves the free 
buffer descriptor 2207 and the free buffer descriptor 2207 is 
available for use by the packet processing sequencer, the 
queue manager interface 2205 informs the packet processing 
sequencer 2204 via grant line 2212. By this process, a free 
buffer descriptor is made available for use by the packet 
processing sequencer 2204 and the receive sequencer 2105 is 

Link Pointer 2203 
2203 
2203 
2203 
2203 
2203 
2203 
2203 
2203 
2203 
2205 
2205 
2205 
2205 
2201 
2204 

10 ready to processes an incoming packet. 
Mac address detection 
Magic pattern detection 
Link layer and network layer detection 
Network counter 
Control Packet analysis 

Next, a TCP/IP packet is received from the network line 
210 via network connector 2101 and Physical Layer Interface 
(PRY) 2100. PRY 2100 supplies the packet to MAC 402 via 
a Media Independent Interface (MIl) parallel bus 2109. MAC 

Network header analysis 
Transport layer counter 
Transport header analysis 
Pseudo-header stnff 
Free-Descriptor Fetch 
Receive-Descriptor Store 
Receive-Vector Store 

15 402 begins processing the packet and asserts a "start of 
packet" signal on line 2213 indicating that the beginning of a 
packet is being received. When a byte of data is received in the 
MAC and is available at the MAC outputs 2215, MAC 402 
asserts a "data valid" signal on line 2214. Upon receiving the 

Queue-manager interface-mux 
Pause Clock Generator 
Pause Timer 

20 "data valid" signal, the packet synchronization sequencer 
2201 instructs the data synchronization buffer 2200 via load 
signal line 2222 to load the received byte from data lines 
2215. Data synchronization buffer 2200 is four bytes deep. 
The packet synchronization sequencer 2201 then increments 

Operation of receive sequencer 2105 of FIGS. 21 and 22 is 
now described in connection with the receipt onto INIC card 
200 of a TCP/IP packet from network line 210. At initializa
tion time, processor 470 partitions DRAM 460 into buffers. 
Receive sequencer 2105 uses the buffers in DRAM 460 to 
store incoming network packet data as well as status infor- 30 

mati on for the packet. Processor 470 creates a 32-bit buffer 
descriptor for each buffer. A buffer descriptor indicates the 
size and location in DRAM of its associated buffer. Processor 
470 places these buffer descriptors on a "free-buffer queue" 
2108 by writing the descriptors to the queue manager 2103. 
Queue manager 2103 maintains multiple queues including 
the "free-buffer queue" 2108. In this implementation, the 
heads and tails of the various queues are located in SRAM 
440, whereas the middle portion of the queues are located in 
DRAM 460. 

25 a data synchronization buffer write pointer. This data syn
chronization buffer write pointer is made available to the 
packet processing sequencer 2204 via lines 2216. Consecu
tive bytes of data from data lines 2215 are clocked into the 
data synchronization buffer 2200 in this way. 

A data synchronization buffer read pointer available on 
lines 2219 is maintained by the packet processing sequencer 
2204. The packet processing sequencer 2204 determines that 
data is available in data synchronization buffer 2200 by com
paring the data synchronization buffer write pointer on lines 

35 2216 with the data synchronization buffer read pointer on 
lines 2219. 

Data assembly register 2202 contains a sixteen-byte long 
shift register 2217. This register 2217 is loaded serially a 
single byte at a time and is unloaded in parallel. When data is 

Lines 2229 comprise a request mechanism involving a 
request line and address lines. Similarly, lines 2230 comprise 
a request mechanism involving a request line and address 
lines. Queue manager 2103 uses lines 2229 and 2230 to issue 
requests to transfer queue information from DRAM to SRAM 
or from SRAM to DRAM. 

40 loaded into register 2217, a write pointer is incremented. This 
write pointer is made available to the packet processing 
sequencer 2204 via lines 2218. Similarly, when data is 
unloaded from register 2217, a read pointer maintained by 
packet processing sequencer 2204 is incremented. This read 

45 pointer is available to the data assembly register 2202 via 
lines 2220. The packet processing sequencer 2204 can there
fore determine whether room is available in register 2217 by 
comparing the write pointer on lines 2218 to the read pointer 

The queue manager interface 2205 of the receive sequencer 
always attempts to maintain a free buffer descriptor 2207 for 
use by the packet processing sequencer 2204. Bit 2208 is a 
ready bit that indicates that free-buffer descriptor 2207 is 50 

available for use by the packet processing sequencer 2204. If 
queue manager interface 2205 does not have a free buffer 
descriptor (bit 2208 is not set), then queue manager interface 
2205 requests one from queue manager 2103 via request line 
2209. (Request line 2209 is actually a bus which communi- 55 

cates the request, a queue ID, a read/write signal and data if 
the operation is a write to the queue.) 

on lines 2220. 
If the packet processing sequencer 2204 determines that 

room is available in register 2217, then packet processing 
sequencer 2204 instructs data assembly register 2202 to load 
a byte of data from data synchronization buffer 2200. The 
data assembly register 2202 increments the data assembly 
register write pointer on lines 2218 and the packet processing 
sequencer 2204 increments the data synchronization buffer 
read pointer on lines 2219. Data shifted into register 2217 is 
examined at the register outputs by protocol analyzer 2203 
which verifies checksums, and generates "status" informa-

60 tion 2223. 

In response, queue manager 2103 retrieves a free buffer 
descriptor from the tail of the "free buffer queue" 2108 and 
then alerts the queue manager interface 2205 via an acknowl
edge signal on acknowledge line 2210. When queue manager 
interface 2205 receives the acknowledge signal, the queue 
manager interface 2205 loads the free buffer descriptor 2207 
and sets the ready bit 2208. Because the free buffer descriptor 
was in the tail of the free buffer queue in SRAM 440, the 65 

queue manager interface 2205 actually receives the free 
buffer descriptor 2207 from the read data bus 2228 of the 

DMA control block 2206 is responsible for moving infor
mation from register 2217 to buffer 2114 via a sixty-four byte 
receive FIFO 2110. DMA control block 2206 implements 
receive FIFO 2110 as two thirty-two byte ping-pong buffers 
using sixty-four bytes of SRAM 440. DMA control block 
2206 implements the receive FIFO using a write-pointer and 
a read-pointer. When data to be transferred is available in 



US 7,673,072 B2 
29 

register 2217 and space is available in FIFO 2110, DMA 
control block 2206 asserts an SRAM write request to SRAM 
controller 442 via lines 2225. SRAM controller 442 in turn 

30 
mary 2224 to queue manager interface 2205. Queue manager 
interface 2205 then requests a write to the head of a "summary 
queue" 2112 (also called the "receive descriptor queue"). The 

moves data from register 2217 to FIFO 211 0 and asserts an 
acknowledge signal back to DMA control block 2206 via 5 

lines 2225. DMA control block 2206 then increments the 

queue manager 2103 receives the request, writes the sum
mary 2224 to the head of the summary queue 2212, and 
asserts an acknowledge signal back to queue manager inter-

receive FIFO write pointer and causes the data assembly 
register read pointer to be incremented. 

When thirty-two bytes of data has been deposited into 
receive FIFO 2110, DMA control block 2206 presents a 
DRAM write request to DRAM controller 450 via lines 2226. 
This write request consists of the free buffer descriptor 2207 
ORed with a "buffer load count" for the DRAM request 
address, and the receive FIFO read pointer for the SRAM read 
address. Using the receive FIFO read pointer, the DRAM 
controller 450 asserts a read request to SRAM controller 442. 
SRAM controller 442 responds to DRAM controller 450 by 
returning the indicated data from the receive FIFO 2110 in 
SRAM 440 and asserting an acknowledge signal. DRAM 
controller 450 stores the data in a DRAM write data register, 
stores a DRAM request address in a DRAM address register, 
and asserts an acknowledge to DMA control block 2206. The 
DMA control block 2206 then decrements the receive FIFO 
read pointer. Then the DRAM controller 450 moves the data 
from the DRAM write data register to buffer 2114. In this 
way, as consecutive thirty-two byte chunks of data are stored 
in SRAM 440, DRAM control block 2206 moves those thirty
two byte chunks of data one at a time from SRAM 440 to 
buffer 2214 in DRAM 460. Transferring thirty-two byte 
chunks of data to the DRAM 460 in this fashion allows data to 
be written into the DRAM using the relatively efficient burst 
mode of the DRAM. 

Packet data continues to flow from network line 210 to 
buffer 2114 until all packet data has been received. MAC 402 
then indicates that the incoming packet has completed by 
asserting an "end offrame" (i.e., end of packet) signal on line 
2227 and by presenting final packet status (MAC packet 
status) to packet synchronization sequencer 2204. The packet 
processing sequencer 2204 then moves the status 2223 (also 
called "protocol analyzer status") and the MAC packet status 
to register 2217 for eventual transfer to buffer 2114. After all 
the data of the packet has been placed in buffer 2214, status 
2223 and the MAC packet status is transferred to buffer 2214 
so that it is stored prepended to the associated data as shown 
in FIG. 22. 

After all data and status has been transferred to buffer 2114, 
packet processing sequencer 2204 creates a summary 2224 
(also called a "receive packet descriptor") by concatenating 
the free buffer descriptor 2207, the buffer load-count, the 
MAC ID, and a status bit (also called an "attention bit"). If the 
attention bit is a one, then the packet is not a "fast-path 
candidate"; whereas if the attention bit is a zero, then the 
packet is a "fast-path candidate". The value of the attention bit 
represents the result of a significant amount of processing that 
processor 470 would otherwise have to do to determine 
whether the packet is a "fast-path candidate". For example, 
the attention bit being a zero indicates that the packet employs 
both TCP protocol and IP protocol. By carrying out this 
significant amount of processing in hardware beforehand and 
then encoding the result in the attention bit, subsequent deci
sion making by processor 470 as to whether the packet is an 
actual "fast-path packet" is accelerated. A complete logical 
description of the attention bit in verilog code is set forth in 
CD Appendix A in the lines following the heading "Ending 
Packet Status". 

Packet processing sequencer 2204 then sets a ready bit (not 
shown) associated with summary 2224 and presents sum-

face via line 2210. When queue manager interface 2205 
receives the acknowledge, queue manager interface 2205 
informs packet processing sequencer 2204 that the summary 

10 2224 is in summary queue 2212 by clearing the ready bit 
associated with the summary. Packet processing sequencer 
2204 also generates additional status information (also called 
a "vector") for the packet by concatenating the MAC packet 
status and the MAC ID. Packet processing sequencer 2204 

15 sets a ready bit (not shown) associated with this vector and 
presents this vector to the queue manager interface 2205. The 
queue manager interface 2205 and the queue manager 2103 
then cooperate to write this vector to the head of a "vector 
queue" 2113 in similar fashion to the way summary 2224 was 

20 written to the head of summary queue 2112 as described 
above. When the vector for the packet has been written to 
vector queue 2113, queue manager interface 2205 resets the 
ready bit associated with the vector. 

Once summary 2224 (including a buffer descriptor that 
25 points to buffer 2114) has been placed in summary queue 

2112 and the packet data has been placed in buffer 2144, 
processor 470 can retrieve summary 2224 from summary 
queue 2112 and examine the "attention bit". 

If the attention bit from summary 2224 is a digital one, then 
30 processor 470 determines that the packet is not a "fast-path 

candidate" and processor 470 need not examine the packet 
headers. Only the status 2223 (first sixteen bytes) from buffer 
2114 are DMA transferred to SRAM so processor 470 can 
examine it. If the status 2223 indicates that the packet is a type 

35 of packet that is not to be transferred to the host (for example, 
a multicast frame that the host is not registered to receive), 
then the packet is discarded (i.e., not passed to the host). If 
status 2223 does not indicate that the packet is the type of 
packet that is not to be transferred to the host, then the entire 

40 packet (headers and data) is passed to a buffer on host 20 for 
"slow-path" transport and network layer processing by the 
protocol stack of host 20. 

If, on the other hand, the attention bit is a zero, then pro
cessor 470 determines that the packet is a "fast-path candi-

45 date". If processor 470 determines that the packet is a "fast
path candidate", then processor 470 uses the buffer descriptor 
from the summary to D MA transfer the first approximately 96 
bytes of information from buffer 2114 from DRAM 460 into 
a portion ofSRAM 440 so processor 470 can examine it. This 

50 first approximately 96 bytes contains status 2223 as well as 
the IP source address of the IP header, the IP destination 
address of the IP header, the TCP source address of the TCP 
header, and the TCP destination address of the TCP header. 
The IP source address of the IP header, the IP destination 

55 address of the IP header, the TCP source address of the TCP 
header, and the TCP destination address of the TCP header 
together uniquely define a single connection context (TCB) 
with which the packet is associated. Processor 470 examines 
these addresses of the TCP and IP headers and determines the 

60 connection context of the packet. Processor 470 then checks 
a list of connection contexts that are under the control ofINIC 
card 200 and determines whether the packet is associated with 
a connection context (TCB) under the control of INIC card 
200. 

65 If the connection context is not in the list, then the "fast
path candidate" packet is determined not to be a "fast-path 
packet." In such a case, the entire packet (headers and data) is 



US 7,673,072 B2 
31 

transferred to a buffer in host 20 for "slow-path" processing 
by the protocol stack of host 20. 

If, on the other hand, the connection context is in the list, 
then software executed by processor 470 including software 
state machines 2231 and 2232 checks for one of numerous 5 

exception conditions and determines whether the packet is a 
"fast-path packet" or is not a "fast-path packet". These excep
tion conditions include: 1) IP fragmentation is detected; 2) an 

32 
session layer header stored in file cache 2311 between the 
data portion of first packet 2302 and the data portion of 
second packet 2303. Similarly, the data portion 2316 of the 
next packet 2304 of the session layer message is transferred to 
file cache 2311 so that there is no network, transport, or 
session layer headers between the data portion of the second 
packet 2303 and the data portion of the third packet 2304 in 
file cache 2311. In this way, only the data portions of the 
packets of the session layer message are placed in the file IP option is detected; 3) an unexpected TCP flag (urgent bit 

set, reset bit set, SYN bit set or FIN bit set) is detected; 4) the 
ACK field in the TCP header is before the TCP window, or the 
ACK field in the TCP header is after the TCP window, or the 
ACK field in the TCP header shrinks the TCP window; 5) the 
ACK field in the TCP header is a duplicate ACK and the ACK 
field exceeds the duplicate ACK count (the duplicate ACK 
count is a user settable value); and 6) the sequence number of 
the TCP header is out of order (packet is received out of 
sequence). If the software executed by processor 470 detects 
one of these exception conditions, then processor 470 deter
mines that the "fast-path candidate" is not a "fast-path 
packet." In such a case, the connection context for the packet 
is "flushed" (the connection context is passed back to the 
host) so that the connection context is no longer present in the 
list of connection contexts under control of INIC card 200. 
The entire packet (headers and data) is transferred to a buffer 
in host 20 for "slow-path" transport layer and network layer 
processing by the protocol stack of host 20. 

10 cache 2311. The data from the session layer message 2300 is 
present in file cache 2311 as a block such that this block 
contains no network, transport, or session layer headers. 

In the case of a shorter, single-packet session layer mes
sage, portions 2307 and 2308 of the session layer message are 

15 transferred to 256-byte buffer 2309 of host 20 along with the 
connection context identifier 2310 as in the case of the longer 
session layer message described above. In the case of a single
packet session layer message, however, the transfer is com
pleted at this point. Host 20 does not return a destination to 

20 INIC 200 and INIC 200 does not transfer subsequent data to 
such a destination. 

CD Appendix B includes a listing of software executed by 
processor 470 that determines whether a "fast-path candi
date" packet is or is not a "fast-path packet". An example of 

If, on the other hand, processor 470 finds no such exception 
condition, then the "fast-path candidate"packet is determined 

25 the instruction set of processor 470 is found starting on page 
79 of the Provisional U.S. Patent Application Ser. No. 601061, 
809, entitled "Intelligent Network Interface Card And System 
For Protocol Processing", filed Oct. 14, 1997 (the subject 
matter of this provisional application is incorporated herein 

30 by reference). to be an actual "fast-path packet". The receive state machine 
2232 then processes of the packet through TCP. The data 
portion of the packet in buffer 2114 is then transferred by 
another DMA controller (not shown in FIG. 21) from buffer 
2114 to a host-allocated file cache in storage 35 ofhost 20. In 
one embodiment, host 20 does no analysis of the TCP and IP 35 

headers of a "fast -path packet". All analysis of the TCP and IP 
headers of a "fast-path packet" is done on INIC card 20. 

FIG. 23 is a diagram illustrating the transfer of data of 
"fast-path packets" (packets of a 64 k-byte session layer 
message 2300) from INIC 200 to host 20. The portion of the 40 

diagram to the left of the dashed line 2301 represents INIC 
200, whereas the portion of the diagram to the right of the 
dashed line 2301 represents host 20. The 64 k-byte session 
layer message 2300 includes approximately forty-five pack
ets, four of which (2302, 2303, 2304 and 2305) are labeled on 45 

FIG. 23. The first packet 2302 includes a portion 2306 con
taining transport and network layer headers (for example, 
TCP and IP headers), a portion 2307 containing a session 
layer header, and a portion 2308 containing data. In a first 
step, portion 2307, the first few bytes of data from portion 50 

2308, and the connection context identifier 231 0 of the packet 
2300 are transferred from INIC 200 to a 256-byte buffer 2309 

CD Appendix C includes device driver software executable 
on host 20 that interfaces the host 20 to INIC card 200. There 
is also ATCP code that executes on host 20. This ATCP code 
includes: 1) a "free BSD" stack (available from the University 
of California, Berkeley) that has been modified slightly to 
make it run on the NT4 operating system (the "free BSD" 
stack normally runs on a UNIX machine), and 2) code added 
to the free BSD stack between the session layer above and the 
device driver below that enables the BSD stack to carry out 
"fast-path" processing in conjunction with INIC 200. 

TRANSMIT FAST-PATH PROCESSING: The following 
is an overview of one embodiment of a transmit fast-path flow 
once a command has been posted (for additional information, 
see provisional application 601098,296, filed Aug. 27,1998). 
The transmit request may be a segment that is less than the 
MSS, or it may be as much as a full 64 K session layer packet. 
The former request will go out as one segment, the latter as a 
number ofMSS-sized segments. The transmitting CCB must 
hold on to the request until all data in it has been transmitted 
and ACKed. Appropriate pointers to do this are kept in the 
CCB. To create an output TCP/IP segment, a large DRAM 
buffer is acquired from the Q_FREEL queue. Then data is 
DMAd from host memory into the DRAM buffer to create an 
MSS-sized segment. This DMA also checksums the data. The 
TCP/IP header is created in SRAM and DMAd to the front of 
the payload data. It is quicker and simpler to keep a basic 
frame header (i.e., a template header) permanently in the 
CCB and DMA this directly from the SRAM CCB buffer into 
the DRAM buffer each time. Thus the payload checksum is 

in host 20. In a second step, host 20 examines this information 
and returns to INIC 200 a destination (for example, the loca
tion of a file cache 2311 in storage 35) for the data. Host 20 55 

also copies the first few bytes of the data from buffer 2309 to 
the beginning of a first part 2312 of file cache 2311. In a third 
step, INIC 200 transfers the remainder of the data from por
tion 2308 to host 20 such that the remainder of the data is 
stored in the remainder of first part 2312 of file cache 2311. 
No network, transport, or session layer headers are stored in 
first part 2312 of file cache 2311. Next, the data portion 2313 

60 adjusted for the pseudo-header (i.e., the template header) and 
placed into the TCP header prior to DMAing the header from 
SRAM. Then the DRAM buffer is queued to the appropriate 
Q_ UXMT transmit queue. The final step is to update various 
window fields etc in the CCB. Eventually either the entire 

of the second packet 2303 is transferred to host 20 such that 
the data portion 2313 of the second packet 2303 is stored in a 
second part 2314 of file cache 2311. The transport layer and 
network layer header portion 2315 of second packet 2303 is 
not transferred to host 20. There is no network, transport, or 

65 request will have been sent and ACKed, or a retransmission 
timer will expire in which case the context is flushed to the 
host. In either case, the INIC will place a command response 



US 7,673,072 B2 
33 

in the response queue containing the command buffer from 
the original transmit command and appropriate status. 

The above discussion has dealt with how an actual transmit 
occurs. However the real challenge in the transmit processor 
is to detennine whether it is appropriate to transmit at the time 5 

a transmit request arrives, and then to continue to transmit for 
as long as the transport protocol permits. There are many 
reasons not to transmit: the receiver's window size is less than 
or equal to zero, the persist timer has expired, the amount to 
send is less than a full segment and an ACK is expected! 10 

outstanding, the receiver's window is not half-open, etc. 
Much of transmit processing will be in determining these 
conditions. 

The fast-path is implemented as a finite state machine 
~FSM) that covers at least three layers of the protocol stack, 15 

I.e., IP, TCP, and Session. The following summarizes the steps 
involved in nonnal fast-path transmit command processing: 
1) get control of the associated CCB (gotten from the com
mand): this involves locking the CCB to stop other processing 
~ e.g. ~eceive) from altering it while this transmit processing 20 

IS takmg place. 2) Get the CCB into an SRAM CCB buffer. 
There are sixteen of these buffers in SRAM and they are not 
flushed to DRAM until the buffer space is needed by other 
CCBs. Acquisition and flushing of these CCB buffers is con
trolled by a hardware LRU mechanism. Thus getting into a 25 

buffer may involve flushing another CCB from its SRAM 
buffer. 3) Process the send command (EX_SCMD) event 
against the CCB's FSM. 

Each event and state intersection provides an action to be 
executed and a new state. The following is an example of the 30 

state/event transition, the action to be executed and the new 
state for the SEND command while in transmit state IDLE 
(SX_IDLE). The action from this state/event intersection is 
AX_NVCMD and the next state is XMIT COMMAND 
ACTIVE (SX_XMIT). To summarize, a command to trans- 35 

mit data has been received while transmit is currently idle. 
The action perfonns the following steps: 1) Store details of 
the command into the CCB. 2) Check that it is okay to trans
mit now (e.g. send window is not zero). 3) If output is not 
possible, send the Check Output event to Q_EVENT1 queue 40 

for the Transmit CCB's FSM and exit. 4) Get a DRAM 2 
K-byte buffer from the Q-FREEL queue into which to move 
the payload data. 5) DMA payload data from the addresses in 
the scatter/gather lists in the command into an offset in the 
DRAM buffer that leaves space for the frame header. These 45 

DMAs will provide the checksum of the payload data. 6) 
Concurrently with the above DMA, fill out variable details in 
the frame header template in the CCB. Also get the IP and 
TCP header checksums while doing this. Note that base IP 
and TCP headers checksums are kept in the CCB, and these 50 

are simply updated for fields that vary per frame, viz. IP Id, IP 
length, IP checksum, TCP sequence andACK numbers, TCP 
window size, TCP flags and TCP checksum. 7) When the 
payload is complete, DMA the frame header from the CCB to 
the front of the DRAM buffer. 8) Queue the DRAM buffer 55 

(i.e., queue a buffer descriptor that points to the DRAM 
buffer) to the appropriate Q_VXMT queue for the interface 
for this CCB. 9) Detennine if there is more payload in the 
command. If so, save the current command transfer address 
details in the CCB and send a CHECK OUTPUT event via the 60 

Q_EVENTl queue to the Transmit CCB. Ifnot, send the ALL 
COMMAND DATA SENT (EX_ACDS) event to the Trans
mit CCB. 10) Exit from Transmit FSM processing. 

Code that implements an embodiment of the Transmit 
FSM (transmit software state machine 2231 of FIG. 21) is 65 

found in CD Appendix B. In one embodiment, fast-path trans
mit processing is controlled using write only transmit con-

34 
figuration register (XmtCfg). Register XmtCfg has the fol
lowing portions: 1) Bit 31 (name: Reset). Writing a one (1) 
will force reset asserted to the transmit sequencer of the 
channel selected by XcvSel. 2) Bit 30 (name: XmtEn). Writ
ing a one (1) allows the transmit sequencer to run. Writing a 
zero (0) causes the transmit sequencer to halt after completion 
of the current packet. 3) Bit 29 (name: PauseEn). Writing a 
one (1) allows the transmit sequencer to stop packet transmis
sion, after completion of the current packet, whenever the 
receive sequencer detects an 802.3X pause command packet. 
4) Bit 28 (name: LoadRng). Writing a one (1) causes the data 
in RcvAddrB[IO:00] to be loaded in to the Mac's random 
number register for use during collision back-offs. 5) Bits 
27:20 (name: Reserved). 6) Bits 19:15 (name: FreeQld). 
Selects the queue to which the freed buffer descriptors will be 
written once the packet transmission has been tenninated 
either successfully or unsuccessfully. 7) Bits 14: 10 (name~ 
XmtQId). Selects the queue from which the transmit buffer 
descriptors will be fetched for data packets. 8) Bits 09:05 
(name: CtrlQId). Selects the queue from which the transmit 
buffer descriptors will be fetched for control packets. These 
packets have transmission priority over the data packets and 
will be exhausted before data packets will be transmitted. 9) 
Bits 04:00 (name: VectQId). Selects the queue to which the 
transmit vector data is written after the completion of each 
packet transmit. In some embodiments, transmit sequencer 
2104 of FIG. 21 retrieves buffer descriptors from two transmit 
queues, one of the queues having a higher transmission pri
ority than the other. The higher transmission priority transmit 
queue is used for the transmission ofTCP ACKs, whereas the 
lower transmission priority transmit queue is used for the 
transmission of other types of packets. ACKs may be trans
mitted in accordance with techniques set forth in U.S. patent 
application Ser. No. 09/802,426 (the subject matter of which 
is incorporated herein by reference). In some embodiments, 
the processor that executes the Transmit FSM, the receive and 
transmit sequencers, and the host processor that executes the 
protocol stack are all realized on the same printed circuit 
board. The printed circuit board may, for example, be a card 
adapted for coupling to another computer. 

All told, the above-described devices and systems for pro
cessing of data communication result in dramatic reductions 
in the time and host resources required for processing large, 
connection-based messages. Protocol processing speed and 
efficiency is tremendously accelerated by specially designed 
protocol processing hardware as compared with a general 
~urpose CPU running conventional protocol software, and 
mterrupts to the host CPU are also substantially reduced. 
These advantages can be provided to an existing host by 
addition of an intelligent network interface card (INIC), or the 
protocol processing hardware may be integrated with the 
CPU. In either case, the protocol processing hardware and 
CPU intelligently decide which device processes a given 
message, and can change the allocation of that processing 
based upon conditions of the message. 

DISCLOSURE FROM PROVISIONAL 
APPLICATION 60/061,809 

Background of the Invention 

Network processing as it exists today is a costly and inef
ficient use of system resources. A 200 MHz Pentium-Pro is 
typically consumed simply processing network data from a 
100 Mb/second-network connection. The reasons that this 
processing is so costly are described here. 



US 7,673,072 B2 
35 

Too Many Data Moves. 
When network packet arrives at a typical network interface 

card (NIC), the NIC moves the data into pre-allocated net
work buffers in system main memory. From there the data is 
read into the CPU cache so that it can be checksummed 
(assuming of course that the protocol in use requires check
sums. Some, like IPX, do not). Once the data has been fully 
processed by the protocol stack, it can then be moved into its 
final destination in memory. Since the CPU is moving the 
data, and must read the destination cache line in before it can 10 

fill it and write it back out, this involves at a minimum two 
more trips across the system memory bus. In short, the best 
one can hope for is that the data will get moved across the 
system memory bus four times before it arrives in its final 
destination. It can, and does, get worse. If the data happens to 15 

get invalidated from system cache after it has been check
summed, then it must get pulled back across the memory bus 
before it can be moved to its final destination. Finally, on 
some systems, including Windows NT 4.0, the data gets cop
ied yet another time while being moved up the protocol stack. 20 

In NT 4.0, this occurs between the miniport driver interface 
and the protocol driver interface. This can add up to a whop
ping eight trips across the system memory bus (the four trips 
described above, plus the move to replenish the cache, plus 
three more to copy from the miniport to the protocol driver). 25 

That's enough to bring even today's advanced memory bus-
ses to their knees. 

36 
issues, and finally there is also the significant expense of 
interrupt processing which we will discuss in the following 
section. 

Too Many Interrupts. 
A 64 k 5MB request (write or read-reply) is typically made 

up of 44 TCP segments when running over Ethernet (1500 
byte MTU). Each of these segments may result in an interrupt 
to the cpu. Furthermore, since TCP must acknowledge all of 
this incoming data, it's possible to get another 44 transmit
complete interrupts as a result of sending out the TCP 
acknowledgements. While this is possible, it is not terribly 
likely. Delayed ACK timers allow us to acknowledge more 
than one segment at a time. And delays in interrupt processing 
may mean that we are able to process more than one incoming 
network frame per interrupt. Nevertheless, even if we assume 
four incoming frames per input, and an acknowledgement for 
every two segments (as is typical per the ACK-every-other
segment property ofTCP), we are still left with 33 interrupts 
per 64 k 5MB request. 

Interrupts tend to be very costly to the system. Often when 
a system is interrupted, important information must be 
flushed or invalidated from the system cache so that the inter
rupt routine instructions, and needed data can be pulled into 
the cache. Since the CPU will return to its prior location after 
the interrupt, it is likely that the information flushed from the 
cache will immediately need to be pulled back into the cache. 

Too Much Processing by the cpu. 
What's more, interrupts force a pipeline flush in today's 

advanced processors. While the processor pipeline is an 
30 extremely efficient way of improving CPU performance, it 

can be expensive to get going after it has been flushed. 
In all but the original move from the NIC to system 

memory, the system CPU is responsible for moving the data. 
This is particularly expensive because while the CPU is mov
ing this data it can do nothing else. While moving the data the 
CPU is typically stalled waiting for the relatively slow 
memory to satisfY its read and write requests. A CPU, which 35 

can execute an instruction every 5 nanoseconds, must now 
wait as long as several hundred nanoseconds for the memory 
controller to respond before it can begin its next instruction. 
Even today's advanced pipelining technology doesn't help in 
these situations because that relies on the CPU being able to 40 

do useful work while it waits for the memory controller to 
respond. If the only thing the CPU has to look forward to for 
the next several hundred instructions is more data moves, then 
the CPU ultimately gets reduced to the speed of the memory 
controller. 

Finally, each of these interrupts results in expensive regis
ter accesses across the peripheral bus (PCI). This is discussed 
more in the following section. 

Inefficient Use of the Peripheral Bus (PCI). 
We noted earlier that when the CPU has to access system 

memory, it may be stalled for several hundred nanoseconds. 
When it has to read from PCI, it may be stalled for many 
microseconds. This happens every time the CPU takes an 
interrupt from a standard NIC. The first thing the CPU must 
do when it receives one of these interrupts is to read the NIC 
Interrupt Status Register (ISR) from PCI to determine the 
cause of the interrupt. The most troubling thing about this is 

45 that since interrupt lines are shared on PC-based systems, we 
may have to perform this expensive PCI read even when the 
interrupt is not meant for us. 

Moving all this data with the CPU slows the system down 
even after the data has been moved. Since both the source and 
destination cache lines must be pulled into the CPU cache 
when the data is moved, more than 3 k of instructions and or 
data resident in the CPU cache must be flushed or invalidated 50 

for every 1500 byte frame. This is of course assuming a 
combined instruction and data second level cache, as is the 
case with the Pentium processors. After the data has been 
moved, the former resident of the cache will likely need to be 
pulled back in, stalling the CPU even when we are not per- 55 

forming network processing. Ideally a system would never 
have to bring network frames into the CPU cache, instead 
reserving that precious commodity for instructions and data 
that are referenced repeatedly and frequently. 

But the data movement is not the only drain on the cpu. 60 

There is also a fair amount of processing that must be done by 
the protocol stack software. The most obvious expense is 
calculating the checksum for each TCP segment (or UDP 
datagram). Beyond this, however, there is other processing to 
be done as well. The TCP counection object must be located 65 

when a given TCP segment arrives, IP header checksums 
must be calculated, there are buffer and memory management 

There are other peripheral bus inefficiencies as well. Typi
cal NICs operate using descriptor rings. When a frame 
arrives, the NIC reads a receive descriptor from system 
memory to determine where to place the data. Once the data 
has been moved to main memory, the descriptor is then writ
ten back out to system memory with status about the received 
frame. Transmit operates in a similar fashion. The CPU must 
notify that NIC that it has a new transmit. The NIC will read 
the descriptor to locate the data, read the data itself, and then 
write the descriptor back with status about the send. Typically 
on transmits the NI C will then read the next expected descrip
tor to see if any more data needs to be sent. In short, each 
receive or transmit frame results in 3 or 4 separate PCI reads 
or writes (not counting the status register read). 

SUMMARY OF THE INVENTION 

Alacritech was formed with the idea that the network pro
cessing described above could be offioaded onto a cost-effec
tive Intelligent Network Interface Card (INIC). With the 



US 7,673,072 B2 
37 

Alacritech INIC, we address each of the above problems, 
resulting in the following advancements: 

1. The vast majority of the data is moved directly from the 
INIC into its final destination. A single trip across the system 
memory bus. 

38 
the MTU discovery algorithm, which should prevent TCP 
fragmentation on all connections (unless an ICMP redirect 
changes the connection route while the connection is estab
lished). 

With this in mind, it seems a worthy sacrifice to not attempt 
to handle fragmented TCP segments on the INIC. UDP is 
another matter. Since UDP does not support the notion of a 
Maximum Segment Size, it is the responsibility ofIP to break 
down a UDP datagram into MTU sized packets. Thus, frag-

2. There is no header processing, little data copying, and no 
checksumming required by the cpu. Because of this, the data 
is never moved into the cpu cache, allowing the system to 
keep important instructions and data resident in the cpu 
cache. 

3. Interrupts are reduced to as little as 4 interrupts per 64 k 
5MB read and 2 per 64 k 5MB write. 

4. There are no cpu reads over PCI and there are fewer PCI 

10 mented UDP datagrams are very common. The most common 
UDP application running today is NFSV2 over UDP. While 
this is also the most common version ofNFS running today, 
the current version of Solar is being sold by Sun Microsystems 

operations per receive or transmit transaction. 
In the remainder of this document we will describe how we 15 

accomplish the above. 

Perform Transport Level Processing on the INIC. 
In order to keep the system cpu from having to process the 

packet headers or checksum the packet, we must perform this 20 

task on the INIC. This is a daunting task. There are more than 
20,000 lines of C code that make up the FreeBSD TCP/IP 
protocol stack. Clearly this is more code than could be effi
ciently handled by a competitively priced network card. Fur
thermore, as noted above, the TCP/IP protocol stack is com- 25 

plicated enough to consume a 200 MHz Pentium-Pro. Clearly 

runs NFSV3 over TCP by default. We can expect to see the 
NFSV2/UDP traffic start to decrease over the coming years. 
In surnn13ry, we will only offer assistance to non-fragmented 
TCP connections on the INIC. 

Don't Handle TCP "Exceptions". 
As noted above, we won't provide support for fragmented 

TCP segments on the INIC. We have also opted to not handle 
TCP connection and breakdown. Here is a list of other TCP 
"exceptions" which we have elected to not handle on the 
INIC: 

Fragmented Segments-Discussed above. 
Retransmission Timeout---Occurs when we do not get an 

acknowledgement for previously sent data within the 
expected time period. 

in order to perform this function on an inexpensive card, we 
need special network processing hardware as opposed to 
simply using a general purpose cpu. 
Only Support TCP/IP. 

In this section we introduce the notion of a "context". A 
context is required to keep track of information that spans 
many, possibly discontinuous, pieces of information. When 
processing TCP/IP data, there are actually two contexts that 
must be maintained. The first context is required to reas
semble IP fragments. It holds information about the status of 
the IP reassembly as well as any checksum information being 
calculated across the IP datagram (UDP or TCP). This context 

Out of order segments---Occurs when we receive a seg-
30 ment with a sequence number other than the next expected 

sequence number. 
FIN segment-Signals the close of the connection. 
Since we have now eliminated support for so many differ

ent code paths, it might seem hardly worth the trouble to 
35 provide any assistance by the card at all. This is not the case. 

According to W. Richard Stevens and Gary Write in their 
book "TCP/IP Illustrated Volume 2". TCP operates without 
experiencing any exceptions between 97 and 100 percent of 
the time in local area networks. As network, router, and is identified by the IP _ID of the datagram as well as the source 

and destination IP addresses. The second context is required 
to handle the sliding window protocol ofTCP. It holds infor
mation about which segments have been sent or received, and 
which segments have been acknowledged, and is identified by 
the IP source and destination addresses and TCP source and 
destination ports. 

40 switch reliability improve this number is likely to only 
improve with time. 

Two Modes of Operation. 
So the next question is what to do about the network pack-

Ifwe were to choose to handle both contexts in hardware, 
we would have to potentially keep track of many pieces of 
information. One such example is a case in which a single 64 
k 5MB write is broken down into 44 1500 byte TCP segments, 
which are in tum broken down into 131 576 byte IP frag
ments, all of which can come in any order (though the maxi
mum window size is likely to restrict the number of outstand
ing segments considerably). 

45 ets that do not fit our criteria. The answer shown in FIG. 24 is 
to use two modes of operation: One in which the network 
frames are processed on the INIC through TCP and one in 
which the card operates like a typical dumb NIC. We call 
these two modes fast-path, and slow-path. In the slow-path 

50 case, network frames are handed to the system at the MAC 
layer and passed up through the host protocol stack like any 
other network frame. In the fast path case, network data is 
given to the host after the headers have been processed and 
stripped. 

The transmit case works in much the same fashion. In 
slow-path mode the packets are given to the INIC with all of 
the headers attached. The INIC simply sends these packets 
out as ifitwere a dumb NIC. In fast-path mode, the host gives 
raw data to the INIC which it must carve into MSS sized 

Fortunately, TCP performs a Maximum Segment Size 
negotiation at connection establishment time, which should 55 

prevent IP fragmentation in nearly all TCP connections. The 
only time that we should end up with fragmented TCP con
nections is when there is a router in the middle of a connection 
which must fragment the segments to support a smaller MTU. 
The only networks that use a smaller MTU than Ethernet are 
serial line interfaces such as SLIP and PPP. At the moment, 
the fastest of these connections only run at 128 k (ISDN) so 
even if we had 256 of these connections, we would still only 
need to support 34 Mb/sec, or a little over three 10 bT con
nections worth of data. This is not enough to justifY any 65 

performance enhancements that the INIC offers. If this 
becomes an issue at some point, we may decide to implement 

60 segments, add headers to the data, perform checksums on the 
segment, and then send it out on the wire. 

The TCB Cache. 
Consider a situation in which a TCP connection is being 

handled by the card and a fragmented TCP segment for that 
connection arrives. In this situation, it will be necessary for 
the card to turn control of this connection over to the host. 



US 7,673,072 B2 
39 

This introduces the notion of a Transmit Control Block 
(TCB) cache. A TCB is a structure that contains the entire 
context associated with a connection. This includes the 

40 
Receive. 

Simply implementing TCP on the INIC does not allow us 
to achieve our goal oflanding the data in its final destination. 

source and destination IP addresses and source and destina
tion TCP ports that define the connection. It also contains 5 

information about the connection itself such as the current 

Somehow the host has to tell the INIC where to put the data. 
This is a problem in that the host carmot do this without 
knowing what the data actually is. Fortunately, NT has pro-

send and receive sequence numbers, and the first-hop MAC 
address, etc. The complete set ofTCBs exists in host memory, 
but a subset of these may be "owned" by the card at any given 
time. This subset is the TCB cache. The INIC can own up to 
256 TCBs at any given time. 

vided a mechanism by which a transport driver can "indicate" 
a small amount of data to a client above it while telling it that 
it has more data to come. The client, having then received 

10 enough of the data to know what it is, is then responsible for 
allocating a block of memory and passing the memory 
address or addresses back down to the transport driver, which 
is in turn responsible for moving the data into the provided TCBs are initialized by the host during TCP connection 

setup. Once the connection has achieved a "steady-state" of 
operation, its associated TCB can then be turned over to the 15 

INIC, putting us into fast-path mode. From this point on, the 
INIC owns the connection until either a FIN arrives signaling 
that the connection is being closed, or until an exception 
occurs which the INIC is not designed to handle (such as an 
out of order segment). When any of these conditions occur, 
the INIC will then flush the TCB back to host memory, and 
issue a message to the host telling it that it has relinquished 
control of the connection, thus putting the connection back 
into slow-path mode. From this point on, the INIC simply 
hands incoming segments that are destined for this TCB off to 25 

the host with all of the headers intact. 

location. 
We will make use of this feature by providing a small 

amount of any received data to the host, with a notification 
that we have more data pending. When this small amount of 
data is passed up to the client, and it returns with the address 
in which to put the remainder of the data, our host transport 

20 driver will pass that address to the INIC which will DMA the 
remainder of the data into its final destination. 

Clearly there are circumstances in which this does not 
make sense. When a small amount of data (500 bytes for 
example), with a push flag set indicating that the data must be 
delivered to the client immediately, it does not make sense to 
deliver some of the data directly while waiting for the list of 
addresses to DMA the rest. Under these circumstances, it 
makes more sense to deliver the 500 bytes directly to the host, 
and allow the host to copy it into its final destination. While 

Note that when a connection is owned by the INIC, the host 
is not allowed to reference the corresponding TCB in host 
memory as it will contain invalid information about the state 
of the connection. 

TCP Hardware Assistance. 

When a frame is received by the INIC, it must verify it 
completely before it even determines whether it belongs to 
one of its TCBs or not. This includes all header validation (is 
it IP, IPV 4 or V6, is the IP header checksum correct, is the 
TCP checksum correct, etc). Once this is done it must com
pare the source and destination IP address and the source and 
destination TCP port with those in each of its TCBs to deter
mine if it is associated with one of its TCBs. This is an 
expensive process. To expedite this, we have added several 
features in hardware to assist us. The header is fully parsed by 
hardware and its type is summarized in a single status word. 
The checksum is also verified automatically in hardware, and 
a hash key is created out of the IP addresses and TCP ports to 
expedite TCB lookup. For full details on these and other 
hardware optimizations, refer to the INIC Hardware Specifi
cation sections (Heading 8). 

30 various ranges are feasible, it is currently preferred that any
thing less than a segment's (1500 bytes) worth of data will be 
delivered directly to the host, while anything more will be 
delivered as a small piece which may be 128 bytes, while 
waiting until receiving the destination memory address 

35 before moving the rest. 
The trick then is knowing when the data should be deliv

ered to the client or not. As we've noted, a push flag indicates 
that the data should be delivered to the client immediately, but 
this alone is not sufficient. Fortunately, in the case of Net-

40 BIOS transactions (such as 5MB), we are explicitly told the 
length of the session message in the NetBIOS header itself. 
With this we can simply indicate a small amount of data to the 
host immediately upon receiving the first segment. The client 
will then allocate enough memory for the entire 

45 NetBIOS-transaction, which we can then use to DMA the 
remainder of the data into as it arrives. In the case of a large 
(56 k for example) NetBIOS session message, all but the first 
couple hundred bytes will be DMA' d to their final destination 

With the aid of these and other hardware features, much of 
the work associated with TCP is done essentially for free. 50 

Since the card will automatically calculate the checksum for 
TCP segments, we can pass this on to the host, even when the 
segment is for a TCB that the INIC does not own. 

in memory. 
But what about applications that do not reside above Net-

BIOS? In this case we cannot rely on a session level protocol 
to tell us the length of the transaction. Under these circum
stances we will buffer the data as it arrives until A) we have 
receive some predetermined number of bytes such as 8 k, or 

TCP Summary. 

By moving TCP processing down to the INIC we have 
offioaded the host of a large amount of work. The host no 
longer has to pull the data into its cache to calculate the TCP 
checksum. It does not have to process the packet headers, and 
it does not have to generate TCP ACKs. We have achieved 
most of the goals outlined above, but we are not done yet. 

Transport Layer Interface. 

55 B) some predetermined period of time passes between seg
ments or C) we get a push flag. If after any of these conditions 
occur we will then indicate some or all of the data to the host 
depending on the amount of data buffered. If the data buffered 
is greater than about 1500 bytes we must then also wait for the 

60 memory address to be returned from the host so that we may 
then DMA the remainder of the data. 

Transmit. 
This section defines the INIC's relation to the hosts trans

port layer interface (Called TDI or Transport Driver Interface 65 

in Windows NT). For full details on this interface, refer to the 
Alacritech TCP (ATCP) driver specification (Heading 4). 

The transmit case is much simpler. In this case the client 
(NetBIOS for example) issues a TDI Send with a list of 
memory addresses which contain data that it wishes to send 
along with the length. The host can then pass this list of 



US 7,673,072 B2 
41 

addresses and length off to the INIC. The INIC will then pull 
the data from its source location inhost memory, as it needs it, 
until the complete TDI request is satisfied. 

Affects on Interrupts. 

42 
avoid having to write to the INIC for every receive frame, we 
instead allow the host to pass off a pages worth (4 k) of buffers 
in a single write. 

Support Small and Large Buffers on Receive. 
In order to reduce further the number of writes to the INI C, 

and to reduce the amount of memory being used by the host, 
we support two different buffer sizes. A small buffer contains 
roughly 200 bytes of data payload, as well as extra fields 

Note that when we receive a large 5MB transaction, for 
example, that there are two interactions between the INIC and 
the host. The first in which the INIC indicates a small amount 
of the transaction to the host, and the second in which the host 
provides the memory location( s) in which the INIC places the 
remainder of the data. This results in only two interrupts from 
the INIC. The first when it indicates the small amount of data 
and the second after it has finished filling in the host memory 
given to it. A drastic reduction from the 33/64 k 5MB request 
that we estimate at the beginning of this section. On transmit, 
we actually only receive a single interrupt when the send 
command that has been given to, the INIC completes. 

10 containing status about the received data bringing the total 
size to 256 bytes. We can therefore pass 16 of these small 
buffers at a time to the INIC. Large buffers are 2 k in size. 
They are used to contain any fast or slow-path data that does 
not fit in a small buffer. Note that when we have a large 

Transport Layer Interface Summary. 

15 fast-path receive, a small buffer will be used to indicate a 
small piece of the data, while the remainder of the data will be 
DMA'd directly into memory. Large buffers are never passed 
to the host by themselves, instead they are always accompa
nied by a small buffer which contains status about the receive 

20 along with the large buffer address. By operating in the man
ner, the driver must only maintain and process the small 
buffer queue. Large buffers are returned to the host by virtue 
of being attached to small buffers. Since large buffers are 2 k 
in size they are passed to the INIC 2 buffers at a time. 

Having now established our interaction with Microsoft's 
TDI interface, we have achieved our goal oflanding most of 
our data directly into its final destination in host memory. We 
have also managed to transmit all data from its originalloca
tion on host memory. And finally, we have reduced our inter
rupts to 2 per 64 k 5MB read and 1 per 64 k 5MB write. The 25 

only thing that remains in our list of objectives is to design an 
efficient host (PCI) interface. 

Host (PCI) Interface. 
In this section we define the host interface. For a more 

detailed description, refer to the "Host Interface Strategy for 30 

the Alacritech INIC" section (Heading 3). 

Avoid PCI Reads. 

Command and Response Buffers. 
In addition to needing a mauner by which the INIC can pass 

incoming data to us, we also need a mauner by which we can 
instruct the INIC to send data. Plus, when the INIC indicates 
a small amount of data in a large fast-path receive, we need a 
method of passing back the address or addresses in which to 
put the remainder of the data. We accomplish both of these 
with the use of a command buffer. Sadly, the command buffer 
is the only place in which we must violate our rule of only 
pushing data across PCl. For the command buffer, we write 

35 the address of command buffer to the INIC. The INIC then 
One of our primary objectives in designing the host inter

face of the INI C was to eliminate PCI reads in either direction. 
PCI reads are particularly inefficient in that they completely 
stall the reader until the transaction completes. As noted 
above, this could hold a CPU up for several microseconds, a 
thousand times the time typically required to execute a single 
instruction. PCI writes on the other hand, are usually buffered 40 

by the memory-bus~ PCI-bridge allowing the writer to con
tinue on with other instructions. This technique is known as 
"posting". 

reads the contents of the command buffer into its memory so 
that it can execute the desired command. Since a command 
may take a relatively long time to complete, it is unlikely that 
command buffers will complete in order. For this reason we 
also maintain a response buffer queue. Like the small and 
large receive buffers, a page worth of response buffers is 
passed to the INIC at a time. Response buffers are only 32 
bytes, so we have to replenish the INIC's supply of them 
relatively infrequently. The response buffers only purpose is 

Memory-Based Status Register. 

The only PCI read that is required by most NICs is the read 
45 to indicate the completion of the designated command buffer, 

and to pass status about the completion. 
of the interrupt status register. This register gives the host 
CPU information about what event has caused an interrupt (if 
any). In the design of our INIC we have elected to place this 
necessary status register into host memory. Thus, when an 50 

event occurs on the INIC, it writes the status register to an 
agreed upon location in host memory. The corresponding 
driver on the host reads this local register to determine the 
cause of the interrupt. The interrupt lines are held high until 
the host clears the interrupt by writing to the INIC's Interrupt 55 

Clear Register. Shadow registers are maintained on the INIC 
to ensure that events are not lost. 

Buffer Addresses are Pushed to the INIC. 

EXAMPLES 

In this section we will provide a couple of examples 
describing some of the differing data flows that we might see 
on the Alacritech INIC. 

FAST-Path 56 K Netbios Session Message. 
Let's say a 56 k NetBIOS session message is received on 

the INIC. The first segment will contain the NetBIOS header, 
which contains the total NetBIOS length. A small chunk of 
this first segment is provided to the host by filling in a small 
receive buffer, modifying the interrupt status register on the 

Since it is imperative that our INIC operate as efficiently as 
possible, we must also avoid PCI reads from the INIC. We do 
this by pushing our receive buffer addresses to the INIC. As 
mentioned at the begiuning of this section, most NICs work 
on a descriptor queue algorithm in which the NIC reads a 
descriptor from main memory in order to determine where to 
place the next frame. We will instead write receive buffer 
addresses to the INIC as receive buffers are filled. In order to 

60 host, and raising the appropriate interrupt line. Upon receiv
ing the interrupt, the host will read the ISR, clear it by writing 
back to the INIC's Interrupt Clear Register, and will then 
process its small receive buffer queue looking for receive 
buffers to be processed. Upon finding the small buffer, it will 

65 indicate the small amount of data up to the client to be pro
cessed by NetBIOS. It will also, if necessary, replenish the 
receive buffer pool on the INIC by passing off a pages worth 



US 7,673,072 B2 
43 

of small buffers. Meanwhile, the NetBIOS client will allocate 
a memory pool large enough to hold the entire NetBIOS 
message, and will pass this address or set of addresses down 

44 
With a standard NIC this will result in a single interrupt, an 

interrupt status register read, an interrupt clear register write, 
and a descriptor read and write. The data would get moved 
across the system bus a minimum of 4 times. The resulting 
TCP ACK of the data, however, would add yet another inter
rupt, another interrupt status register read, interrupt clear 
register write, a descriptor read and write, and yet more pro
cessing by the host protocol stack. 

to the transport driver. The transport driver will allocate an 
INIC command buffer, fill it in with the list of addresses, set 5 

the command type to tell the INIC that this is where to put the 
receive data, and then pass the command off to the INI C by 
writing to the command register. When the INIC receives the 
command buffer, it will DMA the remainder of the NetBIOS 
data, as it is received, into the memory address or addresses 10 Host Interface Strategy for the Alacritech INIC. 
designated by the host. Once the entire NetBIOS transaction This section describes the host interface strategy for the 
is complete, the INIC will complete the command by writing Alacritech Intelligent Network Interface Card (INIC). The 
to the response buffer with the appropriate status and com- goal of the Alacritech INIC is to not only process network 
mand buffer identifier. data through TCP, but also to provide zero-copy support for 

In this example, we have two interrupts, and all but a couple 
hundred bytes are DMA'd directly to their final destination. 
On PCI we have two interrupt status register writes, two 
interrupt clear register writes, a command register write, a 
command read, and a response buffer write. 

With a standard NIC this would result in an estimated 30 
interrupts, 30 interrupt register reads, 30 interrupt clear 
writes, and 58 descriptor reads and writes. Plus the data will 
get moved anywhere from 4 to 8 times across the system 
memory bus. 

Slow-Path Receive. 
If the INIC receives a frame that does not contain a TCP 

segment for one of its TCB' s, it simply passes it to the host as 
if it were a dumb NIC. If the frame fits into a small buffer 
(-200 bytes or less), then it simply fills in the small buffer 
with the data and notifies the host. Otherwise it places the data 

15 the SMP upper-layer protocol. It achieves this by supporting 
two paths for sending and receiving data, the fast -path and the 
slow-path. The fast path data flow corresponds to connections 
that are maintained on the NIC, while slow-path traffic cor
responds to network data for which the NIC does not have a 

20 connection. The fast-path flow works by passing a header to 
the host and subsequently holding further data for that con
nection on the card nntil the host responds via an INIC com
mand with a set of buffers into which to place the accumulated 
data. In the slow-path data flow, the INIC will be operating as 

25 a "dumb" NIC, so that these packets are simply dumped into 
frame buffers on the host as they arrive. To do either path 
requires a pool of smaller buffers to be used for headers and a 
pool of data buffers for frames/data that are too large for the 
header buffer, with both pools being managed by the INIC. 

30 This section discusses how these two pools of data are man
aged as well as how buffers are associated with a given con
text. in a large buffer, writes the address of the large buffer into a 

small buffer, and again notifies the host. The host, having 
received the interrupt and found the completed small buffer, 
checks to see if the data is contained in the small buffer, and 35 

if not, locates the large buffer. Having found the data, the host 
will then pass the frame upstream to be processed by the 
standard protocol stack. It must also replenish the INIC's 
small and large receive buffer pool if necessary. 

Receive Interface. 
The varying requirements of the fast and slow paths and a 

desire to save PCI bandwidth are the driving forces behind the 
host interface that is described herein. As mentioned above, 
the fast-path flow puts a header into a header buffer that is then 
forwarded to the host. The host uses the header to determine 

40 what further data is following, allocates the necessary host 
buffers, and these are passed back to the INIC via a command 
to the INIC. The INIC then fills these buffers from data it was 
accumulating on the card and notifies the host by sending a 
response to the command. Alternatively, the fast-path may 

With the INIC, this will result in one interrupt, one inter
rupt status register write and one interrupt clear register write 
as well as a possible small and or large receive buffer register 
write. The data will go through the normal path although if it 
is TCP data then the host will not have to perform the check
sum. 

With a standard NIC this will result in a single interrupt, an 
interrupt status register read, an interrupt clear register write, 
and a descriptor read and write. The data will get processed as 
it would by the INIC, except for a possible extra checksum. 

Fast-Path 400 Byte Send. 
In this example, lets assume that the client has a small 

amonnt of data to send. It will issue the TDI Send to the 
transport driver which will allocate a command buffer, fill it in 
with the address of the 400 byte send, and set the command to 
indicate that it is a transmit. It will then pass the command off 
to the INIC by writing to the command register. The INIC will 
then DMA the 400 bytes into its own memory, prepare a 
frame with the appropriate checksums and headers, and send 
the frame out on the wire. After it has received the acknowl
edgement it will then notifY the host of the completion by 
writing to a response buffer. 

45 receive a header and data that is a complete request, but that is 
also too large for a header buffer. This results in a header and 
data buffer being passed to the host. This latter flow is iden
tical to the slow-path flow, which also puts all the data into the 
header buffer or, if the header is too small, uses a large (2 K) 
host buffer for all the data. This means that on the unsolicited 

50 
receive path, the host will only see either a header buffer or a 
header and at most, one data buffer. Note that data is never 
split between a header and a data buffer. 

FIG. 25 illustrates both situations. Since we want to fill in 
55 the header buffer with a single DMA, the header must be the 

last piece of data to be written to the host for any received 
transaction. 

Receive Interface Details. 

60 Header Buffers. 

With the INIC, this will result in one interrupt, one inter
rupt status register write, one interrupt clear register write, a 
command buffer register write a command buffer read, and a 65 

response buffer write. The data is DMA'd directly from the 

Header buffers in host memory are 256 bytes long, and are 
aligned on 256 byte bonndaries. There will be a field in the 
header buffer indicating it has valid data. This field will ini
tially be reset by the host before passing the buffer descriptor 
to the INIC. A set of header buffers are passed from the host 
to the INIC by the host writing to the "Header Buffer Address 
Register" on the INIC. This register is defined as follows: system memory. 



US 7,673,072 B2 

Bits 31-8 

Bits 7-0 

45 

Physical address in host memory of the first of a 
set of contiguous header buffers. 
Number of header buffers passed. 

46 
reasons, but primarily to cause the INI C to transmit data, or to 
pass a set of buffers to the INIC for input data on the fast-path 
as previously discussed. 

Response buffers are physical buffers in host memory. 
They are used by the INIC in the same order as they were 
given to it by the host. This enables the host to know which 
response buffer(s) to next look at when the INIC signals a 
command completion. 

Transmit Interface Details. 

Command Buffers. 

In this way the host can, say, allocate 16 buffers in a 4 K 
page, and pass all 16 buffers to the INIC with one register 
write. The INIC will maintain a queue of these header 10 

descriptors in the SmallHType queue in it's own local 
memory, adding to the end of the queue every time the host 
writes to the Header Buffer Address Register. Note that the 
single entry is added to the queue; the eventual dequeuer will 
use the count after extracting that entry. 

Command buffers in host memory are a multiple of 32 
bytes, up to a maximum of 1 K bytes, and are aligned on 32 
byte boundaries. A command buffer is passed to the INIC by 

15 writing to one of five "Command Buffer Address Registers." 
The header buffers, will be used and retumed to the host in 

the same order that they were given to the INIC. The valid 
field will be set by the INIC before retuming the buffer to the 
host. In this way a PCI interrupt, with a single bit in the 
interrupt register, may be generated to indicate that there is a 
header buffer for the host to process. When servicing this 
interrupt, the host will look at its queue of header buffers, 
reading the valid field to determine how many header buffers 
are to be processed. 

These registers are defined as follows: 

20 Bits 31-5 
Bits 4-0 

Physical address in host memory of the command buffer. 
Length of command buffer in bytes/32 (i.e. number of 
multiples of32 bytes). 

This is the physical address of the command buffer. The 

Receive Data Buffers. 
Receive data buffers in host memory are aligned to page 

boundaries, assumed here to be 2 K bytes long and aligned on 

25 register to which the command is written predetermines the 
XMT interface number, or if the command is for the RCV 
CPU; hence there will be 5 of them, 0-3 for XMT and 4 for 
RCV. When one of these registers has been written, the INIC 
will add the contents of the register to it's own internal queue 4 K page boundaries, 2 buffers per page. In order to pass 

receive data buffers to the INIC, the host must write to two 
registers on the INIC. The first register to be written is the 
"Data Buffer Handle Register." The buffer handle is not sig
nificant to the INIC, but will be copied back to the host to 
return the buffer to the host. The second register written is the 
Data Buffer Address Register. This is the physical address of 35 

the data buffer. When both registers have been written, the 
INIC will add the contents of these two registers to FreeType 
queue of data buffer descriptors. Note that the INIC host 
driver sets the handle register first, then the address register. 
There needs to be some mechanism put in place to ensure the 40 

reading of these registers does not get out of sync with writing 
them. Effectively the INIC can read the address register first 
and save its contents, then read the handle register. It can then 
lock the register pair in some manner such that another write 

30 of command buffer descriptors. The first word of all com
mand buffers is defined to be the command buffer handle. It is 

to the handle register is not pennitted until the current con- 45 

tents have been saved. Both addresses extracted from the 
registers are to be written to the FreeType queue. The INIC 
will extract 2 entries each time when dequeuing. 

Data buffers will be allocated and used by the INIC as 
needed. For each data buffer used by a slow-path transaction, 50 

the data buffer handle will be copied into a header buffer. 
Then the header buffer will be returned to the host. 

Transmit Interface. 

Transmit Interface Overview. 55 

the job of the utility CPU to extract a command from its local 
queue, D MA the command into a small INI C buffer (from the 
FreeSType queue), and queue that buffer into the Xmit#Type 
queue, where # is 0-3 depending on the interface, or the 
appropriate RCV queue. The receiving CPU will service the 
queues to perform the commands. When that CPU has com
pleted a command, it extracts the command buffer handle and 
passes it back to the host via a response buffer. 

Response Buffers. 
Response buffers in host memory are 32 bytes long and 

aligned on 32 byte boundaries. They are handled in a very 
similar fashion to header buffers. There will be a field in the 
response buffer indicating it has valid data. This field will 
initially be reset by the host before passing the buffer descrip
tor to the INIC. A set of response buffers are passed from the 
host to the INIC by the host writing to the "Response Buffer 
Address Register" on the INIC. This register is defined as 
follows: 

Bits 31-8 

Bits 7-0 

Physical address in host memory of the first ofa set 
of contiguous response buffers. 
Nwnber of response buffers passed. 

In this way the host can, say, allocate 128 buffers in a 4 K 
page, and pass all 128 buffers to the INIC with one register 
write. The INIC will maintain a queue of these header 

The transmit interface shown in FIG. 26, like the receive 
interface, has been designed to minimize the amount of PCI 
bandwidth and latencies. In order to transmit data, the host 
will transfer a command buffer to the INIC. This command 
buffer will include a command buffer handle, a command 
field, possibly a TCP context identification, and a list of 
physical data pointers. The command buffer handle is defined 
to be the first word of the command buffer and is used by the 
host to identify the command. This word will be passed back 

60 descriptors in it's ResponseType queue, adding to the end of 
the queue every time the host writes to the "Response Buffer 
Address Register". The INIC writes the extracted contents 
including the count, to the queue in exactly the same manner 
as for the header buffers. 

to the host in a response buffer, since commands may com- 65 

plete out of order, and the host will need to know which 
command is complete. Commands will be used for many 

The response buffers can be used and returned to the host in 
the same order that they were given to the INIC. The valid 
field will be set by the INIC before returning the buffer to the 



US 7,673,072 B2 
47 

host. In this way a PCI interrupt, with a single bit in the 
interrupt register, may be generated to indicate that there is a 
response buffer for the host to process. When servicing this 
interrupt, the host will look at its queue of response buffers, 
reading the valid field to determine how many response buff- 5 

ers are to be processed. 

Interrupt Status Register/lnterrupt Mask Register. 
FIG. 27 shows the general format of this register. The 

setting of any bits in the ISR will cause an interrupt, provided 10 

the corresponding bit in the Interrupt Mask Register is set. 
The default setting for the IMR is O. 

The INIC is configured so that the host should never need 
to directly read the ISR from the INIC. To support this, it is 
important for the hostiINIC to arrange a buffer area in host 15 

memory into which the ISR is dumped. The address and size 
of that area ca be passed to the INIC via a command on the 
XMT interface. That command will also specifY the setting 
for the IMR. Until the INIC receives this command, it will not 
DMA the ISR to host memory, and no events will cause an 20 

interrupt. The host could if necessary, read the ISR directly 
from the INIC in this case. 

48 
and since we are somewhat time-constrained on our driver 
development, the ported FreeBSD code will be exempt from 
these guidelines. 

1. Global symbols-All function names and global vari
ables in the ATCP driver should begin with the "ATK" prefix 
(ATKSend() for instance). 

2. Variable names-Microsoft seems to use capital letters 
to separate multi -word variable names instead of nnderscores 
(VariableName instead of variable name). We should adhere 
to this style. 

3. Structure pointers-Microsoft typedefs all of their struc
tures. The structure types are always capitals and they typedef 
a pointer to the structure as "P"<name> as follows: 

lypedef strue! _FOO { 
INT bar; 

} FOO, *PFOO; 

We will adhere to this style. 

4. Function calls-Microsoft separates function call argu-
For the host to never have to actually read the register from 

the INIC itself, it is necessary for the INIC to update this host 
copy of the register whenever anything in it changes. The host 
will Ack (or deassert) events in the register by writing the 
register with 0' s in appropriate bit fields. So that the host does 
not miss events, the following scheme has been developed: 

25 ments on separate lines: 

The INIC keeps a local copy of the register whenever it 30 

DMAs it to the host i.e. after some event(s). Call this COPYA 
Then the INIC starts accumulating any new events not 
reflected in the host copy in a separate word. Call this NEWA. 
As the host clears bits by writing the register back with those 
bits set to zero, the INIC clears these bits in COPYA (or the 35 

host write-back goes directly to COPYA). If there are new 
events in NEW A, it ORs them with COPY A, and DMAs this 
new ISR to the host. This new ISR then replaces COPYA, 
NEWA is cleared and the cycle then repeats. 

x ~ foobar( 
argumentl, 
argument2, 
); 

We will adhere to this style. 

S . Comments-While Microsoft seems to alternatively use 
II and 1* *1 comment notation, we will exclusively use the 1* 
*1 notation. 

6. Function comments-Microsoft includes comments 

Register Address. 
For the sake of simplicity, in this example of FIG. 28 the 

registers are at 4-byte increments from whatever the base 
address is. 

40 with each function that describe the function, its arguments, 
and its return value. We will also include these comments, but 
will move them from within the fnnction itself to just prior to 
the function for better readability. 

7. Function arguments-Microsoft includes the keywords Alacritech TCP (ATCP) Design Specification. 
This section outlines the design specification for the Alac

ritech TCP (ATCP) transport driver. TheATCP driver consists 
of three components: 

45 IN and OUT when defining function arguments. These key
words denote whether the function argument is used as an 
input parameter, or alternatively as a placeholder for an out
put parameter. We will include these keywords. 1. The bulk of the protocol stack is based on the FreeBSD 

TCP/IPprotocol stack. This code performs the Ethernet,ARP, 50 

IP, ICMP, and (slow path) TCP processing for the driver. 
8. Function prototypes-We will include fnnction proto

types in the most logical header file corresponding to the .c 
file. For example, the prototype for fnnction foo( ) found in 
foo.c will be placed in foo.h. 

2. At the top of the protocol stack we introduce an NT filter 
driver used to intercept TDI requests destined for the 
Microsoft TCP driver. 

3. At the bottom of the protocol stack we include an NDIS 
protocol-driver interface which allows us to communicate 
with the INIC miniport NDIS driver beneath theATCP driver. 

9. Indentation-Microsoft code fairly consistently uses a 
55 tabstop of 4. We will do likewise. 

This section covers each of these topics, as well as issues 
common to the entire ATCP driver. 

Coding Style. 60 

In order to ensure that our ATCP driver is written in a 
consistent manner, we have adopted a set of coding guide
lines. These guidelines are introduced with the philosophy 
that we should write code in a Microsoft style since we are 
introducing an NT-based product. The guidelines below 65 

apply to all code that we introduce into our driver. Since a very 
large portion of our ATCP driver will be based on FreeBSD, 

10. Header file #iffdef---each header file should contain a 
#ifndef/#define/#endif which is used to prevent recursive 
header file includes. For example, foo.h would include: 

#ifndef FOO H 
#define FOO H 
<foo.h contents .. > 
#endif!* FOO H * / 

No!e!be _NAME H format. 



US 7,673,072 B2 
49 

11. Each file must contain a comment at the beginning 
which includes the $Id$ as follows: 

/* 
* $Id$ 
*/ 

50 
Fast-Path Input Data Flow. 

There are 2 different cases to consider: 
1. NETBIOS traffic (identifiable by port number.) 
2. Everything else. 

NETBIOS Input. 

CVS (RCS) will expand this keyword to denote RCS revi
sion, timestamps, author, etc. 

SMP 
This section describes the process by which we will make 

the ATCP driver SMP safe. The basic rule for SMP kernel 
code is that any access to a memory variable must be pro
tected by a lock that prevents a competing access by code 
running on another processor. Spinlocks are the normal lock
ing method for code paths which do not take a long time to 
execute (and which do not sleep.) 

As soon as the INIC has received a segment containing a 
NETBIOS header, it will forward it up to the TCP driver, 
along with the NETBIOS length from the header. (In prin-

10 ciple the host could get this from the header itself, but since 
the INIC has already done the decode, it seem reasonable to 
just pass it.) 

From the TDI spec, the amount of data in the buffer actually 
sent must be at least 128 bytes. For small 5MBs, all of the 

In general each instance of a structure will include a spin
lock, which must be acquired before members of that struc
ture are accessed, and held while a function is accessing that 
instance of the structure. Structures which are logically 
grouped together may be protected by a single spinlock: for 
example, the 'in_pcb' structure, 'tcpcb' structure, and 
'socket' structure which together constitute the administra
tive information for a TCP connection will probably be col
lectively managed by a single spinlock in the 'socket' struc
ture. 

15 received 5MB should be forwarded; it will be absorbed 
directly by the TDI client without any further MDL exchange. 
Experiments tracing the TDI data flow show that the NET
BIOS client directly absorbs up to 1460 bytes: the amount of 
payload data in a single Ethernet frame. Thus the initial sys-

20 tem specifies that the INIC will indicate anything up to a 
complete segment to theATCP driver. [See note (1)]. 

Once the INIC has passed up an indication with an NET
BIOS length greater than the amount of data in the packet it 
passed, it will continue to accnmulate further incoming data 

25 in DRAM on the INIC. Overflow ofINIC DRAM buffers will 

In addition, every global data structure such as a list or hash 
table must also have a protecting spinlock which must be held 30 

while the structure is being accessed or modified. The NT 
DDK in fact provides a number of convenient primitives for 
SMP-safe list manipulation, and it is recommended that these 
be used for any new lists. Existing list manipulations in the 
FreeBSD code can probably be left as-is to minimize code 35 

disturbance, except of course that the necessary spinlock 
acquisition and release must be added around them. 

Spinlocks should not be held for long periods of time, and 
most especially, must not be held during a sleep, since this 
will lead to deadlocks. There is a significant deficiency in the 40 

NT kernel support for SMP systems: it does not provide an 
operation which allows a spinlock to be exchanged atomi
cally for a sleep lock. This would be a serious problem in a 
UNIX environment where much of the processing occurs in 
the context of the user process which initiated the operation. 45 

(The spinlock would have to be explicitly released, followed 
by a separate acquisition of the sleep lock: creating an unsafe 
window.) 

The NT approach is more asynchronous, however: IRPs 
are simply marked as 'PENDING' when an operation cannot 50 

be completed immediately. The calling thread does NOT 
sleep at that point: it returns, and may go on with other 
processing. Pending IRPs are later completed, not by waking 
up the thread which initiated them, but by an "IoCompleteRe
quest" call which typically runs at DISPATCH level in an 55 

arbitrary context. 
Thus we have not in fact used sleep locks anywhere in the 

design of the ATCP driver, hoping the above issue will not 
anse. 

be avoided by using a receive window on the INIC at this 
point, which can be 8 K. 

On receiving the indicated packet, the ATCP driver will call 
the receive handler registered by the TDI client for the con
nection, passing the actual size of the data in the packet from 
the INIC as "bytes indicated" and the NETBIOS length as 
"bytes available." [See note (2)]. 

In the "large data input" case, where "bytes available" 
exceeds the packet length, the TDI client will then provide an 
MDL, associated with an IRP, which must be completed 
when this MDL is filled. (This IRP/MDL may come back 
either in the response to TCP's call of the receive handler, or 
as an explicit TDCRECEIVE request.) 

The ATCP driver will build a "receive request" from the 
MDL information, and pass this to the INIC. This request will 
contain: 

1) The TCP context identifier; 2) Size and offset informa
tion; 3)A list of physical addresses corresponding to the MDL 
pages; 4) A context field to allow the ATCP driver to identifY 
the request on completion; and 5) "Piggybacked" window 
update information. 

Note: the ATCP driver must copy any remaining data 
(which was not taken by the receive handler) from the seg
ment indicated by the INIC to the start of the MDL, and must 
adjust the size & offset information in the request passed to 
the INIC to account for this. 

The INIC will fill the given page(s) with incoming data up 
to the requested amount, and respond to the ATCP driver 
when this is done [See note (3)]. If the MDL is large, the INIC 
may open up its advertised receive window for improved 
throughput while filling the MDL. On receiving the response 
from the INIC, the ATCP driver will complete the IRP asso
ciated with this MDL, to tell the TDI client that the data is 

Data Flow Overview. 60 available. At this point the cycle of events is complete, and the 
ATCP driver is now waiting for the next header indication. The ATCP driver supports two paths for sending and 

receiving data, the fast-path and the slow-path. The fast-path 
data flow corresponds to connections that are maintained on 
the INIC, while slow-path traffic corresponds to network data 
for which the INIC does not have a connection. In order to set 65 

some groundwork for the rest of this section, these two data 
paths are summarized here. 

Other TCP Input. 
In the general case we do not have a higher-level protocol 

header to enable us to predict that more data is coming. So on 
non-NETBIOS connections, the INIC will just accnmulate 
incoming data in INIC DRAM up to a quantity of 8 K in this 



US 7,673,072 B2 
51 

example. Again, a maximum advertised window size, which 
may be 16 K, will be used to prevent overflow ofINIC DRAM 
buffers. 

When the prescribed amount has been accumulated, or 
when a PSH flag is seen, the INIC will indicate a small packet 5 

which may be 128 bytes of the data to theATCP driver, along 
with the total length of the data accumulated in INIC DRAM. 

On receiving the indicated packet, theATCP driver will call 
the receive handler registered by the TDI client for the con
nection, passing the actual size of the data in the packet from 10 

the INIC as "bytes indicated" and the total INIC-buffer length 
as "bytes available." 

As in the NETBIOS case, if "bytes available" exceeds 
"bytes indicated", the TDI client will provide an IRP with an 
MD L. The ATCP driver will pass the MD L to the INI C to be 15 

filled, as before. The INIC will reply to the ATCP driver, 
which in turn will complete the IRP to the TDI client. 

Using an MDL from the client avoids a copy step. How
ever, if we can only buffer 8 K and delay indicating to the 
ATCP driver until we have done so, a question arises regard- 20 

ing further segments coming in, since INI C DRAM is a scarce 
resource. We do not want to ACK with a zero-size window 
advertisement: this would cause the transmitting end to go 
into persist state, which is bad for throughput. If the transmit
ting end is also our INIC, this results in having to implement 25 

the persist timer on the INIC, which we do not wish to do. 
Instead for large transfers (i.e. no PSH flag seen) we will not 
send an ACK until the host has provided the MDL, and also, 
to avoid stopping the transmitting end, we will use a receive 
window of twice the amount we will buffer before calling the 30 

host. Since the host comes back with the MDL quite quickly 
(measured at <100 microseconds), we do not expect to expe
rience significant overruns. 

INIC Receive Window Updates. 35 

If the INIC "owns" an MDL provided by the TDI client 
(sent by ATCP as a receive request), it will treat this as a 
"promise" by the TDI client to accept the data placed in it, and 
may therefore ACK incoming data as it is filling the pages. 

However, for small requests, there will be no MDL 40 

returned by the TDI client: it absorbs all of the data directly in 
the receive callback function. We need to update the INIC's 
view of data which has been accepted, so that it can update its 
receive window. In order to be able to do this, theATCP driver 
will accumulate a count of data which has been accepted by 45 

the TDI client receive callback function for a connection. 

52 
of the MDL it will return from the NETBIOS header. So 
strictly speaking we do not need the NETBIOS header length 
at this point: just an indication that this is a header for a 
"large" size. However, we *do* need an actual "bytes avail
able" value for the non-NETBIOS case, so we may as well 
pass it. 

3) We observe that the PSH flag is set in the segment com
pleting each NETBIOS transfer. The INIC can use this to 
determine when the current transfer is complete and the MDL 
should be returned. It can, at least in a debug mode, sanity 
check the amount of received data against what is expected, 
though. 

Fast-Path Output Data Flow. 
The fast-path output data flow is similar to the input data

flow, but simpler. In this case the TDI client will provide a 
MDL to the ATCP driver along with an IRP to be completed 
when the data is sent. TheATCP driver will then give a request 
(corresponding to the MDL) to the INIC. This request will 
contain: 

1) The TCP context identifier; 2) Size and offset informa
tion; 3)A list of physical addresses corresponding to the MDL 
pages; 4) A context field to allow the ATCP driver to identifY 
the request-on completion; 5) "Piggybacked" window update 
information (as discussed in section 6.1.3.) 

The INIC will copy the data from the given physicalloca
tion(s) as it sends the corresponding network frames onto the 
network. When all of the data is sent, the INIC will notifY the 
host of the completion, and theATCP driver will complete the 
IRP. 

Note that there may be multiple output requests pending at 
any given time, since 5MB allows multiple 5MB requests to 
be simultaneously outstanding. 

Slow-Path Data Flow. 
For data for which there is no connection being maintained 

on the INIC, we will have to perform all of the TCP, IP, and 
Ethernet processing ourselves. To accomplish this we will 
port the FreeBSD protocol stack. In this mode, the INIC will 
be operating as a "dumb NIC"; the packets which pass over 
the NDIS interface will just contain MAC-layer frames. 

The MBUFs in the incoming direction will in fact be man
aging NDIS-allocated packets. In the outgoing direction, we 
need protocol-allocated MBUFs in which to assemble the 
data and headers. The MFREE macro must be cognizant of 
the various types ofMBUFs, and "do the right thing" for each 
type. 

We will retain a (modified) socket structure for each con
nection, containing the socket buffer fields expected by the 
FreeBSD code. The TCP code that operates on socket buffers 
(adding/removing MBUFs to & from queues, indicating 

From the INIC' s point of view, though, segments sent up to 
the ATCP driver are just "thrown over the wall"; there is no 
explicit reply path. We will therefore "piggyback" the update 
on requests sent out to the INIC. Whenever the ATCP driver 
has outgoing data for that connection, it will place this count 
in a field in the send request (and then clear the counter.) Any 
receive request (passing a receive MDL to the INIC) may also 
be used to transport window update info in the same way. 

50 acknowledged & received data etc) will remain essentially 
unchanged from the FreeBSD base (though most of the socket 
functions & macros used to do this will need to be modified; 
these are the functions in kemluipc_socket2.c) 

Note: we will probably also need to design a message path 
whereby theATCP driver can explicitly send an update of this 
"bytes consumed" information (either when it exceeds a pre
set threshold or if there are no requests going out to the INIC 
for more than a given time interval), to allow for possible 
scenarios in which the data stream is entirely one-way. 

Notes. 

1) The PSH flag can help to identifY small 5MB requests that 
fit into one segment. 

The upper socket layer (kemluipc_socket.c), where the 
55 overlying OS moves data in and out of socket buffers, must be 

entirely re-implemented to work in TDI terms. Thus, instead 
of sosend( ), there will be a function that copies data from the 
MDL provided in a TDCSEND call into socket buffer 
MBUFs. Instead of soreceive( ), there will be a handler that 
calls the TDI client receive callback function, and also copies 

60 data from socket buffer MBUFs into any MDL provided by 
the TDI client (either explicitly with the callback response or 
as a separate TDCRECEIVE call.) 

2) Actually, the observed "bytes available" from the NT TCP 65 

driver to its client's callback in this case is always 1460. The 
NETBIOS-aware TDI client presumably calculates the size 

We must note that there is a semantic difference between 
TDCSEND and a write( ) on a BSD socket. The latter may 
complete back to its caller as soon as the data has been copied 
into the socket buffer. The completion of a TDCSEND, how-
ever, implies that the data has actually been sent on the con-



US 7,673,072 B2 
53 

nection. Thus we will need to keep the TDCSEND IRPs (and 
associated MD Ls ) in a queue on the socket until the TCP code 
indicates that the data from them has been ACK' d. 

54 
Note 1: it is conceivable that there might be situations in 

which the ATCP driver decides, after having sent the original 
"intention" command, that the context is not to be passed after 
all. (E.g. the local client issues a close.) So we must allow for Data Path Notes: 

5 the possibility that the second command may be a "abort", 
which should cause the INIC to deallocate and clear up its 1. There might be input data on a connection object for which 

there is no receive handler function registered. This has not 
been observed, but we can probably just ASSERT for a miss
ing handler for the moment. If it should happen, however, we 
must assume that the TDI client will be doing TDCRECEIVE 10 

calls on the connection. Ifwe can't make a callup at the time 
that the indication from the INIC appears, we can queue the 
data and handle it when a TDCRECEIVE does appear. 

2. NT has a notion of "canceling" IRPs. It is possible for us to 
get a "cancel" on an IRP corresponding to an MD L which has 15 

been "handed" to the INIC by a send or receive request. We 
can handle this by being able to force the context back off the 
INIC, since IRPs will only get cancelled when the connection 

"provisional" context. 
Note 2: to simplifY the logic, theATCP driver will guaran

tee that only one context may be in process of being handed 
out at a time: in other words, it will never issue another initial 
"intention" command until it has completed the second half 
of the handshake for the first one. 

From INIC to ATCP. 
There are two possible cases for this: a context transfer may 

be initiated either by the ATCP driver or by the INIC. How
ever the machinery will be very similar in the two cases. If the 
ATCP driver wishes to cause context to be flushed from INIC 
to host, it will send a "flush" message to the INIC specifying 

is being aborted. 

Context Passing BetweenATCP and INIC. 

FromATCP to INIC. 

20 the context number to be flushed. Once the INI C receives this, 
it will proceed with the same steps as for the case where the 
flush is initiated by the INIC itself: 

1) The INIC will send an error response to any current 
outstanding receive request it is working on (corresponding to There is a synchronization problem that must be addressed 

here. The ATCP driver will make a decision on a given con
nection that this connection should now be passed to the 
INIC. It builds and sends a command identifying this connec
tion to the INIC. 

25 an MDL into which data is being placed.) Before sending the 
response, it updates the receive command "length" field to 
reflect the amount of data which has actually been placed in 
the MDL buffers at the time of the flush. 

Before doing so, it must ensure that no slow-path outgoing 
data is outstanding. This is not difficult; it simply pends and 30 

queues any new TDCSEND requests and waits for any unac
knowledged slow path output data to be acknowledged before 
initiating the context pass operation. 

The problem arises with incoming slow-path data. If we 
attempt to do the context-pass in a single command hand- 35 

shake, there is a window during which the ATCP driver has 
send the context command, but the INIC has not yet seen this 
(or has not yet completed setting up its context.) During this 
time, slow-path input data frames could arrive and be fed into 
the slow-pathATCP processing code. Should that happen, the 40 

context information which the ATCP driver passed to the 
INIC is no longer correct. We can simply abort the outward 
pass of the context in this event, but it seems better to have a 
reliable handshake. 

2) Likewise it will send an error response for any current 
send request, again reporting the amount of data actually sent 
from the request. 

3) The INI C will D MA the TCB for the context back to the 
host. (Note: part of the information provided with a context 
must be the address of the TCB in the host.) 

4) The INIC will send a "flush" indication to the host (very 
preferably via the regular input path as a special type of 
frame) identifying the context which is being flushed. Send
ing this indication via the regular input path ensures that it 
will arrive before any following slow-path frames. 

At this point, the INIC is no longer doing fast-path pro-
cessing, and any further incoming frames for the connection 
will simply be sent to the host as raw frames for the slow input 
path. The ATCP driver may not be able to complete the 
cleanup operations needed to resume normal slow path pro-

Therefore, the command to pass context fromATCP driver 
to INIC will be split into two halves, and there will be a 
two-exchange handshake. 

The initial command from ATCP to INIC expresses an 
"intention" to hand out the context. It will include the source 
and destination IP addresses and ports, which will allow the 
INIC to establish a "provisional" context. Once it has this 
"provisional" context in place, the INIC will not send any 
more slow-path input frames for that src/dest IP/port combi
nation (it will queue them, if any are received.) 

45 cessing immediately on receipt of the "flush frame", since 
there may be outstanding send and receive requests to which 
it has not yet received a response. If this is the case, the ATCP 
driver must set a "pend incoming TCP frames" flag in its 
per-connection context. The effect of this is to change the 

When the ATCP driver receives the response to this initial 
"intent" command, it knows that the INIC will send no more 
slow-path input. The ATCP driver then waits for any remain
ing unconsumed slow-path input data for this connection to 
be consumed by the client. (Generally speaking there will be 
none, since the ATCP driver will not initiate a context pass 
while there is unconsumed slow-path input data; the hand
shake is simply to close the crossover window.) 

50 behavior of tcp_input( ). This runs as a function call in the 
context ofip_input(), and normally returns only when incom
ing frames have been processed as far as possible (queued on 
the socket receive buffer or out-of-sequence reassembly 
queue.) However, if there is a flush pending and we have not 

55 yet completed resynchronization, we cannot do TCP process
ing and must instead queue input frames for TCP on a "hold
ing queue" for the connection, to be picked up later when 
context flush is complete and normal slow path processing 
resumes. (This is why we want to send the "flush" indication 

60 via the normal input path: so that we can ensure it is seen 
before any following frames of slow-path input.) 

Once any such data has been consumed, we know things 
are in a quiescent state. The ATCP driver can then send the 
second, "commit" command to hand out the context, with 65 

confidence that the TCB values it is handing out (sequence 
numbers etc) are reliable. 

Next we need to wait for any outstanding "send" requests 
to be errored off: 

1) The INIC maintains its context for the connection in a 
"zombie" state. As "send" requests for this connection come 
out of the INIC queue, it sends error responses for them back 
to the ATCP driver. (It is apparently difficult for the INIC to 



US 7,673,072 B2 
55 

identify all connnand requests for a given context; simpler for 
it to just continue processing them in order, detecting ones 
that are for a "zombie" context as they appear.) 

2) TheATCP driver has a count of the number of outstand
ing requests it has sent to the INIC. As error responses for 
these are received, it decrements this count, and when it 
reaches zero, the ATCP driver sends a "flush complete" mes
sage to the INIC. 

3) When the INIC receives the "flush complete" message, 
it dismantles its "zombie" context. From the INIC perspec- 10 

tive, the flush is now completed. 
4) When the ATCP driver has received error responses for 

56 
significant code modifications. This will mostly occur at the 
topmost and bottonnnost portions of the protocol stack, as 
well as the "ioctl" sections of the code. Modifications for 
SMP issues are also needed. 

2) Unnecessary code can be removed-While we will keep 
the code as close to the original FreeBSD as possible, we will 
nonetheless remove code that will never be used (UDP is a 
good example of this). 

Unix~ NT Conversion. 
The FreeBSD TCP/IP protocol stack makes use of many 

Unix system services. These include bcopy to copy memory, 
malloc to allocate memory, timestamp functions, etc. These 
will not be itemized in detail since the conversion to the 

all outstanding requests, it has all the information needed to 
complete its cleanup. This involves completing any IRPs 
corresponding to requests which have entirely completed and 
adjusting fields in partially-completed requests so that send 
and receive of slow path data will resume at the right point in 
the byte streams. 

15 corresponding NT calls is a fairly trivial and mechanical 
operation. 

An area which will need non-trivial support redesign is 
MBUFs. 

Network Buffers. 
Under FreeBSD, network buffers are mapped using mbufs. 

Under NT network buffers are mapped using a combination 
of packet descriptors and buffer descriptors (the buffer 
descriptors are really MDLs). There are a couple of problems 
with the Microsoft method. First it does not provide the nec-

5) Once all this cleanup is complete, the ATCP driver will 
loop pulling any "pended" TCP input frames off the "pending 20 

queue" mentioned above and feeding them into the nonnal 
TCP input processing. Once all input frames on this queue 
have been cleared off, the "pend incoming TCP frames" flag 
can be cleared for the connection, and we are back to nonnal 
slow-path processing. 25 essary fields which allow us to easily strip off protocol head

ers. Second, converting all of the FreeBSD protocol code to 
speak in tenns of buffer descriptors is an unnecessary amount 
of overhead. Instead, in our port we will allocate our own 
mbuf structures and remap the NT packets as shown in FIG. 

FreeBSD Porting Specification. 
The largest portion of the ATCP driver is either derived, or 

directly taken from the FreeBSD TCP/IP protocol stack. This 
section defines the issues associated with porting this code, 
the FreeBSD code itself, and the modifications required for it 
to suit our needs. 

30 29. 

Porting Philosophy. 

The mbuf structure will provide the standard fields pro
vided in the FreeBSD mbuf including the data pointer, which 
points to the current location of the data, data length fields and 
flags. In addition each mbuf will point to the packet descriptor 

35 which is associated with the data being mapped. Once an NT 
packet is mapped, our transport driver should never have to 
refer to the packet or buffer descriptors for any infonnation 
except when we are finished and are preparing to return the 

FreeBSD TCP/IP (current version referred to as Net/3) is a 
general purpose TCP/IP driver. It contains code to handle a 
variety of interface types and many different kinds of proto
cols. To meet this requirement the code is often written in a 
sometimes confusing, over-complex manner. General-pur
pose structures are overlaid with other interface-specific 
structures so that different interface types can coexist using 40 

the same general-purpose code. For our purposes much of this 
complexity is unnecessary since we are only supporting a 
single interface type and a few specific protocols. It is there
fore tempting to modifY the code and data structures in an 
effort to make it more readable, and perhaps a bit more effi
cient. There are, however, some problems with doing this. 
First, the more we modify the original FreeBSD, the more 
changes we will have to make. This is especially true with 
regard to data structures. If we collapse two data structures 
into one we might improve the cleanliness of the code a bit, 
but we will then have to modifY every reference to that data 
structure in the entire protocol stack. Another problem with 
attempting to "clean up" the code is that we might later 
discover that we need something that we had previously 
thrown away. Finally, while we might gain a small perfor
mance advantage in cleaning up the FreeBSD code, the 
FreeBSD TCP code will mostly only run in the slow-path 
connections, which are not our primary focus. Our priority is 
to get the slow-path code functional and reliable as quickly as 
possible. 

For the reasons above we have adopted the philosophy that 
we should initially keep the data structures and code at close 
to the original FreeBSD implementation as possible. The 
code will be modified for the following reasons: 

packet. 
There are a couple of things to note here. We have designed 

our INIC such that a packet header should never be split 
across multiple buffers. Thus, we should never require the 
equivalent of the "m_pullup" routine included in Unix. Also 
note that there are circumstances in which we will be accept-

45 ing data that will also be accepted by the Microsoft TCP/IP. 
One such example of this is ARP frames. We will need to 
build our own ARP cache by looking at ARP replies as they 
come off the network. Under these circumstances, it is abso
lutely imperative that we do not modifY the data, or the packet 

50 and buffer descriptors. We will discuss this further in the 
following sections. 

We will allocate a pool ofmbufheaders atATCP initial
ization time. It is important to remember that unlike other 
NICs, we can not simply drop data if we run out of the system 

55 resources required to manage/map the data. The reason for 
this is that we will be receiving data from the card that has 
already been acknowledged by TCP. Because of this it is 
essential that we never run out of mbufheaders. To solve this 
problem we will statically allocate mbufheaders for the maxi-

60 mum number of buffers that we will ever allow to be outstand-

1) As required for NT interaction-Obviously we can't 65 

expect to simply "drop-in" the FreeBSD code as is. The 
interface of this code to the NT system will require some 

ing. By doing so, the card will run out of buffers in which to 
put the data before we will run out of mbufs, and as a result, 
the card will be forced to drop data at the link layer instead of 
us dropping it at the transport layer. DhXXX: as we've dis
cussed, I don't think this is really true anymore. The INIC 
won't ACK data until either it' s gotten a window update from 
ATCP to tell it the data's been accepted, or it's got an MDL. 



US 7,673,072 B2 
57 

Thus it seems workable, though undesirable, if we can't 
accept a frame from the INIC & return an error to it saying it 
was not taken. 

We will also require a pool of actual mbufs (not just head
ers). These mbufs are required in order to build transmit 
protocol headers for the slow-path data path, as well as other 
miscellaneous purposes such as for building ARP requests. 
We will allocate a pool of these at initialization time and we 
will add to this pool dynamically as needed. Unlike the mbuf 
headers described above, which will be used to map acknowl- 10 

edged TCP data coming from the card, the full mbufs will 
contain data that can be dropped if we can not get an mbuf. 

The Code. 
In this section we describe each section of the FreeBSD 

15 
TCP/IP port. These sections include Interface Initialization, 
ARP, Route, IP, ICMP, and TCP. 

58 
addedl structure to contain the interface name and MAC 
address. Finally it will add a pointer to the ifaddr structure into 
the ifneCaddrs array (using the if index field of the ifnet 
structure) contained in the extended device object. Ifinit will 
then call IfConfig for each IP address that it finds in the 
registry entry for the interface. 

IfConfig. 

IfConfig is called to configure an IP address for a given 
interface. It is passed a pointer to the ifnet structure for that 
interface along with all the information required to configure 
an IP address for that interface (such as IP address, netmask 
and broadcast info, etc). IfConfig will allocate an in_ifaddr 

Interface Initialization. 

Structures. 
There are a variety of structures, which represent a single 

interface in FreeBSD. These structures include: if net, arp
com, ifaddr, in_ifaddr, sockaddr, sockaddein, and sockad
dedI. FIG. 30 shows the relationship between all of these 
structures: 

structure to be used to configure the interface. It will chain it 
to the total chain of in_ifaddr structures contained in the 
extended device object, and will then configure the structure 
with the information given to it. After that it will add a static 
route for the newly configured network and then broadcast a 
gratuitous ARP request to notifY others of our Mac/IP address 

20 and to detect duplicate IP addresses on the net. 

In the example of FIG. 30 we show a single interface with 
a MAC address ofOO:60:97:DB:9B:A6 configured with an IP 
address of 192.100.1.2. As illustrated above, the in_ifaddr is 
actually an ifaddr structure with some extra fields tacked on to 
the end. Thus the ifaddr structure is used to represent both a 
MAC address and an IP address. Similarly the sockaddr struc
ture is recast as a sockaddr_dl or a sockaddein depending on 
its address type. An interface can be configured to multiple IP 
addresses by simply chaining in_ifaddr structures after the 
in_ifaddr structure shown in FIG. 30. 

As mentioned in the Porting Philosophy section, many of 
the above structures could likely be collapsed into fewer 
structures. In order to avoid making unnecessary modifica
tions to FreeBSD, for the time being we will leave these 
structures mostly as is. We will however eliminate the fields 
from the structure that will never be used. These structure 
modifications are discussed below. 

We also show above a structure called iface. This is a 
structure that we define. It contains the arpcom structure, 
which in tum contains the ifnet structure. It also contains 
fields that enable us to blend our FreeBSD implementation 
with NT NDIS requirements. One such example is the NDIS 
binding handle used to call down to NDIS with requests (such 
as send). 

The Functions. 
FreeBSD initializes the above structures in two phases. 

ARP. 

We will port the FreeBSD ARP code to NT mostly as-is. 
For some reason, the FreeBSD ARP code is located in a file 

25 called iCether.c. While the fnnctionality of this file will 
remain the same, we will rename it to a more logical arp.c. 
The main structures used by ARP are the llinfo_arp structure 
and the rtentry structure (actually part of route). These struc
tures will not require major modifications. The fnnctions that 

30 will require modification are defined here. 

In_ARPinput. 

This function is called to process an incoming ARP frame. 
AnARP frame can either be anARP request or anARP reply. 

35 ARP requests are broadcast, so we will see every ARP request 
on the network, while ARP replies are directed so we should 
only see ARP replies that are sent to us. This introduces the 
following possible cases for an incoming ARP frame: 

1. ARP request trying to resolve our IP address-Under 
40 normal circumstances, ARP would reply to this ARP request 

with anARP reply containing our MAC address. SinceARP 
requests will also be passed up to the Microsoft TCP/IP 
driver, we need not reply. Note however, that FreeBSD also 
creates or updates an ARP cache entry with the information 

45 derived from the ARP request. It does this in anticipation of 
the fact that any host that wishes to know our MAC address is 
likely to wish to talk to us soon. Since we will need to know 
his MAC address in order to talk back, we might as well add 
the ARP information now rather than issuing our own ARP 

50 request later. 

First when a network interface is found, the ifnet, arpcom, and 
first ifaddr structures are initialized first by the network layer 
driver, and then via a call to the if attach routine. The subse
quent in_ifaddr structure(s) are initialized when a user 55 

dynamically configures the interface. This occurs in the 
in_ioctl and the in_ifinit routines. Since NT allows dynamic 
configuration of a network interface we will continue to per
form the interface initialization in two phases, but we will 
consolidate these two phases as described below: 60 

2. ARP request trying to resolve someone else's IP 
address-SinceARP requests are broadcast, we see every one 
on the network. When we receive anARP request of this type, 
we simply check to see if we have an entry for the host that 
sent the request in our ARP cache. Ifwe do, we check to see 
if we still have the correct MAC address associated with that 
host. If it is incorrect, we update our ARP cache entry. Note 
that we do not create a new ARP cache entry in this case. 

3. ARP reply-In this case we add the new ARP entry to 
our ARP cache. Having resolved the address, we check to see 
if there is any transmit requests pending for the resolve IP 
address, and if so, transmit them. 

IfInit. 
The Ifinit routine will be called from the ATKProtocol

BindAdapter function. The Ifinit fnnction will initialize the 
Iface structure and associated arpcom and ifnet structures. It 65 

will then allocate and initialize an ifaddr structure in which to 
contain link -level information about the interface, and a sock-

Given the above three possibilities, the only major change 
to the in_arpinput code is that we will remove the code which 
generates an ARP reply for ARP requests that are meant for 
our interface. 



US 7,673,072 B2 
59 

ARPintr. 
This is the FreeBSD code that delivers an incoming ARP 

frame to in_arpinput. We will be calling in_arpinput directly 
from our ProtocolReceiveDPC routine (discussed in the 
NDIS section below) so this function is not needed. 

ARPwhohas. 
This is a single line function that serves only as a wrapper 

around arprequest. We will remove it and replace all calls to it 
with direct calls to arprequest. 

ARPrequest. 
This code simply allocates a mbuf, fills it in with an ARP 

header, and then passes it down to the ethernet output routine 
to be transmitted. For us, the code remains essentially the 
same except for the obvious changes related to how we allo
cate a network buffer, and how we send the filled in request. 

ARP _Ifinit. 

This is simply called when an interface is initialized to 
broadcast a gratuitous ARP request (described in the interface 
initialization section) and to set someARP related fields in the 
ifaddr structure for the interface. We will simply move this 
functionality into the interface initialization code and remove 
this function. 

Arptimer. 
This is a timer-based function that is called every 5 minutes 

to walk through the ARP table looking for entries that have 
timed out. Although the time-out period for FreeBSD is 20 
minutes, RFC 826 does not specify any timer requirements 
with regard to ARP so we can modify this value or delete the 
timer altogether to suit our needs. Either way the function 
won't require any major changes. All other functions III 

iCether.c will not require any major changes. 

Route. 
On first thought, it might seem that we have no need for 

routing support since our ATCP driver will only receive IP 
datagrams whose destination IP address matches that of one 
of our own interfaces. Therefore, we will not "route" from one 
interface to another. Instead, the MICROSOFT TCP/IP driver 
will provide that service. We will, however, need to maintain 

60 
The software which implements the route table (via the 

PATRICIA algorithm) is located in the FreeBSD file, radix.c. 
This file will be ported directly to the ATCP driver with no 
significant changes required. 

Adding and Deleting Routes. 
Routes can be added or deleted in a number of different 

ways. The kernel adds or deletes routes when the state of an 
interface changes or when an ICMP redirect is received. User 

10 space programs such as the RIP daemon, or the route com
mand also modifY the route table. 

For kernel-based route changes, the changes can be made 
by a direct call to the routing software. The FreeBSD software 
that is responsible for the modification of route table entries is 

15 found in route.c. The primary routine for all route table 
changes is called rtrequest( ). It takes as its arguments, the 
request type (ADD, RESOLVE, DELETE), the destination IP 
address for the route, the gateway for the route, the netmask 
for the route, the flags for the route, and a pointer to the route 

20 structure (struct rtentry) in which we will place the added or 
resolved route. Other routines in the route.c file include 
rtinit( ), which is called during interface initialization time to 
add a static route to the network, rtredirect, which is called by 
ICMP when we receive a ICMP redirect, and an assortment of 

25 support routines used for the modification of route table 
entries. All of these routines found in route.c will be ported 
with no major modifications. 

For user-space-based changes, we will have to be a bit 
more clever. In FreeBSD, route changes are sent down to the 

30 kernel from user-space applications via a special route socket. 
This code is found in the FreeBSD file, rtsockc. Obviously 
this will not work for our ATCP driver. Instead the filter driver 
portion of our driver will intercept route changes destined for 
the Microsoft TCP driver and will apply those modifications 

35 to our own route table via the rtrequest routine described 
above. In order to do this, it will have to do some format 
translation to put the data into the format (sockaddr_in) 
expected by the rtrequest routine. Obviously, none of the code 
from rtsockc will be ported to the ATCP driver. This same 

40 procedure will be used to intercept and process explicit ARP 
cache modifications. 

Consulting the Route Table. 
an up-to-date routing table so that we know a) whether an 
outgoing connection belongs to one of our interfaces, b) to 
which interface it belongs, and c) what the first-hop IP 45 

address (gateway) is if the destination is not on the local 
network 

In FreeBSD, the route table is consulted in ip_output when 
an IP datagram is being sent. In order to avoid a complete 
route table search for every outgoing datagram, the route is 
stored into the in_pcb for the connection. For subsequent calls 
to ip_output, the route entry is then simply checked to ensure 
validity. While we will keep this basic operation as is, we will 
require a slight modification to allow us to coexist with the 

We discuss four aspects on the subject of routing in this 
section. They are as follows: 

1. The mechanics of how routing information is stored. 

2. The manner in which routes are added or deleted from 
the route table. 

3. When and how route information is retrieved from the 
route table. 

4. Notification of route table changes to interested parties. 

The Route Table. 

50 Microsoft TCP driver. When an active connection is being set 
up, our filter driver will have to determine whether the con
nection is going to be handled by one of the INIC interfaces. 
To do this, we will have to consult the route table from the 
filter driver portion of our driver. This is done via a call to the 

55 rtalloc1 function (found in route.c). If a valid route table entry 
is found, then we will take control of the connection and set a 
pointer to the rtentry structure returned by rtalloc1 III our 
in_pcb structure. 

In FreeBSD, the route table is maintained using an algo
rithm known as PATRICIA (Practical Algorithm To Retrieve 60 

Information Coded in Alphanumeric). This is a complicated 
algorithm that is a bit costly to set up, but is very efficient to 
reference. Since the routing table should contain the same 
information for both NT and FreeBSD, and since the key used 

What to do when a Route Changes. 
When a route table entry changes, there may be connec

tions that have pointers to a stale route table entry. These 
connections will need to be notified of the new route. 
FreeBSD solves this by checking the validity of a route entry 
during every call to ip_output. If the entry is no longer valid, 
its reference to the stale route table entry is removed, and an 
attempt is made to allocate a new route to the destination. For 

to search for an entry in the routing table will be the same for 65 

each (the destination IP address), we should be able to port the 
routing table software to NT without any major changes. 



US 7,673,072 B2 
61 

our slow path, this will work fine. Unfortunately, since our IP 
processing is handled by the INIC for our fast path, this sanity 
check method will not be sufficient. Instead, we will need to 
perform a review of all of our fast path connections during 
every route table modification. If the route table change 5 

affects our connection, we will need to advise the INIC with 
a new first-hop address, or if the destination is no longer 
reachable, close the connection entirely. 

62 
an IP datagram. All references to IP forwarding, and the 
ip_forward function itself, can be removed. 

Ip Options. 
The only options supported by FreeBSD at this time 

include record route, strict and loose source and record route, 
and timestamp. For the timestamp option, FreeBSD only logs 
the current time into the IP header so that before it is for-
warded. Since we will not be forwarding IP data grams, this 

ICMP. 10 seems to be of little use to us. While FreeBSD supports the 
remaining options, NT essentially does nothing useful with 
them. For the moment, we will not bother dealing with IP 
options. They will be added in later if needed. 

Like the ARP code above, we will need to process certain 
types of incoming ICMP frames. Of the 10 possible ICMP 
message types, there are only three that we need to support. 
These include ICMP _REDIRECT, ICMP _UNREACH, and 
ICMP _SOURCEQUENCH. Any FreeBSD code to deal with 15 

other types ofICMP traffic will be removed. Instead, we will 
simply return NDIS_STATUS_NOT_ACCEPTED for all but 
the above ICMP frame types. This section describes how we 
will handle these ICMP frames. 

IP Reassembly. 
There is a small problem with the FreeBSD IP reassembly 

code. The reassembly code reuses the IP header portion of the 
IP datagram to contain IP reassembly queue information. It 
can do this because it no longer requires the original IP 
header. This is an absolute no-no with the NDIS 4.0 method of 

ICMP _REDIRECT. 
Under FreeBSD, an ICMP _REDIRECT causes two things 

20 handling network packets. The NT DDK explicitly states that 
we must not modify packets given to us by NDIS. This is not 
the only place in which the FreeBSD code modifies the con
tents of a network buffer. It also does this when performing 
endian conversions. At the moment we will leave this code as 

to occur. First, it causes the route table to be updated with the 
route given in the redirect. Second, it results in a call back to 
TCP to cause TCP to flush the route entry attached to its 
associated in_pcb structures. By doing this, it forces ip_out
put to search for a new route. As mentioned in the Route 
section above, we will also require a call to a routine which 
will review all of the TCP fast-path connections, and update 
the route entries as needed (in this case because the route 
entry has been zeroed). The INIC will then be notified of the 30 

route changes. 

ICMP _UNREACH. 

25 is and violate the DDK rules. We believe we can do this 
because we are going to ensure that no other transport driver 
looks at these frames. If this becomes a problem we will have 
to modify this code substantially by moving the IP reassem
bly fields into the mbufheader. 

IP Output. 
There are only two modifications required for IP output. 

In both FreeBSD and Microsoft TCP, the ICMP _UN
REACH results in no more than a simple statistic update. We 
will do the same. 35 

The first is that since, for the moment, we are not dealing with 
IP options, there is no need for the code that inserts the IP 
options into the IP header. Second, we may discover that it is 
impossible for us to ever receive an output request that 
requires fragmentation. Since TCP performs Maximum Seg
ment Size negotiation, we should theoretically never attempt 
to send a TCP segment larger than the MTU. 

ICMP _Sourcequench. 
A source quench is sent to cause a TCP sender to close its 

congestion window to a single segment, thereby putting the 
sender into slow-start mode. We will keep the FreeBSD code 40 

as-is for slow-path connections. For fast path connections we 
will send a notification to the card that the congestion window 
for the given connection has been reduced. The INIC will then 

NDIS Protocol Driver. 
This section defines protocol driver portion of the ATCP 

driver. The protocol driver portion of the ATCP driver is 
defined by the set of routines registered with NDIS via a call be responsible for the slow-start algorithm. 

Ip. 
The FreeBSD IP code should require few modifications 

when porting to theATCP driver. What few modifications will 
be required will be discussed in this section. 

Ip Initialization. 

45 to NdisRegisterProtocol. These routines are limited to those 
that are called (indirectly) by the INIC miniport driver 
beneath us. For example, we register a ProtocolReceive
Packet routine so that when the INIC driver calls NdisMIndi
cateReceivePacket it will result in a call from NDIS to our 

50 driver. Strictly speaking, the protocol driver portion of our 
driver does not include the method by which our driver calls 
down to the miniport (for example, the method by which we 
send network packets). Nevertheless, we will describe that 

During initialization time, ip_init is called to initialize the 
array of protosw structures. These structures contain all the 
information needed by IP to be able to pass incoming data to 
the correct protocol above it. For example, when a UDP 
datagram arrives, IP locates the protosw entry corresponding 55 

to the UDP protocol type value (Oxll) and calls the input 
routine specified in that protosw entry. We will keep the array 

method here for lack of a better place to put it. That said, we 
cover the following topics in this section of the document: 1) 
Initialization; 2) Receive; 3) Transmit; 4) Query/Set Informa-
tion; 5) Status indications; 6) Reset; and 7) Halt. 

of protosw structures intact, but since we are only handling 
the TCP and ICMP protocols above IP, we will strip the 
protosw array down substantially. 

IP Input. 
Following are the changes required for IP input (function 

ip_intr( )). 

No IP Forwarding. 
Since we will only be handling data grams for which we are 

the final destination, we should never be required to forward 

60 

Initialization. 
The protocol driver initialization occurs in two phases. The 

first phase occurs when the ATCP DriverEntry routine calls 
ATKProtoSetup. The ATKProtoSetup routine performs the 
following: 

1. Allocate resources-We attempt to allocate many of the 
65 required resources as soon as possible so that we are more 

likely to get the memory we want. This mostly applies to 
allocating and initializing our mbuf and mbufheader pools. 



US 7,673,072 B2 
63 

2. Register Protocol-We call NdisRegisterProtocol to 
register our set of protocol driver routines. 

64 
B. Packets Delivered to Microsoft TCP Only (not Accepted 
byATCP): 

3. Locate and initialize bound NICs-We read the Linkage 
parameters of the registry to determine which NIC devices we 
are bound to. For each of these devices we allocate and 5 

initialize a IFACE structure (defined above). We then read the 
TCP parameters out of the registry for each bound device and 
set the corresponding fields in the IFACE structure. 

1. All non-TCP packets. 
2. All packets that are not destined for one of our interfaces 

(packets that will be routed). Continuing the above example, 
if there is an IP address 144.48.252.4 associated with the 
3com interface, and we receive a TCP counect with a desti
nation IP address of 144.48.252.4, we will actually want to 

After the underlying INIC devices have completed their 
initialization, NDIS will call our driver's ATKBindAdapter 10 

function for each underlying device. It will perfonn the fol
lowing: 

send that request up to the ATCP driver so that we create a 
fast-path connection for it. This means that we will need to 
know every IP address in the system and filter frames based 
on the destination IP address in a given TCP datagram. This 
can be done in the INIC miniport driver. Since it will be the 
ATCP driver that learns of dynamic IP address changes in the 

1. Open the device specified in the call the ATKBind
Adapter. 

2. Find the IFACE structure that was created inATKPro
toSetup for this device. 

3. Query the miniport for adapter infonnation. This 
includes such things as link speed and MAC address. Save 

15 system, we will need a method to notify the INIC miniport of 
all the IP addresses in the system. More on this later. 

C. Packets Delivered to Both: 
1. All ARP frames. 

relevant information in the IFACE structure. 20 2. All ICMP frames. 

4. Perfonn the interface initialization as specified in the 
section on Interface Initialization. 

Receive. 

Receive is handled by the protocol driver routine ATKRe
ceivePacket. Before we describe this routine, it is important to 
consider each possible receive type and how it will be 
handled. 

Receive Overview. 

Our INIC miniport driver will be bound to our transport 
driver as well as the generic Microsoft TCP driver (and pos
sibly others). The ATCP driver will be bound exclusively to 
INIC devices, while the Microsoft TCP driver will be bound 
to INIC devices as well as other types of NICs. This is illus
trated in FIG. 31. By binding the driver in this fashion, we can 
choose to direct incoming network data to our own ATCP 
transport driver, the Microsoft TCP driver, or both. We do this 
by playing with the ethernet "type" field as follows. 

Two Types of Receive Packets. 
There are several circumstances in which the INIC will 

need to indicate extra infonnation about a receive packet to 
the ATCP driver. One such example is a fast path receive in 

25 which the ATCP driver will need to be notified of how much 
data the card has buffered. To accomplish this, the first (and 
sometimes only) buffer in a received packet will actually be 
an INIC header buffer. The header buffer contains status 
information about the receive packet, and mayor may not 

30 contain network data as well. TheATCP driver will recognize 
a header buffer by mapping it to an ethernet frame and 
inspecting the type field found in byte 12. We will indicate all 
TCP frames destined for us in this fashion, while frames that 
are destined for both our driver and the Microsoft TCP driver 

35 (ARP, ICMP) will be indicated without a header buffer. FIG. 
32 shows an example of an incoming TCP packet. FIG. 33 
shows an example of an incoming ARP frame. 

NDIS 4 ProtocolReceivePacket Operation. 
NDIS has been designed such that all packets indicated via 

NdisMIndicateReceivePacket by an underlying miniport are 
delivered to the ProtocolReceivePacket routine for all proto
col drivers bound to it. These protocol drivers can choose to 
accept or not accept the data. They can either accept the data 

To NDIS and the transport drivers above it, our card is 40 

going to be registered as a normal ethernet card. When a 
transport driver receives a packet from our driver, it will 
expect the data to start with an ethernet header, and conse
quently, expects the protocol type field to be in byte offset 12. 
IfMicrosoft TCP finds that the protocol type field is not equal 45 by copying the data out of the packet indicated to it, or 

alternatively they can keep the packet and return it later via a 
call to NdisReturnPackets. By implementing it in this fashion, 
NDIS allows more than one protocol driver to accept a given 
packet. For this reason, when a packet is delivered to a pro-

to either IP, or ARP, it will not accept the packet. So, to deliver 
an incoming packet to our driver, we must simply map the 
data such that byte 12 contains a non-recognized ethernet 
type field. Note that we must choose a value that is greater 
than 1500 bytes so that the transport drivers do not confuse it 
with an 802.3 frame. We must also choose a value that will not 
be accepted by other transport driver such as Appletalk or 
IPX. Similarly, if we want to direct the data to Microsoft TCP, 
we can then simply leave the ethernet type field set to IP (or 
ARP). Note that since we will also see these frames we can 
choose to accept or not-accept them as necessary. Incoming 
packets are delivered as follows: 

A. Packets Delivered to ATCP Only (not Accepted by 
MSTCP): 

1. All TCP packets destined for one of our IP addresses. 

50 tocol driver, the contents of the packet descriptor, buffer 
descriptors and data must all be treated as read-only. At the 
moment, we intend to violate this rule. We choose to violate 
this because much of the FreeBSD code modifies the packet 
headers as it examines them (mostly for endian conversion 

55 purposes). Rather than modify all of the FreeBSD code, we 
will instead ensure that no other transport driver accepts the 
data by making sure that the ethernet type field is unique to us 
(no one else will want it). Obviously this only works with data 
that is only delivered to our ATCP driver. For ARP and ICMP 

60 frames we will instead copy the data out of the packet into our 
own buffer and return the packet to NDIS directly. While this 
is less efficient than keeping the data and returning it later, 
ARP and ICMP traffic should be small enough, and infre-

This includes both slow-path frames and fast-path frames. In 
the slow-path case, the TCP frames are given in there entirety 
(headers included). In the fast-path case, the ATKReceive
Packet is given a header buffer that contains status infonna- 65 

tion and data with no headers (except those above TCP). More 

quent enough, that it doesn't matter. 
The DDK specifies that when a protocol driver chooses to 

keep a packet, it should return a value of 1 (or more) to NDIS 
in its ProtocolReceivePacket routine. The packet is then later on this later. 



US 7,673,072 B2 
65 

returned to NDIS via the call to NdisReturnPackets. This can 
only happen after the ProtocolReceivePacket has returned 
control to NDIS. This requires that the call to NdisReturn
Packets must occur in a different execution context. We can 
accomplish this by scheduling a DPC, scheduling a system 5 

thread, or scheduling a kernel thread of our own. For brevity 
in this section, we will assume it is a done through a DPC. In 
any case, we will require a queue of pending receive buffers 
on which to place and fetch receive packets. 

After a receive packet is dequeued by the DPC it is then 10 

either passed to TCP directly for fast-path processing, or it is 
sent through the FreeBSD path for slow-path processing. 
Note that in the case of slow-path processing, we may be 
working on data that needs to be returned to ND IS (TCP data) 
or we may be working on our own copy of the data (ARP and 15 

ICMP). When we finish with the data we will need to figure 
out whether or not to return the data to NDIS or not. This will 
be done via fields in the mbuf header used to map the data. 
When the mfreem routine is called to free a chain of mbufs, 
the fields in the mbuf will be checked and, if required, the 20 

packet descriptor pointed to by the mbuf will be returned to 
NDIS. 

Mbuf ~ Packet Mapping. 
As noted in the section on mbufs above, we will map 25 

incoming data to mbufs so that our FreeBSD port requires 
fewer modifications. Depending on the type of data received, 
this mapping will appear differently. Here are some 
examples: 

In FIG. 34A, we show incoming data for a TCP fast-path 30 

connection. In this example, the TCP data is fully contained in 
the header buffer. The header buffer is mapped by the mbuf 
and sent upstream for fast-path TCP processing. In this case it 
is required that the header buffer be mapped and sent 
upstream because the fast-path TCP code will need informa- 35 

tion contained in the header buffer in order to perform the 
processing. When the mbuf in this example is freed, the 
mfreem routine will determine that the mbuf maps a packet 
that is owned by NDIS and will then free the mbufheader only 
and call NdisReturnPackets to free the data. 40 

In FIG. 34B, we show incoming data for a TCP slow-path 
connection. In this example the mbuf points to the start of the 
TCP data directly instead of the header buffer. Since this 
buffer will be sent up for slow-path FreeBSD processing, we 
can not have the mbuf pointing to a header buffer (FreeBSD 45 

would get awfully confused). Again, when mfreem is called 

66 
Other Receive Packets. 

We use this receive mechanism for other purposes besides 
the reception of network data. It is also used as a method of 
communication between the ATCP driver and the INIC. One 
such example is a TCP context flush from the INIC. When the 
INIC determines, for whatever reason, that it can no longer 
manage a TCP connection, it must flush that connection to the 
ATCP driver. It will do this by filling in a header buffer with 
appropriate status and delivering it to the INIC driver. The 
INIC driver will in tum deliver it to the protocol driver which 
will treat it essentially like a fast-path TCP connection by 
mapping the header buffer with an mbuf header and deliver
ing it to TCP for fast-path processing. There are two advan
tages to communicating in this manner. First, it is already an 
established path, so no extra coding or testing is required. 
Second, since a context flush comes in; in the same manner as 
received frames, it will prevent us from getting a slow-path 
frame before the context has been flushed. 

SUMMARY 

Having covered all of the various types of receive data, 
following are the steps that are taken by the ATKProtocolRe
ceivePacket routine. 

1. Map incoming data to an ethernet frame and check the 
type field; 

2. If the type field contains our custom INIC type then it 
should be TCP; 

3. If the header buffer specifies a fast-path connection, 
allocate one or more mbufs headers to map the header 
and possibly data buffers. Set the packet descriptor field 
of the mbuf to point to the packet descriptor, set the mbuf 
flags appropriately, queue the mbuf, and return 1; 

4. If the header buffer specifies a slow-path connection, 
allocate a single mbuf header to map the network data, 
set the mbuf fields to map the packet, queue the mbuf and 
return 1. Note that we design the INIC such that we will 
never get a TCP segment split across more than one 
buffer; 

5. If the type field of the frame indicates ARP or ICMP; 
6. Allocate a mbufwith a data buffer. Copy the contents of 

the packet into the mbuf. Queue the mbuf, and return 0 
(not accepted); and 

7. If the type field is not either the INI C type, ARP or I CMP, 
we don't want it. Return O. 

The receive processing will continue when the mbufs are 
dequeued. At the moment this is done by a routine called 
ATKProtocolReceiveDPC. It will do the following: 

1. Dequeue a mbuf from the queue; and 
2. Inspect the mbufflags. If the mbufis meant for fast-path 

TCP, it will call the fast-path routine directly. Otherwise 
it will call the ethernet input routine for slow-path pro
cessing. 

to free the mbuf, it will discover the mapped packet, free the 
mbufheader, and call NDIS to free the packet and return the 
underlying buffers. Note that even though we do not directly 
map the header buffer with the mbuf we do not lose it because 50 

of the link from the packet descriptor. Note also that we could 
alternatively have the INIC miniport driver only pass us the 
TCP data buffer when it receives a slow-path receive. This 
would work fine except that we have determined that even in 
the case of slow-path connections we are going to attempt to 
offer some assistance to the host TCP driver (most likely by 
checksum processing only). In this case there may be some 
special fields that we need to pass up to the ATCP driver from 
the INIC driver. Leaving the header buffer connected seems 
the most logical way to do this. 

55 Transmit. 
In this section we discuss the ATCP transmit path. 

NDIS 4 Send Operation. 
The NDIS 4 send operation works as follows. When a 

Finally, in FIG. 34C, we show a received ARP frame. 
Recall that for incomingARP and ICMP frames we are going 

60 transport/protocol driver wishes to send one or more packets 
down to an NDIS 4 miniport driver, it calls NdisSendPackets 
with an array of packet descriptors to send. As soon as this 
routine is called, the transport/protocol driver relinquishes to copy the incoming data out of the packet and return it 

directly to NDIS. In this case the mbuf simply points to our 
data, with no corresponding packet descriptor. When we free 65 

this mbuf, mfreem will discover this and free not only the 
mbufheader, but the data as well. 

ownership of the packets until they are returned, one by one in 
any order, via a NDIS call to the ProtocolSendComplete 
routine. Since this routine is called asynchronously, our 
ATCP driver must save any required context into the packet 



US 7,673,072 B2 
67 

descriptor header so that the appropriate resources can be 
freed. This is discussed further in the following sections. 

Types of "Sends". 

68 
Non-Data Command Buffer. 

The transmit path is also used to send non-data commands 

Like the Receive path described above, the transmit path is 5 

used not only to send network data, but is also used as a 
communication mechanism between the host and the INIC. 
Here are some examples of the types of sends performed by 

to the card. As shown in FIG. 37, for example, the ATCP 
driver gives a context to the INIC by filling in a command 
buffer, mapping it with a packet and buffer descriptor, and 
calling NdisSendPackets. 

ATKProtocolSendComplete. 
Given the above different types of sends, the ATKProto-

the ATCP driver. 

Fast-Path TCP Send. 
10 ~~~~:d~~:~~~~ec~~:~i:r~:~bfs~~~::it :~~~~a~~: t~! 

reserved area of the packet descriptor to determine what type 
of request has completed. In the case of a slow-path comple
tion, it can simply free the mbufs, command buffer, and 

15 descriptors and return. In the case of a fast-path completion, 
it will need to notifY the TCP fast path routines of the comple
tion so TCP can in turn complete the client's IRP. Similarly, 
when a non-data command buffer completes, TCP will again 
be notified that the command sent to the INIC has completed. 

When the ATCP driver receives a transmit request with an 
associated MDL, it will package up the MDL physical 
addresses into a command buffer, map the command buffer 
with a buffer and packet descriptor, and call NdisSendPackets 
with the corresponding packet. The underlying INIC driver 
will issue the command buffer to the INIC. When the corre
sponding response buffer is given back to the host, the INIC 
miniport will call NdisMSendComplete which will result in a 
call to the ATCP ProtocolSendComplete (ATKSendCom
plete) routine, at which point the resources associated with 
the send can be freed. We will allocate and use a mbuf to hold 
the command buffer. By doing this we can store the context 
necessary in order to clean up after the send completes. This 
context includes a pointer to the MDL and presumably some 25 

other connection context as well. The other advantage to 
using a mbufto hold the command buffer is that it eliminates 
having another special set of code to allocate and return 
command buffer. We will store a pointer to the mbuf in the 
reserved section of the packet descriptor so we can locate it 
when the send is complete. FIG. 35 illustrates the relationship 
between the client's MDL, the command buffer, and the 
buffer and packet descriptors. 

20 TDI Filter Driver. 
In a first embodiment of the product, the INIC handles only 

simple-case data transfer operations on a TCP connection. 
(These of course constitute the large majority of CPU cycles 
consumed by TCP processing in a conventional driver.) 

There are many other complexities of the TCP protocol 
which must still be handled by host driver software: connec
tion setup and breakdown, out-of-order data, nonstandard 
flags, etc. 

The NT OS contains a fully functional TCP/IP driver, and 
30 one solution would be to enhance this so that it is able to detect 

our INIC and take advantage of it by "handing off' data-path 
processing where appropriate. 

Unfortunately, we do not have access to NT source, let 
alone permission to modifY NT. Thus the solution above, 

35 while a goal, cannot be done immediately. We instead provide 
our own custom driver software on the host for those parts of 
TCP processing which are not handled by the INIC. 

Fast-Path TCP Receive. 

As described in the Fast-Path Input Data Flow section 
above, the receive process typically occurs in two phases. 
First the INIC fills in a host receive buffer with a relatively 
small amount of data, but notifies the host of a large amount 
of pending data (either through a large amount of buffered 
data on the card, or through a large amount of expected 
NetBios data). This small amount of data is delivered to the 
client through the TDI interface. The client will then respond 
with a MDL in which the data should be placed. Like the 
Fast-path TCP send process, the receive portion of the ATCP 
driver will then fill in a command buffer with the MDL 
information from the client, map the buffer with packet and 
buffer descriptors and send it to the INIC via a call to Ndis
SendPackets. Again, when the response buffer is returned to 
the INIC miniport, the ATKSendComplete routine will be 
called and the receive will complete. This relationship 
between the MDL, command buffer and buffer and packet 
descriptors are the same as shown in the Fast-path send sec
tion above. 

Slow-Path (FreeBSD). 

Slow-path sends pass through the FreeBSD stack until the 
ethernet header is prep ended in ethecoutput and the packet is 
ready to be sent. At this point a command buffer will be filled 
with pointers to the ethernet frame, the command buffer will 
be mapped with a packet and buffer descriptor and NdisSend
Packets will be called to hand the packet off to the miniport. 
FIG. 36 shows the relationship between the mbufs, command 
buffer, and buffer and packet descriptors. Since we will use a 
mbufto map the command buffer, we can simply link the data 
mbufs directly off of the command buffer mbuf. This will 
make the freeing of resources much simpler. 

This presents a challenge. The NT network driver frame
work does make provision for multiple types of protocol 

40 driver: but it does not easily allow for multiple instances of 
drivers handling the SAME protocol. 

For example, there are no "hooks" into the Microsoft TCP/ 
IP driver which would allow for routing ofIP packets between 
our driver (handling our INICs) and the Microsoft driver 

45 (handling other NICs). 
Our approach to this is to retain the Microsoft driver for all 

non-TCP network processing (even for traffic on our INICs), 
but to invisibly "steal" TCP traffic on our connections and 
handle it via our own (BSD-derived) driver. The Microsoft 

50 TCP/IP driver is unaware of TCP connections on interfaces 
we handle. 

The network "bottom end" of this artifice is described 
earlier in the document. In this section we will discuss the 
"top end": the TDI interface to higher-level NT network client 

55 software. 
We make use of an NT facility called a filter driver. NT 

allows a special type of driver ("filter driver") to attach itself 
"on top" of another driver in the system. The NT I/O manager 
then arranges that all requests directed to the attached driver 

60 are sent first to the filter driver; this arrangement is invisible to 
the rest of the system. 

The filter driver may then either handle these requests 
itself, orpass them down to the underlying driver it is attached 
to. Provided the filter driver completely replicates the (exter-

65 nally visible) behavior of the underlying driver when it 
handles requests itself, the existence of the filter driver is 
invisible to higher-level software. 



US 7,673,072 B2 
69 

The filter driver attaches itself on top of the Microsoft 
TCP/IP driver; this gives us the basic mechanism whereby we 
can intercept requests for TCP operations and handle them in 
our driver instead of the Microsoft driver. 

However, while the filter driver concept gives us a frame- 5 
work for what we want to achieve, there are some significant 
technical problems to be solved. The basic issue is that setting 
up a TCP connection involves a sequence of several requests 
from higher-level software, and it is not always possible to 
tell, for requests early in this sequence, whether the connec- 10 

tion should be handled by our driver or by the Microsoft 
driver. 

70 
during connection setup (by the protocol driver itself.) Of 
course, a "wildcard" address does not allow us to determine 
whether connections that will be associated with this 
ADDRESS object should be handled by our driver or by the 
Microsoft one. Also, as with CONNECTION objects, there is 
"opaque" data associated withADDRESS objects that cannot 
be derived just from examination of the object itself. (In this 
case addresses of callback functions set on the object by 
TDCSET_EVENT io-controls.) 

Thus, as in the CONNECTION object case, we create a 
"shadow" object for each ADDRESS object which is created 
with a wildcard address. In this we store information (princi
pally addresses of callback fnnctions) which we will need if 

Thus for many requests, we store information about the 
request in case we need it later, but also allow the request to be 
passed down to the Microsoft TCP/IP driver in case the con
nection ultimately turns out to be one which that driver should 
handle. 

Let us look at this in more detail, which will involve some 
examination of the TD I interface: the NT interface into the top 
end of NT network protocol drivers. Higher-level TDI client 
software which requires services from a protocol driver pro
ceeds by creating various types of NT FILE_OBJECTs, and 
then making various DEVICE_IO_CONTROL requests on 
these FILE_OBJECTs. 

15 we are handling connections on CONNECTION objects 
associated with this ADDRESS object. We store similarinfor
mation, of course, for any ADDRESS object which is explic
itly for one of our interface addresses; in this case we don't 
need to also pass the create request down to the Microsoft 

20 driver. 

With this concept of "shadow" objects in place, let us 
revisit the steps involved in setting up a connection, and look 
at the processing required in our driver. 

First, the TDI client makes a call to create the ADDRESS 
object. Assuming that this is a "wildcard" address, we create 
a "shadow" object before passing the call down to the 
Microsoft driver. 

The next step (omitted in the earlier list for brevity) is 

There are two types of FILE_OBJECT of interest here. 25 
Local IP addresses that are represented by ADDRESS 
objects, and TCP connections that are represented by CON
NECTION objects. The steps involved in setting up a TCP 
connection (from the "active" client side, for a CONNEC
TION object) are: 30 normally that the client makes a number of TDCSET_ 

EVENT io-control calls to associate various callback fnnc
tions with the ADDRESS object. These are functions that 
should be called to notifY the TDI client when certain events 
(such arrival of data or disconnection requests etc) occur. We 

1) Create an ADDRESS object; 2) Create a CONNEC
TION object; 3) Issue a TDCASSOCIATE_ADDRESS io
control to associate the CONNECTION object with the 
ADDRESS object; and 4) Issue a TDCCONNECT io-control 
on the CONNECTION object, specifYing the remote address 
and port for the connection. 

35 store these callback function pointers in our "shadow" 
address object, before passing the call down to the Microsoft 
driver. Initial thoughts were that handling this would be straight

forward: we would tell, on the basis of the address given when 
creating the ADDRESS object, whether the connection is for 
one of our interfaces or not. After which, it would be easy to 40 
arrange for handling entirely by our code, or entirely by the 
Microsoft code: we would simply examine the ADDRESS 
object to see if it was "one of ours" or not. 

There are two main difficulties, however. First, when the 
CONNECTION object is created, no address is specified: it 45 
acquires a local address only later when the TDCASSOCI
ATE_ADDRESS is done. Also, when a CONNECTION 
object is created, the caller supplies an opaque "context 
cookie" which will be needed for later commnnications with 
that caller. Storage of this cookie is the responsibility of the 50 
protocol driver: it is not directly derivable just by examination 
of the CONNECTION object itself. Ifwe simply passed the 
"create" call down to the Microsoft TCP/IP driver, we would 
have no way of obtaining this cookie later if it turns out that 
we need to handle the connection. Therefore, for every CON-55 
NECTION object which is created we allocate a structure to 
keep track of information about it, and store this structure in 
a hash table keyed by the address of the CONNECTION 
object itself, so that we can locate it if we later need to process 
requests on this object. We refer to this as a "shadow" object: 60 
it replicates information about the object stored in the 
Microsoft driver. (We must, of course, also pass the create 
request down to the Microsoft driver too, to allow it to set up 
its own administrative information about the object.) 

A second major difficulty arises with ADDRESS objects. 65 
These are often created with the TCP/IP "wildcard" address 
(all zeros); the actual local address is assigned only later 

Next, the TDI client makes a call to create a CONNEC
TION object. Again, we create our "shadow" of this object. 

Next, the client issues the TDCASSOCIATE_ADDRESS 
io-control to bind the CONNECTION object to the 
ADDRESS object. We note the association in our "shadow" 
objects, and also pass the call down to the Microsoft driver. 

Finally the TDI client issues a TDCCONNECT io-control 
on the CONNECTION object, specifYing the remote IP 
address (and port) for the desired connection. At this point, we 
examine our routing tables to determine if this connection 
should be handled by one of our interfaces, or by some other 
NIC. If it is ours, we mark the CONNECTION object as "one 
of ours" for future reference (using an opaque field which NT 
FILE_OBJECTS provide for driver use.) We then proceed 
with connection setup and handling in our driver, using infor
mation stored in our "shadow" objects. The Microsoft driver 
does not see the connection request or any subsequent traffic 
on the connection. 

If the connection request is NOT for one of our interfaces, 
we pass it down to the Microsoft driver. Note carefully, how
ever, that we can not simply discard our "shadow" objects at 
this point. The TDI interface allows re-use of CONNECTION 
objects: on termination of a connection, it is legal for the TDI 
client to dissociate the CONNECTION object from its cur
rent. Thus our "shadow" objects must be retained for the 
lifetime ADDRESS object, re-associate it with another, and 
use it for another connection of the NT FILE_OBJECTS: the 
subsequent connection could turn out to be via one of our 
interfaces. 



US 7,673,072 B2 
71 

Timers. 

Keepalive Timer. 
We don't want to implement keepalive timers on the INIC. 

It would in any case be a very poor use of resources to have an 
INIC context sitting idle for two hours. 

Idle Timer. 

72 
9) There were 2 basic implementation options considered 

here. The first was single-stack and the second was a process 
model. The process model was chosen here because the cus
tom processor design is providing zero-cost overhead for 
context switching through the use of a context base register, 
and because there will be more than enough process slots (or 
contexts) available for the peak load. It is also expected that 
all "local" variables will be held permanently in registers 
whilst an event is being processed; 

10) The features that provide this are 256 of the 512 
SRAM-based registers that will be used for the register con
texts. This can be divided up into 16 contexts (or processes) of 
16 registers each. Then 8 of these will be reserved for receive 
and 8 for transmit. A Little's Law analysis has shown that in 

We will keep an idle timer in the ATCP driver for connec
tions that are managed by the INIC (resetting it whenever we 
see activity on the connection), and cause a flush of context 10 

back to the host if this timer expires. We may want to make the 
threshold substantially lower than 2 hours, to reclaim INIC 
context slots for useful work sooner. May also want to make 
that dependent on the number of contexts which have actually 
been handed out: don't need to reclaim them if we haven't 
handed out the max. 

15 order to support 512 byte frames at maximum arrival rate of 
4*100 Mbits, requires more than 8 jobs to be in process in the 
NIC. However each job requires an SRAM buffer for a TCB 
context and at present, there are only 8 of these currently 
specified due to SRAM space limits. So more contexts (e.g. 

Receive and Transmit Microcode Design. 
This section provides a general description of the design of 

the microcode that will execute on two of the sequencers of 
the Protocol Processor on the INIC. The overall philosophy of 
the INIC is discussed in other sections. This section will 
discuss the INIC microcode in detail. 

20 32*8 regs each) do not seem worthwhile. Refer to the section 
entitled "LOAD CALCULATIONS" for more details of this 
analysis. A context switch simply involves reloading the con
text base register based on the context to be restarted, and 

Design Overview. 
As specified in other sections, the INIC supplies a set of3 25 

custom processors that will provide considerable hardware
assist to the microcode running thereon. The paragraphs 
immediately following list the main hardware-assist features: 

1) Header processing with specialized DMA engines to 
validate an input header and generate a context hash, move 30 

the header into fast memory and do header comparisons on a 
DRAM-based TCP control block; 

2) DRAM fifos for free buffer queues (large & small), 
receive-frame queues, event queues etc.; 

3) Header compare logic; 35 

4) Checksum generation; 
5) Multiple register contexts with register access controlled 

jumping to the appropriate address for resumption; 
11) To better support the process model chosen, the code 

will lock an active TCB into an SRAM buffer while either 
sequencer is operating on it. This implies there will be no 
swapping to and from DRAM of a TCB once it is in SRAM 
and an operation is started on it. More specifically, the TCB 
will not be swapped after requesting that a DMA be per
formed for it. Instead, the system will switch to another active 
"process". Then it will resume the former process at the point 
directly after where the DMA was requested. This constitutes 
a zero-cost switch as mentioned above; 

12) Individual TCB state machines will be run from within 
a "process". There will be a state machine for the receive side 
and one for the transmit side. The current TCB states will be 
stored in the SRAM TCB index table entry; by simply setting a context register. The Protocol Processor 

will provide 512 SRAM -based registers to be shared among 
the 3 sequencers; 

6) Automatic movement of input frames into DRAM buff
ers from the MAC Fifos; 

13) The INIC will have 16 MB of DRAM. The current 
40 specification calls for dividing a large portion of this into 2 K 

buffers and control allocationldeallocation of these buffers 

7) Run receive processing on one sequencer and transmit 
processing on the other. This was chosen as opposed to letting 
both sequencers run receive and transmit. One of the main 45 

reasons for this is that the header-processing hardware can not 
be shared and interlocks would be needed to do this. Another 
reason is that interlocks would be needed on the resources 
used exclusively by receive and by transmit; 

through one of the DRAM fifos mentioned above. These fifos 
will also be used to control small host buffers, large host 
buffers, command buffers and command response buffers; 

14) For events from one sequencer to the other (i.e. RCV + 
XMT), the current specification calls for using simple SRAM 
CIO buffers, one for each direction; 

15) Each sequencer handles its own timers independently 
of the others; 

16) Contexts will be passed to the INIC through the Trans
mit command and response buffers. INIC-initiated TCB 
releases will be handled through the Receive small buffers. 
Host-initiated releases will use the Command buffers. There 

8) The INIC will support up to 256 TCP connections 50 

(TCB's). A TCB is associated with an input frame when the 
frame's source and destination IP addresses and source and 
destination ports match that of the TCB. For speed of access, 
the TCB's will be maintained in a hash table in NIC DRAM needs to be strict handling of the acquisition and release of 

55 contexts to avoid windows where for example, a frame is 
received on a context just after the context was passed to the 
INIC, but before the INIC has "accepted" it; and 

to save sequential searching. There will however, be an index 
in hash order in SRAM. Once a hash has been generated, the 
TCB will be cached in SRAM. There will be up to 8 cached 
TCBs in SRAM. These cache locations can be shared 
between both sequencers so that the sequencer with the 
heavier load will be able to use more cache buffers. There will 60 

17) T/TCP (Transaction TCP): the initial INIC will not 
handle T/TCP connections. This is because they are typically 
used for the HTTP protocol and the client for that protocol 
typically connects, sends a request and disconnects in one also be 8 header buffers to be shared between the sequencers. 

Note that each header buffer is not statically linked to a 
specific TCB buffer. In fact the link is dynamic on a per-frame 
basis. The need for this dynamic linking will be explained in 
later sections. Suffice to say here that ifthere is a free header 
buffer, then somewhere there is also a free TCB SRAM 
buffer; 

segment. The server sends the connect confirm, reply and 
disconnect in his first segment. Then the client confirms the 
disconnect. This is a total of 3 segments for the life of a 

65 context. Typical data lengths are on the order of 300 bytes 
from the client and 3 K from the server. The INIC will provide 
as good an assist as seems necessary here by checksumming 



US 7,673,072 B2 
73 

the frame and splitting headers and data. The latter is only 
likely when data is forwarded with a request such as when a 
filled-in form is sent by the client. 

SRAM Requirements. 
SRAM requirements for the Receive and Transmit engines 

are shown in FIG. 38. Depending upon the available space, 
the number ofTCB buffers may be increased to 16. 

General Philosophy. 
The basic plan is to have the host determine when a TCP 

connection is able to be handed to the INIC, setup the TCB 
and pass it to the card via a command in the Transmit queue. 
TCBs that the INIC owns can be handed back to the host via 
a request from the Receive or Transmit sequencers or from the 
host itself at any time. 

When the INI C receives a frame, one of its immediate tasks 
is to determine if the frame is for a TCB that it controls. If not, 
the frame is passed to the host on a generic interface TCB. On 
transmit, the transmit request will specify a TCB hash number 
if the request is on a INIC-controlled TCB. Thus the initial 
state for the INIC will be transparent mode in which all 
received frames are directly passed through and all transmit 
requests will be simply thrown on the appropriate wire. This 
state is maintained until the host passes TCBs to the INIC to 
contro!. Note that frames received for which the INIC has no 
TCB (or it is with the host) will still have the TCP checksum 
verified if TCP/IP, and may split the TCP/IP header off into a 
separate buffer. 

Register Usage. 

74 
parts: header validation and checksumming, TCP processing 
and subsequent 5MB processing. 

Header Validation. 
There is considerable hardware assist here. The first step in 

receive processing is to DMA the frame header into an SRAM 
header buffer. It is useful for header validation to be imple
mented in conjunction with this DMA by scanning the data as 
it flies by. The following tests need to be "passed": 

10 1) MAC header: destination address is our MAC address 
(not MC or BC too), the Ethertype is IP; 2) IP header: header 
checksum is valid, header length=5, IP length>header length, 
protocol=TCP, no fragmentation, destination IP is our IP 
address; and 3) TCP header: checksum is valid (inc!. pseudo-

15 header), header length=5 or 8 (timestamp option), length is 
valid, dest port=SMB or FTP data, no FIN/SYN/URG/PSHI 
RST bits set, timestamp option is valid if present, segment is 
in sequence, the window size did not change, this is not a 
retransmission, it is a pure ACK or a pure receive segment, 

20 :~~ i~~~~~:fv~~,:t~:e :~~u~~;~0:~:!~01~:d~~I:~t~:~:~ 
it. Also note that for pure ACKs, the window-size test will be 
relaxed. This is because initially the output PERSIST state is 
to be handled on the INIC. 

25 Many but perhaps not all of these tests will be performed in 
hardware---depending upon the embodiment. 

TCP Processing. 
Once a frame has passed the header validation tests, pro

cessing splits based on whether the frame is a pure ACK or a 
30 pure received segment. 

There will be 512 registers available. The first 256 will be 
used for process contexts. The remaining 256 will be split 
between the three sequencers as follows: 1) 257-320:64 for 
RCV general processing/main loop; 2) 321-384:64 for XMT 
general processing/main loop; and 3) 385-512:128 for three 35 

Pure RCV Packet. 
The design is to split off headers into a small header buffer 

and pass the aligned data in separate large buffers. Since a 
frame has been received, eventually some receiver process on 
the host will need to be informed. In the case ofFTP, the frame sequencer use. 

Receive Processing. 

Main Loop. 
FIG. 39 is a summary of the main loop of Receive. 

Receive Events. 
The events that will be processed on a given context are: 
1) accept a context; 
2) release a context command (from the host via Transmit); 
3) release a context request (from Transmit); 
4) receive a valid frame; this will actually become 2 events 

based on the received frame-receive an ACK, receive a 
segment; 

5) receive an "invalid" frame i.e. one that causes the TCB to 
be flushed to the host; 

6) a valid ACK needs to be sent (delayed ACK timer 
expiry); and 

7) There are expected to be the following sources of events: 

is pure data and it is passed to the host immediately. This 
involves getting large buffers and D MAing the data into them, 
then setting the appropriate details in a small buffer that is 

40 used to notifY the host. However for 5MB, the INIC is per
forming reassembly of data when the frame consists of head
ers and data. So there may not yet be a complete 5MB to pass 
to the host. In this case, a small buffer will be acquired and the 
header moved into it. If the received segment completes an 

45 5MB, then the procedures are pretty much as for FTP. If it 
does not, then the scheme is to at least move the received data 
(not the headers) to the host to free the INIC buffers and to 
save latency. The list ofin-progress host buffers is maintained 
in the TCB and moved to the header buffer when the 5MB is 

50 complete. 
The final part of pure-receive processing is to fire off the 

delayed ACK timer for this segment. 

PureACK. 

a) Receive input queue: it is expected that hardware will 55 

automatically DMA arriving frames into frame buffers and 
queue an event into a RCV-event queue; b) Timer event 
queue: expiration of a timer will queue an event into this 
queue; and c) Transmit sequencer queue: for requests from 

Pure ACK processing implies this TCB is the sender, so 
there may be transmit buffers that can be returned to the host. 
If so, send an event to the Transmit processor (or do the 
processing here). If there is more output available, send an 
event to the transmit processor. Then appropriate actions need 
to be taken with the retransmission timer. 

the transmit processor. 60 

For the sake of brevity the following only discusses 
receive-frame processing. 

Receive Details-Valid Context. 
The base for the receive processing done by the INIC on an 65 

existing context is the fast-path or "header prediction" code in 
the FreeBSD release. Thus the processing is divided into three 

5MB Processing. 
FIG. 40 shows the format of the 5MB header of an 5MB 

frame. The LENGTH field of the NetBIOS header will be 
used to determine when a complete 5MB has been received 
and the header buffer with appropriate details can be posted to 
the host. The interesting commands are the write commands: 
5MBwrite (OxB), 5MBwriteBraw (OxlD), 5MBwriteBmpx 



US 7,673,072 B2 
75 

(OxIE), 5MBwriteBs (OxIF), 5MBwriteclose (Ox2C), 5MB
writeX (Ox2F), 5MBwriteunlock (OxI4). These are interest
ing because they will have data to be aligned in host memory. 
The point to note about these commands is that they each have 
a different WCT field, so that the start offset of the data 5 

depends on the command type. 5MB processing will thus 
need to be cognizant of these types. 

Receive Details-No Valid Context. 
The design here is to provide as much assist as possible. 10 

Frames will be checksummed and the TCPIP headers may be 
split off. 

Receive Notes. 

76 
large buffer is acquired from the free buffer fifo, and the MAC 
and TCP/IP headers are created in it. It may be quicker! 
simpler to keep a basic frame header set up in the TCB and 
either DMA directly this into the frame each time. Then data 
is DMA'd from host memory into the frame to create an 
MSS-sized segment. This DMA also checksums the data. 
Then the checksum is adjusted for the pseudo-header and 
placed into the TCP header, and the frame is queued to the 
MAC transmit interface which may be controlled by the third 
sequencer. The final step is to update various window fields 
etc in the TCB. Eventually either the entire request will have 
been sent and acked, or a retransmission timer will expire in 
which case the context is flushed to the host. In either case, the 1. PRU_RCVD or the equivalent in Microsoft language: 

the host application has to tell the INIC when he has accepted 
the received data that has been queued. This is so that the INIC 
can update the receive window. It is an advantage for this 
mechanism to be efficient. This may be accomplished by 
piggybacking these oh transmit requests (not necessarily for 
the same TCB). 

15 INIC will place a command response in the Response queue 
containing the command buffer handle from the original 
transmit command and appropriate status. 

The above discussion has dealt how an actual transmit 
occurs. However the real challenge in the transmit processor 

2. Keepalive Timer: for a INIC-controlled TCB, the INIC 
will not maintain this timer. This leaves the host with the job 
of detennining that the TCB is still active. 

20 is to detennine whether it is appropriate to transmit at the time 
a transmit request arrives. There are many reasons not to 
transmit: the receiver's window size is <=0, the Persist timer 
has expired, the amount to send is less than a full segment and 

3. Timestamp option: it is useful to support this option in 
the fast path because the BSD implementation does. Also, it 25 

can be very helpful in getting a much better estimate of the 
round-trip time (RTT) which TCP needs to use. 

4. Idle timer: the INIC will not maintain this timer (see 
Note 2 above). 

5. Frame with no valid context: The INIC may split TCP/IP 30 

headers into a separate header buffer. 

anACK is expected! outstanding, the receiver's window is not 
half-open etc. Much of the transmit processing will be in 
determining these conditions. 

Transmit Details-No Valid Context. 

The main difference between this and a context-based 
transmit is that the queued request here will already have the 
appropriate MAC and TCP/IP (or whatever) headers in the 
frame to be output. Also the request is guaranteed not to be 
greater than MSS-sized in length. So the processing is fairly 
simple. A large buffer is acquired and the frame is DMAed 

Transmit Processing. 

Main Loop. 
FIG. 41 is a summary of the main loop of Transmit. 

Transmit Events. 

35 into it, at which time the checksum is also calculated. If the 
frame is TCP/IP, the checksum will be appropriately adjusted 
if necessary (pseudo-header etc) and placed in the TCP 
header. The frame is then queued to the appropriate MAC 
transmit interface. Then the command is immediately 

The events that will be processed on a given context and 
their sources are: I) accept a context (from the Host); 2) 
release a context command (from the Host); 3) release a 
context command (from Receive); 4) valid send request and 
window>O (from host or RCV sequencer); 5) valid send 
request and window=O (from host or RCV sequencer); 6) 
send a window update (host has accepted data); 7) persist 
timer expiration (persist timer); 8) context-release event e.g. 45 

window shrank (XMT processing or retransmission timer); 
and 9) receive-release request ACK (from RCV sequencer). 

Transmit Details-Valid Context. 
The following is an overview of the transmit flow: The host 

posts a transmit request to the INIC by filling in a command 
buffer with appropriate data pointers etc and posting it to the 
INIC via the Command Buffer Address register. Note that 
there is one host command buffer queue, but there are four 
physical transmit lines. So each request needs to include an 
interface number as well as the context number. The INIC 
microcode will DMA the command in and place it in one of 
four internal command queues which the transmit sequencer 
will work on. This is so that transmit processing can round
robin service these four queues to keep all four interfaces 
busy, and not let a highly-active interface lock out the others 
(which would happen with a single queue). The transmit 
request may be a segment that is less than the MSS, or it may 

40 responded to with appropriate status through the Response 
queue. 

Transmit Notes. 

I) Slow-start: the INIC will handle the slow-start algorithm 
that is now a part of the TCP standard. This obviates waiting 
until the connection is sending a full-rate before passing it to 
the INIC. 

2) Window Probe vs Window Update-an explanation for 
posterity. A Window Probe is sent from the sending TCB to 

50 the receiving TCB, and it means the sender has the receiver in 
PERSIST state. Persist state is entered when the receiver 
advertises a zero window. It is thus the state of the transmit
ting TCB. In this state, he sends periodic window probes to 
the receiver in case an ACK from the receiver has been lost. 

55 The receiver will return his latest window size in the ACK. A 
Window Update is sent from the receiving TCB to the sending 
TCB, usually to tell him that the receiving window has 
altered. It is mostly triggered by the upper layer when it 
accepts some data. This probably means the sending TCB is 

60 viewing the receiving TCB as being in PERSIST state. 

be as much as a full 64 K 5MB READ. Obviously the fonner 
request will go out as one segment, the latter as a number of 
MSS-sized segments. The transmitting TCB must hold on to 65 

the request until all data in it has been transmitted and acked. 
Appropriate pointers to do this will be kept in the TCB. A 

3) Persist state: it is designed to handle Persist state on the 
INIC. It seems unreasonable to throw a TCB back to the host 
just because its receiver advertised a zero window. This would 
normally be a transient situation, and would tend to happen 
mostly with clients that do not support slow-start. Alterna
tively, the code can easily be changed to throw the TCB back 
to the host as soon as a receiver advertises a zero window. 



US 7,673,072 B2 
77 

4) MSS-sized frames: the INIC code will expect all trans
mit requests for which it has no TCB to not be greater than the 
MSS. If any request is, it will be dropped and an appropriate 
response status posted. 

78 
figuration space and memory mapped operations, and also as 
described below, for managing the debug interface. 

5) Silly Window avoidance: as a receiver, the INIC will do 5 

the right thing here and not advertise small windows-this is 
easy. However it is necessary to also do things to avoid this as 

All data transfers, and other INIC initiated transfers will be 
done via DMA. Configuration space for both the network 
processor function and the utility processor function will 
define a single memory space for each. This memory space 
will define the basic communication structure for the host. In 
general, writing to one of these memory locations will per
form a request for service from the INIC. This is detailed in 
the memory description for each function. This section 
defines much of the operation of the Host interface, but should 
be read in conjunction with the Host Interface Strategy for the 
Alacritech INIC to fully define the HostiINIC interface. 

a sender, for the cases where a stupid client does advertise 
small windows. Without getting into too much detail here, the 
mechanism requires the INIC code to calculate the largest 10 

window advertisement ever advertised by the other end. It is 
an attempt to guess the size of the other end's receive buffer 
and assumes the other end never reduces the size of its receive 
buffer. See Stevens, "TCP/IP Illustrated", Vol. 1, pp. 325-326 
(1994). 

The Utility Processor. 

SUMMARY 

The following is a summary of the main functions of the 
utility sequencer of the microprocessor: 

Two registers, DMA hardware and an interrupt function 
15 comprise the INIC interface to the Host through PCl. The 

interrupt function is implemented via a four bit register (PCC 
INT) tied to the PCI interrupt lines. This register is directly 
accessed by the microprocessor. 

THE MICROPROCESSOR uses two registers, the PCC 
20 Data_Reg and the PCCAddress_Reg, to enable the Host to 

access Configuration Space and the memory space allocated 
to the INIC. These registers are not available to the Host, but 
are used by THE MICROPROCESSOR to enable Host reads 

1) Look at the event queues: Event13 Type & Event23 Type 
(we assume there will be an event status bit for this
USE_EV13 and USE_EV23) in the events register; these are 
events from sequencers 1 and 2; they will mainly be XMIT 25 

requests from the XMT sequencer. Dequeue request and 
place the frame on the appropriate interface. 

and writes. The function of these two registers is as follows. 
1) PCCData_Reg: This register can be both read and writ

ten by THE MICROPROCESSOR. On write operations from 
the host, this register contains the data being sent from the 
host. On read operations, this register contains the data to be 
sent to the host. 

2) PCCAddress_Reg: This is the control register for 
memory reads and writes from the host. The structure of the 
register is shown in FIG. 42. During a write operation from 
the Host the PCCData_Reg contains valid data after Data 

2) RCV-frame support: in the model, RCV is done through 
VinicReceive( ) which is registered by the lower-edge driver, 
and is called at dispatch-level. This routine calls Vinic Trans- 30 

ferDataComplete() to check if the xfer (possibly DMA) of the 
frame into host buffers is complete. The latter rtne is also 
called at dispatch level on a DMA-completion interrupt. It 
queues complete buffers to the RCV sequencer via the normal 
queue mechanism. 

35 Valid is set in the PCCAddress_Reg. Both registers are 
locked until THE MICROPROCESSOR writes the PCCDa-

3) Other processes may also be employed here for support
ing the RCV sequencer. 

4) Service the following registers (this will probably 
involve micro-interrupts): 

a) Header Buffer Address register: 
Buffers are 256 bytes long on 256-byte boundaries. 
31-8-physical addr in host of a set of contiguous hddr 

buffers. 
7-O---number ofhddr buffers passed. 
Use contents to add to SmallHType queue. 
b) Data Buffer Handle & Data Buffer Address registers: 
Buffers are 4 K long aligned on 4 K boundaries. 
Use contents to add to the FreeType queue. 
c) Command Buffer Address register: 
Buffers are multiple of32 bytes up to 1 K long (2**5*32). 
31-5-physical addr in host of cmd buffer. 
4-0---length of cmd in bytes/32 (i.e. multiples of32 bytes). 
Points to host cmd; get FreeSType buffer and move. 
command into it; queue to XmiW-Xmit3Type queues. 
d) Response Buffer Address register: 
Buffers are 32 bytes long on 32-byte boundaries. 
31-8-physical addr in host of a set of contiguous resp 

buffers. 
7 -O---number of resp buffers passed. 
Use contents to add to the ResponseType queue. 
5) Low buffer threshold support: set approp bits in the ISR 

when the available-buffers count in the various queues filled 
by the host falls below a threshold. 

40 

ta_Reg, which resets Data Valid. All read operations will be 
direct from SRAM. Memory space based reads will return 00. 
Configuration space reads will be mapped as shown in FIG. 
43. 

Configuration Space. 
The INIC is implemented as a multi-function device. The 

first device is the network controller, and the second device is 
the debug interface. An alternative production embodiment 

45 may implement only the network controller function. Both 
configuration space headers will be the same, except for the 
differences noted in the following description. 

Vendor ID-This field will contain the Alacritech Vendor 
ID. One field will be used for both functions. The Alacritech 

50 Vendor ID is hex 139A. 
Device ID-Chosen at Alacritech on a device specific 

basis. One field will be used for both functions. 
Command-Initialized to 00. All bits defined below as not 

55 enabled (0) will remain O. Those that are enabled will be set to 
o or 1 depending on the state of the system. Each function 
(network and debug) will have its own command field, as 
shown in FIG. 44. 

Status-This is not initialized to zero. Each function will 
60 have its own field. The configuration is as shown in FIG. 45. 

Revision ID-The revision field will be shared by both 
functions. 

Class Code-This is 02 00 00 for the network controller, 
and for the debug interface. The field will be shared. 

Further Operations of the Utility Processor. 65 Cache Line Size-This is initialized to zero. Supported 
sizes are 16, 32,64 and 128 bytes. This hardware register is 
replicated in SRAM and supported separately for each func-

The utility processor of the microprocessor housed on the 
INIC is responsible for setting up and implementing all con-



US 7,673,072 B2 
79 

tion, but THE MICROPROCESSOR will implement the 
value set in Configuration Space I (the network processor). 

Latency Timer-This is initialized to zero. The function is 
supported. This hardware register is replicated in SRAM. 
Each function is supported separately, but THE MICROPRO- 5 

CESSOR will implement the value set in Configuration 
Space I (the network processor). 

Header Type-This is set to SO for both functions, but will 
be supported separately. 

BIST -Is implemented. In addition to responding to a 10 

request to run self test, if test after reset fails, a code will be set 
in the BIST register. This will be implemented separately for 
each function. 

Base Address Register-A single base address register is 
implemented for each function. It is 64 bits in length, and the 15 

bottom four bits are configured as follows: Bit 0---0, indicates 
memory base address; Bit 1,2-00, locate base address any
where in 32 bit memory space; and Bit 3-1, memory is 
prefetchable. 

O. 

CardBus CIS Pointer-Not implemented-initialized to O. 20 

Subsystem Vendor ID-Not implemented-initialized to 

Subsystem ID-Not implemented-initialized to O. 
Expansion ROM Base Address-Not implemented-ini-

tialized to O. 25 

Interrupt Line-Implemented-initialized to O. This is 
implemented separately for each function. 

80 
OS-Interrupt Mask-Written by the host. Interrupts are 

masked for each of the bits in the interrupt status when the 
same bit in the mask register is set. When the Interrupt 
Mask register is written and as a result a status bit is 
unmasked, an interrupt is generated. Also, when the Inter
rupt Status Register is written, enabling new status to be 
stored, when it is stored if a bit is stored that is not masked 
by the Interrupt Mask, an interrupt is generated. 

OC-Header Buffer Address-Written by host to pass a set of 
header buffers to the INIC. 

IO---Data Buffer Handle-First register to be written by the 
Host to transfer a receive data buffer to the INIC. This data 
is Host reference data. It is not used by the INIC, it is 
returned with the data buffer. However, to insure integrity 
of the buffer, this register must be interlocked with the Data 
Buffer Address register. Once the Data Buffer Address 
register has been written, neither register can be written 
until after the Data Buffer Handle register has been read by 
THE MICROPROCESSOR. 

14-Data Buffer Address-Pointer to the data buffer being 
sent to the INIC by the Host. Must be interlocked with the 
Data Buffer Handle register. 

IS-Command Buffer Address XMTO-Pointer to a set of 
command buffers sent by the Host. THE MICROPROCES
SOR will DMA the buffers to local DRAM found on the 
FreeSType queue and queue the Command Buffer Address 
XMTO with the local address replacing the host Address. 

I C---Command Buffer Address SMTl. 
20---Command Buffer Address SMT2. 

Interrupt Pin-This is set to 01, corresponding to INTA# 
for the network controller, and 02, corresponding to INTB# 
for the debug interface. This is implemented separately for 
each function. 

30 24-Command Buffer Address SMT3. 

Min_Gnt-This can be set at a value in the range of 10, to 
allow reasonably long bursts on the bus. This is implemented 
separately for each function. 

Max_Lat-This can be set to 0 to indicate no particular 35 

requirement for frequency of access to PCl. This is imple
mented separately for each function. 

Memory Space. 

2S-Response Buffer Address-Pointer to a set of response 
buffers sent by the Host. These will be treated in the same 
fashion as the Command Buffer Address registers. 

Utility Processor. 
Ending status will be handled by the utility processor in the 

same fashion as it is handled by the network processor. At 
present two ending status conditions are defined B31---com
mand complete, and B3 O---error. When end status is stored an 

Because each of the following functions mayor may not 
reside in a single location, and mayor may not need to be in 
SRAM at all, the address for each is really only used as an 
identifier (label). There is, therefore, no control block any
where in memory that represents this memory space. When 
the host writes one of these registers, the utility processor will 
construct the data required and transfer it. Reads to this 
memory will generate 00 for data. 

40 interrupt is generated. 
Two additional registers are defined, Command Pointer 

and Data Pointer. The Host is responsible for insuring that the 
Data Pointer is valid and points to sufficient memory before 
storing a command pointer. Storing a command pointer ini-

Network Processor. 

45 tiates command decode and execution by the debug proces
sor. The Host must not modify either command or Data 
Pointer until ending status has been received, at which point 
a new command may be initiated. Memory space is write only 
by the Host, reads will receive 00. The format is as follows: The following four byte registers, beginning at location 

hOO of the network processor's allocated memory, are 50 

defined. 
OO-Interrupt Status Pointer-Initialized by the host to point 

to a four byte area where status is stored. 
04-Interrupt Status-Returned status from host. Sent after 

one or more status conditions have been reset. Also an 55 

interlock for storing any new status. Once status has been 
stored at the Interrupt Status Pointer location, no new status 
will be ORed until the host writes the Interrupt Status 
Register. New status will be ored with any remaining 
uncleared status (as defined by the contents of the returned 60 

status) and stored again at the Interrupt Status Pointer 
location. Bits are as follows: 
Bit 31-ERR-Error bits are set; 
Bit 30-RCV -Receive has occurred; 
Bit 29-XMT -Transmit command complete; and 65 

Bit 25-RMISS-Receive drop occurred due to no buff-
ers. 

OO---Interrupt Status Pointer-Initialized by the host to point 
to a four byte area where status is stored. 

04-Interrupt Status-Returned status from host. Sent after 
one or more status conditions have been reset. Also an 
interlock for storing any new status. Once status has been 
stored at the Interrupt Status Pointer location, no new status 
will be stored until the host writes the Interrupt Status 
Register. New status will be ored with any remaining 
uncleared status (as defined by the contents of the returned 
status) and stored again at the Interrupt Status Pointer 
location. Bits are as follows: 
Bit 31---CC-Command Complete; 
Bit 30-ERR-Error; 
Bit29-Transmit Processor Halted; 
Bit28-Receive Processor Halted; and 
Bit27-Utility Processor Halted. 

OS-Interrupt Mask-Written by the host. Interrupts are 
masked for each of the bits in the interrupt status when the 



US 7,673,072 B2 
81 

same bit in the mask register is set. When the Interrupt 
Mask register is written and as a result a status bit is 
unmasked, an interrupt is generated. Also, when the Inter
rupt Status Register is written, enabling new status to be 
stored, when it is stored if a bit is stored that is not masked 
by the Interrupt Mask, an interrupt is generated. 

OC---Command Pointer-Points to command to be executed. 
Storing this pointer initiates command decode and execu
tion. 

82 
address, the count data from the first break request is used, 
and each time either processor executes the instruction the 
count is decremented. 

20 - Reset Break 

o 1-3 4-7 

Command Reserved Address lO-Data Pointer-Points to the data buffer. This is used for 10 

both read and write data, determined by the command 
function. This command resets a previously set break point at the 

specified address. Reset break fully resets that address. If 
multiple processors were set to that break point, all will be 

15 reset. 

Debug Interface. 
In order to provide a mechanism to debug the microcode 

running on the microprocessor sequencers, a debug process 
has been defined which will run on the utility sequencer. This 
processor will interface with a control program on the host 
processor over PCl. 

Pci Interface. 
This interface is defined in the combination of the Utility 

Processor and the Host Interface Strategy sections, above. 

Command Format. 

20 

The first byte of the command, the command byte, defines 25 

the structure of the remainder of the command. 

Command Byte. 
The first five bits of the command byte are the command 

itself. The next bit is used to specifY an alternate processor, 30 

and the last two bits specify which processors are intended for 
the command. 

Processor Bits. 
OO-Any Processor; 
01-Transmit Processor; 
lO-Receive Processor; and 
II-Utility Processor. 

Alternate Processor. 

35 

This bit defines which processor should handle debug pro- 40 

cessing if the utility processor is defined as the processor in 
debug. 

0-Transmit Processor; and 
I-Receive Processor. 

28 - Dump 

o 2-3 4-7 

Command Descriptor Count Address 

This command transfers to the host the contents of the 
descriptor. For descriptors larger than four bytes, a count, in 
four byte increments is specified. For descriptors utilizing an 
address the address field is specified. 

Descriptor 
OO-Register-This descriptor uses both count and 

address fields. Both fields are four byte based (a count of 
I transfers four bytes). 

Ol-Sram-This descriptor uses both count and address 
fields. Count is in four byte blocks. Address is in bytes, 
but if it is not four byte aligned, it is forced to the lower 
four byte aligned address. 

02-DRAM-This descriptor uses both count and address 
fields. Count is in four byte blocks. Address is in bytes, 
but if it is not four byte aligned, it is forced to the lower 
four byte aligned address. 

03---Cstore-This descriptor uses both count and address 
fields. Count is in four byte blocks. Address is in bytes, 
but if it is not four byte aligned, it is forced to the lower 
four byte aligned address. 

Single Byte Commands. 
OO-Halt-This command asynchronously halts the pro

cessor. 

45 Stand-alone descriptors: The following descriptors do not use 
either the count or address fields. They transfer the contents of 
the referenced register. 

08-Run-This command starts the processor. 
10-Step-This command steps the processor. 

Eight Byte Commands. 

18 - Break 

o 2-3 4-7 

Command Reserved Count Address 

This command sets a stop at the specified address. A count 

50 

55 

60 

of I causes the specified processor to halt the first time it 
executes the instruction. A count of 2 or more causes the 
processor to halt after that number of executions. The proces
sor is halted just before executing the instruction. A count of 65 

o does not halt the processor, but causes a sync signal to be 
generated. If a second processor is set to the same break 

04---CPU _STATUS; 
OS-PC; 
06-ADDR_REGA; 
07-ADDR_REGB; 
08-RAM_BASE; 
09-FILE_BASE; 
OA-INSTR_REG_L; 
OB-INSTR_REG_H; 
OC-MAC_DATA; 
OD-DMA_EVENT; 
OE-MISC_EVENT; 
OF-Q_IN_RDY; 
10-Q_OUT_RDY; 
II-LOCK STATUS; 
12-STACK-This returns 12 bytes; and 
13-SENSE_REG. 
This register contains four bytes of data. If error status is 

posted for a command, if the next command that is issued 
reads this register, a code describing the error in more detail 



US 7,673,072 B2 
83 

may be obtained. If any command other than a dump of this 
register is issued after error status, sense information will be 
reset. 

30 - Load 

o 2-3 4-7 

Command Descriptor Count Address 

This command transfers from the host the contents of the 
descriptor. For descriptors larger than four bytes, a count, in 
four byte increments is specified. For descriptors utilizing an 
address the address field is specified. 

Descriptor 
OO-Register-This descriptor uses both count and 

address fields. Both fields are four byte based. 
Ol-Sram-This descriptor uses both count and address 

fields. Count is in four byte blocks. Address is in bytes, 
but if it is not four byte aligned, it is forced to the lower 
four byte aligned address. 

02-DRAM-This descriptor uses both count and address 
fields. Count is in four byte blocks. Address is in bytes, 
but if it is not four byte aligned, it is forced to the lower 
four byte aligned address. 

84 
e) Host memory based communications reduce register 

accesses; 
f) Host memory based interrupt status word reduces regis-

ter reads; 
g) Plug and Play compatible; 
h) PCI specification revision 2.1 compliant; 
i) PCI bursts up to 512 bytes; 
j) Supports cache line operations up to 128 bytes; 
k) Both big-endian and little-endian byte alignments sup-

10 ported; and 
I) Supports Expansion ROM. 

2) Network Interface. 
a) Four internal 802.3 and ethernet compliant Macs; 

15 b) Media Independent Interface (MIl) supports external 
PHYs; 

c) lOBASE-T, 100BASE-TX/FX and 100BASE-T4 sup
ported; 

d) Full and half-duplex modes supported; 
20 e) Automatic PHY status polling notifies system of status 

change; 
f) Provides SNMP statistics counters; 
g) Supports broadcast and multicast packets; 
h) Provides promiscuous mode for network monitoring or 

25 multiple unicast address detection; 
i) Supports "huge packets" up to 32 KB; 
j) Mac-layer loop-back test mode; and 

03---Cstore-This descriptor uses both count and address 
fields. Count is in four byte blocks. Address is in bytes, 
but if it is not four byte aligned, it is forced to the lower 30 

four byte aligned address. This applies to WCS only. 

k) Supports auto-negotiating Phys. 

3) Memory Interface. 
a) External DRAM buffering of transmit and receive pack

ets; 

Stand-alone descriptors: The following descriptors do not use 
either the count or address fields. They transfer the contents of 
the referenced register. 

04-ADDR_REGA; 
05-ADDR_REGB; 
06-RAM_BASE; 
07 -FILE_BASE; 
08-MAC_DATA; 
09---Q_IN_RDY; 
OA-Q_OUT RDY; 
OB-DBG_ADDR; and 
38-MAP. 

35 

b) Buffering configurable as 4 MB, 8 MB, 16 MB or 32 
MB; 

c) 32-bit interface supports throughput of 224 MB/s; 
d) Supports external FLASH ROM up to 4 MB, for diskless 

boot applications; and e) Supports external serial EEPROM 
for custom configuration and Mac addresses. 

4) Protocol Processor. 
40 a) High speed, custom, 32-bit processor executes 66 mil-

lion instructions per second; 
b) Processes IP, TCP and NETBIOS protocols; 
c) Supports up to 256 resident TCP/IP contexts; and 

This command allows an instruction in ROM to be replaced 45 

by an instruction in WCS. The new instruction will be located 

d) Writable control store (WCS) allows field updates for 
feature enhancements. 

5) Power. 
in the Host buffer. It will be stored in the first eight bytes of the 
buffer, with the high bits unused. To reset a mapped out 
instruction, map it to location 00. 

o 

Command 

Hardware Specification. 

Features: 

1-3 

Address to 
Map To 

4-7 

Address to 
Map Out 

1) Peripheral Component Intercounect (PCI) Interface. 
a) Universal PCI interface supports both 5.0V and 3.3V 

signaling environments; 
b) Supports both 32-bit and 64 bit PCI interface; 
c) Supports PCI clock frequencies from 15 MHz to 66 

MHz; 
d) High performance bus mastering architecture; 

a) 3.3V chip operation; and 
b) PCI controlled 5.0V/3.3V I/O cell operation. 

50 6) Packaging. 
a) 272-pin plastic ball grid array; 
b) 91 PCI signals; 
c) 68 MIl signals; 
d) 58 external memory signals; 
e) 1 clock signal; 
f) 54 signals split between power and ground; and 

55 

g) 272 total pins. 

General Description. 
The microprocessor (see FIG. 46) is a 32-bit, full-duplex, 

60 four chaunel, lO/lOO-Megabit per second (Mbps), Intelligent 
Network Interface Controller (INIC) , designed to provide 
high-speed protocol processing for server applications. It 
combines the functions of a standard network interface con
troller and a protocol processor within a single chip. Although 

65 designed specifically for server applications, the micropro
cessor can be used by PCs, workstations and routers or any
where that TCP/IP protocols are being utilized. 



US 7,673,072 B2 
85 

When combined with four 802.3/MIl compliant Phys and 
Synchronous DRAM (SDRAM), the INIC comprises four 
complete ethernet nodes. It contains four 802.3/ethernet com
pliant Macs, a PCI Bus Interface Unit (BIU), a memory 
controller, transmit fifos, receive fifos and a custom TCP/IP/ 5 

NETBIOS protocol processor. The INIC supports 1 OBase-T, 
1 OOBase-TX, 1 OOBase-FX and 1 OOBase-T 4 via the MIl inter
face attachment of appropriate Phys. 

The INIC Macs provide statistical information that may be 
used for SNMP. The Macs operate in promiscuous mode 10 

allowing the INIC to function as a network monitor, receive 
broadcast and multicast packets and implement multiple Mac 
addresses for each node. 

Any 802.3/MIl compliant PHY can be utilized, allowing 
the INIC to support lOBASE-T, IOBASE-T2, 100BASE-TX, 15 

100 Base-FX and 100BASE-T4 as well as future interface 
standards. PHY identification and initialization is accom
plished through host driver initialization routines. PHY status 
registers can be polled continuously by the INIC and detected 
PHY status changes reported to the host driver. The Mac can 20 

be configured to support a maximum frame size of 1518 bytes 
or 32768 bytes. 

The 64-bit, multiplexed BIU provides a direct interface to 
the PCI bus for both slave and master functions. The INIC is 

86 
5) PERFORMANCE FEATURES. 

a) 512 registers improve performance through reduced 
scratch ram accesses and reduced instructions; 

b) Register windowing eliminates context-switching over
head; 

c) Separate instruction and data paths eliminate memory 
contention; 

d) Totally resident control store eliminates stalling during 
instruction fetch; 

e) Multiple logical processors eliminate context switching 
and improve real-time response; 

f) Pipelined architecture increases operating frequency; 
g) Shared register and scratch ram improve inter-processor 

communication; 
h) Fly-by state-Machine assists address compare and 

checksum calculation; 
i) TCP/IP-context caching reduces latency; 
j) Hardware implemented queues reduce CPU overhead 

and latency; 
k) Horizontal microcode greatly improves instruction effi

ciency; 
I) Automatic frame DMA and status between Mac and 

DRAM buffer; and 
m) Deterministic architecture coupled with context switch

ing eliminates processor stalls. 

Processor. 
The processor is a convenient means to provide a program

mable state-machine which is capable of processing incom
ing frames, processing host commands, directing network 
traffic and directing PCI bus traffic. Three processors are 
implemented using shared hardware in a three-level pipelined 
architecture which launches and completes a single instruc
tion for every clock cycle. The instructions are executed in 

capable of operating in either a 64-bit or 32-bit PCI environ- 25 

ment, while supporting 64-bit addressing in either configura
tion. PCI bus frequencies up to 66 MHz are supported yield
ing instantaneous bus transfer rates of 533 MB/s. Both 5.0V 
and 3 .3V signaling environments can be utilized by the INIC. 
Configurable cache-line size up to 256 B will accommodate 30 

future architectures, and Expansion ROM/Flash support 
allows for diskless system booting. Non-PC applications are 
supported via progranlillable big and little endian modes. 
Host based communication has been utilized to provide the 
best system performance possible. 35 three distinct phases corresponding to each of the pipeline 

stages where each phase is responsible for a different func
tion. 

The INIC supports Plug-N-Play auto-configuration 
through the PCI configuration space. External pull-up and 
pull-down resistors, on the memory I/O pins, allow selection 
of various features during chip reset. Support of an external 
eeprom allows for local storage of configuration information 40 

such as Mac addresses. 
External SDRAM provides frame buffering, which is con

figurable as 4 MB, 8 MB, 16 MB or 32 MB using the appro
priate SIMMs. Use of -10 speed grades yields an external 
buffer bandwidth of 224 MB/s. The buffer provides tempo- 45 

rary storage of both incoming and outgoing frames. The pro
tocol processor accesses the frames within the buffer in order 
to implement TCP/IP and NETBIOS. Incoming frames are 
processed, assembled then transferred to host memory under 
the control of the protocol processor. For transmit, data is 50 

moved from host memory to buffers where various headers 
are created before being transmitted out via the Mac. 

1) Cores/Cells. 

The first instruction phase writes the instruction results of 
the last instruction to the destination operand, modifies the 
program counter (Pc), selects the address source for the 
instruction to fetch, then fetches the instruction from the 
control store. The fetched instruction is then stored in the 
instruction register at the end of the clock cycle. 

The processor instructions reside in the on-chip control
store, which is implemented as a mixture of ROM and 
SRAM. The ROM contains 1 K instructions starting at 
address OxOOOO and aliases each Ox0400 locations throughout 
the first Ox8000 of instruction space. The SRAM (WCS) will 
hold up to Ox2000 instructions starting at address Ox8000 and 
aliasing each Ox2000 locations throughout the last Ox8000 of 
instruction space. The ROM and SRAM are both 49-bits wide 
accounting for bits [48:0] of the instruction microword. A 
separate mapping ram provides bits [55:49] of the microword 
(MapAddr) to allow replacement of faulty ROM based 

a) LSI Logic Ethernet-l 10 Core, 100Base and lOBase Mac 
with MIl interface; 

b) LSI Logic single port SRAM, triple port SRAM and 
ROM available; 

c) LSI Logic PCI 66 MHz, 5V compatible I/O cell; and 

55 instructions. The mapping ram has a configuration of 128x7 
which is insufficient to allow a separate map address for each 
of the 1 K ROM locations. To allow re-mapping of the entire 
1 K ROM space, the map ram address lines are counected to 
the address bits Fetch[9:3]. The result is that the ROM is 

d) LSI Logic PLL. 

2) Die Size/Pin Count. 
LSI Logic GIO process. FIG. 47 shows the area on the die 

of each module. 

3) DATAPATH BANDWIDTH (See FIG. 48). 

4) CPU BANDWIDTH (See FIG. 49). 

60 re-mapped in blocks of 8 contiguous locations. 
The second instruction phase decodes the instruction 

which was stored in the instruction register. It is at this point 
that the map address is checked for a non-zero value which 
will cause the decoder to force a lmp instruction to the map 

65 address. If a non-zero value is detected then the decoder 
selects the source operands for the Alu operation based on the 
values of the OpdASel, OpdBSel and AluOp fields. These 



US 7,673,072 B2 
87 

operands are then stored in the decode register at the end of 
the clock cycle. Operands may originate from File, SRAM, or 
flip-flop based registers. The second instruction phase is also 
where the results of the previous instruction are written to the 
SRAM. 

The third instruction phase is when the actual Alu opera
tion is performed, the test condition is selected and the Stack 
push and pop are implemented. Results of the Alu operation 
are stored in the results register at the end of the clock cycle. 

FIG. 50 is a block diagram of the cpu. FIG. 50 shows the 10 

hardware functions associated with each of the instruction 

88 
program control is defined with the "C-like" description in 
FIG. 52. FIGS. 53-61 show ALU operations, selected oper
ands, selected tests, and flag operations. 

SRAM Control Sequencer (SramCtrl). 
SRAM is the nexus for data movement within the INIC. A 

hierarchy of sequencers, working in concert, accomplish the 
movement of data between DRAM, SRAM, CPU, ethernet 
and the Pci bus. Slave sequencers, provided with stimulus 
from master sequencers, request data movement operations 
by way of the SRAM, Pci bus, DRAM and Flash. The slave 
sequencers prioritize, service and acknowledge the requests. 

The data flow block diagram of FIG. 62 shows all of the 
master and slave sequencers of the INIC product. Request 

phases. Note that various functions have been distributed 
across the three phases of the instruction execution in order to 
minimize the combinatorial delays within any given phase. 

Instruction Set. 
The micro-instructions are divided into six types according 

to the program control directive. The micro-instruction is 
further divided into sub-fields for which the definitions are 

15 information such as r/w, address, size, endian and aligument 
are represented by each request line. Acknowledge informa
tion to master sequencers include only the size of the transfer 
being acknowledged. 

dependent upon the instruction type. The six instruction types 20 

are listed in FIG. 51. 

The block diagram of FIG. 63 illustrates how data move
ment is accomplished for a Pci slave write to DRAM. Note 
that the Psi (Pci slave in) module functions as both a master 
sequencer. Psi sends a write request to the SramCtrl module. 
Psi requests Xwr to move data from SRAM to DRAM. Xwr 
subsequently sends a read request to the SramCtrl module 

All instructions (see FIG. 51) include the Alu operation 
(AluOp), operand "A" select (OpdASel), operand "B" select 
(OpdBSel) and Literal fields. Other field usage depends upon 
the instruction type. 25 then writes the data to the DRAM via the Xctrl module. As 

The ')ump condition code" (lec) instruction causes the 
program counter to be altered if the condition selected by the 
"test select" (TstSel) field is asserted. The new program 
counter (Pc) value is loaded from either the Literal field or the 
AluOut as described in the following section and the Literal 30 

field may be used as a source for the Alu or the ram address if 
the new Pc value is sourced by the Alu. 

The ')ump" (lmp) instruction causes the program counter 
to be altered unconditionally. The new program counter (Pc) 
value is loaded from either the Literal field or the AluOut as 35 

described in the following section. The format allows instruc
tion bits 23: 16 to be used to perform a flag operation and the 
Literal field may be used as a source for the Alu or the ram 
address if the new Pc value is sourced by the Alu. 

each piece of data is moved from the SRAM to Xwr, Xwr 
sends an acknowledge to the Psi module. 

The SRAM control sequencer services requests to store to, 
or retrieve data from an SRAM organized as 1024 locations 
by 128 bits (16 KB). The sequencer operates at a frequency of 
133 MHz, allowing both a CPU access and a DMA access to 
occur during a standard 66 MHz CPU cycle. One 133 MHz 
cycle is reserved for CPU accesses during each 66 MHz cycle 
while the remaining 133 MHz cycle is reserved for DMA 
accesses on a prioritized basis. 

The block diagram of FIG. 64 shows the major functions of 
the SRAM control sequencer. A slave sequencer begins by 
asserting a request along with r/w, ram address, endian, data 
path size, data path aligmnent and request size. SramCtrl 

The "jump subroutine" (lsr) instruction causes the pro
gram counter to be altered unconditionally. The new program 
counter (Pc) value is loaded from either the Literal field or the 
AluOut as described in the following section. The old pro
gram counter value is stored on the top location of the Pc
Stack which is implemented as a LIFO memory. The format 
allows instruction bits 23: 16 to be used to perform a flag 
operation and the Literal field may be used as a source for the 
Alu or the ram address if the new Pc value is sourced by the 
Alu. 

40 prioritizes the requests. The request parameters are then 
selected by a multiplexer which feeds the parameters to the 
SRAM via a register. The requestor provides the SRAM 
address which when coupled with the other parameters con
trols the input and output aligument. SRAM outputs are fed to 

The "Nxt" (Nxt) instruction causes the program counter to 
increment. The format allows instruction bits 23: 16 to be used 
to perform a flag operation and the Literal field may be used 
as a source for the Alu or the ram address. 

The "return from subroutine" (Rts) instruction is a special 
form of the Nxt instruction in which the "flag operation" 
(FlgSel) field is set to a value of Ohff. The current Pc value is 
replaced with the last value stored in the stack. The Literal 
field may be used as a source for the Alu or the ram address. 

45 the output aligner via a register. Requests are acknowledged 
in parallel with the returned data. 

FIG. 65 is a timing diagram depicting two ram accesses 
during a single 66 MHz clock cycle. 

External Memory Control (Xctrl). 
50 Xctrl (See FIG. 66) provides the facility whereby Xwr, 

Xrd, Dcfg and Eectrl access external Flash and DRAM. Xctrl 
includes an arbiter, i/o registers, data multiplexers, address 
multiplexers and control multiplexers. Ownership of the 
external memory interace is requested by each block and 

55 granted to each of the requesters by the arbiter function. Once 
ownership has been granted the multiplexers select the 
address, data and control signals from owner, allowing access 
to external memory. 

The Map instruction is provided to allow replacement of 
instructions which have been stored in ROM and is imple- 60 

mented any time the "map enable" (Map En) bit has been set 
and the content of the "map address" (MapAddr) field is 
non-zero. The instruction decoder forces a jump instruction 
with the Alu operation and destination fields set to pass the 
MapAddr field to the program control block. 

External Memory Read Sequencer (Xrd). 
The Xrd sequencer acts only as a slave sequencer. Servic

ing requests issued by master sequencers, the Xrd sequencer 
moves data from external SDRAM or flash to the SRAM, via 
the Xctrl module, in blocks of32 bytes or less. The nature of 

65 the SDRAM requires fixed burst sizes for each of it's internal 
banks with ras precharge intervals between each access. By 
selecting a burst size of 32 bytes for SDRAM reads and 

The program control is determined by a combination of 
PgmCtrl, DstOpd, FlgSel and TstSel. The behavior of the 



US 7,673,072 B2 
89 

interleaving bank accesses on a 16 byte boundary, we can 
ensure that the ras precharge interval for the first bank is 
satisfied before burst completion for the second bank, allow
ing us to re-instruct the first bank and continue with uninter
rupted DRAM access. SDRAMs require a consistent burst 
size be utilized each and every time the SDRAM is accessed. 
For this reason, if an SD RAM access does not begin or end on 
a 32 byte boundary, SDRAM bandwidth will be reduced due 
to less than 32 bytes of data being transferred during the burst 
cycle. 

90 
with both data and an acknowledge. The Xwr sequencer 
passes the acknowledge to the level two master along with a 
size code indicating how much data was read during the 
SRAM cycle allowing the update of pointers and counters. 
Once sufficient data has been read from SRAM, the Xwr 
sequencer issues a write command to the DRAM starting the 
burst cycle and computing a checksum as the data flys by. The 
SRAM read cycle repeats until the original burst request has 
been completed at which point the X wr sequencer prioritizes 

10 any remaining requests in preparation for the next burst cycle. 
FIG. 67 depicts the major functional blocks of the Xrd 

external memory read sequencer. The first step in servicing a 
request to move data from SDRAM to SRAM is the prioriti
zation of the master sequencer requests. Next the Xrd 
sequencer takes a snapshot of the DRAM read address and 15 

applies configuration information to determine the correct 
bank, row and colunm address to apply. Once sufficient data 
has been read, the Xrd sequencer issues a write request to the 
SramCtrl sequencer which in tum sends an acknowledge to 
the Xrd sequencer. The Xrd sequencer passes the acknowl- 20 

edge along to the level two master with a size code indicating 
how much data was written during the SRAM cycle allowing 
the update of pointers and counters. The DRAM read and 
SRAM write cycles repeat until the original burst request has 
been completed at which point the Xrd sequencer prioritizes 25 

any remaining requests in preparation for the next burst cycle. 

Contiguous DRAM burst cycles are not guaranteed to the 
X wr sequencer as an algorithm is implemented which ensures 
highest priority to refresh cycles followed by flash accesses 
then DRAM writes. 

FIG. 70 is a timing diagram illustrating how data is written 
to SDRAM. The DRAM has been configured for a burst of 
four with a latency of two clock cycles. Bank A is first 
selected/activated followed by a write command two clock 
cycles later. The bank select/activate for bank B is next issued 
in preparation for issuing the second write command. As soon 
as the first 16 byte burst to bank A completes we issue the 
write command for bank B and begin supplying data. 

PCI Master-Out Sequencer (Pmo). 
The Pmo sequencer (See FIG. 71) acts only as a slave 

sequencer. Servicing requests issued by master sequencers, 
the Pmo sequencer moves data from an SRAM based fifo to a 
Pci target, via the PciMstrIO module, in bursts of up to 256 
bytes. The nature of the PCI bus dictates the use of the write 

Contiguous DRAM burst cycles are not guaranteed to the 
Xrd sequencer as an algorithm is implemented which ensures 
highest priority to refresh cycles followed by flash accesses, 
DRAM writes then DRAM reads. 

FIG. 68 is a timing diagram illustrating how data is read 
from SDRAM. The DRAM has been configured for a burst of 
four with a latency of two clock cycles. Bank A is first 
selected/activated followed by a read command two clock 
cycles later. The bank select/activate for bank B is next issued 
as read data begins returning two clocks after the read com
mand was issued to bankA. Two clock cycles before we need 
to receive data from bank B we issue the read command. Once 
all 16 bytes have been received from bankA we beginreceiv
ing data from bank B. 

External Memory Write Sequencer (Xwr). 
The X wr sequencer is a slave sequencer. Servicing requests 

issued by master sequencers, the Xwr sequencer moves data 
from SRAM to the external SDRAM or flash, via the Xctrl 
module, in blocks of 32 bytes or less while accumulating a 
checksum of the data moved. The nature of the SDRAM 
requires fixed burst sizes for each of it's internal banks with 
ras precharge intervals between each access. By selecting a 
burst size of 32 bytes for SDRAM writes and interleaving 
bank accesses on a 16 byte boundary, we can ensure that the 
ras prechage interval for the first bank is satisfied before burst 
completion for the second bank, allowing us to re-instruct the 
first bank and continue with uninterrupted DRAM access. 
SDRAMs require a consistent burst size be utilized each and 
every time the SDRAM is accessed. For this reason, if an 
SDRAM access does not begin or end on a 32 byte boundary, 
SDRAM bandwidth will be reduced due to less than 32 bytes 
of data being transferred during the burst cycle. 

30 line command to ensure optimal system performance. The 
write line command requires that the Pmo sequencer be 
capable of transferring a whole multiple (lx, 2x, 3x, ... ) of 
cache lines of which the size is set through the Pci configu
ration registers. To accomplish this end, Pmo will automati-

35 cally perform partial bursts until it has aligned the transfers on 
a cache line boundary at which time it will begin usage of the 
write line command. The SRAM fifo depth, of256 bytes, has 
been chosen in order to allow Pmo to accommodate cache line 
sizes up to 128 bytes. Provided the cache line size is less than 

40 128 bytes, Pmo will perform multiple, contiguous cache line 
bursts until it has exhausted the supply of data. 

Pmo receives requests from two separate sources; the 
DRAM to Pci (D2p) module and the SRAM to Pci (S2p) 
module. An operation first begins with prioritization of the 

45 requests where the S2p module is given highest priority. Next, 
the Pmo module takes a Snapshot of the SRAM fifo address 
and uses this to generate read requests for the SramCtrl 
sequencer. The Pmo module then proceeds to arbitrate for 
ownership of the Pci bus via the PciMstrIO module. Once the 

50 Pmo holding registers have sufficient data and Pci bus mas
tership has been granted, the Pmo module begins transferring 
data to the Pci target. For each successful transfer, Pmo sends 
an acknowledge and encoded size to the master sequencer, 
allow it to update it's internal pointers, counters and status. 

55 Once the Pci burst transaction has terminated, Pmo parks on 
the Pci bus unless another initiator has requested ownership. 
Pmo again prioritizes the incoming requests and repeats the 
process. 

Pci Master-Out Sequencer (Pmi). 
FIG. 69 depicts the major functional blocks of the Xwr 60 

sequencer. The first step in servicing a request to move data 
from SRAM to SDRAM is the prioritization of the level two 
master requests. Next the X wr sequencer takes a Snapshot of 
the DRAM write address and applies configuration informa
tion to determine the correct DRAM, bank, row and column 65 

address to apply. The Xwr sequencer immediately issues a 
read command to the SRAM to which the SRAM responds 

The Pmi sequencer (See FIG. 72) acts only as a slave 
sequencer. Servicing requests issued by master sequencers, 
the Pmi sequencer moves data from a Pci target to an SRAM 
based fifo, via the PciMstrIO module, in bursts of up to 256 
bytes. The nature of the PCI bus dictates the use of the read 
multiple command to ensure optimal system performance. 
The read multiple command requires that the Pmi sequencer 
be capable of transferring a cache line or more of data. To 



US 7,673,072 B2 
91 

accomplish this end, Pmi will automatically perfonn partial 
cache line bursts until it has aligned the transfers on a cache 
line boundary at which time it will begin usage of the read 
multiple command. The SRAM fifo depth, of256 bytes, has 
been chosen in order to allow Pmi to accommodate cache line 
sizes up to 128 bytes. Provided the cache line size is less than 
128 bytes, Pmi will perfonn multiple, contiguous cache line 
bursts until it has filled the fifo. 

Pmi receive requests from two separate sources; the Pci to 
DRAM (P2d) module and the Pci to SRAM (P2s) module. An 10 

92 
descriptor area and sets the channel done bit associated with 
that channel. P2d then monitors the D MA channels for addi
tional requests. FIG. 76 is an illustration showing the major 
blocks involved in the movement of data from a Pci target to 
DRAM. 

SRAM to Pci Sequencer (S2p). 
The S2p sequencer (See FIG. 77) acts as both a slave 

sequencer and a master sequencer. Servicing channel 
requests issued by the CPU, the S2p sequencer manages 
movement of data from SRAM to the Pci bus by issuing 
requests to the Pmo sequencer 

S2p can receive requests from any of the processor's thirty
two DMA channels. Once a command request has been 

operation first begins with prioritization of the requests where 
the P2s module is given highest priority. The Pmi module then 
proceeds to arbitrate for ownership of the Pci bus via the 
PciMstrIO module. Once the Pci bus mastership has been 
granted and the Pmi holding registers have sufficient data, the 
Pmi module begins transferring data to the SRAM fifo: For 
each successful transfer, Pmi sends an acknowledge and 
encoded size to the master sequencer, allowing it to update 
it's internal pointers, counters and status. Once the Pci burst 
transaction has tenninated, Pmi parks on the Pci bus unless 
another initiator has requested ownership. Pmi again priori
tizes the incoming requests and repeats the process. 

15 detected, S2p, operating as a slave sequencer, fetches a DMA 
descriptor from an SRAM location dedicated to the request
ing channel which includes the SRAM address, Pci address, 
Pci endian and request size. S2p then issues a request to Pmo 
which in turn moves data from the SRAM to a Pci target. The 

20 process repeats until the entire request has been satisfied at 
which time S2p writes ending status in to the SRAM DMA 
descriptor area and sets the channel done bit associated with 
that channel. S2p then monitors the DMA channels for addi
tional requests. FIG. 78 is an illustration showing the major 

Dram to Pci Sequencer (D2p). 25 blocks involved in the movement of data from SRAM to Pci 

The D2p sequencer (See FIG. 73) acts is a master 
sequencer. Servicing channel requests issued by the CPU, the 
D2p sequencer manages movement of data from DRAM to 
the Pci bus by issuing requests to both the Xrd sequencer and 
the Pmo sequencer. Data transfer is accomplished using an 30 

SRAM based fifo through which data is staged. 

target. 

Pci to SRAM Sequencer (P2s). 
The P2s sequencer (See FIG. 79) acts as both a slave 

sequencer and a master sequencer. Servicing channel 
requests issued by the CPU, the P2s sequencer manages 
movement of data from Pci bus to SRAM by issuing requests 
to the Pmi sequencer. 

P2s can receive requests from any of the processor's thirty
two DMA channels. Once a command request has been 

35 detected, P2s, operating as a slave sequencer, fetches a DMA 
descriptor from an SRAM location dedicated to the request
ing channel which includes the SRAM address, Pci address, 
Pci endian and request size. P2s then issues a request to Pmo 
which in turn moves data from the Pci target to the SRAM. 

D2p can receive requests from any of the processor's 
thirty -two D MA channels. Once a command request has been 
detected, D2p fetches a DMA descriptor from an SRAM 
location dedicated to the requesting channel which includes 
the DRAM address, Pci address, Pci endian and request size. 
D2p then issues a request to the D2s sequencer causing the 
SRAM based fifo to fill with DRAM data. Once the fifo 
contains sufficient data for a Pci transaction, D2s issues a 
request to Pmo which in turn moves data from the fifo to a Pci 
target. The process repeats until the entire request has been 
satisfied at which time D2p writes ending status in to the 
SRAM DMA descriptor area and sets the channel done bit 
associated with that channel. D2p then monitors the DMA 
channels for additional requests. FIG. 74 is an illustration 45 

showing the major blocks involved in the movement of data 
from DRAM to Pci target. 

40 The process repeats until the entire request has been satisfied 
at which time P2s writes ending status in to the DMA descrip
tor area of SRAM and sets the channel done bit associated 
with that channel. P2s then monitors the DMA channels for 

Pci to Dram Sequencer (P2d). 
The P2d sequencer (See FIG. 75) acts as both a slave 50 

sequencer and a master sequencer. Servicing channel 
requests issued by the CPU, the P2d sequencer manages 
movement of data from Pci bus to DRAM by issuing requests 
to both the X wr sequencer and the Pmi sequencer. Data trans-
fer is accomplished using an SRAM based fifo through which 55 

data is staged. 

additional requests. FIG. 80 is an illustration showing the 
major blocks involved in the movement of data from a Pci 
target to DRAM. 

Dram to Sram Sequencer (D2s). 
The D2s sequencer (See FIG. 81) acts as both a slave 

sequencer and a master sequencer. Servicing channel 
requests issued by the CPU, the D2s sequencer manages 
movement of data from DRAM to SRAM by issuing requests 
to the Xrd sequencer. 

D2s can receive requests from any of the processor's thirty
two DMA channels. Once a command request has been 
detected, D2s, operating as a slave sequencer, fetches a DMA 
descriptor from an SRAM location dedicated to the request
ing channel which includes the DRAM address, SRAM 
address and request size. D2s then issues a request to the Xrd 
sequencer causing the transfer of data to the SRAM. The 
process repeats until the entire request has been satisfied at 
which time D2s writes ending status in to the SRAM DMA 
descriptor area and sets the channel done bit associated with 
that channel. D2s then monitors the DMA channels for addi-

P2d can receive requests from any of the processor's thirty
two DMA channels. Once a command request has been 
detected, P2d, operating as a slave sequencer, fetches a DMA 
descriptor from an SRAM location dedicated to the request- 60 

ing channel which includes the DRAM address, Pci address, 
Pci endian and request size. P2d then issues a request to Pmo 
which in turn moves data from the Pci target to the SRAM 
fifo. Next, P2d issues a request to the X wr sequencer causing 
the SRAM based fifo contents to be written to the DRAM. 
The process repeats until the entire request has been satisfied 

65 tional requests. FIG. 82 is an illustration showing the major 
blocks involved in the movement of data from DRAM to 
SRAM. at which time P2d writes ending status in to the SRAM DMA 



US 7,673,072 B2 
93 

SRAM to DRAM Sequencer (S2d). 
The S2d sequencer (See FIG. 83) acts as both a slave 

sequencer and a master sequencer. Servicing channel 
requests issued by the CPU, the S2d sequencer manages 
movement of data from SRAM to DRAM by issuing requests 
to the X wr sequencer. 

94 
terminated with retry until the processor clears the event flag. 
This allows the INIC to use a microcoded response mecha
nism to return data for the request. The processor decodes the 
request information, formulates or fetches the requested data 
and stores it in SRAM then clears the event flag allowing Pso 
to fetch the data and return it on the Pci bus. 

FIG. 78 depicts the sequence of events when Pso is the 
target of a Pci read operation. 

Frame Receive Sequencer (RcvX). 
The receive sequencer (See FIG. 87) (RcvSeq) analyzes 

and manages incoming packets, stores the result in DRAM 
buffers, then notifies the processor through the receive queue 
(RcvQ) mechanism. The process begins when a buffer 
descriptor is available at the output of the FreeQ. RcvSeq 
issues a request to the Qmg which responds by supplying the 
buffer descriptor to RcvSeq. RcvSeq then waits for a receive 
packet. The Mac, network, transport and session information 
is analyzed as each byte is received and stored in the assembly 

S2d can receive requests from any of the processor's thirty
two DMA channels. Once a command request has been 
detected, S2d, operating as a slave sequencer, fetches a DMA 
descriptor from an SRAM location dedicated to the request- 10 

ing channel which includes the DRAM address, SRAM 
address, checksum reset and request size. S2d then issues a 
request to the Xwr sequencer causing the transfer of data to 
the DRAM. The process repeats until the entire request has 
been satisfied at which time S2d writes ending status in to the 15 

SRAM DMA descriptor area and sets the channel done bit 
associated with that channel. S2d then monitors the DMA 
channels for additional requests. FIG. 84 is an illustration 
showing the major blocks involved in the movement of data 
from SRAM to DRAM. 20 register (AssyReg). When four bytes of information is avail

able, RcvSeq requests a write of the data to the SRAM. When 
sufficient data has been stored in the SRAM based receive 
fifo, a DRAM write request is issued to Xwr. The process 

PCI Slave Input Sequencer (Psi). 
The Psi sequencer (See FIG. 85) acts as both a slave 

sequencer and a master sequencer. Servicing requests issued 
by a Pci master, the Psi sequencer manages movement of data 25 

from Pci bus to SRAM and Pci bus to DRAM via SRAM by 
issuing requests to the SramCtrl and Xwr sequencers. 

Psi manages write requests to configuration space, expan
sion rom, DRAM, SRAM and memory mapped registers. Psi 

~~ff~:~:tS at~~~~ ~~e~u;o~~:~~~~~~oa~;~s~::er~~~l~si:~:~ 30 

generating write request to an SRAM buffer followed with a 
write request to the X wr sequencer. Subsequent write or read 
DRAM operations are retry terminated until the buffer has 
been emptied. An event notification is set for the processor 35 

allowing message passing to occur through DRAM space. 
All other Pci write transactions result in Psi posting the 

write information including Pci address, Pci byte marks and 
Pci data to a reserved location in SRAM, then setting an event 
flag which the event processor monitors. Subsequent writes 40 

or reads of configuration, expansion rom, SRAM or registers 
are terminated with retry until the processor clears the event 
flag. This allows the INIC pipelining levels to a minimum for 
the posted write and give the processor ample time to modify 
data for subsequent Pci read operations. 45 

FIG. 85 depicts the sequence of events when Psi is the 
target of a Pci write operation. Note that events 4 through 7 
occur only when the write operation targets the DRAM. 

PCI Slave Output Sequencer (Pso). 

continues until the entire packet has been received at which 
point RcvSeq stores the results of the packet analysis in the 
beginning of the DRAM buffer. Once the buffer and status 
have both been stored, RcvSeq issues a write-queue request to 
Qmg. Qmg responds by storing a buffer descriptor and a 
status vector provided by RcvSeq. The process then repeats. 
If RcvSeq detects the arrival of a packet before a free buffer is 
available, it ignores the packet and sets the FrameLost status 
bit for the next received packet. 

FIG. 88 depicts the sequence of events for successful 
reception of a packet followed by a definition of the receive 
buffer and the buffer descriptor as stored on the RcvQ. FIG. 
89 shows the Receive Buffer Descriptor. FIGS. 90-92 show 
the Receive Buffer Format. 

Frame Transmit Sequencer (XmtX). 
The transmit sequencer (See FIG. 93) (XmtSeq) analyzes 

and manages outgoing packets, using buffer descriptors 
retrieved from the transmit queue (XmtQ) then storing the 
descriptor for the freed buffer in the free buffer queue 
(FreeQ). The process begins when a buffer descriptor is avail
able at the output of the XmtQ. XmtSeq issues a request to the 
Qmg which responds by supplying the buffer descriptor to 
XmtSeq. XmtSeq then issues a read request to the Xrd 
sequencer. Next, XmtSeq issues a read request to SramCtrl 
then instructs the Mac to begin frame transmission. Once the 
frame transmission has completed, XmtSeq stores the buffer 

The Pso sequencer (See FIG. 86) acts as both a slave 
sequencer and a master sequencer. Servicing requests issued 
by a Pci master, the Pso sequencer manages movement of data 
to Pci bus from SRAM and to Pci bus from DRAM via SRAM 
by issuing requests to the SramCtrl and Xrd sequencers. 

50 descriptor on the FreeQ thereby recycling the buffer. 

Pso manages read requests to configuration space, expan
sionrom, DRAM, SRAM and memory mapped registers. Pso 
separates these Pci bus operations in to two categories with 
different action taken for each. DRAM accesses result in Pso 
generating read request to the Xrd sequencer followed with a 
read request to SRAM buffer. Subsequent write or read 
DRAM operations are retry terminated until the buffer has 
been emptied. 

All other Pci read transactions result in Pso posting the read 
request information including Pci address and Pci byte marks 
to a reserved location in SRAM, then setting an event flag 
which the event processor monitors. Subsequent writes or 
reads of configuration, expansion rom, SRAM or registers are 

FIG. 94 depicts the sequence of events for successful trans
mission of a packet followed by a definition of the receive 
buffer and the buffer descriptor as stored on the XmtQ. FIG. 
95 shows the Transmit Buffer Descriptor. FIG. 96 shows the 

55 Transmit Buffer Format. FIG. 97 shows the Transmit Status 
Vector. 

Queue Manager (Qmg). 
The INIC includes special hardware assist for the imple-

60 mentation of message and pointer queues. The hardware 
assist is called the queue manager (See FIG. 98) (Qmg) and 
manages the movement of queue entries between CPU and 
SRAM, between DMA sequencers and SRAM as well as 
between SRAM and DRAM. Queues comprise three distinct 

65 entities; the queue head (QHd), the queue tail (QTl) and the 
queue body (QBdy). QHd resides in 64 bytes of scratch ram 
and provides the area to which entries will be written 



US 7,673,072 B2 
95 

(pushed). QTI resides in 64 bytes of scratch ram and contains 
queue locations from which entries will be read (popped). 
QBdy resides in DRAM and contains locations for expansion 
of the queue in order to minimize the SRAM space require
ments. The QBdy size depends upon the queue being 
accessed and the initialization parameters presented during 
queue initialization. 

96 
Load Calculations. 

The following load calculations are based on the following 
basic formulae: 

N~X*RCLittle's Law) where: 

N=number of jobs in the system (either in progress or in a 
queue), 

X=system throughput, 
R=response time (which includes time waiting in queues). 

U~X*SCfrom Little's Law) where: 

S=service time, 
U=utilization. 

Qmg accepts operations from both CPU and DMA sources 
(See FIG. 99). Executing these operations at a frequency of 
133 MHz, Qmg reserves even cycles for DMA requests and 10 

reserves odd cycles for CPU requests. Valid CPU operations 
include initialize queue (InitQ), write queue (WrQ) and read 
queue (RdQ). Valid DMA requests include read body 
(RdBdy) and write body (WrBdy). Qmg working in unison 
with Q2d and D2q generate requests to the Xwr and Xrd 
sequencers to control the movement of data between the 
QHd, QTI and QBdy. 

15 R=S/(l-U) for exponential service times (which is the worst
case assumption). 

FIG. 98 shows the major functions of Qmg. The arbiter 
selects the next operation to be performed. The dual-ported 
SRAM holds the queue variables HdWrAddr, HdRdAddr, 20 

TIWrAddr, TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. 
Qmg accepts an operation request, fetches the queue vari
abIes from the queue ram (Qram), modifies the variables 
based on the current state and the requested operation then 
updates the variables and issues a read or write request to the 25 

SRAM controller. The SRAM controller services the requests 
by writing the tail or reading the head and returning an 
acknowledge. 

DMA Operations. 30 

A 256-byte frame at 100 Mb/sec takes 20 usee per frame. 

4*100 Mbit ethernets receiving at full frame rate is: 
51200 (4*12800) frames/sec @ 1024 bytes/frame, 
102000 frames/sec @512 bytes/frame, 
204000 frames/sec @256 bytes/frame. 

The following calculations assume 250 instructions/frame, 
45 nsec clock. Thus 

S~250*45 nsees~I1.2 usees. 

Thruput Utilization Response Nbr in system 
Av Frame Size CX) CU) CR) CN) 

1024 51200 0.57 26 usecs 1.3 
512 102000 >1 
256 204000 >1 

DMA operations are accomplished through a combination 
of thirty two DMA channels (DmaCh) and seven DMA 
sequencers (DmaSeq). Each DMA channel provides a 
mechanism whereby a CPU can issue a command to any of 
the seven DMA sequencers. Where as the DMA channels are 
multi-purpose, the DMA sequencers they command are 
single purpose as shown in FIG. 100. 

35 Lets look at it for varying instructions per frame assuming 
512 bytes per frame average. 

The processors manage DMA in the following way. The 
processor writes a DMA descriptor to an SRAM location 
reserved for the DMA channel. The format of the DMA 
descriptor is dependent upon the targeted DMA sequencer. 
The processor then writes the DMA sequencer number to the 
channel command register. 

Each of the DMA sequencers polls all thirty two DMA 
channels in search of commands to execute. Once a command 
request has been detected, the DMA sequencer fetches a 
DMA descriptor from a fixed location in SRAM. The SRAM 
location is fixed and is determined by the DMA channel 
number. The D MA sequencer loads the D MA descriptor in to 
it's own registers, executes the command, then overwrites the 
DMA descriptor with ending status. Once the command has 
halted, due to completion or error, and the ending status has 
been written, the DMA sequencer sets the done bit for the 
current DMA channel. 

The done bit appears in a DMA event register which the 
CPU can examine. The CPU fetches ending status from 
SRAM, then clears the done bit by writing zeroes to the 
channel command (ChCmd) register. The channel is now 
ready to accept another command. 

40 

45 

50 

55 

The format of the channel command register is as shown in 60 

FIG. 101. The format of the P2d or P2s descriptor is as shown 
in FIG. 102. The format of the S2p or D2p descriptor is as 
shown in FIG. 103. The format of the S2d, D2d or D2s 
descriptor is as shown in FIG. 104. The format of the ending 
status of all channels is as shown in FIG. 105. The format of 65 

the ChEvnt register is as shown in FIG. 106. FIG. 107 is a 
block diagram of MAC CONTROL (Macctrl). 

Nbrin 
Instns Per Service Thruput Utilization Response system 

Frame TimeCS) CX) CU) CR) (N) 

250 11.2 usee 102000 >1 
250 11.2 85000 C*) 0.95 224 usees 19 
250 11.2 80000 C**) 0.89 101 
225 10 102000 1.0 
225 10 95000 C*) 0.95 200 19 
225 10 89000 C**) 0.89 90 
200 9 102000 0.9 90 9 
150 6.7 102000 0.68 20 2 

C*) shows what frame rate can be supported to get a utilization ofless than 1. 
C**) shows what frame rate can be supported with 8 SRAM CCB buffers and 
at least 8 process contexts. 

If 100 instructions/frame is used, S=100*45 nsecs=4.5 usecs, 
and we can support 256 byte frames: 

100 4.5 204000 0.91 50 10 

Note that these calculations assume that response times 
increase exponentially as utilization increases. This is the 
worst-case assumption, and probably may not be true for our 
system. The figures show that to support a theoretical full 
4*100 Mbit receive load with an average frame size of 512 
bytes, there will need to be 19 active "jobs" in the system, 
assuming 250 instructions per frame. Due to SRAM limita
tions, the current design specifies 8 SRAM buffers for active 
TCBs, and not to swap a TCB out of SRAM once it is active. 



US 7,673,072 B2 
97 

So under these limitations, the INIC will not be able to keep 
up with the full frame rate. Note that the initial implementa
tion is trying to use only 8 KB ofSRAM, although 16 KB may 
be available, in which case 19 TCB SRAM buffers could be 
used. This is a cost trade-off. The real point here is the effect 

98 
dividing, by the interface device, the data into segments; 
creating headers for the segments, by the interface device, 

from the template header; 
prep ending the headers to the segments to form packets; 

and 
transmitting the packets on a network. 
10. The method of claim 9, wherein creating headers for the 

segments includes adding current status information to the 
template header, the current status information being differ
ent than the status information that was transferred to the 
interface device. 

of instructions/frame on the throughput that can be main
tained. If the instructions/frame drops to 200, then the INIC is 
capable of handling the full theoretical load (102000 frames/ 
second) with only 9 active TCBs. If it drops to 100 instruc
tions per frame, then the INIC can handle full bandwidth at 10 

256 byte frames (204000 frames/second) with 10 active 
CCBs. The bottom line is that all hardware-assist that reduces 
the instructions/frame is really worthwhile. If header-assist 
hardware can save us 50 instructions per frame then it goes 
straight to the throughput bottom line. 

11. The method of claim 9, wherein the protocol header 
information includes Internet Protocol (IP) addresses and 
Transmission Control Protocol (TCP) ports for the connec-

15 tion, and creating headers for the segments includes forming 
headers containing the IP addresses and TCP ports. The invention claimed is: 

1. A method comprising: 
establishing, at a host computer, a transport layer connec

tion, including creating a context that includes protocol 
header information for the connection; 

12. The method of claim 9, wherein the protocol header 
information includes a Media Access Control (MAC) layer 
address, and creating headers for the segments includes form-

20 ing headers containing the MAC layer address. 

transferring the protocol header information to an interface 
device; 

transferring data from the network host to the interface 
device, after transferring the protocol header informa
tion to the interface device; 

dividing, by the interface device, the data into segments; 
creating headers for the segments, by the interface device, 

from a template header containing the protocol header 
information; and 

25 

prep ending the headers to the segments to form transmit 30 

packets. 
2. The method of claim 1, further comprising transferring 

status information for the context to the interface device dur
ing the same operation as transferring protocol header infor
mation to the interface device. 

3. The method of claim 1, wherein creating headers for the 
segments includes adding status information to the template 
header. 

35 

13. The method of claim 9, further comprising transferring 
to the interface device a descriptor for a buffer, in a memory 
of the computer, that has been allocated for application data 
that is transferred according to the protocol information. 

14. The method of claim 9, further comprising receiving, 
by the interface device, receive packets that correspond to the 
protocol information, and updating the status information by 
the interface device to account for the receive packets. 

15. A method comprising: 
establishing, at a computer, a Transmission Control Proto

col (TCP) connection corresponding to a context that 
includes status information and Internet Protocol (IP) 
addresses and TCP ports for the connection; 

transferring the context to an interface device; 
transferring data from the network host to the interface 

device; 
dividing, by the interface device, the data into segments; 
creating headers for the segments, by the interface device, 

from a template header that includes the IP addresses 
and TCP ports; and 

prep ending the headers to the segments to form transmit 
packets. 

4. The method of claim 1, wherein the protocol header 
information includes Internet Protocol (IP) addresses and 40 

Transmission Control Protocol (TCP) ports for the connec
tion, and creating headers for the segments includes forming 
headers containing the IP addresses and TCP ports. 16. The method of claim 15, wherein transferring the con

text to the interface device occurs prior to transferring the data 
45 to the interface device. 

5. The method of claim 1, wherein the protocol header 
information includes a Media Access Control (MAC) layer 
address, and creating headers for the segments includes form
ing headers containing the MAC layer address. 

17. The method of claim 15, wherein creating headers for 
the segments includes adding current status information to 
the template header, the current status information being dif
ferent than the status information that was transferred to the 

6. The method of claim 1, further comprising adding to the 
context a descriptor for a buffer, in a memory of the computer, 
that has been allocated for application data. 50 interface device. 

7. The method of claim 1, further comprising receiving, by 
the interface device, receive packets that correspond to the 
context, and updating the context by the interface device to 
account for the receive packets. 

8. The method of claim 1, further comprising transmitting 55 

the transmit packets on a network. 
9. A method comprising: 
creating, at a computer, a context including protocol infor

mation and status information for a network connection, 
the protocol information providing a template header for 60 

the network connection; 
transferring the protocol information and status informa

tion to an interface device; 
transferring data from the computer to the interface device, 

after transferring the protocol information and status 65 

information to the interface device; 

18. The method of claim 15, wherein the template header 
includes a Media Access Control (MAC) layer address, and 
creating headers for the segments includes forming headers 
containing the MAC layer address. 

19. The method of claim 15, wherein the context includes 
a Media Access Control (MAC) layer address, and creating 
headers for the segments includes forming headers contain
ing the MAC layer address. 

20. The method of claim 15, further comprising adding to 
the context a descriptor for a buffer, in a memory of the 
computer, that has been allocated for application data. 

21. The method of claim 15, further comprising receiving, 
by the interface device, receive packets that correspond to the 
context, and updating the status information by the interface 
device to account for the receive packets. 

* * * * * 


