
Parallel Computing on the Berkeley NOW

David E. Culler, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent Chun,
Steven Lumetta, Alan Mainwaring, Richard Martin, Chad Yoshikawa, Frederick Wong

Computer Science Division
University of California, Berkeley

Abstract: The UC Berkeley Network of Workstations
(NOW) project demonstrates a new approach to large­
scale system design enabled by technology advances
that provide inexpensive, low latency, high bandwidth,
scalable interconnection networks. This paper provides
an overview of the hardware and software architecture
of NOW and reports on the performance obtained at
each layer of the system: Active Messages, MPI mes­
sage passing, and benchmark parallel applications.

1 Introduction

In the early 1990's it was often said that the "Killer
Micro" had attacked the supercomputer market, much as
it had the minicomputer and mainframe markets earlier.
This attack came in the form of massively parallel pro­
cessors (MPPs) which repackaged the single-chip
microprocessor, cache, DRAM, and system chip-set of
workstations and PCs in a dense configuration to con­
struct very large parallel computing systems. However,
another technological revolution was brewing in these
MPP systems - the single-chip switch - which enabled
building inexpensive, low latency, high bandwidth, scal­
able interconnection networks. As with other important
technologies, this "killer switch" has taken on a role far
beyond its initial conception. Emerging from the eso­
teric confines of MPP backplanes, it has become avail­
able in a form that is readily deployed with commodity
workstations and PCs. This switch is the basis for sys­
tem area networks, which have performance and scal­
ability of the MPP interconnects and the flexibility of a
local area network, but operate on a somewhat restricted
physical scale.

The Berkeley NOW project seeks to demonstrate that it
is viable to build large parallel computing systems that
are fast, inexpensive, and highly available, by simply
snapping these switches together with the latest com­
modity components. Such cost-effective, incrementally
scalable systems provide a basis for traditional parallel
computing, but also for novel applications, such as inter­
net services[Brew96].

This paper provides an overview of the Berkeley NOW
as a parallel computing system. Section 2 gives a
description of the NOW hardware configuration and its
layered software architecture. In the following sections,
the layers are described from the bottom-up. Section 3
describes the Active Message layer and compares its
performance to what has been achieved on MPPs.
Section 4 shows the performance achieved through MPI,
built on top of Active Messages. Section 5 illustrates the
application performance of NOW using the NAS Paral­
lel Benchmarks in MPI. Section 6 provides a more
detailed discussion of the world's leading disk-to-disk
sort, which brings out a very important property of this
class of system: the ability to concurrently perform I/O
to disks on every node.

2 Berkeley NOW System

The hardware configuration of the Berkeley NOW sys­
tem consists of one hundred and five Sun Ultra 170
workstations, connected by a large Myricom net­
work[Bode95], and packaged into 19-inch racks. Each
workstation contains a 167 MHz Ultral microprocessor
with 512 KB level-2 cache, 128 MB of memory, two 2.3
GB disks, ethemet, and a Myricom "Lanai" network
interface card (NIC) on the SBus. The NIC has a 37.5
MHz embedded processor and three DMA engines,
which compete for bandwidth to 256 KB of embedded
SRAM. The node architecture is shown in Figure 1.

The network uses multiple stages of Myricom switches,
each with eight 160 MB/s bidirectional ports, in a vari­
ant of a fat-tree topology.

2.1 Packaging

We encountered a number of interesting engineering
issues in assembling a cluster of this size that are not so
apparent in smaller clusters, such as our earlier 32-node
prototype. This rack-and-stack style of packaging is
extremely scalable, both in the number of nodes and the
ability to upgrade nodes over time. However, structured
cable management is critical. In tightly packaged sys­
tems the interconnect is hidden in the center of the

DEFS-ALAOOO 1829

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Myricom Network

160 MB/s ~S-port . . . wormhole
~1direct1onal switches
hnk

0 0 0

UPA

UltraSparc L2 Cache

Figure 1. NOW Node Configuration

machine. When multiple systems are placed in a
machine room, all the interconnect is hidden under the
floor in an indecipherable mess. However, in clusters,
the interconnect is a clearly exposed part of the design.
(a bit like the service conduits in deconstructionist
buildings). Having the interconnect exposed is valuable
for working on the system, but it must stay orderly and
well structured, or it becomes both unsightly and diffi­
cult to manage.

The Berkeley NOW has four distinct interconnection
networks. First, the Myrinet provides high-speed com­
munication within the cluster. We discuss this in detail
below. Second, switched-Ethernet into an ATM back­
bone provides scalable external access to the cluster.
The need for an external network that scales with the
size of the cluster was not apparent when we began the
project, but the traffic between the cluster and other
servers, especially file servers, is an important design
consideration. Third, a terminal concentrator provides

direct console access to all the nodes via the serial port.
This is needed only in situations when the node cannot
be rebooted through the network, or during system
development and debugging. Fourth, conventional AC
lines provide a power distribution network. As clusters
transition to the commercial mainstream, one engineer­
ing element will be to consolidate these layers of inter­
connect into a clean modular design. Figure 2 shows a
picture of the NOW system.

Figure 2. NOW System

2.2 Network topology

The Myrinet switches that form the high-speed intercon­
nect use source routing and can be configured in arbi­
trary topologies. The NOW automatic mapping software
can handle arbitrary interconnect[Mai*97]; however, we
wire the machine as a variant of a Fat-tree to create a
system with more uniform bandwidth between nodes
thereby minimizing the impact of process placement'.
The topology is constrained by the use of 8-port (bidi­
rectional) switches and wiring density concerns. Ini­
tially we planned to run cables from all the nodes to a
central rack of switches; however, the cable cross-sec­
tional area near the switches became unmanageable as a
result of bulky, heavily-shielded copper network cables.
Using fiber-optic cables that are now available, the cable
density may be reduced enough to centrally locate the
switches.

DEFS-ALAOOO 1830

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

In building an indirect network out of fixed-degree
switches, the number of upward links depends on the
number of downward links. We elected to attach five
hosts to each first level switch, which eliminates 40% of
the cable mass. As shown in Figure 3, groups of seven of
these switches are treated as a 35-node subcluster with
the 21 upward links spread over four level-two switches.
Three of these subclusters are wired together to com­
prise the NOW. We have found that as a rule of thumb,
adding 10% extra nodes and extra ports greatly simpli­
fies system administration, allowing for node failures,
software or hardware upgrades, and system expansion.

Figure 3. NOW Myrinet Network Topology

2.3 Software Architecture

The system software for NOW employs a layered archi­
tecture, as illustrated in Figure 4. Each node runs a com­
plete, independent Solaris Unix with the associated
process management, memory management, file system,
thread support, scheduler, and device drivers. We extend
Solaris at each of these interfaces to support global
operations over the NOW.

Process Management: A global OS layer, called
GLUnix, provides NOW-wide process management as a
layer on top of Solaris (via sockets, daemons, and sig­
nals). Using either a global shell, gl ush, or the gl u­
run command, sequential processes can be started
anywhere on the NOW or parallel processes can be
started on multiple nodes. Local pids are elevated to a
global pids, and the familiar process control opera­
tions, such as ctrl-C or ctrl-Z, work on global processes.
The Unix process information and control utilities, such
asps and kill, are globalized as well.

demanding
sequential
applications

parallel applications

global OS layer - GLUnix
global process mgmt, resource mgmt, file system, scheduling

commodity
workstation
with full OS

process mgmt
resource mgmt
scheduler
I/O system
I comm. driver I

mte 1gent
NIC

scalable, low latency network

Figure 4. NOW software architecture

File System: A prototype file system, xFS, extends
Solaris at the vnode interface to provide a global, high
performance file system[And*95b]. Files are striped
over nodes in a RAID-like fashion so that each node can
read file data at the bandwidth of its interface into the
network. The aggregate bandwidth available to nodes is
that of all the disks. xFS uses a log-structured approach,
much like Zebra[Ha0u95], to minimize the cost of par­
ity calculations. A single node accumulates enough of
the log so that it can write a block to each disk in a stripe
group. Before writing the blocks, it calculates a parity
block locally and then writes it along with the data
blocks.

An update-based file cache-coherence strategy is used,
and the caches are managed cooperatively to increase
the population of blocks covered by the collection of
nodal caches. If a block about to be discarded is the last
copy in the system, then it is cast off to a random remote
node. Nodes take mercy on this block until it has aged to
the point where it appears pointless to keep it in mem­
ory. This policy has the attractive property that actively
used nodes behave like traditional clients while idle
nodes behave like servers, so the cooperative file cache
adapts dynamically to system usage.

Virtual Memory: Two prototype global virtual mem­
ory systems have been developed to allow sequential
processes to page to the memory of remote idle nodes,
since communication within the NOW has higher band­
width, and much lower latency than access to local
disks. One of these uses a custom Solaris segment driver
to implement an external user-level pager which

DEFS-ALA0001831

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

exchanges pages with remote page daemons. The other
provides similar operation on specially mapped regions
using only signals.

3 Active Messages

Active Messages are the basic communication primi­
tives in NOW. This work continues our investigation of
implementation trade-offs for fast communication lay­
ers[vE92*,Gol*96,Kri*96] and on NOW we have
sought to generalize the approach and take full advan­
tage of the complete OS on every node. The segment
driver and device driver interface is used to provide
applications with direct, protected user-level access to
the network. Active Messages map to simple operations
on queues and buffers that are shared between the user
process and the communication firmware, which is exe­
cuted on a dedicated processor embedded in the network
interface card.

We have built two Active Message layers. The first,
Generic Active Messages (gam) is oriented toward the
traditional single-parallel-program-at-a-time style of
parallel machines, and provides exactly the same API
across a wide range ofplatforms[Cul*95].This serves as
a valuable basis for comparison.

The newer AM layer[Main95], AM-II, provides a much
more general purpose communication eINironment,
which allows many simultaneous parallel programs, as
well as client/server and system use. It is closely inte­
grated with POSIX threads. The AM implementation is
extremely versatile. It provides error detection and retry
a the NIC-to-NIC level and allows the network to be
reconfigured in a running system. A privileged mapper
daemon explores the physical interconnection, derives
deadlock-free routes, and distributes routes periodi­
cally[Mai*97]. AM-II provides a clean return-to-sender
error model to support highly available applications.

The Active Messages communication model is essen­
tially a simplified remote procedure call that can be
implemented efficiently on a wide range of hardware.
Three classes of messages are supported. Short mes­
sages pass eight 32-bit arguments to a handler on a des­
tination node, which executes with the message data as
arguments. Medium messages treat one of the argu­
ments as a pointer to a 128 byte to 8 KB data buffer and
iINoke the handler with a pointer to a temporary data
buffer at the destination. Bulk messages perform a mem­
ory-to-memory copy before iINoking the handler. A
request handler issues replies to the source node.

We have developed a microbenchmarking tool to char­
acterize empirically the performance of Active Mes­
sages in terms of the LogP model[Cul*93, Cul*95].
Figure 5 compares the gam short message LogP param­
eters on NOW with the best implementations on a range
of parallel machines. The bars on the left show the one­
way message time broken down into three components:
send overhead (oJ, receive overhead (or), and the
remaining latency (L). The bars on the right shows the
time per message (g = l/MessageRate) for a sequence
of messages. NOW obtains competitive or superior
communication performance to the more tightly inte­
grated, albeit older, designs.

The overhead on NOW is dominated by the time to
write and read data across the 1/0 bus. The Paragon has
a dedicated message processor and network interface on
the memory bus; however, there is considerable over­
head in the processor-to-processor transfer due to the
cache coherence protocol and the latency is large
because the message processors must write the data to
the NI and read it from the NI. The actual time on the
wire is quite small. The Meiko has a dedicated message
processor on the memory bus with a direct connection to
the network, but the overhead is dominated by the
exchange instruction that queues a message descriptor
for the message processor and the latency is dominated
by the slow message processor accessing the data from
host memory. Medium and bulk messages achieve 38
MB/s on NOW, limited primarily by the SBus.

14 :·······································~···········

12 t
~ 10 t
c

~ 8 t -
~ 6 t -
:E 41

2 t
0 --L ,__ ~

c
0
0)
ro
ro

CL

~
::::>

s
0
z

c
0
0)
ro
ro

CL

•L

C!I Or

ag

Figure 5. Active Messages LogP Perlormance

Traditional communication APis and programming
models are built upon the Active Message layer. We
have built a version of the MPI message passing stan-

DEFS-ALAOOO 1832

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

dard for parallel programs in this fashion, as well as a
version of the Berkeley Sockets API, called Fast Sock­
ets[Rod*97]. A shared address space parallel C, called
Split-C[Cul*93], compiles directly to Active Messages,
whereas HPF[PGI] compiles down to the MPI layer.

4MPI

Our implementation of MPI is based on the MPICH ref­
erence implementation, but realizes the abstract device
interface (ADI) through Active Message operations.
This approach achieves good performance and yet is
portable across Active Message platforms. The MPI
communicator and related information occupy a full
short message. Thus, a zero-byte control message is
implemented as a single small-message request­
response, with the handler performing the match opera­
tion against a receive table. The one-way time for an
echo test is 15 µs. MPI messages of less than 8 KB use
an adaptive protocol implemented with medium Active
Messages. Each node maintains a temporary input
buffer for each sender and senders keep track of whether
their buffers are available on the destination nodes. If
the buffer is available, the send issues the data without
handshaking. Buffer availability is conveyed back to the
source through the response, if the match succeeds, or
via a request issued by the later matching receive. Large
messages perform a handshake to do the tag match and
coINey the destination address to the source. A bulk
operation moves the message data directly into the user
buffer.

Figure 6 shows the bandwidth obtained as a function of
message size using Dongarra's echo test on NOW and
on recent MPP platforms[DoDu95]. The NOW version
has lower start-up cost than the other distributed mem­
ory platforms and has intermediate peak bandwidth. The
T3D/pvm version does well for small messages, but has
trouble with cache effects. Newer MPI implementations
on the T3D should perform better than the T3D/pvm in
the figure, but data is not available in the Dongarra
report.

5 NAS Parallel Benchmarks

An application-level comparison of NOW with recent
parallel machines on traditional scientific codes can be
obtained with the NAS MPI-based parallel benchmarks
in the NPB2 suite[NPB]. We report briefly on two appli­
cations. The LU benchmark solves a finite difference
discretization of the 3-D compressible Navier-Stokes
equations. A 2-D partitioning of the 3-D data grid onto a
power-of-two number of processors is obtained by halv-

45~~~~~~~~~~~~

: -X- Meiko CS2 X ~
401----~ ~

:§' 35 t --/r- IBM SP2 • i:,,.
~ 3 o +--<>--Cray T3D

0
XX /l!C ~

: 25 + 0
x J. 0 f

:§ 20 _j_ 0. I f_ ~
~ : 0 :

""15-i- ~•o ~
; : 0 .---w :
m 10 f ~ -~ ~

5 t Q lt ~
o~B~iA < ,0

1 0 100 1000 10000 100000 1000000

Message Size (bytes)

Figure 6. MPI bandwidth

ing the grid repeatedly in the first two dimensions, alter­
nating between x and y, resulting in vertical pencil-like
grid partitions. The ordering of point based operations
constituting the SSOR procedure proceeds on diagonals
which progressively sweep from one comer on a given z
plane to the opposite comer of the same z plane, there­
upon proceeding to the next z plane. This constitutes a
diagonal pipelining method and is called a "wavefront"
method by its authors [Bar*93]. The software pipeline
spends relatively little time filling and emptying and is
perfectly load-balanced. Communication of partition
boundary data occurs after completion of computation
on all diagonals that contact an adjacent partition.

The BT algorithm solves three sets of uncoupled sys­
tems of equations, first in the x, then in they, and finally
in the z direction. These systems are block tridiagonal
with 5x5 blocks and are solved using a multi-partition
scheme[Bm88]. The multi-partition approach provides
good load-balance and uses coarse-grained communica­
tion. Each processor is responsible for several disjoint
sub-blocks of points ("cells") in the grid. The cells are
arranged such that for each direction in the line-solve
phase, the cells belonging to a certain processor are
evenly distributed along the direction of solution. This
allows each processor to perform useful work through­
out a line-solve, instead of being forced to wait for the
partial solution to a line from another processor before
beginning work. Additionally, the information from a
cell is not sent to the next processor until all sections of
linear equation systems handled in this cell have been
solved. Therefore the granularity of communications is
kept large and fewer messages are sent. The BT code
requires a square number of processors.

DEFS-ALAOOO 1833

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

